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Abstract
We characterize the accuracy of a cooperative localization algorithm based on Kalman Fil-
tering, as expressed by the trace of the covariance matrix, in terms of the algebraic graph
theoretic properties of the sensing graph. In particular, we discover a weighted Laplacian
in the expression that yields the constant, steady state value of the covariance matrix. We
show how one can reduce the localization uncertainty by manipulating the eigenvalues of
the weighted Laplacian. We thus provide insight to recent optimization results which indi-
cate that increased connectivity implies higher accuracy and we offer an analysis method that
could lead to more efficient ways of achieving the desired accuracy by controlling the sensing
network.
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1 Introduction

Localization is a process by which a robot estimates its position with respect to a given frame
of reference. The general localization problem has many increasingly difficult problem in-
stances, like global localization, position tracking, etc. Global localization is a process in
which robot has to estimate its position with no information about its initial location. If the
initial position information is available to the robot, the process is called position tracking and
is comparatively simple than the global localization process. The ”kidnapped robot” problem
[9] is considered to be the hardest of all because in this case a fully localized robot is suddenly
transferred to another location and in this process loses track of its position information. The
above localization problems can become more complicated if the environment is dynamic.
Most of the research in this field assumes the environment to be static.

Robot localization is an important aspect of map building [10]. Accurate estimation
of robot positions provide accurate maps of the area. Multi-robot localization is gaining
popularity due to the fact that the robots can exchange information regarding their position
based on the available sensor data and hence can improve their own localization estimates. In
an ideal situation, each robot would have its absolute positioning information provided by GPS
signals or overhead cameras but in practice, the availability of absolute position information to
each robot comes with an extra cost. In addition, GPS information is unavailable indoors or in
the vicinity of tall buildings in urban environments. An indoor GPS system called “NorthStar”
technology built by Evolutions Robotics can be used in case of an indoor application [11].
The device uses a small inexpensive sensor and an infrared, encrypted light device which
helps the robot to estimate its position, but the positional accuracy of this system is not high
and it needs an additional powerful and expensive camera.

Deficiencies in the odometry data provided by robot’s encoders can be compensated by
relative position measurements made by the exteroceptive sensors. Various types of extero-
ceptive sensors are used, the most common amongst them being laser range finders, sonar
sensors, infra-red sensors. Various approaches are adopted by researchers to fuse the mea-
surements obtained by the proprioceptive and exteroceptive sensors like Extended Kalman
filtering [2], [4], [5], particle filters [9], [10], [12], [16], grid based methods [18], [17] ,
expectation maximization algorithms [19], [20], etc.

The following sections give an outline of the problem, describe the filter chosen for data
fusion and investigate the factors affecting the accuracy of the system. The contribution of
this report is the establishment of an algebraic link between cooperative localization accuracy
and the topology of the sensing graph. This connection can lead to additional more efficient
ways of improving the accuracy of the cooperative localization algorithm by controlling the
topology of the network.

2 Previous work and motivation

The main motivation for this report comes from, and builds on the work in [2]. It is in fact an
extension of the work done by Roumeliotis and Mourikis in [2], based on an observation for
an interesting particular case, and an associated graph theoretic interpretation. We adopt the
same notation to allow for direct comparison and we borrow the initial stages of the analysis
in [2].

Consider a group of M mobile robots and N landmarks in an environment. The robots
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use proprioceptive measurements to propagate their own position estimates and obtain rela-
tive position estimates of neighboring robots using their exteroceptive sensors. An Extended
Kalman Filter is used to filter out the measurement noise and reduce the uncertainty associ-
ated with the interpretation of sensor signals. Also, each robot is provided with a sun sensor or
a compass so that the uncertainty in orientation is always bounded. Hence, we are concerned
only with the reduction of error in the position estimate of the robots.

Kalman filter estimation can be divided into two cycles: the Position Propagation cycle in
which the knowledge about position estimates is propagated to next time step and the Update
cycle where the position estimates are updated using relative position information obtained
from the exteroceptive sensors.

3 Problem description

Consider a group of M mobile robots carry sensors capable of integrating odometry data as
well as making relative measurements with respect to other robots. In this report we assume
the existence of at least one landmark, the position of which is known exactly. Generally,
a robot can make a relative measurement with respect to another robot if the latter is within
its sensing radius. At any given moment, based on relative positions, some measurements
can be made whereas others cannot, giving rise to a certain sensing network that can be
described by a directed graph. The robots and landmarks are the nodes of this directed graph
and the relative measurements made by the robots form the directed edges of the graph. The
robots that can directly measure their positions with respect to the landmark can estimate their
position more accurately. We intend to control the topology of a sensor network in order to
improve the localization accuracy of a group of M robots.

The sensing graph is defined as follows:
Definition 3.1. The sensing graph is a directed graph X = {V ,E} consisted of

• a set of vertices V = {r1, . . . ,rM,L1, . . . ,LN}, indexed by the M robots and N land-
marks, and

• a set of edges E , containing ordered pairs of the form (ri,r j) or (ri, ` j), with ri,r j, ` j ∈
V , representing relative measurements made by the robots.

In Figure 1, the absolute position information of the landmark is known. Robots R4
and R3 can measure their relative positions with respect to the landmark whereas R2 and R1
measure distances with respect to these robots. This scenario seems like a special case of the
problem studied in [2]. However, in [2] the sensing topology is assumed time-invariant. The
analysis presented in this report seems to suggest that there should not be any constraint on
the time dependency of the sensing graph.

3.1 Position propagation

The pose of robot i, i = 1, . . . ,M is given by:

Xri =

xri

yri

φi.
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Figure 1: Sensor graph with 4 robots and 1 landmark.

The discrete-time equations approximating the kinematics of the i-th robot are [2]:

xri(k +1) = xri(k)+Vi(k)δt cos(φi(k)) (1)
yri(k +1) = yri(k)+Vi(k)δt sin(φi(k)), (2)

where δt is sampling period and Vi(k) is the translational velocity at time step k. By lin-
earizing the above equations, the error propagation equation for the robot’s position can be
derived:

X̃rik+1|k
= I2×2X̃rik|k

+Gri(k)Wi(k),

where X̃rik+1|k
=
[
x̃T

rik+1|k
ỹT

rik+1|k

]T
, and Gri denotes the error propagation matrix:

Gri(k) =
[

δt cos(φ̂i(k)) −Vmi(k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi(k)δt cos(φ̂i(k))

]
,

3
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in which Vmi(k) is the measured robot velocity, and φ̂i(k) is the estimate of robot’s orientation.
The term Wi is defined as:

Wi(k) =
[

wVi(k)
φ̃i(k)

]
,

where, wVi(k) is zero-mean, white Gaussian noise sequence of variance σ2
Vi

, σVi being the
standard deviation of velocity measurement noise for the i-th robot at time step k and φ̃i(k) is
the error in robot’s orientation at time k.

From the above equation, the covariance matrix of system noise for the i-th robot is given
by:

Qri(k) = EGri(k)Wi(k)W T
i (k)GT

ri
(k) = C(φ̂i(k))DC(φ̂i(k))T ,

where C(φ̂i(k)) denotes the 2×2 rotation matrix. Matrix D is defined as:

D =
[

δ2
t σ2

Vi
0

0 δ2
t V 2

mi
(k)σ2

φi

]
,

where σVi is the standard deviation of the noise in the velocity measurements, and σφi is the
standard deviation of the noise contaminating the orientation estimates.

Landmarks are considered stationary objects in the environment, and thus their state is
same at all times. By collecting the terms, the covariance propagation equations of the state
error can be given by the following equation [2]:

Pk+1|k = Pk|k +GQr(k)GT ,

where G and Qr are the block diagonal matrices constructed using Gri and Qri , respectively.

3.2 Position update

A robot performs relative position measurements whenever a robot or a landmark comes
within its sensor range. The information obtained from these relative measurements is used
in the update phase to reduce the position uncertainty of the robot. The relative position
measurements obtained when robot ri observes robot rm are given by:

zri,rm = CT (φi)(Xrm −Xri)+nzri,rm (3)

where Xrm =
[
xT

rm yT
rm

]T , Xri =
[
xT

ri
yT

ri

]
, and nzri,rm is the noise contaminating the above

measurement. A similar equation can be obtained for robot ri observing landmark Ln:

zri,Ln = CT (φi)(XLn −Xri)+nzri,Ln
(4)

Equations (3) and (4), for the j-th observation made by the i-th robot can be written in
one form as:

zi j = CT (φi)(Xi j−Xri)+nzi j (5)

where Xi j denotes the position of the robot or landmark observed by robot i and nzi j is the
noise affecting this measurement.

4
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The measurement error equation can be written as:

z̃i j(k +1) = zi j(k +1)− ẑi j(k +1)

= CT (φ̂i(k +1))
[
0 . . . −I2×2 . . . I2×2 0 . . .

]
X̃k+1|k

+
[
I2×2 −CT (φ̂i(k +1))J ˆ∆pi j(k +1)

][nzi j(k +1)
φ̃i(k +1)

]
= Hi j(k +1)X̃k+1|k +Γi j(k +1)ni j(k +1)

where X̃ is the combined stack vector of all the estimates for the robot and landmark positions:

X̃T =
[
. . . X̃T

ri
. . . X̃T

Ti j
. . .
]
,

Γi j(k) can be given by:

Γi j(k) =
[
I2×2 −CT (φ̂i(k +1))J ˆ∆pi j(k +1)

]
,

where

J =
[

0 −1
1 0

]
, ni j(k) =

[
nzi j(k)
φi(k)

]
, ˆ∆pi j(k +1) = X̂i jk+1|k − X̂rik+1|k

,

X̂ri denotes the estimate for the position of robot i, and X̂i j is the position of robot j as
estimated by robot i. The matrix Hi j is given as Hi j(k +1) = CT (φ̂i(k +1))Hoi j , in which:

Hoi j =
[
0 . . . −I2×2 . . . I2×2 0 . . . 0

]
. (6)

If robot i observes robot j, Hoi j is a 2× (2M + 2N) matrix with i-th entry as −I2×2 and j-th
entry as I2×2, and the rest of the entries are zero.

The measurement matrix of the entire system, H(k + 1), is a block matrix with block
rows Hi(k +1). Each Hi(k +1) is given as

Hi(k +1) = Ξ
T
φ̂i

Hoi ,

where Hoi is a constant matrix with block rows Hoi j , j varies from 1 to Mi, Mi is the number
of observations made by robot i, and

Ξ
T
φ̂i

= IMi×Mi ⊗C(φ̂i(k +1)),

with ⊗ denoting the Kronecker matrix product. This measurement matrix for robot i, Hi(k+
1), stores the Mi relative position measurements made by robot i.

The covariance update equation of the EKF can be written as [2]

Pk+1|k = Pk+1|k−Pk+1|kHT (k +1)(H(k +1)Pk+1|kHT (k +1)+R(k +1))−1H(k +1)Pk+1|k

= Pk+1|k−Pk+1|kHT
o Ξ(k +1)(ΞT (k +1)HoPk+1|kHT

o Ξ(k +1)

+Ξ
T (k +1)RoΞ(k +1))−1

Ξ
T (k +1)HoPk+1|k

= Pk+1|k−Pk+1|kHT
o (HoPk+1|kHT

o (HoPk+1|kHT
o +Ro(k +1))−1HoPk+1|k.

In the above,

• Ho is a matrix having as block rows Hoi ,
5
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• Ro is a block diagonal matrix with elements Roi [2]:

Roi = σ
2
ρi

I2Mi×2Mi −Didiag

(
σ2

ρi

ρ̂2
i j

)
DT

i +σ
2
θi

DiDT
i +σ

2
φi

Di1Mi×MiD
T
i ,

where Di is the block diagonal matrix with diagonal blocks J ˆ∆pi j, and Mi are the
number of observations made by robot i,

• R(k +1) is a block diagonal matrix with elements Ri(k +1),
• Ri is a block matrix in which the 2×2 (diagonal) (l,m) block is:

iRlm(k +1) = σ
2
φi

CT (φ̂i)J∆̂pi j∆̂p
T
il J

TC(φ̂i), for l,m = 1, ...,Mi,

where ˆ∆pi j(k +1) = X̂i jk+1|k − X̂rik+1|k
, and ˆ∆pil(k +1) = X̂ilk+1|k − X̂rik+1|k

.

3.3 Covariance matrix when a single landmark is accurately known

The system consisting of M robots and one landmark becomes observable if the absolute
position information of the landmark is available. In this case, the steady-state solution to
Riccati recursion becomes [2],

Pu(0)
∞ =

[
Pu

rr∞
02M×2

02×2M 02×2

]
. (7)

One measure of localization accuracy is the trace of the covariance matrix, Pu(0)
∞ . To increase

the localization accuracythe trace of Pu(0)
∞ should decrease. It can be seen from the above

equation that,

trace(Pu(0)
∞ ) = trace(Pu

rr∞
) (8)

The matrix Pu
rr∞

is given by,

Pu
rr∞

= Q
1
2
ruUdiag(

1
2

+(
1
4

+
1
λi

)
1
2 )UT Q

1
2
ru . (9)

In the above equation, U and λi, i = 1, . . . ,2M, are the matrix of eigenvectors of another
matrix Ψ and the eigenvalues of Ψ, respectively, where

Ψ = Q
1
2
ru IrQ

1
2
ru (10)

Qru is a diagonal matrix with elements qi:

qi = max(δt2
σ

2
Vi

,δt2V 2
i σ

2
φi
). (11)

In equation (10), the matrix Ir is given by:

Ir = IT
y HT

o R−1
u HoIy, (12)

where

Iy =
[

I2M×2M
02×2M

]
.

In the above equation, Ru is a diagonal matrix with (block) elements:

riI2Mi×2Mi = (σ2
ρi

+Miσ
2
φi

ρ
2
0 +σ

2
θi

ρ
2
0)I2Mi×2Mi .

6
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4 Algebraic graph theoretic characterization

It can be seen from equation (6) that Hoi j is in fact the Kronecker matrix product of the row
of the incidence matrix of the sensor graph X (Definition 3.1) corresponding to edge (i, j),
Bi j, with I2×2:

Hoi j = Bi j⊗ I2×2

Then,

Ho = B⊗ I2×2

Matrix R−1
u can be thought of as a weight matrix. Weights corresponding to each node

change, whenever the degree of each node does. The Laplacian matrix for graph X is a posi-
tive semidefinite matrix obtained by multiplying the incidence matrix B with its transpose:

L = BT B.

A weighted Laplacian matrix is obtained in a similar way, by multiplying the weight matrix
with the incidence matrix from the right, and transpose of incidence matrix from the left. If
W denotes a weight matrix, then the weighted Laplacian of a graph can be written as,

Lw = BTWB = HT
o R−1

u Ho

The matrix HT
o R−1

u Ho is thus a weighted Laplacian matrix of X , with incidence matrix Ho and
weight matrix R−1

u . The smallest eigenvalue of a weighted Laplacian matrix is zero and the
rest are always positive. By multiplying the weighted Laplacian matrix of the sensor graph
HT

o R−1
u Ho by Iy from right and IT

y from the left, we obtain Ir in equation (12).

Multiplication by Ir results in the removal of the last row (and column) from Lw. This is
the row and column corresponding to the (known) landmark. Due to the matrix tree theorem,
Ir becomes a positive definite matrix with all positive eigenvalues [1]. We will write :

Ir = Lw[u]

according to the notation in [1], using u to represent the node associated with the landmark.

It can be seen from equation (8) that the trace of covariance matrix depends on the trace
of matrix Pu

rr∞
, which in turn depends on matrices Qru and U , and the eigenvalues λi:

trace(Pu
rr∞

) = trace

(
Q

1
2
ruUdiag

([
1
4

+
1
λi

] 1
2
)

UT Q
1
2
ru

)
.

Using the property [7]:

trace(ABC) = trace(BCA) = trace(CAB)

we can write

trace(Pu
rr∞

) =trace

(
Q

1
2
ruUdiag

([
1
4

+
1
λi

] 1
2
)

UT Q
1
2
ru

)

=trace

(
UT Q

1
2
ruQ

1
2
ruUdiag

([
1
4

+
1
λi

] 1
2
))

=trace

(
UT QruUdiag

([
1
4

+
1
λi

] 1
2
))

7
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Note that UT QruU is a positive definite matrix, since U is the orthogonal matrix of eigen-
vectors of Ψ and Qru is a diagonal matrix with positive elements. Hence, UT QruU is positive
definite and its diagonal elements are always positive. Let αi denote the i-th diagonal ele-

ment of matrix UT QruU and µi denote the i-th diagonal element of matrix diag
([

1
4 + 1

λi

] 1
2
)

.

Then,

trace(Pu
rr∞

) =
2M

∑
i=1

αiµi ⇒
∂(trace(Pu

rr∞
))

∂µi
=

∂(∑2M
i=1 αiµi)
∂µi

= αi > 0

Since αi is always positive and depends on the sensors parameters, the trace of Pu
rr∞

increases
monotonically with each µi.

In order to decrease the trace of Pu
rr∞

, the value of µi should be minimized. The values of
µi depend upon the eigenvalues of matrix Ψ. The larger the eigenvalues of Ψ, the smaller the
trace of Pu

rr∞
will be. Hence, to increase accuracy of the system, one should try to achieve a

matrix Ψ with as large eigenvalues as possible.

The trace of the matrix Ψ = Q
1
2
ru IrQ

1
2
ru can also be written as

trace(Ψ) = trace(Qru Ir)

Let qi denote the i-th diagonal element of Qru and iii denote the i-th diagonal element of
matrix Ir. Then note that:

trace(Q
1
2
ru IrQ

1
2
ru) = trace(Qru Ir) =

2M

∑
i=1

qiiii > 0,

∂(trace(Qru Ir))
∂iii

=
∂(∑2M

i=1 qiiii)
∂iii

= qi > 0

Hence, in order to minimize Pu
rr∞

, the eigenvalues of Ir should be increased. Matrix Ir is
the matrix obtained from the weighted Laplacian matrix of graph X after the removal of the
column and row which correspond to the landmark. Therefore, all the eigenvalues of Ir and
Ψ are greater than zero. Thus, by increasing the eigenvalues of HT

o R−1
u Ho we can reduce the

trace of covariance matrix.

In case of a Laplacian matrix of an unweighted graph, it has been shown in [1] that its
eigenvalues always increase with the addition of an edge. In the following section, we prove
that the eigenvalues of a weighted graph Laplacian also interlace the eigenvalues of the new
graph Laplacian obtained by addition of edges to the old graph.

5 Interlacing for Weighted Graphs

Interlacing is a relationship between the eigenvalues of a matrix and those of its submatrix.
Suppose A is a real, symmetric m×m matrix and B is a real, symmetric n× n submatrix
of A. Then the eigenvalues of B interlace the eigenvalues of A. Let {λ1, ...,λn} denote the
eigenvalues of A and {θ1, ...,θn} be the eigenvalues of B, then, [1]

λn−m+i(A)≤ θi(B)≤ λi(A) (13)
8
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In this section we iterate interlacing results on the Laplacian spectrum of weighted graphs;
we give detailed proofs for known results on interlacing that appear in [21]. This section is
not introducing new theory, but merely provides insight into how these known results apply to
the particular case of cooperative localization using relative measurements. First we start with
proving that the smallest positive eigenvalue of the new weighted Laplacian matrix obtained
by adding an edge to the original one is always greater than the smallest positive eigenvalue
of the original graph.
Theorem 5.1. Let X be a graph with V vertices and E edges with weights wi j on each edge
and Q(X) be the weighted Laplacian matrix of X. Let Y be obtained by adding an edge to X
by joining two distinct vertices of X, then,

λ2(X)≤ λ2(Y )

Proof. Let Y be obtained by joining the vertices r and s of X. Q(Y) denotes the weighted
Laplacian of Y. For any eigenvector z orthogonal to 1, we have from [1] and [3],

λ2(Y ) = min
zT 1=0

zT Q(Y )z
zT z

= min
zT 1=0

wrs(zr− zs)2 +∑uv∈E(X) wuv(zu− zv)2

zT z

= min
zT 1=0

wrs(zr− zs)2

zT z
+ min

zT 1=0

∑uv∈E(X) wuv(zu− zv)2

zT z

= min
zT 1=0

wrs(zr− zs)2

zT z
+λ2(X)

Hence,

λ2(Y )≥ λ2(X)

It can be seen from the above equation that the smallest eigenvalue always increases with
addition of an edge to the original graph. Increasing λ2 will only affect one of the terms that
are added to yield the trace of Pu

rr∞
. In the next theorem we prove that all the eigenvalues of

the new graph Laplacian increase with addition of an edge. We will make use of the following
lemma from [7] to prove the theorem.
Lemma 5.2. Let A, B be Hermitian matrices. For a positive definite matrix B, the following
is always true [7],

λk(A)≤ λk(A+B)

The next theorem essentially extends the interlacing property to weighted graphs.
Theorem 5.3. Let X be a weighted graph with n vertices and Y be obtained from X by adding
an edge joining two distinct vertices of X. Then, for all i,

λi(X)≤ λi(Y )

9
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Proof. Suppose a new edge e is obtained by joining vertices i and j of the graph X, when
i-th robot measures relative distance with respect to the j-th robot. Associated with this
measurement we have a new (2M +2N)×2 matrix p j with i-th entry as −I2×2 and j-th entry
as I2×2 and all the other entries zero.

p j =


0

−I2×2
. . .

I2×2
. . .


Let p1,...,pMi represent similar (2M +2N)×2 matrices obtained as a result of the various

relative measurements made by the robot i, for example, matrix p1 is obtained when robot i
makes relative measurements with respect to robot 1. The i-th entry in matrix p1 is−I2×2 and
the first entry is I2×2.

The weight matrix changes when a new edge is added to the graph. If originally robot i
made Mi relative measurements, then, the i-th block in the weight matrix R−1

u is given by a
diagonal matrix of size 2Mi×2Mi with diagonal elements 1

ai
, where:

ai = σ
2
ρi

+Miσ
2
φi

ρ
2
0 +σ

2
θi

ρ
2
0

When robot i makes an additional observation, say robot j, the i-th block in the weight matrix
becomes an 2(Mi +1)×2(Mi +1) diagonal matrix with elements 1

bi
, where bi is given by:

bi = σ
2
ρi

+(Mi +1)σ2
φi

ρ
2
0 +σ

2
θi

ρ
2
0

The weighted Laplacian matrix of the new graph, Y, can be expressed in terms of weighted
Laplacian of X as shown below:

Q(Y ) = Q(X)+PWPT

where P is an 2(M + N)× 2(Mi + 1) matrix consisting of matrices p1,...pMi+1, P =[
p1 p2 . . . pMi

]
and W is an 2(Mi + 1)× 2(Mi + 1) diagonal matrix with the i-th ele-

ment as (bi−ai) and rest elements as bi.

It can be observed from the above equation that the term PWPT is another weighted
Laplacian matrix that corresponds to the subgraph of Y consisting of all the vertices present
in the graph but only the edges obtained by measurements made by robot i. Laplacian matrix
is always positive semidefinite, hence, by Lemma 5.2 we can conclude that the eigenvalues
of a graph always increase when an edge is added to the original graph.

Motivated by the fact that the spectrum of the weighted Laplacian behaves in a similar
manner as that of the unweighted Laplacian of the same graph, allows us to concentrate on the
sensing network topology as a means of optimizing the performance of the EKF algorithm.
This is especially true for the case that sensors are homogeneous, and as a result the Laplacian
gains are the same. While some edges (those with larger weights, or specifically smaller error
variances) might contribute more significantly toward a more accurate estimate, the general
direction is to establish sensing links in such a way that graph eigenvalues are highest. This
could be important if conflicting objectives need to be met, for instance: spread the network
over a wide area, while keeping localization error below a certain threshold.
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6 Conclusion

Addition of edges results in improvement in the accuracy of localization. This report pro-
vides insight to the way in which network connectivity affects the cooperative localization
accuracy. We have demonstrated that by adding an edge to a sensing graph with robots and a
known landmark as nodes, the trace of the covariance matrix associated with robot position
estimates can be decreased. By connecting more and more robots through relative sensor
measurements, a dense sensor network can be established. This is in agreement with a recent
result obtained by Mourikis and Roumeliotis [8] that suggested a complete sensor graph to
be “optimal” for localization accuracy. The point we make in this report is that by linking
the steady state value of covariance matrix to the eigenvalues of the weighted sensor graph
Laplacian, we can investigate more efficient ways of improving accuracy. It suggests that to
achieve the maximum possible accuracy with the smallest computational load, we should be
looking out for the “sparsest” sensing network topologies, with highest Laplacian spectrum.
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