
University of New Mexico
UNM Digital Repository

Computer Science ETDs Engineering ETDs

7-1-2016

Logic Circuits Based on Extended Molecular
Spider Systems
Dandan Mo

Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Mo, Dandan. "Logic Circuits Based on Extended Molecular Spider Systems." (2016). https://digitalrepository.unm.edu/cs_etds/77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/cs_etds/77?utm_source=digitalrepository.unm.edu%2Fcs_etds%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Dandan Mo
 Candidate

 Computer Science
 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 Darko Stefanovic, Chairperson

 Matthew R. Lakin

 Shuang Luan

 Milan Stojanovic

Logic Circuits Based on Extended
Molecular Spider Systems

by

Dandan Mo

B.E., Shanghai Jiao Tong University, 2010

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

July, 2016

ii

Dedication

To my parents, Chengxiong Mo and Aixiang Wang, for their support and

understanding. To my husband, Bo Li, for his company and encouragement.

“The Tao in its regular course does nothing (for the sake of doing it), and so there

is nothing which it does not do. ” – Laozi

iii

Acknowledgments

I would like to thank my advisor, Professor Darko Stefanovic, for his support in
my research and guiding me into the field of molecular computing. I would also
like to thank Professor Matthew R. Lakin who gave me many important suggestions
when I developed my research ideas and polished my work. I would like to thank
my lab-mate Alireza Goudarzi, for his attendance at all my rehearsal talks, and
his useful tips on improving presentation skills. I am grateful for the feedback of
my dissertation committee: Shuang Luan, Milan Stojanovic, Matthew R. Lakin and
Darko Stefanovic.

My work at the University of New Mexico was supported by the National Science
Foundation under grants CCF-1318833, CCF-1422840, and CCF-1518861. I am
grateful for this financial support.

iv

Logic Circuits Based on Extended
Molecular Spider Systems

by

Dandan Mo

B.E., Shanghai Jiao Tong University, 2010

Ph.D., Computer Science, University of New Mexico, 2016

Abstract

Spatial locality brings the advantages of computation speed-up and sequence reuse

to molecular computing. In particular, molecular walkers that undergo localized re-

actions are of interest for implementing logic computations at the nanoscale. We use

molecular spider walkers to implement logic circuits. We develop an extended multi-

spider model with a dynamic environment wherein signal transmission is triggered

via localized reactions, and use this model to implement three basic gates (AND,

OR, and NOT) and a cascading mechanism. We develop an algorithm to automati-

cally generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to

simulate circuit computations, and we analyze circuit complexity: our design scales

linearly with formula size and has a logarithmic time complexity.

v

Contents

1 Introduction 1

2 Model Description 5

3 Design 7

3.1 Normal Sites and Functional Sites . 7

3.2 Designs of the AND and OR Gates 9

3.3 Design of the NOT gate . 10

3.4 Gate Cascades . 12

3.5 Simulation Results . 13

4 Model Definition 17

4.1 Site types and transition rules . 17

4.2 Model definition. 20

5 Verification 22

vi

Contents

5.1 Geometric Layout Generation . 22

5.2 Redesign of the Gates. 24

5.3 Circuit Tree Construction. 25

5.3.1 Case 1: the root node is a NOT gate 26

5.3.2 Case 2: the root node is an AND/OR gate 27

6 Performance 29

6.1 Complexity Analysis . 29

6.2 Simulation Results . 30

7 Circuit Predictability 35

7.1 Improving Circuit Predictability . 36

7.2 Method 1: Height Reduction . 37

7.2.1 Analysis . 39

7.3 Method 2: One-Directional Movements 42

7.3.1 Analysis . 42

8 Possible Implementations 59

8.1 Possible Implementation I . 59

8.1.1 Spiders and non-alterable sites. 60

8.1.2 Alterable sites and mechanisms. 60

8.2 Possible Implementation II . 62

vii

Contents

9 Discussion and Conclusion 71

10 Future Work 74

References 77

viii

Chapter 1

Introduction

Modern computers use silicon-based chips to conduct computation, but the principles

of computation can be embodied in various other kinds of physical and biological ma-

terial. For example, quantum computing uses quantum mechanics to represent data

and operations, neural computation uses neurons to process and propagate data, and

molecular computing uses DNA and small molecules to construct computation units.

The use of novel materials requires new types of computation models. These models

differ from standard models such as the Turing Machine and the Von Neumann ar-

chitecture. They provide new abstractions for computation, and reformulate original

concepts in computer science such as “programming” and “algorithm”. This thesis

investigates the computation potential of a complex molecular system by using it to

implement a logic circuit.

Molecular walkers are synthetic molecular machines inspired by natural biological

motors. Previous studies [5, 8, 13, 14, 19, 21, 24, 28, 29, 35] have shown that walkers

can move directionally and autonomously on a pre-programmed track via localized

reactions. In molecular computing where all the reactants diffuse freely in a well-

mixed solution, a computation unit needs to search the entire space to find another

1

Chapter 1. Introduction

computation unit that is designed to be reacted with, which makes computation

slow. In the real implementation in lab, slow computation means to a long wait for

the experimental result. Since all reactants can reach each other in a well-mixed

solution, any two computation units that are not expected to react with each other

should have different sequences, which makes the sequence design difficult if the

computation is complicated. Spatial locality can meet the challenges of computation

speed-up and sequence reuse that are faced in molecular computing when all the

reactants diffuse freely in a well-mixed solution [3,11]. Hence, a walker system with

inherent spatial locality has potential to perform more complex computational tasks.

We investigate the computational power of a walker system by using it to implement

scalable logic circuits.

We consider a molecular spider system, where a spider is a type of multi-legged

molecular walker. A molecular spider [17], with a rigid body and several flexible legs,

moves stochastically on a surface formed by sites containing DNA segments, and

can exhibit biased behavior owing to different reactions with fresh sites (catalytic

cleavage) and visited sites (dissociation). We extend previous models [1, 12, 23–26]

to implement three basic logic gates (AND, OR, NOT), and cascade the gates to

construct logic circuits. Unlike previous models where molecular spiders exhibit

biased behaviors, our model uses multiple spiders that are assumed to behave in an

unbiased manner with equal transition rates to all reachable sites. Sites are divided

into normal sites, which are immutable, and functional sites, which can be altered via

catalytic cleavage and/or strand displacement. We can encode signals into functional

sites. Signal transmission [11, 15] is triggered locally when a spider interacts with

a signal-carrying site, which dynamically changes the state of the spider or of the

environment. We call this extended system an active molecular spider system.

In our design, each variable is represented by a moving spider with two legs and

one arm. The arm has two possible states, 0 or 1, representing the Boolean value

2

Chapter 1. Introduction

of the signal the spider carries. Each gate is represented by a layout of different

sites on a 2D lattice. In a single gate, spiders with different values will take different

paths from their input locations. We arrange different functional sites along different

paths, such that only a spider with the correct computation result will be directed

to the output location via interactions between spiders and functional sites. On

reaching the output location, a spider reports the computation result, and we call

it the reporting spider. We cascade logic gates by connecting them such that only

the reporting spider leaves the upstream gate and enters the downstream gate. We

design a mechanism for exit from gates to implement gate cascades that allow parallel

evaluation. As an example, Figure 3.4 will show a logic circuit where input spiders

X and Y are initially placed at the input locations of two NOT gates, and the NOT

gates are connected to the same AND gate via exit mechanisms. Spiders move within

the circuit, and the spider reaching the final output location reports the computation

result.

There has been much previous work on molecular logic circuits using different

implementations. Molecular circuits using DNA Strand Displacement (DSD) [6, 18,

22] in a well-mixed solution use a high and a low relative concentration of a species

to represent Boolean values 1 and 0, or they use two separate species in a dual-rail

encoding. In deoxyribozyme-based circuits [2,7,16,32–34], substrates are cleaved by

active DNA enzymes if they bind together. Catalytic cleavage between a modified

substrate and a DNA enzyme releases a sequence with fluorescence, which leads

to a fluorescence increase in the environment. Detection of a fluorescence change

represents Boolean value 1. Here, we use spiders with arm state 1 or 0 to represent

Boolean values, which removes potential ambiguity from result reporting because we

do not need to decide whether a concentration is high or low, or whether there indeed

exists a fluorescence change.

Using an extended active multi-spider system, while keeping the advantages re-

3

Chapter 1. Introduction

lated to spatial locality, our design ensures modularity, unambiguity, and scalability.

We will describe the model in Chapter 2, and show how to construct logic circuits

in Chapter 3, along with simulation results to assess circuit computation times. A

formal definition of the model is given in Chapter 4. We discuss the verification of

larger circuits in Chapter 5, where we give an algorithm that automatically generates

the circuit layout. We present simulation results of circuit computations in Chap-

ter 6, discuss circuit predictability in Chapter 7, and offer possible implementations

in Chapter 8. We give conclusions and discuss current challenges in Chapter 9. In

Chapter 10 we discuss directions for future work.

This dissertation contains material from a conference publication and one journal

article. Chapters 2 and 3 use material from IPCAT 2015 paper [9]. Chapters 4 to 6

and 8 use material from a published article in journal BioSystems [10].

4

Chapter 2

Model Description

Our long-term goal is to realize the circuits we describe here with a physical imple-

mentation based on molecular spiders [8, 17]. Therefore, our model draws from the

existing models of molecular spiders [21,24] and extends them to describe the richer

functionalities of the walkers we hope to build. In spite of these extensions, we will

use the evocative term “spider” throughout.

A molecular spider has a body and three limbs, two legs and an “arm”, which

it can use to attach to chemical sites on a surface. There is exclusion: at most one

limb can be attached to a given site at a time. Different types of sites are laid out on

a square lattice, Z2. A set of contiguous sites can form a track on which the spiders

can move.

We model a spider’s body as a single point, and the limbs as having equal length.

This leads to the following postulated “hand-over-hand” gait [21]: at any given time,

exactly two limbs are attached to the surface, and they are attached to nearest-

neighbor sites. We call the sites a limb has bound to the attachment points. When a

spider limb leaves a site, we assume it can quickly reattach to the surface, so there are

always two attachment points for each spider, and they are adjacent to each other.

5

Chapter 2. Model Description

A transition step occurs when a spider detaches one of its limbs from an attachment

point p ∈ Z2, and attaches to a site p′ ∈ Z2. Figure 2.1 shows a transition step of a

spider where there are four reachable sites that the limb can potentially transit to.

However, a limb might not attach to a reachable site because whether a reachable site

is available depends on the state of the site and of the limb, which will be discussed

in Chapter 3 and Chapter 4. When multiple spiders are moving on the track, one

spider cannot attach to a site occupied by another spider.

limb leaves the
attachment point

attachment point

site

reachable site l1

l2

l1

limb is not on
the surface.

l3

Figure 2.1: A spider has limb l1 and limb l2 attached to the surface. When limb l1
detaches from the left attachment point, four sites represented by the black dots are
reachable for limbs l1 and l3. The arrows show the transitions of a spider to other
sites via hand-over-hand movement.

Spiders move stochastically on the track, interacting with the normal sites. If

they attach to functional sites, signal transmission is triggered locally between two

adjacent sites, or between a site and the spider attached to it. Changes to the sites

and spiders may happen during a step, which is crucial in the operation of a logic

circuit. In the next chapter, we will explain how to use different sites to construct

three basic logic gates (AND, OR and NOT, thus complete for Boolean logic), and

to cascade them to construct a logic circuit.

6

Chapter 3

Design

Each spider represents a Boolean variable. The value of the spider is indicated by

its arm state, which is either 0 or 1. A logic circuit is formed by cascades comprising

the basic logic gates. A logic gate is implemented as an arrangement of different

sites on a square lattice, including an output location and input locations. When

spiders begin moving from the input locations, their interactions with the sites lead

to changes to the sites and the spider values, which ends with one spider reaching

the output location. The value of that spider represents the computation result of

the logic circuit.

3.1 Normal Sites and Functional Sites

We define the set of site types as S = Snorm ∪ Sfun, where the normal sites Snorm =

{sl, s1, s0} are non-alterable and the functional sites in Sfun are alterable. A normal

site of type sl binds to a spider’s leg, and is used for the “wires” of a logic circuit.

Sites of type s0 and s1 bind to the spider’s arm if it has type 0 or 1, respectively.

Sites of type s0 and s1 are typically placed at the beginning of two separate paths

7

Chapter 3. Design

that branch out from a junction, directing a spider with different values to different

paths (Figure 3.1).

The junction design is used in the constructions for all gate types. Each logic gate

has a set of functional sites placed on the paths branching out from the junction.

After the spiders take their own paths at the junction according to their values, they

will encounter different functional sites. The interactions between the spiders and

the functional sites cause changes to the spider and the sites, directing one spider to

the output location, to report the result of the gate computation.

s1

s0

. . .

. . .

spider X = 1

s1

s0

. . .

. . .

normal site sl attachment point

spider X = 1

Figure 3.1: If a spider has an arm type of 1, it binds to site s1 at a junction. If a
spider has an arm type of 0, it binds to site s0 at a junction. Here a spider X = 1
follows the upper path by attaching to site s1. It cannot follow the lower path.

Before going into the details of each gate, we first introduce some important fea-

tures of functional sites. (1) A functional site has a state among {on, off, trapped}.
The spider can bind to an “on”-state site, cannot bind to an “off”-state site, and

cannot leave a “trapped”-state site by itself. (2) A functional site may or may not

trap a spider. When it traps a spider, the site’s state becomes “trapped”. (3) A

functional site may contain a signal of “turning on/off” or “switching to 1/0”. The

signal held in a functional site is sent out once it is attached by a spider. When

a spider attaches to a site holding a signal, the signal “turning on/off” is sent to

another site, setting its state “on” or “off”; the signal “switching to 1/0” is sent

to the spider, changing its value to 1 or 0. When a functional site sends out its

signal, it has no signal remaining. Signal transmission is allowed between a site and

8

Chapter 3. Design

a spider that is attached to the site, or between two sites that are adjacent to each

other. These features could be implemented via DNA strand displacement as we

shall discuss further in Chapter 8. We will discuss the AND and OR gate designs in

Section 3.2 and the NOT gate design in Section 3.3.

3.2 Designs of the AND and OR Gates

We use three types of functional sites st, sp, and su in the designs of the AND

and OR gates. Site st can trap the spider attaching to it, so we place a site st at

the output location of the gate. The AND gate and OR gate each have two input

spiders initially located at the two input locations, which are two junctions as shown

in Figure 3.1. Each input spider selects one of two possible paths when computation

begins, where one path leads to the output location without any functional sites and

the other path is merged into a crossroads in the middle of the lattice. We place an

initially “off”-state site sp at the heart of the crossroads, which blocks the central

path from the crossroads to the output location. We place a site su adjacent to site

sp, which will send a “turning-on” signal to unblock site sp when a spider attaches

to it, and trap that spider at the same time. The cooperation between sites su and

sp guarantees that only when both spiders meet at the crossroads can a spider take

the central path to the output location.

Figure 3.2 shows the layout of the AND gate and OR gate. We now explain how

the AND gate works under all four possible input assignments; the OR gate follows a

similar design. In the AND gate, the two input spiders X and Y are initially placed

at two junctions as their input locations. When spiders X and Y are both 0, they

both take the path starting with site s0, which leads to the output location without

any functional sites. In this case, whichever spider reaches the output location will

have value 0. The reporting spider reports that the result of 0∧ 0 is 0. When spider

9

Chapter 3. Design

X = 0 and spider Y = 1, spider Y takes the path starting with site s1, and becomes

stuck at the crossroads because site sp is “off”. Spider X takes the path starting

with site s0, and will eventually reach the output location, reporting the result of

0 ∧ 1 is 0. When spider X = 1 and spider Y = 0, spider X gets to the crossroads

via the path starting with site s1, and is trapped at the crossroads due to the sites

st and su placed on that path. Spider Y is the only spider that can reach the output

location in this case, reporting the result of 1 ∧ 0 is 0. When both spiders are 1,

they meet at the crossroads. Site sp is turned on by the signal sent from site su, so

spider Y can take the central path leading to the output location. Since spider X

is trapped at the crossroads, only spider Y can reach the output location, reporting

the result of 1 ∧ 1 is 1. (The preceding description considers a gate in isolation. In

Section 3.4, however, we will introduce gate cascades, in which a trapped spider at

the output location of an upstream gate is set free and enters the downstream gate

via a set of functional sites that connects the two gates.)

Following a similar design, the layout of the OR gate is shown in Figure 3.2.

When both spiders are 0, they meet at the crossroads. Spider X is trapped on sites

st and su, and spider Y takes the unblocked central path to the output location,

reporting the result of 0∨ 0 is 0. Under other input assignments, the 0-valued spider

takes the path to the crossroads and becomes stuck there: only the 1-valued spider

can reach the output location, reporting the result of 1 ∨ 0, 0 ∨ 1, and 1 ∨ 1 is 1.

3.3 Design of the NOT gate

We use five types of functional sites in the NOT gate design. As shown in the layout

of the NOT gate in Figure 3.3, site st which can trap a spider that attaches to it

is placed on the output location. Sites s1→0, s
I
r, s

II
r and sites s0→1, s

I
r, s

II
r form two

different switch mechanisms SW1→0 and SW0→1 that are laid on two separate paths.

10

Chapter 3. Design

The NOT gate has one input spider which is initially placed at a junction as the

input location. Two separate paths branch out from the junction: one is taken by

the 1-valued spider and contains mechanism SW1→0 that changes the spider value

to 0, whereas the other is taken by the 0-valued spider and contains mechanism

SW0→1 that changes the spider value to 1. When a spider moves through a switch

mechanism, its value is switched and its backward route is cut off. We explain how

mechanism SW1→0 works with a 1-valued spider as an example; mechanism SW0→1

works analogously.

Mechanism SW1→0 is formed by three neighboring functional sites along the hor-

izontal direction: s1→0, s
I
r, s

II
r . We use a staging transition diagram in Figure 3.3 to

describe how mechanism SW1→0 changes a 1-valued spider to be 0, and cuts off the

backward route of the spider. A stage transition shows the change of the spider’s lo-

cation, value, or the site states. At stage (1), all sites are “on” initially. Site s1→0 can

trap a spider, and contains a “switching to 0” signal that will be sent to its left site

when a spider attaches to it. Therefore, when a 1-valued spider attaches to s1→0, it is

trapped and receives the signal changing its value to 0, causing a transition to stage

(2). At stage (2), since the limb trapped at site s1→0 cannot move back, the spider

can only move forward by attaching to site sIr, which traps the spider and sends out

a “turning off” signal to its left site. When site s1→0 receives that signal and turns

itself “off”, we get to stage (3). At stage (3), the limb trapped on sIr cannot move

back, and the spider can only move forward by attaching to site sIIr , which sends

a “turning off” signal to its left site. When sIr receives that signal and turns itself

“off”, we get to stage (4). At stage (4), the limb on sIr can transit to a normal site

on the right of sIIr , while the limb on sIIr cannot move back to s1→0 which is “off”.

The spider can only move forward to get to stage (5). At stage (5), sites sIr and

sIIr are “off”, and the spider cannot walk back. When a spider goes through these

five stages, its value is switched and its backward route is cut off. The mechanism

SW0→1 comprising s0→1, s
I
r, s

II
r follows similar staging transitions, the only difference

11

Chapter 3. Design

being that a 0-valued spider becomes 1 in the stage transition (1) to (2).

3.4 Gate Cascades

To construct a large logic circuit, we need to cascade logic gates of the three kinds

defined in Section 3.2 and Section 3.3. A wire w connecting an upstream gate and

a downstream gate is composed of contiguous normal sites sl. To ensure that the

spider that reaches the output location exits the upstream gate and never goes back

to it, we place two additional sites sIr and sIIr after site st on the output location,

forming an exit mechanism which cuts off the backward route of a spider that moves

through it.

The mechanism exit follows similar staging transitions to mechanism SW1→0

shown in Figure 3.3. It consists of three neighboring functional sites along the hori-

zontal direction: st, s
I
r, s

II
r . We explained the functionality of site sIr and sIIr at the

end of Section 3.3. Site st is designed to trap the spider. Therefore, a staging tran-

sition diagram for mechanism exit is similar to the one shown in Figure 3.3, with

the only difference that the spider value is unchanged throughout the five stages.

For a downstream gate with two inputs, its two input spiders may arrive at differ-

ent times. Computation of the downstream gate begins when either input spider

enters the gate, and the asynchronous arrival of input spiders will not influence the

computation accuracy of the gate.

Figure 3.4 illustrates a simple logic circuit implemented by cascading two NOT

gates as the inputs to an AND gate. The output location of each NOT gate is

connected to an input location of the AND gate via the exit mechanism. Spider

X and spider Y start to move in the two NOT gates concurrently. When the two

spiders move out of the NOT gate, their backward routes are cut off due to the

exit mechanisms, and they have their values changed to ¬X and ¬Y . When either

12

Chapter 3. Design

spider enters the AND gate, gate computation begins, eventually yielding the result

¬X ∧ ¬Y .

3.5 Simulation Results

The movement of the spiders can be modeled as a continuous-time Markov process.

We use a kinetic Monte Carlo algorithm to simulate gate computations. For each

gate, under different assignments, we investigate the computation time using 10, 000

iterations in each simulation. We assume the transition rate (the rate at which a

spider limb transits from one site to another) of each spider is 1.

Simulation results for the three basic gates AND, OR, and NOT are shown in

Figure 3.5. The computation time of a logic circuit ¬X ∧¬Y is shown in Figure 3.5

as well. Under a certain input assignment, the computation time follows a long-tailed

distribution because spiders move stochastically. The computation time is the time

spent on traversing the path taken by the reporting spider that reaches the output

location. In all simulation runs, the output spider produced the correct output value.

13

Chapter 3. Design

s0

s1

s1

s0

st

normal site

The layout of the AND gate
input
spider

X

input
spider

Y

attachment point
for the spider

su

sp s1
output
location

sl

st traps a spider limb that
is attached to it.

sp initially “off”.

su traps a spider limb that
is attached to it, and
sends a “turning on ”
signal to the site . sp

Functional Sites The layout of the OR gate

s0

s1

s1

s0

st

normal site

input
spider

X

input
spider

Y

attachment point
for the spider

su

sp
output
location

sl

s0

crossroad crossroad

st st

Figure 3.2: The layout of the AND gate and OR gate. Three functional sites st,
sp, and su used in the designs of these two gates are listed in the middle column.
Normal site s1 can only bind to an 1-valued spider and normal site s0 can only bind
to a 0-valued spider. In the AND gate, when both spiders are 1, they meet at the
crossroads in the middle. Spider X gets trapped at sites st and su, site su sends a
“turning-on” signal to unblock site sp, allowing spider Y = 1 to take the unblocked
central path from site sp to the output location . Under other input assignments, the
1-valued spider gets stuck at the crossroads, so only the 0-valued spider can reach the
output location. Therefore, the AND gate yields 1 when both spiders are assigned
1, and yields 0 in all other cases. Similarly, in the OR gate, when both spiders are
0, they meet at the crossroads in the middle and only spider Y = 0 can reach the
output location. Under other input assignments, the 0-valued spider gets stuck at
the crossroads, so only the 1-valued spider can reach the output location. Therefore,
the OR gate yields 0 when both spiders are assigned 0, and yields 1 in all other cases.

14

Chapter 3. Design

The layout of NOT gate

Output
location

Input 	

location

mechanism SW1!0

mechanism SW0!1

attachment point normal site sl

switch mechanism

The staging diagram for

sI
r sII

r

X = 1

on on on

(1)

s1 0

sI
r sII

r

X = 0

trapped on on

(2)

s1 0

sI
r sII

r

X = 0

 off trapped on

(3)

s1 0 sI
r sII

r

X = 0

off off on

(4)

s1 0 sI
r sII

r

X = 0

off off on

(5)

s1 0

mechanism SW1!0

s1

s0

s1!0

s0!1

sI
r sII

r

sI
r sII

r

st

Figure 3.3: The layout of gate NOT is shown in the figure. The function of mecha-
nism SW1→0 is to switch a spider’s value from 1 to 0 and cuts off its backward route.
We show how mechanism SW1→0 works in a staging transition diagram, where the
spider value is expressed as X and the state of each functional site is shown above
it.

AND

NOT

NOT

X

Y

Spider

Spider X
s1

s0

s1!0

s0!1 Spider ¬X

Spider Y
s1

s0

s1!0

s0!1

¬Y

¬X AND ¬Y

NOT gate

NOT gate

AND gateexit mechanism

 Spider

sI
r sII

rst

sI
r sII

rst

sI
r sII

r

sI
r sII

r

sI
r sII

r

sI
r sII

r

s0

s1

s1

s0

st

st

su

sp s1

Figure 3.4: A logic circuit: (¬X ∧ ¬Y). The input locations of each gate are high-
lighted in grey. Spiders X and Y exit the NOT gate, becoming spider ¬X and
¬Y after passing through the exit mechanisms. The AND gate computation begins
whenever a spider enters the AND gate. The spider reaching the output location of
the AND gate represents the computation result ¬X ∧ ¬Y .

15

Chapter 3. Design

0
50

10
0

15
0

20
0

00 01 10 11

●

●
●

●

Computation Time for the AND Gate

Input assignment

Ti
m

e

00: mode = 7.09 µ = 14.13 σ = 10.06
01: mode = 10.43 µ = 27.85 σ = 23.08
10: mode = 7.83 µ = 21.25 σ = 17.59
11: mode = 12.04 µ = 29.59 σ = 23.16

0
50

10
0

15
0

20
0

00 01 10 11

●

●

●

●

Computation Time for the OR Gate

Input assignment

Ti
m

e

00: mode = 12.43 µ = 29.44 σ = 23.31
01: mode = 8.2 µ = 21.05 σ = 17.48
10: mode = 11.12 µ = 27.93 σ = 22.91
11: mode = 6.7 µ = 13.99 σ = 9.87

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

00 01 10 11

● ● ● ●

Computation Time for the Logic Circuit: (NOT X) AND (NOT Y)

Input assignment

Ti
m

e

00: mode = 49.94 µ = 101.91 σ = 73.52
01: mode = 48.49 µ = 100.83 σ = 71.45
10: mode = 47.73 µ = 101.74 σ = 72.78
11: mode = 48.87 µ = 100.9 σ = 73.55

0
10

20
30

40
50

0 1

● ●

Computation Time for the Not Gate

Input assignment

Ti
m

e

00: mode = 5.44 µ = 7 σ = 3.33
01: mode = 5.01 µ = 6.99 σ = 3.34

Figure 3.5: The computation time distributions for gates AND, OR and NOT under
four possible input assignments are shown in the figure. Each group in one gate
represents a time distribution under one assignment. The mode, mean time and
standard deviation for each group is shown in the legend. The computation time
distributions for the logic circuit (¬X ∧¬Y) in Figure 3.4 under four possible input
assignments are shown in the figure. Each group of data plots is generated from
10, 000 simulation trajectories. We use the vioplot library in R to plot the data.

16

Chapter 4

Model Definition

The molecular spider circuit proposed can be modeled as a continuous time Markov

model. The environment in this model contains normal sites that are non-alterable

and functional sites that are alterable via the interactions between the molecular

spiders and the sites. Here we first give the definitions of the site types and transition

rules of functional sites, and then the definition of the entire model.

4.1 Site types and transition rules

Sites are categorized into normal sites and functional sites. A normal site s ∈
Snorm = {sl, s0, s1} has no state. Site sl binds to the spider’s leg. Sites s0 and s1

bind to the spider’s arm if it has type 0 or 1, respectively.

A functional site s ∈ Sfun has a state which could be one of “on”, “off” and

“trapped”. The site state transition diagram is:

on

��
trapped // off

dd

17

Chapter 4. Model Definition

A spider limb can only attach to an “on”-state site. An “off”-state site is non-

alterable. The limb trapped on a “trapped”-state site cannot leave the site by itself.

Whether a site can trap a spider is indicated by TR ∈ {0, 1}: a site with TR = 1 will

trap a spider when a limb attaches to it. A functional site may change the spider’s

value, or the state of another site, by sending out a signal to the spider or another

site. Define

signal = (val, d) or null,where d ∈ Z2 and val ∈ {on, off, trapped, 1, 0}. (4.1)

Suppose a functional site is located at (x, y). If it holds a signal = (val, (dx, dy))

then it sends the signal to the location (x + dx, y + dy), setting the state of the site

located there to val. When d = (0, 0), the val field of the signal is either 1 or 0,

which is sent to the spider, setting the spider’s value to 1 or 0.

Therefore, a functional site s ∈ Sfun can be defined as

s = (state, TR, signal). (4.2)

The signal held in a site is sent out once a spider limb attaches to the site. When

a signal is sent out, the site has no signal remaining, which is express as s =

(state, TR, null). A functional site s = (on, null) is equivalent to a normal site,

which is non-alterable. Once a signal is received by a site or a spider, the site state

or the spider’s value is changed according to the signal.

In the logic circuit construction, we use two functional sites su and sp in the

AND gate and OR gate, and we design a set of functional sites that form different

mechanisms in the NOT gate and the gate cascades. Table 4.1 gives the definitions

of these functional sites and the transition rules applied to them. A functional site s

transits to site s′ in the second column, either by receiving a signal or being attached

by a spider limb. If s holds a signal, it causes other changes in the last column. In

table 4.1, the updated sites s′ in the second column is either a normal site or a trapped

site. According to the site state transition diagram, a trapped site can only transit

18

Chapter 4. Model Definition

Table 4.1: Definitions of different functional sites used in the circuit construction and
the transition rules applied to them. Suppose the location of the site is (x, y), define
(x′, y′) = (x + dx, y + dy). We use A to indicate the Boolean value of a molecular
spider. The value of A is either 1 or 0.

Transition Rules
functional site updated site other changes
st = (on, 1, null) s′t = (trapped, 1, null)
s1→0 = (on, 1, (0, (0, 0))) s′1→0 = (trapped, 1, null) A = 0
s0→1 = (on, 1, (1, (0, 0))) s′0→1 = (trapped, 1, null) A = 1

sIr = (on, 1, (off, d)) sI
′

r = (trapped, 1, null) site at (x′, y′) turns off

sIIr = (on, 0, (off, d)) sII
′

r = (on, 0, null) = sl site at (x′, y′) turns off
su = (on, 0, (on, d)) s′u = (on, 0, null) = sl site at (x′, y′) turns on
sp = (off, 0, null) s′p = (on, 0, null) = sl

when a “turning-on” sig-
nal is received

to a “off”-state site that is non-alterable by itself. Since no signals are designed to

turn on these “off”-state sites transited from the trapped sites, these “off”-state sites

are non-alterable finally. Therefore, all the functional sites in Table 4.1 are alterable

initially and become non-alterable finally. The functional sites used in our design are

{st, s1→0, s0→1, s
I
r, s

II
r , su, sp},

where each site s among them includes its site transitions under the transition rules

described in Table 4.1. The set of site types is S = Snorm ∪ Sfun.

A mechanism is a set of neighboring mechanism sites along the same direction.

We design three different mechanisms used in the logic circuit construction. The

switch mechanism SW1→0 (SW0 → 1) contains sites s1→0(s0→1), s
I
r, s

II
r , where sites

sIr, s
II
r contains the signal of (off, (−1, 0)) which can block its left site. When a spider

moves over the switch mechanism, its value is flipped, and its backward route is cut

off. The exit mechanism contains sites st, s
I
r, s

II
r . When a spider moves over this

mechanism, its backward route is cut off.

19

Chapter 4. Model Definition

When a spider limb leaves a site, this limb can reach 4 sites geometrically (shown

in Figure 2.1). Since sites have different types, whether a site is available for a limb

of a spider depends on the spider value and the site types.

Definition 1. Given a spider with value A and a reachable site, we check if the site

is available by using the following conditions:

• if the site is already occupied by a limb, it is not available.

• else:

1. if the site is a normal site:

(a) if the site is sl, it is available;

(b) if the site is s1 and A = 1, it is available;

(c) if the site is s0 and A = 0, it is available;

2. else if the site is a functional site:

(a) if the site is s1→0 and A = 1, it is available;

(b) if the site is s0→1 and A = 0, it is available;

(c) if the site is “on”-state, it is available;

3. else, the site is not available.

Using Definition 1, every site is examined among the four reachable sites shown

in Figure 2.1. Those available sites are put into a set AV .

4.2 Model definition.

The active multi-spider system with normal sites and alterable sites can be modeled

as a continuous-time Markov process. The state of the model is defined as

X = (S1, S2, . . . , Sn, E), (4.3)

20

Chapter 4. Model Definition

where Si = (Pi, Ai) (1 ≤ i ≤ n, n is the number of spiders) describes the state of

the i-th spider. Set Pi = (pia, p
i
b) contains attachment points for the i-th spider, and

Ai ∈ {0, 1} represents the Boolean value of the spider. The lattice configuration

E : Z2 → S shows the layout of different sites, where S is the set of site types.

Normal sites can be regarded as having state “on”, TR = 0 and no signal, so the

lattice configuration can be redefined as

E : Z2 → {on, off, trapped} × {1, 0} × S,

where S represents the set of signals.

Given a model state X = (S1, S2, . . . , Sn, E) at time t, if a limb leaves an attach-

ment point p ∈ Pi ∈ Si, we use Definition 1 to obtain a set of available sites AV . At

time t + δ, this limb transits to p′ ∈ AV , changing the set of attachment points to

P ′i = Pi − {p} ∪ {p′}. The transition rules are used to update Ai, so that the i-th

spider state becomes S ′i = (P ′i , A
′
i). The transitions rules also updates E, thus the

new state is

X ′ = (S1, S2, . . . , Si−1, S
′
i, Si+1, . . . , Sn, E

′).

21

Chapter 5

Verification

Verification is the procedure of checking if the given circuit yields the expected results

under all possible input assignments. The verification of each single gate (AND, OR,

NOT) discussed in previous sections checks if all spiders take the intended paths

during the gate computation under all possible input assignments. Assuming all

mechanisms work properly in each gate, spiders in each gate always take the intended

paths under all input assignments, and only one spider can exit the gate. Therefore,

all single gates are verified to work properly under all input assignments. Since our

design guarantees modularity, and since all gates are verified to work properly, if all

gates in a circuit are cascaded correctly and do not interfere with each other, the

circuit is verified to work properly. Therefore, to verify a circuit, it remains to check

if the layout of the circuit ensures correct cascading.

5.1 Geometric Layout Generation

We develop an algorithm to generate the circuit layout. Given a Boolean function, the

algorithm converts the function into a circuit tree and generates a two-dimensional

22

Chapter 5. Verification

layout according to the circuit tree. A Boolean function can be converted into a

logic circuit composed of input variables and logic gates of AND, OR, and NOT. In

our design, since all gates have one output and at most two inputs, the logic circuit

(which is assumed to be feedforward) can be represented by a binary tree. Each

tree node represents a gate. A connection between two nodes represents the cascade

between two gates, where the output location of the upstream gate (child node) is

connected to the input location of the downstream gate (parent node). Our design

does not have the fan-out gate that takes one input and outputs multiple copies of

the input; instead each variable occurrence is represented by a molecular spider. For

a Boolean function in which a variable appears k times (k ≥ 1), we must prepare

the circuit by placing k molecular spiders, each carrying the Boolean value of that

variable, at the appropriate leaf positions in the corresponding binary tree. Using

the binary tree representation, the geometric layout problem of a circuit is converted

to the problem of constructing a binary circuit tree that represents the given circuit

such that gates do not interfere with each other. In the circuit tree construction, the

layouts of the tree nodes should not have overlaps, and the layout of a connection

between two nodes only joins the layout of the upstream gate at its output location

with the layout of the downstream gate at its input location.

Our layout generation algorithm includes two parts: circuit conversion converts a

given Boolean function into a circuit tree, whereas circuit tree construction constructs

the circuit tree recursively. The circuit tree is a binary Abstract Syntax Tree (AST)

representation of the Boolean formula. There are numerous tools that generate the

AST for a given Boolean formula, so we only give details of circuit tree construction

here, which re-designs all the gates to let them have the same size of geometric layout

and constructs the circuit tree by recursively merging subtrees from the leaf nodes

to the root node.

23

Chapter 5. Verification

5.2 Redesign of the Gates.

Figure 5.1 shows the layouts of single gates for AND, OR, and NOT. Define Eg :

Z2 → S where S is the set of site types and g ∈ {AND,OR,NOT}, Eg is the layout

of gate g.

sp

s1

s1

s0

st

st

su

s0

s1

s1 s0

st

s1!0 s0!1sI
rsII

r sII
rsI

r

OR gate AND gate

NOT gate

sp

s1 s1

s0s0 st

st

su

s0

attachment point

normal site

output location

input location

st

Figure 5.1: Geometric layouts of three basic gates with the same size.

A Boolean function can be expressed in a form of Boolean circuit that is com-

posed of AND gates, OR gates, and NOT gates. Since all the gates have only one

output location and at most two input locations, assuming each variable occurrence

corresponds to a molecular spider, the Boolean circuit can be represented by a bi-

nary AST. A tree node represents a gate, its child nodes represent the upstream

gates connected to it, and its parent node is the downstream gate it connects to.

For example, a Boolean circuit (x1 ∨ x2) ∧ ¬x3 can be represented by a binary tree

containing three nodes, where the root node is AND gate and it has two child nodes

of OR gate and NOT gate. Each node can be mapped to its corresponding layouts

shown in Figure 5.1. The child-parent relation is mapped to a contiguous set of sites

connecting an upstream gate and a downstream gate. Therefore, given a Boolean cir-

cuit in a binary tree structure, the geometric layout of the circuit is converted to the

24

Chapter 5. Verification

construction of the tree. Figure 5.2 shows an example of this conversion procedure.

sp

s1

s1

s0

st

st

su

s0

s1

sp

s1 s1

s0s0 st

st

su

s0

s1 s0

st

s1!0 s0!1sI
rsII

r sII
rsI

r

AND

OR NOT

AND

OR NOT

(x1 _ x2) ^ ¬x3

Boolean function:

Boolean circuit in
binary tree structure:

Geometrical layout:

sI
rsI

r

sII
rsII

r

x1 x1
x2 x2 x3

x3

Figure 5.2: A Boolean function (x1 ∨ x2) ∧ ¬x3 can be represented by a binary tree.
Each tree node is mapped to a gate layout among the layouts predefined in Figure 5.1.
The geometric layout of the circuit can be converted into the construction of a binary
tree using the predefined tree nodes.

5.3 Circuit Tree Construction.

Figure 5.1 has provided the layouts of all gates that will be used in the circuit

construction. Given a circuit tree, the generation of the circuit layout is to recursively

merge the layout of the root node with the layouts of its subtrees. The merging

procedure follows a Depth-First-Search (DFS) routine. Leaf nodes representing the

input variables do not have layouts. The result of merging a root node (gate) with

a leaf node (variable) is the layout of the root node and additional information

indicating the initial position of the variable. For example, circuit (x1 ∨ x2) ∧ ¬x3
in Figure 5.2 is the result of merging the layouts of NOT gate (right subtree) and

OR gate (left subtree) with the layouts of downstream gate AND (root node). The

layout of the merged circuit (x1 ∨ x2) ∧ ¬x3 includes the cascading paths between

gate AND and gates NOT, OR. Initial positions of variables x1, x2 and x3 are also

25

Chapter 5. Verification

determined. We discuss the merging procedure between a root node (R) and its

subtrees (left subtree Left and right subtree Right) in two cases.

5.3.1 Case 1: the root node is a NOT gate

Suppose the NOT gate only has the right subtree. If Right is a leaf node representing

a variable, we place that variable at the input location of the NOT gate and return

the layout of the NOT gate. Otherwise we create a new layout Emerged : Z2 → S

containing the layouts of the root node ER and the right subtree ERight. In the

merged layout, as shown in Figure 5.3, the subtree tree is placed below the root node

and they keep unit distance to each other vertically. Cascading path between the

output location of the subtree and the input location of the root node is constructed

using the normal sites. An exit mechanism consisting of sites st, s
I
r and sIIr is placed

on the cascading path connecting the output location of the subtree circuit and the

input location of the root node.

s1 s0

st

s1!0 s0!1sI
rsII

r sII
rsI

r

NOT gate

subtree circuit

st

sI
r

sII
r

output location

input location

Figure 5.3: Merging the layout of a NOT gate with its subtree circuit.

26

Chapter 5. Verification

5.3.2 Case 2: the root node is an AND/OR gate

If two subtrees are both variables, we return the layout of the root node gate and

place the variables at the input locations of the root node gate. If one of the subtree

circuits is a variable and the other is a circuit, we use the merging procedure shown

in Figure 5.3 to place the subtree circuit below the root node gate and initialize

the position of that variable. If both subtrees are circuits, we create a new layout

Emerged : Z2 → S containing the layouts of the root node ER and the subtrees ELeft

and ERight. In the merged layout, the top of the left subtree is aligned horizontally

with the top of right subtree. The two subtrees keep unit distance to each other

horizontally. The root node gate is placed in the middle between the output locations

of subtrees Left and Right. The root node gate keeps unit distance vertically to its

subtrees. Figure 5.4 shows the procedure of merging a root node gate with its two

subtree circuits. Two cascading paths containing the exit mechanisms connect the

output locations of the subtree circuit and the input locations of the root node gate.

st

st st

sI
r

sII
r

sI
r

sII
r

the root node gate: AND/OR

left subtree circuit
right subtree circuit

Figure 5.4: Merging the layout of an AND/OR gate with its subtree circuits.

Given a circuit tree that is represented by a binary AST, the procedure of the

circuit tree construction ensures that every node in the tree is cascaded correctly with

its subtrees. For each node of the tree, its layout and the layouts of its subtrees do

27

Chapter 5. Verification

not have overlaps, thus all the gates in the tree do not influence each other. Since all

single gates are verified to work properly under all input assignments, and since the

circuit layout generation algorithm guarantees the correct cascades between different

gates in the circuit, the entire circuit generated using our algorithm is verified to work

properly under all input assignments.

28

Chapter 6

Performance

The performance of a circuit is usually measured by its computation speed and

computation correctness, and the ability to accommodate the increasing size of the

circuit (the number of input variables or the circuit depth). In this section, we

analyze the complexity of our design and present some simulation results for a set of

example circuits.

6.1 Complexity Analysis

In a single gate, the computation time tgate is the traversal time of the spider that

reaches the output location. Since the spider moves on the track stochastically, the

computation time tgate is a random variable following a long-tailed distribution, as

shown in Figure 3.5.

When a spider leaves a gate or enters a gate, its backward route is cut off due

to the functionality of the exit mechanism, so the computation time of a single gate

tgate can be used to estimate the computation time t of a circuit. For any n-variable

Boolean function, it can be transformed into 3-CNF, which is a conjunction of m

29

Chapter 6. Performance

clauses, each a disjunction of at most three literals. Since the circuit design allows

parallel evaluation, for a clause mi = (li1 ∨ li2 ∨ li3), the computation time of mi is

tmi
≤ 2× (tOR + tNOT) = O(1).

Since each clause needs time tmi
, to evaluate m clauses in parallel, we need logm

AND gate computations that cost tAND × logm, which totally use time

t = tAND × logm+ tmi
= O(logm).

For any Boolean function in 3-CNF with m clauses, there are at most 3m spiders

representing the literals. For each clause, at most three NOT gates and two OR

gates are needed if all the literals are the negation of a variable, which is a constant

number. For m clauses, there need to be m − 1 AND gates. Therefore, the total

space complexity is O(m). Hence, the circuit design is scalable because circuit size

in the design scales linearly with formula size, and evaluation time is logarithmic in

the formula size.

6.2 Simulation Results

Here we look at how the computation time varies with the size of the circuit on a

set of examples. We investigate a small set of circuits that are in the form of 3-CNF

where there are no NOT gates. We first investigate a single clause (x1 ∨ x2 ∨ x3).
Computation time distributions of this single-clause circuit under all possible input

assignments are shown as the violin plots in Figure 6.2. Each group of plots in Fig-

ure 6.2 represents the computation time distribution under one input assignment.

The results show that computation time is influenced by the input assignment for a

fixed circuit. Different input assignments lead to different computation paths for the

30

Chapter 6. Performance

input spiders, where each computation path starts from the initial location of the

spider and ends at the output location of the circuit. A spider taking the shorter path

is more likely to be the reporting spider to reach the output location, which termi-

nates the computation. Therefore, computation time is the time which the reporting

spider takes to terminate the computation. Since different input assignments lead

to different computation paths of the reporting spider, and different lengths lead to

different computation time, computation time for a fixed circuit varies with different

input assignments. For the single-clause circuit (x1∨x2∨x3) whose circuit structure

is shown in Figure 6.1, there are two lengths of computation paths of the reporting

spider. When x3 = 1, spider x3 has a shortcut to the output location (indicated by

the dotted arrow); otherwise spider x3 would wait in the root OR gate until either

spider x1 or spider x2 takes the path indicated by the solid arrows to participate in

the root-node gate computation. When x3 = 1, spider x3 is more likely to be the

reporting spider. The right path taken by spider x3 is relatively shorter, so the com-

putation time is relatively shorter. In the results shown in Figure 6.2, four groups

of plots with x3 = 1 are similar to each other, and the mean time and standard

deviations of these four groups are smaller compared with other four groups because

x3 is more likely to be the reporting spider and walks through a shorter path. When

x3 = 0, the reporting spider is more likely to take a longer path passing two gates,

so the mean computation time and standard deviation are greater, as shown in the

groups 000, 010, 100, and 110 of Figure 6.2.

OR

OR

x1 x2

x3

Figure 6.1: The circuit structure of (x1 ∨ x2 ∨ x3). In our design the maximum
number of fan-in of a single gate is 2, and the fan-out is 1 for all gates.

31

Chapter 6. Performance

Table 6.1: Example circuits evaluated in this section.

no. (k, h) Circuit Structure
1. (1, 1) x1 ∨ x2 ∨ x3
2. (2, 2) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)
3. (3, 3) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)
4. (4, 4) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)
5. (4, 3) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)) ∧ ((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4))
6. (5, 5) (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x5)
7. (5, 4) ((x1∨x2∨x3)∧(x1∨x2∨x4))∧((x1∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x5))

Assigning 1 to all the variables, we investigate a group of circuits in the form of

3-CNF where the number of clauses of the circuit is from 1 to 5. Figure 6.3 shows the

simulation results. We use (k, h) to represent a circuit having k clauses and height

h. Table 6.1 lists 7 different circuit structures that we will simulate. The results in

Figure 6.3 show that as the circuit size (the number of clauses) increases, the mode,

mean computation time, and standard deviation increase. Having fixed the size of

the circuit, the mode, mean computation time, and standard deviation increase as

the circuit height increases, which is reflected in the groups (4, 4) and (4, 3), and the

(5, 5) and (5, 4) groups shown in Figure 6.3.

The result of complexity analysis shows that our circuit design scales linearly as

the circuit size increases. We use simulation to investigate what factors influence

circuit performance, and we find that different input assignments lead to different

computation time distributions for a fixed circuit, and the mode, mean computation

time, and standard deviation increase as the circuit size and circuit height increase

when we fix the input assignment.

32

Chapter 6. Performance

0
10

0
20

0
30

0
40

0

000 001 010 011 100 101 110 111

●

●

●

●

●

●

●

●

Computation Time for Circuit (x1 OR x2 OR x3)

input assignment

T
im

e

000: mode = 44.78 µ = 64.02 σ = 32.82
001: mode = 10.93 µ = 27.85 σ = 23.06
010: mode = 35.88 µ = 59.27 σ = 32.56
011: mode = 12.06 µ = 24.25 σ = 17.07
100: mode = 33.29 µ = 58.66 σ = 32.69
101: mode = 10.4 µ = 23.7 σ = 16.07
110: mode = 31.9 µ = 47.04 σ = 25.42
111: mode = 14.2 µ = 22.91 σ = 14.87

Figure 6.2: Simulation results of circuit (x1 ∨ x2 ∨ x3) under all input assignments.
Each group of plots represents the computation time of the circuit under one input
assignment. Input assignments for variables x1, x2 and x3 are represented by binary
strings as shown in the legend. For example, 101 represents the input assignment
x1 = 1, x2 = 0, x3 = 1. The legend shows the mode, mean and standard deviation for
each group. Each group of data plots is generated from 5000 simulation trajectories.
We use the vioplot library in R to plot the data.

33

Chapter 6. Performance

0
50

0
10

00
15

00
20

00

(1, 1) (2, 2) (3, 3) (4, 4) (4, 3) (5, 5) (5, 4)

●

●

●

●

●

●

●

Computation Time for a Group of Circuits

(k, h): a circuit with k clauses and height h

T
im

e

(1, 1): mode = 11.34 µ = 22.66 σ = 14.83
(2, 2): mode = 65.61 µ = 93.79 σ = 46.1
(3, 3): mode = 162.52 µ = 216.86 σ = 99.54
(4, 4): mode = 303.75 µ = 381.49 σ = 153.26
(4, 3): mode = 226.46 µ = 309.3 σ = 139.57
(5, 5): mode = 471.28 µ = 568.85 σ = 200.75
(5, 4): mode = 382.4 µ = 516.27 σ = 232.09

Figure 6.3: Simulation results of a group of circuits having clause number from 1 to
5 under the input assignments where all variables are 1. In the legend, each group
(k, h) represents the computation time distribution of a circuit having k clauses and
height h. We show the mode, mean time and standard deviation for each group in
the legend. Each group of data plots is generated from 5000 simulation trajectories.
We use the vioplot library in R to plot the data.

34

Chapter 7

Circuit Predictability

In Section 3.5 and chapter 6, we have shown simulation results for each single logic

gate (AND, OR, NOT) and a group of circuits that are in 3-CNF (the clause number

of these circuits is from 1 to 5). Simulation results show the computation time of

a circuit follows a long-tailed distribution. As circuit size increases1, computation

time variance increases, making it hard to predict circuit performance. Therefore, we

should consider circuit predictability as an important measure to evaluate the circuit

performance using the extended molecular spider system besides computation time

and computation correctness. For a circuit under a certain input assignment, the

smaller standard deviation of computation time σ indicates it is easier to predict

the circuit. Simulation results in Chapter 6 show that different input assignments

would lead to different computation time, thus leading to different time deviations.

For a circuit having n variables, there are m = 2n possible input assignments, and

m different time deviations. Denote the maximum time deviation by σmax, we use

σmax to measure the circuit predictability.

1Here we investigate the circuit in the form of 3-CNF, so the circuit size refers to the
clause number k.

35

Chapter 7. Circuit Predictability

7.1 Improving Circuit Predictability

Improving circuit predictability means reducing σmax. As discussed in Section 6.2,

computation time is the time which the reporting spider takes to terminate the

computation. Since molecular spiders move stochastically back and forth in the

extended system, the less time they spend on walking backward the smaller time

deviation will be obtained. To increase the circuit predictability, we need to reduce

the time that the reporting spider spends on the backward route under all input

assignments. To this end, we can shorten the lengths of all computation paths or

change the behaviors of the molecular spiders to improve the circuit predictability.

We propose two methods accordingly. Method 1 reduces the height of the circuit

tree. In this way, we believe the lengths of all computation paths can be shortened

generally, and circuit predictability can be improved. Method 2 makes molecular

spiders move one-directionally on the preprogrammed track, thus the time spent on

the backward route is eliminated and the time deviations under all input assignments

are decreased.

We will show whether Method 1 and Method 2 are valid in Sections 7.2 and 7.3

via simulations. For convenience, the circuits being investigated are cascaded in the

form of 3-CNF without negation. We will simulate a group of circuits having between

1 and 7 clauses. For each circuit, there are different heights of circuit trees. We will

calculate σmax for different heights of circuit trees. In Section 7.2, we will present the

relation between the circuit height and the circuit predictability, and judge whether

Method 1 is valid. In Section 7.3, we will compare the computation time deviations

between two models, the original model where molecular spiders move bi-directionally

and the modified model where molecular spiders only move forward. We call the

modified model One-directional model, and we will judge whether Method 2 can

improve the circuit predictability.

36

Chapter 7. Circuit Predictability

For a circuit having k clauses, the possible height h of the circuit tree is

dlog ke+ 1 ≤ h ≤ k, (7.1)

so there are k − dlog ke different circuit heights for a k-clause circuit. Suppose the

circuit has n variables, then there are 2n(k − dlog ke) number of computations that

need to be simulated. Because we target exploring the relation between the circuit

height and the circuit predictability, there is no need to explore all possible conditions

of the input variables for a k-clause circuit. In order to make it computationally

feasible, we assume each variable only appears once in a clause, and choose n to be

the smallest possible value that could guarantee there are no duplicated clauses in

the circuit. To avoid duplicated clauses, k and n must satisfy:(
n

3

)
≥ k. (7.2)

The circuits being simulated in Method 1 and Method2 can be expressed as a

set {(k, h)}, where (k, h) denotes a circuit tree having k clauses and height h. The

number of variables n and k, h satisfy constraint 1 ≤ k ≤ 7 and Equations (7.1)

and (7.2).

7.2 Method 1: Height Reduction

For a 3-CNF circuit denoted by (k, h) where k denotes the clause number and h de-

notes the circuit height, if k is fixed, the height of the circuit tree is from dlog ke+ 1

to k. We simulate circuits having between one and seven clauses. For each circuit,

we use 1000 trajectories to calculate the time deviation under each input assign-

ment. We calculate σmax for each circuit, which are shown in Table 7.1. Standard

deviation of computation time for a fixed circuit (k, h) varies with the change of

input assignments. Boolean formulas for the circuits (k, h) are presented in Ta-

ble 7.2. Simulation results are presented in Figures 7.8 to 7.11 in the next section

37

Chapter 7. Circuit Predictability

Table 7.1: The values of σmax for circuits having between 1 and 7 clauses. Circuit
(k, h) has k clauses and height h.

no. (k, h) σmax no. (k, h) σmax

1. (1, 1) 32.69 8. (6, 4) 310.94
2. (2, 2) 57.57 9. (6, 5) 264.72
3. (3, 3) 109.9 10. (6, 6) 256.07
4. (4, 3) 143.94 11. (7, 4) 356.04
5. (4, 4) 162.83 12. (7, 5) 465.95
6. (5, 4) 262.1 13. (7, 6) 657.61
7. (5, 5) 221.55 14. (7, 6) 296.78

(Section 7.2). Each diagram contains plots in two different colors. The black plots

represent the the standard deviation under all possible input assignments. The blue

plots represent simulation results in a modified model where spiders only move for-

ward, which will be discussed in Section 7.3. Figure 7.8 shows the time deviations

for circuits (2, 2), (3, 3), (4, 3), (4, 4). Figure 7.9 shows the time deviations for circuits

(5, 4), (5, 5). Figure 7.10 shows the time deviations for circuits (6, 4), (6, 5), (6, 6).

Figure 7.11 shows the time deviations for circuits (7, 4), (7, 5), (7, 6), (7, 7).

In Figure 7.1, we show the relation between circuit height and σmax. In each

diagram in Figure 7.1, we use different colors to indicate the circuits with differ-

ent number of clauses. In Figure 7.1, we can tell that σmax increases as the height

increases in the magenta-color plots, which represent the circuits with 4 clauses.

However, in the black and blue plots (5-clause circuit and 6 clause circuit), σmax de-

creases as the circuit height increases. In the red plots (7-clause circuit), σmax goes

up and down as the circuit height increases. Therefore, there exists no linear rela-

tion between the circuit height and the measure of the circuit predictability (σmax),

Method 1 is NOT valid.

38

Chapter 7. Circuit Predictability

Table 7.2: Boolean formulas for the 3-CNF circuits having between 1 and 7 clauses.

no. (k, h) Circuit Structure
1. (1, 1) x1 ∨ x2 ∨ x3
2. (2, 2) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)
3. (3, 3) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)
4. (4, 3) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)) ∧ ((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4))
5. (4, 4) (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)
6. (5, 4) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)) ∧ ((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧

(x1 ∨ x2 ∨ x5))
7. (5, 5) (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x1∨x3∨x4)∧(x2∨x3∨x4)∧(x1∨x2∨x5)
8. (6, 4) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)) ∧ ((x2 ∨ x3 ∨ x4) ∧

(x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5))
9. (6, 5) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)) ∧

((x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5))
10. (6, 6) (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x1 ∨x3 ∨x4)∧ (x2 ∨x3 ∨x4)∧ (x1 ∨

x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5)
11. (7, 4) ((x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4))∧ (((x2 ∨ x3 ∨ x4)∧

(x1 ∨ x2 ∨ x5)) ∧ ((x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5)))
12. (7, 5) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)) ∧ ((x2 ∨ x3 ∨ x4) ∧

(x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5))
13. (7, 6) ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)) ∧ ((x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧

(x1 ∨ x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5))
14. (7, 7) (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x4)∧ (x1 ∨x3 ∨x4)∧ (x2 ∨x3 ∨x4)∧ (x1 ∨

x2 ∨ x5) ∧ (x1 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5)

7.2.1 Analysis

At the beginning of this section, we state that shortening the computation paths of

the reporting spiders can lead to an improvement of the circuit predictability. Since

different input assignments lead to different reporting spiders that take different

computation paths, we hypothesize if the total length of all the cascading paths are

reduced, the total length of all computation paths under different input assignments

are reduced generally, which we believe can reduce the values of σmax. Based on this

hypothesis, we propose that reducing the height of the circuit tree can reduce the

39

Chapter 7. Circuit Predictability

Table 7.3: Total length of all cascading paths for the circuits having clauses from 1
to 7. Circuit (k, h) has k clauses and height h.

no. (k, h) Total Length no. (k, h) Total Length
1. (1, 1) 1 8. (6, 4) 88
2. (2, 2) 10 9. (6, 5) 84
3. (3, 3) 26 10. (6, 6) 91
4. (4, 3) 42 11. (7, 4) 108
5. (4, 4) 46 12. (7, 5) 120
6. (5, 4) 68 13. (7, 6) 135
7. (5, 5) 68 14. (7, 6) 114

total length of all cascading paths. Simulation results in Figure 7.1 has shown that

height reduction is NOT a valid method to improve the circuit predictability. We

list the total length of all cascading paths for the circuits having clauses from 1 to

7 in Table 7.3, we can see that height reduction does not reduce the total length of

all cascading paths, which results from our geometrical layout generation algorithm

discussed in Section 5.1.

The circuits being simulated in this section are generated using our geometrical

layout generation algorithm. The algorithm is discussed in previous section (Sec-

tion 5.1). When we fix the number of clauses for a circuit and vary the height of the

circuit, when the circuit tree is shorter, the number of gates arranged in the same

layer is increased. To void the overlaps between the gates at the same layer, our

algorithm makes them aligned according to the tops of their layouts, keep unit dis-

tance to the next upper layer vertically, and keep at least unit distance to each other

horizontally. When the number of gates at the same layer is increased, the layout of

this layer becomes wider, thus increasing the lengths of the cascading paths between

each layer and the layer above. Therefore, for a circuit having a fixed number of

clauses, reducing the height of the circuit tree cannot shorten the total length of

all cascading paths in all cases. So we turn to directly explore the relation between

40

Chapter 7. Circuit Predictability

the total length of all cascading paths and σmax, trying to figure out whether our

previous hypothesis is correct. Our previous hypothesis is that shortening the total

length of all cascading paths can improve the circuit predictability.

In Figure 7.2, we plot how σmax varies with the total length of all the cascading

paths. Circuits with different number of clauses are indicated using different types of

points. From this figure, we can see that σmax does not increase monotonically as the

length of all the cascading paths increases. Therefore, our previous hypothesis that

shortening the length of the cascading paths can improve the circuit predictability is

WRONG. That is because shortening the total length of all cascading paths cannot

reduce the probability that the reporting spiders walk backward. We know that spi-

ders are less far back to go on a shorter path. However, the reporting spider under one

certain input assignment does not move on a contiguous path from the input location

to the output location. The cascading path between any two connected gates are in-

dividual segments with different lengths. Molecular spiders move bi-directionally on

each individual segment. Traversing time for the reporting spider on these individual

segments is the sum of the traversing time on all segments. Therefore, the standard

deviation of computation time under one certain input assignment is related to the

the number of different segments and the length of each different segment. Reducing

the total length of all cascading paths does not guarantee the reduction of σmax.

It is difficult to improve the circuit predictability by changing the circuit structure

when the circuit size (the number of clauses) is fixed. However, if we use sequential

cascades to construct the circuits having between 1 and 7 clauses, σmax increases as

the circuit size increases, which is shown in Figure 7.3. Gates are connected along a

single path in a sequentially cascaded circuit. A sequentially cascaded circuit has the

highest circuit tree. From the current simulation results shown in Figures 7.1 and 7.2

and the analysis on the current results, we can conclude that Method 1 is NOT

valid for the circuit predictability improvement. Instead, we could try reducing the

41

Chapter 7. Circuit Predictability

circuit size and shortening all the cascading paths. This method would require a

new algorithm to generate the layout of the circuit, which is beyond the scope of this

thesis.

7.3 Method 2: One-Directional Movements

In this section, we modify the original model to make spiders only move forward, and

compare the modified model with the original model in terms of circuit predictability.

The modified model is still a continuous time Markov chain. We compare the gate

computation between two models using simulations. Each simulation produces 1000

trajectories in both models under one input assignment. Simulation results of gate

computation are shown in Figures 7.4 to 7.6. Simulation results of the clause circuit

are shown in Figure 7.7. In Figures 7.8 to 7.11, we show the standard deviations

under all input assignments for circuits having clauses from 2 to 7. The values of

σmax for those circuits in the modified model are shown in Table 7.4. We show the

relation between the circuit height and σmax in Figure 7.12. In Figure 7.13, we show

the relation between the total length of all cascading paths and the values of σmax.

In Figure 7.14, we compare how circuit predictability is influenced by the circuit size

in sequentially cascaded circuits in both models.

7.3.1 Analysis

From the comparisons shown in Figures 7.4 to 7.6 and simulations results shown in

Figures 7.12 and 7.13, we can see:

1). For a circuit (k, h), the standard deviation of computation time in the modified

model does not change as much as in the original model under different input as-

signment;

42

Chapter 7. Circuit Predictability

2). In both models, σmax do not increase monotonically with the height of the circuit

tree. Compared with the original model, σmax does not change much as the height

of a circuit three varies;

3). The circuit predictability in the original model is influenced by the circuit size

more than the modified model;

4). Compared with the original model, σmax is decreased significantly in the modified

model.

Summary From the simulation results and analysis in Sections 7.2 and 7.3, we

conclude that Method 1 is NOT valid for improving the circuit predictability since

reducing the height of the circuit three does not guarantee reducing the probability

that spiders move backward. Method 2 improves the circuit predictability signif-

icantly because this method directly changes the behaviors of the spiders to avoid

spending time on the backward route. The circuit predictability can be improved by

reducing the circuit size and shortening all the cascading paths in the circuit tree.

Therefore, given a Boolean formula, we can apply Boolean algebra simplification

rules to convert the original formula to a logically equivalent one using fewer gates

and variables to improve the circuit predictability. We can also use the modified

model where spiders only move forward to implement the circuit.

43

Chapter 7. Circuit Predictability

Table 7.4: The values of σmax for circuits having between 1 and 7 clauses in the
modified model. Spiders only move forward in the modified model. Circuit (k, h)
has k clauses and height h.

no. (k, h) σmax no. (k, h) σmax

1. (1, 1) 4.15 8. (6, 4) 8.73
2. (2, 2) 5.49 9. (6, 5) 9.69
3. (3, 3) 6.69 10. (6, 6) 10.47
4. (4, 3) 7.56 11. (7, 4) 8.92
5. (4, 4) 8.19 12. (7, 5) 9.88
6. (5, 4) 8.50 13. (7, 6) 11.31
7. (5, 5) 9.35 14. (7, 6) 11.38

44

Chapter 7. Circuit Predictability

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 1 2 3 4 5 6 7 8

0
10

0
20

0
30

0
40

0
50

0
60

0

Relation between σmax and Height

Circuit Height

σ m
ax

●

●

●

●

●

●

●

1 clause
2 clauses
3 clauses
4 clauses
5 clauses
6 clauses
7 clauses

Figure 7.1: The figure shows the relation between σmax and the circuit height. We use
different colors to represent the circuits with different number of clauses, as indicated
in the legend.

45

Chapter 7. Circuit Predictability

●

●

●

1 10 26 42 68 84 108 120 135

0
10

0
20

0
30

0
40

0
50

0
60

0

σmax for Different Lengths of Cascading Paths

Total length of all cascading paths

σ m
ax

● ●1 clause 2 clauses 3 clauses 4 clauses 5 clauses 6 clauses 7 clauses

Figure 7.2: For each circuit (k, h), we calculate the total lengths of all the cascading
paths in it. We show the relation between σmax and the total cascading path lengths
for the circuits having between 1 and 7 clauses. Circuits with different number of
clauses are represented by different types of points, as indicated in the legend.

46

Chapter 7. Circuit Predictability

●

●

●

●

●

●

●

0 1 2 3 4 5 6 7 8

0
50

10
0

15
0

20
0

25
0

30
0

σmax for Sequentially Cascaded Circuits of Different Sizes

Circuit size (the clause number)

σ m
ax

Figure 7.3: The figure shows the relation between σmax and circuit size. Circuit size
here refers to the number of clauses in a circuit in the form of 3-CNF. We explore
circuits having between one and seven clauses, and these circuits are cascaded in the
same manner, sequential cascades. The value of σmax increases as the circuit size
increases.

47

Chapter 7. Circuit Predictability

0
20

40
60

80
10

0

● ●

● ●

0 0 1 1

Comparisons between the Original Model and the Modified Model
 in the NOT Gate Computation

Input assignment

T
im

e

0: mode = 15.45 µ = 22.85 σ = 11.81
0: mode = 9.88 µ = 10.98 σ = 3.33
1: mode = 16.01 µ = 23.14 σ = 11.9
1: mode = 9.93 µ = 11 σ = 3.33

original model
modified model

Figure 7.4: Comparisons between the original model and the modified model in the
AND gate computation. The original model data is in black, the modified model
data is in blue. Spiders only move forward in the modified model. Computation time
distributions under all possible input assignments are shown in the figure. Standard
deviation, mean and mode for both models under all input assignments are shown
in the legend.

48

Chapter 7. Circuit Predictability

0
50

10
0

15
0

20
0

25
0

●
● ● ●

● ● ● ●

00 00 01 01 10 10 11 11

Computation Time Distributions

Input assignment

T
im

e

original model
modified model

Comparisons between the Original Model and the Modified Model
 in the AND Gate Computation

●

● ●
●

●
● ● ●

00 01 10 11

0
5

10
15

20

Standard Deviation

Input assignment

σ ●

● ●

●

●

● ●
●

00 01 10 11

0
5

10
15

20
25

30

Mean

Input assignment

µ

●

● ●

●

●

●
●

●

00 01 10 11

0
2

4
6

8
10

12
14

Mode

Input assignment

M
od

e

Figure 7.5: Comparisons between the original model and the modified model in the
AND gate computation. The original model data is in black, the modified model
data is in blue. Spiders only move forward in the modified model. Computation
time distributions under all possible input assignments are shown in the top dia-
gram. Standard deviation, mean and mode for both models under all possible input
assignments are shown at the bottom.

49

Chapter 7. Circuit Predictability

0
50

10
0

15
0

20
0

25
0

● ● ●
●

● ● ● ●

00 00 01 01 10 10 11 11

Computation Time Distributions

Input assignment

T
im

e

original model
modified model

Comparisons between the Original Model and the Modified Model
 in the OR Gate Computation

●
● ●

●

● ● ●
●

00 01 10 11

0
5

10
15

20

Standard Deviation

Input assignment

σ

●

● ●

●

●
● ●

●

00 01 10 11

0
5

10
15

20
25

30

Mean

Input assignment

µ

●

●

●

●

●

● ●

●

00 01 10 11

0
2

4
6

8
10

12
14

Mode

Input assignment

M
od

e

Figure 7.6: Comparisons between the original model and the modified model in the
OR gate computation. The original model data is in black, the modified model
data is in blue. Spiders only move forward in the modified model. Computation
time distributions under all possible input assignments are shown in the top dia-
gram. Standard deviation, mean and mode for both models under all possible input
assignments are shown at the bottom.

50

Chapter 7. Circuit Predictability

0
50

10
0

15
0

20
0

25
0

30
0

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

0 0 001 001 010 010 011 011 100 100 101 101 110 110 111 111

Computation Time Distributions

Input assignment

T
im

e

original model
modified model

Comparisons between the Original Model and the Modified Model
 in the Computation of Circuit (x1 OR x2 OR x3)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

000 010 100 110

0
5

10
15

20
25

30

Standard Deviation

Input assignment

σ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

000 010 100 110

0
10

20
30

40
50

60

Mean

Input assignment

µ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

000 010 100 110

0
10

20
30

40

Mode

Input assignment

M
od

e

Figure 7.7: Comparisons between the original model and the modified model in the
clause circuit. The original model data is in black, the modified model data is in
blue. Spiders only move forward in the modified model. Computation time distribu-
tions under all possible input assignments are shown in the top diagram. Standard
deviation, mean and mode for both models under all possible input assignments are
shown at the bottom.

51

Chapter 7. Circuit Predictability

●

●
●

●
● ● ●

●

● ●
●

●

●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0000 0011 0110 1001 1100 1111

0
20

40
60

80

Circuit Having 2 Clauses and Height 2

Input assignment

σ

Standard Deviations of Computation Time

●

●
●

●

●

●
●

●

● ● ● ●

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0000 0011 0110 1001 1100 1111

0
20

40
60

80

Circuit Having 3 Clauses and Height 3

Input assignment

σ

●

●
● ● ●

●

● ●
● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0000 0011 0110 1001 1100 1111

0
50

10
0

15
0

Circuit Having 4 Clauses and Height 3

Input assignment

σ

●

● ●
●

●

●

●
●

●

●
●

●

●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0000 0011 0110 1001 1100 1111

0
50

10
0

15
0

Circuit Having 4 Clauses and Height 4

Input assignment

σ

● ●original model modified model

Figure 7.8: Standard deviations under all possible input assignments for circuits
having clauses from 2 to 4. The original model data is in black color, while the data
in the modified model are in blue. Spiders only move forward in the modified model.

52

Chapter 7. Circuit Predictability

● ●
●

●

●

●
● ●

●
● ● ●

●

●

● ● ● ●
● ● ● ●

●
● ●

●
●

● ● ●
●

●

● ●

00000 00100 01000 01100 10000 10100 11000 11100

0
10

0
20

0

Circuit Having 5 Clauses and Height 4

Input assignment

σ

Standard Deviations of Computation Time

●

●
●

●

●

●

●

●

● ●

●
● ● ● ●

●
●

●

● ● ● ●
●

● ● ● ● ● ●
● ● ●

● ●

00000 00100 01000 01100 10000 10100 11000 11100

0
10

0
20

0

Circuit Having 5 Clauses and Height 5

Input assignment

σ

● ●original model modified model

Figure 7.9: Standard deviations under all possible input assignments for 5-clause
circuits: (5, 4), (5, 5). The original model data is in black color, while the data in the
modified model are in blue. Spiders only move forward in the modified model.

53

Chapter 7. Circuit Predictability

● ● ●

●

●

● ●

●

●

●
● ●

●
● ● ●

●

● ● ● ●
● ● ● ● ●

●
●

●

●

●
●

● ●

00000 00011 00110 01001 01100 01111 10010 10101 11000 11011 11110

0
10

0
20

0
30

0

Circuit Having 6 Clauses and Height 4

Input assignment

σ

Standard Deviations of Computation Time

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●
●

●
● ●

●
●

●
●

● ●
● ●

●
●

●

● ●

00000 00011 00110 01001 01100 01111 10010 10101 11000 11011 11110

0
10

0
20

0
30

0

Circuit Having 6 Clauses and Height 5

Input assignment

σ

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●
●

● ●

●
● ● ● ●

●
● ● ● ●

● ●
●

●

● ●

00000 00011 00110 01001 01100 01111 10010 10101 11000 11011 11110

0
10

0
20

0
30

0

Circuit Having 6 Clauses and Height 6

Input assignment

σ

● ●original model modified model

Figure 7.10: Standard deviations under all possible input assignments for 6-clause
circuits: (6, 4), (6, 5), (6, 6). The original model data is in black color, while the data
in the modified model are in blue. Spiders only move forward in the modified model.

54

Chapter 7. Circuit Predictability

●●●

●

●

●●
●

●

●
●

●●
●

●●●●●●●●●
●●

●●●
●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 3 6 9 13 17 21 25 29

0
20

0
40

0
60

0

Circuit Having 7 Clauses and Height 4

Input assignment

σ

Standard Deviations of Computation Time

●
●

●

●

●

●
●

●

●

●

●●
●●

●

●
●

●
●

●●●
●

●
●●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 3 6 9 13 17 21 25 29

0
20

0
40

0
60

0

Circuit Having 7 Clauses and Height 5

Input assignment
σ

●
●

●

●

●

●

●
●●

●

●

●●
●

●●

●
●

●

●

●

●

●
●●

●
●●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 3 6 9 13 17 21 25 29

0
20

0
40

0
60

0

Circuit Having 7 Clauses and Height 6

Input assignment

σ

●

●

●

●●
●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●
●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 3 6 9 13 17 21 25 29

0
20

0
40

0
60

0

Circuit Having 7 Clauses and Height 7

Input assignment

σ

● ●original model modified model

Figure 7.11: Standard deviations under all possible input assignments for 7-clause
circuits: (7, 4), (7, 5), (7, 6), (7, 7). Input assignments from “00000” to “11111” are
represented as decimal numbers in this figure. For example, input assignment “25”
represents “11001”. The original model data is in black color, while the data in the
modified model are in blue. Spiders only move forward in the modified model.

55

Chapter 7. Circuit Predictability

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0 1 2 3 4 5 6 7 8

0
2

4
6

8
10

Relation between σmax and Height

Circuit Height

σ m
ax

●

●

●

●

●

●

●

1 clause
2 clauses
3 clauses
4 clauses
5 clauses
6 clauses
7 clauses

Figure 7.12: The figure shows the relation between σmax and the circuit height.
We use different colors to represent the circuits with different number of clauses, as
indicated in the legend.

56

Chapter 7. Circuit Predictability

●

●

●

1 10 26 42 68 84 108 120 135

0
2

4
6

8
10

σmax for Different Lengths of Cascading Paths

Total length of all cascading paths

σ m
ax

● ●1 clause 2 clauses 3 clauses 4 clauses 5 clauses 6 clauses 7 clauses

Figure 7.13: For each circuit (k, h), we calculate the total lengths of all the cascading
paths in it. We show the relation between σmax and the total cascading path lengths
for the circuits having between 1 and 7 clauses. Circuits with different number of
clauses are represented by different types of points, as indicated in the legend.

57

Chapter 7. Circuit Predictability

●

●

●

●

●

●

●

● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8

0
50

10
0

15
0

20
0

25
0

30
0

Relation between σmax and Circuit Size

Circuit size (the clause number)

σ m
ax

● ●original model modified model

Figure 7.14: Comparison between the original model and the modified model. The
figure shows the relation between σmax and circuit size in both models. The original
model data is in black, the modified model data is in blue. The circuit size refers
to the number of clauses in a circuit in the form of 3-CNF. We explore the circuits
having between 1 and 7 clauses, and these circuits are cascaded using the same
manner, sequential cascades. The value of σmax increases as the circuit size increases
in both models. The increase in σmax in the modified model is less than in the
original model.

58

Chapter 8

Possible Implementations

We have sketched two different possible implementations of the model used in the

logic circuit construction. We will give details of these two implementations in Sec-

tion 8.1 and Section 8.2.

8.1 Possible Implementation I

We use DNA strand displacement and catalytic cleavage to implement the mech-

anisms SW1→0 and SW0→1 in a NOT gate and mechanism exit in the gate cas-

cades. Non-alterable sites form the main parts of the track, and their structures are

single-stranded DNA. Alterable sites form the functional parts of the track, whose

structures are either single-stranded DNA with long complementary domains to the

spider limbs, or the hairpin structures and bridge structures. We assume that when

the binding part between a limb and a site is more than two complementary domains,

the bound limb cannot leave that site by itself, and is trapped on that site.

59

Chapter 8. Possible Implementations

8.1.1 Spiders and non-alterable sites.

The spider has two DNAzyme legs [1, 24, 25] and a single-stranded DNA arm con-

taining a sequence that is hybridized with an indicator strand. The domains of the

legs and the arm are shown in Figure 8.1. A site is a DNA structure tethered to

the surface of a 2D rectangular lattice. A normal site in Snorm = {sl, s1, s0} is a

single-stranded DNA. Site sl contains the complementary domain (a∗) to the spider

leg (a); sites s1 and s0 each contains a complementary domain (1∗ and 0∗) to the

1-typed arm and 0-typed arm respectively.

8.1.2 Alterable sites and mechanisms.

An alterable site has three features: (1) it can be in one of three states, “on”, “off”,

or “trapped”; (2) it may or may not trap a spider; (3) it may contain a signal that

can be sent out once a spider has attached to the site. In the designs of NOT gate

and gate cascades, we use the switch mechanisms to implement a NOT gate and

use the exit mechanism to implement the gate cascades. A mechanism consists of

a set of neighboring alterable sites along the same direction. An alterable site is

a DNA strand with different structures tethered to the surface of the lattice. In

the definitions of different mechanisms, we use the same label to represent the sites

that have the same functionality, but the DNA structures for these sites with the

same label may be different in different mechanisms. For example, mechanisms

SW1→0, SW0→1 and exit all contain sites sIr and sIIr . These two sites have different

DNA structures in different mechanisms.

Define mechanisms as:

SW1→0 = {(s1→0,p1), (s
I
r,p2), (s

II
r ,p3)}

SW0→1 = {(s0→1,p1), (s
I
r,p2), (s

II
r ,p3)}

60

Chapter 8. Possible Implementations

p

1
q

n

0

mm⇤
0⇤

f⇤

p

1
q

n

0

m

p⇤

1⇤

t⇤

d

c
b

a

leg arm 1 arm 0
d

c

b a

d

c
b

a

arm 0

d

c

b a

d

c
b

a

arm 1

spider with value 0

spider with value 1

Non-alterable sites
sl

a⇤ 1⇤

s1 s0

0⇤

(a)

(c)

(b)

Figure 8.1: Possible implementation I. The spider structure and non-alterable sites.
(a) The leg is a DNAzyme where the domain b catalyzes cleavage of a substrate
in mechanisms that will be shown in later figures. The a domain of the leg is
complementary to the a∗ domain of site sl, thus the leg can attach to site sl. Arm
1 is partially hybridized with an indicator strand (0∗,m∗, f ∗). A spider having an
arm of 1 can attach to a site s1 since the domain 1 of its arm is complementary to
the domain 1∗ of site s1. Similarly, a spider having an arm of 0 can attach to a site
s0. (b) Two types of spiders are shown at top right. Each spider has two legs and
an arm. (c) The non-alterable sites are single-stranded DNA with a single domain.
They are tethered to the surface of a lattice, where the small gray dots in the figure
represent the tethered points. We assume the binding strength between a pair of
complementary domains is weak, so the limb bound to these non-alterable sites can
dissociate from them. When the binding part between a limb and a site is more than
two complementary domains, we assume the limb cannot leave the site by itself (the
limb is trapped on that site).

exit = {(st,p1), (s
I
r,p2), (s

II
r ,p3)}

where (s,pi) in a mechanism indicates the location of site s is pi, and pi ∈ Z2 must

satisfy

|pi − pi−1| = 1, where i = 2, 3.

When a spider moves on site st, it becomes trapped. When a spider moves to a

site s1→0 or s0→1, it becomes trapped and its value becomes 0 or 1. When the spider

61

Chapter 8. Possible Implementations

goes on moving over the latter two sites in these mechanisms, site sIr releases the

limb trapped on the first site, and traps the spider; site sIIr releases the limb trapped

on the second site. Since the first site has different implementations, sites sIr and

sIIr must have different implementations in different mechanisms even though their

functionality is the same in three mechanisms.

Figure 8.2 shows the implementations of mechanism exit and its operating pro-

cedure. Figure 8.3 shows the implementations and operating procedure for SW1→0.

Since SW0→1 follows a similar design to SW1→0, we only show the implementation

for it in Figure 8.4.

In the designs of AND gate and OR gate, we use sites su and sp to control the

spiders’ behavior at the crossroads in the AND gate and OR gate. Figure 8.5 shows

how site su sends a “turning-on” signal to unblock the site sp when a spider attaches

to it.

8.2 Possible Implementation II

In the second implementation, only DNA strand displacement is used. We add an

excess amount of external strands in the environment to aid the movement of molec-

ular spiders when they move through the exit mechanism and switch mechanisms.

Each spider has two legs and one arm. There are two types of arm. An arm of type

1 can only attach to the normal site s1 and an arm of type 0 can only attach to the

normal site s0. Implementations of spider leg and arms are shown in Figure 8.6. We

add one type of external strand containing two domains 4 and b in this implemen-

tation. Figure 8.7 shows the implementation of the exit mechanism. Figure 8.8 and

Figure 8.9 show the implementations of a switch mechanisms SW1→0 and SW0→1.

Sites su and sp used in the AND/OR gate implementation retain the same design as

in the first implementation.

62

Chapter 8. Possible Implementations

3⇤
a⇤
b⇤b d⇤

c⇤

a⇤
c

3

a

b

sI
r

sII
rst

c⇤

b⇤

2⇤

c

2

A

(1)

3⇤
a⇤
b⇤b d⇤

c⇤

a⇤
c

3

a

b

sI
r

sII
rst

c⇤

b⇤

2⇤

c

2

A

a
b
c
d

(2)

Initial state of the mechanism exit. When a spider leg attaches to site , the
complementary domains c, b and c*, b* are strongly
bound to each other. The binding strength is strong, so
the leg is trapped on site .

st

st

3⇤
a⇤
b⇤b

d⇤

c⇤

a⇤
c

3

a

b

sI
r sII

rst

c⇤

b⇤

2⇤
c

2

A

a
b
c
d

b
a

c
d

(3)

The leg domain a is complementary to the
a* domain of site . When the other leg
attaches to site , strand displacement
occurs, opening the loop containing the
domains c, b, and 2.

sI
r

sI
r

(4)

3⇤
a⇤
b⇤

b

d⇤
c⇤

a⇤

3
a

b

sI
r

sII
rst

c⇤

b⇤

2⇤

c

2

A

b
a

c
d

a
b

c
d

c

The 2 domain of the opened loop is complementary to
the 2* domain of site . When the opened loop attaches
to site , the strand displacement occurs, releasing the
trapped leg on site . This released leg attaches to
site , is trapped there, releasing an auxiliary strand A
containing the domains of 3, a, b, and c.

st

st

st

sII
r

3⇤
a⇤
b⇤

b

d⇤
c⇤

a⇤3

sI
r

sII
rst

c⇤

b⇤

2⇤

c

2

A

b
a

a
b

c
d

c

(5)

The 3 domain of strand A is complementary to
the 3* domain of site . When strand A attaches
to site , strand displacement occurs, releasing
the leg trapped on site .

sI
r

sI
r

sI
r

Figure 8.2: Possible implementation I. An implementation of mechanism exit. Dia-
gram (1) is the initial condition of mechanism exit. Diagram (1) through (5) show
the operating procedure of exit that cuts off the backward route of the spider. Each
diagram has an explanation to the right of it. We omit the spider body in these
diagrams. A dotted line of a limb represents the omitted part that extends to con-
nect to the spider body. In diagram (5), the spider cannot move to sites st and sIr
since no complementary domains exist between the leg and these sites. Therefore,
the backward route of the spider is cut off when the spider moves through the exit
mechanism. In diagram (5), the DNAzyme leg on site sIIr cleaves the site at the
position labeled with a small cross, making the spider move forward.

63

Chapter 8. Possible Implementations

p

q⇤

n⇤

p⇤
t⇤

1⇤

n
f

m
0

3⇤
a⇤
b⇤b

n
q

d⇤

c⇤

a⇤�⇤
c

�

3

a

b

s1!0 sI
r sII

r

AI AII

p

1
q

n

0

mm⇤
0⇤

f⇤

arm 1

p

q⇤

n⇤

p⇤
t⇤

1⇤

n
f

m
0

3⇤
a⇤
b⇤b

n
q

d⇤

c⇤

a⇤�⇤
c

�

3

a

b

s1!0 sI
r sII

r

AI AII

n
q

0
0⇤m⇤

f⇤

m

1
p

p

1
q

n

0

m

p⇤

1⇤

t⇤

arm 0

p

1
q

n

0

mm⇤
0⇤

f⇤

arm 1

p

q⇤

n⇤

p⇤
t⇤

1⇤

f
m

0

3⇤
a⇤
b⇤b

n
q

d⇤

c⇤

a⇤�⇤
c

�

3

a

b

s1!0 sI
r sII

r

AI AII

n
q

0

0⇤
m⇤

f⇤
m

1
p

n

3
a

b a
b

c
d

c

p

q⇤

n⇤

f
m

0

b

n

q d⇤

c⇤

a⇤�⇤ �

s1!0 sI
r sII

r

AI AII

0⇤
m⇤

f⇤
n

3⇤
a⇤
b⇤ b

a

c
d

p

q⇤

n⇤

f
m

0

b

n

q d⇤

c⇤

a⇤�⇤ �

s1!0 sI
r sII

r

AI AII

0⇤
m⇤

f⇤
n

3⇤
a⇤
b⇤

a
b

c
d

3

b
a

c

p

q⇤

n⇤

p⇤
t⇤

1⇤

f
m

0

b
n q

d⇤

c⇤

a⇤�⇤
c

�

3

a

b

s1!0 sI
r sII

r

AI AII

n
q

0

0⇤
m⇤

f⇤
m

1
p

n
3⇤
a⇤
b⇤ b

a

c
d

(1) (4)

(2) (5)

(3) (6)

Figure 8.3: Possible implementation I. An implementation of the switch mechanism
SW1→0. Diagram (1) shows the initial condition. When a spider with arm type of
1, as shown to the left of diagram (1), reaches site s1→0, the arm type becomes 0
and the spider is trapped on that site. This procedure consists of two DNA strand
displacements. Domain 1 of arm 1 binds to 1∗ domain, the strand displacement occurs
to take off the strand t∗p∗1∗ from the site and binds it to the arm; Domain q of arm
1 binds to q∗ domain, the strand displacement occurs to release the strand AI having
domains of n, f,m, 0. The arm binds to the site via two complementary domains
(q, q∗ and n, n∗), the binding strength is high so the arm can not dissociate from the
site by itself, as shown in diagram (2). Since the released strand AI contains an f
domain which can bind to the open end f ∗ of the trapped arm, strand displacement
occurs to take off the strand f ∗m∗0∗ from the arm, making the arm 0-typed, as shown
in diagram (3). In diagram (4), one leg of the spider attaches to site sIr, the strand
displacement opens the loop, and this leg is trapped. In diagram (5), the opened
loop releases the arm trapped on s1→0, and the other leg attaches to site sIIr releasing
strand AII . In diagram (6), strand AII displaces the leg trapped on site sIr and the
leg on site sIIr can cleave the site at the position labeled with a small cross, thus the
spider is free to move forward. Since the legs and the arm of the spider do not have
any complementary domains to the current site s1→0 and sIr, the spider cannot move
back. The arm type is 0 in diagram (4), (5), and (6).

64

Chapter 8. Possible Implementations

n⇤

3⇤
a⇤
b⇤b

n

q

d⇤

c⇤

a⇤
c

3ab

sI
r sII

rs0!1

0⇤

f⇤

t

p
1

�⇤

m⇤ m

q⇤q

�

A1 A2

p

1
q

n

0

m

p⇤

1⇤

t⇤

arm 0

Figure 8.4: Possible implementation I. An implementation of the switch mechanism
SW0→1. The operating procedure of this mechanism is similar to the one in SW1→0

shown in Figure 8.3. When arm 0 attaches to site s0→1, the strand displacement
caused by binding of 0, 0∗ domains takes off the strand f ∗m∗0∗ from the site and
binds this strand to the arm, the strand displacement caused by the biding of n, n∗

domains releases the strand A1. The released strand A1 takes off the strand t∗p∗1∗

from the arm, switching the type of the arm to 1. The arm is trapped on s0→1, which
could be released when one spider leg attaches to site sIr. When the arm is released,
one spider leg is trapped on sIr. When the other leg of the spider attaches to site sIIr ,
strand A2 is released, which can release the trapped leg on sIr.

65

Chapter 8. Possible Implementations

sp

Ba�
B�

1

B�
2

A

a�
b�b

A�

B�

su

(1)

sp

Ba�
B�

1

B�
2

A

A�B�

su

a�
b�b b

a

c
d

(2)

sp

B

a�
B�

1

B�
2

A

A�
B�

su

a�
b�b b

a

c
d

(3)

Figure 18: Possible implementation I. An implementation of sites su and sp used in the AND gate and the

OR gate. Diagram (1) shows the initial condition. Domain a⇤ forms a small loop on site sp, which is hard to

bind to a spider limb, so a spider cannot attach to site sp initially. In diagram (2), when a spider leg attaches

to site su, strand displacement occurs, opening the loop A⇤B⇤b. The binding parts between the spider leg and

site su are two pairs of complementary domains, so the binding strength is high enough to trap the spider leg.

The opened loop A⇤B⇤b has the complementary part A on site sp. In Diagram (3), strand displacement takes

place when the opened loop binds to the A domain on site sp, which removes strand AB from site sp, thus

domain a⇤ becomes available for the spider limb. The state of site sp is turned on in diagram (3).

33

(1)

sp

Ba�
B�

1

B�
2

A

a�
b�b

A�

B�

su

(1)

sp

Ba�
B�

1

B�
2

A

A�B�

su

a�
b�b b

a

c
d

(2)

sp

B

a�
B�

1

B�
2

A

A�
B�

su

a�
b�b b

a

c
d

(3)

Figure 18: Possible implementation I. An implementation of sites su and sp used in the AND gate and the

OR gate. Diagram (1) shows the initial condition. Domain a⇤ forms a small loop on site sp, which is hard to

bind to a spider limb, so a spider cannot attach to site sp initially. In diagram (2), when a spider leg attaches

to site su, strand displacement occurs, opening the loop A⇤B⇤b. The binding parts between the spider leg and

site su are two pairs of complementary domains, so the binding strength is high enough to trap the spider leg.

The opened loop A⇤B⇤b has the complementary part A on site sp. In Diagram (3), strand displacement takes

place when the opened loop binds to the A domain on site sp, which removes strand AB from site sp, thus

domain a⇤ becomes available for the spider limb. The state of site sp is turned on in diagram (3).

33

(2)

sp

Ba�
B�

1

B�
2

A

a�
b�b

A�

B�

su

(1)

sp

Ba�
B�

1

B�
2

A

A�B�

su

a�
b�b b

a

c
d

(2)

sp

B

a�
B�

1

B�
2

A

A�
B�

su

a�
b�b b

a

c
d

(3)

Figure 18: Possible implementation I. An implementation of sites su and sp used in the AND gate and the

OR gate. Diagram (1) shows the initial condition. Domain a⇤ forms a small loop on site sp, which is hard to

bind to a spider limb, so a spider cannot attach to site sp initially. In diagram (2), when a spider leg attaches

to site su, strand displacement occurs, opening the loop A⇤B⇤b. The binding parts between the spider leg and

site su are two pairs of complementary domains, so the binding strength is high enough to trap the spider leg.

The opened loop A⇤B⇤b has the complementary part A on site sp. In Diagram (3), strand displacement takes

place when the opened loop binds to the A domain on site sp, which removes strand AB from site sp, thus

domain a⇤ becomes available for the spider limb. The state of site sp is turned on in diagram (3).

33

(3)

Figure 8.5: Possible implementation I. An implementation of sites su and sp used in
the AND gate and the OR gate. Diagram (1) shows the initial condition. Domain
a∗ forms a small loop on site sp, which is hard to bind to a spider limb, so a spider
cannot attach to site sp initially. In diagram (2), when a spider leg attaches to site
su, strand displacement occurs, opening the loop A∗B∗b. The binding parts between
the spider leg and site su are two pairs of complementary domains, so the binding
strength is high enough to trap the spider leg. The opened loop A∗B∗b has the
complementary part A on site sp. In Diagram (3), strand displacement takes place
when the opened loop binds to the A domain on site sp, which removes strand AB
from site sp, thus domain a∗ becomes available for the spider limb. The state of site
sp is turned on in diagram (3).

66

Chapter 8. Possible Implementations

d
c
e
b
a

1
q
n
0
m

p
1
q
n
0
m

p

0*
m*

f*

1*
p*

t*

spider leg spider arm 1 spider arm 0

4
b

external strand
a*

sl

0*

s0

1*

s1

normal sites

Figure 8.6: Possible implementation II. Implementations of spider limbs, external
strands, and normal sites. A spider leg contains five domains. Normal sites keep the
same structures as in the first implementation. An excess amount of external strands
diffuse freely in the environment. External strands only participate in reactions of
DNA strand displacement when a spider is attached to a functional site sIIr .

67

Chapter 8. Possible Implementations

d*
c*
2*

c*
e*
3*

d
c

2
b*
a*

3
b

e
c

4*

st sI
r sII

r

(1)

st sI
r sII

r

(2)

d*
c*
2*

d
c
eba

c*
e*
3*

d
c

2
b*
a*

3
b

e
c

4*

d*
c*
2*

d
c
eba

c*
e*
3*

d
c2

b*
a*

3
b

e
c

4*
c
e

d

b
a

st sI
r sII

r st sI
r sII

r

(3) (4)

st sI
r sII

r st sI
r sII

r

(5) (6)

d*
c*
2*

c*
e*
3*

d
c
2

b*
a*3 b

e c 4*
c
e

d

b
a

a

c
e

d

b

d*
c*
2*

c*
e*
3*

d
c
2

b*
a*

3

b
e
c

4*

a

c
e

d

b

b4
external strand

+

d*
c*
2*

c*
e*
3*

d
c
2

b*
a*

3

b
e
c

4* 4

b

Figure 8.7: Possible implementation II. An implementation of mechanism exit using
DNA strand displacement. Diagram (1) shows initial conditions. In Diagram (2),
a spider leg attaches to site st and is trapped on that site. In Diagram (3), when
the other leg of the spider attaches to site sIr, strand displacement occurs to open
the loop of site sIr. Spider is trapped on site sIr, and a signal containing domains 2, c
and d can reach the neighboring sites of site sIr. In diagram (4), the released signal
containing domains 2, c and d reacts with site st to cause strand displacement, which
frees the trapped leg on site st. The released leg attaches to site sIIr and is trapped
on site sIIr . Strand displacement occurs between the spider leg and site sIIr , domain
4∗ becomes active because the loop is opened, and a signal containing domains b, 3, e
and c is released. In diagram (5), the released signal containing domains b, 3, e and
c reacts with site sIr to free the trapped leg. Since domain 4∗ is exposed, external
strands containing domains 4, b can react with site sIIr , which would cause strand
displacement. In diagram (6), the trapped leg on site sIIr is released. Both legs of
the spider are free to move forward, and the spider cannot move back because sites
st and sIr are blocked.

68

Chapter 8. Possible Implementations

c*
e*
3*

n

c b*
a*

3
b

e
c

4*

p
q*
n*

p*
1*

t*

q
p*

1
q
n
0
m

p

0*
m*

f* arm 1

0
m
f

sII
rsI

rs1!0

(1)

sII
rsI

rs1!0

(2)

0
m
f

c*
e*
3*

n

c b*
a*

3
b

e
c

4*

p

q*
n*

p*
1*

t*

q
p*

p
q
n0m

1

0*
m*
f*

p*
1*

t*

p
q
n0m

1

arm 0

(3)

sII
rsI

rs1!0

c*
e*
3*

q
n

c

c
e

d

b
a

0
m
f

b*
a*

3
b

e
c

4*

p

q*
n*

p*
1*

t*

p
q
n0m

1

0*
m*
f*

p*

sII
rsI

rs1!0

(4)

sII
rsI

rs1!0

(5)

b*
a*3 b

e c 4*

a

c
e

d

b
c*
e*
3*

q
n

c

c
e

d

b
a

0
m
f

p
q*
n*

0*
m*
f*

p*

b*
a*

3

b
e
c

4*

a

c
e

d

b

c*
e*
3*

q
n

c

0
m
f

p
q*
n*

0*
m*
f*

p* b4
external strand

+

sII
rsI

rs1!0

(6)

b*
a*

3
e
c

4*

b

c*
e*
3*

q
n

c

0
m
f

p
q*
n*

0*
m*
f*

p*

b
4

sII
rsI

rs1!0

(7)

0
m
f

c*
e*
3*

n

c b*
a*

3
b

e
c

4*

p

q*
n*

p*
1*

t*

q
p*

p q
n

0m

1

0*
m*

f*

Figure 8.8: Possible implementation II. An implementation of switch mechanism
SW1→0. Diagram (1) shows initial conditions. The arm of type 1 binds to site s1→0

via two complementary domains (q, q∗ and n, n∗), and is trapped on site s1→0 because
the binding strength is high, as shown in diagram (2). In diagram (3), two kinds of
strand displacements occur between the trapped arm and site s1→0. Domains p and
1 of the arm strip off the strand having domains p∗, 1∗, t∗ from site s1→0. Domains
0,m and f of site s1→0 strip off the strand having domains 0∗,m,f ∗ from the arm.
The type of the arm becomes 0 after these two strand displacements. Diagrams (4)
– (7) show similar reactions between sites sIr, s

II
r and spider as the reactions shown

in the exit mechanism implementation (diagrams (3) – (6) in Figure 8.7). When a
spider leaves site sIIr , as shown in diagram (7), its backward route is cut off because
sites sIr and sIIr are blocked.

dd

69

Chapter 8. Possible Implementations

(5)

p
1

q*

p*
1*

t*

n*
m

t

c

b*
a*3 b

e c 4*

a

c
e

d

b
c*
e*
3*

c
e

d

b
a

n
m*

q

(2)

(3) (4)

(6) (7)

p
1

q*

p*
1*

t*

n*
m

t

c

b*
a*

b
4*

a

c
e

d

c*
e*
3*

n
m*

q

b4
external strand

+ p
1

q*

p*
1*

t*

n*
m

t

c

c*
e*
3*

n
m*

q
b*
a*

4*
b
4

3
e
c

b

(1)

c*
e*
3*

m*
c b*

a*

3
b

e
c

4*

p
1
q*

m*
f*

0*

n
q

1
q
n
0
m

pp*
1*

t*

arm 0

n*
m

t

sII
rsI

rs0!1

c*
e*
3*

m*
c b*

a*

3
b

e
c

4*

p
1
q*

m*
f*

0*

n
q

1
q
n0

m

p
p*

1*

t*

n*

m

t

sII
rsI

rs0!1

c*
e*
3*

m*
c b*

a*

3
b

e
c

4*

p
1
q*

m*
f*

0*

n
q

1 q
n

0m

p

p*
1*

t*

n*

m

t

m*
f*

0*

1 q
n

m

p

0

arm 1

sII
rsI

rs0!1

b*
a*

3
b

e
c

4*

p
1
q*

m*
f*

0*

1 q
n

0m

p

p*
1*

t*

n*

m

t

c*
e*
3*

n
m*c

c
e

d

b
a

q

sII
rsI

rs0!1

sII
rsI

rs0!1 sII
rsI

rs0!1 sII
rsI

rs0!1

3
e
c

b

Figure 8.9: Possible implementation II. An implementation of switch mechanism
SW0→1. Diagram (1) shows initial conditions. The arm type 0 binds to site s0→1 via
two complementary domains (q, q∗ and n, n∗), and is trapped on site s0→1, as shown
in diagram (2). In diagram (3), two kinds of strand displacement occur between the
trapped arm and site s0→1. Domains 0 and m of the arm strip off the strand having
domains 0∗,m∗, f ∗ from site s0→1. Domains t, p, 1 of site s0→1 strip off the strand
having domains t∗, p∗, 1∗ from the arm. The type of the arm becomes 1 after these
two strand displacements. Diagrams (4) – (7) are similar reactions as the procedures
shown in the implementation of switch mechanism SW1→0 (diagrams (4) – (7) in
Figure 8.8). When a spider leaves site sIIr , as shown in diagram (7), its backward
route is cut off because sites sIr and sIIr are blocked.

70

Chapter 9

Discussion and Conclusion

Using the extended multi-spider model with spider cooperation and localized signal

transmission, we have implemented the basic logic gates (AND, OR, NOT). We have

shown how to implement gate cascades, in which each upstream gate Gu is connected

to a downstream gate Gd using the exit mechanism. We use O(1) types of spiders and

sites. To evaluate an n-variable Boolean function that is in 3-CNF with m clauses,

the evaluation time is O(logm) and the size of the circuit is O(m). Therefore, our

design supports scalable computation and ensures spatial locality.

Molecular circuits with spatial locality overcome the challenges of computation

speed-up and sequence reuse in molecular computing in a well-mixed environment,

but there are still other issues. Previous work on tethered circuits [3, 11] spatially

isolates different gates on a surface, e.g., a DNA origami tile [20], such that only

gates in close proximity can interact with each other, and two computation units that

are not adjacent to each other can use the same sequence. However, the tethered

circuits [3,11] lack a direct implementation of the NOT gate, and circuit verification

needs to verify many complicated reactions involved in the computation. Previous

work [4] has used a walker system to construct logic circuits with spatial locality, but

71

Chapter 9. Discussion and Conclusion

it lacks modularity and is limited to sequential evaluation due to its design where the

circuit constructed is in the form of a Binary Decision Diagram (BDD). A walker

initially placed at the root node walks along a path unblocked by externally-added

strands to reach a leaf node representing True or False, causing a fluorescence change

to report the computation result. For practical reasons, this reporting strategy needs

two parallel circuits that detect fluorescence change at the True nodes and False

nodes respectively to avoid ambiguity. Our design uses the reporting spider to avoid

reporting problems [4], and we support parallel evaluation. As a result, to evaluate

an m-clause 3-CNF circuit, we need time O(logm) while the circuit [4] needs time

O(m). We use the same linear space complexity O(m) as in the circuit [4], and

it is easier to construct large circuits using our design because of its modularity.

Compared with previous work [3, 4, 11], our design better addresses the following

issues:

Geometric layout. Molecular circuits with spatial locality arrange different

computing components on a 2D plane where the distance between different com-

ponents should be set carefully to avoid interference across components. Reducing

the number of gates used in a circuit can ease the geometric layout problem. Our

design implements a NOT gate to avoid dual-rail logic conversion used in previous

work [3,11], which simplifies the circuit and its layout. Compared with the circuit [4]

in a form of BDD where the layout of different branching paths requires appropriate

angles and lengths, our design only considers connections between gates because each

gate has a fixed layout.

Data encoding. In previous work, variable representation is encoded into the

circuit [3,4,11], so each variable corresponds to a distinct sequence. This complicates

sequence design if the circuit has a large number of variables. Our design separates

variable representation from circuit design, only using two types of spiders placed at

different input locations to represent all variables.

72

Chapter 9. Discussion and Conclusion

Our design surpasses other existing molecular circuits in the aspects of geomet-

rical layout and data encoding, but there are disadvantages existed in our current

design compared with other previous work. There is no experimental result showing

how likely the extended molecular spider system can be implemented in lab, and we

do not know how well the circuit works. We do not implement the fan-out facility.

The simulator used in this thesis assumes that the state transition rates in the con-

tinuous time Markov model are 1, which can not reflect the real reactions between

the molecular spiders and the sites. In our design, the circuit is verified within linear

time on the premise that all the mechanisms work properly. If mechanisms do not

work properly, we should consider the failure rate of the circuit. We have a further

discussion on some of theses disadvantages in Chapter 10.

The performance of our circuit is influenced by the input assignments, the circuit

size, and the circuit height (the height of a binary AST representing the circuit). We

explore the relation between the circuit performance and the circuit size and circuit

height in Chapter 6.

For a large circuit, computation time would span a large range, which makes it

hard to predict the overall circuit performance. We explore the relation between cir-

cuit predictability and the circuit size, circuit height and total length of all cascading

paths in Chapter 7. We propose two methods to improve the circuit predictability

in Chapter 7, and we prove the validness of Method 2 that makes the spiders move

one-directionally.

73

Chapter 10

Future Work

We lack an experimental implementation of our designs, thus here we use a simulator

that simulates the circuit at the site level, assuming spiders have equal transition

rates to all reachable sites. We have sketched two kinds of implementation where

normal sites are short DNA strands so that molecular spiders can attach to or detach

from the normal sites freely, and functional sites transmit signals to neighboring sites

via strand displacement. In the future, we will complete a plausible implementation

and focus on a simulator that can better reflect how different sites react with spiders

according to that implementation.

While in this presentation we do not implement or use fan-out, it would be

desirable to have that facility. Similar mechanisms as in the NOT gate could be used

to implement two-way fan-out. Two previously-trapped spiders with different values

are located on two separated paths. The incoming spider selects one of the path

and releases the trapped spider. The original spider and the released spider have

the same value, and they take two separated paths leading to the different cascaded

gates. We shall visit this problem in a future study.

In previous work, we have considered emergent superdiffusive transient behavior

74

Chapter 10. Future Work

in molecular spiders without functional sites as defined here [27, 30, 31]; it will be

interesting to examine how such behaviors can be enriched with suitably placed

functional sites.

In circuit verification, we do not consider the failures of mechanisms that are

implemented using the hairpin structures in Chapter 8. The loop of a hairpin struc-

ture may be opened spontaneously without interacting with other strands. If the

signal encoded in the loop is thus released, it may cause unintended changes to the

environment, which may cause errors in computation (if a spider with the wrong

value reaches the output location) or lead to incomplete computation (if the walk-

ing paths for spiders are blocked). In the future, we will explore circuit robustness

by incorporating failure of the mechanisms into our model using the following error

modeling.

Previous work [4] on the circuit that used a molecular walker system probabilis-

tically analyzed the circuit performance by including possible errors in the model.

Since the circuit in this thesis is based on a molecular spider system which is a type of

molecular walker system, we will refer to the error modeling method in that previous

work [4]. In the circuit based on a walker system [4], there are three kinds of error

sources considered in the model. (1) Wrong steering: the pre-blocked sites laid at

a junction might be unblocked spontaneously without the externally-added strands,

which may direct the walker to the wrong path leading to the incorrect result. (2)

Leakage: the walker may fall off from an anchorage site of a path, leaking to step

on a neighboring path, which may lead to an incorrect result. (3) Deadlock: there

may be no available anchorages within the reach of the walker, which leads to incom-

plete computation. When a molecular spider selects a path at junction, its arm type

determines which path to take. The selection procedure only involves hybridization

between two complementary domains, so the molecular spider has very low probabil-

ity to choose the wrong way, and we can also omit the “wrong steering” error source

75

Chapter 10. Future Work

in the error modeling. Deadlock may occur when molecular spiders interact with the

exit mechanism and switch mechanism, which is caused by unintended loop opening

of the hairpin structures. An incorrect result may be produced in the AND/OR gate

if the unblocking site su spontaneously opens its own loop and turns on the passive

site sp without interacting with the 1-valued spider. The loop of the passive site sp

may be unblocked spontaneously as well, which may lead to the incorrect computa-

tion result. Therefore, the proposed circuit only has one single error source that is

caused by the spontaneous opening of the loop structures. This spontaneous loop-

opening error source could be modeled into a state transition that could be added to

the original Markov chain process. Since the probability that leakage occurs is highly

related to the real implementations in lab, we can omit the leakage error source in

the theoretical analysis if we do not have the real-data support.

This thesis targets a scalable design of molecular circuits based on extended

molecular spider system. This novel design can better address the existing challenges

in terms of geometrical layout and data encoding. Possible implementations for

the extended molecular spider system described in this thesis are discussed. This

thesis also investigates the computation potential of the molecular spider system,

giving other possible applications for such system besides mimicking natural molec-

ular motors.

76

References

[1] T. Antal and P. L. Krapivsky. Molecular spiders with memory. Physical Review
E, 76(2):021121, 2007.

[2] C. W. Brown, M. R. Lakin, D. Stefanovic, and S. W. Graves. Catalytic molecular
logic devices by DNAzyme displacement. ChemBioChem, 15(7):950–954, 2014.

[3] H. Chandran, N. Gopalkrishnan, A. Phillips, and J. Reif. Localized Hybridiza-
tion Circuits, volume 6937, pages 64–83. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[4] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. Turberfield. DNA walker
circuits: Computational potential, design, and verification. In D. Soloveichik
and B. Yurke, editors, DNA Computing and Molecular Programming, volume
8141 of Lecture Notes in Computer Science, pages 31–45. Springer International
Publishing, 2013.

[5] H. Gu, J. Chao, S.-J. Xiao, and N. C. Seeman. A proximity-based programmable
DNA nanoscale assembly line. Nature, 465(7295):202–205, 2010.

[6] M. R. Lakin and D. Stefanovic. Supervised learning in an adaptive DNA strand
displacement circuit. In DNA Computing and Molecular Programming, volume
9211, pages 154–167. Springer, 2015.

[7] H. Lederman, J. Macdonald, D. Stefanovic, and M. N. Stojanovic.
Deoxyribozyme-based three-input logic gates and construction of a molecular
full adder. Biochemistry, 45(4):1194–1199, 2006.

[8] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave,
S. Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, et al. Molecular robots guided
by prescriptive landscapes. Nature, 465(7295):206–210, 2010.

77

References

[9] D. Mo, M. R. Lakin, and D. Stefanovic. Scalable Design of Logic Circuits
Using an Active Molecular Spider System, volume 9303, pages 13–28. Springer
International Publishing, Cham, 2015.

[10] D. Mo, M. R. Lakin, and D. Stefanovic. Logic circuits based on molecular spider
systems. Biosystems, 2016.

[11] R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-based molecular architec-
ture with spatially localized components. In Proceedings of the 40th Annual In-
ternational Conference on Computer Architecture (ISCA), pages 177–188. ACM,
2013.

[12] M. J. Olah and D. Stefanovic. Multivalent random walkers – a model for de-
oxyribozyme walkers. In DNA Computing and Molecular Programming, volume
6937, pages 160–174. Springer, 2011.

[13] M. J. Olah and D. Stefanovic. Superdiffusive transport by multivalent molecular
walkers moving under load. Phys. Rev. E, 87:062713, Jun 2013.

[14] T. Omabegho, R. Sha, and N. C. Seeman. A bipedal DNA brownian motor with
coordinated legs. Science, 324(5923):67–71, 2009.

[15] J. E. Padilla, W. Liu, and N. C. Seeman. Hierarchical self assembly of patterns
from the Robinson tilings: DNA tile design in an enhanced tile assembly model.
Natural Computing, 11(2):323–338, 2012.

[16] R. Pei and S. K. Taylor. Deoxyribozyme-based autonomous molecular spiders
controlled by computing logic gates. IPCBEE Proceedings, 2009.

[17] R. Pei, S. K. Taylor, D. Stefanovic, S. Rudchenko, T. E. Mitchell, and M. N. Sto-
janovic. Behavior of polycatalytic assemblies in a substrate-displaying matrix.
Journal of the American Chemical Society, 128(39):12693–12699, 2006.

[18] L. Qian and E. Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

[19] M. Rank, L. Reese, and E. Frey. Cooperative effects enhance the transport
properties of molecular spider teams. Physical Review E, 87:032706, 2013.

[20] P. W. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440(7082):297–302, 2006.

[21] L. Samii, G. A. Blab, E. H. C. Bromley, H. Linke, P. M. G. Curmi, M. J.
Zuckermann, and N. R. Forde. Time-dependent motor properties of multipedal
molecular spiders. Physical Review E, 84:031111, Sep 2011.

78

References

[22] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree. Enzyme-free nucleic
acid logic circuits. Science, 314(5805):1585–1588, 2006.

[23] O. Semenov, D. Mohr, and D. Stefanovic. First-passage properties of molecular
spiders. Physical Review E, 88(1):012724, 2013.

[24] O. Semenov, M. J. Olah, and D. Stefanovic. Mechanism of diffusive transport
in molecular spider models. Physical Review E, 83(2):021117, 2011.

[25] O. Semenov, M. J. Olah, and D. Stefanovic. Multiple molecular spiders with
a single localized source-the one-dimensional case. In DNA Computing and
Molecular Programming, volume 6937, pages 204–216. Springer, 2011.

[26] O. Semenov, M. J. Olah, and D. Stefanovic. Cooperative linear cargo transport
with molecular spiders. Natural Computing, 12(2):259–276, 2013.

[27] O. Semenov, D. Stefanovic, and M. N. Stojanovic. The effects of multivalency
and kinetics in nanoscale search by molecular spiders. In WIVACE2012, Italian
Workshop on Artificial Life and Evolutionary Computation, 2012.

[28] W. B. Sherman and N. C. Seeman. A precisely controlled DNA biped walking
device. Nano Letters, 4(7):1203–1207, 2004.

[29] J.-S. Shin and N. A. Pierce. A synthetic DNA walker for molecular transport.
Journal of the American Chemical Society, 126(35):10834–10835, 2004.

[30] D. Stefanovic. Maze exploration with molecular-scale walkers. In Theory and
Practice of Natural Computing, 2012.

[31] D. Stefanovic, M. N. Stojanovic, M. J. Olah, and O. Semenov. Catalytic molec-
ular walkers: Aspects of product release. In 12th European Conference on Ar-
tificial Life, 2013.

[32] M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic. Deoxyribozyme-based logic
gates. Journal of the American Chemical Society, 124(14):3555–3561, 2002.

[33] M. N. Stojanovic and D. Stefanovic. Chemistry at a higher level of abstraction.
Journal of Computational and Theoretical Nanoscience, 8(3):434–440, 2011.

[34] M. N. Stojanovic, D. Stefanovic, and S. Rudchenko. Exercises in molecular
computing. Accounts of Chemical Research, 47(6):1845–1852, 2014.

[35] S. F. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, and
A. J. Turberfield. A DNA-based molecular motor that can navigate a network
of tracks. Nature Nanotechnology, 7(3):169–173, 2012.

79

	University of New Mexico
	UNM Digital Repository
	7-1-2016

	Logic Circuits Based on Extended Molecular Spider Systems
	Dandan Mo
	Recommended Citation

	tmp.1474476490.pdf.TxCLT

