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Abstract

The method of photon-counting integral imaging has been introduced recently for

three-dimensional object sensing, visualization, recognition and classification of scenes

under photon-starved conditions. In this work we present an information-theoretic model

for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation

for the merits of PCI in terms of image fidelity. This can facilitate our understanding of

the demonstrated success of photon-counting integral imaging in compressive imaging and

classification. The mutual information between the source and photon-counted images is

derived in a Markov random field setting and normalized by the source-image’s entropy,

yielding a fidelity metric that is between zero and unity, which respectively corresponds

to complete loss of information and full preservation of information. Calculations suggest

that the PCI fidelity metric increases with spatial correlation in source image, from which

we infer that the PCI method is particularly effective for source images with high spatial

correlation; the metric also increases with the reduction in photon-number uncertainty.
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As an application to the theory, an image-classification problem is considered showing a

congruous relationship between the fidelity metric and classifier’s performance.
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Chapter 1

Introduction

1.1 Introduction

Three-dimensional (3D) imaging techniques have the potential for diverse applications

in various fields, including medical, education, entertainment, commercial electronics,

defense, communication, and manufacturing [1-5]. One of the promising methods for

passive 3D sensing and visualization is integral imaging, which is based on the principle of

integral photography [6-20]. In the integral imaging technique, in addition to irradiance,

directional information of the rays is recorded by acquiring two-dimensional elemental

images (2D projections) from different perspectives of the scene, thereby capturing depth

information. Unlike holography, integral imaging can capture and reconstruct true 3D

color images under ambient or incoherent light without the need for using viewing devices.

The motivation for this work comes from a special class of integral imaging, called

photon-counting integral imaging, where images are formed by means of a photon-counting

array. Applications for photon-counting integral imaging [21] include, low light level

imaging [22, 23] single photon emission tomography [24] and astronomical imaging [25].

Photon counting for 3D object recognition, classification, and visualization with integral
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Chapter 1. Introduction

imaging have been reported in [26-28].

It is intriguing that both 2D and 3D photon counting imagery capture significant por-

tions of the information in an image even under photon-starved conditions, as demon-

strated in [26-28]. This feature has become particularly evident and useful in the context

of image classification, where very good performance is observed even when very few

photons per pixel are available [26-28].

If we consider the physical process associated with a photon-counting imaging (PCI)

system, we can identify three main components in the system (see Fig. 1.1). The first

component is the true intensity image of the object. The second component is the trans-

formation rule that governs the conversion of an intensity image into a stochastic stream

of photons in space and time. The latter is characterized by a deterministic quantity called

the photon-flux density [29]. The photon-flux density, φ , is the average number of photons

per unit time and per unit area. It is well known [29] that for a coherent light source, the

actual number of photons in the stochastic photon stream, present in an infinitesimal time-

area rectangle dtdA, is a Poisson random variable with mean value φdtdA. The stochastic

photon streams considered in PCI systems typically undergo severe random-deletion (or

thinning) of photons due to absorption and scattering through the transmission medium.

The third and last component of the PCI systems is the photon-counting array, which

counts the photons impinging on each detector element. The totality of the photon counts

in the array represents a degraded version of the source image, as seen by comparing the

output and source images in Fig. 1.1. A key question is how to quantify the loss in im-

age content starting from the object and ending with the degraded image generated by the

photon-counting array. In light of the above three components of the PCI systems, we can

identify the “source,” “channel,” and “output” of a communication system. As such, we

can view the PCI problem shown in Fig. 1.1 as an information-theoretic problem. More

precisely, the “source” is the ensemble of all possible intensity images of interest, which

are selected according to a prescribed probability distribution function. The “output” is the

2



Chapter 1. Introduction

Figure 1.1: Schematic of the PCI system considered in this thesis. The figure shows a

source image, the transformation rule and the output image. These components of the

PCI system can be identified as source, channel and output of a communication system.

In most scenarios of interest, the output image is a sparse, binary array since the photon

stream is very weak.

ensemble of all digital photon-count images where the pixel values are non-negative inte-

gers representing the photon counts. The “channel” is simply the conditional probability

that an output image is generated given that a specific source image was used.

With the above information-theoretic description, we observe that the mutual infor-

mation between the source and the output of the aforementioned communication system

is a measure of the change in the information present in an image prior to transmission

and that present at the destination [30, 31]. Therefore, we can use the mutual information

as a measure for the “similarity” between the source and output imagery. In particular,

the mutual information can be utilized to quantify the preservation in image content in

photon-counting imagers. More specifically, as a relative metric for image degradation

we can consider the mutual information between the source and output normalized by the

source’s entropy, which yields a number between zero and unity, corresponding to com-

plete loss of information and full preservation of information, respectively. For example, if

the “degraded” image is statistically independent of the true image, then the metric returns

a value of zero; on the other hand, if the “degraded” image is a deterministic and invert-

ible transformation of the true image, then the metric will return a value of one. In the PCI

3



Chapter 1. Introduction

problem considered in this thesis, the transformation from the true image to the (degraded)

elemental image is stochastic since intensity values are transformed into stochastic photon

numbers, as dictated by the quantum nature of light. Moreover, the transformation that

maps intensity to a photon-steam is generally non-invertible.

In this thesis, we will use the normalized mutual information metric applied to 2D el-

emental images in the PCI process to investigate the role of spatial correlation and photon

statistics in how well image-content is preserved. Nevertheless, this model and formula-

tion can be applied to the 3D images once we have modeled a 3D image scene in terms

of the corresponding elemental images. In such a model, we need to consider the depth in

addition to the intensities at a particular pixel location.

4



Chapter 2

Problem Formulation

2.1 Probabilistic model for PCI under Poisson photon statis-

tics

Consider a stochastic column vector X whose entries, Xi, i = 1, . . . ,n, are discrete random

variables in the interval [0,1] representing the reflectance of some unknown object or an

unknown digital image. (For example, the vector X can be thought of as a lexicographic

representation of a digital image.) Throughout this thesis, we will refer to X as the source

image. In undertaking a digital image as the source image, we have implicitly assumed

that the scene is imaged using an imaging system with a finite spatial resolution; as such,

it is sufficient to consider a digital image sampled from the continuous-space acquired

image with the sampling rate satisfying the Nyquist criterion consistent with the spatial

resolution of the imaging system. (The quantization of levels is merely for simplicity.)

A probing beam carries an average photon flux of λε photons per second per pixel,

where λ is the photon flux of the un-attenuated light and ε ∈ [0,1] is an attenuation factor

that we will use as a control parameter in this study. Clearly, the average photon flux is

5



Chapter 2. Problem Formulation

reduced to Xiλε upon reflection of the ith pixel of the image since each photon is reflected

with a probability equal to the reflectance, Xi, associated with the ith pixel. The reflected

light is detected using a detector array, operating in the photon counting mode, with quan-

tum efficiency η ; i.e., each photon is detected with probability η . Background stray light,

dark-current noise, read-out noise, and other forms of noise (other than quantum noise)

are ignored in this analysis.

The ith element of the detector array gives a measurement of the number of photons,

Yi, detected during integration time τ . According to the laws of photon optics for coherent

light [29], conditional on a particular realization of Xi, say Xi = xi, Yi is a Poisson random

variable with mean value ηxiλετ ≡ xiεNp, where Np = ηλτ is the mean number of pho-

tons per pixel and per unit integration time. Therefore, the conditional probability mass

function of Yi given that Xi = xi can be written as

PYi|Xi(yi|xi) =
(Npxiε)yie−Npxiε

yi!
, yi = 0,1,2, . . . . (2.1)

(Notation: We refer to P{Yi = yi|Xi = xi}, the probability that Yi = yi given that Xi = xi, as

PYi|Xi(yi|xi); similarly, we refer to P{X = x} as PX(x), etc.) We now define Y as a stochastic

array whose entries are the integer-valued random variables Yi (i = 1, . . . ,n); this stochas-

tic array represents the photon-count array. To find the probability mass function of the

random-count array Y, we observe that conditional on the gray levels X = x of the totality

of pixels, where x is an array with entries x1, . . . ,xn, the photon-count random variables Yi

corresponding to different pixels are statistically independent. Hence, it follows that the

conditional probability mass function of the photon-count array Y given X = x is

PY|X(y|x) =
n

∏
i=1

PYi|Xi(yi|xi), (2.2)

where y 4= [y1, . . . ,yn]′ and for i = 1, . . . ,n, yi is a nonnegative integer. Using the law of

total probability, we can write the probability mass function PY(y) of the output image Y

as

PY(y) = ∑
x

PX(x)PY|X(y|x), (2.3)

6



Chapter 2. Problem Formulation

where PX(x) is the probability mass function of the source image X, and the summation is

over all realizations x of X.

Approximation under photon-starved conditions: In situations when the attenuation

factor ε is very small, the photon counts per pixel are either 0 or 1 with high probability

[27]. Thus, the probability mass function of the photon count in each detector element

can be approximated by a Bernoulli (binary) law. The Bernoulli law is also applicable to

the scenario when the photon count is hard-limited (or thresholded) to 0 or 1. Under the

Bernoulli assumption, the probability mass function of the photon count Yi, conditional on

the pixel’s gray level Xi = xi, takes the simpler form of

PYi|Xi(0|xi) = e−Npxiε , (2.4a)

PYi|Xi(1|xi) = 1− e−Npxiε . (2.4b)

2.2 Probabilistic model for PCI under alternative photon

statistics

In order to understand the role of the Poisson nature of photon numbers on the normal-

ized mutual information, we considered two alternative models for the photon-counting

channel: (1) the binomial-distribution model, and (2) the geometric-distribution model. In

the former case, the probability mass function of Yi conditional on Xi is binomial; in the

latter case, the probability mass function is geometric (exponential). For consistency, we

have assumed the same mean value for all three models. The binomial model is suitable

in modeling photon statistics of non-classical light—when the probing light is maximally

amplitude squeezed [32]. An amplitude-squeezed state can result in narrowing the dis-

tribution of the photon number, viz., reducing the photon-number uncertainty and hence

reducing quantum noise below the classical shot-noise limit (associated with light with

Poisson photon statistics). The geometric distribution, also termed the Boltzmann distri-
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Chapter 2. Problem Formulation

bution, is suitable for modeling the photon statistics of thermal light [29].

Binomial distribution model: The probability mass function for a binomial random

variable, W , is given by

PW (w) =
(

n
w

)
pw(1− p)n−w, w = 0,1,2, . . . ,n, (2.5)

where n and p are parameters; the mean of W is np. With the application of this model to

the photon-count variable, Yi, we maintain that conditional on Xi = xi (i = 1, . . . ,n), Yi is

distributed according to a binomial probability mass function with mean Npxiε . We must

therefore set np = Npxiε . This yields

PYi|Xi(yi|xi) =
(

n
yi

)
pyi(1− p)n−yi, yi = 0,1,2, . . . ,n, (2.6)

where p = Npxiε/n is a parameter between 0 and 1. The case p = 1 corresponds to maxi-

mal amplitude squeezing for which the photon number is deterministic and equal to Npxiε .

Note also that as p approaches 0 (or n→∞), this binomial distribution converges to a Pois-

son probability mass function with mean Npxiε . Hence, the Poisson model represents the

limiting case of the binomial model.

For the case when the photon count is hard-limited to 0 or 1, we obtain

PYi|Xi(0|xi) = (1− p)Npxiε p−1
(2.7a)

PYI |Xi(1|xi) = 1− (1− p)Npxiε p−1
. (2.7b)

Geometric distribution model: A geometrically distributed random variable, W , has

the probability mass function

PW (w) = p(1− p)w, w = 0,1,2, . . . , (2.8)

where p is a parameter and the mean of W is (1− p)/p. With the application of this model

to the photon-count variable, Yi, we maintain that conditional on Xi = xi (i = 1, . . . ,n), Yi is

8



Chapter 2. Problem Formulation

distributed according to a geometric probability mass function with mean Npxiε . We must

therefore set (1− p)/p = Npxiε , yielding p = 1/(Npxiε +1) and

PYi|Xi(yi|xi) =
1

Npxiε +1

(
Npxiε

Npxiε +1

)yi

, yi = 0,1,2, . . . . (2.9)

For the case when the photon count is hard-limited to 0 or 1, we obtain

PYi|Xi(0|xi) =
1

1+Npxiε
, (2.10a)

PYi|Xi(1|xi) =
Npxiε

1+Npxiε
. (2.10b)

The probability mass functions from the three models are shown in Fig. 2.1.

Next, we use the PCI image-degradation probabilistic model described in this section

to define a metric for the quality of image transmission in the PCI system based upon the

mutual information between the input X and output Y.

Figure 2.1: This figure shows Poisson, geometric and binomial probability mass functions.

The various parameters used are λ = 4 for Poisson, p = 0.2 for geometric, and n = 20, p =

0.2 for binomial. In all three cases the mean value is 4.

9



Chapter 2. Problem Formulation

2.3 Normalized mutual-information metric

We begin by reviewing the definitions of entropy and mutual information. The entropy,

H(X), of a random vector, X, is defined as

H(X) =−E
[
log2

(
PX(x)

)]
=−∑

x
PX(x) log2

(
PX(x)

)
, (2.11)

where “E” denotes expectation and the summation above is over all possible values that

the random vector X can assume. The entropy H(X) measures the amount of information

conveyed in units of “bits,” on average, by a random vector X [30]. The mutual informa-

tion, I(Y;X), is a measure of amount of information that one random vector, Y, contains

about another random vector, X; it is defined by

I(Y;X)= E

[
log2

( PXY(xy)
PY(y)PX(x)

)]
=∑

y
PY(y) log2

(
PY(y)

)
−∑

x,y
PY|X(y|x)PX(x) log2

(
PY|X(y|x)

)
.

(2.12)

The normalized mutual information, denoted by ρ , is defined as

ρ =
I(Y;X)
H(X)

. (2.13)

It can be shown that 0≤ ρ ≤ 1 [30]. Moreover, ρ = 1 whenever Y is a deterministic, one-

to-one function of X. In particular, when Y can always be unambiguously transformed

back to X, the parameter ρ is at its maximum. The other extreme case is when X and

Y are statistically independent, in which case ρ = 0. [30]. In this thesis use the terms

normalized mutual information and fidelity metric interchangeably.

2.4 A classification example

Now we consider a classification example to show the application of the normalized

mutual information metric defined in the previous section 2.3. We considered a 128×

10



Chapter 2. Problem Formulation

128 “line image,” X, as the input. The slope of the line, s, takes values from the set

{−4,−3,−2,−1,1,2,3,4} uniformly. The gray level of the pixels, representing the line,

is assumed to be 255. We then added independent and identically distributed uniform

noise, K, taking values in the interval [0,k], k ∈ [0,255], to the input image, X. The addi-

tion of noise serves to reduce the spatial correlation in the image. In particular, as the value

of k is increased, the variance of the noise increases reducing the the overall spatial corre-

lation. Mathematically, conditional on the slope s, the input image pixels are independent

of each other with the following probability mass function:

PX|s(x|s) =
128

∏
i=1

128

∏
j=1

PXi, j|s(xi, j|s). (2.14)

We then simulated the channel given by Eq. 2.4 to generate the photon-counted binary

image Y. To simulate the photon-starved conditions we have used Npε = 0.3. With the

help of Eq. 2.2, we note that

PY|s(y|s) =
128

∏
i=1

128

∏
j=1

PYi, j|s(yi, j|s). (2.15)

The classification problem is then to find out whether the slope, s, of the line in the

input “line image,” X, is positive or negative based on the noisy observation Y. The

classification is based upon the best least-square-error fit of a line to the noisy observation

Y. For a particular noise variance determined by k, the classifier was run for 10,000 times,

from which we estimated the classification error. The experiment was then repeated for for

different values of k. Figure 2.2 shows a particular case of the photon-counted output array,

Y, for k = 5, and the best-fit estimate of the line based on the photon-counts. As we can see

in the Table 2.1 and from Fig. 2.3, the classification error increases as we increase the noise

variance, which is expected. In addition, we find that ρ decreases when the classification

error increases. In other words, the fidelity metric decreases as the spatial correlation in

the input image decreases. Hence, we find that there is a congruous relation between

the fidelity metric and the classifier’s performance. This observation indeed echoes the
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Chapter 2. Problem Formulation

Figure 2.2: Figure showing the output 128×128 photon-counted array, where the photon

counts are represented by the symbols ’∗’, and the best-fit estimate of the line from the

photon counts. The value of k is 5 and the corresponding noise variance is 2.08. Here

Npε = 0.3.

role of Shannon’s information (and channel capacity) in detection error in communication

systems.

Table 2.1: Table showing the relation between the variance of the uniform noise in the

input image, the normalized mutual information, ρ , and the average error of classification.

Noise variance ρ Average classification error

0.34 0.1157 0

0.75 0.1062 0.1356

3.00 0.0969 0.2218

6.75 0.0921 0.2516

18.75 0.0819 0.2912

27.00 0.0766 0.2979

33.34 0.0732 0.3015
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Chapter 2. Problem Formulation

Figure 2.3: Figure showing the fidelity metric, ρ , and the classification error versus the

noise variance in the input image. The classifier is run for 10,000 times for each value of

noise variance to average out the classification error. Here Npε = 0.3.
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Chapter 3

Markov Models

3.1 One-dimensional case: Markov-chain model

To evaluate ρ , we need a model for the source probability distribution that can capture

the correlation between the pixels. In this subsection we consider a one-dimensional im-

age, represented by X1, . . . ,Xn, which obeys a Markov-chain model. More precisely, the

conditional probability mass function of a pixel given the value of an adjacent pixel is

independent of all the other pixels prior to the adjacent pixel. Mathematically, we have

P{Xi+1 = xi+1|Xi = xi, . . . ,X1 = x1}= P{Xi+1 = xi+1|Xi = xi}, i = 1, . . . ,n−1. (3.1)

For simplicity we will assume that each pixel Xi takes values from the set {0,1, . . . , I}.

The model described in (3.1) results in correlation between neighboring pixels, and the de-

gree of correlation depends upon the specification of the transition probabilities P{Xi+1 =

xi+1|Xi = xi}. In this thesis, we will assume the following form for the transition probabil-

ities:

P{Xi+1 = xi+1|Xi = xi}=

 max
(

mxi+1−mxi + cxi,0
)
, for xi+1 = 0,1, . . .xi

max
(
−mxi+1 +mxi + cxi,0

)
, for xi+1 = xi +1, . . . , I

,
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(3.2)

where m is the spatial correlation index and cxi is selected so that P{Xi+1 = t|Xi = xi} is a

probability mass function (as a function of t) for every xi; more precisely,

cxi =
1

I +1

(
mx2

i −mIxi +
m
2

I(I +1)+1
)
. (3.3)

Figure 3.1 depicts representative examples of the transition probabilities P{Xi+1 = xi+1|Xi =

xi} (for xi = 4); these curves signify the correlation present between Xi+1 and its neighbor

Xi. As the correlation index increases from one curve to another, the spatial correlation

increases between neighboring pixels. As such, by changing the correlation index m,

we generate a range of correlation degrees among pixels, extending from independence

(m = 0) to perfectly correlated (m = ∞). Finally, the Markov model allows us to write the

probability mass function, PX(x), for the image in terms of the transition probabilities and

the probability mass function of X1, which can be chosen arbitrarily,

PX(x) = P{Xn = xn|Xn−1 = xn−1}· · ·P{X2 = x2|X1 = x1}PX1(x1). (3.4)

3.2 Two-dimensional case: Markov random field model

3.2.1 Background to MRF

A random field is a collection of random variables arranged on a lattice,

X = {Xi, j,(i, j) ∈ S}, (3.5)

where S is a rectangular array of sites (lattice):

S = {(i, j)|1≤ i≤ N,1≤ j ≤ N}. (3.6)
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Figure 3.1: Representative spatial conditional probability mass function, P{Xi+1 =

xi+1|Xi = 4}, for different values of the correlation index m, which determines the amount

of correlation present among source-image pixels.

A local neighborhood Ni, j of the site (i, j) can be defined as

Ni, j = {(k, l) ∈ S : D[(i, j),(k, l)]≤ K,(k, l) 6= (i, j)}, (3.7)

where K is an integer representing the order of the neighborhood and D is some measure-

ment of distance. A neighborhood system N for S is defined as

N = {Ni, j,(i, j) ∈ S}. (3.8)

Some typical neighborhood systems are shown in Fig 3.2(a).

With a neighborhood system N defined on the lattice S, we can restate the Markov
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property for a MRF, X. By defining

Xc
i, j
4= {Xk,l,(k, l) ∈ S\ (i, j)}, (3.9)

the Markov property can be stated as

P{Xi, j = xi, j|Xc
i, j}= P{Xi, j = xi, j|Xk,l = xk,l,(k, l) ∈ Ni, j}. (3.10)

From the Hammersley-Clifford theorem [33], we have an equivalence between a MRF and

a Gibbs random field (GRF). The benefit of this theorem is that it allows the probability

distribution to be stated explicitly.

A GRF is defined by Gibbs distribution:

PX(x) =
1
Z

exp
(
−U(x)

T

)
, (3.11)

where Z is a normalizing constant known as the partition function and it can be written as

Z = ∑
x∈Ω

exp
(
−U(x)

T

)
, (3.12)

T is a constant called temperature, x is an image and U is the energy function. The energy

U(x) = ∑
c∈C

Vc(x) (3.13)

is a sum of clique potentials, Vc over all possible cliques C associated with a neighborhood

system. A clique, c, is a subset of sites in which every pair of distinct sites are neighbors.

Some typical cliques are shown in Fig 3.2(b) (By definition, every set containing only one

site is also a clique.). If the clique potential, Vc(x), is independent of the position of the

clique in the lattice, then we call such an MRF a homogeneous MRF. Figure 3.2(b) shows

all the cliques that are present in a second-order neighborhood. In a first-order neighbor-

hood, we have two categories of cliques based on the number of points they contain, as

shown by the first three shapes of cliques (from top, left corner) in Fig. 3.2(b). In the

second-order neighborhood, we have four categories and a total of ten shapes of cliques.
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In this thesis, we have considered a commonly used special case of a homogeneous

MRF termed the Ising model, [33]. A generalized Ising model is characterized by its

clique potential function, which has the following form:

Vc(X) =

 βc if the pixel values of X at the sites in c are same

−βc otherwise.
(3.14)

Here, βc is a real number and it depends on the type of the clique; this parameter controls

the spatial correlation in the image.

Finally, it is known that for an image modeled by a homogeneous MRF, it is sufficient

to consider H(X) and I(Y;X) for a neighborhood of a pixel [31]. Here we justify the result

for homogeneous Markov chains.

We call a Markov chain a homogeneous Markov chain if

P{X j = x j|X j−1 = x j−1}= P{Xi = xi|Xi−1 = xi−1} ∀i, i ∈ {1,2, . . . ,n} (3.15)

From Eq. (3.1) and (2.11) we can then write the entropy for a homogeneous Markov chain

as

H(X) = ∑
xi

· · ·∑
xn

PX1,...,Xn(x1, . . . ,xn) log2 PX1,...,Xn(x1, . . . ,xn)

= ∑
xi

· · ·∑
xn

PX1,...,Xn(x1, . . . ,xn) log2
(
PX2|X1(x2|x1)

)(n−1)PX1(x1)

= (n−1)∑
x1

∑
x2

PX1,X2(x1,x2) log2 PX2|X1(x2|x1)+∑
x1

PX1(x1) log2PX1(x1)

= (n−1)H(X2|X1)+H(X1)

(3.16)

Hence, for large n, we can take the conditional entropy, H(X2|X1), to be a good measure

of the the entropy of the homogeneous Markov chain.

In the 2D case, the image spatial entropy is defined as [31]:

H
(
Xi, j|Xk,l,(k, l)∈Ni, j}

)
=∑

xi, j

∑
ni, j

P{Xi, j = xi, j,Ni, j = ni, j} log2
(
P{Xi, j = xi, j|Ni, j = ni, j}

)
,
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(3.17)

where ni, j is a particular configuration of the neighborhood. For a homogeneous MRF,

the image spatial entropy defined by Eq. (3.17) is going to be the same irrespective of the

pixel location (i, j). Hence we use this as a measure of the entropy for the image.

(a) (b)

Figure 3.2: 3.2(a) First-order and second-order neighborhoods (of the center pixel) con-

sidered in this thesis. 3.2(b) Cliques of various sizes up to four-point sites. The first three

cliques shown (from top-left to top-right) correspond to a first-order neighborhood; all ten

cliques correspond to the second-order neighborhood system.

3.3 Computing the fidelity metric

For a particular MRF model, there can be many neighborhood configurations which will

yield the same energy. Following [31], let us denote the set of all configurations of the

neighborhood which result in same energy (and there by same conditional probability) as

αx, and the state of the neighborhood by the random variable AX . Now we can write the

conditional entropy of a pixel given its neighborhood as [31]

H
(
Xi, j|Xk,l,(k, l)∈Ni, j

)
=−∑

xi, j

∑
αx

P{AX = αx,Xi, j = xi, j} log2
(
P{Xi, j = xi, j|AX = αx}

)
,

(3.18)

where P{AX = αx,Xi, j = xi, j} is the joint probability of a site taking value xi, j and its

neighbors being in state αx and P{Xi, j = xi, j|AX = αx} is the conditional probability of a
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site taking value xi, j knowing its neighbors are in state αx. By approximating the probabil-

ities with their corresponding histograms, fAX (αx) and fAX Xi, j(αx,xi, j), we can recast the

conditional entropy as [31]

H
(
Xi, j|Xk,l,(k, l) ∈ Ni, j

)
=−∑

xi, j

∑
αx

fAX Xi, j(αx,xi, j) log2

(
fAX Xi, j(αx,xi, j)

fAX (αx)

)
. (3.19)

Similarly, we can define the mutual information as [31]

I
(
Xi, j;Yi, j|Xk,l,Yk,l,(k, l) ∈ Ni, j

)
= (3.20)

∑
xi, j

∑
yi, j

∑
αx

∑
αy

fAX Xi, jAYYi, j(αx,xi, j,αy,yi, j) log2

(
fAX Xi, jAYYi, j(αx,xi, j,αy,yi, j) fAX (αx) fAY (αy)
fAX AY (αx,αy) fAX Xi, j(αx,xi, j) fAYYi, j(αy,yi, j)

)

with similar interpretations of the histograms.

From Equations (3.19) and (3.20) we can calculate the metric ρ . For example, with

the generalized Ising model, as given in (3.14), and a second order neighborhood with

clique potentials assigned to the cliques as in Section 4.2, the number of states required

in the estimation of entropy and mutual information is only nine. The possible energy

levels for any of the eight cliques are β and −β . Therefore, the set of all states a second

order neighborhood can take is {−8β ,−6β ,−4β ,−2β ,0,2β ,4β ,6β ,8β}. Therefore we

may consider only 9 states instead of 88 configurations, which simplifies the required

calculations significantly.
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Results

4.1 Discussion of the normalized mutual information met-

ric: Markov chain model

We now evaluate the normalized mutual information metric, ρ , assuming the above de-

scribed Markov-chain model, section 3.1, for different values of the correlation index, m,

and also for different channel probability distributions. In our calculations we have as-

sumed that the first pixel, X1, is uniformly distributed. Figure 4.1 shows ρ as a function of

the transmission probability, ε , for different channel conditional distributions for a partic-

ular spatial correlation index, m = 0.01. We find that the case of Poisson photon statistics

yields a higher normalized mutual information than that for the Boltzmann (geometric)

photon statistics. We also observe that, as expected, the normalized mutual information

from the binomial photon-statistics case converges to that for the Poisson statistics as the

parameter p of the binomial distribution tends to zero (while keeping its mean fixed).

Figure 4.2 shows ρ as a function of the transmission probability, ε , parameterized by

different spatial correlation indices, m, for both the Poisson and geometric photon statis-
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tics. Here too we find that the Poisson-statistic model offers higher fidelity metric, ρ , than

that offered by the geometric photon-statistics model. Notably, it is seen that fidelity met-

ric increases with spatial correlation in the source image. In particular, Fig. 4.2 suggests

that the highly correlated case, corresponding to m = 0.5, yields higher fidelity metric than

that offered by the nearly independent-pixel case (m = 0.0005).

In summary, we draw the following observations from the results. First, the fidelity

metric ρ increases as the variance of the photon number decreases (from that correspond-

ing to a Boltzmann distribution, to a Poisson distribution, and finally to a binomial dis-

tribution). This is expected since a reduced quantum noise implies that the photon count

resembles the image more closely and, in turn, implying higher correlation between the

source image and the photon-counted output image. Second, a more important observation

is that ρ increases as the spatial correlation in the image becomes stronger. This suggests

that the ability of the PCI approach to retain spatial information improves with the spatial

correlation in the source image. Namely, the PCI approach seems to be inherently geared

toward “images” rather than individual pixels. These observations are confirmed in the 2D

simulations considered next.

4.2 Discussion of the normalized mutual information met-

ric in the 2D setting

We have generated MRF images according to the generalized Ising model described in

(3.14) with the following specification of the parameter βc. For any one-site clique c,

βc = 1; for any two-site clique c, βc = β , a constant. Finally, for all three-site and four-site

cliques, βc = 0. We followed the Metropolis sampling algorithm [33] to generate 3-bit

images of size 128×128 with varying spatial-correlation parameter, β . (The temperature

parameter, T , as discussed in Appendix 3.2.1, is set to 3.) The algorithm is run for 1000
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Figure 4.1: Normalized mutual information for different possible channel distributions

while using a Markov-chain model for PX(x), with a specific correlation index, m = 0.01.

Here we used Np = 3.

(a) (b)

Figure 4.2: Family of curves showing that presence of spatial correlation in the source

image results in an increase in the normalized mutual information for (a) the Poisson

photon-counting channel and (b) the geometric photon-counting channel. Here we used

Np = 3.

iterations for each image generated; examples are shown in Fig. 4.3 showing the change

in spatial correlation in the image as β is varied.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Sample MRF images generated according to a generalized Ising model with

potential energies given by (3.14) using various values for the parameter β . We employed

a Metropolis sampler using 1000 iterations. The values used for the parameter β are (a)

β =−2, (b) β =−1, (c) β =−0.975, (d) β =−0.95, and (e) β =−0.9, (f) β =−0.4.

To quantify the spatial correlation present in the source images, we estimated the auto-

covariance of the image. More precisely, for each selection of the parameter β we gen-

erated 50 realizations of the image. We then formed the covariance matrix corresponding

to the 50 sample images and generated the L1 norm of it, which is a measure of spatial

correlation. Next, we normalized the spatial correlation in the image by that for a constant

(perfectly correlated image), which resulted in a number between 0 and 1. We took this

number, termed the correlation metric as a measure of the amount of spatial correlation

present in a the MRF image.

From Table 4.1, we can see that as the parameter β decreases, the correlation metric

increases. In particular, from Fig. 4.4, we observe that, when β increases from −1 to
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−0.9, the correlation metric drops rapidly. This result can also be seen in from Figure

4.3: as β increases, the image begins to loose its spatial structure and begins to resemble

white noise. We calculated ρ as described in section 3.3. It is also evident that as the the

correlation metric increases (by increasing the parameter β ), the fidelity metric, ρ , also

increases.

Next, as in the case of the 1D Markov-chain model, we plot ρ as a function of transmis-

sion probability, ε , parameterized by β , as shown in Fig. 4.5(a). It is seen that ρ increases

monotonically with ε . Moreover, for a fixed ε , ρ increases as β is decreased (i.e., as corre-

lation metric is increased). To see the dependence of ρ on spatial correlation of the image

more clearly, we plotted ρ as a function of the correlation metric, as shown in Fig 4.5(b).

It is seen that there is a nearly linear relationship between the correlation metric and ρ .

Figure 4.4: Figure showing the relation between correlation metric, and the spatial corre-

lation parameter β .
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Table 4.1: Dependence of the spatial-correlation and fidelity metrics on the parameter β

for the case Npε = 3.

β Correlation Metric ρ

-2 0.32 0.36

-1.25 0.29 0.35

-1 0.26 0.31

-0.975 0.24 0.29

-0.95 0.16 0.23

-0.925 0.119 0.17

-0.9 0.1169 0.15

-0.85 0.1161 0.14

-0.8 0.1158 0.13

-0.7 0.1155 0.126

-0.6 0.11544 0.120

-0.5 0.11535 0.116

-0.4 0.11531 0.114

+10 0.1152 0.112
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(a)

(b)

Figure 4.5: Figure showing the relation between correlation metric, ρ and the mean num-

ber of photon counts at the out put per pixel per unit integration time.
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Conclusions

In this thesis we have viewed the PCI approach as a communication system over a stochas-

tic channel; this allowed us to model and analyze the performance of the PCI method

within a rigorous information-theoretic framework. In our model, we regard the source

as the ensemble of all possible intensity images of interest with a known probability dis-

tribution function and the output as the ensemble of all digital photon-count images. The

channel is governed by laws of statistical optics and photodetection, which together allow

us to characterize the conditional probability that an output image is generated given that a

specific source image has been used. Normalized mutual information between the source

and the output images was proposed as a fidelity metric, measuring the loss of informa-

tion content in the output image relative to the source image. The analysis specifically

captures the role of spatial correlation present in the source image by means of Markov

image models. Calculations suggest that the effectiveness of the imaging PCI approach

is enhanced with the presence of spatial correlation in the source image. In addition,

we examined the performance of the PCI approach under Poisson and alternative photon

statistics (Boltzmann and photon-number squeezed distributions). Calculations suggest

that the performance improves as the variance of the photon number is reduced, which is

consistent with our understanding of the role of quantum noise in imaging.
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While this thesis considers only the analysis of elemental images in the PCI approach,

our model can be extended in a straightforward manner to sequences of elemental images

and 3D images by expanding the sizes of the vectors. However, we believe that the in-

sight brought about by our analysis of elemental images can justify the tenet of the PCI

approach as a compressive sensing tool. There are many possible directions that can be

pursued based upon the foundational work provided in this thesis. For example, since

image compression is an inherent property of the PCI approach, it will be interesting to

look into the fundamental tradeoff between compression and preserving 3D image fidelity

in the PCI approach as well as compressive 3D imaging and visualization. It is also pos-

sible to employ recognition-specific metrics such as the Mahalanobis and Bhattacharya

distances to further characterize the use of PCI-generated imagery in object classification.
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Appendix A

Matlab codes

A.1 Code for the classification example

% We generate two types of lines here. We add noise to it. From them we

% find the simulated photon count output image. Then we will find the best

% fit to the data points of the output. We then find the error that is

% generated between the data points and the ’line-fit’. We see that as the

% variance of the noise added to it increases, the error increases. We also

% find the ’normalized mutual information metric’ (Rho) of the images and

% expect an inverse proportional relation between the error and Rho.

clear all

clc

N = 128;

Np = 0.3;

S = 5000; % number of times the classifcation is done

g = 255; % number of gray levels in the input image would be g+1, [0, 255]

n1 = 0;
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for n2 = 1:30 % this controls the variance of the uniform independent noise

for j = 1:S % this is the number of times we are simulating the program so that we can

average the classification error.

X = zeros(N,N);

%Here we define slope and intercept of the line. If the slope’m’ is

%1, then we define ’c’ to be high up (for example c = 2). The line

%looks like a top-left (TL) to bottom-right (BR) type of a line. If

%the slope ’m’ is -1, then we define ’c’ to be low down (for

%example c = 125). The line looks like a bottom-left (BL) to

%top-right (TR) type od a line. NOTE: ’c’ is not y-intercept, but

%it is x-intercept. When we later find the equation of the line

%from the data points, we actually find the y-intercept.

a = -4;

b = 4;

m = floor(a + (b-a)*rand) ;% slope of the line which is random between [-a,b-1]

% Now, y intercep in y = m*x+c

if m<0

c = 125;

elseif m == 0

m = 4;

c =2;

else

c = 2;

end

for i = 1:N

if ((0 < m*i+c) && (m*i+c < N) && (m>0))

X(i,m*i+c) = g; % Use this to generate TL to BR type of a line

elseif ((0 < m*i+c) && (m*i+c < N) && (m<0))
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X(m*i+c,i) = g; % Use this to generate BL to TR type of a line

end

end

% Now we add noise to the image, pixel wise. This noise is uniform

% between n1 and n2. If we increase n2-n1, we are automatically

% increasing the variance of the noise.

noise l = n1 + floor((n2-n1)*rand(N)); % We truncate the numbers as they have to

correspond to a gray level

Xn = X+noise l;

% here we make sure the grey levels are in [0,g].

k = find(Xn>g);

Xn(k) = g;

l = find(Xn<0);

Xn(l) = 0;

Y = zeros(N,N);

for i = 1:(N*N) % runs through the entire input image file, X

P = exp(-Np*((Xn(i)-1)/(g+1))); % count zero channel probability

p = rand;

Y(i) = (p<P); % selects zero with probability P.

end

% Now fitting a line to the data points Y.

[x,y] = find(Y ==1);

D(:,:) = [x,y];

temp = polyfit(x,y,1);

a1 = temp(2); % y-intercept of the fitted line

a2 = temp(1); % slope of fitted lines

fit = a1+a2*x;
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% We now calculate the classification error. We check the slope of

% the line ’a2’ and find out whether the line is TL-BR or BL-TR.

Test(j) = m*a2;

% If ’Test’ is positive then we are classifying without any error.

% If it is negative then it means that we are saying that the

% estimate ’a2’ is negative when actually the slope ’m’ is

% positive. It would then be a classification error.

clear x y D;

end

% Here we calculate the normalized mutual information metric in the

% classification example of two lines. This is the actual calculation,

% not estimating entropies. These are actually conditional

% calculations, conditional on the slope of the image.

n = n2-n1+1; % support of the uniform noise

Hx = log2(n); % conditional entropy of a pixel

xi = n1:n2; % this is used to calculate P(y=0—m)

Py 0 = (1/n)*sum(exp(-Np*xi));

Py 1 = 1-Py 0;

Hy = -Py 0*log2(Py 0)-Py 1*log2(Py 1);

temp0 = exp(-Np*xi);

temp1 = 1-temp0;

q = find(temp0 ==0);

temp0(q) = 1;

r = find(temp1 ==0);

temp1(r) = 1;

Hyx = -(1/n)*sum(temp0.*log2(temp0) + (temp1).*log2(temp1));

Ixy = Hy-Hyx;

Rho(n2) = Ixy/Hx; % this is the normalized mutual information metric
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var(n2) = (n2-n1)^2/12; % this is the noise variance that we are adding

k = find(Test < 0);

s = size(k);

ave error(n2) = s(2)/S; % this is the average classification error

end

T(1,:) = var(:);

T(2,:) = Rho(:);

T(3,:) = ave error(:);

figure; plot(T(1,:),T(2,:), ’r’); hold on; plot(T(1,:),T(3,:), ’g’)

A.2 Markov chains

A.2.1 Conditional probability function

% This function calculates the conditional probabilities in the Markov

% chain model: P = P(X2—X1)

function [P] = cond prob(x,th,I)

P = zeros(1,I);

P(1:x) = tan(th)*[1:x] + ((2/(I+1)) - tan(th)*x);

P(x+1:I) = -tan(th)*[x+1:I] + ((2/(I+1)) + tan(th)*x);

k = find(P < 0);

P(k) = 0;

P = P/sum(P); % normalizing the probability
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A.2.2 Calculation of ρ for a Markov chain

% Here we generate plots of Rho = Hx/Ixy with ’f’ (fraction of intensity

% coming out) in a Markov chain setting. Hx –> Entropy of the input, X,

% which is a Markov chain of size, N. Hy –> Entropy of the photon-counted

% output, Y. Ixy –> Mutual information between par –> partially

% correlated; refers to the correlation in X.

clear all

clc

% Initializing the variables.

N = 4; % no. of pixels

I = 10; % no. of irradiance values

Bp = [1/1, 1/(2), 1/(4), 1/(8), 1/(16), 1/(32), 1/(64)]; % the values of ’p’ in the binomial

channel distribution

sbp=size(Bp);

F = 0:0.1:1; % the values of ’f’, transmission probability

Hx par = zeros(1, I+1); % Entropy of the input

% ’parp’ refers to partially correlated, Poisson channel, ’parg’ refers to

% partially correlated, geometric channel and ’parb’ refers to partially

% correlated binomial channel.

Hy parp = zeros(1, I+1);

Hyx parp = zeros(1, I+1);

Ixy parp = zeros(1, I+1);

Hy parg = zeros(1, I+1);

Hyx parg = zeros(1, I+1);

Ixy parg = zeros(1, I+1);

Hy parb = zeros(sbp(2), I+1);

Hyx parb = zeros(sbp(2), I+1);
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Ixy parb = zeros(sbp(2), I+1);

b = 0;

%theta = [0.5, 0.01]

theta = 0.01; % ’theta’ controls the spatial correlation in Px.

b = b+1;

% This code can be used to calculate Hx/Ixy as a function of ’theta’.

Px = zeros(I+1,I+1,I+1,I+1);

Py p = zeros(2,2,2,2); % the photon-counts of 0 and 1; two values

Pyx p = zeros(2,2,2,2,I+1,I+1,I+1,I+1);

Py g = zeros(2,2,2,2);

Pyx g = zeros(2,2,2,2,I+1,I+1,I+1,I+1);

Py b = zeros(sbp(2),2,2,2,2);

Pyx b = zeros(sbp(2),2,2,2,2,I+1,I+1,I+1,I+1);

for x1 = 1:1:I+1

P2g1 = cond prob(x1,theta,I+1);

for x2 = 1:1:I+1

P3g2 = cond prob(x2,theta,I+1);

for x3 = 1:1:I+1

P4g3 = cond prob(x3,theta,I+1);

for x4 = 1:1:I+1

Px(x1,x2,x3,x4) = P4g3(x4)*P3g2(x3)*P2g1(x2)/(I+1);

end

end

end

end

P = Px(:);

jlt = find(P == 0);

P(jlt) = 1;
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Hx = - sum(P.*log2(P));

Hx par(b,:) = Hx par(b,:) + Hx;

c = 0;

for f=F

c=c+1;

Np=3*f; % the average number of photons in the input image scene

% Now we calculate the conditional pdfs and then the marginals which

% are used to calculate entropies and thereby mutual information

for c1=0:1

for c2=0:1

for c3=0:1

for c4=0:1

for x1=1:1:I+1

for x2=1:1:I+1

for x3=1:1:I+1

for x4=1:1:I+1

Pyx p(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)=...

((1-c1)*exp(-Np*((x1-1)/(I+1)))+...

c1*(1-exp(-Np*((x1-1)/(I+1)))))*...

((1-c2)*exp(-Np*((x2-1)/(I+1)))+...

c2*(1-exp(-Np*((x2-1)/(I+1)))))*...

((1-c3)*exp(-Np*((x3-1)/(I+1)))+...

c3*(1-exp(-Np*((x3-1)/(I+1)))))*...

((1-c4)*exp(-Np*((x4-1)/(I+1)))+...

c4*(1-exp(-Np*((x4-1)/(I+1)))));

Pyx g(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)=...

((1-c1+Np*c1*((x1-1)/(I+1)))/(1+Np*((x1-1)/(I+1))))* ...

((1-c2+Np*c2*((x2-1)/(I+1)))/(1+Np*((x2-1)/(I+1))))* ...
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((1-c3+Np*c3*((x3-1)/(I+1)))/(1+Np*((x3-1)/(I+1))))* ...

((1-c4+Np*c4*((x4-1)/(I+1)))/(1+Np*((x4-1)/(I+1))));

a=0;

for p=Bp

a=a+1;

Pyx b(a,c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)=...

((1-c1)*((1-p)^((Np/p)*((x1-1)/(I+1))))+...

c1*(1-((1-p)^((Np/p)*((x1-1)/(I+1))))))*...

((1-c2)*((1-p)^((Np/p)*((x2-1)/(I+1))))+...

c2*(1-((1-p)^((Np/p)*((x2-1)/(I+1))))))*...

((1-c3)*((1-p)^((Np/p)*((x3-1)/(I+1))))+...

c3*(1-((1-p)^((Np/p)*((x3-1)/(I+1))))))*...

((1-c4)*((1-p)^((Np/p)*((x4-1)/(I+1))))+...

c4*(1-((1-p)^((Np/p)*((x4-1)/(I+1))))));

if Pyx b(a,c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)==0

Hyx parb(a,c)=Hyx parb(a,c);

else

Hyx parb(a,c)=Hyx parb(a,c)-...

Pyx b(a,c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)*...

Px(x1,x2,x3,x4)*...

log2(Pyx b(a,c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4));

end

end

if Pyx p(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)==0

Hyx parp(b,c)=Hyx parp(b,c);

else

Hyx parp(b,c)=Hyx parp(b,c)-...

Pyx p(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)*...
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Px(x1,x2,x3,x4)*...

log2(Pyx p(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4));

end

if Pyx g(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)==0

Hyx parg(b,c)=Hyx parg(b,c);

else

Hyx parg(b,c)=Hyx parg(b,c)-...

Pyx g(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4)*...

Px(x1,x2,x3,x4)*...

log2(Pyx g(c1+1,c2+1,c3+1,c4+1,x1,x2,x3,x4));

end

end

end

end

end

K = Pyx p(c1+1,c2+1,c3+1,c4+1,:);

K = K(:);

L = Px(:);

Py p(c1+1,c2+1,c3+1,c4+1) = sum(K.*L);

KG = Pyx g(c1+1,c2+1,c3+1,c4+1,:);

KG = KG(:);

LG = Px(:);

Py g(c1+1,c2+1,c3+1,c4+1) = sum(KG.*LG);

for k = 1:sbp(2)

KB = Pyx b(k,c1+1,c2+1,c3+1,c4+1,:);

KB = KB(:);

LB = Px(:);

Py b(k,c1+1,c2+1,c3+1,c4+1) = sum(KB.*LB);
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end

end

end

end

end

Hy parp(b,c) = -sum(Py p(:).*log2(Py p(:)));

Hy parg(b,c) = -sum(Py g(:).*log2(Py g(:)));

for l = 1:sbp(2)

Hy parb(l,c) = -sum(Py b(l,:).*log2(Py b(l,:)));

end

end

Hy parp(b,1) = 0;

Ixy parp(b,:) = Hy parp(b,:) - Hyx parp(b,:);

Hy parg(b,1) = 0;

Ixy parg(b,:) = Hy parg(b,:) - Hyx parg(b,:);

for m = 1:sbp(2)

Hy parb(m,1) = 0;

Ixy parb(m,:) = Hy parb(m,:) - Hyx parb(m,:);

end

% Rho = Hx/Ixy, now can be plotted in all the different cases.
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A.3 Markov random fields

A.3.1 Generating a sample from a Markov random field

% Here we generate samples of Markov random fields using Metropolis sampler

% algorithm.

clear all

clc

N = 128;

G = 8; % number of intensity levels

alpha = ones(1,G); % single-pixel clique potential

T = 3;% Temperature parameter in the Gibbs energy function

% k1, k2, k3, k4 are the 2-pixel clique potentials

k1 = -5;% horizontal clique

k2 = -5;% vertical cliqie

k3 = 0;% diagonal clique

k4 = 0;% the other diagonal clique

M = 250;% number of times the alorithm is run

X = G * rand(N,N); % initializing X

X = ceil(X);

for m = 1:M

for i = 1:N

for j = 1:N

ip= rem(N+i,N)+1;

im= rem(N+i-2,N)+1;

jp= rem(N+j,N)+1;

jm= rem(N+j-2,N)+1;

clique pot old = alpha(X(i,j)) + 2 * ...
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(k1*(((X(i,j)==X(i,jp))-0.5)+((X(i,j)==X(i,jm))-0.5))+...

k2*(((X(i,j)==X(ip,j))-0.5)+((X(i,j)==X(im,j))-0.5))+...

k3*(((X(i,j)==X(ip,jm))-0.5)+((X(i,j)==X(im,jp))-0.5))+...

k4*(((X(i,j)==X(im,jm))-0.5)+((X(i,j)==X(ip,jp))-0.5)));

a = ceil(G * rand(1));

clique pot new = alpha(a) + 2 *...

(k1*(((a==X(i,jp))-0.5)+((a==X(i,jm))-0.5))+...

k2*(((a==X(ip,j))-0.5)+((a==X(im,j))-0.5))+...

k3*(((a==X(ip,jm))-0.5)+((a==X(im,jp))-0.5))+...

k4*(((a==X(im,jm))-0.5)+((a==X(ip,jp))-0.5)));

delta V = (clique pot new - clique pot old)/T;

prob = exp(-delta V);

p = min(1,prob);

if (rand(1) < p)

X(i,j) = a;

end

end

end

end

A.3.2 Function to estimate the states in a neighborhood of an MRF

% Function to estimate the probabilities used in calculating the entropies

% and mutual information of a neighborhood in a Markov random field
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function [P,R x,R y,Q x,Q y,U] = MRF state histogram(X,Y,G)

s = size(X);

n = 9; % the number of states in a second order neighborhood with two-pair cliques

P = zeros(G,2,n,n); % G is the no.of grey levels in the input image. Since output image is

photon counted we have only 2 levels.

R x = zeros(1,n);

R y = zeros(1,n);

Q x = zeros(G,n);

Q y = zeros(2,n);

U = zeros(n,n);

for i = 1:s(1)

for j = 1:s(2)

ip= rem(s(1)+i,s(1))+1;

im= rem(s(1)+i-2,s(1))+1;

jp= rem(s(2)+j,s(2))+1;

jm= rem(s(2)+j-2,s(2))+1;

k(1) = X(i,j) == X(i,jp);

k(2) = X(i,j) == X(i,jm);

k(3) = X(i,j) == X(ip,j);

k(4) = X(i,j) == X(im,j);

k(5) = X(i,j) == X(ip,jp);

k(6) = X(i,j) == X(ip,jm);

k(7) = X(i,j) == X(im,jp);

k(8) = X(i,j) == X(im,jm);

l(1) = Y(i,j) == Y(i,jp);

l(2) = Y(i,j) == Y(i,jm);
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l(3) = Y(i,j) == Y(ip,j);

l(4) = Y(i,j) == Y(im,j);

l(5) = Y(i,j) == Y(ip,jp);

l(6) = Y(i,j) == Y(ip,jm);

l(7) = Y(i,j) == Y(im,jp);

l(8) = Y(i,j) == Y(im,jm);

beta x = sum(k);

beta y = sum(l);

%since Y(i,j) takes values in {0,1}, we add 1 to it.

P(X(i,j),Y(i,j)+1,beta x+1,beta y+1)=P(X(i,j),Y(i,j)+1,beta x+1,beta y+1)+1;

R x(beta x+1)=R x(beta x+1)+1;%estimate of the states in neighborhood of X

Q x(X(i,j),beta x+1)=Q x(X(i,j),beta x+1)+1;%estimate of pixel and states in X

R y(beta y+1)=R y(beta y+1)+1;%estimate of the states in neighborhood of Y

Q y(Y(i,j)+1,beta y+1)=Q y(Y(i,j)+1,beta y+1)+1;%estimate of pixel and states

in Y

U(beta x+1,beta y+1)=U(beta x+1,beta y+1)+1;

end

end

R x = R x/sum(R x);

Q y = Q y/sum(sum(Q y));

R y = R y/sum(R y);

Q x = Q x/sum(sum(Q x));

U = U/sum(sum(U));

P = P/sum(sum(sum(sum(P))));
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A.3.3 Calculation of ρ for images modeled as Markov random fields

% For images modeled as MRFs, we will now generate rho, i.e., the

% normalized mutual information metric. The images are loaded from a

% previously generated markov models and then we will estimate the

% probabilities here to generate the metric.

clear all

clc

% load the data file containing the MRF

load F:\alfa\Hayat\PAPER\real1000 1.mat

t = 0:1:1000; % different values of Np, the average number of photons in the input scene

st = size(t);

G = 8; % number of grey levels. In general, we should take max(max(Y)).

x = 1:G; % represents the number of bins in the input image.

y = 0:1; % represents the number of bins in the output image.

S = size(X mrf); % X mrf is the data file that we have loaded.

N = S(2); % N*N image. Size of the square images in the .mat file.

Hx = zeros(1,S(1));

Hy = zeros(1,S(1));

Ixy = zeros(1,S(1));

Rho all = zeros(1,S(1));

Rho = zeros(st);

count = 0;

for Np = t

count = count+1;

for s=1:S(1)%run through the number of samples

X =X mrf(s,:,:);%this will be a 1x128x128 matrix (related to the image file)

X(:,:)=X ;%this will be a 128x128 image file.
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Y=ones(N,N);%initializing the output photon count.

for i=1:(N*N)%runs through the entire input image file, X

P=exp(-Np*((X(i)-1)/(G+1)));%count zero channel probability

p=rand;

Y(i)= (p<P);%selects zero with probability P.

end

% At this point we have both X and the simulated photon counts. Now

% we have to estimate the probabilities that will be used in

% calculating the normalized mutual information metric. For this

% purpose we will use ’MRF state histogram’ which will

% estimate the probability of the states in the neighborhood.

[T,R x,R y,Q x,Q y,U] = MRF state histogram(X,Y,G);

si = size(Q x);

Rx = repmat(R x,si(1),1);

si = size(Q y);

Ry = repmat(R y,si(1),1);

cond x = Q x./Rx;

cond y = Q y./Ry;

% The states which are not present in X should contribute nothin to

% the entropy

lx = find(Rx == 0);

cond x(lx) = 1;

kx = find(cond x==0);%Takes care of (pixel, state) case.

cond x(kx) = 1;

Hx(s) = -sum(sum(Q x.*log2(cond x)));

% The states which are not present in Y should contribute nothin to

% the entropy

ly = find(Rx == 0);

47



Appendix A. Matlab codes

cond y(ly) = 1;

ky = find(cond y==0);%Takes care of (pixel, state) case.

cond y(ky) = 1;

Hy(s) = -sum(sum(Q y.*log2(cond y)));

% let us create matrices of equal dimensions to calculate Ixy

si = size(T);

U = repmat(U,[1 1 si(1) si(2)]);

Uf = permute(U ,[3 4 1 2]);

Rx = repmat(cond x,[1 1 si(2) si(4)]);

Rxf = permute(Rx , [1 3 2 4]);

Ry = repmat(cond y,[1 1 si(1) si(3)]);

Ryf = permute(Ry , [3 1 4 2]);

% Now to calculate Ixy

k = find(T == 0);

T(k) = 1;

Uf(k) = 1;

Rxf(k) = 1;

Ryf(k) = 1;

Ixy(s) = sum(sum(sum(sum(T.*log2(T./(Uf.*Rxf.*Ryf))))));

Rho all(s) = Ixy(s)/Hx(s);

end

Rho(count) = sum(Rho all)/S(1);

end
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