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Abstract

The leading role of the HetNet (Heterogeneous Networks) strategy as the key Radio

Access Network (RAN) architecture for future 5G networks poses serious challenges

to the current cell selection mechanisms used in cellular networks. The max-SINR

algorithm, although effective historically for performing the most essential network-

ing function of wireless networks, is inefficient at best and obsolete at worst in 5G

HetNets. The foreseen embarrassment of riches and diversified propagation charac-

teristics of network attachment points spanning multiple Radio Access Technologies

(RAT) requires novel and creative context-aware system designs. The association

and routing decisions, in the context of single-RAT or multi-RAT connections, need

to be optimized to efficiently exploit the benefits of the architecture.
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However, the high computational complexity required for multi-parametric opti-

mization of utility functions, the difficulty of modeling and solving Markov Decision

Processes, the lack of guarantees of stability of Game Theory algorithms, and the

rigidness of simpler methods like Cell Range Expansion and operator policies man-

aged by the Access Network Discovery and Selection Function (ANDSF), makes

neither of these state-of-the-art approaches a favorite. This Thesis proposes a frame-

work that relies on Machine Learning techniques at the terminal device-level for

Cognitive RAT Selection.

The use of cognition allows the terminal device to learn both a multi-parametric

state model and effective decision policies, based on the experience of the device it-

self. This implies that a terminal, after observing its environment during a learning

period, may formulate a system characterization and optimize its own association

decisions without any external intervention. In our proposal, this is achieved through

clustering of appropriately defined feature vectors for building a system state model,

supervised classification to obtain the current system state, and reinforcement learn-

ing for learning good policies.

This Thesis describes the above framework in detail and recommends adapta-

tions based on the experimentation with the X-means, k-Nearest Neighbors, and

Q-learning algorithms, the building blocks of the solution. The network performance

of the proposed framework is evaluated in a multi-agent environment implemented

in MATLAB where it is compared with alternative RAT selection mechanisms.
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Chapter 1

Introduction

1.1 Motivation

The perpetual increase in the demand of broadband access in today’s world, sup-

ported by the need for ubiquitous high-definition multimedia, interactive applications

and augmented reality techniques is far from being satisfied by 4G networks. In the

next few years, the introduction of in between 2.9 and 13 billion connected Internet

of Things (IoT) units, as forecasted by Gartner [1], only increases this gap.

The challenges of ever-growing demand are forcing engineers to ask themselves:

“What is next?” While many different ideas are fighting in the arena to shape a new

fifth-generation technology standard, there is increasing consensus that what is envi-

sioned for 5G may come from multiple infrastructures, technologies, and topologies.

Indeed Chih-Lin I, chief scientist of wireless technologies of China Mobile, verbal-

ized this idea: “In the past, we talked about 1G, 2G, 3G, and 4G in a quite narrow

sense of next-generation mobile standards,” but “what we call 5G should be renamed

5G Era because that is a wide sense of 5G” [2]. Such a broad sense is justified by



Chapter 1. Introduction 2

Andrews et al. in their statement: “an incremental approach [of existing 4G technolo-

gies] will not come close to meeting the demands that networks will face by 2020” [3].

5G networks research is expected to lead to: x1000 increase in capacity and neg-

ligible latency in the connections, new market-driven ways of spectrum sharing and

access, major shifts towards virtualization in both the core and radio access networks,

the increasing importance of the IoT devices, unparalleled energy efficiency, the in-

troduction of new communication standards (e.g., mmWave) and Massive MIMO

techniques, and an increasing integration of past, current and future cellular, WiFi

and Device-to-Device Communications (D2D) standards. [3–5]

Undoubtedly, this increasing integration of wireless wide area networks, local area

networks and D2D standards will be achieved through the Heterogeneous Networks

(HetNets) strategy, under the principle of extreme densification and offloading. A

mixture of several types of radio base stations with different cell sizes that support

agressive spatial reuse is what we call a HetNet. This strategy aims to improve the

area spectral efficiency (i.e., more active nodes per unit area and Hz) of a wireless

network. In [3] extreme densification and offloading is considered as one of the key

approaches to achieve increased data rate. In [6], it is elevated over the spectrum

shortage challenge as the key area for achieving the x1000 increase in network ca-

pacity needed for meeting the demand that is forecasted for 2020. In [4] the HetNet

architecture is presented as the driving architecture for 5G networks, spanning vari-

ous Radio Access Technologies (RATs), cell-sizes, topologies and frequency bands.

In this Thesis, we analyze the problem of determining which RAT standard and

spectrum to utilize and which BS(s) or users to associate (a.k.a, the User Association

Problem) within the context of 5G HetNets. “To the mobile user, who may be within

range of many BSs or WiFi access points (APs) over dozens of different frequency
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bands, all that really matters is whether some of them can jointly deliver the rate

and latency that the user applications require” [6]. However, this is easier to say

than to do. 5G HetNets turn the classic, and extremely important, user association

function into a complex decision process for the network.

The following section of this Chapter summarizes our survey of the different

approaches and perspectives found in the literature related to the User Association

Problem in 5G and HetNets. After a brief analysis of the objectives guiding these

approaches, we expound the criteria used for the association decisions, and proceed to

discuss the state of the art proposals for single-RAT and multi-RAT association. The

following chapters of this Thesis describe our proposed solution and guide through

our experimentation of its feasibility.

1.2 The User Association Problem in 5G Hetero-

geneous Networks: Literature Survey

1.2.1 Perspectives for user association

The consulted literature reflects three main perspectives for the user association

problem in HetNets. (1) The user association problem can be studied from a load

balancing perspective (e.g., [6–10]), with the main goal of improving the experience of

both macro-cell users and offloaded users. (2) The user association problem can also

be studied from an enhanced mobility perspective (e.g., [11, 12]), with the objective

of making the mobility as seamless and transparent as possible to the user, and

(3) Finally, a Self Organizing Network (i.e., distributed autonomous intelligence)

perspective (e.g., [13–15]), in order to reduce the overhead, increase the network

efficiency and ease the management tasks for highly diverse and complex networks.
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Figure 1.1: An optimal solution for the user association problem needs to integrate
the benefits of network load balancing, an enhanced user experience through seamless
mobility and has to be flexible enough to automatically adapt to changes and failures
while keeping a low overhead.

Although the solutions present in the literature often lean towards one of these

perspectives, it is not difficult to realize that these objectives are not necessarily

mutually exclusive. Indeed, we suggest that an ideal solution for the user associa-

tion problem for HetNets is found at the intersection of these three perspectives, as

illustrated in Fig. 1.1.

1.2.2 Criteria for user association

SINR

Traditionally, the simplest user association mechanism used in cellular systems

relies on Downlink Radio Frequency (RF) measurements: The user terminal connects

to the BS that will result in the highest SINR (signal to interference plus noise ratio).

The logic behind this algorithm, known as the max-SINR rule, is built on top of

the results of Information and Communication Theory; namely, the error rate and

maximum achievable data rate with negligible error in a communication channel are
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affected directly by the level of SNR. The higher the SNR (or SINR), the better the

performance of the radio link. A good radio link performance is, then, assumed to

be equivalent to a good networking experience.

Cell Load

More recently, new proposals are questioning these assumptions and advocate for

the use of additional criteria for user association [6]. The use of the level of con-

gestion (load) of the cells has gained momentum. The cell load must be considered

because the throughput perceived by the final user is a time average of its optimal

bit rate over a number of radio resources that such user has been allocated during

the measured interval. Therefore, it is expected that a user will experience a very

poor service from a highly-loaded cell regardless of how high the SINR measurement

might be (under simplistic scheduling assumptions).

Although applicable to macrocell selection, these new proposals are specially im-

portant in the context of HetNets. When the architecture of a network includes

macro- and small cells (i.e., micro-, pico- and femto-cells), the reduced coverage of

the latter makes them less attractive to the terminal devices using the max-SINR

algorithm, regardless of how loaded the macrocells might be. This can lead to major

load imbalance, particularly when both network tiers are using the same spectrum.

However, load-based user association is a complex combinatorial optimization prob-

lem with exponential growth as the network size increases. Hence, simpler indirect

load-aware methods have been proposed.
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Panah et al. [8] use optimization over a utility function based on throughput

measurements. In their solution a single small-cell has two radio interfaces; one of

them is an LTE interface, while the other one is a Wi-Fi interface. Both interfaces

operate on orthogonal carriers. Initial “warm up” frames in which the user connects

and sends data to both interfaces allow for the calculation of the average achievable

throughput. The distribution of users in between the interfaces (i.e., the RAT selec-

tion decision) depends on the results of these measurements.

Kwon et al. [9], on the other hand, rely on the use of a binary indicator of conges-

tion for controlling the admission to highly-loaded BSs. In their solution, depending

on the average queue sizes, both the terminal and the BS make use of explicit con-

gestion notification (ECN) information in the IP header of the forwarded packets.

The terminal informs the congestion condition to the Access Network Discovery and

Selection Function (ANDSF) server of the LTE network. The BS information is up-

dated in the database and makes the cell not eligible for future access requests while

the congestion condition is still present.

Other criteria

Besides SINR and cell load, other criteria are becoming increasingly important

for the user association problem:

Much of the literature that addresses offloading or UE-steering from a cellular

network to a WiFi network is mostly concerned with the cell-edge users of the cellu-

lar network. Therefore, characterizing the state of a user as cell-edge condition can

be used for simple offloading. This improves the overall throughput of the macro-

cell system and the service quality of the cell-edge users. For example, Gonçalves

et al. [10] propose a device-based solution in which the devices threshold their Ref-
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erence Signal Received Power (RSRP) with a value that is broadcasted as part of

the standardized signaling of LTE/LTE-A networks. Based on this operation, the

device recognizes whether it is in a cell-edge state and requests suitable nearby WiFi

offloading options from the ANDSF.

The level of mobility of the device can be an important criteria. A high mobility

user can be better served by an association with a macro base station with a more

extensive coverage than by WiFi APs or other cells with smaller coverage. Recog-

nizing the state of a device as static or mobile, therefore, can be used to restrict the

number of unnecessary network scans and reduce ephemeral connections with small

cells. This results in improvements in the connection stability and terminal power

efficiency. Although the mobility of a user can be derived from GPS information,

this is a very low power-efficient technology to be used on a regular basis. Other

creative methods have been recommended: the authors of [16] propose the use of the

accelerometer that is built-in in many modern smartphones, while the authors in [12]

propose an algorithm that infers device mobility using the received signal strength

indicator (RSSI) and the base station ID (BSID) information.

Context Awareness

It is likely that in the near future other parameters will be considered relevant for

the continuous co-optimization of a HetNet, specially for the user association task.

There is potential, for instance, in the use of Uplink RF measurements and other

context-awareness information as useful criteria. Context awareness is the collection

of information from the network, devices, applications, the user behavior and its

environment, acquired in order to optimize network processes and personalize services

for the users [4, 17]. Some interesting examples of the use of context-awareness

information for our case of interest:
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(1) It is desirable to analyze optimal association algorithms that are application-

dependent. This could be used, for example, for offloading users running applications

with loose QoS requirements to small cells enabled with random access technologies

(e.g., WiFi APs). On the other hand, users of delay-constrained and interactive real-

time applications could be assigned to macrocells equipped with channel-allocation

access technologies. If simultaneous connections are possible to many RATs, such

distribution could be done on a per-IP-flow basis. (2) The presence of proximate

devices can be exploited by prioritizing D2D communications in certain scenarios,

with gains in delay and power consumption. (3) Provided that the small cells back-

haul will be a major challenge, and probably, the main bottleneck of a HetNet, a

backhaul-aware algorithm is also desirable. At the time of writing this Thesis, we

are not aware of concrete proposals that consider these criteria.

1.2.3 Proposals for user association

Optimal distribution of resources is not a new problem; it is found in economics,

load balancing among computer servers and even in scheduling operations in wireless

networks. However, provided the non-uniform nature and the considerable amount

of parameters and constraints of HetNets, no approach seems to be uniquely optimal.

Nevertheless, it is possible to extract some guidelines from the consulted literature

that seem to have led most of the analyzed solutions. We understand that practical

proposals will need to, at least, consider these expectations.

The simplicity of procedures has been favored by the experts. Thus, elegant math-

ematical approaches like relaxed optimization of utility functions, Markov Decision

Processes and Game Theory algorithms have been deprecated. Instead, biasing meth-

ods, which have been claimed to provide a surprising close-to-optimal performance

if the biasing values are chosen carefully [6], and the use of coordinating nodes in
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the network like the ANDSF, are preferred. Furthermore, the opinions favor the use

of a hybrid approach that combines uncoordinated and coordinated elements [4] and

distributed (client-based) and centralized (server-based) [15] aspects in the solution.

An uncoordinated solution (like a non-cooperative game) could be suboptimal com-

pared to a coordinated proposal but reduces the complexity of the optimization and

the overall signaling overhead. Distributed algorithms have been shown to provide

considerably good results under simplistic assumptions [6] but tradeoff the mobile

network operator (MNO) visibility and control over the traffic and the user experi-

ence [12]. A good example of a useful compromise is suggested by [11]: A hybrid

centralized-distributed approach would allow the exchange of rules with a centralized

node that do not control directly the behavior of the nodes, but restrict their actions.

Finally, it seems clear that the transformation of the cellular networks by means

of Network Function Virtualization (NFV) and Software Defined Network (SDN)

technologies, the advances in networking protocols and innovative HetNet architecture

design will carry with them substantial simplifications and flexibility. In future

5G networks, it is likely that a device will see itself as associated to the network

instead than to a radio station. In this sense, the user will share a connection with

multiple tiers (i.e., macrocells, micro-cells, APs and other devices) simultaneously.

Such connections might be suggested by the network, based on context-awareness

data obtained from the user device and the network state. Hence, the user will enjoy

the benefits of a fully coordinated infrastructure. The traffic will be aggregated

at the end device by powerful Connection Managers. These concepts may simplify

the network selection process and will ensure ubiquitous connectivity and seamless

mobility.
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Single-RAT user association

In this section we comment on the technical approaches found in literature for

the user association to a single RAT (i.e., a single network attachment point) when

multiple RATs are available in a HetNet.

1. Optimization of utility functions.

Normally, network load functions subject to a given SINR constraint or (log-

utility) throughput functions are utilized. The main inconvenience of this ap-

proach is its high complexity. The authors in [6] present a series of assumptions

for relaxing the constraints of the optimization problem that allow to create

a low-complexity distributed algorithm using dual decomposition techniques.

Shen and Yu [7] use a coordinated descent approach over a dual function,

instead. Their method provides them with the flexibility of achieving both

offloading and power control with a balance in between a centralized and dis-

tributed design. Other authors suggest the use of exhaustive search or heuris-

tics for solving the problem using a centralized approach. [8]

2. Markov Decision Processes.

The idea of this method is to choose the actions that maximize the future ex-

pected reward. The challenges for applying this technique are in the modeling

of the system (i.e., how to define adequate states and state transition proba-

bilities) and in the difficulty of solving the MDP as the network grows.

3. Game Theory.

Game theory is a convenient way to model and analyze distributed uncoordi-

nated interactions among rational agents. The main challenges of this approach

are stated by Andrews et al.: (1) “The convergence of the resulting algorithm
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is, in general, not guaranteed.” (2) “Even if the algorithms converge, they do

not necessarily provide an optimal solution”. (3) “There is no closed-form

expression to characterize the relationship between a performance metric and

the network parameters.” [6]. This is exemplified in [18], where Aryafar et

al. explore the Nash equilibria and Pareto-efficiency of single-class RAT se-

lection games and when a mixture of classes are present. Their results show

convergence of the Nash equilibria for the first case and the need of appropriate

hysteresis policies for achieving the equilibria in the second.

4. Biasing (a.k.a, Cell Range Expansion) and Blanking.

By the use of biasing, the users can be offloaded to smaller cells using an

association bias. A bias, in this context, is an artificial offset value added

to the SINR measurements in order to encourage the association with small

cells. Provided that “biasing effectively expands the range/coverage area of

small cells, so is referred to as cell range expansion (CRE)” [6]. Blanking, or

Almost Blank Subframes (ABS), as it is known in 3GPP documentation, is

an interference management method that allows to boost the SINR received

from small cells. “Blanking, refers to shutting off the macrocell transmissions

for some fraction of the time, preferably while the biased small cell users are

being served” [3]. This technique is specially useful when both macro- and

small cells are operating using the same frequency bands. The combination of

both techniques has been shown to increase edge rates by as much as 500% [3].

Andrews et. al. [6] provide rules of thumb for the selection of optimal biases

and blanking percentages under fairly simple assumptions:

• Optimal biasing is considerably aggresive (e.g., 20 dB or more) in out-

of-band offloading. The optimal offloading bias decreases as the network

density increases.
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• Bias values for co-channel offloading are around 5-10 dB if blanking is not

used and can increase to aggressive values as blanking is increased. “The

small cell density does not affect the optimal offloading bias, because the

interference they cause affects all users equally”.

• The optimal amount of blanking grows in proportion to the small cell den-

sity if offloaded users can also be served during non-blanked time slots;

however, for plausible small cell deployments (5-7 micro-cells per each

macro-cell) and independently of the serving of offloaded users strictly

during ABS or not, it is approximately 50%.

5. Policy-based.

The Access Network Discovery and Selection Function (ANDSF) is a core net-

work entity defined in the 3GPP standards created in order to regulate the

interaction and offloading tasks between 3GPP and non-3GPP networks. The

ANDSF interacts directly with the terminals by the use of XML over IP through

the S14 interface defined in [19, 20]. The ANDSF allows the mobile devices to

discover available access networks and assists in choosing the best candidate,

based on operator-defined policies (e.g., best QoS, lowest charges, etc.). The

ANDSF exchanges three types of information through the S14 interface:

• Discovery Information: A list of prioritized available networks within

range.

• ISMP: Operator-defined rules for selection of one active access network.

• ISRP: Rules for access selection for multiple simultaneous IP connections.

There are many advantages to this approach: (1) Improved visibility and con-

trol over the BS selection. (2) Simplicity, due that it is only based on rules,

and (3) It is an already standardized mechanism for LTE/LTE-A networks.
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In the consulted literature, the potential of the ANDSF framework is clear.

For instance, only slight modifications of the standards are required in order

to achieve reduced power consumption in the process of network scanning [16],

congestion control [9], and offloading of cell-edge users [10].

Nonetheless, a policy-based approach is suboptimal. Further, the major short-

coming of this method is eloquently commented by Gonçalves et al.: the

“ANDSF specifications, [...] still do not define procedures and messaging al-

lowing for real time network data to be sent to the UE, like real-time radio

link load or congestion status. These factors are of utmost importance when

deciding to switch from one RAT to another, so that a UE is not switched to a

lower performance network” [10]. Of course, if such real-time procedures and

messaging would be created, they should be optimized in order to reduce the

network overhead as much as possible.

Multi-RAT user association

This section expounds multi-RAT user association by means of simultaneous

connections to several radio nodes operating different wireless technologies. This

seems to be a relatively unexplored area with many opportunities for research. Below,

we enumerate the efforts found in the consulted literature in this direction:

1. Cellular standards extended to Unlicensed Band.

The simplest approach to a simultaneous multi-RAT connection in the con-

sulted literature is the use of LTE in the 5 GHz unlicensed band, also known

as ‘LTE-U’. The development of LTE-U is based on the significant amount of

underutilized spectrum in the WiFi bands and is undergoing standardization

in 3GPP Release 13.
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The main challenge of LTE operating in the WiFi band is the risk that LTE

could take over all the spectrum and degrade significantly the performance of

the WiFi systems that operate in the band. This is caused by both the design

of LTE as a licensed spectrum technology and to the Listen-Before-Talk (LBT)

mechanism implemented in WiFi. Before any transmission, a WiFi interface

senses the use of the channel and restricts itself from sending data if the chan-

nel is busy. Provided that LTE doesn’t have a similar mechanism, coexistence

methods need to be considered. A simple solution would be to implement the

LBT algorithm for LTE-U; another option would be to use coexistence gaps

where the channel is simply not used by LTE allowing for the action of WiFi.

Al-Dulaimi et al. [21] propose a system that uses both concepts and integrates

a carrier frequency switching mechanism in order not to interrupt the LTE-U

transmission. There is considerable space for research of coexistence solutions

using spectrum underlay and spectrum interweave schemes.

Regardless of what the final specifications of LTE-U could be, the strategy of

Qualcomm [22] is of our interest. They propose the use of LTE-U on demand as

an offloading method for LTE/LTE-A users using the Carrier Aggregation (CA)

feature (3GPP Release 10/11). “The same small cells that offer LTE Advanced

on licensed spectrum will also offer it on the 5 GHz unlicensed spectrum”. The

end user would be simultaneously connected to both RATs: The LTE-U carrier

would be used only for the data plane, “while all the control signaling would

happen on the licensed band, where the QoS is ensured”. Under this scenario,

the user benefits from the seamless mobility and additional spectrum, while

the MNO reduces expenditures by using a common infrastructure.
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2. Multipath Traffic Aggregation.

Most modern mobile devices posses multiple network interfaces such as Ether-

net, WiFi, 3G, WiMAX, 4G-LTE and Bluetooth. Theoretically, it is possible

to use these multiple interfaces simultaneously for data transfer and aggregate

the traffic received at the end device. These techniques are also known as “path

diversity in IP networks” in the literature [23]. This is fundamentally different

from the regular practice today. Observe that, although most of these interfaces

are available nowadays in the mobile devices, they are activated on-demand by

the user and its utilization is normally restricted to some specific function. For

instance, a cellular-network connection is replaced by WiFi as the device broad-

band connection whenever the latter is available (in order to reduce costs and

energy use). Instead, path diversity advocates automated coordination mech-

anisms that allow to use the different interfaces simultaneously. Considerable

benefits are expected in terms of seamless mobility, increased traffic capacity,

decreased probability of network outage, ubiquitous network access, and even

improved energy efficiency in some circumstances.

Research work has demonstrated that the most effective techniques for multi-

path support operate at the Routing and Transport layers [24], so we focus on

them in our discussion. Coordinated simultaneous data transport over more

than one interface can be achieved using fundamentally three different schemes.

First, the most straightforward way is to send different IP flows (characterized

by the TCP/IP header 5-tuple) over different interfaces.

Second, Mobile IP mechanisms can be also employed. In the case of MIPv6, for

example, each interface of the device can be assigned a care-of-address while

another interface is connected to a Foreign Network. In the context of 3GPP
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networks, Dual Stack Mobile IP (DSMIP) presents two flavors that can be

used: MAPCON and IFOM. MAPCON enables multiple packet data network

(PDN) connections with more than one access point name (APN); hence, it

provides connection management for both APNs (the one for 3GPP access

and the one for non-3GPP access). On the other hand, IFOM provides only

one PDN connection with the same APN for both access networks and en-

ables a per-IP-flow granularity control. In other words, every IP flow can be

seamlessly moved to the 3GPP access network or non-3GPP access network [9].

Thirdly, it is possible to transport a single data stream over multiple interfaces.

Most of the current research for this third option is based on the Multipath

TCP (MPTCP) protocol [24]. “Each subflow contains a subset of the pack-

ets which form the data stream. At the receiving station, these subflows have

again to be reassembled before being handed to the application” [25]. It is

easy to argue that the increase in complexity is compensated by the robustness

obtained against network outages and the gains in terms of traffic capacity.

Such gains are observed because of the ‘aggregated pipe’ bandwidth that is

available to each TCP connection. Notice that, in the previously discussed

options, the goodput of each TCP connection is limited by the bitrate capacity

of the individual link by which it is sent.

3. Network Virtualization and Software Defined Networking.

There is no doubt that NFV and SDN are essential drivers for the next gener-

ation of wireless HetNets. NFV enables network functions that were tradition-

ally tied to hardware appliances to run on close-to-cloud-computing infrastruc-

ture in a data center. The point is that there will be a degree of reuse of the

infrastructure used in commercial cloud. Although the idea of NFV originated

with the purpose of reducing costs, many experts agree that the main benefits
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will be seen in other areas: the elasticity to support network demands, and

the ease to quickly create, test and implement new network features without

affecting the service of the current users. Thus, it can represent an invaluable

competitive advantage for network operators. The concept of SDN is an ar-

chitectural principle for networks. It is used to refer to a separation of the

routing control plane of the network from the forwarding devices. This de-

coupling allows to centralize the decision engine of the network (that achieves

total visibility of the network) and control the forwarding devices though open

Application Programming Interfaces (APIs) like Openflow.

Their implementation will affect specially the mobile core network but will

certainly extend progressively to the access network edge. Indeed, interesting

ideas have come to light in which the principles of SDN have been applied to

the RAN. The SoftRAN proposal [26] is one of such. The OpenRadio plat-

form [27], although still in initial stages, is also a very promising proposal as

the dual of Openflow for wireless packet forwarding. Virtualization applied to

the RAN will allow network slicing and enhanced mobility by the implementa-

tion of Virtual Base stations or Virtual Access Points. These virtual nodes will

group a series of physical network nodes as a single geographical entity. We

agree with Bangerter et al. that the maximum benefit of such advances will be

observed in a Multi-RAT environment: “An integrated virtual radio network

will enable joint management and simultaneous use of radio resources across

different radio technologies to significantly improve radio capacity and enhance

coverage and wireless link reliability.” [4]

Of course, such framework will require new ways of connection management by

the network. For instance, Soldani and Manzalini [28] introduce the concept

of the ‘neural bearer’, which they define as a bearer graph. It is supposed
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to enable multidimensional carrier-grade communication paths simultaneously

through different radio interfaces. This construction is the key element of their

vision of what 5G will be. They envision a 5G Operating System (5G OS)

that orchestrates a high capacity and diversified RAN infrastructure under a

software-defined approach.

4. New RAN architectures.

Finally, without the possibility of simultaneous multi-RAT connections, inno-

vative architectures for the RAN would not exist or would be very limited.

It is the opinion of [4] and [29] that the evolution of the HetNet architecture

with respect to small cells will consist of variations of the ‘anchor-boost’ design.

In this design, the macrocell operates as an ‘anchor’ base station and is pri-

marily responsible for signaling, while the small cells operate as ‘booster’ base

stations and are mainly responsible for offloading data traffic. This decoupling

of signaling (coverage) and data (capacity) can be also exploited in order to

increase power efficiency by giving the capability to the anchor node to turn on

or off the booster nodes, depending on the demand. A decoupling of routing

control and the data-forwarding plane (SDN ideas) can also be added to the

picture by making the signaling node also the routing control node. Finally, by

assigning interference management tasks to the signaling node we obtain the

idea of ‘phantom-cells’ existing in 3GPP literature.

The gains of these new RAN architectures are expected to be maximized when

multiple RATs spanning various standards are considered in the equation. It

is likely that new RAN architectures will also take advantage of D2D commu-

nications in order to complement the infrastructure-based network. However,
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the optimal role for D2D communications in HetNets is still an open area of

research.

1.3 Chapter summary

Summarizing, ultra-densification and offloading through multi-RAT HetNets will

be the key strategy for increased bandwidth capacity in 5G networks. Under this as-

sumption, the user association or RAT selection process is a very important problem

with repercussions in network load balancing, seamless mobility and Self-Organizing

Networks (SON) functions.

In this survey we presented the state of the art of proposals related to the User

Association Problem in 5G and HetNets. We analyzed the main criteria for user

association decisions, DL SINR and cell load, and we also discussed the opportu-

nities for exploring additional parameters like user mobility and context-awareness

information.

We considered two main categories of user association, single-RAT association

and multi-RAT association. In the first case, the simplicity of biasing and policy-

based mechanisms make them preferable against other approaches. Additional re-

search is necessary in order to fully characterize biasing under non-simplistic assump-

tions. It would also be desirable to see novel proposals of real-time policy-based

mechanisms that generate low overhead. In the case of multi-RAT association, mul-

tipath traffic aggregation, network decoupling and virtualization are still (mostly)

theoretical propositions that should be tested extensively for several different set-

tings.
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Interest has been growing lately around the idea of the use of cognition and the

use of machine learning for enhancing the adaptability and efficiency of the net-

working tasks [13–15]. Cognition is currently seen as one of the essential enabling

technologies behind Self-Organizing Networks. Its applicability seems very promis-

ing for both single-RAT and multi-RAT association. To the best of our knowledge,

cognition and machine learning techniques are almost completely unexplored areas

of research concerning the user association problem.
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Chapter 2

Solution Description

2.1 Problem Analysis

Most mobile terminals today support the use of multiple Radio Access Tech-

nologies (RATs) (e.g., LTE, WiMAX, Wi-Fi, Bluetooth) through the use of several

network interfaces or software defined radio (SDR) technology. By means of a combi-

nation of the services enabled by these different RATs, true ubiquity of mobile broad-

band services is becoming a reality. In 5G HetNets, the variedness and availability

of network attachment points through diversified RATs will continue to mature and

evolve. This development will turn the classic, and extremely important, user asso-

ciation problem into a complex decision process in order to guarantee efficacy and

efficiency of the HetNet architecture.
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The conventional mechanism for user association in cellular networks, the max-

SINR rule (see subsection 1.2.2), has proven to be insufficient in the context of

HetNets [6, 15]. Here, differences in transmission power and coverage of the cells

can lead to inefficiency in terms of network load balancing. Multi-parametric opti-

mization solutions have been proposed in the literature to overcome the limitations

of the max-SINR RAT selection approach by combining it with other criteria (e.g.,

cell load). However, the computational complexity of these approaches have made

the task very difficult [6]. Furthermore, the associated problem of efficient and prac-

tical multi-parametric modeling (representation of the network state) has not been

completely solved [11, 13]. This is particularly important because the need for inte-

grating multiple parameters in the optimization of network functionalities seems to

be a design requirement for future networks. There is increasing agreement to look

at these parameters under the umbrella of context-awareness [4, 13,15,17].

Finally, besides efficiently exploiting the multi-RAT (i.e., multi-standards) capa-

bilities of the network nodes and performing context-aware optimization, any suitable

RAT selection algorithm in 5G HetNets needs to address the following objectives:

Optimization of the network load balancing, enhancement of the user mobility expe-

rience, and effective autonomous adaptation to changes in the network while keeping

a reduced overhead (see Fig. 1.1).

2.2 Proposed Solution

We propose a distributed cognitive framework for RAT selection for 5G HetNets.

Here, the term RAT is used to describe a network attachment point (i.e., a Base

Station (BS), Access Point (AP), or another terminal device) for a certain wireless

network technology. Each RAT is considered independently by our framework even

when several of them are concentrated at a single physical node. Our proposed solu-
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tion implements machine learning algorithms in order to satisfy the objectives above

while providing a meaningful approach for context-aware multi-parametric modeling

that echoes the principles of [14]. Our solution advocates the use of cognition at the

device-level in order to learn optimal, or at least reasonably well-performing, decision

policies based on the experience of the device itself. Cognition is important since

there may likely not be a “one-size-fits-all” rule for association.

Figure 2.1 presents an overview of our proposed solution. As observed, it can be

segmented into three modules/stages: (1) Learning the user/network state model. (2)

Detecting the cognitive states. (3) Learning an effective user association policy. Our

final goal is to obtain a decision policy to pick the best action (i.e., to associate with

a RAT), given the state of the terminal. For that, we propose to use reinforcement

learning (specifically, Q-learning). The set of all possible system states S is the

set of clusters from the first stage, obtained using the X-means algorithm (see Fig.

2.1). The current state st is the mapping of a current feature vector observed by the

terminal device to one of those clusters. This mapping is done using the k-Nearest

Neighbors algorithm. We define the set of actions to be the set of available RATs.
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Figure 2.1: High level overview of the proposed solution.

2.3 Contributions of the Thesis

The main contributions of this Thesis are: (1) A framework with intrinsic mod-

ularity for handling the user association problem. (2) The suggested use of rein-

forcement learning over supervised machine learning due to its low computational

complexity and flexibility for learning an effective user association policy within the

large number of diverse situations that a 5G HetNet may represent. (3) The proposi-

tion that the use of unsupervised machine learning is crucial for achieving the desired

adaptability and practicality in order to formulate the user/network state model and

populate the cognitive database. (4) The choice and standardization of a minimal set

of recommended descriptors (features) for integrating context-awareness information

in the user/network state models. (5) Recommendations for achieving an effective

clustering of feature vectors with the desired characteristics for our solution. (6) The

exploration of two variants of Q-learning for the reinforcement learning stage.
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The novelty in the proposed approach is that the set of states are learned by

the device itself and the number of states is also learned rather than pre-specified.

This strategy can be really flexible in practice. This implies that a terminal, after

collecting data during a training period, may formulate a system characterization

and optimize its own association decisions without any external intervention. In the

following we will refer to these states as cognitive states, because they are supposed

to be learned cognitively by each terminal device.

The following three sections of this Chapter discuss the conceptual foundations

of each stage of our solution: Clustering of feature vectors for building a system state

model, supervised classification to obtain the current system state, and reinforcement

learning for learning good policies, respectively.

2.4 Learning the User/Network State Model

Efficiency of 5G HetNets requires user association mechanisms that consider mul-

tiple criteria. This is achieved through “context-awareness”, which means that the

cognitive entities of the system are aware of the conditions of the network and the user

needs and behavior, and are capable of integrating these criteria into the decision-

making process. However, formulating system models that are context-aware can be

a daunting task, especially for our case of interest. The state definitions must be

reasonable across the envisioned heterogeneity and diversity of architectures, com-

munication standards, international regulations, applications and protocols and de-

ployment needs of future 5G networks. Furthermore, representing these states such

that the overall processing and memory requirements as well as network overhead

remain reasonable is important for efficiency.
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A centralized solution that involves bookkeeping all possible states in the core

network nodes for all the users and making decisions for them, would demand a con-

siderable computational capacity, even for a relatively small HetNet. Even more con-

cerning is the overhead necessary for updating the states information in real-time if

this requires knowledge that is only available or can be estimated at the device-level

(e.g., user mobility, proximity of Device-to-Device Communication (D2D) enabled

terminals).

Thus, it is desirable, to adopt a distributed design and build meaningful user/net-

work states at the terminal level. As illustrated in Fig 2.1, in the first stage of

our framework, we propose clustering of appropriately defined feature vectors as a

method for autonomously constructing suitable system models for the user associ-

ation task. The choice of the standardized fields (or parameters) for formulating

the feature vectors is extremely important in order to reduce the dimensionality and

ensure significance. This approach allows the system models to be custom-made for

each node because the created cognitive states will depend on the specific situations

it has experienced. Note also that handling all this information at the device-level

dramatically decreases the overhead requirements and leads to low-complexity algo-

rithms that try to optimize the gains of individual user according to its particular

needs.

We, however, acknowledge that some network state information that could be

crucial for globally optimal user association and should be included in the feature

vectors may not easily be perceived, or even inferred, by the terminal device (e.g.,

base station load and backhaul state). We propose minimal modifications of the stan-

dards for allowing real-time broadcasts of this information during broadcast channels

transmissions. It can be argued that the amount of radio resources used for trans-

mitting these values is negligible and, as we will see in the following sections, the
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benefits in terms of Quality of Experience and load balancing surpass the associated

technical costs.

2.4.1 The feature vectors.

The user state at any given time n is defined in terms of a collection of parame-

ters that characterizes the mobile device and RAT situation in the network at that

particular time. Such parameters can be collected and grouped as a tuple in order

to formulate a vector x of d descriptors or features. Thus, we may represent an

observation of the user/network state as a point in a d-dimensional feature space:

x = {x1, x2, ..., xd}T , for x ε Rd

Figure 2.2 shows a terminal device that collects feature vectors related to three

available RATs. The mobile device needs to collect relevant statistics that reflect

both network state information and user needs/behavior information. The network

state information could be obtained through Application Programming Interface

(API) calls to the available network interfaces and broadcast messages, while esti-

mating the user behavior might require sensing and packet-level analysis with the

corresponding data post-processing.

Next, we list a collection of candidate network-level and user-level parameters

useful for achieving context-awareness, relevant to the user association problem:
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Figure 2.2: At each time n, a client node collects feature vectors related to RATs
A,B and C.

• Network-level context:

1. Tier class (e.g., macro-cell 3G, macro- cell 4G, small-cell 4G, D2D, WiFi).

2. Peer ID (i.e., Base Station ID (BSID) or MAC Address of the available

RAT).

3. Network carrier frequency.

4. BS/AP load status.

5. BS/AP congestion status.

6. BS/AP backhaul status.

7. Interference levels.

8. Uplink communication channel information (e.g., UL-SINR).

9. Downlink traffic information (e.g., number of connected clients, data

packet size, queue length, packet loss rate).
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• User-level context:

1. User profile (e.g., user identity, user preferences on media quality, user

activity patterns, user level of distraction).

2. User billing plan.

3. Roaming information.

4. Application (e.g., Skype, Netflix, SAP).

5. Type of Application (e.g., machine-type data, video streaming, web

browser).

6. Application Quality of Service (QoS) requirements.

7. Quality of Experience (QoE) metrics.

8. Downlink communication channel information (e.g., DL-SINR).

9. Uplink traffic information (e.g., data packet size, packet generation rate,

queue length, packet loss rate)

10. User location: Absolute (e.g., GPS-based), relative

(indoor/outdoor/cell-edge), zone (urban/suburban/rural).

11. User Mobility (i.e., static/mobile).

12. Device context (e.g., battery state, CPU load, mobile phone characteris-

tics and capabilities).

The following discussion offers a detailed view of the feature vector data spec-

ification as proposed in our solution. Four main goals must be achieved with the

choice of parameters for constructing the feature vectors:
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1. Pertinent and sufficient context-awareness data must be considered in order to

achieve load balancing, seamless mobility and Self-Organizing Networks (SON)

objectives.

2. Reduced dimensionality of the feature vectors. Using too many features may

degrade the performance of clustering and increases the complexity of super-

vised learning algorithms [30].

3. Ease of data acquisition. The data acquisition task in real world implementa-

tions should not require considerable processing.

4. Simplicity, for ensuring clarity while explaining our ideas.

Thus, without compromising essential context-awareness data to achieve the de-

sired goals, we will consider in our analysis the use of the following as the minimal

set of descriptors for our feature vectors: (1) Tier class, (2) Peer ID, (3) BS Load,

(4) DL SINR, (5) Application Class, and (6) User Mobility. With this minimal set

of descriptors we have enough information to uniquely identify the RAT (descriptors

1 and 2), a simple representation of the multi-agent effect on the network condition

(descriptor 3), an indicator of the radio link quality (descriptor 4), and a charac-

terization of the user needs and behavior (descriptors 5 and 6). Hence, it is an

abbreviated but sufficient definition to achieve our intent.

Tier class

We assume that the network tier (i.e., the class of wireless network technology

and cell size) of the active connection or potential connections can be obtained from

network broadcast messages or directly from the terminal device’s network interfaces.

Table 2.1 shows the suggested mapping of values for this parameter. Entries 9-12

are reserved for new 5G standards.
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Table 2.1: Suggested mapping of Tier classes.
Value Network Tier

1 3G - macrocell - EV-DO
2 3G - small cell - EV-DO
3 3G - macrocell - HSPA
4 3G - small cell - HSPA
5 4G - macrocell - FDD - LTE
6 4G - small cell - FDD - LTE
7 4G - macrocell - TDD - LTE
8 4G - small cell - TDD - LTE
9 (Reserved)
10 (Reserved)
11 (Reserved)
12 (Reserved)
13 4G - macrocell - WiMAX
14 4G - small cell - WiMAX
15 Wi-Fi b/g/n (2.5 GHz)
16 Wi-Fi 802.11n (5 GHz)
17 Bluetooth
18 D2D

Peer ID

The Peer ID is a unique identifier of a network attachment point (i.e., a RAT).

The RAT, or Peer node, to which the client node is able to connect, could be a

base station (BS), an access point (AP) or another terminal device. Usually, the

standard-specific identifiers used for base stations are Base Station IDs (BSIDs),

while access points and devices are identified by MAC Addresses. However, in our

framework we propose the standardization of this descriptor by having the terminal

node map each new BSID or MAC Address observed in its collected feature vectors

to a positive integer index. We assume that the standard-specific identifiers may be

easily obtained from network broadcast messages.
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BS Load

The BS Load status is a value that, we propose, can be easily computed by

each radio access network node in real-time and transmitted in broadcast messages

(broadcast channels or beacon intervals) with negligible cost. For standardizing this

parameter, we propose that the result of the computation must be a discrete-valued

representation of its time-averaged radio resource utilization (i.e., a percentage of

resource blocks or time slots commited for transmission during a time interval). For

our analysis, we only consider the BS Load in the downlink transmission (i.e., RAT

to terminal device).

The BS Load status is the key parameter for achieving an efficient distributed

algorithm for load balancing. In case a node may not be able to compute and

broadcast this value, a default value ‘0’ would be used for this parameter, with the

subsequent loss of the network load-awareness dimension in the characterization of

the corresponding cognitive states.

DL SINR

The traditionally used Downlink Signal to Interference plus Noise Ratio (SINR) is

still useful for our model for characterizing the quality and reliability of the commu-

nication channel. Slightly different nomenclature, calculation methods and ranges

of values of DL SINR are expected from different standards. For example, WiFi

(802.11 b/g) defines SNR values on the interval [5,40], while LTE interfaces may

compute SINR values on the interval [-5.0,39.38], and WiMAX users may perceive

CINR values on the interval [0,40].
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These values are usually measured from pilot carriers by the network interfaces,

according to the specifications of each communication technology standard. We don’t

propose any standardization other than recognizing the appropriate nomenclature of

the downlink SINR in dB for each standard. These values can be collected from the

respective device’s network interfaces through API calls. We are assuming that all

possible values observed will be contained in the interval [-99,99].

Application Class

Being able to distinguish in real-time the software applications that the end user

is running is also an important criterion. From a network performance perspective,

and for reasons of scalability and practicality, a model that characterizes the QoS

requirements of the applications is more useful than simply identifying the partic-

ular protocols being used. Hence, we propose the protocol identification as a first

stage and a QoS class mapping as a second stage for formatting the data of this

descriptor. Protocol identification can be obtained through packet-level analysis [31]

or lightweight deep-packet-inspection (DPI) engines [32,33] running at the terminal.

Figure 2.3 illustrates our approach for characterizing levels of QoS for different

types of applications, according to combinations of throughput requirements and

delay tolerance. Table 2.2 summarizes our model, and Table 2.3 provides an example

of how the proposed scheme of application classes can be applied to protocols that

the deep-packet-inspection engine nDPI can identify [34].
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Figure 2.3: Regions of QoS requirement of different types of applications.

Table 2.2: Proposed mapping of Application classes.
Application Class QoS Requirements Example applications

0 Unknown or unclassified / Non-persistent protocol DNS, DHCP
1 Moderate throughput, High delay tolerant Email, Instant Messaging, Sensor Data
2 High throughput, High delay tolerant Web Downloads, File Transfer
3 Moderate throughput, Moderate delay tolerant Audio and SD-Video streaming
4 High throughput, Moderate delay tolerant Web browsing, HD-Video streaming, VPNs,

Remote Desktop
5 Low throughput, Low delay tolerant VoIP
6 Moderate to High throughput, Low Interactive applications (e.g., online gaming),

delay tolerant video conferencing, live streaming
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Table 2.3: Example of Application classes based on nDPI supported protocols
Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 N/A

TCP/IP Stack Protocols DNS POP FTP HTTP
IPP SMTP NFS TELNET
MDNS IMAP TFTP
NTP
NETBIOS
ICMP

Database PostgreSQL
MySQL
TDS
msSQL
Oracle
Redis

File sharing and P2P I23V5 DirectDownloadLink
Socrates AppleJuice

DirectConnect
WinMX
PANDO
Filetopia
iMESH
Kontiki
OpenFT
Kazaa/Fasttrack
Gnutella
eDonkey
Bittorrent
OFF
Soulseek
AFP
StealthNet
Aimini
DropBox
Apple iCloud
WindowsUpdate
RSYNC
UbuntuONE
Microsoft cloud

Instant Messaging QQ Snapchat
GaduGadu
IRC
Popo
Jabber
MSN
Oscar
MEEBO
WhatsApp

Network STUN Collectd NetFlow
Management Whois-DAS OpenSignal IPFIX

sFlow
Authentication Kerberos

LDAP
Radius

Other Fiesta HTTP Actsync
Florensia
MOVE
USENET
DCERPC
Corba
ZeroMQ
Simet
VMware
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Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 N/A
Routing, SSDP PPTP BGP
Tunneling and IGMP IPSEC VRRP
Service Discovery IGMP GRE EGP

SCTP SSL
OSPF OpenVPN
IP in IP CiscoVPN
Teredo TOR

HotspotShield VPN
Web Twitter Instagram Yahoo

Gmail FaceBook
Google Maps
Google
SSL over HTTP
HTTP Proxy
Citrix
CNN
Wikipedia
99Taxi

Remote Support RDP
VNC
PCAnywhere
SSH
TeamViewer

Streaming QUIC OGG AVI
Icecast Flash
PPLive MPEG
PPStream QuickTime
Zatoo RealMedia
Apple iTunes Windowsmedia
Spotify MMS
GloboTV Youtube
Deezer Netflix

RTSP
VoIP and RTP CitrixOnline
videoconferencing MGCP Apple (Facetime)

IAX Webex
Skype H323
Viber
CiscoSkinny
Megaco
WhatsApp Voice
KakaoTalk
NOE
RTCP

Online Gaming Feidian Twitch TeamSpeak XBOX
Battlefield
Quake
Steam
Halflife2
WorldofWarcraft
Guildwars
MapleStory
WARCRAFT3
WorldofKungFu
Starcraft
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Finally, it is important to mention that our feature vector must only contain

the highest class of all the detected applications, thereby characterizing the most

stringent QoS demands of the user as its behavior. For example, if our packet-level

or DPI analysis shows that both FTP and VoIP are being used simultaneously by

the user, the Application Class descriptor would only reflect the class of the most

sensitive application (in this case VoIP); therefore, the descriptor value would be ‘5’.

User Mobility

The User Mobility status could be inferred through GPS-based calculations or

any of the other methods mentioned in subsection 1.2.2. This parameter is the key

descriptor for enhancing the mobility experience for the end user. We propose a

binary descriptor; hence, characterizing the user as mobile if it shows the value ‘1’,

or as static if it shows the value ‘0’. Extending this definition to accommodate for

several levels of mobility (e.g., static, walking speed, vehicle speed, very high speed)

is straightforward if positive integer values are assumed for representing each level.

2.4.2 Clustering

The role of clustering in our framework

From a machine learning perspective, the feature vectors are simply patterns.

These patterns can be divided into a set S = {1, ..., K} of K groups of similar

characteristics or clusters, based on some measure of similarity. In our framework,

these resulting clusters represent different cognitive states the terminal device can be

in. Note that these states are derived from the past data observed by the terminal

device. Thus, the proposed approach builds a system model relying on the multi-

parametric context information contained in the feature vectors.
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This idea of multi-parameter cognition (based on unsupervised machine learning

techniques) for modeling and data representation is not new [14]. Zorzi et al. indi-

cate that “... when applied to the real-world problems, unsupervised learning can

exploit the huge amount of data that comes without any label to build rich inter-

nal representations [of the sensory world]” and relate this idea with the notion of

generative models and representation learning [13]. Surprisingly, to the best of our

knowledge, this approach, however, had not yet been applied in the context of the

user association problem.

In our framework, we use the X-means algorithm to generate the cognitive states.

X-means is a clustering algorithm with relatively low complexity that, in addition to

classifying data into a set of clusters, attempts to estimate de number of clusters K

from the data itself. In our proposed solution, X-means runs off-line, utilizing the

training feature vectors collected from all the different RATs. We have observed in

our tests with X-means, that under certain conditions, the resulting state space S is

clearly segmented into subsets of clusters, each associated with a particular RAT, as

illustrated in Fig. 2.4. This reveals an effective characterization of distinct cognitive

states. In other words, if we assume that there are only 3 RATs available (see Fig.

2.2), without loss of generality, we may formalize our definition of a cognitive state

s as follows:

s ∈ S = {s(A)
1 , · · · , s(A)

K1
, s

(B)
1 , · · · , s(B)

K2
, s

(C)
1 , · · · , s(C)

K3
},

where K1 +K2 +K3 = K is the total number of cognitive states, and each element in

the set S represents a cluster of feature vectors associated with one of the available

RATs (in this case, A, B, or C).
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Figure 2.4: The output of X-means is a state space with clearly differentiated regions
corresponding to the different RATs observed. Each region may contain multiple
clusters (i.e., multiple cognitive states).

The X-means algorithm

X-means is a variation of the K-means clustering algorithm. Both algorithms

assume underlying spherical Gaussian likelihoods. For the K-means algorithm we

need to specify the desired number of clusters K in which the data would be divided,

while X-means attempts to estimate it, within a possible range of values, from the

data itself.

Assume that we have a sequence of N training feature vectors {xi}Ni=1 collected

by the terminal device from all the different RATs observed in the past. While ex-

plaining the X-means algorithm, we will drop momentarily the notation that reflects

the association of a cluster with a given RAT,

s ∈ S = {s(A)
1 , · · · , s(A)

K1
, s

(B)
1 , · · · , s(B)

K2
, s

(C)
1 , · · · , s(C)

K3
} from above, and use

s ∈ S = {s1, s2, ..., sK}, instead. Still, each element in the set S represents a cluster

of feature vectors, interpreted as a cognitive state. Let C = {µ1, µ2, ..., µK} denote a

set of centroid vectors with cardinality K. Each centroid vector µm ∈ C is associated
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to a particular cluster sm ∈ S for m ∈ {1, ..., K}.

The K-means algorithm tackles the clustering task as a minimization of the fol-

lowing distortion measure [35], the distance of each feature vector xi assigned to a

cluster sm from its associated centroid vector µm:

J(r, C) :=
1

2

N∑
i=1

K∑
m=1

rij||xi − µm||2,

where r = {rij} and rij is an indicator, which is 1 if, and only if, xi is assigned to

cluster sm; and, || · ||2 denotes squared Euclidian distance.

This joint minimization of J with respect to r and C is performed in a two-step

process (see Algorithm 1): (1) Each vector xi is assigned to the cluster sm with the

closest associated centroid vector µm. (2) Each centroid vector µm is recomputed

based on the feature vectors assigned to the associated cluster sm in the previous

step. The algorithm iterates until the cluster assignments or the centroid locations

do not change significantly.

The X-means algorithm deals with two problems simultaneously: (1) It needs to

figure the right number of clusters and (2) classify the observations to the different

clusters. “The X-means algorithm treats the problem of unknown number of clusters

as a model selection problem” [36] because the collected feature vectors can be seen

as generated by a given unknown model with K parameters. In general, the model

selection problem is to choose the model that better explains the given data while

avoiding overfitting. Different criterion can be used to manage this tradeoff. The

most widely used criteria include the “Akaike information criterion” (AIC) and the

“Bayesian information criterion” (BIC). The original X-means algorithm [37] makes

use of the BIC [38]. The interested reader is referred to our sources for an extensive
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discussion. For the second problem, the X-means algorithm relies on the K-means

algorithm.

X-means will try to estimate the number of clusters K within the range

Kmin ≤ K ≤ Kmax, where the values Kmin, Kmax ∈ {1, 2, ..., N}, need to be specified

by the user. In each iteration the X-means runs the K-means for a given number of

clusters. Next, it splits each of the clusters into two subclusters and runs the K-means

again with K = 2 within the region of each parent cluster. Then, it compares if there

was any improvement in the model by making the new partitioning. In the case(s)

in which there was no improvement by partitioning, the parent cluster is preserved.

Otherwise, the value of K is updated. If the current number of clusters K > Kmax

or the cluster assignment did not change significantly from the last iteration, the

algorithm will stop. Detailed pseudo-code can be found in Algorithm 1.
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Algorithm 1 X-means algorithm

1: procedure K-means algorithm

2: Initialize the cluster centroids µ1, µ2, ..., µK to random values.

3: for m = 1, ..., K do

4: Assign xi to cluster sm̄ if m̄ = argmin
m
||xi − µm||2

5: end for

6: for m = 1, ..., K do

7: Set centroid µm as a sample approximation: µm = 1
|sm|

∑
xεsm

xi, where |sm|

denotes the cardinality of the cluster sm.

8: end for

9: if convergence condition is not satisfied then

10: Go to step (3).

11: else

12: Stop.

13: end if

14: end procedure

15:

16: Define Kmin and Kmax.

17: Initialize K = Kmin

18: Set K̂ = K.

19: Run K-means algorithm procedure for current value of K.

20: for m = 1, ..., K do

21: Replace the centroid µm by two centroids µm(1)
and µm(2)

by moving the original

centroid µm along a random vector proportionally to the cluster size.

22: Run K-means algorithm with K = 2 over the cluster sm.

23: Replace or retain the parent centroid based on the model selection criterion (e.g.,

AIC or BIC).

24: end for

25: Update K̂ according to the decisions to replace or retain the parent centroids.

26: if convergence condition is not satisfied and K̂ ≤ Kmax then

27: Set K = K̂.

28: Go to step (19).

29: else

30: Stop.

31: end if
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2.5 Detecting the Cognitive States

2.5.1 The role of supervised classification

in our framework

At time t, each device must determine the best RAT association based on an

observed feature vector xt. Although there exist many supervised classification tech-

niques to classify a new feature vector xt into one of the cognitive states generated by

the X-means algorithm in the previous section, we advocate for the use of possibly

the simplest approach, the k-Nearest Neighbors (kNN) algorithm.

As depicted in Fig. 2.1, in our proposed approach, the training vectors and classes

are supplied by the clustering stage preceeding the kNN classifier. Let yt be a tuple

of feature vectors collected at decision time t by the terminal device:

yt := [x
(A)
t ,x

(B)
t , · · · ]T ,

where x
(·)
t denotes a feature vector collected at time t by the terminal device, asso-

ciated to an available RAT.

The classification rule f : x
(·)
t → s(·) ∈ S, is a deterministic function, that maps

each feature vector in yt to a cognitive state (i.e., the clusters). Hence, the output

of the classifier is essentially the set of possible cognitive states the device may reach

at the next time instant.
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2.5.2 The k-Nearest Neighbors algorithm

Supervised machine learning techniques can be used to build classifiers that use

examples properly labeled by a “supervisor” as ground truth. Based on these ex-

amples, the classifier infers a decision rule to classify a new feature vector. Some

well-known supervised learning classifiers found in literature are Support Vector Ma-

chines (SVM), Multilayered Feed-forward Artificial Neural Networks and Decision

Trees [13,30].

The kNN rule is a simple supervised learning algorithm that assigns the new

feature vector xt to the m-th class, where m ∈ {1, ..., K}, to which the majority of

the k closest training feature vector(s) belong.

According to [39], the performance of this algorithm is somewhat surprising, even

in its most basic form. For the case when k = 1, as the amount of training vectors N

tends to infinity, it is possible to lower bound its performance to twice the error rate of

the Optimal Bayesian classifier: “Using only random labeled examples but knowing

nothing about the underlying distributions, we can (in the limit) achieve an error

rate no worse than twice the error rate that could be achieved by knowing everything

about the probability distributions. Moreover, we can do this with an extremely

simple rule that bases its decision on just the nearest neighbor to the feature vector

we wish to classify.” As the value of k grows, however, there is no guarantee that the

performance will be better. The result will depend on the underlying distributions.

The authors suggest a rule of thumb for implementation: by choosing k = h(N), such

that h(N)
N→∞−−−→∞ and h(N)

N

N→∞−−−→ 0 (e.g., choosing h(N) =
√
N), the performance

of the kNN classifier approaches that of the Bayesian decision rule.
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2.6 Machine Learning based

User Association Policy

2.6.1 States and actions.

We may assume that the terminal device is able to recognize the cognitive state

that corresponds to the currently active RAT association out of all computed classifier

decisions from the second stage of our framework (see subsection 2.5.1) and denote

it by st ∈ S. Let At denote the set of actions available to the device at time t, where

actions at ∈ At are identified as the available RATs. Choosing an action implies

enforcing standard-specific procedures (i.e., network entry, handover, etc.) necessary

for the new association. Notice that in our framework, the set of states reachable

by the device at time t + 1, denoted by St+1, depends on the chosen action at time

t. Continuing with the 3-RAT example of Figs. 2.2 and 2.4, assume that the state

of the terminal at time t is st = s
(A)
2 and the available action set is At = {A,B,C}.

Then,

if at = A, then St+1 = {s(A)
1 , s

(A)
2 , · · · , s(A)

K1
}

if at = B, then St+1 = {s(B)
1 , s

(B)
2 , · · · , s(B)

K2
}

if at = C, then St+1 = {s(C)
1 , s

(C)
2 , · · · , s(C)

K3
}.

Although it is not our main interest in this Thesis, we may argue that this idea

can be easily extended to traffic flow association within the context of simultaneous

multi-RAT connections. In that case, choosing an action would imply enforcing

routing decisions for IP flows.
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2.6.2 Reinforcement learning and the reward function.

Reinforcement learning refers to a category of unsupervised machine learning

techniques useful for learning an effective sequence of actions (i.e., a policy) from

experience in order to achieve a goal. In reinforcement learning, a decision-making

agent receives a reward (i.e., a feedback) based on the action it chooses. This reward

informs the agent of the “goodness” of the action. In selecting the next actions,

the agent tries to find a balance between exploration (choose untested actions) and

exploitation (selection of actions already identified as beneficial) in order to reach at

a globally optimal policy for maximizing the rewards.

Reinforcement learning has been proposed for achieving autonomous behavior in

cognitive architectures (cognitive radios and cognitive networks) and as an enabling

technology for Self-Organizing Networks [13,40,41]. Also, it has been claimed to be

robust against noise [42], to outperform heuristic algorithms [43] and to have accept-

able performance in multi-agent (decentralized) environments [40, 44].

A reward function defines the goal in a reinforcement learning problem. The

rewards determine the immediate desirability of the system states. Next we present

a list of network performance metrics that, in general, could be used for specifying a

reward function for learning a good RAT selection policy. We have categorized them

guided by the ideas present in [45]:
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• Quality of Service (QoS).

1. Downlink/Uplink Throughput (min/avg/max).

2. HTTP and RTP Round Trip Time (RTT) Delay.

3. Jitter.

4. TCP performance (retransmissions, duplicated ACKs, etc.).

5. Packet loss rate.

• Cost.

1. Amount of transmissions necessary to achieve a specific goal.

2. Cost of actions performed (e.g., cost of interrupting IP flows).

3. Signaling overhead.

4. Resource consumption (e.g., battery power)

5. Handover rate.

• Flexibility/Reaction Time.

1. Mode change time (i.e., time it takes to associate to a certain RAT).

• Failure avoidance (robustness).

1. Mean time before failure.

2. Attach success rate.

3. Application connection success rate.

4. Call drop rate.

5. Incomplete handover rate.

6. Packet retransmission rate (at both MAC and Transport layers).
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Since the user association problem requires multi-objective optimization that

jointly maximizes the user perceived average throughput and QoS while minimiz-

ing service interruptions due to mobility conditions, in our proposal we define the

reward function as

Rt(st−1, st, at−1) = rt · U(rt), (2.1)

and

rt = β · g(Avg Measured Throughput)− λ · h(HTTP RTP RTT Delay)

− ζ · c(Handovers Calldrops),

where:

(1) Rt(st−1, st, at−1) is the delayed reward function computed at instant t that eval-

uates the consequences of the action at−1 taken at instant t − 1 while in state st−1

that led to the current state st.

(2) U(·) is the Heaviside step function, for ensuring that Rt(·) is non-negative.

(3) β, λ and ζ are arbitrary coefficients defined on the interval [0,1].

(4) g(·), h(·) and c(·) are suitably defined non-decreasing reward and cost functions

of network performance metrics. g(·) and c(·) are also restricted to be non-negative.

By using actual measurements in computing these rewards, the optimization is

performed over a more accurate characterization of the network behavior.
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2.6.3 The Q-learning algorithm.

As shown in Fig. 2.1 and mentioned in our introduction, the third stage of our

proposed framework relies on the model generated in the first stage to learn a good

association policy. We propose the use of the Q-learning algorithm for this rein-

forcement learning stage. The Q-learning algorithm maintains a table (known as

the Q-table) of values that represent a quantification of the goodness of taking a

particular action when in a given state. Each table entry, Q(st; at) is associated with

a state-action pair, where st ∈ S and at ∈ At.

In our case, each Q-value is a measure of “quality” of switching the currently ac-

tive RAT association to either a different RAT or keeping it unchanged. Note that,

provided we defined the states as multi-parametric representations, the Q-Learning

algorithm decisions are inherently context-aware.

The Q-values are updated as:

Q(st−1, at−1)←(1− α)Q(st−1, at−1) + α[Rt(st−1, st, at−1) + γ max
at

Q(st, at)] (2.2)

where:

(1) Q(st−1, at−1) denotes the Q-table entry defined by taking action at−1 while being

at state st−1 at decision instant t− 1.

(2) α : 0 < α < 1 is called the learning rate.

(3) γ : 0 ≤ γ < 1 is called the discount factor.
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Once the Q-table is learned, the actions are selected according to:

a∗t =


argmax

at

Q(st, at) with probability 1− ε

P (At) with probability ε

, (2.3)

where

(1) ε : 0 ≤ ε ≤ 1 is called the exploration rate.

(2) P (At) is some probability distribution over the set of actions At defined using

heuristics for exploration purposes.

2.6.4 A modified Q-learning for learning afterstate value

functions.

The Q-value update equation (2.2) updates state-action pairs in order to approx-

imate an optimal action-value function. However, in our research we also explored

the strategy of modifying the Q-learning algorithm in order to learn afterstate-value

functions. Here, we adopt the notion of afterstates coined by Sutton and Barto

in [46]. An afterstate reflects the system conditions immediately after the agent has

made a decision. This may be different from the conventional state, co-produced

by underlying random processes, observed at the next decision instant. “Afterstates

are useful when we have knowledge of an initial part of the environment’s dynamics

but not necessarily of the full dynamics. For example, in games we typically know

the immediate effects of our moves. We know for each possible chess move what the

resulting position will be, but not how our opponent will reply” [46]. Afterstate value

functions take advantage of this kind of knowledge and may produce more efficient

learning.
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In our case, an afterstate would be defined as the cognitive state a terminal device

would be in immediately after making a RAT association decision. Notice that this

may be different from the cognitive state reached by the device in the next decision

interval. The latter, although associated to the same RAT as the afterstate, will also

depend on the environment dynamics. Let ŝt+1 ∈ S denote the afterstate reached

immediately as a consequence of making decision at at decision interval t. We may

consider the afterstate ŝt+1 as an estimation of the cognitive state st+1 that will be

observed at the next decision instant t+ 1.

In our proposed framework, at every decision interval t, the output of the kNN

classifier maps each feature vector xt in the observation yt to a cognitive state s(·)

(refer to Fig. 2.1 and to subsection 2.5.1). Let Ŝt ⊂ S denote the set resulting

from these mappings containing the candidate afterstates. The actual afterstate will

depend on the chosen action at each decision instant t. Figure 2.5 illustrates the

elements of the Decision Process considered in the present discussion for a single

decision interval.

Figure 2.5: Elements of the Decision Process considering an observation yt and an
afterstate ŝt+1.
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Each Q-table entry in this modified version of Q-learning is, thus, defined as a

state-afterstate pair. The intention behind this approach is to take advantage of

the multi-parametric context embedded in both the state and afterstate information

for optimizing the decisions. In other words, our Reinforcement learning mechanism

may avoid selecting a RAT that is predicted to provide low rewards if it is able to

estimate its future state when making the association decisions. This approach may

provide performance gains over the conventional Q-learning algorithm.

In this case, the Q-table entries are updated as:

Q(st−1, ŝt)←(1− α)Q(st−1, ŝt) + α[Rt(st−1, st, at−1) + γ max
ŝ

Q(st, ŝ)],

where Q(st−1, ŝt) denotes the Q-table entry in the modified version of Q-learning,

defined by reaching the afterstate ŝt after taking action at−1 while being at state st−1

at decision instant t− 1.

And, the actions are selected as follows:

a∗t =


argmax

at

Q(st, ŝt+1(at)) with probability 1− ε

P (At) with probability ε

,

where the notation ŝt+1(at) emphasizes the afterstate as a function of an available

action at at time t.

We expect that, as long as the afterstates ŝt+1 are a good estimation of the future

states st+1, this modified version may provide better performance than the regular

Q-learning presented in the previous subsection. The accuracy of the estimation will

depend on how fast the network conditions and user behavior might change and on

the amount of cognitive states learned for every RAT.
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Chapter 3

Clustering simulations

3.1 Introduction

Clustering is the means by which, we propose, a multi-parametric system state

model can be created cognitively in our framework. The terminal device builds such

a model based on its particular observations. The clustering operation generates two

important outputs:

1. A set S of clusters of feature vectors observed in the past. As explained in the

previous chapter, this set is used in the reinforcement learning stage as the set

of cognitive states.

2. A set C of cluster centroids. The centroids are a practical (in terms of a reduced

cardinality compared to the set of observations) and meaningful representations

of the cognitive states. This set of cluster centroids has tremendous relevance

for our analysis in this chapter. As we will see, the location of the centroids

allows us to evaluate the performance of the clustering operation according to

the needs of our proposed framework.
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This chapter presents our testing procedure and observations of the X-means clus-

tering algorithm using simulated data for our proposed solution. We implemented

K-means and X-means in MATLAB using squared Euclidian distance as a distance

measure. The Bayesian Information Criterion (BIC) [38] was chosen as the model

selection criterion for X-means.

A detailed report on our initial executions of the X-means algorithm using 6-

dimensional data vectors has not been included in this Chapter. However, the re-

sults demonstrated that fine-tuning was necessary. Indeed, we are working on a hard

classification problem in which using all features simultaneously without any adjust-

ment of the data produced misclassification. Thus, we decided to reformulate our

testing methodology: We studied and tested the clustering of the available data of

each feature separately, adjusting parameters to optimize the individual outcomes,

as necessary. After acceptable results were obtained, we proceeded by increasing the

dimensionality of the data points by combining features, and continued testing. The

adjustable parameters of the K-means and X-means algorithms are: Kmin, the initial

number of clusters; Kmax, the maximum number of clusters allowed; and εK and εX ,

the convergence tolerances for K-means and X-means, respectively. For all our tests

we have configured εK = εX = 0.001.

The following sections present the characteristics of the data used for testing

and discuss the results of one-dimensional, two-dimensional and three-dimensional

clustering operations by combining several descriptors of our proposed feature vec-

tors. The test reports have been organized chronologically and the adjustments of

parameters at each stage of our tests has been commented.
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3.2 Testing Data Set

For our tests we only consider 5 out of the 6 proposed descriptors for our fea-

ture vectors. Our testing data set contains a total of 42,579 samples of DL SINR

measurements, associated to different Peer IDs, acquired from an operational LTE

network. The data for the other features was simulated or derived as follows:

1. Application Class: This data was simulated using a 7-sided coin flip in con-

formity with the distribution of protocols presented in [47] and then classified

according to the scheme proposed in the previous chapter.

2. BS Load: This data was simulated assuming uniform distribution over the set

{10, 11, ..., 90}.

3. User Mobility: Based on the GPS coordinates associated with the DL SINR

measurements, we were able to derive the speed at which the device was moving

and assigned the state ‘1’ to a sample that was taken while moving at at least

10 km/h, and the state ‘0’, otherwise.

The individual distribution of the DL SINR, BS Load, Application Class and

User Mobility data are showed in Fig. 3.1 for different values of sample size N . It is

important to mention that, for N = {1, ..., 1173}, the samples are associated with a

single Peer ID.
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(a) DL SINR (b) BS Load

(c) Application Class (d) User Mobility (based on GPS data)

Figure 3.1: Distribution of the Testing Data Set for N = 300, 500, 1173, 42579.
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3.3 One-dimensional clustering

In this section we consider the clustering of DL SINR, BS Load and User Mobil-

ity data individually. We evaluate the output of X-means visually. Unless otherwise

specified, the location of the centroids over the original data are shown in the sub-

figure (a), while in subfigure (b), colors are used for displaying the data according

to their associated clusters.

3.3.1 Downlink SINR data clustering

Our first step was to verify that a correct clustering was taking place considering

a single descriptor from our feature vectors, the DL SINR. In all the experiments

of the present subsection we considered Kmin = 1. Figure 3.2 shows a visualization

the output of the X-means algorithm. From Fig. 3.3 we observe that a simple

scaling does not affect the clustering results. However, the clustering results changed

considerably when increasing the sample size. As verified in Fig. 3.4, by accounting

for 500 samples instead of 300, X-means determined that 15 clusters were present,

instead of 4.
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(a) Centroids (b) Clusters

Figure 3.2: Clustering of DL SINR values for Kmax = 20 considering N = 300
samples.

(a) Centroids (b) Clusters

Figure 3.3: Clustering of DL SINR values scaled by a factor of 0.1 for Kmax = 20
considering N = 300 samples.
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(a) Centroids (b) Clusters

Figure 3.4: Clustering of DL SINR values for Kmax = 20 considering N = 500
samples.

3.3.2 BS Load data clustering

We had to set at least Kmin = 2 to obtain multiple clusters at the output of the

X-means. This is shown in Figs. 3.5 and 3.6.
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(a) Centroids (b) Clusters

Figure 3.5: Clustering of BS Load values for Kmin = 1, Kmax = 20 considering
N = 300 samples.

(a) Centroids (b) Clusters

Figure 3.6: Clustering of BS Load values for Kmin = 2, Kmax = 20 considering
N = 300 samples.
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Similar to the DL SINR case, scaling does not affect significantly the output of

the X-means algorithm:

(a) Centroids (b) Clusters

Figure 3.7: Clustering of BS Load values scaled by a factor of 0.1 for Kmin = 2,
Kmax = 20 considering N = 300 samples.
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3.3.3 User Mobility data clustering

As expected, this is a trivial case for the clustering algorithm.

(a) Centroids (b) Clusters

Figure 3.8: Clustering of User Mobility values for Kmin = 1, Kmax = 20 considering
N = 300 samples.

3.4 Bi-dimensional data clustering

Our next step was, then, to observe the results of clustering bi-dimensional vectors

in which we combined each of the descriptors analyzed in the previous section with

the Application Class data. Also, the interesting cases of BS Load vs. DL SINR and

Peer ID vs. User Mobility were considered.
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3.4.1 Downlink SINR vs. Application Class data clustering

Our results, shown in Fig. 3.9, demonstrate that the DL SINR values have a

more prominent influence in the location of the centroids. Hence, the vectors are

grouped along the DL SINR values. Figure 3.10 shows how adjusting the parameters

Kmin and Kmax provides better results concerning the centroid locations. However,

the best output observed required applying scaling to the DL SINR values. This

simple operation enhanced the results significantly, even for low values of Kmin and

Kmax, as depicted in Fig. 3.11.

(a) Centroids (b) Clusters

Figure 3.9: Clustering of feature vectors formed by DL SINR and Application Class
data for Kmin = 1, Kmax = 20 considering N = 300 samples.
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(a) Centroid locations for Kmin = 6,
Kmax = 20

(b) Centroid locations for Kmin = 30,
Kmax = 40

Figure 3.10: Clustering of feature vectors formed by DL SINR and Application Class
data considering N = 300 samples and different values of Kmin and Kmax.

(a) Centroids (b) Clusters

Figure 3.11: Clustering of feature vectors formed by DL SINR and Application Class
data for Kmin = 6, Kmax = 20 considering N = 300 samples. The DL SINR values
have been scaled by a factor of 0.1
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3.4.2 BS Load vs. Application Class data clustering

When combining the BS Load values with the Application Class values we obtain

a very similar behavior to that the immediately previous subsection. The BS Load

values have a more prominent influence in the location of the centroids (Fig. 3.12).

If we apply the same technique of scaling the BS Load values, as we did with the

DL SINR values, we visualize similar improvements in the output of the X-means

algorithm. This is evident in Fig. 3.13 where the same values are adopted for the

parameters Kmin and Kmax and although the resulting amount of clusters generated

is similar when X-means converges (i.e., 41 and 39, respectively), the classification

is superior in the case when the BS Load values are scaled.

(a) Centroids (b) Clusters

Figure 3.12: Clustering of feature vectors formed by BS Load and Application Class
data for Kmin = 2, Kmax = 20 considering N = 300 samples.
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(a) Centroid locations for Kmin = 6,
Kmax = 50

(b) Centroid locations for Kmin = 6,
Kmax = 50. The BS Load values have been
scaled by a factor of 0.1

Figure 3.13: Clustering of feature vectors formed by BS Load and Application Class
data considering N = 300 samples.
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3.4.3 User Mobility vs. Application Class data clustering

The results here were very straightforward; however, we needed to set at least

Kmin = 2 to obtain more than a single cluster at the output of X-means.

(a) Centroids (b) Clusters

Figure 3.14: Clustering of feature vectors formed by User Mobility and Application
Class data for Kmin = 2, Kmax = 20 considering N = 500 samples.
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3.4.4 BS Load vs. Downlink SINR data clustering

Using the scaled version of the data of both descriptors offered appreciably good

results. Fig. 3.15 is very illustrative of how out of 300 observations from a single

base station, by means of clustering, we have obtained 41 representative points of

combinations of radio link quality and congestion levels that can be recognized by

our framework as cognitive states. Each of this 41 regions of the space spanned by

this two descriptors can be associated to different expected throughput capacities.

(a) Centroids (b) Clusters

Figure 3.15: Clustering feature vectors formed by DL SINR and BS Load data for
Kmin = 6, Kmax = 50 considering N = 300 samples. The vectors are scaled by a
factor of 0.1
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3.4.5 Peer ID vs. User Mobility

This is another interesting experiment because it combines the descriptors with

the largest and lowest expected values. As is possible to confirm in Fig. 3.16, the

results are satisfactory for reasonable values of Peer ID.

(a) Peer ID taking values from the set
{169,170}

(b) Peer ID taking values from the set
{2,1700}

Figure 3.16: Clustering of feature vectors formed by Peer ID and User Mobility using
Kmin = 1, Kmax = 20 considering 300 samples from each Peer ID.
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3.5 Three-dimensional data clustering

3.5.1 Downlink SINR vs. Application Class vs. User Mo-

bility

Figure 3.17 displays reasonably good classification results of X-means obtained

by generating only 48 clusters.

(a) Centroids (b) Clusters

Figure 3.17: Clustering feature vectors formed by DL SINR, Application Class and
User Mobility data for Kmin = 6, Kmax = 50 considering N = 300 samples. The DL
SINR values have been scaled by a factor of 0.1.
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3.5.2 Peer ID vs. Downlink SINR vs. BS Load

This case is very meaningful because not it illustrates how different combina-

tions of BS Load and DL SINR values can represent different states across distinct

network connections. Figures 3.18 and 3.19 indicate that X-means was able to sat-

isfactorily group 600 data points associated with 2 different Peer IDs in 47 clusters,

and 1200 data points associated with 4 different Peer IDs in 118 clusters, respectively.

(a) Centroids (b) Clusters

Figure 3.18: Clustering of feature vectors formed by Peer ID, DL SINR and BS Load
data for Kmin = 6, Kmax = 50 considering 300 samples from Peer ID 169 and 300
samples from Peer ID 170. Both the SINR and BS Load values have been scaled by
a factor of 0.1.
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(a) Centroids (b) Centroids (rotated view)

(c) Clusters

Figure 3.19: Clustering of feature vectors formed by Peer ID, DL SINR and BS Load
data for Kmin = 36, Kmax = 138 considering 1200 samples equally distributed from
Peer IDs 169, 170, 181 and 182. Both the DL SINR and BS Load values have been
scaled by a factor of 0.1.
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3.6 Chapter Summary

The results of our experiments with the X-means algorithm have been satisfactory

according to the needs of our proposed framework. Next, we briefly describe the most

important observations during our test procedure:

• The standardization of the feature vectors.

Much of the success of the experiments is due to the standardization of the

descriptor data of the feature vectors. Such standardization has enabled us to

have control over the characteristics of the input data and guarantees that only

two of our features are noisy (i.e., DL SINR and BS Load).

• The scaling of DL SINR and BS Load values.

The scaling of these parameters was decisive for confirming X-means as a useful

tool for our solution. The scaling factor of 0.1 worked well for our testing data

set as well as for all the simulations performed in the next chapter. Future re-

search might indicate that this value is not suitable for real life implementation

and require other rules of thumb.

• The values of Kmin and Kmax. Recommendations:

(1) It is not a good idea to start with Kmin = 1. In some occasions, provided

the distribution of the data, X-means would not split this original cluster, pro-

ducing unsatisfactory results.

(2) As a general principle for our proposal, it is desirable to reduce the amount

of clusters at the output of X-means. Empirically, we have noticed that the

resulting number of clusters K is a non-decreasing function of Kmax. Hence,

choosing this parameter must be done carefully.

Let dZ denote the set of descriptors in our feature vectors defined to contain

non-negative integer values, according to our specification (i.e., Tier Class, Peer
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ID, Application Class, User Mobility). We suggest to search for low values for

Kmin and Kmax through the following exhaustive search algorithm:

Algorithm 2 Exhaustive search method for choosing values for Kmin and Kmax

1: Initialize Flag = 0

2: Initialize Kmin = 10 and Kmax = N/10.

3: Run X-means algorithm procedure for current values of Kmin and Kmax.

4: for m = 1, ..., K do

5: if centroid descriptor values µm(dZ) /∈ {0, 1, 2, ...} then

6: Set Flag = 1.

7: end if

8: end for

9: if Flag = 1 then

10: Set Flag = 0.

11: Increase Kmin = Kmin + α and Kmax = Kmax + β

12: Go to step (3).

13: else

14: Stop.

15: end if

In the pseudo-code in Algorithm 2, µm(dZ) denotes the set of values of the

descriptors dZ of the m-th centroid generated by the run of X-means in Step

(3), and β > α, for α, β ∈ N. We also have assumed that at least N = 100

feature vectors are being used for generating the clusters. This search method

increases the values of the parameters until all the clusters are assigned to

locations that satisfy our descriptor value specifications. This is the minimum

requirement for an acceptable classification in our framework. This exhaustive

search method has provided desired results in less than 20 iterations using

α = 5, β = 10 for our testing data set.
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Chapter 4

Reinforcement learning

simulations

4.1 Introduction

In this chapter, we present the results of MATLAB simulations that evaluate a

simplified version of our proposed framework for user association in a multi-agent

environment. The cognitive system models for each client node in our simulations

were created using 3-dimensional feature vectors formed by the descriptors Peer ID

(i.e., RAT index), downlink SINR, and the downlink Cell Load (i.e., an average of

radio resource utilization). An example is presented in Fig. 4.1, where each cluster

represents regions of combinations of DL SINR and Cell Load across two different

network attachment points.

The following section presents our initial approach for verifying that the Q-

learning algorithm was able to learn a good policy relying on the cognitive states

model and a suitable reward function. Then, we proceed to lay out general assump-
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(a) Centroids (b) Clusters

Figure 4.1: X-means clustering of feature vectors formed by Peer ID, DL INR and
BS Load, for Kmin = 12, Kmax = 66. 300 samples from Peer ID 169 and 300 samples
from Peer ID 170 were used. Both the SINR and BS Load values have been scaled
by a factor of 0.1.

tions and settings for our multi-agent (network) simulations. The remaining sections

of this chapter show results and evaluate the performance of both Q-learning-based

RAT selection approaches proposed in subsections 2.6.3 and 2.6.4, compared with

other decision mechanisms in network scenarios of increasing complexity.

4.2 Initial tests with Q-learning.

4.2.1 Learning a stationary policy.

Our very first approach was conditioning the input of the algorithm in order to

generate a stationary policy that was easy to predict. Therefore, for each instant

t, we considered only two test feature vectors in our observation yt = [x(170), x(169)].
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Here, x(170) = [7.8,−0.11, 170]T is a feature vector associated to the RAT 170, and

x(169) = [3.6, 2.17, 169]T is a feature vector associated to the RAT 169. This simulates

a situation in which two possible network attachment points are available at each

decision instant and the network conditions remain constant regardless of the termi-

nal’s association decision. The cognitive states of Fig. 4.1 were used for our tests.

The vectors x(170) and x(169) in yt were classified by the kNN algorithm in clusters 28

and 43, respectively. Hence, the possible states of the terminal are st ∈ S = {28, 43},

and the actions, at ∈ At = {169, 170}. The state dynamics representation of this

system is depicted in Fig. 4.2.

Figure 4.2: State dynamics of the system.

Let Tmaxat be the mapping of the SINR value contained in the test feature vector

of the current RAT association to the maximum theoretical throughput capacity

according to the LTE standard [48]. Let Lat be the BS Load value contained in this

feature vector as well. The rewards are computed as:

Rt(st−1, at−1) = β · g(Tmaxat , Lat) = β · (10− Lat) · Tmaxat , (4.1)

where β = 0.001 is chosen for convenience.
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Notice that states 28 and 43 have highly differentiated rewards because they

represent distant regions of the DL SINR-BS Load plane of RATs with similar ca-

pabilities (Fig. 4.3).

Figure 4.3: Highlighted location of clusters 28 and 43.

Therefore, an optimal policy that maximizes the rewards is a stationary policy

that always chooses at = 169, as suggested by our results. Table 4.1 shows the values

of the Q-table for the relevant entries, registered after the algorithm converged in the

162th iteration. Figure 4.4 compares the performance of the Q-Learning algorithm

with the maximum theoretical performance and with the performance of a decision

mechanism based on random actions.
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Table 4.1: Q-Table after convergence
States Actions

170 169
28 49.86 161.11
43 103.27 164.98

Figure 4.4: Q-learning averaged accumulated rewards compared with the maximum
possible rewards and random action rewards after 300 iterations. Q-learning was run
using ε = 0.3, α = 0.2, γ = 0.7, δ = 0.01.

4.2.2 Using the full cognitive model.

In this second stage we did not restrict the values of the observation as in the

previous stage; instead, a subset of 1000 feature vectors from our testing dataset was

used. In this case, the system dynamics are more complex. Not only the terminal

state st+1 is affected by the association action at, but also different feature vectors

from the test dataset associated with the same RAT simulate underlying random
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processes that may cause that st 6= st+1 without changing the current RAT associa-

tion. However, as verified in Fig. 4.5, with the proper tunning, Q-learning was able

to approximate the maximum possible rewards.

(a) Without convergence (b) With convergence

Figure 4.5: Q-learning averaged accumulated rewards compared with the maximum
possible rewards and random action rewards for 1000 iterations. The full 48-cognitive
state model was used. Q-learning was run using ε = 0.1 before convergence and ε = 0
after convergence, α = 0.3, γ = 0.7, δ = 0.01.

Our results indicated that the most important factor for fine-tuning Q-learning

for our testing dataset was the exploration rate ε. A reduction in the value of the

exploration rate produced a steady increase in the accumulated rewards (Fig. 4.6).

We did not observe major differences in the results when using different values of

discount factor γ or the step-size α. The latter is exemplified in Fig. 4.7.
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(a) Exploration rate ε = 0.5 (b) Exploration rate ε = 0.1

Figure 4.6: Q-learning averaged accumulated rewards compared with the maximum
possible rewards and random action rewards for 600 iterations. Q-learning was run
using α = 0.2, γ = 0.7, δ = 0.01 for different values of ε.

(a) Learning rate α = 0.4 (b) Learning rate α = 0.8

Figure 4.7: Q-learning averaged accumulated rewards compared with the maximum
possible rewards and random action rewards for 600 iterations. Q-learning was run
using ε = 0.1 before convergence and ε = 0 after convergence, γ = 0.7, δ = 0.01 for
different values of α.
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4.3 Multi-agent simulation set-up

Our simulation compares the network behavior of different user association mech-

anisms, namely, a random decision mechanism, the max-SINR rule and our proposed

framework, under common radio-frequency (RF) and node mobility conditions. We

restricted our implementation to the DL transmission and have assumed that there

is no interference. We have also taken for granted that any client node has access

to any serving node in the topology, which can be interpreted as each client node is

equipped with an appropriate network interface for accessing any RAT being offered.

4.3.1 Decision Mechanisms.

Three decision methods are compared in our simulation:

(1) Random decision mechanism: At each decision instant, each client node will

decide to associate with any of the available serving nodes based on a uniform prob-

ability distribution over the number of the available nodes.

(2) Max-SINR mechanism: The max-SINR rule associates a client node with the

serving node that provides the highest average Downlink SINR in its initial network

connection. For stability’s sake, this association does not change unless the average

Dowlink SINR related to the associated serving node drops below a certain threshold

dthres and the detected Downlink SINR of other available serving nodes surpass it

by a certain hysteresis value dhyst. In our implementation, the first time step is the

only one considered as the initial network connection.

(3) Q-learning-based decision mechanism: This is the mechanism that corresponds

to our proposed solution. We have analyzed both the conventional Q-learning, that

tries to learn an action-value function, and the modified version of Q-learning, that

tries to learn an afterstate-value function.
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4.3.2 SNR Calculation.

At each simulation time step, the SNRs of the client nodes relative to each serving

node are recomputed according to (4.2), using the parameters of tables 4.2 and 4.3:

SNRdB = PdBm − PL(d)dB −NdBm (4.2)

where, PdBm is the serving node transmit power in dBm, PL(d)dB is the path loss of

the wireless link in dB that depends on the distance d between the client node and

serving node, and NdBm denotes the client node Noise Floor in dBm.

The model adopted in our simulation for the mean path loss term in (4.2), log-

normal fading, is widely recommended in the literature [49–51] as a simple model

that captures the essence of signal propagation and large scale (or slow) fading caused

by blockages in the signal path for wireless channels:

PL(d)dB = Ls(d0)dB + 10nlog10(
d

d0

) +Xσ
dB, (4.3)

where:

(1) d0 is a known close reference distance in the far field of the transmitting antenna

in Km.

(2) Ls(d0)dB = 32.44+20log10(d0)+20log10(f) is the path loss (specifically, the free-

space loss) at a known reference distance d0 between the transmitter and receiver in

Km. using a carrier frequency f in MHz.

(3) n is a path-loss exponent obtained from empirical measurements.

(4) d is the distance between the transmitter and receiver in Km.

(5) Xσ
dB denotes a zero mean Gaussian random variable with variance units in dB.
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Table 4.2: Log-Normal Fading Propagation Model parameters
Parameters Macrocell Microcell Indoors
d0 (Km.) 1.0 0.1 0.001
n 5.1 4.0 3.0
σ (dB) 8.0 8.5 7.0
PdBm 40.0 30.0 23.0

Table 4.3: Radio Access Technology Parameters [52,53]
Parameters LTE FDD 10 MHz LTE FDD 20 MHz WiFi G WiFi B
Carrier Frequency (GHz) 1.8 (Band 3) 2.5 (Band 7) 2.4 2.4
NdBm -94 -92 -88 -94

4.3.3 Cell Load Calculation.

Let I and J denote the total number of client nodes and serving nodes in the

simulation, respectively. Note that, at each simulation time step, the decisions of

the i-th client node, for i ∈ {1, · · · , I} associated to the j-th serving node, for

j ∈ {1, · · · , J}, will affect its load. Let T reqi be the required throughput of the i-th

client node. Let Tmaxij be the mapping of SNR values to the maximum theoretical

throughput according to the LTE and Wi-Fi standards [48, 54]. Then, assume a

time-sharing scheduling mechanism that allocates to each connected client node a

time-slice according to the following proportion:

wij =
Tmaxij∑

i(j)
Tmaxij

, (4.4)

where,
∑
i(j)

denotes a summation over all the client nodes currently associated to the

j-th cell. This scheduling strategy favors the nodes of relatively higher SNR with

longer allocations. The average cell load Lj of the j-th cell is defined as
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Lj = E
[

T reqij

wij · Tmaxij

]
=
∑
i(j)

wij ·
[

T reqij

wij · Tmaxij

]
Lj =

∑
i(j)

T reqi

Tmaxij

. (4.5)

4.3.4 Computation of Rewards.

In our simulations, the individual rewards Ri
t obtained by the i-th client node

corresponding to each decision instant t, are computed using the following simplified

form of (2.1):

Ri
t(st−1, st, at−1) = β · g(T reqi , Lj), (4.6)

where β = 0.001 is chosen for convenience, and

g(T reqi , Lj) =

T
req
i if Lj ≤ 1.0

T reqi /Lj if Lj > 1.0
.

An analysis of our reward function allows us to predict the behavior of the sim-

ulation:
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1. Network simulation settings that do not generate congestion (i.e. < 100% load

values) in any of the available serving nodes using any of the decision mecha-

nisms will achieve the same performance (i.e., will obtain the same rewards).

We would expect that in such scenarios, under assumptions of low mobility of

the nodes, the max-SINR algorithm would achieve the overall most efficient

decisions in terms of lowest generated load.

2. We expect the rewards obtained by our proposed RAT selection mechanism

to be superior to the other mechanisms when congestion is generated by the

policies of all the decision mechanisms.

3. We expect that Q-learning will need higher number of iterations to converge

in scenarios of high mobility compared to scenarios of low mobility.

4. We expect that the Random Decision mechanism will outperform the max-

SINR algorithm as more serving nodes become available if we don’t penalize

the handover rate.

5. We expect the max-SINR algorithm to perform poorly in a HetNet environment

with congested macrocells.

6. We expect the conventional Q-learning to outperform the modified version

when the afterstates are a poor estimation of the future states and when kNN

misclassification occurs. For the modified version of Q-learning, classification

errors not only affect the states, but also the action set at each decision interval.

Otherwise, we expect the afterstates Q-learning to obtain at least the same

rewards than the conventional Q-learning.
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4.4 Multi-agent simulation results.

This section presents results corresponding to network simulations. In all cases

the client nodes were configured with high traffic rate requirements (i.e., T reqi = 40.0

Mbps). Besides from the aggregate rewards computed, the smoothed cell load gener-

ated by each decision mechanism is also presented. The cell load is calculated using

(4.6), and values higher than 1.0 have been truncated. The smoothing operation

is necessary because the cell load can be very noisy and difficult to interpret when

a large number of simulation time steps are used. To reduce the effects of these

fluctuations, we smooth the original cell load values using an averaging rectangular

sliding window of size W .

4.4.1 3 client nodes 2 serving nodes scenario.

In this case, our network consists of two LTE FDD macrocells using 10 MHz

carriers, and three client nodes. The location of the serving and client nodes at the

beginning of the simulation is depicted in Fig. 4.8. Figures 4.9 and 4.10 present

the corresponding results to experiments in which static and random walk-based

mobility models have been adopted, respectively. The Q-learning-based mechanisms

outperform both other decision methods by means of achieving a better load balanc-

ing. In terms of the rewards, the performance of the Q-learning-based mechanisms

is equivalent, obtaining 26% higher rewards than the random decision mechanism

and 45% higher rewards than the max-SINR rule for a network with low mobility.

These values decrease to 14% and 42%, respectively when mobility is present. The

modified version of Q-learning obtains the presented rewards with a fraction of the

RAT association changes of its counterpart; roughly, at least, 38% less association

changes per time step after convergence.
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Figure 4.8: Network Topology for 3 client nodes and 2 serving nodes scenario.
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.9: Simulation results for 3 static client nodes and 2 serving nodes sce-
nario. Showing normalized network rewards after all Q-tables have converged and
smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35 before
convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01. Max-SINR
parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.10: Simulation results for 3 mobile client nodes and 2 serving nodes sce-
nario. Showing normalized network rewards after all Q-tables have converged and
smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35 before
convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01. Max-SINR
parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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4.4.2 6 client nodes 2 serving nodes scenario.

For this scenario, we keep the two LTE FDD macrocells of the previous sce-

nario, but we configure six client nodes. The initial location of the serving and client

nodes is depicted in Fig. 4.11. Similar to the previous subsection, Figures 4.12 and

4.13 presents the corresponding results to experiments in which static and random

walk-based mobility models have been adopted, respectively. Again, in terms of

rewards, the Q-learning-based decisions achieve comparatively similar rewards and

outperform by 8% the random mechanism and by 13% the max-SINR method in a

network with low mobility. In high mobility, the proposed framework still has better

performance but by a smaller margin, namely 3% compared to the random decision

mechanism and 12% compared to the max-SINR. It is important to remark, never-

theless, that any of the Q-learning-based mechanisms in either of the experiments of

this topology register at least 34% less changes in the associations than the random

decision process. In this case, also, the modified version of Q-learning generates at

least 28% less overhead per time step after convergence than its counterpart.
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Figure 4.11: Network Topology for 6 client nodes and 2 serving nodes scenario.
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.12: Simulation results for 6 static client nodes and 2 serving nodes sce-
nario. Showing normalized network rewards after all Q-tables have converged and
smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35 before
convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01. Max-SINR
parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.13: Simulation results for 6 mobile client nodes and 2 serving nodes sce-
nario. Showing normalized network rewards after all Q-tables have converged and
smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35 before
convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01. Max-SINR
parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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4.4.3 10 client nodes 10 serving nodes scenario.

In this case, our setup is a small HetNet consisting of seven LTE FDD macro-

cells using 10 MHz carriers, three LTE FDD microcells using 20 MHz carriers, and

ten client nodes. The location of each node at the beggining of the simulation is

depicted in Fig. 4.14. Figure 4.15 presents the network behavior assuming static

client nodes, and Fig. 4.16, assuming a random walk-based mobility model. In the

first case, the Q-learning-based methods generated the highest differences observed

when compared with the alternative mechanisms during our tests. In between 47%-

64% higher rewards compared to the random decision mechanism, and in between

127%-154% higher rewards compared to the max-SINR rule. The numbers are more

moderate but equally reassuring for a network with high mobility. In between 33%-

38% higher than the random decision mechanism and in between 14%-20% higher

than the rewards obtained by the max-SINR decisions. Finally, in both experiments

the modified Q-learning obtains 10% more rewards than the conventional Q-learning

generating, at least, 43% less changes in the association decisions per time step after

convergence.
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Figure 4.14: Network Topology for 10 client nodes and 10 serving nodes scenario.
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.15: Simulation results for 10 static client nodes and 10 serving nodes sce-
nario. Showing normalized network rewards after all Q-tables have converged and
smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35 before
convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01. Max-SINR
parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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(a) Normalized network rewards after
convergence. Using conventional Q-
learning.

(b) Normalized network rewards after
convergence. Using modified version of
Q-learning.

(c) Smoothed Cell Load using W = 21.
Using conventional Q-learning.

(d) Smoothed Cell Load using W = 21.
Using modified version of Q-learning.

Figure 4.16: Simulation results for 10 mobile client nodes and 10 serving nodes
scenario. Showing normalized network rewards after all Q-tables have converged
and smoothed cell load per decision mechanism. Q-Learning parameters: ε = 0.35
before convergence and ε = 0.1 after convergence, α = 0.3, γ = 0.7, δ = 0.01.
Max-SINR parameters: dthresh = 10 dB and dhyst = 5 dB. kNN parameters: k = 3
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4.5 Chapter Summary

In this chapter we have presented the underlying theoretical background and im-

plementation details of a wireless network simulation in MATLAB. We have designed

it with the goal of effectively comparing the performance of our proposed solution

with other two user association mechanisms of interest.

Q-learning-based methods and kNN have proven to be useful at the task of han-

dling the cognitive model for learning good policies. Our proposed solution was

shown to be consistently effective in a multi-agent environment, in the presence of

congestion and varying RF conditions, at learning policies that obtain the highest

rewards from the three decision mechanisms analyzed.

Moreover, we compared the performance of the conventional Q-learning and a

modified version that tries to learn afterstate value-functions. We found that, al-

though both approaches are almost equivalent in terms of the rewards obtained, the

latter learns policies that are more stable and seems to be better suited for being

applied in more specific situations (e.g., larger networks, or networks with low mo-

bility). The tradeoff is increased complexity, extended convergence time and high

risk in performance degradation by classification errors.



100

Chapter 5

Conclusions and Future Work

In this Thesis we have proposed a distributed cognitive framework based on ma-

chine learning algorithms for the RAT association problem in 5G Hetnets. We have

justified the formulation of our framework with a discussion of the challenges of the

User Association Problem as seen in current literature. Our proposed framework

can learn simple state representations out of the terminal experience and user be-

havior, thus, reducing the complexity of the core network design requirements. Also,

it allows multi-objective optimization of the association decisions while incurring

minimal network overhead. Our simulation results, although based on a simplified

version of our propositions, showed the feasibility and benefits of our framework.

However, still there are many opportunities for continuing research.

An analysis of the fine-tunning of the reward function parameters to achieve the

expected improvement of network performance is necessary. A second step in this

direction would be a comprehensive assessment of the stability and fairness of the

proposed solution.
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It is desirable to extend the multi-agent simulations to more realistic scales,

topologies and user behaviors by, for example, using Poisson point process (PPP) to

model user and base station location and implementing the solution in a specialized

network simulator that might generate more realistic traffic patterns.

Also, developing methods that provide some degree of visibility and control to

mobile network operators (MNO) is a must, in order to implement our proposal in

a real network. A straightforward approach would be to integrate our solution with

servers like the ANDSF, and use the rules as guidelines that restrict the possible

actions set at each decision interval. Maybe this could be implemented using PUSH

messages in order to keep a reduced overhead.

Making the solution more robust by developing rules of thumb, and enhancing

or replacing the specific machine learning algorithms adopted for each module of the

framework, is also of interest. For example, implementing a classifier with higher

accuracy and versatility than the kNN would encourage the choice of the modified

Q-learning over the conventional Q-learning for mobile environments, with expected

improvement in stability. In the case of clustering, it is important to derive general

rules for the scaling of feature values to achieve the desired clustering. Moreover, the

use of pruning methods that make the solution robust in the presence of time-varying

probabilistic models would considerably increase the flexibility of the solution.

The definition of additional features for the feature vectors, that might be essen-

tial for future 5G networks and are still not foreseeable at the time of writing this

Thesis, also calls for exploration.
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Finally, the implementation of the framework in a physical terminal is the final

objective. Each device will present its own challenges and will require special adap-

tations of the solution. However, we understand that applying our framework to IP

flow association is already a possibility on multi-RAT capable terminals.
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