
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

1-31-2013

Agile load transportation systems using aerial
robots
Ivana Palunko

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Palunko, Ivana. "Agile load transportation systems using aerial robots." (2013). https://digitalrepository.unm.edu/ece_etds/198

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/198?utm_source=digitalrepository.unm.edu%2Fece_etds%2F198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

 , Chairperson

Ivana Palunko

Electrical and Computer Engineering

prof. Rafael Fierro

prof. Chaouki Abdallah

prof. Meeko Oishi

prof. Svetlana Poroseva

Agile Load Transportation Systems Using
Aerial Robots

by

Ivana Palunko

B.S., in Electrical Engineering, University of Zagreb, Croatia, 2005

M.S., in Electrical Engineering, University of Zagreb, Croatia, 2007

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctorate of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

December, 2012

c©2012, Ivana Palunko

iii

Dedication

To my parents Ljubica and Nikola.

iv

Acknowledgments

I am pleased that here I would be able to thank the people without whom this
dissertation would not have come to the end, in one way or another.

First and foremost, I would like to express my deepest gratitude to my advisor,
Prof. Rafael Fierro, for his friendly advice, patience, enthusiasm and encouragement
through the past four years. In addition, I would like to thank the members of my
Ph.D committee, Prof. Meeko Mitsuko K. Oishi, Prof. Svetlana Poroseva and Prof.
Chaouki T. Abdallah, for their time and helpful comments. I am also indebted to
Sandra Faust and Prof. Lydia Tapia for their expertise and fruitful discussions that
helped me improve Chapter 6.

This list would not be complete without mentioning Prof. Peter Dorato whose love
and passion for science was a great inspiration and motivation to continue through
the murky plains of research for all these years.

A special thanks goes to fellow students from the MARHES Lab: Domagoj Tolić,
Nicola Bezzo, Patricio Cruz and Dean Galarowicz. Thank you for begin there through
all the crashes and long hours of coding and tuning in the first steps of autonomous
flight. Also, thank you for your help in making things fly smoothly and for having
patience to stick with me through numerous repetitions.

Finally, I would like to thank all my friends and family for not giving up on me,
although I didn’t always have enough time for them in the last four years, and for
their love and support through this adventure.

v

Agile Load Transportation Systems Using
Aerial Robots

by

Ivana Palunko

B.S., in Electrical Engineering, University of Zagreb, Croatia, 2005

M.S., in Electrical Engineering, University of Zagreb, Croatia, 2007

Ph.D., Engineering, University of New Mexico, 2012

Abstract

In this dissertation, we address problems that can occur during load transport using

aerial robots, i.e., small scale quadrotors. First, detailed models of such transporta-

tion system are derived. These models include nonlinear models of a quadrotor, a

model of a quadrotor carrying a fixed load and a model of a quadrotor carrying a sus-

pended load. Second, the problem of quadrotor stabilization and trajectory tracking

with changes of the center of gravity of the transportation system is addressed. This

problem is solved using model reference adaptive control based on output feedback

linearization that compensates for dynamical changes in the center of gravity of the

quadrotor. The third problem we address is a problem of a swing-free transport of

suspended load using quadrotors. Flying with a suspended load can be a very chal-

lenging and sometimes hazardous task as the suspended load significantly alters the

flight characteristics of the quadrotor. In order to deal with suspended load flight,

we present a method based on dynamic programming which is a model based of-

fline method. The second investigated method we use is based on the Nelder-Mead

vi

algorithm which is an optimization technique used for nonlinear unconstrained opti-

mization problems. This method is model free and it can be used for offline or online

generation of the swing-free trajectories for the suspended load. Besides the swing-

free maneuvers with suspended load, load trajectory tracking is another problem we

solve in this dissertation. In order to solve this problem we use a Nelder-Mead based

algorithm. In addition, we use an online least square policy iteration algorithm. At

the end, we propose a high level algorithm for navigation in cluttered environments

considering a quadrotor with suspended load. Furthermore, distributed control of

multiple quadrotors with suspended load is addressed too. The proposed hierarchi-

cal architecture presented in this doctoral dissertation is an important step towards

developing the next generation of agile autonomous aerial vehicles. These control

algorithms enable quadrotors to display agile maneuvers while reconfiguring in real

time whenever a change in the center of gravity occurs. This enables a swing-free load

transport or trajectory tracking of the load in urban environments in a decentralized

fashion.

vii

Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Overview . 1

1.2 Problem statement and motivation 2

1.2.1 Unbalanced aerial vehicle . 3

1.2.2 Swing-free manipulation with the suspended load 4

1.2.3 Trajectory tracking with the suspended load 5

1.2.4 Load transportation in cluttered environments 6

1.2.5 Load transportation with multiple quadrotors 7

1.3 Overview of the methods used . 8

1.3.1 Feedback linearization . 8

1.3.2 Model reference adaptive control 8

viii

Contents

1.3.3 Dynamic programming . 9

1.3.4 Nelder-Mead algorithm . 11

1.3.5 Least square policy iteration 12

1.3.6 Binary consensus . 12

2 Modeling of the Quadrotor - Load System 17

2.1 Nonlinear model of a quadrotor . 18

2.1.1 Quadrotor dynamics . 20

2.1.2 Lagrange representation of the quadrotor model 22

2.2 Quadrotor with the fixed load . 24

2.3 Slung load model . 25

2.4 Conclusion . 28

3 Baseline attitude controller for quadrotor 29

3.1 Lead-Lag cascade baseline controller 30

3.2 Controller design using feedback linearization 31

3.3 Baseline self-tuning controller . 38

3.4 Conclusion . 39

4 The change in the center of gravity of the quadrotor 41

4.1 Analysis of the nonlinear model with respect to the center of gravity . 41

4.2 Adaptive control for the change in the center of gravity 43

ix

Contents

4.2.1 Simulation results . 47

4.3 Conclusion . 48

5 Trajectory generation for swing-free load transportation 54

5.1 Trajectory generation using input shaping 54

5.2 Swing-free trajectory generation using DP 55

5.2.1 Simulation Results . 59

5.2.2 Experimental results . 60

5.3 Swing-free trajectory generation using Taylor series 62

5.3.1 Function approximation using Taylor series 62

5.3.2 Nelder - Mead algorithm . 63

5.3.3 Learning the swing-free trajectory parameters 64

5.4 Conclusion . 66

6 Trajectory tracking with suspended load 83

6.1 Unconstrained Nelder-Mead algorithm 85

6.2 Least square policy iteration . 85

6.2.1 Simulation and experimental results 92

6.3 Conclusion . 96

7 Navigation in cluttered environments and distributed trajectory

tracking 103

x

Contents

7.1 Navigation in cluttered environments 103

7.2 Load transport using multiple quadrotors 106

7.3 Conclusion . 109

References 116

xi

List of Figures

1.1 Motivation for load transportation using aerial robots. 14

1.2 Representation of Euclidean space with obstacles and predefined way-

points. 15

1.3 Load transport using multiple quadrotors. 16

2.1 The coordinate frames used for deriving the model of the quadrotor. 19

2.2 Quadrotor carrying a fixed load. 24

2.3 Quadrotor carrying a suspended load. 26

3.1 Baseline controller for one axis. 31

3.2 MIMO Bode plot for quadrotor output feedback control using cascade

of PD controllers . 32

3.3 Trajectory and waypoint tracking using the cascade lead-lag controller. 33

3.4 Feedback linearization . 33

3.5 Phase portrait for a second order subsystem of the zero dynamics. . 37

3.6 Trajectory and waypoint tracking using the controller based on feed-

back linearization. 38

xii

List of Figures

3.7 Hybrid Self Tuning Controller block diagram 40

4.1 Eigenvalues of the Jacobians of the closed-loop system change with

respect to coordinates of CoG. 43

4.2 Eigenvalues of the Jacobians of the closed-loop system become stable

with different inertia. 44

4.3 Adaptive feedback linearization . 45

4.4 Failure of the linear output feedback control algorithm to stabilize

the quadrotor due to changes in CoG. 49

4.5 Failure of the feedback linearization algorithm to stabilize the quadro-

tor due to changes in CoG. 50

4.6 Performance of the adaptive controller used for stabilization of change

in CoG. 51

4.7 Adaptive algorithm used for tracking while compensating for dynamic

change in CoG. 52

4.8 Robustness of adaptive algorithm used for tracking while compensat-

ing for dynamic change in CoG. 53

5.1 Swing free using input shaping. 68

5.2 Robustness of input shaping with respect to unknown length of the

load. 69

5.3 Controller scheme with DP based trajectory builder. 69

5.4 Quadrotor trajectory tracking - simulation results. 70

xiii

List of Figures

5.5 Optimal and cubic trajectories with load displacement considering

one waypoint . 71

5.6 3D representation of trajectories considering multiple waypoints. . . 72

5.7 Optimal and cubic trajectories with load displacement considering

multiple waypoints. 73

5.8 3D representation of trajectories considering multiple waypoints with

obstacles. 74

5.9 Swing free using dynamic programming. 75

5.10 Robustness of dynamic programming with respect to unknown length

of the load. 76

5.11 Robustness of the proposed method considering the unmodeled dy-

namics of the quadrotor . 77

5.12 Experimental result for swing-free trajectory tracking 78

5.13 Experimental results for swing-free trajectory tracking. 79

5.14 Constraints on the function represented by Taylor polynomial. . . . 80

5.15 Block schemes for learning the coefficients of the Taylor approximat-

ing function. 81

5.16 Adaptive feedback linearization algorithm with swing-free trajectory

tracking. 82

6.1 Block schemes for learning the coefficients of the Taylor approximat-

ing function. 86

6.2 Load trajectory tracking using Nelder-Mead algorithm. 87

xiv

List of Figures

6.3 Block scheme for load trajectory tracking using LSPI. 92

6.4 Simulation results for online LSPI used for suspended load tracking

the straight line. 98

6.5 Simulation results for online LSPI used in multiple simulation trials. 99

6.6 Simulation results for load tracking of Lissajeou curve using online

LSPI. 100

6.7 Hummingbird quadrotor with a suspended load at MARHES Lab

University of New Mexico. 101

6.8 Experimental results using the trajectory generated in simulation us-

ing LSPI. 102

7.1 A Motivational case study: Representation of Eucledian space with

obstacles and predefined waypoints 105

7.2 3D and 2D representation of trajectories considering multiple way-

points with obstacles. 110

7.3 Trajectories considering multiple waypoints with obstacles - the swing

- free policy. 111

7.4 2D representation of trajectories considering multiple waypoints with

obstacles - a four case study. 112

7.5 Trajectories considering multiple waypoints with obstacles - a four

case study. 113

7.6 Suspended load transport using four quadrotors. 114

7.7 Binary consensus protocol for distributed swing-free trajectory tracking.115

xv

List of Tables

5.1 Total power Ptot of the load displacement signals - experimental results 62

xvi

Chapter 1

Introduction

1.1 Overview

Unmanned aerial vehicles are increasingly being considered as means of performing

complex functions or assisting humans in carrying out dangerous missions within dy-

namic environments. Other possible applications include search and rescue, disaster

relief operations, environmental monitoring, wireless surveillance networks, and co-

operative manipulation. Creating these types of autonomous vehicles places severe

demands on the design of control schemes that can adapt to different scenarios and

possible changes of vehicle dynamics.

One specific type of aerial vehicle, the quadrotor, has the capability not only of

taking off and landing in a very limited area, but also of carrying more weight than

other aerial platforms due to its four propellers. Several research groups [1],[2],[3],[4]

have developed notable applications and experiments using multiple quadrotor UAVs

as part of their robotic platforms. Existing results range from basic hovering [5] and

trajectory tracking [6], to formation control, [7] surveillance [8], aggressive maneu-

vering [9] and aerobatic flips [10].

1

Chapter 1. Introduction

Once the functionality of the UAVs advances from simple environmental sensing

to modification or manipulation of their external environment, a wide and novel set

of practical applications and challenges appear in the aerial robotics research field. In

fact, for small-size UAVs, a variety of examples of interacting with external objects

have been introduced recently. For instance, individual or cooperative transport of

suspended load [11, 12, 13], grasping and manipulating [14, 15], applying force to

a wall [16] and building structures [17] are examples where aerial robots interact

with their surroundings. An interesting approach that emulates mobile manipulation

using a UAV equipped with dexterous arms is introduced in [18]. Furthermore, an

innovate idea considers the use of a network of quadrotors to deliver medicines in

remote villages [19]. In this doctoral dissertation we are concerned with the chal-

lenging problem of using quadrotors to transport and manipulate loads safely and

efficiently. Aerial manipulation is extremely important in emergency rescue missions,

as well as for military and industrial purposes. For example, safe aerial transport

of a victim from a dangerous area is vital in an emergency response. In addition,

delivering equipment and supplies to inaccessible places is commonly achieved by

employing aerial transportation. Another application is landmine detection with a

sensor suspended from a cable as depicted on Figure 1.1.

1.2 Problem statement and motivation

In this section we present five problems that we address in this dissertation. These

problems are described and defined in next subsections and are all part of a load

transportation system using aerial robots.

2

Chapter 1. Introduction

1.2.1 Unbalanced aerial vehicle

In the first part of this doctoral dissertation we focus on the problems that can alter

the center of gravity of the quadrotor. The coordinates of the center of gravity of

the quadrotor are given by a vector rG = [xG yG zG]T measured in {A} which

represents the distance from the origin of {A} to the quadrotor’s center of gravity as

shown in Figure 2.1. Usually, small scale quadrotor are modeled as a rigid body and

the vector rG is set to zero. This means that the vehicle is balanced, i.e., the center

of gravity coincides with the origin of the moving aircraft-fixed coordinate system

{A}. However, there are at least three cases in which this assumption fails and we

address them here:

• Change in CoG of the quadrotor (Figure 2.1). The change in the center of

gravity can occur if, for example, the battery slips from the quadrotor body

frame or one of the sensors, such as cameras, laser or GPS, detaches which

unbalances the quadrotor.

• Change in CoG of the load attached to the quadrotor by a rigid link (Figure

2.2). By a rigid link we mean any type of gripper firmly attached to the body

of a quadrotor. The change in the CoG of the load can occur if the load is not

gripped at the point of CoG but somewhere on the side. This can happen if

the gripper missed the exact gripping point of the load slipped due to flight

conditions.

• Change in the position of suspension point of the suspended load (Figure 2.3).

The change in the position of the suspension point of the load ρH can occur

when, for example, one or more of the suspension cables snaps in the case of

multiple-point suspension load.

We state the change in the center of gravity formally in the following definition.

3

Chapter 1. Introduction

Definition 1 (Change in the center of gravity). Given a system in the form

q̇ = f(q, rG) + g(q,u, rG), (1.1)

where q ∈ Rn is the system state, f(.) ∈ Rn is the vector of system dynamics, g(.) ∈ Rn

is the input vector, u ∈ Rm, n is the number of the states, m is the number of inputs

and rG ∈ R3 is the vector representing the distance from the origin of the reference

frame to the center of gravity of the rigid body. We say the system given by (1.1) is

unbalanced if

rG = 0→ Re(eig(
∂f(q, rG)

∂q
|q0)) ≤ 0,∀t ∈ R (1.2)

and

rG 6= 0→ Re(eig(
∂f(q, rG)

∂q
|q0)) > 0, ∀t ∈ R (1.3)

where Re(.) denotes the real part of the complex number, eig(.) denotes the set of

eigenvalues of the Jacobian matrix (∂f(q,rG)
∂q
|q0) of (1.1) in equilibrium point q0.

Since in all three cases the change in rG, ρL and ρH produces additional forces

and torques acting on the quadrotor we can observe these three cases and treat them

as a change in a single vector rG. In Chapter 4 we analyze the stability of the system

with respect to the change in rG and we propose a method based on adaptive control

to solve this problem.

1.2.2 Swing-free manipulation with the suspended load

The suspended load exerts forces and torques on the quadrotor given by (2.15). Since

FH and TH are the function of the load displacement angles ηL = [φL θL] shown in

Figure 2.3, in Chapter 5 of this dissertation we present methods based on dynamic

programming and Nelder-Mead algorithm which will ensure swing-free maneuvers of

the suspended load. Next definition states the problem.

4

Chapter 1. Introduction

Definition 2. Given a small positive constant ε > 0 and the time required to accom-

plish the desired trajectory tF > 0, we say the quadrotor carrying a suspended load

performs a swing-free maneuver when ‖φL (t)‖ ≤ ε and ‖θL (t)‖ ≤ ε for any t ≥ tF .

Minimizing the angles ηL we are minimizing the force FH and the torque TH

which represent an external disturbance force and torque for the quadrotor baseline

attitude controller. In order to solve this problem we are comparing three techniques

in order to determine the input trajectory for the quadrotor that will ensure a swing-

free motion of the load.

1.2.3 Trajectory tracking with the suspended load

Except the swing-free maneuvers with suspended load, tracking a trajectory is an-

other problem we solve in Chapter 6. which is defined as

Definition 3. Given a reference trajectory Pref (t) = [xLref (t) yLref (t) zLref (t)]
T ,

the position of the suspended load PL(t) = [xL(t) yL(t) zL(t)]T and a small positive

constant εL > 0, we say that the suspended load is performing trajectory tracking if

|eL(t)| ≤ εL where eL(t) = [xLref (t)− xL(t) yLref (t)− yL(t) zLref (t)− zL(t)]T .

We are interested in solving the problem in which we define a trajectory which

we want to accomplish with the suspended load. In order to do this we have to

move the quadrotor in a certain way because the quadrotor is acting as the actuator.

The problem is that we do not know how a trajectory for the quadrotor should look

like in order for the load to achieve tracking. In order to control the position of the

load we need to generate a trajectory for the quadrotor that will ensure eL(t) → 0.

We are able to accomplish this because the position vector of the suspended load

is a differentially flat output of this system system. Considering this we propose

two different techniques in order to solve this problem. First we propose a method

5

Chapter 1. Introduction

based on Nelder-Mead algorithm [20] which we employ in order to learn the param-

eters of the unknown input trajectory for the quadrotor. The unknown trajectory

is approximated with finite Taylor series. The second method is based on reinforce-

ment learning algorithm, least-square policy iteration (LSPI) in which the additional

control input for the quadrotor is drawn from LSPI algorithm in order to drive the

quadrotor in the right direction. Both of these techniques are model-free.

1.2.4 Load transportation in cluttered environments

In Section 7.1 we are address the problem of transportation of suspended load in

cluttered environments.

Let Q represent the origin of the moving coordinate frame {A} attached to a

quadrotor body with suspended load in a Euclidean space R3, and let convex sets

B1, ...,Bn be fixed rigid objects distributed in W as depicted in Figure 1.2.4. The

Bi’s are defined as obstacles. We assume that both the geometry of Q,B1,,Bn
and the locations of the Bi’s are known a priori and accurately in a 3-dimensional

area-of-interestW . We assume that given an initial position and a goal position of Q

in W , a collision-free path P is generated using a high-level planner based on any of

the well known path planning techniques such as potential field, cell decomposition,

etc. [21].

The problem of interest is stated as follows:

A path P is approximated with a finite number of waypoints wi such that the

straight-line path Psegment between two waypoints belongs to Wfree. Based on the

given waypoints wi a mid-level planner calculates the minimal distance between the

path Psegment and the surrounding obstacles δminobst−dist . Subsequently, it determines

the maximum allowable load displacement angle ηmaxallow−angle such that the trajec-

tory of the load Tload belongs to Wfree. By determining ηmaxallow−angle 6= 0 we can

6

Chapter 1. Introduction

incorporate as a part of the objective function used for generating a swing-free tra-

jectory Topt for Q using dynamic programming algorithm presented in this article.

The optimal trajectory is generated in such a way that both, the performed trajec-

tory of the quadrotor Tquadrotor and the performed trajectory of the load Tload belong

to Wfree. Using ηmaxallow−angle we can incorporate a safety region for the maximal

displacement of the load by narrowing the δminobst−dist to δsafe. This approach makes

the overall system more robust and reliable.

1.2.5 Load transportation with multiple quadrotors

Because we are dealing with small scale aerial vehicles with limited payload, we need

to employ r quadrotors in order to transport loads of larger weight as depicted in

Figure 1.2.5. If we define a load with k suspension points p1 . . . pk and if each of

the suspension points pj has a linear and angular velocity Vj, then the total velocity

V of the center of gravity of the load is defined as V =
∑k

j=0 Vj. Since each of

the suspension points pj is connected to a quadrotor qi, i = 1 . . . r we must ensure

that each quadrotor performs the same motion in order to have . In this doctoral

dissertation we consider an application of using binary consensus proposed in [22] for

synchronization multiple quadrotors carrying suspended loads and performing swing-

free trajectory tracking or load trajectory tracking. By utilizing the binary consensus

protocol we are able to achieve distributed tracking for a network of quadrotors.

7

Chapter 1. Introduction

1.3 Overview of the methods used

1.3.1 Feedback linearization

Through the years feedback linearization is an approach common in nonlinear con-

trol design and it has attracted lots of research. The main idea is to algebraically

transform nonlinear systems into (fully or partly) linear ones, so that linear control

techniques can be applied. This differs from conventional (Jacobian) linearization,

because feedback linearization does not approximate the system but the linearization

is achieved by the exact state transformation and feedback. The main results about

feedback linearization can be found in [23], [24], [25]. The method also has a number

of important limitations. It cannot be used for all nonlinear systems, no robustness

is guaranteed in the presence of parameter uncertainty or unmodeled dynamics. The

applicability of input-state linearization is not always guaranteed, while input-output

feedback linearization cannot be applied when the relative degree is not defined. The

second problem is due to the difficulty of finding convergent observers for nonlinear

systems and, when an observer can be found, the lack of a general separation prin-

ciple is a problem. The third problem is due to the fact that the exact model of

the nonlinear system is not available in performing feedback linearization especially

when the linearizing transformation is poorly conditioned.

1.3.2 Model reference adaptive control

Model-reference adaptive control (MRAC) system is composed of four parts: a plant

containing unknown parameters, a reference model for compactly specifying the de-

sired output of the control system, a feedback control law containing adjustable

parameters, and an adaptation mechanism for updating the adjustable parameters

[26]. The plant is assumed to have a known structure, although the parameters are

8

Chapter 1. Introduction

unknown. A reference model is used to specify the ideal response of the adaptive

control system to the external command. The main prerequisite for the controller

is to have perfect tracking capacity in order to allow the possibility of tracking con-

vergence. That is, when the plant parameters are exactly known, the corresponding

controller parameters should make the plant output identical to that of the reference

model. When the plant parameters are not known, the adaptation mechanism will

adjust the controller parameters so that perfect tracking is asymptotically achieved.

If the control law is linear in terms of the adjustable parameters, it is said to be

linearly parameterized. Existing adaptive control designs normally require linear

parametrization of the parameter in order to guarantee stability and tracking conver-

gence. The adaptation mechanism is used to adjust the parameters in the control law.

In MRAC systems, the adaptation law searches for parameters such that the response

of the plant under adaptive control becomes the same as that of the reference model,

i.e., the objective of the adaptation is to make the tracking error converge to zero

and to keep the parameter error bounded. The main issue in adaptation design is

to synthesize an adaptation mechanism which will guarantee that the control system

remains stable and the tracking error converges to zero as the parameters vary [25].

1.3.3 Dynamic programming

One of the main objectives in optimal control theory is to minimize a certain cost of

what is considered an undesirable outcome of a certain situation. The main charac-

teristic of that type of situations is that decisions have to be balanced between the

desire for low current cost, with the undesirable high cost in the future. The dynamic

programming (DP) approach is one of the techniques that captures this trade off, as

it is described in more details in [27]. Decisions are ranked at each step, based on

the sum of the present cost and the expected future cost, assuming optimal decision

making for subsequent steps. There is a very broad variety of practical problems

9

Chapter 1. Introduction

that can be solved using dynamic programming. In this dissertation, we focus on

a broadly applicable problem of optimal control of a dynamic system over a finite

horizon (a finite number of steps). This basic problem has two main features

• a dynamic system represented in a discrete form,

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1,

where k represents the discrete time step, xk is the systems’s state which cap-

tures the past information that is relevant for future optimization, uk is the

control or decision variable to be selected at time k, N is the horizon or a finite

number of steps the control is applied, and fk is a function that describes the

transition of the system from irs current state to the next one.

• a cost function that is additive over time

J = gN(xN) +
N−1∑
k=0

gk(xk, uk),

where J is the total cost, gN(xN) is a terminal cost incurred at the end of the

process and gk(xk, uk) is the cost incurred at time-step k.

The problem is formulated as optimization of the total cost J over controls u0 . . . uN−1.

The dynamic programming algorithm is based on the principle of optimality. The

name is due to Bellman [28], who contributed a great deal to the popularization of

DP and to its transformation into a systematic tool.

Definition 4 (Principle of Optimality). Let π∗ =
{
µ∗0, µ

∗
1 . . . , µ

∗
N−1

}
be an optimal

policy for the basic problem, and assume that when using π∗, a given state xi occurs

at time i with positive probability. If we consider the subproblem whereby we are at

xi at time i and wish to minimize cost-to-go from time i to time N .

gN(xN) +
N−1∑
k=i

gk(xk, uk),

Then the truncated policy
{
µ∗i , µ

∗
i+1 . . . , µ

∗
N−1

}
is optimal for this subproblem.

10

Chapter 1. Introduction

The principle of optimality states that an optimal policy can be constructed in

a piecewise fashion, first constructing an optimal policy for the terminal subproblem

involving the last step, then extending the optimal policy to the terminal subproblem

involving the last two steps, and continuing in this manner until an optimal policy

for the entire problem is constructed.

1.3.4 Nelder-Mead algorithm

The Nelder-Mead algorithm or simplex search algorithm [20], is one of the best known

algorithms for multidimensional unconstrained optimization without derivatives. The

basic algorithm is quite simple to understand and very easy to use. For these reasons,

it is very popular in many fields of science and technology, especially in chemistry

and medicine.

This method does not require any derivative information, which makes it suit-

able for problems with non-smooth functions. It is widely used to solve parameter

estimation and similar statistical problems, where the function values are uncertain

or subject to noise. It can also be used for problems with discontinuous functions,

which occur frequently in statistics and experimental mathematics.

The Nelder-Mead algorithm is designed to solve the classical unconstrained opti-

mization problem of minimizing a given nonlinear function f : Rn → R. The method

uses only function values at some points in Rn, and does not try to form an approx-

imate gradient at any of these points. Hence it belongs to the general class of direct

search methods [29], [30]. A large subclass of direct search methods, including the

Nelder-Mead method, maintain at each step a non degenerate simplex, a geometric

figure in n dimensions of nonzero volume that is the convex hull of n + 1 vertices.

Each iteration of a simplex-based direct search method begins with a simplex, speci-

fied by its n+ 1 vertices and the associated function values. One or more test points

11

Chapter 1. Introduction

are computed, along with their function values, and the iteration terminates with

bounded level sets.

1.3.5 Least square policy iteration

Least-Squares Policy Iteration (LSPI) is a reinforcement learning algorithm designed

to solve control problems. It uses value function approximation to cope with large

state spaces and batch processing for efficient use of training data. LSPI has been used

successfully to solve several large scale problems using relatively few training data.

Policy iteration evaluates policies by estimating their value functions, and then uses

these value functions to find new, improved policies. The classical policy iteration

employs tabular, exact representations of the value functions and policies. However,

most problems of practical interest have state and action spaces with a very large or

even infinite number of elements, which precludes tabular representations and exact

policy iteration. Instead, approximate policy iteration is used [31]. Constructing

approximate value functions for the policies considered is the central, most challenging

component of approximate policy iteration. While representing the policy can also be

challenging, an explicit representation is often avoided, by computing policy actions

on-demand from the approximate value function.

1.3.6 Binary consensus

A consensus protocol is a group decision making process that seeks the consent,

not necessarily the agreement, of participants and the resolution of objections. One

important application of consensus protocols is to provide synchronization of the

processes of interest. Synchronization is timekeeping which requires the coordination

of events to operate a system in unison. The familiar conductor of an orchestra

enables consensus by keeping the orchestra in time. Systems operating with all their

12

Chapter 1. Introduction

parts in synchrony are said to be synchronous or in sync.

In this doctoral dissertation we consider an application of using binary consensus

proposed in [22] for synchronization multiple quadrotors carrying suspended loads and

performing swing-free trajectory tracking or load trajectory tracking. By utilizing the

binary consensus protocol we are able to achieve distributed tracking for a network of

quadrotors. Among other things the advantages of distributed control protocols are

that it avoids a single point of failure, it is more fault tolerant, scalable and robust,

and allows for cheaper and simpler agents when comparing with centralized control

protocols [32].

13

Chapter 1. Introduction

(a) Urban Firefighting

(b) Demining

(c) Search and Rescue

Figure 1.1: Motivation for load transportation using aerial robots.

14

Chapter 1. Introduction

Figure 1.2: Representation of Euclidean space with obstacles and predefined way-
points.

15

Chapter 1. Introduction

Figure 1.3: Load transport using multiple quadrotors.

16

Chapter 2

Modeling of the Quadrotor - Load

System

Quadrotors belong to a class of rotorcraft unmanned aerial vehicles. Control design

for such systems is in general based on their mathematical model, which features high

nonlinearities and strong couplings between its different subsystems. The effects of

coupling in the case of a small-scale helicopter were investigated in [33]. Modeling is

thus, a crucial stage in designing flight controllers. Furthermore, it is important to

have high-fidelity models for simulation purposes. The development of an accurate

model that includes the flexibility and flapping of rotors, fuselage aerodynamics,

downwash effect is very complex [34].

For the purpose of the controller design, in general the quadrotor is modeled as

a rigid-body evolving in Cartesian space with a force and torque generating mecha-

nism. The rigid body dynamics can be described with the Newton-Euler equations

of motion, or with the energy-oriented approaches such as the Lagrange formulation.

Most published papers on modeling and control, especially for small platforms such as

quadrotors, use this simple model for control design [35], [36], [37], [38]. For more ac-

17

Chapter 2. Modeling of the Quadrotor - Load System

curate models, rigid-body model is essentially extended or augmented with simplified

rotor dynamics and aerodynamics, using a combination of momentum and blade ele-

ment theory [39]. Indeed, detailed modeling of rotor dynamics and aerodynamics can

be extremely complex because the rotor itself is a multi-body system. Furthermore,

the produced aerodynamic forces and torques depend on operating conditions and

vehicle motion. Examples of rotor modeling can be found in [34] for full-scale heli-

copters. In [40] we have extended the model of a small scale helicopter. Most popular

techniques used in modeling are first-principles, system-identification, or combination

of both approaches.

In this chapter we present mathematical models of the load transportation systems

using quadrotors. We start by deriving a nonlinear model of a quadrotor from first

principles. The model is presented in both Newton-Euler and Lagrange form. Then

we present two distinct quadrotor load systems, a model of a quadrotor carrying a

fixed load and a model of a quadrotor carrying a suspended load.

2.1 Nonlinear model of a quadrotor

We start by modeling the quadrotor as a rigid body. For the analysis of the motion of

rigid body through 6 DOF we define two coordinate frames as indicated in Figure 2.1.

The moving coordinate frame {A} is fixed to the quadrotor and is called the aircraft-

fixed reference frame. The origin of the aircraft-fixed frame is chosen to coincide with

the Center of Gravity (CoG) when CoG is in the principal plane of symmetry and the

vehicle is considered to be balanced. Ground-fixed reference frame {G} is considered

to be the inertial frame. The position and orientation of the vehicle are described

relative to the inertial reference frame {G} while the linear and angular velocities of

the vehicle are expressed in the aircraft-fixed coordinate frame {A}. The ZA-axis

in aircraft-fixed coordinate frame {A} is pointing downwards which follows the con-

18

Chapter 2. Modeling of the Quadrotor - Load System

Figure 2.1: The coordinate frames used for deriving the model of the quadrotor.

vention in aerospace design. The following variables are used to describe quadrotor

kinematics and dynamics,

η1 = [x y z]T - position of the origin of {A} measured in {G},

η2 = [φ θ ψ]T - angles of roll (φ), pitch (θ) and yaw (ψ) that parametrize locally

the orientation of {A} with respect to {G},

ν1 = [u v w]T - linear velocity of the origin of {A} relative to {G} expressed in

{A} (i.e., body-fixed linear velocity),

ν2 = [p q r]T - angular velocity of {A} relative to {G} expressed in {A} (i.e.,

body-fixed angular velocity),

rG = [xG yG zG]T - distance from the origin of {A} to the quadrotor’s center of

gravity.

The transformation matrix between two reference frames is obtained by matrix mul-

tiplication of the three basic orthogonal rotation matrices that belong to the special

orthogonal group SO(3,R), [41]. The aircraft-fixed linear velocity vector ν1 and the

position rate vector η̇1 are related through a transformation matrix G
AR (η2) according

19

Chapter 2. Modeling of the Quadrotor - Load System

to

η̇1 =
dη1

dt
= G

AR (η2)ν1. (2.1)

The aircraft-fixed angular velocity vector ν2 and the Euler rate vector η̇2 are related

through a transformation matrix Q (η2) according to:

η̇2 = Q (η2)ν2, Q (η2) =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ

 , (2.2)

with Q (η2) being singular for θ = ±π
2
. This singularity does not represent a problem

in our design because our aircraft will not execute aggressive maneuvers as to achieve

the pitch of 90◦. Otherwise, this problem can be circumvented by many different

methods, (e.g., quaternion representation).

The condensed representation of systems kinematics is η̇1

η̇2

 =

 G
AR (η2) 0

0 Q (η2)

 ν1

ν2

 , η̇ = JR (η)ν. (2.3)

2.1.1 Quadrotor dynamics

In this subsection Euler’s first and second axioms are used to derive the rigid body

equations of motion. Consider the aircraft-fixed coordinate system frame {A} rotat-

ing with angular velocity ω = [ω1 ω2 ω3] about the ground-fixed coordinate system

frame {G}. The quadrotor’s inertia tensor IA is defined as:

IA =

Ix 0 0

0 Iy 0

0 0 Iz

 ; IA = ITA > 0;

where Ix, Iy and Iz are the moments of inertia about the XA, YA and ZA axes. Since

the principal axes of {A} are aligned with quadrotor axes we can write Ixy = Iyx =

20

Chapter 2. Modeling of the Quadrotor - Load System

Ixz = Izx = Izy = Iyz = 0. Now, we are ready to write down the Newton Euler’s

equations. For the sake of simplicity from now on we will refer to the matrix G
AR (η2)

as R (η2). The equation for translation in the {A} frame is given by∑
GFE = m

d

dt

(
Gν1

)
= m

d

dt
(R (η2)ν1)

where m is the mass of the quadrotor and FE is the sum of external forces. If we

continue∑
GFE = m

dR (η2)

dt
ν1 +mR (η2)

dν1

dt
(2.4)

= mR (η2) S (ν2)ν1 +mR (η2)
dν1

dt

Linear acceleration vector can be expressed as

dν1

dt
= ν2 × ν1 + ν̇1 + ν̇2 × rG + ν2 × (ν2 × rG) .

If we express (2.4) in the {A} frame we get∑
R−1 (η2) GFE = mR−1 (η2) R (η2) S (ν2)ν1 +mR−1 (η2) R (η2)

dν1

dt∑
FE = m [ν2 × ν1 + ν̇1 + ν̇2 × rG + ν2 × (ν2 × rG)] , (2.5)

where FE =
[
Fx Fy Fz

]T
is a sum of external forces measured in {A}. The

equation for rotation in the {G} frame is given by∑
GTE =

d

dt

(
GL
)

=
d

dt
(R (η2) IA,ν2) (2.6)

where IA is the aircrafts inertia tensor and GL is an angular momentum measured in

{G}. By expanding (2.6) we get∑
GTE = R (η2) S (ν2) IAν2 + R (η2) IA

dν2

dt
. (2.7)

Expressing (2.7) in body axis we obtain∑
R−1 (η2) GTE = R−1 (η2) R (η2) S (ν2) IAν2 + R−1 (η2) R (η2) IA

d

dt
ν2∑

TE = IAν̇2 + ν2 × IAν2 +mrG × (ν̇1 + ν2 × ν1) , (2.8)

21

Chapter 2. Modeling of the Quadrotor - Load System

where TE =
[
Tφ Tθ Tψ

]T
is the sum of external torques measured in {A}. At

the end equations (2.5) and (2.8) represent the dynamics of the system and (2.3)

represents the kinematics of the system. In expanded form we can write them as

D
y
n
am

ic
s:

Fx = m [u̇− vr + wq − xG (q2 + r2) + yG (pq − ṙ) + zG (pr + q̇)]

Fy = m [v̇ − wp+ ur + xG (qp+ ṙ)− yG (p2 + r2) + zG (qr − ṗ)]

Fz = m [ẇ − uq + vp+ xG (rp− q̇) + yG (rq − ṗ)− zG (q2 + p2)]

Tφ = Ixxṗ+ (Iz − Iy) qr +m [yG (ẇ − uq + vp)− zG (v̇ − wp+ ur)]

Tθ = Iy q̇ + (Ixx − Iz) rp+m [zG (u̇− vr + wq)− xG (ẇ − uq + vp)]

Tψ = Iz ṙ + (Iy − Ixx) pq +m [xG (v̇ − wp+ ur)− yG (u̇− vr + wq)]

(2.9)

K
in

em
at

ic
s:

d
dt

x

y

z

 = R (φ, θ, ψ)

u

v

w

d
dt

φ

θ

ψ

 = Q (φ, θ, ψ)

p

q

r

(2.10)

2.1.2 Lagrange representation of the quadrotor model

Quadrotor’s 6 DOF nonlinear dynamic equations of motion can be expressed in a

compact form as:

Mν̇ + C (ν)ν + Dν + G (η) = τ + τL, (2.11)

where η = [η1 η2]T is the vector of position and orientation, ν = [ν1 ν2]T is vector

of linear and angular velocities and M is the mass and inertia matrix of the quadrotor

22

Chapter 2. Modeling of the Quadrotor - Load System

given by

M =

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix 0 0

mzG 0 −mxG 0 Iy 0
−myG mxG 0 0 0 Iz

 , M = MT > 0.

Matrix C (ν) consist of Coriolis and centripetal terms. Using results from [42], we

achieve a parametrization such that C (ν) is skew-symmetric

C (ν) =

0 0 0 m(yGq+zGr) −m(xGq−w) −m(xGr+v)
0 0 0 −m(yGp+w) m(zGr+xGp) −m(yGr−u)
0 0 0 −m(zGp−v) −m(zGq+u) m(xGp+yGq)

−m(yGq+zGr) m(yGp+w) m(zGp−v) 0 Izr −Iyyq
m(xGq−w) −m(zGr+xGp) m(zGq+u) −Izr 0 Ixxp
m(xGr+v) m(yGr−u) −m(xGp+yGq) Iyq −Ixp 0

Decomposing the vectors of external forces acting on a rigid body we define four

distinct vectors Dν, G (η), τ and τL. Dissipative force and torque vector is given by

Dν, where D is the damping matrix

D = diag
(
cµx, cµy, cµz, cµφ, cµθ, cµψ

)
, D = DT > 0, Ḋ = 0,

and cµx , cµy , cµz , cµφ, cµθ, cµψ are damping coefficients. With G (η) we denote the

vector of gravitational forces and torques

fG (η2) = G
AR−1 (φ, θ)

0

0

−mg

 , G (η2) = −

 fG (η2)

rG × fG (η2)

 ,
where g represents the gravitational constant. Control inputs are given as vector τ

fτ (η2) = G
AR

−1
(η2)

0

0

U1

 , τ (η2,U) =

fτ (η2)

U2

U3

U4

 ,

where U1, U2, U3, U4 represent control forces generated by four rotors [5]. τL =

[FH TH] represents the vector of forces (2.15) and torques (2.16) that the load

exerts on the quadrotor.

23

Chapter 2. Modeling of the Quadrotor - Load System

Figure 2.2: Quadrotor carrying a fixed load.

2.2 Quadrotor with the fixed load

In this section we introduce the model of a quadrotor carrying a load fixed to the

frame shown in Figure 2.2. Writing the model in Lagrangian form we get

MFLν̇ + CFL (ν)ν + DFLν + GFL (η) = τFL.

The mass and inertia matrix of the quadrotor with the fixed load is given by

MFL =

m+mL 0 0 0 (m+mL)zG −(m+mL)yG

0 m+mL 0 −(m+mL)zG 0 (m+mL)xG
0 0 m+mL (m+mL)yG −(m+mL)xG 0
0 −(m+mL)zG (m+mL)yG Ix+IxL −IxyL −IxzL

(m+mL)zG 0 −(m+mL)xG −IyxL Iy+IyL −IyzL
−(m+mL)yG (m+mL)xG 0 −IzxL −IzyL Iz+IzL

 ,
where mL is the added mass of the load, and IxL, IyL and IzL are the added moments

of inertia from the load about the XL, YL and ZL axes. Since the principal axes of

24

Chapter 2. Modeling of the Quadrotor - Load System

{L} do not have to be necessarily aligned with the load axes, IxyL 6= 0, IyxL 6= 0,

IxzL 6= 0, IzxL 6= 0, IzyL 6= 0 and IyzL 6= 0. The Coriolis and Centripetal matrix is

defined as

CFL (ν) =

 0 0 0
0 0 0
0 0 0

−(m+mL)(yGq+zGr) (m+mL)(yGp+w) (m+mL)(zGp−v)
(m+mL)(xGq−w) −(m+mL)(zGr+xGp) (m+mL)(zGq+u)
(m+mL)(xGr+v) (m+mL)(yGr−u) −(m+mL)(xGp+yGq)

(m+mL)(yGq+zGr) −(m+mL)(xGq−w) −(m+mL)(xGr+v)
−(m+mL)(yGp+w) (m+mL)(zGr+xGp) −(m+mL)(yGr−u)
−(m+mL)(zGp−v) −(m+mL)(zGq+u) (m+mL)(xGp+yGq)

0 −IyxLq−IxzLp+(Iz+IzL)r IyzLr+IxyLp−(Iy+IyL)q

−IyzLq+IxzLp−(Iz+IzL)r 0 −IxzLr−IxyLq+(Ix+IxL)p

−IyzLr−IxyLp+(Iy+IyL)q IxzLr+IxyLq−(Ix+IxL)p 0

 .
The damping matrix in this case is non-diagonal and satisfies properties DFL =

DFL
T > 0, ˙DFL = 0. The vector of gravitational forces and torques

fG (η2) = G
AR−1 (φ, θ)

0

0

−(m+mL)g

 , GFL (η2) = −

 fG (η2)

rG × fG (η2)

 ,
where g represents the gravitational constant. Control inputs τFL are equivalent

to the control input vector τ from (2.11). Vector τL from (2.11) is zero. This is

the case because the fixed load - quadrotor system we model as a single rigid body.

Therefore, the vector which consist of external forces and torques that load exerts

on the quadrotor are contained inside of system matrices, i.e. MFL, CFL(ν), DFL

and GFL(η). While modeling the quadrotor carrying the suspended load, we model

it as two separate rigid bodies connected through a cable. These two rigid bodies

interact with each other through linear acceleration vector ν̇1, forces FH and torques

TH which is presented in the next section.

2.3 Slung load model

Very thorough models of external suspended load systems can be found in [43] where

specific simulation models for different types of single- and multiple-point suspen-

25

Chapter 2. Modeling of the Quadrotor - Load System

Figure 2.3: Quadrotor carrying a suspended load.

sion, as well as multi-lift variations of the system, are developed. In more recent

publications [44], [45] and [46] the single point suspension type models found in [43]

have been implemented and simulated. Considering the models presented in the lit-

erature, we present the model of the single point suspended load, in this subsection.

The external slung load is modeled as a point mass spherical pendulum suspended

from a single point. The coordinate systems we use are shown in Figure 2.3. The

unit vectors of the {H} coordinate system always remain parallel to those of the

aircraft-fixed coordinate system {A}. The motion of the load is described in polar

coordinates using two angles φL and θL, where φL and θL are measured from the zH

axis in direction of xH and yH respectively. Therefore, the position vector ρL of the

26

Chapter 2. Modeling of the Quadrotor - Load System

load with respect to the suspension point is given by

ρL = RyH
(θL) RxH

(φL)

0

0

lL

 = lL

cos(φL) sin(θL)

− sin(φL)

cos(θL) cos(φL)

where RyH

(θL) and RxH
(φL) are the rotational matrices, and lL is the length of the

cable. The position vector ρH of {H} with respect to the quadrotor CoG is given by

ρH = [xH yH zH]T . The absolute velocity νL of the load is given by

νL = ν1 + ρ̇+ ν2 × ρ (2.12)

where ν1 is the linear velocity of the quadrotor, ρ = ρL + ρH is the position vector

of the load with respect to the CoG of the quadrotor, and ν2 is the angular velocity

of the quadrotor. The absolute acceleration ν̇L of the load is

ν̇L = ν̇1 + ρ̈+ ν̇2 × ρ+ 2ν2 × ρ̇+ ν2 × (ν2 × ρ) (2.13)

where ν̇1 is the linear acceleration of the quadrotor. The vector given by gGL (η)

represents the vector of gravitational forces and moments

GL = Rx (φ)−1 Ry (θ)−1

0

0

mLg

 = mLg

sin(θ)

cos(θ) sin(φ)

cos(θ) cos(φ)

where φ and θ are respectively the roll and pitch angles of the quadrotor, mL is

the mass of the load and g is the gravitational constant. By enforcing the torque

equilibrium about the suspension point, we get

fτL (φL, θL,ν,η) = −ρL × (−mLν̇L + GL) , fτL = 0, (2.14)

where ν and η are vectors of quadrotor states. In expanded form, (2.14) is a system of

three second order equations in Cartesian coordinates in {H} frame. By solving these

three equations for φ̈L and θ̈L, we obtain the equations of motion for the given system

27

Chapter 2. Modeling of the Quadrotor - Load System

in polar coordinates. The symbolic computation for obtaining these equations is

performed using Mathematica, and because of the length of the equations, is omitted.

The suspended load introduces additional terms denoted by τL in the equations of

motion of the quadrotor. The force FH that the load exerts on the quadrotor is given

by

FH = −mLfGL (2.15)

and the torque TH is given by

TH = ρH × FH. (2.16)

Both FH and TH are functions of φL and θL, as well as of the quadrotor states ν and

η.

2.4 Conclusion

In this chapter we present three distinct mathematical models which describe, model

of a single quadrotor derived in Section 2.1, model of the quadrotor with a fixed load

derived in Section 2.2 and the model of a quadrotor with a suspended load in Section

2.3. With these three models we covered modeling of load transportation systems

for fixed and suspended payloads. Since this is a novel area of research there is still

room form improvement. One can continue to extend these models by investigating

the influence of the downwash from the rotors to the load. Furthermore, how the

suspension system influences the stability and maneuverability of the whole system.

28

Chapter 3

Baseline attitude controller for

quadrotor

In this chapter we present different baseline attitude controllers. Baseline attitude

controller represents a low level controller in charge of quadrotor’s orientation and

position.

The problem of controller design for quadrotors attracts the attention of many

researchers from control and robotics community, because it presents an interesting

control challenge and an excellent testbed for developing and testing new control

algorithms. Existing controllers can be classified into three main categories, linear,

nonlinear, and learning-based control methods.

Conventional approaches to flight control and most initial attempts to achieve

autonomous helicopter and quadrotor flight have been based on linear controllers

such as PID, LQR [3] and Hinf . Design and implementation of these types of con-

trollers is straightforward. Furthermore, there are many available tools for tuning and

performance and robustness analysis. Despite the limitations, such as performance

degradation when the system leaves the nominal working point and difficulty in prov-

29

Chapter 3. Baseline attitude controller for quadrotor

ing the asymptotic stability of the complete closed-loop system, these controllers are

the most widely accepted methods for control design.

In order to overcome some of the limitations of linear control design, a variety

of nonlinear flight controllers have been developed and applied to rotorcraft control.

Nonlinear controllers are in general based on the nonlinear model of the system.

Among these, feedback linearization [40], dynamic inversion [47], backstepping [48],

adaptive control [38] and model predictive control [49] have received much of the

attention and have been successfully applied to both quadrotor control.

The main characteristic of the learning-based control methods is that the system

model is not used, but several trials and flight data are required in order to train the

system. Among the used methods, fuzzy logic [50], human-based learning [51], [52],

and neural networks [53] are the most popular.

3.1 Lead-Lag cascade baseline controller

In this section we present the design of the output feedback controller using cascade

lead-lag controllers. For the design, we are using the model presented in Section 2.1,

which is linearized around an equilibrium point and can be represented in state space

form as,

q̇ = A q + B u, y = F q, (3.1)

where u = [U1 U2 U3 U4]T is the input vector, y = [x y z φ θ ψ]T is the

output vector, and q = [η ν]T ,q ∈ R12 is the state space vector. As the design

technique we use the classical pole placement method. Controller scheme is given in

Figure 3.1. The scheme of the controller consists of six cascaded lead-lag controllers

where cascade is placed over control of the (pitch ↔ x directional movement) and

(roll ↔ y directional movement) due to the properties of the quadrotor dynamics.

30

Chapter 3. Baseline attitude controller for quadrotor

Figure 3.1: Baseline controller for one axis.

The described controller is then used to control the full nonlinear quadrotor model

(2.11). Stability of the output feedback controller using cascade lead-lag controllers is

verified through MIMO Bode analysis using Control Systems Toolbox and the results

are given in Figure 3.1. Controller performance is verified through simulation results

provided in Figure 3.3.

3.2 Controller design using feedback linearization

The basic idea of feedback linearization (FL) is to transform nonlinear system dy-

namics into linear system dynamics ([23], [25], [54]). Conventional control techniques

like pole placement and linear quadratic optimal control theory can then be applied

to the linear system. In robotics, this technique is commonly referred to as computed

torque control ([25]). The control objective is to transform the vehicle dynamics

(2.11) into a linear system ν̇ = ϑ, where ϑ can be interpreted as a commanded

31

Chapter 3. Baseline attitude controller for quadrotor

Figure 3.2: MIMO Bode plot for quadrotor output feedback control using cascade of
PD controllers

acceleration vector. The nonlinearities can be canceled out by simply selecting the

control algorithm as follows

τ = C (ν)ν + Dν + G (η) + Mϑ, (3.2)

ν̇ = ϑ,

where the commanded acceleration vector ϑ is chosen using pole placement technique.

Considering the nature of the dynamical system we are dealing with, we can write

y = Fη = [z φ θ ψ]T ,

ẏ = Fη̇ = Fν,

ÿ = Fη̈ = Fν̇ = FM−1 [−C (ν)ν −Dν −G (η) + τ],

ÿ = Fν̇ = Fϑ,

32

Chapter 3. Baseline attitude controller for quadrotor

−3
−2

−1
0

1
2

3
4

5

−6

−4

−2

0

2

4
−3

−2

−1

0

1

2

3

4

x [m]
y [m]

z
[m

]

reference
simulation

Figure 3.3: Trajectory and waypoint tracking using the cascade lead-lag controller.

Figure 3.4: Feedback linearization

33

Chapter 3. Baseline attitude controller for quadrotor

where y ∈ R4 represents system outputs. Due to this property, we can proceed

with the controller design using the input-output feedback linearization algorithm

presented in ([23]). The model derived in (Section 2.1) can be represented in state

space form

q̇ = f(q) + g(q) u, y = h(q), (3.3)

where u = [u1 u2 . . . um]T , y = [y1 y2 . . . yl]
T , and

g(q) = [g1(q) . . . gm(q)], h(q) = [h1(q) . . . hl(q)]T ,

are n×m matrix, an l-dimensional vector, and n is the system state space dimension,

respectively. Since the quadrotor model is a nonlinear underactuated system (i.e.,

the number of inputs m is less than the number of outputs l), in order to deal

with this restriction, we exploit the differential flatness property. Loosely speaking,

differentially flat systems are systems in which all states and inputs can be expressed

as functions of the outputs and a finite number of their derivatives. The formal

definition can be found in [55]. Moreover, these systems have the useful property that

there is a one-to-one mapping between trajectories in output space and trajectories

in state and input space. The nonlinear system given in (3.3) has a relative degree

ri at a point q0 if

LgjL
k
gfhi(q) = 0,

for all 1 ≤ j ≤ 4, k < ri − 1, 1 ≤ i ≤ 4, and for all q in a neighborhood of qo the

4× 4 matrix

α(q) =

Lg1L

r1−1
f h1(q) . . . Lg4L

r1−1
f h1(q)

...

Lg1L
r4−1
f h4(q) . . . Lg4L

r4−1
f h4(q)

 ,

34

Chapter 3. Baseline attitude controller for quadrotor

is nonsingular at q = qo ([23]). If these two conditions are satisfied, we can write,
yr11

yr22

yr33

yr44

 =

Lr1f

Lr2f

Lr3f

Lr4f

α(q).

If α(q) is invertible at qo, then the state feedback is given by u = α(q)−1[−b(q)+ϑ]

and it will result in a closed-loop system that is linear from input u to output y. Due

to the fact that the quadrotor model considered in this paper is a complex MIMO

nonlinear system, before starting the design process, we must first check the existence

conditions for feedback linearization ([23]). According to Lemma 5.2.1. and Remark

5.2.1. in ([23]), the condition that the matrix g(qo) has rank m (m = 4 in our case)

is necessary for the existence of any set of m output functions such that the system

has some relative degree at qo. It is not difficult to verify that rank(g(qo) = 4) for

our model. If the system has a relative degree equal to n at qo, it can be transformed

into a fully linear and controllable system according to Lemma 4.2.1. in ([23]). In

this case, the system has trivial zero dynamics. If the system in (3.3) with f(0) = 0,

h(0) = 0 and if y(t) = 0 for all t, then necessarily q(0) = 0 and u(t) = 0 for all

t, and the system has trivial zero dynamics. In the case of our control system that

condition is not fulfilled because f(0) 6= 0, thus, the quadrotor system has nontrivial

zero dynamics.

Since the matrix α(qo) is nonsingular, we can use exact state feedback to linearize

the system and obtain its relative degree. The relative degree is r = 2 + 2 + 2 +

2 = 8, and the dimension of the system is n = 12. Hence, four states belong

to zero dynamics. Therefore the system is not fully feedback linearizable but only

partially, and can be decomposed into a linear and controllable part, and a part

which represents zero dynamics. In order to be able to design a controller which will

stabilize and control this type of a system, we have to identify which states belong to

the zero dynamics and to prove that they are stable. We approach the notion of zero

35

Chapter 3. Baseline attitude controller for quadrotor

dynamics through the idea of zeroing the output ([23]). In order to yield y(t) = 0 for

all times, the system must evolve on the subset,

Z∗ =
{
q ∈ Rn : Lkfhi(q) = 0, 0 ≤ k ≤ ri − 1, 1 ≤ i ≤ m

}
.

We can construct the vector field

f∗(q) = f(q) + g(q)(−A−1b(q))

tangent to Z∗. Any trajectory of the closed loop system q̇ = f∗(q) starting at the

point of Z∗ remains in Z∗. The vector field f∗(q)|Z∗ , that is a constraint of f∗(q)

to Z∗ describes the zero dynamics of the system. We define four states of the zero

dynamics as follows

q̇1 = q7, q̇2 = q8,

q̇7 = − cµx
m
q7, q̇8 = − cµy

m
q8,

(3.4)

where q ∈ R12 is a state vector and cµx
m

and cµy
m

are positive constants.

Theorem 3.2.1. The zero dynamics given by (3.4) is stable.

Proof. Since the zero dynamics in this case is a linear system, the stability analysis

is trivial. Considering the structure of the system (3.4), we can analyze it as two

separate systems of second order ρ̇ = Aiρ, i = 1, 2, ρ ∈ R2. Therefore, we can

use the well-known theory of second-order linear systems ([54]). Since each of these

systems has one eigenvalue of matrix Ai zero and the other eigenvalue has a negative

real part (i.e., it is stable), the matrices Ai have a nontrivial null space. Any vector

in the null space of Ai is an equilibrium point for the system, i.e., the system has

an equilibrium subspace rather than an equilibrium point. From the phase portrait

(Figure 3.2) we can see that all trajectories converge to the equilibrium subspace

(q7 axis i.e., q8 axis) since the nonzero eigenvalues are stable. Therefore, the zero

dynamics are stable, and we are able to design the controller to stabilize and control

the nonlinear quadrotor model.

36

Chapter 3. Baseline attitude controller for quadrotor

Figure 3.5: Phase portrait for a second order subsystem of the zero dynamics.

The proposed controller consists of two parts: the first part is nonlinear which

linearizes the system through feedback linearization; the second part of the controller

is linear and its purpose is to stabilize and control all six DoF of the quadrotor (i.e.,

orientation η2 and position η1) through a cascade structure. The proposed control

algorithm is implemented in Matlab and simulation results show its efficiency (Figure

3.2). One of the main drawbacks of feedback linearization is that the controller is

not able to deal with model uncertainties. In this proposal we use the change in

CoG as the uncertain parameter. The controller based on feedback linearization

derived above fails to stabilize the unbalanced quadrotor (Figure 4.5). This fact has

motivated us to design an adaptive controller presented in the Chapter 4.

37

Chapter 3. Baseline attitude controller for quadrotor

−2
−1

0
1

2
3

4

−4

−3

−2

−1

0

1

2
−3

−2

−1

0

1

2

3

4

x [m]y [m]

z
[m

]

reference
simulation

Figure 3.6: Trajectory and waypoint tracking using the controller based on feedback
linearization.

3.3 Baseline self-tuning controller

In order to tune the parameters of controllers presented in previous sections we de-

veloped a self-tuning technique based on optimization theory. The procedure for

tuning is depicted on Figure 3.7. First, we obtain transfer functions for each of the

six axis around an equilibrium point for the system presented in Section 2.1. Then

using Matlab SISO tool we find an initial stable controller for each transfer function.

Having this, we start the self-tuning procedure as shown on Figure 3.7. Our goal is

38

Chapter 3. Baseline attitude controller for quadrotor

to minimize the objective function

J =

∫
|et| dt (3.5)

where e = [xref − x yref − y zref − z φref − φ θref − θ ψref − ψ]T , e ∈ R6 is the track-

ing error, t ∈ R represents time, and | · | is a vector norm. This function is minimized,

by changing the parameters of the controllers, gains, poles and zeros of each controller

for each of the six axis. We use the solver from Matlab Optimization Toolbox for solv-

ing this optimal control problem. This procedure is repeated six times, as we are

tuning each of the axis separately ensuring stability, by imposing the bounds on

the parameters in each optimization step. At the end this problem of self-tuning

is defined as a non-convex constrained nonlinear optimization problem with hybrid

behavior. By hybrid behavior we are referring to jumps in the tuning procedure in

moments when we start tuning the next axis. Since each of the axis is stable before

entering the tuning process

3.4 Conclusion

In this section we present the baseline controller for a quadrotor. First we design a

lead-lag controller based on a model linearized around a working point. Secondly we

designed a controller based on output feedback linearization. Both of the controllers

were tunes using the self-tuning technique described in the last section and were

implemented in simulation. The lead-lag controller was implemented experimentally

which was described in more details in [56]. Currently there is a considerable amount

of research in the design of the baseline control of quadrotors with both simulation and

experimental results. In this chapter we improved upon the tuning process with the

hybrid self-tuning technique based on optimization. The room for future research

would be to extend the hybrid self-tuning controller for experimental setup which

would ensure modularity and speed up the process of tuning baseline controllers.

39

Chapter 3. Baseline attitude controller for quadrotor

Figure 3.7: Hybrid Self Tuning Controller block diagram

40

Chapter 4

The change in the center of gravity

of the quadrotor

4.1 Analysis of the nonlinear model with respect

to the center of gravity

One of the main drawbacks of feedback linearization is that the controller is not able

to deal with model uncertainties. In this proposal we use the change in CoG as the

uncertain parameter. The controller based on feedback linearization derived above

fails to stabilize the unbalanced quadrotor (Figure 4.5).

Considering the problem of linearization in the presence of uncertainty we assume

41

Chapter 4. The change in the center of gravity of the quadrotor

that uncertainties are modeled as a perturbation of 3.3

q̇ = f(q) + ∆f(q) + g1(q) u1 + . . .+ gp(q) up + ∆g1(q) u1 + . . .+ ∆gp(q) up,

y1 = h1(q),

... (4.1)

yp = hp(q),

where in the discussion of the CoG problem we may treat it as the perturbation ∆f(q).

Using the following proposition we are able to determine robustness of feedback

linearization.

Proposition 1 (MIMO Robust Linearization [24]). Consider the uncertain nonlinear

system 4.2. Assume that the nominal system 3.3 has vector relative degree γ1, . . . , γp.

Then, if the perturbation ∆f, ∆gj satisfy for j = 1, . . . , p

L∆fL
i
fhj ≡ 0 for 0 ≤ i ≤ γj − 1,

L∆gkL
i
fhj ≡ 0 for 0 ≤ i ≤ γj − 1, 1 ≤ k ≤ p (4.2)

the linearizing control law for the nominal system also linearizes the perturbed system.

Using 4.2 we compute

L∆fL

r1−1
f h1(q) . . . L∆fL

r1−1
f h1(q)

...

L∆fL
r4−1
f h4(q) . . . L∆fL

r4−1
f h4(q)

 =

0 yG −xG 0

myG
Ix

0 0 0

−mxG
Iy

0 0 0

0 0 0 0

 6= 0 (4.3)

This shows us that feedback linearization for the nominal system (3.3) is not able

to linearize the perturbed system (4.2). Figure 4.1 shows how the eigenvalues of

the closed loop system change with respect to coordinates of CoG. We can see that

the system becomes unstable for a certain movement of the center of gravity of the

42

Chapter 4. The change in the center of gravity of the quadrotor

−100 −50 0 50 100 150
−150

−100

−50

0

50

100

Re (s)

Im
 (

s)

Change of the closed−loop eigenvalues as a function of CoG coordinates

[xg yg zg] = [0.00 0.00 0.00]
[xg yg zg] = [−0.01 −0.01 −0.01]
[xg yg zg] = [−0.02 −0.02 −0.02]
[xg yg zg] = [−0.03 −0.03 −0.03]
[xg yg zg] = [−0.04 −0.04 −0.04]
[xg yg zg] = [−0.05 −0.05 −0.05]
[xg yg zg] = [−0.06 −0.06 −0.06]
[xg yg zg] = [−0.07 −0.07 −0.07]
[xg yg zg] = [−0.08 −0.08 −0.08]
[xg yg zg] = [−0.09 −0.09 −0.09]
[xg yg zg] = [−0.10 −0.10 −0.10]
[xg yg zg] = [−0.11 −0.11 −0.11]
[xg yg zg] = [−0.12 −0.12 −0.12]
[xg yg zg] = [−0.13 −0.13 −0.13]
[xg yg zg] = [−0.14 −0.14 −0.14]
[xg yg zg] = [−0.15 −0.15 −0.15]

Figure 4.1: Eigenvalues of the Jacobians of the closed-loop system change with respect
to coordinates of CoG.

system. Similarly on Figure 4.2 we can see that the eigenvalues of the Jacobian matrix

of the closed loop system becomes stable as we increase the moments of inertia of the

system.

4.2 Adaptive control for the change in the center

of gravity

The adaptive controller is derived using the algorithm proposed in [25]. Considering

the control algorithm (3.2) we can write

τ = Ĉ (ν)ν + Dν + Ĝ (η) + M̂ϑ, (4.4)

43

Chapter 4. The change in the center of gravity of the quadrotor

−150 −100 −50 0 50 100 150
−300

−200

−100

0

100

200

300

Re (s)

Im
 (

s)

Change of the closed−loop eigenvalues with [xg yg zg] = [0.1 0.1 0.1]

I
NEW

 = 1.00*I
OLD

I
NEW

 = 1.20*I
OLD

I
NEW

 = 1.40*I
OLD

I
NEW

 = 1.60*I
OLD

I
NEW

 = 1.80*I
OLD

I
NEW

 = 2.00*I
OLD

I
NEW

 = 2.20*I
OLD

I
NEW

 = 2.40*I
OLD

I
NEW

 = 2.60*I
OLD

I
NEW

 = 2.80*I
OLD

Figure 4.2: Eigenvalues of the Jacobians of the closed-loop system become stable
with different inertia.

where the hat denotes estimates of the adaptive parameter. Now, the error dynamics

can be denoted as

M [ν̇ − r] =
[
M̂−M

]
ϑ+

[
Ĉ (ν)−C (ν)

]
ν +

[
Ĝ (η)−G (η)

]
.

Because quadrotor equations of motion are linear in the parameter vector γ = rG,

we can apply the following parameterization

Φ (ν,η) γ̃ =
[
M̂−M

]
ϑ+

[
Ĉ (ν)−C (ν)

]
ν +

[
Ĝ (η)−G (η)

]
.

In the above expression, γ̃ = γ̂ − γ ∈ R3×1 is the unknown parameter error vector

and Φ (ν,η) ∈ R6×3 is a known matrix function of measured signals usually referred

44

Chapter 4. The change in the center of gravity of the quadrotor

Figure 4.3: Adaptive feedback linearization

to as the regressor matrix.

Φ (ν,η) = m

−r2−q2 pq−ϑ6 pr+q̇
pq+ϑ6 −p2−r2 qr−ϑ4
pr−ϑ5 qr+ϑ4 −p2−q2

0 −qu+pv+ϑ3+g cos θ cosφ −ru+pw+g cos θ sinφ
qu−pv−ϑ3−g cos θ cosφ 0 −rv+qw+g sin θ
ru−pw−g cos θ cosφ rv−qw−g sin θ 0

 .
(4.5)

We obtain (4.5) by rewriting (2.5) (2.8)

∑
FE = m [ν2 × ν1 + ν̇1 + ν̇2 × rG + ν2 × (ν2 × rG)]

= mν̇1 +m
[qw−rv
ru−pw
pv−qu

]
+m

[
−r2−q2 pq−ṙ pr+q̇
pq+ṙ −p2−r2 qr−ṗ
pr−q̇ qr+ṗ −p2−q2

]
rG (4.6)∑

TE = IAν̇2 + ν2 × IAν2 +mrG × (ν̇1 + ν2 × ν1)

= IAν̇2 +

[
(Iz−Iy)qr
(Ixx−Iz)pr
(Iy−Ixx)pq

]
−m

[
0 qu−pv−ẇ ru−pw+v̇

−qu+pv+ẇ 0 rv−qw−u̇
−ru+pw−v̇ −rv+qw+u̇ 0

]
rG.

In a compact form we can write

 ∑FE∑
TE

 =

 mI3×3 0

0 IA

 ν̇1

ν̇2

+

m(qw−rv)
m(ru−pw)
m(pv−qu)
(Iz−Iy)qr
(Ix−Iz)pr
(Iy−Ix)pq

+m

−r2−q2 pq−ṙ pr+q̇
pq+ṙ −p2−r2 qr−ṗ
pr−q̇ qr+ṗ −p2−q2

0 −qu+pv+ẇ −ru+pw−v̇
qu−pv−ẇ 0 −rv+qw+u̇
ru−pw+v̇ rv−qw−u̇ 0

 rG

45

Chapter 4. The change in the center of gravity of the quadrotor

where

 ∑FE∑
TE

 = Dν + G (η) + τ (4.7)

Writing the expression for the tracking error dynamics in state-space form yields,

ė = Ae + BΦ (ν,η) γ̃, (4.8)

where e =
[
η̃ ˙̃η

]T
= [ηref − η η̇ref − η̇]T ∈ R12×1 is a vector of the tracking

error, A ∈ R12×12 is a matrix containing the parameters of the linear controller and

B = [0 M−1]T ∈ R12×6.

Theorem 4.2.1. The tracking error given by (4.8) is asymptotically stable and pa-

rameter error γ̃ = γ̂ − γ is bounded.

Proof. We start by choosing a Lyapunov function candidate as

V (e, γ̃, t) = eTPe + γ̃TΓ−1γ̃,

where P = PT > 0 satisfies Lyapunov stability equation for linear systems and

Γ = ΓT > 0. By differentiating V (e, γ̃, t) with respect to time we get,

V̇ (e, γ̃, t) = eT (ATP + PA)e + 2eTPBΦ (ν,η) γ̃ − 2γ̃TΓ−1 ˙̃γ,

By choosing the parameter update rule (assuming γ̇ = 0) as

˙̂γ = −Γ ΦT (ν,η) BT PT e,

we get

V̇ (e, γ̃, t) = eT (ATP + PA)e ≤ −eTQe ≤ 0,

46

Chapter 4. The change in the center of gravity of the quadrotor

where Q = QT > 0 is the matrix that satisfies Lyapunov stability equation for linear

systems. However, V̇ (e, γ̃, t) is only negative semidefinite because V̇ (e, γ̃, t) = 0 for

e = 0 irrespective of the value of γ̃; that is, V̇ (e, γ̃, t) = 0 along γ̃ - axis.

V̈ (e, γ̃, t) = −ėTQe− eTQė = eT
(
ATQ + QA

)
e + γ̃Φ (ν,η)T BTQe +

eTQBΦ (ν,η) γ̃

since

‖e‖ <∞, ‖γ̃‖ <∞, A,B,Q = const, ‖Φ (ν,η)‖ <∞ (4.9)

then ∥∥∥V̈ (e, γ̃, t)
∥∥∥ <∞. (4.10)

By showing that V̈ (e, γ̃, t) is bounded we show that V̇ (e, γ̃, t) is uniformly continuous

in time. Now, by applying Barbalat’s lemma we prove that e asymptotically converges

to zero and γ̃ is bounded.

The proposed adaptive controller showed in (Figure 4.3) is implemented in

Matlab/Simulink and its performance is shown in (Figure 4.6).

4.2.1 Simulation results

The controllers derived and presented in Chapter 3 are simulated using

Matlab/Simulink. The linear output feedback controller is used to control the full

nonlinear quadrotor model given in Section 2.1. The simulations show that the sys-

tem tracks a given trajectory with accuracy when dealing with a balanced nonlinear

quadrotor model (Figure 3.3). In the case of an unbalanced quadrotor this controller

fails to stabilize the system (Figure 4.4).

47

Chapter 4. The change in the center of gravity of the quadrotor

The nonlinear controller based on the input-output feedback linearization (Section

3.2) yields an accurate tracking performance when dealing with a balanced nonlinear

quadrotor model (Figure 3.2). In the case of an unbalanced quadrotor this controller

fails to stabilize the system as well (Figure 4.5). By adding the adaptive part to the

nonlinear controller based on output feedback linearization (Section 4.2), we solve the

stabilization and tracking problem. The proposed algorithm succeeds in stabilizing

an unbalanced quadrotor (Figure 4.6). The adaptive feedback linearization shows

good tracking performance when dealing with dynamical changes in quadrotor CoG

(Figure 4.7). Moreover, the control algorithm shows robustness with respect to the

external disturbance forces and moments exerted by a suspended load while dynamic

change in the quadrotor CoG occurs (Figure 5.16).

4.3 Conclusion

In this chapter we analyzed the influence of the center of gravity of the flying robot

to the overall system stability. To the best of our knowledge the present literature

reports analysis in the frequency domain presented in [57]. In this chapter we move

a step further and besides the analysis we design an adaptive controller which is

able to stabilize the system and ensure trajectory tracking despite the changes in

the center of gravity. For future work one can investigate the region of attraction of

the proposed adaptive controller and propose an algorithm that would improve the

performance of the current one.

48

Chapter 4. The change in the center of gravity of the quadrotor

0 5 10 15 20
−5000

0

5000

x
[m

]

Attitude relative to the ground frame

reference
simulation

0 5 10 15 20
0

2000

4000

y
[m

]

0 5 10 15 20
−1

0

1
x 10

4

z
[m

]

0 5 10 15 20
−500

0

500

ψ
 [°

]

time [s]

(a) Attitude

0 10 20 30 40 50
0

0.5

1

CoG displacement

x G

0 10 20 30 40 50
0

0.5

1

y G

0 10 20 30 40 50
0

0.5

1

z G

time [s]

(b) Coordinates of changed CoG

Figure 4.4: Failure of the linear output feedback control algorithm to stabilize the
quadrotor due to changes in CoG.

49

Chapter 4. The change in the center of gravity of the quadrotor

0 10 20 30 40 50
−2

0

2

x
[m

]

Attitude relative to the ground frame

 reference
simulation

0 10 20 30 40 50
0

2

4
y

[m
]

0 10 20 30 40 50
0

1

2

z
[m

]

0 10 20 30 40 50
−1

0

1

ψ
 [°

]

time [s]

(a) Attitude

0 10 20 30 40 50
0

0.5

1

CoG displacement

x G

0 10 20 30 40 50
0

0.5

1

y G

0 10 20 30 40 50
0

0.5

1

z G

time [s]

(b) Changed coordinates of CoG

Figure 4.5: Failure of the feedback linearization algorithm to stabilize the quadrotor
due to changes in CoG.

50

Chapter 4. The change in the center of gravity of the quadrotor

0 10 20 30 40 50
0

0.5

1

1.5

x
[m

]

Attitude relative to the ground frame

reference
simulation

0 10 20 30 40 50
−0.5

0

0.5

1

1.5
y

[m
]

0 10 20 30 40 50
0

5

z
[m

]

0 10 20 30 40 50
−1

0

1

ψ
 [°

]

time [s]

(a) Attitude

0 10 20 30 40 50
−2

0

2

4

x G

real displacement
estimated parameter

0 10 20 30 40 50
−5

0

5

10

y G

0 10 20 30 40 50
−2

0

2

4

z G

time [s]

(b) Real and estimated coordinates of CoG

Figure 4.6: Performance of the adaptive controller used for stabilization of change in
CoG.

51

Chapter 4. The change in the center of gravity of the quadrotor

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

x
[m

]

Attitude relative to the ground frame

reference
simulation

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

y
[m

]

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

z
[m

]

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

ψ
 [°

]

time [s]

(a) Attitude

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

x G

real displacement
estimated parameter

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

y G

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

z G

time [s]

(b) Changed coordinates of CoG and estimated
parameters

Figure 4.7: Adaptive algorithm used for tracking while compensating for dynamic
change in CoG.

52

Chapter 4. The change in the center of gravity of the quadrotor

0 10 20 30 40 50
0

0.5

1

1.5

x
[m

]

Attitude relative to the ground frame

reference
simulation

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

y
[m

]

0 10 20 30 40 50
0

5

z
[m

]

0 10 20 30 40 50
−1

0

1

ψ
 [°

]

time [s]

(a) Attitude

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

x G

 real displacement
estimated parameter

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

y G

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

z G

time [s]

(b) Estimated and real CoG parameters

0 10 20 30 40 50
−0.1

0

0.1

F
Lx

 [N
]

0 10 20 30 40 50
−0.1

0

0.1

F
Ly

 [N
]

0 10 20 30 40 50
0

1

2

F
Lz

 [N
]

0 10 20 30 40 50
0

1

2

3

M
Lx

 [N
m

]

0 10 20 30 40 50
−3

−2

−1

0

M
Ly

 [N
m

]

0 10 20 30 40 50
−0.5

0

0.5

M
Lz

 [N
m

]

time [s]

(c) Forces and moments from suspended load

0 10 20 30 40 50
−40

−20

0

20

40

φ L [°
]

Load orientation relative to ground frame

0 10 20 30 40 50
−5

0

5

10

15

20

25

θ L [°
]

time [s]

(d) Load Orientation

Figure 4.8: Robustness of adaptive algorithm used for tracking while compensating
for dynamic change in CoG.

53

Chapter 5

Trajectory generation for

swing-free load transportation

Transport of suspended objects using a robot or crane is a common application. At

the end of a transport motion, the suspended object naturally continues to swing.

Suppression of this residual oscillation has been a topic of research for many years.

Both open- and closed-loop strategies have been explored, in this chapter we focus

on an open-loop technique presented in [58] and [59] applied for quadrotor carrying

a suspended load Figure 5.3. As a closed-loop technique we present a learning al-

gorithm based on Nelder-Mead algorithm used for solving nonlinear unconstrained

optimization problem.

5.1 Trajectory generation using input shaping

Input shaping is a control technique for reducing vibrations. The method works by

creating an input signal that cancels its own vibration. That is, vibration caused by

the first part of the command signal is canceled by vibration caused by the second

54

Chapter 5. Trajectory generation for swing-free load transportation

part of the command. Input shaping is implemented by convolving a sequence of

impulses, an input shaper, with any desired input, in our case we are convolving the

initial cubic trajectory as shown on Figure 5.1. The shaped trajectory obtained by the

convolution is used as an input trajectory for the quadrotor with suspended load. The

amplitudes and time locations of the impulses are obtained from the system’s natural

frequencies and damping ratios. One of the main disadvantages of the impulse-

convolution method is that it can produce trajectories that are non-smooth to the

point of being unusable for implementation on the real system. Furthermore we can

see from Figure 5.2 that input shaping is not robust to the change in the length of

the suspension cable.

5.2 Swing-free trajectory generation using DP

Dynamic programming (DP) is founded on the principle of optimality [60]. An op-

timal sequence of decisions has the property that whatever the initial state and de-

cision, the remaining decisions must constitute an optimal sequence of decisions for

the remaining problem [28]. The subsequent procedure follows the approach of [58]

and [61] and outlines the method of applying DP to a discrete time piecewise linear

system. We begin with the general form of the discrete time system:

qk+1 = Akqk +Bkuk (5.1)

Note that system and input matrices Ak and Bk can be time varying. Given initial

state q0, we would like to find the optimal sequence of inputs that will minimize the

scalar objective function:

Γ(q, u) =
N∑
k=1

Γk(qk, uk) (5.2)

55

Chapter 5. Trajectory generation for swing-free load transportation

This objective function can be structured as quadratic in the input uk and state qk as

shown in equation 5.3, where γk, yk, zk, Qk, Rk, and Sk are time varying coefficients.

Γk = γk + qTk yk + qTk yk + +
1

2
[qTkQkqk + 2qTkRkuk + uTk Skuk]

The foundation of DP is the optimal value function. Beginning from any point i, the

optimal sequence can be computed recursively backward to i = 1. The form of the

optimal value function is thereby

Λi = min
(ui,...,uN)

N∑
k=i

Γk(qk, uk) (5.3)

Since the objective function is quadratic in form, the optimal value function will also

be defined as a quadratic, where ζi, νi, and Wi are the coefficients

Λi(qi) = ζi + qTi νi +
1

2
qTi Wiqi (5.4)

Using Bellmans principle of optimality, the backward recursive relation can now be

formed.

Λi = min
ui

(Γi + Λi+1) (5.5)

Substituting (5.3) and (5.3) into (5.5) yields the recursive relation

ζi + qTi νi +
1

2
qTi Wiqi = min

ui
{ζi+1 + qTi+1νi+1 +

1

2
qTi+1Wi+1qi+1 + γi + qTi yi (5.6)

+uTi zi +
1

2
[qTi Qiqi + 2qTi Riui + uTi Siui]}

Substituting (5.1) into (5.7) and simplifying it we get

ζi + qTi νi +
1

2
qTi Wiqi = min

ui
{ζi+1 + γi + qTi h4i +

uTi h5i +
1

2
[qTi H1iqi + 2qTi H2iui + uTi H3iui]}

56

Chapter 5. Trajectory generation for swing-free load transportation

where

H1i = Qi + ATi Wi+1Ai,

H2i = Ri + ATi Wi+1Bi,

H3i = Si +BT
i Wi+1Bi, (5.7)

h4i = yi + ATi vi+1,

h5i = zi +BT
i vi+1.

Differentiating the right hand side of (5.7) with respect to ui, then equating to zero

results in

ui = −H−1
3i [H3iqi + h5i]. (5.8)

Substituting this solution back into (5.7) and equating terms of like degree in qi

results in the following recursive equations:

ζi = ζi+1 + γi −
1

2
hT5iH

−1
3i h5i

νi = h4i −H2iH
−1
3i h5i (5.9)

Wi = H1i −H2iH
−1
3i H

T
2i

The initial values for (5.10) are given by

ζN = γN ,

νN = yN , (5.10)

WN = QN .

The procedure for applying this algorithm is as follows:

1. Determine vN and WN using (5.11). As will be shown, yN and QN can be

extracted directly from the objective function.

57

Chapter 5. Trajectory generation for swing-free load transportation

2. Calculate vi and Wi recursively for i = N−1 to i = 1 using (5.10), while storing

matrices H−1
3i , HT

2i , and H−1
3i , h5i in the process.

3. Calculate ui and qi recursively for i = 1 to i = N − 1 using (5.8) and (5.1),

respectively.

The simplest candidate for the objective function follows a minimum energy principle.

Using trajectory accelerations as the input, rather than jerk, we improve computa-

tional efficiency while still allowing a zero end constraint for the trajectory velocities.

The state and input of the system are consequently given by

q =
[
ηL νL η ν

]T
, (5.11)

u = ν̇

where ηL and νL are load displacement angles and angular velocities, and η, ν and ν̇

are quadrotor attitude, velocity and acceleration vectors. Since the quadrotor exhibits

high performance trajectory tracking (Figure 5.4(a), Figure 5.4(b) and Figure 5.4(c)),

for computational efficiency of the DP algorithm, dynamic model of the quadrotor

is approximated by the corresponding kinematic model. To suppress the residual

oscillations, a penalty weight must be introduced into the objective function. In [59]

and [58], the value of penalty weight p is found empirically. The weighted terms

are chosen to represent the sum of squares of the final state error. In this paper we

determined the weighted terms using optimization solver by minimizing the rate of

convergence of the DP algorithm. This results in the objective function

Γk =
1

2
[qTkQkqk + 2qTkRkuk + uTk Skuk] +

1

2
p [xF − xN]T [xF − xN] . (5.12)

58

Chapter 5. Trajectory generation for swing-free load transportation

Matching like terms with those of the general form of the objective function leads to

the following observations

ζN =
1

2
pxTFxF ,

yN = −pxF ,

zN = 0, (5.13)

QN = Qk = qpIn,

RN = Rk,

SN = Sk = In,

in which I is an identity matrix and n is the number of state variables. The optimal

weighted vectors are found to be

p =
[

99.69 99.69 101.68 101.68 11×12

]
,

qq =
[
−9e−4 2e−3 9e−4 2e−3 11×12

]
,

Rk =

 Rk42 O4×4

O12×2 O12×4

 , (5.14)

Rk42 =

0 0.3

0 0.3

0.3 0

0.3 0

 ,

where p ∈ R1×16, qq ∈ R1×16 and Rk ∈ R16×6.

5.2.1 Simulation Results

The algorithm described in the previous section requires the beginning and ending

states to be known prior to the optimization. An initial trajectory estimate is also

59

Chapter 5. Trajectory generation for swing-free load transportation

required for the first optimization pass in order to compute required Ak and Bk ma-

trices. In this paper, we used cubic polynomial position trajectories (Fig. 5.4) for the

initial simulation of the system used in the first optimization pass. The cubic trajec-

tories result in residual oscillations of approximately 6.1◦ for swing (Figure 5.5(b)),

and 6.15◦ for rock Figure 5.5(a). Obtained optimal trajectories suppress the residual

oscillations to less than 5% of the initial oscillation magnitudes. The algorithm re-

quires three passes before reaching the convergence with computation time of 3.4s.

Figure 5.6 and Figure 5.7 show the case of generation of optimal trajectories for

multiple waypoints. Given the desired waypoints the optimal trajectory is generated

for every waypoint separately suppressing the residual oscillations for each waypoint

(Figure 5.7(b)).

The optimal trajectories obtained using dynamic programming are sufficiently

smooth, see Figure 5.9, and are suitable for implementation on the real system. By

sufficiently smooth we mean that at least their fourth derivative, which is jerk in our

case, is a continuous function. One of the drawback of the dynamic programming

is that this method is model based and therefore is sensitive to model uncertainties.

We can see in Figure 5.10 that this method is not robust with respect to changes in

the length of the suspension cable.

5.2.2 Experimental results

The effectiveness of the methodology proposed in this paper is verified experimentally.

First, we would like to show show robustness of the proposed method with respect

to unmodeled actuator dynamics, noise and system delays. In our case the actuator

is a quadrotor whose model and attitude control design are presented in Sec. 2.1.

Since the quadrotor shows almost perfect trajectory tracking (Figure 5.4(a), Figure

5.4(b) and Figure 5.4(c)) in the DP algorithm, we assume perfect tracking, i.e., the

60

Chapter 5. Trajectory generation for swing-free load transportation

full nonlinear quadrotor model is replaced by a double integrator. The performance

of the swing-free trajectory tracking in an ideal case is shown in Figure 5.11(a).

However, on Figure 5.4(c) we can see that ë 6= 0 where ë represents the acceleration

tracking error of a quadrotor. Therefore, in the case when we use the full nonlinear

model with an attitude controller for swing-free trajectory tracking, we can see that

the performance is different than in the ideal case (Figure 5.11(b)) but it is still

satisfying. By implementing the proposed method on an experimental system (Figure

5.11(c)), we see that the performance deteriorates due to imperfect tracking. On the

other hand, the attenuation of the load displacement angles φL and θL is achieved as

shown in Figure 5.12(a) and Figure 5.12(a). Therefore, the proposed method is robust

enough and shows good performance even with the lack of perfect trajectory tracking.

Videos of simulations and experiments can be found at [62]. Furthermore in the

second set of experiments we tried to emulate swing-free trajectory tracking in urban

environments motivated in the first section by simulations presented in Figure 5.8.

We build a maze of obstacles shown in Figure 5.13. The quadrotor is flying above

the obstacles while carrying the suspended load through narrow corridors. First,

quadrotor was tracking an initial 3D trajectory with cubic profile with respect to

time. Then using the dynamic programming based algorithm we have computed a 3D

trajectory with an optimal swing-free profile with respect to time. The experimental

data including quadrotor position and load position are shown in Figure 5.13.

Since it is hard to analyze raw experimental data just by visual inspection, we

utilize the tools from signal processing, i.e., we computed power spectral density for

each signal. Before processing, from each raw signal we extracted the part which

corresponds to the swing-free behavior. Power spectral density, describes how the

power of a signal or a time series is distributed with frequency, see Figure 5.13(c).

By taking the integral of the power spectral density we compute the total power

for each signal. We repeated the experiment in four trials and analyzed them using

power spectral density. The data are presented in Table 5.1. In all four cases the data

61

Chapter 5. Trajectory generation for swing-free load transportation

Table 5.1: Total power Ptot of the load displacement signals - experimental results
Signal [◦] Ptot for Init. Traj. [W] Ptot for Opt. Traj. [W]

trial #1 φL 31.0634 26.7398
θL 36.0171 26.3692

trial #2 φL 28.3503 26.2140
θL 39.4729 30.3817

trial #3 φL 34.3385 21.5736
θL 34.0470 28.9020

trial #4 φL 38.8807 28.5435
θL 35.4629 33.8539

show less energy for the load displacement while tracking the optimal trajectory.

Videos of simulations and experiments can be found at [62].

5.3 Swing-free trajectory generation using Taylor

series

5.3.1 Function approximation using Taylor series

Function approximation using using a finite number of terms of its Taylor series is a

common practice. Taylor’s theorem gives quantitative estimates on the error in this

approximation.

Theorem 5.3.1 (Taylor’s Theorem). Let k ≥ 1 be an integer and let the function

f : R→ R be k times differentiable at the point a ∈ R. Then there exists a function

hk : R→ R such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ fk(a)

k!
(x− a)k

and limx→a hk(x) = 0

62

Chapter 5. Trajectory generation for swing-free load transportation

Any finite number of initial terms of the Taylor series of a function is called a

Taylor polynomial. The Taylor series of a function is the limit of that function’s

Taylor polynomials, provided that the limit exists. A function may not be equal to

its Taylor series, even if its Taylor series converges at every point. A function that

is equal to its Taylor series in an open interval (or a disc in the complex plane) is

known as an analytic function.

Taylor’s theorem gives an approximation of a k times differentiable function

around a given point by a k-th order Taylor-polynomial. For analytic functions

the Taylor polynomials at a given point are finite order truncations of its Taylor’s

series, which completely determines the function in some neighborhood of the point.

5.3.2 Nelder - Mead algorithm

The Nelder-Mead algorithm or simplex search algorithm [20], is one of the best known

algorithms for multidimensional unconstrained optimization without derivatives. The

basic algorithm is quite simple to understand and very easy to use. For these reasons,

it is very popular in many fields of science and technology, especially in chemistry

and medicine.

The method does not require any derivative information, which makes it suitable

for problems with non-smooth functions. It is widely used to solve parameter esti-

mation and similar statistical problems, where the function values are uncertain or

subject to noise. It can also be used for problems with discontinuous functions, which

occur frequently in statistics and experimental mathematics.

63

Chapter 5. Trajectory generation for swing-free load transportation

5.3.3 Learning the swing-free trajectory parameters

In this work we are using Taylor polynomial of 10th order to determine the trajectory

given a certain task. By a certain task we mean two distinct actions that we want

to accomplish using quadrotor carrying the suspended load. First, is a swing-free

maneuver defined in Section 1.2.2 for which we are trying to find the trajectory

previously generated by dynamic programming, model based method presented in

Section 5.2. Since we don’t know the optimal trajectory that will ensure a swing-

free maneuver of the load, we define Taylor polynomial with unknown coefficients

that will approximate the optimal swing-free trajectory. The unknown coefficients

we learn using Nelder-Mead algorithm which is one of the bet method for solving

nonlinear multidimensional optimization problems. Since Nelder-Mead algorithm is

unconstrained optimization solver and swing-free optimization does not have one

global minimum we are defining the set of constraint for this algorithm in order to to

ensure the performance we want. By not having one global minimum we mean that for

example since the solver is unconstrained it will give us as the best solution trajectory

that does not move form the initial point, where the velocity and acceleration of the

quadrotor are zero at all times.

Since we want to perform a swing-free maneuver while quadrotor moves from

point η10 = [X0 Y 0 Z0]T to the point η1F = [XF Y F ZF]T in T seconds we

have to define a set of constraints that will transform our unconstrained Nelder-Mead

algorithm into a constrained version of it. In Figure 5.14 we depict the constraints

we impose to the unknown swing-free trajectory. If we write down the constraints

we get the following. Function that represents the position in x-axis is defined as

fx(t) = fx0 + fx1t+
fx2

2!
t2 + · · ·+ fx10

10!
t10 (5.15)

64

Chapter 5. Trajectory generation for swing-free load transportation

where t ∈ R represents time. Now we impose the constraints

fx(0) = X0 ⇒ fx0 = X0 (5.16)

fx(TX) = XF ⇒ fx0 + fx1 + · · ·+ fx10 = XF

where X0 and XF represent the initial and the final point in the x-axis respectively,

and Tx represents the time to reach the final point.

Differentiating (5.15) with respect to time we get the function that represents the

velocity

ḟx(t) = fx1 +
2 ∗ fx2

2!
t+ · · ·+ 10 ∗ fx10

10!
t9. (5.17)

The constraints on the velocity are

ḟx(0) = 0 ⇒ fx1 = 0

ḟx(TX) = 0 ⇒ 2 ∗ fx2 + 3 ∗ fx3 + · · ·+ 10 ∗ fx10 = 0 (5.18)

ḟx(t) > 0, ∀t ∈ [0 T].

Differentiating (5.17) with respect to time we get the function that represents the

acceleration

f̈x(t) =
2 ∗ fx2

2!
+ · · ·+ 10 ∗ 9 ∗ fx10

10!
t8. (5.19)

The constraints on the acceleration are

f̈x(0) = 0 ⇒ fx2 = 0 (5.20)

f̈x(TX) = 0 ⇒ 3 ∗ 2 ∗ fx3 + · · ·+ 10 ∗ 9 ∗ fx10 = 0.

Solving (5.17), (5.19) and (5.21) we get the initial coefficients with which we start

the learning process. With these constraints we are ensuring that the approximated

65

Chapter 5. Trajectory generation for swing-free load transportation

trajectory will be feasible for the quadrotor to accomplish. The value function we

are minimizing is given by

V = ηLFQη
T
LF , (5.21)

where ηLF is the vector of load displacement angles and angular velocities at the end

of the maneuver, at time T , and Q > 0, Q ∈ R4 is a weighting matrix. Constraints

defined above leave a very small ”window” for the solver to find the parameters fxi.

Therefore, we define the penalty function as

F = P ∗
∣∣∣[fx(0) fx(T)−XF ḟx(0) ḟx(T) f̈x(0) f̈x(T)

]∣∣∣
1

(5.22)

where P > 0, P ∈ R is a large positive number and |·|1 is a vector 1-norm. The

reason why we chose this type of penalty function is that this way solver knows if

the result he is obtaining is converging or not. Otherwise by putting only a constant

as a penalty function the solver has no way of knowing if he is searching in the right

direction or not.

The method presented here is depicted by a scheme on Fig 5.15. This is a iterative,

model-free method. What the algorithm presented here is obtaining from the system

is the measurements of the load displacement angles and angular rates. Then the

algorithm gives back the parameters for the trajectory defined by (5.15) by minimizing

(5.21). Forces and torques exerted by the suspended load decrease when the load

displacement angles are decreased as shown in Figure 5.16(c) and Figure 5.16(d).

5.4 Conclusion

In this chapter we present three different methods to obtain swing-free motion of the

quadrotor carrying the suspended load. All three methods show promising results.

66

Chapter 5. Trajectory generation for swing-free load transportation

Input shaping and dynamic programming are model based method so they require

a prior knowledge of the system. The third method is model free and requires only

measurements of the displacement angles.

By combining adaptive control and swing-free trajectory generation we develop

a hierarchical controller that ensures robustness of the quadrotor baseline attitude

controller with respect to model uncertainties (change in the CoG of the quadrotor)

and to external forces FH and torques TH exerted by the suspended load. Besides

that, the system is able to perform agile swing-free maneuvers which can be useful

in a wide range of applications.

67

Chapter 5. Trajectory generation for swing-free load transportation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−1

0

1

2
x

[m
]

unshaped trajectory
shaped trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−0.5

0

0.5

1

1.5

v x [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−2

−1

0

1

2

a x [m
/s

2]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−10

0

10

20

θ L [°
]

Time [s]

Figure 5.1: Swing free using input shaping.

68

Chapter 5. Trajectory generation for swing-free load transportation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−8

−6

−4

−2

0

2

4

6

8

10

θ L [°
]

Time [s]

l
1.1*l
1.2*l
1.3*l
1.4*l

Figure 5.2: Robustness of input shaping with respect to unknown length of the load.

Figure 5.3: Controller scheme with DP based trajectory builder.

69

Chapter 5. Trajectory generation for swing-free load transportation

0 2 4 6 8 10 12
0

1

2

x
[m

]

Position relative to the ground frame

ref position
sim position

0 2 4 6 8 10 12
0

1

2

y
[m

]

0 2 4 6 8 10 12
0

1

2

z
[m

]

time [s]

0 2 4 6 8 10 12
−0.5

0

0.5

v x [m
/s

]

Linear velocities relative to the ground frame

ref velocity
sim velocity

0 2 4 6 8 10 12
−0.5

0

0.5

v y [m
/s

]

0 2 4 6 8 10 12
−0.5

0

0.5

v z [m
/s

]

time [s]

0 2 4 6 8 10 12
−0.5

0

0.5

a x [m
/s

2]

Linear acceleration relative to the ground frame

ref acceleration
sim acceleration

0 2 4 6 8 10 12
−0.5

0

0.5

a y [m
/s

2]

0 2 4 6 8 10 12
−0.5

0

0.5

a z [m
/s

2]

time [s]

Figure 5.4: Quadrotor trajectory tracking - simulation results.

70

Chapter 5. Trajectory generation for swing-free load transportation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Pass # 0 θ
L

max

 = 6.15 °

x de
s [m

]

Pass # 1 θ
L

max

 = 1.81 °
Pass # 2 θ

L

max

 = 0.319 °

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−10

−5

0

5

10
Displacement of Load

θ L [°
]

(a) X trajectory and swing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Pass # 0 φ
L

max

 =6.1 °

y de
s [m

]

Pass # 1 φ
L

max

 =1.8 °
Pass # 2 φ

L

max

 =0.315 °

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−10

−5

0

5

10
Displacement of Load

φ L [°
]

(b) Y trajectory and rock

Figure 5.5: Optimal and cubic trajectories with load displacement considering one
waypoint

71

Chapter 5. Trajectory generation for swing-free load transportation

−2
−1

0
1

2

−2

−1

0

1

2
−1

−0.5

0

0.5

1

1.5

X − position [m]

Trajectory Tracking Cubic

Y − position [m]

Z
 −

 p
os

iti
on

 [m
]

(a) Cubic trajectory

−2
−1

0
1

2

−2

−1

0

1

2
−1

−0.5

0

0.5

1

1.5

X − position [m]

Trajectory Tracking Optimal

Y − position [m]

Z
 −

 p
os

iti
on

 [m
]

(b) Optimal trajectory

Figure 5.6: 3D representation of trajectories considering multiple waypoints.

72

Chapter 5. Trajectory generation for swing-free load transportation

0 5 10 15 20 25 30
−1

0

1

x
[m

]

0 5 10 15 20 25 30
−1

0

1

y
[m

]

0 5 10 15 20 25 30
0

0.5

1

z
[m

]

t [s]

cubic trajectory
optimal trajectory

(a) Trajectories

0 5 10 15 20 25 30
−20

−10

0

10

20
Displacement of Load

θ L [°
]

cubic trajectory
optimal trajectory

0 5 10 15 20 25 30
−20

−10

0

10

20
Displacement of Load

φ L [°
]

time [s]

(b) Angular displacement of the Load

Figure 5.7: Optimal and cubic trajectories with load displacement considering mul-
tiple waypoints.

73

Chapter 5. Trajectory generation for swing-free load transportation

Figure 5.8: 3D representation of trajectories considering multiple waypoints with
obstacles.

74

Chapter 5. Trajectory generation for swing-free load transportation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

x
[m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−0.5

0

0.5

1

1.5

v x [m
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−1

−0.5

0

0.5

1

a x [m
/s

2]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−10

−5

0

5

10

15

θ L [°
]

Time [s]

cubic trajectory
optimal trajectory

Figure 5.9: Swing free using dynamic programming.

75

Chapter 5. Trajectory generation for swing-free load transportation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−10

−8

−6

−4

−2

0

2

4

6

8

θ L [°
]

Time [s]

l
1.1*l
1.2*l
1.3*l
1.4*l

Figure 5.10: Robustness of dynamic programming with respect to unknown length
of the load.

76

Chapter 5. Trajectory generation for swing-free load transportation

(a) Kinematic model of the quadrotor

(b) Nonlinear model of the quadrotor with at-
titude controller

(c) Experimental quadrotor

Figure 5.11: Robustness of the proposed method considering the unmodeled dynamics
of the quadrotor

77

Chapter 5. Trajectory generation for swing-free load transportation

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

x
[m

]

Experimental results with AscTec Hummingbird

0 1 2 3 4 5
−20

−10

0

10

20

vrijeme [s]

φ L[°
]

cubic
optimal

(a) X trajectory and swing

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

y
[m

]

Experimental results with AscTec Hummingbird

0 1 2 3 4 5
−20

−10

0

10

20

vrijeme [s]

θ L[°
]

cubic
optimal

(b) Y trajectory and rock

Figure 5.12: Experimental result for swing-free trajectory tracking

78

Chapter 5. Trajectory generation for swing-free load transportation

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

x [m]

Position of the quadrotor

y [m]

z
[m

]

initial cubic trajectory
optimal swing−free trajectory

(a) Quadrotor position.

0 5 10 15 20 25 30 35 40 45 50

−10

−5

0

5

10

φ L [°
]

Displacement of the load with respect to the suspension point in Polar coordinates

initial cubic trajectory
optimal swing−free trajectory

0 5 10 15 20 25 30 35 40 45 50
−5

0

5

10

15

20

θ L [°
]

t [s]

(b) Load displacement in Polar coordinates.

0 5 10 15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time domain signal φ
L

Time [s]

initial − cubic
swing−free − optimal

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

Power spectral density of φ
L

0 5 10 15
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time domain signal θ
L

Time [s]

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Frequency [Hz]

Power spectral density of θ
L

(c) Power Spectral Density.

Figure 5.13: Experimental results for swing-free trajectory tracking.
79

Chapter 5. Trajectory generation for swing-free load transportation

Figure 5.14: Constraints on the function represented by Taylor polynomial.

80

Chapter 5. Trajectory generation for swing-free load transportation

Figure 5.15: Block schemes for learning the coefficients of the Taylor approximating
function.

81

Chapter 5. Trajectory generation for swing-free load transportation

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

x
[m

]

Quadrotor attitude

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

y
[m

]

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

z
[m

]

0 5 10 15 20 25 30 35 40 45 50
−10

0

10

ψ
 [°

]

time [s]

cubic trajectory
optimal swing−free trajectory

(a) Position and Heading.

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

x G
 [m

]

Coordinates of the CoG

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

y G
 [m

]

0 5 10 15 20 25 30 35 40 45 50

−6

−4

−2

0
y G

 [m
]

real CoG displacement
adaptive CoG cubic trajectory
adaptive CoG optimal swing−free trajectory

(b) Estimated and real CoG coordinates.

0 10 20 30 40 50
−20

−10

0

10

20

φ L [°
]

Suspended load displacemet angles

0 10 20 30 40 50
−20

−10

0

10

20

θ L [°
]

time [s]

cubic trajectory
optimal swing−free trajectory

(c) Suspended load displacement angles.

0 10 20 30 40 50
−0.5

0

0.5

1

F
Lx

 [N
]

Force and torques load excerts to quadrotor

0 10 20 30 40 50
−4

−2

0

2

F
Ly

 [N
]

0 10 20 30 40 50
−1

−0.5

0

0.5

F
Lz

 [N
]

time [s]

0 10 20 30 40 50
−1

−0.5

0

0.5

1

T
Lx

 [N
]

0 10 20 30 40 50
−1

−0.5

0

0.5

1

T
Ly

 [N
]

0 10 20 30 40 50
−0.5

0

0.5

T
Lz

 [N
]

time [s]

cubic trajectory
optimal swing−free trajectory

(d) Forces and torques from suspended load.

Figure 5.16: Adaptive feedback linearization algorithm with swing-free trajectory
tracking.

82

Chapter 6

Trajectory tracking with

suspended load

In most of the research about suspended load and small scale aerial robots the main

focus is to maintain stability of the aerial robot - load system or to reduce the

oscillations of the suspended load. In this chapter we are moving a step further

where we develop algorithms for trajectory tracking with suspended load.

Reinforcement learning, a field of machine learning, is a family of algorithms that

solve Markov Decision Processes (MDP) [63]. MDP is defined by a set of states,

actions that perform process transitions from one state to another, and a reward

value at every state. A solution to MDP is a sequence of actions that maximize

the accumulated reward beginning at the start state. MDP assumes the Markovian

property, meaning that the next state of the system depends only on the previous

state and the action applied. Likewise, solving an MDP in a state s does not depend

on how the state s was reached.

In the terms of reinforcement learning, a policy is a function that for each state

specifies an action to be taken. Our goal is to find a policy that yields the highest

83

Chapter 6. Trajectory tracking with suspended load

return. Value function with respect to a policy at a state is an expected value of the

accumulated reward starting in the current state and following the given policy.

Formally, let (S,A, P,R) be a MDP, where S ⊂ Rn is state space, A is a finite

action space, Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a) is transition probability that the

transitions the MDP from state s to state s′ when action a is applied. We assume

that our process is deterministic, thus ∃s′ ∈ S s.t. Pa(s, s
′) = 1 and 0 for all other

states. Lastly R : S → R is an immediate reward at a state s. The goal is to find

a policy π : S → A that maximizes Vπ : S → R expected accumulated reward when

policy π is followed. We assume R and therefore V are not known in advance. We

further assume that we do not know the state transition function P .

In control theory, state space S is typically denoted X, action space A is U

the action space of the controller, probability transition is referred to f transition

function, and reward function R corresponds to ρ reward signal. Policy π in control

theory terms is h [64]. In this dissertation, we use the control theory notation.

Trajectory tracking for helicopters based on reinforcement learning resulted in

autonomous aggressive helicopter flights. This work was summarized by [51]. This

line of research relies on apprenticeship learning to achieve aggressive autonomous

maneuver such as as flips, rolls, loops, chaos, tic-tocs, and auto-rotation landings. An

expert pilot demonstrates the target trajectory and the cost function is learned from

the target trajectory. Parameters for initial linear model are learned from observing

an expert fly non-aggressive maneuvers. Then the trajectory is broken down into

small segments so that each can be separately learned using a linear dynamics model.

Online least square policy iteration has been successfully implemented in order to

solve a benchmark control problems of balancing an inverted pendulum and balancing

and riding a bicycle [64], [65]. The method shows promising convergence properties

[66] and stability of the algorithm [65]. These and the fact that the method is model

84

Chapter 6. Trajectory tracking with suspended load

free are main reasons why we chose this method to solve our problem.

6.1 Unconstrained Nelder-Mead algorithm

Second task we want to accomplish using a quadrotor with suspended load is load

tracking of a trajectory by generating the appropriate input trajectory for the quadro-

tor by learning its parameters.

For solving this problem we are using similar methodology we used in Section 5.3.

The major difference is that for this problem we are using unconstrained Nelder-Mead

algorithm. The objective function we are minimizing is given by

V = t · eTLReL · t, (6.1)

where eL = [xLref − xL yLref − yL zLref − zL]T is the tracking error of the load

and R > 0, R ∈ R is the weighting matrix. The method presented here is depicted

by a scheme on Figure 6.1. We obtained Taylor series parameters after 197 itera-

tions of Nelder-Mead algorithm. The coefficients are given as a vector [f0 . . . f10] =

[0.0001 0.2918 0.0011 0.0003 −0.0003 0.0003 −0.0001 0.0001 0.0006 −

0.0002 0.0007] and simulation results are presented in Figure 6.2.

6.2 Least square policy iteration

Reinforcement learning is a promising paradigm for learning optimal control algo-

rithms. Policy iteration (PI) algorithms for reinforcement learning iteratively evalu-

ate and improve control policies. State-of-the-art, least-squares techniques for policy

evaluation are sample-efficient and have relaxed convergence requirements.

85

Chapter 6. Trajectory tracking with suspended load

Figure 6.1: Block schemes for learning the coefficients of the Taylor approximating
function.

Least square policy iteration (LSPI) is a reinforcement learning algorithm. Re-

inforcement learning (RL) algorithms are model-free and can be divided into three

categories value iteration, policy iteration and policy search algorithms. Value it-

eration algorithms which search for the optimal value function in order to obtain

the optimal policy. Policy iteration algorithms construct value functions which are

then used in order to construct new, improved policies. Policy search algorithms

use optimization techniques to directly search for an optimal policy. Offline RL al-

gorithms use data collected in advance while online RL algorithms learn a solution

by interacting with the process. Online RL algorithms must balance the need to

collect the informative data (exploration) with the need to control the process well

(exploitation). A quadrotor with a suspended load can be represented in a form of a

deterministic Markov Decision Process (MDP)

xk+1 = f(xk, uk)

86

Chapter 6. Trajectory tracking with suspended load

0 1 2 3 4 5
−6

−4

−2

0

2

4

Θ
L [°

]

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

x L [m
]

t [s]

reference
simulation

Figure 6.2: Load trajectory tracking using Nelder-Mead algorithm.

where X is the state space of the process, U is the action space of the controller,

f : X × U → X is the transition function of the process and ρ : X × U → R is the

reward function

rk+1 = ρ(xk, uk).

The controller chooses actions according to its policy h : X → U

uk = h(xk).

The goal is to find an optimal policy that maximizes the return from any initial state

x0. The return R is a cumulative aggregation of rewards

Rh(x0) =
∞∑
k=0

γkρ(xk, h(xk))

87

Chapter 6. Trajectory tracking with suspended load

where γ ∈ [0, 1] is the discount factor. State-action value function (Q-function)

Qh : X × U → R of a policy h is given by

Qh(x, u) = ρ(x, u) + γRh(f(x, u)).

The optimal Q-function is

Q∗(x, u) = max
h

Qh(x, u).

The optimal policy (greedy policy in Q∗)

h(x) ∈ argmax
u

Q(x, u)

The Bellman equation for Qh

Qh(x, u) = ρ(x, u) + γQh(f(x, u), h(f(x, u)))

and the Bellman equation for Q∗

Q∗(x, u) = ρ(x, u) + γmax
u′

Q∗(f(x, u), h(f(x, u′))).

Policy iteration evaluates policies by constructing their value functions which are

then used to construct new, improved policies. Policy evaluation is evaluated at

every iteration l solving the Bellman equation for Qhl of the current policy hl. Policy

improvement is then calculated using

hl+1(x) ∈ argmax
u

Qhl(x, u).

The sequence of Q-functions produced by policy iteration asymptotically converges

to Q∗ as l → ∞. In continuous spaces, policy evaluation cannot be solved exactly,

and the value function has to be approximated. Linearly parametrized Q-function

approximator Q̂ consists of n basis function (BFs) φ1, . . . , φn : X × U → R and n

dimensional parameter vector θ

Q̂ =
n∑
l=1

φl(x, u)θl = φT (x, u)θ

88

Chapter 6. Trajectory tracking with suspended load

where φ(x, u) = [φ1(x, u), . . . , φn(x, u)]T . Control action u is a scalar which is

bounded to an interval U = [uL uH].

Approximation of the value function is a difficult problem, because it involves

finding an approximate solution to a Bellman equation. In this dissertation we use

state-dependent basis functions and orthogonal polynomials of the action variable

which separates approximation over the state space from approximation over the

action space. Orthogonal polynomials are chosen because it is simple to solve the

maximization problem over action variables and orthogonality ensure better condi-

tioned regression problem at the policy improvement steps. As approximators over

the state-action space we use Chebyshev polynomials of the first kind which are

defined as

ψ0(ū) = 1,

ψ1(ū) = ū, (6.2)

ψj+1(ū) = 2ūψj(ū)− ψj−1(ū),

where

ū = −1 + 2
u− uL
uH − uL

.

These polynomials are defined on the interval [−1 1]. The online least square policy

iteration algorithm is described by algorithm (1). The difference between an offline

and an online variation of LSPI is that the online algorithm interacts with the envi-

ronment at every iteration (line 10). Since we do not want for the algorithm to get

stuck in the local minima, exploration and exploitation actions have to be balanced

(line 9). To be able to converge quickly the algorithm needs to exploit in the best

way the interaction with the environment, on the other hand in order to find the

global minima it has to explore the action space with probability εk. As the time

passes, the algorithm is relaying more on the current policy than on exploration, so

89

Chapter 6. Trajectory tracking with suspended load

εk decays exponentially as the number of steps increases. Instead of waiting until

many samples are passed, the online LSPI improves the policy by solving for the

Q-function parameters every Kθ iterations using the current values of the Γ, Λ and

z. When Kθ = 1 then the policy is improved at every iteration step and is called

fully optimistic.

Convergence of the LSPI algorithm using Chebyshev polynomials

Chebyshev polynomials are good approximators because they show uniform conver-

gence as approximators. The following lemma states the uniform convergence of

Chebyshev approximation as previously stated in [66] and [67]

Lemma 1 (Uniform convergence of Chebyshev approximation). For all k, for all f ∈

Ck[a; b],

‖f − Cn‖∞ ≤ K

K =

(
4 +

4

π2
lnn

)
(n− k)!

n!

(π
2

)k (b− a
2

)k ∥∥fk∥∥∞
and hence Cn −→ f uniformly.

The next two theorems are taken from [66] and [67] and they ensure mean conver-

gence of the approximate policy iteration algorithm with Chebyshev approximators.

Theorem 6.2.1 (Mean convergence of approximate PI). Let ĥ0 . . . ĥn be the sequence

of policies generated by an approximate policy iteration algorithm and let V̂ĥ0 . . . V̂ĥn

be the corresponding approximate value functions. Further assume that, for each fixed

policy ĥn, the MDP is reduced to a Markov chain that admits an invariant probability

measure µĥn. Let {εn} and {δn} be positive scalars that bound the mean errors in

approximations to value functions and policies (over all iterations) respectively, that

90

Chapter 6. Trajectory tracking with suspended load

is ∀n ∈ N,

Eµĥn
∥∥∥V̂ĥn − Vĥn∥∥∥∞ ≤ εn, (6.3)

and

Eµĥn
∥∥∥Mĥn+1

V̂ĥn −MV̂ĥn

∥∥∥
∞
≤ δn, (6.4)

Suppose the sequences {εn} and {δn} converge to 0 and limn→∞
∑n−1

i=0 γ
n−1−iεi =

limn→∞ δ
n−1−iεi = 0, e.g., εi = δi = γi Then, this sequence eventually produces

policies whose performance converges to the optimal performance in the mean:

lim
n→∞

Eµĥn
∥∥∥Mĥn+1

V̂ĥn −MV̂ĥn

∥∥∥
∞

= 0, (6.5)

Proof. see [66]

Theorem 6.2.2 (Convergence with Chebyshev polynomials). Suppose we have the

same assumptions as in theorem 6.2.1 and further assume that, for any policy h ∈ Π,

the value function V h is in Ck[−1, 1] and the invariant density function fh is known.

Theorem 6.2.1 holds for the least square approximate policy iteration algorithm with

Chebyshev polynomial approximation.

Proof. see [66]

Implementation of the LSPI algorithm for trajectory tracking with the

suspended load using a quadrotor

Usually Kθ should be a number greater than zero but not too large. In our case

Kθ = 7. The reward function is defined as

r = −c1 |uk| − c2e
2
Lk − c3θ

2
Lk, (6.6)

91

Chapter 6. Trajectory tracking with suspended load

Figure 6.3: Block scheme for load trajectory tracking using LSPI.

where c1, c2, c3 are positive constants, uk is the action at step k, eLk = xLref − xL
is the load tracking error and θLk is the load displacement angle. Online LSPI is

implemented in simulation and the results are shown in Figure 6.4 and Figure 6.6.

The implementation is depicted by the scheme on Figure 6.3. Since in LSPI action is

scalar, in order to implement 2D or 3D trajectory tracking we had to develop three

different functions with three LSPI algorithms providing us with 3 control actions for

the quadrotor, as depicted in Figure 6.3.

6.2.1 Simulation and experimental results

The algorithm described in the previous section is an online LSPI, meaning that dur-

ing every simulation step, one iteration of the algorithm is performed while interact-

ing with the system. Therefore, the algorithm provides an action at every simulation

step, based on the previous outcome of the action or based on exploration.

We use the nonlinear model of the quadrotor and the suspended load described in

92

Chapter 6. Trajectory tracking with suspended load

[68] for simulation purposes. The model provides environment feedback to the LSPI

algorithm in form of the load tracking error eLk and the load displacement angle θLk

for the LSPI algorithm. Figure 6.3 illustrates vectors eLk, and θLk as they relate to

the position and the displacement angle of the load.

The algorithm and simulations are written and executed in Matlab and Simulink

2011, on a Windows machine in Marhes laboratory.

Straight line load trajectory simulation

For our first simulation, we have load tracking a straight line in xy plane going back

and forth. Red lines in Figure 6.4(b) and 6.4(d) show the targeted trajectory.

We tracked the performance of the algorithm for 800 steps and these results are

presented in Figure 6.4 in blue lines. Figure 6.4(a) shows the quadrotor trajectory

resulting from the learning. Figures 6.4(b) and 6.4(d) present the load trajectory and

displacement from the targeted trajectory. We can see that the load closely follows

the reference trajectory, not diverging more than few centimeters from it.

Figure 6.4(c) depicts load tracking error that the agent is trying to minimize. The

error is bounded which shows stability of the algorithm over 800 iteration steps.

To additionally confirm the convergence and stability of the LSPI algorithm we

refer to the Figure 6.4 which shows simulation results for 3 simulation trials. We can

see that the load starts tracking the set trajectory very fast in each of the simulation

trials.

Lissajeou curve load trajectory simulation

To show that with LSPI algorithm the system is able to perform more complex

trajectories, we chose a Lissajeou curve as a second trajectory to track. Figure 6.6(d)

93

Chapter 6. Trajectory tracking with suspended load

in red line shows Lissajeou curve. Figure 6.6(a) shows the quadrotor’s trajectory

after the learning. Figures 6.6(a) and 6.6(b) depict load’s resulting trajectory (in

blue) compared with desired trajectory. We can see that the load is following the

reference closely. Figure 6.6(c) shows the load’s error from the desired trajectory.

Also in this case, the load tracking error is bounded. We can see the periodicity

of the error, and also the trend for the peaks to reduce as the learning continues.

The peak errors reduce from over 0.5 meters in the first 4,000 iterations to under

0.5 meters in the iterations over 8,000. Note, that this is error of the load from

target trajectory, not from quadrotor. This means that, since this method does not

directly control the load’s swing, the displacement is due to the load’s swing, and the

quadrotor is leading the load closely to the desired trajectory. In both cases of the

reference trajectories for the suspended load, the quadrotor reference is set to hover.

LSPI algorithm drives the quadrotor to perform trajectories given in Figures 6.4(a)

and 6.6(a).

Lissajeou curve load trajectory experiment

To verify that the simulation results are sound and that the produced LSPI trajecto-

ries are valid and to access true load displacement from the targeted load trajectory

we performed experiments on a Hummingbird quadrotor (see Figure 6.7). The exper-

imental results were performed in MARHES lab at University of New Mexico. More

detailed description of the experimental testbed can be found in [56]. We generated

trajectories for the quadrotor by learning in simulation, and tested them on a real

quadrotor with suspended load. The learning was performed on 50Hz. We measured

the quadrotor and load’s trajectories and the load’s displacement from the desired

trajectory. We compare the experimental results with the simulation predictions.

Figure 6.8(a) compares the actual quadrotor trajectory as flown (in blue) with

the trajectory predicted by simulation (in red). The differences between them are

94

Chapter 6. Trajectory tracking with suspended load

negligible, never exceeding more than 15 cm. This is a very promising result.

Figures 6.8(b) and 6.8(c) compare the load trajectory recorded in the experiment

(in blue) with the simulation predicted trajectory (in red) and target trajectory (in

black). We have a very interesting result here that shows that the experimental

trajectory was much closer to the target trajectory then the simulation prediction.

The reason for this discrepancy is that the model does not account for the load

dumping effect, thus we obtain better results in reality than what simulations predict.

Again, to additionally confirm the convergence and stability of the LSPI algorithm

we show 3 sets of simulations where the load tracks a y coordinate of Lissajeou

curve as depicted in Figure 6.5(b). We can see that the load starts tracking the set

trajectory very fast in each of the simulation trials.

Tracking and controlling the position of a suspended load can be critical to mission

success. In this section we present a model-free approach to solve this problem

involving a reinforcement learning algorithm. This method converges quickly to learn

the policy function that minimizes the error in the load from the expected trajectory.

We show results in simulation of this policy on a variety of trajectories from a simple

straight line to a more complex Lissajeou curve. In both cases, the error is bounded

to centimeters. In order to further validate the simulation, experiments were run on

the experimental testbed. In these experiments, we see that the load is able to follow

the Lissajeou curve trajectory closely.

The reinforcement learning methods presented are flexible and can be used both

offline and online for trajectory tracking. This flexibility makes it highly appropriate

for quadrotor policy learning.

Videos of simulations and experiments can be found on [62].

95

Chapter 6. Trajectory tracking with suspended load

6.3 Conclusion

Tracking and controlling the position of a suspended load can be critical to mission

success. In this chapter we present a model-free approaches to solve this problem in-

volving algorithms based on Nelder-Mead algorithm and on reinforcement learning.

Trajectory tracking with suspended load in combination with swing-free trajecto-

ries gives us more control over the system making it easier to manipulate safely in

cluttered environments.

96

Chapter 6. Trajectory tracking with suspended load

Algorithm 1 Online LSPI with ε - greedy exploration

1: Input: discount factor γ,

2: BFs φ1, . . . φn : X × U → R,

3: policy improvement interval Kθ, exploration {εk}∞k=0,

4: a small constant βΓ > 0

5: l← 0, initialize policy h0,

6: Γ0 ← βΓIn×n, Λ0 ← 0, z0 ← 0

7: measure initial state x0

8: for every time step k = 0, 1, 2, . . . do

9: uk ←

hl(xk) : with prob.1− εk (exploit)

uni. rand. ac. in U : with prob.εk (explore)

10: apply uk, measure next state xk+1 and reward rk+1

11: Γk+1 ← Γk + φ(xk, uk)φ
T (xk, uk)

12: Λk+1 ← Λk + φ(xk, uk)φ
T (xk+1, hl(xk+1))

13: zk+1 ← zk + φ(xk, uk)rk+1

14: if k = (l + 1)Kθ then

15: solve 1
k+1

Γk+1θl = 1
k+1

Λk+1θl + 1
k+1

zk+1

16: hl+1(x)← arg maxuφ
T (x, u)θl,∀x

17: l← l + 1

18: end if

19: end for

97

Chapter 6. Trajectory tracking with suspended load

0 2 4 6 8 10 12 14 16
−2

0

2

x q [m
]

Quadrotor position

0 2 4 6 8 10 12 14 16
0

1

2

z q [m
]

t [s]

0 1 2 3 4 5 6 7 8
−1

0

1

2

y q [m
]

(a) Quadrotor position.

0 5 10 15
−20

−10

0

10

20

θ L [°
]

0 5 10 15
−2

−1

0

1

2

t [s]
x L [m

]

0 2 4 6 8
−30

−20

−10

0

10

20

φ L [°
]

0 2 4 6 8
−2

−1

0

1

2

y L [m
]

t [s]

reference
simulation

(b) Load displacement in Polar and Carte-
sian coordinates.

0 100 200 300 400 500 600 700 800
−0.5

0

0.5

1

ex
L [m

]

Load tracking error

0 100 200 300 400 500 600 700 800
−1

−0.5

0

0.5

1

ey
L [m

]

of samples

(c) Load tracking error.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
L
 [m]

y L [m
]

reference
simulation

(d) Load displacement in 2D.

Figure 6.4: Simulation results for online LSPI used for suspended load tracking the
straight line.

98

Chapter 6. Trajectory tracking with suspended load

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

t[s]

y L [m
]

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

x L [m
]

reference
sim #1
sim #2
sim #3

(a) Suspended load tracking a straight line trajectory

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

x L [m
]

t [s]

reference
sim #1
sim #2
sim #3

(b) Suspended load tracking a sinusoidal trajectory

Figure 6.5: Simulation results for online LSPI used in multiple simulation trials.

99

Chapter 6. Trajectory tracking with suspended load

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

x q [m
]

Quadrotor Attitude

0 5 10 15 20 25 30 35 40 45 50
−2

−1

0

1

2

y q [m
]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

z q [m
]

Time [s]

(a) Quadrotor position.

0 10 20 30 40 50
−15

−10

−5

0

5

10

15

20

25

Φ
L [°

]

Slung load displacement in Polar and Cartesian Coordinates

0 10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

Θ
L [°

]

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x L [m
]

0 10 20 30 40 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y L [m
]

reference
simulation

(b) Load displacement in Polar and Carte-
sian coordinates.

0 2000 4000 6000 8000 10000
−0.4

−0.2

0

0.2

0.4

ex
L [m

]

Load tracking error

0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

ey
L [m

]

of samples

(c) Load tracking error.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
L
 [m]

y L [m
]

Lissajeou curve in 2D

(d) Load displacement in 2D.

Figure 6.6: Simulation results for load tracking of Lissajeou curve using online LSPI.

100

Chapter 6. Trajectory tracking with suspended load

Figure 6.7: Hummingbird quadrotor with a suspended load at MARHES Lab Uni-
versity of New Mexico.

101

Chapter 6. Trajectory tracking with suspended load

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

x q [m
]

Quadrotor position

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

z q [m
]

t [s]

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

y q [m
]

simulation
experiment

(a) Quadrotor position.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

x L [m
]

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

y L [m
]

t [s]

reference
simulation
experiment

(b) Suspended load position.

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ey
L [m

]

ex
L
 [m]

reference
simulation
experiment

(c) Load displacement in 2D.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.5

0

0.5

ex
L [m

]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

ey
L [m

]

t [s]

simulation
experiment

(d) Load tracking error.

Figure 6.8: Experimental results using the trajectory generated in simulation using
LSPI.

102

Chapter 7

Navigation in cluttered

environments and distributed

trajectory tracking

7.1 Navigation in cluttered environments

In this section we present a set of simulations as a motivation for use of swing-free

trajectory tracking in urban environments. Let Q represent the origin of the moving

coordinate frame {A} attached to a quadrotor body with suspended load in a Eu-

clidean space R3, and let convex sets B1, ...,Bn be fixed rigid objects distributed inW

(Figure 1.2.4). The Bi’s are defined as obstacles. We assume that both the geometry

of Q,B1,,Bn and the locations of the Bi’s are known apriori and accurately in a

3-dimensional area-of-interestW . We assume that given an initial position and a goal

position of Q in W , a collision-free path P is generated using a high level planner

based on any of the well known path planning techniques such as potential field, cell

decomposition, etc. [21].

103

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

The problem of interest is stated as follows: A path P is approximated with a

finite number of waypoints wi such that the straight-line path Psegment between two

waypoints belongs to Wfree. Based on given waypoints wi the mid-level planner cal-

culates the minimal distance between the path Psegment and the surrounding obstacles

minobst−dist. Subsequently, it determines the maximum allowable load displacement

angle maxallow−angle such that the trajectory of the load Tload belongs to Wfree. By

determining maxallow−angle 6= 0 we the value of the vector xF in the objective function

(5.12) with respect to a swing-free policy considered in Sec. 5.2. Using the principle

of maxallow−angle we can incorporate a safety region for the maximal displacement

of the load by narrowing the minobst−dist by δsafe. This approach makes the overall

system more robust and reliable. Subsequently, given maxallow−angle, the mid-level

planner generates an optimal trajectory Topt for Q using the DP algorithm presented

in Sec. 5.2. The optimal trajectory is generated in such a way that both, the per-

formed trajectory of the quadrotor Tquadrotor and the performed trajectory of the load

Tload belong to Wfree.

for i = 1→ n− 1 do

wstart ← wi

wend ← wi+1

find minobst−disti+1

find maxallow−anglei+1
considering δsafe

generate Topti
end for

Simulation results for mid-level planner: A motivational case study

In this subsection we present a set of simulations for a case study for the use of the

mid-level planner explained in Sec. 7.1. In a Euclidean space R3, we define six fixed

rigid objects defined as convex sets B1, ...,B6 distributed in W (Figure 7.1). The

104

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

Figure 7.1: A Motivational case study: Representation of Eucledian space with ob-
stacles and predefined waypoints

path P is approximated with eight waypoints w1, ..., w8 where the straight-line paths

Psegment1 , ...,Psegment7 belong to Wfree.

The main goal of the mid-level planner is to generate optimal trajectories between

given waypoints in such a way that the overall time for completing the mission ttotal

is minimal, while both, Tquadrotor and Tload still belong to Wfree, i.e. the presented

system performs collision-free maneuvers.

By using standard swing-free policy, where the displacement angle of the load is

required to be zero, we obtain the optimal trajectory presented in Figure 7.2. We can

see that a quadrotor performs optimal trajectory tracking without collision, (Figure

7.2(b)). Using the initial cubic trajectories the displacement angles are to large to

avoid collision (Figure 7.3).

Although the swing-free policy gives us satisfactory results considering collision-

free maneuvers, the overall time for completing the mission ttotal is not minimal.

Figures 7.4, 7.5 show four different ways of how to build required trajectories. The

105

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

obstacles are positioned in such a way that the vertical corridors are wider than the

horizontal ones. This is done just for easier interpretation of the simulation results

and sets no constraints to the overall algorithm. First case is a swing-free policy,

where the load displacement angle is minimized but the overall time is not taken into

consideration. The overall time for completing the mission is ttotal1 = 28s. In the

second case we generate the fastest possible trajectory where the overall system is still

stable. The overall time for completing the mission is ttotal2 = 17s. In the forth and

the third case we are using the mid-level planner. The overall time for completing the

mission in both cases are similar ttotal3 = 21.4s, ttotal4 = 24.2s. The third case shows

that the proposed method is sensitive to initial conditions of the load displacement

angles and they had to be taken into consideration while using the mid-level planner.

This means that the mid-level planner has to set the maxallow−anglei considering the

next path segment Psegmenti+1
not the current one. The fourth case represents the

optimal collision-free trajectory as shown in Figure 7.4, with ttotal4 = 24.2s.

7.2 Load transport using multiple quadrotors

Recently load manipulation with multiple unmanned aerial vehicles came in the scope

of research community. Some of the relevant papers in this field are [11], [13], [15].

In all of these cases the control algorithm was centralized. By centralized we mean

that the control algorithm for multiple aerial vehicles is implemented in one main

computer. In this section we are proposing the control algorithm for load manipula-

tion in a decentralized fashion using consensus in order to synchronize the group of

quadrotors. The goal is to obtain a system we are able to control a single system,

from a control and computational perspective.

The synchronization phenomenon in nature is common. The design of distributed

communication and control protocols is an important issue in the construction of

106

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

networked systems. With the advances of embedded systems and communication

networks, the coordination and consensus of distributed groups of agents attracted

a great deal of attention from the control community [69], [70] [71] [72]. In this

dissertation we use binary consensus in order to achieve swing-free trajectory tracking

in a distributed fashion.

The communication topology set for application described in this section is a di-

rected tree, or a directed graph (Figure 7.6(b)). We consider a network of quadrotors

which can be represented, with slight abuse of notation, in Lagrangian form

Miν̇i + Ci (νi)νi + Diνi + gGi (ηi) = τi, i = 1 . . . n, (7.1)

where ηi ∈ R6×1 is the vector of position and orientation, νi ∈ R6×1 is vector of linear

and angular velocities, Mi ∈ R6×6 is the mass and inertia matrix, matrix Ci (νi) ∈

R6×6 consists of Coriolis and centripetal terms, Di ∈ R6×6 is the damping matrix,

gGi (ηi) ∈ R6×1 is the vector of gravitational forces and moments and τi ∈ R6×1

represents control inputs. The leader is indexed by 0 and it can be either a physical or

a virtual system. By physical we mean that the in the network of quadrotors carrying

suspended load, one is denoted as a leader. And by a virtual leader, the nonlinear

model of the quadrotor with suspended load would be run in simulation while the

rest of the network would be physical quadrotors performing distributed tracking

using binary control protocol. In this application we are interested in investigating

how binary control protocol can be used for distributed swing-free trajectory tracking

with multiple quadrotors. We assume that the acceleration of the leader is bounded

‖ν̇‖ ≤ ν̇max. The control input vector is given by

τi = χi + κi, (7.2)

where χi denotes feedback linearization term given as

χi = Ci (νi)νi + Diνi + gGi (ηi) + Miϑi, (7.3)

107

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

and κi denotes cooperative control given as

κi =
1∑

i∈Ni aij + bi

(∑
i∈Ni

aij (s1 sgn (ηj − ηi)) + s2 (sgn (νj − νi)) (7.4)

+bi (s1 sgn (η0 − ηi)) + s2 (sgn (ν0 − νi)))

where s1 > s2 + ν̇max ,s2 > ν̇max , and bi ≥ 0, bi > 0 if and only if there is an edge

from the leader node 0 to node i.

At the end we take the adaptive control and swing-free trajectory generation

developed for a single quadrotor and expand it to a network of four quadrotors (Figure

7.6(b)). The leader, denoted by 0 node is tracking the optimal swing-free trajectory.

The leader information is available only to follower 1. Simulation results show a

promising method for distributed swing-free trajectory tracking (Figure 7.7(b)). As

the tracking error propagates from leader to followers the damping of the residual

oscillations deteriorate, but are still significantly dampened.

One of the reasons we are able to achieve good trajectory tracking is binary

consensus applied to Lagrangian systems. Binary consensus for Lagrangian systems

is proven to achieve synchronization in finite time in [22]. The theorem is stated in

the following.

Theorem 7.2.1. Consider the networked Lagrangian systems described by (7.1) with

the local feedback control (7.3) and the cooperative binary control input (7.5). Let the

communication graph be a directed tree. Then the networked Lagrangian systems

synchronize in finite time.

Proof. see [22]

108

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

7.3 Conclusion

in this chapter we propose two algorithms, one for navigation in cluttered environ-

ments and the other for distributed swing-free maneuvers with suspended load. There

is a lot of room for further development of these algorithms. For example, one can

incorporate an online algorithm for navigation with moving obstacles together with

a multi quadrotor - payload system.

109

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

(a) 3D view.

(b) 2D view.

Figure 7.2: 3D and 2D representation of trajectories considering multiple waypoints
with obstacles.

110

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

0 5 10 15 20 25 30 35 40 45
−5

0

5

x
[m

]

cubic tr
optimal tr

0 5 10 15 20 25 30 35 40 45
−10

−5

0

5

y
[m

]

0 5 10 15 20 25 30 35 40 45
0

5

10

time [s]

z
[m

]

(a) Cubic and Optimal trajectories

0 5 10 15 20 25 30 35 40 45
−15

−10

−5

0

5

10
Load orientation

φ[
°]

with cubic tr
with optimal tr

0 5 10 15 20 25 30 35 40 45
−10

−5

0

5

10

15

θ[
°]

t [s]

(b) Load displacement angles

Figure 7.3: Trajectories considering multiple waypoints with obstacles - the swing -
free policy.

111

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

(a) Cubic trajectories with obstacles

(b) Optimal trajectories with obstacles

Figure 7.4: 2D representation of trajectories considering multiple waypoints with
obstacles - a four case study.

112

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

0 5 10 15 20 25 30
−5

0

5

x[
m

]

Trajectories of the quadrotor using DP

 case 1: t = 28.0 s
case 2: t = 17.6 s
case 3: t = 21.4 s
case 4: t = 24.2 s

0 5 10 15 20 25 30
−10

−5

0

5

y[
m

]

0 5 10 15 20 25 30
0

5

10

z[
m

]

time [s]

(a) Optimal trajectories

0 5 10 15 20 25 30
−100

−50

0

50

100

φ[
°]

Load displacement angles

case 1: t = 28.0 s
case 2: t = 17.6 s
case 3: t = 21.4 s
case 4: t = 24.2 s

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

60

Θ
[°

]

time [s]

(b) Load displacement angles

Figure 7.5: Trajectories considering multiple waypoints with obstacles - a four case
study.

113

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

(b) Diagram of the com-
munication graph with four
quadrotors.

Figure 7.6: Suspended load transport using four quadrotors.

114

Chapter 7. Navigation in cluttered environments and distributed trajectory tracking

0 1 2 3 4 5 6
0

1

2

x
[m

]

Distributed Tracking of a Cubic Trajectory

reference
quad No0
quad No1
quad No2
quad No3

0 1 2 3 4 5 6
−2

−1

0

1

y
[m

]

0 1 2 3 4 5 6
−20

0

20
φ L [°

]

0 1 2 3 4 5 6
−20

0

20

θ L [°
]

(a) Distributed tracking of a cubic trajectory - 4 quadrotors.

0 1 2 3 4 5 6
0

1

2

x
[m

]

Distributed Tracking of an Optimal Swing−free Trajectory

reference
quad No0
quad No1
quad No2
quad No3

0 1 2 3 4 5 6
−2

−1

0

1

y
[m

]

0 1 2 3 4 5 6
−20

0

20

φ L [°
]

0 1 2 3 4 5 6
−20

0

20

θ L [°
]

(b) Distributed tracking of an optimal trajectory - 4 quadrotors.

Figure 7.7: Binary consensus protocol for distributed swing-free trajectory tracking.

115

References

[1] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple
micro-uav test bed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3,
pp. 56–65, September 2010.

[2] G. Hoffman, D. Rajnarayan, S. Waslander, D. Dostal, J. Jang, and C. Tomlin,
“The stanford testbed of autonomous rotorcraft for multi agent control (star-
mac),” in The 23rd Digital Avionics Systems Conference, October 2004, pp.
12.E.4–121–10.

[3] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-
tonomous vehicle test environment,” IEEE Control Systems Magazine, vol. 28,
no. 2, pp. 51–64, April 2008.

[4] S. Lupashin, A. Schöllig, M. Hehn, and R. D’Andrea, “The flying machine arena
as of 2010,” in IEEE International Conference on Robotics and Automation,
Shanghai, China, May 2011, pp. 2970–2971.

[5] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an indoor
micro quadrotor,” in IEEE International Conference on Robotics and Automa-
tion, vol. 5, Barcelona, Spain, April 2004, pp. 4393 – 4398.

[6] G. Hoffman, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory
tracking control,” in AIAA Guidance, Navigation and Control Conference and
Exhibit, April 2008, pp. 1–14.

[7] A. Schöllig, F. Augugliaro, and R. D’Andrea, “A platform for dance perfor-
mances with multiple quadrocopters,” in IEEE International Conference on In-
telligent Robots and Systems.

[8] M. Valenti, D. Dale, J. How, and D. Pucci de Farias, “Mission health man-
agement for 24/7 persistent surveillance operations,” in AIAA Conference on
Guidance, Navigation and Control, Hilton Head, SC, August 2007, pp. 1–18.

116

References

[9] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for
precise aggressive maneuvers with quadrotors,” in International Symposium on
Experimental Robotics, New Delhi, India, December 2010.

[10] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning
strategy for high-speed quadrocopter multi-flips,” in IEEE International Con-
ference on Robotics and Automation, May 2010, pp. 1642–1648.

[11] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transporta-
tion with aerial robots,” in Robotics: Science and Systems, Seattle, WA, June
2009.

[12] M. Bernard and K. Kondak, “Generic slung load transportation system using
small size helicopters,” in IEEE International Conference on Robotics and Au-
tomation, Kobe, Japan, May 2009, pp. 3258–3264.

[13] I. Maza, K. Kondak, M. Bernard, and A. Ollero, “Multi-uav cooperation and
control for load transportation and deployment,” Journal of Intelligent and
Robotic Systems, vol. 57, no. 1, pp. 417–449, January 2010.

[14] P. Pounds, D. Bersak, and A. Dollar, “Grasping from the air: Hovering capture
and load stability,” in IEEE International Conference on Robotics and Automa-
tion, Shangai, China, May 2011, pp. 2491–2498.

[15] D. Mellinger, Q. Lindsey, M. Shomin, and V. Kumar, “Design, modelling, esti-
mation and control for aerial grasping and manipulation,” in IEEE International
Conference on Intelligent Robots and Systems, San Francisco, USA, September
2011, pp. 2668–2673.

[16] A. Albert, S. Trautmann, T. Howard, T. Nguyen, M. Frietsch, and C. Sauter,
“Semi-autonomous flying robot for physical interaction with environment,” in
IEEE Conference on Robotics Automation and Mechatronics, Singapore, June
2010, pp. 441–446.

[17] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction of cubic structures with
quadrotor teams,” June 2011.

[18] C. Korpela, T. Danko, and P. Oh, “Designing a system for mobile manipula-
tion from an unmaned aerial vehicle,” in IEEE Conference on Technologies for
Practical Robot Applications, April 2011, pp. 109–114.

[19] (2011, August) Matternet wants to deliver meds with a network of
quadrotors. [Online]. Available: http://spectrum.ieee.org/automaton/robotics/
medical-robots/mini-uavs-could-be-the-cheapest-way-to-deliver-medicine

117

References

[20] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The
Computer Journal, vol. 7, no. 1, pp. 318 – 313, January 1965.

[21] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers, 1991.

[22] G. Chen and F. Lewis, “Synchronizing networked lagrangian systems via binary
control protocols,” in IFAC World Congress, August-September 2011.

[23] A. Isidori, Nonlinear Control Systems, 3rd ed. Springer, 2001.

[24] S. Sastry, Nonlinear Systems-Analysis, Stability and Control. Springer, 1999.

[25] J. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.

[26] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory - Guaranteed Robust-
ness with Fast Adaptation, ser. Advances in Design and Control. SIAM, 2010.

[27] D. P. Bertsekas, Dynamic Programming and optimal control, Vol. I, 3rd ed.
Belmont, Massachusetts: Athena Scientific, 2005.

[28] R. E. Bellman, Dynamic Programming. Princeton University Press, New Jersey,
1957.

[29] R. M. L. T. G. Kolda and V. Torczon, “Optimization by direct search: New
perspectives on some classical and modern methods,” SIAM Review, vol. 45,
no. 3, pp. 385 – 482, 2003.

[30] M. J. D. Powell, “Direct search algorithms for optimization calculations,” Acta
Numerica, Cambridge University Press, pp. 287 – 336, 1998.

[31] L. Busoniu, R. Babuska, B. de Schutter, and D. Ernst, Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press, Taylor
& Francis Group, 2009.

[32] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks,
ser. Applied Mathematics Series. Princeton University Press, 2009, electroni-
cally available at http://coordinationbook.info.

[33] I. Palunko and B. S., “Small helicopter control design based on model reduction
and decoupling,” Journal of Intelligent and Robotic Systems, vol. 54, no. 1-3,
pp. 201–228, 2009.

[34] A. R. S. Bramwell, G. Done, and D. Balmford, Bramwell helicopter dynamics.
Oxford: Butterworth-Heinemann, 2001.

118

References

[35] H. Huang, G. Hoffmann, S. Waslander, and C. Tomlin, “Aerodynamics and con-
trol of autonomous quadrotor helicopters in aggressive maneuvering,” in IEEE
International Conference on Robotics and Automation, may 2009, pp. 3277 –
3282.

[36] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a large quadrotor
robot,” IFAC Control Engineering Practice, vol. 18, no. 7, pp. 691 – 699, 2010.

[37] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Towards autonomous indoor
micro VTOL,” Autonomous Robots, vol. 18, pp. 171–183, March 2005.

[38] I. Palunko and R. Fierro, “Adaptive feedback controller design and quadrotor
modeling with dynamic changes of center of gravity,” in IFAC World Congress,
August-September 2011.

[39] E. S. N. P. Pierre-Jean Bristeau, Philippe Martin, “The role of propeller aerody-
namics in the model of a quadrotor uav,” in IEEE European Control Conference,
Budapest, Hungary, 2009, pp. 683–688.

[40] I. Palunko, R. Fierro, and C. Sultan, “Nonlinear modeling and output feedback
control design for a small-scale helicopter,” in IEEE Mediterranean Conference
on Control and Automation, June 2009, pp. 1251 –1256.

[41] G. Arfken, Mathematical Methods for Physicists, 3rd ed. Academic Press, 1985.

[42] S. Sagatun and T. Fossen, “Lagrangian formulation of underwater vehicles’ dy-
namics,” in Conference Proceedings of Systems, Man, and Cybernetics, vol. 2,
Charlottesville, VA, October 1991, pp. 1029 – 1034.

[43] L. S. Cicolani and G. Kanning, “Equations of motion of slung-load systems,
including multilift systems,” NASA Technical Paper, 1992.

[44] R. Stuckey, “Mathematical modelling of helicopter slung-load systems,” Techical
report, December 2001.

[45] D. Fusato, G. Guglieri, and R. Celi, “Flight dynamics of an articulated rotor
helicopter with an external slung load,” Journal of the American Helicopter
Society, vol. 46, no. 1, pp. 3–14, January 2001.

[46] M. Bisgaard, J. Bendtsen, and A. la Cour-Harbo, “Modelling of a generic slung
load system,” in AIAA Modeling and Simulation Technologies Conference and
Exhibit, 2006.

119

References

[47] A. Das, K. Subbarao, and F. Lewis, “Dynamic inversion with zero-dynamics
stabilization for quadrotor control,” IET Control Theory and Applications, vol. 3,
no. 3, pp. 303–314, March 2009.

[48] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques
applied to an indoor micro quadrotor,” in IEEE International Conference on
Robotics and Automation, April 2005, pp. 2247 – 2252.

[49] A. Bemporad, C. A. Pascucci, and C. Rocchi, “Hierarchical and hybrid model
predictive control of quadcopter air vehicles,” in IFAC Conference on Analysis
and Design of Hybrid Systems, vol. 3, no. 1, April 2009, pp. 14 – 19.

[50] R. Garcia and K. Valavanis, “The implementation of an autonomous helicopter
testbed,” Journal of Intelligent and Robotic Systems, vol. 54, pp. 423–454, 2009.

[51] P. Abbeel, A. Coates, and A. Ng, “Autonomous helicopter aerobatics through
apprenticeship learning,” International Journal of Robotics Research, vol. 29,
2010.

[52] V. Gavrilets, E. Frazzoli, B. Mettler, M. Piedmonte, and E. Feron, “Aggressive
maneuvering of small autonomous helicopters: A human-centered approach,”
International Journal of Robotics Research, vol. 20, no. 10, pp. 795–807, 2001.

[53] T. Dierks and S. Jagannathan, “Output feedback control of a quadrotor uav
using neural networks,” IEEE Transactions on Neural Networks, vol. 21, no. 1,
pp. 50–66, January 2010.

[54] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[55] M. Fliess, J. Levine, P. Martin, and P.Rouchon, “Flatness and defect of nonlinear
systems:Introductory theory and examples,” CAS internal report A-284, January
1994.

[56] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation: Safe and ef-
ficient load manipulation with aerial robots,” IEEE Robotics and Automation
Magazine, vol. 19, no. 9, pp. 69–80, September 2012.

[57] P. Pounds, D. Bersak, and A. Dollar, “Stability of small-scale uav helicopters and
quadrotors with added payload mass under pid control,” Autonomous Robots,
vol. 33, pp. 129–142, 2012.

[58] G. Starr, J. Wood, and R. Lumia, “Rapid transport of suspended payloads,”
in IEEE International Conference on Robotics and Automation, April 2005, pp.
1394 – 1399.

120

References

[59] D. Zameroski, G. Starr, J. Wood, and R. Lumia, “Rapid swing-free transport of
nonlinear payloads using dynamic programming,” ASME Journal of Dynamic
Systems, Measurement, and Control, vol. 130, no. 4, July 2008.

[60] L. Cooper and M. W. Cooper, Introduction to Dynamic Programming. Perga-
mon Press, 1982.

[61] R. e. a. Robinett, Flexible Robot Dynamics and Control, 3rd ed. Kluwer Aca-
demic, Dordrecht, 2002.

[62] (2012, August) Marhes - simulation and experimetal videos. [Online].
Available: http://marhes.ece.unm.edu/index.php/Ipalunko:Home

[63] R. Sutton and A. Barto, A Reinforcement Learning: an Introduction. MIT:
MIT Press, 1998.

[64] L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst, Reinforcement Learn-
ing and Dynamic Programming Using Function Approximators. Boca Raton,
Florida: CRC Press, 2010.

[65] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of
Machine Learning Research, vol. 4, pp. 1107–1149, December 2003.

[66] J. Ma and W. B. Powell, “A convergent recursive least squares policy iteration
algorithm for multi-dimensional markov decision process with continuous state
and action spaces,” in IEEE Conference on Approximate Dynamic Programming
and Reinforcement Learning, March 2009.

[67] W. B. Powell and J. Ma, “A review of stochastic algorithms with continuous
value function approximation and some new approximate policy iteration algo-
rithms for multi-dimensional continuous applications,” Journal of Control The-
ory and Applications, vol. 9, no. 3, pp. 336 – 352, 2011.

[68] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-free maneu-
vers of a quadrotor with supended payload: A dynamic programming approach,”
in IEEE International Conference on Robotics and Automation, St. Paul, MN,
USA, May 2012.

[69] J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed
dynamical systems,” SIAM Journal on Control and Optimization, vol. 44, no. 5,
pp. 1543–1574, October 2005.

[70] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” IEEE Transactions on Auto-
matic Control, vol. 48, no. 6, pp. 988 – 1001, June 2003.

121

References

[71] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with distributed
information,” IEEE Control Systems Magazine, vol. 27, no. 4, pp. 75–88, August
2007.

[72] R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1520 – 1533, September 2004.

122

	University of New Mexico
	UNM Digital Repository
	1-31-2013

	Agile load transportation systems using aerial robots
	Ivana Palunko
	Recommended Citation

	2012_IPalunko_diss_approval
	2012_IPalunko_Doctoral_Dissertation.pdf

