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Abstract

In this work an astrophysical simulation code, XFLAT, is developed to study neutrino

oscillations in supernovae. XFLAT is a hybrid modular code which was designed to

utilize multiple levels of parallelism through MPI, OpenMP, and SIMD instructions

(vectorization). It can run on both the CPU and the Xeon Phi co-processor, the

latter of which is based on the Intel Many Integrated Core Architecture (MIC). The

performance of XFLAT on various system configurations and physics scenarios has

been analyzed. In addition, the impact of I/O and the multi-node configuration

on the Xeon Phi-equipped heterogeneous supercomputers such as Stampede at the

Texas Advanced Computing Center (TACC) was investigated.
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Glossary

Accelerator A processor that is typically installed as a card on the motherboard.

The main processor can offload its tasks onto accelerator. Examples

include GPU, FPGA, ...

API Application Programming Interface (API) is a set of functions and

protocols to build software applications.

Compute node An independent machine on which one or more CPUs are installed.

Some may also be equipped with co-processors. Compute nodes

can be linked together via high-performance networks such as In-

finiBand.

Co-processor A processor that is typically installed as a card on the motherboard.

The main processor can offload its tasks onto co-processor. Co-

processors can also be employed independently.

CPU A Central Processing Unit is an integrated circuit chip that executes

instructions of a computer program by performing the arithmetic,

logical, and control operations specified by the instructions.

GPU Graphics Processing Unit. Traditionally utilized for computer graph-

ics tasks. Modern GPUs such as NVidia Tesla can also be employed

for high-performance computing applications.
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Glossary

HDD Hard Disk Drive. A type of computer storage in which data is stored

on one or more rapidly rotating metal disks.

Library A collection of pre-written codes, procedures, classes, or values that

may be employed for developing softwares.

MPI Message Passing Interface is a portable and standardized message-

passing system that can be used for inter-node communications. It

provides a standard library APIs with which a program can be linked

to.

Node An independent machine on which one or more CPUs are installed.

Some nodes may be equipped with co-processors as well. Nodes can

be linked together via high-performance networks to compromise

distributed parallel clusters.

OpenMP Open Multi-Processing is an interface for parallel programming on

shared memory multiprocessing environments. It provides a runtime

system that can be employed via compiler directives.

PCI Express Peripheral Component Interconnect Express. A high-speed serial

bus that typically connects accelerators to processors.

RAM Random-Access Memory. It is a type of memory that allows data

elements to be accessed irrespectable of their physical location inside

the memory. RAM is normally associated with volatile types of

memory in which stored data is lost is the power is removed. Most

modern computers’ main memory is RAM.

Run Time Run time or runtime is the time during which an application is

executing.

xii



Glossary

SIMD Single Instruction, Multiple Data is a parallel programming ap-

proach in which machines exploit data-level parallelism by issuing a

single instruction applied to multiple data streams simultaneously.

Supercomputer A powerful computer containing many individual computing nodes

that are connected via a high-speed interconnection link.

Thread A lightweight process that may share some part of its memory with

the other threads.

xiii



Chapter 1

Introduction

1.1 Astrophysics, Supernovae, and Neutrinos

Human beings have always been curious about the universe. Astrophysics is the

branch of science that attempts to understand the universe and the human future in

it. The goal of astrophysics is “to ascertain the nature of the heavenly bodies, rather

than their positions or motions in space.” [Keeler, 1897]. There are a broad range

of objects that are studied in astrophysics such as: extra-solar moons and planets,

stars, supernovae, white dwarfs, neutron stars, black holes, galaxies, quasars, dark

matter, dark energy, and the cosmic microwave background. Astrophysics address

fundamental questions including the origin and evolution of stars, galaxies, and the

universe.

At the end of its life, a massive star explodes as a supernova and at the same time

its core collapses under its own gravity into a neutron star, which is the remnant of the

core containing mostly neutrons [Woosley and Janka, 2005]. Therefore, during the

explosion a supernova can briefly outshine the entire galaxy. In a few seconds a super-

nova emits as much energy as the Sun emits over its entire life span [Giacobbe, 2005].

1



1.1. ASTROPHYSICS, SUPERNOVAE, AND NEUTRINOS

The explosion expels almost all of a star’s material at relativistic speeds, driving a

shock wave into the surrounding interstellar medium [Schawinski et al., 2008]. Su-

pernovae are crucial to the chemical evolution of the universe which had only hydro-

gen and helium immediately after the Big Bang. All other heavier elements are born

inside stars, during supernovae, or potentially during other dramatic astrophysical

events such as neutron star mergers. Therefore, without supernovae none of us would

exist, since we are made up from heavy elements that are generated or distributed

by supernovae.

Approximately, 99% of the total energy of a supernova is carried away by about

1058 particles called neutrinos within a minute of core collapse [Pagliaroli et al., 2009].

Neutrinos are extremely difficult to detect as they have no electric charge and they

interact with matter only through the weak interaction. In fact, about 65 billion

solar neutrinos per second pass through every square centimeter on the surface of

the Earth [Bahcall et al., 2005]. There are three types or flavors of neutrinos in the

particle physics Standard Model: electron neutrino, mu neutrino, and tau neutrino

(νe, νµ, and ντ ). Neutrinos play critical role in nucleosynthesis processes in super-

novae. For example, the electron neutrino can affect the number density of protons

and neutrons:

νe + n ⇀↽ p+ e−

νe + p ⇀↽ n+ e+

where n, p, e−, and e+ are neutron, proton, electron and positron, respectively.

Therefore, neutrinos can influence the production of heavy elements in supernovae

ejecta by changing the proton to neutron ratio. In addition, since the supernova

envelope is transparent to neutrinos, by investigating the neutrinos that are emitted

from supernovae, astrophysicists can probe into supernovae themselves.

One of the most important breakthroughs in particle physics over the past twenty

years was the discovery of neutrino (flavor) oscillations in which neutrinos of differ-

2



1.1. ASTROPHYSICS, SUPERNOVAE, AND NEUTRINOS

ent flavors change to another during propagation [Olive et al., 2014]. In supernovae

neutrinos of different flavors can have different luminosities (i.e., total energy). In

addition, they have different average energies which are characterized by their en-

ergy spectral functions. The energy spectrum of the neutrino is proportional to the

number of neutrinos as a function of the neutrino’s energy. Since only the electron-

flavor neutrinos and anti-neutrinos play important roles outside the neutron star

[Duan et al., 2006], and because neutrinos can change their flavors, neutrino oscilla-

tions are important to supernova dynamics and to the origin of the heavy elements.

There are two complementary ways to study neutrino oscillations in supernovae.

The first approach is to detect neutrinos emitted by a supernova. However, super-

novae are rare events, and on average only one supernova occurs in a century in

our home galaxy [Hirata et al., 1987, Bionta et al., 1987]. The other approach is to

study them via simulations and to model neutrino flavor oscillations.

In principle, the flavor quantum state of neutrinos emitted from a proto-neutron

star [Thompson et al., 2001] in a supernova depends on seven parameters: time (t),

distance (r), emitting position on the surface (Θ,Φ), energy (E), and trajectory

direction (ϑ, ϕ). A complete study of neutrino evolution in supernovae depends on

all seven variables and cannot be solved analytically or simulated computationally at

present. In order to study neutrino oscillations simpler models are always employed

[Duan et al., 2006]. For example, the bulb model is the simplest stationary model in

which spherical symmetry is assumed [Duan et al., 2006]; thus, the only parameters

are r, E, and ϑ. Even in this simple model, thousands of angle trajectories and

hundreds of discretized energy bins are required in order to achieve good numerical

resolution. In more complicated models, orders of magnitude more trajectories are

required for each new parameter added back into the model. In addition, it is

essential for a complete simulation to store the flavor quantum state of the many

interacting particles in memory in order to perform the simulation. Therefore, the

3



1.2. THE HISTORY OF SUPERCOMPUTERS

very large number of neutrino trajectories in the system as well as the complexity of

the geometry and environment make these simulations very challenging, and the use

of advanced computing architectures, including next-generation supercomputers, has

the potential to enable increasingly sophisticated simulations of supernova physics.

One might wonder if within a few years this complexity and high computational

demand could be largely addressed by Moore’s law. Moore stated back in 1965

(reviewed in [Moore, 2006]) that the number of transistors in a dense integrated

circuit doubles approximately every year (or doubles every two years in the 1975

revised version of Moore’s law [Moore et al., 1975]); consequently microprocessor

and compute capabilities correspondingly double at the same rate. However, while

computing capability has indeed been growing exponentially since then (see Fig. 1.1),

adding even one more parameter to a simulation can cause computational complexity

to grow by several orders of magnitude (see Fig. 1.2). In order to perform a complete

neutrino oscillation simulation, large numbers of neutrino trajectories will typically

be required. This requirement dictating the simulations’ fidelity has to be balanced

against the ability to perform a feasible simulation on the current generation of

supercomputers.

1.2 The History of Supercomputers

A supercomputer is a computer with a higher-level computational capacity than

desktop machines or small servers. The performance of a supercomputer is mea-

sured in floating point operations per second (FLOPS). Modern supercomputers can

perform quadrillions of floating point operations per second and it is expected that

within a decade their performance will reach exaflops (1018 floating point operations

per second) [Wikipedia, 2015g].

The history of supercomputers dates back to the 1960s when Seymour Cray de-

4
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Figure 1.1: CPU transistor counts as a function of date of introduction
[Wikipedia, 2015i].

signed the first commercial supercomputer, the CDC 6600, with nearly 1 megaflops

performance [Wikipedia, 2015b]. The CDC 6600 Central Processing Unit (CPU)

was dedicated solely to computations rather than handling all tasks such as memory

mangement and I/O. This was the first example of what later came to be called

reduced instruction set computer (RISC) design. The CDC 6600 was succeeded by

the CDC 7600, which could deliver ten times more performance [Wikipedia, 2015c].

For the CDC 7600 Cray focused on the concept of an instruction pipeline. A pipeline

improves the performance by feeding in the next instruction before the first has com-

pleted (similar to assembly line in a manufacturing process), thereby having each unit

effectively work in parallel, as well as the machine as a whole (see Fig. 1.3). Cray

continued his domination in supercomputing in the 1970s by introducing the Cray-
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1.2. THE HISTORY OF SUPERCOMPUTERS

Figure 1.2: The combined performance of the 500 largest supercomputers (blue),
the fastest supercomputer (red), and the supercomputer at 500th place (yel-
low) as functions of time [Wikipedia, 2015k]. Data based on Top500 list
(http://http://top500.org/).

1, which could deliver ten times more performance than the previous record holder

by utilizing vector processors (see Fig. 1.3) [Wikipedia, 2015e]. Compared to scalar

processors, whose instructions operate on single data items, a vector processor is

a CPU that implements an instruction set containing instructions that operate on

an array of data items called vectors. The Cray-1 was succeeded in 1982 by the

800 megaflops Cray X-MP, the first Cray shared-memory parallel vector processor

in which the memory was shared between two processors [Wikipedia, 2015f]. In late

1985 the nCUBE 10 was released, which was based on a set of custom chips. In

each compute node of nCUBE10 there was a processor chip with a 32-bit Arithmatic

Logic Unit (ALU) and a 64-bit Floating-Point Unit (FPU) [Wikipedia, 2015j]. Also,

in 1985 the very advanced Cray-2, the first gigaflops-capable supercomputer capa-

ble of 1.9 gigaflops peak performance, succeeded the first two models as the world’s

6



1.2. THE HISTORY OF SUPERCOMPUTERS

fastest supercomputer [Wikipedia, 2015e]. During the 1980s there were also other

designs such as the Thinking Machines CM-1 and CM-2 in which a hypercube de-

sign were employed [Wikipedia, 2015d]. Each CM-1 microprocessor had its own 4

kbits of RAM, and the hypercube array was designed to perform the same operation

on multiple data points simultaneously, i.e., to execute tasks in the single instruc-

tion, multiple data (SIMD) fashion. The supercomputing trend continued in the

1990s with the introduction of massively parallel supercomputers such as Thinking

Machines CM-5/1024, the first supercomputer with more than one thousand pro-

cessors [Wikipedia, 2015d]. In 1996, ASCI Red became the first supercomputer to

break the 1 teraflops performance barrier. The ASCI Red computer was the first

large scale supercomputer to be built entirely of common commercially-available

components [Wikipedia, 2015a]. Prior to 2000, nearly all commercial CPU archi-

tectures were of single-core, single-threaded design; SIMD instruction sets were not

even available in commodity CPUs before 1997 [Peleg et al., 1997]). During the

2000s the use of commercial CPUs in supercomputers accelerated. It was in 2008

that the IBM Roadrunner became the first supercomputer to perform more than

1 petaflops of computations [Wikipedia, 2015h] using Cell processors which were

also used in the PlayStation 3 game console [Costigan and Scott, 2007]. Roadrun-

ner was also an early hybrid supercomputer. Most previous supercomputers only

used one type of processor, (CPU). Roadrunner, however, employed TriBlades in

which two dual-core Opterons and four PowerXCell 8i CPUs interconnected to each

other [Wikipedia, 2015h]. Roadrunner can be considered as an Opteron cluster with

Cell accelerators, with each node consisting of a Cell attached to each Opteron core

and the Opterons to each other. In the last decade mainstream microchip com-

panies such as Intel and AMD have started packing more cores on a single die

area [Geer, 2005], adding multi-threading (having multiple tasks run on a single

core simultaneously) functionality onto each core [Magro et al., 2002], and increas-

ing the length of SIMD registers [Thakkur and Huff, 1999, Firasta et al., 2008] by

7



1.2. THE HISTORY OF SUPERCOMPUTERS

Figure 1.3: Basic five-stage pipeline (IF = Instruction Fetch, ID = Instruction De-
code, EX = Execute, MEM = Memory access, WB = Register write back). In the
fourth clock cycle (the green column), the earliest instruction is in MEM stage, and
the latest instruction has not yet entered the pipeline [Wikimedia, 2015].

several folds. Consequently, hierarchically-parallelized software has started to play a

more important role in mainstream desktop applications such as web-browsers, video

games and office applications.

In recent years, the High-Performance Computing (HPC) community has adopted

the concept of heterogeneous computing and has shifted from employing only tra-

ditional CPUs to also incorporating accelerators and co-processors such as nVIDIA

Tesla Graphics Processing Unit (GPU) [Kirk, 2007] and the Intel Xeon Phi with the

Intel Many Integrated Core Architecture (Intel MIC) [Chrysos and Engineer, 2012].

Today, most petaflop class supercomputers have hybrid or heterogeneous designs,

meaning that they are equipped with accelerators, such as GPU and Xeon Phi, in

addition to traditional CPUs. These accelerators and co-processors, which are ex-

tension cards installed on computers’ motherboards, are designed for fine-grained,

massively parallel computation and possess superior computing capabilities. Mod-

ern supercomputers typically exploit several levels of parallelism. As illustrated in

Fig. 1.4, a modern supercomputer may contain many compute nodes which are con-

nected to each other via high-speed interconnect links. Each compute node may
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Figure 1.4: Cluster nodes and internal architecture of each node on a heteroge-
neous supercomputer. At the highest level compute nodes are interconnected via
high-speed interconnect links. Inside each node, there may be multiple CPUs as
well as accelerator cards. Typically, inside each processor there are a few to many
cores. Finally, within each core, a vector instruction can be issued on multiple data
simultaneously.

have several co-processors and CPUs. In each CPU or co-processor, there are a few

to many cores available. Each of the cores may be able to handle several hardware-

enabled threads. Finally, depending on the processors’ architecture, the execution

units of each core may be equipped with vectorized units, which can execute a single

instruction on multiple data. Hybrid codes are required to fully utilize all of the

different levels of parallelism on a modern supercomputer. Hybrid codes can utilize

the vectorization units to process arrays of data, and different cores and processors

and multiple compute nodes to process different chunks of data. Therefore, multiple

order of magnitude speedups can be expected when a fully optimized and parallelized

code runs on a modern supercomputer.
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1.3 Accelerators

In a heterogeneous supercomputer, accelerators such as Graphics Processing Units

(GPU) and the Intel Xeon Phi are employed to boost computing capability and

improve the concurrency of each node. Initially, GPUs were introduced for com-

puter graphics tasks, especially video game computations, so that CPUs could be

freed up for other tasks. As video game complexity increased the demand for more

powerful GPUs drove the evolution of GPUs to the point where GPUs were flexible

enough for general computations other than graphics [Mark et al., 2003]. The trend

of generating higher quality graphics has made GPUs even more powerful than CPUs

[Kirk, 2007].

The latest generation of mainstream CPU architectures have typically less than

ten cores available on the die area [Wikipedia, 2014], and largest part of the die area

is dedicated to cache memory and the control unit [Magro et al., 2002]. Therefore,

the execution units occupy only small part of the die area. On the other hand,

accelerators and co-processors usually have many smaller and simpler cores than the

CPU such that they can handle a larger number of light, in-order hardware-enabled

threads (see Fig. 1.5), and most of the die area is dedicated to FPU and ALU, which

are for instruction execution.

Despite the fact that GPUs can accelerate scientific computations, the program-

ming model of GPUs can be challenging. Traditional CPU codes are not able to run

on GPUs without modifications in their data structures, algorithms, and memory

models. Therefore, new codes must be developed to run on GPUs. In addition, low-

level knowledge of GPU architecture is needed, including GPUs’ memory hierarchy

and new parallel programming paradigms, in order to effectively harness the power

of GPUs efficiently.

Having failed with their experimental Larrabee project (Intel GPU chip code-
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Figure 1.5: Comparison of the CPU and GPU die area. The CPU has more on-chip
memory (shown in orange) and larger control unit (shown in yellow) than GPU.
However, the GPU devotes more transistors to data processing (shown in green)
than CPU [NVIDIA, 2012a].

name for GPU) [Seiler et al., 2008], Intel introduced the Many Integrated Core Ar-

chitecture (MIC) in Xeon Phi co-processors in 2012 [Chrysos and Engineer, 2012].

Due to the challenges of GPU programming, Intel decided to stick with its estab-

lished x86 microprocessor architecture for its teraflops co-processor. The Xeon

Phi can be installed on a compute node as an extension card (similar to GPU

cards), and it runs an embedded micro-kernel Linux Operating System (OS) in mem-

ory. Intel MIC is principally a many-core x86-64 microchip with several extensions

[Seiler et al., 2008, Chrysos and Engineer, 2012]. As a result, legacy codes may be

compiled and run on the Xeon Phi without significant modifications. Being able to

write a parallel code once and run it on both CPU and MIC architectures is a major

benefit for developers, thus a great advantage for Intel MIC over GPU programming.

However, many applications do not fully exploit multiple levels of parallelism. As

a result, code optimization is necessary in order for legacy codes to run efficiently

on the Intel MIC. Since there are still several hardware differences between the In-

tel MIC and traditional CPU, code optimizations are invariably needed in order to

11
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make the chip appropriate for high-performance parallel applications. For example,

the chip has a smaller cache area to make room for a higher number of cores. In fact,

Intel completely removed the Level 3 cache [Chrysos and Engineer, 2012]. Addition-

ally, in comparison to traditional out-of-order x86 CPU cores, each core on Xeon Phi

has simpler in-order design [Chrysos and Engineer, 2012], and is capable of handling

four hardware threads in contrast to just two on the CPU. Moreover, each thread on

the Xeon Phi has access to wider Single Instruction Multiple Data (SIMD) vector

registers [Chrysos and Engineer, 2012]. Nevertheless, by taking the advantage of the

same optimization techniques for both the CPU and the MIC, performance improve-

ment can be obtained on both architectures. However, to truly take advantage of the

power of the Xeon Phi, a computer code must be carefully designed so as to utilize

its special features, such as 512-bit-long registers and 200+ hardware threads.

The goal of this work was to design and create a new high-performance software

framework for astrophysics simulations of neutrino oscillations in supernovae which

can run on next-generation many-core architectures hardware as well as existing

compute platforms. The new code, XFLAT, is capable of employing several levels of

parallelism and is shown to scale very well on multi-node systems. It is designed with

a hybrid architecture in order to exploit multiple layers of parallelism simultaneously.

It is also designed to be modular so that new physical simulations can be performed

by simply swapping in new modules.

12



Chapter 2

Accelerators and Co-processors

The trend of employing non-general purpose processors for scientific computations

has increased dramatically in recent years. The introductions of General-Purpose

computation on Graphics Processing Units (GPGPU) and Intel Many Integrated

Core (MIC) Architecture can be seen as two pivot points in the high-performance

computing trend in recent years.

2.1 GPUs

CPUs have been evolving and adding new parallelism capabilities over the past

twenty years. By contrast, GPUs were invented from the start to perform image

processing tasks on a large set of pixels in parallel. As a reuslt, there is commonly

more than one logical and computational unit in GPU architecture design. Hence,

GPU designs have been parallelized from the start. However, their architecture was a

fixed-function rendering pipeline (the rendering pipeline is the sequence of steps that

are taken when rendering objects) for many years until 2001 when programmable

pipelines were introduced [Lindholm et al., 2001]. A fixed-function pipeline contains
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Figure 2.1: Fixed function pipeline hardware prior to the introduction of pro-
grammable pipelines in GPUs. Each box in orange has a fixed and non-programmable
functionality. Following the introduction of programmable shaders, these were re-
placed with vertex and fragment shader units. The boxes in blue remain identical
before and after the introduction of programmable pipelines (image from khronos.org
2015).

a set of configurable processing states that are accessible by a set of callable functions

[OpenGL, 2015a]. A graphics processing unit that contains a fixed-function pipeline

exposes a different, predefined rendering pipeline based on user-provided configura-

tions, rather than user-provided programs [OpenGL, 2015a]. Therefore, based on

rendering criteria, user can decide which one of the predefined rendering pipeline

configuration have to be loaded onto the hardware (see Fig. 2.1).

In 2001 NVIDIA introduced its programmable pixel shaders pipeline architecture

in their GPUs [Lindholm et al., 2001], which allowed programmers to develop cus-

tomized shading programs on GPUs for the graphics and image processing fields such
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as stereo matching, linear algebra, and Fourier transformations [Purcell et al., 2002,

Krüger and Westermann, 2003, Sugita et al., 2003, Moreland and Angel, 2003] and

other scientific research branches and purposes including [Thompson et al., 2002,

Mark et al., 2003, Atanassov et al., 2003]. A shader program is a piece of code which

performs graphics shading and apply special color effects to objects. This transition

from fixed-function pipeline, which is a non-flexible pipeline for performing fixed

tasks, to a programmable pipeline which is shader-based, introduced General Pur-

pose computing on GPUs (GPGPU) and opened a new door for high performance

computing as well 1.

For a long time after the introduction of programmable shaders, developers had

to write their own shaders in GPU’s assembly language 2. Later, several higher-

level languages were introduced which made GPU programming easier. One of

the first high level GPU programming languages was NVIDIA Cg (C for graph-

ics) [Mark et al., 2003]. Cg was a flexible C-like language that was designed for

GPU shader programming. It allowed graphics programmers to configure the vertex

1Previously GPU computational power was only available for video games and rendering
applications, even though GPUs can be capable of doing more single precision floating point
operations per second (FLOPS) than CPUs [Nyland et al., 2007]. Before the introduction
of programmable pipelines in GPUs, in order to use GPUs for scientific research, scientists
had to develop low-level understanding of the rendering pipeline. Furthermore, most of the
time there was no suitable way to map a scientific problem onto the fixed-function pipeline
architecture. Consequently, the use of GPUs for general purpose sicentific research was
limited [Swanson, 1995]

2After the introduction of programmable shaders for the rendering pipeline in GPUs,
scientists started to study the appropriateness of GPUs in other research fields. In the
early generation of programmable GPUs, it was possible to write simple programs for the
Vertex shader and Pixel shader units of the GPU. Since the basic polygon for representing
a graphical scene is a triangle, a special dedicated hardware unit is needed for perform-
ing calculations on triangles’ vertices in any GPU. Vertex Shader is the programmable
shader stage in the rendering pipeline that handles the processing of individual vertices
[OpenGL, 2015c]. Similarly, the other important stage of the rendering pipeline relates to
the processing of individual pixels in which most of the GPU computations occur. Hence,
the Pixel Shader or Fragment Shader is a user-supplied program that performs pixel pro-
cessing such as setting of colors and depth values [OpenGL, 2015b]
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and pixel shader units and, therefore, change the behavior of the GPU rendering

pipeline without dealing with the low-level assembly language. Using Cg program-

mers were able to write high-level structures and algorithms with the use of standard

programming constructs such as for-loops, if-else statements, functions etc. Because

each vertex is addressed by using three numbers (for the x, y, and z directions) and

each pixel contains multiple color channels (red, green, blue, and alpha blending), a

functionality similar to SIMD was present in Cg which together with multiple ALUs

on vertex and pixel shader units provides significant parallelism for the programmers

to utilize at a high level.

The GPGPU trend continued further following the introduction of the Compute

Unified Device Architecture (CUDA) by NVIDIA in 2007 [Kirk, 2007, Buck, 2007].

CUDA platform enable developers to harness GPU power for general high-performance

computing research and applications. Since then, the number of cores on GPUs has

increased dramatically, from tens in the first generation CUDA-enabled GPUs, to

thousands in the GPUs in Kepler and Maxwell generations [NVIDIA, 2012b]. As

shown in Fig. 2.2, there are many simple cores in one GPU block in contrast to a

few complex cores in a typical CPU. In high-end GPUs such as the Kepler GK110

illustrated in Fig. 2.3, there is more than one core block (a.k.a. Streaming Multipro-

cessors) on the die area. The parallel nature of the GPU itself plays an essential role

in scientific computations. Thus, by employing CUDA or other GPU programming

languages such as the Open Computing Language (OpenCL) [Stone et al., 2010] or

C++ Accelerated Massive Parallelism (C++ AMP) [Gregory and Miller, 2012], sci-

entists can write general applications which can execute on the GPU without the

need to be familiar with computer graphics or the graphics pipeline.

The adaptation of GPU for scientific research has grown dramatically in the

past decade [Ryoo et al., 2008, Nickolls et al., 2008]. Porting legacy codes to GPUs

has helped researchers to accelerate many applications. For example, molecular dy-
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Figure 2.2: A cluster of tiny cores for the NVIDIA Kepler GPU architecture. There
are hundreds of single floating point units (shown in light green) as well as double
precision units (shown in yellow). The other important units are the special function
units (shown in green) which are responsible for the computations of transcendental
functions (Figure from NVIDIA 2012).

namics research codes LAMMPS [Brown et al., 2011, Brown et al., 2012], NAMD

[Phillips et al., 2008], and GROMACS [Hess et al., 2008] have accelerated key com-

putational kernels using GPUs. GPUs have also been utilized in particle simula-

tions, such as cosmological simulations [Hamada et al., 2009, Spurzem et al., 2009,

Belleman et al., 2008, Nyland et al., 2007], artificial neural networks [Jang et al., 2008],

graph theory [Harish and Narayanan, 2007, Vineet and Narayanan, 2008], Fast Fourier

Transforms [Nukada et al., 2008], bioinformatics [Ligowski and Rudnicki, 2009], and

weather prediction [Michalakes and Vachharajani, 2008].

The wide adoption of GPGPU in the past few years is largely due to the CUDA

parallel programming model. CUDA is accessible to software developers via ex-
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Figure 2.3: Full chip block diagram of NVIDIA GK110 architecture containing clus-
ters (Streaming Multiprocessors) of CUDA cores. Blocks can share data using the
shared L2 cache unit (shown in light blue in the middle), and each one can access
the global memory outside the chip through memory controllers (shown in grey on
the sides) (Figure from NVIDIA 2012).

tensions to standard languages such as C, C++ and FORTRAN. There are three

abstractions in CUDA: a hierarchy of thread groups, shared memories, and barrier

synchronization. These layers of abstraction provides fine-grained data parallelism

and thread parallelism. They are nested within coarse-grained data parallelism and

task parallelism. As a result, programmers can partition a problem into coarse sub-

problems which can be solved independently in parallel via blocks of threads. Each

sub-problem can then be partitioned into finer pieces which can be solved cooper-

atively in parallel by all threads within the block. At the same time, scalability
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Figure 2.4: Grid of thread blocks. A grid (shown in green) may contain a multi-
dimensional array of blocks (shown in yellow). Within each block there is an array
of threads (shown in orange) (Figure from NVIDIA 2014).

is preserved since each block of threads can be scheduled on any of the available

multiprocessors within a GPU, in any order, concurrently or sequentially.

In order to execute a computation task on a GPU (a.k.a. the device), program-

mers define special functions, or “kernels” which, when called from the CPU (a.k.a.

the host), are executed in parallel on streaming multiprocessors. A kernel contains

a grid of blocks of threads which have equal numbers of threads (see Fig. 2.4).

CUDA threads may access data from multiple memory regions, as illustrated

in Fig. 2.5. Each thread possesses a private local memory where local variables

and data are stored. Similar to registers, access time to this type of memory is
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Figure 2.5: CUDA memory hierarchy. Threads (shown in green) can access to dif-
ferent memory locations each with their own advantages and disadvantages (shown
in orange) (Figure from NVIDIA 2014).

short. However, if the programmer allocates too much of such memory, the allocated

memory will reside on GPU global memory (the off-chip memory). Each block has

a shared memory space visible to all threads of the block within the lifetime of the

block. The shared memory is also an on-chip memory; thus, the access time is short.

In addition, all threads have access to the same global memory, which resides on

the graphics card’s RAM. There are also two read-only memory spaces accessible

by all threads: the constant and texture memory spaces, which are optimized for

different memory usages. As a result, programmers must understand the advantages

and disadvantages of each type of memory in order to write codes which can run

efficiently on a GPU.

When a kernel is launched from a C code on the CPU (host), only the grid

of thread blocks and their associated memory reside on the GPU (device) and the
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Figure 2.6: Launch of kernels from host. Host and device can have their own exe-
cutions (shown in blue). Multiple grids (shown in green) can be launched from the
host (Figure from NVIDIA 2014).

rest of the program remains on the CPU. Therefore, a host program can continue

its execution while the kernels are run on the GPU (see Fig. 2.6). The CUDA

programming model assumes that both the host and the device maintain their own

separate memory spaces in their own RAM, referred to as the host memory and

device memory, respectively. A program on the host manages the global, constant,

and texture memory spaces visible to device kernels through function calls to the

CUDA runtime system. This includes device memory allocation and deallocation as

well as data transfer between the host and device memories.

There are a number of challenges involving the use of GPUs for general-purpose
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programming. First, traditional C/C++ codes cannot run on GPUs without ex-

tensive modifications. Programmers must learn a new language, new programming

techniques, and adopt new coding strategies. Second, in order to use CUDA or

the other GPGPU programming platforms efficiently, developers must still deal with

many low-level details such as micromanaging the shared memory, controlling mem-

ory flow between CPU and GPU, and with new versions of old concepts such as grids,

blocks, and threads. For these reasons, programmers frequently have to restructure

their codes and data structures and develop more optimized algorithms, as well as

rewrite many parts of their code so that they can run on GPUs efficiently.

2.2 MICs

2.2.1 The Intel Many-Integrate Core architecture (MIC)

Intel had a GPU project in 2008 that eventually failed [Seiler et al., 2008]. After fail-

ing with their experimental GPU, they introduced the Many Integrated Core Archi-

tecture (MIC) in Xeon Phi co-processors in 2012 [Chrysos and Engineer, 2012]. Un-

like the architectures of GPUs which may change with each generation, Intel decided

to stick with their well-established x86 architecture for its teraflops co-processor.

The architecture of the Intel Xeon Phi is depicted in Fig. 2.7. There are about

60 simple x86 cores on the microchip die area. Each core is connected to the other

cores via a high-speed bi-directional ring interconnect, which results in full coherency

of the Level 2 cache units. Therefore, despite the fact that there is no Level 3

cache for the Xeon Phi, each core can access the L2 cache associated with other

cores via the ring interconnect in a constant access time that is not influenced by

the location of the cores [Fang et al., 2014]. Thus the entire set of L2 cache units

can act in a fashion similar to a distributed L3 cache [Fang et al., 2014]. The type
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Figure 2.7: Intel Xeon Phi (MIC) architecture (Figure from Intel 2013).

of memory chip on the card is Graphics Double Data Rate (GDDR) memory, the

same memory that also used in contemporary GPU cards. GDDR memory provides

higher bandwidth and lower access time in comparison to the main memory for

CPUs [Chrysos and Engineer, 2012]. Nevertheless, the Intel MIC sees this memory

in exactly the same way that the CPU sees the main memory. All caching tasks

are performed in the background and are transparent to the programmer (i.e., the

data is fetched from main memory to the L2 cache; then to the L1 cache inside

the x86 code and into scalar or vector registers automatically if necessary). In this

way, developers do not need to be concerned about understanding different types of

memory in the hierarchy or micro-managing the underlying memory caches.

There are two pipelines inside each Xeon Phi core as illustrated by Fig. 2.8.

Therefore, the core itself is dual issue per cycle (one for scalar and one for vector)

[Jeffers and Reinders, 2013, Intel, 2013] and four hardware threads are available on

each core. Most of the vector instructions have a 4-clock latency, which can be hidden
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Figure 2.8: Intel Xeon Phi core architecture. There are two execution units per core,
the scalar and vector units (shown in yellow). Each unit has access several memory
regions (shown in orange) (Figure from Intel 2013).

by round-robin scheduling of multiple threads on a core. Therefore, the effective

pipeline throughput is one-per-clock [Jeffers and Reinders, 2013, Intel, 2013]. Since

the instruction decoding unit has a 2-cycle latency, no back-to-back cycle issue is

possible from the same thread; therefore, at least two hardware threads are needed to

fully utilize each core [Jeffers and Reinders, 2013, Intel, 2013]. Unlike Intel’s previous

vector instruction sets such as the 64-bit MMX which could only operate on integers,

the 128-bit Streaming SIMD Extensions (SSE), and the 256-bit Advanced Vector

Extensions (AVX) instruction sets, the Intel MIC has a new vector processing unit

with 512-bit registers (see Fig. 2.9). As a result, for every cycle, the Xeon Phi can

execute an instruction on twice or more data than the CPU.

There are a few differences between the Intel Xeon Phi processor and traditional

CPU. First, because the clock rate of the Xeon Phi is lower than that of the CPU,

it is not optimized to run serial code as it designed for parallelized/vectorized code.

Second, the co-processor usually ships with lower memory than the host and less is
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Figure 2.9: Intel Xeon Phi vector processing unit can operate on wider registers
compare to traditional CPU’s vector units. It can issue instructions on 8 double
precision (DP) or 16 single precision (SP) numbers simultaneously (Figure from
Intel 2013).

available to programs [Intel, 2013]; thus, programs that require a larger amount of

data may not be able to run on the co-processor. Third, compared to the out-of-order

CPU cores, the MIC cores are simpler and cannot efficiently handle complicated code

paths with many out-of-order jumps or nested conditional blocks.

There are several ways to utilize the vetorization unit on the Intel MIC: Intel

Cilk Plus, Intel MKL, compiler auto-vectorization, and SIMD compiler directives

[Jeffers and Reinders, 2013]. Intel Cilk Plus is an extension of the C/C++ language

which facilitates programming on the Xeon Phi for developers. However, it is still

new, not portable, and is only available on Intel compilers. Intel MKL is Intel’s

math library that can be called within codes. It is optimized and easy to call: no

code changes are required. However, MKL provides a math library only and thus

cannot be employed for general purpose use. In addition, it has been shown that

the Intel MKL is not reliable on non-Intel x86 CPUs (i.e. AMD) and causes a drop
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in the performance of codes [Fog, 2015]. Although the auto-vectorization technique

only requires minor changes in codes, programmers need to make loops as simple as

possible so that the compiler can vectorize them well [Jeffers and Reinders, 2013].

Furthermore, functionality is limited by language and compiler technology and is

not portable. Vectorization with SIMD directives is a reliable technique and is stan-

dardized in OpenMP 4.0 [OpenMP4.0, 2015]. The SIMD directives are powerful, yet

need to be used carefully in order to avoid changing the meaning of the program

[Jeffers and Reinders, 2013].

Similarly, various techniques can be employed for parallelizing code on the Intel

MIC. These include Intel Cilk Plus, Intel TBB, and OpenMP. As mentioned earlier,

Intel Cilk Plus extends C/C++ for parallelism. The parallelism can be achieved

by employing special keywords, attributes, directives, and through the runtime li-

braries [Jeffers and Reinders, 2013]. Intel Threading Building Blocks (TBB) is a

compiler-independent C++ library for rich parallelism via template programming

[Jeffers and Reinders, 2013]. Another technique is employing OpenMP for paral-

lelization. OpenMP works with compiler directives and a runtime library which

supports parallel loops, the use of a tasking model, and portable locks. Due to the

standard nature of OpenMP and its portability, in XFLAT, OpenMP was employed

for intra-processor vectorization and parallelization.

There are considerable differences between the MIC and GPU accelerators from

the perspective of architectural design. First, in contrast to the GPU, Intel MIC

is not optimized for concurrent out-of-cache random memory access by large num-

bers of threads [Intel, 2013]. Furthermore, the Intel MIC architecture has a tradi-

tional coherent-cache architecture, whereas GPUs have a memory architecture spe-

cialized for localized shared memory processing [Intel, 2013]. Moreover, “threads”

and “cores” mean something very different, as GPU versions are limited and lighter-

weight [Intel, 2013]. Furthermore, on the GPU, cores are limited to performing
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simple floating point operations, and a number of threads can act as a single SIMD

unit. Since the Intel MIC architecture is similar to traditional CPUs, it is a better

choice for accelerating highly vectorized and parallelized codes such that they can

be run on both CPU and the MIC without any further modification simultaneously.

Typically, programs run on accelerators such as GPUs via offload mode in which

the main program still continues its run on the CPU. The computational portions of

the code and the required data are only transferred to the GPU. After completing

the calculations, the results are transferred back to the main program on the CPU.

Hence the non-computational parts such as input/output, MPI calls and other net-

work communication remain on the CPU. However, on the Intel MIC there are two

methods for running programs on the co-processor. The first method is to run codes

in offload mode in a way that is similar to GPU. This method is compatible with

the GPU programming style so that codes written for the GPU can run on the MIC

with only minor modifications. Fig. 2.10 illustrates the offload programming model.

The other approach is to run codes in symmetric mode, which implies an entirely in-

dependent program executing on the MIC co-processor [Jeffers and Reinders, 2013].

In this mode, programs run on the Xeon Phi precisely as they run on the CPU.

Consequently, the Intel MIC can be seen as an MPI node at runtime, so that all the

communication and I/O tasks are performed without interrupting the CPU. Hence,

it is possible to have another MPI process running on the CPU simultaneously.

Fig. 2.11 depicts different programming models on the Xeon Phi.

In addition, from the perspective of the software stack, there are a number of

important differences between GPUs and the Xeon Phi: the former is controlled by

driver software, while the latter is controlled by a micro-kernel Linux operating sys-

tem [Jeffers and Reinders, 2013, Intel, 2013]. As a result, the Linux Standard Base

core libraries are available on the Xeon Phi (see Table 2.1). On accelerators such

as the GPU, a portion of the driver resides on the CPU (host) and controls the
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#pragma offload target(mic : target_id) \

in(data_in : length(SIZE) \

inout(data_inout: length(SIZE)

for (int i = 0; i < SIZE; ++i)

{

/// calculations here!

data_inout[i] += data_in[i];

}

Figure 2.10: Offloading a loop to an accelerator. The offload programming model of
the Xeon Phi is similar to that of the GPU programming model.

accelerator via the PCI Express bus. The driver is responsible for managing accel-

erators, providing a low-level software stack for data transfer, and running kernel

codes by providing the runtime environment for programs. By having a Linux op-

erating system running on the Xeon Phi, there is no need to have the co-processor

controlled from the host. As the co-processor is Internet Protocol (IP) addressable,

Figure 2.11: Xeon Phi programming models. A code can run on either the CPU
(shown in green) or the MIC (shown in yellow) or both [Jeffers and Reinders, 2013].
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Table 2.1: Linux Standard Base (LSB) core libraries on the Intel MIC. From
[Jeffers and Reinders, 2013].

Component Description
glibc the GNU C standard library
libc the C standard library
libm the math library
libdl programmatic interface to the dynamic linking loader
librt POSIX real-time library
libcrypt password and data encryption library
libutil library of utility functions
libstdc++ the GNU C++ standard library
libgcc s a low-level runtime library
libz a lossless data compression library
libcurses a terminal-independent method of updating character screens
libpam the Pluggable Authentication Module (PAM) interfaces

communicating with the MIC can be directly completed without routing via the host.

Additionally, because there is a Linux OS on the co-processor, various I/O, MPI and

other third-party libraries can be compiled, built, and run on the Xeon Phi as well.

Therefore, in contrast to the GPU, there is no need to write specialized libraries for

the Xeon Phi from scratch.

Since both the Xeon Phi and CPU share the same underlying architecture (x86-

64 instruction set), it has been demonstrated that optimizing code for the Intel Xeon

Phi can result in more optimized code for the Xeon CPU as well [Calvin et al., 2013,

Jeffers and Reinders, 2013]. Consequently, programmers need to not maintain two

separate code bases, each with different data structures, algorithms, and optimiza-

tion paths. Understandably, this is a huge advantage over GPU programming for

developers, where they must maintain multiple programs for multiple targets.
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2.2.2 Raw performance of the MIC

Although the MIC is equipped with more cores and lengthier vector registers, its

performance advantages over the CPU depends strongly on the specific code execut-

ing on it. Therefore, prior to any real-world benchmarks, the Intel Xeon Phi should

be benchmarked for basic arithmetic operations (i.e. additions, multiplications and

transcendental functions) in order to assess the processor’s capabilities and limita-

tions for the basic and most-utilized mathematical functions ultimately utilized in

full-scale applications code such as XFLAT.

The raw performance of the CPU and Xeon Phi was first benchmarked on the

Texas Advanced Computing Center (TACC) Stampede supercomputer using a code

adapted from [Jeffers and Reinders, 2013], with the structure illustrated in Fig. 2.12.

Characteristics of the Stampede machine are shown in Table 1 of [Noormofidi et al., 2015].

In the innermost loop of this code, simple floating point operations (i.e. additions

and multiplications) were performed on an array or vector of double-precision (DP)

floating-point numbers. The widths of the vectors were taken to be a multiple of that

of the SIMD registers of the computing component (256 bits or 4 DP for the Xeon

CPU, and 512 bits or 8 DP for the Xeon Phi). The same vector operations were

repeated 10 million times in the middle loop to maintain data locality. In the outer-

most loop, all of the hardware threads were utilized to achieve the best performance.

The results of these benchmarks with different vector widths in the innermost loop

are shown in Fig. 2.13. These results show that the floating point performance of

the Xeon Phi is highly sensitive to the width of the vector, while the performance of

the CPU is relatively stable. The floating point performance of the Xeon Phi is best

when the width of the DP vectors is 64; in that test, the Xeon Phi ran 10 times as

fast as the CPU. However, the performance of the Xeon Phi degrades substantially

as vector width increases.
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/// 8/244 OpenMP threads for CPU/MIC.

#pragma omp parallel for

for (t: NUM_THREADS)

{

/// Repeat 10 million times.

for (itr: LOOP_COUNT)

{

/// VECTOR_WIDTH is a multiple of 4/8

/// for CPU/MIC.

#pragma omp simd

for (s: VECTOR_WIDTH)

{

/// floating point operations

...

}

}

}

Figure 2.12: High-level structure of the benchmark code for floating point perfor-
mance.

Since XFLAT employs transcendental functions such as sin() and exp(), the

transcendental function performance of the CPU and Xeon Phi was benchmarked

using a code similar to that of Fig. 2.12, with the simple floating point operations

replaced by a pair of sin() and cos() functions in one series of tests, and exp()

in the other (see Fig. 2.13). These results suggest that transcendental function

performance on the Xeon Phi is relatively stable against the width of the vectors.

For the tests on sin() and cos() the Xeon Phi ran 6–8 times as fast as the CPU,

but for exp() the Xeon Phi was only 3–4 times faster.

The double-precision (DP) floating-point benchmarks showed that the Xeon Phi

can outperform the CPU by ten times only when the vector of double-precision num-

bers is short. Increasing vector length beyond 64 double-precision numbers causes

the Xeon Phi’s performance to drops dramatically and become comparable to that
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Figure 2.13: The relative speedup of the floating point and transcendental functions
for the CPU and Xeon Phi on the TACC Stampede Xeon Phi-based supercomputer
(single node only). The width of the vector is the length of the innermost loop
(vectorized loop) in the kernel.

of the CPU. From the transcendental functions benchmarks it can be concluded that

the performance of transcendental functions on the 6̃0-core MIC is a few times better

than that of the 8-core CPU. For short vector lengths, the sin()/cos() and exp()

on Xeon Phi ran 8 times and 4 times as fast as the CPU, respectively. However, by

increasing the vector length beyond 64 double-precision numbers, the sin()/cos()

on Xeon Phi ran only 6 times as fast as the CPU, and the exp() on 244 threads of

the Xeon Phi was slightly more than 3 times as fast as on the CPU’s 8 threads.

Based on these results, it is clear that performance of the Xeon Phi will be depen-

dent on application loop structures and the length of vectorized loops. It can vary

dramatically with only slight changes in the size of the data. It also directly depends

on the type of the employed operations and functions. Therefore, the decision to
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utilize the Xeon Phi in real world applications depends on the application type and

may or may not be economically beneficial.

2.2.3 Previous work on the Intel MIC

Following the introduction of the Xeon Phi in 2012, many researchers started to

explore the capabilities of the new co-processor. There has been a considerable

amount of research on the Xeon Phi via benchmarking kernels in order to study

the advantages and disadvantages of the co-processor. Examples includes LINPACK

[Heinecke et al., 2013] and matrix multiplication [Saule et al., 2014]. In addition,

real-world applications have been developed or partially rewritten to harness the

power of the Xeon Phi for scientific research. Here we provide a brief survey of the

most prominent efforts to date, and an overview of typical performance improvements

overall compared to CPU-only code.

[Pennycook et al., 2013] [Pe] employed Xeon Phi for molecular dynamics. They

employed intrinsic functions, which are mapped by the compiler directly onto the

corresponding assembly instruction, as well as the compiler #pragma in order to

exploit SIMD registers. Their code achieved 1− 1.4× performance improvement on

a Xeon Phi over a single 8-core Xeon E5-2660 CPU.

[Crimi et al., 2013] [Cr] ported a Lattice Boltzmann code on the Xeon Phi. They

used the offload programming approach. For vectorization they employed the intrin-

sic functions. Their code on the Xeon Phi achieved 1.12× higher performance than

a 16-core system.

[Leang et al., 2014] [Le] utilized the Xeon Phi for quantum chemical calculations.

They compared the Xeon Phi with a system that was equipped with two 8-core Xeon

E5-2650. For all Phi runs, the MIC KMP AFFINITY environment variable for the co-

processor was set to compact, as this was found to offer better overall performance
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relative to the default affinity setting of scatter. To improve data transfer per-

formance on the Phi, the environment variable MIC USE 2MB BUFFERS=2M was set to

turn on the use of 2 MB page buffers. They achieved 1.5−2× improvement over the

host.

[Aprà et al., 2014] [Ap] reported an implementation of many-body quantum chem-

ical methods on the Xeon Phi. The auto-vectorization and offload model were chosen

for vectorization and design strategies, respectively. Moreover, performance benefit

was observed by setting the environment variable MIC USE 2MB BUFFERS=16K. They

reported 2.1× improvement over a Xeon E5-2670 CPU.

[Teodoro et al., 2014] [Te] employed the Intel MIC for microscopy image analysis

(digital pathology). Digital pathology involves the analysis of images obtained from

whole slide tissue specimens using microscopy image scanners. They employed the

offload programming approach and utilized the compiler #pragma in order to vectorize

their code. Their Xeon Phi implementation achieved 0.4− 1.9× performance over a

system with two 8-core Xeon E5-2680 processors.

[Wende and Steinke, 2013] [We] exploited the Intel MIC in a Swendsen-Wang

multi-cluster algorithm for the 2D/3D Ising model (ferromagnetism in statistical

mechanics). They utilized the intrinsic functions for vectorizations and the envi-

ronment variable KMP AFFINITY=balanced,granularity=fine for thread pinning.

Speedups up to a factor 3 over a single 8-core Xeon E5-2680 were observed; however,

for the smaller problem sizes the performance of the CPU vs. MIC was comparable.

[Liu and Schmidt, 2014] [Li] utilized the Intel MIC for biological sequence database

search. Their code was written specifically for the Xeon Phi with a set of SIMD

intrinsics. They investigated the offload model in order to coordinate multiple co-

processors to perform sequence alignments. Their Xeon Phi code achieved 1.19 −

2.49× higher performance than implementations on a single 8-core CPU.
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[Park et al., 2013] [Pa] developed a code for efficient backprojection-based syn-

thetic aperture radar computation using the Intel MIC. They reported a 1.9× im-

provement over two 8-core Xeon E5-2670 CPUs.

[Halyo et al., 2014] [Ha] employed the Intel MIC for real time particle tracking

based on the Hough transform at the Large Hadron Collider (LHC). In order to

utilize the co-processor, data was moved from the CPU to the co-processor using the

offload functionality. In addition, the auto-vectorization functionality of the compiler

was employed for utilizing the SIMD units. The reported Xeon Phi performance was

0.3× that of two 12-core E5-2697v2 CPUs (Xeon Phi was three times slower).

[Knoll et al., 2013] [Kn] exploited the Xeon Phi for an application involving ray

tracing and volume rendering of large molecular data. They employed SPMD lan-

guage as a special language generating vectorized code. They reported about 2×

performance improvement on the Xeon Phi over a single 8-core Xeon E5-2680 CPU.

[Kulikov et al., 2015] [Ku] developed a new astrophysics code specifically for the

Xeon Phi and they reported over 10× improvement over a single-core of an E5-2690

CPU (around 1.2× improvement over an 8-core CPU).

The implementation methods used in the above applications are summarized in

Table 2.2.

All of the reported speedups can be normalized to a reference hardware. Since

several works (including the current work) employed the Stampede supercomputer,

all the hardware were normalized to the Stampede’s MIC and CPU:

MIC# of cores

Stampede′s MIC# of cores
× MIC ′s freq.

Stampede′s MIC ′s freq.
CPU# of cores

Stampede′s CPU# of cores
× CPU ′s freq.

Stampede′s CPU ′s freq.

(2.1)

Fig. 2.14, depicts the relative speedup of each work normalized to Stampede’s

hardware. As seen from these results, the expected speedup for a full-fledged appli-
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Table 2.2: Summary of implementation approaches on the Intel MIC for real-world
applications. The – indicates that the approach was not discussed in the paper.
For the Multi-node column, N/A means that the code was run on a single node; no
multi-node support.

Reference Exec. mode Multi-node Multi-thread SIMD
[Pennycook et al., 2013] – MPI – Intrinsic
[Crimi et al., 2013] Offload N/A – Intrinsic
[Leang et al., 2014] Offload N/A OpenMP –
[Aprà et al., 2014] Offload – OpenMP Auto-vec.
[Teodoro et al., 2014] Offload – OpenMP Auto-vec.
[Wende and Steinke, 2013] Native MPI OpenMP Intrinsic
[Liu and Schmidt, 2014] Offload – OpenMP Intrinsic
[Park et al., 2013] Offload MPI OpenMP Intrinsic
[Halyo et al., 2014] Offload N/A OpenMP Intrinsic
[Knoll et al., 2013] – MPI OpenMP SPMD
[Kulikov et al., 2015] Offload MPI OpenMP –

cation is at most around four times on a lower-end CPU and by increasing the CPU

power it decreases and to be around 1− 1.5× for the current generation of the Xeon

Phi. XFLAT could achieve up to three times speedup on the Stampede’s MICs and

up to four times speed up on Bahcall machine. Note: the specifications for Bahcall

can be found in Table5.2 and Table5.3.
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Figure 2.14: Illustration of the relative MIC to CPU speedup of different applica-
tions. The x-axis is the MIC ′s cores×MIC ′s freq. / CPU ′s cores×CPU ′s freq.
normalized to Stampede’s hardware.
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Chapter 3

Neutrino Oscillations

3.1 Physics of Neutrino Oscillations in Supernovae

As discussed earlier, neutrino oscillations in which neutrinos can change their fla-

vor state are a quantum mechanical phenomenon [Barger et al., 2012]. A neutrino

created with a specific flavor (νe, νµ or ντ ) can later change state to a different

flavor. In vacuum neutrino oscillations the probability of measuring a particular

flavor for a neutrino varies periodically as the neutrino propagates through space.

The existence of neutrino oscillations implies that the neutrino has a non-zero mass,

which was not included as part of the original Standard Model of particle physics

[Barger et al., 2012].

Experimental evidence for neutrino oscillations comes from various sources: solar

neutrino oscillations [Davis et al., 1968] (in which neutrinos produced in the Sun

are studied); atmospheric neutrino oscillations [Fukuda et al., 1998] (when a cosmic

ray hits a nucleus in the upper atmosphere, neutrinos may be created during the

process); reactor neutrino oscillations [An et al., 2012] (neutrinos may be created

in a nuclear reactor’s core), and beam neutrino oscillations [Agafonova et al., 2010]
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(neutrinos may be created in particle accelerators).

In a supernova, it has been shown that, because there are so many neutrinos

emitted from the neutron star within such a short time, flavor oscillations of neu-

trinos with different energies that are propagating along different trajectories are

not independent of each other but are correlated [Duan et al., 2010]. As illustrated

in Fig. 3.1, following the flavor evolution of neutrino νp would entail knowing the

flavor states of all neutrinos on which it forward scatters (only the trajectories of

neutrinos along the escaping directions are included), such as νq and νk propagat-

ing on trajectories which intersect νp’s trajectory at points P and Q, respectively.

Note that the flavor histories of νq and νk are not independent, as they have un-

dergone a forward scattering at point K in the past. This phenomenon is known

as collective neutrino oscillation. Since it is impossible to solve the supernova neu-

trino oscillation equations analytically, and it is very challenging to follow collective

oscillations of supernova neutrinos numerically, the only model in which collective

neutrino oscillations have been solved numerically so far is the neutrino bulb model

in which the physical conditions are assumed to be exactly spherically symmetric

[Duan et al., 2006].

Even in this seemingly simplistic model of neutrino oscillation, as calculations of

the oscillations of the neutrinos of different energies and emission angles are highly

correlated, millions of coupled, nonlinear differential equations must be solved si-

multaneously. Hence, with a huge number of neutrinos emitting from the surface,

tracing the neutrino-neutrino evolution history quickly become an intractable simu-

lation problem.

Not only does solving each equation requires many computationally expensive

functions (i.e. sin, cos, and exp), the entire model still only calculates the neutrino-

neutrino forward scattering interactions. Thus, it does not even include the inter-

action of neutrinos that scatter along the backward direction. Since for each step
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Figure 3.1: Illustration of nonlinearity problem for intersecting neutrino trajectories
emerging from a proto-neutron star (a star which is cooling and contracting to be-
come a neutron star). Points P , Q, and K are intersections of the world lines for
three neutrino beams, νp, νq, and νk. Hence, the flavor evolution histories of these
neutrinos will be quantum-mechanically coupled.

and each particle’s beam many quantum mechanical equations have to be solved,

and there might be millions of steps and millions of neutrino beams in the system,

the entire simulation requires vast computational power which is currently available

only on very high-end supercomputers.

As discussed in the Introduction, one of the most common ways to simplify the

neutirno oscillation simulation problem is to reduce its dimensionality by studying

simpler models such as the spherically symmetric neutrino bulb model. The assumed

spherical symmetry in the bulb model reduces the required calculations dramatically,

as neutrino trajectories with the same emission angle become equivalent. Thus,

neutrinos emitted in the same flavor and energy state and with the same emission

angle have identical flavor evolution history [Duan et al., 2006].

As mentioned earlier there are three kinds of neutrinos—the νe, νµ, and ντ—in the

particle physics Standard Model. Each particle has a corresponding anti-particle (ν̄e,

ν̄µ, ν̄τ ). The fluxes and energy spectra may be different for each neutrino and anti-
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neutrino. As a result, the flavor content of the neutrino field above the proto-neutron

star surface and its evolution history in time and space can be important, since many

environments associated with compact objects and the very early universe are dom-

inated by neutrinos and their interactions at some point. The objective of nonlinear

neutrino oscillation simulations in supernovae is to study and understand the flavor

evolution of the neutrino field when νe and ν̄e mix with neutrinos and anti-neutrinos

of other active flavors. Hence, the quantum state of the system must be studied. The

discussion of neutrino physics that follows is closely based on [Duan et al., 2006] and

[Duan et al., 2008].

The quantum state of a particle can be described by the wavefunction. The

wavefunction of the flavor of a neutrino in the two-flavor system is written as:

ψν ≡

 a

b

 , (3.1)

where a, and b are the complex amplitudes for neutrino to be in the νe, ν̄e, and νx

(ν̄x) (x represents either the µ or τ neutrino or a linear combination of these) flavor

states, respectively.

The development in time and space of the complex amplitudes is followed in

order to describe the flavor states of the neutrinos, and the full quantum kinetic

equations reduce to a Schrödinger equation. The Schrödinger equation determines

how the wave function evolves over time; i.e., the wavefunction is the solution of the

Schrödinger equation.

For a given neutrino trajectory, with parameter l, which is the propagation length

of a neutrino, the Schrödinger equation can be written as:

i
d

dl
ψα (v̂, E; l) = (H0 + Hm + Hνν) · ψα (v̂, E; l) , (3.2)

where α, v̂ and E are the initial flavor, (the unit vector of) the propagation direction,

and the energy of the neutrino, respectively. H0 is the Hamiltonian in vacuum, Hm is
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Figure 3.2: Geometry of the neutrino bulb model. The neutrino beam νp is emitted
from a point on the proto-neutron sphere (radius R), with polar angle Θ. The
beam intersects the z-axis at point P with angle ϑ. All geometric properties can be
calculated from the radius r (the distance from the center of the proto-neutron star)
and the emission angle ϑ0, which is defined with respect to the normal direction at
the point of emission on the star (ϑ0 = Θ + ϑ).

the matter potential, and Hνν is the neutrino potential due to the ambient neutrinos.

The propagation direction v̂ is fully described by the polar angle ϑ between v̂ and

the radial direction when axial symmetry about the radial direction is imposed. In

the neutrino bulb model v̂ is determined by ϑ. As depicted in Fig. 3.2, at any given

radius r all the geometric properties of a neutrino beam can be calculated using only

r and ϑ0. Hence, ϑ and Θ are related to ϑ0 through:

sinϑ

Rν

≡ sin Θ

l − l0
≡ sinϑ0

r
, (3.3)

where l ≡ r cosϑ and l0 ≡ Rν cosϑ0.

However, in other models such as the extended bulb model [Mirizzi, 2013] where

axial symmetry is not imposed, v̂ is determined by both ϑ and the azimuthal angle

(ϕ) about the radial axis. Thus, v̂ is directly related to the geometry of the model.

For n neutrino flavors, ψ is a vector of n complex variables, and H0 and Hνν are

42



3.1. PHYSICS OF NEUTRINO OSCILLATIONS IN SUPERNOVAE

both n× n Hermitian matrices. Since the neutrino potential Hνν governing ambient

neutrino forward-scattering contributes to the Hamiltonian, a serious complication

arises and renders the problem nonlinear, as the interactions which dictate flavor

transformation amplitudes are themselves dependent on the neutrino flavor states.

Neutrino modes are binned in each flavor by their energy and emission angle.

As a result, the flavor evolution of the neutrino wavefunction can be represented

as:

i
d

dl
ψα (v̂, E; l) = (H0 + Hm + Hνν) · ψα (v̂, E; l)

=
1

2

−∆ cos 2θ + A+B ∆ sin 2θ +Beτ

∆ sin 2θ +B∗eτ ∆ cos 2θ − A−B

ψα (v̂, E; l) , (3.4)

where θ is the vacuum mixing angle, and ∆, A, and Beτ are the vacuum potentials

induced by neutrino mass difference, the matter, and the background neutrinos,

respectively. The appropriate Hamiltonian for anti-neutrinos is obtained by making

the transformation:

A→ −A, B → −B, Beτ → −B∗eτ

In Eq. 3.4, the H0 is the Hamiltonian related to vacuum oscillations that causes

the neutrinos change their flavors by propagating through vacuum. The vacuum

oscillation term is:

i
d

dl
ψα (v̂, E; l) =

1

2

−∆ cos 2θ ∆ sin 2θ

∆ sin 2θ ∆ cos 2θ

ψα (v̂, E; l) , (3.5)

where ∆ is the vacuum oscillation frequency and is defined as:

∆ ≡ δm2

2Eν
, (3.6)

where δm2 is the difference between mass-squared of neutrinos, and Eν is the energy

of the neutrino. Because the sign of one of the neutrino mass-squared difference
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(δm2
23) has yet to be measured, numerical simulations in the two-flavor mixing scheme

are run with mass-squared difference δm2 with both the positive and negative values.

Electrons interact with neutrinos via the weak nuclear force. As a result, the

matter density above the neutron star plays an important role as well, since neutrinos

interact with matter around the neutron star. The matter potential (Hm) in Eq. 3.4

is defined as:

Hm =
1

2

A 0

0 −A

 (3.7)

where A =
√

2GFne. GF is the Fermi coupling constant, ne is the net electron

number density that is related to baryon density nb with ne = Yenb, where Ye is the

electron fraction (electron to baryon ratio).

The difficulty in solving Eq. 3.4 stems from the neutrino potential Hνν which is

given by:

Hνν =
∑
α′

∫
dE ′

∫
dv̂′ (1− v̂ · v̂′)

[
%′ναfνα(E ′)

Lνα
〈Eνα〉

− %′∗ν̄αfν̄α(E ′)
Lν̄α
〈Eν̄α〉

]
, (3.8)

where the quantities with primes are associated with the ambient neutrinos, and the

quantities with bars are associated with anti-neutrinos. Lνα , 〈Eνα〉, and fνα(E ′) are

the energy luminosity, average energy and normalized energy distribution function

of να, respectively.

%′ in Eq. 3.8 is called the density matrix and can be calculated directly from

ψα′(v̂′, E ′; l) as follow:

% ≡

|a|2 − |b|2 2ab∗

2a∗b −|a|2 + |b|

 , (3.9)

where a and b are the components of the wavefunction (ψα) in Eq. 3.1.

Eq. 3.4 shows that all the neutrino beams propagating along different trajectories

and having different energies are coupled. Therefore, it makes Eq.3.4 nonlinear. For
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a small distance, Eq. 3.4 can be solved analytically as:

ψν (l + δl) ' exp (−iHδl)ψν (l) (3.10)

=
1

λ

λ cos(λδl)− ih11 sin(λδl) −ih12 sin(λδl)

−ih∗12 sin(λδl) λ cos(λδl) + ih11 sin(λδl)

ψν (l) ,

(3.11)

where h11 and h12 are the diagonal and off-diagonal elements of the Hamiltonian H,

and λ is defined as:

λ ≡
√
h2

11 + |h12|2. (3.12)

3.2 Implemented Physics Models

XFLAT is designed to support a variety of geometries; the “neutrino bulb model”

is just one of them. In this section, we describe the physics models currently imple-

mented in XFLAT: the single-angle bulb model; extended bulb model; plane/point

model; and cylinder/line model.

3.2.1 Bulb Model

In the neutrino bulb model, there are multiple neutrino trajectories along different

zenith directions (the ϑ angles). The emission from each point on the star’s surface is

assumed to be identical; consequently the study of a single emission point is sufficient.

The bulb model assumes azimuthal symmetry, meaning that all trajectories along

a particular zenith angle but along different azimuthal directions (the ϕ angles) are

assumed to be identical. Fig. 3.3 illustrates the neutrino bulb model. There are

different trajectories along the zenith direction emitted from a given point on the

surface, and every point on the surface is assumed to be equivalent.
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Figure 3.3: Illustration of multi-zenith angle model. There are different trajectories
along zenith direction (ϑ1, ϑ2, ϑ3, ϑ4) emitted from a single point on the star’s surface
(shown in blue), and every point on the surface is assumed to be equivalent.

Eq. 3.8 can be rewritten and simplified for the bulb model to read:

Hνν =
∑
α′

∫
dE ′

∫
(1− cosϑ cosϑ′)

[
%′ναfνα(E ′)

Lνα
〈Eνα〉

− %′∗ν̄αfν̄α(E ′)
Lν̄α
〈Eν̄α〉

]
d (cosϑ′) ,

(3.13)

where ϑ is the polar (zenith) angle of the neutrino of interest and ϑ′ is the polar

(zenith) angle of the background neutrino. At each radial point along trajectories,

the cosϑ′ can be calculated as:

cosϑ′ =

√
1−

(
R

r

)2

(1− cos2 ϑ′0), (3.14)

where R is the proto-neutron star’s radius, r is the distance from the center of the

proto-neutron star to the current point of interest and ϑ′0 are the initial angles at the

surface (see Fig. 3.2) for which the angle bins (which are the result of discretizing
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the zenith angle range) are calculated. From Eq. 3.14, d cosϑ′ can be computed as:

d cosϑ′ =
1

2

(
R

r

)2
d cos2 ϑ′0

cosϑ′
, (3.15)

where the ϑ0 angles only need to be calculated once at the proto-neutron star’s

surface.

3.2.2 Single-angle Model

This model is a simplified version of the bulb model. In fact, it is the simplest

geometry implemented in XFLAT. Similar to the bulb model, every point on the

surface of the proto-neutron star emits neutrinos identically, however, there is a

single identical emitting angle for all points on the surface. Therefore, the required

amount of computation is several orders of magnitude less than for the bulb model

since there are no multi-zenith angle trajectories needed. As a result, Eq. 3.13 can

be simplified further to read:

Hνν = D(r/Rν)
∑
α′

∫ [
%′ναfνα(E ′)

Lνα
〈Eνα〉

− %′∗ν̄αfν̄α(E ′)
Lν̄α
〈Eν̄α〉

]
dE ′, (3.16)

where r is the current radius, Rν is the proto-neutron star’s radius, and the geometric

factor D(r/Rν) is defined as:

D(r/Rν) ≡
1

2

1−

√
1−

(
Rν

r

)2
2

. (3.17)

Due to the simplicity of this model and the presence of just a single trajectory,

only the vector registers within a single core can be employed for computations.

Therefore, multi-core and multi-node execution is not supported for this model in

XFLAT, and the Xeon Phi cannot be used to accelerate the computations.
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3.2.3 Extended Bulb Model

The extended bulb model is essentially the same as the neutrino bulb model with the

inclusion of azimuthal trajectories (the ϕ angles). Fig 3.4 illustrates the extended

bulb model including the azimuthal angles. For each zenithal angle (ϑ), there is a

cone of azimuth angle trajectories. r denotes the distance from the center of the

proto-neutron star to the current calculation point, and R is the neutron star’s ra-

dius. While the resulting model is not truly a representation of neutrino supernova

physics (breaking the azimuthal symmetry by adding beams along the azimuth di-

rection causes breaking of the spherical symmetry), the multi-azimuth model can

nevertheless be a useful tool for studying neutrino behavior in order to predict a

neutrino’s evolution in more complicated environments.

For the multi-azimuth model, Eq. 3.8 can be rewritten as:

Hνν =
∑
α′

∫
dE ′

∫
(1− (cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ− ϕ′)))[

%′ναfνα(E ′)
Lνα
〈Eνα〉

− %′∗ν̄αfν̄α(E ′)
Lν̄α
〈Eν̄α〉

]
dϕ′d (cosϑ′) . (3.18)

This model requires orders of magnitude greater computational effort than the

simple bulb model, since for each zenith angle trajectory, there may be hundreds to

thousands of azimuth angles. As a result, employing multi-node supercomputers is

necessary and the rise of accelerators becomes important in order to achieve higher

on-node performance. Multi-node distributed-memory supercomputers are essential

since memory requirements are at least two order of magnitudes greater for this

model.
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Figure 3.4: Illustration of the extended bulb model including the azimuthal angles.
For each zenith angle (ϑ), there is a cone (shown in grey) of azimuth angle trajecto-
ries. The variable r is the distance from the center of the proto-neutron star (shown
in blue) to the current calculation point; R is the neutron star’s radius.

3.2.4 Plane/Point Model

One of the geometries used to study neutrino oscillations is the plane geometry.

Recent progress in instability calculations for neutrino oscillations [Mirizzi, 2013]

has shown that if the azimuthal asymmetries are taken into account, in linearized

stability calculations, a new kind of instability, the multi-azimuth angle instability,

appears. This occurs at smaller radii. Since adding the azimuth angles to the

bulb model breaks the spherical symmetry, this model tries to restore the broken

symmetry in order to make the model self-consistent. As a result, all the neutrino

emitting points are assumed to be on a plane surface, therefore there is no breaking
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in the symmetry anymore. As depicted in Fig. 3.5, all points on the plane surface are

assumed to be the equivalent, hence a particular neutrino trajectory emitting along

the (ϑ, ϕ) direction from point p0 would have the identical properties and history as

another neutrino trajectory emitting along the (ϑ, ϕ) direction from another point

p1. For this reason, all neutrino trajectories alongside the same direction (ϑ, ϕ),

and emitted from different points on the plane surface, would have precisely the

equivalent evolution history.

Hence, Eq. 3.8 can be recast as:

Hνν =
∑
α′

∫
dE ′

∫
(1− (cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ− ϕ′)))

[
%′ναfνα(E ′)jνα(ϕ′, E ′)− %′∗ν̄αfν̄α(E ′)j∗ν̄α(ϕ′, E ′)

]
dϕ′d (cosϑ′) , (3.19)

where jνα(ϕ′, E ′) is the number flux of να with energy E ′ emitted in the ϕ′ direction.

3.2.5 Cylinder/Line Model

It is of interest to understand the behavior of neutrinos when there are multiple

emitting points from a surface. However, there is still no complete model available

for the multiple emitting point simulation of supernovae. As an alternative to the

neutrino bulb model, in the cylinder model an infinitely long cylinder emits neutrinos

at multiple points. To make the model more straightforward, neutrino trajectories

are all perpendicular to the axis of the cylinder. As illustrated in Fig. 3.6, neutrinos

that are emitted from points p1, p2, p3, and p4 are different. However, the points

that located along the z axis are assumed to all be identical. Therefore, neutrino

oscillation instability comes from different points on a slice of the cylinder, emitting

different neutrino beams at the same time.
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Figure 3.5: Illustration of the plane geometry. The point p0 and p1 have identical
neutrino emission. For every zenith angle ϑ, there are multiple neutrino trajectories
along different ϕ angles (shown as the grey cone).

In this model, Eq. 3.8 is recast as:

HΦϑ =

∫
dE ′

∫ π/2

−π/2
(%′να(Φ′, ϑ′)− %′∗ν̄α(Φ′, ϑ′))

cosϑ′√
1−

(
Rν
r

)2
(1− cos2 ϑ′)[

1− cos

(
arcsin

((
Rν

r

)
sinϑ

)
− arcsin

((
Rν

r

)
sinϑ′

))]
dϑ′, (3.20)

where Φ is the latitude angle of the neutrino of interest and Φ′ is the latitude

angle of the background neutrino, and Φ′ = Φ + ϑ′ − ϑ + arcsin
((

Rν
r

)
sinϑ

)
−

arcsin
((

Rν
r

)
sinϑ′

)
.

Complex as they are, even these models are still far from a complete supernova

model. The goal of XFLAT is to enable the simulation of significantly more com-

plex physical models for the neutrino oscillation problem by harnessing the power

of modern heterogeneous supercomputers, including current, state-of-the-art micro-

processors and next-generation many-core architectures. In the following chapters,
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Figure 3.6: Illustration of the cylinder model and its emitting points’ trajectories.
Neutrinos emitting from points p1, p2, p3, and p4 are different; however, since az-
imuthal symmetry is assumed, points located along the z axis are all identical. r is
the radius of the cylinder.

we describe the design and implementation of XFLAT, and its validation for some

of the current generation of physics models that have been described here.
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Chapter 4

Design, Implementation, and

Validation of the XFLAT code

4.1 Numerical Implementation

It has been demonstrated that the neutrino oscillations in the bulb model can be

modeled and computed numerically using the FLAT code previously developed by

[Duan et al., 2008]. In FLAT the quantum flavor states of neutrinos, ψ(ϑ,E; r), at a

given radius r are described by a multi-dimensional array psi[theta, E]. At each

radius r, a summation over all the elements of this array is performed in order to

obtain the neutrino potential Hνν (Eq. 3.13). A numerical algorithm similar to the

midpoint method is employed to solve the Schrödinger equation (Eq. 3.2) and to

evolve ψ(ϑ,E; r) in successive radial steps. In a typical run, 100 − 1, 000 discrete

energy bins may be required in order to achieve the desired resolution for the energy

spectral function. In addition, over 1, 000 polar angle (ϑ) bins may be required

to achieve numerical convergence. In other words, millions of nonlinear differential

equations (see Eq. 3.2) must be solved simultaneously in order to compute neutrinos
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flavor evolution in the bulb model. As discussed in the previous chapter, realistic

models, in which the geometry is even more complex, can result in significantly

larger computational problem sizes. For example, the inclusion of the azimuth (ϕ)

dimension in the extended bulb model increases the problem size by at least a couple

of orders of magnitude, depending on the number of ϕ beams. As a result, in

order to accelerate computations and explore new physics models, the use of modern

supercomputers is essential.

One of the most computationally-demanding parts of the model is the calcula-

tion of the Hνν . In order to accelerate the computations, it is desirable that those

calculations run on more than one compute node. At the same time, the number of

nodes should be kept to a minimum in order to minimize the overhead of inter-node

communication. Furthermore, the larger the problem size (for more complex super-

nova models), the more computing power is required. A balance between these two

factors can be achieved by employing accelerators or co-processors such as Graphics

Processing Units (GPU) or the Xeon Phi (Intel MIC). In principle the computational

power of accelerators is higher than that of traditional CPUs.

As discussed previously, in order to maintain the same code for both accelera-

tors and CPUs, the Intel Xeon Phi co-processor (which is based on the Intel x86

architecture) was chosen for XFLAT framework development.

XFLAT is written in C++ and contains about ten thousand lines of code. It em-

ploys an algorithm similar to FLAT for solving the Schrödinger equations. However,

unlike FLAT, which exploited only MPI, XFLAT implements and utilizes three levels

of parallelism. In Fig. 4.1 the high level code structure of XFLAT is illustrated for

the extended neutrino bulb model. At the top level, the ϑ angle bins are distributed

among compute nodes (either a CPU or a Xeon Phi), and inter-node communication

is handled via MPI. At the middle level (i.e., on a CPU or Xeon Phi) ϑ angle bins

are further dispatched to processor cores via OpenMP. At the bottom level (within
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/// Each node receives array of neutrino beams

init_NBeam(psi[]);

/// The main neutrino evolution loop

while (!termination_conditions)

{ ...

/// Partition local polar bins among OpenMP threads

#pragma omp parallel for

for (theta: POLAR_ANGLE_COUNT)

{ ...

for (phi: AZIMUTH_ANGLE_COUNT)

{ ...

/// Distribute energy bins across vector registers (SIMD)

#pragma omp simd

for (E: ENERGY_BINS)

{

/// wavefunction computations of neutrino beams(theta,phi,E)

psi[theta,phi,E].calc(...);

}

}

}

/// Inter-node MPI communication; nodes exchange partial results

MPI_AllReduce(...);

}

Figure 4.1: High-level structure of XFLAT parallelism for the extended bulb model.
The outer loop is over the polar angles (ϑ); the next (middle) loop is over the azimuth
angles (ϕ); the innermost loop is over energy bins.

a thread), the energy bins’ loops are executed via the Single Instruction with Multi-

ple Data (SIMD) paradigm. SIMD units cannot directly compute on C++ complex

numbers. Therefore, in order to use the SIMD units efficiently, double-precision

floating-point arrays (i.e., ar[E], ai[E], etc.) are used to represent the real and

imaginary components of the variables in complex vectors ψ(ϑ, ϕ,E; r) for a single

ϕ and ϑ, and at a given r. These arrays are then grouped into an object element of

neutrino beam array NBeam[theta,phi] for a given ϕ and ϑ.

55



4.2. ARCHITECTURE

4.2 Architecture

As discussed in Chapter 2, there are two methods for executing applications on

the Xeon Phi: offload mode and symmetric mode. Offload mode entails several

compromises. For instance, programs have to use one less core, since the idle core is

responsible for code and data transfers to/from the MIC [Jeffers and Reinders, 2013].

Thus, there is always less processing power available in offload mode. Furthermore,

offload mode is not suitable for very short tasks, as the overhead of data transfers as

well as thread creation may suppress computational segment performance. On the

other hand, in symmetric mode, there is no code or data transfer during run time

except for inter-node MPI communication. Therefore, all of the hardware resources

such as cores and hardware threads are available for computation. In addition, in

symmetric mode the CPU does not have to be attached to the codes that run on

the MIC, hence it is feasible to launch another process on the CPU as an additional

MPI task. As a result, in this work the symmetric mode was chosen for XFLAT

implementation.

There are several factors that affected the overall design of the code. First, the

architecture of XFLAT needed to be as flexible as possible so that the physics is easily

extensible and it can perform the simulation of diverse geometries and scenarios.

Furthermore, since XFLAT is a high-performance code, it should be able to exploit

all available parallelism levels and hardware resources (see Fig. 4.2).

In order to increase the flexibility of the code, XFLAT was designed to be mod-

ular. This modularity can save scientists’ and developers’ time and effort by allow-

ing them to change a single physics module without any requirement of knowledge

about the internal structure of other modules. Since various geometries, different

particle types in the system, diverse energy spectra functions, ... might be required,

a module can simply be switched with another module; thus only a code rebuilding
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SIMD

OpenMP

MPI

Figure 4.2: Parallelism hierarchy of XFLAT. MPI (bottom level) is employed for
inter-node parallelism, OpenMP (shown in the middle) is exploited for multi-thread
parallelism on each processor, and SIMD vectorization (shown at the top) is utilized
for the finest-grained parallelism within each core.

(re-compilation), is necessary before running XFLAT.

As further illustrated in Fig. 4.3, the software framework architecture is a dual-

layer design. The upper layer is responsible for general portions of the code including

the numerical, physics, and I/O modules. The lower layer is responsible for per

particle calculations such as calculating Hamiltonians and computing neutrino flavor

evolution. In this approach, if a particle in the simulation needs to be replaced with

another particle type, only the lower module needs to be swapped with a replacement

module. In addition, if the geometry and physics of the simulation needs to be

changed, the only affected module will be the physics module in the upper layer.

The modularity of the code dictates that each module encapsulates all of its internal

data, structures, and functionalities within the module, and only communicates with

other modules via their exposed Application Programming Interface (API) functions.

This requirement guarantees that by swapping modules the functionality of the rest

of the framework will not be affected.

Together with this modular data structure, the code was designed so that over-

head due to inter-node communications, data movement within memory, and I/O
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Figure 4.3: High-level hierarchical illustration of XFLAT modules. The bottom layer
(shown in blue) is responsible for per particle calculations. The upper layer (shown
in orange) is responsible for the general functionalities such as geometrical and I/O
methods. Other modules (shown in grey) function as helper modules.

operations are minimized. As illustrated in Fig. 4.4, the application is initiated from

the Parser class, which receives a configuration file from the command prompt con-

sole. The Parser extracts the variables from the configuration file and stores them

in the Utility module. Next, the Parser starts reading the configuration file line by

line. If it encounters the character ‘#’, the line is commented out and is skipped.

Otherwise, the Parser scans each line from left to right. The configuration file’s to-

kens start at the beginning of each line and are in TokenID= <value> format. The

Parser class maintains a list of valid tokens (i.e. ‘TokenID=’), and tries to match

the read token with one of the pre-defined tokens. Whenever a match is found, the

<value> next to the token is read and stored in the corresponding token’s variable.

The rest of each line may contain a comment, which starts with a ‘#’ as well. The

Parser class continues scanning all of the lines of the configuration file and stores

their values in the Utility module for later use.
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Subsequently, the code continues within the top-layer modules by calling the

initialization functions of every module in a precise order. The global module calls

the init() functions of the NBeam module, the Physics module, the I/O module,

and the Matter profile module, in that order.

The following subsections describe the key modules implemented in XFLAT.

4.2.1 NBeam module

The NBeam module is at the lowest level of the hierarchy that implements the NBeam

class. Since each instance of the NBeam class represents a single neutrino beam, it

contains an array of ψ(~v, E) in which each element represents a neutrino with a par-

ticular direction and energy. As a result, the NBeam init() function is responsible

for memory allocation of the energy bins as well as invoking the init() function of

the Energy module in which the energy spectral function is initialized. For each com-

ponent of the wavefunction, there is an array of double precision numbers inside the

NBeam class. For instance, the wavefunction of the two-flavor system contains two

complex numbers (a, b) and each complex number can be represented by two double

precision floating point numbers, one for the real part and the other for the imagi-

nary part (see Fig. 4.5). As a result, four double precision numbers can describe the

flavor state of a neutrino at a given energy E (i.e., ψ(ar, ai, br, bi;E)). Consequently,

for a given range of energies, there can be four arrays ar[E], ai[E], br[E], bi[E], and

each element of those arrays corresponds to a flavor state for a particular energy bin

of width ∆E [E − 1

2
∆E,E +

1

2
∆E].

The NBeam class encapsulates several private (internal) methods. Those meth-

ods include the density method in which the density matrix calculations are per-

formed (see Eq. 3.9), and the neutrino evolution method in which the correspond-

ing flavor state ψα(~v, E) evolves one step further for a given Hamiltonian Ĥ (see
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Figure 4.4: High-level illustration of XFLAT initialization. The Global module
(shown in light blue) in which the upper layer’s modules are encapsulated, begins
initialization of each module in a particular order.

Eq. 3.11). In addition, the NBeam class contains several public (external) methods

that are accessible from other modules. One of the important interface functions

is getESum(), in which numerical integration over all energy bins is performed (the

first integral in Eq. 3.8). The other important function is the evolveBins(...)

function that loops over all energy bins and evolves each corresponding flavor state

for a given Hamiltonian (see Eq. 3.11). Another of NBeam’s public methods is

the addAvg(NBeam&) method in which the average of the flavor states between two

NBeam objects is calculated (one object is passed by reference and the other is the

this pointer). Additionally, in order to calculate the error between two neutrino
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class NBeam

{

private:

// Each array’s range is [E_min:E_max]

double ar[], ai[], br[], bi[];

// density matrix method

void density(ar[E], ai[E], br[E], bi[E], ...);

// single energy flavor state evolution

void U(Hamiltonian H[], ...);

...

public:

// calculates the integral over energy bins

void getESum(...);

// loops over energy range and evolve all of the flavor states

void evolveBins(Hamiltonian H[], ...);

// computes the average of the flavor states of two NBeam objects

void addAvg(NBeam& beam);

// calculates the error of flavor states

double calcErr(NBeam& beam);

...

};

Figure 4.5: NBeam class overall structure and its private and public functions, for
the two flavor system.

beams, the calcErr(NBeam&) method is provided. This method receives an object

of NBeam as an argument and loops over energy bins to calculate the error between

the flavor states of the current object, passed via this, and the received object. All

of the public functions in the NBeam class exploit SIMD instructions to compute

the ar[E], ai[E], br[E], bi[E] components for ψα(~v, E). Since NBeam objects were dis-

tributed over processors’ cores, and the NBeam module is located on the bottom

layer of the XFLAT architecture, one NBeam instance can entirely exploit the first

layer of parallelism within each core (SIMD) for the flavor state calculations (see

Fig. 4.6).
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Figure 4.6: Within a processor core (green), NBeam objects can employ the lowest
level of parallelism, SIMD unit (shown in yellow). Each NBeam instance (shown in
blue) issues vector instructions in order to utilize SIMD unit.

4.2.2 Physics module

The Physics module is the next module from which the init() function is called

from the global module. The Physics module is responsible for the implementation

of geometrical functions as well as the computation of the Hamiltonian. The module

encapsulates functions in which computations on arrays of NBeam objects are per-

formed via OpenMP threads (see Fig. 4.7). The instructions within those functions

are based on the plugged-in geometry module and may differ between modules. The

Physics module’s init() function has two major responsibilities. First, it is respon-

sible for allocating the angle-dependent arrays (such as cos(ϑ) bins). Furthermore,

it calls the init(int) method of the Numerical module to which an integer as the

length parameter is passed. The length parameter is the number of all trajectories

along all different directions, such as zenith direction (ϑ) and azimuth (ϕ) angles.

Since the Physics module maintains information about the number of dimensions and
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Figure 4.7: Arrays of NBeam objects are distributed over processor cores via
OpenMP. Thus, each core may be responsible for the calculations of several NBeam
class instances.

the length of each dimension, the Numerical module can receive the length parameter

only from the Physics module.

Within the Physics module there are several methods that are accessible and

utilized from the Numerical module. One of these methods is initBeam(NBeam*),

which receives an array of NBeam objects, loops over each element of the array,

and calls the constructor of each element. This function must be called prior to any

function calls from the NBeam class in order to initialize and allocate memory for the

wavefunction’s components within each object. Thus, for each NBeam class array,

the Numerical module calls the initBeam(NBeam*) method to initialize each array’s

elements. There are two other important methods within the Physics module that are

utilized from the Numerical module. The first one is the newHvv(double*&) method

in which the memory for an array of Hamiltonians is allocated (each particular

neutrino beam trajectory has a particular, corresponding Hamiltonian). The last

method is the deleteHvv(double*&) method in which previously allocated memory
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for the Hamiltonians is freed.

4.2.3 Numerical module

Upon calling the init(int) method of the Numerical module, depending on the

implemented numerical algorithm, multiple arrays of NBeam instances may be re-

quired to be allocated and maintained in main memory. For each allocated NBeam

array, the initBeam(NBeam*) method of the Physics module must be called to ini-

tialize the array. Hence, the evolutionLoop() method in the Numerical module is

called from the global module to begin the neutrino flavor evolution calculations.

evolutionLoop() continues the neutrinos evolution calculations until one of the

application-ending criteria reaches its maximum value. The application-ending cri-

teria parameters are: the maximum radius, the maximum allowable run time, or the

maximum number of radial iterations. Before starting the evolution loop, the first

step within the evolutionLoop() method is to perform memory allocation for the

arrays of Hamiltonians. This is done by calling the newHvv(double*&) method from

the Physics module. Afterwards, the neutrino evolution function is called from the

global module.

The flowchart of the neutrino evolution loop is illustrated in Fig. 4.8. The

neutrino evolution function is responsible for solving the the Schrödinger equation

(Eq. 3.2) and evolving the flavor state of each neutrino beam accordingly. Fig. 4.9

illustrates the algorithm steps in order to solve the Schrödinger equation within the

evolutionLoop() function. The blue squares represent wavefunction states of neu-

trinos, and the green squares represent the calculated Hamiltonian from the previous

state functions. The green arrows represent the spacial length and the direction of

neutrino evolution by applying the Hamiltonian, the ‘Op(Avg)’ box represents av-

eraging between two state functions, and the ‘?’ box shows the comparison of two
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Figure 4.8: High-level neutrino evolution flowchart. The loop always starts by check-
ing the termination conditions. The three major phases: the evolving of neutrino
beams phase, the dumping data phase, and the adjusting step size phase (shown in
orange) are performed accordingly.

state functions. If the error is less than a predefined threshold, the results are saved.

As can be seen in Fig. 4.9, within the Numerical module at several points, the

neutrino-neutrino Hamiltonian matrix (Eq. 3.8) must be calculated based on the

previously-calculated neutrinos’ wavefunctions. Each matrix calculation can be per-

formed via a function call within the Physics module. The calc Hvv(...) method is

responsible for computing the neutrino self-coupling Hamiltonian integral for which

the loops and instructions within the function depend on the implemented geom-

etry. Once this method is called, it receives the current NBeam array’s pointer
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Figure 4.9: Illustration of XFLAT’s numerical algorithm for solving the Schrödinger
equation (Eq. 3.2). The algorithm starts at the top left, and moves from top to
bottom, and left to right. The blue squares represent flavor states of neutrinos; the
green squares represent the calculated Hamiltonian from the previous state functions;
the green arrows represent the direction and step size of neutrino evolution using
Hamiltonians; the ‘Op(Avg)’ boxes represent the averaging between two flavor states,
and the ‘?’ box shows the comparison of two flavor states (if the error is less than a
predefined threshold then results are saved).

as an argument and performs a summation over the array’s elements via OpenMP

threads. This is done by computing the partial Hamiltonian integral summation

(the pseudocode for the neutrino bulb model corresponding to Eq. 3.8 is illustrated

in Fig. 4.10). Within the loop, by calling each NBeam object’s NBeam::getESum()

method, in which the SIMD unit is employed, the summation of wavefunctions over

energy bins is calculated internally. If the code runs in a multi-node configuration,

there will be several data exchange points within the algorithm. MPI functions must

then be used, since the NBeam arrays are distributed over multiple compute nodes
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// parallel loop via OpenMP

#pragma omp parallel for

for (int ang = 0; ang < THETA_BINS; ++ang)

{

// loop over neutrino flavors

for (int n = 0; n < FLAVOURS; ++n)

{

...

// calculates Sum(E) of NBeam objects internally (SIMD)

beam[neutrino_idx ].getESum(res_neu[] );

beam[anti_neutrino_idx].getESum(res_aneu[]);

...

}

// apply cos(t) and dcos(t) to the result

angle_calc(result[], ...);

}

Figure 4.10: Illustration of the loop structure that is responsible for computing the
partial Hamiltonian integral summation.

(see Fig. 4.11). Consequently, to evaluate the final Hamiltonian integral summation’s

result, each MPI task exchanges its partially-calculated integral result with all other

tasks by employing the MPI reduction method. Afterwards, each node will have the

final Hamiltonian integral value.

After the calculations of the Hamiltonian, the corresponding neutrino flavor state

residing at the parameter value r on a given trajectory must be evolved one step fur-

ther for the given Hamiltonian H and step size ∆r. Therefore, the evolve(...)

method within the Physics module is called in which it receives an array of NBeam

objects and performs a loop over them via OpenMP threads. Within the loop, the

NBeam’s NBeam::evolveBins(...) method is called for each object. Within the

NBeam::evolveBins(...) method, the SIMD unit is exploited in order to perform

the neutrinos’ flavor state evolution for all energy bins. The neutrinos’ flavor state

evolution can be performed by applying the calculated neutrino self-coupling Hamil-
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Node0 Node1 … 

NBeam [ ] = 

[MPI] 

NBeam0 | NBeam1 | NBeam2 | NBeam 3 | NBeam4 | NBeam5 | NBeam6 | NBeam7 | NBeam8 | … 

C0 C1 C2 C3 

Figure 4.11: Distribution of NBeam objects over multiple nodes. Each node, based
on its computational capacity, will receive a particular load. For instance, Node0
(shown in green) is more powerful than Node1 (shown in orange), thus it received
more NBeam objects [NBeam0:Nbeam4] to process while Node1 received only four
objects [NBeam5:Nbeam8].

tonian H (the pseudocode corresponding to Eq. 3.11 is illustrated in Fig. 4.12) and

updating the flavor states accordingly. The result of the evolved flavor state is saved

in another one-dimensional array of NBeam objects.

After evolving the neutrinos’ flavor states, the next step is to compute the av-

erage of the two calculated flavor states. The two flavor states were evolved sep-

arately using two different Hamiltonians and different step sizes. Therefore, the

avgBeam(...) function from the Physics module is called to perform this task. This

function receives two NBeam object arrays as the argument to calculate the average

between their wavefunctions. The function employs OpenMP threads for looping

over NBeam objects. OpenMP threads are responsible for calling each NBeam ob-

ject’s NBeam::addAvg(NBeam&) method. The NBeam::addAvg(NBeam&) method is

responsible for computing the average of neutrino flavor states of all energy bins be-

tween two NBeam objects via SIMD (see Fig. 4.13). Since the evolving and averaging

steps can be completed separately on each node, no MPI message-passing calls are

required for those tasks, so there is no network communication overhead.

The last step of the neutrino evolution loop is to find the global maximum differ-
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#pragma omp simd

for (int e = 0; e < NUM_of_EBINs; ++e)

{

...

// calculates the vacuum Hamiltonian

getH0(e, h0);

// add vaccum hamiltonian to hamilt[]

...

double lambda = sqrt( hamilt00^2 + hamilt01^2 );

double ldr = lambda * dr;

double cosCoef = cos(ldr);

double sinCoef = sin(ldr) / lambda;

...

// complex numbers multiplications for result[]

...

// save the final values to neuBeam’s components

neuBeam2->ar[e] = result00_real + result01_real;

neuBeam2->ai[e] = result00_imag + result01_imag;

neuBeam2->br[e] = result10_real + result11_real;

neuBeam2->bi[e] = result10_imag + result11_imag;

}

Figure 4.12: Pseudocode illustrating evolution of the neutrinos’ flavor state for all
energy bins within the NBeam class. Since the computations of different energy bins
are all identical, the loop is vectorized via SIMD.

ence (error) between the flavor states of the two final evolved neutrino beams (the

ψ3 and ψ7 in Fig. 4.9). Hence, there is one more OpenMP-managed loop over the

NBeam objects to find the maximum difference between the two arrays of the neutri-

nos’ flavor state. Within the loop, for each element within the NBeam object’s array,

the NBeam::calcErr(NBeam&) method is called. This method calculates the error

across all the energy bins via vector registers. Afterwards, the global maximum error

may be found by performing a global reduction with respect to all local maximum

errors on each node, via MPI. Consequently, if the computed global error is less than

a predefined threshold, the results of the evolved wavefunctions are accepted. Then,
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Physics module 

calcHamiltonian(r) 

{ 

… 

} 

Numeric module 

evolution() { 

H = calcHamiltonian(r); 

b = evolveBins(H); 

beamsAvg(b); 

E = calcErr(); 

if (E<th) 

  dumpData(b0); 

} 

F_IO module 

dumpData(b0) 

{ 

… 

} 

NBeam module 

getPartialHvv(r) { … }; 

evolveBins(H) { … }; 

beamsAvg(b) { … }; 

calcErr() { … }; 

Figure 4.13: Function dependency between modules and the order of the function
calls. Upper layer modules are shown in blue, and bottom layer modules are shown
in green.

depending on the I/O module configurations, the wavefunctions may also be required

to be saved to a file. In the current version of XFLAT, the Network Common Data

Form (NetCDF) library [NetCDF, 2015] is employed to perform all I/O tasks. (Note:

alternative I/O APIs can be supported in the future by implementing appropriate

I/O modules in XFLAT.) The next iteration continues with the final evolved neu-

trino flavor states. However, if the global error is greater than the threshold, the

computed evolved flavor states are discarded, the step size is adjusted accordingly,

and the next iteration resumes with the previous flavor states.
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4.2.4 I/O module

The I/O module is the next module whose init() function is called from the global

initialization process. This function is responsible for initializing data files in which

the results of computations are stored. The NetCDF file format is used to write data

to disk. Several dump modes are provided via the configuration file’s parameters.

Thus, XFLAT may create several data files in which different calculations’ results

with different formats can be stored. The first implemented dump mode is responsible

for taking a snapshot of the neutrino flavor states by writing them to a file: without

any further processing, the raw values of the neutrinos’ wavefunctions are written

to disk. Later, this file may be used to resume computations from a particular

radial point. However, if many snapshots are required during runtime, the size of

the data file may grow very large. For instance, for the problem size of 1000(ϑ) ×

100(ϕ)×100(energy bins), the size of a single snapshot would be 1000×100×100×

4(particles) × 4(wavefunction components) × 8(size of double) = 1.28 GB. Thus,

if the code is run out to r = 100 km, and even if only one snapshot is taken per

kilometer, the total file size will be 128 GB! As a result, there may be issues in opening

and manipulating the data file due to its size. On the other hand, if each snapshot is

saved as a single file, the overhead of opening and closing files may affect the overall

performance. To provide control over these potential I/O issues, XFLAT can be

provided a parameter via the configuration file that defines the maximum number

of saved snapshots per file. When the maximum number of allowable snapshots is

reached, XFLAT closes the current data file and creates a new file. As a result, the

overhead of opening and closing a file per snapshot is reduced and if the code crashes

during runtime, previous output is preserved in the already-closed snapshot files.

The second implemented dump mode stores less data by preprocessing data before

saving it. Thus, instead of dumping the wavefunction’s components for every beam,

it first calculates the average flavor states of all energy bins for a single neutrino’s
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trajectory, then stores the results in a file. As a result of this averaging process,

there is no need to write flavor state results per energy bin individually, and the

data files become significantly smaller. The drawback of this approach is that the

generated files cannot be used as XFLAT restart files since the information related

to each individual energy bins has been lost.

Similar to the other parts of XFLAT, the dump mode functionality is extensible

as well, and alternative dump modes can be added in the future based on require-

ments. XFLAT can simultaneously work with a combination of dump modes since

the provided dump mode’s code in the configuration file is encoded as a bit pattern,

where each bit of the dump code in the configuration file corresponds to a separate

dump code. In the configuration file, the dump code 0 means no I/O tasks. The

dump code 1 (001) represents the first mode and the dump code 2 (010) represents

the second mode. The third dump mode is represented by binary number 100, etc.

The binary codes can be combined to enable multiple dump modes simultaneously.

As an example, since the binary representation of dump code 3 is 011, this code

will enable both the first and the second dump modes simultaneously. Dump code 5

enables the first and the third dump modes (101 in binary); 6 enables the second and

the third dump modes (110 in binary), and 7 enables all of three dump modes (111

in binary). Additional dump modes can be added to XFLAT using this approach.

As discussed below in the performance analysis section, the I/O performance

of the the Xeon Phi is very poor, thus heavy I/O tasks should be avoided on the

Xeon Phi, otherwise the co-processor’s poor I/O performance will hurt the overall

performance of the application. To address this issue, in XFLAT it is possible to

redirect the Xeon Phi’s I/O traffic to the corresponding CPU. Thus, instead of

dumping data from the Xeon Phis directly onto disk, their processed data is written

onto disk indirectly via the CPUs. Prior to redirecting the I/O traffic, each instance of

XFLAT has to know if it is running on the Xeon Phi or on the CPU. This is detected
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within the application as follows. By default, on the MIC the hostname is the same

as its host (CPU), with the addition of ‘-mic’ at the end. For instance, a host name

might be hostid1, thus its first MIC’s hostname will be hostid1-mic0 and its second

MIC’s hostname, if installed, will be hostid1-mic1. As a result, each instance of

XFLAT can query its host name by calling the MPI Get processor name() method

and checking whether or not the host name includes the ‘-mic’ suffix. Afterwards, all

XFLAT instances exchange their hostname by calling the MPI Allgather() method,

in order to find their mate. For instance, on a compute node with two CPUs and

two MICs, the first CPU rank is 0, the second CPU rank is 1, the first MIC rank

(connected to CPU 0) is 2, and the second MIC rank (connected to CPU 1) is 3.

Therefore, the first MIC (rank=2) must send its data to the first CPU (rank=0), and

the second MIC (rank=3) must send its data to the second CPU (rank=1). If the

XFLAT task runs on the MIC, it tries to find the CPU id (the MPI rank) to which

it is connected. Since every process maintains the list of processors ranks and host

names, the XFLAT task that runs on the MIC starts from rank − 1 and checks the

host names. If it encounters another MIC immediately, it means that the current

MIC is the second installed MIC, and should thus connect to the second CPU. If

by decreasing the rank a CPU is encountered first, that means that the current

MIC is the first installed MIC, so it continues rank decrements until it finds the

first CPU of the current node. (At this point by one more decrements the compute

node may change and the host names change completely, e.g. hostid1 to hostid0,

thus it indicates that we found the first CPU rank on the current node, i.e., on the

hostid1).

As mentioned earlier, XFLAT can resume computation from a previous run. In

order to complete the resumption task, XFLAT must first check whether or not an in-

put data file was provided to the application. If an input file was provided to XFLAT,

the neutrinos’ flavor state of NBeam objects must be initialized using the neutrinos’

flavor state from the last snapshot that was stored in the file. Therefore, in contrast to
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the NBeam object initialization from within the phys::initBeam(NBeam*) function,

the objects are initialized with the final flavor states which were saved to the file. As a

result, the phys::initBeam(NBeam*) function may call the fillInitData(NBeam*)

method from the I/O module in order to open the provided data file, read the stored

neutrinos’ flavor states, and initialize the NBeam objects with them.

In order to act properly, the I/O module requires information about the data

that will be written to disk. This information is the length and the number of

dimensions as well as the name of each dimension. The I/O module can query

this information from the Physics module, since the Physics module maintains the

geometry-related information. The first method is phys::beamLen() returning the

length of the NBeam arrays. The second method is phys::getDim() which returns

the number of dimensions in the geometry. The next method is getDimInfo(string

str[]) which returns the name of each dimension so as to distinguish them in the file.

The I/O module may use this information for formatting the saved data. The next

two methods are phys::startDim() and phys::countDim() which are utilized by

the I/O module in order to receive an array of starting points and an array containing

the length of each data dimension, respectively. The phys::startBeamIdx() and

phys::endBeamIdx() methods return the index of the beginning and ending beam

of the first dimension. (Since the neutrino beams are distributed over compute nodes

by the first dimension, the starting and ending beam indices are required for the I/O

module on the nodes to function properly). For instance, if there are 1000 zenith

angle beams and are distributed over ten identical nodes, the first node receives

NBeam[0:99], the second node receives NBeam[100:199], etc. and there will be no

conflict between node data. The last public method is the phys::firstDimLen()

that returns the total length of the first dimensions on which the data is distributed

over nodes (depending on the implemented geometry module, the first dimension

length may be the size of the ϑ or ϕ dimensions).
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4.2.5 Matter module

In addition to the previous initialization function, another module in XFLAT from

which the init() function is called by the global module is the Matter module. This

module is responsible for implementing the matter profile.

4.2.6 Energy module

This module is responsible for the implementation of the energy spectra function for

neutrinos. The NBeam module employs the functions of this module.

4.2.7 Utility module

The Utility module fetches and saves global variables from the Parser. The Utility

module also implements miscellaneous helper functions that are employed by mul-

tiple modules. For instance, the complex number multiplication mul cmplx() and

the norm2() methods are two important methods that are utilized by several other

modules. Since the other modules have access to the Utility module’s data, it con-

tains the global state of the application that is used to indicate whether or not the

application is in a specific state such as the benchmark state. Initialization is dif-

ferent in benchmark mode where there is no requirement for loading and initializing

the I/O module.

4.2.8 XFLAT termination

XFLAT’s final step after completing the neutrino evolution loop and storing the

results is the memory deallocation by calling the freemem() functions. The global

module calls the I/O module’s freemem() in which the NetCDF open files are closed.
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The next call is the Physics module’s freemem() method in which the deconstructor

of NBeam objects are called from within a loop. Hence, all the assigned memory is

deallocated sequentially prior to the application termination.

As discussed earlier, multiple copies of the NBeam arrays are maintained in mem-

ory in which the intermediate calculation results are maintained. Those arrays are

among the data that has to be transferred between XFLAT modules. Since they

are all represented by one-dimensional arrays, modules can transfer them via their

pointers (a single variable) without the requirement to pass further data. For in-

stance, the number of required NBeam arrays is defined in the Numerical module,

then their pointers are directed to the Physics module for memory allocation, and

at the end of each iteration the pointer to the final result is forwarded to the I/O

module for I/O tasks. As a result, the number of NBeam arrays required by the

solver does not place extra overhead on the inter-module communications, and thus

does not produce performance bottleneck.

4.3 High-level Parallelization

As previously mentioned, XFLAT initially allocates one-dimensional NBeam object

arrays of neutrino’s angle beams within main memory. Since the number of neu-

trino beams may be quite large for complicated geometries, domain decomposition

of NBeam arrays over multiple nodes may be needed in order to avoid exceeding

the capacity of local on-node RAM. For inter-node communication, the MPI library

is used (de facto standard on supercomputer systems). One MPI process on each

processor is used. The processor can be either a CPU installed on a socket or the

Xeon Phi card installed on a PCIe slot. Creating more than one MPI process per

processor (as an alternative to multithreaded use of the multicore processors) is sup-

ported as well, but this mode of execution did not provide significant performance
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improvement in tests. This is because increasing the number of MPI tasks per pro-

cessor also increases the MPI communications overhead. In addition, the number of

communication synchronization points in the code should ideally be minimized in

order to reduce the processors’ idle time as well as the overhead. Consequently, in

XFLAT there are only three major MPI synchronization points in the main loop. At

the first synchronization point, the root node broadcasts global variables such as the

next calculated radius or the computed termination conditions to all of the nodes.

At the second communication point, nodes exchange the results of the background

neutrino-neutrino partial Hamiltonian in order to compute the final integral summa-

tion for every node. Finally, at the third communication point, nodes exchange their

local maximum error in order to find the global maximum error among all neutrino

beams. Fig. 4.14 depicts the location of these synchronization points within the

modules.

Modern CPUs as well as the Intel MIC contain multiple cores. Thus, within

each MPI node there may be an additional level of parallelism. To take advan-

tage of this, the NBeam object arrays are distributed across all available cores and

hardware threads via OpenMP. Since inside a processor or co-processor the memory

model is shared, i.e., the entire memory is accessible by all cores, OpenMP is the

appropriate software parallelization approach to use. In this way, the threads’ com-

munications and synchronizations remain entirely within processor. The advantage

of keeping threads’ communications within a processor is that the communication

between CPUs or between the CPU and MIC is slow in comparison to intra-processor

communications. The CPU-CPU communication is performed via the QuickPath In-

terconnect (QPI) bus, and the CPU-MIC communication is performed via the high

latency PCIe bus. OpenMP is preferred over MPI for intra-processor computations

since cores are able to perform context switching between its lighter-weight threads

more efficiently. Placing multiple processes on a core decreases performance due to

process context switching overhead. In XFLAT, all available hardware threads on
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NODE 0 

Numerical:: 

evolutionLoop 

{ 

  // First sync.  

  MPI_Barrier(..); 

  … 

  // Second sync. 

  Phys::calc_Hvv(); 

  … 

 

 

  /// Other steps 

 

 

  … 

  // Third sync. 

  MPI_Allreduce(); 

  … 

} 

Phys:: 

calc_Hvv() 

{  

    MPI_Allreduce();   

} 

NODE 1 

Numerical:: 

evolutionLoop 

{ 

  // First sync.  

  MPI_Barrier(..); 

  … 

  // Second sync. 

  Phys::calc_Hvv(); 

  … 

 

 

  /// Other steps 

 

 

  … 

  // Third sync. 

  MPI_Allreduce(); 

  … 

} 

Phys:: 

calc_Hvv() 

{  

    MPI_Allreduce();   

} 

MPI Communications 

Figure 4.14: MPI communication points between nodes (green). There are several
MPI calls within the Numerical module (blue) as well as MPI calls within the Physics
module (orange).

the CPU and on the Xeon Phi (the number depends on the MIC’s model, and ranges

from 228 to 244 threads), are exploited via OpenMP.

The last level of parallelism is the SIMD unit within each processor core. Neu-

trinos propagating along a given direction have many different energies. Since the

calculations on energy bins are identical, multiple energy bins’ data can be packed

together and the calculations performed simultaneously via SIMD units on the cores.

Hence, each OpenMP thread can exploit SIMD instructions to perform calculations

on the NBeam object’s inner arrays in parallel. As a result, XFLAT can utilize all
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of the available levels of parallelism on modern multinode supercomputers.

4.4 Optimization

The final design challenge in XFLAT was to optimize it to run efficiently on the

Intel MIC co-processors as well as the latest generation of CPUs. The first step of

this process is to identify potential performance bottlenecks. Since bottlenecks can

arise due to various factors including thread overhead, memory latency, cache line

evictions, pipeline evictions, etc., understanding root causes upfront is essential in

guiding initial code design. Once the initial code has been written, the next step,

performance analysis, is accomplished by studying the behavior of the code manually,

or by employing analysis tools. There are various tools available on the market to help

programmers find code bottlenecks quickly. The analyzer that was utilized for a part

of the XFLAT performance analysis is Intel VTune [Intel, 2015c]. VTune can be used

to perform code analysis on both Xeon CPUs and the Xeon Phi. The tool provides

useful information on memory latency, cache lines eviction rate, processor pipeline

occupancy, processor cycles per instruction ratio, SIMD instruction unit occupancy,

etc. categorized by function calls (see the example in Fig. 4.15). Consequently, it is

easy to see which procedure on which processor’s unit may be a potential cause of a

bottleneck.

In approaching the problem of performance optimization it should be noted that

conventional Object-Oriented Programming (OOP) approaches present challenges

for high-performance computing code design since their first goal is to achieve Rapid

Application Development (RAD) cycles. Maintaining clear class hierarchies and uti-

lizing virtual and multiple inheritances takes higher priority than performance. On

the other hand, typical high-performance implementation techniques result in having

less complex data structures, and thus less code flexibility, in order to optimize per-
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Figure 4.15: Intel vTune report section screenshot, for XFLAT.

formance. The implementation approach used for XFLAT attempts to find the best

balance between flexibility and performance. The code architecture was designed to

be dual-layer and modular as much as possible. The priority of the internal struc-

ture of the lower layer is to gain high-performance computing capability on both the

CPU and Xeon Phi, while the design goal of the upper layer is flexibility to support

future expansion and new modules. The following subsections describe the principal

techniques and methods used in XFLAT optimization.

4.4.1 Changing Array of Structures (AoS) to Structure of

Arrays (SoA)

There are two high-level and general approaches for designing and implementing

data structures. The simpler approach is to maintain an array of structures in which

each structure encapsulates variables for a single particle. The other approach is to

maintain a single structure in which arrays of data are allocated and maintained.
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Figure 4.16: Array of Structures (AoS) and Structure of Arrays (SoA) representation
inside memory [Intel, 2015b]. In AoS, elements related to a single data structure
reside continuously in memory. In the SoA approach, for each field, there is an array
in which data fields related to different structures reside continuously.

Hence, each element in an array belongs to a single particle (see Fig. 4.16).

The AoS approach is easier to use for development and expansion since each

particle is represented by an independent object. In addition, when an object is

accessed, all related data is accessible. Nevertheless, the AoS structures approach

requires gather/scatter methods in order to get/set similar fields of various objects.

It may introduce extra latency for memory accesses as well, since in order to access

data elements, multiple jumps within memory space are unavoidable. Furthermore,

non-continuous memory access may hurt SIMD performance, since several memory

loads may be required in order to fill up a SIMD register.

The SoA approach can address performance issues related to the AoS approach.

By maintaining separate arrays, each containing multiple data element, it is possible

to preserve contiguous memory access so that accessing the data elements in memory

and streaming memory to SIMD units remains continuous. As a result, with a single

load it is possible to fill up a cache line or a SIMD register. Moreover, the problem
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of accessing an identical field for all objects is now the problem of accessing neighbor

elements within a continuous array. As a result, the performance of the SoA approach

can be significantly higher than the performance of the AoS approach. On the other

hand, the SoA approach may introduce another issue as well. For instance, choosing

the SoA approach may reduce locality for accessing multiple fields of the original

structure instance which results in less flexible code. However, the significantly

better performance of SoA vs. AOS make it the clear choice for HPC applications.

In XFLAT, all of the lower modules’ data are structural as double precision

arrays, where each element represents the wavefunction of a single neutrino. For in-

stance, for the two-flavor system, since the neutrino’s wavefunction has two complex

components (Eq. 3.1), there are four double precision arrays representing the four

wavefunction components. Therefore, there are two double precision arrays for the

first complex number a, designated by ar[], ai[] (one for the real part, one for

the imaginary part), and two double precision arrays for the second complex number

b, designated by br[], bi[]. Accordingly, as opposed to creating one object per

energy bin holding the double precision components, which would result in mem-

ory fragmentation and non-aligned memory access, only one object is created for

the entire set of energy bins. Thus, contiguous aligned double precision data arrays

are maintained for the wavefunctions’ components (see Fig. 4.17), which results in

performance improvement.

Since, in XFLAT the upper layer modules commonly have to maintain arrays of

NBeam objects as well as functions (as they only encompass functions that perform

computations on lower layer data), there is no requirement to instantiate the upper

layer modules more than once. Consequently, they are not implemented as classes or

arrays of classes. Instead, their functionalities are encapsulated in C++ namespaces.

Thus the upper modules only maintain arrays of NBeam objects similar to the AoS

approach, thus flexibility and modularity are preserved and there is no object creation
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Neutrino 

Object0: 

 

double ar; 

double ai; 

double br; 

double bi; 

… 

Neutrino 

Object1: 

 

double ar; 

double ai; 

double br; 

double bi; 

… 

Neutrino 

Object2: 

 

double ar; 

double ai; 

double br; 

double bi; 

… 

Neutrino 

Object3: 

 

double ar; 

double ai; 

double br; 

double bi; 

… 

Array of Objects in memory 

SIMD register 

NBeam Class: 

 

double ar[]={___, ___, ___, ___, …}; 

double ai[] ={___, ___, ___, ___, …}; 

double br[]={___, ___, ___, ___, …}; 

double bi[] ={___, ___, ___, ___, …}; 

… 

SIMD register 

An object containing of arrays in memory  

Figure 4.17: XFLAT data access pattern for AoS and SoA approaches. In the AoS
approach (shown on the left), in order to fill up a SIMD register (shown in green),
fragmented data must be extracted from multiple objects (shown in blue). On the
other hand, in the SoA approach (shown on the right), multiple data can be loaded
simultaneously into a register with a single continuous fetch.

overhead. Therefore, there is neither memory fragmentation nor non-aligned memory

issues for the upper layers. Since XFLAT must utilize SIMD units of processor cores,

the SoA approach was chosen for the NBeam class to make sure that the maximum

performance can be achieved within each core.

4.4.2 Data Alignment

Data alignment (also known as memory alignment) denotes accessing the data at

a memory offset equal to some multiple of word size. Memory alignment plays an

important role in affecting both the cache hit rate and SIMD instruction performance

in most modern processor architectures. The memory cells are read and written word
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by word. Each word contains a few bytes, typically four bytes (32 bits) or eight bytes

(64 bits). Hence, by accessing a memory cell, more than a single byte is accessible.

As a result, the number of memory fetches will depend on the way that the data

reside in memory. Fig. 4.18 illustrates the difference between non-aligned and aligned

memory. When data is aligned to the word size, data is accessible in a single fetch,

while more than one fetch is required to access non-aligned data.

The data alignment role is critical inside cache memory and vector units. If the

data is non-aligned to the correct alignment length, which implies that the starting

point of the data array is not a multiple of a predefined word size (64 byte cache

lines and vector registers), it can affect application performance. The reason is that

the compiler has to fetch data from memory more than once in order to fill up a

cache line. Multiple data fetches from main memory into cache is one of the causes

of performance loss in processors due to the slowness of the main memory compared

to that of cache memory. Likewise, in order to fill up the SIMD vector registers, if

the data is not aligned to the vector registers’ length, once more the compiler has to

perform multiple fetches from memory in order to fill up the vector registers, which

results in a major impact on the vectorization pipeline performance.

For the implementation of XFLAT, 64 byte alignment was chosen on both the

Xeon CPUs and the Intel MIC. This was the logical choice since the lengths of the

Intel MIC vector registers are 512 bits (64 bytes), and the cache line length on both

the Xeon CPUs and the Intel MIC is also 64 bytes. Therefore the choice of 64 byte

alignment is the most appropriate on both chips. This helps minimize memory fetch

attempts and maximize the performance of the SIMD unit on both platforms.
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Figure 4.18: Illustration of the difference between non-aligned (left) and aligned
memory (right) and impact on performance. If the data is non-aligned to 64-bytes
memory boundaries (shown in blue), more than one fetch is required in order to
extract the data from memory.

4.4.3 Inter-socket communication on Non-Uniform Memory

Access domains

This technique only has an impact on Non-Uniform Memory Access (NUMA) multi-

socket systems, as it is only associated with inter-socket memory access. Prior to

development of the NUMA architecture, the most common shared memory archi-

tecture was Uniform Memory Access (UMA) in which all processors within a single

node shared the physical memory uniformly. However, scaling the UMA architecture

to a multi-socket configuration was hard and required complex hardware and sophis-

ticated software in order to control and manage the memory access. In contrast,

modern multi-processor systems have universally adopted the NUMA architecture

in order to simplify the hardware and software architecture (see Fig. 4.19).

Nonetheless, the NUMA architecture has its own challenges. Virtually all modern

operating systems (OS) do not allocate memory when allocation methods are called.

In fact, operating systems allocate memory as soon as the first-touch happens to the

memory, i.e. when a thread attempts to touch a part of the memory (read/write)
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Figure 4.19: Non-Uniform Memory Access architecture. The memory (shown in
green) connected to a particular CPU (shown in blue) is visible and accessible by
threads on other CPUs through the QPI link (black lines).

for the first time. At that time, the OS allocates the memory such that it resides

as close as possible to that thread. Therefore, although in multi-socket machines

a single OpenMP process can access and manage all the hardware threads on all

CPUs, if the memory allocation or the initialization section is completed by the

master thread (which is typically the situation in many applications for simplicity),

all memory is allocated in such a way that the access time of the master thread to

the allocated memory is minimized. Hence, during execution, the rest of the threads

on other processors must access memory through the CPU-CPU QPI bus, resulting

in higher memory latency. For instance, in Fig. 4.20, if the thread on CPU0 tries

to access to the memory that is controlled by CPU1, it has to access it through the

QPI interconnection for which the latency is higher.

There are multiple approaches to resolve this issue. The first method is attempt-

ing to parallelize every first-touch memory access in the code by using multi-threaded
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Figure 4.20: Illustration of accessing the memory (shown in yellow) in multi-socket
CPU (shown in blue) architecture and the impact on the thread performance due to
the route to the memory [SlideShare, 2015].

loops, which may not be feasible in every application and situation due to code de-

pendencies in the initialization functions. The second solution is to eliminate the

issue completely by maintaining independent MPI tasks on each CPU socket.

In XFLAT, the latter approach was adopted. Instead of allowing OpenMP to

manage an entire multi-socket workstation or CPU board, one MPI process executes

per socket. Thus, the communications of the OpenMP threads are internal to each

CPU. Accordingly, inter-socket communications consist solely of the MPI messages

that occur only at a few points per iteration. As a result, inter-socket OpenMP

thread overhead is eliminated completely.

4.4.4 Fusing Functions

In modern processors, the role and performance of cache memory is important in

overall application performance. As depicted in Fig. 4.21, the latency of cache mem-

ory is several orders of magnitude lower than that of main memory (RAM); however,

the capacity of this special memory is limited compared to that of the main memory.

Therefore, when a function’s instructions, which are being executed on the proces-
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sor, try to access data, the data latency varies based on the data location. If the

required data can be found within the cache memory, the execution performance will

be higher due to the higher speed of the cache memory. On the other hand, if the

data is not found in cache, the processor must fetch the data from main memory,

and due to main memory latency, CPU idle time may increase. Since the amount of

available cache memory is limited and much less than that of main memory, it is not

possible to fetch all of main memory into cache. Typically, only a limited memory

section can be fetched into cache (see Fig. 4.22). The fetched memory is most closely

related to the instructions that are being executed on the CPU. Consequently, when

the function that is utilizing the CPU returns, its data is evicted from the cache in

order to make room for new functions’ data. Fetching memory into cache lines is an

expensive and time-consuming task for the CPU. The situation can become worse if

a subsequent function tries to work on the same set of data. As a result, the CPU

must fetch the identical data, which it just evicted, from the main memory and into

cache again.

There are numerous sections in a typical application where different functions

perform calculations on the same set of data, and the functions are called continu-

ously. Assume that the first function has been called, so that the required data must

be fetched from main memory and into the processor’s cache. If the data consist

of a large array (most of the data in XFLAT is in this format), the data cannot

stay inside the cache for a long period of time due to its size. Therefore, when the

function completes its tasks and returns, the data may have been evicted from the

cache lines. Afterwards, as soon as the second function is called, the same set of data

must be fetched from the main memory once more. This extra memory fetch may

have a significant impact on the application’s performance. In order to eliminate this

bottleneck, if possible, functions that are working on the same set of data should be

fused together as a single multi-purpose function (see Fig. 4.23). In this manner, the

required data for computations is only fetched once and all the function’s instructions
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Figure 4.21: Illustration of the memory hierarchy on a modern compute node. CPU
internal registers (shown at the top) have the highest speed and lowest capacity. Disk
storage (shown at the bottom) has the highest capacity and slowest access time. All
other memory levels reside in between.

can perform calculations on the cached data.

In XFLAT, in order to eliminate unnecessary memory fetches, and since several

of the functions in the NBeam class work on the wavefunction components (the

same data), several procedures of the NBeam class were fused together. Instead of

calling several functions sequentially, a single fused function is called to perform the

combined tasks. It is important to note that this fusing technique must be used

with care, since there may be circumstances where only one of the functionalities of

the NBeam class is required. In that situation calling a fused function will result

in unnecessary computational overhead. Hence, in XFLAT, multiple API functions

are provided in order to support a variety of situations including the fused functions

that can be utilized only in the appropriate places.
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Figure 4.22: Caching pyramid illustration. For each memory fetch, the CPU fetches
a region of memory containing the required data. If a particular memory location is
referenced at a particular time, then it is likely that nearby memory locations will
be referenced in the near future [ArsTechnica, 2015].

4.5 Code Validation

Prior to performance analysis, it is essential to perform code validation to ensure

that a complete and correct algorithmic implementation is being analyzed. For

XFLAT, this validation is performed against [Duan and Shalgar, 2014]. Although

XFLAT supports a wide range of physics and geometries, since the previous code

was developed only for the bulb model, this is the physics and geometry scenario

used here.

In addition, an internal validation/consistency check at the end of the first step

was performed, by computing the results of two of XFLAT’s canonical modules:

the bulb model and the extended bulb model. It is expected that the results of the

multi-zenith supernova run (bulb model) will be very close to the results of the multi-

azimuth multi-zenith run (extended bulb model) for the inverted mass hierarchy, i.e.,
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Func1(data_in, data_out){ 

    /// instruction set 1 

    ... 

} 

Func2(data_in, data_out){ 

    /// instruction set 2 

    ... 

} 

Func12(data_in, data_out){ 

    /// instruction set 1 

    ... 

    /// instruction set 2 

    ... 

} 

Fu
se

 in
st. 

Figure 4.23: Fusing different functions that work on the same data. The instructions
of the two functions on the left, in which the same set of data is processed within
them, can be fused together to form the fused function on the right side.

δm2 < 0. In that limit, the survival probability results for a particular neutrino are

expected to be similar (The survival probability measures the percentage of neutrinos

that remained in their initial flavors at a particular step). Hence, an experiment can

start with a pure beam of known flavor νx, and at the end observe how many neutrinos

have changed their flavors, and how many neutrinos have remained in their initial

flavors.

The results of these two validation procedures (external and internal consistency

checks) are described in the following two subsections.
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4.5.1 Internal consistency check

XFLAT was run first with the bulb model (Phy MA.cpp) module and then with the

extended bulb model (Phy MAA.cpp) module. For both runs the energy distribution

function, fνα(E ′), was taken to be of the Fermi-Dirac form with two parameters

(Tν , ην),

fνα(E ′) ≡ 1

F2(ην)

1

T 3
ν

E2

exp(E/Tν − ην + 1)
, (4.1)

where ην is the degeneracy parameter, Tν is the neutrino temprature, and

Fk(ην) ≡
∫ ∞

0

xkdx

exp(x− η) + 1
. (4.2)

For all numerical calculations, unless stated otherwise, δm2 = −3 × 10−3 eV2,

θ = 0.1, Lν = 1051 erg/s, nb0 = 1.63×1036 cm−3, Lνe = Lνē = Lνx = Lνx̄ = 1051 erg/s,

〈Eνe〉 = 11 MeV, 〈Eνē〉 = 16 MeV, 〈Eνx〉 = 〈Eνx̄〉 = 25 MeV, ηe = ηē = ηx = ηx̄ = 3.

With these choices, Tνe ' 2.76 MeV, Tνē ' 4.01 MeV, Tνx = Tνx̄ ' 6.26 MeV. The

baryon density is:

nb '
2π2

45
gs

(
MNSmN

m2
PI

)3

S−4r−3 (4.3)

'
(
4.2× 1030cm−3

)
gs

(
MNS

1.4M0

)3(
100

S

)4(
10 km

r

)3

,

where mN is the mass of a nucleon, mPl ' 1.221 × 1022 MeV is the Plank mass S

is the entropy per baryon and is set to 11
2

, r is the distance from the center of the

proto-neutron star, M� is the solar mass, and MNS = 1.4M�.

The number of angle beams was set to 800, the energy function range was 0 −

80 MeV and the number of energy bins was set to 160. For the extended bulb model,

each zenith angle had 100 azimuth beams as well. The computations started at

50 km, and the survival probabilities are shown at 250 km.

Fig. 4.24 depicts the survival probabilities of electron neutrinos for the bulb model

and extended bulb model runs. The vertical and horizontal axes correspond to zenith-
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Figure 4.24: Survival probabilities of electron neutrinos for the bulb model (left)
and extended bulb model (right), for the inverted mass hierarchy. The vertical and
horizontal axes correspond to zenith-angle and energy, respectively. Red indicates a
survival probability of 100% and blue, 0%.

angle and energy, respectively. Red corresponds to a survival probability of 100%,

and blue indicates 0% survival probability. A plot of tha absolute difference is shown

in Fig. 4.25. The maximum absolute difference between the two sets of survival

probabilities is only 0.00029 (the values’ range is [0, 1]).

Fig. 4.26 depicts the survival probability of an anti-electron neutrino for the bulb

model and extended bulb model runs. In Fig. 4.27, the difference between the results

of the bulb model and extended bulb model is depicted. Here, the absolute maximum

difference is only 0.00049 (the values’ range is [0, 1]).

The two runs (and different physics modules) produce visually identical results,

with a maximum absolute difference of less than 0.05%.

While these results constitute one form of validation, this comparison can only

be performed for the inverted mass hierarchy, since the two geometries only produce

similar results in that limit. In contrast, and not surprisingly, for the normal mass
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Figure 4.25: Difference between the bulb model and extended bulb model runs of
Fig 4.24 for electron neutrino survival probability in the inverted mass hierarchy
limit. The vertical and horizontal axes correspond to the zenith-angle and energy,
respectively. Color scale representing magnitude is from blue (low) to red (high).

hierarchy the survival probability results for the two geometries, for the electron
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Figure 4.26: Survival probabilities of anti-electron neutrinos for the bulb model (left)
and extended bulb model (right), for the inverted mass hierarchy. The vertical and
horizontal axes correspond to the zenith-angle and energy, respectively. Red indicates
a survival probability of 100% and blue, 0%.
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Figure 4.27: Difference between the bulb model and extended bulb model runs of
Fig. 4.26 for anti-electron neutrino survival probability in the inverted mass hierarchy
limit. Color scale representing magnitude is from blue (low) to red (high).

neutrino, are completely different (see Fig. 4.28).
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Figure 4.28: Survival probability of electron neutrino for the bulb model (left) and
extended bulb model (right) in the normal mass hierarchy regime. The vertical
and horizontal axes correspond to the zenith-angle and energy, respectively. Red
indicates a survival probability of 100% and blue, 0%.
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4.5.2 External code validation

The next step in the validation process was to compare the results of XFLAT against

a previously-developed bulb model code [Duan and Shalgar, 2014]. While both codes

were based on the formulation of [Duan et al., 2006] the code development paths

were isolated from each other. The [Duan and Shalgar, 2014] code was developed

previously and independently at Northwestern University. Thus, the algorithms,

data structures, and numerical calculations are completely different between XFLAT

and [Duan and Shalgar, 2014].

The simulation of the collective neutrino oscillations can be categorized into two

classes, single-split and multi-split simulations [Dasgupta et al., 2009a]. The most

important observational consequence of neutrinos collective effects is an exchange of

the νe (ν̄e) spectrum with the νx (ν̄x) spectrum in certain energy intervals. Such a

flavor exchange is called a “swap”, whereas “splits” are sharp boundary features at

the edges of each swap interval [Dasgupta et al., 2009b].

First, the results of single-split runs were compared. In order to produce the

following results, the previously-mentioned parameters were employed, except for the

number of angle beams which was now set at 2046, and the starting radius, which

was set to 20 km. The survival probabilities are shown at 250 km. Fig. 4.29 depicts

the results of the two codes, and Fig. 4.30 illustrates the absolute difference between

the results of the two codes. In Fig. 4.31 the initial and final spectra of the XFLAT

run and the absolute difference between the XFLAT and [Duan and Shalgar, 2014]

runs are shown. The absolute difference of spectra between the two codes is ∼ 10−4,

thus the two codes yield results that are virtually identical.

The first comparison was for a single-split energy spectrum. However, the single-

split energy spectrum simulation is more stable than the multi-split energy spectrum

simulation. Therefore, XFLAT and the [Duan and Shalgar, 2014] codes were also
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Figure 4.29: Survival probability of electron neutrinos for XFLAT (left) and
[Duan and Shalgar, 2014] (right). The vertical and horizontal axes correspond to
the zenith-angle and energy, respectively. Red indicates a survival probability of
100% and blue, 0%.
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Figure 4.30: Absolute difference of survival probability of electron neutrinos com-
puted in XFLAT and [Duan and Shalgar, 2014] for a single-split simulation. The
vertical and horizontal axis show the zenith-angle beams and energy bins, respec-
tively.
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Figure 4.31: Change in neutrino (left) and anti-neutrino (right) energy spectra for
single-split spectrum runs. The dashed and dot-dashed lines in upper panels are the
initial spectra (fν) of the electron and tau neutrinos, respectively. The solid lines are
the corresponding spectra at r = 250 km computed using XFLAT. The bottom panel
shows the absolute differences between the XFLAT and [Duan and Shalgar, 2014]
runs for the final spectra.

compared for a multi-split spectrum run as well. For all runs the parameters in

Eq. 4.1 were taken as follow: Lνe = 4.1 × 1051 erg/s, Lνē = 4.3 × 1051 erg/s, Lνx =

Lνx̄ = 4.1 × 1051 erg/s, ηe = 3.9, ηē = 2.3, ηx = ηx̄ = 2.1, Tνe ' 2.1 MeV, Tνē '

3.4 MeV, Tνx = Tνx̄ ' 4.4 MeV, the final radius was at 400 km and the number of

zenith angles were set at 10000.

As illustrated in Fig. 4.32, there is good agreement between the results of XFLAT

and [Duan and Shalgar, 2014] even in the more unstable multi-split run. In Fig. 4.33

the change in energy spectra (initial to final) and absolute difference in spectra for

the neutrino (left) and anti-neutrino (right) for the multi-split spectrum runs are

depicted. The absolute difference of the spectra in both cases, at the final radius

(r = 400 km), is on the order of 10−4.

For XFLAT the error tolerance was set to 10−10 and for the [Duan and Shalgar, 2014]

code, in order to ensure convergence, the error tolerance was set to 10−11. However,
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Figure 4.32: Survival probability of electron neutrino for XFLAT (left) and
[Duan and Shalgar, 2014] (right) for multi-split spectrum runs. The vertical and
horizontal axes correspond to the zenith-angle and energy, respectively. Red indi-
cates a survival probability of 100% and blue, 0%.

the definition of error tolerance between the two codes is completely different. As a

result, it is difficult to set the error tolerance to a comparable value for both codes.

For XFLAT, choosing a lower error tolerance produced satisfactory results as well

(see Fig. 4.34). As seen in Fig. 4.35, the absolute difference between the two XFLAT

runs (with 10−8 and 10−10 error tolerance) was higher than the absolute difference be-

tween the XFLAT run (with 10−10 error tolerance) and the [Duan and Shalgar, 2014]

run (with 10−11 error tolerance). The maximum absolute difference between the two

XFLAT results is ∼ 0.06 and the maximum absolute difference between the XFLAT

and [Duan and Shalgar, 2014] results is ∼ 0.04. Thus, the difference in results be-

tween XFLAT and the validation code is within the “convergence error bars” of

XFLAT itself.

Finally, Fig. 4.36 depicts the survival probability for anti-electron neutrinos for

XFLAT and [Duan and Shalgar, 2014]. As for the electron neutrino’s plots, the re-

sults of the two codes are qualitatively similar. In addition, as shown in Fig. 4.37,
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Figure 4.33: Change in neutrino (left) and anti-neutrino (right) energy spectra for
multi-split spectrum runs. The dashed and dot-dashed lines in upper panels are the
initial spectra (fν) of the electron and tau neutrinos, respectively. The solid lines are
the corresponding spectra at r = 400 km computed using XFLAT. The bottom panel
shows the absolute differences between the XFLAT and [Duan and Shalgar, 2014]
runs for the final spectra.

the absolute difference between two XFLAT results with 10−8 and 10−10 error tol-

erance is similar to the difference between the results of XFLAT with 10−10 and

[Duan and Shalgar, 2014] with 10−11 error tolerance.
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Figure 4.34: Survival probability of electron neutrino for XFLAT from multi-split
spectrum runs with 10−8 (left) and 10−10 (right) error tolerances. The vertical and
horizontal axes correspond to the zenith-angle and energy, respectively. Red indicates
a survival probability of 100% and blue, 0%.
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Figure 4.35: The absolute difference of the survival probability of electron neutrino
between two XFLAT runs with 10−8 and 10−10 error tolerances (left), and between
XFLAT with 10−10 error tolerance and [Duan and Shalgar, 2014] with 10−11 error
tolerance (right). The vertical and horizontal axis show the zenith-angle beams and
energy bins, respectively.
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Figure 4.36: Survival probability of anti-electron neutrino for XFLAT from multi-
split spectrum runs. The vertical and horizontal axes correspond to the zenith-angle
and energy, respectively. Red indicates a survival probability of 100% and blue, 0%.
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Figure 4.37: The absolute difference of the survival probability of anti-electron neu-
trino between two XFLAT runs with 10−8 and 10−10 error tolerances (left), and be-
tween XFLAT with 10−10 error tolerance and [Duan and Shalgar, 2014] with 10−11

error tolerance (right). The vertical and horizontal axes correspond to zenith-angle
beams and energy bins, respectively.
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Chapter 5

XFLAT Performance

5.1 Benchmarking and Performance Analysis

The performance of a parallel code on a new architecture can be studied via two

approaches. The first approach is to create isolated benchmarks (kernels) in order to

understand the intrinsic properties of the new platform through small, tightly-defined

pieces of code. These kernels are typically chosen to be mathematical functions such

as Fast-Fourier Transforms, that are used repeatedly in the code. The second ap-

proach is to study the overall performance of the newly developed code (performance

analysis). By benchmarking standalone kernels, instead of the entire code, oportu-

nities for performance improvements and potential sources of bottlenecks can be

identified up front. Subsequently, benchmarking of the overall code can be used to

identify key performance bottlenecks of the internal structures and algorithms of

the code. Finding the root cause of performance bottlenecks plays a major role in

optimizing a parallel code’s efficiency.

A significant factor in parallel code development is the amount of speedup that

may be obtained by running the code on parallel systems. In simple terms, speedup
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is defined as the relative performance improvement of a task when comparing two

different runs of the identical code. This relative improvement is typically expressed

as instructions per cycle (IPC). IPC is the average number of instructions executed

per processor clock cycle. Instructions include the set of operation codes (opcodes)

for a particular processor. The operation codes are those instructions that identify

the operation to be performed on processor (e.g. multiplications and additions).

Another way to define speedup is in terms of cycles per instruction (CPI), i.e., the

length of time between successive instruction completions. Formally, speedup is

defined as:

S ≡ Told
Tnew

, (5.1)

where Told is the old execution time without improvement, and Tnew is the new

execution time with improvement.

Linear speedup or ideal speedup is obtained when code speedup Sp on p processors

is equal to p, i.e., the scalability is perfect. For example, this implies that by doubling

the number of processors, the speedup doubles as well. The other important metric

that can be derived from speedup is the efficiency Ep which is defined as:

Ep ≡
Sp
p
. (5.2)

The efficiency value falls between zero and one, and reflects how well-utilized a

parallel system is in solving a particular problem, compared to how much the time

is wasted in communication and synchronization.

Unfortunately, the way that speedup and efficiency are defined make them in-

appropriate for measuring the efficiency of codes on muti-node systems with het-

erogeneous nodes. On a system with homogeneous nodes, there is only one type of

processor as well as one type of available memory. However, those definitions are

not directly applicable on a multi-node heterogeneous system, where the nodes are

equipped with both CPUs and MICs. On a heterogeneous system, there are differ-
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ent processor types, each having different clock frequency and cache, various memory

levels each with different bandwidth and latency, and multiple buses and I/O routes

available. Hence, there may be numerous factors that can affect the overall perfor-

mance of the system. As shown in this chapter, the performance of XFLAT turns

out to depend on the MIC to CPU load ratio as well as the distribution of the load

across the MIC’s threads. When the optimum number of nodes is not known in ad-

vance, predicting expected speedup becomes challenging, and measured results may

be difficult to understand and model. For instance, Fig. 5.1 illustrates multi-node

XFLAT speedup relative to a single node (CPU only). On each node, there were

two CPUs and two MICs. The benchmark measured the number of calculated radial

steps for 100 seconds. When the number of nodes was less than 10, the 3:1 MIC

to CPU load ratio resulted in the best performance. For instance, by employing 7

nodes and a 3:1 load ratio, the speedup was about 22 times higher than the single

node result. However, when the number of nodes was chosen to be 14, the optimum

load ratio was 2:1 and the relative speedup was 32 times higher than the single node

result, rather than 44 (2× 22). Hence, doubling the number of nodes did not result

in a doubling of speedup, since on heterogeneous systems the performance depends

on many other factors including load distributions and load ratios.

Likewise, the efficiency metric cannot be applied in its traditional definition since

multiple types of processors with different capability are available at run time. At

with speedup, the efficiency metric definition must be modified accordingly.

In summary, the speedup and efficiency metrics traditionally used to describe

the scalibity of a code cannot be employed for performance analysis of hybrid codes

on multi-node systems with heterogeneous nodes. On such systems, several factors

including bus speeds, memory hierarchy, specifics of code work distribution across

hardware compute elements, ... can affect the overall performance of a code, hence

the code scalibility prediction cannot be achieved by exploiting traditional metrics.
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Figure 5.1: XFLAT speedup relative to single node (CPU only) on a multi-node
environment. The blue, orange, and grey curves correspond to MIC to CPU load
ratios of 4:1, 3:1, and 2:1, respectively.

In this work, new metrics are used in order to describe XFLAT behavior.
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5.2 Kernel Benchmarks

Kernels are typically small codes corresponding to a single or limited set of mathe-

matical operations, developed with the purpose of testing and analyzing performance

of a given hardware/software platform. The performance analysis of large codes (e.g.

XFLAT) may be hard, due to their being composed of many modules and parts. Each

software module may have its own bottlenecks that can affect overall performance.

Kernels are used to analyze each functionality or module by isolating and testing it as

a standalone software elements. Hence, employing kernels for performance analysis

is essential to the analysis of large codes.

As previously mentioned, there are several techniques to improve the performance

of an HPC code such as XFLAT including data alignment, fusing functions, reducing

inter-node communication, and changing loop structure. In addition, studying the

performance of low-level details such as dereferencing pointers and transcendental

functions can be helpful if these are used frequently. In this section, the performance

impact of these techniques will be studied as independent kernels.

5.2.1 Floating point and transcendental function performance

One of the goals of kernel benchmarks is to measure the raw performance of each

processor. Hence, kernels are needed in order to measure the performance of float-

ing point operations as well as transcendental functions. XFLAT utilizes double

precision floating point operations exclusively and it heavily employs transcendental

functions as well. As discussed below, all double precision transcendental functions

used in XFLAT were implemented in software. They exploit SIMD units for internal

calculations, thus understanding their performance plays an important role in the

performance analysis of XFLAT. In XFLAT, since the majority of the innermost

loops were vectorized, all of the following benchmarks were performed inside vec-
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torized loops (see Fig. 5.2) (Unless stated otherwise, all benchmarks in this chapter

were performed on the Stampede system with hardware characteristics as summa-

rized in Table 5.3). The widths of the vectors were taken to be a multiple of the

SIMD registers width (256 bits or 4 DP (double precision) numbers for the Xeon

CPU, and 512 bits or 8 DP numbers for the Xeon Phi). In order to maintain data

locality, the same vector operations were repeated ten million times inside the middle

loop. Furthermore, in the outermost loop, all of the hardware threads were utilized

in order to achieve the best performance.

Three similar kernels were prepared, corresponding to the three different math-

ematical operations to be benchmarked. The only variable in the kernels was the

length of the vectorized loop that varied from 8–4096 double precision elements. The

first kernel benchmarked simple floating point operations (additions and multiplica-

tions), thus one double precision addition and one double precision multiplication

were performed per iteration. In the second kernel, one sin() and one cos() cal-

culation in double precision were performed per loop iteration. The third kernel

benchmarked the performance of the double precision version of the exp() function.

As illustrated in Fig. 5.3, the Xeon Phi can reach over 1 TeraFlops (1000 Gi-

gaFlops) as advertised in [Jeffers and Reinders, 2013]. However, the performance of

the Xeon Phi is highly sensitive to the width of the vector. On the other hand,

the performance of the CPU is relatively stable as a function of vector length. The

floating point performance of the Xeon Phi is best when the width of the DP vectors

is 64; in that case, the Xeon Phi ran 10 times as fast as the CPU. However, the

performance of the Xeon Phi degraded substantially as the vector width increased.

The results of transcendental function benchmarks are shown in Fig. 5.4. These

results suggest that transcendental function performance on the Xeon Phi is relatively

stable with respect to the width of the vectors. For the tests on sin() and cos()

the Xeon Phi ran 6–8 times as fast as the CPU, but for exp() the Xeon Phi was
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// Two transcendental operations per iteration

// Outer loop

for (...)

{

// Vectorized loop

#pragma omp simd

for (int i : ARRAY_LENGTH)

{

A[i] = sin(A[i]);

B[i] = cos(B[i]);

}

}

Figure 5.2: Illustration of vectorized loop structure for transcendental function
benchmark.

only 3–4 times better.
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Figure 5.3: Floating point performance of CPU and MIC (Xeon Phi) for various vec-
tor widths. The performance of the Xeon Phi (orange curve) degraded significantly
where the vector width was increased beyond 64; however, the CPU performance
(blue curve) remained constant. Benchmarks performed on Stampede system with
hardware characteristics as summarized in Table 5.3.
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Figure 5.4: Transcendental function performance of CPU and MIC (Xeon Phi) on
Stampede (see Table 5.3). For the tests on sin() and cos() the Xeon Phi (grey
curve) ran 6–8 times as fast as the CPU (blue curve), but for exp() the Xeon Phi
(yellow curve) is only 3–4 times better (orange curve).

Since the observed performance drop may have been due to the loop structure,

alternative benchmarks with different loop structures were performed on the Xeon

Phi. In addition, the compiler was upgraded from Intel C++ 13.1 to recently in-

stalled Intel C++ 15.0 on the TACC Stampede supercomputer (see Table 5.3 for

hardware specifications). Fig. 5.6 illustrates the performance of floating point op-

erations (additions and multiplications) on Stampede’s Xeon Phi. The difference

between the new and old kernels is that unlike the previous kernel, within the new

kernel’s loop, there were two and four independent array operations per iteration,

respectively (see Fig. 5.5). These results confirm that by going beyond a length of

the 64 double precision numbers, the performance of the Xeon Phi drops dramati-

cally. This issue appears to be fundamental to the current generation of Xeon Phi’s

software or hardware architecture.

Fig. 5.7 illustrates the performance of sin() and cos() when are were four array

operations within the vectorized loop. As is evident, by changing the compiler version

and loop structure, the overall Xeon Phi performance was still constant with respect
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// Two transcendental operations per iteration

// Outer loop

for (...)

{

// Vectorized loop

#pragma omp simd

for (int i : ARRAY_LENGTH)

{

A[i] += x1 * B[i];

C[i] += x2 * D[i];

E[i] += x3 * F[i];

G[i] += x4 * H[i];

}

}

Figure 5.5: Illustration of vectorized loop structure with four array operations per
iteration.

to the previous results. This shows that the observed performance issue was not due

to the compiler used.
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Figure 5.6: Performance of floating point operations on CPU and MIC (Xeon Phi)
on Stampede. The blue and orange curves illustrate benchmarks with two and four
independent lines of array operations, respectively.
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Figure 5.7: Transcendental function performance of CPU and MIC (Xeon Phi) on
Stampede. The blue and orange curves illustrate benchmarks with one and four
independent lines of array operations, respectively.

The performance of the transcendental functions within parallelized and vector-

ized loops may depend on another factor as well. As previously mentioned, all of

the double precision versions of the transcendental functions were implemented in

software, thus the SIMD units are also utilized internally for the underlying transcen-

dental calculations. This means that the benchmarks’ loop as well as the functions

within those loops utilize the SIMD units. Depending on the employed compiler

flags, for transcendental functions the internal employed function calls within the

SIMD units may be different. This was confirmed by examining the generated as-

sembly code of a built kernel using different compiler flags. For instance, there can

be multiple internal function calls depending on the compiler flags for the kernel that

utilized the sin() and cos() functions. Fig. 5.8, Fig. 5.9, Fig. 5.10, and Fig. 5.11

show the internal called functions that were employed when the code was compiled

with -S -no-vec, -S -no-vec -xHOST, -S, and -S -xHOST flags respectively. The

compiler -S flag generates the assembly file output, the -no-vec flag prevents loops

from being vectorized, and the -xHOST flag forces the compiler to generate AVX (see

Ch. 2) vector specific-instructions. Unlike SSE (see Ch. 2) instructions (and its later
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..B1.33:

movsd 40(%rsp), %xmm0

movl %r12d, %r14d

addsd .L_2il0floatpacket.88(%rip), %xmm0

movsd %xmm0, 40(%rsp)

call __libm_sse2_sincos

Figure 5.8: Kernel code compiled with -no-vec flag. The employed transcendental
function is libm sse2 sincos in which one sin() and one cos() are calculated.

versions SSE2, SSE3, SSSE3, SSE4, etc.) on the previous generations of CPU on

which two double precision floating point numbers per instruction can be handled,

AVX instructions can perform a single instruction on four double precision floating

point numbers simultaneously. As can be seen in the generated assembly code, even

when the compiler is forced not to vectorize the loop, it still calls the SSE2 version

of a function to calculate sin() and cos() simultaneously. Even the -S -xHOST

flag cannot change the utilized function when the compiler is forced not to gener-

ate a vectorized loop. When the no-vectorization restriction is lifted, normally the

compiler will pack sin() and cos() functions together and compute them together.

Only by forcing the compiler to utilize the AVX registers, can it be seen that the

sin() and cos() functions are employed separately to pack four elements together

and issue the similar instructions on them simultaneously.

As a result, in a vectorized loop, the transcendental functions should always be

employed with caution, since depending on the loop’s structure and compiler flags,

the underlying function calls may be different.
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..B1.33:

vmovsd 40(%rsp), %xmm0

movl %r12d, %r14d

vaddsd .L_2il0floatpacket.88(%rip), %xmm0, %xmm0

vmovsd %xmm0, 40(%rsp)

call __libm_sse2_sincos

Figure 5.9: Kernel code compiled with -no-vec and -xHOST flags. The employed
transcendental function is libm sse2 sincos in which one sin() and one cos()

are calculated.

..B1.33:

xorl %r12d, %r12d

addsd %xmm8, %xmm9

movaps %xmm9, %xmm0

unpcklpd %xmm0, %xmm0

call __svml_sincos2

Figure 5.10: Kernel code compiled without using any of -no-vec and -xHOST flags.
The employed transcendental function is svml sincos2 in which two sin() and
two cos() are calculated.

5.2.2 Structure of Arrays (SoA) vs. Array of Structures

(AoS)

At mentioned earlier, there are two general approaches for developing codes in which

computations are performed on arrays of data. The first and more convenient ap-

proach is to build a structure that encapsulates a group of variables, afterwards

allocating memory for an array of those structures. For example one can design a

neutrino class that encapsulates the flavor state of a single neutrino. Next, for each

energy and angle beam, one instance of the object is allocated. This approach is

more straightforward to implement and easier to expand. However, for performing

the same operations on components of all neutrinos, data must be fetched from non-
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..B1.33:

xorl %ebx, %ebx

vaddsd %xmm8, %xmm9, %xmm9

vmovddup %xmm9, %xmm1

vinsertf128 $1, %xmm1, %ymm1, %ymm11

vmovaps %ymm11, %ymm0

call __svml_cos4

..B1.57:

vmovapd %ymm0, %ymm10

vmovaps %ymm11, %ymm0

call __svml_sin4

Figure 5.11: Kernel code compiled with -xHOST flag only. The employed transcen-
dental functions are svml cos4 and svml sin4 in which four sin() and four
cos() are calculated independently.

continuous and sparse locations into vector registers (see Fig. 4.17). As a result, the

amount of memory fetch and the latency increase per cycle.

On the other hand, if a structure can encapsulate a continuous range of data, the

compiler can provide continuous streams of data in order to utilize SIMD registers

efficiently. As an example, in XFLAT an instance of the neutrino class encapsulates

arrays of neutrino flavor states for which each element represents a particular energy.

Therefore, an object encompasses a range of neutrino flavor states. As a result, in

order to perform the same computations on the neutrino wavefunction’s components,

they can be fetched and stored into SIMD registers continuously.

In order to study the performance impact of the SoA and AoS approaches, two

kernels were developed. The first one contained a class in which four arrays were

defined, thus the design approach was SoA. The length of the arrays was 100 double

precision numbers, and 1000 instances of the class were created. For the second

kernel, a single class was developed in which four single variables were encapsulated,

thus the design approach was AoS. Afterwards, 100k instances of the class were
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Figure 5.12: Performance comparison of two general designs: Structure of Arrays
(SoA) vs. Array of Structures (AoS). Timing on Stampede machine (see Table 5.3).

allocated. Simple floating point calculations were performed on both kernels’ data

for a 1M iteration count. The results of the benchmark on a single CPU on Stampede

machine (see Table 5.3) are shown in Fig. 5.12.

One can see that even for simple floating point operations, the performance of the

SoA approach is about twice that of the AoS approach. Although the performance

gap may vary based on specifics of the loops’ structure and length of arrays, for

high-performance applications it is clear that the SoA approach is preferable. For

general (non-HPC) applications, AoS is prefered since it is easier to implement.

5.2.3 Dereferencing pointers inside vectorized loops

During the development of XFLAT, several performance fluctuations were observed

on the Xeon Phi platform on the Stampede machine. One peculiar issue was related

to dereferencing pointers within a vectorized loop and the way that arguments were

passed to a function. The NBeam class contains several vectorized loop inside which

function calls are performed. Thus, pointers and data are passed to the called func-
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tions. One important function, which is called frequently, is the neutrino evolution

function that loops over neutrino bins, evolves neutrino flavor states, and saves the

results into another neutrino array. Another frequently called function is the density

function that receives an array of neutrino flavor states and computes the density

matrix for each wavefunction. Both functions are called within vectorized loops, and

the loops perform reduction operations on arrays.

In order to identify the root cause of the performance issue, two kernels with

similar behavior to relevant sections of XFLAT were developed. The first kernel

contained a class that implements a function in which the same instructions as the

evolution function in XFLAT were utilized. The second kernel’s class had a function

similar to the density method in XFLAT with the same set of instructions. There

were five ways to call, pass arguments, and utilize the evolution function as shown

in Fig. 5.13. Likewise, there were four ways to call, pass arguments, and utilize the

density function as illustrated in Fig. 5.14.

Fig. 5.15 illustrates the performance of the five evolution functions on the CPU as

well as on the MIC. As can be seen, the performance on the MIC varied significantly

across the five methods. The performance of the first method on the MIC was more

than twice that of the performance of the fifth method. In addition, Fig. 5.16 depicts

the performance of the density functions on the CPU and the MIC. Once more, the

performance on the MIC fluctuated by a large margin.

The best performance was achieved when the pointers were dereferenced before

each vectorized loop. In that case, the compiler can generate better optimized code.

However, on the CPU, this behavior was not observed. In XFLAT, in order to

achieve the highest possible performance, all pointers were therefore dereferenced

before vectorized loops.
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// The input is passed to the class by object reference

// The output is saved to the class array member

for (index: ARRAY_LENGTH)

{

//1) both input and output are explicitly passed as arguments

evolve1(input[index], output[index], ...);

//2) the output is an array’s member

// thus, it is accessible within the function

evolve2(index, input[index], ...);

//3) the input is passed via a reference to the object’s function

// within the function the input arrays are accessed directly

evolve3(&object_input, index, ...);

//4) similar to 3) but first the input array is dereferenced;

// thus, the input data access are performed via simple pointers

evolve4(&object_input, index, ...);

//5) similar to 4) but first the output arrays are dereferenced

// so member array are accessed via simple pointers

evolve5(&object_input, index, ...);

}

Figure 5.13: Different approaches for passing arguments and calling the evolution
function. Within the function elements are accessed from inside a vectorized loop.

5.2.4 Calling functions and their arguments

In the previous section, the body of the functions contained complex instructions

(similar to those appearing in the XFLAT code). Performing complex instructions

can affect overall timings. Therefore, a simpler kernel was designed in order to isolate

and study the effects of different ways of sending arguments to functions. Within

the kernel a single simple function was called from inside a vectorized loop using two

approaches. Fig. 5.17 illustrates these two approaches. The first method passes the

element’s index to the function. Within the functions, the received index is employed
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// The arrays are member of the class

for (index: ARRAY_LENGTH)

{

//1) the data arrays are dereferenced and used within the method

density1(index, ...);

//2) the arrays’ elements are accessed directly for calculations

// without any prior dereferencing

density2(index, ...);

//3) the data arrays are passed directly to the function

density3(output[index], ...);

//4) the data arrays are dereferenced before calling the function

density4(output[index], ...);

}

Figure 5.14: Different approaches for passing arguments and calling the density func-
tion. Within the function elements are accessed from inside a vectorized reduction
loop.
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Figure 5.15: Performance comparison of the evolution functions on the CPU and the
MIC on Stampede. On the MIC, the results (orange bars) fluctuated, whereas on
the CPU, the results (blue bars) were steady.
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Figure 5.16: Performance comparison of the density functions on the CPU and the
MIC on Stampede. On the MIC, the results (orange bars) fluctuated, whereas on
the CPU, the results (blue bars) were steady.

to look up array elements. The second method passes each element as a separate

argument. In principle, the performance of the two methods should not differ much.

Nevertheless, the compiler could conceivably generate more optimized code for the

second approach.

The kernel had two nested loops: an outer loop which simply repeated the inner

loop, and an inner loop that was responsible for looping over array elements and

#pragma omp simd

for (int index : ARRAY_LENGTH)

{

/// Only one of the following is called each time!

func1(index, &results);

func2(ar[index], ai[index], br[index], bi[index], &results);

}

Figure 5.17: Two different approaches of passing arrays’ elements to a function. In
the first approach, the function receives only the index of the elements, whereas in
the second approach each element is passed to the function independently.
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Figure 5.18: Performance of the CPU and MIC in two scenarios (implicit and explicit)
on Stampede for different loop lengths (outer loop len × inner loop len). The
kernel was benchmarked for three different loop combinations (scenarios): 1M × 10k
(green bars), 5M × 2k (blue bars), and 10M × 1k (orange bars).

calling functions with proper arguments. The first function received only an index

as an argument (implicit method) and the second function received each array’s

element as an argument (explicit method). Fig. 5.18 illustrates the performance of

the kernels on the CPU and MIC. The length of arrays were 10000, 2000, and 1000

elements for the first, second, and third scenarios, respectively, and the combined

number of elements accessed in each scenario was 109. The outer loop iteration count

was 1 million, 5 million, and 10 million for the first, second, and third approaches,

respectively.

As illustrated in Fig. 5.18, the performance of the explicit method on the CPU and

the MIC was 35% and 25% higher than the implicit method, respectively. Another

noticeable difference is the performance difference between the CPU and the Xeon

Phi. This difference, which is about 12− 15×, shows that calling a function on the

Xeon Phi is an expensive task compared to the CPU. As of this writing, it is unclear

that whether this issue is due to a bug in the curent generation of Intel compiler or

an intrinsic limitation in the current generation of hardware.
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5.2.5 OpenMP loop parallelization

There are several approaches for parallelizing a serial section of code via OpenMP.

Implementing parallel regions and nested loops together can cause performance bot-

tlenecks if programmers do not take into account the effects of nested parallel loops.

The situation can become even more complicated inside hybrid (MPI+OpenMP)

codes such as XFLAT, where, depending on the location of code synchronization

points the performance of parallel regions may be different. XFLAT has an outer

loop that persists throughout the lifetime of the application. Within the loop, there

are several regions that were parallelized using OpenMP. There are four possible ap-

proaches through which a parallel region and a parallel loop can be implemented in

XFLAT. Fig. 5.19 illustrates the first approach, in which a parallel region encloses the

outer loop as well as multiple parallel for loops. Note that there are single threaded

sections before each for loop. The second approach, as illustrated by Fig. 5.20, is to

enclose the internal region of the outer loop only. Thus, the single-threaded regions

as well as the inner for loops are enclosed with an OpenMP pragma. Fig. 5.21

depicts a third approach, which is to have the parallel region enclose everything, and

the nowait pragma is added to the inner for loops. In this way, every time that

a thread completes its for loop computations, it does not stay idle at the end of

the loop and continues outside the for loop. The last method is to parallelize only

the inner for loops using an OpenMP pragma. Hence, there is no need to define

the outer parallel region or to have single-threaded regions inside the outer loop (see

Fig. 5.22).

Several kernels were constructed in order to benchmark the performance of the

four approaches. In all of the benchmarks, the outer loop contained four parallel

regions and four single-threaded regions. Each single-threaded region resided exactly

before one for loop. The computations within each region depend on the previous

region’s result to make sure that the compiler did not remove and optimize out any
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#pragma omp parallel

{

Loop(termination_conditions)

{

#pragma omp single

{

/// single-threaded code

}

#pragma omp for

for (int i : index)

{

/// multi-threaded code

}

...

}

}

Figure 5.19: First approach for parallelizing a region via a parallel region that en-
closes everything, and implements a single region within the loop.

part of the kernels.

Since the amount of computation did not vary between kernels, any performance

difference was due to the different parallelism approaches. The kernels were bench-

marked using three different for loop lengths. For the first run, the outer loop

iteration count was set to 100k and every inner loop iteration count was set to 10k.

The results for the MIC and CPU for the four different approaches are illustrated in

Fig. 5.23. On the CPU there was no visible performance difference between the four

methods, and on the MIC the maximum difference was about 10 seconds for 100k

iteration count. For the next run, the outer loop iteration count was set to 500k

and every inner loop iteration count was set to 2k. As shown in Fig. 5.24, on the

CPU there was almost no performance difference between the different approaches;

however, on the MIC, the maximum performance gap was about 40 seconds. For the

last run, the outer loop iteration count was set to 1M and each inner loop ieration
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Loop(termination_conditions)

{

#pragma omp parallel

{

#pragma omp single

{

/// single-threaded code

}

#pragma omp for

for (int i : index)

{

/// multi-threaded code

}

...

}

}

Figure 5.20: Second approach for parallelizing a region via a parallel region inside
the main loop that encloses everything.

count was set to 1000. This time, as depicted in Fig. 5.25, the CPU performance

fluctuation was about 7 seconds; however, on the MIC the maximum performance

gap increased to about 100 seconds. The performance gap on the MIC may be due

to MIC’s simpler core architecture and lower clock rate. Over 1 million iterations the

performance difference between the four approaches was negligible on the CPU. On

the MIC the performance was less than 100 seconds. Note that in real applications

1 million iterations of the outer loop may take hours or days to complete, therefore

in absolute terms, the 100 seconds of difference among the four approaches will be

negligible.

For XFLAT, the fourth method was chosen. There were two main reasons for this.

First of all, the performance of the third and fourth methods were always the best.

The second and more important factor was simplicity. The simplicity of the fourth

method comes from the fact that there is no need to define the OpenMP parallel
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#pragma omp parallel

{

Loop(termination_conditions)

{

#pragma omp single

{

/// single-threaded code

}

#pragma omp for nowait

for (int i : index)

{

/// multi-threaded code

}

...

}

}

Figure 5.21: Third approach for parallelizing a region via a parallel region that
encloses everything, with a single region within the loop. Threads at the end of
parallel for loop do not wait for the other threads.

Loop(termination_conditions)

{

/// single-threaded code

...

#pragma omp parallel for

for (int i : index)

{

/// multi-threaded code

}

...

}

Figure 5.22: Fourth approach for parallelizing a region via separated parallel for
regions.
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Figure 5.23: Illustration of CPU (blue bars) and MIC (orange bars) OpenMP
performance on Stampede for 100k × 10k loop configuration (outer loop len ×
inner loop len). Numbers on top of bars correspond to total time in seconds.

region to enclose the inner parallel for loops. Furthermore, defining the single-

threaded regions was not required. Consequently, MPI functions can be put after

each for loop without requiring to treat them as special lines of code inside OpenMP

parallel regions. As a result, the implementation becomes simpler, maintenance
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Figure 5.24: Illustration of CPU (blue bars) and MIC (orange bars) OpenMP per-
formance on Stampede for 500k × 2k loop iteration counts (outer loop len ×
inner loop len). Numbers on top of bars correspond to total time in seconds.
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Figure 5.25: Illustration of CPU (blue bars) and MIC (orange bars) OpenMP
performance on Stampede for 1M × 1k loop iteration counts (outer loop len ×
inner loop len). Numbers on top of bars correspond to total time in seconds.

becomes easier, and the debugging phase is less complicated.

5.2.6 The effects of NUMA on multi-socket code perfor-

mance

On multi-socket systems, multiple processors may be installed on a single mother-

board and managed by a single image of an OS. Therefore, the OS can manage all

of the available cores. Furthermore, the OS manages all of the available memory,

although each RAM module is directly connected to only one CPU socket. As a

result, one single instance of an application can employ every accessible core as well

as the entire amount of RAM. For multi-threaded codes, depending on the applica-

tion objective, at some points every thread may require access to a specific memory

block. Since each block of memory resides on a unique location on physical RAM,

threads that do not reside on the corresponding socket can access the memory block

only by going through extra buses. For example, refering back to Fig. 4.19, if a

thread on CPU1 attempts to access a memory block that resides on the RAM mod-
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ule connected to CPU2, it has to go through one more bus (QPI) in order to access

the memory. It is not hard to imagine the performance impact of a situation where

many threads on different CPUs are attempting to access scattered memory blocks

on a multi-socket system. The situation will be even worse if the application repeats

the memory access within a loop for every iteration.

Two possible approaches can be used to address this issue. The first approach is

to make the memory initialization code multi-threaded, in the same way that the rest

of the code is multi-threaded. Modern OSs do not allocate the requested memory

before the first touch, i.e. the first attempt to read from or write to the memory.

Therefore, the allocated memory will reside as close as possible to the thread that

first attempts to touch it. If the memory initialization code is multi-threaded in the

same way as the rest of the code, it is highly probable that the thread’s initialized

memory and its working memory remain identical (see Fig. 5.26). The second method

is to eliminate the issue completely by running two separate instances of the code,

each on a single socket. However, the second method requires multi-node support

by employing MPI communication.

XFLAT’s functions fetch large amount of data per iteration. Therefore, this

issue could potentially cause a seious performance bottleneck for XFLAT running on

a multi-socket system. In order to measure the performance impact of the first touch

issue, XFLAT was benchmarked for three different scenarios on Stampede. For the

first run, a single instance of XFLAT utilized the entire dual-socket compute node.

For the second run, two separate instances of XFLAT were run, each employing

one socket of a dual-node compute node. The communication between the two

instances was performed via MPI (software) and on the hardware side via the QPI

bus. For the third run, a single instance of XFLAT utilized an entire dual-socket

compute node similar to the first run, however, the memory initialization section

was parallelized via OpenMP. All runs were executed for ∼ 100 seconds, with a
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// By adding the OpenMP parallel for pragma, memory initialization

// become multi-threaded. As a result, the allocated memory resides

// near the thread that initialized it

#pragma omp parallel for

for (index: ARRAY_LENGTH)

Beam[i].init();

// The computational part is always multi-threaded

#pragma omp parallel for

for (index: ARRAY_LENGTH)

Beam[i].calc(...);

Figure 5.26: Parallel initialization of memory as one of the solutions for the first-
touch memory issue.

problem size of 1200 × 100 × 80 (θ × φ × EBins) neutrino beams. At the end of

each run, the total (integer) number of computed radial steps was measured. As

depicted in Fig. 5.27, the performance of the first run was half that of the other

runs, indicating that the inter-socket communications can significantly impact on

the performance of high-performance applications such as XFLAT. As a result, the

amount of inter-socket communications should be minimized in order to achieve

maximum application performance.

5.2.7 Fusing functions

XFLAT contains several functions in which different instructions are performed on

identical data. By calling each function, the required data must be fetched from

main memory. The fetched data is stored within the processor’s fast memory, i.e.

the cache memory. After the function returns to the calling point, its data that

resides in the processor’s cache memory may be evicted in order to make space for

new function data. However, the new function may perform different calculations on
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Figure 5.27: Performance of three alternative methods of running XFLAT on a
NUMA system (Stampede). The calculated radial steps were measured for 100-
second runs. From left to right, one XFLAT instance employed the entire dual-socket
node, two XFLAT instances each employed a single CPU socket, and one XFLAT
instance initialized memory in parallel and employed the entire dual-socket node.
Net computed radial steps (listed at the top of the bars) were measured for ∼ 100
second runs.

the same set of data and there is no guarantee that the old data, within the cache, can

be reused. Since the fetching time is on the order of microseconds and the execution

time is on the order of nanoseconds (the clock frequency of the modern processors is

typically above 1 GHz), reducing the amount of memory fetch can boost the overall

performance dramatically.

In order to improve performance, XFLAT provides fused functions, which were

created by merging two functions that belong to a single module. The functions

can be fused if and only if they process on the same set of data. The method of

fusing functions is only applicable when the data remain unchanged between the two

function calls.

As an example of implementing fused functions, within the NBeam class, the

function that calculates the neutrinos’ evolution can be fused with the function that
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calculates the partial summation over the neutrinos’ wavefunction, since both func-

tions may be called back to back and require the same set of data. In NBeam class,

there is another, similar fused function that receives an array of neutrino beams as

an extra argument. Thus, it can calculate the average of the neutrinos’ flavor states

between the computed neutrino beams and the passed neutrino beam array (i.e.,

three functionalities fused together).

As another example, at the end of the evolution loop, within the numerical mod-

ule, there is a function that computes the maximum global error. Moreover, there is

a function at the beginning of the evolution loop in which partial summation over

neutrino’s energy bins is performed. Since those functions perform calculations on

the same set of data, and the data remain unchanged between the two calls, they

can be safely fused together. Nevertheless, the original version of those functions is

available as well, since depending on the algorithm the fused versions might not be

applicable everywhere.

In order to study the effect of function fusing, XFLAT was benchmarked on

Stampede using the two alternative approaches. The first run employed the plain

non-fused functions, and the second run exploited the fused functions for calculations.

Fig. 5.28 illustrates the performance of XFLAT for the problem size of 1200×100×80

(θ×φ× Ebins) on both the CPU and MIC. Each run continued for about 100 seconds

and the number of calculated radial steps were measured. The XFLAT performance

on the MIC improved by 15% when fused functions were used. On the CPU, the

improvement was around 30% due to its larger cache size, in which more data can be

maintained, thus the required memory fetches were reduced. This is a notable result

since the fusing function optimization was intended for the Xeon Phi. However, the

CPU can gain even more benefit from the method since the cache size on the CPU

is larger.
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Figure 5.28: Performance of fused and non-fused functions on the CPU and the MIC
on Stampede. The net computed radial steps (listed at the top of the bars) were
measured for ∼ 100 second runs. XFLAT performance was 15% and 30% higher
on the MIC and CPU, respectively, when the fused functions were employed (blue
bars), compared to when the non-fused functions were employed (orange bars).

5.2.8 I/O performance

Every high-performance computing application requires saving the results of compu-

tations by writing data before termination. Since I/O tasks are slower than the rest

of an application, there may be bottlenecks in the I/O section of an HPC code. On

heterogeneous-node systems the performance hit may be even greater since there are

different types of processors as well as multiple data buses involved. Depending on

the run configuration, XFLAT may need to write gigabytes of data to disk at each

radial point. Since XFLAT employs NetCDF for saving data, the performance of

NetCDF plays critical role in XFLAT performance. There are several approaches for

writing multi-dimensional arrays of data using NetCDF, thus several kernels with

similar structure to XFLAT’s I/O module were developed in order to determine the

optimum approach.

In XFLAT, there are three methods for saving multi-dimensional data to disk.
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for (int theta : Theta_Angles)

for (int phi : Phi_Angles)

for (int p : Particle_Num)

for (int c : WF_Components)

for (int e : Energy_Bins)

nc_put_var...(..., data[theta][phi][p][c][e]);

Figure 5.29: Saving data via NetCDF within nested loops.

for (int i : Neu_Beams_TotLen)

{

int index = calc_index(i);

nc_put_var...(..., start[index], count[index], data);

}

Figure 5.30: Saving data via NetCDF within a single loop.

The first method is to write data within nested loops as illustrated in Fig. 5.29.

Nested loops may have more overhead than a single loop. Therefore, the second

method is to implement a single loop in which a 1D data array is written to disk (see

Fig. 5.30). The third approach is similar to the second approach; however, instead of

calling the NetCDF function within the loop, it is only called once after the loop is

completed. Thus within the loop, data is extracted from neutrino beams and saved

to a buffer. After completion of the loop, the entire buffer is passed to the NetCDF

function to be written to disk.

In order to study the efficiencies of these three approaches, the I/O module of

XFLAT was isolated and benchmarked as a separate kernel. As a result, the per-

formance of the other calculations in other modules did not interfere with the per-

formance of the I/O methods. The kernel was benchmarked on Stampede for both

the CPU and the MIC. Each kernel’s snapshot was 128 MB and a total of 100 snap-

shots (12.8 GB) were written on Stampede’s $SCRATCH disk. Fig. 5.32 shows the
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for (int i : Neu_Beams_TotLen)

{

int index = calc_index(i);

buffer[index] = data[index];

}

nc_put_var...(..., buffer);

Figure 5.31: Saving data via NetCDF after completion of a single loop. Within the
loop data may be extracted from NBeam objects and stored onto a buffer.
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Figure 5.32: XFLAT’s I/O performance on the CPU and MIC for three different
approaches on Stampede. The performance of the MIC (orange bars) was 35 to
53 times worse than the performance of CPU (blue bars). Numbers at top of bars
correspond to time in seconds.

performance of each approach on the CPU and MIC.

As seen in Fig. 5.32, the Xeon Phi has very poor I/O performance that may result

in a major bottleneck at run time. Therefore, direct I/O tasks should be avoided on

the Xeon Phi. Since I/O tasks are inevitable in production environments, another

I/O module was added to XFLAT. In the new module, since the I/O performance

of the CPU was satisfactory, the Xeon Phi sends its own data to its CPU mate

instead of writing the data to disk directly. Afterwards, the CPU is responsible for
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Figure 5.33: XFLAT’s I/O performance on the CPU and MIC on Stampede. From
left to right: direct I/O on the CPU, direct I/O on the MIC, and indirect I/O from
MIC to CPU. Numbers at top of bars correspond to time in seconds.

saving its own data as well as that of the Xeon Phi. As a result, in this new indirect

module, the Xeon Phi extracts data from NBeam objects and saves them to a buffer

which later sends the buffer data to the CPU. Consequently, the CPU is the only

processor type that is responsible for performing I/O tasks and writing data to disk.

Fig. 5.33 illustrates the performance of the direct module in which each processor is

responsible for writing its own data to disk, and the indirect module in which the

MIC sends its data to CPU for dumping to disk.
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Table 5.1: Bethe workstation specifications.

CPU Intel Xeon CPU 6Core/12Thread E5-2620 @ 2.0 GHz
Mem 8x 4096 MB DDR3 @ 1333 MHz
MIC Intel Xeon Phi 5110P 60Core/240Thread @ 1.053 GHz - 8 GB GDDR5

Table 5.2: Bahcall workstation specifications.

CPU 2x Intel Xeon CPU 6Core/12Thread E5-2620 v2 @ 2.1 GHz
Mem 4x 16 GB DDR3 @ 1600 MHz
MIC 2x Intel Xeon Phi 3120A 57Core/228Thread @ 1.1 GHz - 6 GB GDDR5

5.3 Performance Analysis

In order to fully analyze the performance of XFLAT, the code should be bench-

marked on single-node and multi-node as well as homogeneous and heterogeneous

environments. It is expected that the performance of the code will scale linearly

or near-linearly with processor load (i.e., as problem size increases). To test this,

the code was benchmarked on three different available machines: Bethe (Table 5.1),

installed at the Center for Advanced Research Computing (CARC) at the University

of New Mexico; Bahcall (Table 5.2), located at the Physics and Astronomy Depart-

ment of the University of New Mexico; and the Stampede supercomputer (Table 5.3),

installed at the Texas Advanced Computing Center (TACC). The TACC Stampede

system is a 10 PFLOPS (PF) Dell Linux Cluster based on 6400+ Dell PowerEdge

server nodes, each outfitted with 2 Intel Xeon E5 (Sandy Bridge) processors and

an Intel Xeon Phi coprocessor (Intel MIC). The aggregate peak performance of the

Xeon E5 processors is 2+PF, while the Xeon Phi processors deliver an additional

aggregate peak performance of 7+PF [TACC, 2015].

Based on Stampede’s specifications, Hyper-Threading (HT) was apparently dis-

abled on Stampede’s compute nodes. This was confirmed in an email dated 11/26/14

by TACC’s system administrators. They stated:
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Table 5.3: Stampede Dell PowerEdge C8220z compute node specifications.

CPU 2x Intel Xeon CPU 8Core/8Thread E5-2680 @ 2.7 GHz
Mem 8x 4096 MB DDR3 @ 1600 MHz
MIC 2x Intel Xeon Phi SE10P 61Core/244Thread @ 1.1 GHz - 8 GB GDDR5

“HPC workloads are typically parallelized in a homogeneous fashion, and this

is not optimal for HyperThreading – if all the threads are going after the same

resources, then performance is not likely to improve much, and will often decrease

due to contention for cache resources and DRAM banks. The primary reason we have

disabled HyperThreading on all of our production systems is that the performance

degradation due to incorrect assignment of processes/threads to logical cores can

easily outweigh the (modest) benefits that HyperThreading might provide. The

variability in performance due to incorrect assignment of processes/threads to logical

cores would almost certainly confuse users and significantly increase our support

workload.”

Interestingly, however, and as depicted in Fig. 5.34, when XFLAT was bench-

marked on Bahcall using Hyper-Threading a small performance gain was observed.

In the remaining plots presented in this section, an instance of XFLAT (extended

supernova module), was run on each compute node. Unless stated otherwise, in all

of the following benchmarks the number of energy bins was set to 100, the number of

azimuth angles (ϕ bins) was set to 100, and only the number of zenith angles (ϑ bins)

was varied. There may be thousands of neutrino zenith angles in a typical problem

size, and the number of zenith angles can be increased until it hits the maximum

available memory on each node.

The starting point of problem size for the following benchmarks was 1000×100×

100 (θ angles×φ angles× Energy bins) beams and the number of zenith angles was

increased by 500 bins until it hit T×100×100 neutrino beams in which the parameter

137



5.3. PERFORMANCE ANALYSIS

 

0

100

200

300

400

500

600

1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e 
in

 s
ec

.

Number of zenith angle beams

6 core cpu w/ 12 threads 6 core cpu w/ 6 threads

Figure 5.34: CPU benchmark with and without Hyper-Threading on Bahcall. The
blue line shows a run utilizing all threads on the processors, while the orange line
shows a run utilizing single thread per core on the CPU.

T depended on the available memory for the CPU or MIC. All the benchmarks were

executed for a total of 100 radial steps.

5.3.1 XFLAT single processor scalability

The first set of benchmarks was designed to test XFLAT scalability as the load

increased on a single processor. As shown in Fig. 5.35, when the load was increased

on the CPU the timing increased linearly. This shows that the code can utilize

the entire processor, since by increasing the load the performance did not decrease.

However, surprisingly, on the dual-socket Bahcall, at ∼ 4500 zenith beams the timing

started to improve!

This behavior was unexpected since typically by increasing the amount of load

on a node, the performance behaves linearly or decreases after reaching a particular
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Figure 5.35: XFLAT performance on Bethe and Bahcall machines using a single
CPU. The orange curve shows the run time on Bahcall and the blue line shows the
run time on Bethe, both as a function of the number of zenith angles. Due to memory
limitations runs with greater than 4500 zenith angle beams could not be performed
on Bethe.

point. The first step to investigate more about this result was to take into account

the hardware differences between the two machines. Bahcall equipped with more

memory, thus it was possible to continue the benchmark using a larger number of

neutrino beams. However, the performance of the Bethe’s CPU was about 30%-40%

better than Bahcall’s, although both CPUs are the same model and Bahcall’s is a

later version (Bahcall’s CPU is E5-2620v2 and Bethe’s CPU is E5-2620). Hence,

two puzzling behaviors can be seen in Fig. 5.35: the improvement of XFLAT timing

when the load increased on Bahcall, and second, Bethe’s better CPU performance,

even though Bahcall is equipped with a newer generation of CPU.

Both of these behaviors can be explained by noting an important additional

hardware configuration difference between Bahcall and Bethe. On Bethe, the RAM

modules are all connected directly to the single available CPU, while on Bahcall half
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Figure 5.36: Illustration of the memory configuration in NUMA architecture ma-
chines, such as Bahcall. CPUs are connected via Intel QPI link and DDR3 is the
link between the memory and processor.

of the RAM modules are installed on the other zone, i.e., connected to the other

CPU socket. On Bahcall the CPU accesses the second half of the RAM via the QPI

bus (Fig. 5.36). Consequently, the timing improvement was conjectured to be due

to the fact that on Bahcall, when too many beams are allocated, some of them are

actually allocated on the other memory zone, which is connected to the second CPU

socket. Therefore, since accessing the RAM modules on the second zone is provided

via QPI bus, the first CPU gained extra memory bandwidth. In other words, the

CPU can access to the first part of the memory via its direct memory bus, and it

can simultaneously access the second part via the QPI bus.

The first step to confirm this hypothesis was to find out the physical location of

the allocated memory by consulting the operating system. On most of the Linux

systems this can be confirmed by probing the /proc/buddyinfo file. Bahcall’s OS

is RedHat-based and according to RedHat:

“This file is used primarily for diagnosing memory fragmentation issues. Using

the buddy algorithm, each column represents the number of pages of a certain order

(a certain size) that are available at any given time. For example, for zone DMA

(direct memory access), there are 90 of 20∗PAGE SIZE chunks of memory. Similarly, there

are 6 of 21∗PAGE SIZE chunks, and 2 of 22∗PAGE SIZE chunks of memory available. The

DMA row references the first 16 MB on a system, the HighMem row references all
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Figure 5.37: /proc/buddyinfo file content prior running XFLAT on Bahcall.

memory greater than 4 GB on a system, and the Normal row references all memory

in between.”

PAGE SIZE is a fixed-length continuous block of memory that is the smallest unit

of data for memory management on an operating system. Normally, PAGE SIZE is

4096 bytes. In the course of large memory allocation, the number of available pages

decreases accordingly. Therefore, it is possible that if the memory, which is directly

connected to the first CPU socket, is exhausted, then the rest of the allocation

is performed on the second memory zone that is connected to the second socket.

In Fig. 5.35, Bahcall’s performance was essentially linear up to 4500 zenith angle

beams; afterwards there is a sudden change when the number of allocated zenith

angle beams was set to 5000 and larger. By probing the /proc/buddyinfo file

during the allocation, it was possible to figure out if the performance gain was due

to the memory allocations on both sockets that resulted in providing more memory

bandwidth to the processor.

Fig. 5.37 illustrates the /proc/buddyinfo contents prior to XFLAT run on Bah-

call, showing that there were plenty of pages available on both sockets (Node 0 and

Node 1).

For a problem size below the 5000 zenith angle beams, the required memory

for XFLAT could fit onto one memory zone, therefore the code did not utilize more

memory bandwidth. As a result, it scaled linearly. For example, as shown in Fig. 5.38

for a run with 2000 zenith angles, the entire required memory was allocated onto
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Figure 5.38: /proc/buddyinfo file content when XFLAT instance fit onto one mem-
ory zone on Bahcall.

Figure 5.39: /proc/buddyinfo file content when XFLAT instance does not fit onto
one zone on Bahcall.

Node 0 only.

However, as soon as the number of zenith angle beams exceeded∼ 5000, the entire

allocation could not fit onto one zone, thus several memory pages were allocated on

the other memory zone. In this way, extra buses became available for transferring

memory from/to CPU via QPI. Fig. 5.39 illustrates a run with 5000 zenith angle

beams. In contrast to the previous screenshots, the available pages (especially large

chunk size pages) were depleted on both zones (sockets), which confirms the memory

distribution over both sockets.

Moreover, in order to confirm this result from a software point of view, XFLAT

was benchmarked for two different scenarios. One benchmark was designed so that

in the first run, the neutrino’s beams were distributed evenly on both memory zones

using all available threads on both CPU sockets, but the calculations were performed

by employing only the first CPU’s threads. In this way, similar to the previous

benchmarks, only one CPU was employed to process the data, yet half of the memory

was connected directly to the CPU and the rest of the memory was connected to

the CPU via QPI. This resulted in providing more aggregate memory bandwidth.
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#pragma omp parallel for num_threads(24)

for (int i = 0; i < neutrino_beams; ++i)

new (&beam[i]) NBeam();

Figure 5.40: Parallel neutrino beam memory allocation using all available threads
on Bahcall.

#pragma omp parallel for num_threads(12)

for (int i = 0; i < neutrino_beams; ++i)

exec(beam[i]);

Figure 5.41: Parallel execution of neutrino beams using half of the available threads
on Bahcall.

In order to reach this goal, OpenMP threads were utilized. First, for the memory

initialization all the available threads were used on Bahcall (12 threads per CPU),

as illustrated in Fig. 5.40. Hence, memory usage was uniformly distributed over two

sockets.

After performing memory initialization, the rest of the computational loops were

performed using only the OpenMP threads on the first CPU. Therefore, the number

of threads were adjusted to 12 (Fig. 5.41), since each CPU on Bahcall has 12 hardware

threads.

Nevertheless, enabling only half of the available threads on Bahcall was not

enough, since one has to make sure that only threads on the first CPU were par-

ticipating in the computational loops. This can be achieved by invoking OpenMP

functions within the program or by setting environment variables from the OS shell.

The settings and commands may vary between compilers and shells. For all of the

benchmarks the Intel compiler was used and OpenMP threads were located as close

as possible to each other (export KMP AFFINITY=compact). As a result, utilizing

the first CPU with 6 cores/12 threads was possible at run time.

143



5.3. PERFORMANCE ANALYSIS

 

0

200

400

600

800

1000

1200

1400
Ti

m
e 

in
 s

ec
.

Number of zenith angle beams

Bahcall CPU (12T exec.) Bahcall CPU (24T mem. init. / 12T exec.) Bethe CPU (12T exec.)

Figure 5.42: XFLAT performance on Bahcall when different numbers of threads
(indicated by 12T or 24T) are utilized for memory initialization (init.) and execution
(exec.). Green curve illustrates performance when a single Bahcall CPU was utilized
for memory initialization and execution. Blue curve illustrates performance when
both Bahcall CPUs was utilized for memory initialization but only a single CPU
were employed for execution. Yellow curve illustrates the performance of the single-
CPU Bethe machine.

Fig. 5.42 illustrates that by applying these changes, the code now scaled linearly

on Bahcall and the timing results were similar to those on Bethe. Furthermore, the

performance of Bahcall’s CPU was very similar to Bethe’s CPU due to providing

more memory channels.

The performance difference initially observed between the two machines was this

clearly related to the memory bottleneck on Bahcall. Two RAM modules (each

16 GB) were connected to each CPU on Bahcall, while on Bethe, eight RAM modules

(each 4 GB) were connected to the CPU. Since Bahcall’s CPU could not reach

full capability due to this bandwidth bottleneck, the RAM configuration on the

machine was subsequently modified in order to provide higher memory bandwidth.
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Previously, Bahcall was equipped with four 16 GB RAM modules, two installed on

each zone (connected to each CPU). However, the Bahcall’s CPU (Xeon E5-2620v2)

can support a quadruple-channel architecture, which increases data transfer rate by

adding four communication channels between the CPU and RAM modules.

The multi-channel technology effectively multiplies data throughput from RAM

to the CPU’s memory controller by providing multiple channels. In the single-channel

configuration there is only one 64-bit memory channel to transfer data between the

RAM and CPU (see Fig. 5.43). In the dual-channel configurations, two channels

are available between the selected RAM modules and the memory controller, thus

the effective data channel is equal to a 128-bit channel (see Fig. 5.44). The same is

true for triple and quadruple channel configurations that are only available on high-

end CPUs such as Bahcall’s CPUs. The multi-channel technology requires identical

RAM modules. For instance, for the quadruple-channel configuration four identical

RAM modules should be installed on specific slots on motherboard. The RAM

modules should be identical in capacity, speed, latency, number of memory chips,

and matching size of rows and columns of memory cells.

Consequently, the RAM configuration on Bahcall’s machine was changed and

eight 8 GB RAM modules were installed on it; four modules on each CPU zone.

The rest of the memory’s specifications remained identical as before. Fig. 5.45 de-

picts the improvement for the single-CPU benchmark and Fig. 5.46 illustrates the

improvement for the dual-CPU benchmark on Bahcall.

The next performance benchmark for the scaling of XFLAT was the performance

benchmark on multi-socket systems. Bahcall and a single Stampede compute node

were utilized for that purpose. On Bahcall, Hyper-Threading was enabled; thus, up

to 24 threads could be employed for the benchmark. Since each node of Stampede

contains two 8-core CPUs, and Hyper-Threading was disabled as noted above, it

was possible to utilize up to 16 threads per Stampede node. Two separate XFLAT
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Figure 5.43: Illustration of single-channel memory configuration between Intel CPU
and DDR3 memory modules [www.gamersnexus.net, 2015]. One 64-bit channel is
available for transferring data to/from the CPU.

benchmarks were performed on a single Stampede node. The first one launched one

MPI task per socket (illustrated in Fig. 5.47), and the other launched only one MPI

task per compute node (one MPI task per two CPUs) as shown in Fig. 5.48.

Since XFLAT can uniformly allocate memory on multi-socket nodes, and since

the QPI buses between CPUs on a Stampede node have enough bandwidth (dual

QPI, 8 GT/s (GigaTransfers per second) per QPI bus), the performance difference

between the two benchmarks is negligible as depicted in Fig. 5.49.

The technical reasons for the performance similarity between the two Stampede

benchmarks is due to the way that the code is implemented. There are two main

features that keep performance satisfactory on the multi-socket benchmarks. First of

all, during memory initialization (see discussion of first touch earlier in this section),

all of the threads contribute in the initialization section. This indicates that the

memory section related to each thread resides as close as possible to the thread.

Therefore, threads on one CPU do not have to try to access the other CPU’s memory
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Figure 5.44: Illustration of dual-channel memory configuration between Intel CPU
and DDR3 memory modules [www.gamersnexus.net, 2015]. Two 64-bit channels
(one 128-bit aggregate channel) are available for transferring data to/from the CPU.

zone, thus the communication overhead between sockets is reduced.

Another reason is because of the selected approach for implementing the Hamil-

tonian in XFLAT. In order to compute the total Hamiltonian, which depends on the

selected physics module, one or more nested summation loops have to be computed.

According to Eq. 3.8, the value of the integral can be calculated by performing a loop

over all of the neutrino’s angle beams. Since the neutrino beams are distributed over

compute nodes, a bad implementation would transfer a lot of data between nodes

in order to calculate the integral. However, in XFLAT, each node can go through

an independent loop for calculating the partial integral over their own set of beams.

At the end of the loops, only the final value is exchanged between nodes via the

MPI Allreduce() function. Therefore, every node at the end of the Hamiltonian

function has the final value of the Hamiltonian integral. In this way, only a few

bytes are required to be exchanged after the completion of the nested loops on each
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Figure 5.45: Single CPU timings on Bahcall when 4 RAM modules were installed
(blue) and when 8 RAM modules were installed (orange).

node. Within the neutrino evolution loop there are not many exchange points, thus

there is no need for large communication bandwidth. As a result, it is expected that

by increasing the number of nodes, the performance of XFLAT should not drop and

will scale linearly.

Prior to studying the multi-node benchmarks, XFLAT was benchmarked on single

CPU, dual CPU, single MIC, and dual MIC configurations on a single node. As

shown in Fig. 5.50, XFLAT was benchmarked on a Stampede node for 1000 radial

steps. The number of zenith angles started at 200 and scaled up to 1200. It was not

possible to fit additional beams onto the MIC’s memory.

As can be seen from the figure, MIC performance was about three times higher

than that of the CPU on Stampede. In addition, the performance of the dual-

processor benchmarks was twice that of the single-processor benchmarks.
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Figure 5.46: Dual CPU timings on Bahcall when 4 RAM modules were installed
(blue) and when 8 RAM modules were installed (orange).

5.3.2 XFLAT perofrmance on heterogeneous environments

Since XFLAT should be able to utilize both the MIC and CPU simultaneously, the

next stage of XFLAT performance analysis was to study code performance on hetero-

geneous (MIC and CPU together) environments. As the first step on a heterogeneous

Figure 1. Bahcall's dual CPU benchmark for two different memory configurations 
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Figure 2. One MPI task per processor on NUMA architecture 

Figure 5.47: A single MPI task per socket that only employs a single CPU on the
NUMA architecture. Blue squares are CPUs and green recangles are RAM modules.
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As XFLAT can uniformly distribute memory on multi-socket nodes and since the QPI busses between CPUs 

on Stampede’s nodes have enough bandwidth (2x QPI, 8GT/s per QPI), the performance difference is 

negligible as illustrated below. 

 

 

CPU1 

OpenMP communications 

Over 

QPI 

CPU0 

DDR3 

DDR3 

MPI single task 

Figure 1. One MPI task on a NUMA architecture 

Figure 5.48: A single MPI task per node that employs the entire system including all
available processors on the NUMA architecture. Blue squares are CPUs and green
recangles are RAM modules.

system, such as the Stampede supercomputer, appropriate data distribution across

different processors must be determined. Since in a heterogeneous environment the
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Figure 5.49: XFLAT benchmark utilizing different process configurations. Blue curve
illustrates performance on the dual-socket Bahcall machine by employing only one
MPI task. Orange curve illustrates performance on dual-socket Stampede node by
employing one MPI task per socket. Grey curve illustrates the performance on
Stampede node using one MPI task per entire node.
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Figure 5.50: Illustration of XFLAT performance on a single Stampede node. Blue
line illustrates single CPU performance. Orange line illustrates dual CPU perfor-
mance. Grey line illustrates single MIC performance. Yellow line illustrates dual
MIC performance. The timings were measured for ∼ 1000 radial steps.

computational capability of each processor may differ even within a node, there needs

to be a precise mechanism to decide what portion of data should be placed on each

processor based on its computational capabilities. If the code runs on a heteroge-

neous cluster with a load-imbalanced configuration, the MPI communication cost

will be high. Due to load imbalance on nodes, the waiting time at synchronization

points increases. This means that a few tasks may complete earlier and remain idle.

They will then have to wait for the other tasks to reach the same synchronization

point. In addition to the idle nodes, there may also be oversubscribed nodes.

The first heterogeneous XFLAT benchmark was designed to identify the “sweet

spot” for the CPU and MIC on Stampede. The goal was to identify the optimal MIC

to CPU load ratio. The motivation for this benchmark was that the raw performance

of a processor, its FLOPS capability, and actual performance, which may be different

based on the application’s instructions, are not necessarily identical. Therefore, even

when the raw performance of the CPU and MIC are known in advance, actual XFLAT

151



5.3. PERFORMANCE ANALYSIS

performance may vary depending on the details of the specific physics modules and

problem size. In addition, due to low-level differences in the underlying hardware,

the performance of a processor might be satisfactory for many instructions but not

satisfactory for other instructions. Therefore, depending on the instructions used in a

code, the relative performance (CPU vs. MIC) may vary. Although the instruction

set is similar for the CPU and MIC (both are x86-based), there are still several

factors that can affect the final performance of the code. Hardware design factors

such as the size and number of levels of cache memory, core frequency, memory bus

frequency, number of hardware threads per core, memory bandwidth, and length of

the vector registers, can all affect final performance dramatically. Therefore, both

CPU and MIC must be benchmarked using the actual XFLAT code in order to find

the true sweet spot.

For the first timing benchmark, the number of neutrino beams was manually

chosen to be 1000 × 100 × 100 (θ angles × φ angles × Energy bins), and the

number of total radial steps for the calculation was fixed at 100. The number of

neutrino beams assigned to the MIC and CPU varied unless the optimal load ratio

for the overall node was found. As depicted in Fig. 5.51, the optimum MIC:CPU

load ratio was in the [2.7–3.0] range. The benchmark was also repeated for another

problem size with a different number of beams. Fig. 5.52 illustrates the benchmark

with a different problem configuration. This second benchmark was performed with

10000× 10× 100 (Θ angles×Φ angles× Energy bins) beams. The optimum point

remained in the same range as for the previous benchmark.

In Fig. 5.53 and Fig. 5.54, the maximum time spent within MPI functions is

shown. The maximum MPI time is the maximum time that either the CPU or MIC

spent in MPI functions. Since communication timings fluctuated on the proces-

sors, only the maximum MPI times were recorded. When communication increases,

overall code performance decreases, since time spent on communication is not be-
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Figure 5.51: XFLAT timing benchmark on a single-node heterogeneous envi-
ronment. Execution time shown for different MIC:CPU load ratios using 1000
zenith trajectories. Each point represents [number of theta angles on MIC : num-
ber of theta angles on CPU] (the normalized load ratio is shown in parenthesis).

ing performed. The benchmark was repeated for various MIC:CPU load ratios. A

minimum (optimum) region is observed around a similar range as in Fig. 5.51 and
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Figure 5.52: XFLAT timing benchmark on a single-node heterogeneous envi-
ronment. Execution time shown for different MIC:CPU load ratios using 10k
zenith trajectories. Each point represents [number of theta angles on MIC : num-
ber of theta angles on CPU] (the normalized load ratio is shown in parenthesis).
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Figure 5.53: XFLAT timing benchmark for a single-node heterogeneous environment.
The maximum time spent on MPI functions on either CPU or MIC is shown for
different MIC:CPU load ratios and runs employing 1000 theta beams. Each point
represents [number of theta angles on MIC : number of theta angles on CPU] (the
normalized load ratio is shown in parenthesis).

Fig. 5.52. On both sides of the minimum region the time increases. This increase

in timing is due to the fact that at least one processor is remaining idle and waiting

for other tasks to reach the synchronization point (which is due to load imbalance

between processors).

The best results were achieved when the load was distributed across both MIC

and CPU based on their respective computational capabilities. Consequently, the

MPI wait time was also minimized at the same point. The benchmarks show that on

the Stampede nodes, the optimal MIC:CPU load ratio range is in the range of 2.8:1

to 3.0:1. With this optimum load ratio known the next step can be benchmarking

the code on heterogeneous multi-node environments.
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Figure 5.54: XFLAT timing benchmark for a single-node heterogeneous environment.
The maximum time spent on MPI functions on either CPU or MIC is shown for
different MIC:CPU load ratios and runs employing 10k theta beams. Each point
represents [number of theta angles on MIC : number of theta angles on CPU] (the
normalized load ratio is shown in parenthesis).

5.3.3 XFLAT performance on multi-node systems

In light of the previous benchmarks presented in the previous section the on-node

MIC:CPU was set to 2.9:1 for all multi-node benchmarks, in order to minimize

processor idle time.

The first benchmark employed one CPU and one MIC per Stampede node. The

problem size was set to 10000× 10× 100 beams and the number of processed radial

steps was measured over a 100 second period of run time. The number of nodes was

varied from 1 to 16 nodes. As can be seen in Fig. 5.55, behavior was virtually linear

from one node up to 16 nodes. The 16-node benchmark utilized 32 MPI tasks overall.

16 of them employed 16 Xeon CPUs and the other 16 tasks employed the 16 Xeon

Phis. The maximum time spent in MPI functions among all nodes was recorded,

and the results are illustrated in Fig. 5.56.

Similar benchmarks were then performed on Stampede for the dual-CPU and
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Figure 5.55: XFLAT heterogeneous multi-node performance on Stampede (one CPU
and one MIC per node) for various numbers of compute nodes. The calculated radial
steps were measured for a ∼ 100 second run.
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Figure 5.56: Maximum spent time within MPI functions for various numbers of nodes
on Stampede (using one CPU and one MIC per node). The problem size was set to
10000×10×100 beams and the number of processed radial steps was measured over
∼ 100 second period of run time.
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Figure 5.57: XFLAT timing benchmark on single-node (dual-CPU and dual-MIC)
heterogeneous environment. The maximum time spent on MPI functions either
CPU or MIC is shown for different MIC:CPU load ratios and runs employing
1000 theta beams. Each point represents [number of theta angles on MIC : num-
ber of theta angles on CPU] (the normalized load ratio is shown in parenthesis).

dual-MIC node configurations. On each node there were two MPI tasks on the two

CPUs (one per CPU) and two MPI tasks on the two MICs (one per MIC).

As for the single-processor benchmarks, the MIC:CPU ratio was set to 2.9:1.

Fig. 5.57 and Fig. 5.58 illustrate the maximum time of MPI functions for the 1000×

100× 100 and 10000× 10× 100 beam configurations, respectively.

Next, benchmarks were performed using the identical problem size as for the

single processor benchmarks, but for varying numbers of nodes (1 to 16 compute

nodes). If the single-node benchmark utilized four MPI tasks (two on the CPUs and

two on the MICs), the 16-node benchmark utilized 64 MPI tasks. The results are

presented in Fig. 5.59.

Surprisingly, for runs employing more than 8 nodes, performance did not im-

prove. In fact, there were no significant improvement until the number of nodes

was increased to 16. By employing 16 nodes, an unexpected jump in performance is
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Figure 5.58: XFLAT timing benchmark on single-node (dual-CPU and dual-MIC)
heterogeneous environment. The maximum time spent on MPI functions either
CPU or MIC is shown for different MIC:CPU load ratios and runs employing
10k theta beams. Each point represents [number of theta angles on MIC : num-
ber of theta angles on CPU] (the normalized load ratio is shown in parenthesis).
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Figure 5.59: XFLAT heterogeneous multi-node performance on Stampede (two CPUs
and two MICs per node) for various numbers of compute nodes. The calculated radial
steps were measured for ∼ 100 second run.
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Figure 5.60: XFLAT heterogeneous multi-node performance on Stampede (two CPUs
and two MICs per node) by employing a double amount of load on each processor.
The calculated radial steps were measured for ∼ 100 second run.

observed.

It was conjectured that the lack of improvement in performance for 8–16 nodes

might be due to insufficient load on the Xeon Phi processors. In order to test this,

a benchmark was designed in which a double amount of load were placed on each

processor. As seen in Fig. 5.60, after placing twice more load on each component,

the performance of the dual-processor benchmark appeared to be similar to that of

the single-processor benchmark.

In addition, as another test, the single-processor benchmark was continued be-

yond 16 compute nodes. Consequently, the load on each processor eventually became

similar to the load on the dual-processor benchmark (for instance, for the 32-node

single-processsor benchmark, the load on a CPU was identical to the load on a CPU

in the dual-processor benchmark using 16 nodes). As illustrated in Fig. 5.61, the

same flat region that was observable in the dual-processor benchmark appeared again

in going beyond 16 nodes.

As a result, it can be concluded that the flat region in the performance result
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Figure 5.61: XFLAT heterogeneous multi-node performance on Stampede (one CPU
and one MIC per node) employing up to 32 nodes. The calculated radial steps were
measured for about ∼ 100 second run.

was not due to the number of employed nodes in the environment. One possible

explanation for this behavior was the fact that by increasing the number of nodes,

the overhead of sending and receiving MPI messages may affect overall performance.

Consequently, in order to validate this hypothesis, the net amount of MPI messages’

overhead should be extracted from the processors’ idle time to figure out whether

or not the overhead can affect overall XFLAT performance. Thus, detailed studies

on MPI tasks were undertaken in order to understand the role of MPI overhead in

XFLAT performance.

5.3.4 MPI communication overhead

In order to extract and measure the overhead of MPI communications from the idle

(waiting) time at synchronization points, two sets of benchmarks were designed.

In the first set, barriers were placed prior to each MPI synchronization point, and

the timer was started only after the barrier line. Hence, only the time of the MPI

communication section (the MPI overhead) was measured (see Fig. 5.62). As a result,
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while (conditions)

{

... // Computations!

// All of the process are synchronized at this point

MPI_barrier(...);

timer.Start();

MPI_Send(...);

timer.Stop();

...

}

Figure 5.62: Pseudocode illustrating measurement of MPI communication time ex-
cluding idle time by placing a barrier prior to the communication line.

all of the processes reached the synchronization point virtually at the same time.

In the second set of benchmarks the barrier line was removed, thus the idle time

of each process was included in the overall time (see Fig. 5.63).

Consequently, following removal of the barrier, due to the load imbalance be-

tween the MIC and CPU, one of them reached the synchronization point earlier.

while (conditions)

{

... // Computations!

timer.Start();

MPI_Send(...);

timer.Stop();

...

}

Figure 5.63: Pseudocode illustrating measurement of total MPI communication time
including idle time of processes.
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Therefore, it resulted in increased MPI time for that process. However, when there

was a barrier exactly prior to the synchronization point, since both the MIC and the

CPU reached the synchronization point virtually at the same time, the overhead of

the waiting time was eliminated from the MPI function timing. Therefore, during

applications run time when processes on different nodes reached the same synchro-

nization point simultaneously, the processes’ idle time remained minimized. As a

result, by minimizing the idle time more time could be dedicated for computations.

The designed benchmarks were performed for both blocking and non-blocking

MPI calls. Blocking functions are those for which all processes must reach the same

point before leaving the function. For non-blocking functions, they can return im-

mediately. In all of the following benchmarks the message size was equal to 8 double

precision numbers, and the loop iteration count was 10k. In order to break the sym-

metry and to make sure that one process always arrived later, the computational

section prior to the synchronization point was about three times higher on the Xeon

Phi, hence the process on the CPU always reached the communication points earlier

during the benchmarks without barriers (by at least tens of seconds). The results of

the MPI send/receive timing are shown in Table 5.4 in which a barrier was presented

before MPI was invoked and in Table 5.5 in which there was no barrier prior to

MPI being invoked. Furthermore, a ping-pong benchmark was performed in which

the first process sent data to the second process, and the second process then sent

data to the first one. Table 5.6 and Table 5.7 show the results for the ping-pong

benchmarks where barriers were presented and where barriers were removed before

MPI invocation, respectively.

There are several interesting observations to be made about these results. First,

it can be seen that the overhead of the MPI methods when initiated on the MIC side

was higher (i.e., when the CPU attempted to send data to the MIC, the overhead of

the MPI method was lower than in the case where the MIC attempted to send data
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Table 5.4: Timing measurement for MPI Send/Receive between two nodes when
a barrier was presented prior to the MPI invocation. The first column shows the
direction of the message flow. The second and third columns show the communication
time in seconds for the MIC and CPU, respectively.

Send/Recv MIC comm. time CPU comm. time
Blocking Sends

CPU→MIC 2.2 0.05
MIC→CPU 0.7 0.8

Non-blocking Sends
CPU→MIC 2.0 0.06
MIC→CPU 0.8 1.1

Table 5.5: Timing measurement for MPI Send/Receive between two nodes when
there was no barrier prior to the MPI invocation. The first column shows the direc-
tion of the message flow. The second and third columns show the communication
time in seconds for the MIC and CPU, respectively.

Send/Recv MIC comm. time CPU comm. time
Blocking Sends

CPU→MIC 0.9 37
MIC→CPU 2.1 39

Non-blocking Sends
CPU→MIC 0.4 0.03
MIC→CPU 2.2 39

to the CPU). Furthermore, the task to which the data was sent (the receiver task)

via the PCI Express bus had more wasted (idle) time (see Table 5.4 and Table 5.6).

Similar to the send and receive benchmarks, the next benchmarks measured MPI

communication time for the MPI broadcast messages. The broadcast benchmarks

showed that for the blocking calls, the node on which the message was initialized

wasted slightly less time for sending messages (Table 5.8). However, for the bench-

mark without barrier, when MIC was the receiver, its time at the synchronization

point was less than the time when the MIC was a sender (Table 5.9). Note that the

non-blocking broadcast data are not usable on the receiver side without making sure
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Table 5.6: Timing measurement for double MPI Send/Receive (ping-pong) between
two nodes when a barrier was presented prior to the MPI invocation. The first
column shows the direction of the message flow. The second and third columns show
the communication time in seconds for the MIC and CPU, respectively.

Send/Recv MIC comm. time CPU comm. time
Blocking Sends

CPU→MIC+MIC→CPU 2.8 2.7
MIC→CPU+CPU→MIC 3.6 0.8

Non-blocking Sends
CPU→MIC+MIC→CPU 2.6 2.9
MIC→CPU+CPU→MIC 3.6 1.1

Table 5.7: Timing measurement for double MPI Send/Receive (ping-pong) between
two nodes when there was no barrier prior to the MPI invocation. The first column
shows the direction of the message flow. The second and third columns show the
communication time in seconds for the MIC and CPU, respectively.

Send/Recv MIC comm. time CPU comm. time
Blocking Sends

CPU→MIC+MIC→CPU 3 40.7
MIC→CPU+CPU→MIC 5.5 41

Non-blocking Sends
CPU→MIC+MIC→CPU 3.1 40.2
MIC→CPU+CPU→MIC 5.5 41.1

that the message has arrived completely before trying to touch the buffer.

For the MPI reduction functions there was no non-blocking benchmark, since the

nature of MPI reduction function is blocking. As shown in Table 5.10 and Table 5.11,

for the MPI all-reduce functions, there was no significant difference between the

reduction with summation and reduction with maximum. Similar to the previous

results, removing the barrier caused a slight increase in the timing on the MIC side.

In all of the kernel benchmarks, the MPI invocation overhead was subtle. Con-

sequently, in addition to benchmarks the actual XFLAT code, with the actual in-
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Table 5.8: Timing measurement for MPI broadcast between two nodes when a barrier
was presented prior to the MPI invocation. The first column shows the direction of
the message flow. The second and third columns show the communication time in
seconds for the MIC and CPU, respectively.

Broadcast MIC comm. time CPU comm. time
Blocking Broadcasts

CPU→MIC 3.2 0.05
MIC→CPU 0.8 0.8

Non-blocking Broadcasts
CPU→MIC 0.2 0.00
MIC→CPU 0.9 0.01

Table 5.9: Timing measurement for MPI broadcast between two nodes when there
was no barrier prior to the MPI invocation. The first column shows the direction of
the message flow. The second and third columns show the communication time in
seconds for the MIC and CPU, respectively.

Broadcast MIC comm. time CPU comm. time
Blocking Broadcasts

CPU→MIC 1.0 37.2
MIC→CPU 2.1 38.1

Non-blocking Broadcasts
CPU→MIC 0.4 0.04
MIC→CPU 1.6 0.02

structions and messages, was benchmarked on Bahcall. The problem size was set to

555× 10× 100 (ϑ×ϕ×EBins) neutrino beams. The time for completing 10k radial

steps was measured and the benchmark was repeated for various MIC:CPU load

ratios. The results of the benchmarks in which barriers were presented before each

MPI synchronization and when the barriers were removed, are shown in Table 5.12

and Table 5.13, respectively.

As shown in Table 5.12, the time of the MPI communications in XFLAT was not

minimized at any point and fluctuated by varying the load ratio. That result was not

expected since a barrier was placed before each MPI communication point. Thus, the
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Table 5.10: Timing measurement for MPI reduction between two nodes when a
barrier was presented prior to the MPI invocation. The first column shows the
direction of the message flow. The second and third columns show the communication
time in seconds for the MIC and CPU, respectively.

All reduction MIC comm. time CPU comm. time
All reduce(SUM) 2.5 2.0
All reduce(MAX) 2.3 2.2

Table 5.11: Timing measurement for MPI reduction between two nodes when there
was no barrier prior to the MPI invocation. The first column shows the direction of
the message flow. The second and third columns show the communication time in
seconds for the MIC and CPU, respectively.

All reduction MIC comm. time CPU comm. time
All reduce(SUM) 3.2 39
All reduce(MAX) 3.4 40.1

MPI communication time should not be the function of load ratio. According to the

MPI standard, the MPI Barrier() function only guarantees that at some point all

the processes are within the barrier function; however, it does not guarantee that all

of them exit the barrier function at the same time [LLNL, 2015]. Therefore, the way

that the barrier function is implemented may affect the result. Hence, the observed

fluctuations may be due to the utilized MPI library on the Bahcall machine, which

was the MPICH library. Although the MPICH library [MPICH, 2015] is one of the

most popular and widely-used implementations of the MPI standard, an HPC design

was not the highest priority for its implementation, unlike other MPI implementa-

tions such as the MVAPICH [MVAPICH, 2015] or Intel MPI [Intel, 2015a] libraries

(another widely-used MPI library is Open MPI [MPI, 2015] which was not available

at the time of analysis for the Intel MIC architecture).

Since the Intel MPI library is not available as free software and MVAPICH is

the MPI library used over InfiniBand or 10GigE links on multi-node systems, it was

not possible to use these libraries on the Bahcall machine (Bahcall was equipped
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Table 5.12: XFLAT performance benchmark on Bahcall (using MPICH library) when
barriers were placed prior to each MPI synchronization. The first column shows the
load ratios of MIC to CPU (number of beams on the MIC and CPU). The second
and third columns show the communication time in seconds on the MIC and CPU,
respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (463:092) 17.7 13.0 254.3
4.5:1 (454:101) 16.8 12.5 217.6
4.0:1 (444:111) 16.5 13.3 215.3
3.5:1 (432:123) 16.7 15.5 214.7
3.0:1 (416:139) 14.1 14.1 209.0
2.5:1 (397:158) 12.0 18.3 205.8
2.0:1 (370:185) 11.3 20.9 245.2
1.5:1 (333:222) 11.3 23.8 262.6
1.0:1 (278:277) 11.4 21.3 332.1

with neither the InfiniBand cards nor the 10GigE cards). Fortunately, the Stampede

supercomputer utilizes the Intel MPI library. Consequently, the XFLAT code and

the Intel MPI library were benchmarked on one of the Stampede compute nodes.

The benchmarks were repeated with the same neutrino beam configuration and the

same iteration count. As can be seen in Table 5.14 and Table 5.15, unlike the pre-

vious results, the MPI communications time for benchmarks with barriers remained

constant. Therefore, the previously observed fluctuations in the benchmark results

(with barriers) were due only to the MPICH library design and implementation.

By switching to the Intel MPI library the expected results were achieved. In addi-

tion, the optimum MIC:CPU load ratio appeared to be around 3:1, which was in

agreement with the results of the previous benchmarks.

Nevertheless, if the number of beams on the MIC is not sufficient, the distribution

of beams over threads may affect results. The previous benchmarks were therefore

repeated using ten times more load on each processor (see Table 5.16 and Table 5.17).

In all of the previous benchmarks, the optimum MIC:CPU load ratio was around
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Table 5.13: XFLAT performance benchmark on Bahcall (using MPICH library) when
barriers were remove prior to each MPI synchronization. The first column shows the
load ratios of MIC to CPU (number of beams on the MIC and CPU). The second
and third columns show the communication time in seconds on the MIC and CPU,
respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (463:092) 19.8 134.1 232.8
4.5:1 (454:101) 19.4 90.1 199
4.0:1 (444:111) 19.1 77.1 197.3
3.5:1 (432:123) 19.3 65.5 195.7
3.0:1 (416:139) 18.0 48.5 191.4
2.5:1 (397:158) 26.3 24 187.1
2.0:1 (370:185) 63.9 14.8 219.8
1.5:1 (333:222) 89.3 12.7 236.7
1.0:1 (278:277) 171.8 13 310

3:1. This fact indicates that on Stampede, the optimum load on the MIC should be

about three times higher than the CPU load in order to achieve optimum perfor-

mance. These results are consistent with the previous sweet spot identification on

Stampede.

Nevertheless, in order to find a more precise number for the sweet spot, a more re-

fined range for the load ratios should be searched. From the previous results, it could

be concluded that the range of 2.5–3.5 load ratios should be searched so as to find the

sweet spot. Therefore, two benchmarks were performed on the refined range to find

the precise sweet spot. The first benchmark utilized 555× 10× 100 (ϑ×ϕ×EBins)

number of neutrino beams similar to the previous benchmark (see Table 5.18), and

the second benchmark employed a different neutrino beam number (12000×10×100).

Consequently, the number of neutrino beams on each processor differed from the

first benchmark (see Table 5.19). The timings were measured for 1000 radial steps.

The result shows that the more accurate optimum MIC:CPU load ratio was around

2.9:1.0. Fig. 5.64 depicts the separately scaled XFLAT performance for two bench-
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Table 5.14: XFLAT performance benchmark on Stampede (using Intel MPI library)
when barriers were placed prior to each MPI synchronization. The first column shows
the load ratios of MIC to CPU (number of beams on each side). The second and third
columns show the communication time in seconds on the MIC, CPU, respectively.
The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (463:092) 3 3.5 168.9
4.5:1 (454:101) 2.9 3.3 166.2
4.0:1 (444:111) 2.9 3.3 164.1
3.5:1 (432:123) 2.9 3.3 163.7
3.0:1 (416:139) 3 3.3 163
2.5:1 (397:158) 3 3.2 165.1
2.0:1 (370:185) 3 3 186
1.5:1 (333:222) 2.9 2.8 215.9
1.0:1 (278:277) 2.9 2.9 265.2

marks. Similar to the previous findings, if enough load is placed on the MIC and

CPU, the single-node MIC:CPU ratio sweet spot is about 2.9:1 on Stampede.

In all of the benchmarks with a barrier, ∼ 3− 4 seconds of overall MPI overhead

was always observed. That overhead was due to invoking MPI functions alone, and

it was not possible to exclude it from XFLAT runs on multi-node environments. The

overhead was still small enough that it does not cause any major performance hit.

Therefore, none of the benchmarks could explain the reason for previously-observed

flat region on the heterogeneous multi-node benchmarks.

On a single node the MPI overhead was not problematic, however, for the multi-

node benchmarks MPI communication was heavily used. In the next section, XFLAT

multi-node performance benchmarks are simulated so as to eliminate this MPI over-

head.

169



5.3. PERFORMANCE ANALYSIS

Table 5.15: XFLAT performance benchmark on Stampede (using Intel MPI library
library) when barriers were removed prior to each MPI synchronization. The first
column shows the load ratios of MIC to CPU (number of beams on each side). The
second and third columns show the communication time in seconds on the MIC,
CPU, respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (463:092) 6 80.8 166.9
4.5:1 (454:101) 5.8 71 165
4.0:1 (444:111) 5.7 60.9 163.6
3.5:1 (432:123) 5.7 39.7 162.6
3.0:1 (416:139) 6.1 26.7 160.8
2.5:1 (397:158) 10.1 15.3 162.4
2.0:1 (370:185) 30 6.8 181
1.5:1 (333:222) 64.1 6.6 211.4
1.0:1 (278:277) 118.2 6.1 260.4
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Figure 5.64: Stampede single-node benchmark for two different neutrino beam con-
figurations, 5550× 10× 100 and 12000× 10× 100, for various MIC:CPU load ratios.
In order to compare the two curves on the same scale, the timings for them were
scaled (normalized) (actual times in Table 5.18 and Table 5.19).
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Table 5.16: XFLAT performance benchmark, by employing ten times more load on
each processor, on Stampede (using Intel MPI library) when barriers were placed
prior to each MPI synchronization. The first column shows the load ratios of MIC
to CPU (number of beams on each side). The second and third columns show the
communication time in seconds on the MIC, CPU, respectively. The fourth column
lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (4630:0920) 3.5 3.9 1576
4.5:1 (4540:1010) 3.5 3.9 1584
4.0:1 (4440:1110) 3.4 3.9 1544
3.5:1 (4320:1230) 3.6 4.1 1488
3.0:1 (4160:1390) 3.6 3.8 1435
2.5:1 (3970:1580) 3.6 3.7 1514
2.0:1 (3700:1850) 3.4 3.5 1742
1.5:1 (3330:2220) 3.5 3.5 2103
1.0:1 (2780:2770) 3.4 3.5 2562

5.3.5 Eliminating inter-node message passing

It is possible to design a benchmark to simulate a multi-node load run on a single

node without including any inter-node communication. This can be achieved by

placing the amount of load on a single machine equal to the load on a node in

a multi-node environment. For fixed problem size, in a multi-node environment,

by increasing the number of compute nodes, the amount of load on a single node

decreases. A multi-node simulation on a single node measures computational effects

only (no inter-node communication can be performed) by adjusting the load on the

single-CPU and single-MIC configurations, accordingly.

To perform these tests, the initial problem size was set to 10000×10×100 neutrino

beams for a single node. As the number of nodes was increased, the load on a single

compute node was adjusted to be equal as the load of a node in the analogous multi-

node configuration. The benchmark was run for ∼ 100 seconds and the calculated

integer number of radial steps was measured. As illustrated in Fig. 5.65, the flat
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Table 5.17: XFLAT performance benchmark, by employing ten times more load on
each processor, on Stampede (using Intel MPI library) (using ten times more load
on each processor) when barriers were removed prior to each MPI synchronization.
The first column shows the load ratios of MIC to CPU (number of beams on each
side). The second and third columns show the communication time in seconds on
the MIC, CPU, respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
5.0:1 (4630:0920) 6 722 1587
4.5:1 (4540:1010) 6 671 1584
4.0:1 (4440:1110) 6 542 1543
3.5:1 (4320:1230) 7 313 1480
3.0:1 (4160:1390) 10 222 1471
2.5:1 (3970:1580) 103 77 1502
2.0:1 (3700:1850) 394 58 1724
1.5:1 (3330:2220) 878 54 2055
1.0:1 (2780:2770) 1500 46 2531

region in XFLAT performance is still observed.

Since the flat region appeared only when the number of nodes increased beyond
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Figure 5.65: Stampede single-node (one CPU and one MIC) multi-node simulation
benchmark. The x-axis corresponds to the effective number of compute nodes based
on load. The number of calculated radial steps was measured for ∼ 100 seconds.
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Table 5.18: XFLAT performance benchmark on Stampede (using 5550 × 10 × 100
neutrino beams) to find more refined MIC:CPU load ratio range. The first column
shows the load ratios of MIC to CPU (number of beams on each side). The second
and third columns show the communication time in seconds on the MIC, CPU,
respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
3.4:1 (4289:1261) 6 347 1485
3.3:1 (4260:1290) 7 322 1489
3.2:1 (4229:1321) 6 281 1472
3.1:1 (4196:1354) 7 280 1499
3.0:1 (4163:1387) 8 242 1492
2.9:1 (4127:1423) 23 163 1441
2.8:1 (4090:1460) 34 143 1456
2.7:1 (4050:1500) 53 121 1473
2.6:1 (4008:1542) 108 67 1524

16 nodes (i.e. performance did not improve by increasing the number of nodes to

18, 20, 22, etc.). A load equal to the load of a single node in the 18-node, 20-node,

22-node configurations was placed in order to study the performance in this region.

In addition, the MIC:CPU load ratio also varied in order to study the effect of the

processor idle time on overall performance. Each benchmark was run for ∼ 100

seconds and the time spent at synchronization points was also recorded. (Although

no inter-node MPI communications were involved, either the CPU or the MIC could

reach the synchronization points sooner, resulting in measurable idle time).

Fig. 5.66 is a plot of MPI idle time as a function of MIC:CPU load ratio for a

fixed problem size (simulated 18-node load). The times for the MPI synchronization

points were recorded separately for the MIC and CPU. The total load was set to

555×10×100 neutrino beams, which was the load analogous to the load on a node in

the 18-node configuration. Likewise, Fig. 5.67 and Fig. 5.68 illustrate the benchmark

results for a single node using 500×10×100 and 455×10×100 neutrino beams (equal

to the load of a single node in the 20-node and 22-node environments), respectively.
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Table 5.19: XFLAT performance benchmark on Stampede (using 12000 × 10 × 100
neutrino beams) to find more refined MIC:CPU load ratio range. The first column
shows the load ratios of MIC to CPU (number of beams on each side). The second
and third columns show the communication time in seconds on the MIC, CPU,
respectively. The fourth column lists overall run time in seconds.

MIC:CPU (beams#) MIC comm. time CPU comm. time Overall time
3.4:1 (9273:2727) 0.08 6.28 30.8
3.3:1 (9209:2791) 0.08 5 30.1
3.2:1 (9143:2857) 0.08 4.9 30.6
3.1:1 (9073:2927) 0.09 4.5 30.7
3.0:1 (9000:3000) .3 3.2 30
2.9:1 (8923:3077) .7 2.2 29.8
2.8:1 (8842:3158) 1 2 30.3
2.7:1 (8757:3243) 2 1.1 30.2
2.6:1 (8667:3333) 3 1.1 31.3

These results all show normal behavior, i.e., by changing the load ratio, the timing

on one side increases and on the other side decreases. Therefore, MPI overhead does

not explain the previously observed flattening behavior in the performance trend as

the problem size is kept fixed and number of nodes is increased.

The other factor that can potentially affect the XFLAT performance is the pro-

cessors’ internal load imbalance. Modern processors, especially the Xeon Phi, are

equipped with many cores and threads. Thus, the way that the neutrino beams

are distributed across threads may affect overall performance of a processor. Hence,

further benchmarks on multi-node environment were required, and for a controlled

single-processor-type (homogeneous node) environment.

5.3.6 The distribution of neutrino beams across threads

Since the number of available hardware threads on each Stampede Xeon Phi is 244,

and the number of threads on its CPU is 8, an issue related to load distribution
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Figure 5.66: Performance of a single node for the simulated 18-node run (single
CPU and single MIC) for various MIC:CPU load ratios. The wasted time at MPI
synchronization functions were measured separately for the CPU and MIC. The
calculated number of radial steps was measured for a ∼ 100 second run. The load
ratio marked with ∗ indicates where the number of beams divided by the number of
threads on the MIC is an integer.

can arise when the load is imbalanced across the Xeon Phi’s threads. When the

number of neutrino beams is not divisible by the number of available threads, a few

threads may end up receiving more tasks for processing, thus causing load imbalance.

Furthermore, the load imbalance on threads may be related to the observed flat region

in the XFLAT heterogeneous benchmarks. In order to further investigate this issue,

CPU-only and MIC-only benchmarks are required. XFLAT should be able to scale

well on both homogeneous and heterogeneous environments, including environments

equipped with only one type of processor.

Other important benchmarks reported here include the multi-node CPU-only

and MIC-only benchmarks. These benchmarks utilize two CPUs or two MICs on

Stampede’s node. For these runs, the problem size was set to 1000 × 10 × 100 and
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Figure 5.67: Performance of a single node for the simulated 20-node run (single
CPU and single MIC) for various MIC:CPU load ratios. The wasted time at MPI
synchronization functions were measured separately for the CPU and MIC. The
calculated number of radial steps was measured for a ∼ 100 second run. The load
ratio marked with ∗ indicates where the number of beams divided by the number of
threads on the MIC is an integer.

the calculated number of radial steps for ∼ 100 seconds was measured. The results

of the CPU and MIC benchmarks are depicted in Fig. 5.69. For the CPU-only

benchmark, the code scaled linearly; however, for the MIC-only benchmark the flat

region was still noticeable.

The flat region appeared only when the number of compute nodes increased

beyond a particular value. Since, for a particular problem size, increasing the number

of nodes causes the number of neutrino beams per processor to decrease, the issue

may be related to the number of available neutrino beams per hardware thread. In

fact, with a simple calculation it can be shown that the reason for the flat region

in the Xeon Phi’s performance is due to load imbalance. For example, as depicted

in Fig. 5.69, when the number of compute nodes was 20, the load on a single MIC
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Figure 5.68: Performance of a single node for the simulated 22-node run (single
CPU and single MIC) for various MIC:CPU load ratios. The wasted time at MPI
synchronization functions were measured separately for the CPU and MIC. The
calculated number of radial steps was measured for a ∼ 100 second run. The load
ratio marked with ∗ indicates where the number of beams divided by the number of
threads on the MIC is an integer.

was equal to 250 zenith angle beams. Since this number of beams needed to be

distributed over 244 hardware threads, all of the threads performed calculations on

1 beam except for 6 threads to which 2 beams were assigned (250 mod 244 = 6).

Hence, at the end of every iteration, all of the threads except 6 had to remain idle

waiting for the last 6 threads to complete. The resulted in a performance hit, and

the outset of the flat performance region. On the other hand, when the number

of compute nodes was 22, the load on each MIC was equal to 227 beams, thus the

computational load on all of the threads were nearly the same. There was no need

for threads to wait for only a few threads to complete their tasks.

If the reason behind the flat region is truly due to the load distribution, this

behavior should be reflected in other benchmarks with different configurations and
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Figure 5.69: Multi-node homogeneous (CPU-only and MIC-only) benchmarks on
Stampede. The blue line (CPU) shows that the performance of the CPU scaled
virtually linearly by increasing the number of nodes. However, the orange line (MIC),
illustrates that the performance of the MIC scaled non-linearly. The problem size
was set to 1000×10×100 and the calculated number of radial steps for about ∼ 100
seconds was measured. Each node was equipped with two CPUs and two MICs.

loads as well. Therefore, another benchmark on the single-CPU and single-MIC

configurations was performed in which the multi-node benchmarks were simulated

by adjusting the load ratio on processors based on the load of a node in the multi-

node environment, as described previously. As a result, there was no inter-node

communications. In addition, the new benchmark employed a different problem size

(3000 × 30 × 100 beams) with the 2.9:1 MIC to CPU load ratio. The number of

calculated radial steps was measured for a ∼ 100 second run.

As shown in Fig. 5.70, the flat behavior is observable for benchmarks with 6 to

10 nodes. For instance, for the 8-node run, there were 375 zenith beams on one node

for which 279 were allocated on the Xeon Phi. Consequently, a very low number

of threads (35 out of 244 threads) were allocated twice as many beams, so that all
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Figure 5.70: Simulated multi-node benchmark on single node (one CPU and one
MIC) of Stampede. At each point, the load on the node was adjusted to be equal to
the load on a node in a multi-node configuration. The benchmark employed different
problem sizes (3000 × 30 × 100 beams) and the 2.9:1 MIC to CPU load ratio. The
number of calculated radial steps was measured for about ∼ 100 seconds.

other threads had to wait for them to complete their tasks for every iteration. As

a result, there was no improvement in performance for increase number of nodes

since the benchmark’s result remained virtually identical that of the 6-node run. On

the other hand, for the 10-node run there were 223 zenith beam allocated on the

Xeon Phi. Nearly all of the available threads had the identical number of beams

for calculation, so that there were no waiting time for majority of threads per loop

iteration. Consequently, all threads completed their tasks simultaneously resulting in

a significant performance gain in comparison to the 8-node run. As mentioned earlier,

by going beyond 10 nodes, the number of available beams on Xeon Phi decreases and

becomes too low, resulting in not utilizing the entire processor. Therefore, since the

number of beams was less than the number of available threads on the Xeon Phi, the

flat region for number of nodes greater than 10 was due to insufficient load on the

co-processor. The insufficient load resulted in permanent idle time for many threads

of the co-processor.
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Figure 5.71: The effect of Xeon Phi thread load imbalance on overall performance.
On the left side, the load on the Xeon Phi (shown in blue) is balanced, thus each
core/thread (shown in green) receives equal number of tasks (shown in yellow). They
complete their tasks virtually at the same time. On the right side, only a few threads
(the first two threads) received more tasks, thus for every iteration the rest of the
threads must remain idle and wait for the first two threads to complete their tasks.

The neutrino beams distribution issue can occur on both the CPU and the MIC.

However, since there are large number of cores and threads on the MIC, the effect

of load imbalance may affect a large number of threads. Therefore, even one thread

can keep hundreds of threads in the waiting state, by forcing them to remain idle

at every synchronization point. For instance, as depicted in Fig. 5.71, on the left

side all of the hardware threads have an equal number of tasks, i.e. three tasks per

thread. If each task takes t seconds to complete, the Xeon Phi completes all the

tasks in 3 ∗ t seconds. Alternatively, if only a few threads have one more task (the

right side), the Xeon Phi completes all of its tasks in 4 ∗ t seconds per iteration, no

matter how many threads have incomplete tasks. Thus, the rest of the threads must

remain idle and wait for the first two threads to complete their tasks.

The conclusion is that the reason for the observed flat regions in the results of

the homogeneous runs on the MIC, as well as for the heterogeneous runs, is due to

the load imbalance issue. This occurs when the load cannot be distributed equally

across all threads. Hence, it is recommended that for a given XFLAT problem size,
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the number of nodes be chosen in the way that all of the threads on every MIC

receive a nearly equal number of tasks.

5.3.7 Sweet spot location and MPI timings

The other performance aspect that was required to be analyzed was the location of

the sweet spot. On heterogeneous environments, the location of the sweet spot (the

optimum performance point) is directly related to the load ratio between processors.

On both sides of the sweet spot, the timing increases for one processor and decreases

for the other processor. The sweet spot is the location (load ratio) where the two

sides change their trends, i.e., the crossing point in the performance plots. For

example, on the MIC side, after decreasing, the timing starts to increase, and on the

CPU side, the timing starts to decrease after increasing. As illustrated in Fig. 5.66,

Fig. 5.67, and Fig. 5.68, the location of the crossing points for the MIC and CPU is

not fixed and varies with problem size.

It was expected that the location of the sweet spot, would be at the same point

as the MPI timing crossing point (the point when the waiting time on both sides is

minimized). However, this was not always the case. For example, the XFLAT overall

run time for the 5550× 10× 100 configuration and for various MIC:CPU load ratios

is depicted in Fig. 5.72 and the MPI timing of each processor is depicted in Fig. 5.73.

It anticipated that by changing the load ratio and placing less load on the MIC, the

MPI timing on the MIC will decrease until it reaches the crossing point, timing will

remain steady at its minimum. The behavior is expected since at the MPI timing

crossing point, processes on both the CPU and MIC reach the synchronization point

virtually at the same time. Therefore, after passing the sweet spot, due to load

imbalance, one of the processes should always arrive at the synchronization point

earlier than the other process. Consequently, the late process will not remain idle,
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Figure 5.72: XFLAT overall run time on Stampede as the function of MIC to CPU
load ratio. The problem size was set to 5550 × 10 × 100, the code was run for 1k
radial steps, and run time was measured in seconds.

thus the MPI timing for the process is expected to remain minimized.

However, this expected behavior was not always observed (see Fig. 5.73). One

of the reasons may be due to the fact that in XFLAT the outer evolution loop

contains several communication points per iteration, and each communication point

employs different MPI functions. Although the message size is fixed and not a

function of the problem size, invoking different MPI synchronizations per iteration

may affect the location of the sweet spot. Within the XFLAT evolution loop, there

is one MPI broadcast, four MPI summation reductions, and one MPI maximization

reduction per loop iteration. In order to study the effect of each MPI invocation

on performance, the previous benchmark was repeated with fewer MPI calls (by

eliminating some of the MPI invocations).

For the first benchmark, all MPI calls were eliminated except for the first MPI

broadcast call. Thus, the only remaining communication point was the single broad-
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Figure 5.73: Measured MPI communications time for XFLAT on Stampede as the
function of MIC to CPU load ratio. The problem size was set to 5550 × 10 × 100,
the code was run for 1k radial steps, and the run time were measured in seconds.

cast from the root process to all processes. The results are shown in Table 5.20. The

first row shows the MIC:CPU load ratios, the second, third, and fourth rows show

the MIC time, the CPU time, and the overall time, respectively. The location of the

MPI crossing point was in the [2.5–3.0] load ratio range. Clearly, by increasing the

load ratio, the MPI timing on the MIC reached its minimum and did not change af-

terwards, thus indicating that there was no idle time on the MIC side. On the other

hand, by decreasing the load ratio, the MPI timing on the CPU was minimized, thus

showing that the MIC had reached the communication point sooner and there was

no idle time on the CPU side. In order to find the most precise sweet spot, the

benchmark was repeated for the [2.6–3.4] range. As seen in Table 5.21, the sweet

spot was located at the load ratio crossing point between 2.6:1 and 2.7:1.

In the next set of benchmarks, all MPI invocations were excluded except for

the MPI maximum reduction function. The results are shown in Table 5.22, and
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Table 5.20: XFLAT overall time for various MIC:CPU load ratios when a single MPI
broadcast is presented per loop iteration. The first row shows the MIC:CPU load
ratios; the second, third, and fourth rows show the MIC time, the CPU time, and the
overall time, respectively. The highlighted cells show fixed time for each processor.
All times in seconds.

MIC:CPU 1.0:1 1.5:1 2.0:1 2.5:1 3.0:1 3.5:1 4.0:1 4.5:1 5.0:1
MIC 147.6 93.3 35.5 4.3 0.1 0.1 0.1 0.1 0.1
CPU 0.02 0.02 0.02 0.02 19.9 32.6 49.3 63.4 67.5

Overall 250.3 201.1 167.4 143.4 145.7 144.4 149.7 154.8 153.2

Table 5.21: XFLAT overall time for various MIC:CPU load ratios (refined range)
when a single MPI broadcast is presented per loop iteration. The first row shows the
MIC:CPU load ratios, the second; third, and fourth rows show the MIC time, the
CPU time, and the overall time, respectively. The highlighted cells show fixed time
for each processor. All times in seconds.

MIC:CPU 2.6:1 2.7:1 2.8:1 2.9:1 3.0:1 3.1:1 3.2:1 3.3:1 3.4:1
MIC 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
CPU 0.02 4.1 4.8 11.1 22 23.5 23.6 27.8 31.4

Overall 140.7 140 141.4 140.1 147.5 148.5 143 145.3 145.6

in Table 5.23 for a more refined load ratio span. For the single MPI reduction,

the sweet spot location was in the [2.6:1–2.7:1] range. Once again, after reaching the

MPI timing crossing point, the timing remained constant on one side at its minimum,

similar to the previous results.

For the next set of benchmarks, since there are four identical MPI reductions

(using the sum operator) in the evolution loop, only those invocations were presented

in the evolution loop. The results are shown in Table 5.24 and Table 5.25. As is

apparent, unlike the previous results, the location of the MPI crossing point was

shifted to the [2.7:1–2.8:1] range. In addition, the optimum point was shifted and

this time located around the 2.9:1 point. The only differences between the previous

benchmarks and this benchmark was that multiple identical MPI invocations per

iteration were presented. Therefore, by presenting multiple synchronization points
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Table 5.22: XFLAT overall time for various MIC:CPU load ratios when a single MPI
reduction is presented per loop iteration. The first row shows the MIC:CPU load
ratios; the second, third, and fourth rows show the MIC time, the CPU time, and the
overall time, respectively. The highlighted cells show fixed time for each processor.
All times in seconds.

MIC:CPU 1.0:1 1.5:1 2.0:1 2.5:1 3.0:1 3.5:1 4.0:1 4.5:1 5.0:1
MIC 153.3 88.9 37.9 5 0.1 0.1 0.1 0.1 0.1
CPU 0.25 0.32 0.37 0.4 19.8 35.7 51.4 66.5 68.3

Overall 252.2 206.2 168.9 144.1 146 147.7 153.1 158.7 152

Table 5.23: XFLAT overall time for various MIC:CPU load ratios (refined range)
when a single MPI reduction is presented per loop iteration. The first row shows the
MIC:CPU load ratios; the second, third, and fourth rows show the MIC time, the
CPU time, and the overall time, respectively. The highlighted cells show fixed time
for each processor. All times in seconds.

MIC:CPU 2.6:1 2.7:1 2.8:1 2.9:1 3.0:1 3.1:1 3.2:1 3.3:1 3.4:1
MIC 0.8 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
CPU 2.7 5.5 12.4 11.4 16.8 23.5 26.1 29.5 33.8

Overall 143 142 145.2 142 146.6 147.1 146.5 146.7 148.2

(even identical) per iteration, the location of the MPI timing crossing point as well

as the sweet spot may be changed.

To explain this, it is noted that although there were four identical MPI invocations

per iteration, the code sections between two of the MPI invocations is not identical,

thus the performance of each section on the MIC and CPU may vary. For instance,

some of the code sections may be single-threaded, thus the CPU may perform faster

in those regions, while in other sections the MIC may be faster, resulting in greater

idle time for the MIC at the end that section. The combination of those different

code sections and different MPI communication, may result in shifting the sweet spot

as well as the location of the MPI crossing point.

In order to investigate the behavior of the code between the two MPI communica-
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Table 5.24: XFLAT overall time for various MIC:CPU load ratios when four MPI
reductions is presented per loop iteration. The first row shows the MIC:CPU load
ratios; the second, third, and fourth rows show the MIC time, the CPU time, and the
overall time, respectively. The highlighted cells show fixed time for each processor.
All times in seconds.

MIC:CPU 1.0:1 1.5:1 2.0:1 2.5:1 3.0:1 3.5:1 4.0:1 4.5:1 5.0:1
MIC 146.8 93.8 36.6 5.4 0.5 0.5 0.5 0.5 0.5
CPU 0.47 0.48 0.5 2.6 17.9 32.3 52.2 67.8 73.1

Overall 250.9 210.8 168 146.8 143.3 147.9 152.6 159.4 156.3

Table 5.25: XFLAT overall time for various MIC:CPU load ratios (refined range)
when four MPI reduction is presented per loop iteration. The first row shows the
MIC:CPU load ratios; the second, third, and fourth rows show the MIC time, the
CPU time, and the overall time, respectively. The highlighted cells show fixed time
for each processor. All times in seconds.

MIC:CPU 2.6:1 2.7:1 2.8:1 2.9:1 3.0:1 3.1:1 3.2:1 3.3:1 3.4:1
MIC 4.8 2 0.51 0.51 0.51 0.51 0.51 0.51 0.51
CPU 2.4 7.92 13.7 14 26.1 27.2 26 30.1 29.1

Overall 143.8 143.7 145.8 141.4 151.9 150.1 146 147.3 149

tion points, the XFLAT main loop was partitioned such that each MPI function and

its preceding code section were isolated and benchmarked separately (see Fig. 5.74).

All of the following benchmarks were performed on one of the compute nodes of

Stampede, while the total load set to 5550 × 10 × 100 beams. Each of the code

sections was benchmarked separately for various MIC:CPU load ratios. In all of the

following benchmarks, the code was run for 1k radial steps and the timing results

were measured in seconds.

Since the first MPI communication point within the evolution loop is the MPI

broadcast function, in the first benchmark the code prior to the broadcast was in-

cluded in the loop as well as the last section of the code after the last MPI invocations

within the loop (see Fig. 5.75). Hence, by altering the MIC:CPU load ratio, it was

possible to study the behavior and the performance of this code section on each
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while (conditions)

{

... //Code section before the MPI broadcast

MPI_Bcast(...);

... //Code section before the first MPI reduction

MPI_Allreduce(..., MPI_SUM, ...);

... //Code section before the second MPI reduction

MPI_Allreduce(..., MPI_SUM, ...);

... //Code section before the third MPI reduction

MPI_Allreduce(..., MPI_SUM, ...);

... //Code section before the fourth MPI reduction

MPI_Allreduce(..., MPI_SUM, ...);

... //Code section before the last MPI reduction

MPI_Allreduce(..., MPI_MAX, ...);

... //Rest of the code

}

Figure 5.74: Overall structure of XFLAT evolution loop and relative locations of
MPI invocations.

processor.

The load ratio range for the MIC:CPU ratio was chosen to be similar to the

ranges of the previous benchmarks. The benchmark results for the first isolated

section is shown in Table 5.26, where it can be seen that the MPI time on the CPU

side was always higher than on the MIC side. This implies that the CPU was faster

in performing this section, thus the process on the MIC always arrived afterwards.

Therefore, the load on the CPU for the range of the benchmarked load ratios was

lower than the optimum load ratio.
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while (conditions)

{

... // Code section before the MPI broadcast

MPI_Bcast(...);

/* The rest of the code is excluded from the benchmark */

/* //Code section before the first MPI reduction */

/* MPI_Allreduce(..., MPI_SUM, ...); */

/* //Code section before the second MPI reduction */

/* MPI_Allreduce(..., MPI_SUM, ...); */

/* //Code section before the third MPI reduction */

/* MPI_Allreduce(..., MPI_SUM, ...); */

/* //Code section before the fourth MPI reduction */

/* MPI_Allreduce(..., MPI_SUM, ...); */

/* //Code section before the last MPI reduction */

/* MPI_Allreduce(..., MPI_MAX, ...); */

... // the last part after the last MPI

}

Figure 5.75: The evolution loop structure after isolating the sections associated with
the first MPI invocation.

Similarly, the next benchmark was performed for the first MPI reduction invoca-

tion as well as the code section prior to the invocation. As shown in Table 5.27 and

Fig. 5.76, there was no MPI timing crossing point for this range, since the CPU was

faster in performing this section. Thus, for this MPI invocation and its associated

code section, the MIC always arrived at the communication point after the CPU.

The following results are related to the four similar MPI reduction invocations

with their associated code sections. Each section was benchmarked separately in

order to study the performance and behavior of each section of code. The results

of the second, third, and fourth MPI reduction invocations (and their associated

code) are shown in Table 5.28, Table 5.29, and Table 5.30 as well as Fig. 5.77,
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Table 5.26: XFLAT timings when the first section of the code including the MPI
broadcast was benchmarked. The first row shows the MIC:CPU load ratios; the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively. All times in seconds.

MIC:CPU 2.2:1 2.3:1 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1 3.0:1
MIC 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
CPU 0.33 0.33 0.33 0.31 0.33 0.33 0.32 0.33 0.32

Overall 0.33 0.33 0.33 0.32 0.34 0.34 0.33 0.34 0.33

Table 5.27: XFLAT timings when the second section of the code including the first
MPI reduction was benchmarked. The first row shows the MIC:CPU load ratios; the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively. All times in seconds.

MIC:CPU 2.1:1 2.2:1 2.3:1 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1
MIC 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
CPU 5.5 5.5 5.6 5.6 5.7 5.7 5.6 5.4 4.8

Overall 5.7 5.7 5.8 5.8 5.9 5.9 5.8 5.6 4.9

Fig. 5.78, and Fig. 5.79, respectively. As is evident, the crossing point location

changed between the benchmarks. In addition, after the crossing point, the timing

on one side remained at its minimum. The observed difference among the results

indicates that the performance of the code on the MIC and CPU varies between

code sections. Although the communications are similar for each MPI invocation, by

varying the load ratio, the optimum point for each code section is different. Thus,

the performance of the code varies for each section.

Finally, the performance of the last MPI reduction invocation and its associated

code was benchmarked. Unlike the previous MPI reductions, the last reduction

invocation (using the max operator) calculates the maximum of error values across

nodes. The result of this section is shown in Table 5.31 and Fig. 5.80. It can be

seen that similar to the previous reduction invocation, prior to reaching the crossing

point the MPI time for the MIC was steady, and after passing the crossing point, on
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Figure 5.76: XFLAT timing behavior when the second section of the code including
the first MPI reduction was benchmarked. The blue curve shows the measured time
of MPI invocation on the MIC side, and the orange curve shows the measured time
of MPI invocation on the CPU side.

the right side of the point, the MPI time for CPU was stationary. In addition, the

location of the crossing point was shifted toward higher load ratios, which indicates

that the performance of this section on the MIC and CPU was not identical to that

of the previous reduction sections.

Since there are four MPI summation reduction invocations with the same message

size within the evolution loop, and since the majority of computations are located

within this section, the entire code block containing those invocations was combined

together and benchmarked as well. As shown in Fig. 5.81, unlike the previous result,

after passing the MPI timing crossing point, the MPI time still decreased on both

sides. Therefore, the asymmetry and differences in the instructions of each code

section may shift the location of the sweet spot as well as the MPI timing crossing

point.

It can be concluded that the location of the sweet spot, which shows the optimum
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Table 5.28: XFLAT timings when the third section of the code including the second
MPI reduction was benchmarked. The first row shows the MIC:CPU load ratios; the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively. All times in seconds.

MIC:CPU 2.1:1 2.2:1 2.3:1 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1
MIC 7 8.3 4.8 3.3 1.3 1.2 .12 .12 .12
CPU .3 .3 .3 .3 .3 .3 5.1 3.22 6.7

Overall 53.7 51.8 50.4 48.7 47.7 47.3 49.8 46.8 51.8

point of the performance, can be located at a different point than the MPI timing

crossing point. The reason for this behavior is due to the fact that the performance

of the evolution loop is the function of the performance of sections that are separated

by MPI synchronization points. On the MIC, the performance of some sections may

be higher than that of the CPU; on the other hand, the performance of the other

sections may be higher on the CPU than the MIC. Therefore, the combination of
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Figure 5.77: XFLAT timing behavior when the third section of the code including
the second MPI reduction was benchmarked. The blue curve shows the measured
time of MPI invocation on the MIC side, and the orange curve shows the measured
time of MPI invocation on the CPU side.
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Table 5.29: XFLAT timings when the fourth section of the code including the third
MPI reduction was benchmarked. The first row shows the MIC:CPU load ratios; the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively. All times in seconds.

MIC:CPU 2.1:1 2.2:1 2.3:1 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1
MIC 8.3 6.8 5.9 2.1 2.4 1.5 .4 .12 .12
CPU .3 .3 .3 .3 .3 .3 .4 2.2 2.1

Overall 35.9 34.5 34.1 32.6 31.8 31.0 30.1 31.0 30.2

those sections on both sides can significantly affect the final position of the sweet

spots as well as the MPI timing crossing point. This explains of the difference

between the location of the MPI timing crossing point and the overall optimum

point. In addition, it explains why the MPI timing did not reach its minimum

immediately after passing the crossing point on the MIC or CPU side.
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Figure 5.78: XFLAT timing behavior when the fourth section of the code including
the third MPI reduction was benchmarked. The blue curve shows the measured time
of MPI invocation on the MIC side, and the orange curve shows the measured time
of MPI invocation on the CPU side.
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Table 5.30: XFLAT timings when the fifth section of the code including the fourth
MPI reduction was benchmarked. The first row shows the MIC:CPU load ratios; the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively. All times in seconds.

MIC:CPU 2.1:1 2.2:1 2.3:1 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1
MIC 2. .13 .5 .12 .12 .12 .12 .12 .12
CPU .3 .9 .4 2.6 2.7 4.0 4.1 5.2 5.7

Overall 26.9 26.2 25.1 26.5 26.1 26.6 26.3 26.6 26.6

5.3.8 Merging MPI functions

From the previous results, it can be concluded that if the number of MPI synchroniza-

tion points within the evolution loop can be reduced, there may be improvement in

the overall performance of the loop. In order to minimize the number of communica-

tion points as well as the waiting time between compute nodes for each processor, the
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Figure 5.79: XFLAT timing behavior when the fifth section of the code including the
fourth MPI reduction was benchmarked. The blue curve shows the measured time
of MPI invocation on the MIC side, and the orange curve shows the measured time
of MPI invocation on the CPU side.
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Table 5.31: XFLAT timing when the last section of the code including the last MPI
reduction was benchmarked. The first row shows the MIC:CPU load ratios, the
second, third, and fourth rows show the MIC time, the CPU time, and the overall
time, respectively.

MIC:CPU 2.4:1 2.5:1 2.6:1 2.7:1 2.8:1 2.9:1 3.0:1 3.1:1 3.2:1
MIC 8.61 8.11 6.22 4.54 3.15 2.59 .95 .15 .15
CPU 0.3 0.3 0.3 0.3 0.3 0.3 0.3 .64 1.67

Overall 39.5 39.1 37.4 36.2 35.1 34.4 33.6 33.0 33.2

main evolution loop can be reordered. By reducing the waiting time at synchroniza-

tion points, the processing time and the efficiency may be improved. One approach

to achieving this goal is to reduce the number of MPI synchronization points by

merging two of the similar MPI Allreduce() invocations together. By merging two

MPI invocations together, instead of having six MPI invocations per loop iteration

(one MPI Bcast(), four MPI Allreduce(SUM), and one MPI Allreduce(MAX)) there
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Figure 5.80: XFLAT timing behavior when the last section of the code including the
last MPI reduction was benchmarked. The blue curve shows the measured time of
MPI invocations on the MIC side, and the orange curve shows the measured time of
MPI invocations on the CPU side.
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Figure 5.81: Performance for the combined code section of the four MPI summation
reductions for various MIC:CPU load ratios.

can be five MPI invocations per iteration. Nevertheless, not every MPI reduction can

be merged together, since the code section before each one invocations may depend

on the result of the previous reduction invocations. The original neutrino evolution

loop arrangement is shown in Listing 5.1.

Listing 5.1: Illustration of the first version of the evolution’s loop algorithm

while ( t e r m i n a t i o n c o n d i t i o n s )

{

// s e t t i n g some f l a g s

// . . .

// b r o a d c a s t i n g the terminat ion c o n d i t i o n s from the roo t

MPI Bcast ( . . . ) ;

//======================= S1 ==========================

// c a l c u l a t i n g ang l e b i n s

// d e r i v a t i v e o f l e n g t h f o r each ang l e bins , e t c .
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// . . .

// c a l c u l a t i n g the Hamiltonian H0 and

// exchanging the p a r t i a l r e s u l t o f H0 between nodes

MPI Allreduce ( . . . , H0 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S1 −−−−−−−−−−−−−−−−−−−−−−

//======================= S2 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the middle p o i n t ( h a l f s t e p s i z e ) us ing the H0

// . . .

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p ) us ing the c a l c u l a t e d H0

// . . .

// c a l c u l a t i n g the Hamiltonian H1 and

// exchanging the p a r t i a l r e s u l t o f H1 between nodes

MPI Allreduce ( . . . , H1 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S2 −−−−−−−−−−−−−−−−−−−−−−

//======================= S3 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H1

// . . .

// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// c a l c u l a t i n g the Hamiltonian H2 and

// exchanging the p a r t i a l r e s u l t o f H2 between nodes

MPI Allreduce ( . . . , H2 , MPI SUM, . . . ) ;
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//−−−−−−−−−−−−−−−−−−−− End o f S3 −−−−−−−−−−−−−−−−−−−−−−

//======================= S4 ==========================

// e v o l v i n g neutr ino beams from the middle p o i n t

// to the next p o i n t ( h a l f s t e p s i z e ) us ing the H2

// . . .

// c a l c u l a t i n g the Hamiltonian H3

// exchanging the p a r t i a l r e s u l t o f H3 between nodes

MPI Allreduce ( . . . , H3 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S4 −−−−−−−−−−−−−−−−−−−−−−

//======================= S5 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H3

// . . .

// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// c a l c u l a t i n g the maximum error as w e l l as f i n d i n g

// the g l o b a l maximum error among a l l the beams

MPI Allreduce ( . . . , MPI MAX, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S5 −−−−−−−−−−−−−−−−−−−−−−

// check ing f o r any necessary I /O

// . . .

// a d j u s t i n g the r a d i u s f o r the next i t e r a t i o n

// . . .

}
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It can be observed that the third MPI reduction section does not depend on the

code between the second and third MPI reductions; thus the computation part for the

Hamiltonian H2 can be moved to the line after the computation of the Hamiltonian

H1. Therefore, the neutrino evolution loop was reordered in a new way as shown in

Listing 5.2.

Listing 5.2: Illustration of the second version of the evolution’s loop algorithm

while ( t e r m i n a t i o n c o n d i t i o n s )

{

// s e t t i n g some f l a g s

// . . .

// b r o a d c a s t i n g the terminat ion c o n d i t i o n s from the roo t

MPI Bcast ( . . . ) ;

//======================= S1 ==========================

// c a l c u l a t i n g ang l e b i n s

// d e r i v a t i v e o f l e n g t h f o r each ang l e bins , e t c .

// . . .

// c a l c u l a t i n g the Hamiltonian H0 and

// exchanging the p a r t i a l r e s u l t o f H0 between nodes

MPI Allreduce ( . . . , H0 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S1 −−−−−−−−−−−−−−−−−−−−−−

//======================= S2 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the middle p o i n t ( h a l f s t e p s i z e ) us ing the H0

// . . .

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p ) us ing the H0
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// . . .

// c a l c u l a t i n g the Hamiltonian H1 and

// exchanging the p a r t i a l r e s u l t o f H1 between nodes

MPI Allreduce ( . . . , H1 , MPI SUM, . . . ) ;

// c a l c u l a t i n g the Hamiltonian H2 and

// exchanging the p a r t i a l r e s u l t o f H2 between nodes

MPI Allreduce ( . . . , H2 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S2 −−−−−−−−−−−−−−−−−−−−−−

//======================= S3 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H1

// . . .

// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// e v o l v i n g neutr ino beams from the middle p o i n t

// to the next p o i n t ( h a l f s t e p s i z e ) us ing the H2

// . . .

// c a l c u l a t i n g the Hamiltonian H3

// exchanging the p a r t i a l r e s u l t o f H3 between nodes

MPI Allreduce ( . . . , H3 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S3 −−−−−−−−−−−−−−−−−−−−−−

//======================= S4 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H3

// . . .
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// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// c a l c u l a t i n g the maximum error as w e l l as f i n d i n g

// the g l o b a l maximum error among a l l the beams

MPI Allreduce ( . . . , MPI MAX, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S4 −−−−−−−−−−−−−−−−−−−−−−

// check ing f o r any necessary I /O

// . . .

// a d j u s t i n g the r a d i u s f o r the next i t e r a t i o n

// . . .

}

The last step to restructuring the evolution algorithm was to merge the procedures

that were responsible for computing the Hamiltonian H1 and the Hamiltonian H2 as

a single fused method. The two MPI reductions were fused together as a single MPI

function invocation. Although the message size in the fused reduction invocation was

twice as long as the previous invocation (since the partial results for the Hamiltonian

H1 and the Hamiltonian H2 were exchanged in one message), the number of data

exchanging points in the loop was one less than in the previous algorithm. Hence, the

performance of the code was expected to improve in the heterogeneous environment,

since the wasted time at the MPI exchange point, which may be due to the imperfect

load balancing, was reduced. The new, restructured evolution loop is shown in

Listing 5.3.

Listing 5.3: Illustration of the third version of the evolution’s loop algorithm

while ( t e r m i n a t i o n c o n d i t i o n s )

{
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// s e t t i n g some f l a g s

// . . .

// b r o a d c a s t i n g the terminat ion c o n d i t i o n s from the roo t

MPI Bcast ( . . . ) ;

//======================= S1 ==========================

// c a l c u l a t i n g ang l e b i n s

// d e r i v a t i v e o f l e n g t h f o r each ang l e bins , e t c .

// . . .

// c a l c u l a t i n g the Hamiltonian H0 and

// exchanging the p a r t i a l r e s u l t o f H0 between nodes

MPI Allreduce ( . . . , H0 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S1 −−−−−−−−−−−−−−−−−−−−−−

//======================= S2 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the middle p o i n t ( h a l f s t e p s i z e ) us ing the H0

// . . .

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p ) us ing the c a l c u l a t e d H0

// . . .

// c a l c u l a t i n g the Hamiltonian H1 and H2 and

// exchanging the p a r t i a l r e s u l t o f H1 and H2 t o g e t h e r

// between nodes

MPI Allreduce ( . . . , H1 H2 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S2 −−−−−−−−−−−−−−−−−−−−−−

//======================= S3 ==========================
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// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H1

// . . .

// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// e v o l v i n g neutr ino beams from the middle p o i n t

// to the next p o i n t ( h a l f s t e p s i z e ) us ing the H2

// . . .

// c a l c u l a t i n g the Hamiltonian H3

// exchanging the p a r t i a l r e s u l t o f H3 between nodes

MPI Allreduce ( . . . , H3 , MPI SUM, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S3 −−−−−−−−−−−−−−−−−−−−−−

//======================= S4 ==========================

// e v o l v i n g neutr ino beams from the curren t r a d i a l p o i n t

// to the next p o i n t ( f u l l s t e p s i z e ) us ing the H3

// . . .

// c a l c u l a t i n g the average o f the two p r e v i o u s l y e v o l v e d

// neutr ino beams

// . . .

// c a l c u l a t i n g the maximum error as w e l l as f i n d i n g

// the g l o b a l maximum error among a l l the beams

MPI Allreduce ( . . . , MPI MAX, . . . ) ;

//−−−−−−−−−−−−−−−−−−−− End o f S4 −−−−−−−−−−−−−−−−−−−−−−

// check ing f o r any necessary I /O

// . . .
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// a d j u s t i n g the r a d i u s f o r the next i t e r a t i o n

// . . .

}

Several multi-node benchmarks were required in order to study and analyze the

performance of the code in the old and the new algorithms. In all of the following

benchmarks on Stampede, the MIC:CPU load ratio was set at 3:1, thus the load on

the MIC was fixed at 600× 10× 100 (θ angles× φ angles× Energy bins) and the

load on the CPU was fixed at 200× 10× 100 (θ angles× φ angles× Energy bins).

The benchmarks were repeated for various number of nodes and continued for 10k

radial steps. The maximum MPI time of MICs, maximum MPI time of CPUs and

the overall timing were measured.

The first benchmark employed one CPU and one MIC per compute node, and the

second benchmark utilized two CPUs and two MICs per compute node. Each set of

benchmarks was repeated on 16 and 32 nodes. As a result, the minimum number of

MPI tasks was 32 (16 tasks on 16 CPUs and 16 tasks on 16 MICs) and the maximum

number of MPI tasks was 128 MPI (64 tasks on 32 dual-CPU and 64 tasks on 32

dual-MIC nodes).

In Fig. 5.82 (top), the performance of the old style algorithm (version 1) is de-

picted. As is visible, by increasing the number of compute nodes the overall timing

increased slightly. This was inter-node communication overhead, since by increasing

the number of nodes, the amount of inter-node messages increases.

The timing of the reordered algorithm (version 2) was virtually identical to that

of the version 1 algorithm, as shown in Fig. 5.82 (middle). Therefore, the reordering

of the MPI functions did not boost the performance of the evolution algorithm.

203



5.3. PERFORMANCE ANALYSIS

 

0

50

100

150

200

250

300

16 nodes (1 MIC and 1
CPU per node)

16 nodes (2 MIC and 2
CPU per node)

32 nodes (1 MIC and 1
CPU per node)

32 nodes (2 MIC and 2
CPU per node)

Ti
m

e 
(s

)

MPI time for the MIC MPI time for the CPU Overall time

 

0

50

100

150

200

250

300

16 nodes (1 MIC and 1
CPU per node)

16 nodes (2 MIC and 2
CPU per node)

32 nodes (1 MIC and 1
CPU per node)

32 nodes (2 MIC and 2
CPU per node)

Ti
m

e 
(s

)

MPI time for the MIC MPI time for the CPU Overall time

 

0

50

100

150

200

250

300

16 nodes (1 MIC and 1
CPU per node)

16 nodes (2 MIC and 2
CPU per node)

32 nodes (1 MIC and 1
CPU per node)

32 nodes (2 MIC and 2
CPU per node)

Ti
m

e 
(s

)

MPI time for the MIC MPI time for the CPU Overall time

Figure 5.82: Performance of the old style algorithm (top panel), the reordered algo-
rithm (middle panel), and the new style algorithm (bottom panel). There were six
MPI function calls per loop iteration. The orange bar shows the maximum MPI time
among the MICs’ processes, the green bar shows the maximum MPI time among the
CPUs’ processes, and the blue bar shows the overall run time in seconds.

Surprisingly, as shown in Fig. 5.82 (bottom), when two of the MPI reductions

were fused together in the new version of the algorithm (version 3), the overall timing

jumped significantly only for the dual processor per node benchmarks. The issue with

the performance may be related to the restructuring of the code. Moreover, it may be

due to the message size in the version 3 algorithm for which the MPI message size was

doubled. Thus, MPI communications might be slower due to the lengthier messages.

In order to examine and understand whether or not the behavior was related to the

loop structure, the neutrino evolution loop was decomposed into different sections
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Figure 5.83: Performance of section S1 of all algorithms. The orange bar shows the
maximum MPI time among the MICs’ processes; the green bar shows the maximum
MPI time among the CPUs’ processes; and the blue bar shows the overall run time
in seconds.

and each one was benchmarked separately. Hence, any of the differences between

benchmarks could be traced to exact line of the code.

The neutrino evolution loop is decomposed into multiple sections by MPI syn-

chronization points, similar to previous benchmarks. Each section ending with a

synchronization point was isolated and benchmarked separately. The following plots

depict the performance of the each isolated section of the neutrino evolution loop.

Since each section ended with a synchronization point via MPI, only the timing of

the codes associated before each MPI invocation was measured. Fig. 5.83 illustrates

the performance of section S1, which was identical for all of the three versions of the

evolution algorithm. The amount of computation for this section was low, and there

was no significant difference between the results.

The benchmarks for the next sections were performed in a similar manner to the

first section. Fig. 5.84 shows the performance of the S2 section for the algorithms
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Figure 5.84: Performance of section S2 of algorithms version 1 (top), version 2 (mid-
dle), and version 3 (bottom). The orange bar shows the maximum MPI time among
the MICs’ processes; the green bar shows the maximum MPI time among the CPUs’
processe; and the blue bar shows the overall run time in seconds.

version 1 (top), 2 (middle), and 3 (bottom), respectively.

As illustrated in Fig. 5.84 (bottom panel), the MPI times of the dual-MIC bench-

marks jumped by a significant amount resulting in an increase in the overall run time.

This section may be the root cause of the performance difference; however, the rest

of the code sections had to be benchmarked as well in order to verify that the issue is

only due to this section of the loop. Continuing the benchmarks for the next sections,

as depicted in Fig. 5.85 and Fig. 5.86, the performance of the S2 and S3 sections for

the old algorithm (version 1) are shown. No significant performance differences were
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Figure 5.85: Performance of section S3 of algorithms version 1. The red orange
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.

observed for these sections.

Algorithms version 2 and 3 had one more code section that needed to be bench-

marked. The performance of the code section before the last MPI reduction (S3) the

algorithms version 2 and version 3 is illustrated in Fig. 5.87. Since the code inside

this section was identical between the two algorithms, the results were equivalent for

both approaches. No significant performance dissimilarity was observed for the last

code section.

Finally, the performance of section S4 is depicted by Fig. 5.88. All of the algo-

rithms shared the same code for this section, thus the performances were identical

for them. Once more, no significant differences between the results were observed.

In the previous plots, the performance gap only appeared when the section in

which the fused MPI calls was exploited, i.e., algorithm version 3 (see Fig. 5.84).

In addition, it was only observed for the benchmarks that utilized two co-processors
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Figure 5.86: Performance of section S4 of algorithm version 1. The orange bar
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.

per node. In that section of the code the only major difference between the three

algorithms was the MPI message size for which the message size for the algorithm

version 3 was doubled in size.

Since the performance hit only occurred when the size of the MPI messages

increased, there may be an issue related to the message size. In order to further

investigate this issue, the MPI message size was artificially doubled and quadrupled

for both algorithm version 1 and version 3 (the performance of versions 1 and 2 was

identical), using dummy arrays. The MPI messages were padded with data on which

the calculations did not depend, however, this increased the overall MPI message

size. Since the only difference between the algorithms at the communication point

was the inter-node message size, the results of the new benchmarks were expected to

differ when the message size was changed. The benchmarks were repeated on 2, 4, 8,

16, and 32 compute nodes. As shown in Fig. 5.89, by doubling the message size, the
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Figure 5.87: Performance of section S3 of algorithms version 2 and version 3. The
orange bar shows the maximum MPI time among the MICs’ processe; the green bar
shows the maximum MPI time among the CPUs’ processes; and the blue bar shows
the overall run time in seconds.

performance of the algorithm version 3 remained steady, with no observable drop in

performance. Quadrupling the message size did not change the performance trend

either (Fig. 5.90).

Similar benchmarks were repeated for algorithm version 1, first by doubling the

MPI message size and next by quadrupling the message size. The performance of the

benchmarks using the doubled message size is illustrated in Fig. 5.91. By increasing

the number of nodes, the overall timing started to surge by at least 50%, similar to

the benchmark of algorithm version 3. The communication MPI message size was

identical to that of the algorithm version 3 (its regular message size), for which the

same behavior were observed. The results of the benchmarks using the quadrupled

message size are depicted in Fig. 5.92. Quadrupling the message size caused the

overall timing to be restored to its expected normal behavior. Hence, the issue only

happened with a particular MPI message size for both algorithms.
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Figure 5.88: Performance of the last section before the last reduction for all algo-
rithms. The orange bar shows the maximum MPI time among the MICs’ processes;
the green bar shows the maximum MPI time among the CPUs’ processes; and the
blue bar shows the overall run time in seconds.

At this point it can be concluded that the poor performance of the code on the

dual-MIC nodes only occurred for a specific MPI message size, and it was not a

function of the utilized instructions before the MPI invocations, nor the number of

employed compute nodes. Furthermore, from the previous plots it is clear that the

issue was not due to the code structure or a bug in XFLAT. Since the issue only

occurred for a specific MPI message size and the behavior returned to normal when

the message size changed, it may be due to the other factors.

One possibility is that it may be due to a bug in the Intel C++ compiler or

Intel MPI library. For all previous benchmarks the Intel C++ compiler’s version

was 13.1.1.163 and the Intel MPI library version was 4.1.0.030. After upgrading the

toolkit to packages toward the end of this work (compiler version 14.0.1 and MPI

library version 4.1.3.049), the benchmarks were repeated by utilizing similar loads

for algorithm version 1 and 3 (the load per each CPU and MIC was fixed). The
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Figure 5.89: Performance of section S2 of algorithm version 3 using doubled MPI
message size. The orange bar shows the maximum MPI time among the MICs’
processes; the green bar shows the maximum MPI time among the CPUs’ processes;
and the blue bar shows the overall run time in seconds.

number of nodes was varied from 16 to 128 compute nodes. The performance of

algorithm version 1 and version 3 (one CPU and one MIC per node) is depicted in

Fig. 5.93 and Fig. 5.94, respectively. Moreover, Fig. 5.95 and Fig. 5.96 illustrate the

performance of algorithm version 1 and version 3 when two CPUs and two MICs

were employed per node, respectively.

As is apparent from the results, there was no unexpected jump in MPI timing

and the behavior of the single-processor and dual-processor benchmarks were similar.

Consequently, the issue cleared up completely after upgrading the libraries. It turned

out that the issue was related to a bug in the Intel MPI library 4.1.0.030; thus, by

upgrading the library to version 4.1.3.049 the issue was resolved.

From the previous results, it can be concluded the XFLAT performance scales

satisfactorily with number of nodes. Even when employing 512 total tasks (128

compute nodes, each equipped with two CPUs and two MICs, thus four tasks per
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Figure 5.90: Performance of section S2 of algorithm version 3 using quadrupled MPI
message size. The orange bar shows the maximum MPI time among the MICs’
processes; the green bar shows the maximum MPI time among the CPUs’ processes;
and the blue bar shows the overall run time in seconds.

node), XFLAT performance did degrade significantly. In addition, merging two

MPI messages together improved overall performance by a few percent. Therefore,

XFLAT is not limited by inter-node communication nor by the number of employed

nodes and can scales well with hundreds of tasks.

5.3.9 XFLAT auto-benchmarking code

Based the previous benchmarks, is is clear that the prediction of the sweet spot

for XFLAT on heterogeneous multi-node environments is not straightforward. On a

heterogeneous environment, different processor types with different clock frequencies

and multiple inter-node and intra-node buses each with different speeds and laten-

cies, can make the prediction of the location of the sweet spot complex. In addition,

different memory hierarchies with different architectures and speeds, utilizing differ-
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Figure 5.91: Performance of section S2 of algorithm version 1 using doubled MPI
message size. The orange bar shows the maximum MPI time among the MICs’
processes; the green bar shows the maximum MPI time among the CPUs’ processes;
and the blue bar shows the overall run time in seconds.

ent I/O routes for different processors, and overall code structures and algorithms,

can make the prediction of the sweet spot even more complicated. Thus, on a het-

erogeneous environment, without knowledge of the optimum point for the load ratios

among processors, it is not possible to launch the optimum configuration that will

result in the best performance. Furthermore, that problem can become more com-

plicated when the number of optimum nodes is unknown. For instance, Fig. 5.97

illustrates the performance of XFLAT on dual-CPU and dual-MIC nodes for three

MIC:CPU load ratios when the number of nodes is varied from 1 to 24 nodes. The

problem size was set to 10000× 10× 100, the run time continued for ∼ 100 seconds

and the number of computed radial steps was measured. As is evident, from 8 to

12 nodes, there was no significant performance gain, thus utilizing only 8 nodes was

the best choice. On the other hand, when the number of nodes was 14, the best load

ratio for which the highest performance was achievable was 2:1. Going beyond 16
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Figure 5.92: Performance of section S2 of algorithm version 1 using quadrupled MPI
message size. The orange bar shows the maximum MPI time among the MICs’
processes; the green bar shows the maximum MPI time among the CPUs’ processes;
and the blue bar shows the overall run time in seconds.

nodes, there was almost no performance gain; thus, utilizing more nodes would only

waste resources and yield no noticeable performance improvement.

As a result, the problem of finding the sweet spot can be described as the search

in a 2D space of the load ratios and number of nodes, in order to find the optimum

point of configuration. Since the optimum sweet spot varies with problem size (as

well as with choice of physics module), a capability was added to XFLAT to search

this 2D space on a single compute node and to report the near-optimum regions

before launching a production run. This code contains two sections. The first section

attempts to guess the near optimum computational capability of the CPU and MIC

by launching a pre-defined problem size on each processor. After finding the near-

optimum load ratios, XFLAT starts to simulate the load on a single node in multi-

node configurations by varying the load on a CPU and MIC. XFLAT receives a range

for the number of compute nodes (the minimum and maximum number of feasible
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Figure 5.93: Performance the old algorithm (version 1) utilizing newer MPI library
(one CPU and one MIC per node) on different numbers of nodes. The orange bar
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.

compute nodes) from the configuration file. Afterwards, XFLAT calculates the load

on a CPU and MIC for a given number of compute nodes, then starts the benchmark

using the actual neutrino evolution code. For each particular load on the benchmark

node, XFLAT varies the MIC to CPU load ratio and repeats the benchmark by

running the evolution code (see 5.3.9). Hence, XFLAT can iteratively search the

compute nodes range and the load ratio space in order to find the sweet spot for a

given problem size and for a particular physics module.
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Figure 5.94: Performance the old algorithm (version 1) using newer MPI library
(two CPUs and two MICs per node) on different numbers of nodes. The orange bar
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.
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Figure 5.95: Performance the new algorithm (version 3) using newer MPI library
(one CPU and one MIC per node) on different numbers of nodes. The orange bar
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.
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Figure 5.96: Performance the new algorithm (version 3) using newer MPI library
(two CPUs and two MICs per node) on different numbers of nodes. The orange bar
shows the maximum MPI time among the MICs’ processes; the green bar shows the
maximum MPI time among the CPUs’ processes; and the blue bar shows the overall
run time in seconds.
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Figure 5.97: XFLAT performance over a range of compute nodes. The problem size
was 10000× 10× 100. The run time was continued for 100 seconds and the number
of computed radial steps was measured. The blue curve shows XFLAT performance
when the MIC:CPU ratio is 4; the orange curve shows XFLAT performance when
the MIC:CPU ratio is 3; and the grey curve shows XFLAT performance when the
MIC:CPU ratio is 2.

// Benchmark each processor using a pre-defined problem size

result = Benchmark();

// Search the 2D space iteratively

for (i = minNumNode : maxNumNode)

{

for (j = minLoadRatios : maxLoadRatios)

{

results[i][j] = Benchmark();

}

}

// Report the results

cout << results

Figure 5.98: The benchmark for searching the 2D space of load ratios and compute
nodes in order to find the sweet spot for a particular problem size.
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Chapter 6

Summary and future work

In this work we have developed an astrophysical simulation code, XFLAT, to study

neutrino oscillations in supernovae. Because of its modular design, XFLAT can be

easily expanded to investigate neutrino oscillations in various geometries and physical

environments.

We have designed XFLAT to utilize all three major levels of parallelism which are

available to modern supercomputers, i.e. multi-node/device parallelism at the top

level, multi-core parallelism within a single compute node/device, and vectorization

or SIMD within a single core. In implementing the three levels of parallelism, we

have chosen to use open standards to make the code portable. Specifically, we have

used MPI for multi-node/device parallelism and OpenMP for both multi-node/device

parallelism and vectorization within a single core. In order to efficiently utilize the

SIMD hardware in the CPU and Xeon Phi, we have adopted the Structure-of-Arrays

scheme for the low-level module. For upper level modules we have used the Array-

of-Structure scheme to make the code more modular and thus easy to maintain. The

design of XFLAT makes it suitable to run on both the CPU and the Intel Xeon Phi

accelerator, the latter of which is based on the Intel Many Core Architecture (MIC).
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We have studied the performance of XFLAT with various configurations and in

many scenarios on the Stampede supercomputer, as well as two local testbed systems.

We find that, in the best scenarios, XFLAT can perform about 3 times as fast on

the first-generation the Xeon Phi on an 8-core Xeon CPU, and about 4× speedup

can be achieved on Xeon Phi as compared to a 6-core Xeon CPU. Because the Xeon

Phi can be installed as a PCIe extension card to a compatible workstation, our work

suggests that the Xeon Phi can be a low-cost choice to dramatically increase the

performance of existing computers or compute clusters.

In this work we have found that it can be a great challenge to maintain the

load balance in a heterogeneous environment where both the CPU and Xeon Phi are

employed. This is because the many-core architecture of the Xeon Phi can support up

to about 240 threads per device. There can be a significant drop in the performance

of the Xeon Phi when the number of jobs on the device is slightly more than a

multiple of the number of its hardware threads.

We have also found that the I/O performance of the first-generation Xeon Phi

was very poor. To avoid this I/O penalty we have implemented an indirect I/O

module for the Xeon Phi in which output data from the Xeon Phi is redirected to

the CPU. This I/O bottleneck may be fixed in the next-generation Xeon Phi.

The recent work by [Raffelt et al., 2013, Duan and Shalgar, 2015, Abbar and Duan, 2015]

has shown that the directional, spatial and time symmetries employed in the 3-

dimensional neutrino bulb model (with 1 spatial and 2 momentum dimensions) could

be broken spontaneously. As a result, simulations of neutrino oscillations in full 7-

dimensional supernova models (with 1 temporal, 3 spatial and 3 momentum dimen-

sions) must be performed in order to discover the real impacts of neutrino oscillations

on supernova physics. This paradigm shift implies an increase of several orders of

magnitude in computational intensity. The development of XFLAT is a first attempt

in this direction. In the coming years the XFLAT project will be expanded to include
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more realistic physical models to simulate the fascinating phenomenon of neutrino

oscillations in various physical environments.
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Appendix A

XFLAT Documentation

A.1 Compilation and Building Instructions

XFLAT is a command-line application intended to study neutrino flavor oscillation

in supernovae environments. The code is a C++ implementation with a hybrid

architecture that exploits SIMD, OpenMP and MPI for performance acceleration.

It is capable of running supercomputers with heterogeneous nodes including both

traditional CPUs and the newer Intel Many Integrated Core Architecture (MIC) or

Xeon Phi.

The code contains several modules that can be swapped in or out from the build

using provided switches via the Makefile. In addition to the modules, other features

can be switched on or off from the Makefile as well. Features such as the use of SIMD,

OpenMP, and MPI are controllable from the Makefile. Turning off optimizations can

help the debugging process. The following code features can be switched on or off

from the second line of the provided Makefile starting with CXXFLAGS, and using the

-D switch:
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SIMD # when defined the code will use SIMD instructions

OMP # when defined the code will use OpenMP threads

MMPI # when defined the code will use MPI

In addition there are multiple modules that can be changed from the same line of the

Makefile. These modules can be categorized as follow: Geometry related modules:

SA # Single Angle supernova module

MA # Multi Angle supernova module

MAA # Multi Azimutal Angle extended supernova module

CLN # Cylindrical module

PNT # Plane module

LIN # Multi-source line module

IO related modules:

IOF # performs file IO for each node

IOFI # performs indirect IO in which MIC sends its data to CPU first

An example of the line with the usage of IOF and MAA modules which utilizes

SIMD, OpenMP and MPI is shown as below:

CXXFLAGS = -O3 -openmp -DIOF -DMAA -DSIMD -DOMP -DMMPI

The code employs the NetCDF(either version 3 or 4) library for its current IO mod-

ules, however, if the NetCDF4 is used, HDF5 library is required as well.

In order to build binary for CPU the following commands must be issued from

console:
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$ cp Makefile.cpu Makefile

$ make all

OR

$ make all -f Makefile.cpu

Likewise, in order to build the code for the Xeon Phi the following commands must

be issued:

$ cp Makefile.mic Makefile

$ make all

OR

$ make all -f Makefile.mic

Consequently, the CPU binary will be called XFLAT.cpu and the Xeon Phi binary

is XFLAT.mic. Please note, if the OpenMP feature is switched on, the -openmp flag

also must be added to the compiler flags and if the MPI feature is switched on inside

the Makefile, a few MPI scripts are required so as to run it on multiple nodes.

In order to optimize the code for any Intel CPU, one has to add -xHOST to the

compiler flags set in the Makefile. Likewise, in order to build the code for MIC the

-mmic flag should be added to the compiler flags set.

A.2 Source Code Directories and Files

There are two directories that contains the header files (include/) and the source

files (src/). The header directory contains the following header files:
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Fenergy.h: Contains function declarations which are responsible for energy spec-

tra calculations. These functions are called from NBeam module.

Fio.h: Holds function declarations which are responsible for dumping data onto

files as well as other I/O related tasks that depends on the settings, different source

files can implement those functions.

Global.h: Encloses global settings and constants. These settings affects the

general behavior of XFLAT.

Matt.h: Encapsulates the matter profile functions and its related settings. A

run may or may not utilize this module.

NBeam.h: Encloses Neutrino Beam class declaration. This class contains all

the variables and functions for calculating neutrino beam interaction and evolution.

Each neutrino beam in the system must instantiate this class. This module serves

as the lower layer module for other upper layer modules.

NBGroup.h: This module encapsulates all the upper layer modules such as the

numerical, Physics, and I/O modules.

Nmr.h: Contains numerical related function declaration. Those functions are

responsible for solving the numerical algorithm.

Parser.h: Encloses the parser class declaration. This class is responsible for

taking a config.txt file, parse it, and put the extracted values to the corresponding

variables.

Phy.h: Holds physics and geometry related function declaration. Depends on

the geometry, different source files can implement those functions.

Util.h: Holds auxiliary functions and variables declarations. These functions

may be utilized from the other modules.

225



A.2. SOURCE CODE DIRECTORIES AND FILES

The source directory contains the following C++ files:

main.cpp: Holds the main function of the application (the entry point of the

application).

Fenergy.cpp: Implements the energy spectra functions and its related proce-

dures.

IO f.cpp: One of the implementation of Fio.h header. In this source file, every

node dumps its data directly to its own file.

IO fi.cpp: One of the implementation of Fio.h header. Due to limited I/O

capability of the current generation of Intel MIC, Xeon Phi nodes send their data to

corresponding CPUs first, the CPU dumps both their own data and the Phis data

to file.

Matt.cpp: Implements matter profile functions. Depends on the configuration,

the functions may or may not be called in a run.

NBeam.cpp: Implements Neutrino Beam class. The class encapsulates the

wavefunctions of a neutrino’s beam.

NBGroup.cpp: Encapsulates upper modules. Contains functions for initializing

and finalizing other modules.

Nmr.cpp: One of the upper layer modules. Implements the neutrino evolution

numerical algorithm.

Parser.cpp: Implements the Parser class. It is responsible for parsing the con-

figuration file.

Phy CLN.cpp: This is one of the several Physics modules. This module imple-

ments the cylindrical geometry.

Phy MA.cpp: This module implements supernova bulb model (multi-zenith
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angle geometry).

Phy MAA.cpp: This module contains the extended supernova physics. It im-

plements the multi-zenith and multi-azimuthal angle geometry.

Phy PLN.cpp: This module implements the multi-zenith and multi-azimuthal

plain geometry.

Phy SA.cpp: Contains the implementation of the single-angle supernova model.

Due to the geometry limitations this module cannot utilize more than a single pro-

cessor’s core.

Util.cpp: This modules holds many general variables and are used in several

other modules. It also implements several auxiliary functions.

A.3 The configuration file

In order to run XFLAT, a configuration file has to pass via command line argument

to the program. This file contains several settings related to the behavior of the

application and many other values for initializing program’s variables.

Each keyword in the file must be starts in a new line. Keywords are constant

and cannot be change unless the corresponding keyword in the Parser.cpp class

implementation is changed accordingly. Thus, each keyword contains a constant

character string and ends in a = and after a white space its value is stored:

Keyword1= value1

Comments can be added to the configuration file as well. They starts with # and

continues until reaching the new line character. Therefore, they can be added after

the value of a keyword, or can be added in a separate line:
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# comment1

Keyword1= value1 # extra comment

Please note that if an expected variable is not initialized in the configuration file, its

initial value will be undefined.

The current keywords can be categorized in two different categories: Those that

control the general behavior of the application (mostly related to the I/O tasks) and

those from which the physics related variables are initialized.

General keywords are listed as follow:

dumpMode= This keyword expects an integer from which the way data dump onto

a file is set. The values must be read in binary mode. Putting 0 (also 0 in binary

mode) for the value means no dumping data. Putting 1 (also 1 in binary mode) is the

first mode which means dumping a whole snapshot in which all the wave-function

values are written onto the file. The value 2 (10 in binary mode) means dumping

only the weighted average over energy bins onto file. The next independent value can

be 4 (100 in binary mode) and so on. Note that in this way values can be combined

together as binary flags. Therefore, putting 3 (11 in binary mode) means performing

I/O in both the first mode (01 in binary) and second mode (10 in binary).

filePrefix= This keyword takes a string as the general name for files. In the

application some other strings may attach to it as well. For example when the data

dump mode is 1, the “Snapshot” string is also attach to it. Moreover, if multiple

files is generated, a counter number starts from 0 is also attached to the file’s name

afterwards. Finally, for the MPI runtime, each node will attach its own MPI id at

the end of the file (separated from the rest of string with ’ ’).

newFile step= Takes an integer value indicating that after a [articular number

of I/O task, a new file has to be generated. In this way it is possible to prevent
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creating a huge file.

sync step= Indicates that after a specific number of data dumping iterations,

the file has to be synchronized with the disk. In this way it is possible to prevent

data loss due to application crash.

r step1= If for each radial iteration in the evolution loop, data are to be dumped

on file, the performance will drop dramatically. In addition, there is no need to

perform I/O task for every iteration in the loop as the difference between the two

consistent radial steps is normally negligible. Therefore, the value (float) of this

keyword indicates that only after advancing a particular distance in Km one snapshot

is dumped to file. Hence, there is a radial distance equals to this keyword’s value

between each snapshot. This keyword only controls the I/O mode of 1, for the second

I/O mode the keyword is r step2. As a result, the frequency of saving data can be

controlled independently for each I/O mode.

t step1= This keyword is similar to the previous keyword. The I/O is only

performed after a particular seconds. Similar to the previous keyword, it only controls

the first I/O mode. For the second I/O mode the keyword is t step2.

itr step1= Similar to the previous keywords, the I/O task is allowed to be

performed after a particular radial iterations. It only affects the behavior of the first

I/O mode. For the second I/O mode the keyword is itr step2.

start beam=, end beam= These two keywords indicates the starting and ending

indices of neutrino beams that the current node has to perform computations on. For

instance, the distribution of 1000 beams over two identical nodes can be done in this

way: for the first node the start beam= 0 and end beam= 500 and for the second

node start beam= 500 and end beam= 1000. Thus the 500th beam is the first beam

on the second node. The distribution of beams over nodes depends on the Physics

module. For instance, for the bulb model, the neutrino beams along the zenith angle
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are distributed over nodes, however, for the other modules, depends on the geometry

the distribution can be different. If the value of these two keywords is a negative

number, in order to find distribution range of neutrino beams on each compute

node, prior to distributing the load over nodes a benchmark code is performed on

each node and based on the computational capability of each node, the starting and

ending beam’s indices are defined.

multiNodeBench= If the value is non zero, it indicates that the multi-node bench-

marking should be on. The multi-node benchmarking is the benchmark to find the

optimum MIC to CPU load ratios among multiple nodes.

minNodes=, maxNodes= These two values indicate the minimum and maximum

number of desired nodes on which the search for the optimum number of nodes should

be performed.

hasMatter= Indicates whether or not the matter profile is included into the run.

Zero means the matter profile is excluded, and non-zero values indicates the matter

profile is included into the run.

Tn= The total execution time of the application in second. Note that the time

for memory allocations and initilizations is not included, thus this time is only the

allowable time for executing the main neutrino evolution loop.

Ts= The total number of iteration for the main evolution loop. The program will

be finished after reaching the Tn seconds or after performing Ts radial iteration.

Keywords related to physics are listed as follow:

eps0= The error tolerance that indicates the maximum allowable error between

two computed wave-functions.

ksi= A float value between 0 and 1 for controlling the adaptive step size behavior.

It is a safety factor to ensure success on the next try.
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dm2= The value of the neutrino mass-squared difference. It is positive for the

normal mass hierarchy and negative for the inverted mass hierarchy.

theta= The vacuum mixing angle.

R0= The starting radius in Km.

Rn= The final radius in Km.

dr= The initial ∆r value in Km. Normally less than 1 Km.

max dr= The maximum possible value for ’dr’. The higher values will be trimmed

to this value.

E0= The starting point of the energy spectra in MeV.

E1= The ending point of the energy spectra in MeV.

Abins= The number of angle bins along zenith direction. The value is always

greater or equal to one.

Pbins= The number of azimuth angle bins. The value is always greater or equal

to one.

Ebins= The number of energy bins over the range of the energy spectra. The

value is always greater or equal to one.

SPoints= The number of emission surface points, for the multi emission points

systems.

Flvs= The number of neutrino flavors in the system.

Ye= The electron fraction or the net number of electrons per baryon.

nb0= The baryon density at the neutrino sphere.

Rv= The neutrino sphere radius.
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Mns= The mass of the neutron star in solar mass unit.

gs= The statistical weight in relativistic particles.

S= The entropy per baryon.

hNS= The scale height.

Lve=, Lv e=, Lvt=, Lv t= The energy luminosity for electron, anti-electron, tau,

and anti-tau neutrinos in erg/s.

Tve=, Tv e=, Tvt=, Tv t= The neutrino temperature for electron, anti-electron,

tau, and anti-tau neutrinos in MeV.

eta ve=, eta v e=, eta vt=, eta v t= The degeneracy parameter for electron,

anti-electron, tau, and anti-tau neutrinos.

A.4 Methods and Variables of Modules

Here the role of each method and variable within modules is described.

A.4.1 Neutrino Beam module (NBeam.h/NBeam.cpp)

This module is one of the lower layer modules. It contains the NBeam class, which

holds arrays of wave-function. Each element of those arrays represent a neutrino in

a particular energy bin. The NBeam module has the following functions and class:

void init(int flavors, int ebins) First, this function calls the energy spec-

tra module’s initialization method. Next, depends on the number of flavors, it al-

located several arrays for storing energy bins’ values. The size of each array is

determined by the number of energy bins. Afterwards, it fills up the energy arrays
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based on the normalized value of the energy spectra. In addition, it calculates and

stores the vacuum Hamiltonian for each bin.

void freemem() This method frees up all the arrays that were allocated in the

initialization function.

inline void upd nu coef(const double *restrict nu, const double *restrict

anu, const double n cf, const double an cf, double *restrict ret) throw()

This inlined function calculates the difference of the multiplication of the energy

spectra functions and the density matrices between a neutrino particle and its anti-

particle. In addition, each density matrix is weighted by its pre-computed coefficient

as follow: %′ναfνα(E ′) Lνα
〈Eνα 〉

− %′∗ν̄αfν̄α(E ′) Lν̄α
〈Eν̄α 〉

class NBeam This class represent a single neutrino beam that contains arrays of

wavefunctions expanding over a range of energy spectra. There are several variables

and methods inside this class:

• The constructor: The argument is the index that represent the type of the

particle (electron neutrino, anti-electron neutrino, etc.) for the beam:

NBeam(int prtc);

• Energy spectra function’s setter and getter: Two functions are available to

receive the value of energy spectra function. The first method receives an

index of energy bin and returns the value of the energy function based on the

received index. The second method returns the pointer to the array of energy

bins. The pointer can be used to set or get each energy bins’ value separately:

inline double Fv(int e) const;

inline double* Fv() const;

• Wave-function’s components setter and getter: Sometimes it requires that the
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wavefunction’s components be accessible based on an index (i.e. 0 for the real

part of the first number, 1 for the imaginary part of the first number, 2 for

the real part of the second number, 3 for the imaginary part of the second

number, etc.), therefore the following methods are provided to make wave-

function’s components accessible based on an index number: inline const

double* psi(int cmpn) const throw();

inline double* psi(int cmpn) throw();

• Energy bins’ setters and getters: These set of functions return the pointer to

the components of wavefunction arrays. The pointer can be used to set or get

each energy bins’ value. The following functions are available for the current

version of NBeam class:

inline double* Ar();

inline double* Ai();

inline double* Br();

inline double* Bi();

inline const double* Ar() const;

inline const double* Ai() const;

inline const double* Br() const;

inline const double* Bi() const;

• General wavefunction’s setters and getters: These set of functions can set the

value of each energy bin or return the current value of each energy bin. For

each wave-function component, there has to be at least one setter and getter

functions. The argument of each method is the index of the queried energy bin.

The following functions are available for the current version of NBeam class:

inline double& Ar(const int e);
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inline double& Ai(const int e);

inline double& Br(const int e);

inline double& Bi(const int e);

inline const double& Ar(const int e);

inline const double& Ai(const int e);

inline const double& Br(const int e);

inline const double& Bi(const int e);

• Density matrix: The density matrix is calculated from the wavefunction. For

instance, a wavefunction with two complex components has a two by two com-

plex density matrix. Yet, since the second row in the matrix can be constructed

from the first row, this method only returns the computed first row of the den-

sity matrix. The returned value is in a four-element array. There are two

possible ways to compute the density matrix from a wavefunction. The first

one is by passing an energy bin index, and the other is by passing the wave-

function components as argument:

inline void density(const int ebin, Res t ret) const throw();

inline void density(const double ar, const double ai, const double

br, const double bi, Res t ret) const throw();

• Neutrinos’ evolution: After computing the Hamiltonian, a method is required

to evolve the current wavefunctions using the Hamiltonian. There are two

methods that can be used for the neutrinos’ evolution. The first function,

takes an energy bin index, delta-radius, the Hamiltonian, and returns the com-

ponents of the evolved wavefunction. The second method takes delta-radius,

the Hamiltonian, the components of the current wavefunction, and returns the

components of the new wave-function:

235



A.4. METHODS AND VARIABLES OF MODULES

inline void U( const int e, const double dr, const double h r0, const

double h i0, const double h r1, const double h i1, const double n ar,

const double n ai, const double n br, const double n bi) throw();

inline void U( const double dr, const double h r0, const double h i0,

const double h r1, const double h i1, const double a r, const double

a i, const double b r, const double b i, double& n ar, double& n ai,

double& n br, double& n bi) const throw();

• Summation over energy bins: The summation over all energy bins is necessary

in order to calculate the Hamiltonian, thus a function is provided to calculate

the sum and store inside the class:

void calcHSum() throw();

• Energy bins summation: This method returns the previously computed sum-

mation over energy bins. The returned value is in a four-element array that is

the first row of the summation matrix:

void getHSum(Res t ret) const throw();

• Neutrino’s Beam Evolution: These set of functions receive another neutrino’s

beam and based on the neutrino-neutrino background Hamiltonian, matter

potential, and neutrinos’ mass difference term, evolves the wavefunctions:

void evolveBinsAvgErr( const NBeam& beam, const int ptc idx, const

double dr, const double *restrict hvv, const double hmatt, NBeam&

beamAvg, NBeam& beamErr ) throw();

void evolveBinsHvvAvg( const NBeam& beam, const int ptc idx, const

double dr, const double *restrict hvv, const double hmatt, NBeam&

beamAvg ) throw();

void evolveBinsAvg( const NBeam& beam, const int ptc idx, const double

dr, const double *restrict hvv, const double hmatt, NBeam& beamAvg
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) throw();

void evolveBinsAvg( const int ptc idx, const double dr, const double

*restrict hvv, const double hmatt, NBeam& beamAvg ) throw();

void evolveBinsHvv( const NBeam& beam, const int ptc idx, const double

dr, const double *restrict hvv, const double hmatt ) throw();

void evolveBins( const NBeam& beam, const int ptc idx, const double

dr, const double *restrict hvv, const double hmatt ) throw();

void evolveBins( const int ptc idx, const double dr, const double *REST

hvv, const double hmatt ) throw();

Other than the neutrinos’ evolution, several of the methods perform other

task such as calculating the summation of energy bins for the background

Hamiltonian or taking the average between two neutrino beams or calculating

the maximum error between two neutrino beams. Since function fusing can

increase the overall performance, it is recommended to use the fused version

of the function to perform more tasks on the same data. The particle index (0

for electron neutrino, 1 for anti-electron neutrino, 2 for mu neutrino, 3 for anti-

mu neutrino, etc.), the delta-radius, the neutrino-neutrino background and the

matter potential are passed as arguments too.

• Average of two beams: The average function takes a neutrino beam’s array

as an argument, then calculates the average between the argument and the

current object’s beam, and replace the current beam with the result:

void addAvg( const NBeam& beam ) throw();

• Find the maximum error between two beams’ wavefunctions: In order to detect

whether or not the current delta-radius is appropriate for calculations, the

maximum error between two neutrino beams is computed. Two functions are

privuded. The first one that takes a neutrino beam and calculates and returns
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the maximum error over all energy bins. The second function is similar to the

first one but also computes the summation over energy bins which can be used

in future for the Hamiltonian computations:

double calcErr( const NBeam& beam ) const throw();

double calcErrHvv( const NBeam& beam ) throw();

• Maximum calculate error return: If the maximum error is computed in one of

the fused function before, this function only returns it:

double& getErr() throw();

A.4.2 Numeric module (Nmr.h/Nmr.cpp)

This module is responsible for the numeric algorithm, and can be replaced with the

other numerical modules using different algorithms. There are several functions in

this module that have to be implemented:

int init(int len) This function is the first function to be called within this

module. It takes an integer argument that is the length of the neutrino beams

(number of trajectory beams multiplied by number of particles). Afterwards, it

allocates the memory for the entire neutrino beam’s arrays. The number of arrays

may be varied and depends on the algorithm. Next, it calls the initBeam() function

of the physics module for each of the allocated arrays, in order to initialize them.

void freemem() Calls the freeBeam() function of the physics module, after-

wards performs the neutrino beams’ deallocation.

int evolutionLoop() throw() This function contains the main neutrinos’ evo-

lution loop. In fact, it implements the numerical algorithm. If MPI is enabled, there

are several points that nodes communicate and exchange data. At the first point,

within the main evolution loop, the master node sends the termination condition,
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current radius, and delta-radius to all of the nodes. Next, this function calculates the

radial advancement based on the number of middle points. Then, it continues by cal-

culating the matter density profile. Afterwards, the Hamiltonian computations are

performed. The current algorithm continues with the neutrino beams evolution, error

calculations, and if the program is in the multi-node mode, all the nodes exchange

maximum local errors in order to find maximum global error. Next, if the maximum

error is less that a predefined error threshold an IO module’s function is called to

perform any necessary IO operations. Finally, it continues the next iteration.

A.4.3 Physics module (Phy.h/Phy *.cpp)

Currently, there are several physics related module each having different geometry

and physics. All of them have to implement at least all the methods within the

header file (Phy.h). These general methods are as the following:

void init() The Initilization method of the physics module that performs mem-

ory allocations in a specific order and arrays initialization.

void freemem() Deallocates all the allocated memories for this module.

int beamLen() Returns the length of the current neutrino beam’s array. It can

be used from other modules to find out about the neutrino beams’ length for memory

allocation purposes (e.g. Θ× Φ× num of particles)

int getDim() Returns the number of dimensions for the data related to the

plugged-in physics module. This can be useful from the I/O modules in order to

format the data for the NetCDF file (e.g. 6 = [r, theta, phi, num of particles,

wavefunction’s components, E])

void getDimInfo(std::string str[]) Returns an array containing strings for

the names of each dimension (e.g. 6 = [“r” “theta”, “phi”, “prtcl”, “comp”, “ebin”])
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size t*startDim() Returns an array of starting point of each data dimension.

To be used by the I/O module (e.g. [current radius, 0, 0, 0, 0, 0])

size t* countDim() Returns an array containing the length of each data dimen-

sion. This can determine the size of the current snapshot. To be used by the I/O mod-

ule (e.g. [1, theta bins num, phi bins num, num of particles, num of components,

num of energyBins])

int& startBeamIdx() Returns the starting beam number for the dimension that

is distributed over nodes. The value may vary on each node (e.g. 0 for the first node,

500 for the second node, 1000 for the third node, 2000 for the fourth node)

int& endBeamIdx() Returns the length of the dimension that is distributed over

nodes. The value may vary on each node (e.g. 500 for the first node, 1000 for the

second node, 2000 for the third node, 3000 for the fourth node)

int firstDimLen() Returns the size of the dimension on which the problem

size is distributed over nodes (e.g. depending on the module can be theta bins, or

phi bins, etc.)

void initBeam(NBeam* beam) Receives an array of NBeam objects and initial-

izes each object’s internal arrays (Particles and Ebins) accordingly by calling each

the constructor.

void freeBeam(NBeam* beam) Receives an array of NBeam objects and calls the

deconstructor of each object.

void calcAngleBins(const double r, const int step num) The The func-

tionality depends on the module but normally calculates and caches the cosine bins

at the current radius r and for different step numbers (current point, mid-point,

full-point). Depends on the module may calculates other angle bins as well.

void calcDeltaLs(const double dr, const int cur pnt, const int s pnt,
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const int e pnt) Calculates and caches δl for each angle bins. The ’dr’ parame-

ter is the radius difference, the ’cur pnt’ is the point at which the δl is calculated

and the last two points are the points at which the average is calculated. (i.e.

dl[cur pnt] = dr/(.5 ∗ (cos[s pnt] + cos[e pnt]) )

void newHvv(double*& hvv) Allocates memory for an array of Hamiltonians.

void deleteHvv(double*& hvv) Deletes the allocated memory for Hamiltonian

array.

void avgBeam(const NBeam *restrict ibeam, NBeam *restrict obeam) This

function only calculates the average of the two input neutrino beam arrays and store

the result into the second beam.

The following methods receive an array of NBeam objects, and evolve and save

them into an output array of NBeam objects. They may receive the matter profile’s

value and Hamiltonian array hvv. In Addition, they may perform other tasks in-

cluding the calculation of partial summation for neutrino-neutrino background over

energy bins, or calculating the average of two NBeam arrays and store them into the

last parameter:

• void evolve(const nbm::NBeam *restrict ibeam, const int pnt, const

double *restrict hvv, const double hmatt, nbm::NBeam *restrict obeam)

throw();

• void evolveHvv(const nbm::NBeam *restrict ibeam, const int pnt, const

double *restrict hvv, const double hmatt, nbm::NBeam *restrict obeam)

throw();

• void evolveAvg(const nbm::NBeam *restrict ibeam, const int pnt, const

double *restrict hvv, const double hmatt, nbm::NBeam *restrict obeam,

nbm::NBeam *restrict obeamAvg) throw();
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• void evolveHvvAvg(const nbm::NBeam *restrict ibeam, const int pnt,

const double *restrict hvv, const double hmatt, nbm::NBeam *restrict

obeam, nbm::NBeam *restrict obeamAvg) throw();

• void evolveAvgErr(const nbm::NBeam *restrict ibeam, const int pnt,

const double *restrict hvv, const double hmatt, nbm::NBeam *restrict

obeam, nbm::NBeam *restrict obeamAvg, nbm::NBeam *restrict obeamErr)

throw();

• void evolveAvg(const int pnt, const double *restrict hvv, const double

hmatt, nbm::NBeam *restrict iobeam, nbm::NBeam *restrict obeamAvg)

throw();

A.4.4 I/O module (Fio.h/IO f.cpp, IO fi.cpp)

Currently, there are two implemented I/O modules in XFLAT. When the first I/O

module (IO f.cpp) is employed, each node will dump data onto its own file using

the NetCDF. However, since the I/O performance is very poor on Xeon Phi and

may cause a serious bottleneck on heterogeneous environments, another module is

provided (IO fi.cpp) that indirectly sends the Xeon Phi’s data to the corresponding

CPU. Therefore, CPU is responsible to write down its own data as well as the Xeon

Phi’s data onto files. Here are the public methods for the I/O modules:

void init(int file counter=0) Initializes the I/O module. In addition, it

receives a counter number which indicates the number of generated files so far. The

counter is provided since sometimes it is not possible to store all the data onto a

single file. Thus, this function again can be called from the I/O module for initializing

another file.

void freemem() Deallocates all the allocated memories for this module.
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void fillInitData(NBeam* nubeam) It is possible to resume the code using the

previously generated data file. In that case, this function receives an array of NBeam

objects in order to initialize the neutrinos’ state function by using the provided data.

The data file is the second argument that is passed from the console to the code.

void dumpToFile( const NBeam *restrict nubeam, const int itr, const

double r ) This is the main function for saving data. It receives an array of NBeam

objects as well as the current iteration number and radius. If the current iteration

or radius have reached a predefined thresholds, it stores the data onto file.

A.5 The Dependency of Functions in XFLAT

This section describes the function call hierarchy in XFLAT.

NBGroup Module:

Listing A.1: NBGroup::init()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ I n i t i a l i z a t i o n

void i n i t ( )

{

\\\ Performs benchmarks for heterogeneous multi−node runs

node benchmark ( ) ;

\\\ I n i t i a l i z e other modules

nbm : : i n i t ( U t i l : : Flvs ( ) , U t i l : : Ebins ( ) ) ;

phy : : i n i t ( ) ;

f i o : : i n i t ( ) ;

matt : : i n i t ( ) ;

}
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Listing A.2: NBGroup::particleLoop()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Ca l l s the neutr ino evo lu t i on loop from the numeric module

void par t i c l eLoop ( )

{

nmr : : evo lut ionLoop ( ) ;

}

Listing A.3: NBGroup::freeme()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ F i n a l i z a t i o n

void freemem ( )

{

\\\ Free up memories o f each module

f i o : : freemem ( ) ;

phy : : freemem ( ) ;

}

Numeric Module:

Listing A.4: Nmr::evolutionloop()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ The main neutr ino evo lu t i on loop

int evolut ionLoop ( )

{

\\\ A l l o c a t e s Hamiltonian ar rays

phy : : newHvv(h ) ;

while ( . . . )

{
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\\\ Get the matter va lue s

matt : : getHm ( . . . ) ;

\\\ Ca l cu l a t e s ang l e s dependent va lues per each bin

phy : : ca lcAngleBins ( . . . ) ;

\\\ Ca l cu l a t e s d l from dr

phy : : ca l cDe l taLs ( . . . ) ;

\\\ Ca l cu l a t e s the Hamiltonian at each po int

phy : : calc Hvv ( . . . ) ;

\\\ Evolves neutr ino beams with the c a l c u l a t e d Hamiltonian

phy : : evo lve ( . . . ) ;

\\\ Ca l cu l a t e s the average f l a v o r s t a t e s between two beams

phy : : avgBeam ( . . . ) ;

\\\ Cond i t i ona l l y saves the r e s u l t s onto f i l e

f i o : : dumpToFile ( . . . ) ;

}

\\\ Dea l l o ca t e s the memory o f Hamiltonian ar rays

phy : : deleteHvv ( . . . ) ;

}

NBeam Module:

Listing A.5: NBeam::evolveBins()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Computes the r e s u l t o f the neutr ino evo lu t i on per bin

\\ To be c a l l e d from the Phys ics module

void NBeam : : evo lveBins ( . . . )

{

. . .

}
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Listing A.6: NBeam::calcErr()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Ca l cu l a t e s the maximum e r r o r between two NBeam o b j e c t s

\\ To be c a l l e d from the Phys ics module

double NBeam : : ca l cEr r ( . . . )

{

. . .

}

Listing A.7: NBeam::addAvg()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Adds two NBeam f l a v o r s t a t e s together , a f t e rwards saves

\\ the r e s u l t onto ’ t h i s ’ ob j e c t

void NBeam : : addAvg ( . . . )

{

. . .

}

Listing A.8: NBeam::calcESum()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Ca l cu l a t e s the summation o f f l a v o r s t a t e s

\\ The loop i s over energy b ins with in the NBeam ob j e c t

void NBeam : : calcESum ( )

{

. . .

}
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Physics Module:

Listing A.9: Phy::evolve()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Loops over a l l the neutr ino beams

\\ c a l l s the NBeam : : evolveBin ( ) func t i on per each ang le beam

void evo lve ( . . . )

{

for ( ang le : ANGLE BEAMS)

NBeam : : evo lveBins ( . . . ) ;

}

Listing A.10: Phy::avgBeam()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Loops over a l l the neutr ino beams , c a l l s the addAvg ( )

void avgBeam ( . . . )

{

for ( ang le : ANGLE BEAMS)

NBeam : : addAvg ( . . . ) ;

}

Listing A.11: Phy::calc Hvv()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Ca l cu l a t e s the Hamiltonian

void calc Hvv ( . . . )

{

\\\ Ca l cu l a t e s the ang le dependent r e s u l t s o f the p a r t i a l

\\\ Hamiltonian

ge tHvv par t i a l ( . . . ) ;
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\\\ In multi−node env . exchange the r e s u l t s between a l l nodes

MPI Allreduce ( . . . ) ;

\\\ Loops over a l l ang l e s to compute the f i n a l Hamiltonian

for ( ang le : ANGLE BEAMS)

getHvv ( . . . ) ;

}

I/O Module:

Listing A.12: IOf::fillInitData()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ F i l l s wavefunct ions by the f l a v o r s t a t e s from a prev ious

\\ run ( loaded from a f i l e )

void f i l l I n i t D a t a ( . . . )

{

for (bm : NEUTRINO BEAMS)

memcpy(&NBeam[bm ] . ps i , &data ) ;

}

Listing A.13: IOf::dumpToFile()

\\∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

\\ Based on the verbose mode dec ide s which func t i on to c a l l

\\ for per forming d i f f e r e n t w r i t e s

void dumpToFile ( . . . )

{

. . .

}
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Appendix B

Kernels

In this appendix the majority of the developed codes for the benchmarked kernels

are provided. The codes can be compiled with the Intel C++ compilers, although

the gcc compiler should be able to build most of them.

B.1 Raw Performance Benchmarks of the Xeon

Phi

Code for the benchmarking the Xeon Phi was based on [Intel, 2013] as a starting

point for floating point benchmark and modified for the transcendental function

benchmarks. The following code was used to benchmark MADD (multiply and

addition) and transcendental function throughput.

The compiler flags for the CPU were as follow:

icpc -O3 -openmp bench.c -xHOST

The compiler flags for the Xeon Phi were as follow:
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icpc -O3 -openmp bench.c -mmic

Listing B.1: Benchmark for MADD and transcendental functions

#include <c s td io>

#include <c s t d l i b>

#include <c s t r i ng>

#include <omp . h>

#include <sys / time . h>

#include <cmath>

// dtime

//

// r e t u r n s the current w a l l c l o c k time

//

double dtime ( )

{

double t seconds = 0 . 0 ;

struct t imeva l mytime ;

gett imeofday(&mytime , ( struct t imezone ∗ ) 0 ) ;

t s econds = (double ) ( mytime . t v s e c+mytime . tv u s e c ∗1 .0 e−6);

return ( t seconds ) ;

}

#define FLOPS ARRAY SIZE (1024∗1024)

#define MAXFLOPS ITERS 1000000

#define LOOP COUNT 4096

// number o f f l o a t p t ops per c a l c u l a t i o n

#define FLOPSPERCALC 2
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#define REAL double

// d e f i n e some arrays −

// make sure they are 64 b y t e a l i g n e d

// f o r b e s t cache acces s

REAL fa [ FLOPS ARRAY SIZE ] a t t r i b u t e ( ( a l i g n ( 6 4 ) ) ) ;

REAL fb [ FLOPS ARRAY SIZE ] a t t r i b u t e ( ( a l i g n ( 6 4 ) ) ) ;

int main ( int argc , char ∗argv [ ] )

{

int i , j , k ;

int numthreads ;

double t s t a r t , tstop , tt ime ;

double g f l o p s = 0 . 0 ;

REAL a =.05;

//

// i n i t i a l i z e the compute arrays

//

//

#pragma omp p a r a l l e l

#pragma omp master

numthreads = omp get num threads ( ) ;

p r i n t f ( ” I n i t i a l i z i n g \ r\n” ) ;

#pragma omp p a r a l l e l for

for ( i =0; i<FLOPS ARRAY SIZE ; i++)
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{

f a [ i ] = (REAL) i ∗ 0 . 1 ;

fb [ i ] = (REAL) i ∗ 0 . 2 ;

}

p r i n t f ( ” S ta r t i ng Compute on %d threads \ r\n” , numthreads ) ;

t s t a r t = dtime ( ) ;

// s c a l e the c a l c u l a t i o n across t h r e a d s r e q u e s t e d need to

// s e t environment v a r i a b l e s OMP NUM THREADS and KMP AFFINITY

#pragma omp p a r a l l e l for private ( j , k )

for ( i =0; i<numthreads ; i++)

{

// each thread w i l l work i t ’ s own array s e c t i o n

// c a l c o f f s e t i n t o the r i g h t s e c t i o n

int o f f s e t = i ∗LOOP COUNT;

// loop many t imes to g e t l o t s o f c a l c u l a t i o n s

for ( j =0; j<MAXFLOPS ITERS; j++)

{

// s c a l e 1 s t array and add in the 2nd array

#pragma omp simd

for ( k=0; k<LOOP COUNT; k++)

{

/// FMADD benchmark

f a [ k+o f f s e t ] = a∗ f a [ k+o f f s e t ] + fb [ k+o f f s e t ] ;

/// s i n ()/ cos ( ) benchmark
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// fa [ k+o f f s e t ] = s i n ( fa [ k+o f f s e t ] ) ;

// f b [ k+o f f s e t ] = cos ( f b [ k+o f f s e t ] ) ;

/// exp () benchmark

// fa [ k+o f f s e t ] = exp ( fa [ k+o f f s e t ]∗ . 0 0 0 0 0 1 ) ;

// f b [ k+o f f s e t ] = exp ( f b [ k+o f f s e t ]∗ . 0 0 0 0 0 3 ) ;

}

}

}

t s top = dtime ( ) ;

// # of g i g a f l o p s we j u s t c a l c u l a t e d

g f l o p s = (double ) ( 1 . 0 e−9∗numthreads∗LOOP COUNT∗

MAXFLOPS ITERS∗FLOPSPERCALC) ;

// e l a s p e d time

tt ime = ts top − t s t a r t ;

//

// Print the r e s u l t s

//

i f ( ( tt ime ) > 0 . 0 )

{

p r i n t f ( ”GFlops=%e , Secs=%e , GFlops per s ec=%e\ r\n” ,

g f l op s , ttime , g f l o p s / tt ime ) ;

}

return ( 0 ) ;

}
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B.2 SoA and AoS Benchmarks

Listing B.2: Structure of Arrays

class Data{

public :

double ar [ ] , a i [ ] , br [ ] , b i [ ] ;

. . .

void i n i t (double x ) {

#pragma omp simd

for ( int j = 0 ; j < SIZE ; ++j ) {

/// v e c t o r i z e d computat ions

}

}

} ;

int main ( int argc , char∗∗ argv ) {

. . .

#pragma omp p a r a l l e l for

for ( int i = 0 ; i < LEN; ++i ) {

. . .

for ( int k = 0 ; k < L ; ++k ) {

/// c a l l array wi th LEN leng th , in p a r a l l e l

}

}

. . .

}
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Listing B.3: Array of Structures

class Data

{

public :

double ar , ai , br , b i ;

. . .

void i n i t (double x )

{

/// s e r i a l computat ions on c l a s s ’ members

}

} ;

int main ( int argc , char∗∗ argv )

{

. . .

#pragma omp p a r a l l e l for

for ( int i = 0 ; i < LEN ∗ SIZE ; ++i )

{

. . .

for ( int k = 0 ; k < L ; ++k )

{

/// c a l l array wi th LEN∗SIZE leng th , in p a r a l l e l

data [ index ] . i n i t ( . . . ) ;

}

}

}
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B.3 Function Arguments and Their Performance

Listing B.4: The effect of function arguments within vectorized loops

void func2 ( const double ar , const double ai ,

const double br , const double bi ,

double& r e s r , double& r e s i ) {

/// Computations !

}

void func1 ( const int e , double& r e s r , double& r e s i ) {

/// Computations !

}

int main ( int argc , char∗∗ argv )

{

. . .

for ( int z = 0 ; z < N; ++z )

{

#pragma omp simd

for ( int e = 0 ; e < E; ++e )

{

/// Ei ther one o f the shou ld be commented out

func1 ( e , mm[ e ] , nn [ e ] ) ;

func2 ( ar [ e ] , a i [ e ] , br [ e ] , b i [ e ] , mm[ e ] , nn [ e ] ) ;

}

}

}
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B.4 OpenMP Parallel Loops

OpenMP loops can be written in various ways that may affect the performance.

Listing B.5: First approach for parallelizing a region via a parallel region that encloses

everything and single regions within the loop.

int main ( ) {

. . .

#pragma omp p a r a l l e l {

for ( int i = 0 ; i < N; ++i ) {

#pragma omp s i n g l e {

p [ i /SIZE ] += . . .

q [ i /SIZE ] += . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

c [ j ] += . . .

b [ j ] += . . .

a [ j ] += . . .

}

#pragma omp s i n g l e {

r [ i /SIZE ] −= . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

z [ j ] += . . .
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y [ j ] += . . .

x [ j ] += . . .

}

#pragma omp s i n g l e {

m[ i /SIZE ] −= . . .

q [ i /SIZE ] += . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

d [ j ] −= . . .

e [ j ] −= . . .

f [ j ] −= . . .

}

#pragma omp s i n g l e {

n [ i /SIZE ] += . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

u [ j ] −= . . .

v [ j ] −= . . .

w[ j ] −= . . .

}

}

}

}
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Listing B.6: Second approach for parallelizing a region via a parallel region inside

the main loop that encloses everything.

int main ( ) {

. . .

for ( int i = 0 ; i < N; ++i ) {

#pragma omp p a r a l l e l {

#pragma omp s i n g l e {

p [ i /SIZE ] += . . .

q [ i /SIZE ] += . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

c [ j ] += . . .

b [ j ] += . . .

a [ j ] += . . .

}

#pragma omp s i n g l e {

r [ i /SIZE ] −= . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

z [ j ] += . . .

y [ j ] += . . .

x [ j ] += . . .
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}

#pragma omp s i n g l e {

m[ i /SIZE ] −= . . .

q [ i /SIZE ] += . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

d [ j ] −= . . .

e [ j ] −= . . .

f [ j ] −= . . .

}

#pragma omp s i n g l e {

n [ i /SIZE ] += . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for

for ( int j = 0 ; j < SIZE ; ++j ) {

u [ j ] −= . . .

v [ j ] −= . . .

w[ j ] −= . . .

}

}

}

}
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Listing B.7: Third approach for parallelizing a region via a parallel region that

encloses everything and single regions within the loop. Threads at the end of parallel

for loop does not wait for the other threads.

int main ( ) {

. . .

#pragma omp p a r a l l e l {

for ( int i = 0 ; i < N; ++i ) {

#pragma omp s i n g l e {

p [ i /SIZE ] += . . .

q [ i /SIZE ] += . . .

}

#pragma omp for nowait

for ( int j = 0 ; j < SIZE ; ++j ) {

c [ j ] += . . .

b [ j ] += . . .

a [ j ] += . . .

}

#pragma omp s i n g l e {

r [ i /SIZE ] −= . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for nowait

for ( int j = 0 ; j < SIZE ; ++j ) {

z [ j ] += . . .

y [ j ] += . . .
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x [ j ] += . . .

}

#pragma omp s i n g l e {

m[ i /SIZE ] −= . . .

q [ i /SIZE ] += . . .

}

#pragma omp for nowait

for ( int j = 0 ; j < SIZE ; ++j ) {

d [ j ] −= . . .

e [ j ] −= . . .

f [ j ] −= . . .

}

#pragma omp s i n g l e {

n [ i /SIZE ] += . . .

s [ i /SIZE ] −= . . .

}

#pragma omp for nowait

for ( int j = 0 ; j < SIZE ; ++j ) {

u [ j ] −= . . .

v [ j ] −= . . .

w[ j ] −= . . .

}

}

}

}
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Listing B.8: Fourth approach for parallelizing a region via separated parallel for

regions.

int main ( )

{

. . .

for ( int i = 0 ; i < N; ++i )

{

p [ i /SIZE ] += . . .

q [ i /SIZE ] += . . .

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < SIZE ; ++j )

{

c [ j ] += . . .

b [ j ] += . . .

a [ j ] += . . .

}

r [ i /SIZE ] −= . . .

s [ i /SIZE ] −= . . .

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < SIZE ; ++j )

{

z [ j ] += . . .

y [ j ] += . . .

x [ j ] += . . .
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}

m[ i /SIZE ] −= . . .

q [ i /SIZE ] += . . .

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < SIZE ; ++j )

{

d [ j ] −= . . .

e [ j ] −= . . .

f [ j ] −= . . .

}

n [ i /SIZE ] += . . .

s [ i /SIZE ] −= . . .

#pragma omp p a r a l l e l for

for ( int j = 0 ; j < SIZE ; ++j )

{

u [ j ] −= . . .

v [ j ] −= . . .

w[ j ] −= . . .

}

}

}
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B.5 Benchmarks of the I/O Loops

Listing B.9: Saving data via NetCDF within nested loops.

void IO(NBeam∗ beams )

{

. . .

for ( int t e t = 0 ; t e t < the ta s ; ++t e t )

{

s t a r t [ 1 ] = t e t ;

for ( int phi = 0 ; phi < phi s ; ++phi )

{

s t a r t [ 2 ] = phi ;

for ( int p = 0 ; p < P; ++p)

{

s t a r t [ 3 ] = p ;

for ( int c = 0 ; c < C; ++c )

{

s t a r t [ 4 ] = c ;

NCRUN( nc put vara doub le ( nc1id , psid ,

s t a r t , count ,

beams [ ( t e t ∗ phi s+phi )∗P+p ] . p s i ( c ) ) ) ;

}

}

}

}

. . .

}
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Listing B.10: Saving data via NetCDF within a single loop.

void IO(NBeam∗ beams )

{

. . .

for ( int i = 0 ; i < the ta s ∗ phi s ∗P; ++i )

{

/// C a l c u l a t e s the proper i n d e c i s

s i z e t i 0 = i / ( ph i s ∗P) ;

s i z e t j 0 = i % ( phi s ∗P) ;

s i z e t i 1 = j0 / P;

s i z e t i 2 = j0 % P;

s t a r t [ 1 ] = i 0 ; s t a r t [ 2 ] = i 1 ; s t a r t [ 3 ] = i 2 ;

for ( int c = 0 ; c < C; ++c )

{

s t a r t [ 4 ] = c ;

NCRUN( nc put vara doub le ( nc1id , psid ,

s t a r t , count ,

beams [ i ] . p s i ( c ) ) ) ;

}

}

. . .

}
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Listing B.11: Saving data via NetCDF after completion of a single loop. Within the

loop data may be extracted from NBeam objects and store onto a buffer.

void IO(NBeam∗ beams )

{

. . .

for ( int i = 0 ; i < the ta s ∗ phi s ∗P; ++i )

{

s i z e t i 0 = i / ( ph i s ∗P) ;

s i z e t j 0 = i % ( phi s ∗P) ;

s i z e t i 1 = j0 / P;

s i z e t i 2 = j0 % P;

for ( int c = 0 ; c < C; ++c )

{

for ( int e = 0 ; e < eb ins ; ++e )

b u f f e r [ ( i ∗C+c )∗ eb ins+e ] = beams [ i ] . p s i ( c ) [ e ] ;

}

}

NCRUN( nc put vara doub le ( nc1id , psid ,

s t a r t , count , b u f f e r ) ) ;

. . .

}
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