
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-1-2015

Policy-based Information Sharing using Software-
Defined Networking in Cloud Systems
VISWANATH NANDINA

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
NANDINA, VISWANATH. "Policy-based Information Sharing using Software-Defined Networking in Cloud Systems." (2015).
https://digitalrepository.unm.edu/ece_etds/186

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/186?utm_source=digitalrepository.unm.edu%2Fece_etds%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

 Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

 Approved by the Dissertation Committee:

 , Chairperson

Policy-based Information Sharing using
Software-Defined Networking in Cloud Systems

by

Viswanath Nandina

B.Tech., Electronics Engineering, Uttar Pradesh Technical University, 2006
M.S., Computer Engineering, University of New Mexico, 2010

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Engineering

The University of New Mexico

Albuquerque, New Mexico

July 2015

iii

c©2015, Viswanath Nandina

iv

Dedication

To my parents, family and friends.

v

Acknowledgments

It is quite impossible to achieve all that you can and must without the help of others. I am grateful to
my parents for their unconditional love and faith in me.

I would like to express my heartfelt gratitude for my longtime advisor and mentor Dr. Gregory Heileman
and his constant support, inspiration, encouragement, and guidance throughout my academic career at
UNM. He has been sublimely pivotal in my evolution and has motivated me to strive for excellence.

I thank all the members of the Informatics Group including Dr. Chris Lamb, Dr. Pramod Jamkhedkar,
Dr. Edward Nava and Dr. Jose Marcio Luna for collaborating in my research endeavors. I would also like
to thank my other committee members: Dr. Nasir Ghani and Dr. Winnie Shu. Finally, I would like to
thank Dr. Juan Antonia Elices Crespo, Aman Sawhney, Ricardo Piro-Rael and Craig Dubyk, who have
provided very helpful reviews and continuous encouragement.

vi

Policy-based Information Sharing using
Software-Defined Networking in Cloud Systems

by

Viswanath Nandina

B.Tech., Electronics Engineering, Uttar Pradesh Technical University, 2006

M.S., Computer Engineering, University of New Mexico, 2010

Ph.D., Engineering, University of New Mexico, 2015

Abstract

Cloud Computing is rapidly becoming a ubiquitous technology. It enables an escalation in computing

capacity, storage and performance without the need to invest in new infrastructure and the maintenance

expenses that follow. Security is among the major concerns of organizations that are still reluctant to adopt

this technology: The cloud is dynamic, and with so many different parameters involved, it is a difficult task

to regulate it. With an approach that blends Usage Management and Statistical Learning, this research

yielded a novel approach to mitigate some of the issues arising due to questionable security, and to regulate

performance (utilization of resources).This research also explored how to enforce the policies related to the

resources inside a Virtual Machine(VM), apart from providing initial access control. As well, this research

compared various encryption schemes and observed their behavior in the cloud. We considerd various

components in the cloud to deduce a multicost function, which in turn helps to regulate the cloud.

While guarenteeing security policies in the cloud, it is esential to add security to the network becuase

the virtual cloud and SDN tie together. Enforcing network-wide policies has always been a challenging task

in the domain of communication networks. Software-defined networking (SDN) enables the use of a central

controller to define policies, and to use each network switch to enforce policies. While this presents an

vii

attractive operational model, it uses a very low-level framework, and is not suitable for directly implement-

ing high-level policies. Therefore, we present a new framework for defining policies and easily compiling

them from a user interface directly into OpenFlow actions and usage management system processes. This

demonstrated capability allows cloud administrators to enforce both network and usage polices on the

cloud.

viii

Contents

List of Figures xii

List of Tables xiv

Glossary xv

1 Introduction 1

1.1 Software-Defined Networking vs Traditional Networking . 3

1.2 Mandatory Access Control . 6

1.3 Tradeoff Between Performance and Security . 6

1.4 Outline of the Framework . 8

2 Cloud Computing Security 12

2.1 Essential Cloud Characteristic Vulnerabilities . 15

2.2 Limitations in Known Security Techniques . 16

2.3 Vulnerabilities in Cloud Offerings . 17

2.4 Security Risks Associated with Storage . 17

Contents ix

2.5 Securing Communication . 18

2.6 Auditing, Authentication, Authorization and Identity

(AAAI) . 18

3 Software-Defined Networking 21

4 Problem Description and Previous Approaches 29

4.1 Software Defined Networking . 29

4.2 Usage Management (UM) . 32

4.2.1 UCONABC . 32

4.2.2 An Interoperable Usage Management Framework 33

4.2.3 Usage Management in Cloud Computing . 34

4.2.4 Security Policy . 35

4.2.5 Security Models . 35

4.2.6 Access Control Models . 36

4.2.7 Contrasting Technologies . 38

5 Policy-Based Security Provisioning in the Cloud 39

5.1 Introduction to Usage Management . 39

5.2 Access Control and Beyond Access Control . 40

5.3 Usage Management in the Cloud . 41

5.3.1 Usage Management System for Cloud Computing 42

5.3.2 System Architecture/Model . 42

Contents x

5.3.3 Policy . 43

5.3.4 Context . 44

5.3.5 Implementation . 45

6 Provisioning Security and Performance Optimization 51

6.1 Cost Function . 52

6.2 Measure of Security . 53

6.3 Statistical Learning . 54

6.4 Encryption and Benchmark Overhead . 56

7 Policy Generation and Enfocement for SDN clouds using UM 59

7.1 Design & Approach . 59

7.1.1 Access Control . 59

7.1.2 Entire Framework . 60

7.1.3 Architecture . 61

7.1.4 Mandatory Access Control . 62

7.1.5 Policy Language . 62

7.2 Policy Generation . 64

7.2.1 Generate policies . 66

7.2.2 Policy Model . 66

7.2.3 Installing Flows On Switches . 71

7.2.4 Policy Database . 72

Contents xi

7.3 Information Architecture . 73

7.4 Result . 75

8 Conclusions 76

References 79

xii

List of Figures

1.1 Architectural differences between regular and an OpenFlow switch. 4

1.2 Flow table entry. 5

1.3 Use cases for our developed framework. 9

4.1 Components of UCONABC model. 34

5.1 Hierarchical UM operation concept . 40

5.2 Usage Management in a Multi-Cloud Environment. 41

5.3 Policy Generation . 44

5.4 Component Diagram of Usage Management for hybrid cloud-based system. 46

5.5 Usage management inside a VM. 47

5.6 Technology Architecture . 48

5.7 Operation of User Management framework within a Virtual Machine. 50

6.1 Memory Overhead . 56

6.2 CPU Overhead . 57

List of Figures xiii

7.1 System Architecture diagram . 60

7.2 SDN and Application Architecture . 61

7.3 Entity-Relationship diagram . 72

7.4 Information Architecture for SDN in Cloud systems. 74

xiv

List of Tables

6.1 Measure of security associated to ciphers and modes of operation. 58

7.1 Flow Table 1 . 71

7.2 Flow Table 2 . 71

7.3 Flow Table 3 = Hashmerge Table 1 and Table 2 . 71

xv

Glossary

AES Adavanced Encryption Standard

API Application Program Interface

AS Autonomous System

CBC Cipher Block Chaining

CFB Cipher Feedback

CLI/GUI Command Line Interface/ Graphical User Interface

DES Data Encryption Standard

DoS Denial of Service

DRM Digital Rights Management

ECB Electonic Block Chaining

EC2 Elastic Cloud Compute

FSL Flow-based Security Langauge

HSM Hardware Security Modules

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

Glossary xvi

IDS Intrusion Detection System

IP Internet Protocol

ISP Internet Service Provider

L2 Layer 2/Data Link layer

LDAP Lightweight Directory Access Protocol

MAC Media Access control address

MIMO Multi-Input-Multi-Output

NAT Network Address Translation

NFV Network Function Virtualization

NIST National Institute of Standard Technology

NOS Network Operating System

OFB Output Feedback

P2P Peer-to-peer

PaaS Platform as a Service

PDF Probability Distribution Function

REST Representational State Transfer

TCP Transmission Control Protocol

TCSEC Trust Computer System Evaluation Criteria

TLS/SSL Transport Layer Security / Secure Sockets Layer

S3 Simple Storage Service

Glossary xvii

SAML Security Assertion Markup Langauge

SaaS Software as a Service

SDN Software-Defined Networking

SLA Service Level Agreement

SQL Structured Query Language

UDP User Datagram Protocol

UM Usage Management

UMM Usage Management Mechanism

VLAN Virtual Local Area Network

VM Virtual Machine

XML Extensible Markup Language

1

Chapter 1

Introduction

Cloud computing is the use of computing resources (hardware and software) that are delivered as a service

over a network. In other words, cloud computing is a service that enables online data storage, so it can be

accessed using multiple devices from anywhere in the world. Cloud computing has revolutionized the way

we compute and store information, from storing and sharing ski trip pictures, to massive collaboration of

employees in a company that spans the globe. The cloud has made our lives more convenient, in that we

no longer have to worry about how and where we store our data.

Cloud computing is troubled by infrastructural failures and potential security problems, and over

the past few years even major infrastructure providers—from Amazon to Microsoft—have suffered from

extensive and unexpected system downtime [1]. This has led to the development of tools like Amazon’s

CloudWatch, which can monitor infrastructure it provides for failures, and secure additional infrastructure

when required.

Many organizations need to share confidential information, and hence require assurance that their data

cannot be altered by intentional attacks. Because the current cloud system is unable to provide varying

levels of security for various types of data, organizations and users have been hesitant to adopt cloud

computing. This has led some of them to invest in their own computing enterprise systems with rigorous

security and reliability protections. Thus, a global demand exists for an automatic control system to

enforce security rules so that operations can be directed to private or public cloud systems.

Chapter 1. Introduction 2

The rise in popularity of cloud computing and interest in using leased hardware and software services

has resulted in an increased demand for assured information sharing. Infrastructure as a Service (IaaS)

cloud services are becoming a lucrative option because they are scalable, offer hardware independence and

geographical independence, and have no single point of failure. This eliminates the need to maintain one’s

own hardware resources and provides easy access for computing needs. In an IaaS cloud, users are limited

to security measures that can be incorporated into the user’s VM image [2]. No concrete mechanism exists

to translate service-level agreements into the cloud allocation chain.

To secure data transmission within the cloud, a solid set of policies are required because encryption

and secure protocols are not context-oriented. Since different privacy risks exist in different cloud domains,

operational context is very important from a privacy perspective [3]. There is an increased need for privacy

mechanisms, but enforcement of the policy within the cloud is difficult because there is no direst access to

the hardware [4]. Zissis et al. address some of the security issues in cloud computing: they use a trusted

third-party solution that includes the SSL protocol for encryption and uses LDAP for access, cryptographic

separation of data, and certificate-based authorization [5]. Takabi et al. describe the various security and

privacy challenges in the cloud domain, which describes the problem better [6].

A security mechanism able to control who can access information, how information is used, and how

the information is transmitted over a network is in high demand. Since all system components may not

be co-located, a policy-based approach that can regulate data access and data transmission and effectively

comply with confidentiality and integrity is indispensable. In other words, a comprehensive system that

includes both an access control and continuous policy-based enforcement capability is desirable.

The solution proposed in this research is an abstraction that utilizes usage management (UM) and

SDN to solve the problems described above. UM provides dynamic security by continuously monitoring

policy related to resources, taking into account any change in context, and enforcing appropriate action

to ensure that security needs are upheld [7]. SDN helps assure that traffic going in and out of the cloud is

secure.

Chapter 1. Introduction 3

1.1 Software-Defined Networking vs Traditional Networking

SDN enables the deployment, management, and operation of networks by use of a standards-based open

architecture and its supporting open-source interfaces. It is an architecture that enables programmability

of the network. SDN-based systems have well-defined control as well as a data plane offering flexible man-

agement interfaces, as opposed to traditional network management (APIs, scripts and software packages)

that is dependent on the mercy of vendor-specific hardware. SDN also allows for better cloud security

engineering because of its ability to control the network [8].

The notion behind SDN is to separate the control plane of network hardware from the data plane. In

general, the point is to let the software, separate from the data plane, define how the data flows rather

than configuring and instructing each and every piece of network hardware. A basic switch forwards all

traffic based on “learned” MAC address reachability information, whereas an open flow switch permits

selective forwarding of data based on inputs from the controller.

Today, network programmability is highly dependent on vendor-specific implementations connected to

their hardware. Therefore, it is difficult to provide an end-to-end SDN solution. Users desire to break

the shackles of proprietary vendor-specific interfaces to fully utilize the SDN capability. One of the most

popular SDN specifications used by many developers is OpenFlow [9]. OpenFlow was initially proposed

as an academic research project, led by Nick McKeown (Stanford University) with the goal of enabling

scientists to run network experiments in real-world campus networks.

As depicted in Figure 1.1, OpenFlow was developed to standardize communication between the control

plane and the data plane (Southbound interface). Users can access OpenFlow-enabled switches on the

open interface (Northbound interface) without having to deal with the internal data plane.

Figure 1.2 depicts entries in a flow table [9]. Each OpenFlow-enabled switch implements a flow table,

and the OpenFlow protocol is used to access the flow table. Each entry in the table defines rules to match

a packet (based on IP address, MAC address, TCP/UDP port, VLAN, and switch port) and the action to

be taken upon a match (drop the packet, forward to the controller, forward the packet to particular switch

port(s) and/or send to normal processing pipeline). This allows the network administrator to implement

Chapter 1. Introduction 4

Forwardin
g Table

Store &
Forward

Controller

Collect info(MAC,IP, port)
Make forwarding decisions
Security (Access control,

virus throttling,)

Data Plane

Traditional Switch

Control Plane

Management Interface

ASIC Interface

Forwardin
g Table

Store &
Forward

Open SDN API and
protocols

SDN Switch

Data Plane

Open SDN Management APIs and
Protocols

Control Plane
SDN Controller

Northbound Interface

SDN Controller

Collect info(MAC,IP, port)
Make forwarding decisions

Security (Access control, virus
throttling)

Switch Ports Switch Ports

Southbound Interface
(eg: Openflow)

GUI or CLI

Figure 1.1: Architectural differences between regular and an OpenFlow switch.

a load balancer, a hub, or a firewall, all operating at line rate performance.

Currently, users are segregated from each other using VLAN, but this requires a reconfiguration of the

network each time a VM is created or shut down. VLAN is a network of computers grouped together based

on a common set of requirements even though the computers are physically on separate LANs. It is very

difficult to configure each switch manually in a dynamic cloud environment, but by using SDN this can be

automated by programming the controller via the Northbound interface API. With the use of CloudStack

or OpenStack, VLAN user isolation is achieved, which can be managed more easily by the use of SDN.

The majority of SDN deployments are in a private LAN setting, where different dynamic policies, which

require the network to be reconfigured, must be implemented. SDN is also attractive for larger networks

Chapter 1. Introduction 5

Switch
Port VLAN ID TCP

Destn Port
MAC

Source
MAC
Destn

Eth
Type

IP
Source

IP
Destn

IP
Protocol

TCP Source
Port

Rule Action Statistics

 1. Forward action to ports
 2. Encapsulate and forward to controller

 3. Drop packet
 4. Send to normal processing

Packet + byte counters

Figure 1.2: Flow table entry.

like data centers or campuses, where different network services such as firewalls and load balancing are

needed. Thus using SDN, instead of focusing on a single device that could possibly suffer from packet

processing speed restrictions, the rules are distributed among switches and are processed at line rate. SDN

is also used where different network paths dedicated to latency or bandwidth are preferred.

Network Management Complexity: Having no SDN, network administrators use scripts to con-

figure the network. Even with SDN, administrators must deal with it being error-prone, which is why new

abstractions need to be created that will lead to a simpler system for fixing errors.

The development of OpenFlow permits for the demonstration of many potential benefits of SDN, and

multiple vendors have started to offer commercial switches supporting the OpenFlow standard. Researchers

have also made progress on SDN components, such as SDN controllers, switches, programming interfaces,

verification and debugging tools; deploying SDN in data center networks and campus networks; routing;

and traffic engineering. Despite the progress, many important questions regarding SDN still remain, such

as longer-term issues around SDN’s theoretical foundation; programmability and control logic; formal

Chapter 1. Introduction 6

methods and protocol engineering; abstraction and view; network operating system, etc.

OpenFlow does not directly provide an interface for describing network policies, but do so only on the

basis of packet header match fields and network actions [9]. Though it may be a very useful interface, it

has limited value when attempting to enforce policies using only these network primitives.

Despite the flexibility that OpenFlow offers, it still requires that flows be installed manually, which is a

time-consuming and error-prone process [10]. Many people have gone through the effort to abstract Open-

Flow fields and actions so that programmers and network engineers may use the more familiar interfaces

[11],[12]. However, none of these interfaces is specifically dedicated to providing mandatory access control.

1.2 Mandatory Access Control

An essential part of any secure system—particularly those that are multi-level security systems [13]—is

mandatory access control: a system that determines whether a given subject may access a given object, both

of which are given certain security classifications. Mandatory access control is especially difficult to enforce

on a network, as it must usually be enforced manually at the endpoints, which are the machines themselves.

Otherwise, the only options are expensive and custom systems, which often come with undesirable effects

such as those observed when using unidirectional security gateways [14]: difficulty in reconfiguring the

system as the network expands, and inflexibility when it comes to the diverse communication needs of

the user base. There is demand for a framework that allows administrators to automatically create and

enforce network and security policies [15],[16],[17]. With software defined networking (SDN), it is possible

to use commercial, off-the-shelf hardware to enforce network-wide policies at each switch [18], and usage

management incorporates mandatory access control.

1.3 Tradeoff Between Performance and Security

Despite the rising popularity of cloud computing, disengaging users from the hardware needs has long

been criticized for being unable to provide a trustworthy solution to the problem of managing the trade-off

Chapter 1. Introduction 7

between security and performance [5]. As the security requirements become more stringent (in military

applications, for example) the performance of the application service decreases [19]. The potential and

scope of cloud computing is bound by the challenge of ensuring organizations’ and users’ security and

privacy while maintaining efficient and reliable systems.

This unfortunate dilemma of optimizing the trade-off between security and performance is an obvious

but legitimate criticism of cloud computing architectures, and it lies at the cornerstone of this research.

The key challenges facing cloud providers are how to balance and to optimize resources and security within

a cloud system. Resource allocation optimization ensures maximum returns on the cloud infrastructure to

the cloud provider. Security services provided by the cloud are critical parameters that determine whether

or not the customer is confident in moving data to the cloud. However, these goals are often at odds

with each other. In many cases, security is compromised in the quest for higher resource utilization, and

sometimes efficient resource utilization must give way to changes that achieve better security.

An application may display different performance measures in a cloud computing environment, , such

as response time, throughput, or latency. In previous works [20], an approach assuming that the cloud can

be modeled as a Multi-Input-Multi-Output (MIMO) system is implemented to regulate performance in the

cloud. From this perspective, the cloud is seen as a black box with inputs and outputs, where the outputs

are the different performance measures of interest, while the inputs are values related to the amount of

available virtual resources in the cloud e.g., CPU utilization and available memory in a Virtual Machine

(VM) as well as the number of available VMs in a cluster. The authors assume that the hypervisor allows

for fine-grained control of the parameters of the Virtual Resources in place. However, based on, in a public

cloud service—specifically in IaaS such as EC2 from Amazon—the variation of the internal parameters

of the VMs, and therefore the response of the system, are coarse-grained [21],[22]. This imposes several

difficulties to applying methodologies such as Linear Quadratic Regulation as in the CPU problem [23],

which is effective in regulating MIMO systems. Our framework uses Usage Management in conjunction

with SDN to enhance security for the cloud. But an increase in security measures corresponds to a decline

in performance.

This research provides a solution to the problem of provisioning resources for security and performance.

The resources and security allocated to the VM are calculated based on our statistical learning model for

Chapter 1. Introduction 8

optimization. In this model, like other resources, security is considered as a resource allocated to the VM.

The quantity of security allocated to a given VM is measured in terms of the strength of the encryption

algorithm applied to the sensitive data to be used within that VM. The greater the strength of the security

algorithm, the greater the quantity of security resource allocated to the VM.

1.4 Outline of the Framework

The goal of this research effort is to apply Usage Management (UM), in conjunction with SDN, to control

communication in a novel way: to provision and control cloud-based resources and ensure that all security

and performance requirements are met. UM provides dynamic security by continuously monitoring the

resource, taking into account any change in context and enforcing appropriate action to ensure security

requirements are upheld. In our framework the Usage Management Mechanism (UMM) acts as a Network

Function Virtualization unit (NFV), the NFV virtualizes network function previously executed by means

of hardware. It is used when a user desires a one-way flow of information [24],[25]. For the action “read,”

it fetches the resource, and for the action “write,” it writes to the resource. The OpenFlow mechanism

becomes active when data must be transmitted to the physical or virtual machines connected to the SDN.

To understand when either mechanism is in use, let us imagine a scenario in which users of two machines

want to communicate. User of Machine A wants to communicate with User of Machine B. Figure 1.3 shows

the use cases explained below.

Scenario 1: Machine A is at a higher security level than Machine B. Action is “read.” The policy

generated is with action “read,” and the UMM takes a copy of the resource from Machine B and sends it

to Machine A, which is essentially a “read” operation.

Scenario 2: Machine A is at a lower security level than Machine B. Action is “write.” The policy

generated is with action “write”, and the UMM pulls a copy of the resource from Machine A and also

sends it to Machine B, which is essentially a “write” operation.

Scenario 3: Machine A is at the same security level as Machine B. Action is both “read” and “write.”

Chapter 1. Introduction 9

Action = Read
UMM Fetches
Resource from
Machine B to

Machine AMachine A Machine B
High Security level Low Security Level

Usage Management
Mechanism

Scenario 1

Action = Write
UMM Takes

Resource from
Machine A and

writes to Machine BMachine A Machine B
Low Security level High Security Level

Usage Management
Mechanism

Scenario 2

Action = Read/Write
Installs a flow on the

network switches
to create a path

between Machine A
and Machine B. So,

Machine A gets direct
access to Machine B

and vice versa.

Machine A Machine B
Same Security level Same Security Level

Policy Interpreter

Scenario 3

Figure 1.3: Use cases for our developed framework.

In this case, we want to give Machine A direct access to Machine B, and vice-versa. The policy generated

is with both actions—“read” and “write” in this case—the policy interpreter accepts the policies and

converts them into network flows. These flows are then installed on the network switches that are a part

of the OpenFlow network to allow communication between Machine A and Machine B. Finally, a network

path is established between Machine A and B so they may access one other.

Our framework creates network policies that are based on the following entities: source, destination,

and a policy model. These entities are entered by the network administrator through means of a simple

web interface that stores them in a relational database. We implement a policy-based usage management

Chapter 1. Introduction 10

system for software-defined networks and for multiple cloud environments. This system takes resources

with specific attributes and provisions them according to usage policies. This approach automatically

generates usage and network policies, and also enforces them.

In summary, we present a framework that allows for a more user-friendly abstraction, which means

that the user doesn’t have to worry about the implementation details. Our framework uses OpenFlow to

install specified policies on the SDN controller, facilitates abstraction for reasoning over network flows, and

provides asymmetric communication by means of an NFV. The framework also provides a single point of

entry for specifying policies.

Subsequent chapters of this dissertation are described below:

Chapter 2: The immense popularity of clouds arises from the ease that a cloud infrastructure offers

for collaboration and information sharing. To capitalize on this popularity, higher security and privacy

enforcement measures are warranted. This would allow the cloud infrastructure to truly become the utopian

computing environment that it is idealized to be. These problems have been discussed at length.

Chapter 3: From the scale and dynamic nature of the cloud stems a need for an efficient mechanism to

control the network in cloud-based infrastructure. SDN provides fine control over the network, hence it can

effectively fulfill the cloud network’s needs. It transforms network management from traditional network

configuration to network programming, but raises the question if SDN-based clouds provide more network

security than traditional clouds. In other words, does SDN obviate the security problems in a virtualized

cloud setting?

Chapter 4: This chapter gives a through description of the related work and background, and finally

compares the currently existing contrasting technologies.

Chapter 5: Todays systems are cloud-based and virtualized. The systems, however, need to control

the access to information. Also, since components in a transaction may not be co-located, a policy-based

approach for data access and data transmission complying with confidentiality and integrity requirements.

The mechanism offers secure usage control of sensitive data within sensitive VMs.

Chapter 6: Security and resource optimization are two of the most important concerns in cloud com-

Chapter 1. Introduction 11

puting. This framework offers secure usage control of sensitive data within virtual machines that are

dynamically instantiated while optimizing both security and the resources allocated to the VM.

Chapter 7: Since the topology of every network is likely to be unique, and there may be middle boxes,

routers, and other devices that may make it difficult to enforce SDN policies [26]. Network applications

are generally difficult to implement correctly [12]. The goal of this research is to demonstrate automatic

generation and execution of usage and network policies. But in order to control how the information is

transmitted over the network, this framework was built and dependent on the UM system data transmission

governed by SDN policies.

Chapter 8: This chapter draws conclusions, and provides direction for further research.

12

Chapter 2

Cloud Computing Security

Cloud computing refers to the provision of services that entails hosting and maintenance of data, confiden-

tial or otherwise, on cloud servers. As a result, clients who store their confidential data on cloud servers

are essentially handing it over to the cloud providers for safe keeping. The success of cloud computing is

therefore heavily contingent on the clients’ complete trust of the cloud providers. An individual’s trust in

a system dwindles if they are not given much control over it [27]. For instance, people trust the withdrawal

of money from ATMs because the transaction ends with them receiving money. However, the use of ATMs

for deposits is less trusted because people do not know what happens after inserting their money into

the machine. In cloud computing, trust is dependent on whether the providers provide said service and

whether they ensure confidentiality of their clients’ data. In distributed processing, the user has no control

over where the data is processed after uploading it to the system. The user may not be well-acquainted

with legal rules of the region where the data is stored or processed.

The Trust Computer System Evaluation Criteria (TCSEC) is an example of an early trust that took

effect the late 1970s and the 80s. TCSEC was a method of convincing customers of a system’s accuracy

and security. In cloud computing, customers trust providers based on whether they believe that provider’s

actions will not deviate from the exact promises and expectations. As a result, trust is based on the

credibility and consistency of the provider. A system that does not give sufficient information regarding

its capabilities is less trusted. Customers are not merely swayed by catchphrases such as “trust me” or

Chapter 2. Cloud Computing Security 13

“secure cloud.” Instead, they look into the system’s transparency in providing details such as where the

data is stored and processed in the distributed environment.

The level of discomfort can also be eased using a control mechanism. Such a mechanism determines

the physical location of the cloud machines where the data are stored and processed. Another factor

upon which trust heavily depends is the cloud computing infrastructures model of deployment. A user

will most likely have more faith in a private cloud because overall systems are controlled internally by

the same organization. The vulnerability of community clouds is lower because a majority of its users are

from the same community and/or organization. On the other hand, the users of public clouds are from

different locations, which can reduce their trust. The fact that public clouds serve different types users

from different locations makes them more vulnerable.

Service-Level Agreements (SLAs) are of paramount importance because in most of the cases, they pro-

vide the only way through which trust can be established. However, in some contexts of cloud computing,

SLAs may not be helpful because the breach of data in some cases is irreparable and money cannot help

in recovering the cost. Consequently, trust in the context of cloud computing is usually based on the

prevention of failure instead of post-failure compensation [27]. The Security Assertion Markup Language

(SAML) is a current claim-based access control and federated identity approach used in cloud computing

as a security token service.

The prominence of cloud computing is based on an integration of several core technologies without

which its services would be rendered unsuccessful. These core technologies include:

• Web Services and Applications: this technology forms the foundation of software-as-a-service (SaaS)

as well as platform-as-a-service (PaaS). SaaS refers to the end users’ access to web applications. On

the other hand, PaaS facilitates easier development by exposing web services and combining them to

form web applications. Through PaaS, the development of new applications is made easier because

it entails use of pre-built services. Web interfaces are also used in the administration of IaaS (for

example, in the management of different users’ access control).

• Virtualization: this technology allows users to simultaneously operate numerous isolated virtual

machines (VMs) using one single physical machine. It endows the users with high computing power

Chapter 2. Cloud Computing Security 14

while maintaining the system’s elasticity and the pay-as-you-go model. Through virtualization, the

users are provided with pooled resources, and better utilization of the installed infrastructure is

realized. Virtualized infrastructure is used in the development of SaaS, PaaS, and IaaS.

• Cryptography: in most of the cloud systems, cryptography is the only technology used to ensure

the security of data on the cloud servers. All web services and applications, virtualization and

cryptography technologies have vulnerabilities that are inherent or that emerge when the technologies

are used in the context of cloud computing. Some of these vulnerabilities follow:

• VM Hopping: through VM hooping an attacker can use one virtual machine to access other VMs.

In such an attack, the victim’s configuration settings, resource usage and confidential data can be

changed or deleted, thus compromising the availability, confidentiality, and integrity of the user’s

data. For such an attack to be executed, the attacker must know the VM IP address of the victim to

gain access to the victim’s physical machine. Since cloud computing entails the simultaneous running

of numerous machines from the same physical machine, VM hopping can cause a severe security threat

in cloud computing. As a result, VM hopping is regarded as one of the core vulnerabilities of cloud

computing technologies. Since one machine can be used to operate numerous computers, this attack

can be launched on one or more VMs. PaaS and IaaS can be particularly affected by VM hopping.

Since SaaS is based on PaaS and IaaS, users’ confidentiality and integrity of data can also be affected

indirectly by VM hopping [28].

• VM Mobility: the virtual disc contents of a VM are usually saved as files on the physical machine. As a

result, the VM can be transferred between different physical machines. Such an endeavor is referred

to as VM mobility. Though VM mobility facilitates fast system deployment, it also exposes the

system to risks such as vulnerable configuration spreading. If an attacker encapsulates a vulnerable

configuration in his VM, the configuration is moved with the VM when it is being transferred to

another physical server. When the transfer is complete, the attacker can launch a man-in-the-middle

attack. Such an attack can cripple the guest operating system, thus leading to loss of confidential

data. The fact that VM mobility brings flexibility to the overall system makes this issue hard to

completely prevent.

Chapter 2. Cloud Computing Security 15

• VM Diversity: the different types of operating systems make it hard to secure and maintain VMs.

The deployment of these OSs can be done in seconds [29]. The process of maintaining and securing

VMs is more complicated as a result of their diversity.

• VM Denial of Service (DoS): the virtualization technology allows users to simultaneously operate

numerous isolated VMs using one single physical machine. As a result, all VMs share similar physical

resources such as memory, CPU, and network bandwidth. In some instances, one VM may consume

all resources, thus rendering the other VMs on the machine incapable of accessing the services. In

order to avoid such an attack it is imperative that a resource allocation configuration be conducted

before the assignment of resources to the VMs. In the context of cloud computing DoS can be

prevented using SLAs, as they clearly define each customers configuration.

2.1 Essential Cloud Characteristic Vulnerabilities

According to the National Institute of Standard Technology (NIST), there are several rudimentary features

of cloud computing that makes it vulnerable:

1. Internet Protocol: the delivery of cloud services is done via a network, which most of the time is

the Internet. The standard protocols used in the Internet are usually not considered trustworthy.

Consequently, the vulnerabilities posed by Internet protocol are pertinent to cloud computing.

2. UN-Authorized Access: on-demand self-service that does not require human intervention was one

of the key features of cloud computing identified by NIST. The delivery of such a service calls for

a web-based management interface that can be accessed anywhere in the world. This means that

unauthorized users can find their way into the management interface. This poses a huge risk to

cloud computing because the management interface is at a higher risk of unauthorized access than

traditional systems.

3. Data Recovery: another major characteristic of cloud computing is resource pooling, wherein a

resource is shared by different users at different times. After one user uses a resource, another user

Chapter 2. Cloud Computing Security 16

can use the same resource at different time. If an attacker gains access to the physical machine used

by a user, he/she can recover that user’s data from the machine’s storage devices.

2.2 Limitations in Known Security Techniques

• Session Riding/Hijacking: web applications/services form the basis of cloud computing. HTTP is

the carriage protocol of these web applications and services. The design of HTTP makes it stateless

as a result and there is a loss in the application’s state in the numerous requests to the server. The

management of HTTP’s state is done using multiple techniques, among which is session management.

The management of sessions can be accomplished through a myriad of techniques such as cookies,

query strings, and state servers. However, at the end of the day, the management of sessions is

vulnerable to riding and hijacking. Given that web applications/services form the basis of cloud

computing, the cloud computing architecture is susceptible to session riding and hijacking. The

security of data stored on cloud can be ensured using cryptography techniques.

In some instances cloud computing can directly impinge on security techniques in a way that renders them

ineffective in the context of cloud computing. For example, the standard IP-based network zoning tech-

nique is no longer used in cloud computing. Network-based vulnerabilities are strictly proscribed by IaaS

providers because it is hard to distinguish between an attacker’s scan and friendly scans. Communication

in virtualized environments occurs on real and virtual networks. A virtual network refers to a network

connecting different VMs on the same physical machine.

Another noteworthy security control issue is poor management of keys. In cloud computing, there

are a myriad of keys that need to be generated, stored, and managed. VMs are usually distributed on

a geographical basis. As a result, they do not have a fixed physical hardware, and this complicates the

incorporation of some hardware security modules (HSM).

Lastly, there are not security metrics given to the cloud computing users to help them keep track of

their cloud services security status. No such security metrics have been developed for cloud computing.

Until such security metrics are developed, the accountability and security of cloud computing will always

Chapter 2. Cloud Computing Security 17

be problematic.

2.3 Vulnerabilities in Cloud Offerings

The offerings provided by cloud computing are among the most state-of-the-art in the market. The

vulnerabilities that pertain to these state-of-the-art offerings are referred to as cloud-specific vulnerabilities.

Weak authentication is yet another severe vulnerability in cloud computing. For user to access cloud

computing services, they have to use web interfaces. The username-password authentication techniques

used in these interfaces are not considered entirely secure because of some user-based problems such as

weak passwords, not remembering the password, and the like. Cloud-specific vulnerabilities may also arise

from the infrastructure and platform used. The infrastructure used is responsible for some of the basic

services such as storage of data, resources computation and communication. Platforms of cloud computing

facilitate the development of applications. They also provide a run-time environment for services that

are developed using one of the supported languages. Below are the vulnerabilities that pertain to cloud

computing platforms.

2.4 Security Risks Associated with Storage

The features of cloud computing that mostly increase the vulnerability of cloud data include resource

pooling and elasticity. The storage devices used to store data from different users’ are the same. When a

user stops using the address space assigned to him/her, it is assigned to another user. If this other user is

an attacker, he/she can recover the previous user’s confidential data.

Both hard and soft media sanitization are also hard to achieve in the context of cloud computing. Data

sanitization is conducted to prevent incidences of data remanence. Data remanence can be defined as the

data footprint after the removal or deletion of the actual data from the storage media. Data remanence is

experienced after a process of file deletion, no matter how insignificant it might be. Formatting the storage

media serves as the most ideal process in the quest of media sanitization. Nevertheless, cloud computing

Chapter 2. Cloud Computing Security 18

is distinctive, as it does not permit formatting.

Another method of sanitization mostly used by organizations is hard sanitization, which entails physical

destruction of the storage media. Hard sanitization is also not an option in cloud computing because the

storage devices are shared among different users. Cryptography is most appropriate security solution that

can be used in cloud computing. However, as previously mentioned, the security ability of cryptography

is usually thwarted by poor key generation, storage and management among users.

2.5 Securing Communication

The elasticity and resource pooling features of cloud computing also lead to the sharing of some networking

infrastructure among users. When network infrastructure resources such as dynamic host configuration

protocol, domain name system, and internet protocol are shared, an attacker can use them to execute

a cross-tenant attack. Such attacks are usually executed in IaaS environments. Network virtualization

enables the use of real and virtual networks in the same physical environment. It is sometimes impossible

to integrate network-based security implementations in a virtual network environment.

2.6 Auditing, Authentication, Authorization and Identity

(AAAI)

In almost all of cloud computings services, AAAI are regarded as major requirements. They can sometimes

be provided as third-party services, but more often than not they are part of the process of the primary

services provided to the customers. Apart from the weak user authentication cloud computing challenge

previously discussed here are some more cloud-specific challenges:

• Feeble Credential Reset Process: in the event that the user fails to remember his or her credentials

in an attempt to log in to the interface, the procedure utilized in resetting the credentials of the user

customized for cloud computing particularly because such details are managed by the providers of

Chapter 2. Cloud Computing Security 19

cloud computing.

• Denial of Account and Denial of Services: in authentication mechanisms that use usernames and

passwords, if the user enters the wrong credentials many times, he/she gets locked out of the system.

This can be corrected using some human interaction, such as using CAPTCHAs during the next

authentication verification endeavor. If the desktop client applications being used are pre-configured

to access the interface at remote locations, denial of services persists until there is some human

interaction with the system.

• Authorization Checks: the authorization checks provided by web applications and services are usually

inadequate, and this may help the attacker to deduce any subsequent changes that might help them

get access to an unauthorized record. For instance, if the record is being shown to a customer (who

happens to be an attacker) via ID in the query string, the attacker may be able to deduce the next

possible accessible record. If there is a possibility that a pre-determined flow can be bypassed, the

application of authorization checks should be done using individual services.

• Customizable Authorization: the authorization configuration platform provided in the cloud service

interfaces should have a high level of customization. To achieve this, categories of different users

should have different privileges at different times. The configuration panel provided by the manage-

ment interface should be such that all users are strictly provided only what they require at a given

time.

• Activity Logging and Monitory: there are currently no metrics in cloud computing that can aid the

process of logging and keeping track of a user’s activities. Log files help in recording every activity

being conducted on the servers. However, filtering them out for a specific user, at a specific access

region, and so on, can be very difficult. Auditing of the user’s activities is of paramount importance,

as it helps in the provision of standard mechanisms of logging and keeping track of a user’s activities.

On-demand self-service that does not require human intervention is a key feature of cloud computing

identified by NIST. The delivery of such a service calls for a web-based management interface that can be

accessed anywhere in the world. The interface inherits all problems that pertain to the use of protocols in

Chapter 2. Cloud Computing Security 20

web application/services. If all control is kept at a single place, the attacker can breach the system and

access this location, which would lead to an immense loss in that particular cloud computing system.

The offerings being provided by cloud computing have lead to its rapid growth in the market. In spite

of this growth, there is a continuing concern among the customers about the security of cloud computing

systems. Customers are not well-acquainted with the security being offered to them because cloud com-

puting does not have any clearly defined security standards. The efficiency of most of the current cloud

computing security controls needs to be improved because they are not appropriate. Adapting the security

modules to an acceptable level requires a lot of interest and effort. In addition, the introduction of cloud

computing has lead to the emergence of new security vulnerabilities that are specific to its environment.

As a result, there is need to develop some new cloud-specific security modules.

Different cloud computing services require different levels of security. For instance, more security is

required in the fields of telemedicine and e-commerce, unlike those of public information. Likewise, different

cloud computing users require different levels of security. For instance, more security is required for voice

conversations that pertain to business issues on the cloud, unlike in the case of voice conversations between

friends on the cloud. Consequently, observing the highest level of security is not always appropriate. In

addition, observing the highest level of security for all the services and users can be an expensive venture

of the cloud computing provider.

21

Chapter 3

Software-Defined Networking

Software-defined networking transforms a network into a platform and translates its individual elements

into programmable entities [30]. Traditional networks employ control decisions and packet switching inside

the switch itself. SDN, on the other hand, separates these two operations: control decisions are performed

inside the controller, while switching and forwarding decisions are done in the switch. SDN is a rela-

tively new approach that abstracts network elements as programmable, thus enabling easy and scalable

management of the network.

Usually, a computer network is composed of a router, switches and middle boxes, and complicated pro-

tocols tailored for it. Network administrators design different network policies to ensure proper functioning

and to deal with various network problems. They manually configure these high-level network policies into

low-level network commands with limited tools. Therefore, the performance management of the network

is difficult and error-prone. This problem has caused difficulties in the evolution of the internet in terms

of infrastructure and protocols. In this light, the concept of SDN provides a solution in its ability to

make programmable networks. It simplifies network management, treating network resources in a manner

similar to storage and other hardware.

In order to develop in-house scripts and software to configure the network without SDN, network

administrators are forced to utilize non-standardized APIs. Network programs, however, should become

more readable to a larger number of administrators with the adoption of standardized interfaces, which

Chapter 3. Software-Defined Networking 22

will assist network management code trustworthiness as well the debugging processes. The major reasons

a network administrator that inherits a network decides to develop scripts and management tools from

scratch include: back doors that would compromise security may have been left by a previous administrator;

and poor documentation of the inherited configuration. To avoid forcing the users to deal with complex,

low-level Southbound interfaces, it is expected that new abstractions will be generated. Applying software

engineering and creating the correct abstractions is what has been advocated by a number of researchers.

This will result in a simpler system, enabling the utilization of formal verification techniques and easier

debugging[31] [32].

Logically centralized networks management, in which the controller defines data flow, is advocated by

the SDN. Regardless of the fact that the global SDN view tactic raises obvious scalability concerns, based on

the researchers beliefs, scalability is not going to be an issue because the messages are exchanged at a much

lower rate by the control planes, while the data plane operates at line rate. Nevertheless, a well-defined

model for federation and collaboration is required by the global view. The boundaries of what each network

program user can do must be well-defined in the case where there is sharing of network infrastructure by

many users. When dealing with logical central control, the creation of a hierarchical structure where

limited functionality can be delegated by the SDN domain to its users is a possible evolution.

Often times, physically, there is traditional isolation of the management networks from regular network

traffic. Given that it is only the administrators who have access to the management network, the infras-

tructure would be protected from attackers, though access to network devices needs to be configured. In

this particular circumstance, security is independent of whether or not SDN is utilized, and depends on

how well network administrators can operate the infrastructure.

Nevertheless, permitting direct interaction amid the network, the application, and the end users, in a

way similar to how they interact with storage and compute resources, is the vision of SDN. The mechanism

to coordinate the utilization of network resources and regulate access to programming interfaces, therefore,

becomes essential. SDN is considered to be secluded from the data network. Although there is need for

much research and development, some features can be seen in network hypervisors as well as in network

operating systems.

Chapter 3. Software-Defined Networking 23

In order to attain maximum seclusion among users, several techniques, including VLANs and firewall

configurations, are utilized by cloud providers. In advanced CloudStack networking, for instance, each

tenant is assigned an autonomous VLAN. A large number of secluded broadcast domains are permitted by

VLAN technology to coexist in a LAN, and a particular VLAN header is processed by switches. VLAN’s

complex management can be made controllable by SDN.

Alternatively, utilizing SDN programming, tenant seclusion can be attained. Given that SDN controllers

can regulate how packets flow via the data plane, they can implement firewall rules. How well SDN

programs are written is what seclusion level depends upon. Cloud resource sharing is susceptible to service

attacks denial by exhaustion, from a performance perspective. By placing an extremely high load on shared

resources, an attacker may possibly prevent access to CPUs of other users. Correspondingly, a network

can be congested by an attacker attacking the machine running the SDN regulator, or sending needless

messages. On the other, hand SDN can group flows per port and modern switches handle line rates per

port, and regular users are unharmed given that it is possible to quickly detect such patterns and seclude

the traffic.

With regard to detection and response to attacks, SDN consists of two major advantages over traditional

networks, which are as follows: Instead of depending on expensive intrusion detection systems, detection

of attacks a can be made a distributed task amongst switches; and without the necessity of accessing

and reconfiguring many heterogeneous pieces of hardware, the administrators are permitted by the SDN

centralized management model to quickly seclude or block traffic patterns consistent with an attack. In

addition, SDN can be utilized in controlling how traffic is directed to network monitoring devices[33].

It is in a highly dynamic cloud environment that quick response is majorly important. The focus of

the traditional Intrusion Detection Systems (IDS) is on detecting suspicious activities. Moreover, it is

restricted to simple actions like notifying to a system administrator or disabling a switch port. SDN has

the potential to take difficult actions, such as altering suspicious activities’ paths so as to seclude them

from known, trusted communication. Much attention will be given to determining ways in which existing

algorithms in SDN context and IDS mechanisms can be recast, and to taking full advantage of multiple

points of action through the development of new algorithms.

Despite the fact that mechanisms to access network statistics data from routers and switches are

Chapter 3. Software-Defined Networking 24

available, the end users rarely get access to such data. The switches are designed in such a way that the

switches match the flow and they process the flow based on the rules defined by a regulator. Built-in

performance counters also exposed via programming interfaces are contained in the hardware utilized to

match flows. Based on either fine-grain monitored network or statistics data, the counters can be utilized

to match rules. Service-level agreements between users and providers can be made easier to manage by

leveraging these features. Both the cloud users and providers can be able to verify how and when violation

of a network-related SLA has occurred, given a reliable statistics data source.

Because of its potential to offer better cloud resource management, VM migration inter- and intra-

clouds utilization has been investigated. When a VM shifts from one server to another, complex network

programs or reconfigurations are required to keep similar VLAN configuration access and firewall policies

unchanged. The increases in complexity are dependent on the distance of migration that is, in decreasing

order: across WAN, across buildings, across server rooms, across racks and within a rack. As already

exemplified by the Route Flow SDN switch-based architecture, there is need for further research in order

to realize SDN based on WAN. Increased network interfaces and programs supporting VM migration will

be developed as SDN evolves and gets more frequently deployed.

Only part of the entire network would be affected by failure to any component, particularly with the

traditional network switches. Precisely, network operation is minimally affected by failure of a management

server, which is utilized to communicate with routers and switches whenever there is need for change in the

configuration, since it will only prevent new configurations to be disseminated. Although it could prevent

accepting new users in a cloud, the system will continue to run. Catastrophic consequences—complete

shutdown of the network in the worst case—might potentially result from the failure of an SDN controller.

At the network level, achieving confidentiality is very challenging. To start with, the network is always

aware of the packets source and destination. What follows is that users would be required to trust the

network devices in case the implementation of the encryption is done at the network level. Attaining

true end-to-end data confidentiality is possible if it is only the destination and source parties who are

aware of the data. Given that there exist several validated application-level protocol s that guarantee data

confidentiality, SDN is unlikely to provide encrypted communication confidentiality. When processing

sensitive data, applications could constantly depend on traditional approaches.

Chapter 3. Software-Defined Networking 25

Potential security risks can result from the fact that SDN exposes new interfaces to control and operates

the network. The entire network security can be easily compromised in case communications amid the data

plane and control plane are not appropriately secured. There is need for careful design and implementation

of SDN controllers, as well as their access control policies, given that a compromised controller can affect the

entire network’s security. Once SDN is available, attacks that are challenging or impractical for users may

become possible as low-level network services and functions are exposed to more users. Software-defined

networking regulators normally operate on traditional computers that are known to be abuse-prone. To

maintain the security presently dependent on network configuration, it is essential to properly secure these

points of entry.

Tools that can assist experts to study different features of OpenFlow security have been developed by

the group. NOX-OpenFlow controller platform is extended by FORT-NOX implementing security kernel

that facilitates OpenFlow rule insertion requests by applications[34]. A rule-conflict detection engine that,

in collaboration with a role-based authorization mechanism, decides whether OpenFlow rule deletions or

insertion should be recognized or not, is implemented by the FORT-NOX security policy enforcement

kernel. FRESCO is simply a security application development outline for OpenFlow-based SDN. The

scripting language of FRESCO makes it possible to use fewer lines of source code in writing security

applications in comparison to the number of lines of source code utilized in writing OpenFlow applications

from scratch, facilitating developers to majorly concentrate on security features of OpenFlow application.

Different researchers have also studied the tools utilized in the development of OpenFlow or OpenFlow-

based security applications. Network slicing is utilized by FlowVisor to generate multiple logical networks,

and assesses OpenFlow conflicts amid logical networks[35]. The need for fine-grained rules that can be

altered in response to network monitoring are recognized by the Resonance architecture, which also imple-

ments a security system that tracks diverse states of each host to accordingly apply security rules. Network

programming language abstractions development that will assist in guaranteeing the consistency of policies

in SDN has been proposed by some researchers. Moreover, the researchers have conducted research on

the ways that existing security mechanisms are recast by the use of the SDN paradigm. The two services

offered by Amazon Elastic Computer Cloud (EC2) are security group and elastic IP[36]. Where security

groups are EC2 instances groups to which firewall rules are assigned by the users, elastic IP refers to a

Chapter 3. Software-Defined Networking 26

static IPv4 address which Amazon leases to certain cloud users that can be mapped programmatically to

an instance (a VM).

The utilization of the Big Data Security is an interesting technique to uncovering and mitigating cyber-

threats. Treating the complete organization network traffic as Big Data and utilizing Big Data mechanisms

to implement security solutions is the major idea here. A potential solution to this is Security Intelligence

and Analytics (SIA), as introduced by Piper[37]. Besides having the ability to capture every flow and

packet that traverses a network, SIA can possibly sense threats that would be impossible detect with

traditional solutions. There is an expectation that the functionality and performance of Big Data security

solutions can further be improved by SDN.

The idea of a network instruction set may be conceptualized as SDN shifts to a notion of programming

the network from network device configuration. Much attention has been directed by the OpenFlow

specification to this particular layer, defining how the data plane and control plane interact with each

other. Just like computer architecture, whereby there is direct access of the hardware by the stand-alone

application minus operating system control, it is probable to utilize the network instructions directly to

implement stand-alone SDN controllers. These stand-alone SDN controllers are currently the majority

of OpenFlow controllers that are available, and are adequate for small deployments. A number of SDN

features can be studied even with this simple setup: how to correctly seclude the control massages from

the data plane; the ways in which the controllers should be protected against external attacks; the number

of switches that can be handled by a single controller; which is the right set of network instructions that

is to be exposed; the ways in which a distributed controller is to be implement; (among other features).

It is likely that, in a cloud environment, several controllers will be required to accommodate varied and

often conflicting wants among system administrators, providers, as well as other end users. Therefore, a

Network Operating System (NOS) that can coordinate several applications and find solution to potential

conflict is required[38]. Security studies should therefore direct much attention on the NOS layers as

follows: how well is each application secluded from each other? Are there vulnerabilities exposed by a

function? What is the suitable set of interfaces exported by a NOS? The obtained lessons from computer

operating system development years should be leveraged.

Chapter 3. Software-Defined Networking 27

In addition, maximum flexibility in network programming would be enabled by the network hypervisors

that have the ability to coordinate the action of a number of network operating systems. Just as in

computer systems, each layer requires security consideration. A step toward the vision of networked

sandboxes offering missing network virtualization services to clouds, campus-based networking test beds

and fully virtualized datacenters is SDN. As an upcoming technology, there is need for much research and

development to have a clear understanding of its security implications. Creating an analogy with machine

virtualization, as required by the cloud middleware, users and providers, virtual networking services can

be developed by the use of a layered architecture. There is need for data plane to be able to securely

accept and execute commands form the control plane.

In making open specifications for the control and data plane interface, with less attention to security

and more on flexibility, considerable effort has been spent. Based on the argument of a number of individ-

uals, this particular interface needs to be physically secluded and secured, and accessed only by trusted

hypervisor, network operating system or controller. Sophisticated authentication and access control are

required in the control plane. There already exists a user base, well-defined mapping amid users, and

resources in the deployed clouds. For instance, there is a clear mapping for a given user running VMs in

an IaaS cloud. There will be need for the network hypervisors to restrict the actions of a controller to a

specific set of VMs. Whenever a solution to cloud collaboration is to be leveraged and multiple clouds are

involved, this particular task becomes more complex[39][40].

A large number of interfaces with potential security vulnerabilities are exposed since SDN allows for

the network to be programmed. Considerable changes to cloud network management security are not

probable in the case where SDN is simply utilized as a better technology to operate networks and there

is physical restriction of the interfaces to system and network administrators. Network management se-

curity will remain the same, having similar threats and vulnerabilities in the case an assumption that

SDN programming is properly done, is made. At least in the initial SDN deployment phases, a number

of the deployments will follow the administrators-only network management model. There will be need to

securely expose SDN programmability to a large number of users as SDN matures. Moreover, there will

be incorporation of the increasingly complex security into SDN design.

Chapter 3. Software-Defined Networking 28

With or without, SDN operation and configuration of networks is a difficult and error-prone activity.

Given that a larger community is to be involved in interacting with the network control plane promoted by

SDN, there will continue to exist unintended security vulnerabilities that may increase in certain scenarios.

The flexibility in influencing low-level elements provided by SDN will at the same time facilitate the

development of new ways of improving security that were impossible before. Security is highly dependent

on the ways in which network programs are implemented.

In coordinating network programming responsibilities, a layered approach similar to computer systems

can be utilized. In the data plane, the programming interfaces can be deliberated as a network instruction

set, having network hypervisors coordinating several network operating systems. This in turn provides

services to several applications. There will be need to appropriately secure each layer. To prevent ap-

plications from interfering with each other, the access to network services need to be well-coordinated

and controlled. Consequently, there will be need for complex control of the users, and interoperation and

federation encounters the same as ones faced by clouds emerge.

29

Chapter 4

Problem Description and Previous

Approaches

4.1 Software Defined Networking

One of the most widely used SDN protocols is OpenFlow [41]. An OpenFlow-enabled switch implements a

flow table, and the OpenFlow protocol is used to access that flow table. The communication between the

southbound side of the controller and the switch is standardized by OpenFlow protocol, relieving the users

from intricate details. The API to the northbound side of the controller is used by network administrators

to program the network.

The precursor to OpenFlow is Ethane , which was motivated by the difficulty in maintaining the security

needs of a large network [15]. Such a network has coarse-grained access control and is vulnerable to IP

spoofing attacks. Ethane uses a centralized controller architecture for enterprise networks and security

achieved via a global network policy. It establishes secure network access between switches and controllers;

the switch flow tables are updated by the controller, and the packets are strongly bound to the original

sender. IP addresses are assigned by the controller and source devices need to be registered to the network,

users bind to the host via authentication , and controllers get their rules from the application. The policies

Chapter 4. Problem Description and Previous Approaches 30

use high-level names, and are called flow-based security language (FSL).

Like Ethane, Resonance also controls network traffic using policies that a controller implements via

programmable switches [42]. Using this approach, the authors were able to build a dynamic access control

framework that combines the controller with the monitoring sub-system. Resonance focuses on granularities

of policies and segregates compromised hosts, whereas traditional compromised node and host segregation

is often done using VLAN.

One key element of Resonance is a central authentication system in the controller. Upon successful

client authentication to their portal, the controller moves the host to authenticated state and updates flow

table entries in the switches and initiates a scan of the host. Based on this scan, the client is either raised

to operation state or quarantined state. There are four progress states in resonance, namely: quarantined,

registration, authenticated, and operation. This is similar to how policies are used in our work.

FRESCO is a security framework to add security policy to SDN, specifically in conjunction with NOX

controller [43]. It has its own scripting language and creates flows with NOX on that basis. It also has

its own database storage language. FRESCO can load modules, and has a specific security enforcement

kernel that sits inside NOX.

A few problems in network management are enabling frequent changes to network conditions and state:

providing support for network configuration in a high-level language, and providing better visibility and

control over tasks for performing network diagnostics and troubleshooting. The authors of [16] present

a solution where they create network policies in a high-level policy language and of the source of the

problem. They take into account time, data usage, status, and flows for the policy generation. They

present a four-state architecture which resembles the one used in Resonance to implement transitions in a

campus network.

FORT-NOX is a security enforcement kernel for OpenFlow Networks [38]. The kernel is designed for

role-based authentication, rule-based authorization, conflict detection and resolution, and security directive

translation. One interesting thing about this is that it is designed to help prevent using OpenFlow switches

to do creative hacks, such as packet header modification to bypass a firewall (dynamic flow tunneling).

Chapter 4. Problem Description and Previous Approaches 31

Frenetic provides programmers with a collection of abstractions for writing controller programs for SDN

[44]. The work focuses on three stages of network management: monitoring the network state, configuring

new policies, and reconfiguring the network.

Procera is a control architecture for SDN based on functional reactive programming [45]. The authors

mention that it is possible to fully express network policies in Procera, but the language has a steep learning

curve, hence a specialization is required. In fact, the authors themselves mention that there is a need for

a simple configurable interface to simplify the task.

In OpenSec, the authors are interested in simplifying how network security policies are implemented

in a campus setting and how their framework responds to alerts [46]. They create and implement network

policies in simple, human-readable language. They describe a flow in terms of OpenFlow matching fields

and define which security services must be applied to that flow and specify security levels that define how

OpenSec would react to malicious traffic, if detected.

SIMPLE is a policy manager for sending packets through various middleboxes [47]. SIMPLE translates

middlebox-specific policies into rules that can be installed on SDN switches while ensuring that the load

across middleboxes is balanced. In order to address the challenge of policy composition, they introduce

processing tags. These processing tags allow packets to take network loops in order to fulfill policies. These

tags use the extra bits in an IP header and can be abstracted as a state machine. This keeps the OpenFlow

policies from being static and avoids a packet getting stuck in a loop. The work also introduces ‘resource

management’ and ‘flow correlation’. Middleboxes, such as a proxy, may modify the packet header and in

order to make a correct flow, the packet itself must be inspected. ’Flow correlation’ inspects the payload

of a packet in order to correlate flows.

FlowTags uses modified middleboxes to create tags to help the flow pass along [26]. It works similar to

SIMPLE, except that the FlowTags are actually changed at the middleboxes and not the switches.

Chapter 4. Problem Description and Previous Approaches 32

4.2 Usage Management (UM)

UM supervises the usage of resources (and data) across and within computing environments [48]. Once

users have legal access, usage management provides the owners of information with an assured ability

to regulate the fashion in which users can use these data. Early work focused on the protection and

distribution of copyrighted material in electronic form, and has motivated the developments in the con-

ceptualization of usage management. Today’s developed computing environment has excellent network

capabilities: they not only support intensive data transfers, but also have high transfer rates resulting

in short transfer times. Users can also quickly download data to high-speed and high-density media like

thumb drives and portable disk drives. These abilities are truly convenient, discounting the concerns re-

garding ownership and secrecy of the data. However, it becomes a serious problem if the owners are not

willing to disperse their data freely, which very often is the case. Hence, there exists a need for automatic

control of the use of digital data, which is one of the motivations for research described here.

4.2.1 UCONABC

Moving beyond traditional access control systems, which utilize server-side mechanisms and an access

matrix to make access decisions, a conceptual framework was introduced by the UCONABC usage control

model [49]. Through this work, models were introduced that integrate Authorizations (A), Obligations

(B), and Conditions (C), which form the base of UM systems. An important addition proposed by them is

that resources, for which access has been granted, must be incessantly controlled. They mentioned in their

work that a client-resident trusted computing base and a reference monitor are required for enforcement

if control is to be provided to the client. Though their work focused on an operational model, they failed

to deal with that requirement.

UCONABC uses Digital Rights Management (DRM). With it, the information provider has some ability

to restrict the activity of the user. The set of features of the operational models and their structure is

illustrated in Figure 4.1.This rich set of features can be measured and used to make access decisions. The

subjects (S), subject attributes (SA), objects (O), and object attributes (OA), are considered in this model.

Chapter 4. Problem Description and Previous Approaches 33

Rights (R) are the privileges that a subject can apply on an object and can be included in consumer rights

(CR) and provider rights (PR). Authorizations are the functional predicates that have to be measured for

usage decisions. Obligations are also functional predicates which validate necessary things to be performed

by a subject before or at the time of usage. Conditions are decision factors that are environmental or

system-oriented.

The UCONpreA0 model can be used for representing the action of the enforcement mechanism on the

basis of data flow. L is described as a framework of security labels with the dominance relation, ≤, and

functions: S → L, maxClearance: S → L, and classification: O → L. The lattice or framework is used

at first for making decisions on whether a subject can be allowed to access an object on the basis of the

clearance level and conditions of the subject and the objects classification. After that, the information

that will be used by an enforcement mechanism for controlling data flows can be provided by the lattice.

In this, the following function will be used: allowed(o1, o2,write)⇒ classification(o1) ≤ classification(o2).

4.2.2 An Interoperable Usage Management Framework

A framework for UM in open, distributed environments that focuses on interoperability was proposed by

Jamkhedkar et. al[50]. Their system is a combination of the access control and usage control functions

of the UCONABC system and DRM. Content management, license management, simple access control

and specification of usage rules are included in DRM. They make an important observation, which is

that UM policies should be strongly attached to a data resource as resources will be typically moved to

locations not known a priori. They also recognize that each computing environment should be able to

interpret a policy language and apply the policy. In this framework, policies are defined in a license.

Also, the interpretation and application of these licenses are done within a computation environment. The

operation of the system is done in two stages: a set-up stage, and a working stage. In the set-up stage, the

computational environment is set up and license is generated. In the working stage, license is interpreted

(as required) and applied in operational environment, following which policies mentioned in the license are

applied to the computational environment.

Chapter 4. Problem Description and Previous Approaches 34

Subjects
(S)

Objects
(O)

Obligations
(B)

Conditions
(C)

Rights
(R)

Authorizations
(A)

Usage
 Decision

Subject Attributes
(ATT(S))

Object Attributes
(ATT(O))

Figure 4.1: Components of UCONABC model.

4.2.3 Usage Management in Cloud Computing

A concept based on their earlier design of an open, interoperable framework was later presented by

Jamkhedkar et. al[51]. They consider an operational environment, consisting of the systems in which

different cloud computing providers can operate. They state that a common cloud ontology is required so

that definite policies can be made and can be applied for the different set of systems. They recommend a

setup stage and a working stage. Context information from each service is used by the set up stage and

using this information, data set policies are produced. This usage is presented in the framework of the

common cloud ontology. In working stage, policy management, interpretation and validation are done.

A Usage Management Cloud Service is suggested by them. This service interacts with individual cloud

computing systems to interpret if the operations in the given context given are allowed.

Chapter 4. Problem Description and Previous Approaches 35

4.2.4 Security Policy

A security policy can be completely described by the following :

Subjects: The agents that interact with the system. Can be either individuals or roles; ranks that groups

of individuals might possess in any organization.

Objects: The resources (computational or informational) that the security policy is required to manage

and protect.

Actions: The operations that the subjects may be allowed or disallowed to do with respect to objects.

Permissions: The association between the subjects, objects and the actions exhibiting which actions

are permitted or prohibited with regard to an object and a subject.

Protections: The rules that are included in the policy to safeguard certain security aspects such as

confidentiality, integrity and availability.

4.2.5 Security Models

A security model is an abstraction that provides a policy specification language to administrators. Usually

security models specify groupings of access or modification rights that users can possess based on their po-

sition in the organizational hierarchy. For example, in a military setting the documents can be categorized

as secret, top secret, classified or unclassified. The models are:

Discretionary Access Control: Follows a methodology where the users have the right to determine

the permissions governing access to their files.

Mandatory Access Control: Follows a methodology where the users do not have the right to determine

the permissions to their files – rather, the administrator reserves this right.

Role-Based Access Control: Access is provided based on the position an individual fills in an organi-

zation. It simplifies the work for the system administrator of the organization, though the issue with

Chapter 4. Problem Description and Previous Approaches 36

this access control model is that if access to other actions that aren’t permitted then another method

is required since the only way in this method is to provide access to a role, exposing the possibility

of unauthorized access.

Rule-Based Access Control: Users are dynamically assigned roles based on criteria defined by the

custodian or system administrator.

Trust Management: A framework for defining security policy usually specified in terms of a program-

ming language and typically combined with an enforcement mechanism for these policies. It consists

of policy language and compliance checker. The rules are specified in the policy language and enforced

by the compliance checker.

In trust management systems; the rules describe

Actions: The operations that explain the security-related ramification.

Principals: The entities that can perform the actions on the system.

Policies: The rules that define which principals are permitted to perform what actions.

Credentials: The digitally signed documents that associate the principals to permissible actions, includ-

ing the right to allow them to delegate privileges to other principals.

4.2.6 Access Control Models

Bell-La Padula Model

Bell-La Padula model is a multilevel security mandatory access control model providing confidentiality

[52]. It has been traditionally used in military organizations for document classification. Each user and

each document is assigned a strict level of linearly ordered security. Thus, only the user with an access

that corresponds to the security level of the document can view it. Let us say an object x is assigned to a

security level L(x); likewise, each user u is assigned to security level L(u). The user’s access to the object

Chapter 4. Problem Description and Previous Approaches 37

is defined by the following two rules. Simple security property: A user can read an object if and only if

L(x) ≤ L(u). It is also called ’no read up’ as it prohibits users from viewing objects with higher security

than themselves. Star property: A user can write an object if and only if L(u) ≤ L(x). It is also called

‘no write down’ because it prohibits information flow to users at lower security levels.

BIBA Model

This is a similar model to Bell-La Padula, but it addresses integrity rather than confidentiality [52].

Similar to the Bell-La Padula model, the subjects and objects are assigned partial ordering. The model

takes integrity levels into account that define the degrees of trustworthiness for objects and users, rather

than different levels for establishing confidentiality. The access rules definitions are opposite of the ones in

Bell-La Padula model. It doesnt allow writing to upper levels and reading from lower levels. Let us say

an object x is assigned to a integrity level L(x); likewise, each user u is assigned to integrity level L(u).

The user’s access to the object is defined by the following two rules: A user can read an object if and only

if L(u) ≤ L(x). A user can write to an object if and only if L(x) ≤ L(u). Therefore BIBA model defines

a top-down approach – that is, the information can only flow down from higher integrity levels to lower

integrity levels.

Another model that is similar to the BIBA model is the Low Watermark model. In this model the

users with higher integrity levels can read objects with lower integrity levels, although after this reading

the integrity level of the user is downgraded to the level of the object that he read. Role-based access

control model usually defines rules for access to a set of resources, such as documents in accordance with

the hierarchical role of the user in the organization.

Papers like Ethane and Resonance describe the use of policy languages to create policies. The problem

is that the network administrators have to learn the language in order to create network policies that

can be implemented on the network directly. In my framework the security policies are generated and

implemented automatically. A source, an object, a security policy model, and an action are the only

requirements for the creation and enforcement of policies. Any security model that can be expressed as a

logic block can be used in this framework.

Chapter 4. Problem Description and Previous Approaches 38

4.2.7 Contrasting Technologies

Frenetic is a programming language made for OpenFlow-based networks [44]. While it may be a simpler

means of programming for network administrators, our system generates policies automatically, and is thus

more accessible to users. Like Frenetic, Procera, which is a functional reactive programming framework,

also simplifies the response to network events, but does so by means of high-level policies created by the

user [45].

CloudWatcher, which is a security monitoring framework for the cloud, generates security policies to

specify a flow and describe the security services to be applied to it [33]. If network packets match those

policies, CloudWatcher then locates security systems for processing, whereas our framework applies the

policies it generates automatically. FRESCO, which is an OpenFlow-based security framework that allows

users to define security policies using security modules, performs the security processing in the controller

[43].Our framework, in contrast, uses externally independent units like the NFV and policy generator and

interpreter module to send information to the controller for processing.

The already-existing system most similar to our own is OpenSec, which also automates the implemen-

tation of security policies [46].OpenSec creates network security policies that, when they detect malicious

traffic, send it to different processing units that provide security services like encryption and denial of

service attack detection. Our system does not recognize those threats, but uses a security model like

Bell-LaPadula and enforces mandatory access control on the network by means of an NFV, which provides

asymmetric communication and abstraction for reasoning over network flows.

39

Chapter 5

Policy-Based Security Provisioning in the

Cloud

5.1 Introduction to Usage Management

Usage management (UM) is the usage of resources (and data) across and within computing environments,

incorporating characteristics of both traditional access control and digital rights management [48].

A conceptual UM system is described in Figure 5.1 for a cloud computing environment. The UM

system determines if a user can be granted access to a resource, such as a data file. In a cloud computing

environment, once a user is granted access to a resource, there is a need to control not only how the

resource can be used, but also where. Our primary goal is to develop and implement a secure, robust, and

inter-operable attribute-based usage management system for data transactions in cloud computing. This

system will merge usage management systems with modern cloud computing technologies. Given a data

resource with an associated sensitivity characteristic, one part of the proposed cloud UM process will be

to determine on which type of cloud computing system the resource will be made available.

Chapter 5. Policy-Based Security Provisioning in the Cloud 40

Global Usage
Manager

Mechanism

Trust Module

Usage Management Framework

UM

Virtual Machine

Applications &
Data

UM

Virtual Machine

Applications &
Data

Cloud Computer Storage
or Content Network

Data & Licenses

User and/or
Applications

Figure 5.1: Hierarchical UM operation concept

5.2 Access Control and Beyond Access Control

In order to be effective, UM systems must be flexible enough to be scalable and inter-operable enough to

provide services across different computational environments. In an implementation of UM, the first action

provided by the system is access control. A user logs into a system with credentials, and with context that

is provided by the user and/or determined automatically, and the users identity, information is compared

with a resources policies to determine if that user is qualified to use that particular resource. The next role

of the UM is to ensure that data are used in an environment that complies with security policies that are

either specified in an associated license, or are applicable to a security category for unclassified data. For

instance, a user might specify at which sensitivity level or classification level he or she wishes to operate,

and UM checks the operating system and communication channels, i.e. the context of the user, before

providing access to any resources. Once the user gets access to the resource, the UM system monitors how

the resource is being used based upon the policy requirements. Based on the examination, UM commands

a cloud computing system to instantiate a VM and load an image that contains the necessary security

mechanisms. Then it transfers the actual data to the VM. In this paper we use VM images as the controlled

resources, where each image has a set of policies associated with it that describe the circumstances under

Chapter 5. Policy-Based Security Provisioning in the Cloud 41

Data
Policy

Data
Policy

Cloud
Provider 1

Cloud
Provider

2
Data

Policy

Usage Management Framework

Common Cloud Ontology

conform conform

aggregation

Policy
Generator

Figure 5.2: Usage Management in a Multi-Cloud Environment.

which that image can be used.

5.3 Usage Management in the Cloud

UM is important in the Cloud domain because it provides security by ensuring that cloud resources

meet the security needs of any sensitive or non-sensitive data as defined by the corresponding policies

[51]. Cloud resources can be provisioned according to the policy set—therefore the provisioned cloud

resources are guaranteed to meet the security needs of the resource. UM enables Cloud Bursting: due to

a computational need in the private cloud, if more Cloud resources are required, the UM system helps

in moving data or even a job to a more capable public cloud system while also ensuring that the public

cloud meets any security needs. This is done by evaluating the public cloud context (environment and

multi-security level) with the policy set associated with given resources. The same can be done when

moving from a public to a private cloud [53].

Chapter 5. Policy-Based Security Provisioning in the Cloud 42

5.3.1 Usage Management System for Cloud Computing

In order to provide an assured information sharing capability in a cloud computing environment, a UM

system capable of interacting with, and controlling, different provider systems is required. The high-

level conceptual view is shown in Figure 5.2. Each system will likely be slightly different, so a common

framework, or ontology, is required in order to use common policy semantics so that the policies can be

applied consistently in each system. A policy generator will be required in order to generate the licenses

necessary for each data set, and the policies will use the common ontology as a basis.

Based on the policies that are specified in a license for a particular resource, the UM first grants access

to the resource. Then, based on the policies, the UM instantiates a VM in an appropriate cloud system

and copies the data to the VM for processing. Once a data set has been transferred to a VM, without

additional controls, the user and associated applications can use the data with no restrictions. In order to

ensure that all resources are used in accordance with the policies, UM capability is also required within

the VM for control.

5.3.2 System Architecture/Model

For a complete UM system in a cloud computing environment, a hierarchical design is required. Our

proposed system implementation includes the following key elements:

Usage Management Mechanism: This component acts as a central controller that manages com-

munication between all components of the usage management framework and with external services, such

as storage and content networks. The usage management mechanism provides an interface for the user.

Different applications can use the common interface provided by the usage management mechanism.

Trust Module: This module includes a capability to dynamically update the trust values of the cloud

resources and update the policies within the licenses. The global Usage Management mechanism in the

trust module will then force actions in response to changes, as necessary.

Virtual Machine Usage Management Mechanism: As mentioned previously, UM within each

Chapter 5. Policy-Based Security Provisioning in the Cloud 43

VM is necessary to ensure that users and applications use data and other resources only in ways that are

allowed by the policies specified within the licenses.

5.3.3 Policy

These policy statements are contained in a document, which is often called a license. For this design, the

policies are expressed in XML, a format that can be read and interpreted by a computer executing UM

control software. An example of the policy or license file is shown below:

<?xml version="1.0" encoding="utf-8"?>

<license id="secret">

<permissions>

<restricted-activity num="1" activity="view">

<entity-restrictions type="Subject">

<restriction property="SecurityClassification"

function=">=">Secret</restriction>

</entity-restrictions>

</restricted-activity>

<restricted-activity num="1" activity="move_to_instance">

<entity-restrictions type="Environment">

<restriction property="SecurityClassification"

function=">=">Secret</restriction>

<restriction property="VMPlatform"

function="==">Ubuntu</restriction>

<restriction property="VMType"

function=">=">Micro</restriction>

</entity-restrictions>

</restricted-activity>

</permissions>

</license>

<?xml version="1.0" encoding="utf-8"?>

This policy file defines the resource’s security classification as Secret. The policy states that the

corresponding resource can be used in the environment where the VM has security classification of Secret,

the VM Platform Ubuntu, and Type is Micro instance. Our framework supports dynamic interpretation

of these policies in order to ensure policy enforcement in different cloud domains.

Chapter 5. Policy-Based Security Provisioning in the Cloud 44

Cloud
Provider

SLA Quality of
Service

Policy Generator Policy File
(XML)

Figure 5.3: Policy Generation

These policies are the result of the SLA metrics discussed between the user and the cloud provider as

shown is Figure 5.3. The policy generator uses this information and creates the machine readable polices

using a common cloud ontology.

5.3.4 Context

These policies are interpreted within a particular context. The context is a representation of various entities

and their relationship within the cloud environment. The context contains information about the user and

the environment. User information could be, for example, his Security Classification, which determines

whether he can operate at a Secret or a Top Secret level. The context also contains information about

the VM environment whether it is a secure VM with classification as Secret. Additionally the context

also contains information about the VM (Micro, Small, Medium, Large). The context and policies are

generated from a common cloud ontology shared between different cloud systems so that the policies are

inter-operated, and hence can be interpreted in different domains.

Chapter 5. Policy-Based Security Provisioning in the Cloud 45

5.3.5 Implementation

UM Framework

UM Framework controls access to and use of information in a cloud computing environment. In a cloud

domain, a user presents his credentials and context. The context information and requested operation

information along with the policy is transferred to the UM Framework. The UM Framework decides

whether the requested operation is permitted. Based on this query, the user gets to see a list of resources

that he has access to. The user selects a resource and the UM Framework instantiates a VM that meets

the security requirements and provisions the VM with the data. The UM is also responsible for the usage

of this resource throughout the lifetime of the resource within the VM.

Architecture

In this section we describe how UM is implemented within the cloud domain and show a technique to

enforce UM policies within a VM, thereby successfully demonstrating how UM monitors and controls the

usage of resource after the user has been granted access.

Setup

The architecture contains a Central UM framework that manages data in Amazon S3 (cloud repository)

and cloud resources (VMs) on Amazon EC2 (public cloud) and OpenStack (private cloud). The framework

can provision cloud VMs based on policies and also ensures that resources can only be moved to VMs that

meet security requirements, and can redact resources when the cloud resources no longer meets the security

requirements (i.e. context changes).

Amazon S3 holds the data and the respective policies in the form of buckets. The meta-data option of

the resource links the resource with the policy file. Amazon EC2 and OpenStack provide cloud resources

which have a context associated with them. A user context describes the information about the user . A

local Usage Management Mechanism (UMM) is injected into any cloud resources that are provisioned by

Chapter 5. Policy-Based Security Provisioning in the Cloud 46

the central UM framework.

By means of a web interface, the user logs into the system and is presented with a list of resources

the user can access based upon the user’s context. Each resource carries an associated policy, and these

are stored in a repository. The policies are generated by the license generator based upon the SLA

requirements. If the user wishes to access a resource, the user and environment information stored in the

context is retrieved by the UM Framework and checked against the policy of the respective resource. If the

user is granted access to the resource based upon the context and the policy of the resource, the resource

and the associated policy file are moved to a virtual machine with respective security attributes pertaining

to the policy. The operational details of our usage management system are visualized in Figure 5.4.

Amazon
S3

Resources
&

Policy SetsAmazon
EC2

Context

Access
Control

Resource
Manager

1

4

5b

3

5b

Policy
Manager

5a

6

1. User logs in & the access control verifies his credentials.
2.a. User credentials are passed to resource manager.
2.b. Context information is passed to resource manager.
3. Resource manager compares the context with the policy set
 and gets the list of references to the available resources and
 displays it to the user.
4. User selects a resource.
5a. Policy manager retrieves the selected resource from Amazon S3.
5b. Policy manager creates appropriate VM instance either in
 public(Amazon EC2) or private cloud(Openstack)
5c. Control monitoring & processing.
6. Returns results of processing.

2b
2a

Usage Management
Mechanism

Nodes

Openstack

Cloud
Controller

Nodes

5c

5c

6

Figure 5.4: Component Diagram of Usage Management for hybrid cloud-based system.

Chapter 5. Policy-Based Security Provisioning in the Cloud 47

The security and resources of private and public clouds have an inverse relationship that is, a private

cloud is more expensive, and so contains fewer resources, but is more secure, while a public cloud is less

expensive, and so contains more resources, but is less secure. The UM framework is also embedded inside

the virtual machine.

Once the user has been granted access to the resource, the usage management system continues to

process the policy agreements inside a virtual machine. The UMM is responsible for upholding policies

throughout the lifetime of the resource and therefore accounts for any change in contexts. If the UMM

determines that the context of the public cloud no longer confirms to the policy of the resource on it, then

the resources are redacted.

UM Enforcement

PolicyResource UMM

Repository

Context

Figure 5.5: Usage management inside a VM.

Chapter 5. Policy-Based Security Provisioning in the Cloud 48

Figure 5.5 illustrates the details of how the UM works inside a VM. Whether it is public or private, we

use a base VM Image to create our VMs. With this approach we are able to successfully inject our UM

Framework locally inside a VM. Thus, every VM comes with a UM mechanism already built into it. When

a VM is created for a user to fetch the resource that the user wants to access, the associated policy files

are also pulled along with the resource. The local UMM is responsible for upholding the policies of the

resource within the VM. Any contextual change in user is reported to the UM mechanism within the VM

by the Central UM Framework.

The central UM framework is intelligent; it monitors any changes in the database and correspondingly

interacts and updates the UM Mechanism within the VM. The UM mechanism in turn verifies the policy

of the resource inside this VM and gathers the user context and VM environment context to uphold the

policy requirements of the resource. If the policy requirements of the resource are not met because of any

contextual changes, then the resource is redacted. This is a preliminary approach. We are in the process

of implementing a proof of concept for this enforcement of Usage Management inside a VM.

Usage
Management
Mechanism

Ruby/Rails
Application

Openstack

Cloud Controller

Node

User

Node

Amazon
EC2

Amazon
S3

MySQL

Figure 5.6: Technology Architecture

Chapter 5. Policy-Based Security Provisioning in the Cloud 49

The implementation of the system is shown in Figure 5.6. The application is written using Ruby

on Rails, and we use MySQL for storing user context. When a user logs in, we use the Ruby on Rails

framework to authenticate the user. Once the user is authenticated we use Resource Manager written in

Ruby to decide what resources the user can access by comparing context information with the policy set of

the resources and the list of resource references are returned to the user interface. The user then selects a

resource, and the policy manager retrieves the resource from Amazon S3 based on the policy information.

The policy manager sends the resource to a VM running appropriate images either to OpenStack or to

Amazon EC2 cloud. It is important to note the actual resources and corresponding policy sets are stored in

Amazon S3, and some of the features of the OpenStack cloud system have been omitted from our diagram

for the sake of brevity. With the help of our software we monitor the VMs for performance as defined in

the SLA requirements and control the VMs appropriately.

Usage Management within a Virtual Machine

The key elements of a usage management mechanism that will be used in a VM are shown in Figure 5.7.

When we consider UM at the VM level, the control is implemented with a finer level of granularity than is

possible when implementing UM with a centralized mechanism because the centralized mechanism cannot

control the actions within the individual VMs.

The process of license enforcement within a VM using a variant of our existing UM design takes place

in six steps. First, an application queries the usage management mechanism about whether or not a

particular action on a given resource by a given user is allowed. As a part of the request, the application

provides information about the user, the resource, and the action that is to be performed. In step 2, the

usage management mechanism obtains the current state of the computing environment from the operating

system. The type of information obtained by the usage management mechanism depends upon the manner

in which the context is specified. The information may include current location, date, time, IP address,

etc. In step 3, the usage management mechanism generates the context instance by using the current

values of system parameters, user information, and resource information. This is followed by step 4, in

which the usage management mechanism queries an interpreter to determine the activity that corresponds

Chapter 5. Policy-Based Security Provisioning in the Cloud 50

APPLICATION OPERATING
SYSTEM

USAGE MANAGEMENT
FRAMEWORK

CONTEXT
INSTANCE

GENERATOR

USAGE MANAGEMENT
MECHANISM

INTERPRETERLICENSE

user info
resource info
action = act

allowed/
not allowed system info

user, system
resource info

context instance
 iC

action
 (act)

activity
(acv)

true/
false

allowed (iav)
iav = <acv, iC>

1

2

3

45

6

Figure 5.7: Operation of User Management framework within a Virtual Machine.

to the information provided by the application. Once the activity corresponding to the action is obtained,

the usage management mechanism generates the activity instance denoted by the tuple. In step 5 the

usage management mechanism invokes the allowed function provided by the license, the license executes

an allowed function, and returns a Boolean value to the usage management mechanism. Finally, in step 6,

the usage management mechanism notifies the application of whether the action is authorized.

The UM design provides the basis for deciding which operations are allowed and which are not. The

outcome of these decisions must be transmitted, in a verifiable manner, to enforcement mechanisms in the

operating system executing within the VM. The decision must be verifiable in order to ensure that the

decision is properly enforced.

51

Chapter 6

Provisioning Security and Performance

Optimization for Dynamic Cloud

Environments

As mentioned in the Introduction, one of the goals of our approach is to calculate the optimal distribution

of resources among different users of IaaS cloud while offering different levels of security. The inherent

randomness of the behavior of the cloud complicates the search for an optimal solution. The ever-increasing

number of potential users and available virtual resources motivates the implementation of an scalable

methodology. Within the scope of SLA requirements between users and cloud service providers, we propose

to optimize the distribution of cloud resources based on user needs, while guaranteeing power savings to

the provider. In this section, an unconstrained optimization problem is proposed and a description of its

mathematical framework is provided [54].

Chapter 6. Provisioning Security and Performance Optimization 52

6.1 Cost Function

Because of the random variation of the workload in the cloud, we propose to model the following perfor-

mance measures as Random Variables (RVs), as follows,

Cµ = % of CPU utilization

Mµ = % of memory utilization

T = Total execution time of benchmark

S = Measure of Security, (see Section 6.2)

W = Hourly cost associated to the VMs in use

Let us define the set Θ as the set of VMs offered to the clients, e.g., based on the Amazon EC2 literature

we can define Θ as a subset of the general purpose instance family of the EC2 service [21], as follows,

Θ ≡ {m1.small, m1.medium, m1.large, m1.xlarge}. (6.1)

Except for the processing time T ≥ 0, all the foregoing variables are upper and lower bounded by finite

real numbers. It is reasonable to assume an upper bound for T that can be statistically estimated by a

randomized algorithm for probabilistic worst-case performance [55]. By defining upper and lower bounds

for the RVs, we are able to normalize the variables and define the normalized versions, Cµ,Mµ, T ,W ∈

[0, 1] ⊂ R.

Now, let us define the vector,

∆ =
(
Cµ,Mµ, T , S,W

)T
.

Every random vector ∆ ∈ D is considered a sample of the performance vector of the system. Moreover,

by assuming that a unique benchmark problem is used to measure performance, every normalized RV can

be assumed to be a measurable function of θ ∈ Θ. where θ is one of the available VMs.

Let us assume that users can be grouped under some criteria, e.g., geographical location or security

requirements. We assign an index i ∈ (1, . . . , N) ⊂ N to each client in the group, and for the i-th client

Chapter 6. Provisioning Security and Performance Optimization 53

we propose the cost function Ji(∆, θ) s.t., Ji : D ×Θ→ [0, 1] given by,

Ji = E

{
α1iCµi + α2iMµi + α3iT i + α4i

1

Si
+ α5iW i

}
, (6.2)

then we define the multi-cost function,

J = (J1, . . . , JN)T , (6.3)

where α1i, . . . , α5i ∈ [0, 1] ⊂ R, s.t.
n∑
j=1

αji = 1, correspond to the weights given to the variables based on

the SLA requirements of the i-th client in the cloud [7].

Remark 1. Although minimizing Cµ affects the throughput of the instance, it means power savings in the

data center hosting the virtual resources.

Remark 2. It is expected that Cµ and Mµ are inversely proportional to T , so the weights αki, k = 1 . . . 5,

would determine whether minimizing Cµ and Mµ is more important than minimizing T based on the user’s

needs.

6.2 Measure of Security

Securing information stored in the cloud is a crucial problem. In this approach, we focus on data encryption

in virtual resources. However, given the variety of encrypting ciphers, measuring security levels is not

straightforward.

For this specific problem we propose assigning values to different security levels as shown in Table 6.1.

In the first column we have the security measure values given by numbers between 1 and 10, in order to

guarantee that 1/Si ∈ (0, 1]. In the second column we describe the cipher, the key size and its mode of

operation by using initials. The lowest value 1 is assigned to the No encryption option. The next security

level value of 2 goes to the old Data Encryption Standard (DES). After that, with a value of 3, follows

the Advanced Encryption Standard (AES) with the Electronic Codebook (ECB) mode of operation and a

key size of 128 bits. Following the sequence, we proceed to increase the key size up to 256 bits, and then

we proceed to add enhancements by progressively changing the modes of operation which go from Cipher-

Block Chaining (CBC), Cipher Feedback (CFB), Cipher Feedback with shift registers (CFB-1/CFB-8),

Chapter 6. Provisioning Security and Performance Optimization 54

Output Feedback (OFB) and Counter (CTR). All the relevant advantages and disadvantages of each mode

of operation have been specified in the third column of the table.

Encrypting and decrypting data implies an overhead that affects CPU and memory utilization, therefore

the client might have no interest in adding additional security to the service. In that case, the weight α4i

in (6.2) would get a value close to zero.

Using Table 6.1, we are certain that security performance increases going from top to bottom. This

is not only based on the key sizes, but on the ability of the cryptographic algorithm to be run in parallel

(faster), synchronizable (able to correct bit errors in finite time), and be unsusceptible to cryptanalysis.

6.3 Statistical Learning

Aside from uncertainty of the system, the size of the sample space of such an optimization problem

encourages to look for alternatives to be able to get quantitative conclusions about an optimal or suboptimal

solution. Statistical Learning presents an alternative to solve this problem. It takes advantage of powerful

results associated to Monte Carlo Simulations and the Uniform Law of Large Numbers.

Under a rigorous mathematical framework, the available literature offers necessary conditions to design

efficient Randomized Algorithms to estimate a cost function whose closed form is not available. However,

these algorithms are not guaranteed to work all the time but most of the time.

From (6.2) and (6.3) we see that since we do not have knowledge of the probability distributions of

the RVs, we are unable to determine a closed form of the multi-cost function. However, based on [55],

under the assumption that J(∆, θ) is measurable we can estimate it by calculating the sample mean for a

number of M2 ∈ N samples of ∆.

ÊM2 (J(∆, θ)) =
1

M2

M2∑
k=1

J(∆(k), θ). (6.4)

Since we are limited to a finite number of samples, we are subject to errors. However, we can assume

certain confidence and accuracy of our estimate of J(∆, θ) and calculate the minimum number of samples of

Chapter 6. Provisioning Security and Performance Optimization 55

∆ ∈ D and the minimum number of instances θ ∈ Θ that guarantee the assumed confidence and accuracy.

This is illustrated by the following result from [55] which we present without proof.

Theorem 1. Assume that the cost function J(∆, θ) is measurable s.t. D × Θ → [0, 1]. Given ε1, ε2, δ ∈

(0, 1), let,

M1 ≥
ln 2

δ

ln 1
1−ε2

, M2 ≥
ln 4M1

δ

2ε21
. (6.5)

Then, with confidence 1− δ, it holds that

PR

{
E(J(∆, θ)) < ÊM2(J(∆, θ̂M1M2))− ε1

}
≤ ε2.

with,

θ̂M1M2 = arg min
l=1,...,M1

ÊM2(J(∆, θ(l))). (6.6)

From (6.6), notice that 1− δ is a measure of confidence and 1− εn, n = 1, 2 are measures of accuracy.

As a simple example, if we assume δ = ε1 = ε2 = 0.05, then M1 ≥ 72 and M2 ≥ 1, 133. This means that

by assessing 72 combinations of instances θ ∈ Θ for all the N users (i.e., 4×N), and for each parameter

we take 1, 133 samples of ∆ ∈ D to calculate (6.4), we can assert with a confidence of 95% that we find a

minimum of the cost function (6.2) with accuracy 95%.

Finally, the randomized algorithm for this case as is proposed in [55] is,

Algorithm 1. 1. Determine M1 and M2 according to Theorem 1.

2. Draw M1 independent identically distributed samples of the performance function

ÊM2

(
J(∆, θ(1))

)
, . . . , ÊM2

(
J(∆, θ(M1)

)
.

3. Draw M2 independent identically distributed samples ∆(1), . . . ,∆(M2).

4. Return the empirical instance,

θ̂M1M2 = arg min
i=1,...,M1

1

M2

M2∑
k=1

J(∆(k), θ(i)).

Chapter 6. Provisioning Security and Performance Optimization 56

0 200 400 600 800

0

5

10

15

20

25

Time (s)

M
e

m
o

ry
 U

ti
liz

at
io

n
 (

%
)

AES-128-CFB1
AES-192-CFB1
AES-256-CFB1

Figure 6.1: Memory overhead produced by the implementation of the AES cipher with key sizes of 128,
192 and 256 bits, while running the eclipse benchmark from the dacapo benchmark suite.

6.4 Encryption and Benchmark Overhead

By incorporating security in the optimization process we are considering the overhead produced by the

ciphers over the performance of the instance. In this example, a video file of 4.7 GB was being encrypted

while the eclipse benchmark from the DaCapo benchmark suite [56] was running in an Amazon EC2 VM

of the type m1.large. The plot in Figure 6.1 illustrates the effect of the increase in the key size. Notice

that the response that uses the less memory is the AES cipher with a key size of 128 bits. Although the

memory utilization for the key sizes 192 and 256 bits do not seem to differ on the average, notice that

the running time T of the benchmark is 437 s for the AES of 256 bits (red line) in contrast to 415 s for

the AES of 192 bits (blue line). The abrupt decay that is seen in the plot indicates the instant where the

benchmark completes 10 repetitions and then stops running. These responses justify the presence of the

variables Si, Mµi and T i in the cost function (6.2).

Chapter 6. Provisioning Security and Performance Optimization 57

0 200 400 600 800 1000

0

20

40

60

80

100

120

Time (s)

C
P

U
 U

ti
liz

at
io

n
 (

%
)

m1.small

m1.large

m1.xLarge

Figure 6.2: CPU overhead produced by the implementation of the AES cipher with key size 256 bits, while
running the eclipse benchmark from the DaCapo benchmark suite for three different VMs..

Furthermore, in Figure 6.2 we illustrate the effect of the change of instances over the CPU utilization

while encrypting using AES with key size 256. The VMs used were m1.small (yellow line), m1.large (blue

line) and m1.xlarge (red line) [21]. It can be inferred that as the capacities of the VMs increase, the CPU

utilization (Cµ) decreases on the average and the benchmark running time T decreases. These responses

justify the incorporation of the variable Cµi and W i in (6.2).

Chapter 6. Provisioning Security and Performance Optimization 58

Table 6.1: Measure of security associated to ciphers and modes of operation.

Sec. Lvl Cipher Observation
Si Mode of Op.
1 No encryption Determined by

α5 = 0 as well
2 DES Short key sizes,

64-bit encryption
blocks,
issues with large
files, prone to
cryptanalysis

3 AES-128-ECB Does not hide data
patterns well,
128-bit key size

4 AES-192-ECB Does not hide data
patterns well,
192-bit key size

5 AES-256-ECB Does not hide data
patterns well,
256-bit key size

6 AES-256-CBC Non-parallel
encryption,
256-bit key size

7 AES-256-CFB Non-parallel
encryption,
256-bit key size,
No padding

8 AES-256-CFB-1 Non-parallel
AES-256-CFB-8 encryption,

256-bit key size,
Synchronizable,
No padding

9 AES-256-OFB Non-parallel
encryption,
256-bit key size,
Synchronizable,
faster block
cipher operations

10 AES-256-CTR Parallel
encryption,
256-bit key size,
Synchronizable

59

Chapter 7

Policy Generation and Enforcement for

Software defined Network in Cloud Systems

using Usage Management

7.1 Design & Approach

This research presents a framework that enhances security in a cloud based environment. It is easy to use

and does not impose learning requirements on network administrators. This section explains the entire

framework and its working in detail.

7.1.1 Access Control

The system has a web GUI (Graphical user interface), which is where the user registers himself and

describes the classification level he is operating on, and thus, based on his context, the system determines

the security level he has access to. Context could include both user and his environment information, such

as geographical information or the identity of his machine in the network. The SDN controller we are using

is OpenDaylight and the programming language used to generate these policies is Ruby [57].

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 60

7.1.2 Entire Framework

Controller

 Cloud System
with Virtual
Machines

Usage Management
Mechanism

Software Defined Network

Physical Hosts
User

Machine

Policy
Generator

and
Interpreter

Out-of-band

Out-of-band

Figure 7.1: System Architecture diagram: User machine is accessing the physical and virtual machines via
the OpenFlow switches based on the user’s security privileges.

As shown in Figure 7.1, there are three major blocks: the Usage Management Mechanism, the Software

Defined Network, and the Cloud System. When a user tries to get information, they can do so by requesting

the UMM, which fetches the resource from either the virtual or physical machine, without the user getting

direct access.

In the case where the user wants direct access to the VM or physical host for some manner of compu-

tation, the the OpenFlow mechanism comes into play and creates a data path between the user and the

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 61

virtual or physical hosts.

The policy generator and interpreter module installs policies onto the UMM using a the UMM’s REST

API, and installs flows onto the SDN controller by using OpenDaylight’s REST API. These flows and

policies combine to enforce the behavior model specified by an administrator. The UMM’s REST API is

facing the northbound side of the network, so the UMM and policy generator have an out-of-band interface

by which to communicate policies.

7.1.3 Architecture

Figure 7.2: SDN and application architecture The blocks on left side explain what is happening at each
level on the right.

The design and architecture of this follows a conventional SDN model, with an out-of-band OpenFlow

controller that controls the SDN switches [24]. As shown in Figure 7.2, our application interacts with the

northbound interface of the SDN controller. In our setup, the controller we use is OpenDaylight, which

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 62

will take care of the basic network functions such as L2 learning and routing, and provides an excellent

REST API [58]. This makes it simple to interact with the network without having to manually handle

low-level network functions in our application.

All policies are installed on the application and enforced at a higher match priority than the low-level

network function flows that OpenDaylight automatically installs. This allows us to seamlessly operate

with network activity that has no policies applied to it, and only protect network operations and machines

that are part of policy groups.

7.1.4 Mandatory Access Control

Traditional type enforcement models separate subjects, which are generally processes, and objects, which

may be files, subjects, or other resources [13]. This model works well because the subjects are the only

classes that can initiate an action, while objects receive an action. This is not the case in networks, where

machines may initiate connections to other machines and effectively act as peers [59].

It is possible to create network entities as subjects and objects, and in fact it may be easier to do so

by correlating policies to one-way SDN flows. However, the most common use of computer networks is

TCP traffic [60], which requires two-way communication. In this case, policies must be sensitive to the

symmetric network traffic, and in order for a subject to interact with an object the policy must be enforced

in such a way that it permits this communication.

7.1.5 Policy Language

The policy language is designed to operate seamlessly with the policy enforcement mechanism, as well as

offer support for programmatic extension. The policy language accepts a definition file of subjects, objects

and enclaves, as well as policies between pairs. Any programmatic extension is expected to compose its

policies into pairs. Any policy that is definable can be defined as a collection of policies between pairs of

entities.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 63

A machine is defined as a computer that has a MAC address and a IP address. A machine can be

grouped with others in order to form a set of machines.

machines =

id 1

mac address 43 : 32 : 44 : b3 : 01 : c3

ip address 156.180.60.47,

id 2

mac address a2 : d9 : 25 : 34 : 40 : cd

ip address 44.124.252.175

A flow corresponds to match fields in a flow table and can be grouped into a set of multiple flows.

flows =

id 1

transport src 80

transport dst 80

Enclaves are sets of multiple members, where members can be either groups of machines or flows.

Enclaves =

id = 1,

members =

type machine

id 1,

type machine

id 2,

type flow

id 1

A policy consists of four main parts: a subject, object, action, and priority. The subject defines the

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 64

source and the object defines the destination. Both subject and object can exist as either a machine,

a flow, or an enclave. An action is a pre-defined operation described by OpenFlow specification, and a

priority is the preference given to a flow that defines the order in which a flow is processed in relation to

others.

policy =

subject =

 type = enclave

id = 1

object =

 type = enclave

id = 2

action = allow,

priority = 600

This particular policy will establish a network where enclave 1 and enclave 2 can communicate with

each other.

7.2 Policy Generation

Now we must explain how to generate a set of policies for a group based on an arbitrary network behavior

model. The policy generation engine can programmatically generate policies based on an intended network

behavior model, such as the Bell-LaPadula or Biba models [52]. This requires the specification of all

enclaves as a set where each enclave has a particular attribute such as ‘security’ or ‘integrity level.’ This

framework is already prepared to operate in scenarios where these enclaves are disjoint sets (no network

entity is contained in an enclave more than once).

As a proof of concept, we will use the Bell-LaPadula model, which has two given properties:

Simple Security Property: No subject may read an object at a higher security level.

? - Property: No subject may write to an object at a lower security level.

These policies shall have the following format:

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 65

[subject: ‘‘name’’, object: ‘‘name’’,

action: ‘‘action’’]

In this case, our actions may be “read,” “write,” or “read/write.” Let us define an abstract set of subject

and objects. For the purpose of this study, we consider these to be homogeneous, i.e. subjects and objects

are the same type of entity (machines on a network). We will refer to them as machines.

Now we define a list of machines: Alice, Bob, Charles, Dave, Eva, Frank, Gary, and Henry.

Now we define a set of enclaves with a given security level:

Enclave Security Level

Public 0

Low Security 1

Medium Security 2

High Security 3

Next we define the memberships of those enclaves:

Enclave Members

Public Alice Bob

Low Security Charles Dave

Medium Security Eve Frank

High Security Gary Henry

The policies must then be enforced. Let E be the set of all enclaves, with members as elements. Note

that each enclave is a disjoint set:

R = {(s, o) | (s, o) ∈ E × E, s 6= o}

Then we check each ordered pair against a security level. Let P (s, o) be a policy from one object to one

object in R, where s represents the security level of the “subject” and o represents the security level of

the “object.”

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 66

If the security level of the subject is greater than the security level of the object, then the policy between

them would be “read:” the source can read from the object. This is shown in (1) below.

If the security level of the subject is less than the security level of the object, then the policy between

them would be “write:” the source can write to the object. This is shown in (2) below.

If the security level of the subject is the same as the security level of the object, then the policy between

them would be “read/write:” the source can both read from and write to the object. This is shown in (3)

below.

s > o→ P (s, o) = read (7.1)

s < o→ P (s, o) = write (7.2)

s = o→ P (s, o) = read/write (7.3)

7.2.1 Generate policies

Policies determine the action between two enclaves based on their security levels. The action is associated

to every ordered pair of enclaves and these form the policies.

Algorithm 1 generates policies between two enclaves, and Algorithm 2 generates the final policies by

assigning action for each subject and object based on the policies between enclaves, which are generated

in Algorithm 1.

7.2.2 Policy Model

On a small network it may be reasonable to enforce policies that affect networks with particular network

flow attributes, such as a TCP destination port. However, on larger networks, and in particular for

multi-level security, it is preferable to be able to group flows into enclaves. This enclave model can be

characterized as attributes, as a policy object may be entered into several enclaves.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 67

Algorithm 1 Generate the policies between enclaves

1: procedure PolicyGen(Enclaves)

2: Policies = []

3: for all enclave ∈ Enclaves × Enclaves do

4: if enclave[1].level = enclave[2].level then

5: push [action: “read/write”] onto enclave

6: else if enclave[1].level < enclave[2].level then

7: push [action: “write”] onto enclave

8: else if enclave[1].level > enclave[2].level then

9: push [action: “read”] onto enclave

10: end if

11: Add enclave to Policies

12: end for

13: return Policies

14: end procedure

Representation of Network Entities

Each network entity can be represented with a set of OpenFlow values, including switch connections,

physical ports, MAC addresses, IP addresses, TCP ports, VLAN IDs, and anything else compatible with

OpenFlow 1.3. These network attributes are stored in a key-value store, with the network attribute type

as a key. Flows and abstractions may be built, on top of the structure.

1) Flows and abstractions: in order to satisfy symmetrical relationships between network entities, it

can be helpful to add abstractions to network flows. A network flow, within the scope of our application, is

defined as the set of all possible match fields that our OpenFlow controller supports. An abstraction will

have a proper subset of these match fields. Because match fields are asymmetric (source and destination),

abstractions may also contain a symmetric match field, which will then be split into the flow going from

the abstract entity, as well as attending to it.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 68

Algorithm 2 Generate the low level, paired policies

1: procedure PolicyLowered(Policies,Memberships)

2: FinalPolicies = []

3: names = (u,v) | (u,v) ∈ Memberships

× Memberships, u 6= v

4: for all name in names do

5: subject = name[1]

6: object = name[2]

7: action = get action for subject and object enclaves from Policies

8: push into FinalPolicies(subject,object,action)

9: end for

10: return FinalPolicies

11: end procedure

Example of policies being generated:

PolicyLowered (PolicyGen(enclaves) , memberships)

= [:subject = “Alice” , :object = “Bob”, :action = “read/write”,

:subject = “Bob”, :object = “Alice”, :action = “read/write”]

Let N represent the set of all possible match fields and let K,V denote the key-value pair. Each flow

may be represented as follows:

F = {(K,V)c | K ∈ N,Ki 6= Kj∀i 6= j, 0 ≤ c ≤ |N |}

As an example, we define a machine, which has an address, an IP address, a node (switch to which it

is connected) and node connector port (physical port number on its node). While flows are very specific,

unidirectional from one source to one object, and are therefore inherently asymmetric, machines will have

a symmetric relationship—a bidirectional relationship—and have policies enforced to allow asymmetric

communication between machines.

As shown in Section 7.1.2 we represent machines as having a particular subset of the flow attributes.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 69

The machine has a node and a node connector port. The machine also has abstracted attributes, which

are its MAC address and IP address. These are symmetric, meaning it must be divided into an inbound

and outbound flow. From this we can generate two flows for each machine.

Let Ns and Nd represent all the attributes that belong to the source and destination flows respectively.

Let
←−
M be the inbound flow for machine M , and

−→
M be the outbound flow for machine M .

←−
M = {(K,V)c | K ∈ Nd, Ki 6= Kj∀i 6= j, 0 ≤ c ≤ |Nd|}
−→
M = {(K,V)c | K ∈ Ns, Ki 6= Kj∀i 6= j, 0 ≤ c ≤ |Ns|}

We define a special operator called Hashmerge and for the simplicity of notation, denote it by] Now,

Hashmerge is defined as:

Let, C1 = {{K1, V1}, {K2, V21}}

Let, C2 = {{K2, V22}, {K3, V3}}

C1] C2 = {{K1, V1}, {K2, V22}, {K3, V3}}

(7.4)

Given two sets of key-value pairs, C1 and C2, which both contain the same key, when the sets are

merged the value associated with the key of the second set is taken as the value associated with that key

in the resulting set. Table 7.3 shows the results of the Hashmerge between Table 7.1 and Table 7.2. The

Hashmerge is a non-commutative operator, however, by commuting the terms we have a simple mechanism

for conflict checking. In cases where C1]C2 6= C2]C1 then the policy has a conflict and is not compatible

with the policy mechanism we describe in the next section.

Policy Flow Generation

Given a policy between two machines, the policy flow generation is straightforward. The inbound flow

from the subject is guaranteed not to have a conflict with the outbound flow from the object machine, and

vice versa. Since both the sets are disjoint, the Hashmerge would behave as a union operator in this case.

This can be represented as the union of both pairs of flows.

Let Ms be the subject machine and Mo be the object machine. Let
←−
Ms and

←−
Mo be the inbound flows

for the subject and object machines respectively. Likewise, let
−→
Ms and

−→
Mo be the outbound flows for the

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 70

subject and object machines, respectively.

P (Ms,Mo) =
−→
M s ∪

←−
M o =

−→
M s]

←−
M o

P (Mo,Ms) =
−→
M o ∪

←−
M s =

−→
M o]

←−
M s

Furthermore, a policy may be imposed between a machine and flow. While a flow may have characteristics

that are not provided in a machine abstraction, it may also have attributes that a machine may have.

For example, if a flow only has a TCP port, and the machine does not, the policy must be enforced

symmetrically to that machine. If a flow has an IP address source, and a machine has an IP address, that

policy should only be enforced with the machine’s IP address as the destination IP address.

Let F be the flow and M be the machine.

P (F,M) = F]
−→
M

P (M,F) = F]
←−
M

Because a policy between two flows is always asymmetric (creates a single flow), the union operator

only needs to be applied once. Unlike in the case of machines, the policy between is symmetric (creates

two flows). The rule will be the same, any flows with matching keys that have non matching value.

Let F1 be the subject flow and F2 be the object flow.

P (F1, F2) = F1] F2

When a policy is applied between two enclaves, the policy must be applied between each pair in each

enclave. From there, the policy enforcement becomes the same as a policy enforcement between a singleton

pair, with the exception that the policy does not need to be installed both ways if singleton objects are

members of the subject and object enclaves. This logic can be displayed by representing these enclaves as

a set relation.

Let Es be the subject enclave and Eo be the object enclave, and F be the set of all ordered pairs where

both are elements of flows.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 71

P (Es, Eo) = ((Es × Eo) ∪ (Eo × Es) \ F)

This will generate the correct and minimum number of individual policies to install. The resulting policy

set is a symmetric set. If Es and Eo are distinct sets (the sets differ by at least one element), then the

final result may be asymmetric. This being the case, we add values to make it symmetric.

MAC source IP source

00:0A 10.0.0.1

Table 7.1: Flow Table 1

MAC destination IP destination

00:0B 10.0.0.2

Table 7.2: Flow Table 2

MAC source MAC destination IP source IP destination

00:0A 00:0B 10.0.0.1 10.0.0.2

Table 7.3: Flow Table 3 = Hashmerge Table 1 and Table 2

One important thing to note is that a switch only processes network entities. The machines, policies

and enclaves are an abstraction of those network entities and ultimately boil down to a network flow that

the network switch responds to.

7.2.3 Installing Flows On Switches

After compiling the policies into OpenFlow flows, the OpenFlow flows must be installed on relevant

switches. For machine and flow abstractions that have a Node ID attribute, the policy is stored on

the node specified for the machine or node specified as the source or subject.

For policies that do not have a member specified, the flow must be installed on all applicable switches.

For now, the number of installed flows stays manageable by partitioning the network using FlowVisor[35],

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 72

which delegates control of switches to multiple controllers in OpenFlow. In future work we will examine

installing flows without switch specifications only on applicable switches.

7.2.4 Policy Database

Figure 7.3: Entity-Relationship Diagram where dashed lines represent polymorphic associations

These policies are stored in a relational database. Fig. 7.3 shows the Entity-Relationship diagram.

The database has the following tables:

• Enclave is table containing the name of the enclave and security level.

• Flow is table containing the name of the flow and flow attributes for e.g. transport source port,

transport destination port.

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 73

• Machine is table containing the name of the Machine and Network attributes such as MAC and IP

address.

• Membership is a polymorphic join table to give machines and flows memberships within enclaves.

• Policy is a polymorphic join table between enclaves, machines and flows that gives a priority and

an action to this relationship.

This database structure enables any policy language to be used that may enter traits that can be

recognized by OpenFlow, and given actions and policies between two enclaves or collection of network

attributes.

7.3 Information Architecture

Fig. 7.4 shows the overall information architecture diagram.

Although the policy model we use for this example is the Bell-LaPadula model, any policy model that

can be represented as a logic block can be used here – the Biba model, for example.

As discussed in the previous section, both subject and object machines are made up of network at-

tributes. They also have a context and a security level at which they can operate. The policy generator

takes the subject and object and a policy model (e.g. Bell-LaPadula model) to generate policies.

Policy Model: A logic block that determines interactions between subjects and objects. In our

example, we use the Bell-LaPadula Model as a logic block.

Machine, Flow and Enclave inherit the properties of the Network Entities class.

Policy Generator: Generates policies given a subject, object and Policy model.

Subject: The source of the network communication with a context that is described by the Security

Level. The subject may be a Machine, Flow or Enclave.

Object: The destination of the network communication. Like the subject, the object also inherits the

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 74

Figure 7.4: Information Architecture for SDN in Cloud systems.

properties of the Network Entities class and has a context described by the Security Level. The object

could be a Machine, Flow or Enclave.

Interpreter: When the subject needs direct access to the object, then the interpreter is used to create

the data path between them. The interpreter processes the generated policies and converts them into flows

to be consumed by the OpenFlow switch. It serves an interface to the policy generator.

Usage Management Mechanism: Acts as a Network Functions Virtualization module and enforces

Chapter 7. Policy Generation and Enfocement for SDN clouds using UM 75

the policies that do not require the OpenFlow mechanism to create a data path. It enforces the read/write

policies between subjects and objects. It also serves an interface to the policy generator.

7.4 Result

The space analysis can be modeled using a complete digraph. In a complete digraph the bound, given n

nodes (These Nodes are the endpoints of the network e.g. machines) as n grows large (worst case analysis)

is represented as n(n − 1) edges [61]. If we assume that the number of switches in a given context is

constant, this gives us a space bound of O(n2). Hence, a framework, such as the one we presented, makes

it easier for the user to enforce policies using OpenFlow.

76

Chapter 8

Conclusions

For some time now, the cloud has been looked at as a solemn promise for massive collaboration and as a

means to handle most users’ infrastructural and software needs—and rightly so, because it offers a cost-

effective, high-performance capable option, both of which can be enabled on demand. However, despite

the ease and capability that the cloud offers, large-scale usage of cloud has not dawned, especially among

business or social organizations.

One of the major reasons for this has been the minimally addressed issue of security. Current security

measures offer limited security to users, and there is an absence of a mechanism that can translate the

service-level agreement into the cloud allocation chain. An increase in usage of cloud for SaaS impresses

upon us a greater need for assured information sharing.

The nature of the cloud’s function substantiates that a context-oriented mechanism is aptly suited. A

policy-based approach that regulates data access and transmission and complies with confidentiality and

integrity seems essential.

This research yielded an architecture currently realizable with modern open-source tools that enables

this kind of dynamic information control. It provides a prototypical implementation of the proposed system

architecture. The approach is an abstraction based on an amalgam of Usage Management and Software-

Defined Networking. The approach includes a high-level, web-based interface that will aid the network

Chapter 8. Conclusions 77

administrators to realize policy flows without performing the painstaking task of forming and enforcing

them.

While maintaining security is an essential aspect of the management of services in a cloud-based system,

it is also necessary to guarantee performance. Obtaining this balance is a particularly hard problem, as the

overhead of application service increases with an increase in security requirements. This research presents

a novel approach to optimize the distribution of virtual resources between clients of IaaS cloud using Usage

Management framework in conjunction with Statistical learning. A control systems approach based on

model identification and proportional thresholding is used. This assures performance regulation whilst

satisfying the security requirements of the applications served on multiple cloud systems.

Our technology is a full stack: it is a framework that works for both cloud computing and SDN. It

increases the ease with which network applications can be implemented, and reduces risk of misunder-

standing and errors on the users end. Given a subject, an object, and a policy model, our technology can

automatically generate policies that a user or administrator might otherwise have to create manually. By

developing a more user-friendly policy generation system, we provide users more refined control over their

personal and business networks, and streamline the process of network maintenance and growth for system

administrators. This makes enforcement of complex behavior models, such as those found in multi-level

security, simple to enforce. As well, the framework interprets the policies that it generates and sends the

cloud policies to the appropriate UM mechanism, and the network policies to the interpreter for processing

in OpenFlow switches. Additionally, this system eliminates the need to learn domain-specific languages in

order to program network policies.

Thus, we have accomplished a framework that provides automatic generation and enforcement of both

usage and network policies. It provisions cloud VMs based on the usage policies and enforces UM within

the VM. Finally, ensures a balance of performance and security requirements in a VM.

Our framework as of now involves a static network and pre-programmed flows (proactive forwarding),

but a change to the network requires recompilation of all of the flows. In the future, we would like the

framework to incorporate a dynamic network such that only the network flows that need changes must be

recompiled using techniques likes memoization and dynamic programming.

Chapter 8. Conclusions 78

Additionally, we want the ability to add license file/policies to the header of the packets. Thus, the

license would travel with the payload/data, which would ease the tracking of policies.

79

References

[1] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud computing environ-
ments,” IEEE Security and Privacy, vol. 8, no. 6, pp. 24–31, 2010.

[2] Peter Mell and Tim Grance, “The NIST Definition of Cloud Computing,”
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc, 2009.

[3] S. Pearson and A. Benameur, “Privacy, security and trust issues arising from cloud computing,” in
Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and
Science, ser. CLOUDCOM ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 693–702.
[Online]. Available: http://dx.doi.org/10.1109/CloudCom.2010.66

[4] S. Pearson, Y. Shen, and M. Mowbray, “A privacy manager for cloud computing,” in Proceedings of the
1st International Conference on Cloud Computing, ser. CloudCom ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 90–106. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-10665-1 9

[5] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Gener.
Comput. Syst., vol. 28, no. 3, pp. 583–592, Mar. 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.future.2010.12.006

[6] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud computing
environments,” IEEE Security and Privacy, vol. 8, no. 6, pp. 24–31, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2010.186

[7] V. Nandina, J. M. Luna, C. C. Lamb, G. L. Heileman, and C. T. Abdallah, “Provisioning security
and performance optimization for dynamic cloud environments,” in Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on. IEEE, 2014, pp. 979–981.

[8] S. Jajodia, K. Kant, P. Samarati, A. Singhal, V. Swarup, and C. Wang, Secure cloud computing.
Springer, 2014.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “Openflow: enabling innovation in campus networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 38, no. 2, pp. 69–74, 2008.

http://dx.doi.org/10.1109/CloudCom.2010.66
http://dx.doi.org/10.1007/978-3-642-10665-1_9
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.1109/MSP.2010.186

References 80

[10] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: verifying network-wide invariants in
real time,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

[11] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al., “Composing software defined networks.”
in NSDI, 2013, pp. 1–13.

[12] M. Musuvathi, D. R. Engler et al., “Model checking large network protocol implementations.” in
NSDI, vol. 4. Citeseer, 2004, pp. 12–12.

[13] N. Peter Loscocco, “Integrating flexible support for security policies into the linux operating system,”
in Proceedings of the FREENIX Track:... USENIX Annual Technical Conference. The Association,
2001, p. 29.

[14] A. Ginter, “Unidirectional security gateways stronger than firewalls.”

[15] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: taking control
of the enterprise,” in ACM SIGCOMM Computer Communication Review, vol. 37, no. 4. ACM,
2007, pp. 1–12.

[16] H. Kim and N. Feamster, “Improving network management with software defined networking,” Com-
munications Magazine, IEEE, vol. 51, no. 2, pp. 114–119, 2013.

[17] A. Lara, A. Kolasani, and B. Ramamurthy, “Simplifying network management using software defined
networking and openflow,” in Advanced Networks and Telecommuncations Systems (ANTS), 2012
IEEE International Conference on. IEEE, 2012, pp. 24–29.

[18] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Simplifying sdn programming
using algorithmic policies,” in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4.
ACM, 2013, pp. 87–98.

[19] V. Nandina, J.-M. Luna, E. J. Nava, C. C. Lamb, G. L. Heileman, and C. T. Abdallah, “Policy-based
security provisioning and performance control in the cloud,” in CLOSER, 2013, pp. 502–508.

[20] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing performance interference effects for
qos-aware clouds,” in Proceedings of the ACM European Society in Systems Conference 2010, Paris,
France, April 2010, pp. 237–250.

[21] J. V. Vliet and F. Paganelli, Programming Amazon EC2. Oŕeilly Media Inc., 2011.

[22] H. Lim, S. Babu, J. Chase, and S. Parekh, “Automated control in cloud computing: Challenges and
opportunities,” in Proc. of 1st Workshop on Autom. Ctrl for Datacenters & Clouds., Barcelona, June
2009, pp. 13–18.

[23] J. Yao, X. Liu, X. Chen, X. Wang, and J. Li, “Online decentralized adaptive optimal controller design
of cpu utilization for distributed real-time embedded systems,” in Proceedings of the 2010 American
Control Conference (ACC’10), Baltimore, MD, June 2010, pp. 283–288.

References 81

[24] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” Queue, vol. 11, no. 12, p. 20, 2013.

[25] M. Ciosi et al., “Network functions virtualization,” Technical report, ETSI, Darmstadt, Germany,
Tech. Rep., 2012.

[26] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “Flowtags: enforcing network-wide policies in
the presence of dynamic middlebox actions,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking. ACM, 2013, pp. 19–24.

[27] K. M. Khan and Q. Malluhi, “Establishing trust in cloud computing,” IT professional, vol. 12, no. 5,
pp. 20–27, 2010.

[28] M. Roman and S. Khan, “Cloud computing security: A survey,” Global Journal on Technology, 2015.

[29] T. Garfinkel and M. Rosenblum, “When virtual is harder than real: Security challenges in virtual
machine based computing environments.” in HotOS, 2005.

[30] T. A. Limoncelli, “Openflow: a radical new idea in networking,” Queue, vol. 10, no. 6, p. 40, 2012.

[31] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown, “Where is the debugger for
my software-defined network?” in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 55–60.

[32] R. W. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury, “Verifiably-safe software-defined networks for
cps,” in Proceedings of the 2nd ACM international conference on High confidence networked systems.
ACM, 2013, pp. 101–110.

[33] S. Shin and G. Gu, “Cloudwatcher: Network security monitoring using openflow in dynamic cloud
networks (or: How to provide security monitoring as a service in clouds?),” in Network Protocols
(ICNP), 2012 20th IEEE International Conference on. IEEE, 2012, pp. 1–6.

[34] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “Nox: towards an
operating system for networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 3,
pp. 105–110, 2008.

[35] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar,
“Flowvisor: A network virtualization layer,” OpenFlow Switch Consortium, Tech. Rep, 2009.

[36] G. Stabler, A. Rosen, S. Goasguen, and K.-C. Wang, “Elastic ip and security groups implementation
using openflow,” in Proceedings of the 6th international workshop on Virtualization Technologies in
Distributed Computing Date. ACM, 2012, pp. 53–60.

[37] S. Piper, Big Data Analytics For Dummies. John Wiley and Sons, 2012.

[38] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A security enforcement kernel for
openflow networks,” in Proceedings of the first workshop on Hot topics in software defined networks.
ACM, 2012, pp. 121–126.

References 82

[39] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint for the intercloud-
protocols and formats for cloud computing interoperability,” in Internet and Web Applications and
Services, 2009. ICIW’09. Fourth International Conference on. IEEE, 2009, pp. 328–336.

[40] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A. Fortes, “Sky computing,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 43–51, 2009.

[41] “Openflow - Enabling Innovation in Your Network,” http://www.openflow.org, November 2011.

[42] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: dynamic access control for en-
terprise networks,” in Proceedings of the 1st ACM workshop on Research on enterprise networking.
ACM, 2009, pp. 11–18.

[43] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, “Fresco: Modular
composable security services for software-defined networks.” in NDSS, 2013.

[44] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D. Walker, “Frenetic:
A network programming language,” in ACM SIGPLAN Notices, vol. 46, no. 9. ACM, 2011, pp.
279–291.

[45] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-level reactive network control,”
in Proceedings of the first workshop on Hot topics in software defined networks. ACM, 2012, pp.
43–48.

[46] A. Lara and B. Ramamurthy, “Opensec: A framework for implementing security policies using open-
flow,” in Global Communications Conference (GLOBECOM), 2014 IEEE. IEEE, 2014, pp. 781–786.

[47] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-fying middlebox policy
enforcement using sdn,” in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 27–38.

[48] P. A. Jamkhedkar, G. L. Heileman, and C. C. Lamb, “An interoperable usage management frame-
work,” in Proceedings of the tenth annual ACM workshop on Digital rights management. ACM, 2010,
pp. 73–88.

[49] J. Park and R. Sandhu, “The uconabc usage control model,” ACM Trans. Inf. Syst. Secur., vol. 7,
no. 1, pp. 128–174, Feb. 2004. [Online]. Available: http://doi.acm.org/10.1145/984334.984339

[50] P. A. Jamkhedkar, G. L. Heileman, and C. C. Lamb, “An interoperable usage management
framework,” in Proceedings of the tenth annual ACM workshop on Digital rights management,
ser. DRM ’10. New York, NY, USA: ACM, 2010, pp. 73–88. [Online]. Available: http:
//doi.acm.org/10.1145/1866870.1866885

[51] P. A. Jamkhedkar, C. C. Lamb, and G. L. Heileman, “Usage management in cloud computing,” in
IEEE CLOUD, 2011, pp. 525–532.

http://doi.acm.org/10.1145/984334.984339
http://doi.acm.org/10.1145/1866870.1866885
http://doi.acm.org/10.1145/1866870.1866885

References 83

[52] R. S. Sandhu, “Lattice-based access control models,” Computer, vol. 26, no. 11, pp. 9–19, 1993.

[53] V. Nandina, J.-M. Luna, E. J. Nava, C. C. Lamb, G. L. Heileman, and C. T. Abdallah, “Policy-based
security provisioning and performance control in the cloud.” in CLOSER, 2013, pp. 502–508.

[54] J. M. Luna, “Optimization and regulation of performance for computing systems,” Ph.D. dissertation,
University of New Mexico, 2014.

[55] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for Analysis and Control of Un-
certain Systems, E. D. Sontag, M. Thoma, A. Isidori, and J. V. Schippen, Eds. London: Springer,
2005.

[56] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The DaCapo
benchmarks: Java benchmarking development and analysis.”

[57] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-driven sdn controller
architecture,” in 2014 IEEE 15th International Symposium on. IEEE, 2014, pp. 1–6.

[58] S. Ortiz, “Software-defined networking: On the verge of a breakthrough?” IEEE Computer, vol. 46,
no. 7, pp. 10–12, 2013.

[59] R. Sandhu and X. Zhang, “Peer-to-peer access control architecture using trusted computing technol-
ogy,” in Proceedings of the tenth ACM symposium on Access control models and technologies. ACM,
2005, pp. 147–158.

[60] M. Zhang, M. Dusi, W. John, and C. Chen, “Analysis of udp traffic usage on internet backbone
links,” in Applications and the Internet, 2009. SAINT’09. Ninth Annual International Symposium on.
IEEE, 2009, pp. 280–281.

[61] S. Pirzada, “An introduction to graph theory,” Orient BlackSwan, Hyderabad, vol. 130, p. 131, 2012.

	University of New Mexico
	UNM Digital Repository
	9-1-2015

	Policy-based Information Sharing using Software-Defined Networking in Cloud Systems
	VISWANATH NANDINA
	Recommended Citation

	Dissertation_Approval_nandina
	Dissertation
	List of Figures
	List of Tables
	Glossary
	Introduction
	Software-Defined Networking vs Traditional Networking
	Mandatory Access Control
	Tradeoff Between Performance and Security
	Outline of the Framework

	Cloud Computing Security
	Essential Cloud Characteristic Vulnerabilities
	Limitations in Known Security Techniques
	Vulnerabilities in Cloud Offerings
	Security Risks Associated with Storage
	Securing Communication
	Auditing, Authentication, Authorization and Identity (AAAI)

	Software-Defined Networking
	Problem Description and Previous Approaches
	Software Defined Networking
	Usage Management (UM)
	UCONABC
	An Interoperable Usage Management Framework
	Usage Management in Cloud Computing
	Security Policy
	Security Models
	 Access Control Models
	Contrasting Technologies

	Policy-Based Security Provisioning in the Cloud
	Introduction to Usage Management
	Access Control and Beyond Access Control
	Usage Management in the Cloud
	Usage Management System for Cloud Computing
	System Architecture/Model
	Policy
	Context
	Implementation

	Provisioning Security and Performance Optimization
	Cost Function
	Measure of Security
	Statistical Learning
	Encryption and Benchmark Overhead

	Policy Generation and Enfocement for SDN clouds using UM
	Design & Approach
	Access Control
	Entire Framework
	Architecture
	Mandatory Access Control
	Policy Language

	Policy Generation
	Generate policies
	Policy Model
	Installing Flows On Switches
	Policy Database

	Information Architecture
	Result

	Conclusions
	References

	Member 8:
	Member 7:
	Member 6:
	Member 5:
	Member 4:
	Member 3: Christopher C. Lamb
	Member 2: Nasir Ghani
	Member 1: Wei Winnie Shu
	Chair: Gregory L. Heileman
	Department: Electrical and Computer Engineering
	Candidate: Viswanath Nandina

