
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-9-2007

SIMD pipelined processor implemented on a
FPGA
Benjamin Mar

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Mar, Benjamin. "SIMD pipelined processor implemented on a FPGA." (2007). https://digitalrepository.unm.edu/ece_etds/170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/170?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 SIMD PIPELINED PROCESSOR
IMPLEMENTED ON AN FPGA

BY

 BENJAMIN D. MAR

 B.S., ELECTRICAL & COMPUTER ENGINEERING
WORCESTER POLYTECHNIC INSTITUTE, 2005

THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

 Master of Science

Computer Engineering

The University of New Mexico
Albuquerque, New Mexico

 July 2007

 Benjamin D. Mar
 Candidate

 Electrical and Computer Engineering
 Department

 This thesis is approved, and it is acceptable in quality
 and form for publication on microfilm:

 Approved by the Thesis Committee:

 , Chairperson

 Accepted:

 Dean, Graduate School

 Date

 iii

Acknowledgements

Many thanks to Dr. Marios Pattichis for his guidance, vision, and humor throughout the
duration of implementing this thesis and for taking time to work with me to make sure
everything fell into place.

Thanks to Sandia National Laboratories for supporting me through this thesis and going
the extra mile to make sure I finished.

Thanks to my family and friends who gave me the strength and support I needed to
continue my journey when times were hard. Without them, my thesis would not be what
it is today.

 SIMD PIPELINED PROCESSOR
IMPLEMENTED ON AN FPGA

BY

BENJAMIN D. MAR

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

Computer Engineering

The University of New Mexico
Albuquerque, New Mexico

July, 2007

 v

 SIMD PIPELINED PROCESSOR IMPLEMENTED ON AN FPGA

by

Benjamin D. Mar

B.S. Electrical & Computer Engineering, Worcester Polytechnic Institute, 2005

M.S. Computer Engineering, University of New Mexico, 2007

Abstract

 The goal of this thesis was to create a processor using VHDL that could be used

for educational purposes as well as a stepping stone in creating a reconfigurable system

for digital signal processing or image processing applications. To do this a subset of

MIPS instructions were chosen to demonstrate functionality within a five stage pipeline

(instruction fetch, instruction decode, execution, memory, and write back) processor in

simulation and in synthesis. A hazard controller was implemented to handle data

forwarding and stalling. The basic MIPS architecture was extended by adding single-

cycle multiplication functionality and single-cycle SIMD instructions. The architecture

contains parameters for easy modification of SIMD units depending on the needs of the

processor.

 vi

The SIMD architecture was designed with distributed memory so that every

memory unit received the same address. This simplifies the address logic so that the

processor does not have to use a complex addressing mode. The memory can be pictured

as row and columns method of access.

The SIMD instructions were chosen to be able to perform binary operations to

implement future morphological operations and to use the multiply and add operations

for implementing MACs to perform convolution and filtering operations in future image

processing applications.

 The board being used to verify the processor was a Xilinx University Program

(XUP) board that contains Xilinx Virtex II Pro XC2VP30 FPGA, package FF896. The

maximum number of units that can be instantiated in the FPGA on the XUP board is

eight units which would use the entire FPGA slice area. This allows the processor to

complete eight sets of 32-bit data operations per cycle when the SIMD pipeline is full.

 The design was shown to operate at the maximum speed of 100 MHz and utilize

all the area of the FPGA. The processor was verified in both simulation and synthesis.

The new soft-core 32-bit SIMD processor extends existing soft-core processors in that it

provides a reconfigurable SIMD-pipeline allowing it to operate on multiple inputs

concurrently, with 32-bit operands and a single-cycle throughput.

 vii

CONTENTS

List of Figures... viii
List of Tables .. ix
1. Introduction... 1

1.1. Introduction... 1
1.2. Thesis.. 2
1.3. Contributions... 2
1.4. Thesis Summary.. 3

2. Background ... 4
2.1. MIPS... 4
2.2. SIMD .. 6
2.3. Related Work in SIMD... 7

3. Methodology .. 11
3.1. Architecture... 11

3.1.1. Instruction Set ... 12
3.1.2. Pipeline... 14

3.1.2.1. Instruction Fetch Stage... 15
3.1.2.2. Instruction Decode Stage.. 16
3.1.2.3. Execution Stage ... 21
3.1.2.4. Memory Stage.. 25
3.1.2.5. Write Back Stage... 26
3.1.2.6. Hazard Detection .. 26
3.1.2.7. Inter-stage Connections.. 29

3.2. SIMD Architecture ... 33
3.2.1. SIMD Instruction Set.. 34
3.2.2. SIMD Pipeline ... 36

3.3. XUP Board... 39
3.4. Modules Specific to Hardware... 40

4. Results .. 41
4.1. Test Programs ... 41
4.2. Simulation .. 42
4.3. Board Testing .. 44
4.4. Maximum Frequency Minimum Clock Period .. 46
4.5. FPGA Area .. 48

5. Conclusions and Future Work... 49
5.1. Conclusions .. 49
5.2. Future Work.. 50

Appendices... 52
Appendix A: Instruction Reference .. 53
Appendix B: VHDL Files ... 64
Appendix C: Program Codes ... 107
Appendix D: FPGA User Constraint File ... 130
References .. 133

 viii

List of Figures

Figure 1: MIPS Basic Pipeline.. 5
Figure 2: SISD Instruction Set.. 13
Figure 3: Schematic of Instruction Fetch Stage.. 15
Figure 4: Schematic of Instruction Decode Stage... 17
Figure 5: Instruction Opcodes from controller.vhd. ... 19
Figure 6: Branch, Jump, and Break Signal Assignments from controller.vhd. 19
Figure 7: Schematic of Execution Stage... 21
Figure 8: ALU Control Parameters from ALUcontroller.vhd. ... 23
Figure 9: EXE Select Lines from ALUcontroller.vhd. ... 24
Figure 10: EXE Control Signals from ALUcontroller.vhd... 24
Figure 11: Forwarding Hazard Sequence. .. 26
Figure 12: Forwarding Illustration in the Pipeline.. 27
Figure 13: Forwarding MUXA Select Line of Value A from hazardcontrol.vhd. 28
Figure 14: Stall Logic from hazardcontrol.vhd... 28
Figure 15: Schematic of Processor. .. 30
Figure 16: Forwarding MUX of Value A from processor.vhd. .. 31
Figure 17: SISD and SIMD Block Diagram of Processor. ... 33
Figure 18: SIMD Instruction Set... 34
Figure 19: Addiu and Vaddiu Instruction Fields. ... 35
Figure 20: Mul and Vmul Instruction Fields. ... 35
Figure 21: Andi and Vandi Instruction Fields. ... 36
Figure 22: SIMD Control Signal Modifications from controller.vhd............................... 37
Figure 23: SIMD Processor Entity from processor.vhd.. 38
Figure 24: SIMD Forward MUXA from processor.vhd. .. 38
Figure 25: XUP Board .. 40
Figure 26: Header for .coe Initialized Memory File. .. 41
Figure 27: Basic Test Code Segment.. 42
Figure 28: Simulation of Basic Test. .. 42
Figure 29: SIMD Test Code Segment... 43
Figure 30: Simulation of SIMD Test .. 43
Figure 31: Synthesis Demonstration of Working Processor... 45

 ix

List of Tables

Table 1: Overview of SIMD Architectures... 10
Table 2: ALU Operations.. 24
Table 3: Basic Pipeline Results... 47
Table 4: SIMD Pipeline Results. .. 47
Table 5: SISD Versus SIMD Pipeline. ... 48

 1

1. Introduction

1.1. Introduction

 General purpose computing architectures must address many important questions

such as: What will the instruction set architecture look like? How will the chip resources

be used? What the hardware should be responsible for verses the software? etc. Each

architecture answers these questions in a fashion to best meet the needs of the work to be

performed. Some issues faced by designers are: the efficiency of area usage, the speed of

the system, and the reconfigurability of the system – the flexibility of the system.

 There are many different types of architectures implemented in modern

processors. On one side of the spectrum there are the general purpose fixed processors

that implement a complex instruction set like the Intel’s Pentiums and on the other side

there are soft-core processors that implement a reconfigurable, reduced instruction set

like Xilinx’s MicroBlaze.

 Both processors can perform different applications but might not exactly meet the

criteria needed. If the processor needs to process multiple data in a fast manner but also

be flexible to change to different datapath parameters, neither processor meets both

criteria. The Pentiums have single instruction multiple data (SIMD) capability [12] but

the datapath is set in silicon and cannot be changed while the MicroBlaze can be

reconfigured to conform to any datapath but does not have SIMD capability and

arithmetic operations require multiple clock cycles to obtain results [18].

 2

 This thesis addresses these criteria and presents a synthesizable VHDL solution.

1.2. Thesis

 This thesis is focused on the development of a processor architecture that would

function as an educational tool for students, while also being a flexible foundation for

real applications such as morphological or convolution operations for image processing.

Two important metrics were used to measure the processor – performance and

functionality. Performance was measured by the speed of the processor and throughput

of data. The paradigm was to maximize the operating frequency while minimizing the

area used by the core logic in order to place as many single instruction multiple data

(SIMD) units in the field programmable gate array (FPGA) while supporting a complete

core of arithmetic and logical instructions. The objective was to produce a synthesizable

VHDL architecture that could be reconfigured to different specifications and retain

readability for others to use.

1.3. Contributions

 The contributions of this thesis are as follows:

• A synthesizable VHDL description of a five stage pipeline processor with hazard

control using a subset of MIPS instructions.

 3

• A synthesizable VHDL description of a SIMD version of the five stage pipeline

processor with hazard control. The SIMD instructions are based on the original

MIPS instructions for arithmetic and logical operations. The instruction set is

chosen to be able to implement calculations such as convolution and

morphological operations.

• An analysis of the processors’ maximum frequency and area usage of the FPGA.

1.4. Thesis Summary

The rest of the thesis is organized as follows:

• Chapter 2 provides the reader with the history of the MIPS processor and follows

with the idea of single instruction multiple data concept, then investigates past

architectures using SIMD implementations.

• Chapter 3 describes the architecture of the processor built for this thesis. The

architecture with single instruction single data (SISD) instructions will be

described in the first section followed by the SIMD architecture modifications and

additions. The test board will be introduced with discussions on how to modify

the processor architecture to conform to different hardware environments.

• Chapter 4 discusses the results obtained with simulation and synthesis using the

XUP FPGA board. The results include timing analysis and area usage of the

FPGA.

• Chapter 5 contains an overview of the project and discusses future work and

future research applications.

 4

2. Background

2.1. MIPS

 The MIPS processor was first designed in 1985 by John L. Hennessy although the

research started in 1981 while at Stanford University. The goal of the MIPS processor

design was to increase processor performance by using deep instruction pipelines. This

allowed the clock frequency of the processor to be based on the critical path within one of

the stages rather than the entire instruction cycle like the traditional designs that waited to

complete an entire instruction before moving to the next.

 A major aspect of the MIPS design was to demand that all instructions take only

one cycle to complete, thereby removing any needs for interlocking. The design of the

MIPS processor eliminated a number of useful instructions that would take multiple steps

to complete. The long instructions were left out as it was thought the performance of the

system would be dramatically improved due to the fact the processor could run at much

higher clock rates. Increasing the speed was difficult with interlocking, as the locks took

up additional chip area that slowed down the overall speed.

 Many observers claimed that the MIPS design would not be used in commercial

products with the elimination of instructions. The argument was one of CISC (complex

instruction set computer) versus RISC (reduced instruction set computer): that if a

complex instruction was replaced with many simpler instructions this would reduce the

 5

speed. The argument ignored the fact that the speed of the design comes from the

pipelines, not the instructions themselves [17].

 The theory of the MIPS architecture is used in many university curriculums to

discuss pipelining. The DLX processor is based off of the MIPS and implements VHDL

code to simulate the processor, however it is not synthesizable without extensive

modification [1]. The basic MIPS architecture pipeline can be seen in Figure 1.

Figure 1: MIPS Basic Pipeline [17].

 The basic MIPS architecture implemented a 5 stage pipeline that divided the

combinational logic of the datapath into sections. The maximum frequency increased by

dividing the processor into smaller sections; decreasing the critical path from the single

cycle routing to a smaller section of that routing.

 6

2.2. SIMD

 The Single Instruction Multiple Data (SIMD) concept is a method of improving

performance in applications where highly repetitive operations need to be performed.

SIMD is a technique of performing the same operation, be it arithmetic or otherwise, on

multiple pieces of data simultaneously.

 Traditionally, when an application is being programmed and a single operation

needs to be performed across a large dataset, a loop is used to iterate through each

element in the dataset and perform the required procedure. During each iteration, a single

piece of data has a single operation performed on it. This is known as Single Instruction

Single Data (SISD) programming. Loops are very inefficient, as they can iterate

thousands of times. Ideally, to increase performance, the number of iterations of a loop

needs to be reduced.

 One method of reducing iterations is known as loop unrolling [10]. This takes the

single operation that was being performed in the loop, and carries it out multiple times in

each iteration.

 The SIMD concept takes loop unrolling one step further by incorporating the

multiple actions in each loop iteration, and performing them simultaneously. With SIMD,

not only can the number of loop iterations be reduced, but also the multiple operations

that are required can be reduced to a single, optimized action.

 SIMD does this through the use of vectors. A SIMD vector can be used as an

argument for a specific instruction that will then be performed on all elements in the

vector simultaneously. Because of this, the number of values that can be loaded into the

 7

vector directly affects performance; the more values being processed at once, the faster a

complete dataset can be completed. This size depends on two things: 1) The data size

being used and 2) The SIMD implementation.

 When values are stored in SIMD vectors and worked upon by a SIMD operation,

they are actually moved to a special set of CPU registers where the parallel processing

takes place. The size and number of these registers is determined by the SIMD

implementation being used. SIMD makes use of multiple CPU functional units;

independent functional units for arithmetic and Boolean operations that execute

concurrently.

 The SIMD implementation can be enhanced with pipelining the program

instructions. Instruction pipelining is the decomposition of instruction execution into a

linear series of autonomous stages, allowing each stage to simultaneously perform a

portion of the execution process (such as decode, calculate effective address, fetch

operand, execute, and store).

2.3. Related Work in SIMD

 Many SIMD architectures make the use of multiple processors to carry out the

multiple executions. These processors, also called processing elements (PE), must be

connected in a network that can range from a mesh, a pyramid, to a hypercube formation.

 The CLIP 4 [7], MPP [2], and GAPP [16] processors use a mesh network

configuration. These systems use several bit serial processors to execute the same

operation on the same image or images but on different neighborhoods. They have no

 8

pipelining (only one level of operation going on at the same time), no parallel fetch of

neighborhoods, and not even one pixel but one bit is to be fetched at a time to each

processor. These processors utilize a central control unit that generates and broadcasts a

global address and control word. This information is picked up by the memory modules

and the processors.

 Processors like WPM [15] use a pyramid network. A pyramid network is an

extension of a mesh using a tree hierarchy. Each level has connections to the levels

above and below, giving each internal PE nine connections. All of the PEs operate in a

SIMD mode under the direction of a single controller. The pyramid layout is more

difficult than the mesh layout, resulting in only small pyramids being built [4].

 Other SIMD architectures have moved into the FPGA realm. VIP and MATRIX

make use of the programmable logic cells for their PEs.

 The VIP [3] SIMD architecture has a 2D torus interconnection topology of its PE.

Each PE has a local memory. The VIP architecture is composed of three basic

components: the SIMD controller, the processing matrix and the I/O controller. Those

components are connected by a shared global bus and two control buses. The processing

matrix is a set of identical PEs interconnected in a 2D grid topology. The I/O controller

manages off-board communication and initiates memory transfers. The SIMD controller

decodes and executes the program stored in its instruction memory, and read or write to

its data memory.

 The VIP system consists of four programmable chips. The processing matrix and

SIMD controller are each implemented by an SRAM-based Altera EPF81500 FPGA that

has approximately 16,000 usable gates. The I/O controller is implemented by an

 9

EPROM-based Altera EPM7192 EPLD (3,750 usable gates), and an AMCC 55933 PCI

controller with its configuration EPROM.

 MATRIX [7] is composed of an array of identical, 8-bit functional units

overlayed with a configurable network using FPGAs. Each functional unit contains a

256x 8-bit memory, an 8-bit ALU and multiply unit, and reduction control logic

including a 20 x 8 NOR plane. The network is hierarchical supporting three levels of

interconnect. Functional unit port inputs and non-local network lines can be statically

configured or dynamically switched.

 The ALU supports the standard set of arithmetic and logic functions including

NAND, NOR, XOR, shift, and add. With optional input inversion, this extends to include

OR, AND, XNOR, and subtract. A configurable carry chain between adjacent ALUs,

allow cascading of ALUs to perform wide-word operations. The ALU also includes an 8

x 8 multiply-add-add operation; the multiply operation takes two operating cycles to

complete producing the low 8 bits of the product on the first cycle and the high 8 bits on

the second cycle.

 Since the datapath size and assignment of control resources is not fixed for a

MATRIX component, MATRIX has greater flexibility to match the datapath composition

and granularity to the needs of the application.

 10

Table 1: Overview of SIMD Architectures

Processor Approach Clock Period Data size per PE

CLIP 4
(1980)

Mesh network, 9216 PEs, bit-serial
processor with 32 bits of memory

per PE
400ns 1 bit

GAPP (1984)
Mesh network, 72 bit-serial

processors with 128 bits of memory
per PE

100ns 1 bit

MPP (1983) Mesh network, 16000 PEs with
1024 bits of memory per PE 100ns 1 bit

WPM (1989)
Pyramid network, Deeply

Pipelined, 256 PEs, 8000 bits of
memory off chip

100ns 16 bits

VIP (1996) FPGA, Torus network, 28 PEs-4
FPGAs, 1.5MB external memory 60ns 32 bits

MATRIX
(1996)

FPGA, Configurable network, 256 x
8-bit memory per PE 10ns 8 bits

 11

3. Methodology

 The goal of this thesis was to create a processor that could be used for educational

purposes as well as a stepping stone in creating a reconfigurable system for digital signal

processing or image processing applications. To do this a subset of instructions were

chosen to demonstrate functionality within a five stage pipeline processor in simulation

and in synthesis. Upon completion of the initial architecture, multiplication functionality

and SIMD functionality were added.

3.1. Architecture

 The architecture implemented was five stage pipeline that used the Harvard

memory approach with a load-store 32-bit instruction set. The Harvard memory

architecture was used to simplify the controls for memory access by using two separate

memories for the program data (instruction memory) and the workable data (data

memory). This resolves any structural hazard that a single memory could produce. The

load-store or register-to-register architecture was chosen as storage internal to the

processor is faster than external memory. Even though the memory IPs are within the

processor for this project, later work might require larger external memory for data

manipulations.

 12

3.1.1. Instruction Set

 The processor uses a subset of the MIPS instruction set. Each instruction is 32-

bits in length and is identified by the six most significant bits or the six least significant

bits. The MIPS uses three types of instructions: register to register (R-type), immediate

to register (I-type), and jumps (J-type). R-type instructions are used primarily for work

type instructions, i.e. addition, subtraction. I-type instructions are used much like the R-

type instruction, but use a 16-bit immediate value in its instruction format. J-type

instructions are used for jump instructions. The 28 instructions used [14] are given in

Figure 2.

 13

addu – unsigned addition of two registers,
addiu – unsigned addition of register and immediate value,
subu – unsigned subtraction of two registers,
mul – signed multiplication of two registers,
and – logical and of two registers,
andi – logical and of register and immediate value,
or – logical or of two registers,
ori – logical or of register and immediate value,
xor – logical xor of two registers,
xori – logical xor of register and immediate value,
sll – shift left logical,
srl – shift right logical,
sra – shift right arithmetic,
slt – set less than,
sltu – set less than unsigned,
slti – set less than immediate,
sltiu – set less than immediate unsigned,
lui – load upper immediate,
lw – load word,
sw – store word,
beq – branch on equal,
bne – branch not equal,
bgez – branch greater or equal zero,
bltz – branch less than zero,
j – jump,
jal – jump and link,
jr – jump register,
break – breakpoint exception.

Figure 2: SISD Instruction Set.

The full descriptions of these instructions can be seen in Appendix A: Instruction

Reference. The mul instruction implemented in this processor takes the 16 least

significant bits of each register and multiplies them instead of the entire 32 bits as regular

MIPS uses. The mul instruction only takes 16 bits instead of 32 bits as the processor uses

a Xilinx core IP for the multiplier, which does not support 32 bit operations.

 These 28 instructions were chosen out of the 189 MIPS32 [14] instruction set as

they provide the core functionality of the processor and completeness. The add, subtract,

 14

and multiply cover the arithmetic operations; the and, or, and xor cover the logical

operations; the sll, srl, and sra cover shifting needs; the set less than and branch

instructions cover comparisons; lw and sw works with memory; the branch and jump

instructions cover loops and section jumps; and the break instruction allows for program

debugging and testing. The instructions left out of this processor included instructions

that work with floating point values, caches, translation lookaside buffers, move register

values, traps, and variations of what was implemented (branch, jump, memory access,

etc).

 The unsigned versions of the arithmetic operations were chosen as the term

“unsigned” is a misnomer in MIPS32. The difference between the add and addu

instruction is that the add instruction traps on overflow and the addu instruction does not

trap. Since both instructions have the same functionally, besides the trapping, addu was

preferred to avoid adding additional logic to handle traps and exceptions. This choice

helps reduce the overall logic of the processor.

3.1.2. Pipeline

 A pipeline is a set of data processing elements connected in series, so that the

output of one element is the input of the next one. These elements or stages of a pipeline

are executed in parallel time-sliced fashion with some amount of buffer storage inserted

between stages. The stages in this pipeline are: instruction fetch, instruction decode,

execution, memory, and write back. These pipeline stages are the basic stages that were

also implemented in the simple MIPS processor.

 15

3.1.2.1. Instruction Fetch Stage

 The Instruction Fetch (IF) stage directs the flow of the program and retrieves the

instructions from memory. The IF stage consists of the program counter (PC) register,

the synchronous instruction memory, and passed signals from the instruction decode

stage that has calculated logic for branches, jumps as well as signals for stalling the PC.

The IF stage schematic can be seen in Figure 3.

Figure 3: Schematic of Instruction Fetch Stage.

 The PC is always enabled; combinational logic is used to determine which

address should be registered and sent to the instruction memory. If the pipeline is stalled

or if there is a break instruction, the PC holds its current value as to prevent losing an

 16

instruction. If there is a branch or jump, then the PC will take the NEXTPC value that

holds the destination address of the branch or jump. The default setting is to go to the

sequential instruction which has the value of PC + 4.

 The instruction memory is a Xilinx IP core: Single Port Block Memory v6.2. The

memory is set up as a ROM, which reads in a .coe file that holds the instructions, with a

width of 32 and depth of 1024. The depth can be modified as needed. Since the

instruction memory is synchronous, the next address needs to be at the memory at the

same time as the PC register so that it would not introduce another cycle into the pipeline.

3.1.2.2. Instruction Decode Stage

 The instruction decode (ID) stage holds most of the control logic of the pipeline

as it decodes what needs to happen for each instruction. The ID stage contains the

register file, branch logic module, nextPC logic module, and controller. The ID stage

schematic can be seen in Figure 4.

 17

Figure 4: Schematic of Instruction Decode Stage.

 This processor implementation allows for a branch delay slot; the instruction

following the branch or jump always executes. The branch logic module exists so the

pipeline does not have to kill an instruction and create a no operation in the killed

instruction’s place in the pipeline instruction stream. The branch logic could be resolved

in the execution stage but by then there are two instructions in the pipeline. The

 18

instruction in the ID stage would be executed but the one in the IF stage would need to be

killed.

 The branch logic module is used to determine if a beq, bne, bgez, or bltz

instruction will actually take the branch. The inputs come from after the forwarding

multiplexers (MUX) which are not in the ID stage which will be discussed in section

3.1.2.6 Hazard Detection. The branch logic module then sets BRANCHOK signal high if

the branch is to be taken.

The register file is a collection of 31 general purpose registers and a zero register

that cannot be modified. Register 31 is used for the return address in a jal instruction.

The return address is the PCPLUS8 output, which saves the address after the branch

delay slot.

 The controller is the component that decodes the instructions and sets signals to

allow for proper execution. The controller only uses the opcode (the six MSB of the

instruction) and the function (the six LSB of the instruction). Since all of the R-format

instructions have the same opcode, they are grouped together. The jr instruction is

included as an R-format instruction since the instruction code follows the R-format even

though it jumps to a new address. The parameters for the opcode are given in Figure 5.

 19

constant rtype: std_logic_vector (5 downto 0):= "000000";
constant addiu: std_logic_vector (5 downto 0):= "001001";
constant slti: std_logic_vector (5 downto 0):= "001010";
constant sltiu: std_logic_vector (5 downto 0):= "001011";
constant andi: std_logic_vector (5 downto 0):= "001100";
constant ori: std_logic_vector (5 downto 0):= "001101";
constant xori: std_logic_vector (5 downto 0):= "001110";
constant lui: std_logic_vector (5 downto 0):= "001111";
constant lw: std_logic_vector (5 downto 0):= "100011";
constant sw: std_logic_vector (5 downto 0):= "101011";
constant beq_bne: std_logic_vector (4 downto 0):= "00010";
constant bgez_bltz: std_logic_vector (5 downto 0):= "000001";
constant j: std_logic_vector (5 downto 0):= "000010";
constant jal: std_logic_vector (5 downto 0):= "000011";
constant mul: std_logic_vector (5 downto 0):= "011100";

Figure 5: Instruction Opcodes from controller.vhd.

These opcodes are used to determine the cases for all of the control signals. The code in

Figure 6 shows the jump, branch, and break signal assignments:

jump <= '1' when OPCODE = rtype AND FUNCT = "001000" else '0';
jtype <= '1' when OPCODE(5 downto 1) = "00001" else '0';
branch <= '1' when OPCODE(5 downto 1) = beq_bne OR OPCODE = bgez_bltz

 else '0';
ISBJ <= jtype & jump & branch;
BREAKH <= '1' when OPCODE = rtype AND FUNCT = "001101" else '0';
ISJAL <= '1' when OPCODE = jal else '0';

Figure 6: Branch, Jump, and Break Signal Assignments from controller.vhd.

The JUMP signal denotes a jr instruction while the JTYPE signal is for either a j or jal

instruction. ISBJ (is branch or jump) goes to the nextPC module as a 3 bit signal to

determine with input should be used to calculate the next address. BREAKH goes to the

IF stage and to the inter-stage registers in the processor to disable them from going to the

next instruction. ISJAL is used inside the hazard controller to account for jal.

REGWRITEH, MEMWRITEH, MEMTOREG, ALUSRC, and ALUOP all leave the ID

 20

stage and connect to inter-stages registers. The following is what they do after they pass

through the pipeline to where they are used:

• REGWRITEH goes to the register file and determines when to allow register

writes.

• MEMWRITEH connects to the write enable on the data memory.

• MEMTOREG connects to the register write MUX that decides if memory data

should be written to the register file or a calculation should be and also acts as the

memory read enable.

• ALUSRC goes to the B MUX that determines to pass either value from forward

MUXM or the output of the extender to the B source of the ALU.

• ALUOP goes to the ALU controller and will be discussed in section 3.1.2.3

Execution Stage.

• EXTCTRL connects to the extend logic to determine if it should zero or sign

extend.

• REGDST is used to determine the register to write back to.

If an unknown opcode passes through the controller, then all of the enables become

inactive so the data does not become corrupted.

 The Next PC module uses the ISBJ signal and determines the next address. For a

branch, the NEXTPC signal gets the current PC + 4 + the immediate value. For a jr, the

NEXTPC signal gets the result from the Forward MUXA (see in section 3.1.2.7, Figure

15). For j or jal, the NEXTPC signal gets concatenation of the top 4 bits of PC + 4 with

26 bits of the immediate value with 2 zero bits. The NEXTPC is then passed out of the

ID stage to the IF stage.

 21

3.1.2.3. Execution Stage

 The execution (EXE) stage carries out the operations of the instructions. The

EXE stage consists of the shifter, comparator, ALU controller, ALU and multiplier. The

EXE stage schematic can be seen in Figure 7.

Figure 7: Schematic of Execution Stage.

 The shifter is used for the sll, srl, and sra instructions. It shifts right or left by the

shift amount (SHAMT) which comes from the instruction bits 10 downto 6 through an

 22

inter-stage register. The shift direction (SHDIR) and extend mode (EXTMODE) are

taken from the ALU controller.

 The comparator is used for the slt, sltu, slti, and sltiu instructions. It compares the

status flag from the ALU (carry out, negative, and overflow) for the correct result and

uses determines the value of a signed or unsigned instruction with a signal from the ALU

controller (SIGNEDCOMP).

 The multiply module is used for the mul instruction. It multiplies the 16 least

significant bits and returns a 32 bit result. The multiply is a Xilinx IP core: multiplier

v9.0 and is also synchronous. Since the multiplier is synchronous, the multiplier result

cannot be retrieved until the next clock cycle unlike the rest of the EXE stage

components. This issue will be discussed in section 3.1.2.6 Hazard Detection.

 The ALU controller controls what operation the ALU performs, which output

reaches the result register, the shift direction and extension mode, and the signed mode

for the comparator. The ALU controller is triggered on the FUNCT or the ALUOP and

uses case statements to set the ALU controls FSEL for the ALU and MSEL for the 32x3

MUX output. The parameters for the ALUOP, FUNCT, and MSEL are given in Figure

8.

 23

--ALUops
constant rtype: std_logic_vector (3 downto 0):= x"0";
constant addiu: std_logic_vector (3 downto 0):= x"1";
constant andi: std_logic_vector (3 downto 0):= x"2";
constant ori: std_logic_vector (3 downto 0):= x"3";
constant xori: std_logic_vector (3 downto 0):= x"4";
constant lui: std_logic_vector (3 downto 0):= x"5";
constant slti: std_logic_vector (3 downto 0):= x"6";
constant sltiu: std_logic_vector (3 downto 0):= x"7";

--Funct
constant addu: std_logic_vector (5 downto 0):= "100001";
constant subu: std_logic_vector (5 downto 0):= "100011";
constant and1: std_logic_vector (5 downto 0):= "100100";
constant or1: std_logic_vector (5 downto 0):= "100101";
constant xor1: std_logic_vector (5 downto 0):= "100110";
constant sll1: std_logic_vector (5 downto 0):= "000000";
constant srl1: std_logic_vector (5 downto 0):= "000010";
constant sra1: std_logic_vector (5 downto 0):= "000011";
constant slt: std_logic_vector (5 downto 0):= "101010";
constant sltu: std_logic_vector (5 downto 0):= "101011";

--MSEL
constant shifter: std_logic_vector (1 downto 0):= "00";
constant compare: std_logic_vector (1 downto 0):= "01";
constant alu: std_logic_vector (1 downto 0):= "10";

Figure 8: ALU Control Parameters from ALUcontroller.vhd.

ALUOP determines what FSEL and MSEL should be set to. When dealing with an R-

type instruction, the FUNCT distinguishes what the select signals should be. The code in

Figure 9 shows how this is implemented.

 24

case ALUop is
 when rtype => case FUNCT is
 when addu => FSEL <= "000"; MSEL <= alu;
 when subu => FSEL <= "100"; MSEL <= alu;
 when and1 => FSEL <= "001"; MSEL <= alu;
 when or1 => FSEL <= "010"; MSEL <= alu;
 when xor1 => FSEL <= "011"; MSEL <= alu;
 when sll1 => FSEL <= "000"; MSEL <= shifter;
 when srl1 => FSEL <= "000"; MSEL <= shifter;
 when sra1 => FSEL <= "000"; MSEL <= shifter;
 when slt => FSEL <= "100"; MSEL <= compare;
 when sltu => FSEL <= "100"; MSEL <= compare;
 when others => FSEL <= "000"; MSEL <= alu;
 end case;
 when andi => FSEL <= "001"; MSEL <= alu;
 when ori => FSEL <= "010"; MSEL <= alu;
 when xori => FSEL <= "011"; MSEL <= alu;
 when lui => FSEL <= "101"; MSEL <= alu;
 when slti => FSEL <= "100"; MSEL <= compare;
 when sltiu => FSEL <= "100"; MSEL <= compare;
 when others => FSEL <= "000"; MSEL <= alu;
end case;

Figure 9: EXE Select Lines from ALUcontroller.vhd.

The FSEL signal determined which operation within the ALU would be preformed. The

ALU operations are defined in Table 2.

FSEL Operation
"000" add
"001" and
"010" or
"011" xor
"100" sub
"101" lui

Table 2: ALU Operations.

The MSEL chooses between the inputs of the shifter output, comparison output, and the

ALU output using the computation MUX. The ALU controller also assigns signals for

execution as given in Figure 10.

SHDIR <= '1' when ALUop = rtype AND FUNCT = sll1 else '0';
SHEXTMODE <= '1' when ALUop = rtype AND FUNCT = sra1 else '0';
SIGNEDCOMP <= '1' when ALUop = slti OR FUNCT = slt else '0';

Figure 10: EXE Control Signals from ALUcontroller.vhd.

 25

• SHDIR goes to the shifter and determines which direction to shift.

• SHEXTMODE also goes to the shifter and determines between zero and sign

extend a shift.

• SIGNEDCOMP goes to the comparator to choose to compare signed or unsigned.

 The ALU module computes the arithmetic and logical results using the FSEL

from the ALU controller to define which operation to perform on the data A and B that

comes from the inter-stage registers.

3.1.2.4. Memory Stage

 The Memory (MEM) stage accesses the data memory when either an sw or lw

instruction is issued. The data memory is also a Xilinx IP core: Single Port Block

Memory v6.2. The memory is set up to read and write and can be initialized with a .coe

file that holds data. The MEM stage executes at the same time in the pipeline as the

multiplier in the EXE stage. This is possible as the address for the data memory is

calculated in the ALU and the result is passed to the memory before being registered in

the inter-stage register. Since the memory is synchronous, the data for a load word is

ready the next clock cycle.

 26

3.1.2.5. Write Back Stage

 The Write Back (WB) stage simply takes either the result value, multiply result,

or data from memory and sends it back to the register file to write the appropriate

register.

3.1.2.6. Hazard Detection

 The hazard detection module has two purposes. The first is to forward data from

instructions currently in the pipeline that have not written back to the register file to an

instruction in the ID stage that needs the value. The second is to stall the pipeline when

forwarding the correct value is not available for that clock cycle. The hazard controller

prevents read after write hazards with the data forwarding. The write after write and

write after read hazards cannot happen in this implementation since all instructions are

executed in order according to the program being run.

 The data forwarding problem occurs when an instruction writes to a register and

then next instruction uses that register as one of its operands. Take the instruction

sequence given in Figure 11.

addu $1, $2, $3 ------ $1 = $2 + $3
or $4, $1, $3 ------ $4 = $1 | $3

subu $5, $1, $2 ------- $5 = $1 – $2
and $6, $1, $1 ------ $6 = $1 & $1

Figure 11: Forwarding Hazard Sequence.

 27

When the addu enters the EXE stage, the or enters the ID stage. The or instruction needs

the updated value for register $1, so the value must be forwarded from the EXE stage.

The same method applies to the subu instruction. When the subu enters the ID stage the

addu enters the WB stage. The value of register $1 is still not in the register file so the

value must be forwarded from the WB stage. By the time the and instruction enters the

ID stage the $1 value is written into the register file so it can retrieve the value from

there. This process can be seen in Figure 12.

Figure 12: Forwarding Illustration in the Pipeline

 The jal instruction also uses the forwarding multiplexers since it needs to store the

current PC value plus two spaces (PCPLUS8). The control logic for one of the

forwarding multiplexers select bits can be seen in Figure 13.

IF ID EXE WB

addu

addu

addu

addu

or

or

or

or

subu

subu

subu

and

and

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

 28

process(REGWRITEEXE, WBEXE, RSEL1ID, REGWRITEMEM, WBMEM, ISJAL)
begin
 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID
 then
 FORWARDA <= computationout;
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID
 then
 FORWARDA <= memoryout;
 elsif ISJAL = '1' then
 FORWARDA <= jal;
 else --takes care of RESET case
 FORWARDA <= regfileout;
 end if;
end process;

Figure 13: Forwarding MUXA Select Line of Value A from hazardcontrol.vhd.

FORWARDA connects to the select bit of the forward MUXA. The arguments make

sure that the zero register is never forwarded but all other registers are if the register

select identification matches with the write back register select identification in either the

EXE or WB stage. The default case uses the register file value when nothing needs to be

forwarded.

 The second issue the hazard detection monitors is the need to stall the pipeline.

This occurs when a load word instruction is followed by an instruction that uses the

register that the load word is loading data from memory into or an instruction that uses

the register that stores the result of a multiply. The stall logic can be seen in Figure 14.

STALL <= '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND
 WBEXE /= 0 AND WBEXE = RSEL2ID else
 '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND
 WBEXE /= 0 AND WBEXE = RSEL1ID else
 '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL1ID else
 '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL2ID else
 '0';

Figure 14: Stall Logic from hazardcontrol.vhd.

 29

A load word instruction can be seen in the pipeline when the REGWRITEEXE and

MEMTOREGEXE signals are high. So if an instruction uses the same register that the

load word is loading to or a multiply result is writing to (WBEXE = RESEL*ID), the

STALL signal will go high.

 The forwarding MUX would take care of this for the load word, however when

the instruction that needs the loaded register is in the ID stage, the load word is in the

EXE which only contains the address of where the data is located. Since the multiplier is

synchronous, its result is not available until the WB stage like the load word instruction.

The hazard control sends out a stall signal to stall the IF and ID stages while letting the

rest of the stages continue. The next cycle the load word is in the WB stage and the value

is at the memory output which can be forwarded back to the ID stage for the instruction

that needs it.

3.1.2.7. Inter-stage Connections

 The inter-stage connections connect all of the stages and hazard control together

to form the processor. The processor schematic can be seen in Figure 15.

 30

Figure 15: Schematic of Processor.

 Between the IF and ID stages there are three inter-stage registers; one for

TAKENEXTPC which enables the instruction address MUX in the IF to take NEXTPC

instead of PC + 4, one for NEXTPC which holds the address for branches or jumps, and

 31

the other for BREAKH which is inverted to enable the release of the break instruction.

These registers are needed to create the delay slot for branches and jumps.

 Along the ID and EXE stage division are the two forwarding MUX, inter-stage

registers A and B for the EXE stage, inter-stage register M for the MEM stage, and inter-

stage registers to hold control signals. The inter-stage registers for the control signals

contain ALUOP, WB, WEH, MEMWRITE, and MEMTOREG. The outputs of the

control signals go to as follows:

• ALUOP goes into EXE stage to the ALU controller with the most significant bit

going to the TAKEMULRESULT register in between the EXE and WB stages.

• MEMWRITE and MEMTOREG go directly to the data memory.

• WB, WEH, and MEMTOREG go to the inter-stage control registers between

EXE and WB stages.

• MEMTOREG goes to both the data memory and the next inter-stage control

registers because it is the select of the register write multiplexer, along with

TAKEMULRESULT, that determines whether to take the memory data, the

calculated data, or the multiplier data and also is the memory read enable.

Since the memory is synchronous the enable must be there before the signal gets to

the register write multiplexer. The select signal comes from the hazard control for

both forwarding MUXA and forwarding MUXM. The assignments for forward

MUXA can be seen in Figure 16.

forwardmuxA: component mux32x4 port map(SEL => forwardA,
 A => rd1,
 B => pcplus8,
 C => resultEXE,
 D => regdin,
 DOUT => regadin);

Figure 16: Forwarding MUX of Value A from processor.vhd.

 32

The first input comes from the register file, rd1 for forward MUXA; rd2 for forward

MUXM. The second input is for jal, PCplus8 for forward MUXA to store the address of

the instruction after the delay slot; x”00000000” for forward MUXM as this is not needed

for jal. The third input comes from the result of the comparator in the EXE stage and is

the same for both forward MUXA and forward MUXM. The fourth input comes from

after the register write multiplexer in the WB stage and is the same for both forwarding

multiplexers. These four inputs account for all of the forwarding needs of the design and

the outputs go to the inputs of the inter-stage registers for A and M. The input for inter-

stage register B comes from B MUX (located in the ID stage) of the forward MUXM

result and the immediate value from the extend logic within the ID stage. A and B

outputs go to the comparator input in EXE stage and M output goes to the data in (DIN)

input of the data memory.

 Between the EXE and WB stage there are the inter-stage control registers for WB,

WEH, TAKEMULRESULT, and MEMTOREG as well as an inter-stage result register.

The inputs of the control registers come from the outputs of the previous inter-stage

register and the outputs go to the register write multiplexer in the WB stage and to the

register file for the register write back and write enable (WB and WEH). The input of the

result register comes from the output of the computation module and the output connects

to the register write multiplexer in the WB stage as the first input.

 33

3.2. SIMD Architecture

 The SIMD architecture builds off of the architecture in section 3.1. To achieve

multiple data, multiple basic units needed to be added and connected within the

architecture and the control logic also needed to be updated to account for the different

datapaths. A block diagram of the new architecture is shown in Figure 17.

Figure 17: SISD and SIMD Block Diagram of Processor.

PC Register

Instruction
Memory

Data
Memory

SIMD Data
Memory 1

SIMD Data
Memory N

SIMD Data
Memory 2

Controller

Branch Logic

Next PC Logic

Register File

SIMD
Register

File 1

Registers:
TAKENEXTPC

NEXTPC
BREAKH

IF IF/ID ID ID/EXE EXE MEM EXE/WB
Registers:

A
B
M

ALUOP
SHAMT
FUNCT

WB
REGWRITEOUT

MEMTOREG
MEMWRITEH

Registers:
VA
VB
VM

VREGWRITEOUT
VMEMTOREG

VMEMWRITEH

Registers:
VA
VB
VM

VREGWRITEOUT
VMEMTOREG

VMEMWRITEH

Registers:
VA
VB
VM

VREGWRITEOUT
VMEMTOREG

VMEMWRITEH

SIMD
Register

File 2

ALU
Controller

Shifter

Comparator

ALU

Multiplier

SIMD ALU 1

SIMD
Multiplier 1

SIMD ALU 2

SIMD
Multiplier 2

SIMD ALU N

SIMD
Multiplier N

Forward
MUXA

Forward
MUXM

SIMD
Forward
MUXA 1

SIMD
Forward

MUXM 1

SIMD
Forward
MUXA 2

SIMD
Forward

MUXM 2

SIMD
Forward

MUXA N

SIMD
Forward

MUXM N

SIMD
Register
File N

Registers:
WB

TAKEMUL
REGWRITEOUT

MEMTOREG

Register
Write MUX

Registers:
VREGWRITEOUT

VMEMTOREG

SIMD Register
Write MUX 1

Registers:
VREGWRITEOUT

VMEMTOREG

SIMD Register
Write MUX 2

Registers:
VREGWRITEOUT

VMEMTOREG

SIMD Register
Write MUX N

S
I
S
D

S
I

M
D

Instruction
Address
MUX

Register
Destination MUX

 34

3.2.1. SIMD Instruction Set

 There are 11 instructions implemented for SIMD use in addition to the 28 MIPS

instructions implemented previously. All instructions, whether SISD or SIMD, are stored

in the one instruction memory (see Figure 17). Each instruction is 32-bits in length and is

identified by the six most significant bits. The 11 instructions used are shown in Figure

18.

vaddu – unsigned addition of n-pairs of two registers,
vaddiu – unsigned addition of n-pairs of register and immediate value,
vand – logical and of n-pairs of two registers,
vandi – logical and of n-pairs of register and immediate value,
vor – logical or of n-pairs of two registers,
vori – logical or of n-pairs of register and immediate value,
vxor – logical xor of n-pairs of two registers,
vxori – logical xor of n-pairs of register and immediate value,
vmul – signed multiplication of n-pairs of two registers,
vlw – n load words,
vsw – n store words.

Figure 18: SIMD Instruction Set

Each of the SIMD instructions are coded like the SISD instructions except that they differ

by one bit except for vandi. The adds, and, ors, xnors, load and store words have the 31st

bit high as seen in Figure 19 for the addiu versus the vaddiu.

 35

Figure 19: Addiu and Vaddiu Instruction Fields.

The vaddiu instruction operates as: vrt vrs + immediate. The multiply has the 32nd bit

high as seen in Figure 20 for the mul versus the vmul.

Figure 20: Mul and Vmul Instruction Fields.

The vmul instruction operates as: vrd vrs * vrt. Changing one bit allows the use of

opcodes that are not in use for the 28 SISD instructions. The vandi instruction would

have followed this method but the opcode would be the same as the mul SISD

instruction. The opcode for the vandi instruction changes 3 bits from the andi instruction

as seen in Figure 21.

 36

Figure 21: Andi and Vandi Instruction Fields.

The vandi instruction operates as: vrt vrs & immediate.

 These SIMD instruction could be utilized to perform binary operations to

implement morphological operations and could use the multiply and add operations for a

MAC to perform convolution and filtering operations in image processing applications.

3.2.2. SIMD Pipeline

The SIMD pipeline only requires modifications in the ID, EXE, MEM, and WB

stages as well as the hazard control and inter-stage connections as seen in Figure 17. The

modules contain parameters so that the number of units can be changed depending on the

needs of the processor. The default values instantiates four units (N = 4). A unit

consists of a register file, ALU, multiplier, memory, and inter-stage registers and

forwarding logic.

 The SIMD instructions do not change the instruction flow of the program so all

the modifications needed in the ID stage were to the controller and to add additional

 37

register files. The controller needed three additional control signals to handle the register

write (VREGWRITEH) and the memory reads (VMEMTOREG) and writes

(VMEMWRITEH) for the SIMD instructions so the SISD datapath would not conflict

with the SIMD datapath. Those three signals control the N SIMD units as each unit will

perform the same function. The rest of the control signals (excluding the branch and

jump logic) were modified to activate for the SIMD instructions as well as the SISD

instructions. A segment of the modifications of the controller can be seen in Figure 22.

--SIMD assignments
VREGWRITEH <= '1' when OPCODE = vlw OR OPCODE = vrtype OR OPCODE = vmul
 else
 '1' when OPCODE = vandi OR OPCODE = vori OR
 OPCODE = vxori else
 '0';

VMEMWRITEH <= '1' when OPCODE = vsw else '0';

VMEMTOREG <= '1' when OPCODE = vlw OR OPCODE = vsw else '0';

ALUSRC <= '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000"
 else
 '1' when OPCODE = lw OR OPCODE = sw else
 '1' when OPCODE = vlw OR OPCODE = vsw else --SIMD
 '1' when OPCODE = vandi OR OPCODE = vori OR OPCODE = vxori
 else --SIMD
 '0';

Figure 22: SIMD Control Signal Modifications from controller.vhd.

The architecture was designed with distributed memory so that every memory

unit received the same address. This simplifies the address logic so that the processor

does not have to use a complex addressing mode. The memory can be pictured as row

and columns method of access (see Figure 17).

 38

The number of SIMD units can be increased or decreased by changing the

parameters in the generic port list and some modifications with signals associated with

them. Figure 23 shows the generic ports of the processor.

entity processor is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 RELEASE : in STD_LOGIC;
 CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0);
 CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0);
 STAT : out STD_LOGIC_VECTOR (7 downto 0);

 STALLED : out STD_LOGIC);

Figure 23: SIMD Processor Entity from processor.vhd.

The size parameter is the number of SIMD units. The datasize parameter is the number

of SIMD units * 32 – 1. Size is used for generating the correct number of units with

generate statements. Datasize is used to prevent changing the port lists of all the stages;

all of the different 32-bit values are combined into one port. Figure 24 shows how the

SIMD Forward MUXA is instantiated.

type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0);

vrd1_array(4) <= vrd1(31 downto 0);
vrd1_array(3) <= vrd1(63 downto 32);
vrd1_array(2) <= vrd1(95 downto 64);
vrd1_array(1) <= vrd1(127 downto 96);

genmuxandreg: for I in 1 to size generate
SIMDmuxA: component mux32x3 port map(SEL => vforwardA,
 A => vrd1_array(I),
 B => vresultEXE_array(I),
 C => vregdin_array(I),
 DOUT => vregadin(I));
end generate;

va <= vregAdout(1) & vregAdout(2) & vregAdout(3) & vregAdout(4);

Figure 24: SIMD Forward MUXA from processor.vhd.

 39

The SIMD data signals use an array type to connect to the SIMD ALU, MUX, and

registers. The total length of the data_array type corresponds to the parameter datasize.

Since the data ports are of type STD_LOGIG_VECTOR(datasize downto 0), the data

needs to be converted into the data_array type as is done for vrd1_array in Figure 24.

These lines would need to be modified along with the parameters to instantiate different

SIMD unit amounts.

3.3. XUP Board

 The board being used to verify the processor was a Xilinx University Program

(XUP) board that contains Xilinx Virtex II Pro XC2VP30 FPGA, package FF896.

The processor was instantiated into an FPGA module to connect internal signals of the

processor to the IO of the board (push buttons, dip switch, and LEDs). The board used

was modified by adding additional connections for the LEDs seen in the bottom right

corner of Figure 25.

 40

Figure 25: XUP Board

 The FPGA module supports two modes of operation: the onboard 31.25 MHz

clock or a step clock triggered by pressing a push button. The clock mode is set by dip

switch 1. An onboard 100 MHz clock is also available for use by modifying the user

constraint file (UCF) which can be seen in Appendix D: FPGA User Constraint File.

3.4. Modules Specific to Hardware

 The processor architecture can be used in different FPGAs or boards but might

need some modification depending on the technology used. The memories and

multipliers are Xilinx IP cores which can be used for other Xilinx FPGA that support

them but would need to be changed for FPGAs not compatible. Changing the use of

boards requires the user to use the UCF associated with the new board.

 41

4. Results

 The processor was completed in two phases; functionality of the SISD

architecture and functionality of the SIMD architecture added on. Each phase was tested

using the program instruction tests that can be seen in Appendix C: Program Codes. The

programs were verified in simulation using ModelSim and in the XUP board using Xilinx

ISE 8.2i Project Navigator.

4.1. Test Programs

 The suite of test programs tested the correct functionality of the instructions,

forwarding of data, and stalling the pipeline. The basic test tested the functionality of the

instructions without any data hazards. The hazard test tested all three for the SISD. The

SIMD test tested the SIMD instructions for all three categories.

 The programs were converted from word description to hexadecimal values using

MIPSASM v1.3 from UC Berkeley [13] for the SISD tests and hand coded for the SIMD

tests. The test programs were configured with the instruction memory IP core using a

.coe file with the hexadecimal values inside. The .coe must have the header as seen in

Figure 26, followed by the hexadecimal data.

memory_initialization_radix=16;
memory_initialization_vector=

Figure 26: Header for .coe Initialized Memory File.

 42

4.2. Simulation

 All of the programs were verified in ModelSim to run correctly. Two example of

test code are shown in Figure 27 and Figure 29.

 addiu $2, $0, 5 #testing addiu
 addiu $3, $0, 5 #testing addiu
 addiu $4, $0, -5
 addiu $23, $0, 0 #used to keep track of failed tests

 beq $2, $2, L1 #testing beq
 ori $0, $0, 0
 addiu $2, $2, -5
L1:
 bne $3, $0, L2 #testing bne

Figure 27: Basic Test Code Segment.

 Figure 28 shows the simulation waveform of the code in Figure 27.

Figure 28: Simulation of Basic Test.

 43

 This waveform shows the full execution of the addiu instructions and the beq. At

time 180 ns, the RESET goes low and the first addiu is in the IF stage. The result can be

seen written in the register $2 at time 240 ns. The other addiu instructions can be

followed the same way. The beq (inst = 0x10420002) instruction enters the pipeline at

260 ns. The next cycle the beq is in the ID stage and can be seen to branch by looking at

TAKENEXTPC in that cycle and the PC in the next cycle. The TAKENEXTPC goes

high starting at 280 ns which makes the PC take the NEXTPC value of 0x0000001C

instead of the PCPLUS4 value of 0x00000018 in the next cycle (300 ns).

vaddu $20, $1, $2 #testing vaddu
vaddu $21, $20, $3
vaddu $22, $21, $20
vsw $22, 0($0) #testing vsw
vlw $25, 0($0) #testing vlw
vaddiu $23, $25, 0x1111 #testing vlw hazard
vaddiu $24, $0, 0x1000

Figure 29: SIMD Test Code Segment.

 Figure 30 shows the simulation waveform of the code in Figure 29.

Figure 30: Simulation of SIMD Test

 44

 This waveform shows the full execution of the vaddu, vlw, and vsw instructions.

The first vaddu is in the IF stage in the first full clock period. The result can be seen

written in the SIMD 1 and SIMD 2 register $2 three cycles later. The other vaddu

instructions can be followed the same way. In between the vlw (inst = 0xCC190000) and

the vaddiu (inst = 0x67371111) the stall signal goes high to verify the vlw hazard

detection works.

4.3. Board Testing

 The board testing required internal signal to be pulled up to the FPGA_TOP

module and connected to the LEDs. The internal signals pulled up to board level are the

current PC, the instruction, the break status, and registers $23 of the first and second

SIMD unit. Xilinx Chipscope could have been used to check the internal signals

however Chipscope would be included in the synthesis and take up additional slices on

the FPGA.

 The synthesis verification used two clock modes to check the programs in the

processor: the board clock mode and clock step mode. In board clock mode the processor

clock receives the board clock of 31.25 MHz. The programs had to use the break

instruction to see the values of the processor due to the speed of the clock. Without the

break instructions the LEDs would look stable at a level of brightness related to how

many times a LED was activated. In clock step mode the processor clock receives the

clock signal from the bottom push button. This mode allows the tester to cycle through

the entire program and trace the instruction flow. If resetting or releasing a break in the

 45

clock step mode, the reset or release button must be held down while the clock button is

pushed otherwise the release will not take hold and the reset will work but it will bypass

the first instruction of the program.

 The default display setting displays the PC and instruction. The break status and

SIMD registers can be seen by changing the positions of the dip switches.

Figure 31: Synthesis Demonstration of Working Processor.

 Figure 31 illustrates the display of the PC and instruction value. The bottom row

of LEDs shows the 16 LSB of the instruction, the middle row shows the 16 MSB of the

instruction, and the top row shows the PC. The four left most LEDs are not used on all

rows. The display is read as: instruction 0x154200bf (bne) at address 0x00000058. This

corresponds to the 23rd instruction in the hazard test which can be seen in Appendix C:

Program Codes.

 The SISD programs were verified by looking at the current PC, instruction, and

break status while the SIMD programs were verified by the break status and registers.

 46

While not all internal signals were verified as working properly these three signals are

efficient for the SISD as the branches control most of the instruction flow. If a branch

instruction produces a route counter to the actual route, then the processor is broken. The

SIMD requires registers pulled up since there are no branch or jump instruction that run

through the SIMD datapath, so just looking at the current PC and instruction would not

validate the SIMD.

4.4. Maximum Frequency Minimum Clock Period

 Utilizing the Xilinx timing analysis tools, the timing report indicates that the

delay of the critical path of the processor with SISD implemented only is 20.933 ns or a

maximum frequency of about 48 MHz. The delay of the critical path of the processor

with SISD implemented with SIMD is 21.222 ns or a maximum frequency of about 47

MHz.

 The critical path of both phases is excited by a branch instruction. The critical

path is as follows: The instruction comes out of the instruction memory and reads the

values of the registers from the register file in the ID stage. The register file values

connect to the forwarding multiplexer. The branch address must be computed by taking

the correct value from the hazard control multiplexer, then shifted by four, then sent to

the branch logic module to determine if the branch should be taken, and finally the

branch logic signals are registered at the next inter-stage register.

 47

 In theory if both critical paths are the same, the minimum periods should be the

same as well, however, the delay is measured by the logical delay with the routing delay.

The routing delay was measured to be about 70% of the total delay in both architectures.

 All
Instructions

Without
Multiply

Without Multiply,
Branches, Jumps

One Unconditional
Jump (j)

Number of Slices 2033 1879 1641 1683

% of Slices Used 14% 13% 11% 12%

Minimum Period 20.933 ns 22.116 ns 8.437 ns 8.940 ns
Table 3: Basic Pipeline Results.

 Eliminating instructions could reduce the minimum period. Table 3 shows that by

removing the datapath for the branch and jump instructions the processor could operate at

the 100 MHz board frequency. If the j instruction was left in the architecture, the

processor could run double the speed as well. This would allow for a program to stay in

an infinite loop which is usable for some image processing applications.

The results from just the SISD logic applies when the SIMD is included. The maximum

frequency could double without having the SISD branch instructions.

 This is shown to be an improvement or on the same level as previously designed

architectures, VIP and MATRIX. The minimum period with all the SISD and SIMD

instruction is 3 times faster than the minimum period of the VIP processor due to the

All

Instructions
Without

vmul
Without Branches

and Jumps
One Unconditional

Jump (j)
Number of Slices 7879 6994 7568 7598
% of Slices Used 57% 51% 55% 55%
Minimum Period 21.222 ns 19.903 ns 9.432 ns 7.784 ns

Table 4: SIMD Pipeline Results.

 48

pipeline design (MIPS SIMD) versus one instruction operating at a time (VIP) and the

processor without the branches is a few nanoseconds faster than the MATRIX. Beyond

the MATRIX capabilities, the new SIMD processor can execute (in the EXE stage) a

multiplication instruction in a single cycle. Furthermore, the new SIMD processor

operates on 32-bits as opposed to the 8-bit operands for the MATRIX and it is a fully

pipelined, single-cycle throughput as opposed to the multi-cycle architecture of the VIP.

4.5. FPGA Area

 The Xilinx Virtex II Pro FPGA on the XUP board contains 13,696 slices. The

SIMD values in Table 5 represent the default value of four units.

 SISD SISD and SIMD

Number of Slices 2033 7879
% of Slices Used 14% 57%
Minimum Period 20.933 ns 21.222 ns

Table 5: SISD Versus SIMD Pipeline.

 The maximum number of units that can be instantiated in the FPGA on the XUP

board is eight units which would use the entire FPGA slice area. This allows the

processor to complete eight sets of 32-bit data per cycle. Compared to the VIP processor,

this SIMD processor is able to fit more SIMD units in the same space than the VIP. The

VIP was only able to fit seven units in the Altera FPGA used which had about 2,000

more slices than the Xilinx FPGA Virtex II Pro.

 49

5. Conclusions and Future Work

5.1. Conclusions

 The goals of this thesis were met with the construction of a new SIMD-pipelined

32-bit MIPS-based processor. The SIMD processor implemented 39 instructions in a five

stage pipeline that used the Harvard memory approach. The instruction set was chosen to

provide the core functionality of the processor and completeness. The SIMD architecture

was designed with distributed memory so that every memory unit received the same

address, allowing the memory to be pictured as row and columns method of access. To

achieve multiple data, multiple basic units were added and connected within the

architecture and the control logic was updated to account for the different datapaths.

 The design was shown that it could operate at the maximum speed of 100 MHz

(single-cycle throughput) and utilize all the area of the FPGA. The processor was

verified in both simulation and synthesis. This is shown to be an improvement or on the

same level as previously designed architectures. This processor performed better with a

pipeline design than the VIP which executed one instruction at a time and this SIMD

processor is able to fit more SIMD units in the same space than the VIP. Another

advantage of this 32-bit SIMD processor over the 8-bit MATRIX is that it can perform a

multiplication instruction as well as the arithmetic and logical instruction that the

MATRIX can at the same frequency.

 50

5.2. Future Work

 With the foundation of the SIMD processor complete, modifications can be made

to research image processing applications. The SIMD processor is a good choice to use

binary operations to implement morphological operations and could use the multiply and

add operations for a MAC to perform convolution and filtering operations. These

applications could lead further research into extending this architecture into video

processing, where each SIMD unit could operate on a row of image data.

 In another interesting area of research, the SIMD processor could be developed

into a real-time reconfigurable system. Having a real-time reconfigurable SIMD system

would be powerful as the area of the FPGA would be configured to run an application

efficiently and then switch configurations to run the next application with the best

efficiency specific to the application.

 As mentioned in the result section, the speed of the processor could possibly be

increased with efficient routing if the user wanted to maintain the full functionality as

originally designed. Further research is needed to confirm this idea that the processor

could be improved by manually setting the routing paths instead of allowing the Xilinx

synthesis to automatically route everything.

 A new means of transferring data into memory from I/O would be beneficial after

the VHDL has been synthesized into a bit file. This would allow for easy data switching

instead of regenerating the memory IP with the new file every time a new program or

data set is needed.

 51

 In addition to transferring data external to the processor, internal transfers of data

between SIMD units could be beneficial for programs. These data transfers could move

data in a nearest neighbor network and could be implemented by adding a move

instruction to the instruction set.

 52

Appendices

Appendix A: Instruction Reference .. 53

Appendix B: VHDL Files ... 64

Appendix C: Program Codes ... 107

Appendix D: FPGA User Constraint File ... 130

 53

Appendix A: Instruction Reference

All Instruction descriptions are from [14] MIPS Instruction Set Reference.

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

Appendix B: VHDL Files

FPGA_TOP.vhd:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FPGA_TOP is
 Port (SYS_CLK : in STD_LOGIC;
 RESET_low : in STD_LOGIC;
 SINGLE_CLK_low : in STD_LOGIC;
 RELEASE_low : in STD_LOGIC;
 DIPSWITCH : in STD_LOGIC_VECTOR (3 downto 0);
 PC_DISPLAY : out STD_LOGIC_VECTOR (15 downto 0);
 INST_STAT_DISPLAY : out STD_LOGIC_VECTOR (31 downto 0);
 STALL : out STD_LOGIC);
end FPGA_TOP;

architecture Behavioral of FPGA_TOP is

component processor is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 RELEASE : in STD_LOGIC;
 CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0);
 CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0);
 STAT : out STD_LOGIC_VECTOR (7 downto 0);
 STALLED : out STD_LOGIC);
end component processor;

component edgedetect is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 DIN : in STD_LOGIC;
 DOUTSTEPCLK : out STD_LOGIC;
 DOUTBOARDCLK : out STD_LOGIC);
end component edgedetect;

signal step_clk, processor_clk : std_logic;
signal stalled : std_logic;
signal stat, statout : std_logic_vector(7 downto 0);
signal pc, inst : std_logic_vector(31 downto 0);
signal released releasestep, releaseboard : std_logic;
begin

clkparse: component edgedetect port map(CLK => SYS_CLK,
 RESET => '0', --NOT RESET_low,
 DIN => NOT SINGLE_CLK_low,
 DOUTSTEPCLK => step_clk);

processor_clk <= step_clk when DIPSWITCH(0) = '0' else SYS_CLK;

 65

releaseparse: component edgedetect port map(CLK => SYS_CLK,
 RESET => NOT RESET_low,
 DIN => NOT RELEASE_low,
 DOUTSTEPCLK => releasestep,
 DOUTBOARDCLK => releaseboard);

released <= releasestep when DIPSWITCH(0) = '0' else releaseboard;

proc: component processor port map(CLK => processor_clk,
 RESET => NOT RESET_low,
 RELEASE => released,
 CURRENT_PC => pc,
 CURRENT_INST => inst,
 STAT => stat,
 STALLED => stalled,

 BOARDREG23_1 => reg23_1,
 BOARDREG23_2 => reg23_2);

STALL <= NOT stalled;
statout <= NOT stat;
PC_DISPLAY <= NOT pc;
INST_STAT_DISPLAY <= x"FFFFFF" & statout when DIPSWITCH(3 downto 2) = "00" else
 NOT reg23_1 when DIPSWITCH(3 downto 2) = "01" else
 NOT reg23_2 when DIPSWITCH(3 downto 2) = "10" else
 NOT inst;

end Behavioral;

Processor.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity processor is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 RELEASE : in STD_LOGIC;
 CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0);
 CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0);
 STAT : out STD_LOGIC_VECTOR (7 downto 0);

STALLED : out STD_LOGIC;
BOARDREG23_1 : out STD_LOGIC_VECTOR (31 downto 0);

 BOARDREG23_2 : out STD_LOGIC_VECTOR (31 downto 0));
end processor;

architecture Behavioral of processor is

component FETCHstage is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 TAKENEXTPC : in STD_LOGIC;
 BREAKH : in STD_LOGIC;

 66

 STALL : in STD_LOGIC;
 NEXTPC : in STD_LOGIC_VECTOR (31 downto 0);
 INST : out STD_LOGIC_VECTOR (31 downto 0);
 CURRENTPC : out STD_LOGIC_VECTOR (31 downto 0);
 PCPLUS4 : out STD_LOGIC_VECTOR (31 downto 0));
end component FETCHstage;

component IDstage is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 REGWRITEIN : in STD_LOGIC;
 RELEASE : in STD_LOGIC;
 REGSELIN : in STD_LOGIC_VECTOR (4 downto 0);
 PCPLUS4 : in STD_LOGIC_VECTOR (31 downto 0);
 INST : in STD_LOGIC_VECTOR (31 downto 0);
 REGDIN : in STD_LOGIC_VECTOR (31 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 ISJAL : out STD_LOGIC;
 TAKENEXTPC : out STD_LOGIC;
 BREAKH : out STD_LOGIC;
 REGSELOUT : out STD_LOGIC_VECTOR (4 downto 0);
 PCPLUS8 : out STD_LOGIC_VECTOR (31 downto 0);
 RD1 : out STD_LOGIC_VECTOR (31 downto 0);
 RD2 : out STD_LOGIC_VECTOR (31 downto 0);
 NEXTPC1 : out STD_LOGIC_VECTOR (31 downto 0);
 REGB : out STD_LOGIC_VECTOR (31 downto 0);
 REGWRITEOUT : out STD_LOGIC;
 MEMTOREG : out STD_LOGIC;
 MEMWRITEH : out STD_LOGIC;
 ALUOP : out STD_LOGIC_VECTOR (4 downto 0);
 --SIMD Ports
 VREGWRITEIN : in STD_LOGIC;
 VREGDIN : in STD_LOGIC_VECTOR (datasize downto 0);
 VRD1 : out STD_LOGIC_VECTOR (datasize downto 0);
 VRD2 : out STD_LOGIC_VECTOR (datasize downto 0);
 VREGWRITEOUT : out STD_LOGIC;
 VMEMTOREG : out STD_LOGIC;
 VMEMWRITEH : out STD_LOGIC;
 EXTMODE : out STD_LOGIC;
 IMMVALUE : out STD_LOGIC;
 BOARDREG23_1 : out STD_LOGIC_VECTOR (31 downto 0);
 BOARDREG23_2 : out STD_LOGIC_VECTOR (31 downto 0));
end component IDstage;

component reg32 is
 Port (CLK : in STD_LOGIC;
 ENABLEH : in STD_LOGIC;
 RESET : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component reg32;

component mux32x4 is

 67

 Port (SEL : in STD_LOGIC_VECTOR (2 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : in STD_LOGIC_VECTOR (31 downto 0);
 D : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component mux32x4;

component mux32x3 is
 Port (SEL : in STD_LOGIC_VECTOR (1 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component mux32x3;

component hazardcontrol is
 Port (MEMTOREGEXE : in STD_LOGIC;
 REGWRITEEXE : in STD_LOGIC;
 REGWRITEMEM : in STD_LOGIC;
 ISJAL : in STD_LOGIC;
 ISMUL : in STD_LOGIC;
 RSEL1ID : in STD_LOGIC_VECTOR (4 downto 0);
 RSEL2ID : in STD_LOGIC_VECTOR (4 downto 0);
 WBEXE : in STD_LOGIC_VECTOR (4 downto 0);
 WBMEM : in STD_LOGIC_VECTOR (4 downto 0);
 STALL : out STD_LOGIC;
 FORWARDA : out STD_LOGIC_VECTOR (2 downto 0);
 FORWARDM : out STD_LOGIC_VECTOR (2 downto 0);
 --SIMD Ports
 VMEMTOREGEXE : in STD_LOGIC;
 VREGWRITEEXE : in STD_LOGIC;
 VREGWRITEMEM : in STD_LOGIC;
 VFORWARDA : out STD_LOGIC_VECTOR (1 downto 0);
 VFORWARDM : out STD_LOGIC_VECTOR (1 downto 0));
end component hazardcontrol;

component EXEstage is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 ALUop : in STD_LOGIC_VECTOR (4 downto 0);
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 FUNCT : in STD_LOGIC_VECTOR (5 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 MULRESULT : out STD_LOGIC_VECTOR (31 downto 0);
 RESULT : out STD_LOGIC_VECTOR (31 downto 0);
 --SIMD Ports
 VA : in STD_LOGIC_VECTOR (datasize downto 0);
 VB : in STD_LOGIC_VECTOR (datasize downto 0);
 VMULRESULT : out STD_LOGIC_VECTOR (datasize downto 0);
 VRESULT : out STD_LOGIC_VECTOR (datasize downto 0));
end component EXEstage;

component MEMstage is

 68

 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 ADDR : in STD_LOGIC_VECTOR (31 downto 0);
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 MEMTOREG : in STD_LOGIC;
 MEMWRITEH : in STD_LOGIC;
 DOUT : out STD_LOGIC_VECTOR (31 downto 0);
 --SIMD Ports
 VADDR : in STD_LOGIC_VECTOR (31 downto 0);
 VDIN : in STD_LOGIC_VECTOR (datasize downto 0);
 VMEMTOREG : in STD_LOGIC;
 VMEMWRITEH : in STD_LOGIC;
 VDOUT : out STD_LOGIC_VECTOR (datasize downto 0));
end component MEMstage;

component mux32x2 is
 Port (SEL : in STD_LOGIC;
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component mux32x2;

signal takenextpcdelay : std_logic;
signal nextpc : std_logic_vector(31 downto 0);
signal breakh : std_logic;
signal inst : std_logic_vector(31 downto 0);
signal pcplus4 : std_logic_vector(31 downto 0);
signal stall : std_logic;

signal regdin : std_logic_vector(31 downto 0);
signal wbID, wbEXE, wbMEM : std_logic_vector(4 downto 0);
signal memtoregID, memtoregEXE, memtoregMEM : std_logic;
signal aluopID, aluopEXE : std_logic_vector(3 downto 0);
signal wehID, wehEXE, wehMEM : std_logic;
signal regadin, regbdin, regmdin : std_logic_vector(31 downto 0);
signal memwriteID, memwriteMEM : std_logic;
signal shamtEXE : std_logic_vector(4 downto 0);
signal functEXE : std_logic_vector(5 downto 0);
signal pcplus8 : std_logic_vector(31 downto 0);
signal rd1, rd2 : std_logic_vector(31 downto 0);
signal nextpcdelay : std_logic_vector(31 downto 0);
signal takenextpc : std_logic;
signal isjal : std_logic;

signal forwardA, forwardM : std_logic_vector(2 downto 0);
signal resultEXE, resultMEM : std_logic_vector(31 downto 0);
signal regAdout, regBdout, regMdout : std_logic_vector(31 downto 0);

signal memdout : std_logic_vector(31 downto 0);
signal regdintemp : std_logic_vector(31 downto 0);

signal resetorstall, notbreaken : std_logic;

signal breakhtemp :std_logic;

 69

signal takemulresult : std_logic;
signal mulresult : std_logic_vector(31 downto 0);
signal datawritebacksel : std_logic_vector(1 downto 0);

--SIMD signals
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0);
signal vrd1_array, vrd2_array, regdatain_array : data_array;
signal vregadin, vregbdin, vregmdin : data_array;
signal vregAdout, vregBdout, vregMdout : data_array;

signal vrd1, vrd2 : std_logic_vector (datasize downto 0);

signal vforwardA, vforwardM : std_logic_vector(1 downto 0);

signal vwehID, vwehEXE, vwehMEM : std_logic;
signal vmemtoregID, vmemtoregEXE, vmemtoregMEM : std_logic;
signal vmemwriteID, vmemwriteMEM : std_logic;

constant mask0: std_logic_vector(15 downto 0):= x"0000";
constant mask1: std_logic_vector(15 downto 0):= x"FFFF";
signal extimm : std_logic_vector(31 downto 0);
signal extmode, immvalue : std_logic;

signal va, vb, vm, vresult, vmultresult : std_logic_vector (datasize downto 0);
signal vresultEXE_array, vresultMEM_array, vmultresult_array : data_array;

signal vmemdout, vregdin : std_logic_vector (datasize downto 0);
signal vmemdout_array, vregdin_array, vregdintemp_array : data_array;
signal vdatawritebacksel : std_logic_vector(1 downto 0);

begin

STALLED <= stall;
CURRENT_INST <= inst;

process (breakhtemp, inst) is
 begin
 if (inst(31 downto 26) = "000000" AND inst(5 downto 0) = "001101") then
 breakhtemp <= '1';
 else breakhtemp <= '0';
 end if;
 if breakhtemp = '1' then
 STAT(6 downto 0) <= inst(12 downto 6);
 else STAT(6 downto 0) <= "0000000";
 end if;
 STAT(7) <= breakhtemp;
end process;

fetch: component FETCHstage port map(CLK => CLK,
 RESET => RESET,
 TAKENEXTPC => takenextpcdelay,
 BREAKH => breakh,
 STALL => stall,
 NEXTPC => nextpc,

 70

 INST => inst,
 CURRENTPC => CURRENT_PC,
 PCPLUS4 => pcplus4);

id: component IDstage port map(CLK => CLK,
 RESET => RESET,
 RELEASE => RELEASE,
 REGWRITEIN => wehMEM,
 REGSELIN => wbMEM,
 PCPLUS4 => pcplus4,
 INST => inst,
 REGDIN => regdin,
 A => regadin,
 B => regmdin,
 ISJAL => isjal,
 TAKENEXTPC => takenextpc,
 BREAKH => breakh,
 REGSELOUT => wbID,
 PCPLUS8 => pcplus8,
 RD1 => rd1,
 RD2 => rd2,
 NEXTPC1 => nextpcdelay,
 REGB => regbdin,
 REGWRITEOUT => wehID,
 MEMTOREG => memtoregID,
 MEMWRITEH => memwriteID,
 ALUOP => aluopID,
 --SIMD Ports
 VREGWRITEIN => vwehMEM,
 VREGDIN => vregdin,
 VRD1 => vrd1,
 VRD2 => vrd2,
 VREGWRITEOUT => vwehID,
 VMEMTOREG => vmemtoregID,
 VMEMWRITEH => vmemwriteID,
 EXTMODE => extmode,
 IMMVALUE => immvalue);

vrd1_array(4) <= vrd1(31 downto 0);
vrd1_array(3) <= vrd1(63 downto 32);
vrd1_array(2) <= vrd1(95 downto 64);
vrd1_array(1) <= vrd1(127 downto 96);
vrd2_array(4) <= vrd2(31 downto 0);
vrd2_array(3) <= vrd2(63 downto 32);
vrd2_array(2) <= vrd2(95 downto 64);
vrd2_array(1) <= vrd2(127 downto 96);

--moved out B logic from ID stage for SIMD
extimm <= mask1 & inst(15 downto 0) when extmode = '1' and inst(15) = '1' else
 mask0 & inst(15 downto 0);

genregBconnection: for I in 1 to size generate

vregbdin(I) <= extimm when immvalue = '1' else vregmdin(I);

end generate;

 71

resetorstall <= RESET or stall;
notbreaken <= not breakh;

nextpcreg: component reg32 port map(CLK => CLK,
 ENABLEH => notbreaken,
 RESET => resetorstall,
 DIN => nextpcdelay,
 DOUT => nextpc);

process (CLK) is
 begin
 if rising_edge(CLK) then
 if RESET = '1' or stall = '1' then
 takenextpcdelay <= '0';
 elsif breakh = '0' then
 takenextpcdelay <= takenextpc;
 else
 takenextpcdelay <= takenextpcdelay;
 end if;
 end if;
end process;

forwardmuxA: component mux32x4 port map(SEL => forwardA,
 A => rd1,
 B => pcplus8,
 C => resultEXE,
 D => regdin,
 DOUT => regadin);

Areg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => regadin,
 DOUT => regAdout);

Breg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => regbdin,
 DOUT => regBdout);

forwardmuxM: component mux32x4 port map(SEL => forwardM,
 A => rd2,
 B => X"00000000",
 C => resultEXE,
 D => regdin,
 DOUT => regmdin);

Mreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',

 72

 RESET => resetorstall,
 DIN => regmdin,
 DOUT => regMdout);

genmuxandreg: for I in 1 to size generate
SIMDmuxA: component mux32x3 port map(SEL => vforwardA,
 A => vrd1_array(I),
 B => vresultEXE_array(I),
 C => vregdin_array(I),
 DOUT => vregadin(I));

SIMDmuxM: component mux32x3 port map(SEL => vforwardM,
 A => vrd2_array(I),
 B => vresultEXE_array(I),
 C => vregdin_array(I),
 DOUT => vregmdin(I));

SIMDAreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => vregadin(I),
 DOUT => vregAdout(I));

SIMDBreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => vregbdin(I),
 DOUT => vregBdout(I));

SIMDMreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => resetorstall,
 DIN => vregmdin(I),
 DOUT => vregMdout(I));

end generate;

va <= vregAdout(1) & vregAdout(2) & vregAdout(3) & vregAdout(4);
vb <= vregBdout(1) & vregBdout(2) & vregBdout(3) & vregBdout(4);
vm <= vregMdout(1) & vregMdout(2) & vregMdout(3) & vregMdout(4);

process (CLK) is
 begin
 if rising_edge(CLK) then
 if RESET = '1' or stall = '1' then

 aluopEXE <= "00000";
 wbEXE <= "00000";
 wehEXE <= '0';
 memtoregEXE <= '0';
 memwriteMEM <= '0';
 shamtEXE <= "00000";
 functEXE <= "000000";
 vwehEXE <= '0';
 vmemtoregEXE <= '0';

 73

 vmemwriteMEM <= '0';
 else
 aluopEXE <= aluopID;
 wbEXE <= wbID;
 wehEXE <= wehID;
 memtoregEXE <= memtoregID;
 memwriteMEM <= memwriteID;
 shamtEXE <= inst(10 downto 6);
 functEXE <= inst(5 downto 0);
 vwehEXE <= vwehID;
 vmemtoregEXE <= vmemtoregID;
 vmemwriteMEM <= vmemwriteID;
 end if;
 end if;
end process;

hazardcntrl: component hazardcontrol port map(MEMTOREGEXE => memtoregEXE,
 REGWRITEEXE => wehEXE,
 REGWRITEMEM => wehMEM,
 ISJAL => isjal,
 ISMUL => aluopEXE(3),
 RSEL1ID => inst(25 downto 21),
 RSEL2ID => inst(20 downto 16),
 WBEXE => wbEXE,
 WBMEM => wbMEM,
 STALL => stall,
 FORWARDA => forwardA,
 FORWARDM => forwardM,
 --SIMD Ports
 VMEMTOREGEXE => vmemtoregEXE,
 VREGWRITEEXE => vwehEXE,
 VREGWRITEMEM => vwehMEM,
 VFORWARDA => vforwardA,
 VFORWARDM => vforwardM);

EXE: component EXEstage port map(CLK => CLK,
 ALUop => aluopEXE,
 SHAMT => shamtEXE,
 FUNCT => functEXE,
 A => regAdout,
 B => regBdout,
 MULRESULT => mulresult,
 RESULT => resultEXE,
 --SIMD Ports
 VA => va,
 VB => vb,
 VMULRESULT => vmultresult,
 VRESULT => vresult);

vresultEXE_array(4) <= vresult(31 downto 0);
vresultEXE_array(3) <= vresult(63 downto 32);
vresultEXE_array(2) <= vresult(95 downto 64);
vresultEXE_array(1) <= vresult(127 downto 96);

vmultresult_array(4) <= vmultresult(31 downto 0);

 74

vmultresult_array(3) <= vmultresult(63 downto 32);
vmultresult_array(2) <= vmultresult(95 downto 64);
vmultresult_array(1) <= vmultresult(127 downto 96);

resultreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => resultEXE,
 DOUT => resultMEM);

genresultreg: for I in 1 to size generate
SIMDresultreg: component reg32 port map(CLK => CLK,
 ENABLEH => '1',
 RESET => RESET,
 DIN => vresultEXE_array(I),
 DOUT => vresultMEM_array(I));
end generate;

process (CLK) is
 begin
 if rising_edge(CLK) then
 if RESET = '1' then

 wbMEM <= "00000";
 wehMEM <= '0';
 memtoregMEM <= '0';
 takemulresult <= '0';
 vwehMEM <= '0';
 vmemtoregMEM <= '0';
 else
 wbMEM <= wbEXE;
 wehMEM <= wehEXE;
 memtoregMEM <= memtoregEXE;
 takemulresult <= aluopEXE(3);
 vwehMEM <= vwehEXE;
 vmemtoregMEM <= vmemtoregEXE;
 end if;
 end if;
end process;

MEM: component MEMstage port map(CLK => CLK,
 RESET => RESET,
 ADDR => resultEXE,
 DIN => regMdout,
 MEMTOREG => memtoregEXE,
 MEMWRITEH => memwriteMEM,
 DOUT => memdout,
 --SIMD Ports
 VADDR => vresult(127 downto 96),
 VDIN => vm,
 VMEMTOREG => vmemtoregEXE,
 VMEMWRITEH => vmemwriteMEM,
 VDOUT => vmemdout);

vmemdout_array(4) <= vmemdout(31 downto 0);
vmemdout_array(3) <= vmemdout(63 downto 32);

 75

vmemdout_array(2) <= vmemdout(95 downto 64);
vmemdout_array(1) <= vmemdout(127 downto 96);

datawritebacksel <= takemulresult & memtoregMEM;
vdatawritebacksel <= takemulresult & vmemtoregMEM;

memoryresult: component mux32x3 port map(SEL => datawritebacksel,
 A => resultMEM,
 B => memdout,
 C => mulresult,
 DOUT => regdintemp);

genmemoryreg: for I in 1 to size generate
SIMDmemoryresult: component mux32x3 port map(SEL => datawritebacksel,
 A => vresultMEM_array(I),
 B => vmemdout_array(I),
 C => vmultresult_array(I),
 DOUT => vregdintemp_array(I));

vregdin_array(I) <= X"00000000" when wbMEM = "00000" else vregdintemp_array(I);

end generate;

vregdin <= vregdin_array(1) & vregdin_array(2) & vregdin_array(3) & vregdin_array(4);

regdin <= X"00000000" when wbMEM = "00000" else regdintemp;

end Behavioral;

Fetchstage.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FETCHstage is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 TAKENEXTPC : in STD_LOGIC;
 BREAKH : in STD_LOGIC;
 STALL : in STD_LOGIC;
 NEXTPC : in STD_LOGIC_VECTOR (31 downto 0);
 INST : out STD_LOGIC_VECTOR (31 downto 0);
 CURRENTPC : out STD_LOGIC_VECTOR (31 downto 0);
 PCPLUS4 : out STD_LOGIC_VECTOR (31 downto 0));
end FETCHstage;

architecture Behavioral of FETCHstage is

component reg32 is
 Port (CLK : in STD_LOGIC;
 ENABLEH : in STD_LOGIC;

 76

 RESET : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component reg32;

component instmem is
 port (
 addr: in std_logic_vector(9 downto 0);
 clk: in std_logic;
 dout: out std_logic_vector(31 downto 0));
end component instmem;

constant enablepc : std_logic := '1';
signal instmemaddr : std_logic_vector(31 downto 0);
signal pc, pc4 : std_logic_vector(31 downto 0);

begin

CURRENTPC <= pc;

pcreg: component reg32 port map(CLK => CLK,
 ENABLEH => enablepc,
 RESET => RESET,
 DIN => instmemaddr,
 DOUT => pc);

pc4 <= pc + 4;

instmemaddr <= X"00000000" when RESET = '1' else
 pc when BREAKH = '1' or STALL = '1' else
 NEXTPC when TAKENEXTPC = '1' else
 pc4;

PCPLUS4 <= pc4;

instructionmemory: component instmem port map(addr => instmemaddr(11 downto 2),
 clk => CLK,
 dout => INST);

end Behavioral;

Instmem.vhd:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- synopsys translate_off
Library XilinxCoreLib;
-- synopsys translate_on
ENTITY instmem IS
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 dout: OUT std_logic_VECTOR(31 downto 0));
END instmem;

 77

ARCHITECTURE instmem_a OF instmem IS
-- synopsys translate_off
component wrapped_instmem
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 dout: OUT std_logic_VECTOR(31 downto 0));
end component;

-- Configuration specification
 for all : wrapped_instmem use entity XilinxCoreLib.blkmemsp_v6_2(behavioral)
 generic map(
 c_sinit_value => "0",
 c_has_en => 0,
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_yprimitive_type => "16kx1",
 c_ytop_addr => "1024",
 c_yhierarchy => "hierarchy1",
 c_has_limit_data_pitch => 0,
 c_has_rdy => 0,
 c_write_mode => 0,
 c_width => 32,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_has_we => 0,
 c_enable_rlocs => 0,
 c_has_rfd => 0,
 c_has_din => 0,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 1024,
 c_has_default_data => 0,
 c_limit_data_pitch => 18,
 c_has_sinit => 0,
 c_mem_init_file => "instmem.mif",
 c_yydisable_warnings => 1,
 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 10);
-- synopsys translate_on
BEGIN
-- synopsys translate_off
U0 : wrapped_instmem
 port map (
 addr => addr,
 clk => clk,
 dout => dout);
-- synopsys translate_on

END instmem_a;

 78

IDstage.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity IDstage is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 REGWRITEIN : in STD_LOGIC;
 RELEASE : in STD_LOGIC;
 REGSELIN : in STD_LOGIC_VECTOR (4 downto 0);
 PCPLUS4 : in STD_LOGIC_VECTOR (31 downto 0);
 INST : in STD_LOGIC_VECTOR (31 downto 0);
 REGDIN : in STD_LOGIC_VECTOR (31 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 ISJAL : out STD_LOGIC;
 TAKENEXTPC : out STD_LOGIC;
 BREAKH : out STD_LOGIC;
 REGSELOUT : out STD_LOGIC_VECTOR (4 downto 0);
 PCPLUS8 : out STD_LOGIC_VECTOR (31 downto 0);
 RD1 : out STD_LOGIC_VECTOR (31 downto 0);
 RD2 : out STD_LOGIC_VECTOR (31 downto 0);
 NEXTPC1 : out STD_LOGIC_VECTOR (31 downto 0);
 REGB : out STD_LOGIC_VECTOR (31 downto 0);
 REGWRITEOUT : out STD_LOGIC;
 MEMTOREG : out STD_LOGIC;
 MEMWRITEH : out STD_LOGIC;
 ALUOP : out STD_LOGIC_VECTOR (3 downto 0);
 --SIMD Ports
 VREGWRITEIN : in STD_LOGIC;
 VREGDIN : in STD_LOGIC_VECTOR (datasize downto 0);
 VRD1 : out STD_LOGIC_VECTOR (datasize downto 0);
 VRD2 : out STD_LOGIC_VECTOR (datasize downto 0);
 VREGWRITEOUT : out STD_LOGIC;
 VMEMTOREG : out STD_LOGIC;
 VMEMWRITEH : out STD_LOGIC;
 EXTMODE : out STD_LOGIC;
 IMMVALUE : out STD_LOGIC;
 BOARDREG23_1 : out STD_LOGIC_VECTOR (31 downto 0);
 BOARDREG23_2 : out STD_LOGIC_VECTOR (31 downto 0));
end IDstage;

architecture Behavioral of IDstage is

component regfile is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 WEH : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 WSEL : in STD_LOGIC_VECTOR (4 downto 0);
 RSEL1 : in STD_LOGIC_VECTOR (4 downto 0);

 79

 RSEL2 : in STD_LOGIC_VECTOR (4 downto 0);
 RD1 : out STD_LOGIC_VECTOR (31 downto 0);
 RD2 : out STD_LOGIC_VECTOR (31 downto 0);
 REG23OUT : out STD_LOGIC_VECTOR (31 downto 0)); --Board IO port
end component;

component nextPC is
 Port (ISBJ : in STD_LOGIC_VECTOR (2 downto 0);
 INSTINDEX : in STD_LOGIC_VECTOR (25 downto 0);
 PCPLUS4 : in STD_LOGIC_VECTOR (31 downto 0);
 RD1 : in STD_LOGIC_VECTOR (31 downto 0);
 EXTIMM : in STD_LOGIC_VECTOR (31 downto 0);
 NEXTPC : out STD_LOGIC_VECTOR (31 downto 0));
end component;

component branchlogic is
 Port (ISBGEZ : in STD_LOGIC;
 OPCODE : in STD_LOGIC_VECTOR (5 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 BRANCHOK : out STD_LOGIC);
end component;

component controller is
 Port (OPCODE : in STD_LOGIC_VECTOR (5 downto 0);
 FUNCT : in STD_LOGIC_VECTOR (5 downto 0);
 REGWRITEH : out STD_LOGIC;
 MEMWRITEH : out STD_LOGIC;
 REGDST : out STD_LOGIC;
 MEMTOREG : out STD_LOGIC;
 ALUSRC : out STD_LOGIC;
 EXTCTRL : out STD_LOGIC;
 BREAKH : out STD_LOGIC;
 ISJAL : out STD_LOGIC;
 ISBJ : out STD_LOGIC_VECTOR (2 downto 0);
 ALUOP : out STD_LOGIC_VECTOR (4 downto 0);
 -- SIMD Ports
 VREGWRITEH : out STD_LOGIC;
 VMEMWRITEH : out STD_LOGIC;
 VMEMTOREG : out STD_LOGIC);
end component;

signal extctrl, alusrc, branchok, regdst, breakhtemp, isjaltemp: std_logic;
signal isbj: std_logic_vector(2 downto 0);
signal extimm, rd1temp: std_logic_vector(31 downto 0);
constant mask0: std_logic_vector(15 downto 0):= x"0000";
constant mask1: std_logic_vector(15 downto 0):= x"FFFF";

--SIMD signals
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0);
signal vrd1_array, vrd2_array, regdatain_array, reg23_array : data_array;

begin
control: component controller port map(OPCODE => INST(31 downto 26),
 FUNCT => INST(5 downto 0),
 REGWRITEH => REGWRITEOUT,

 80

 MEMWRITEH => MEMWRITEH,
 REGDST => regdst,
 MEMTOREG => MEMTOREG,
 ALUSRC => alusrc,
 EXTCTRL => extctrl,
 BREAKH => breakhtemp,
 ISJAL => isjaltemp,
 ISBJ => isbj,
 ALUOP => ALUOP,
 VREGWRITEH => VREGWRITEOUT,
 VMEMWRITEH => VMEMWRITEH,
 VMEMTOREG => VMEMTOREG);

registerfile: component regfile port map(CLK => CLK,
 RESET => RESET,
 WEH => REGWRITEIN,
 DIN => REGDIN,
 WSEL => REGSELIN,
 RSEL1 => INST(25 downto 21),
 RSEL2 => INST(20 downto 16),
 RD1 => rd1temp,
 RD2 => RD2);

regdatain_array(4) <= VREGDIN(31 downto 0);
regdatain_array(3) <= VREGDIN(63 downto 32);
regdatain_array(2) <= VREGDIN(95 downto 64);
regdatain_array(1) <= VREGDIN(127 downto 96);

genregfiles: for I in 1 to size generate

SIMDregfile: component regfile port map(CLK => CLK,
 RESET => RESET,
 WEH => VREGWRITEIN,
 DIN => regdatain_array(I),
 WSEL => REGSELIN,
 RSEL1 => INST(25 downto 21),
 RSEL2 => INST(20 downto 16),
 RD1 => vrd1_array(I),
 RD2 => vrd2_array(I)),

 REG23OUT => reg23_array(I));
end generate;

BOARDREG23_1 <= reg23_array(1);
BOARDREG23_2 <= reg23_array(2);

VRD1 <= vrd1_array(1) & vrd1_array(2) & vrd1_array(3) & vrd1_array(4);
VRD2 <= vrd2_array(1) & vrd2_array(2) & vrd2_array(3) & vrd2_array(4);

branchlgc: component branchlogic port map(ISBGEZ => INST(16),
 OPCODE => INST(31 downto 26),
 A => A,
 B => B,
 BRANCHOK => branchok);

 81

EXTMODE <= extctrl; -- for SIMD, prevents porting in the outputs of SIMD MUXM
IMMVALUE <= alusrc; -- for SIMD, prevents porting in the outputs of SIMD MUXM

PCPLUS8 <= PCPLUS4 + x"00000004";
extimm <= mask1 & INST(15 downto 0) when extctrl = '1' and INST(15) = '1' else
 mask0 & INST(15 downto 0);

REGB <= extimm when alusrc = '1' else B;
TAKENEXTPC <= branchok OR isbj(2) OR isbj(1);
BREAKH <= breakhtemp AND (NOT RELEASE);

process (regdst, isjaltemp, INST) is
 begin
 if (isjaltemp = '1') then
 REGSELOUT <= "11111";
 elsif regdst = '1' then
 REGSELOUT <= INST(15 downto 11);
 else
 REGSELOUT <= INST(20 downto 16);
 end if;
end process;

ISJAL <= isjaltemp;
RD1 <= rd1temp;

nextpcmodule: component nextpc port map(ISBJ => isbj,
 INSTINDEX => INST(25 downto 0),
 PCPLUS4 => PCPLUS4,
 RD1 => A,
 EXTIMM => extimm,
 NEXTPC => NEXTPC1);

end Behavioral;

Controller.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity controller is
 Port (OPCODE : in STD_LOGIC_VECTOR (5 downto 0);
 FUNCT : in STD_LOGIC_VECTOR (5 downto 0);
 REGWRITEH : out STD_LOGIC;
 MEMWRITEH : out STD_LOGIC;
 REGDST : out STD_LOGIC;
 MEMTOREG : out STD_LOGIC;
 ALUSRC : out STD_LOGIC;
 EXTCTRL : out STD_LOGIC;
 BREAKH : out STD_LOGIC;
 ISJAL : out STD_LOGIC;
 ISBJ : out STD_LOGIC_VECTOR (2 downto 0);
 ALUOP : out STD_LOGIC_VECTOR (4 downto 0);
 -- SIMD Ports

 82

 VREGWRITEH : out STD_LOGIC;
 VMEMWRITEH : out STD_LOGIC;
 VMEMTOREG : out STD_LOGIC);
end controller;

architecture Behavioral of controller is

constant rtype: std_logic_vector (5 downto 0):= "000000";
constant addiu: std_logic_vector (5 downto 0):= "001001";
constant slti: std_logic_vector (5 downto 0):= "001010";
constant sltiu: std_logic_vector (5 downto 0):= "001011";
constant andi: std_logic_vector (5 downto 0):= "001100";
constant ori: std_logic_vector (5 downto 0):= "001101";
constant xori: std_logic_vector (5 downto 0):= "001110";
constant lui: std_logic_vector (5 downto 0):= "001111";
constant lw: std_logic_vector (5 downto 0):= "100011";
constant sw: std_logic_vector (5 downto 0):= "101011";
constant beq_bne: std_logic_vector (4 downto 0):= "00010";
constant bgez_bltz: std_logic_vector (5 downto 0):= "000001";
constant j: std_logic_vector (5 downto 0):= "000010";
constant jal: std_logic_vector (5 downto 0):= "000011";
constant mul: std_logic_vector (5 downto 0):= "011100";
--SIMD opcodes
constant vlw: std_logic_vector (5 downto 0):= "110011";
constant vsw: std_logic_vector (5 downto 0):= "111011";
constant vaddiu: std_logic_vector (5 downto 0):= "011001";
constant vandi: std_logic_vector (5 downto 0):= "011111";
constant vori: std_logic_vector (5 downto 0):= "011101";
constant vxori: std_logic_vector (5 downto 0):= "011110";
constant vrtype: std_logic_vector (5 downto 0):= "010000";
constant vmul: std_logic_vector (5 downto 0):= "111100";

signal jump, jtype, branch: std_logic;

begin

jump <= '1' when OPCODE = rtype AND FUNCT = "001000" else '0';
jtype <= '1' when OPCODE(5 downto 1) = "00001" else '0';
branch <= '1' when OPCODE(5 downto 1) = beq_bne OR OPCODE = bgez_bltz else '0';
ISBJ <= jtype & jump & branch;
BREAKH <= '1' when OPCODE = rtype AND FUNCT = "001101" else '0';
ISJAL <= '1' when OPCODE = jal else '0';

REGWRITEH <= '1' when OPCODE = rtype AND FUNCT /= "001101" else
 '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000" else
 '1' when OPCODE = lw OR OPCODE = jal OR OPCODE = mul else
 '0';

MEMWRITEH <= '1' when OPCODE = sw else '0';

MEMTOREG <= '1' when OPCODE = lw OR OPCODE = sw else '0';

--SIMD assignments
VREGWRITEH <= '1' when OPCODE = vlw OR OPCODE = vrtype OR OPCODE = vmul else
 '1' when OPCODE = vandi OR OPCODE = vori OR OPCODE = vxori OR

 OPCODE = vaddiu else

 83

 '0';

VMEMWRITEH <= '1' when OPCODE = vsw else '0';

VMEMTOREG <= '1' when OPCODE = vlw OR OPCODE = vsw else '0';

ALUSRC <= '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000" else
 '1' when OPCODE = lw OR OPCODE = sw else
 '1' when OPCODE = vlw OR OPCODE = vsw else --SIMD
 '1' when OPCODE = vandi OR OPCODE = vori OR

OPCODE = vxori OR OPCODE = vaddiu else
 '0';

EXTCTRL <= '0' when OPCODE = ori OR OPCODE = andi OR OPCODE = xori else
 '0' when OPCODE = vori OR OPCODE = vandi OR OPCODE = vxori else
 '1';

REGDST <= '1' when OPCODE = rtype AND FUNCT /= "001101" else
 '1' when OPCODE = mul else
 '1' when OPCODE = vrtype OR OPCODE = vmul else -- SIMD
 '0';

ALUOP <= "00000" when OPCODE = rtype OR OPCODE = vrtype else
 "00001" when OPCODE = addiu OR OPCODE = vaddiu else
 "00010" when OPCODE = andi OR OPCODE = vandi else
 "00011" when OPCODE = ori OR OPCODE = vori else
 "00100" when OPCODE = xori OR OPCODE = vxori else
 "00101" when OPCODE = lui else
 "00110" when OPCODE = slti else
 "00111" when OPCODE = sltiu else
 "01000" when OPCODE = mul OR OPCODE = vmul else
 "10000";

end Behavioral;

Branchlogic.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity branchlogic is
 Port (ISBGEZ : in STD_LOGIC;
 OPCODE : in STD_LOGIC_VECTOR (5 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 BRANCHOK : out STD_LOGIC);
end branchlogic;

architecture Behavioral of branchlogic is

signal neg, ovf, negxorovf, doutzero: std_logic;

 84

signal branch: std_logic_vector (1 downto 0);
signal btemp, dout: std_logic_vector (31 downto 0);

begin

branch <= "01" when OPCODE = "000001" else --for bgez and bltz
 "10" when OPCODE = "000100" OR OPCODE = "000101" else --for beq and bne
 "00";

btemp <= x"00000000" when OPCODE = "000001" else --for bgez and bltz
 B;

process (btemp, A, dout, neg, ovf, negxorovf, ISBGEZ, OPCODE, doutzero, branch) is
begin
dout <= A - btemp;
neg <= dout(31);

if (A(31) = '1' AND btemp(31) = '0' AND dout(31) = '0') then
 ovf <= '1';
elsif (A(31) = '0' AND btemp(31) = '1' AND dout(31) = '1') then
 ovf <= '1';
else ovf <= '0';
end if;

negxorovf <= neg XOR ovf;

if dout = x"00000000" then
 doutzero <= '1';
else doutzero <= '0';
end if;

if branch = "01" then
 BRANCHOK <= negxorovf XOR ISBGEZ;
elsif branch = "10" then
 BRANCHOK <= doutzero XOR OPCODE(0);
else BRANCHOK <= '0';
end if;

end process;

end Behavioral;

NextPC.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity nextPC is
 Port (ISBJ : in STD_LOGIC_VECTOR (2 downto 0);
 INSTINDEX : in STD_LOGIC_VECTOR (25 downto 0);
 PCPLUS4 : in STD_LOGIC_VECTOR (31 downto 0);
 RD1 : in STD_LOGIC_VECTOR (31 downto 0);

 85

 EXTIMM : in STD_LOGIC_VECTOR (31 downto 0);
 NEXTPC : out STD_LOGIC_VECTOR (31 downto 0));
end nextPC;

architecture Behavioral of nextPC is

constant branch: std_logic_vector (2 downto 0):= "001";
constant jr: std_logic_vector (2 downto 0):= "010";
constant j_jal: std_logic_vector (2 downto 0):= "100";

signal branch_val: std_logic_vector (31 downto 0);

begin

branch_val <= EXTIMM(29 downto 0) & "00";

NEXTPC <= PCPLUS4 + branch_val when ISBJ = branch else
 RD1 when ISBJ = jr else
 PCPLUS4(31 downto 28) & INSTINDEX & "00" when ISBJ = j_jal else
 PCPLUS4;

end Behavioral;

Registerfile.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity regfile is
 Port (CLK : in STD_LOGIC;
 RESET : in STD_LOGIC;
 WEH : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 WSEL : in STD_LOGIC_VECTOR (4 downto 0);
 RSEL1 : in STD_LOGIC_VECTOR (4 downto 0);
 RSEL2 : in STD_LOGIC_VECTOR (4 downto 0);
 RD1 : out STD_LOGIC_VECTOR (31 downto 0);
 RD2 : out STD_LOGIC_VECTOR (31 downto 0);

REG23OUT : out STD_LOGIC_VECTOR (31 downto 0)); --Board IO port
end regfile;

architecture Behavioral of regfile is

component reg32
 Port (CLK : in STD_LOGIC;
 ENABLEH : in STD_LOGIC;
 RESET : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component;

signal en1, en2, en3, en4, en5, en6, en7, en8, en9, en10, en11, en12, en13, en14, en15, en16: std_logic;

 86

signal en17, en18, en19, en20, en21, en22, en23, en24, en25, en26, en27, en28, en29, en30, en31:
std_logic;
signal rout0, rout1, rout2, rout3, rout4, rout5, rout6, rout7, rout8, rout9: std_logic_vector (31 downto 0);
signal rout10, rout11, rout12, rout13, rout14, rout15, rout16, rout17, rout18, rout19: std_logic_vector (31
downto 0);
signal rout20, rout21, rout22, rout23, rout24, rout25, rout26, rout27, rout28, rout29: std_logic_vector (31
downto 0);
signal rout30, rout31: std_logic_vector (31 downto 0);

begin

en1 <= '1' when WSEL = "00001" AND WEH = '1' else '0';
en2 <= '1' when WSEL = "00010" AND WEH = '1' else '0';
en3 <= '1' when WSEL = "00011" AND WEH = '1' else '0';
en4 <= '1' when WSEL = "00100" AND WEH = '1' else '0';
en5 <= '1' when WSEL = "00101" AND WEH = '1' else '0';
en6 <= '1' when WSEL = "00110" AND WEH = '1' else '0';
en7 <= '1' when WSEL = "00111" AND WEH = '1' else '0';
en8 <= '1' when WSEL = "01000" AND WEH = '1' else '0';
en9 <= '1' when WSEL = "01001" AND WEH = '1' else '0';
en10 <= '1' when WSEL = "01010" AND WEH = '1' else '0';
en11 <= '1' when WSEL = "01011" AND WEH = '1' else '0';
en12 <= '1' when WSEL = "01100" AND WEH = '1' else '0';
en13 <= '1' when WSEL = "01101" AND WEH = '1' else '0';
en14 <= '1' when WSEL = "01110" AND WEH = '1' else '0';
en15 <= '1' when WSEL = "01111" AND WEH = '1' else '0';
en16 <= '1' when WSEL = "10000" AND WEH = '1' else '0';
en17 <= '1' when WSEL = "10001" AND WEH = '1' else '0';
en18 <= '1' when WSEL = "10010" AND WEH = '1' else '0';
en19 <= '1' when WSEL = "10011" AND WEH = '1' else '0';
en20 <= '1' when WSEL = "10100" AND WEH = '1' else '0';
en21 <= '1' when WSEL = "10101" AND WEH = '1' else '0';
en22 <= '1' when WSEL = "10110" AND WEH = '1' else '0';
en23 <= '1' when WSEL = "10111" AND WEH = '1' else '0';
en24 <= '1' when WSEL = "11000" AND WEH = '1' else '0';
en25 <= '1' when WSEL = "11001" AND WEH = '1' else '0';
en26 <= '1' when WSEL = "11010" AND WEH = '1' else '0';
en27 <= '1' when WSEL = "11011" AND WEH = '1' else '0';
en28 <= '1' when WSEL = "11100" AND WEH = '1' else '0';
en29 <= '1' when WSEL = "11101" AND WEH = '1' else '0';
en30 <= '1' when WSEL = "11110" AND WEH = '1' else '0';
en31 <= '1' when WSEL = "11111" AND WEH = '1' else '0';

rout0 <= x"00000000";
reg1: component reg32 port map(CLK,en1,RESET,DIN,rout1);
reg2: component reg32 port map(CLK,en2,RESET,DIN,rout2);
reg3: component reg32 port map(CLK,en3,RESET,DIN,rout3);
reg4: component reg32 port map(CLK,en4,RESET,DIN,rout4);
reg5: component reg32 port map(CLK,en5,RESET,DIN,rout5);
reg6: component reg32 port map(CLK,en6,RESET,DIN,rout6);
reg7: component reg32 port map(CLK,en7,RESET,DIN,rout7);
reg8: component reg32 port map(CLK,en8,RESET,DIN,rout8);
reg9: component reg32 port map(CLK,en9,RESET,DIN,rout9);
reg10: component reg32 port map(CLK,en10,RESET,DIN,rout10);
reg11: component reg32 port map(CLK,en11,RESET,DIN,rout11);
reg12: component reg32 port map(CLK,en12,RESET,DIN,rout12);

 87

reg13: component reg32 port map(CLK,en13,RESET,DIN,rout13);
reg14: component reg32 port map(CLK,en14,RESET,DIN,rout14);
reg15: component reg32 port map(CLK,en15,RESET,DIN,rout15);
reg16: component reg32 port map(CLK,en16,RESET,DIN,rout16);
reg17: component reg32 port map(CLK,en17,RESET,DIN,rout17);
reg18: component reg32 port map(CLK,en18,RESET,DIN,rout18);
reg19: component reg32 port map(CLK,en19,RESET,DIN,rout19);
reg20: component reg32 port map(CLK,en20,RESET,DIN,rout20);
reg21: component reg32 port map(CLK,en21,RESET,DIN,rout21);
reg22: component reg32 port map(CLK,en22,RESET,DIN,rout22);
reg23: component reg32 port map(CLK,en23,RESET,DIN,rout23);
reg24: component reg32 port map(CLK,en24,RESET,DIN,rout24);
reg25: component reg32 port map(CLK,en25,RESET,DIN,rout25);
reg26: component reg32 port map(CLK,en26,RESET,DIN,rout26);
reg27: component reg32 port map(CLK,en27,RESET,DIN,rout27);
reg28: component reg32 port map(CLK,en28,RESET,DIN,rout28);
reg29: component reg32 port map(CLK,en29,RESET,DIN,rout29);
reg30: component reg32 port map(CLK,en30,RESET,DIN,rout30);
reg31: component reg32 port map(CLK,en31,RESET,DIN,rout31);

RD1 <= rout0 when RSEL1 = 0 else
 rout1 when RSEL1 = 1 else
 rout2 when RSEL1 = 2 else
 rout3 when RSEL1 = 3 else
 rout4 when RSEL1 = 4 else
 rout5 when RSEL1 = 5 else
 rout6 when RSEL1 = 6 else
 rout7 when RSEL1 = 7 else
 rout8 when RSEL1 = 8 else
 rout9 when RSEL1 = 9 else
 rout10 when RSEL1 = 10 else
 rout11 when RSEL1 = 11 else
 rout12 when RSEL1 = 12 else
 rout13 when RSEL1 = 13 else
 rout14 when RSEL1 = 14 else
 rout15 when RSEL1 = 15 else
 rout16 when RSEL1 = 16 else
 rout17 when RSEL1 = 17 else
 rout18 when RSEL1 = 18 else
 rout19 when RSEL1 = 19 else
 rout20 when RSEL1 = 20 else
 rout21 when RSEL1 = 21 else
 rout22 when RSEL1 = 22 else
 rout23 when RSEL1 = 23 else
 rout24 when RSEL1 = 24 else
 rout25 when RSEL1 = 25 else
 rout26 when RSEL1 = 26 else
 rout27 when RSEL1 = 27 else
 rout28 when RSEL1 = 28 else
 rout29 when RSEL1 = 29 else
 rout30 when RSEL1 = 30 else
 rout31 when RSEL1 = 31 else
 rout0;

RD2 <= rout0 when RSEL2 = 0 else
 rout1 when RSEL2 = 1 else

 88

 rout2 when RSEL2 = 2 else
 rout3 when RSEL2 = 3 else
 rout4 when RSEL2 = 4 else
 rout5 when RSEL2 = 5 else
 rout6 when RSEL2 = 6 else
 rout7 when RSEL2 = 7 else
 rout8 when RSEL2 = 8 else
 rout9 when RSEL2 = 9 else
 rout10 when RSEL2 = 10 else
 rout11 when RSEL2 = 11 else
 rout12 when RSEL2 = 12 else
 rout13 when RSEL2 = 13 else
 rout14 when RSEL2 = 14 else
 rout15 when RSEL2 = 15 else
 rout16 when RSEL2 = 16 else
 rout17 when RSEL2 = 17 else
 rout18 when RSEL2 = 18 else
 rout19 when RSEL2 = 19 else
 rout20 when RSEL2 = 20 else
 rout21 when RSEL2 = 21 else
 rout22 when RSEL2 = 22 else
 rout23 when RSEL2 = 23 else
 rout24 when RSEL2 = 24 else
 rout25 when RSEL2 = 25 else
 rout26 when RSEL2 = 26 else
 rout27 when RSEL2 = 27 else
 rout28 when RSEL2 = 28 else
 rout29 when RSEL2 = 29 else
 rout30 when RSEL2 = 30 else
 rout31 when RSEL2 = 31 else
 rout0;

REG23OUT <= rout23;

end Behavioral;

Register.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity reg32 is
 Port (CLK : in STD_LOGIC;
 ENABLEH : in STD_LOGIC;
 RESET : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end reg32;

architecture Behavioral of reg32 is

begin
 process(CLK, RESET)

 89

 begin
 if RESET = '1' then
 DOUT <= x"00000000";
 elsif rising_edge(CLK) then
 if ENABLEH = '1' then
 DOUT <= DIN;
 end if;
 end if;
 end process;

end Behavioral;

Hazardcontrol.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity hazardcontrol is
 Port (MEMTOREGEXE : in STD_LOGIC;
 REGWRITEEXE : in STD_LOGIC;
 REGWRITEMEM : in STD_LOGIC;
 ISJAL : in STD_LOGIC;
 ISMUL : in STD_LOGIC;
 RSEL1ID : in STD_LOGIC_VECTOR (4 downto 0);
 RSEL2ID : in STD_LOGIC_VECTOR (4 downto 0);
 WBEXE : in STD_LOGIC_VECTOR (4 downto 0);
 WBMEM : in STD_LOGIC_VECTOR (4 downto 0);
 STALL : out STD_LOGIC;
 FORWARDA : out STD_LOGIC_VECTOR (2 downto 0);
 FORWARDM : out STD_LOGIC_VECTOR (2 downto 0);
 --SIMD Ports
 VMEMTOREGEXE : in STD_LOGIC;
 VREGWRITEEXE : in STD_LOGIC;
 VREGWRITEMEM : in STD_LOGIC;
 VFORWARDA : out STD_LOGIC_VECTOR (1 downto 0);
 VFORWARDM : out STD_LOGIC_VECTOR (1 downto 0));
end hazardcontrol;

architecture Behavioral of hazardcontrol is

constant regfileout: std_logic_vector (2 downto 0):= "000";
constant jal: std_logic_vector (2 downto 0):= "001";
constant computationout: std_logic_vector (2 downto 0):= "010";
constant memoryout: std_logic_vector (2 downto 0):= "011";

constant vregfileout: std_logic_vector (1 downto 0):= "00";
constant valuout: std_logic_vector (1 downto 0):= "01";
constant vmemoryout: std_logic_vector (1 downto 0):= "10";

begin

process(REGWRITEEXE, WBEXE, RSEL1ID, REGWRITEMEM, WBMEM, ISJAL)
begin

 90

 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID then
 FORWARDA <= computationout;
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID then
 FORWARDA <= memoryout;
 elsif ISJAL = '1' then
 FORWARDA <= jal;
 else --takes care of RESET case
 FORWARDA <= regfileout;
 end if;
end process;

process(REGWRITEEXE, WBEXE, RSEL2ID, REGWRITEMEM, WBMEM, ISJAL)
begin
 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL2ID then
 FORWARDM <= computationout;
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL2ID then
 FORWARDM <= memoryout;
 elsif ISJAL = '1' then
 FORWARDM <= jal;
 else --takes care of RESET case
 FORWARDM <= regfileout;
 end if;
end process;

--SIMD processes
process(VREGWRITEEXE, WBEXE, RSEL1ID, VREGWRITEMEM, WBMEM)
begin
 if VREGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID then
 VFORWARDA <= valuout;
 elsif VREGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID then
 VFORWARDA <= vmemoryout;
 else --takes care of RESET case
 VFORWARDA <= vregfileout;
 end if;
end process;

process(VREGWRITEEXE, WBEXE, RSEL2ID, VREGWRITEMEM, WBMEM)
begin
 if VREGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL2ID then
 VFORWARDM <= valuout;
 elsif VREGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL2ID then
 VFORWARDM <= vmemoryout;
 else --takes care of RESET case
 VFORWARDM <= vregfileout;
 end if;
end process;

STALL <= '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND WBEXE /= 0 AND
WBEXE = RSEL2ID else
 '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND WBEXE /= 0 AND
WBEXE = RSEL1ID else
 '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL1ID else
 '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL2ID else
 '1' when VREGWRITEEXE = '1' AND VMEMTOREGEXE = '1' AND WBEXE /= 0 AND
WBEXE = RSEL2ID else

 91

 '1' when VREGWRITEEXE = '1' AND VMEMTOREGEXE = '1' AND WBEXE /= 0 AND
WBEXE = RSEL1ID else
 '0';

end Behavioral;

EXEstage.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity EXEstage is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;
 ALUop : in STD_LOGIC_VECTOR (4 downto 0);
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 FUNCT : in STD_LOGIC_VECTOR (5 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 MULRESULT : out STD_LOGIC_VECTOR (31 downto 0);
 RESULT : out STD_LOGIC_VECTOR (31 downto 0);
 --SIMD Ports
 VA : in STD_LOGIC_VECTOR (datasize downto 0);
 VB : in STD_LOGIC_VECTOR (datasize downto 0);
 VMULRESULT : out STD_LOGIC_VECTOR (datasize downto 0);
 VRESULT : out STD_LOGIC_VECTOR (datasize downto 0));
end EXEstage;

architecture Behavioral of EXEstage is

component computation is
 Port (SHDIR : in STD_LOGIC;
 SHEXTMODE : in STD_LOGIC;
 SIGNEDCOMP : in STD_LOGIC;
 MSEL : in STD_LOGIC_VECTOR (1 downto 0);
 FSEL : in STD_LOGIC_VECTOR (2 downto 0);
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component;

component multiply is
 port (
 clk: IN std_logic;
 a: IN std_logic_VECTOR(15 downto 0);
 b: IN std_logic_VECTOR(15 downto 0);
 p: OUT std_logic_VECTOR(31 downto 0));
end component multiply;

component ALUcontroller is
 Port (FUNCT : in STD_LOGIC_VECTOR (5 downto 0);

 92

 ALUop : in STD_LOGIC_VECTOR (4 downto 0);
 SIGNEDCOMP : out STD_LOGIC;
 SHDIR : out STD_LOGIC;
 SHEXTMODE : out STD_LOGIC;
 MSEL : out STD_LOGIC_VECTOR (1 downto 0);
 FSEL : out STD_LOGIC_VECTOR (2 downto 0));
end component;

component ALU is
 Port (A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0);
 FSEL : in STD_LOGIC_VECTOR (2 downto 0);
 COUT : out STD_LOGIC;
 ZERO : out STD_LOGIC;
 NEG : out STD_LOGIC;
 OVF : out STD_LOGIC);
end component ALU;

signal signedcomp, shdir, shextmode: std_logic;
signal msel: std_logic_vector (1 downto 0);
signal fsel: std_logic_vector (2 downto 0);

--SIMD signals
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0);
signal va_array, vb_array, vresult_array, vmultresult_array : data_array;

begin

ALUcontrol: component ALUcontroller port map(FUNCT => FUNCT,
 ALUop => ALUop,
 SIGNEDCOMP => signedcomp,
 SHDIR => shdir,
 SHEXTMODE => shextmode,
 MSEL => msel,
 FSEL => fsel);

mult: component multiply port map(clk => CLK,
 a => A(15 downto 0),
 b => B(15 downto 0),
 p => MULRESULT);

calc: component computation port map(SHDIR => shdir,
 SHEXTMODE => shextmode,
 SIGNEDCOMP => signedcomp,
 MSEL => msel,
 FSEL => fsel,
 SHAMT => SHAMT,
 A => A,
 B => B,
 DOUT => RESULT);

va_array(4) <= VA(31 downto 0);
va_array(3) <= VA(63 downto 32);
va_array(2) <= VA(95 downto 64);

 93

va_array(1) <= VA(127 downto 96);

vb_array(4) <= VB(31 downto 0);
vb_array(3) <= VB(63 downto 32);
vb_array(2) <= VB(95 downto 64);
vb_array(1) <= VB(127 downto 96);

genalu: for I in 1 to size generate
genSIMDalu: component ALU port map(A => va_array(I),
 B => vb_array(I),
 DOUT => vresult_array(I),
 FSEL => fsel,
 COUT => open,
 ZERO => open,
 NEG => open,
 OVF => open);

genSIMDmult: component multiply port map(clk => CLK,
 a => va_array(I)(15 downto 0),
 b => vb_array(I)(15 downto 0),
 p => vmultresult_array(I));

end generate;

VRESULT <= vresult_array(1) & vresult_array(2) & vresult_array(3) & vresult_array(4);
VMULRESULT <= vmultresult_array(1) & vmultresult_array(2) & vmultresult_array(3) &
vmultresult_array(4);

end Behavioral;

ALUcontroller.vhd:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ALUcontroller is
 Port (FUNCT : in STD_LOGIC_VECTOR (5 downto 0);
 ALUop : in STD_LOGIC_VECTOR (3 downto 0);
 SIGNEDCOMP : out STD_LOGIC;
 SHDIR : out STD_LOGIC;
 SHEXTMODE : out STD_LOGIC;
 MSEL : out STD_LOGIC_VECTOR (1 downto 0);
 FSEL : out STD_LOGIC_VECTOR (2 downto 0));
end ALUcontroller;

architecture Behavioral of ALUcontroller is

--ALUops
constant rtype: std_logic_vector (4 downto 0):= "00000"; --vrtype as well
constant addiu: std_logic_vector (4 downto 0):= "00001"; --vaddiu as well
constant andi: std_logic_vector (4 downto 0):= "00010"; --vandi as well
constant ori: std_logic_vector (4 downto 0):= "00011"; --vori as well
constant xori: std_logic_vector (4 downto 0):= "00100"; --vxori as well
constant lui: std_logic_vector (4 downto 0):= "00101";

 94

constant slti: std_logic_vector (4 downto 0):= "00110";
constant sltiu: std_logic_vector (4 downto 0):= "00111";
--"01000" is for mul, also acts at TAKEMULRESULT in processor
--"10000" is for others

--Funct
constant addu: std_logic_vector (5 downto 0):= "100001"; --vaddu as well
constant subu: std_logic_vector (5 downto 0):= "100011";
constant and1: std_logic_vector (5 downto 0):= "100100"; --vand as well
constant or1: std_logic_vector (5 downto 0):= "100101"; --vor as well
constant xor1: std_logic_vector (5 downto 0):= "100110"; --vxor as well
constant sll1: std_logic_vector (5 downto 0):= "000000";
constant srl1: std_logic_vector (5 downto 0):= "000010";
constant sra1: std_logic_vector (5 downto 0):= "000011";
constant slt: std_logic_vector (5 downto 0):= "101010";
constant sltu: std_logic_vector (5 downto 0):= "101011";

--MSEL
constant shifter: std_logic_vector (1 downto 0):= "00";
constant compare: std_logic_vector (1 downto 0):= "01";
constant alu: std_logic_vector (1 downto 0):= "10";

begin

SHDIR <= '1' when ALUop = rtype AND FUNCT = sll1 else '0';
SHEXTMODE <= '1' when ALUop = rtype AND FUNCT = sra1 else '0';
SIGNEDCOMP <= '1' when ALUop = slti OR FUNCT = slt else '0';

process(ALUop, FUNCT)
begin
 case ALUop is
 when rtype => case FUNCT is
 when addu => FSEL <= "000"; MSEL <= alu;
 when subu => FSEL <= "100"; MSEL <= alu;
 when and1 => FSEL <= "001"; MSEL <= alu;
 when or1 => FSEL <= "010"; MSEL <= alu;
 when xor1 => FSEL <= "011"; MSEL <= alu;
 when sll1 => FSEL <= "000"; MSEL <= shifter;
 when srl1 => FSEL <= "000"; MSEL <= shifter;
 when sra1 => FSEL <= "000"; MSEL <= shifter;
 when slt => FSEL <= "100"; MSEL <= compare;
 when sltu => FSEL <= "100"; MSEL <= compare;
 when others => FSEL <= "000"; MSEL <= alu;
 end case;
 when andi => FSEL <= "001"; MSEL <= alu;
 when ori => FSEL <= "010"; MSEL <= alu;
 when xori => FSEL <= "011"; MSEL <= alu;
 when lui => FSEL <= "101"; MSEL <= alu;
 when slti => FSEL <= "100"; MSEL <= compare;
 when sltiu => FSEL <= "100"; MSEL <= compare;
 when others => FSEL <= "000"; MSEL <= alu;
 end case;
end process;

end Behavioral;

 95

Computation.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity computation is
 Port (SHDIR : in STD_LOGIC;
 SHEXTMODE : in STD_LOGIC;
 SIGNEDCOMP : in STD_LOGIC;
 MSEL : in STD_LOGIC_VECTOR (1 downto 0);
 FSEL : in STD_LOGIC_VECTOR (2 downto 0);
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end computation;

architecture Behavioral of computation is

component ALU is
 Port (A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0);
 FSEL : in STD_LOGIC_VECTOR (2 downto 0);
 COUT : out STD_LOGIC;
 ZERO : out STD_LOGIC;
 NEG : out STD_LOGIC;
 OVF : out STD_LOGIC);
end component;

component shifter is
 Port (SHDIR : in STD_LOGIC;
 EXTMODE : in STD_LOGIC;
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component shifter;

component comparator is
 Port (SIGNEDCOMP : in STD_LOGIC;
 COUT : in STD_LOGIC;
 NEG : in STD_LOGIC;
 OVF : in STD_LOGIC;
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component;

component mux32x3 is
 Port (SEL : in STD_LOGIC_VECTOR (1 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component;

 96

signal cout, neg, ovf, zero: std_logic;
signal ALUdata, shiftdata, comparedata: std_logic_vector(31 downto 0);

begin

alu1: component ALU port map(A => A,
 B => B,
 DOUT => ALUdata,
 FSEL => FSEL,
 COUT => cout,
 ZERO => zero,
 NEG => neg,
 OVF => ovf);

shift: component shifter port map(SHDIR => SHDIR,
 EXTMODE => SHEXTMODE,
 SHAMT => SHAMT,
 DIN => B,
 DOUT => shiftdata);

compare: component comparator port map(SIGNEDCOMP => SIGNEDCOMP,
 COUT => cout,
 NEG => neg,
 OVF => ovf,
 DOUT => comparedata);

datamux: component mux32x3 port map(SEL => MSEL,
 A => shiftdata,
 B => comparedata,
 C => ALUdata,
 DOUT => DOUT);

end Behavioral;

Multiply.vhd:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- synopsys translate_off
Library XilinxCoreLib;
-- synopsys translate_on
ENTITY multiply IS
 port (
 clk: IN std_logic;
 a: IN std_logic_VECTOR(15 downto 0);
 b: IN std_logic_VECTOR(15 downto 0);
 p: OUT std_logic_VECTOR(31 downto 0));
END multiply;

ARCHITECTURE multiply_a OF multiply IS
-- synopsys translate_off
component wrapped_multiply
 port (
 clk: IN std_logic;

 97

 a: IN std_logic_VECTOR(15 downto 0);
 b: IN std_logic_VECTOR(15 downto 0);
 p: OUT std_logic_VECTOR(31 downto 0));
end component;

-- Configuration specification
 for all : wrapped_multiply use entity XilinxCoreLib.mult_gen_v9_0(behavioral)
 generic map(
 c_a_width => 16,
 c_b_type => 0,
 c_ce_overrides_sclr => 0,
 c_opt_goal => 1,
 c_has_sclr => 0,
 c_round_pt => 0,
 c_out_high => 31,
 c_mult_type => 0,
 c_ccm_imp => 0,
 c_has_load_done => 0,
 c_pipe_stages => 1,
 c_has_ce => 0,
 c_has_zero_detect => 0,
 c_round_output => 0,
 c_mem_init_prefix => "mgv9",
 c_xdevicefamily => "virtex2p",
 c_a_type => 0,
 c_out_low => 0,
 c_b_width => 16,
 c_b_value => "10000001");
-- synopsys translate_on
BEGIN
-- synopsys translate_off
U0 : wrapped_multiply
 port map (
 clk => clk,
 a => a,
 b => b,
 p => p);
-- synopsys translate_on

END multiply_a;

ALU.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ALU is
 Port (A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0);
 FSEL : in STD_LOGIC_VECTOR (2 downto 0);
 COUT : out STD_LOGIC;

 98

 ZERO : out STD_LOGIC;
 NEG : out STD_LOGIC;
 OVF : out STD_LOGIC);
end ALU;

architecture Behavioral of ALU is

signal sum, tempsum, tempsub, tempa, tempb : std_logic_vector (32 downto 0);
signal douttemp: std_logic_vector (31 downto 0);

begin

tempa <= '0'& A ;
tempb <= '0' & B;
tempsum <= tempa + tempb; --ADD
tempsub <= tempa - tempb; --SUB

process(A, B, FSEL, douttemp, tempsum, tempsub, sum)
 begin
 case FSEL is
 when "000" => sum <= tempsum;--'0'& A + '0' & B; --ADD
 douttemp <= sum(31 downto 0);
 DOUT <= douttemp;
 COUT <= sum(32);
 if douttemp = x"00000000" then
 ZERO <= '1';
 else
 ZERO <= '0';
 end if;
 NEG <= douttemp(31);
 if A(31) = '0' AND B(31) = '0' AND douttemp(31) = '1' then
 OVF <= '1';
 elsif A(31) = '1' AND B(31) = '1' AND douttemp(31) = '0' then
 OVF <= '1';
 else
 OVF <= '0';
 end if;
 when "001" => douttemp <= A AND B; --AND
 DOUT <= douttemp;
 COUT <= '0';
 if douttemp = x"00000000" then
 ZERO <= '1';
 else
 ZERO <= '0';
 end if;
 NEG <= douttemp(31);
 OVF <= '0';
 when "010" => douttemp <= A OR B; --OR
 DOUT <= douttemp;
 COUT <= '0';
 if douttemp = x"00000000" then
 ZERO <= '1';
 else
 ZERO <= '0';
 end if;

 99

 NEG <= douttemp(31);
 OVF <= '0';
 when "011" => douttemp <= A XOR B; --XOR
 DOUT <= douttemp;
 COUT <= '0';
 if douttemp = x"00000000" then
 ZERO <= '1';
 else
 ZERO <= '0';
 end if;
 NEG <= douttemp(31);
 OVF <= '0';
 when "100" => sum <= tempsub;--'0'&A - '0'&B; --SUB
 douttemp <= sum(31 downto 0);
 DOUT <= douttemp;
 COUT <= sum(32);
 if douttemp = x"00000000" then
 ZERO <= '1';
 else
 ZERO <= '0';
 end if;
 NEG <= douttemp(31);
 if A(31) = '1' AND B(31) = '0' AND douttemp(31) = '0' then
 OVF <= '1';
 elsif A(31) = '0' AND B(31) = '1' AND douttemp(31) = '1' then
 OVF <= '1';
 else
 OVF <= '0';
 end if;
 when "101" => DOUT(31 downto 16) <= B(15 downto 0);
 DOUT(15 downto 0) <= x"0000";
 COUT <= '0';
 ZERO <= '0';
 NEG <= '0';
 OVF <= '0';
 when others => DOUT <= x"00000000";
 COUT <= '0';
 ZERO <= '1';
 NEG <= '0';
 OVF <= '0';
 end case;
 end process;
end Behavioral;

Comparator.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity comparator is
 Port (SIGNEDCOMP : in STD_LOGIC;
 COUT : in STD_LOGIC;
 NEG : in STD_LOGIC;

 100

 OVF : in STD_LOGIC;
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end comparator;

architecture Behavioral of comparator is

component mux32x2 is
 Port (SEL : in STD_LOGIC;
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end component;

signal negxorovf: std_logic;
signal zeros: std_logic_vector (30 downto 0):= "000" & x"0000000";
signal atemp, btemp: std_logic_vector (31 downto 0);

begin

negxorovf <= NEG XOR OVF;
atemp <= zeros & COUT;
btemp <= zeros & negxorovf;
slt_umux:component mux32x2 port map(SIGNEDCOMP, atemp, btemp, DOUT);

end Behavioral;

Shifter.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shifter is
 Port (SHDIR : in STD_LOGIC; -- 0 = right, 1 = left
 EXTMODE : in STD_LOGIC;
 SHAMT : in STD_LOGIC_VECTOR (4 downto 0);
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end shifter;

architecture Behavioral of shifter is

type stage_array is array(0 to 4) of std_logic_vector(31 downto 0);
signal sll_array, srl_array, sra_array : stage_array;

begin

sll_array(0) <= DIN when SHAMT(4) = '0' else DIN(15 downto 0) & X"0000";
sll_array(1) <= sll_array(0) when SHAMT(3) = '0' else sll_array(0)(23 downto 0) & X"00";
sll_array(2) <= sll_array(1) when SHAMT(2) = '0' else sll_array(1)(27 downto 0) & X"0";
sll_array(3) <= sll_array(2) when SHAMT(1) = '0' else sll_array(2)(29 downto 0) & "00";
sll_array(4) <= sll_array(3) when SHAMT(0) = '0' else sll_array(3)(30 downto 0) & '0';

srl_array(0) <= DIN when SHAMT(4) = '0' else X"0000" & DIN(31 downto 16);

 101

srl_array(1) <= srl_array(0) when SHAMT(3) = '0' else X"00" & srl_array(0)(31 downto 8);
srl_array(2) <= srl_array(1) when SHAMT(2) = '0' else X"0" & srl_array(1)(31 downto 4);
srl_array(3) <= srl_array(2) when SHAMT(1) = '0' else "00" & srl_array(2)(31 downto 2);
srl_array(4) <= srl_array(3) when SHAMT(0) = '0' else '0' & srl_array(3)(31 downto 1);

sra_array(0) <= DIN when SHAMT(4) = '0' else X"FFFF" & DIN(31 downto 16);
sra_array(1) <= sra_array(0) when SHAMT(3) = '0' else X"FF" & sra_array(0)(31 downto 8);
sra_array(2) <= sra_array(1) when SHAMT(2) = '0' else X"F" & sra_array(1)(31 downto 4);
sra_array(3) <= sra_array(2) when SHAMT(1) = '0' else "11" & sra_array(2)(31 downto 2);
sra_array(4) <= sra_array(3) when SHAMT(0) = '0' else '1' & sra_array(3)(31 downto 1);

DOUT <= sll_array(4) when SHDIR = '1' else
 sra_array(4) when EXTMODE = '1' and DIN(31) = '1' else
 srl_array(4);

end architecture Behavioral;

Mux32x4.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux32x4 is
 Port (SEL : in STD_LOGIC_VECTOR (2 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : in STD_LOGIC_VECTOR (31 downto 0);
 D : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end mux32x4;

architecture Behavioral of mux32x4 is

begin

DOUT <= A when SEL = "000" else
 B when SEL = "001" else
 C when SEL = "010" else
 D when SEL = "011" else
 x"deaddead";

end Behavioral;

Mux32x3.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

 102

entity mux32x3 is
 Port (SEL : in STD_LOGIC_VECTOR (1 downto 0);
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end mux32x3;

architecture Behavioral of mux32x3 is

begin

DOUT <= A when SEL = "00" else
 B when SEL = "01" else
 C when SEL = "10" else
 x"deaddead";

end Behavioral;

Mux32x2.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mux32x2 is
 Port (SEL : in STD_LOGIC;
 A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 DOUT : out STD_LOGIC_VECTOR (31 downto 0));
end mux32x2;

architecture Behavioral of mux32x2 is

begin

DOUT <= A when SEL = '0' else
 B when SEL = '1';

end Behavioral;

MEMstage.vhd:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity MEMstage is
 Generic (datasize : natural := 127;
 size : natural := 4);
 Port (CLK : in STD_LOGIC;

 103

 RESET : in STD_LOGIC;
 ADDR : in STD_LOGIC_VECTOR (31 downto 0);
 DIN : in STD_LOGIC_VECTOR (31 downto 0);
 MEMTOREG : in STD_LOGIC;
 MEMWRITEH : in STD_LOGIC;
 DOUT : out STD_LOGIC_VECTOR (31 downto 0);
 --SIMD Ports
 VADDR : in STD_LOGIC_VECTOR (31 downto 0);
 VDIN : in STD_LOGIC_VECTOR (datasize downto 0);
 VMEMTOREG : in STD_LOGIC;
 VMEMWRITEH : in STD_LOGIC;
 VDOUT : out STD_LOGIC_VECTOR (datasize downto 0));
end MEMstage;

architecture Behavioral of MEMstage is

component datamem is
 port (
 addr: in std_logic_vector(9 downto 0);
 clk: in std_logic;
 din: in std_logic_vector(31 downto 0);
 dout: out std_logic_vector(31 downto 0);
 en: in std_logic;
 sinit: in std_logic;
 we: in std_logic);
end component datamem;

component simd_memory_1 is
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(31 downto 0);
 dout: OUT std_logic_VECTOR(31 downto 0);
 en: in std_logic;
 sinit: in std_logic;
 we: in std_logic);
end component simd_memory_1;

component simd_memory_2 is
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(31 downto 0);
 dout: OUT std_logic_VECTOR(31 downto 0);
 en: in std_logic;
 sinit: in std_logic;
 we: in std_logic);
end component simd_memory_2;

type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0);
signal vdin_array, vdout_array : data_array;

begin

datamemory: component datamem port map(addr => ADDR(11 downto 2),
 clk => CLK,

 104

 din => DIN,
 dout => DOUT,
 en => MEMTOREG,
 sinit => RESET,
 we => MEMWRITEH);

vdin_array(4) <= VDIN(31 downto 0);
vdin_array(3) <= VDIN(63 downto 32);
vdin_array(2) <= VDIN(95 downto 64);
vdin_array(1) <= VDIN(127 downto 96);

SIMDmem1: component simd_memory_1 port map(addr => VADDR(11 downto 2),
 clk => CLK,
 din => vdin_array(1),
 dout => vdout_array(1),
 en => VMEMTOREG,
 sinit => RESET,
 we => VMEMWRITEH);

SIMDmem2: component simd_memory_2 port map(addr => VADDR(11 downto 2),
 clk => CLK,
 din => vdin_array(2),
 dout => vdout_array(2),
 en => VMEMTOREG,
 sinit => RESET,
 we => VMEMWRITEH);

SIMDmem3: component simd_memory_2 port map(addr => VADDR(11 downto 2),
 clk => CLK,
 din => vdin_array(3),
 dout => vdout_array(3),
 en => VMEMTOREG,
 sinit => RESET,
 we => VMEMWRITEH);

SIMDmem4: component simd_memory_2 port map(addr => VADDR(11 downto 2),
 clk => CLK,
 din => vdin_array(4),
 dout => vdout_array(4),
 en => VMEMTOREG,
 sinit => RESET,
 we => VMEMWRITEH);

VDOUT <= vdout_array(1) & vdout_array(2) & vdout_array(3) & vdout_array(4);

end Behavioral;

Datamem.vhd:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- synopsys translate_off
Library XilinxCoreLib;

 105

-- synopsys translate_on
ENTITY datamem IS
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(31 downto 0);
 dout: OUT std_logic_VECTOR(31 downto 0);
 en: IN std_logic;
 sinit: IN std_logic;
 we: IN std_logic);
END datamem;

ARCHITECTURE datamem_a OF datamem IS
-- synopsys translate_off
component wrapped_datamem
 port (
 addr: IN std_logic_VECTOR(9 downto 0);
 clk: IN std_logic;
 din: IN std_logic_VECTOR(31 downto 0);
 dout: OUT std_logic_VECTOR(31 downto 0);
 en: IN std_logic;
 sinit: IN std_logic;
 we: IN std_logic);
end component;

-- Configuration specification
 for all : wrapped_datamem use entity XilinxCoreLib.blkmemsp_v6_2(behavioral)
 generic map(
 c_sinit_value => "0",
 c_has_en => 1,
 c_reg_inputs => 0,
 c_yclk_is_rising => 1,
 c_ysinit_is_high => 1,
 c_ywe_is_high => 1,
 c_yprimitive_type => "16kx1",
 c_ytop_addr => "1024",
 c_yhierarchy => "hierarchy1",
 c_has_limit_data_pitch => 0,
 c_has_rdy => 0,
 c_write_mode => 0,
 c_width => 32,
 c_yuse_single_primitive => 0,
 c_has_nd => 0,
 c_has_we => 1,
 c_enable_rlocs => 0,
 c_has_rfd => 0,
 c_has_din => 1,
 c_ybottom_addr => "0",
 c_pipe_stages => 0,
 c_yen_is_high => 1,
 c_depth => 1024,
 c_has_default_data => 1,
 c_limit_data_pitch => 18,
 c_has_sinit => 1,
 c_yydisable_warnings => 1,
 c_mem_init_file => "mif_file_16_1",

 106

 c_default_data => "0",
 c_ymake_bmm => 0,
 c_addr_width => 10);
-- synopsys translate_on
BEGIN
-- synopsys translate_off
U0 : wrapped_datamem
 port map (
 addr => addr,
 clk => clk,
 din => din,
 dout => dout,
 en => en,
 sinit => sinit,
 we => we);
-- synopsys translate_on

END datamem_a;

 107

Appendix C: Program Codes

Hazard Test:
main:
CaseA:
 ori $v0, $0, 87
 or $v1, $v0, $0
 beq $v0, $v1, CaseB
 sll $0, $0, 0
 j failA
 sll $0, $0, 0
tested basic function of or and ori, tested beq for branch to correct address.

CaseB:
 or $0, $v1, $v0
 beq $0, $t1, CaseC
 sll $0, $0, 0
 j failB
 sll $0, $0, 0
tested register zero by trying to or a value into the register.

CaseC:
 addiu $v0, $0, 54
 addu $v1, $v0, $0
 bne $v1, $v0, failC1
 subu $t1, $v1, $v0
 beq $t1, $0, CaseD
 sll $0, $0, 0
 j failC2
 sll $0, $0, 0
tested basic function of addu, subu, addiu.

CaseD:
 addiu $v0, $0, 64
 addiu $v1, $0, 80
 and $t2, $v1, $v0
 bne $t2, $v0, failD1
 sll $0, $0, 0
 addiu $v0, $0, 170
 xor $t3, $t2, $v0
 addu $v1, $t2, $v0
 bne $t3, $v1, failD2
 sll $0, $0, 0
 xori $t4, $t3, 255
 addiu $v0, $0, 21
 bne $t4, $v0, failD3
 sll $0, $0, 0
 andi $t5, $v0, 255
 bne $t5, $v0, failD4
 sll $0, $0, 0
 lui $at, 64
 sll $0, $0, 0
 ori $v0, $at, 240

 108

 addiu $t6, $at, 240
 bne $t6, $v0, failD5
 addiu $v0, $0, 180
 jr $v0
 sll $0, $0, 0
 addiu $v0, $0, 240
tested basic functions of and, xor, xori, andi, lui. Also tested if jr would jump to the correct address.

CaseE:
 addiu $v1, $0, 180
 bne $v1, $v0, failE1
 sll $0, $0, 0
 addiu $v0, $v1, 2
 beq $v1, $v0, failE2
 sll $0, $0, 0
 j CaseF
 addiu $v1, $0, 60
 lui $at, 64
 sll $0, $0, 0
 ori $v0, $at, 208
 jr $v0
 addiu $at, $0, 77
#tested for delay slot for jr, beq functionality and started test for j delay slot. From the jr in CaseD, it
#jumped to the lui instruction. To test for the delay slot: set up an instruction to change a register where
#the nop should be and after it jumps, change another register and compare it to see if it was the same.

CaseF:
 addiu $t7, $0, 60
 bne $t7, $v1, failF
 sll $0, $0, 0
 beq $0, $0, CaseG
 addiu $v0, $0, 125
 addiu $at, $0, 60
#finish test for j delay slot and start test for beq branch location and delay slot.

CaseG:
 beq $at, $t7, failG1
 sll $0, $0, 0
 addiu $v1, $0, 125
 bne $v1, $v0, failG2
 sll $0, $0, 0
 bne $v1, $0, CaseH
 addiu $v0, $0, 47
 addiu $t2, $0, 88
#finish test for beq location and delay slot and start test for bne branch location and delay slot. The first
#test is to make sure that beq actually branched off as the addiu $at, $0, 60 instruction in CaseF should
#never be executed. The second test checks the delay slot as the same logic as written in CaseE test.

CaseH:
 addiu $t3, $0, 88
 beq $t3, $t2, failH1
 sll $0, $0, 0
 addiu $v1, $0, 47
 bne $v1, $v0, failH2
 sll $0, $0, 0
 jal CaseI

 109

 addiu $v0, $0, 99
 j endoftest
#finish test for bne location and delay slot and start test for jal jump location, delay slot and return address.
#To test for the delay slot: set up an instruction to change a register where the nop should be and after it
#branches, change another register and compare it to see if it was the same.

CaseI:
 addiu $v1, $0, 99
 bne $v1, $v0, failI1
 sll $0, $0, 0
 lui $at, 64
 sll $0, $0, 0
 ori $v0, $0, 0x0140
 bne $v0, $ra, failI2
 sll $0, $0, 0
#finish test for jal location, delay slot and return address. If jal did not branch then the j endoftest would
#have executed. The first test here looks to see if the registers are the same for the delay slot. The second
#test shows functionality of the return address.
 addiu $v1, $0, 15
 sll $v0, $v1, 16
 addiu $t4, $0, 0
 lui $t4, 15
 sll $0, $0, 0
 bne $t4, $v0, failI3
 sll $0, $0, 0
 srl $v0, $v0, 8
 addiu $t5, $0, 3840
 bne $t5, $v0, failI4
 sll $0, $0, 0
 sra $v1, $v0, 8
 addiu $t6, $0, 15
 bne $t6, $v1, failI5
 sll $0, $0, 0
 sll $v1, $v1, 31
 sra $v1, $v1, 5
 lui $at, 64512
 sll $0, $0, 0
 bne $v1, $at, failI6
 sll $0, $0, 0
tested sll, srl, and sra to show shifting instructions work correctly and extend the MSB appropriately.
 addiu $t7, $0, 48
 addiu $t6, $0, 0
 lui $t7, 4
 sll $0, $0, 0
 lui $t6, 4
 sll $0, $0, 0
 bne $t6, $t7, failI7
 sll $0, $0, 0
#tested lui extend.
 addu $t2, $0, $0
 addu $t3, $0, $0
 addiu $t2, $0, -42
 addiu $t3, $0, 42
 addu $t4, $t3, $t2
 bne $t4, $0, failI8
 sll $0, $0, 0

 110

 j CaseJ
 sll $0, $0, 0
#tested addiu sign extend.

CaseL:
 addiu $v0, $0, 27
 sw $v0,20,($0)
 lw $t3,20,($0)
 bne $t3, $v0, failL1
 sll $0, $0, 0
 addiu $v1, $0, 44
 sw $v1,8,($0)
 sll $0, $0, 0
 sll $0, $0, 0
 lw $t4,8,($0)
 bne $t4, $v1, failL2
 sll $0, $0, 0
 j finishtest
 sll $0, $0, 0
#tested sw and lw. Makes sure that a load that follows a store to the same address reads the appropriate
#data

CaseK:
 addiu $v0, $0, 15
 sll $v0, $v0, 28
 sra $v0, $v0, 28
 addiu $v1, $v0, 1
 bne $v1, $0, failK1
 sll $0, $0, 0
 addiu $t4, $0, 15
 addu $t4, $t4, $v0
 addiu $t5, $0, 14
 bne $t5, $t4, failK2
 sll $0, $0, 0
 subu $t6, $t4, $v0
 addiu $t5, $0, 15
 bne $t5, $t6, failK3
 sll $0, $0, 0
#tested for overflow of arithmetic and logical instructions.
 addiu $v0, $0, 32767
 andi $v1, $v0, 255
 addiu $t3, $0, 255
 bne $t3, $v1, failK4
 sll $0, $0, 0
 xori $t4, $t3, 0
 bne $t4, $t3, failK5
 sll $0, $0, 0
 jal CaseL
 sll $0, $0, 0
 j endoftest
 sll $0, $0, 0
#tested andi and xori for extend. This completes the tests for arithmetic and logical instructions with
#immediate field extends.

CaseJ:

 111

 addiu $v0, $0, 15
 sll $v0, $v0, 28
 sra $v0, $v0, 28
 addiu $v1, $0, 52
 slt $t2, $v0, $v1
 addiu $t1, $0, 1
 bne $t1, $t2, failJ1
 sll $0, $0, 0
 slti $t3, $v0, 138
 bne $t1, $t3, failJ2
 sll $0, $0, 0
 slt $t4, $v1, $v0
 beq $t4, $t1, failJ3
 sll $0, $0, 0
 slti $t5, $v1, -294
 beq $t5, $t1, failJ4
 sll $0, $0, 0
 addiu $v0, $0, 14296
 addiu $v1, $v0, 3920
 sll $v0, $v0, 4
 slt $t6, $v1, $v0
 bne $t1, $t6, failJ5
 sll $0, $0, 0
 slti $t7, $v0, 5333
 beq $t1, $t7, failJ6
 sll $0, $0, 0
 sltu $t2, $v1, $v0
 bne $t1, $t2, failJ7
 sll $0, $0, 0
 sltiu $t3, $v0, 5411
 beq $t1, $t3, failJ8
 sll $0, $0, 0
 j CaseK
 sll $0, $0, 0
#tested slt, slti, stliu, and stlu. These 8 tests look at both bit patterns representing negative two's
#complement integers and large natural numbers comparisons. Also tested jumping backwards.

#following are error codes to see where an error occurs
failA:
 addiu $t0, $0, 1
 j endoftest
 sll $0, $0, 0

failB:
 addiu $t0, $0, 2
 j endoftest
 sll $0, $0, 0

failC1:
 addiu $t0, $0, 3
 j endoftest
 sll $0, $0, 0

failC2:
 addiu $t0, $0, 4
 j endoftest

 112

 sll $0, $0, 0

failD1:
 addiu $t0, $0, 5
 j endoftest
 sll $0, $0, 0

failD2:
 addiu $t0, $0, 6
 j endoftest
 sll $0, $0, 0

failD3:
 addiu $t0, $0, 7
 j endoftest
 sll $0, $0, 0

failD4:
 addiu $t0, $0, 8
 j endoftest
 sll $0, $0, 0

failD5:
 addiu $t0, $0, 9
 j endoftest
 sll $0, $0, 0

failE1:
 addiu $t0, $0, 10
 j endoftest
 sll $0, $0, 0

failE2:
 addiu $t0, $0, 11
 j endoftest
 sll $0, $0, 0

failF:
 addiu $t0, $0, 12
 j endoftest
 sll $0, $0, 0

failG1:
 addiu $t0, $0, 13
 j endoftest
 sll $0, $0, 0

failG2:
 addiu $t0, $0, 14
 j endoftest
 sll $0, $0, 0

failH1:
 addiu $t0, $0, 15
 j endoftest

 113

 sll $0, $0, 0

failH2:
 addiu $t0, $0, 16
 j endoftest
 sll $0, $0, 0

failI1:
 addiu $t0, $0, 17
 j endoftest
 sll $0, $0, 0

failI2:
 addiu $t0, $0, 18
 j endoftest
 sll $0, $0, 0

failI3:
 addiu $t0, $0, 19
 j endoftest
 sll $0, $0, 0

failI4:
 addiu $t0, $0, 20
 j endoftest
 sll $0, $0, 0

failI5:
 addiu $t0, $0, 21
 j endoftest
 sll $0, $0, 0

failI6:
 addiu $t0, $0, 22
 j endoftest
 sll $0, $0, 0

failI7:
 addiu $t0, $0, 23
 j endoftest
 sll $0, $0, 0

failI8:
 addiu $t0, $0, 24
 j endoftest
 sll $0, $0, 0

failJ1:
 addiu $t0, $0, 25
 j endoftest
 sll $0, $0, 0

failJ2:
 addiu $t0, $0, 26
 j endoftest
 sll $0, $0, 0

 114

failJ3:
 addiu $t0, $0, 27
 j endoftest
 sll $0, $0, 0

failJ4:
 addiu $t0, $0, 28
 j endoftest
 sll $0, $0, 0

failJ5:
 addiu $t0, $0, 29
 j endoftest
 sll $0, $0, 0

failJ6:
 addiu $t0, $0, 30
 j endoftest
 sll $0, $0, 0

failJ7:
 addiu $t0, $0, 31
 j endoftest
 sll $0, $0, 0

failJ8:
 addiu $t0, $0, 32
 j endoftest
 sll $0, $0, 0

failK1:
 addiu $t0, $0, 33
 j endoftest
 sll $0, $0, 0

failK2:
 addiu $t0, $0, 34
 j endoftest
 sll $0, $0, 0

failK3:
 addiu $t0, $0, 35
 j endoftest
 sll $0, $0, 0

failK4:
 addiu $t0, $0, 36
 j endoftest
 sll $0, $0, 0

failK5:
 addiu $t0, $0, 37
 j endoftest
 sll $0, $0, 0

 115

failL1:
 addiu $t0, $0, 38
 j endoftest
 sll $0, $0, 0

failL2:
 addiu $t0, $0, 39
 j endoftest
 sll $0, $0, 0

finishtest:
 addiu $v0, $0, 15
 sll $v0, $v0, 28
 sra $v0, $v0, 28
 addu $v1, $v0, $0
 addu $t0, $v0, $0

endoftest:
 sll $0, $0, 0

Basic Test:
main:
test0:
 addiu $2, $0, 5 #testing addiu
 addiu $3, $0, 5 #testing addiu
 addiu $4, $0, -5
 addiu $23, $0, 0 #used to keep track of failed tests

 beq $2, $2, L1 #testing beq
 ori $0, $0, 0
 addiu $2, $2, -5
L1:
 bne $3, $0, L2 #testing bne
 ori $0, $0, 0
 addiu $3, $3, -5
L2:
 beq $2, $0, test0_fail
 ori $0, $0, 0
 bne $2, $3, test0_fail
 ori $0, $0, 0
 beq $2, $0, test0_fail
 ori $0, $0, 0
 bne $2, $2, test0_fail
 ori $0, $0, 0
 ori $0, $0, 0

 lui $5, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 ori $5, $5, 0xFFFB
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $4, $5, test0_fail

 116

 ori $0, $0, 0
 j test1
 ori $0, $0, 0 #NOP
test0_fail:
 ori $23, $23, 0x1
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2

test1: #test addu, addiu, subu
 addiu $6, $0, 1 #$6 = small number
 addiu $7, $0, 52 #$7 = another number
 lui $8, 0x8000 #$8 = smallest negative number (0x80000000)
 addiu $9, $0, -5 #$9 = negative number
 addiu $10, $0, -48 #$10 = negative number
 ori $0, $0, 0
 addiu $11, $8, -1 #$11 = largest number(0x7FFFFFFF)

 addu $12, $6, $7 #testing addu with 2 positive numbers
 addiu $13, $0, 53
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $12, $13, test1_fail

 addu $14, $9, $10 #testing addu for adding 2 negative numbers
 addiu $15, $0, -53
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $14, $15, test1_fail

 addu $16, $6, $9 #test addu with one pos and one neg number
 addiu $17, $0, -4
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $16, $17, test1_fail

 addiu $18, $6, 52 #testing addiu with 2 positive numbers
 addiu $19, $0, 53
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $18, $19, test1_fail

 addiu $20, $9, -48 #testing addiu for adding 2 negative numbers
 addiu $21, $0, -53
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $20, $21, test1_fail

 addiu $24, $6, -5 #test addiu with one pos and one neg number

 117

 addiu $25, $0, -4
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $24, $25, test1_fail

 subu $26, $6, $7 #testing subu with 2 positive numbers
 addiu $27, $0, -51
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $26, $27, test1_fail

 subu $2, $9, $10 #testing subu for adding 2 negative numbers
 addiu $3, $0, 43
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $2, $3, test1_fail

 subu $4, $6, $9 #test subu with one pos and one neg number
 addiu $5, $0, 6
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $4, $5, test1_fail
 ori $0, $0, 0
 j test2
 ori $0, $0, 0 #NOP
test1_fail:
 ori $23, $23, 0x2
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2

test2: #test and, andi, or, ori
 addiu $2, $0, 0x5A5A #$2 = 0x00005A5A
 addiu $3, $0, 0x2525 #$3 = 0x00002525
 ori $4, $0, 0xFFFF #$4 = 0x0000FFFF
 ori $0, $0, 0
 ori $0, $0, 0

 and $5, $2, $3 #test and
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $5, $0, test2_fail

 lui $6, 0x6789 #test and for no sign extension
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 and $7, $6, $4
 ori $0, $0, 0

 118

 ori $0, $0, 0
 ori $0, $0, 0
 bne $7, $0, test2_fail

 andi $8, $2, 0x2525 #test andi
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $8, $0, test2_fail

 lui $9, 0x6789 #test andi for no sign extension
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 andi $10, $9, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $10, $0, test2_fail

 or $11, $2, $3 #test or
 addiu $12, $0, 0x7F7F
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $11, $12, test2_fail

 lui $13, 0x6789 #test or for no sign extension
 addiu $14, $0, -1
 ori $0, $0, 0
 or $13, $13, $4
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $13, $14, test2_fail

 ori $15, $2, 0x2525 #test ori
 addiu $16, $0, 0x7F7F
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $15, $16, test2_fail

 lui $17, 0x6789 #test ori for no sign extension
 addiu $18, $0, -1
 ori $0, $0, 0
 ori $0, $0, 0
 ori $17, $17, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $17, $18, test2_fail

 ori $0, $0, 0 #NOP
 j test3
 ori $0, $0, 0 #NOP

 119

test2_fail:
 ori $23, $23, 0x4
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2

test3: #test xor, xori, lui
 addiu $2, $0, 0x0F0F #$2 = 0x00000F0F
 ori $3, $0, 0xFF00 #$3 = 0x0000FF00
 ori $4, $0, 0xF00F #$4 = 0x0000F00F
 ori $0, $0, 0
 ori $0, $0, 0

 xor $5, $2, $3 #testing xor
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $5, $4, test3_fail

 xori $6, $3, 0x0F0F #testing xori
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $6, $4, test3_fail

 xori $7, $2, 0xFF00 #testing xori for no sign extension
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $7, $4, test3_fail

 addiu $8, $0, 0x0001 #testing lui, especially for setting last 16bits to 0
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 lui $8, 0xFFFF
 addiu $9, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 lui $9, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $8, $9, test3_fail

 ori $0, $0, 0 #NOP
 j test4
 ori $0, $0, 0 #NOP
test3_fail:
 ori $23, $23, 0x8
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0

 120

 addiu $23, $23, 0
 break 2

test4: #test sll, sra, srl
 addiu $2, $0, 0x5A5A #$2 = 0x00005A5A
 addiu $3, $0, 0x2525 #s1 = 0x00002525
 ori $0, $0, 0
 ori $0, $0, 0

 sll $4, $2, 16 #testing sll
 addiu $5, $0, 0
 lui $5, 0x5A5A
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $4, $5, test4_fail

 #sll $6, $2, -5 #testing sll with negative shift
 #addiu $7, $0, 0
 #lui $7, 0xD000
 #ori $0, $0, 0
 #ori $0, $0, 0
 #ori $0, $0, 0
 #bne $6, $7, test4_fail

 sll $8, $4, 16 #testing that the bits at the end fall off
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $8, $0, test4_fail

 lui $9, 0x0FFF #test sra
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 sra $10, $9, 16
 ori $11, $0, 0x0FFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $10, $11, test4_fail

 lui $12, 0xFFFF #test sra for sign extension
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 sra $13, $12, 16
 addiu $14, $0, -1
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $13, $14, test4_fail

 sra $15, $10, 16 #testing that the bits at end fall off
 ori $0, $0, 0
 ori $0, $0, 0

 121

 ori $0, $0, 0
 bne $15, $0, test4_fail

 lui $16, 0x0FFF #test srl
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 srl $17, $16, 16
 ori $18, $0, 0x0FFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $17, $18, test4_fail

 lui $19, 0xFFFF #test srl for no sign extension
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 srl $20, $19, 16
 ori $21, $0, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $20, $21, test4_fail

 srl $22, $20, 16 #testing that the bits at end fall off
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $22, $0, test4_fail

 ori $0, $0, 0 #NOP
 j test5
 ori $0, $0, 0 #NOP
test4_fail:
 ori $23, $23, 0x10
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2

test5: #testing slt, sltu
 addiu $2, $0, 1 #$2 = small number
 addiu $3, $0, 52 #$3 = another number
 lui $4, 0x8000 #$4 = smallest negative number (0x80000000)
 addiu $5, $0, -5 #$5 = negative number
 addiu $6, $0, -48 #$6 = negative number
 ori $0, $0, 0
 addiu $7, $4, -1 #$7 = largest number(0x7FFFFFFF)

 slt $8, $2, $3 #testing slt with 2 pos num
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $8, $0, test5_fail

 122

 slt $9, $3, $2 #with 2 pos num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $9, $0, test5_fail

 slt $10, $5, $6 #with 2 neg num
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $10, $0, test5_fail

 slt $11, $6, $5 #with 2 neg num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $11, $0, test5_fail

 slt $12, $3, $6 #with one pos and one neg number
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $12, $0, test5_fail

 slt $13, $6, $3 #with one pos and one neg num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $13, $0, test5_fail

 slt $14, $6, $6 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $14, $0, test5_fail

 slt $15, $4, $4 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $15, $0, test5_fail

 slt $16, $4, $2 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $16, $0, test5_fail

 slt $17, $7, $5 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $17, $0, test5_fail

 sltu $18, $2, $3 #testing sltu with 2 pos num

 123

 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $18, $0, test5_fail

 sltu $19, $3, $2 #with 2 pos num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $19, $0, test5_fail

 sltu $20, $6, $6 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $20, $0, test5_fail

 sltu $21, $4, $4 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $21, $0, test5_fail

 sltu $22, $4, $2 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $22, $0, test5_fail

 sltu $24, $7, $5 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $24, $0, test5_fail

 sltu $25, $7, $4
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $25, $0, test5_fail
 ori $0, $0, 0 #NOP
 j test6
 ori $0, $0, 0 #NOP
test5_fail:
 ori $23, $23, 0x20
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2
test6: #testing slti, sltiu
 slti $8, $2, 52 #testing slti with 2 pos num
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $8, $0, test6_fail

 124

 slti $9, $3, 1 #with 2 pos num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $9, $0, test6_fail

 slti $10, $5, -48 #with 2 neg num
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $10, $0, test6_fail

 slti $11, $6, -5 #with 2 neg num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $11, $0, test6_fail

 slti $12, $3, -48 #with one pos and one neg number
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $12, $0, test6_fail

 slti $13, $6, 52 #with one pos and one neg num, reg reversed
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $13, $0, test6_fail

 slti $14, $6, -48 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $14, $0, test6_fail

 slti $16, $4, 1 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $16, $0, test6_fail

 slti $17, $7, -5 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $17, $0, test6_fail

 sltiu $18, $2, 52 #testing sltiu with 2 pos num
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $18, $0, test6_fail

 sltiu $19, $3, 1 #with 2 pos num, reg reversed

 125

 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $19, $0, test6_fail

 sltiu $20, $6, -48 #test if both reg are equal
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $20, $0, test6_fail

 sltiu $22, $4, 1 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $22, $0, test6_fail

 sltiu $24, $7, -5 #test for ovf condition
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 beq $24, $0, test6_fail

 ori $0, $0, 0 #NOP
 j test7
 ori $0, $0, 0 #NOP
test6_fail:
 ori $23, $23, 0x40
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2

test7: #test lw, sw
 addiu $29, $0, 0x0100
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $29, $29, -8
 addiu $2, $0, 0x5A5A
 addiu $3, $0, 0xFFFF
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0

 sw $2, 0($29);
 sw $3, 4($29);
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 lw $4, 0($29);
 lw $5, 4($29);
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0

 126

 bne $2, $4, test7_fail
 ori $0, $0, 0
 bne $3, $5, test7_fail
 ori $0, $0, 0

 sw $3, 0($29);
 lw $4, 0($29);
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 bne $4, $3, test7_fail

 addiu $29, $29, 8
 ori $0, $0, 0 #NOP
 j test8
 ori $0, $0, 0 #NOP
test7_fail:
 ori $23, $23, 0x80
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2
test8: #bgez, bltz, j, jr, jal
 addiu $2, $0, 5
 addiu $3, $0, -5
 addiu $4, $0, 4
 addiu $5, $0, 5
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0

 bgez $2, L3 #test bgez
 ori $0, $0, 0
 j test8_fail
 ori $0, $0, 0
L3:
 bgez $0, L4
 ori $0, $0, 0
 j test8_fail
 ori $0, $0, 0
L4:
 bgez $3, L5
 ori $0, $0, 0
 j L6
 ori $0, $0, 0
L5:
 sll $0, $0, 1
 j test8_fail
 ori $0, $0, 0
L6:
 bltz $3, L7 #test bltz
 ori $0, $0, 0
 j test8_fail
 ori $0, $0, 0
L7:

 127

 bltz $0, L8
 ori $0, $0, 0
 j L9
 ori $0, $0, 0
L8:
 j test8_fail
 ori $0, $0, 0
L9:
 bltz $2, L10
 ori $0, $0, 0
 j L11
 ori $0, $0, 0
L10:
 j test8_fail
 ori $0, $0, 0
L11:
 jal test8_2
 addiu $4, $0, 10

 addiu $4, $0, 5 #return from jr, make $4 = 5
 beq $4, $5, L12 #make sure we JRed to the right place
 ori $0, $0, 0 #NOP

test8_fail:
 ori $23, $23, 0x100
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 addiu $23, $23, 0
 break 2
L12:
 j done
 ori $0, $0, 0 #NOP
done:
 j exit
 ori $0, $0, 0
test8_2:
 sll $0, $0, 0
 sll $0, $0, 0
 sll $0, $0, 0
 jr $31
 ori $0, $0, 0
 j test8_fail
 ori $0, $0, 0
exit:
 addiu $23, $23, 0
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
 sw $23, 16($0)
 ori $0, $0, 0
 ori $0, $0, 0
 ori $0, $0, 0
exit2:
 break 3
 ori $0, $0, 0

 128

 break 4
 ori $0, $0, 0
 sll $0, $0, 0
 j exit2
 ori $0, $0, 0

Mul Test:
ori $1, $0, 0x2 #$1 = 2
mul $2, $1, $1 #$2 = 4
ori $3, $0, 0x4 #$3 = 4
bne $2, $3, fail1
ori $4, $0, 0x2 #$4 = 2
ori $1, $0, 0x8 #$1 = 8
mul $5, $4, $3 #$5 = 8
mul $6, $5, $2 #$6 = 32, test mul hazard
bne $5, $1, fail2 #test mul result forward
ori $2, $0, 0x20 #$2 = 32
bne $6, $2, fail3
ori $5, $0, 0x1111 #$5 = 4369
mul $6, $5, $5 #$6 = 19088161
lui $2, $0, 0x0123
ori $2, $2, 0x4321 #$2 = 19088161
bne $2, $6, fail4
ori $0, $0, 0xffff
ori $0, $0, 0x0fff
ori $0, $0, 0x00ff
j passedtest
ori $0, $0, 0x000f

fail1:
break 1
fail2:
break 2
fail3:
break 3
fail4:
break 4
passedtest:
break 15

SIMD Test:
vlw $1, 0($0) #load data from memories into register files
vlw $2, 4($0)
vlw $3, 8($0)
vlw $4, 12($0)
vlw $5, 16($0)
vlw $6, 20($0)
vlw $7, 24($0)
vlw $8, 28($0)
vlw $9, 32($0)
vlw $10, 36($0)
vlw $11, 40($0)

 129

vlw $12, 44($0)
vlw $13, 48($0)
vlw $14, 52($0)
vlw $15, 56($0)
vlw $16, 60($0)
vlw $17, 64($0)
vlw $18, 68($0)
vlw $19, 72($0)
vaddu $23, $1, $2 #test vaddu
vaddu $24, $23, $3
vaddu $25, $24, $23
vsw $25, 0($0)
break 1
vlw $20, 0($0) #test vlw hazard
vaddiu $21, $20, 0x1111 #test vaddiu
vaddiu $22, $0, 0x1000
vsw $23, 0($22) #test vsw and vlw
vsw $24, 8($22)
vsw $25, 24($22)
vlw $23, 8($22)
vlw $24, 24($22)
vlw $25, 0($22)
vandi $24, $8, 0x8888 #test vandi
break 2
vori $23, $24, 0x8888 #test vori
vxor $23, $23, $9 #test vxor
vor $23, $23, $10 #test vor
break 3
break 4
break 5
vxori $23, $23, 0x0765 #test vori
vand $23, $18, $23 #test vand
vaddiu $23, $23, 0x8000
break 6
break 7
break 8
vor $23, $16, $7
vmul $23, $23, $6 #test vmul
vmul $23, $23, $17 #test vmul hazard
break 9
break 10
break 11

 130

Appendix D: FPGA User Constraint File

FPGA_TOP.ucf
##NET "SYS_CLK" LOC = "AJ15";
##NET "SYS_CLK" IOSTANDARD = LVCMOS25;
##NET "SYS_CLK" TNM_NET = "SYS_CLK";
##TIMESPEC "TS_SYS_CLK" = PERIOD "SYS_CLK" 10.00 ns HIGH 50 %;

NET "SYS_CLK" LOC = "AH15";
NET "SYS_CLK" IOSTANDARD = LVCMOS25;
NET "SYS_CLK" TNM_NET = "SYS_CLK";
TIMESPEC "TS_SYS_CLK" = PERIOD "SYS_CLK" 31.25 ns HIGH 50 %;

NET "LED_0" LOC = "AC4";
NET "LED_1" LOC = "AC3";
NET "STALL" LOC = "AA6";
NET "LED_3" LOC = "AA5";

##NET "LED_0" IOSTANDARD = LVTTL;
##NET "LED_1" IOSTANDARD = LVTTL;
##NET "STALL" IOSTANDARD = LVTTL;
##NET "LED_3" IOSTANDARD = LVTTL;

##NET "LED_0" DRIVE = 12;
##NET "LED_1" DRIVE = 12;
##NET "STALL" DRIVE = 12;
##NET "LED_3" DRIVE = 12;

##NET "LED_0" SLEW = SLOW;
##NET "LED_1" SLEW = SLOW;
##NET "STALL" SLEW = SLOW;
##NET "LED_3" SLEW = SLOW;

NET "DIPSWITCH<0>" LOC = "AC11";
NET "DIPSWITCH<1>" LOC = "AD11";
NET "DIPSWITCH<2>" LOC = "AF8";
NET "DIPSWITCH<3>" LOC = "AF9";

##NET "DIPSWITCH<0>" IOSTANDARD = LVCMOS25;
##NET "DIPSWITCH<1>" IOSTANDARD = LVCMOS25;
##NET "DIPSWITCH<2>" IOSTANDARD = LVCMOS25;
##NET "DIPSWITCH<3>" IOSTANDARD = LVCMOS25;

##NET "PB_ENTER" LOC = "AG5";
##NET "PB_UP" LOC = "AH4";
NET "SINGLE_CLK_low" LOC = "AG3";
NET "RESET_low" LOC = "AH1";
NET "RELEASE_low" LOC = "AH2";

##NET "PB_ENTER" IOSTANDARD = LVTTL;

 131

##NET "PB_UP" IOSTANDARD = LVTTL;
##NET "SINGLE_CLK_" IOSTANDARD = LVCMOS25;
##NET "RESET_" IOSTANDARD = LVTTL;
##NET "RELEASE_" IOSTANDARD = LVTTL;

NET "EXP_IO_0" LOC = "K2";
NET "EXP_IO_1" LOC = "L2";
NET "EXP_IO_2" LOC = "N8";
NET "EXP_IO_3" LOC = "N7";
NET "PC_DISPLAY<31>" LOC = "K4";
NET "PC_DISPLAY<30>" LOC = "K3";
NET "PC_DISPLAY<29>" LOC = "L1";
NET "PC_DISPLAY<28>" LOC = "M1";
NET "PC_DISPLAY<27>" LOC = "N6";
NET "PC_DISPLAY<26>" LOC = "N5";
NET "PC_DISPLAY<25>" LOC = "L5";
NET "PC_DISPLAY<24>" LOC = "L4";
NET "PC_DISPLAY<23>" LOC = "M2";
NET "PC_DISPLAY<22>" LOC = "N2";
NET "PC_DISPLAY<21>" LOC = "P9";
NET "PC_DISPLAY<20>" LOC = "R9";
NET "PC_DISPLAY<19>" LOC = "M4";
NET "PC_DISPLAY<18>" LOC = "M3";
NET "PC_DISPLAY<17>" LOC = "N1";
NET "PC_DISPLAY<16>" LOC = "P1";
NET "EXP_IO_20" LOC = "P8";
NET "EXP_IO_21" LOC = "P7";
NET "EXP_IO_22" LOC = "N4";
NET "EXP_IO_23" LOC = "N3";
NET "PC_DISPLAY<15>" LOC = "P3";
NET "PC_DISPLAY<14>" LOC = "P2";
NET "PC_DISPLAY<13>" LOC = "R8";
NET "PC_DISPLAY<12>" LOC = "R7";
NET "PC_DISPLAY<11>" LOC = "P5";
NET "PC_DISPLAY<10>" LOC = "P4";
NET "PC_DISPLAY<9>" LOC = "R2";
NET "PC_DISPLAY<8>" LOC = "T2";
NET "PC_DISPLAY<7>" LOC = "R6";
NET "PC_DISPLAY<6>" LOC = "R5";
NET "PC_DISPLAY<5>" LOC = "R4";
NET "PC_DISPLAY<4>" LOC = "R3";
NET "PC_DISPLAY<3>" LOC = "U1";
NET "PC_DISPLAY<2>" LOC = "V1";
NET "PC_DISPLAY<1>" LOC = "T5";
NET "PC_DISPLAY<0>" LOC = "T6";
NET "EXP_IO_40" LOC = "T3";
NET "EXP_IO_41" LOC = "T4";
NET "EXP_IO_42" LOC = "U2";
NET "EXP_IO_43" LOC = "U3";
NET "INST_STAT_DISPLAY<31>" LOC = "T7";
NET "INST_STAT_DISPLAY<30>" LOC = "T8";
NET "INST_STAT_DISPLAY<29>" LOC = "U4";
NET "INST_STAT_DISPLAY<28>" LOC = "U5";
NET "INST_STAT_DISPLAY<27>" LOC = "V2";
NET "INST_STAT_DISPLAY<26>" LOC = "W2";
NET "INST_STAT_DISPLAY<25>" LOC = "T9";

 132

NET "INST_STAT_DISPLAY<24>" LOC = "U9";
NET "INST_STAT_DISPLAY<23>" LOC = "V3";
NET "INST_STAT_DISPLAY<22>" LOC = "V4";
NET "INST_STAT_DISPLAY<21>" LOC = "W1";
NET "INST_STAT_DISPLAY<20>" LOC = "Y1";
NET "INST_STAT_DISPLAY<19>" LOC = "U7";
NET "INST_STAT_DISPLAY<18>" LOC = "U8";
NET "INST_STAT_DISPLAY<17>" LOC = "V5";
NET "INST_STAT_DISPLAY<16>" LOC = "V6";
NET "EXP_IO_60" LOC = "Y2";
NET "EXP_IO_61" LOC = "AA2";
NET "EXP_IO_62" LOC = "V7";
NET "EXP_IO_63" LOC = "V8";
NET "INST_STAT_DISPLAY<15>" LOC = "W3";
NET "INST_STAT_DISPLAY<14>" LOC = "W4";
NET "INST_STAT_DISPLAY<13>" LOC = "AA1";
NET "INST_STAT_DISPLAY<12>" LOC = "AB1";
NET "INST_STAT_DISPLAY<11>" LOC = "W5";
NET "INST_STAT_DISPLAY<10>" LOC = "W6";
NET "INST_STAT_DISPLAY<9>" LOC = "Y4";
NET "INST_STAT_DISPLAY<8>" LOC = "Y5";
NET "INST_STAT_DISPLAY<7>" LOC = "AA3";
NET "INST_STAT_DISPLAY<6>" LOC = "AA4";
NET "INST_STAT_DISPLAY<5>" LOC = "W7";
NET "INST_STAT_DISPLAY<4>" LOC = "W8";
NET "INST_STAT_DISPLAY<3>" LOC = "AB3";
NET "INST_STAT_DISPLAY<2>" LOC = "AB4";
NET "INST_STAT_DISPLAY<1>" LOC = "AB2";
NET "INST_STAT_DISPLAY<0>" LOC = "AC2";

 133

References

[1] P. J. Ashenden, The Designer’s Guide to VHDL 2nd ed, Morgan Kaufmann

Publishers, San Francisco, CA, 2002.

[2] K. E. Batcher, Design of a Massively Parallel Processor, IEEE Trans. Computers, Vol

c29, No 9, September 1980 p. 836-840.

[3] F. R. Boyer, J. Cloutier, et al, VIP: an FPGA-based Processor for Image Processing

and Neural Networks, Proceedings of 5th International Conference on
Microelectronics for Neural Networks, Lausanne, Switzerland, Feb 1996, p. 330-336.

[4] R. Cypher and J. L.C. Sanz, The SIMD Model of Parallel Computation. Springer-

Verlag, New York, NY, 1994.

[5] D. M. Dahle, J. D. Hirschberg, et al, Kestrel: Design of an 8-bit SIMD Parallel

Processor, Proceedings of 17th Conference on Advanced Research in VLSI, Ann
Arbor, MI, Sept 1997, p. 145-162.

[6] A. DeHon and E. Mirsky, MATRIX: a Reconfigurable Computing Architecture with

Configurable Instruction Distribution and Deployable Resources, IEEE Symposium
on FPGAs for Custom Computing Machines, Napa Valley, CA, Apr 1996, p. 157-
166.

[7] M. J. Duff, Real Applications on CLIP4, Integrated Technology for Parallel Image

Processing, London, 1985, p.153-165.

[8] R. Duncan, A Survey of Parallel Computer Architectures, Computer, Vol 23, Issue 2,

Feb 1990, p. 5-16.

[9] J. Fazekas, A. K. Jones, et al, An FPGA-based VLIW Processor with Custom

Hardware Execution, ACM 13th International Symposium on Field Programmable
Gate Arrays, Monterey, CA, 2005, p. 107-117.

 134

[10] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative
Approach 3rd ed, Morgan Kaufmann Publishers, San Francisco, CA, 2003.

[11] J. L. Hennessy and D. A. Patterson, Computer Organization and Design, Morgan

Kaufmann Publishers, San Francisco, CA, 2005.

[12] Intel, Available: http://www.intel.com

[13] J. Lazzaro, MIPSASM, Available: http://inst.eecs.berkeley.edu/~cs152/mipsasm/

[14] MIPS Instruction Set Reference, Available:

http://www.mips.com/products/resource_library/product_materials/MIPS_Archite
cture.php

[15] R. G. Nudd, R. A. Packwood, et al, WPM: a Multiple-SIMD Architecture for

Image Processing, 3rd International Conference on Image Processing and its
Applications, Jul 1989, p. 161-165.

[16] T. M. Silberberg, “The Hough Transform on the Geometric Arithmetic Parallel

Processor” IEEE Workshop on Computer Architecture for Pattern Analysis and
Image Database Management, Nov 1985, p. 387-393.

[17] Wikipedia English Dictionary, Available: http://www.wikipedia.org

[18] Xilinx: MicroBlaze Architecture, Available: http://www.xilinx.com

	University of New Mexico
	UNM Digital Repository
	9-9-2007

	SIMD pipelined processor implemented on a FPGA
	Benjamin Mar
	Recommended Citation

	Microsoft Word - Thesis.doc

