
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

9-9-2007

SIMD pipelined processor implemented on a
FPGA
Benjamin Mar

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Mar, Benjamin. "SIMD pipelined processor implemented on a FPGA." (2007). https://digitalrepository.unm.edu/ece_etds/170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/170?utm_source=digitalrepository.unm.edu%2Fece_etds%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  
  
  
  
  

 
 SIMD PIPELINED PROCESSOR  
IMPLEMENTED ON AN FPGA      

      
      
      
 
 

BY 
 
 

 BENJAMIN D. MAR     
 

 B.S., ELECTRICAL & COMPUTER ENGINEERING     
WORCESTER POLYTECHNIC INSTITUTE, 2005 

      
 
 
 
 

 
 
 

 
 

THESIS 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
   Master of Science   

Computer Engineering 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 

   July 2007   
 

 



     
  

     Benjamin D. Mar 
       Candidate  
      
     Electrical and Computer Engineering 
     Department 
      
 
     This thesis is approved, and it is acceptable in quality 
     and form for publication on microfilm: 
 
     Approved by the Thesis Committee: 
 
               
           , Chairperson 
  
 
     
 
 
   
 
 
    
 
 
    
 
 
   
 
 
    
 
 
            Accepted:  
    
       Dean, Graduate School 
 
  
        Date           
 
 
 
 



 iii

 
Acknowledgements 
 
 
 
 
Many thanks to Dr. Marios Pattichis for his guidance, vision, and humor throughout the 
duration of implementing this thesis and for taking time to work with me to make sure 
everything fell into place. 
 
Thanks to Sandia National Laboratories for supporting me through this thesis and going 
the extra mile to make sure I finished. 
 
Thanks to my family and friends who gave me the strength and support I needed to 
continue my journey when times were hard.  Without them, my thesis would not be what 
it is today. 
 



 
     

  
  
  
  
  

 
 SIMD PIPELINED PROCESSOR  
IMPLEMENTED ON AN FPGA      

      
      
 
 

BY 
 
 

BENJAMIN D. MAR 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT OF THESIS 
 

Submitted in Partial Fulfillment of the 
Requirements for the Degree of 

 
Master of Science 

Computer Engineering 
 

The University of New Mexico 
Albuquerque, New Mexico 

 
 

July, 2007 
 



 v

 
 

 SIMD PIPELINED PROCESSOR IMPLEMENTED ON AN FPGA 
 
 
 

by 
 
 
 

Benjamin D. Mar 
 
 
 

B.S. Electrical & Computer Engineering, Worcester Polytechnic Institute, 2005 
 

M.S. Computer Engineering, University of New Mexico, 2007 
 
 
 
 
 

Abstract 
 
 

 The goal of this thesis was to create a processor using VHDL that could be used 

for educational purposes as well as a stepping stone in creating a reconfigurable system 

for digital signal processing or image processing applications.  To do this a subset of 

MIPS instructions were chosen to demonstrate functionality within a five stage pipeline 

(instruction fetch, instruction decode, execution, memory, and write back) processor in 

simulation and in synthesis.  A hazard controller was implemented to handle data 

forwarding and stalling.  The basic MIPS architecture was extended by adding single-

cycle multiplication functionality and single-cycle SIMD instructions.  The architecture 

contains parameters for easy modification of SIMD units depending on the needs of the 

processor.  



 vi

The SIMD architecture was designed with distributed memory so that every 

memory unit received the same address.  This simplifies the address logic so that the 

processor does not have to use a complex addressing mode.  The memory can be pictured 

as row and columns method of access. 

The SIMD instructions were chosen to be able to perform binary operations to 

implement future morphological operations and to use the multiply and add operations 

for implementing MACs to perform convolution and filtering operations in future image 

processing applications.   

 The board being used to verify the processor was a Xilinx University Program 

(XUP) board that contains Xilinx Virtex II Pro XC2VP30 FPGA, package FF896.  The 

maximum number of units that can be instantiated in the FPGA on the XUP board is 

eight units which would use the entire FPGA slice area.  This allows the processor to 

complete eight sets of 32-bit data operations per cycle when the SIMD pipeline is full. 

 The design was shown to operate at the maximum speed of 100 MHz and utilize 

all the area of the FPGA.  The processor was verified in both simulation and synthesis. 

The new soft-core 32-bit SIMD processor extends existing soft-core processors in that it 

provides a reconfigurable SIMD-pipeline allowing it to operate on multiple inputs 

concurrently, with 32-bit operands and a single-cycle throughput. 
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1. Introduction 

 

 

1.1. Introduction  

  

 General purpose computing architectures must address many important questions 

such as: What will the instruction set architecture look like?  How will the chip resources 

be used?  What the hardware should be responsible for verses the software? etc.  Each 

architecture answers these questions in a fashion to best meet the needs of the work to be 

performed.  Some issues faced by designers are: the efficiency of area usage, the speed of 

the system, and the reconfigurability of the system – the flexibility of the system. 

 There are many different types of architectures implemented in modern 

processors.  On one side of the spectrum there are the general purpose fixed processors 

that implement a complex instruction set like the Intel’s Pentiums and on the other side 

there are soft-core processors that implement a reconfigurable, reduced instruction set 

like Xilinx’s MicroBlaze.   

 Both processors can perform different applications but might not exactly meet the 

criteria needed.  If the processor needs to process multiple data in a fast manner but also 

be flexible to change to different datapath parameters, neither processor meets both 

criteria.  The Pentiums have single instruction multiple data (SIMD) capability [12] but 

the datapath is set in silicon and cannot be changed while the MicroBlaze can be 

reconfigured to conform to any datapath but does not have SIMD capability and 

arithmetic operations require multiple clock cycles to obtain results [18]. 
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 This thesis addresses these criteria and presents a synthesizable VHDL solution. 

 

1.2. Thesis 

 

 This thesis is focused on the development of a processor architecture that would 

function as an educational tool for students, while also being a flexible foundation for 

real applications such as morphological or convolution operations for image processing.  

Two important metrics were used to measure the processor – performance and 

functionality.  Performance was measured by the speed of the processor and throughput 

of data.  The paradigm was to maximize the operating frequency while minimizing the 

area used by the core logic in order to place as many single instruction multiple data 

(SIMD) units in the field programmable gate array (FPGA) while supporting a complete 

core of arithmetic and logical instructions.  The objective was to produce a synthesizable 

VHDL architecture that could be reconfigured to different specifications and retain 

readability for others to use.    

 

1.3. Contributions 

 

 The contributions of this thesis are as follows: 

 

• A synthesizable VHDL description of a five stage pipeline processor with hazard 

control using a subset of MIPS instructions. 
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• A synthesizable VHDL description of a SIMD version of the five stage pipeline 

processor with hazard control.  The SIMD instructions are based on the original 

MIPS instructions for arithmetic and logical operations.  The instruction set is 

chosen to be able to implement calculations such as convolution and 

morphological operations. 

• An analysis of the processors’ maximum frequency and area usage of the FPGA. 

  

1.4. Thesis Summary 

 
The rest of the thesis is organized as follows: 

 

• Chapter 2 provides the reader with the history of the MIPS processor and follows 

with the idea of single instruction multiple data concept, then investigates past 

architectures using SIMD implementations. 

• Chapter 3 describes the architecture of the processor built for this thesis.  The 

architecture with single instruction single data (SISD) instructions will be 

described in the first section followed by the SIMD architecture modifications and 

additions.  The test board will be introduced with discussions on how to modify 

the processor architecture to conform to different hardware environments.  

• Chapter 4 discusses the results obtained with simulation and synthesis using the 

XUP FPGA board.  The results include timing analysis and area usage of the 

FPGA. 

• Chapter 5 contains an overview of the project and discusses future work and 

future research applications.
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2. Background 

 

 

2.1. MIPS 

 

 The MIPS processor was first designed in 1985 by John L. Hennessy although the 

research started in 1981 while at Stanford University.  The goal of the MIPS processor 

design was to increase processor performance by using deep instruction pipelines.  This 

allowed the clock frequency of the processor to be based on the critical path within one of 

the stages rather than the entire instruction cycle like the traditional designs that waited to 

complete an entire instruction before moving to the next. 

 A major aspect of the MIPS design was to demand that all instructions take only 

one cycle to complete, thereby removing any needs for interlocking.  The design of the 

MIPS processor eliminated a number of useful instructions that would take multiple steps 

to complete.  The long instructions were left out as it was thought the performance of the 

system would be dramatically improved due to the fact the processor could run at much 

higher clock rates.  Increasing the speed was difficult with interlocking, as the locks took 

up additional chip area that slowed down the overall speed. 

 Many observers claimed that the MIPS design would not be used in commercial 

products with the elimination of instructions.  The argument was one of CISC (complex 

instruction set computer) versus RISC (reduced instruction set computer): that if a 

complex instruction was replaced with many simpler instructions this would reduce the 
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speed.  The argument ignored the fact that the speed of the design comes from the 

pipelines, not the instructions themselves [17]. 

 The theory of the MIPS architecture is used in many university curriculums to 

discuss pipelining.  The DLX processor is based off of the MIPS and implements VHDL 

code to simulate the processor, however it is not synthesizable without extensive 

modification [1].  The basic MIPS architecture pipeline can be seen in Figure 1. 

 

Figure 1: MIPS Basic Pipeline [17]. 

 

 The basic MIPS architecture implemented a 5 stage pipeline that divided the 

combinational logic of the datapath into sections.  The maximum frequency increased by 

dividing the processor into smaller sections; decreasing the critical path from the single 

cycle routing to a smaller section of that routing. 
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2.2. SIMD 

 

 The Single Instruction Multiple Data (SIMD) concept is a method of improving 

performance in applications where highly repetitive operations need to be performed.  

SIMD is a technique of performing the same operation, be it arithmetic or otherwise, on 

multiple pieces of data simultaneously. 

 Traditionally, when an application is being programmed and a single operation 

needs to be performed across a large dataset, a loop is used to iterate through each 

element in the dataset and perform the required procedure.  During each iteration, a single 

piece of data has a single operation performed on it.  This is known as Single Instruction 

Single Data (SISD) programming.  Loops are very inefficient, as they can iterate 

thousands of times.  Ideally, to increase performance, the number of iterations of a loop 

needs to be reduced. 

 One method of reducing iterations is known as loop unrolling [10].  This takes the 

single operation that was being performed in the loop, and carries it out multiple times in 

each iteration.   

 The SIMD concept takes loop unrolling one step further by incorporating the 

multiple actions in each loop iteration, and performing them simultaneously. With SIMD, 

not only can the number of loop iterations be reduced, but also the multiple operations 

that are required can be reduced to a single, optimized action. 

 SIMD does this through the use of vectors.  A SIMD vector can be used as an 

argument for a specific instruction that will then be performed on all elements in the 

vector simultaneously.  Because of this, the number of values that can be loaded into the 
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vector directly affects performance; the more values being processed at once, the faster a 

complete dataset can be completed. This size depends on two things: 1) The data size 

being used and 2) The SIMD implementation. 

 When values are stored in SIMD vectors and worked upon by a SIMD operation, 

they are actually moved to a special set of CPU registers where the parallel processing 

takes place.  The size and number of these registers is determined by the SIMD 

implementation being used.  SIMD makes use of multiple CPU functional units; 

independent functional units for arithmetic and Boolean operations that execute 

concurrently. 

 The SIMD implementation can be enhanced with pipelining the program 

instructions.  Instruction pipelining is the decomposition of instruction execution into a 

linear series of autonomous stages, allowing each stage to simultaneously perform a 

portion of the execution process (such as decode, calculate effective address, fetch 

operand, execute, and store). 

 

2.3. Related Work in SIMD 

 

 Many SIMD architectures make the use of multiple processors to carry out the 

multiple executions.  These processors, also called processing elements (PE), must be 

connected in a network that can range from a mesh, a pyramid, to a hypercube formation.    

 The CLIP 4 [7], MPP [2], and GAPP [16] processors use a mesh network 

configuration.  These systems use several bit serial processors to execute the same 

operation on the same image or images but on different neighborhoods.  They have no 
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pipelining (only one level of operation going on at the same time), no parallel fetch of 

neighborhoods, and not even one pixel but one bit is to be fetched at a time to each 

processor.  These processors utilize a central control unit that generates and broadcasts a 

global address and control word.  This information is picked up by the memory modules 

and the processors. 

 Processors like WPM [15] use a pyramid network.  A pyramid network is an 

extension of a mesh using a tree hierarchy.  Each level has connections to the levels 

above and below, giving each internal PE nine connections.  All of the PEs operate in a 

SIMD mode under the direction of a single controller.  The pyramid layout is more 

difficult than the mesh layout, resulting in only small pyramids being built [4]. 

 Other SIMD architectures have moved into the FPGA realm.  VIP and MATRIX 

make use of the programmable logic cells for their PEs. 

 The VIP [3] SIMD architecture has a 2D torus interconnection topology of its PE.  

Each PE has a local memory.  The VIP architecture is composed of three basic 

components: the SIMD controller, the processing matrix and the I/O controller.  Those 

components are connected by a shared global bus and two control buses.  The processing 

matrix is a set of identical PEs interconnected in a 2D grid topology.  The I/O controller 

manages off-board communication and initiates memory transfers.  The SIMD controller 

decodes and executes the program stored in its instruction memory, and read or write to 

its data memory.  

 The VIP system consists of four programmable chips.  The processing matrix and 

SIMD controller are each implemented by an SRAM-based Altera EPF81500 FPGA that 

has approximately 16,000 usable gates. The I/O controller is implemented by an 



 9

EPROM-based Altera EPM7192 EPLD (3,750 usable gates), and an AMCC 55933 PCI 

controller with its configuration EPROM. 

 MATRIX [7] is composed of an array of identical, 8-bit functional units 

overlayed with a configurable network using FPGAs.  Each functional unit contains a 

256x 8-bit memory, an 8-bit ALU and multiply unit, and reduction control logic 

including a 20 x 8 NOR plane. The network is hierarchical supporting three levels of 

interconnect. Functional unit port inputs and non-local network lines can be statically 

configured or dynamically switched.   

 The ALU supports the standard set of arithmetic and logic functions including 

NAND, NOR, XOR, shift, and add. With optional input inversion, this extends to include 

OR, AND, XNOR, and subtract.  A configurable carry chain between adjacent ALUs, 

allow cascading of ALUs to perform wide-word operations.  The ALU also includes an 8 

x 8 multiply-add-add operation; the multiply operation takes two operating cycles to 

complete producing the low 8 bits of the product on the first cycle and the high 8 bits on 

the second cycle. 

 Since the datapath size and assignment of control resources is not fixed for a 

MATRIX component, MATRIX has greater flexibility to match the datapath composition 

and granularity to the needs of the application. 
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Table 1: Overview of SIMD Architectures 

Processor Approach Clock Period Data size per PE 

CLIP 4 
(1980) 

Mesh network, 9216 PEs, bit-serial 
processor with 32 bits of memory 

per PE 
400ns 1 bit 

GAPP (1984) 
Mesh network, 72 bit-serial 

processors with 128 bits of memory 
per PE 

100ns 1 bit 

MPP (1983) Mesh network, 16000 PEs with 
1024 bits of memory per PE 100ns 1 bit 

WPM (1989) 
Pyramid network, Deeply 

Pipelined, 256 PEs, 8000 bits of 
memory off chip 

100ns 16 bits 

VIP (1996) FPGA, Torus network, 28 PEs-4 
FPGAs, 1.5MB external memory 60ns 32 bits 

MATRIX 
(1996) 

FPGA, Configurable network, 256 x 
8-bit memory per PE 10ns 8 bits 
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3. Methodology 

 

 

 The goal of this thesis was to create a processor that could be used for educational 

purposes as well as a stepping stone in creating a reconfigurable system for digital signal 

processing or image processing applications.  To do this a subset of instructions were 

chosen to demonstrate functionality within a five stage pipeline processor in simulation 

and in synthesis.  Upon completion of the initial architecture, multiplication functionality 

and SIMD functionality were added. 

 

3.1. Architecture 

 

 The architecture implemented was five stage pipeline that used the Harvard 

memory approach with a load-store 32-bit instruction set.  The Harvard memory 

architecture was used to simplify the controls for memory access by using two separate 

memories for the program data (instruction memory) and the workable data (data 

memory).  This resolves any structural hazard that a single memory could produce.  The 

load-store or register-to-register architecture was chosen as storage internal to the 

processor is faster than external memory.  Even though the memory IPs are within the 

processor for this project, later work might require larger external memory for data 

manipulations. 
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3.1.1. Instruction Set 

 

 The processor uses a subset of the MIPS instruction set.  Each instruction is 32-

bits in length and is identified by the six most significant bits or the six least significant 

bits.  The MIPS uses three types of instructions: register to register (R-type), immediate 

to register (I-type), and jumps (J-type).  R-type instructions are used primarily for work 

type instructions, i.e. addition, subtraction.  I-type instructions are used much like the R-

type instruction, but use a 16-bit immediate value in its instruction format.  J-type 

instructions are used for jump instructions.  The 28 instructions used [14] are given in 

Figure 2.  
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addu – unsigned addition of two registers, 
addiu – unsigned addition of register and immediate value, 
subu – unsigned subtraction of two registers, 
mul – signed multiplication of two registers, 
and – logical and of two registers, 
andi – logical and of register and immediate value, 
or – logical or of two registers, 
ori – logical or of register and immediate value, 
xor – logical xor of two registers, 
xori – logical xor of register and immediate value, 
sll – shift left logical, 
srl – shift right logical, 
sra – shift right arithmetic, 
slt – set less than, 
sltu – set less than unsigned, 
slti – set less than immediate,  
sltiu – set less than immediate unsigned, 
lui – load upper immediate, 
lw – load word, 
sw – store word, 
beq – branch on equal, 
bne – branch not equal, 
bgez – branch greater or equal zero, 
bltz – branch less than zero, 
j – jump, 
jal – jump and link, 
jr – jump register, 
break – breakpoint exception. 

Figure 2: SISD Instruction Set. 

  

The full descriptions of these instructions can be seen in Appendix A: Instruction 

Reference.  The mul instruction implemented in this processor takes the 16 least 

significant bits of each register and multiplies them instead of the entire 32 bits as regular 

MIPS uses.  The mul instruction only takes 16 bits instead of 32 bits as the processor uses 

a Xilinx core IP for the multiplier, which does not support 32 bit operations. 

 These 28 instructions were chosen out of the 189 MIPS32 [14] instruction set as 

they provide the core functionality of the processor and completeness.  The add, subtract, 
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and multiply cover the arithmetic operations; the and, or, and xor cover the logical 

operations; the sll, srl, and sra cover shifting needs; the set less than and branch 

instructions cover comparisons; lw and sw works with memory; the branch and jump 

instructions cover loops and section jumps; and the break instruction allows for program 

debugging and testing.  The instructions left out of this processor included instructions 

that work with floating point values, caches, translation lookaside buffers, move register 

values, traps, and variations of what was implemented (branch, jump, memory access, 

etc).     

 The unsigned versions of the arithmetic operations were chosen as the term 

“unsigned” is a misnomer in MIPS32.  The difference between the add and addu 

instruction is that the add instruction traps on overflow and the addu instruction does not 

trap.  Since both instructions have the same functionally, besides the trapping, addu was 

preferred to avoid adding additional logic to handle traps and exceptions.  This choice 

helps reduce the overall logic of the processor. 

 

3.1.2. Pipeline 

 

 A pipeline is a set of data processing elements connected in series, so that the 

output of one element is the input of the next one.  These elements or stages of a pipeline 

are executed in parallel time-sliced fashion with some amount of buffer storage inserted 

between stages.  The stages in this pipeline are: instruction fetch, instruction decode, 

execution, memory, and write back.  These pipeline stages are the basic stages that were 

also implemented in the simple MIPS processor. 
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3.1.2.1. Instruction Fetch Stage 

 

 The Instruction Fetch (IF) stage directs the flow of the program and retrieves the 

instructions from memory.  The IF stage consists of the program counter (PC) register, 

the synchronous instruction memory, and passed signals from the instruction decode 

stage that has calculated logic for branches, jumps as well as signals for stalling the PC.  

The IF stage schematic can be seen in Figure 3. 

 

Figure 3: Schematic of Instruction Fetch Stage. 
 
 
 The PC is always enabled; combinational logic is used to determine which 

address should be registered and sent to the instruction memory.  If the pipeline is stalled 

or if there is a break instruction, the PC holds its current value as to prevent losing an 
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instruction.  If there is a branch or jump, then the PC will take the NEXTPC value that 

holds the destination address of the branch or jump.  The default setting is to go to the 

sequential instruction which has the value of PC + 4.   

 The instruction memory is a Xilinx IP core: Single Port Block Memory v6.2.  The 

memory is set up as a ROM, which reads in a .coe file that holds the instructions, with a 

width of 32 and depth of 1024.  The depth can be modified as needed.  Since the 

instruction memory is synchronous, the next address needs to be at the memory at the 

same time as the PC register so that it would not introduce another cycle into the pipeline.   

 

3.1.2.2. Instruction Decode Stage 

 

 The instruction decode (ID) stage holds most of the control logic of the pipeline 

as it decodes what needs to happen for each instruction.  The ID stage contains the 

register file, branch logic module, nextPC logic module, and controller.  The ID stage 

schematic can be seen in Figure 4. 
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Figure 4: Schematic of Instruction Decode Stage. 
 
 
 This processor implementation allows for a branch delay slot; the instruction 

following the branch or jump always executes.  The branch logic module exists so the 

pipeline does not have to kill an instruction and create a no operation in the killed 

instruction’s place in the pipeline instruction stream.  The branch logic could be resolved 

in the execution stage but by then there are two instructions in the pipeline.  The 
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instruction in the ID stage would be executed but the one in the IF stage would need to be 

killed.   

 The branch logic module is used to determine if a beq, bne, bgez, or bltz 

instruction will actually take the branch.  The inputs come from after the forwarding 

multiplexers (MUX) which are not in the ID stage which will be discussed in section 

3.1.2.6 Hazard Detection.  The branch logic module then sets BRANCHOK signal high if 

the branch is to be taken.   

The register file is a collection of 31 general purpose registers and a zero register 

that cannot be modified.  Register 31 is used for the return address in a jal instruction.  

The return address is the PCPLUS8 output, which saves the address after the branch 

delay slot. 

 The controller is the component that decodes the instructions and sets signals to 

allow for proper execution.  The controller only uses the opcode (the six MSB of the 

instruction) and the function (the six LSB of the instruction).  Since all of the R-format 

instructions have the same opcode, they are grouped together.  The jr instruction is 

included as an R-format instruction since the instruction code follows the R-format even 

though it jumps to a new address.  The parameters for the opcode are given in Figure 5. 
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constant rtype: std_logic_vector (5 downto 0):= "000000"; 
constant addiu: std_logic_vector (5 downto 0):= "001001"; 
constant slti: std_logic_vector (5 downto 0):= "001010"; 
constant sltiu: std_logic_vector (5 downto 0):= "001011"; 
constant andi: std_logic_vector (5 downto 0):= "001100"; 
constant ori: std_logic_vector (5 downto 0):= "001101"; 
constant xori: std_logic_vector (5 downto 0):= "001110"; 
constant lui: std_logic_vector (5 downto 0):= "001111"; 
constant lw: std_logic_vector (5 downto 0):= "100011"; 
constant sw: std_logic_vector (5 downto 0):= "101011"; 
constant beq_bne: std_logic_vector (4 downto 0):= "00010"; 
constant bgez_bltz: std_logic_vector (5 downto 0):= "000001"; 
constant j: std_logic_vector (5 downto 0):= "000010"; 
constant jal: std_logic_vector (5 downto 0):= "000011"; 
constant mul: std_logic_vector (5 downto 0):= "011100"; 

Figure 5: Instruction Opcodes from controller.vhd. 

 

These opcodes are used to determine the cases for all of the control signals.  The code in 

Figure 6 shows the jump, branch, and break signal assignments: 

jump <= '1' when OPCODE = rtype AND FUNCT = "001000" else '0'; 
jtype <= '1' when OPCODE(5 downto 1) = "00001" else '0'; 
branch <= '1' when OPCODE(5 downto 1) = beq_bne OR OPCODE = bgez_bltz  

  else '0'; 
ISBJ <= jtype & jump & branch; 
BREAKH <= '1' when OPCODE = rtype AND FUNCT = "001101" else '0'; 
ISJAL <= '1' when OPCODE = jal else '0'; 

Figure 6: Branch, Jump, and Break Signal Assignments from controller.vhd. 

 

The JUMP signal denotes a jr instruction while the JTYPE signal is for either a j or jal 

instruction.  ISBJ (is branch or jump) goes to the nextPC module as a 3 bit signal to 

determine with input should be used to calculate the next address.  BREAKH goes to the 

IF stage and to the inter-stage registers in the processor to disable them from going to the 

next instruction.  ISJAL is used inside the hazard controller to account for jal.  

REGWRITEH, MEMWRITEH, MEMTOREG, ALUSRC, and ALUOP all leave the ID 
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stage and connect to inter-stages registers.  The following is what they do after they pass 

through the pipeline to where they are used:   

• REGWRITEH goes to the register file and determines when to allow register 

writes.   

• MEMWRITEH connects to the write enable on the data memory.   

• MEMTOREG connects to the register write MUX that decides if memory data 

should be written to the register file or a calculation should be and also acts as the 

memory read enable.  

•  ALUSRC goes to the B MUX that determines to pass either value from forward 

MUXM or the output of the extender to the B source of the ALU.   

• ALUOP goes to the ALU controller and will be discussed in section 3.1.2.3 

Execution Stage.   

• EXTCTRL connects to the extend logic to determine if it should zero or sign 

extend.   

• REGDST is used to determine the register to write back to.   

If an unknown opcode passes through the controller, then all of the enables become 

inactive so the data does not become corrupted.   

 The Next PC module uses the ISBJ signal and determines the next address.  For a 

branch, the NEXTPC signal gets the current PC + 4 + the immediate value.  For a jr, the 

NEXTPC signal gets the result from the Forward MUXA (see in section 3.1.2.7, Figure 

15).  For j or jal, the NEXTPC signal gets concatenation of the top 4 bits of PC + 4 with 

26 bits of the immediate value with 2 zero bits.  The NEXTPC is then passed out of the 

ID stage to the IF stage.   
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3.1.2.3. Execution Stage 

 

 The execution (EXE) stage carries out the operations of the instructions.  The 

EXE stage consists of the shifter, comparator, ALU controller, ALU and multiplier.  The 

EXE stage schematic can be seen in Figure 7. 

 

Figure 7: Schematic of Execution Stage. 

 

 The shifter is used for the sll, srl, and sra instructions.  It shifts right or left by the 

shift amount (SHAMT) which comes from the instruction bits 10 downto 6 through an 
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inter-stage register.  The shift direction (SHDIR) and extend mode (EXTMODE) are 

taken from the ALU controller. 

 The comparator is used for the slt, sltu, slti, and sltiu instructions.  It compares the 

status flag from the ALU (carry out, negative, and overflow) for the correct result and 

uses determines the value of a signed or unsigned instruction with a signal from the ALU 

controller (SIGNEDCOMP). 

 The multiply module is used for the mul instruction.  It multiplies the 16 least 

significant bits and returns a 32 bit result.  The multiply is a Xilinx IP core: multiplier 

v9.0 and is also synchronous.  Since the multiplier is synchronous, the multiplier result 

cannot be retrieved until the next clock cycle unlike the rest of the EXE stage 

components.  This issue will be discussed in section 3.1.2.6 Hazard Detection.  

 The ALU controller controls what operation the ALU performs, which output 

reaches the result register, the shift direction and extension mode, and the signed mode 

for the comparator.  The ALU controller is triggered on the FUNCT or the ALUOP and 

uses case statements to set the ALU controls FSEL for the ALU and MSEL for the 32x3 

MUX output.  The parameters for the ALUOP, FUNCT, and MSEL are given in Figure 

8. 
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--ALUops 
constant rtype: std_logic_vector (3 downto 0):= x"0";  
constant addiu: std_logic_vector (3 downto 0):= x"1";  
constant andi: std_logic_vector (3 downto 0):= x"2";  
constant ori: std_logic_vector (3 downto 0):= x"3";  
constant xori: std_logic_vector (3 downto 0):= x"4";  
constant lui: std_logic_vector (3 downto 0):= x"5"; 
constant slti: std_logic_vector (3 downto 0):= x"6"; 
constant sltiu: std_logic_vector (3 downto 0):= x"7"; 
 
--Funct 
constant addu: std_logic_vector (5 downto 0):= "100001";  
constant subu: std_logic_vector (5 downto 0):= "100011"; 
constant and1: std_logic_vector (5 downto 0):= "100100";  
constant or1: std_logic_vector (5 downto 0):= "100101";   
constant xor1: std_logic_vector (5 downto 0):= "100110";  
constant sll1: std_logic_vector (5 downto 0):= "000000"; 
constant srl1: std_logic_vector (5 downto 0):= "000010"; 
constant sra1: std_logic_vector (5 downto 0):= "000011"; 
constant slt: std_logic_vector (5 downto 0):= "101010"; 
constant sltu: std_logic_vector (5 downto 0):= "101011"; 
 
--MSEL 
constant shifter: std_logic_vector (1 downto 0):= "00"; 
constant compare: std_logic_vector (1 downto 0):= "01"; 
constant alu: std_logic_vector (1 downto 0):= "10"; 

Figure 8: ALU Control Parameters from ALUcontroller.vhd. 

 

ALUOP determines what FSEL and MSEL should be set to.  When dealing with an R-

type instruction, the FUNCT distinguishes what the select signals should be.  The code in 

Figure 9 shows how this is implemented. 
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case ALUop is 
 when rtype => case FUNCT is 
    when addu => FSEL <= "000"; MSEL <= alu; 
    when subu => FSEL <= "100"; MSEL <= alu; 
    when and1 => FSEL <= "001"; MSEL <= alu; 
    when or1 => FSEL <= "010"; MSEL <= alu; 
    when xor1 => FSEL <= "011"; MSEL <= alu; 
    when sll1 => FSEL <= "000"; MSEL <= shifter; 
    when srl1 => FSEL <= "000"; MSEL <= shifter; 
    when sra1 => FSEL <= "000"; MSEL <= shifter; 
    when slt => FSEL <= "100"; MSEL <= compare; 
    when sltu => FSEL <= "100"; MSEL <= compare; 
    when others => FSEL <= "000"; MSEL <= alu; 
    end case; 
 when andi => FSEL <= "001"; MSEL <= alu; 
 when ori => FSEL <= "010"; MSEL <= alu; 
 when xori => FSEL <= "011"; MSEL <= alu; 
 when lui => FSEL <= "101"; MSEL <= alu; 
 when slti => FSEL <= "100"; MSEL <= compare; 
 when sltiu => FSEL <= "100"; MSEL <= compare; 
 when others => FSEL <= "000"; MSEL <= alu; 
end case; 

Figure 9: EXE Select Lines from ALUcontroller.vhd. 

 

The FSEL signal determined which operation within the ALU would be preformed.  The 

ALU operations are defined in Table 2. 

FSEL Operation
"000" add 
"001" and 
"010" or 
"011" xor 
"100" sub 
"101" lui 

Table 2: ALU Operations. 

 
The MSEL chooses between the inputs of the shifter output, comparison output, and the 

ALU output using the computation MUX.  The ALU controller also assigns signals for 

execution as given in Figure 10. 

SHDIR <= '1' when ALUop = rtype AND FUNCT = sll1 else '0'; 
SHEXTMODE <= '1' when ALUop = rtype AND FUNCT = sra1 else '0'; 
SIGNEDCOMP <= '1' when ALUop = slti OR FUNCT = slt else '0'; 

Figure 10: EXE Control Signals from ALUcontroller.vhd. 
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• SHDIR goes to the shifter and determines which direction to shift.   

• SHEXTMODE also goes to the shifter and determines between zero and sign 

extend a shift.  

•  SIGNEDCOMP goes to the comparator to choose to compare signed or unsigned.   

 The ALU module computes the arithmetic and logical results using the FSEL 

from the ALU controller to define which operation to perform on the data A and B that 

comes from the inter-stage registers. 

 

3.1.2.4. Memory Stage 

 

 The Memory (MEM) stage accesses the data memory when either an sw or lw 

instruction is issued.  The data memory is also a Xilinx IP core: Single Port Block 

Memory v6.2.  The memory is set up to read and write and can be initialized with a .coe 

file that holds data.  The MEM stage executes at the same time in the pipeline as the 

multiplier in the EXE stage.  This is possible as the address for the data memory is 

calculated in the ALU and the result is passed to the memory before being registered in 

the inter-stage register.  Since the memory is synchronous, the data for a load word is 

ready the next clock cycle. 
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3.1.2.5. Write Back Stage 

 

 The Write Back (WB) stage simply takes either the result value, multiply result, 

or data from memory and sends it back to the register file to write the appropriate 

register. 

 

3.1.2.6. Hazard Detection 

 

 The hazard detection module has two purposes.  The first is to forward data from 

instructions currently in the pipeline that have not written back to the register file to an 

instruction in the ID stage that needs the value.  The second is to stall the pipeline when 

forwarding the correct value is not available for that clock cycle.  The hazard controller 

prevents read after write hazards with the data forwarding.  The write after write and 

write after read hazards cannot happen in this implementation since all instructions are 

executed in order according to the program being run. 

 The data forwarding problem occurs when an instruction writes to a register and 

then next instruction uses that register as one of its operands.  Take the instruction 

sequence given in Figure 11. 

addu  $1, $2, $3  ------ $1 = $2 + $3 
or $4, $1, $3 ------ $4 = $1 | $3 

subu $5, $1, $2 ------- $5 = $1 – $2 
and $6, $1, $1 ------ $6 = $1 & $1 

 
Figure 11: Forwarding Hazard Sequence. 
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When the addu enters the EXE stage, the or enters the ID stage.  The or instruction needs 

the updated value for register $1, so the value must be forwarded from the EXE stage.  

The same method applies to the subu instruction.  When the subu enters the ID stage the 

addu enters the WB stage.  The value of register $1 is still not in the register file so the 

value must be forwarded from the WB stage.  By the time the and instruction enters the 

ID stage the $1 value is written into the register file so it can retrieve the value from 

there.  This process can be seen in Figure 12. 

 

Figure 12: Forwarding Illustration in the Pipeline 
 

 The jal instruction also uses the forwarding multiplexers since it needs to store the 

current PC value plus two spaces (PCPLUS8).  The control logic for one of the 

forwarding multiplexers select bits can be seen in Figure 13. 
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process(REGWRITEEXE, WBEXE, RSEL1ID, REGWRITEMEM, WBMEM, ISJAL)  
begin 
 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID  
  then 
   FORWARDA <= computationout; 
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID  
  then 
   FORWARDA <= memoryout;  
 elsif ISJAL = '1' then 
   FORWARDA <= jal; 
 else --takes care of RESET case 
   FORWARDA <= regfileout; 
 end if; 
end process; 

Figure 13: Forwarding MUXA Select Line of Value A from hazardcontrol.vhd. 

 

FORWARDA connects to the select bit of the forward MUXA.  The arguments make 

sure that the zero register is never forwarded but all other registers are if the register 

select identification matches with the write back register select identification in either the 

EXE or WB stage.  The default case uses the register file value when nothing needs to be 

forwarded. 

 The second issue the hazard detection monitors is the need to stall the pipeline.  

This occurs when a load word instruction is followed by an instruction that uses the 

register that the load word is loading data from memory into or an instruction that uses 

the register that stores the result of a multiply.  The stall logic can be seen in Figure 14. 

STALL <= '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND  
   WBEXE /= 0 AND WBEXE = RSEL2ID else 
         '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND  
   WBEXE /= 0 AND WBEXE = RSEL1ID else 
    '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL1ID else 
    '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL2ID else 
    '0'; 

Figure 14: Stall Logic from hazardcontrol.vhd. 
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A load word instruction can be seen in the pipeline when the REGWRITEEXE and 

MEMTOREGEXE signals are high.  So if an instruction uses the same register that the 

load word is loading to or a multiply result is writing to (WBEXE = RESEL*ID), the 

STALL signal will go high. 

 The forwarding MUX would take care of this for the load word, however when 

the instruction that needs the loaded register is in the ID stage, the load word is in the 

EXE which only contains the address of where the data is located.  Since the multiplier is 

synchronous, its result is not available until the WB stage like the load word instruction.  

The hazard control sends out a stall signal to stall the IF and ID stages while letting the 

rest of the stages continue.  The next cycle the load word is in the WB stage and the value 

is at the memory output which can be forwarded back to the ID stage for the instruction 

that needs it. 

 

3.1.2.7. Inter-stage Connections  

 

 The inter-stage connections connect all of the stages and hazard control together 

to form the processor.  The processor schematic can be seen in Figure 15. 
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Figure 15: Schematic of Processor. 

 
 Between the IF and ID stages there are three inter-stage registers; one for 

TAKENEXTPC which enables the instruction address MUX in the IF to take NEXTPC 

instead of PC + 4, one for NEXTPC which holds the address for branches or jumps, and 
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the other for BREAKH which is inverted to enable the release of the break instruction.  

These registers are needed to create the delay slot for branches and jumps.   

 Along the ID and EXE stage division are the two forwarding MUX, inter-stage 

registers A and B for the EXE stage, inter-stage register M for the MEM stage, and inter-

stage registers to hold control signals.  The inter-stage registers for the control signals 

contain ALUOP, WB, WEH, MEMWRITE, and MEMTOREG.  The outputs of the 

control signals go to as follows:  

• ALUOP goes into EXE stage to the ALU controller with the most significant bit 

going to the TAKEMULRESULT register in between the EXE and WB stages.   

• MEMWRITE and MEMTOREG go directly to the data memory. 

• WB, WEH, and MEMTOREG go to the inter-stage control registers between 

EXE and WB stages.   

• MEMTOREG goes to both the data memory and the next inter-stage control 

registers because it is the select of the register write multiplexer, along with 

TAKEMULRESULT, that determines whether to take the memory data, the 

calculated data, or the multiplier data and also is the memory read enable.   

Since the memory is synchronous the enable must be there before the signal gets to 

the register write multiplexer.  The select signal comes from the hazard control for 

both forwarding MUXA and forwarding MUXM.  The assignments for forward 

MUXA can be seen in Figure 16. 

forwardmuxA: component mux32x4 port map(SEL => forwardA, 
          A => rd1, 
          B => pcplus8, 
          C => resultEXE, 
          D => regdin, 
          DOUT => regadin); 

Figure 16: Forwarding MUX of Value A from processor.vhd. 
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The first input comes from the register file, rd1 for forward MUXA; rd2 for forward 

MUXM.  The second input is for jal, PCplus8 for forward MUXA to store the address of 

the instruction after the delay slot; x”00000000” for forward MUXM as this is not needed 

for jal.  The third input comes from the result of the comparator in the EXE stage and is 

the same for both forward MUXA and forward MUXM.  The fourth input comes from 

after the register write multiplexer in the WB stage and is the same for both forwarding 

multiplexers.  These four inputs account for all of the forwarding needs of the design and 

the outputs go to the inputs of the inter-stage registers for A and M.  The input for inter-

stage register B comes from B MUX (located in the ID stage) of the forward MUXM 

result and the immediate value from the extend logic within the ID stage.  A and B 

outputs go to the comparator input in EXE stage and M output goes to the data in (DIN) 

input of the data memory.   

 Between the EXE and WB stage there are the inter-stage control registers for WB, 

WEH, TAKEMULRESULT, and MEMTOREG as well as an inter-stage result register.  

The inputs of the control registers come from the outputs of the previous inter-stage 

register and the outputs go to the register write multiplexer in the WB stage and to the 

register file for the register write back and write enable (WB and WEH).  The input of the 

result register comes from the output of the computation module and the output connects 

to the register write multiplexer in the WB stage as the first input.    
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3.2. SIMD Architecture 

 

 The SIMD architecture builds off of the architecture in section 3.1.  To achieve 

multiple data, multiple basic units needed to be added and connected within the 

architecture and the control logic also needed to be updated to account for the different 

datapaths.  A block diagram of the new architecture is shown in Figure 17. 

 

Figure 17: SISD and SIMD Block Diagram of Processor. 
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3.2.1. SIMD Instruction Set 

 

 There are 11 instructions implemented for SIMD use in addition to the 28 MIPS 

instructions implemented previously.  All instructions, whether SISD or SIMD, are stored 

in the one instruction memory (see Figure 17).  Each instruction is 32-bits in length and is 

identified by the six most significant bits.  The 11 instructions used are shown in Figure 

18. 

vaddu – unsigned addition of n-pairs of two registers, 
vaddiu – unsigned addition of n-pairs of register and immediate value, 
vand – logical and of n-pairs of two registers, 
vandi – logical and of n-pairs of register and immediate value, 
vor – logical or of n-pairs of two registers, 
vori – logical or of n-pairs of register and immediate value, 
vxor – logical xor of n-pairs of two registers, 
vxori – logical xor of n-pairs of register and immediate value, 
vmul – signed multiplication of n-pairs of two registers, 
vlw – n load words, 
vsw – n store words. 

 
Figure 18: SIMD Instruction Set 

 

Each of the SIMD instructions are coded like the SISD instructions except that they differ 

by one bit except for vandi.  The adds, and, ors, xnors, load and store words have the 31st 

bit high as seen in Figure 19 for the addiu versus the vaddiu.  
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Figure 19: Addiu and Vaddiu Instruction Fields. 

 

The vaddiu instruction operates as: vrt  vrs + immediate.  The multiply has the 32nd bit 

high as seen in Figure 20 for the mul versus the vmul.   

 

Figure 20: Mul and Vmul Instruction Fields. 

 

The vmul instruction operates as: vrd  vrs * vrt.  Changing one bit allows the use of 

opcodes that are not in use for the 28 SISD instructions.  The vandi instruction would 

have followed this method but the opcode would be the same as the mul SISD 

instruction.  The opcode for the vandi instruction changes 3 bits from the andi instruction 

as seen in Figure 21. 
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Figure 21: Andi and Vandi Instruction Fields. 

 

The vandi instruction operates as: vrt  vrs & immediate.   

 These SIMD instruction could be utilized to perform binary operations to 

implement morphological operations and could use the multiply and add operations for a 

MAC to  perform convolution and filtering operations in image processing applications.   

 

3.2.2. SIMD Pipeline 

 

The SIMD pipeline only requires modifications in the ID, EXE, MEM, and WB 

stages as well as the hazard control and inter-stage connections as seen in Figure 17.  The 

modules contain parameters so that the number of units can be changed depending on the 

needs of the processor.    The default values instantiates four units (N = 4).  A unit 

consists of a register file, ALU, multiplier, memory, and inter-stage registers and 

forwarding logic. 

 The SIMD instructions do not change the instruction flow of the program so all 

the modifications needed in the ID stage were to the controller and to add additional 
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register files.  The controller needed three additional control signals to handle the register 

write (VREGWRITEH) and the memory reads (VMEMTOREG) and writes 

(VMEMWRITEH) for the SIMD instructions so the SISD datapath would not conflict 

with the SIMD datapath.  Those three signals control the N SIMD units as each unit will 

perform the same function.  The rest of the control signals (excluding the branch and 

jump logic) were modified to activate for the SIMD instructions as well as the SISD 

instructions.  A segment of the modifications of the controller can be seen in Figure 22. 

--SIMD assignments 
VREGWRITEH <= '1' when OPCODE = vlw OR OPCODE = vrtype OR OPCODE = vmul 
   else 
         '1' when OPCODE = vandi OR OPCODE = vori OR  
   OPCODE = vxori else 
    '0'; 
       
VMEMWRITEH <= '1' when OPCODE = vsw else '0';   
 
VMEMTOREG <= '1' when OPCODE = vlw OR OPCODE = vsw else '0'; 
-------------------   
     
ALUSRC <= '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000"  
  else 
     '1' when OPCODE = lw OR OPCODE = sw else 
     '1' when OPCODE = vlw OR OPCODE = vsw else --SIMD 
          '1' when OPCODE = vandi OR OPCODE = vori OR OPCODE = vxori  
  else --SIMD 
     '0'; 

Figure 22: SIMD Control Signal Modifications from controller.vhd. 

 

The architecture was designed with distributed memory so that every memory 

unit received the same address.  This simplifies the address logic so that the processor 

does not have to use a complex addressing mode.  The memory can be pictured as row 

and columns method of access (see Figure 17). 
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The number of SIMD units can be increased or decreased by changing the 

parameters in the generic port list and some modifications with signals associated with 

them.  Figure 23 shows the generic ports of the processor. 

entity processor is 
  Generic (datasize : natural := 127; 
          size : natural := 4); 
  Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              RELEASE : in  STD_LOGIC; 
    CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0); 
    CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0); 
    STAT : out STD_LOGIC_VECTOR (7 downto 0); 

        STALLED : out  STD_LOGIC); 

Figure 23: SIMD Processor Entity from processor.vhd. 
 

The size parameter is the number of SIMD units.  The datasize parameter is the number 

of SIMD units * 32 – 1.  Size is used for generating the correct number of units with 

generate statements.  Datasize is used to prevent changing the port lists of all the stages; 

all of the different 32-bit values are combined into one port.  Figure 24 shows how the 

SIMD Forward MUXA is instantiated. 

type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0); 
---------------- 
vrd1_array(4) <= vrd1(31 downto 0);   
vrd1_array(3) <= vrd1(63 downto 32); 
vrd1_array(2) <= vrd1(95 downto 64); 
vrd1_array(1) <= vrd1(127 downto 96); 
 
genmuxandreg: for I in 1 to size generate 
SIMDmuxA: component mux32x3 port map(SEL => vforwardA, 
       A => vrd1_array(I), 
       B => vresultEXE_array(I), 
       C => vregdin_array(I), 
       DOUT => vregadin(I)); 
end generate;            
 
va <= vregAdout(1) & vregAdout(2) & vregAdout(3) & vregAdout(4); 

Figure 24: SIMD Forward MUXA from processor.vhd. 
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The SIMD data signals use an array type to connect to the SIMD ALU, MUX, and 

registers.  The total length of the data_array type corresponds to the parameter datasize.  

Since the data ports are of type STD_LOGIG_VECTOR(datasize downto 0), the data 

needs to be converted into the data_array type as is done for vrd1_array in Figure 24.  

These lines would need to be modified along with the parameters to instantiate different 

SIMD unit amounts. 

 

3.3. XUP Board 

 

 The board being used to verify the processor was a Xilinx University Program 

(XUP) board that contains Xilinx Virtex II Pro XC2VP30 FPGA, package FF896.   

The processor was instantiated into an FPGA module to connect internal signals of the 

processor to the IO of the board (push buttons, dip switch, and LEDs).  The board used 

was modified by adding additional connections for the LEDs seen in the bottom right 

corner of Figure 25.  
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Figure 25: XUP Board 

 

 The FPGA module supports two modes of operation: the onboard 31.25 MHz 

clock or a step clock triggered by pressing a push button.  The clock mode is set by dip 

switch 1.  An onboard 100 MHz clock is also available for use by modifying the user 

constraint file (UCF) which can be seen in Appendix D: FPGA User Constraint File. 

 

3.4. Modules Specific to Hardware 

 

 The processor architecture can be used in different FPGAs or boards but might 

need some modification depending on the technology used.  The memories and 

multipliers are Xilinx IP cores which can be used for other Xilinx FPGA that support 

them but would need to be changed for FPGAs not compatible.  Changing the use of 

boards requires the user to use the UCF associated with the new board.
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4. Results 

 

 

 The processor was completed in two phases; functionality of the SISD 

architecture and functionality of the SIMD architecture added on.  Each phase was tested 

using the program instruction tests that can be seen in Appendix C: Program Codes.  The 

programs were verified in simulation using ModelSim and in the XUP board using Xilinx 

ISE 8.2i Project Navigator. 

 

4.1. Test Programs 

 

 The suite of test programs tested the correct functionality of the instructions, 

forwarding of data, and stalling the pipeline.  The basic test tested the functionality of the 

instructions without any data hazards.  The hazard test tested all three for the SISD.  The 

SIMD test tested the SIMD instructions for all three categories. 

 The programs were converted from word description to hexadecimal values using 

MIPSASM v1.3 from UC Berkeley [13] for the SISD tests and hand coded for the SIMD 

tests.  The test programs were configured with the instruction memory IP core using a 

.coe file with the hexadecimal values inside.  The .coe must have the header as seen in 

Figure 26, followed by the hexadecimal data. 

memory_initialization_radix=16;  
memory_initialization_vector= 

Figure 26: Header for .coe Initialized Memory File. 
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4.2. Simulation 

 

 All of the programs were verified in ModelSim to run correctly.  Two example of 

test code are shown in Figure 27 and Figure 29.  

 addiu $2, $0, 5  #testing addiu 
 addiu $3, $0, 5  #testing addiu 
 addiu $4, $0, -5 
 addiu $23, $0, 0 #used to keep track of failed tests 
 
 beq $2, $2, L1  #testing beq 
 ori $0, $0, 0 
 addiu $2, $2, -5 
L1:  
 bne $3, $0, L2 #testing bne  

Figure 27: Basic Test Code Segment. 

  

 Figure 28 shows the simulation waveform of the code in Figure 27. 

 

Figure 28: Simulation of Basic Test. 
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 This waveform shows the full execution of the addiu instructions and the beq.  At 

time 180 ns, the RESET goes low and the first addiu is in the IF stage.  The result can be 

seen written in the register $2 at time 240 ns.  The other addiu instructions can be 

followed the same way.  The beq (inst = 0x10420002) instruction enters the pipeline at 

260 ns.  The next cycle the beq is in the ID stage and can be seen to branch by looking at 

TAKENEXTPC in that cycle and the PC in the next cycle.  The TAKENEXTPC goes 

high starting at 280 ns which makes the PC take the NEXTPC value of 0x0000001C 

instead of the PCPLUS4 value of 0x00000018 in the next cycle (300 ns). 

vaddu $20, $1, $2  #testing vaddu 
vaddu $21, $20, $3 
vaddu $22, $21, $20 
vsw $22, 0($0)  #testing vsw 
vlw $25, 0($0)  #testing vlw 
vaddiu $23, $25, 0x1111 #testing vlw hazard 
vaddiu $24, $0, 0x1000 

 
Figure 29: SIMD Test Code Segment. 

 

 Figure 30 shows the simulation waveform of the code in Figure 29. 

 

Figure 30: Simulation of SIMD Test 
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 This waveform shows the full execution of the vaddu, vlw, and vsw instructions.  

The first vaddu is in the IF stage in the first full clock period.  The result can be seen 

written in the SIMD 1 and SIMD 2 register $2 three cycles later.  The other vaddu 

instructions can be followed the same way.  In between the vlw (inst = 0xCC190000) and 

the vaddiu (inst = 0x67371111) the stall signal goes high to verify the vlw hazard 

detection works. 

 

4.3. Board Testing 

 

 The board testing required internal signal to be pulled up to the FPGA_TOP 

module and connected to the LEDs.  The internal signals pulled up to board level are the 

current PC, the instruction, the break status, and registers $23 of the first and second 

SIMD unit.  Xilinx Chipscope could have been used to check the internal signals 

however Chipscope would be included in the synthesis and take up additional slices on 

the FPGA.   

 The synthesis verification used two clock modes to check the programs in the 

processor: the board clock mode and clock step mode.  In board clock mode the processor 

clock receives the board clock of 31.25 MHz.  The programs had to use the break 

instruction to see the values of the processor due to the speed of the clock.  Without the 

break instructions the LEDs would look stable at a level of brightness related to how 

many times a LED was activated.  In clock step mode the processor clock receives the 

clock signal from the bottom push button.  This mode allows the tester to cycle through 

the entire program and trace the instruction flow.  If resetting or releasing a break in the 
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clock step mode, the reset or release button must be held down while the clock button is 

pushed otherwise the release will not take hold and the reset will work but it will bypass 

the first instruction of the program. 

 The default display setting displays the PC and instruction.  The break status and 

SIMD registers can be seen by changing the positions of the dip switches. 

 

Figure 31: Synthesis Demonstration of Working Processor. 

 

 Figure 31 illustrates the display of the PC and instruction value.  The bottom row 

of LEDs shows the 16 LSB of the instruction, the middle row shows the 16 MSB of the 

instruction, and the top row shows the PC.  The four left most LEDs are not used on all 

rows.  The display is read as: instruction 0x154200bf (bne) at address 0x00000058.  This 

corresponds to the 23rd instruction in the hazard test which can be seen in Appendix C: 

Program Codes. 

 The SISD programs were verified by looking at the current PC, instruction, and 

break status while the SIMD programs were verified by the break status and registers.  
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While not all internal signals were verified as working properly these three signals are 

efficient for the SISD as the branches control most of the instruction flow.  If a branch 

instruction produces a route counter to the actual route, then the processor is broken.  The 

SIMD requires registers pulled up since there are no branch or jump instruction that run 

through the SIMD datapath, so just looking at the current PC and instruction would not 

validate the SIMD. 

 

4.4. Maximum Frequency Minimum Clock Period 

 

 Utilizing the Xilinx timing analysis tools, the timing report indicates that the 

delay of the critical path of the processor with SISD implemented only is 20.933 ns or a 

maximum frequency of about 48 MHz.  The delay of the critical path of the processor 

with SISD implemented with SIMD is 21.222 ns or a maximum frequency of about 47 

MHz.    

 The critical path of both phases is excited by a branch instruction.  The critical 

path is as follows:  The instruction comes out of the instruction memory and reads the 

values of the registers from the register file in the ID stage.   The register file values 

connect to the forwarding multiplexer.  The branch address must be computed by taking 

the correct value from the hazard control multiplexer, then shifted by four, then sent to 

the branch logic module to determine if the branch should be taken, and finally the 

branch logic signals are registered at the next inter-stage register.   
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 In theory if both critical paths are the same, the minimum periods should be the 

same as well, however, the delay is measured by the logical delay with the routing delay.  

The routing delay was measured to be about 70% of the total delay in both architectures.   

 

  All 
Instructions 

Without 
Multiply 

Without Multiply, 
Branches, Jumps 

One Unconditional 
Jump (j) 

Number of Slices 2033 1879 1641 1683 

% of Slices Used 14% 13% 11% 12% 

Minimum Period 20.933 ns 22.116 ns 8.437 ns 8.940 ns 
Table 3: Basic Pipeline Results. 

  

 Eliminating instructions could reduce the minimum period.  Table 3 shows that by 

removing the datapath for the branch and jump instructions the processor could operate at 

the 100 MHz board frequency.  If the j instruction was left in the architecture, the 

processor could run double the speed as well.  This would allow for a program to stay in 

an infinite loop which is usable for some image processing applications. 

 

  

The results from just the SISD logic applies when the SIMD is included.  The maximum 

frequency could double without having the SISD branch instructions.  

 This is shown to be an improvement or on the same level as previously designed 

architectures, VIP and MATRIX.  The minimum period with all the SISD and SIMD 

instruction is 3 times faster than the minimum period of the VIP processor due to the 

  
All 

Instructions 
Without 

vmul 
Without Branches 

and Jumps 
One Unconditional 

Jump (j) 
Number of Slices 7879 6994 7568 7598 
% of Slices Used 57% 51% 55% 55% 
Minimum Period 21.222 ns 19.903 ns 9.432 ns 7.784 ns 

Table 4: SIMD Pipeline Results. 
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pipeline design (MIPS SIMD) versus one instruction operating at a time (VIP) and the 

processor without the branches is a few nanoseconds faster than the MATRIX.  Beyond 

the MATRIX capabilities, the new SIMD processor can execute (in the EXE stage) a 

multiplication instruction in a single cycle. Furthermore, the new SIMD processor 

operates on 32-bits as opposed to the 8-bit operands for the MATRIX and it is a fully 

pipelined, single-cycle throughput as opposed to the multi-cycle architecture of the VIP. 

 

4.5. FPGA Area  

 

 The Xilinx Virtex II Pro FPGA on the XUP board contains 13,696 slices.  The 

SIMD values in Table 5 represent the default value of four units.   

 
 SISD SISD and SIMD 

Number of Slices 2033 7879 
% of Slices Used 14% 57% 
Minimum Period 20.933 ns 21.222 ns 

Table 5: SISD Versus SIMD Pipeline.  
 

 The maximum number of units that can be instantiated in the FPGA on the XUP 

board is eight units which would use the entire FPGA slice area.  This allows the 

processor to complete eight sets of 32-bit data per cycle.  Compared to the VIP processor, 

this SIMD processor is able to fit more SIMD units in the same space than the VIP.  The 

VIP was only able to fit seven units in the Altera FPGA used which had about 2,000 

more slices than the Xilinx FPGA Virtex II Pro. 
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5. Conclusions and Future Work 

 

 

5.1. Conclusions 

 

 The goals of this thesis were met with the construction of a new SIMD-pipelined 

32-bit MIPS-based processor.  The SIMD processor implemented 39 instructions in a five 

stage pipeline that used the Harvard memory approach.  The instruction set was chosen to 

provide the core functionality of the processor and completeness.  The SIMD architecture 

was designed with distributed memory so that every memory unit received the same 

address, allowing the memory to be pictured as row and columns method of access.  To 

achieve multiple data, multiple basic units were added and connected within the 

architecture and the control logic was updated to account for the different datapaths. 

 The design was shown that it could operate at the maximum speed of 100 MHz 

(single-cycle throughput) and utilize all the area of the FPGA.  The processor was 

verified in both simulation and synthesis.  This is shown to be an improvement or on the 

same level as previously designed architectures.  This processor performed better with a 

pipeline design than the VIP which executed one instruction at a time and this SIMD 

processor is able to fit more SIMD units in the same space than the VIP.  Another 

advantage of this 32-bit SIMD processor over the 8-bit MATRIX is that it can perform a 

multiplication instruction as well as the arithmetic and logical instruction that the 

MATRIX can at the same frequency. 
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5.2. Future Work 

 

 With the foundation of the SIMD processor complete, modifications can be made 

to research image processing applications.  The SIMD processor is a good choice to use 

binary operations to implement morphological operations and could use the multiply and 

add operations for a MAC to perform convolution and filtering operations.  These 

applications could lead further research into extending this architecture into video 

processing, where each SIMD unit could operate on a row of image data. 

 In another interesting area of research, the SIMD processor could be developed 

into a real-time reconfigurable system.  Having a real-time reconfigurable SIMD system 

would be powerful as the area of the FPGA would be configured to run an application 

efficiently and then switch configurations to run the next application with the best 

efficiency specific to the application. 

 As mentioned in the result section, the speed of the processor could possibly be 

increased with efficient routing if the user wanted to maintain the full functionality as 

originally designed.  Further research is needed to confirm this idea that the processor 

could be improved by manually setting the routing paths instead of allowing the Xilinx 

synthesis to automatically route everything. 

 A new means of transferring data into memory from I/O would be beneficial after 

the VHDL has been synthesized into a bit file.  This would allow for easy data switching 

instead of regenerating the memory IP with the new file every time a new program or 

data set is needed. 
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 In addition to transferring data external to the processor, internal transfers of data 

between SIMD units could be beneficial for programs.  These data transfers could move 

data in a nearest neighbor network and could be implemented by adding a move 

instruction to the instruction set.
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Appendix A: Instruction Reference 
 
All Instruction descriptions are from [14] MIPS Instruction Set Reference. 
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Appendix B: VHDL Files 
 
 
FPGA_TOP.vhd: 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
entity FPGA_TOP is 
 Port (SYS_CLK : in STD_LOGIC; 
          RESET_low : in STD_LOGIC; 
          SINGLE_CLK_low : in STD_LOGIC; 
          RELEASE_low : in STD_LOGIC; 
          DIPSWITCH : in STD_LOGIC_VECTOR (3 downto 0); 
          PC_DISPLAY : out STD_LOGIC_VECTOR (15 downto 0); 
          INST_STAT_DISPLAY : out STD_LOGIC_VECTOR (31 downto 0); 
          STALL : out STD_LOGIC);    
end FPGA_TOP; 
 
architecture Behavioral of FPGA_TOP is 
 
component processor is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              RELEASE : in  STD_LOGIC; 
              CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0); 
              CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0); 
              STAT : out STD_LOGIC_VECTOR (7 downto 0); 
              STALLED : out  STD_LOGIC); 
end component processor; 
 
component edgedetect is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              DIN : in  STD_LOGIC; 
              DOUTSTEPCLK : out STD_LOGIC; 
              DOUTBOARDCLK : out  STD_LOGIC); 
end component edgedetect; 
 
signal step_clk, processor_clk : std_logic; 
signal stalled : std_logic; 
signal stat, statout : std_logic_vector(7 downto 0); 
signal pc, inst : std_logic_vector(31 downto 0); 
signal released releasestep, releaseboard : std_logic;  
begin 
 
clkparse: component edgedetect port map(CLK => SYS_CLK,     
               RESET => '0', --NOT RESET_low, 
               DIN => NOT SINGLE_CLK_low, 
               DOUTSTEPCLK => step_clk); 
 
processor_clk <= step_clk when DIPSWITCH(0) = '0' else SYS_CLK; 
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releaseparse: component edgedetect port map(CLK => SYS_CLK, 
                     RESET => NOT RESET_low, 
                     DIN => NOT RELEASE_low, 
        DOUTSTEPCLK => releasestep,   
        DOUTBOARDCLK => releaseboard); 
 
released <= releasestep when DIPSWITCH(0) = '0' else releaseboard; 
 
proc: component processor port map(CLK => processor_clk, 
       RESET => NOT RESET_low, 
       RELEASE => released, 
       CURRENT_PC => pc, 
       CURRENT_INST => inst, 
       STAT => stat, 
       STALLED => stalled, 

  BOARDREG23_1 => reg23_1,     
   BOARDREG23_2 => reg23_2); 

 
STALL <= NOT stalled; 
statout <= NOT stat; 
PC_DISPLAY <= NOT pc; 
INST_STAT_DISPLAY <= x"FFFFFF" & statout when DIPSWITCH(3 downto 2) = "00" else 
      NOT reg23_1 when DIPSWITCH(3 downto 2) = "01" else 
      NOT reg23_2 when DIPSWITCH(3 downto 2) = "10" else 
      NOT inst; 
 
end Behavioral; 
 
Processor.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity processor is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              RELEASE : in  STD_LOGIC; 
 CURRENT_PC : out STD_LOGIC_VECTOR (31 downto 0); 
 CURRENT_INST : out STD_LOGIC_VECTOR (31 downto 0); 
 STAT : out STD_LOGIC_VECTOR (7 downto 0); 

STALLED : out  STD_LOGIC; 
BOARDREG23_1 : out  STD_LOGIC_VECTOR (31 downto 0); 

 BOARDREG23_2 : out  STD_LOGIC_VECTOR (31 downto 0));  
end processor; 
 
architecture Behavioral of processor is 
 
component FETCHstage is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              TAKENEXTPC : in  STD_LOGIC; 
              BREAKH : in  STD_LOGIC; 



 66

              STALL : in  STD_LOGIC; 
              NEXTPC : in  STD_LOGIC_VECTOR (31 downto 0); 
              INST : out  STD_LOGIC_VECTOR (31 downto 0); 
              CURRENTPC : out  STD_LOGIC_VECTOR (31 downto 0); 
              PCPLUS4 : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component FETCHstage; 
 
component IDstage is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in  STD_LOGIC; 
           RESET : in  STD_LOGIC; 
           REGWRITEIN : in  STD_LOGIC; 
           RELEASE : in  STD_LOGIC; 
           REGSELIN : in  STD_LOGIC_VECTOR (4 downto 0); 
           PCPLUS4 : in  STD_LOGIC_VECTOR (31 downto 0); 
           INST : in  STD_LOGIC_VECTOR (31 downto 0); 
           REGDIN : in  STD_LOGIC_VECTOR (31 downto 0); 
           A : in  STD_LOGIC_VECTOR (31 downto 0); 
           B : in  STD_LOGIC_VECTOR (31 downto 0); 
           ISJAL : out  STD_LOGIC; 
           TAKENEXTPC : out  STD_LOGIC; 
           BREAKH : out  STD_LOGIC; 
           REGSELOUT : out  STD_LOGIC_VECTOR (4 downto 0); 
           PCPLUS8 : out  STD_LOGIC_VECTOR (31 downto 0); 
           RD1 : out  STD_LOGIC_VECTOR (31 downto 0); 
           RD2 : out  STD_LOGIC_VECTOR (31 downto 0); 
           NEXTPC1 : out  STD_LOGIC_VECTOR (31 downto 0); 
           REGB : out  STD_LOGIC_VECTOR (31 downto 0); 
           REGWRITEOUT : out  STD_LOGIC; 
           MEMTOREG : out  STD_LOGIC; 
           MEMWRITEH : out  STD_LOGIC; 
           ALUOP : out  STD_LOGIC_VECTOR (4 downto 0); 
           --SIMD Ports 
           VREGWRITEIN : in  STD_LOGIC; 
           VREGDIN : in  STD_LOGIC_VECTOR (datasize downto 0); 
           VRD1 : out  STD_LOGIC_VECTOR (datasize downto 0); 
           VRD2 : out  STD_LOGIC_VECTOR (datasize downto 0); 
           VREGWRITEOUT : out  STD_LOGIC; 
           VMEMTOREG : out  STD_LOGIC; 
           VMEMWRITEH : out  STD_LOGIC; 
           EXTMODE : out STD_LOGIC; 
           IMMVALUE : out STD_LOGIC; 
           BOARDREG23_1 : out  STD_LOGIC_VECTOR (31 downto 0);            
           BOARDREG23_2 : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component IDstage; 
 
component reg32 is 
    Port ( CLK : in  STD_LOGIC; 
              ENABLEH : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component reg32; 
 
component mux32x4 is 
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    Port ( SEL : in  STD_LOGIC_VECTOR (2 downto 0); 
             A : in  STD_LOGIC_VECTOR (31 downto 0); 
             B : in  STD_LOGIC_VECTOR (31 downto 0); 
             C : in  STD_LOGIC_VECTOR (31 downto 0); 
             D : in  STD_LOGIC_VECTOR (31 downto 0); 
             DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component mux32x4; 
 
component mux32x3 is 
    Port ( SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
             A : in  STD_LOGIC_VECTOR (31 downto 0); 
             B : in  STD_LOGIC_VECTOR (31 downto 0); 
             C : in  STD_LOGIC_VECTOR (31 downto 0); 
             DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component mux32x3; 
 
component hazardcontrol is 
    Port ( MEMTOREGEXE : in  STD_LOGIC; 
              REGWRITEEXE : in  STD_LOGIC; 
              REGWRITEMEM : in  STD_LOGIC; 
              ISJAL : in  STD_LOGIC; 
 ISMUL : in STD_LOGIC; 
              RSEL1ID : in  STD_LOGIC_VECTOR (4 downto 0); 
              RSEL2ID : in  STD_LOGIC_VECTOR (4 downto 0); 
             WBEXE : in  STD_LOGIC_VECTOR (4 downto 0); 
             WBMEM : in  STD_LOGIC_VECTOR (4 downto 0); 
             STALL : out  STD_LOGIC; 
             FORWARDA : out  STD_LOGIC_VECTOR (2 downto 0); 
             FORWARDM : out  STD_LOGIC_VECTOR (2 downto 0); 
             --SIMD Ports 
             VMEMTOREGEXE : in  STD_LOGIC; 
             VREGWRITEEXE : in  STD_LOGIC; 
             VREGWRITEMEM : in  STD_LOGIC; 
             VFORWARDA : out  STD_LOGIC_VECTOR (1 downto 0); 
             VFORWARDM : out  STD_LOGIC_VECTOR (1 downto 0)); 
end component hazardcontrol; 
 
component EXEstage is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in STD_LOGIC; 
 ALUop : in  STD_LOGIC_VECTOR (4 downto 0); 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
 MULRESULT : out STD_LOGIC_VECTOR (31 downto 0); 
              RESULT : out  STD_LOGIC_VECTOR (31 downto 0); 
 --SIMD Ports 
 VA : in  STD_LOGIC_VECTOR (datasize downto 0);  
 VB : in  STD_LOGIC_VECTOR (datasize downto 0); 
 VMULRESULT : out  STD_LOGIC_VECTOR (datasize downto 0); 
 VRESULT : out  STD_LOGIC_VECTOR (datasize downto 0)); 
end component EXEstage; 
 
component MEMstage is 



 68

  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in  STD_LOGIC; 
           RESET : in  STD_LOGIC; 
           ADDR : in  STD_LOGIC_VECTOR (31 downto 0); 
           DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
           MEMTOREG : in  STD_LOGIC; 
           MEMWRITEH : in  STD_LOGIC; 
           DOUT : out  STD_LOGIC_VECTOR (31 downto 0); 
           --SIMD Ports 
           VADDR : in STD_LOGIC_VECTOR (31 downto 0); 
           VDIN : in STD_LOGIC_VECTOR (datasize downto 0); 
           VMEMTOREG : in STD_LOGIC; 
         VMEMWRITEH : in STD_LOGIC; 
         VDOUT : out STD_LOGIC_VECTOR (datasize downto 0)); 
end component MEMstage; 
 
component mux32x2 is 
    Port ( SEL : in  STD_LOGIC; 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component mux32x2; 
 
signal takenextpcdelay : std_logic; 
signal nextpc : std_logic_vector(31 downto 0); 
signal breakh : std_logic; 
signal inst : std_logic_vector(31 downto 0); 
signal pcplus4 : std_logic_vector(31 downto 0); 
signal stall : std_logic; 
 
signal regdin : std_logic_vector(31 downto 0); 
signal wbID, wbEXE, wbMEM : std_logic_vector(4 downto 0); 
signal memtoregID, memtoregEXE, memtoregMEM : std_logic; 
signal aluopID, aluopEXE : std_logic_vector(3 downto 0); 
signal wehID, wehEXE, wehMEM : std_logic; 
signal regadin, regbdin, regmdin : std_logic_vector(31 downto 0); 
signal memwriteID, memwriteMEM : std_logic; 
signal shamtEXE : std_logic_vector(4 downto 0); 
signal functEXE : std_logic_vector(5 downto 0); 
signal pcplus8 : std_logic_vector(31 downto 0); 
signal rd1, rd2 : std_logic_vector(31 downto 0); 
signal nextpcdelay : std_logic_vector(31 downto 0); 
signal takenextpc : std_logic; 
signal isjal : std_logic; 
 
signal forwardA, forwardM : std_logic_vector(2 downto 0); 
signal resultEXE, resultMEM : std_logic_vector(31 downto 0); 
signal regAdout, regBdout, regMdout : std_logic_vector(31 downto 0); 
 
signal memdout : std_logic_vector(31 downto 0); 
signal regdintemp : std_logic_vector(31 downto 0); 
 
signal resetorstall, notbreaken : std_logic; 
 
signal breakhtemp :std_logic; 
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signal takemulresult : std_logic; 
signal mulresult : std_logic_vector(31 downto 0); 
signal datawritebacksel : std_logic_vector(1 downto 0); 
 
--SIMD signals 
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0); 
signal vrd1_array, vrd2_array, regdatain_array : data_array; 
signal vregadin, vregbdin, vregmdin : data_array; 
signal vregAdout, vregBdout, vregMdout : data_array; 
 
signal vrd1, vrd2 : std_logic_vector (datasize downto 0); 
 
signal vforwardA, vforwardM : std_logic_vector(1 downto 0); 
 
signal vwehID, vwehEXE, vwehMEM : std_logic; 
signal vmemtoregID, vmemtoregEXE, vmemtoregMEM : std_logic; 
signal vmemwriteID, vmemwriteMEM : std_logic; 
 
constant mask0: std_logic_vector(15 downto 0):= x"0000"; 
constant mask1: std_logic_vector(15 downto 0):= x"FFFF"; 
signal extimm : std_logic_vector(31 downto 0); 
signal extmode, immvalue : std_logic; 
 
signal va, vb, vm, vresult, vmultresult : std_logic_vector (datasize downto 0); 
signal vresultEXE_array, vresultMEM_array, vmultresult_array : data_array; 
 
signal vmemdout, vregdin : std_logic_vector (datasize downto 0); 
signal vmemdout_array, vregdin_array, vregdintemp_array : data_array; 
signal vdatawritebacksel : std_logic_vector(1 downto 0); 
 
 
begin 
 
STALLED <= stall; 
CURRENT_INST <= inst; 
 
process (breakhtemp, inst) is 
    begin 
        if (inst(31 downto 26) = "000000" AND inst(5 downto 0) = "001101") then 
            breakhtemp <= '1'; 
        else breakhtemp <= '0'; 
    end if; 
        if breakhtemp = '1' then 
            STAT(6 downto 0) <= inst(12 downto 6); 
        else STAT(6 downto 0) <= "0000000"; 
    end if; 
    STAT(7) <= breakhtemp; 
end process; 
 
fetch: component FETCHstage port map(CLK => CLK, 
             RESET => RESET, 
             TAKENEXTPC => takenextpcdelay, 
             BREAKH => breakh, 
             STALL => stall, 
             NEXTPC => nextpc, 
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             INST => inst, 
             CURRENTPC => CURRENT_PC, 
             PCPLUS4 => pcplus4); 
              
id: component IDstage port map(CLK => CLK, 
              RESET => RESET, 
              RELEASE => RELEASE,      
              REGWRITEIN => wehMEM, 
              REGSELIN => wbMEM, 
              PCPLUS4 => pcplus4, 
              INST => inst, 
              REGDIN => regdin, 
              A => regadin, 
              B => regmdin, 
              ISJAL => isjal, 
              TAKENEXTPC => takenextpc, 
              BREAKH => breakh, 
              REGSELOUT => wbID, 
              PCPLUS8 => pcplus8, 
              RD1 => rd1, 
              RD2 => rd2, 
              NEXTPC1 => nextpcdelay, 
              REGB => regbdin, 
              REGWRITEOUT => wehID, 
              MEMTOREG => memtoregID, 
              MEMWRITEH => memwriteID, 
              ALUOP => aluopID, 
              --SIMD Ports 
              VREGWRITEIN => vwehMEM, 
              VREGDIN => vregdin, 
              VRD1 => vrd1, 
              VRD2 => vrd2, 
              VREGWRITEOUT => vwehID, 
              VMEMTOREG => vmemtoregID, 
              VMEMWRITEH => vmemwriteID, 
              EXTMODE => extmode, 
              IMMVALUE => immvalue); 
 
vrd1_array(4) <= vrd1(31 downto 0);  
vrd1_array(3) <= vrd1(63 downto 32); 
vrd1_array(2) <= vrd1(95 downto 64); 
vrd1_array(1) <= vrd1(127 downto 96); 
vrd2_array(4) <= vrd2(31 downto 0);  
vrd2_array(3) <= vrd2(63 downto 32); 
vrd2_array(2) <= vrd2(95 downto 64); 
vrd2_array(1) <= vrd2(127 downto 96); 
            
--moved out B logic from ID stage for SIMD 
extimm <= mask1 & inst(15 downto 0) when extmode = '1' and inst(15) = '1' else 
   mask0 & inst(15 downto 0); 
 
genregBconnection: for I in 1 to size generate 
 
vregbdin(I) <= extimm when immvalue = '1' else vregmdin(I); 
      
end generate; 
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------------- 
 
resetorstall <= RESET or stall; 
notbreaken <= not breakh; 
 
nextpcreg: component reg32 port map(CLK => CLK, 
         ENABLEH => notbreaken, 
         RESET => resetorstall, 
         DIN => nextpcdelay, 
         DOUT => nextpc); 
            
process (CLK) is 
 begin 
  if rising_edge(CLK) then 
   if RESET = '1' or stall = '1' then 
    takenextpcdelay <= '0'; 
   elsif breakh = '0' then 
    takenextpcdelay <= takenextpc; 
   else 
    takenextpcdelay <= takenextpcdelay; 
  end if; 
 end if; 
end process;           
  
 
forwardmuxA: component mux32x4 port map(SEL => forwardA, 
         A => rd1, 
         B => pcplus8, 
         C => resultEXE, 
         D => regdin, 
         DOUT => regadin); 
            
        
Areg: component reg32 port map(CLK => CLK, 
               ENABLEH => '1', 
               RESET => RESET,  
               DIN => regadin, 
               DOUT => regAdout);      
      
             
Breg: component reg32 port map(CLK => CLK, 
               ENABLEH => '1', 
               RESET => RESET,  
               DIN => regbdin, 
               DOUT => regBdout); 
            
forwardmuxM: component mux32x4 port map(SEL => forwardM, 
         A => rd2, 
         B => X"00000000", 
         C => resultEXE, 
         D => regdin, 
         DOUT => regmdin);     
        
 
Mreg: component reg32 port map(CLK => CLK, 
                ENABLEH => '1', 
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                RESET => resetorstall, 
                DIN => regmdin, 
                DOUT => regMdout); 
 
genmuxandreg: for I in 1 to size generate 
SIMDmuxA: component mux32x3 port map(SEL => vforwardA, 
      A => vrd1_array(I), 
      B => vresultEXE_array(I), 
      C => vregdin_array(I), 
      DOUT => vregadin(I)); 
            
   
SIMDmuxM: component mux32x3 port map(SEL => vforwardM, 
       A => vrd2_array(I), 
     B => vresultEXE_array(I), 
     C => vregdin_array(I), 
     DOUT => vregmdin(I));  
              
SIMDAreg: component reg32 port map(CLK => CLK, 
            ENABLEH => '1', 
            RESET => RESET, 
            DIN => vregadin(I), 
            DOUT => vregAdout(I)); 
            
SIMDBreg: component reg32 port map(CLK => CLK, 
            ENABLEH => '1', 
            RESET => RESET, 
            DIN => vregbdin(I), 
            DOUT => vregBdout(I)); 
            
SIMDMreg: component reg32 port map(CLK => CLK, 
            ENABLEH => '1', 
            RESET => resetorstall, 
            DIN => vregmdin(I), 
            DOUT => vregMdout(I));     
       
end generate;            
 
va <= vregAdout(1) & vregAdout(2) & vregAdout(3) & vregAdout(4); 
vb <= vregBdout(1) & vregBdout(2) & vregBdout(3) & vregBdout(4);  
vm <= vregMdout(1) & vregMdout(2) & vregMdout(3) & vregMdout(4);  
  
process (CLK) is 
 begin 
  if rising_edge(CLK) then 
   if RESET = '1' or stall = '1' then      
      
    aluopEXE <= "00000"; 
    wbEXE <= "00000"; 
    wehEXE <= '0'; 
    memtoregEXE <= '0'; 
    memwriteMEM <= '0'; 
    shamtEXE <= "00000"; 
    functEXE <= "000000"; 
    vwehEXE <= '0'; 
    vmemtoregEXE <= '0'; 
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    vmemwriteMEM <= '0'; 
   else 
    aluopEXE <= aluopID; 
    wbEXE <= wbID; 
    wehEXE <= wehID; 
    memtoregEXE <= memtoregID; 
    memwriteMEM <= memwriteID; 
    shamtEXE <= inst(10 downto 6); 
    functEXE <= inst(5 downto 0); 
    vwehEXE <= vwehID; 
    vmemtoregEXE <= vmemtoregID; 
    vmemwriteMEM <= vmemwriteID; 
  end if; 
 end if; 
end process; 
            
hazardcntrl: component hazardcontrol port map(MEMTOREGEXE => memtoregEXE, 
           REGWRITEEXE => wehEXE, 
           REGWRITEMEM => wehMEM, 
           ISJAL => isjal, 
           ISMUL => aluopEXE(3), 
           RSEL1ID => inst(25 downto 21), 
           RSEL2ID => inst(20 downto 16), 
          WBEXE => wbEXE, 
          WBMEM => wbMEM, 
           STALL => stall, 
           FORWARDA => forwardA, 
           FORWARDM => forwardM, 
           --SIMD Ports 
          VMEMTOREGEXE => vmemtoregEXE, 
          VREGWRITEEXE => vwehEXE, 
          VREGWRITEMEM => vwehMEM, 
          VFORWARDA => vforwardA, 
          VFORWARDM => vforwardM); 
 
EXE: component EXEstage port map(CLK => CLK, 
        ALUop => aluopEXE, 
        SHAMT => shamtEXE, 
        FUNCT => functEXE, 
        A => regAdout, 
        B => regBdout, 
        MULRESULT => mulresult, 
        RESULT => resultEXE, 
        --SIMD Ports 
       VA => va, 
       VB => vb, 
       VMULRESULT => vmultresult, 
       VRESULT => vresult); 
 
 
vresultEXE_array(4) <= vresult(31 downto 0); 
vresultEXE_array(3) <= vresult(63 downto 32); 
vresultEXE_array(2) <= vresult(95 downto 64); 
vresultEXE_array(1) <= vresult(127 downto 96);  
 
vmultresult_array(4) <= vmultresult(31 downto 0); 
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vmultresult_array(3) <= vmultresult(63 downto 32); 
vmultresult_array(2) <= vmultresult(95 downto 64); 
vmultresult_array(1) <= vmultresult(127 downto 96);  
 
resultreg: component reg32 port map(CLK => CLK, 
        ENABLEH => '1', 
        RESET => RESET, 
        DIN => resultEXE, 
       DOUT => resultMEM); 
             
genresultreg: for I in 1 to size generate 
SIMDresultreg: component reg32 port map(CLK => CLK, 
     ENABLEH => '1', 
     RESET => RESET, 
     DIN => vresultEXE_array(I), 
     DOUT => vresultMEM_array(I)); 
end generate; 
 
process (CLK) is 
 begin 
  if rising_edge(CLK) then 
   if RESET = '1' then       
     
    wbMEM <= "00000"; 
    wehMEM <= '0'; 
    memtoregMEM <= '0'; 
    takemulresult <= '0'; 
    vwehMEM <= '0'; 
    vmemtoregMEM <= '0'; 
   else 
    wbMEM <= wbEXE; 
    wehMEM <= wehEXE; 
    memtoregMEM <= memtoregEXE; 
    takemulresult <= aluopEXE(3); 
    vwehMEM <= vwehEXE; 
    vmemtoregMEM <= vmemtoregEXE; 
  end if; 
 end if; 
end process; 
 
MEM: component MEMstage port map(CLK => CLK, 
            RESET => RESET, 
            ADDR => resultEXE, 
            DIN => regMdout, 
            MEMTOREG => memtoregEXE, 
            MEMWRITEH => memwriteMEM, 
            DOUT => memdout, 
            --SIMD Ports 
            VADDR => vresult(127 downto 96), 
            VDIN => vm, 
            VMEMTOREG => vmemtoregEXE, 
            VMEMWRITEH => vmemwriteMEM, 
            VDOUT => vmemdout); 
 
vmemdout_array(4) <= vmemdout(31 downto 0); 
vmemdout_array(3) <= vmemdout(63 downto 32); 
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vmemdout_array(2) <= vmemdout(95 downto 64); 
vmemdout_array(1) <= vmemdout(127 downto 96);  
 
datawritebacksel <= takemulresult & memtoregMEM; 
vdatawritebacksel <= takemulresult & vmemtoregMEM; 
 
memoryresult: component mux32x3 port map(SEL => datawritebacksel, 
        A => resultMEM, 
        B => memdout, 
        C => mulresult, 
        DOUT => regdintemp); 
 
genmemoryreg: for I in 1 to size generate 
SIMDmemoryresult: component mux32x3 port map(SEL => datawritebacksel, 
                  A => vresultMEM_array(I), 
      B => vmemdout_array(I), 
      C => vmultresult_array(I), 
      DOUT => vregdintemp_array(I)); 
            
    
vregdin_array(I) <= X"00000000" when wbMEM = "00000" else  vregdintemp_array(I);   
               
end generate;           
  
vregdin <= vregdin_array(1) & vregdin_array(2) & vregdin_array(3) & vregdin_array(4);  
 
regdin <= X"00000000" when wbMEM = "00000" else regdintemp; 
 
end Behavioral; 
 
 
Fetchstage.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity FETCHstage is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              TAKENEXTPC : in  STD_LOGIC; 
              BREAKH : in  STD_LOGIC; 
              STALL : in  STD_LOGIC; 
              NEXTPC : in  STD_LOGIC_VECTOR (31 downto 0); 
              INST : out  STD_LOGIC_VECTOR (31 downto 0); 
              CURRENTPC : out  STD_LOGIC_VECTOR (31 downto 0); 
              PCPLUS4 : out  STD_LOGIC_VECTOR (31 downto 0)); 
end FETCHstage; 
 
architecture Behavioral of FETCHstage is 
 
component reg32 is 
    Port ( CLK : in  STD_LOGIC; 
              ENABLEH : in  STD_LOGIC; 
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              RESET : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component reg32; 
 
component instmem is 
 port ( 
 addr: in std_logic_vector(9 downto 0); 
 clk: in std_logic; 
 dout: out std_logic_vector(31 downto 0)); 
end component instmem; 
 
constant enablepc : std_logic := '1'; 
signal instmemaddr : std_logic_vector(31 downto 0); 
signal pc, pc4 : std_logic_vector(31 downto 0); 
 
begin 
 
CURRENTPC <= pc; 
 
pcreg: component reg32 port map(CLK => CLK, 
                ENABLEH => enablepc, 
                RESET => RESET, 
                DIN => instmemaddr, 
                DOUT => pc); 
 
pc4 <= pc + 4; 
 
instmemaddr <= X"00000000" when RESET = '1' else 
  pc when BREAKH = '1' or STALL = '1' else 
  NEXTPC when TAKENEXTPC = '1' else 
  pc4; 
 
PCPLUS4 <= pc4; 
 
instructionmemory: component instmem port map(addr => instmemaddr(11 downto 2), 
               clk => CLK, 
              dout => INST); 
 
end Behavioral; 
 
 
Instmem.vhd: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
-- synopsys translate_off 
Library XilinxCoreLib; 
-- synopsys translate_on 
ENTITY instmem IS 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 dout: OUT std_logic_VECTOR(31 downto 0)); 
END instmem; 
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ARCHITECTURE instmem_a OF instmem IS 
-- synopsys translate_off 
component wrapped_instmem 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 dout: OUT std_logic_VECTOR(31 downto 0)); 
end component; 
 
-- Configuration specification  
 for all : wrapped_instmem use entity XilinxCoreLib.blkmemsp_v6_2(behavioral) 
  generic map( 
   c_sinit_value => "0", 
   c_has_en => 0, 
   c_reg_inputs => 0, 
   c_yclk_is_rising => 1, 
   c_ysinit_is_high => 1, 
   c_ywe_is_high => 1, 
   c_yprimitive_type => "16kx1", 
   c_ytop_addr => "1024", 
   c_yhierarchy => "hierarchy1", 
   c_has_limit_data_pitch => 0, 
   c_has_rdy => 0, 
   c_write_mode => 0, 
   c_width => 32, 
   c_yuse_single_primitive => 0, 
   c_has_nd => 0, 
   c_has_we => 0, 
   c_enable_rlocs => 0, 
   c_has_rfd => 0, 
   c_has_din => 0, 
   c_ybottom_addr => "0", 
   c_pipe_stages => 0, 
   c_yen_is_high => 1, 
   c_depth => 1024, 
   c_has_default_data => 0, 
   c_limit_data_pitch => 18, 
   c_has_sinit => 0, 
   c_mem_init_file => "instmem.mif", 
   c_yydisable_warnings => 1, 
   c_default_data => "0", 
   c_ymake_bmm => 0, 
   c_addr_width => 10); 
-- synopsys translate_on 
BEGIN 
-- synopsys translate_off 
U0 : wrapped_instmem 
  port map ( 
   addr => addr, 
   clk => clk, 
   dout => dout); 
-- synopsys translate_on 
 
END instmem_a; 
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IDstage.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity IDstage is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              REGWRITEIN : in  STD_LOGIC; 
              RELEASE : in  STD_LOGIC; 
              REGSELIN : in  STD_LOGIC_VECTOR (4 downto 0); 
              PCPLUS4 : in  STD_LOGIC_VECTOR (31 downto 0); 
              INST : in  STD_LOGIC_VECTOR (31 downto 0); 
              REGDIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              ISJAL : out  STD_LOGIC; 
              TAKENEXTPC : out  STD_LOGIC; 
              BREAKH : out  STD_LOGIC; 
              REGSELOUT : out  STD_LOGIC_VECTOR (4 downto 0); 
              PCPLUS8 : out  STD_LOGIC_VECTOR (31 downto 0); 
              RD1 : out  STD_LOGIC_VECTOR (31 downto 0); 
              RD2 : out  STD_LOGIC_VECTOR (31 downto 0); 
              NEXTPC1 : out  STD_LOGIC_VECTOR (31 downto 0); 
              REGB : out  STD_LOGIC_VECTOR (31 downto 0); 
              REGWRITEOUT : out  STD_LOGIC; 
              MEMTOREG : out  STD_LOGIC; 
              MEMWRITEH : out  STD_LOGIC; 
              ALUOP : out  STD_LOGIC_VECTOR (3 downto 0); 
              --SIMD Ports 
 VREGWRITEIN : in  STD_LOGIC; 
 VREGDIN : in  STD_LOGIC_VECTOR (datasize downto 0); 
 VRD1 : out  STD_LOGIC_VECTOR (datasize downto 0); 
 VRD2 : out  STD_LOGIC_VECTOR (datasize downto 0); 
 VREGWRITEOUT : out  STD_LOGIC; 
              VMEMTOREG : out  STD_LOGIC; 
              VMEMWRITEH : out  STD_LOGIC; 
 EXTMODE : out STD_LOGIC; 
 IMMVALUE : out STD_LOGIC; 
              BOARDREG23_1 : out  STD_LOGIC_VECTOR (31 downto 0); 
              BOARDREG23_2 : out  STD_LOGIC_VECTOR (31 downto 0));  
end IDstage; 
 
architecture Behavioral of IDstage is 
 
component regfile is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              WEH : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              WSEL : in  STD_LOGIC_VECTOR (4 downto 0); 
              RSEL1 : in  STD_LOGIC_VECTOR (4 downto 0); 
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              RSEL2 : in  STD_LOGIC_VECTOR (4 downto 0); 
              RD1 : out  STD_LOGIC_VECTOR (31 downto 0); 
              RD2 : out  STD_LOGIC_VECTOR (31 downto 0); 
              REG23OUT : out STD_LOGIC_VECTOR (31 downto 0));  --Board IO port  
end component; 
 
component nextPC is 
    Port ( ISBJ : in  STD_LOGIC_VECTOR (2 downto 0); 
              INSTINDEX : in  STD_LOGIC_VECTOR (25 downto 0); 
              PCPLUS4 : in  STD_LOGIC_VECTOR (31 downto 0); 
              RD1 : in  STD_LOGIC_VECTOR (31 downto 0); 
              EXTIMM : in  STD_LOGIC_VECTOR (31 downto 0); 
              NEXTPC : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
 
component branchlogic is 
    Port ( ISBGEZ : in  STD_LOGIC; 
             OPCODE : in  STD_LOGIC_VECTOR (5 downto 0); 
             A : in  STD_LOGIC_VECTOR (31 downto 0); 
             B : in  STD_LOGIC_VECTOR (31 downto 0); 
             BRANCHOK : out  STD_LOGIC); 
end component; 
 
component controller is 
    Port ( OPCODE : in  STD_LOGIC_VECTOR (5 downto 0); 
              FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
              REGWRITEH : out  STD_LOGIC; 
              MEMWRITEH : out  STD_LOGIC; 
              REGDST : out  STD_LOGIC; 
              MEMTOREG : out  STD_LOGIC; 
              ALUSRC : out  STD_LOGIC; 
              EXTCTRL : out  STD_LOGIC; 
              BREAKH : out  STD_LOGIC; 
              ISJAL : out  STD_LOGIC; 
              ISBJ : out  STD_LOGIC_VECTOR (2 downto 0); 
             ALUOP : out  STD_LOGIC_VECTOR (4 downto 0); 
 -- SIMD Ports 
 VREGWRITEH : out STD_LOGIC; 
 VMEMWRITEH : out STD_LOGIC; 
 VMEMTOREG : out STD_LOGIC); 
end component; 
 
signal extctrl, alusrc, branchok, regdst, breakhtemp, isjaltemp: std_logic; 
signal isbj: std_logic_vector(2 downto 0); 
signal extimm, rd1temp: std_logic_vector(31 downto 0); 
constant mask0: std_logic_vector(15 downto 0):= x"0000"; 
constant mask1: std_logic_vector(15 downto 0):= x"FFFF"; 
 
--SIMD signals 
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0); 
signal vrd1_array, vrd2_array, regdatain_array, reg23_array : data_array; 
 
begin 
control: component controller port map(OPCODE => INST(31 downto 26), 
           FUNCT => INST(5 downto 0), 
           REGWRITEH => REGWRITEOUT, 
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           MEMWRITEH => MEMWRITEH, 
           REGDST => regdst, 
           MEMTOREG => MEMTOREG, 
           ALUSRC => alusrc, 
           EXTCTRL => extctrl, 
           BREAKH => breakhtemp, 
           ISJAL => isjaltemp, 
           ISBJ => isbj, 
          ALUOP => ALUOP, 
          VREGWRITEH => VREGWRITEOUT, 
          VMEMWRITEH => VMEMWRITEH, 
          VMEMTOREG => VMEMTOREG); 
 
registerfile: component regfile port map(CLK => CLK, 
            RESET => RESET, 
           WEH => REGWRITEIN, 
            DIN => REGDIN, 
           WSEL => REGSELIN, 
          RSEL1 => INST(25 downto 21), 
          RSEL2 => INST(20 downto 16), 
          RD1 => rd1temp, 
          RD2 => RD2); 
 
 
regdatain_array(4) <= VREGDIN(31 downto 0); 
regdatain_array(3) <= VREGDIN(63 downto 32); 
regdatain_array(2) <= VREGDIN(95 downto 64); 
regdatain_array(1) <= VREGDIN(127 downto 96); 
 
genregfiles: for I in 1 to size generate        
      
SIMDregfile: component regfile port map(CLK => CLK, 
               RESET => RESET, 
               WEH => VREGWRITEIN, 
               DIN => regdatain_array(I), 
               WSEL => REGSELIN, 
               RSEL1 => INST(25 downto 21), 
               RSEL2 => INST(20 downto 16), 
               RD1 => vrd1_array(I), 
               RD2 => vrd2_array(I)), 

           REG23OUT => reg23_array(I));  
end generate;           
   
BOARDREG23_1 <= reg23_array(1); 
BOARDREG23_2 <= reg23_array(2);  
          
VRD1 <= vrd1_array(1) & vrd1_array(2) & vrd1_array(3) & vrd1_array(4); 
VRD2 <= vrd2_array(1) & vrd2_array(2) & vrd2_array(3) & vrd2_array(4); 
 
 
branchlgc: component branchlogic port map(ISBGEZ => INST(16), 
     OPCODE => INST(31 downto 26), 
     A => A, 
     B => B, 
     BRANCHOK => branchok); 
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EXTMODE <= extctrl; -- for SIMD, prevents porting in the outputs of SIMD MUXM 
IMMVALUE <= alusrc; -- for SIMD, prevents porting in the outputs of SIMD MUXM 
 
PCPLUS8 <= PCPLUS4 + x"00000004"; 
extimm <= mask1 & INST(15 downto 0) when extctrl = '1' and INST(15) = '1' else 
     mask0 & INST(15 downto 0); 
 
REGB <= extimm when alusrc = '1' else B; 
TAKENEXTPC <= branchok OR isbj(2) OR isbj(1); 
BREAKH <= breakhtemp AND (NOT RELEASE); 
 
process (regdst, isjaltemp, INST) is 
    begin 
      if (isjaltemp = '1') then 
      REGSELOUT <= "11111"; 
      elsif regdst = '1' then 
      REGSELOUT <= INST(15 downto 11); 
      else 
      REGSELOUT <= INST(20 downto 16); 
      end if; 
end process; 
      
ISJAL <= isjaltemp; 
RD1 <= rd1temp; 
 
nextpcmodule: component nextpc port map(ISBJ => isbj, 
     INSTINDEX => INST(25 downto 0), 
     PCPLUS4 => PCPLUS4, 
     RD1 => A,  
     EXTIMM => extimm, 
     NEXTPC => NEXTPC1); 
 
end Behavioral; 
 
 
Controller.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity controller is 
    Port ( OPCODE : in  STD_LOGIC_VECTOR (5 downto 0); 
              FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
              REGWRITEH : out  STD_LOGIC; 
              MEMWRITEH : out  STD_LOGIC; 
              REGDST : out  STD_LOGIC; 
              MEMTOREG : out  STD_LOGIC; 
              ALUSRC : out  STD_LOGIC; 
              EXTCTRL : out  STD_LOGIC; 
              BREAKH : out  STD_LOGIC; 
              ISJAL : out  STD_LOGIC; 
              ISBJ : out  STD_LOGIC_VECTOR (2 downto 0); 
              ALUOP : out  STD_LOGIC_VECTOR (4 downto 0); 
 -- SIMD Ports 
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 VREGWRITEH : out STD_LOGIC; 
 VMEMWRITEH : out STD_LOGIC; 
 VMEMTOREG : out STD_LOGIC); 
end controller; 
 
architecture Behavioral of controller is 
 
constant rtype: std_logic_vector (5 downto 0):= "000000"; 
constant addiu: std_logic_vector (5 downto 0):= "001001"; 
constant slti: std_logic_vector (5 downto 0):= "001010"; 
constant sltiu: std_logic_vector (5 downto 0):= "001011"; 
constant andi: std_logic_vector (5 downto 0):= "001100"; 
constant ori: std_logic_vector (5 downto 0):= "001101"; 
constant xori: std_logic_vector (5 downto 0):= "001110"; 
constant lui: std_logic_vector (5 downto 0):= "001111"; 
constant lw: std_logic_vector (5 downto 0):= "100011"; 
constant sw: std_logic_vector (5 downto 0):= "101011"; 
constant beq_bne: std_logic_vector (4 downto 0):= "00010"; 
constant bgez_bltz: std_logic_vector (5 downto 0):= "000001"; 
constant j: std_logic_vector (5 downto 0):= "000010"; 
constant jal: std_logic_vector (5 downto 0):= "000011"; 
constant mul: std_logic_vector (5 downto 0):= "011100"; 
--SIMD opcodes 
constant vlw: std_logic_vector (5 downto 0):= "110011"; 
constant vsw: std_logic_vector (5 downto 0):= "111011"; 
constant vaddiu: std_logic_vector (5 downto 0):= "011001"; 
constant vandi: std_logic_vector (5 downto 0):= "011111"; 
constant vori: std_logic_vector (5 downto 0):= "011101"; 
constant vxori: std_logic_vector (5 downto 0):= "011110"; 
constant vrtype: std_logic_vector (5 downto 0):= "010000"; 
constant vmul: std_logic_vector (5 downto 0):= "111100"; 
 
signal jump, jtype, branch: std_logic; 
 
begin 
 
jump <= '1' when OPCODE = rtype AND FUNCT = "001000" else '0'; 
jtype <= '1' when OPCODE(5 downto 1) = "00001" else '0'; 
branch <= '1' when OPCODE(5 downto 1) = beq_bne OR OPCODE = bgez_bltz else '0'; 
ISBJ <= jtype & jump & branch; 
BREAKH <= '1' when OPCODE = rtype AND FUNCT = "001101" else '0'; 
ISJAL <= '1' when OPCODE = jal else '0'; 
    
REGWRITEH <= '1' when OPCODE = rtype AND FUNCT /= "001101" else 
   '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000" else 
   '1' when OPCODE = lw OR OPCODE = jal OR OPCODE = mul else 
   '0'; 
 
MEMWRITEH <= '1' when OPCODE = sw else '0'; 
    
MEMTOREG <= '1' when OPCODE = lw OR OPCODE = sw else '0'; 
 
--SIMD assignments 
VREGWRITEH <= '1' when OPCODE = vlw OR OPCODE = vrtype OR OPCODE = vmul else 
      '1' when OPCODE = vandi OR OPCODE = vori OR OPCODE = vxori OR  

                  OPCODE = vaddiu else 
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      '0'; 
       
VMEMWRITEH <= '1' when OPCODE = vsw else '0';   
 
VMEMTOREG <= '1' when OPCODE = vlw OR OPCODE = vsw else '0'; 
-------------------   
     
ALUSRC <= '1' when OPCODE(5 downto 3) = "001" AND OPCODE /= "001000" else 
   '1' when OPCODE = lw OR OPCODE = sw else 
   '1' when OPCODE = vlw OR OPCODE = vsw else --SIMD 
   '1' when OPCODE = vandi OR OPCODE = vori OR  

OPCODE = vxori OR OPCODE = vaddiu else  
   '0'; 
    
EXTCTRL <= '0' when OPCODE = ori OR OPCODE = andi OR OPCODE = xori else 
           '0' when OPCODE = vori OR OPCODE = vandi OR OPCODE = vxori else 
           '1'; 
     
REGDST <= '1' when OPCODE = rtype AND FUNCT /= "001101" else 
         '1' when OPCODE = mul else 
         '1' when OPCODE = vrtype OR OPCODE = vmul else -- SIMD 
         '0'; 
     
ALUOP <= "00000" when OPCODE = rtype OR OPCODE = vrtype else 
       "00001" when OPCODE = addiu OR OPCODE = vaddiu else 
       "00010" when OPCODE = andi OR OPCODE = vandi else 
       "00011" when OPCODE = ori OR OPCODE = vori else 
       "00100" when OPCODE = xori OR OPCODE = vxori else 
       "00101" when OPCODE = lui else 
       "00110" when OPCODE = slti else 
       "00111" when OPCODE = sltiu else 
       "01000" when OPCODE = mul OR OPCODE = vmul else 
       "10000"; 
 
end Behavioral; 
 
 
Branchlogic.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity branchlogic is 
    Port ( ISBGEZ : in  STD_LOGIC; 
             OPCODE : in  STD_LOGIC_VECTOR (5 downto 0); 
             A : in  STD_LOGIC_VECTOR (31 downto 0); 
             B : in  STD_LOGIC_VECTOR (31 downto 0); 
             BRANCHOK : out  STD_LOGIC); 
end branchlogic; 
 
architecture Behavioral of branchlogic is 
 
signal neg, ovf, negxorovf, doutzero: std_logic; 
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signal branch: std_logic_vector (1 downto 0); 
signal btemp, dout: std_logic_vector (31 downto 0); 
 
begin 
 
branch <= "01" when OPCODE = "000001" else  --for bgez and bltz 
    "10" when OPCODE = "000100" OR OPCODE = "000101" else --for beq and bne 
    "00"; 
    
btemp <= x"00000000" when OPCODE = "000001" else --for bgez and bltz 
   B; 
 
process (btemp, A, dout, neg, ovf, negxorovf, ISBGEZ, OPCODE, doutzero, branch) is 
begin    
dout <= A - btemp; 
neg <= dout(31); 
 
if ( A(31) = '1' AND btemp(31) = '0' AND dout(31) = '0' ) then 
    ovf <= '1'; 
elsif ( A(31) = '0' AND btemp(31) = '1' AND dout(31) = '1' ) then 
    ovf <= '1'; 
else ovf <= '0'; 
end if;     
 
negxorovf <= neg XOR ovf; 
 
if dout = x"00000000" then 
    doutzero <= '1'; 
else doutzero <= '0'; 
end if; 
 
 
if branch = "01" then 
    BRANCHOK <= negxorovf XOR ISBGEZ; 
elsif branch = "10" then 
    BRANCHOK <= doutzero XOR OPCODE(0); 
else BRANCHOK <= '0'; 
end if; 
     
end process; 
 
end Behavioral; 
 
 
NextPC.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity nextPC is 
    Port ( ISBJ : in  STD_LOGIC_VECTOR (2 downto 0); 
              INSTINDEX : in  STD_LOGIC_VECTOR (25 downto 0); 
              PCPLUS4 : in  STD_LOGIC_VECTOR (31 downto 0); 
              RD1 : in  STD_LOGIC_VECTOR (31 downto 0); 
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              EXTIMM : in  STD_LOGIC_VECTOR (31 downto 0); 
              NEXTPC : out  STD_LOGIC_VECTOR (31 downto 0)); 
end nextPC; 
 
architecture Behavioral of nextPC is 
 
constant branch: std_logic_vector (2 downto 0):= "001"; 
constant jr: std_logic_vector (2 downto 0):= "010"; 
constant j_jal: std_logic_vector (2 downto 0):= "100"; 
 
signal branch_val: std_logic_vector (31 downto 0); 
 
begin 
 
branch_val <= EXTIMM(29 downto 0) & "00"; 
 
NEXTPC <= PCPLUS4 + branch_val when ISBJ = branch else 
         RD1 when ISBJ = jr else 
         PCPLUS4(31 downto 28) & INSTINDEX & "00" when ISBJ = j_jal else 
         PCPLUS4; 
 
end Behavioral; 
 
 
Registerfile.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity regfile is 
    Port ( CLK : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              WEH : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              WSEL : in  STD_LOGIC_VECTOR (4 downto 0); 
              RSEL1 : in  STD_LOGIC_VECTOR (4 downto 0); 
              RSEL2 : in  STD_LOGIC_VECTOR (4 downto 0); 
              RD1 : out  STD_LOGIC_VECTOR (31 downto 0); 
              RD2 : out  STD_LOGIC_VECTOR (31 downto 0); 

REG23OUT : out STD_LOGIC_VECTOR (31 downto 0));  --Board IO port 
end regfile; 
 
architecture Behavioral of regfile is 
 
component reg32 
    Port ( CLK : in  STD_LOGIC; 
              ENABLEH : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
 
signal en1, en2, en3, en4, en5, en6, en7, en8, en9, en10, en11, en12, en13, en14, en15, en16: std_logic; 
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signal en17, en18, en19, en20, en21, en22, en23, en24, en25, en26, en27, en28, en29, en30, en31: 
std_logic; 
signal rout0, rout1, rout2, rout3, rout4, rout5, rout6, rout7, rout8, rout9: std_logic_vector (31 downto 0); 
signal rout10, rout11, rout12, rout13, rout14, rout15, rout16, rout17, rout18, rout19: std_logic_vector (31 
downto 0); 
signal rout20, rout21, rout22, rout23, rout24, rout25, rout26, rout27, rout28, rout29: std_logic_vector (31 
downto 0); 
signal rout30, rout31: std_logic_vector (31 downto 0); 
 
begin 
 
en1 <= '1' when WSEL = "00001" AND WEH = '1' else '0'; 
en2 <= '1' when WSEL = "00010" AND WEH = '1' else '0'; 
en3 <= '1' when WSEL = "00011" AND WEH = '1' else '0'; 
en4 <= '1' when WSEL = "00100" AND WEH = '1' else '0'; 
en5 <= '1' when WSEL = "00101" AND WEH = '1' else '0'; 
en6 <= '1' when WSEL = "00110" AND WEH = '1' else '0'; 
en7 <= '1' when WSEL = "00111" AND WEH = '1' else '0'; 
en8 <= '1' when WSEL = "01000" AND WEH = '1' else '0'; 
en9 <= '1' when WSEL = "01001" AND WEH = '1' else '0'; 
en10 <= '1' when WSEL = "01010" AND WEH = '1' else '0'; 
en11 <= '1' when WSEL = "01011" AND WEH = '1' else '0'; 
en12 <= '1' when WSEL = "01100" AND WEH = '1' else '0'; 
en13 <= '1' when WSEL = "01101" AND WEH = '1' else '0'; 
en14 <= '1' when WSEL = "01110" AND WEH = '1' else '0'; 
en15 <= '1' when WSEL = "01111" AND WEH = '1' else '0'; 
en16 <= '1' when WSEL = "10000" AND WEH = '1' else '0'; 
en17 <= '1' when WSEL = "10001" AND WEH = '1' else '0'; 
en18 <= '1' when WSEL = "10010" AND WEH = '1' else '0'; 
en19 <= '1' when WSEL = "10011" AND WEH = '1' else '0'; 
en20 <= '1' when WSEL = "10100" AND WEH = '1' else '0'; 
en21 <= '1' when WSEL = "10101" AND WEH = '1' else '0'; 
en22 <= '1' when WSEL = "10110" AND WEH = '1' else '0'; 
en23 <= '1' when WSEL = "10111" AND WEH = '1' else '0'; 
en24 <= '1' when WSEL = "11000" AND WEH = '1' else '0'; 
en25 <= '1' when WSEL = "11001" AND WEH = '1' else '0'; 
en26 <= '1' when WSEL = "11010" AND WEH = '1' else '0'; 
en27 <= '1' when WSEL = "11011" AND WEH = '1' else '0'; 
en28 <= '1' when WSEL = "11100" AND WEH = '1' else '0'; 
en29 <= '1' when WSEL = "11101" AND WEH = '1' else '0'; 
en30 <= '1' when WSEL = "11110" AND WEH = '1' else '0'; 
en31 <= '1' when WSEL = "11111" AND WEH = '1' else '0'; 
 
rout0 <= x"00000000"; 
reg1: component reg32 port map(CLK,en1,RESET,DIN,rout1); 
reg2: component reg32 port map(CLK,en2,RESET,DIN,rout2); 
reg3: component reg32 port map(CLK,en3,RESET,DIN,rout3); 
reg4: component reg32 port map(CLK,en4,RESET,DIN,rout4); 
reg5: component reg32 port map(CLK,en5,RESET,DIN,rout5); 
reg6: component reg32 port map(CLK,en6,RESET,DIN,rout6); 
reg7: component reg32 port map(CLK,en7,RESET,DIN,rout7); 
reg8: component reg32 port map(CLK,en8,RESET,DIN,rout8); 
reg9: component reg32 port map(CLK,en9,RESET,DIN,rout9); 
reg10: component reg32 port map(CLK,en10,RESET,DIN,rout10); 
reg11: component reg32 port map(CLK,en11,RESET,DIN,rout11); 
reg12: component reg32 port map(CLK,en12,RESET,DIN,rout12); 
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reg13: component reg32 port map(CLK,en13,RESET,DIN,rout13); 
reg14: component reg32 port map(CLK,en14,RESET,DIN,rout14); 
reg15: component reg32 port map(CLK,en15,RESET,DIN,rout15); 
reg16: component reg32 port map(CLK,en16,RESET,DIN,rout16); 
reg17: component reg32 port map(CLK,en17,RESET,DIN,rout17); 
reg18: component reg32 port map(CLK,en18,RESET,DIN,rout18); 
reg19: component reg32 port map(CLK,en19,RESET,DIN,rout19); 
reg20: component reg32 port map(CLK,en20,RESET,DIN,rout20); 
reg21: component reg32 port map(CLK,en21,RESET,DIN,rout21); 
reg22: component reg32 port map(CLK,en22,RESET,DIN,rout22); 
reg23: component reg32 port map(CLK,en23,RESET,DIN,rout23); 
reg24: component reg32 port map(CLK,en24,RESET,DIN,rout24); 
reg25: component reg32 port map(CLK,en25,RESET,DIN,rout25); 
reg26: component reg32 port map(CLK,en26,RESET,DIN,rout26); 
reg27: component reg32 port map(CLK,en27,RESET,DIN,rout27); 
reg28: component reg32 port map(CLK,en28,RESET,DIN,rout28); 
reg29: component reg32 port map(CLK,en29,RESET,DIN,rout29); 
reg30: component reg32 port map(CLK,en30,RESET,DIN,rout30); 
reg31: component reg32 port map(CLK,en31,RESET,DIN,rout31); 
 
RD1 <= rout0 when RSEL1 = 0 else 
  rout1 when RSEL1 = 1 else 
  rout2 when RSEL1 = 2 else 
  rout3 when RSEL1 = 3 else 
  rout4 when RSEL1 = 4 else 
  rout5 when RSEL1 = 5 else 
  rout6 when RSEL1 = 6 else 
  rout7 when RSEL1 = 7 else 
  rout8 when RSEL1 = 8 else 
  rout9 when RSEL1 = 9 else 
  rout10 when RSEL1 = 10 else 
  rout11 when RSEL1 = 11 else 
  rout12 when RSEL1 = 12 else 
  rout13 when RSEL1 = 13 else 
  rout14 when RSEL1 = 14 else 
  rout15 when RSEL1 = 15 else 
  rout16 when RSEL1 = 16 else 
  rout17 when RSEL1 = 17 else 
  rout18 when RSEL1 = 18 else 
  rout19 when RSEL1 = 19 else 
  rout20 when RSEL1 = 20 else 
  rout21 when RSEL1 = 21 else 
  rout22 when RSEL1 = 22 else 
  rout23 when RSEL1 = 23 else 
  rout24 when RSEL1 = 24 else 
  rout25 when RSEL1 = 25 else 
  rout26 when RSEL1 = 26 else 
  rout27 when RSEL1 = 27 else 
  rout28 when RSEL1 = 28 else 
  rout29 when RSEL1 = 29 else 
  rout30 when RSEL1 = 30 else 
  rout31 when RSEL1 = 31 else 
  rout0; 
 
RD2 <= rout0 when RSEL2 = 0 else 
  rout1 when RSEL2 = 1 else 
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  rout2 when RSEL2 = 2 else 
  rout3 when RSEL2 = 3 else 
  rout4 when RSEL2 = 4 else 
  rout5 when RSEL2 = 5 else 
  rout6 when RSEL2 = 6 else 
  rout7 when RSEL2 = 7 else 
  rout8 when RSEL2 = 8 else 
  rout9 when RSEL2 = 9 else 
  rout10 when RSEL2 = 10 else 
  rout11 when RSEL2 = 11 else 
  rout12 when RSEL2 = 12 else 
  rout13 when RSEL2 = 13 else 
  rout14 when RSEL2 = 14 else 
  rout15 when RSEL2 = 15 else 
  rout16 when RSEL2 = 16 else 
  rout17 when RSEL2 = 17 else 
  rout18 when RSEL2 = 18 else 
  rout19 when RSEL2 = 19 else 
  rout20 when RSEL2 = 20 else 
  rout21 when RSEL2 = 21 else 
  rout22 when RSEL2 = 22 else 
  rout23 when RSEL2 = 23 else 
  rout24 when RSEL2 = 24 else 
  rout25 when RSEL2 = 25 else 
  rout26 when RSEL2 = 26 else 
  rout27 when RSEL2 = 27 else 
  rout28 when RSEL2 = 28 else 
  rout29 when RSEL2 = 29 else 
  rout30 when RSEL2 = 30 else 
  rout31 when RSEL2 = 31 else 
  rout0; 
 
REG23OUT <= rout23; 
 
end Behavioral; 
 
 
Register.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity reg32 is 
    Port ( CLK : in  STD_LOGIC; 
              ENABLEH : in  STD_LOGIC; 
              RESET : in  STD_LOGIC; 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end reg32; 
 
architecture Behavioral of reg32 is 
 
begin 
 process(CLK, RESET) 
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 begin 
  if RESET = '1' then 
   DOUT <= x"00000000"; 
  elsif rising_edge(CLK) then 
   if ENABLEH = '1' then 
    DOUT <= DIN; 
   end if; 
  end if; 
 end process; 
 
end Behavioral; 
 
 
Hazardcontrol.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity hazardcontrol is 
    Port ( MEMTOREGEXE : in  STD_LOGIC; 
              REGWRITEEXE : in  STD_LOGIC; 
              REGWRITEMEM : in  STD_LOGIC; 
              ISJAL : in  STD_LOGIC; 
              ISMUL : in STD_LOGIC; 
              RSEL1ID : in  STD_LOGIC_VECTOR (4 downto 0); 
              RSEL2ID : in  STD_LOGIC_VECTOR (4 downto 0); 
              WBEXE : in  STD_LOGIC_VECTOR (4 downto 0); 
              WBMEM : in  STD_LOGIC_VECTOR (4 downto 0); 
              STALL : out  STD_LOGIC; 
              FORWARDA : out  STD_LOGIC_VECTOR (2 downto 0); 
              FORWARDM : out  STD_LOGIC_VECTOR (2 downto 0); 
 --SIMD Ports 
 VMEMTOREGEXE : in  STD_LOGIC; 
              VREGWRITEEXE : in  STD_LOGIC; 
              VREGWRITEMEM : in  STD_LOGIC; 
 VFORWARDA : out  STD_LOGIC_VECTOR (1 downto 0); 
              VFORWARDM : out  STD_LOGIC_VECTOR (1 downto 0)); 
end hazardcontrol; 
 
architecture Behavioral of hazardcontrol is 
 
constant regfileout: std_logic_vector (2 downto 0):= "000"; 
constant jal: std_logic_vector (2 downto 0):= "001"; 
constant computationout: std_logic_vector (2 downto 0):= "010"; 
constant memoryout: std_logic_vector (2 downto 0):= "011"; 
 
constant vregfileout: std_logic_vector (1 downto 0):= "00"; 
constant valuout: std_logic_vector (1 downto 0):= "01"; 
constant vmemoryout: std_logic_vector (1 downto 0):= "10"; 
 
begin 
 
process(REGWRITEEXE, WBEXE, RSEL1ID, REGWRITEMEM, WBMEM, ISJAL)  
begin 
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 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID then 
   FORWARDA <= computationout; 
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID then 
   FORWARDA <= memoryout;  
 elsif ISJAL = '1' then 
   FORWARDA <= jal; 
 else --takes care of RESET case 
   FORWARDA <= regfileout; 
 end if; 
end process; 
 
process(REGWRITEEXE, WBEXE, RSEL2ID, REGWRITEMEM, WBMEM, ISJAL)  
begin 
 if REGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL2ID then 
   FORWARDM <= computationout; 
 elsif REGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL2ID then 
   FORWARDM <= memoryout;  
 elsif ISJAL = '1' then 
   FORWARDM <= jal; 
 else --takes care of RESET case 
   FORWARDM <= regfileout; 
 end if; 
end process; 
 
--SIMD processes 
process(VREGWRITEEXE, WBEXE, RSEL1ID, VREGWRITEMEM, WBMEM)  
begin 
 if VREGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL1ID then 
   VFORWARDA <= valuout; 
 elsif VREGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL1ID then 
   VFORWARDA <= vmemoryout;  
 else --takes care of RESET case 
   VFORWARDA <= vregfileout; 
 end if; 
end process; 
 
process(VREGWRITEEXE, WBEXE, RSEL2ID, VREGWRITEMEM, WBMEM)  
begin 
 if VREGWRITEEXE = '1' AND WBEXE /= "00000" AND WBEXE = RSEL2ID then 
   VFORWARDM <= valuout; 
 elsif VREGWRITEMEM = '1' AND WBMEM /= "00000" AND WBMEM = RSEL2ID then 
   VFORWARDM <= vmemoryout;  
 else --takes care of RESET case 
   VFORWARDM <= vregfileout; 
 end if; 
end process; 
----------------- 
 
STALL <= '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND WBEXE /= 0 AND 
WBEXE = RSEL2ID else 
                   '1' when REGWRITEEXE = '1' AND MEMTOREGEXE = '1' AND WBEXE /= 0 AND 
WBEXE = RSEL1ID else 
     '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL1ID else 
     '1' when ISMUL = '1' AND WBEXE /= 0 AND WBEXE = RSEL2ID else 
     '1' when VREGWRITEEXE = '1' AND VMEMTOREGEXE = '1' AND WBEXE /= 0 AND 
WBEXE = RSEL2ID else 
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                  '1' when VREGWRITEEXE = '1' AND VMEMTOREGEXE = '1' AND WBEXE /= 0 AND 
WBEXE = RSEL1ID else 
    '0'; 
 
end Behavioral; 
 
 
EXEstage.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity EXEstage is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in STD_LOGIC; 
              ALUop : in  STD_LOGIC_VECTOR (4 downto 0); 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              MULRESULT : out  STD_LOGIC_VECTOR (31 downto 0); 
              RESULT : out  STD_LOGIC_VECTOR (31 downto 0); 
              --SIMD Ports 
             VA : in  STD_LOGIC_VECTOR (datasize downto 0);  
             VB : in  STD_LOGIC_VECTOR (datasize downto 0); 
             VMULRESULT : out  STD_LOGIC_VECTOR (datasize downto 0); 
             VRESULT : out  STD_LOGIC_VECTOR (datasize downto 0)); 
end EXEstage; 
 
architecture Behavioral of EXEstage is 
 
component computation is 
    Port ( SHDIR : in  STD_LOGIC; 
              SHEXTMODE : in  STD_LOGIC; 
              SIGNEDCOMP : in  STD_LOGIC; 
              MSEL : in  STD_LOGIC_VECTOR (1 downto 0); 
              FSEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
 
component multiply is 
 port ( 
 clk: IN std_logic; 
 a: IN std_logic_VECTOR(15 downto 0); 
 b: IN std_logic_VECTOR(15 downto 0); 
 p: OUT std_logic_VECTOR(31 downto 0)); 
end component multiply; 
 
component ALUcontroller is 
    Port ( FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
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              ALUop : in  STD_LOGIC_VECTOR (4 downto 0); 
              SIGNEDCOMP : out  STD_LOGIC; 
              SHDIR : out  STD_LOGIC; 
              SHEXTMODE : out  STD_LOGIC; 
              MSEL : out  STD_LOGIC_VECTOR (1 downto 0); 
              FSEL : out  STD_LOGIC_VECTOR (2 downto 0)); 
end component; 
 
component ALU is 
    Port ( A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0); 
              FSEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              COUT : out  STD_LOGIC; 
              ZERO : out  STD_LOGIC; 
              NEG : out  STD_LOGIC; 
              OVF : out  STD_LOGIC); 
end component ALU; 
 
signal signedcomp, shdir, shextmode: std_logic; 
signal msel: std_logic_vector (1 downto 0); 
signal fsel: std_logic_vector (2 downto 0); 
 
--SIMD signals 
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0); 
signal va_array, vb_array, vresult_array, vmultresult_array : data_array; 
 
begin 
 
ALUcontrol: component ALUcontroller port map(FUNCT => FUNCT, 
              ALUop => ALUop, 
              SIGNEDCOMP => signedcomp, 
              SHDIR => shdir, 
              SHEXTMODE => shextmode, 
              MSEL => msel, 
              FSEL => fsel); 
 
mult: component multiply port map(clk => CLK, 
     a => A(15 downto 0), 
     b => B(15 downto 0), 
     p => MULRESULT); 
            
    
calc: component computation port map(SHDIR => shdir, 
           SHEXTMODE => shextmode, 
           SIGNEDCOMP => signedcomp, 
           MSEL => msel, 
           FSEL => fsel, 
           SHAMT => SHAMT, 
           A => A, 
           B => B, 
           DOUT => RESULT); 
 
va_array(4) <= VA(31 downto 0); 
va_array(3) <= VA(63 downto 32); 
va_array(2) <= VA(95 downto 64); 
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va_array(1) <= VA(127 downto 96); 
 
vb_array(4) <= VB(31 downto 0); 
vb_array(3) <= VB(63 downto 32); 
vb_array(2) <= VB(95 downto 64); 
vb_array(1) <= VB(127 downto 96); 
 
genalu: for I in 1 to size generate  
genSIMDalu: component ALU port map(A => va_array(I), 
             B => vb_array(I), 
             DOUT => vresult_array(I), 
             FSEL => fsel, 
             COUT => open, 
             ZERO => open, 
             NEG => open, 
             OVF => open); 
 
genSIMDmult: component multiply port map(clk => CLK,  
        a => va_array(I)(15 downto 0), 
        b => vb_array(I)(15 downto 0), 
        p => vmultresult_array(I)); 
 
end generate; 
            
VRESULT <= vresult_array(1) & vresult_array(2) & vresult_array(3) & vresult_array(4); 
VMULRESULT <= vmultresult_array(1) & vmultresult_array(2) & vmultresult_array(3) & 
vmultresult_array(4); 
      
end Behavioral; 
 
 
ALUcontroller.vhd: 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity ALUcontroller is 
    Port ( FUNCT : in  STD_LOGIC_VECTOR (5 downto 0); 
              ALUop : in  STD_LOGIC_VECTOR (3 downto 0); 
              SIGNEDCOMP : out  STD_LOGIC; 
              SHDIR : out  STD_LOGIC; 
              SHEXTMODE : out  STD_LOGIC; 
              MSEL : out  STD_LOGIC_VECTOR (1 downto 0); 
              FSEL : out  STD_LOGIC_VECTOR (2 downto 0)); 
end ALUcontroller; 
 
architecture Behavioral of ALUcontroller is 
 
--ALUops 
constant rtype: std_logic_vector (4 downto 0):= "00000"; --vrtype as well 
constant addiu: std_logic_vector (4 downto 0):= "00001"; --vaddiu as well 
constant andi: std_logic_vector (4 downto 0):= "00010"; --vandi as well 
constant ori: std_logic_vector (4 downto 0):= "00011"; --vori as well 
constant xori: std_logic_vector (4 downto 0):= "00100"; --vxori as well 
constant lui: std_logic_vector (4 downto 0):= "00101"; 
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constant slti: std_logic_vector (4 downto 0):= "00110"; 
constant sltiu: std_logic_vector (4 downto 0):= "00111"; 
--"01000" is for mul, also acts at TAKEMULRESULT in processor 
--"10000" is for others 
 
--Funct 
constant addu: std_logic_vector (5 downto 0):= "100001"; --vaddu as well 
constant subu: std_logic_vector (5 downto 0):= "100011"; 
constant and1: std_logic_vector (5 downto 0):= "100100";  --vand as well 
constant or1: std_logic_vector (5 downto 0):= "100101";    --vor as well 
constant xor1: std_logic_vector (5 downto 0):= "100110";  --vxor as well 
constant sll1: std_logic_vector (5 downto 0):= "000000"; 
constant srl1: std_logic_vector (5 downto 0):= "000010"; 
constant sra1: std_logic_vector (5 downto 0):= "000011"; 
constant slt: std_logic_vector (5 downto 0):= "101010"; 
constant sltu: std_logic_vector (5 downto 0):= "101011"; 
 
--MSEL 
constant shifter: std_logic_vector (1 downto 0):= "00"; 
constant compare: std_logic_vector (1 downto 0):= "01"; 
constant alu: std_logic_vector (1 downto 0):= "10"; 
 
begin 
 
SHDIR <= '1' when ALUop = rtype AND FUNCT = sll1 else '0'; 
SHEXTMODE <= '1' when ALUop = rtype AND FUNCT = sra1 else '0'; 
SIGNEDCOMP <= '1' when ALUop = slti OR FUNCT = slt else '0'; 
 
process(ALUop, FUNCT) 
begin 
 case ALUop is 
  when rtype => case FUNCT is 
                                when addu => FSEL <= "000"; MSEL <= alu; 
     when subu => FSEL <= "100"; MSEL <= alu; 
     when and1 => FSEL <= "001"; MSEL <= alu; 
     when or1 => FSEL <= "010"; MSEL <= alu; 
     when xor1 => FSEL <= "011"; MSEL <= alu; 
     when sll1 => FSEL <= "000"; MSEL <= shifter; 
     when srl1 => FSEL <= "000"; MSEL <= shifter; 
     when sra1 => FSEL <= "000"; MSEL <= shifter; 
     when slt => FSEL <= "100"; MSEL <= compare; 
     when sltu => FSEL <= "100"; MSEL <= compare; 
     when others => FSEL <= "000"; MSEL <= alu; 
     end case; 
  when andi => FSEL <= "001"; MSEL <= alu; 
  when ori => FSEL <= "010"; MSEL <= alu; 
  when xori => FSEL <= "011"; MSEL <= alu; 
  when lui => FSEL <= "101"; MSEL <= alu; 
  when slti => FSEL <= "100"; MSEL <= compare; 
  when sltiu => FSEL <= "100"; MSEL <= compare; 
  when others => FSEL <= "000"; MSEL <= alu; 
 end case; 
end process; 
 
end Behavioral; 
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Computation.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity computation is 
    Port ( SHDIR : in  STD_LOGIC; 
              SHEXTMODE : in  STD_LOGIC; 
              SIGNEDCOMP : in  STD_LOGIC; 
              MSEL : in  STD_LOGIC_VECTOR (1 downto 0); 
              FSEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end computation; 
 
architecture Behavioral of computation is 
 
component ALU is 
    Port ( A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0); 
              FSEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              COUT : out  STD_LOGIC; 
              ZERO : out  STD_LOGIC; 
              NEG : out  STD_LOGIC; 
              OVF : out  STD_LOGIC); 
end component; 
 
component shifter is 
    Port ( SHDIR : in  STD_LOGIC; 
              EXTMODE : in  STD_LOGIC; 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component shifter; 
 
component comparator is 
    Port ( SIGNEDCOMP : in  STD_LOGIC; 
              COUT : in  STD_LOGIC; 
              NEG : in  STD_LOGIC; 
              OVF : in  STD_LOGIC; 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
 
component mux32x3 is 
    Port ( SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              C : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
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signal cout, neg, ovf, zero: std_logic; 
signal ALUdata, shiftdata, comparedata: std_logic_vector(31 downto 0); 
 
begin 
 
alu1: component ALU port map(A => A, 
             B => B, 
             DOUT => ALUdata, 
             FSEL => FSEL, 
             COUT => cout, 
             ZERO => zero, 
             NEG => neg, 
             OVF => ovf); 
 
shift: component shifter port map(SHDIR => SHDIR, 
               EXTMODE => SHEXTMODE, 
               SHAMT => SHAMT, 
               DIN => B, 
               DOUT => shiftdata); 
 
compare: component comparator port map(SIGNEDCOMP => SIGNEDCOMP, 
                COUT => cout, 
                NEG => neg, 
                OVF => ovf, 
                DOUT => comparedata); 
 
datamux: component mux32x3 port map(SEL => MSEL, 
             A => shiftdata, 
             B => comparedata, 
             C => ALUdata, 
             DOUT => DOUT); 
 
end Behavioral; 
 
Multiply.vhd: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
-- synopsys translate_off 
Library XilinxCoreLib; 
-- synopsys translate_on 
ENTITY multiply IS 
 port ( 
 clk: IN std_logic; 
 a: IN std_logic_VECTOR(15 downto 0); 
 b: IN std_logic_VECTOR(15 downto 0); 
 p: OUT std_logic_VECTOR(31 downto 0)); 
END multiply; 
 
ARCHITECTURE multiply_a OF multiply IS 
-- synopsys translate_off 
component wrapped_multiply 
 port ( 
 clk: IN std_logic; 
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 a: IN std_logic_VECTOR(15 downto 0); 
 b: IN std_logic_VECTOR(15 downto 0); 
 p: OUT std_logic_VECTOR(31 downto 0)); 
end component; 
 
-- Configuration specification  
 for all : wrapped_multiply use entity XilinxCoreLib.mult_gen_v9_0(behavioral) 
  generic map( 
   c_a_width => 16, 
   c_b_type => 0, 
   c_ce_overrides_sclr => 0, 
   c_opt_goal => 1, 
   c_has_sclr => 0, 
   c_round_pt => 0, 
   c_out_high => 31, 
   c_mult_type => 0, 
   c_ccm_imp => 0, 
   c_has_load_done => 0, 
   c_pipe_stages => 1, 
   c_has_ce => 0, 
   c_has_zero_detect => 0, 
   c_round_output => 0, 
   c_mem_init_prefix => "mgv9", 
   c_xdevicefamily => "virtex2p", 
   c_a_type => 0, 
   c_out_low => 0, 
   c_b_width => 16, 
   c_b_value => "10000001"); 
-- synopsys translate_on 
BEGIN 
-- synopsys translate_off 
U0 : wrapped_multiply 
  port map ( 
   clk => clk, 
   a => a, 
   b => b, 
   p => p); 
-- synopsys translate_on 
 
END multiply_a; 
 
 
ALU.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity ALU is 
    Port ( A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0); 
              FSEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              COUT : out  STD_LOGIC; 
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              ZERO : out  STD_LOGIC; 
              NEG : out  STD_LOGIC; 
              OVF : out  STD_LOGIC); 
end ALU; 
 
architecture Behavioral of ALU is 
 
signal sum, tempsum, tempsub, tempa, tempb : std_logic_vector (32 downto 0); 
signal douttemp: std_logic_vector (31 downto 0); 
 
begin 
 
 
tempa <= '0'& A ; 
tempb <= '0' & B;  
tempsum <= tempa + tempb; --ADD 
tempsub <= tempa - tempb; --SUB 
 
process(A, B, FSEL, douttemp, tempsum, tempsub, sum) 
 begin 
  case FSEL is 
   when "000" => sum <= tempsum;--'0'& A + '0' & B; --ADD 
     douttemp <= sum(31 downto 0); 
     DOUT <= douttemp; 
     COUT <= sum(32); 
     if douttemp = x"00000000" then 
       ZERO <= '1'; 
     else 
       ZERO <= '0'; 
     end if; 
     NEG <= douttemp(31); 
     if A(31) = '0' AND B(31) = '0' AND douttemp(31) = '1' then 
       OVF <= '1'; 
                  elsif A(31) = '1' AND B(31) = '1' AND douttemp(31) = '0' then 
       OVF <= '1'; 
     else 
       OVF <= '0'; 
     end if; 
   when "001" => douttemp <= A AND B; --AND 
     DOUT <= douttemp; 
     COUT <= '0'; 
     if douttemp = x"00000000" then 
       ZERO <= '1'; 
     else 
       ZERO <= '0'; 
     end if; 
     NEG <= douttemp(31); 
     OVF <= '0'; 
   when "010" => douttemp <= A OR B; --OR 
     DOUT <= douttemp; 
     COUT <= '0'; 
     if douttemp = x"00000000" then 
       ZERO <= '1'; 
     else 
       ZERO <= '0'; 
     end if; 
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     NEG <= douttemp(31); 
     OVF <= '0'; 
   when "011" => douttemp <= A XOR B; --XOR 
     DOUT <= douttemp; 
     COUT <= '0'; 
     if douttemp = x"00000000" then 
       ZERO <= '1'; 
     else 
       ZERO <= '0'; 
     end if; 
     NEG <= douttemp(31); 
     OVF <= '0'; 
   when "100" => sum <= tempsub;--'0'&A - '0'&B; --SUB 
     douttemp <= sum(31 downto 0); 
     DOUT <= douttemp; 
     COUT <= sum(32); 
     if douttemp = x"00000000" then 
       ZERO <= '1'; 
     else 
       ZERO <= '0'; 
     end if; 
     NEG <= douttemp(31); 
     if A(31) = '1' AND B(31) = '0' AND douttemp(31) = '0' then 
       OVF <= '1'; 
                  elsif A(31) = '0' AND B(31) = '1' AND douttemp(31) = '1' then 
       OVF <= '1'; 
     else 
       OVF <= '0'; 
     end if;    
   when "101" => DOUT(31 downto 16) <= B(15 downto 0);   
               DOUT(15 downto 0) <= x"0000"; 
     COUT <= '0'; 
     ZERO <= '0'; 
     NEG <= '0'; 
     OVF <= '0'; 
   when others => DOUT <= x"00000000"; 
     COUT <= '0'; 
     ZERO <= '1'; 
     NEG <= '0'; 
     OVF <= '0';  
  end case; 
 end process; 
end Behavioral; 
 
 
Comparator.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity comparator is 
    Port ( SIGNEDCOMP : in  STD_LOGIC; 
              COUT : in  STD_LOGIC; 
              NEG : in  STD_LOGIC; 
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              OVF : in  STD_LOGIC; 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end comparator; 
 
architecture Behavioral of comparator is 
 
component mux32x2 is 
    Port ( SEL : in  STD_LOGIC; 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end component; 
 
signal negxorovf: std_logic; 
signal zeros: std_logic_vector (30 downto 0):= "000" & x"0000000"; 
signal atemp, btemp: std_logic_vector (31 downto 0); 
 
begin 
 
negxorovf <= NEG XOR OVF; 
atemp <= zeros & COUT; 
btemp <= zeros & negxorovf; 
slt_umux:component mux32x2 port map(SIGNEDCOMP, atemp, btemp, DOUT); 
 
end Behavioral; 
 
 
Shifter.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity shifter is 
    Port ( SHDIR : in  STD_LOGIC;    -- 0 = right, 1 = left 
              EXTMODE : in  STD_LOGIC; 
              SHAMT : in  STD_LOGIC_VECTOR (4 downto 0); 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end shifter; 
 
architecture Behavioral of shifter is 
 
type stage_array is array(0 to 4) of std_logic_vector(31 downto 0); 
signal sll_array, srl_array, sra_array : stage_array; 
 
begin 
  
sll_array(0) <= DIN when SHAMT(4) = '0' else DIN(15 downto 0) & X"0000"; 
sll_array(1) <= sll_array(0) when SHAMT(3) = '0' else sll_array(0)(23 downto 0) & X"00"; 
sll_array(2) <= sll_array(1) when SHAMT(2) = '0' else sll_array(1)(27 downto 0) & X"0"; 
sll_array(3) <= sll_array(2) when SHAMT(1) = '0' else sll_array(2)(29 downto 0) & "00"; 
sll_array(4) <= sll_array(3) when SHAMT(0) = '0' else sll_array(3)(30 downto 0) & '0'; 
 
srl_array(0) <= DIN when SHAMT(4) = '0' else X"0000" & DIN(31 downto 16); 
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srl_array(1) <= srl_array(0) when SHAMT(3) = '0' else X"00" & srl_array(0)(31 downto 8); 
srl_array(2) <= srl_array(1) when SHAMT(2) = '0' else X"0" & srl_array(1)(31 downto 4); 
srl_array(3) <= srl_array(2) when SHAMT(1) = '0' else "00" & srl_array(2)(31 downto 2); 
srl_array(4) <= srl_array(3) when SHAMT(0) = '0' else '0' & srl_array(3)(31 downto 1); 
       
sra_array(0) <= DIN when SHAMT(4) = '0' else X"FFFF" & DIN(31 downto 16); 
sra_array(1) <= sra_array(0) when SHAMT(3) = '0' else X"FF" & sra_array(0)(31 downto 8); 
sra_array(2) <= sra_array(1) when SHAMT(2) = '0' else X"F" & sra_array(1)(31 downto 4); 
sra_array(3) <= sra_array(2) when SHAMT(1) = '0' else "11" & sra_array(2)(31 downto 2); 
sra_array(4) <= sra_array(3) when SHAMT(0) = '0' else '1' & sra_array(3)(31 downto 1);   
    
  
DOUT <= sll_array(4) when SHDIR = '1' else  
                  sra_array(4) when EXTMODE = '1' and DIN(31) = '1' else 
     srl_array(4); 
 
 
end architecture Behavioral; 
 
 
Mux32x4.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity mux32x4 is 
    Port ( SEL : in  STD_LOGIC_VECTOR (2 downto 0); 
              A : in  STD_LOGIC_VECTOR (31 downto 0); 
              B : in  STD_LOGIC_VECTOR (31 downto 0); 
              C : in  STD_LOGIC_VECTOR (31 downto 0); 
              D : in  STD_LOGIC_VECTOR (31 downto 0); 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end mux32x4; 
 
architecture Behavioral of mux32x4 is 
 
begin 
 
DOUT <= A when SEL = "000" else 
    B when SEL = "001" else 
    C when SEL = "010" else 
    D when SEL = "011" else 
    x"deaddead"; 
 
end Behavioral; 
 
 
Mux32x3.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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entity mux32x3 is 
    Port ( SEL : in  STD_LOGIC_VECTOR (1 downto 0); 
           A : in  STD_LOGIC_VECTOR (31 downto 0); 
           B : in  STD_LOGIC_VECTOR (31 downto 0); 
           C : in  STD_LOGIC_VECTOR (31 downto 0); 
           DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end mux32x3; 
 
architecture Behavioral of mux32x3 is 
 
begin 
 
DOUT <= A when SEL = "00" else 
    B when SEL = "01" else 
    C when SEL = "10" else 
    x"deaddead"; 
 
end Behavioral; 
 
 
Mux32x2.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity mux32x2 is 
    Port ( SEL : in  STD_LOGIC; 
             A : in  STD_LOGIC_VECTOR (31 downto 0); 
             B : in  STD_LOGIC_VECTOR (31 downto 0); 
             DOUT : out  STD_LOGIC_VECTOR (31 downto 0)); 
end mux32x2; 
 
architecture Behavioral of mux32x2 is 
 
begin 
 
DOUT <= A when SEL = '0' else 
    B when SEL = '1'; 
 
end Behavioral; 
 
 
MEMstage.vhd: 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity MEMstage is 
  Generic (datasize : natural := 127; 
   size : natural := 4); 
    Port ( CLK : in  STD_LOGIC; 
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              RESET : in  STD_LOGIC; 
              ADDR : in  STD_LOGIC_VECTOR (31 downto 0); 
              DIN : in  STD_LOGIC_VECTOR (31 downto 0); 
              MEMTOREG : in  STD_LOGIC; 
              MEMWRITEH : in  STD_LOGIC; 
              DOUT : out  STD_LOGIC_VECTOR (31 downto 0); 
 --SIMD Ports 
 VADDR : in STD_LOGIC_VECTOR (31 downto 0); 
 VDIN : in STD_LOGIC_VECTOR (datasize downto 0); 
 VMEMTOREG : in STD_LOGIC; 
 VMEMWRITEH : in STD_LOGIC; 
 VDOUT : out STD_LOGIC_VECTOR (datasize downto 0)); 
end MEMstage; 
 
architecture Behavioral of MEMstage is 
 
component datamem is 
 port ( 
 addr: in std_logic_vector(9 downto 0); 
 clk: in std_logic; 
 din: in std_logic_vector(31 downto 0); 
 dout: out std_logic_vector(31 downto 0); 
 en: in std_logic; 
 sinit: in std_logic; 
 we: in std_logic); 
end component datamem; 
 
component simd_memory_1 is 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 din: IN std_logic_VECTOR(31 downto 0); 
 dout: OUT std_logic_VECTOR(31 downto 0); 
 en: in std_logic; 
 sinit: in std_logic; 
 we: in std_logic); 
end component simd_memory_1; 
 
component simd_memory_2 is 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 din: IN std_logic_VECTOR(31 downto 0); 
 dout: OUT std_logic_VECTOR(31 downto 0); 
 en: in std_logic; 
 sinit: in std_logic; 
 we: in std_logic); 
end component simd_memory_2; 
 
type data_array is array (1 to size) of STD_LOGIC_VECTOR (31 downto 0); 
signal vdin_array, vdout_array : data_array; 
 
begin 
 
datamemory: component datamem port map(addr => ADDR(11 downto 2), 
     clk => CLK, 
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     din => DIN, 
     dout => DOUT, 
     en => MEMTOREG, 
     sinit => RESET, 
     we => MEMWRITEH); 
 
vdin_array(4) <= VDIN(31 downto 0);  
vdin_array(3) <= VDIN(63 downto 32); 
vdin_array(2) <= VDIN(95 downto 64); 
vdin_array(1) <= VDIN(127 downto 96); 
            
  
SIMDmem1: component simd_memory_1 port map(addr => VADDR(11 downto 2), 
      clk => CLK, 
      din => vdin_array(1), 
      dout => vdout_array(1), 
      en => VMEMTOREG, 
      sinit => RESET, 
      we => VMEMWRITEH);    
  
SIMDmem2: component simd_memory_2 port map(addr => VADDR(11 downto 2), 
      clk => CLK, 
      din => vdin_array(2), 
      dout => vdout_array(2), 
      en => VMEMTOREG, 
      sinit => RESET, 
      we => VMEMWRITEH);  
 
SIMDmem3: component simd_memory_2 port map(addr => VADDR(11 downto 2), 
      clk => CLK, 
      din => vdin_array(3), 
      dout => vdout_array(3), 
      en => VMEMTOREG, 
      sinit => RESET, 
      we => VMEMWRITEH);  
 
SIMDmem4: component simd_memory_2 port map(addr => VADDR(11 downto 2), 
      clk => CLK, 
      din => vdin_array(4), 
      dout => vdout_array(4), 
      en => VMEMTOREG, 
      sinit => RESET, 
      we => VMEMWRITEH);    
       
 
VDOUT <= vdout_array(1) & vdout_array(2) & vdout_array(3) & vdout_array(4); 
 
end Behavioral; 
 
 
Datamem.vhd: 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
-- synopsys translate_off 
Library XilinxCoreLib; 
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-- synopsys translate_on 
ENTITY datamem IS 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 din: IN std_logic_VECTOR(31 downto 0); 
 dout: OUT std_logic_VECTOR(31 downto 0); 
 en: IN std_logic; 
 sinit: IN std_logic; 
 we: IN std_logic); 
END datamem; 
 
ARCHITECTURE datamem_a OF datamem IS 
-- synopsys translate_off 
component wrapped_datamem 
 port ( 
 addr: IN std_logic_VECTOR(9 downto 0); 
 clk: IN std_logic; 
 din: IN std_logic_VECTOR(31 downto 0); 
 dout: OUT std_logic_VECTOR(31 downto 0); 
 en: IN std_logic; 
 sinit: IN std_logic; 
 we: IN std_logic); 
end component; 
 
-- Configuration specification  
 for all : wrapped_datamem use entity XilinxCoreLib.blkmemsp_v6_2(behavioral) 
  generic map( 
   c_sinit_value => "0", 
   c_has_en => 1, 
   c_reg_inputs => 0, 
   c_yclk_is_rising => 1, 
   c_ysinit_is_high => 1, 
   c_ywe_is_high => 1, 
   c_yprimitive_type => "16kx1", 
   c_ytop_addr => "1024", 
   c_yhierarchy => "hierarchy1", 
   c_has_limit_data_pitch => 0, 
   c_has_rdy => 0, 
   c_write_mode => 0, 
   c_width => 32, 
   c_yuse_single_primitive => 0, 
   c_has_nd => 0, 
   c_has_we => 1, 
   c_enable_rlocs => 0, 
   c_has_rfd => 0, 
   c_has_din => 1, 
   c_ybottom_addr => "0", 
   c_pipe_stages => 0, 
   c_yen_is_high => 1, 
   c_depth => 1024, 
   c_has_default_data => 1, 
   c_limit_data_pitch => 18, 
   c_has_sinit => 1, 
   c_yydisable_warnings => 1, 
   c_mem_init_file => "mif_file_16_1", 
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   c_default_data => "0", 
   c_ymake_bmm => 0, 
   c_addr_width => 10); 
-- synopsys translate_on 
BEGIN 
-- synopsys translate_off 
U0 : wrapped_datamem 
  port map ( 
   addr => addr, 
   clk => clk, 
   din => din, 
   dout => dout, 
   en => en, 
   sinit => sinit, 
   we => we); 
-- synopsys translate_on 
 
END datamem_a; 
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Appendix C: Program Codes 
 
 
Hazard Test: 
main: 
CaseA: 
 ori  $v0, $0, 87 
 or $v1, $v0, $0 
 beq $v0, $v1, CaseB 
 sll $0, $0, 0 
 j failA 
 sll $0, $0, 0 
# tested basic function of or and ori, tested beq for branch to correct address. 
 
CaseB:  
 or $0, $v1, $v0 
 beq $0, $t1, CaseC 
 sll $0, $0, 0 
 j failB 
 sll $0, $0, 0 
# tested register zero by trying to or a value into the register. 
 
CaseC: 
 addiu $v0, $0, 54 
 addu $v1, $v0, $0 
 bne $v1, $v0, failC1 
 subu $t1, $v1, $v0 
 beq $t1, $0, CaseD 
 sll $0, $0, 0 
 j failC2 
 sll $0, $0, 0 
# tested basic function of addu, subu, addiu. 
 
CaseD: 
 addiu $v0, $0, 64 
 addiu $v1, $0, 80 
 and $t2, $v1, $v0 
 bne $t2, $v0, failD1 
 sll $0, $0, 0 
 addiu $v0, $0, 170 
 xor $t3, $t2, $v0 
 addu $v1, $t2, $v0 
 bne $t3, $v1, failD2 
 sll $0, $0, 0 
 xori $t4, $t3, 255 
 addiu $v0, $0, 21 
 bne $t4, $v0, failD3 
 sll $0, $0, 0 
 andi $t5, $v0, 255 
 bne $t5, $v0, failD4 
 sll $0, $0, 0 
 lui $at, 64 
 sll $0, $0, 0 
 ori $v0, $at, 240 
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 addiu $t6, $at, 240 
 bne $t6, $v0, failD5 
 addiu $v0, $0, 180 
 jr $v0 
 sll $0, $0, 0 
 addiu $v0, $0, 240  
# tested basic functions of and, xor, xori, andi, lui.  Also tested if jr would jump to the correct address.   
 
CaseE: 
 addiu $v1, $0, 180 
 bne $v1, $v0, failE1 
 sll $0, $0, 0 
 addiu $v0, $v1, 2 
 beq $v1, $v0, failE2 
 sll $0, $0, 0 
 j CaseF 
 addiu $v1, $0, 60 
 lui $at, 64 
 sll $0, $0, 0 
 ori $v0, $at, 208 
 jr $v0 
 addiu $at, $0, 77 
#tested for delay slot for jr, beq functionality and started test for j delay slot.  From the jr in CaseD, it 
#jumped to the lui instruction.  To test for the delay slot: set up an instruction to change a register where 
#the nop should be and after it jumps, change another register and compare it to see if it was the same. 
 
CaseF: 
 addiu $t7, $0, 60 
 bne $t7, $v1, failF 
 sll $0, $0, 0 
 beq $0, $0, CaseG 
 addiu $v0, $0, 125 
 addiu $at, $0, 60 
#finish test for j delay slot and start test for beq branch location and delay slot.   
 
CaseG: 
 beq $at, $t7, failG1 
 sll  $0, $0, 0 
 addiu $v1, $0, 125 
 bne $v1, $v0, failG2 
 sll $0, $0, 0 
 bne $v1, $0, CaseH 
 addiu $v0, $0, 47 
 addiu $t2, $0, 88 
#finish test for beq location and delay slot and start test for bne branch location and delay slot.  The first 
#test is to make sure that beq actually branched off as the addiu $at, $0, 60 instruction in CaseF should 
#never be executed.  The second test checks the delay slot as the same logic as written in CaseE test. 
 
CaseH: 
 addiu $t3, $0, 88 
 beq $t3, $t2, failH1 
 sll $0, $0, 0 
 addiu $v1, $0, 47 
 bne $v1, $v0, failH2 
 sll $0, $0, 0 
 jal CaseI 
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 addiu $v0, $0, 99 
 j endoftest 
#finish test for bne location and delay slot and start test for jal jump location, delay slot and return address.  
#To test for the delay slot: set up an instruction to change a register where the nop should be and after it 
#branches, change another register and compare it to see if it was the same.   
 
CaseI: 
 addiu $v1, $0, 99 
 bne $v1, $v0, failI1 
 sll $0, $0, 0 
 lui $at, 64 
 sll $0, $0, 0 
 ori $v0, $0, 0x0140 
 bne $v0, $ra, failI2 
 sll $0, $0, 0 
#finish test for jal location, delay slot and return address.  If jal did not branch then the j endoftest would 
#have executed.  The first test here looks to see if the registers are the same for the delay slot.  The second 
#test shows functionality of the return address.   
 addiu $v1, $0, 15 
 sll $v0, $v1, 16 
 addiu $t4, $0, 0 
 lui $t4, 15 
 sll $0, $0, 0 
 bne $t4, $v0, failI3 
 sll $0, $0, 0 
 srl $v0, $v0, 8 
 addiu $t5, $0, 3840 
 bne $t5, $v0, failI4 
 sll $0, $0, 0 
 sra $v1, $v0, 8 
 addiu $t6, $0, 15 
 bne $t6, $v1, failI5 
 sll  $0, $0, 0 
 sll  $v1, $v1, 31 
 sra $v1, $v1, 5 
 lui $at, 64512 
 sll $0, $0, 0 
 bne $v1, $at, failI6 
 sll  $0, $0, 0 
# tested sll, srl, and sra to show shifting instructions work correctly and extend the MSB appropriately. 
 addiu $t7, $0, 48 
 addiu $t6, $0, 0 
 lui $t7, 4 
 sll $0, $0, 0 
 lui $t6, 4 
 sll $0, $0, 0 
 bne $t6, $t7, failI7 
 sll $0, $0, 0 
#tested lui extend.   
 addu $t2, $0, $0 
 addu $t3, $0, $0 
 addiu $t2, $0, -42 
 addiu $t3, $0, 42 
 addu $t4, $t3, $t2 
 bne $t4, $0, failI8 
 sll $0, $0, 0 
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 j CaseJ 
 sll $0, $0, 0 
#tested addiu sign extend.   
 
CaseL: 
 addiu $v0, $0, 27 
 sw $v0,20,($0) 
 lw $t3,20,($0) 
 bne $t3, $v0, failL1 
 sll $0, $0, 0 
 addiu $v1, $0, 44 
 sw $v1,8,($0) 
 sll $0, $0, 0 
 sll $0, $0, 0 
 lw $t4,8,($0) 
 bne $t4, $v1, failL2 
 sll $0, $0, 0 
 j finishtest 
 sll $0, $0, 0 
#tested sw and lw.  Makes sure that a load that follows a store to the same address reads the appropriate 
#data 
 
CaseK: 
 addiu $v0, $0, 15 
 sll $v0, $v0, 28 
 sra $v0, $v0, 28 
 addiu $v1, $v0, 1 
 bne $v1, $0, failK1 
 sll $0, $0, 0 
 addiu $t4, $0, 15 
 addu $t4, $t4, $v0 
 addiu $t5, $0, 14 
 bne $t5, $t4, failK2 
 sll $0, $0, 0 
 subu $t6, $t4, $v0 
 addiu $t5, $0, 15 
 bne $t5, $t6, failK3 
 sll $0, $0, 0 
#tested for overflow of  arithmetic and logical instructions. 
 addiu $v0, $0, 32767 
 andi $v1, $v0, 255 
 addiu $t3, $0, 255 
 bne $t3, $v1, failK4 
 sll  $0, $0, 0 
 xori $t4, $t3, 0 
 bne $t4, $t3, failK5 
 sll  $0, $0, 0 
 jal CaseL 
 sll $0, $0, 0 
 j  endoftest 
 sll  $0, $0, 0 
#tested andi and xori for extend.  This completes the tests for arithmetic and logical instructions with 
#immediate field extends. 
 
 
CaseJ: 
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 addiu $v0, $0, 15 
 sll $v0, $v0, 28 
 sra $v0, $v0, 28  
 addiu $v1, $0, 52    
 slt $t2, $v0, $v1 
 addiu $t1, $0, 1 
 bne $t1, $t2, failJ1 
 sll $0, $0, 0 
 slti $t3, $v0, 138 
 bne $t1, $t3, failJ2 
 sll $0, $0, 0 
 slt $t4, $v1, $v0 
 beq $t4, $t1, failJ3 
 sll $0, $0, 0 
 slti $t5, $v1, -294 
 beq $t5, $t1, failJ4 
 sll $0, $0, 0 
 addiu $v0, $0, 14296 
 addiu $v1, $v0, 3920 
 sll $v0, $v0, 4 
 slt $t6, $v1, $v0 
 bne $t1, $t6, failJ5 
 sll $0, $0, 0 
 slti $t7, $v0, 5333 
 beq $t1, $t7, failJ6 
 sll $0, $0, 0 
 sltu $t2, $v1, $v0 
 bne $t1, $t2, failJ7 
 sll $0, $0, 0 
 sltiu $t3, $v0, 5411 
 beq $t1, $t3, failJ8 
 sll $0, $0, 0 
 j CaseK 
 sll $0, $0, 0  
#tested slt, slti, stliu, and stlu.  These 8 tests look at both bit patterns representing negative two's 
#complement integers and large natural numbers comparisons. Also tested jumping backwards. 
 
#following are error codes to see where an error occurs 
failA:  
 addiu $t0, $0, 1 
 j  endoftest 
 sll $0, $0, 0 
 
failB: 
 addiu $t0, $0, 2 
 j endoftest 
 sll $0, $0, 0 
 
failC1: 
 addiu $t0, $0, 3 
 j endoftest 
 sll $0, $0, 0 
 
failC2: 
 addiu $t0, $0, 4 
 j endoftest 
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 sll $0, $0, 0 
 
 
failD1: 
 addiu $t0, $0, 5 
 j endoftest 
 sll $0, $0, 0 
 
failD2: 
 addiu $t0, $0, 6 
 j endoftest 
 sll $0, $0, 0 
 
failD3: 
 addiu $t0, $0, 7 
 j endoftest 
 sll $0, $0, 0 
 
failD4: 
 addiu $t0, $0, 8 
 j endoftest 
 sll $0, $0, 0 
 
failD5: 
 addiu $t0, $0, 9 
 j endoftest 
 sll $0, $0, 0 
 
failE1: 
 addiu $t0, $0, 10 
 j endoftest 
 sll $0, $0, 0 
 
failE2: 
 addiu $t0, $0, 11 
 j endoftest 
 sll $0, $0, 0 
 
failF: 
 addiu $t0, $0, 12 
 j endoftest 
 sll $0, $0, 0 
 
failG1: 
 addiu $t0, $0, 13 
 j endoftest 
 sll $0, $0, 0 
 
failG2: 
 addiu $t0, $0, 14 
 j endoftest 
 sll $0, $0, 0 
 
failH1: 
 addiu $t0, $0, 15 
 j endoftest 
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 sll $0, $0, 0 
 
failH2: 
 addiu $t0, $0, 16 
 j endoftest 
 sll $0, $0, 0 
 
failI1: 
 addiu $t0, $0, 17 
 j endoftest 
 sll $0, $0, 0 
 
failI2: 
 addiu $t0, $0, 18 
 j endoftest 
 sll $0, $0, 0 
 
failI3: 
 addiu $t0, $0, 19 
 j endoftest 
 sll $0, $0, 0 
 
failI4: 
 addiu $t0, $0, 20 
 j endoftest 
 sll $0, $0, 0 
 
failI5: 
 addiu $t0, $0, 21 
 j endoftest 
 sll $0, $0, 0 
 
failI6: 
 addiu $t0, $0, 22 
 j endoftest 
 sll $0, $0, 0 
 
failI7: 
 addiu $t0, $0, 23 
 j endoftest 
 sll $0, $0, 0 
 
failI8: 
 addiu $t0, $0, 24 
 j endoftest 
 sll $0, $0, 0 
 
failJ1: 
 addiu $t0, $0, 25 
 j endoftest 
 sll $0, $0, 0 
 
failJ2: 
 addiu $t0, $0, 26 
 j endoftest 
 sll $0, $0, 0 
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failJ3: 
 addiu $t0, $0, 27 
 j endoftest 
 sll $0, $0, 0 
 
failJ4: 
 addiu $t0, $0, 28 
 j endoftest 
 sll $0, $0, 0 
 
failJ5: 
 addiu $t0, $0, 29 
 j endoftest 
 sll $0, $0, 0 
 
failJ6: 
 addiu $t0, $0, 30 
 j endoftest 
 sll $0, $0, 0 
 
failJ7: 
 addiu $t0, $0, 31 
 j endoftest 
 sll $0, $0, 0 
 
failJ8: 
 addiu $t0, $0, 32 
 j endoftest 
 sll $0, $0, 0 
 
failK1: 
 addiu $t0, $0, 33 
 j endoftest 
 sll $0, $0, 0 
 
 
failK2: 
 addiu $t0, $0, 34 
 j endoftest 
 sll $0, $0, 0 
 
failK3: 
 addiu $t0, $0, 35 
 j endoftest 
 sll $0, $0, 0 
 
failK4: 
 addiu $t0, $0, 36 
 j endoftest 
 sll $0, $0, 0 
 
failK5: 
 addiu $t0, $0, 37 
 j endoftest 
 sll $0, $0, 0 
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failL1: 
 addiu $t0, $0, 38 
 j endoftest 
 sll $0, $0, 0 
 
failL2: 
 addiu $t0, $0, 39 
 j endoftest 
 sll $0, $0, 0 
 
finishtest: 
 addiu $v0, $0, 15 
 sll $v0, $v0, 28 
 sra $v0, $v0, 28 
 addu $v1, $v0, $0 
 addu $t0, $v0, $0 
 
endoftest: 
 sll $0, $0, 0 
 
Basic Test: 
main: 
test0: 
 addiu $2, $0, 5  #testing addiu 
 addiu $3, $0, 5  #testing addiu 
 addiu $4, $0, -5 
 addiu $23, $0, 0 #used to keep track of failed tests 
 
 beq $2, $2, L1  #testing beq 
 ori $0, $0, 0 
 addiu $2, $2, -5 
L1:  
 bne $3, $0, L2 #testing bne  
 ori $0, $0, 0 
 addiu $3, $3, -5 
L2:  
 beq $2, $0, test0_fail 
 ori $0, $0, 0 
 bne $2, $3, test0_fail 
 ori $0, $0, 0 
 beq $2, $0, test0_fail 
 ori $0, $0, 0 
 bne $2, $2, test0_fail 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 lui $5, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $5, $5, 0xFFFB 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $4, $5, test0_fail 
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 ori $0, $0, 0 
 j test1 
 ori $0, $0, 0 #NOP 
test0_fail: 
 ori $23, $23, 0x1 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
 
test1: #test addu, addiu, subu 
 addiu $6, $0, 1  #$6 = small number 
 addiu $7, $0, 52 #$7 = another number 
 lui $8, 0x8000 #$8 = smallest negative number (0x80000000) 
 addiu $9, $0, -5 #$9 = negative number 
 addiu $10, $0, -48 #$10 = negative number 
 ori $0, $0, 0 
 addiu $11, $8, -1 #$11 = largest number(0x7FFFFFFF) 
  
 addu $12, $6, $7 #testing addu with 2 positive numbers 
 addiu $13, $0, 53 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 bne $12, $13, test1_fail 
  
 addu $14, $9, $10 #testing addu for adding 2 negative numbers 
 addiu $15, $0, -53 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $14, $15, test1_fail 
 
 addu $16, $6, $9 #test addu with one pos and one neg number 
 addiu $17, $0, -4 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $16, $17, test1_fail 
 
 addiu $18, $6, 52 #testing addiu with 2 positive numbers 
 addiu $19, $0, 53 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 bne $18, $19, test1_fail 
  
 addiu $20, $9, -48 #testing addiu for adding 2 negative numbers 
 addiu $21, $0, -53 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $20, $21, test1_fail 
 
 addiu $24, $6, -5 #test addiu with one pos and one neg number 
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 addiu $25, $0, -4 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $24, $25, test1_fail 
 
 subu $26, $6, $7 #testing subu with 2 positive numbers 
 addiu $27, $0, -51 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 bne $26, $27, test1_fail 
  
 subu $2, $9, $10 #testing subu for adding 2 negative numbers 
 addiu $3, $0, 43 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $2, $3, test1_fail 
 
 subu $4, $6, $9 #test subu with one pos and one neg number 
 addiu $5, $0, 6 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $4, $5, test1_fail 
 ori $0, $0, 0 
 j test2 
 ori $0, $0, 0 #NOP 
test1_fail: 
 ori $23, $23, 0x2 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
  
test2: #test and, andi, or, ori 
 addiu $2, $0, 0x5A5A  #$2 = 0x00005A5A 
 addiu $3, $0, 0x2525  #$3 = 0x00002525 
 ori $4, $0, 0xFFFF  #$4 = 0x0000FFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 and $5, $2, $3  #test and 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $5, $0, test2_fail 
 
 lui $6, 0x6789  #test and for no sign extension 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 and $7, $6, $4 
 ori $0, $0, 0 
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 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $7, $0, test2_fail 
  
 andi $8, $2, 0x2525  #test andi 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $8, $0, test2_fail 
  
 lui $9, 0x6789  #test andi for no sign extension 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 andi $10, $9, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 bne $10, $0, test2_fail 
 
 or $11, $2, $3  #test or 
 addiu $12, $0, 0x7F7F 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $11, $12, test2_fail 
  
 lui $13, 0x6789  #test or for no sign extension 
 addiu $14, $0, -1  
 ori $0, $0, 0 
 or $13, $13, $4 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 beq $13, $14, test2_fail 
 
 ori $15, $2, 0x2525  #test ori 
 addiu $16, $0, 0x7F7F 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $15, $16, test2_fail 
  
 lui $17, 0x6789  #test ori for no sign extension 
 addiu $18, $0, -1 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $17, $17, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 beq $17, $18, test2_fail 
  
 ori $0, $0, 0 #NOP 
 j test3 
 ori $0, $0, 0 #NOP 
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test2_fail: 
 ori $23, $23, 0x4 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
 
test3: #test xor, xori, lui 
 addiu $2, $0, 0x0F0F  #$2 = 0x00000F0F 
 ori $3, $0, 0xFF00  #$3 = 0x0000FF00 
 ori $4, $0, 0xF00F  #$4 = 0x0000F00F 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 xor $5, $2, $3  #testing xor  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $5, $4, test3_fail 
 
 xori $6, $3, 0x0F0F  #testing xori  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $6, $4, test3_fail   
 
 xori $7, $2, 0xFF00  #testing xori for no sign extension 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $7, $4, test3_fail 
 
 addiu $8, $0, 0x0001  #testing lui, especially for setting last 16bits to 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 lui $8, 0xFFFF 
 addiu $9, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 lui $9, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $8, $9, test3_fail 
  
 ori $0, $0, 0 #NOP 
 j test4 
 ori $0, $0, 0 #NOP 
test3_fail: 
 ori $23, $23, 0x8 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 



 120

 addiu $23, $23, 0 
 break 2 
 
test4:  #test sll, sra, srl 
 addiu $2, $0, 0x5A5A  #$2 = 0x00005A5A 
 addiu $3, $0, 0x2525  #s1 = 0x00002525 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 sll $4, $2, 16  #testing sll 
 addiu $5, $0, 0 
 lui $5, 0x5A5A 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $4, $5, test4_fail 
 
 #sll $6, $2, -5  #testing sll with negative shift 
 #addiu $7, $0, 0 
 #lui $7, 0xD000 
 #ori $0, $0, 0 
 #ori $0, $0, 0 
 #ori $0, $0, 0 
 #bne $6, $7, test4_fail 
  
 sll $8, $4, 16  #testing that the bits at the end fall off 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $8, $0, test4_fail 
 
 lui $9, 0x0FFF  #test sra 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 sra $10, $9, 16 
 ori $11, $0, 0x0FFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $10, $11, test4_fail 
 
 lui $12, 0xFFFF  #test sra for sign extension 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 sra $13, $12, 16 
 addiu $14, $0, -1 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $13, $14, test4_fail 
  
 sra $15, $10, 16  #testing that the bits at end fall off 
 ori $0, $0, 0 
 ori $0, $0, 0 
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 ori $0, $0, 0 
 bne $15, $0, test4_fail 
 
 lui $16, 0x0FFF  #test srl 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 srl $17, $16, 16 
 ori $18, $0, 0x0FFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $17, $18, test4_fail 
 
 lui $19, 0xFFFF  #test srl for no sign extension 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0  
 srl $20, $19, 16 
 ori $21, $0, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $20, $21, test4_fail 
  
 srl $22, $20, 16  #testing that the bits at end fall off 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $22, $0, test4_fail 
 
 ori $0, $0, 0 #NOP 
 j test5 
 ori $0, $0, 0 #NOP  
test4_fail: 
 ori $23, $23, 0x10 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
 
test5: #testing slt, sltu 
 addiu $2, $0, 1  #$2 = small number 
 addiu $3, $0, 52 #$3 = another number 
 lui $4, 0x8000 #$4 = smallest negative number (0x80000000) 
 addiu $5, $0, -5 #$5 = negative number 
 addiu $6, $0, -48 #$6 = negative number 
 ori $0, $0, 0 
 addiu $7, $4, -1 #$7 = largest number(0x7FFFFFFF) 
  
 slt $8, $2, $3 #testing slt with 2 pos num 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $8, $0, test5_fail 
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 slt $9, $3, $2 #with 2 pos num, reg reversed  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $9, $0, test5_fail 
  
 slt $10, $5, $6 #with 2 neg num  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $10, $0, test5_fail 
 
 slt $11, $6, $5 #with 2 neg num, reg reversed 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $11, $0, test5_fail 
  
 slt $12, $3, $6 #with one pos and one neg number 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $12, $0, test5_fail 
 
 slt $13, $6, $3 #with one pos and one neg num, reg reversed 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $13, $0, test5_fail 
 
 slt $14, $6, $6 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $14, $0, test5_fail 
  
 slt $15, $4, $4 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $15, $0, test5_fail 
 
 slt $16, $4, $2 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $16, $0, test5_fail 
 
 slt $17, $7, $5 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $17, $0, test5_fail 
 
 sltu $18, $2, $3 #testing sltu with 2 pos num 



 123

 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $18, $0, test5_fail 
 
 sltu $19, $3, $2 #with 2 pos num, reg reversed  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $19, $0, test5_fail 
 
 sltu $20, $6, $6 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $20, $0, test5_fail 
  
 sltu $21, $4, $4 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $21, $0, test5_fail 
 
 sltu $22, $4, $2 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $22, $0, test5_fail 
 
 sltu $24, $7, $5 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $24, $0, test5_fail 
 
 sltu $25, $7, $4 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $25, $0, test5_fail 
 ori $0, $0, 0 #NOP 
 j test6 
 ori $0, $0, 0 #NOP  
test5_fail: 
 ori $23, $23, 0x20 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
test6: #testing slti, sltiu 
 slti $8, $2, 52 #testing slti with 2 pos num 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $8, $0, test6_fail 
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 slti $9, $3, 1  #with 2 pos num, reg reversed  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $9, $0, test6_fail 
  
 slti $10, $5, -48 #with 2 neg num  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $10, $0, test6_fail 
 
 slti $11, $6, -5 #with 2 neg num, reg reversed 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $11, $0, test6_fail 
  
 slti $12, $3, -48 #with one pos and one neg number 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $12, $0, test6_fail 
 
 slti $13, $6, 52 #with one pos and one neg num, reg reversed 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $13, $0, test6_fail 
 
 slti $14, $6, -48 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $14, $0, test6_fail 
 
 slti $16, $4, 1 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $16, $0, test6_fail 
 
 slti $17, $7, -5 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $17, $0, test6_fail 
 
 sltiu $18, $2, 52 #testing sltiu with 2 pos num 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $18, $0, test6_fail 
 
 sltiu $19, $3, 1 #with 2 pos num, reg reversed  
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 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $19, $0, test6_fail 
 
 sltiu $20, $6, -48 #test if both reg are equal 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $20, $0, test6_fail 
 
 sltiu $22, $4, 1 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $22, $0, test6_fail 
 
 sltiu $24, $7, -5 #test for ovf condition 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 beq $24, $0, test6_fail 
 
 ori $0, $0, 0  #NOP 
 j test7 
 ori $0, $0, 0  #NOP  
test6_fail: 
 ori $23, $23, 0x40 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
 
test7: #test lw, sw 
 addiu $29, $0, 0x0100 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $29, $29, -8 
 addiu $2, $0, 0x5A5A 
 addiu $3, $0, 0xFFFF 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 sw $2, 0($29); 
 sw $3, 4($29); 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 lw $4, 0($29); 
 lw $5, 4($29); 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
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 bne $2, $4, test7_fail 
 ori $0, $0, 0 
 bne $3, $5, test7_fail 
 ori $0, $0, 0 
  
 sw $3, 0($29); 
 lw $4, 0($29); 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 bne $4, $3, test7_fail  
 
 addiu $29, $29, 8 
 ori $0, $0, 0  #NOP 
 j test8 
 ori $0, $0, 0  #NOP  
test7_fail: 
 ori $23, $23, 0x80 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
test8: #bgez, bltz, j, jr, jal 
 addiu $2, $0, 5 
 addiu $3, $0, -5 
 addiu  $4, $0, 4 
 addiu $5, $0, 5 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
  
 bgez $2, L3  #test bgez 
 ori $0, $0, 0 
 j test8_fail 
 ori $0, $0, 0 
L3:  
 bgez $0, L4 
 ori $0, $0, 0 
 j test8_fail 
 ori $0, $0, 0 
L4:  
 bgez $3, L5 
 ori $0, $0, 0 
 j L6 
 ori $0, $0, 0 
L5: 
 sll $0, $0, 1 
 j test8_fail 
 ori $0, $0, 0 
L6:  
 bltz $3, L7  #test bltz 
 ori $0, $0, 0 
 j test8_fail 
 ori $0, $0, 0 
L7:  
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 bltz $0, L8 
 ori $0, $0, 0 
 j L9 
 ori $0, $0, 0 
L8: 
 j test8_fail 
 ori $0, $0, 0 
L9:  
 bltz $2, L10 
 ori $0, $0, 0 
 j L11 
 ori $0, $0, 0 
L10: 
 j test8_fail 
 ori $0, $0, 0 
L11: 
 jal test8_2 
 addiu $4, $0, 10 
  
 addiu $4, $0, 5  #return from jr, make $4 = 5 
 beq $4, $5, L12 #make sure we JRed to the right place 
 ori $0, $0, 0  #NOP 
  
test8_fail:  
 ori $23, $23, 0x100 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 addiu $23, $23, 0 
 break 2 
L12:  
 j done 
 ori $0, $0, 0  #NOP 
done:  
 j exit 
 ori $0, $0, 0 
test8_2:  
 sll $0, $0, 0 
 sll $0, $0, 0 
 sll $0, $0, 0 
 jr $31 
 ori $0, $0, 0 
 j test8_fail 
 ori $0, $0, 0 
exit:  
 addiu $23, $23, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
 sw $23, 16($0)  
 ori $0, $0, 0 
 ori $0, $0, 0 
 ori $0, $0, 0 
exit2: 
 break 3 
 ori $0, $0, 0 
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       break 4 
 ori $0, $0, 0 
 sll   $0, $0, 0 
 j exit2 
 ori $0, $0, 0 
 
 
Mul Test: 
ori $1, $0, 0x2  #$1 = 2 
mul $2, $1, $1  #$2 = 4 
ori $3, $0, 0x4  #$3 = 4 
bne $2, $3, fail1 
ori $4, $0, 0x2  #$4 = 2 
ori $1, $0, 0x8  #$1 = 8 
mul $5, $4, $3  #$5 = 8 
mul $6, $5, $2  #$6 = 32, test mul hazard 
bne $5, $1, fail2  #test mul result forward 
ori $2, $0, 0x20  #$2 = 32 
bne $6, $2, fail3 
ori $5, $0, 0x1111 #$5 = 4369 
mul $6, $5, $5  #$6 = 19088161 
lui $2, $0, 0x0123 
ori $2, $2, 0x4321 #$2 = 19088161 
bne $2, $6, fail4 
ori $0, $0, 0xffff 
ori $0, $0, 0x0fff 
ori $0, $0, 0x00ff 
j passedtest 
ori $0, $0, 0x000f 
 
fail1: 
break 1 
fail2: 
break 2 
fail3: 
break 3  
fail4: 
break 4 
passedtest: 
break 15 
 

 
SIMD Test: 
vlw $1, 0($0)  #load data from memories into register files 
vlw $2, 4($0) 
vlw $3, 8($0) 
vlw $4, 12($0) 
vlw $5, 16($0) 
vlw $6, 20($0) 
vlw $7, 24($0) 
vlw $8, 28($0) 
vlw $9, 32($0) 
vlw $10, 36($0) 
vlw $11, 40($0) 
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vlw $12, 44($0) 
vlw $13, 48($0) 
vlw $14, 52($0) 
vlw $15, 56($0) 
vlw $16, 60($0) 
vlw $17, 64($0) 
vlw $18, 68($0) 
vlw $19, 72($0) 
vaddu $23, $1, $2  #test vaddu 
vaddu $24, $23, $3 
vaddu $25, $24, $23  
vsw $25, 0($0) 
break 1 
vlw $20, 0($0)  #test vlw hazard 
vaddiu $21, $20, 0x1111 #test vaddiu 
vaddiu $22, $0, 0x1000  
vsw $23, 0($22)  #test vsw and vlw 
vsw $24, 8($22) 
vsw $25, 24($22) 
vlw $23, 8($22)   
vlw $24, 24($22)   
vlw $25, 0($22)   
vandi $24, $8, 0x8888 #test vandi 
break 2 
vori $23, $24, 0x8888 #test vori 
vxor $23, $23, $9  #test vxor 
vor $23, $23, $10  #test vor 
break 3 
break 4 
break 5 
vxori $23, $23, 0x0765 #test vori 
vand $23, $18, $23  #test vand 
vaddiu $23, $23, 0x8000  
break 6 
break 7 
break 8 
vor $23, $16, $7   
vmul $23, $23, $6 #test vmul 
vmul $23, $23, $17 #test vmul hazard 
break 9 
break 10 
break 11 
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Appendix D: FPGA User Constraint File 
 
 
FPGA_TOP.ucf 
##NET "SYS_CLK" LOC = "AJ15"; 
##NET "SYS_CLK" IOSTANDARD = LVCMOS25; 
##NET "SYS_CLK" TNM_NET = "SYS_CLK"; 
##TIMESPEC "TS_SYS_CLK" = PERIOD "SYS_CLK" 10.00 ns HIGH 50 %; 
 
NET "SYS_CLK" LOC = "AH15"; 
NET "SYS_CLK" IOSTANDARD = LVCMOS25; 
NET "SYS_CLK" TNM_NET = "SYS_CLK"; 
TIMESPEC "TS_SYS_CLK" = PERIOD "SYS_CLK" 31.25 ns HIGH 50 %; 
 
NET "LED_0" LOC = "AC4"; 
NET "LED_1" LOC = "AC3"; 
NET "STALL" LOC = "AA6"; 
NET "LED_3" LOC = "AA5"; 
 
##NET "LED_0" IOSTANDARD = LVTTL; 
##NET "LED_1" IOSTANDARD = LVTTL; 
##NET "STALL" IOSTANDARD = LVTTL; 
##NET "LED_3" IOSTANDARD = LVTTL; 
 
##NET "LED_0" DRIVE = 12; 
##NET "LED_1" DRIVE = 12; 
##NET "STALL" DRIVE = 12; 
##NET "LED_3" DRIVE = 12; 
 
##NET "LED_0" SLEW = SLOW; 
##NET "LED_1" SLEW = SLOW; 
##NET "STALL" SLEW = SLOW; 
##NET "LED_3" SLEW = SLOW; 
 
NET "DIPSWITCH<0>" LOC = "AC11"; 
NET "DIPSWITCH<1>" LOC = "AD11"; 
NET "DIPSWITCH<2>" LOC = "AF8"; 
NET "DIPSWITCH<3>" LOC = "AF9"; 
 
##NET "DIPSWITCH<0>" IOSTANDARD = LVCMOS25; 
##NET "DIPSWITCH<1>" IOSTANDARD = LVCMOS25; 
##NET "DIPSWITCH<2>" IOSTANDARD = LVCMOS25; 
##NET "DIPSWITCH<3>" IOSTANDARD = LVCMOS25; 
 
##NET "PB_ENTER" LOC = "AG5"; 
##NET "PB_UP" LOC = "AH4"; 
NET "SINGLE_CLK_low" LOC = "AG3"; 
NET "RESET_low" LOC = "AH1"; 
NET "RELEASE_low" LOC = "AH2"; 
 
##NET "PB_ENTER" IOSTANDARD = LVTTL; 
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##NET "PB_UP" IOSTANDARD = LVTTL; 
##NET "SINGLE_CLK_" IOSTANDARD = LVCMOS25; 
##NET "RESET_" IOSTANDARD = LVTTL; 
##NET "RELEASE_" IOSTANDARD = LVTTL; 
 
NET "EXP_IO_0" LOC = "K2"; 
NET "EXP_IO_1" LOC = "L2"; 
NET "EXP_IO_2" LOC = "N8"; 
NET "EXP_IO_3" LOC = "N7"; 
NET "PC_DISPLAY<31>" LOC = "K4"; 
NET "PC_DISPLAY<30>" LOC = "K3"; 
NET "PC_DISPLAY<29>" LOC = "L1"; 
NET "PC_DISPLAY<28>" LOC = "M1"; 
NET "PC_DISPLAY<27>" LOC = "N6"; 
NET "PC_DISPLAY<26>" LOC = "N5"; 
NET "PC_DISPLAY<25>" LOC = "L5"; 
NET "PC_DISPLAY<24>" LOC = "L4"; 
NET "PC_DISPLAY<23>" LOC = "M2"; 
NET "PC_DISPLAY<22>" LOC = "N2"; 
NET "PC_DISPLAY<21>" LOC = "P9"; 
NET "PC_DISPLAY<20>" LOC = "R9"; 
NET "PC_DISPLAY<19>" LOC = "M4"; 
NET "PC_DISPLAY<18>" LOC = "M3"; 
NET "PC_DISPLAY<17>" LOC = "N1"; 
NET "PC_DISPLAY<16>" LOC = "P1"; 
NET "EXP_IO_20" LOC = "P8"; 
NET "EXP_IO_21" LOC = "P7"; 
NET "EXP_IO_22" LOC = "N4"; 
NET "EXP_IO_23" LOC = "N3"; 
NET "PC_DISPLAY<15>" LOC = "P3"; 
NET "PC_DISPLAY<14>" LOC = "P2"; 
NET "PC_DISPLAY<13>" LOC = "R8"; 
NET "PC_DISPLAY<12>" LOC = "R7"; 
NET "PC_DISPLAY<11>" LOC = "P5"; 
NET "PC_DISPLAY<10>" LOC = "P4"; 
NET "PC_DISPLAY<9>" LOC = "R2"; 
NET "PC_DISPLAY<8>" LOC = "T2"; 
NET "PC_DISPLAY<7>" LOC = "R6"; 
NET "PC_DISPLAY<6>" LOC = "R5"; 
NET "PC_DISPLAY<5>" LOC = "R4"; 
NET "PC_DISPLAY<4>" LOC = "R3"; 
NET "PC_DISPLAY<3>" LOC = "U1"; 
NET "PC_DISPLAY<2>" LOC = "V1"; 
NET "PC_DISPLAY<1>" LOC = "T5"; 
NET "PC_DISPLAY<0>" LOC = "T6"; 
NET "EXP_IO_40" LOC = "T3"; 
NET "EXP_IO_41" LOC = "T4"; 
NET "EXP_IO_42" LOC = "U2"; 
NET "EXP_IO_43" LOC = "U3"; 
NET "INST_STAT_DISPLAY<31>" LOC = "T7"; 
NET "INST_STAT_DISPLAY<30>" LOC = "T8"; 
NET "INST_STAT_DISPLAY<29>" LOC = "U4"; 
NET "INST_STAT_DISPLAY<28>" LOC = "U5"; 
NET "INST_STAT_DISPLAY<27>" LOC = "V2"; 
NET "INST_STAT_DISPLAY<26>" LOC = "W2"; 
NET "INST_STAT_DISPLAY<25>" LOC = "T9"; 
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NET "INST_STAT_DISPLAY<24>" LOC = "U9"; 
NET "INST_STAT_DISPLAY<23>" LOC = "V3"; 
NET "INST_STAT_DISPLAY<22>" LOC = "V4"; 
NET "INST_STAT_DISPLAY<21>" LOC = "W1"; 
NET "INST_STAT_DISPLAY<20>" LOC = "Y1"; 
NET "INST_STAT_DISPLAY<19>" LOC = "U7"; 
NET "INST_STAT_DISPLAY<18>" LOC = "U8"; 
NET "INST_STAT_DISPLAY<17>" LOC = "V5"; 
NET "INST_STAT_DISPLAY<16>" LOC = "V6"; 
NET "EXP_IO_60" LOC = "Y2"; 
NET "EXP_IO_61" LOC = "AA2"; 
NET "EXP_IO_62" LOC = "V7"; 
NET "EXP_IO_63" LOC = "V8"; 
NET "INST_STAT_DISPLAY<15>" LOC = "W3"; 
NET "INST_STAT_DISPLAY<14>" LOC = "W4"; 
NET "INST_STAT_DISPLAY<13>" LOC = "AA1"; 
NET "INST_STAT_DISPLAY<12>" LOC = "AB1"; 
NET "INST_STAT_DISPLAY<11>" LOC = "W5"; 
NET "INST_STAT_DISPLAY<10>" LOC = "W6"; 
NET "INST_STAT_DISPLAY<9>" LOC = "Y4"; 
NET "INST_STAT_DISPLAY<8>" LOC = "Y5"; 
NET "INST_STAT_DISPLAY<7>" LOC = "AA3"; 
NET "INST_STAT_DISPLAY<6>" LOC = "AA4"; 
NET "INST_STAT_DISPLAY<5>" LOC = "W7"; 
NET "INST_STAT_DISPLAY<4>" LOC = "W8"; 
NET "INST_STAT_DISPLAY<3>" LOC = "AB3"; 
NET "INST_STAT_DISPLAY<2>" LOC = "AB4"; 
NET "INST_STAT_DISPLAY<1>" LOC = "AB2"; 
NET "INST_STAT_DISPLAY<0>" LOC = "AC2"; 
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