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Abstract

As automated control systems grow in prevalence and complexity, there is an increasing

demand for verification and controller synthesis methods to ensure these systems

perform safely and to desired specifications. In addition, uncertain or stochastic

behaviors are often exhibited (such as wind affecting the motion of an aircraft),

making probabilistic verification desirable. Stochastic reachability analysis provides a

formal means of generating the set of initial states that meets a given objective (such

as safety or reachability) with a desired level of probability, known as the reachable

(or safe) set, depending on the objective. However, the applicability of reachability

analysis is limited in the scope and size of system it can address. First, generating

stochastic reachable or viable sets is computationally intensive, and most existing

methods rely on an optimal control formulation that requires solving a dynamic

program, and which scales exponentially in the dimension of the state space. Second,

almost no results exist for extending stochastic reachability analysis to systems with

incomplete information, such that the controller does not have access to the full state

of the system.

This thesis addresses both of the above limitations, and introduces novel computa-
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tional methods for generating stochastic reachable sets for both perfectly and partially

observable systems. We initially consider a linear system with additive Gaussian

noise, and introduce two methods for computing stochastic reachable sets that do

not require dynamic programming. The first method uses a particle approximation

to formulate a deterministic mixed integer linear program that produces an estimate

to reachability probabilities. The second method uses a convex chance-constrained

optimization problem to generate an under-approximation to the reachable set. Using

these methods we are able to generate stochastic reachable sets for a four-dimensional

spacecraft docking example in far less time than it would take had we used a dynamic

program.

We then focus on discrete time stochastic hybrid systems, which provide a flexible

modeling framework for systems that exhibit mode-dependent behavior, and whose

state space has both discrete and continuous components. We incorporate a stochastic

observation process into the hybrid system model, and derive both theoretical and

computational results for generating stochastic reachable sets subject to an observation

process. The derivation of an information state allows us to recast the problem as

one of perfect information, and we prove that solving a dynamic program over the

information state is equivalent to solving the original problem. We then demonstrate

that the dynamic program to solve the reachability problem for a partially observable

stochastic hybrid system shares the same properties as for a partially observable

Markov decision process (POMDP) with an additive cost function, and so we can

exploit approximation strategies designed for POMDPs to solve the reachability

problem. To do so, however, we first generate approximate representations of the

information state and value function as either vectors or Gaussian mixtures, through

a finite state approximation to the hybrid system or using a Gaussian mixture

approximation to an indicator function defined over a convex region. For a system

with linear dynamics and Gaussian measurement noise, we show that it exhibits

special properties that do not require an approximation of the information state,

which enables much more efficient computation of the reachable set. In all cases we

provide convergence results and numerical examples.
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Chapter 1

Introduction

1.1 Motivation

The scale and complexity of modern control systems makes the analysis and design

of controllers equally complex. In particular, the push towards fully automated

systems, ranging from vehicles to medical devices to traffic flow and regulation, places

an increasingly high demand on the performance of the controllers designed for

automation. Many of these systems are classified as “safety-critical,” meaning that

the cost of failure is deemed unacceptable, whether that cost is in property, in the

loss of human life, or both.

The ability to assess the performance of such systems, and to determine whether

they meet all desired specifications established in their design, is therefore paramount.

Indeed, controllers should be designed to meet all specifications, and in particular to

meet safety requirements when labeled as safety-critical.

For example, there is increasing interest in the development of unmanned spacecraft

that can perform automated maneuvers, particularly in coordination with other

spacecraft such as rendezvous, docking, and holding formation patterns. In 2005

NASA launched DART, a spacecraft designed to demonstrate automated docking and

close proximity maneuvers between another spacecraft [NAS07]. The mission ended
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Figure 1.1: Artistic rendering of DART and target satellite MUBLCOM. Source:
NASA [NAS07]

prematurely after DART collided with the other craft, costing millions of dollars.

One of the reasons cited for the failure was an inadequate guidance, navigation, and

control software development process. One recommendation was that “simulations

and math models used to validate flight software must be verified and validated to

the same rigorous level as the flight software itself” [NAS06].

Although it was a software failure caused by human error, it does highlight the

need for mathematical models of control systems that are able to adequately verify

the performance of the system in practice, and the need in general for sophisticated

verification tools to ensure that such costly failures do not occur.

Another example of a safety-critical system is the automated, closed-loop control

of anesthesia delivery [DMA09]. The anesthetic must be delivered in such a way

as to stay within pre-specified therapeutic bounds on concentration levels subject

to limitations on how quickly the drug can be delivered (infusion rate). Further

complications arise from the uncertain nature of individual patient response, and from

monitoring drug levels and depth of anesthesia [BMSS06]. In order for automated

anesthesia delivery to be accepted as a safe practice, thus meeting regulatory standards,

theoretical guarantees of its ability to satisfy safety specifications are essential.

We are concerned in this thesis with designing controllers and analyzing perfor-
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mance, particularly in relation to safety specifications, of certain classes of systems,

such as space docking maneuvers and automated anesthesia delivery. In these two

examples, the system benefits from safety verification, in addition to controller syn-

thesis that assures safety specifications are met. However, there are a wide range of

examples for which the techniques presented in this thesis are applicable. Analysis

and control for safety specifications can and has been applied to areas from motion

planning algorithms to routing packets through wireless networks. The stochastic

techniques we focus on are also desirable in general for cyber-physical systems, whose

integration of modal logic into physical processes makes them both complex to model

with certainty and often safety-critical. Generating probabilistic assurances of safety

that are not overly conservative and that can adequately capture behavior and

performance characteristics are essential for such systems, and is the focus of this

dissertation.

1.2 Reachability Analysis for Hybrid Systems

We consider safety requirements in the form of bounds on the state of the system,

so that if the state falls outside of some predefined region of the state space, it is

considered unsafe. Our approach employs reachability analysis, which is commonly

used to determine whether a control system satisfies given specifications, such as

safety.

There are three properties that fall under the general concept of reachability

analysis, and all are intricately related. First is reachability, which refers to controlling

the state of the system to a given target region within some time horizon. The second

is viability, alternately referred to as safety, which refers to controlling the state of

the system to remain within predefined safe parameters, or a set of states that has

been deemed safe. The third is reach-avoid, which combines reachability and viability

objectives to control the state of the system to reach a target region while in the

interim remaining within a safe region. As we will describe in subsequent chapters,

these objectives can all be studied within the same framework.
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In particular, reachability analysis is concerned with generating the set of all

initial states that satisfy the given objective (i.e. the set of all initial states that will

reach the target set, or the set of all initial states that will remain within the safe

region) referred to as the reachable set, viable set, or reach-avoid set, depending on

the objective of interest. For control systems, reachability analysis takes possible

control inputs into account by determining whether a controller exists to satisfy the

objective. A related problem of invariance assesses whether the state of the system

remains within a given region for all possible controllers. Dependent on the method

used to compute reachable sets, reachability analysis can also be used to synthesize

controllers to meet the given specifications. Synthesizing a controller to meet the

reachability specifications proves its existence.

Reachability analysis is often addressed in the context of hybrid systems (e.g

[LTS99], [GLQ06]). A hybrid system provides a general modeling framework well-

suited for a wide range of applications. It allows for versatile dynamics that incorporate

codependent discrete and continuous states, often exhibited in systems that may switch

between different modes of operation. Safety verification and controller synthesis

for systems that integrate hierarchical mode logic with nontrivial physical dynamics

(often modeled by differential equations) is both highly complex and essential, given

that many modern control systems exhibit such behavior. There is a large body of

literature on hybrid system modeling and control (e.g. [ASL93], [BBM98], [AHS96]),

and hybrid systems have been used as a modeling framework for applications ranging

from air traffic management [TPS98] to analyzing motor skills of patients with

Parkinson’s disease [OMAM11].

1.3 Stochastic Hybrid Systems

Most systems are subject to some form of uncertainty, whether from wind patterns

affecting aircraft flight, the sometimes unpredictable response of a patient to anesthe-

sia, or from nonlinearities and other factors that are overly complex, or simply not

known, and therefore cannot be included in our models. Especially when verifying
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safety and other specifications of the system, these uncertainties should be taken into

account in order to have accurate assessments of system performance (or to recognize

when we cannot have accurate assessments). Modeling a system as stochastic allows

the state to evolve randomly, but with some notion of which states are mostly likely

to occur. This is distinct from a model that incorporates uncertainty in the form of a

disturbance whose behavior is completely unknown, but whose impact on the model

may be confined to a certain range of possibilities.

Reachability analysis for uncertain hybrid systems typically treats the disturbance

as a bounded input to the model. The disturbance acts as an adversary, behaving in

direct opposition to the controller and the given objective. This enables a dynamic

game formulation of the reachability problem [KV02], [GLQ06], [DKS+13], and the

controller and reachable set are then robust to the worst-case manifestation of the

uncertainty.

A stochastic hybrid system considers stochastic transitions in either the discrete

mode, the continuous dynamics, or both. Rather than assume worst-case scenarios,

we can assign likelihoods to different possible hybrid states. One advantage of a

stochastic hybrid system (SHS) model is in the equivalent notion of probabilistic

reachability. Rather than generate the set of initial states that reach or remain within

a given region of the state space, we can produce the set of initial states that do so

with a certain probability. This is particularly useful when uncertain events may

drive the system into an unsafe region, but with such a small likelihood that they

can be ignored. Depending on the application, a 99 percent probability of satisfying

the reachability objective is most likely tolerable. We therefore choose to confine our

attention to stochastic systems.

One of the first SHS models was developed in [HLS00], and describes the continu-

ous state process with a stochastic differential equation. Mode transitions remain

deterministic, but occur at stopping times associated with the diffusion process (see

[Res02] for a description of stopping times). The stopping times, and stochastic

transitions occurring at each stopping time, lead to the notion of an embedded Markov

process, over which some properties of the original SHS can be verified. This model
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was extended in [PH06] to include stochastic mode switching as well. A general SHS

model was proposed in [BL06] using a new concept they term a Markov string, which

is essentially a sequence of Markov processes.

The additional complications from introducing stochastic dynamics into the hybrid

system framework are significant. Combining a jump process (for mode switching)

and a diffusion process (for continuous state evolution) leads to measurability concerns

regarding events of interest, such as identifying stopping times and reachability events.

These concerns are addressed in [Buj04], which uses Dirichlet forms associated with

a right-Markov process to study reachability, and again in [BL07], which employs

martingale theory and characterizes reachability in terms of variational inequalities.

Although these papers establish some theoretical foundations for posing reachability

as a well-defined problem over an SHS with “nice” properties, their use for practical

purposes is at present limited.

These concerns led to the development of an equivalent discrete time stochatic

hybrid system (DTSHS) [APLS08]. In discrete time, many of the measurability

complications arising from a continuous time model disappear, and numerical solutions

to reachability problems can be obtained. For this reason, we are concerned only

with discrete time systems in this thesis, although as will be seen, computational

methods remain limited in the size and scale of problems they can address.

1.4 Computational Approaches

The reachability problem can be equivalently posed as an optimal control problem.

This is true for reachability in general, and is not specific to hybrid systems, deter-

ministic systems, etc. The optimal control formulation introduces a cost function

that assigns a reward of one to states that remain safe, or reach the target set, and

assigns a reward of zero to all other states (see, e.g. [LTS99], [TLS00]). Alternately,

the cost function can be formulated as a signed distance function to the target set

(for backwards reachability), so that all states for which the cost function is negative
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are inside the reachable set [TMBO03]. Through the optimal control formulation, the

vast literature on computing optimal costs and optimal controllers can be utilized.

Specifically, the reachable set is characterized as the zero level-set of the value

function associated with the optimal control objective [TMBO03], [Lyg04], [MBT05].

The value function is the viscosity solution to a Hamilton-Jacobi equation (a first order

partial differential equation), which arises from Bellman’s principle and the dynamic

programming formulation utilized in optimal control problems [Ste94]. Computational

methods for generating the level-sets are presented in [MT02], [Mit08]. All of the

above results consider continuous time systems.

The Hamilton-Jacobi formulation can in some cases still be applied to reachability

analysis for continuous time stochastic systems, as in [MT05] and [KR06], although

neither allows for a control input. Switching to discrete time, however, makes

the inclusion of a control input easier. The reachability problem for a controlled

discrete time stochastic system (hybrid or otherwise) can again be expressed as an

optimal control problem, now drawing upon the related literature for Markov decision

processes and discrete time stochastic optimal control [Ber05], [BS96]. Because of

the stochastic nature of the state, the cost function is modified from the binary cost

function described above, so that the reward of zero or one is placed inside an expected

value, which in turn gives the probability of safety or reachability, starting from some

initial state. Dynamic programming formulations for the safety/reachability problem,

reach-avoid problem, and a dynamic game formulation, are given in [APLS08], [SL10],

and [DKS+13], respectively.

One significant drawback to the dynamic programming formulation (for both

stochastic and deterministic systems), is that its numerical implementation requires

a discretization of the state space. The computation time scales exponentially in the

dimension of the state space, a problem known as the “curse of dimensionality.” Hence

for systems lying in higher dimensions, i.e. for hybrid systems with a continuous

state that lies in R
n for n greater than three or four, computation time to produce

the reachable or viable set is so great that a solution is essentially unattainable.

Alternative methods for generating reachable and viable sets are therefore desirable.
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For deterministic systems some methods rely on over- or under-approximating

the reachable set using shapes such as ellipses [KV07] or zonotopes [Gir05], or

characterizing the convex reachable set using support vectors [GG10], although all

of these methods require linear system dynamics. More recently, these results were

extended to generating viable sets as well [MKM+13], [KO].

Alternately, there has been a great deal of work on producing abstractions for both

deterministic and stochastic systems, which are simpler to analyze but exhibit the same

properties as the original system (for instance [Gir12], [ADB11]). Abstractions for

reachability analysis of stochastic hybrid systems are often a finite state approximation

to the original system, and dynamic programming is then used for the discretized

system [AKLP10], [SA13]. Finite state abstractions can also be used as inputs

to model-checking tools such as PRISM [KNP11], that have been developed to

verify properties of finite state systems, such as Markov decision processes, using

dynamic programming and abstraction refinement [KKNP10]. These model-checking

techniques are still limited by the size of the finite state abstraction, and are not

amenable to complex systems that require a large number of finite states to generate

accurate reachability probabilities.

Finally, approximate dynamic programming techniques that employ Monte-Carlo

sampling and basis function approximations to the value function generated by the

dynamic program are possible, but generally lack convergence results or bounds on

the relation between the approximation and the true reachable set [KSS+13].

1.5 Extension to Imperfect State Information

A significant portion of this thesis is devoted to computational considerations of

discrete time stochastic hybrid systems with the added constraint that the controller

does not have access to the true state of the system. Most of the computational

results for reachability analysis of even deterministic hybrid systems are limited to

low dimensional problems, and other approaches that try to mitigate the effects of the
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curse of dimensionality are restricted to very specific classes of systems (i.e. linear).

Adding an observation process further complicates an already difficult problem.

We specifically consider a stochastic observation process. This is particularly

useful for systems that rely on sensors to take state measurements that may be

inaccurate or corrupted by noise. Spacecraft rendezvous and docking procedures are

a prime example of a system that must be carefully controlled in the presence of

limited, noisy sensor readings.

When the state is not perfectly observed, some form of estimate must be generated

that allows for optimal control of the system subject to the limited information

available. Unlike linear quadratic Gaussian (LQG) regulators, in which an estimate

of the state can be used to produce an optimal control law, state estimation cannot in

general be considered separately from the control problem. There has been extensive

work on hybrid state estimation without considering the optimal control problem

simultaneously, i.e. where the main objective is to reconstruct the hybrid state as

accurately as possible given a noisy or incomplete measurement (see for instance

[HW04], [LH12], [KKZ03]).

Almost no work has been done, however, on reachability analysis for a controller

with access only to an observation process (an optimal control problem). The

work that has been done mainly focuses on deterministic hybrid systems subject to

unknown (but not stochastic) disturbances. A hybrid system with hidden modes

(unknown to the controller) is considered in [VdV12], and treats estimation of the

mode separately to generate a non-deterministic information state that includes the

mode estimate, to determine the set of initial states that cannot be controlled to stay

within the safe region. A more general uncertain system with a form of input/output

order preservation between states and observations (the output must be at most

two-dimensional and bounded by extremal trajectories) is considered in [GdV14],

where an information state is generated that represents the set of all possible states

the system could be in given the observed output, and the output is controlled to

remain outside of an unsafe region.
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For a stochastic observation process, we cannot in general produce a finite set of

possible states that could arise given the observation. Instead, we want to consider

the likelihood of possible states given the observation. Stochastic optimal control

of a partially observable system uses a sufficient statistic to condense all necessary

information for control of the system, producing the information state [Ber05]. A

dynamic program over the information state can then be formulated, as if we were

solving an optimal control problem for a system with perfect information. The

technique of producing an information state, and solving an equivalent problem over

the information state, however, is similar for both the uncertain systems in [VdV12],

[GdV14], and for a stochastic system.

Two problems arise when solving the reachability problem for a stochastic system

with partial observations. The first is that the information state is a probability

distribution. Dynamic programming requires iteration over all possible states of the

system to generate the value function evaluated at all of those states; iterating over

all possible probability distributions is infeasible. The second problem is that the

reachability cost function is multiplicative in nature, meaning that the cost of being

in past states affects the cost function at the current time step. For an additive cost

function, the information state is the probability distribution of the current state

of the system conditioned on all past observations and control inputs [Ber05]. The

cost function for the reachability problem is non-additive, and so the conditional

distribution of the state is no longer sufficient for optimal control. These concerns

are the focus of a significant portion of this thesis, and are described in greater detail

in subsequent chapters.

1.6 Contributions and Organization

The main focus of this thesis is on the computation of reachable and viable sets for

stochastic systems, especially in the presence of partial observations. We make several

important contributions to the advancement of reachability analysis as a verification

tool for more complex and realistic systems, i.e. systems of higher dimension and
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systems that rely on sensor measurements and observations for control. These

contributions are described in detail in the following chapters, and summarized here.

1. Development of two novel optimal control formulations to compute stochastic

reachable sets for moderate dimensional systems with linear time-invariant

(LTI) dynamics: 1) Particle approximations that produce a mixed integer-linear

program, and 2) Convex chance-constrained optimization. We apply both

techniques to a four-dimensional spacecraft rendezvous problem.

2. Derivation of an information state and dynamic programming formulation to

generate stochastic reachable sets and controllers for a partially observable

discrete time stochastic hybrid system.

3. Development of two novel computational techniques for generating approximate

stochastic reachable sets for partially observable discrete time stochastic hybrid

systems: 1) Finite state approximations, and 2) Gaussian mixture approxima-

tions. Both methods are proven to provide convergence to the original reachable

set, and their performance is demonstrated on a temperature regulation problem.

4. Derivation of the information state as equal to a truncated Gaussian distribution

for an LTI system with Gaussian measurement noise. An adaptive gridding

scheme is also established for the observations. Computational results are

provided for a two-dimensional temperature regulation problem and a three-

dimensional anesthesia delivery problem.

Figure 1.2 gives an overview of both existing computational methods for stochastic

reachability analysis and the methods proposed in this dissertation, and highlights

distinguishing features of each method.

1.6.1 Publications

Most of the work presented here has previously been published, or submitted for

publication. The work of Chapter 3 is presented in:
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[i] K. Lesser, M. Oishi, and R.S. Erwin. Stochastic reachability for control of

spacecraft relative motion. In IEEE Conference on Decision and Control,

pages 4705 - 4712, 2013.

The results of Chapter 4 are published in

[ii] K. Lesser and M. Oishi. Reachability for partially observable discrete time

stochastic hybrid systems. Automatica, 50(8):1989-1998, 2014.

The results of Chapter 5 have been submitted for publication in IEEE Transactions

on Automatic Control and for presentation at Hybrid Systems: Computation and

Control as part of CPS Week.

[iii] K. Lesser and M. Oishi. Approximate verification of partially observable

discrete time stochastic hybrid systems. IEEE Transactions on Automatic

Control, 2014. Submitted, under review.

[iv] K. Lesser and M. Oishi. Finite state approximation for verification of partially

observable stochastic hybrid systems. Submitted to Hybrid Systems:

Computation and Control, 2015.

The results of Chapter 6 have been submitted for presentation at the American

Control Conference.

[v] K. Lesser and M. Oishi. Computing probabilistic viable sets for partially

observable systems using truncated Gaussians and adaptive gridding.

Submitted to American Control Conference, 2015.

Although not discussed in this dissertation, we have applied stochastic reachability

techniques to several relevant and well-motivated problems. The first is the problem of

assessing routing performance and generating packet delivery guarantees in multi-hop

wireless network routing. By modeling a wireless network as a dynamical system whose

state includes the availability of links in the network, we were able to apply stochastic

reachability analysis to the system in order to generate probabilistic guarantees of

packet delivery, as well as an optimal packet routing scheme.
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[vi] T. Biswas, K. Lesser, M. Oishi, and R. Dutta. Using linear system reliability

to obtain theoretical understanding of wireless routing. To appear in The

IEEE Global Communications Conference, 2014.

The second is a motion planning problem in the presence of stochastically moving

obstacles. We were able to generate stochastic reachable sets that indicate the pairwise

probability of collision between a controlled robot and a stochastically moving obstacle,

and use these pairwise probabilities to either weight edges of a roadmap (where a

higher weight indicates a higher probability of collision) or to generate potential fields

that steer the robot away from areas of high probabilities of collision. The robot

can then navigate through an environment with hundreds of obstacles with a high

probability of success.

[vii] H.T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Aggressive

moving obstacle avoidance using a stochastic reachable set based potential

field. In The International Workshop on Algorithmic Foundations in Robotics,

2014.

[viii] N. Malone, K. Lesser, M. Oishi, and L. Tapia. Stochastic reachability

based motion planning for multiple moving obstacle avoidance. In Hybrid

Systems: Computation and Control, pages 51 - 60, 2014.

1.6.2 Organization

Chapter 2 provides an overview of some of the main themes of the dissertation,

including a more detailed description of stochastic reachability analysis, and how it

is formulated and solved as an optimal control problem. We define a discrete time

stochastic hybrid system, and also review Markov decision processes (MDPs), since

the optimal control of a discrete time SHS is directly related to the optimal control

of an MDP.

In Chapter 3 we consider a stochastic system with linear dynamics and perfect state

information. We present two computational alternatives to dynamic programming
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for reachability analysis, which enable reachable set calculation for systems whose

state is greater than three dimensional. The methods considered are a) particle

approximations to reachability probabilities (i.e. a sampling based method) and b)

conversion of the reachability probability to a chance constraint inside of a stochastic

optimization problem. The work of Chapter 3 is motivated by a spacecraft rendezvous

and docking application, and numerical results are given for a simple docking example.

We switch focus in Chapter 4 to reachability analysis subject to a stochastic

observation process. We give additional background information on partially observ-

able stochastic hybrid systems and their optimal control, as well as an introduction

to partially observable Markov decision processes (POMDPs). As with MDPs, the

optimal control of a POMDP is directly related to the optimal control of a partially

observable discrete time stochastic hybrid system. The theoretical foundations for

formulating the reachability problem under partial observations are then presented,

by deriving an information state and dynamic programming formulation over the

information state. We prove equivalence between the dynamic program over the

information state and the original reachability problem.

The information state and dynamic program are not directly useful for computation

of reachable sets. We therefore focus in Chapter 5 on how the formulation of Chapter

4 can be used to generate approximate reachable and viable sets. We consider two

approximation strategies. The first generates a finite state approximation to the

SHS, similarly to some of the abstraction methods mentioned above. The second

introduces a Gaussian mixture approximation for both the information state and

value function. Both methods then utilize an existing approximation strategy for

POMDPs based on sampling information states.

Chapter 6 provides improved numerical results as compared to the previous chapter

by considering a subclass of systems with linear dynamics and no process noise (only

the observations are stochastic). Considering this type of system allows us to compute

the reachable set more efficiently, by representing the information state as a truncated

Gaussian and employing an adaptive discretization scheme for the observations. The

adaptive grid is designed to reduce the number of finite observations we consider,
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while simultaneously minimizing the error in the approximation. We are able to

implement the new approach on an example of automated anesthesia delivery.

Finally, concluding remarks and a discussion of future directions are given in

Chapter 7. Supplementary material to Chapter 4 is given in Appendix A, which

contains the proof of Theorem 4.1 and Theorem 4.2. Appendix B contains supple-

mentary material for Chapter 5, including the proof of Lemma 5.6 and Lemma 5.7, as

well as a complete description of how Gaussian mixture approximations are generated

for the information state and value function.



Chapter 1. Introduction 16

F
ig

u
re

1.
2:

S
u
m

m
ar

y
of

ex
is

ti
n
g

m
et

h
o
d
s

fo
r

so
lv

in
g

st
o
ch

as
ti

c
re

ac
h
ab

il
it

y
p
ro

b
le

m
s

an
d

ou
r

p
ro

p
os

ed
m

et
h
o
d
s.

W
e

h
ig

h
li
gh

t
d
efi

n
in

g
ch

ar
ac

te
ri

st
ic

s
of

ea
ch

m
et

h
o
d

to
d
em

on
st

ra
te

h
ow

ou
r

p
ro

p
os

ed
m

et
h
o
d
s

ar
e

d
is

ti
n
ct

fr
om

ex
is

ti
n
g

m
et

h
o
d
s

an
d

ea
ch

ot
h
er

.



17

Chapter 2

Preliminaries

We begin with a general overview of the type of problem we wish to solve, the

dynamical system model over which it is posed, and a solution framework from an

optimal control perspective. We first describe discrete time stochastic hybrid systems

in Section 2.1. We then discuss the reachability problem and its variants in Section

2.2, give an overview of Markov decision processes in Section 2.3, and close with

how reachability can, in theory, be solved in a similar manner to Markov decision

processes using optimal control techniques, in Section 2.4.

2.1 Discrete Time Stochastic Hybrid Systems

The term “stochastic” implies a system with uncertainty, and in particular with

uncertainty that may be quantified in the form of a probability distribution. In other

words, a stochastic system or process progresses in time randomly [Res02], but all

outcomes can be assigned a likelihood of occurring based on some prior knowledge

or assumptions. Where the uncertainty comes from, and how it is modeled, varies.

Uncertainty may be in the model itself, or in external factors beyond our control (wind

affecting an aircraft, demand for a product on any given day, etc.). Incorporating

stochastic uncertainty brings a level of robustness to a model without necessarily

being overly conservative, and is accompanied by a host of well-developed probabilistic
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tools to help in its analysis.

Stochastic hybrid systems provide a modeling framework well-suited to a wide

range of applications, including complex and interconnected systems. Stochastic

hybrid systems couple physical processes, that are often naturally expressed in

continuous spaces, with discrete or finite state processes, often associated with

computer logic and switching modes. The discrete state may affect the evolution of

the continuous dynamics, and the continuous dynamics may affect when the discrete

state changes. Both the discrete and continuous dynamics may be characterized by

stochastic kernels, the product of which determines the stochastic transition kernel

governing the combined discrete/continuous state of the system.

We present a discrete time stochastic hybrid system (DTSHS) model, adapted

from [APLS08].

Definition 2.1. (Discrete Time Stochastic Hybrid System). A DTSHS is a tuple

H = (X,Q,U ,Tx,Tq) where

1. X ⊆ R
n is a set of continuous states

2. Q = {q1, q2, ...qNq} is a finite set of discrete states with cardinality Nq, with

S = X ×Q the hybrid state space

3. U is a compact Borel space which contains all possible control inputs affecting

discrete and continuous state transitions

4. Tx : B(Rn)×Q× S × U → [0, 1] is a Borel-measurable stochastic kernel which

assigns a probability measure to xn+1 given sn = (xn, qn),un, qn+1 for all n:

Tx(dxn+1 ∈ B|qn+1, sn,un) where B ∈ B(Rn), the Borel σ-algebra on R
n

5. Tq : Q×Q× U → [0, 1] is a discrete transition kernel assigning a probability

distribution to qn+1 given qn,un for all n: Tq(qn+1|qn,un)

The restriction to Borel spaces and functions ensures that integration of the

transition kernels Tx and Tq over the hybrid state space S is well defined. Kernels Tx
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and Tq can be combined for ease of notation to produce the hybrid state transition

kernel

τs(ds
′ | s,u) = Tx(dx

′ | x, q,u, q′)Tq(q
′ | x, q,u), (2.1)

with
∑

q
′∈Q
∫
X τs(dx

′, q′|x, q,u) = 1. The discrete state qn+1 update depends on qn, xn

and un, and the continuous state xn+1 update depends on xn, un, and according to the

specific problem may also be governed by qn, qn+1, or both. For ease of notation, we

assume that the discrete state updates first, and the updated discrete state affects the

continuous state, i.e. that Tx(dxn+1|xn,un, qn+1), although modifying Tx to include

qn would not alter any subsequent results.

The uncertainty in the evolution of both x and q is defined by the functions Tx

and Tq, which are problem specific. These functions will be defined explicitly as

necessary in subsequent chapters, dependent on the specific problem to be analyzed.

The control inputs u are chosen according to a policy, which maps observable

outcomes to control inputs. When the state of the system is perfectly observed and

available to the controller at all times, the policy maps states to control inputs. A

Markov policy chooses control inputs based on information available at the current

time step only, and is associated with generating optimal control inputs for Markov

decision processes [Ber05], (Section 2.3).

Definition 2.2. For a DTSHS H, a Markov policy π for some time horizon N is a

sequence of functions, π = (µ0, . . . ,µN−1), such that µn : S → U . The policy is said

to be stationary if µn = µ for all n ∈ [0,N ], i.e. the mapping does not depend on the

time.

The set of all Markov policies is denoted Π. The optimal policy for an optimal

control problem over a finite time horizon is generally non-stationary [Put05], and

we will mostly consider only non-stationary policies. A Markov policy is equivalent

to a simple feedback control law, because it is based solely on the state of the system

at any time. A policy representing an open loop problem would map a single state s0

to a vector of control inputs, µ(s0) = [u0, . . . ,uN−1]. An open loop formulation will

be used in Chapter 3 but otherwise Definition 2.2 is assumed.
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For a fixed policy π, the DTSHS H evolves as a stochastic process

{sn = (xn, qn)}Nn=0. The transition kernel τs assigns a likelihood to state s′ conditioned

only on s and u, and so the DTSHS as defined is specifically a controlled Markov

process. As shown in [APLS08], the process {sn} is a Markov process defined on

space Ω = SN endowed with σ-algebra B(Ω) and probability measure Pπ, which is

uniquely defined dependent on transition kernel τs, control policy π ∈ Π and initial

state s0.

The DTSHS H is equivalent to a Markov decision process [Put05] with state

space S, control space U , and transition function τs. This equivalence will be used

repeatedly throughout the remaining chapters, and in particular will be exploited

when examining a partially observable DTSHS in Chapters 4 - 6.

2.2 Reachability Analysis

We would often like to verify certain properties of H, i.e., if there are states deemed

“unsafe”, is it possible for the state to become unsafe when initialized from various

starting conditions? Similarly, if there are desirable states that should be reached, are

these states indeed reachable from various starting conditions? Can we characterize

the set of all initial states that remain safe for a given time horizon, or will reach a

target set of states in a given time horizon?

Verification of such safety and performance specifications can be framed under the

guise of reachability analysis, which is a term used generally to refer to several system

properties that can all be verified using the same or similar techniques. Specifically,

we present three related terms: Viability, reachability, and reach-avoid.

Viability (sometimes referred to as safety verifiction) addresses the problem of

determining whether the state of a system will remain within a predefined region of

the state space for a given time horizon. Reachability refers to whether the state of a

system can reach a predefined target region within a given time horizon. Reach-avoid

is a combination of the two, and determines whether the state of the system can
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reach a target set while avoiding an unsafe set of states. The set of all initial states

satisfying these properties are denoted the viable, reachable, and reach-avoid sets.

Fig. 2.1 shows an example of all three sets.

Figure 2.1: Example of viable, reachable, and reach-avoid sets.

The added advantage of reachability analysis is that it provides a means for

controller synthesis as well, when the system being studied has a control input.

The question can be posed as: “Does there exist a controller for which the desired

specification (safety, reaching a target, etc.) can bet met?” For the stochastic setting,

reachability analysis requires an additional specification, however. Rather than asking

whether the specification is met (i.e. a controller exists), with a yes/no answer, the

question must be posed in terms of probabilities. For some applications we would like

to guarantee safety or reachability with probability equal to one. In other applications,

such a requirement may be overly conservative, and a threshold probability of 1− α

may be tolerated. In this sense, probabilistic reachability is flexible, and can be

more informative than in the deterministic case if probabilities of failure are low but

nonzero.

Since we want to determine whether a controller exists such that the controlled

system satisfies some property with a given probability, it is natural to ask what

is the maximum probability of satisfying that property, and in turn what control

scheme produces the maximal value. Probabilistic reachability analysis is therefore

naturally expressed as a stochastic optimal control problem, with the added benefit
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of controller synthesis, as will be shown in Section 2.4. First, we define three relevant

reachability problems.

Problem 2.1. Given a controlled DTSHS H (Def.2.1), a compact Borel set K ⊆

X × Q, an initial state s0 ∈ K, and a time horizon N , we would like to find the

maximum probability that state sn stays within K for all n = 0, . . . ,N :

pNviab(s0;K) = sup
π∈Π

P
π [s1 ∈ K, . . . , sN ∈ K|s0] . (2.2)

We may also wish to find the set of all s0 ∈ K such that pNviab(s0;K) ≥ 1− α, known

as the probabilistic viable set:

ViabN(α;K) =
{
s0 ∈ K : pNviab(s0;K) ≥ 1− α

}
. (2.3)

Problem 2.2. Given a controlled DTSHS H (Def.2.1), a compact Borel set T ⊆

X × Q, an initial state s0 ∈ S, and a time horizon N , we would like to find the

maximum probability that state sn reaches T for some n ∈ [0,N ]:

pNreach(s0;T ) = sup
π∈Π

P
π [∃n ∈ [0,N ] s.t. sn ∈ T |s0] . (2.4)

We may also wish to find the set of all s0 ∈ S such that pNreach(s0;T ) ≥ 1− α, known

as the probabilistic reachable set:

ReachN(α;T ) =
{
s0 ∈ S : pNreach(s0;T ) ≥ 1− α

}
. (2.5)

Problem 2.3. Given a controlled DTSHS H (Def.2.1), the compact Borel sets

K ⊆ X × Q and T ⊆ X × Q, an initial state s0 ∈ K, and a time horizon N , we

would like to find the maximum probability thst state sn reaches T for some n ∈ [0,N ],

and stays within K until time n:

pNra(s0;K,T ) = sup
π∈Π

P
π [∃n ∈ [0,N ] s.t. sn ∈ T ,

and ∀ i = 1, . . . ,n− 1, si ∈ K|s0] . (2.6)

We may also wish to find the set of all s0 ∈ K such that pNra(s0;K,T ) ≥ 1−α, known

as the probabilistic reach-avoid set:

RAN(α;K,T ) =
{
s0 ∈ S : pNra(s0;K,T ) ≥ 1− α

}
. (2.7)
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The above three problems can be posed in a related fashion. For instance, Problem

2.2 is the dual to Problem 2.1 [TMKA13]. Letting pNviab(π, s0;K) and pNreach(π, s0;T )

be the viability and reachability probabilities for a given policy π, respectively, the

reachability probability can be expressed in terms of a viability probability.

pNreach(s0;T ) = 1− inf
π∈Π

pNviab(π, s0;T c) (2.8)

and similarly

pNviab(s0;K) = 1− inf
π∈Π

pNreach(π, s0;Kc). (2.9)

The reach-avoid set is inherently a subset of either the reachable or viable sets,

because the probability of meeting both specifications will always be bounded above

by the probability of meeting only one of those specifications. In addition, the

reachability problem can be formulated as a reach-avoid problem with an empty avoid

set (K = S), so that the objective is to reach a target set while remaining within the

entire state space S, which is trivially satisfied.

Dependent on the type of solution strategy employed, the existence of a solution

for one of the above problems implies the ability to solve the other problems, although

which formulation (reachability, viability, or reach-avoid) is easiest to consider from a

computational standpoint will be problem specific, and dependent on the structure

of the target or safe set being considered.

2.3 Markov Decision Processes

Problems 2.1 - 2.3 can be formulated as an optimal control problem, in a similar

manner to the optimal control of Markov decision processes (MDPs). As shown in

[APLS08] and [SL10], the reachability/viability problem and reach-avoid problem,

respectively, can be formulated as stochastic optimal control problems and solved

using dynamic programming, similar to how MDPs are formulated and solved [Put05].

We therefore first provide an overview of MDPs, to clarify the relation between

reachability analysis of a DTSHS and optimal control of an MDP.
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Definition 2.3. (Markov Decision Process J ) An MDP is a tuple J = (S,U ,T ,R)

where

1. S is a finite set of states

2. U is a finite set of control inputs

3. T : S × S × U → [0, 1] is a state transition function assigning a probability

distribution to state sn+1 given state sn and action un for all n: T (sn+1|sn,un)

4. R : S × U → R is a function assigning a reward at each time step n, given the

current state sn and action un, R(sn,un)

For the system to be Markov, the state sn at time n must include enough

information to make optimal decisions, i.e. the optimal control policy is Markov

[SPK13] (Definition 2.2). The transition function T also must assign a probability to

being in state sn conditioned only on the previous state sn−1 and control input un−1.

Additional information does not change the probability [Res02], so that

T (sn|sn−1, . . . , s0,un−1, . . . ,u0) = T (sn|sn−1,un−1). (2.10)

Generally, when considering the optimal control of an MDP, the control objective

is to maximize a reward (or cost) function expressed as the expected value of a sum of

rewards R(sn,un), accrued at each time step n, as a function of the state and control

input, i.e.

max
π∈Π

E

[
N∑
n=0

R (sn,µn(sn))

]
. (2.11)

The linearity property of expected values allows (2.11) to be broken down sequentially.

Minimizing the multi-stage problem (2.11) reduces to a series of one stage optimization

problems.

This simplification comes from Bellman’s Principle, which states that any optimal

policy over a time horizon [0,N ] will necessarily be optimal over any sub-horizon

[n1,n2] ⊆ [0,N ]. In other words, whatever the decision at time n1 − 1, the policy
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over [n1,n2] will be optimal given the state resulting from the decision at time n1 − 1

[Pow11].

Bellman’s principle allows the cost function to be broken down into a series of

value functions, representing the “cost-to-go” starting in state sn and acting according

to the optimal policy until the terminal time N . For cost function (2.11), the value

function at time n is recursively defined in terms of the value function at time n+ 1.

V ∗n (sn) = max
u∈U

R(sn,un) + γ
∑
s
′∈S

Vn+1(s′)τs(s
′|s,u)

 (2.12)

The optimal cost over horizon N is therefore computed backwards in time. The value

function is first calculated at time N , and control input uN is determined, for each

state sN . Then V ∗N is used to compute V ∗N−1, etc. The ability to break down the

optimal control problem into a sequence of smaller subproblems is known as dynamic

programming. The procedure of iteratively solving (2.12) is called value iteration.

The policy is implicitly defined as a look-up table that assigns an optimal control

input at each time step according to

µn(sn) = arg max
u∈U

V ∗n (sn). (2.13)

The maximum operator “max” is used in place of the supremum operator “sup”

because for U finite, the maximum is attained. For an infinite time horizon N =∞,

the subscript n in (2.12) and (2.13) is dropped. The value function (2.12) is iteratively

solved until some convergence criteria is met, such as ‖Vn − Vn−1‖ < ε. The infinite

reward for starting in any state s0 is then V ∗(s0), with V ∗ the final value function

once the convergence criteria is met. The optimal policy is stationary, and given by

µ∗(s) = arg maxu∈U V
∗(s).

2.4 Stochastic Optimal Control Formulations

Although similar in nature to an MDP, the stochastic optimal control formulations

for Problems 2.1 - 2.3 have more complex cost functions. The viability problem, as
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shown in [APLS08], actually has a multiplicative rather than additive cost function

structure, and the reach-avoid problem has a sum-multiplicative cost function [SL10].

The probability (2.2) of Problem 2.1 can be equivalently expressed as an expected

value:

pNviab(s0;K) sup
π∈Π

E
π

[
N∏
n=0

1K(sn)

∣∣∣∣∣ s0

]
(2.14)

with Eπ the expected value taken with respect to the probability measure Pπ induced

by policy π. The notation 1K denotes the indicator function over set K, with

1K(s) =

1, if s ∈ K

0, else
. (2.15)

The equivalence arises because P[s ∈ K] = E[1K(s)] for any set K and random

variable s. This property is well-known and easy to verify. The property can be more

generally stated as: For an event B, the probability that B occurs is equal to the

expected value of the indicator function over event B.

For the viability problem, the event of interest is remaining within K for N time

steps. Writing it as a product of indicator functions gives

N∏
n=0

1K(sn) =

1, if sn ∈ K ∀n = 0 . . . ,N

0, otherwise
. (2.16)

The probability (2.2) is hence equal to the expected value over the product of indicator

functions.

Skipping to the reach-avoid problem 2.3 (reachability will follow directly from

the reach-avoid formulation), we can derive its cost function in a similar manner to

viability. Again, indicator functions are used to express the probability (2.6) as an

expected value.

In this case, the event of reaching set T while remaining within set K is given as

N∑
n=0

(
n−1∏
i=0

1K\T (si)

)
1T (sn) =

1, if ∃n s.t. sn ∈ T and si ∈ K ∀ i = 0, . . . ,n− 1

0, otherwise
.
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(2.17)

Then (2.6) is equal to

pNra(s0;K,T ) = sup
π∈Π

E
π

[
N∑
n=0

(
n−1∏
i=0

1K\T (si)

)
1T (sn)

∣∣∣∣∣ s0

]
(2.18)

The reachability probability (2.4) is equal to (2.18) with K = S, or to the viability

probability (2.14) with respect to T c using the infimum rather than supremum over

all policies, as in (2.8).

Both (2.14) and (2.18) have a value function representation and can therefore be

solved using dynamic programming. The value function for the viability probability

is recursively defined as

V ∗N ,viab(sN) = 1K(sN)

V ∗n,viab(sn) = sup
u∈U

{
1K(sn)

∫
S
V ∗n+1,viab(sn+1)τs(dsn+1|sn,u)

} (2.19)

so that pNviab(s0;K) = V ∗0 (s0). The optimal policy π∗ for Problem 2.1 is then π∗ =

(µ∗0, . . . ,µ∗N−1) with

µ∗n(s) = arg sup
u∈U

1K(s)

∫
S
V ∗n+1(sn+1)τs(dsn+1|s,u) (2.20)

for all n.

Similarly for (2.18), the value function is given by

V ∗N ,ra(sN) = 1T (sN)

V ∗n,ra(sn) = sup
u∈U

{
1T (sn) + 1K\T (sn)

∫
S
V ∗n+1,ra(sn+1)τs(dsn+1|sn,u)

} (2.21)

The advantage to the optimal control formulation is that it not only computes

probabilistic viable and reachable sets, but that it also synthesizes a controller designed

to maximize the given objective. The disadvantage is that to feasibly solve Problems

2.1 - 2.3 using the value function representations (2.19) and (2.21), i.e. using dynamic

programming and value iteration, the state space S should be finite and small. If

not, the value function and policy must be generated for a large number of states. In
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particular, for S hybrid, the continuous space X must be discretized [AAP+07]. In

higher dimensions, the discretization leads to prohibitive computation times, and a

trade-off between accuracy and speed of obtaining a solution.

It is the shortcomings of the dynamic programming formulation that motivate

the next chapter.
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Chapter 3

Stochastic Reachability Analysis

with Perfect Observations

This chapter examines two novel methods for the calculation of stochastic reachable

sets. In particular, we examine a) particle (or scenario) approximations to expected

values, and b) conversion of the reach-avoid probability to a chance-constrained

convex optimization problem. Both methods allow for computation of the reach-avoid

set in higher dimensions, as compared to other existing methods for computing

stochastic reachable sets. This work was motivated by the desire to extend stochastic

reachability verification techniques to spacecraft applications, and in particular to

assessing performance of rendezvous maneuvers at close range. Numerical results

for the particle and convex approximations to reachability probabilities are therefore

presented for the spacecraft rendezvous problem.

3.1 Introduction

Current solution strategies for reachability analysis of stochastic systems (namely

dynamic programming) do not extend well to higher dimensional systems because of

the need to use a finite state abstraction, such as a discretization of the state space.

The computational effort required for larger problems renders a solution unattainable.
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Current efforts have been limited to at most three dimensional systems. The focus of

this chapter is therefore on more efficient means of generating probabilistic reachable

sets that do not require discretization of the state space. We examine in particular

the stochastic reach-avoid problem 2.3 of Chapter 2 in order to analyze a spacecraft

rendezvous and docking problem.

The ability to safely perform spacecraft rendezvous and docking maneuvers is

crucial in many applications, for instance in repairing satellites, resupplying the space

station, and other missions. The potential for damage or loss in such expensive

systems, in combination with prohibitively long communication delay, means that

autonomy must be accurate, reliable, and effective despite uncertainties in modeling

and in disturbance forces. For spacecraft dynamics, there are many initial states

from which no control input will lead to a safe or desirable outcome (i.e. successful

docking or rendezvous). The risk of costly failures can be reduced by determining

whether a rendezvous-type maneuver is initialized from a position where success is

guaranteed, or is guaranteed with high probability.

The linearized discrete time Clohessy - Wiltshire - Hill (CWH) equations for

spacecraft relative motion with added stochastic noise can be broken up into in-

plane and out-of-plane motion, i.e. a four-dimensional problem in x, y, ẋ, ẏ and a

separate two-dimensional problem in z and ż, within the Hill reference frame [Wie89].

Unfortunately, even the four-dimensional problem is beyond the limits of standard

dynamic programming. This has led us to explore alternative methods for calculating

reach sets which are more tractable for larger scale problems.

The rest of the chapter is organized as follows. After presenting some of the related

work upon which the results of this chapter are based, we describe the general problem

formulation in Section 3.3. The two methods we use for reach-avoid calculations are

given in Section 3.4. Both methods are applied to the spacecraft rendezvous problem

in Section 3.5 and their performance is discussed. Finally some concluding remarks

are given in Section 3.6
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3.2 Related Work

This chapter draws upon existing literature for solving stochastic control problems

with chance constraints in order to develop novel techniques for calculating stochastic

reach-avoid sets for higher dimensional systems. A chance constrained optimal control

problem requires minimizing some objective (such as minimizing the control effort)

while enforcing a probabilistic constraint, such as remaining within a safe region

K with some desired probability. We examine two approaches: The first is based

on sampling from the distribution of the noise to approximate expected values and

probabilities (referred to as a “particle” or “scenario” approximation, see [NS06]),

and was used in chance-constrained predictive control in [BOBW10] amongst others.

The second approach is based on a convex under-approximation of the probability of

remaining within a set K, assuming the additive noise is Gaussian, that allows the

reachability problem to be solved using convex optimization methods. This method

was presented in [BO09] and used again in [VT11], and applied to systems in two

dimensions. In both cases, we exploit the linearity of the dynamics when applying

them to the reachability problem.

While there is extensive literature on control mechanisms for performing spacecraft

rendezvous maneuvers, particularly the use of model predictive control with approach

and docking constraints for successful rendezvous (see, e.g. [WKBE12], [PDCK11],

[HTRM12], [GVC12]), almost no work has been done on characterizing the initial set

of states from which such maneuvers can be performed safely.

3.3 Problem Formulation

The DTSHS formulation of Definition 2.1 is simplified to a single continuous state, so

that S = X = R
m. Rather than write sn for the state of the system at time n, we

use xn to indicate that the state is not hybrid, and is a vector in Rm (to distinguish

between Cartesian coordinate x in R).
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The dynamics that propagate the state are

xn+1 = Axn +Bun + vn (3.1)

with A ∈ Rm×m, B ∈ Rm×l and u ∈ Rl. The Gaussian noise vn ∈ Rm is assumed

zero mean with covariance matrix V. The space of control inputs U is assumed a

hyper-rectangle of the form U = {u ∈ Rl : ‖u‖1 ≤ umax} for simplicity, although any

convex U is appropriate.

The techniques we utilize to solve Problem 2.3 most naturally express the reach-

avoid objective with a terminal reach condition, i.e. that give the probability of

reaching target set T at final time N specifically. All subsequent derivations assume

a terminal reach constraint, and the true reach-avoid probability of (2.6) can be

approximated by combining the reach-avoid probabilities given terminal times n =

0, . . . ,N :

pNra(x0;K,T ) ≤
N∑
n=0

p̃nra(x0;K,T ) (3.2)

with p̃ denoting the reach-avoid problem with a terminal reach constraint. The

summation in (3.2) must of course be capped at one, so that the probability makes

sense.

3.4 Calculating Reach-Avoid Probabilities

The linearity of the system allows us to rewrite the dynamics (3.1) in vector form,

letting x = [x1, x2, · · · , xN ]T , u = [u0, u1, · · · , uN−1]T and v = [v0, v1, · · · , vN−1]T .

Then

x = x0 +Hu +Gv (3.3)
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with x0, H, and G defined as in [SB10].

x0 =


Ax0

A2x0

...

ANx0

 , H =



B 0 0 · · · 0

AB B 0 · · · 0

A2B AB B · · · 0
...

...
...

. . .
...

AN−1B · · · · · · · · · B


,

G =


I 0 · · · 0

A I 0 · · ·
...

...
. . .

...

AN−1 AN−2 · · · I



The problem of finding p̃Nra(x0;K,T ) can be posed as a constrained stochastic opti-

mization problem.

Problem 3.1. (Stochastic Optimal Control Formulation)

max
u

E
u

[(
N−1∏
n=0

1K(xn)

)
1T (xN)

]
Subject to:

x = x0 +Hu +Gv

un ∈ U ∀n = 0, . . . ,N − 1

Problem 3.1 is expressed as a single optimization problem rather than a multistage

one that the value function (2.21) is designed to solve. Therefore, it returns an

open-loop control vector u rather than a feedback policy π.

3.4.1 Particle Approximation

When taking the expected value of a function of a random variable f(x) with

respect to some distribution p(x), it is necessary to evaluate an integral of the form
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E[f(x)] =
∫
f(x)p(x) dx. However, this integral is often difficult or impossible to

solve (as is the case for (2.18), where the dimension of the integral grows quite large).

Instead, it is possible to approximate the integral by drawing independent, identically

distributed random samples (particles) x(1), x(2), · · · from a proposal distribution q(x)

and calculating a weighted sample mean

Ê [f(x)] =
1

M

M∑
i=1

wif(x(i)) (3.4)

with wi = p(x
(i)

)

q(x
(i)

)
and q(x) chosen so that q(x) > 0 whenever p(x) > 0. By the strong

law of large numbers (and so making some weak assumptions on the boundedness of

f(x) and the moments of p(x)), it follows that Ê [f(x)]→ E[f(x)] as M →∞.

Because we can easily sample from the multivariate Gaussian distribution, we let

q(x) = p(x), where p(x) is Gaussian, and so wi = 1. We therefore draw M samples

v(1), v(2), . . . , v(M), where v(i) ∈ Rm×N

v(i) ∼ N (0,V), V =


V 0 · · · 0

0 V · · · 0
...

...
. . .

...

0 · · · 0 V


We then have M realizations of the dynamics, given by x(i) = x0 +Hu +Gv(i), for

i = 1, . . . ,M . To approximate the cost function of Problem 3.1 we create an indicator

variable zi, where

zi =

1 if x
(i)
1 , . . .x

(i)
N−1 ∈ K and x

(i)
N ∈ T

0 else
(3.5)

Then p̃Nra(x0;K,T ) ≈ 1
M

∑M
i=1 zi. Next, if the sets K and T are assumed convex, we

may exploit the property that convex sets can be represented by a finite intersection

of hyperplanes (see [BOBW10]), i.e.

x1:N−1 ∈ K ∧ xN ∈ T =⇒ x ∈
⋂
l

{
x : aTl x ≤ bl

}
(3.6)
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To convert Problem 3.1 to a mixed integer linear program, as in [BOBW10], we

enforce constraints of the form (3.6) by using zi and (3.5), and some large number C

aTl x(i) − bl ≤ C(1− zi)∀ i = 1, · · · ,M , l = 1, · · · ,Ml (3.7)

so that for appropriately defined al, bl representing sets K and T , and C large enough,

we force zi = 0 when x(i)
n /∈ K for some 1 ≤ n ≤ N − 1, or x

(i)
N /∈ T . We want to find

an open loop control u that produces as many zi equal to 1 as possible.

Problem 3.2. (Particle Approximation to Problem 1)

max
u

M∑
i=1

zi

Subject to:

x(i) = x0 +Hu +Gv(i) ∀ i = 1, . . . ,M

aTl x(i) − bl ≤ C(1− zi) ∀ i = 1, . . . ,M , l = 1, . . . ,Ml

|un| ≤ umax ∀n = 0, . . . ,N − 1

zi ∈ {0, 1} ∀ i = 1, . . . ,M

Problem 3.2 has a large number of variables that grow as the number of particles

M and the number of time steps N increase, and is therefore still limited in terms of

how many particles can be used and the amount of time given to reach the target.

One advantage to the particle method is that accuracy can be traded for compu-

tation time. Fewer particles can lead to a quick approximation of the reach-avoid

probability for different x0, and those x0 that seem to produce larger probabilities

can be recalculated with more particles to obtain a more accurate result if desired.

3.4.2 Convex Chance-Constrained Approximation

An alternative to the particle approximation approach is to reformulate Problem 3.1

by moving p̃Nra(x0;K,T ) from the objective function to a chance constraint that must

be enforced with probability 1− α.
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Problem 3.3. (Chance Constrained Formulation of Problem 1)

min
u
α

Subject to:

p̃Nra(x0;K,T ) ≥ 1− α (3.8)

|un| ≤ umax ∀n = 0, . . . ,N − 1

Generally, this would not make the problem any easier to solve, since we still

have to evaluate p̃Nra(x0;K,T ). However, because of the linearity and Gaussian noise,

we can actually approximately solve Problem 3.1 by breaking (3.8) into univariate

Gaussian constraints, which are convex (see [BO09], [VT11]). To see this, use the

converse of (3.6) and Boole’s inequality to write

x1:N−1 /∈ K ∨ xN /∈ T ⇒ x ∈
⋃
l

{
x : aTl x > bl

}
⇒

P[x1:N−1 /∈ K ∨ xN /∈ T ] = P[
⋃
l

{
x : aTl x > bl

}
] ≤

∑
l

P[aTl x > bl] (3.9)

The inequality in the above expression indicates an upper bound on the probability

of not being in K (or T at time N), and therefore a lower bound on the actual

reach-avoid probability, which is still desirable.

Noting that aTl x is a scalar, and aTl x = aTl (x0 + Hu + Gv), it follows that

aTl x ∼ N (aTl (x0 +Hu), aTl GVGTal) has a univariate Gaussian distribution. Applying

(3.9), constraint (3.8) can be rewritten as follows.

p̃Nra(x0;K,T ) ≥ 1−
Ml∑
l=1

P

[
aTl X > bl

]
≥ 1− α

⇒
Ml∑
l=1

P

[
aTl X > bl

]
≤ α

By taking a “risk allocation” approach as in [BOBW10], we can allow for a different

probability of violating each individual constraint, i.e. for each l, P
[
aTl X > bl

]
≤ αl,

with
∑
αl = α. We then require each αl ≥ 0 and

∑
αl = α ≤ 1, leading to the

following approximation to Problem 3.3.
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Problem 3.4. (Chance Constrained Convex Approximation to Problem 1)

min

Ml∑
l=1

αl

Subject to:

1− Φ

(
bl − aTl x

aTl GVGTal

)
≤ αl ∀ l = 1, . . . ,Ml

|un| ≤ umax ∀n = 0, . . . ,N − 1

Ml∑
l=1

αl ≤ 1

αl ≥ 0 ∀ l = 1, . . . ,Ml

The function Φ( · ) indicates the standard normal cumulative distribution function,

which is a concave function so long as its argument is non-negative (Φ(x) is concave

for all x ≥ 0), implying that 1−Φ(x) is convex for all x ≥ 0. Problem 3.4 is therefore

convex so long as bl − aTl x ≥ 0, or αl ≤ 0.5 for all l. If any αl is greater than 0.5, the

reach-avoid probability for the given x0 will be quite low, so that we will likely only

be concerned with those instances of Problem 3.4 when the problem is indeed convex,

and hence we are guaranteed a solution.

3.4.3 Particle Approximation Using Feedback

We now show how to calculate p̃Nra(x0;K,T ) when u = Wx + u0 with W block

lower triangular, and un bounded between known maximum and minimum values,

i.e. U = {W , u0 : |Wx + u0| ≤ umax} (umax = umax × [1, . . . , 1]). We only consider

the particle approximation method in the case of feedback, because the chance-

constrained method will no longer be convex, and the constraint in 3.4 involving

Φ
(

bl−a
T
l x

a
T
l GVG

T
al

)
becomes difficult to enforce. Problem 3.2, however, can be modified

nicely to accommodate a feedback controller.

First, the expression for x must be modified to incorporate feedback in (3.3).

Both x and u can be written as affine functions of the random vector v, as shown in
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[SB10]:x

u

 = PV +

x̃

ũ


P =

G+HK(I −HW )−1G

W (I −HW )−1G


x̃

ũ

 =

x0 +Hu0 +HW (I −HW )−1(x0 +Hu0)

W (I −HW )−1(x0 +Hu0) + u0



Since these equations are not convex in the variables W and u0, new variables

Q = W (I − HW )−1 and R = (I + QH)U0 are introduced to make the equations

convex. The variables of interest, W and u0, can be recovered after solving for

optimal Q and R, as in [SB10]. Note that u is random, because it is a function of

the Gaussian vector v. We therefore cannot impose with certainty constraints on the

maximum and minimum values of u. We instead require E[|u|] ≤ umax, which can

also be evaluated in the manner of (3.4). Problem 3.2 is reformulated as:

Problem 3.5. (Particle Approximation with Feedback)

max
M∑
i=1

zi

Subject to:

x(i) = (I +HQ)GV (i) + (I +HQ)x0 +HR ∀ i = 1, . . . ,M

u(i) = QGV (i) +Qx0 +R ∀ i = 1, . . . ,M

aTl x(i) − bl ≤ C(1− zi) ∀ i = 1, . . . ,M , l = 1, . . . ,Ml

1

M

M∑
i=1

|u(i)| ≤ umax

zi ∈ {0, 1} ∀ i = 1, . . . ,M

Q block lower triangular

The number of variables and constraints significantly increases in comparison to

Problem 3.2, as does the solution time.
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3.5 Application to Spacecraft Rendezvous and

Docking

We apply both of the open-loop methods (Problem 3.2 and Problem 3.4) to the

reach-avoid problem for the final phase of in-plane space rendezvous, as described in

[WKBE12].

The in-plane dynamics for an approaching spacecraft (the deputy) relative to its

target (the chief) are given by the linearized time-invariant CWH equations [Wie89]:

ẍ− 3ω2x− 2ωẏ =
Fx
mc

(3.10)

ÿ + 2ωẋ =
Fy
mc

(3.11)

Here Fx and Fy are the components of the external force vector (i.e. the thruster

control input), mc is the mass of the deputy, and ω =
√

µ

R
3
0

where µ is the gravitational

constant and R0 is the orbital radius of the spacecraft. In the following we will only

consider the in-plane motion since the out-of-plane motion is decoupled from the x, y

dynamics. We then discretize (3.10)-(3.11) using time-step ∆ according to [AM07],

and let x = [x, y, ẋ, ẏ]T , u =
[
Fx, Fy

]T
. We obtain discretized dynamics of the form

(3.1) with

A = eÃT , B =

∫ T

0

eÃtB̃ dt

and

Ã =


0 0 1 0

0 0 0 1

3ω2 0 0 2ω

0 0 −2ω 0

 B̃ =


0 0

0 0

1
mc

0

0 1
mc


with added Gaussian process noise vector vn ∈ R4, that represents uncertainty in the

model due to external forces on the spacecraft not captured in the linearized model.

The problem of controlling the deputy to approach the chief according to the

dynamics (3.10) - (3.11) includes many safety constraints that must be satisfied for
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the operation to be successful. For instance, the spacecraft should come close to

the chief without hitting it, while staying within a line-of-sight (LoS) cone relative

to the chief. Staying within an LoS cone is necessary when there are sensors on

the chief measuring the location of the approaching spacecraft. While we do not

incorporate sensor measurements, it is a natural next step, and so we assume all

necessary requirements as if sensor measurements were taken.

We define the safe set K that the deputy should remain within for all time steps

0 to N − 1 as the LoS cone at the origin in x and y (unchanging over time), and a

square in ẋ and ẏ, i.e. the maximum and minimum velocities are bounded for all

time steps. Target set T is defined as a box close to the chief that the deputy should

reach at time N . The set T also includes bounds on the velocity components ẊN

and ẎN so that the deputy does not crash or dock with excess force. Fig. 3.1 shows

the safe set K and target set T for states x and y.

We set covariance V as a diagonal matrix with entries [1e−4, 1e−4, 5e−8, 5e−8].

The noise covariance is kept small, since open-loop controllers do not deal well with

noise over longer periods of time (and the covariance grows with N). As the covariance

grows, the potential distance between different realizations of the trajectory x grows

as well, and it is harder for one controller, without feedback, to drive all possible

Figure 3.1: The sets K and T in the x and y dimensions. The black lines represent
the LoS cone the deputy is trying to remain within, and the green box shows the
target that is close to the chief (placed at the origin).
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Figure 3.2: Reach-avoid probability starting at various x0 and y0, for positive
initial velocities ẋ0 = 0.01 km/s, ẏ0 = 0.01 km/s, using the particle approximation
method with 800 particles. The dotted black line indicates the boundary of the
LoS cone stemming from the origin. The area of nonzero probability is contained
in the region where x0 and y0 are both negative, because both initial velocities
are positive.

realizations to the origin while keeping them within an LoS cone.

Problems 3.2 and 3.4 are solved over a mesh of initial x0 values ranging from 2

km behind the chief to directly behind it. We compute the reachable sets over a

period of N = 5 time steps, ∆ = 20 seconds per time step (as in [WKBE12]), and

compare the particle approach of Section 3.4.1 to the convex optimization approach

of Section 3.4.2. Problem 3.2 is solved in CPLEX [IBM99] and Problem 3.4 using an

active-set algorithm through fmincon in MATLAB’s Optimization toolbox. We start

with a coarse grid for x0, with x0 equally spaced 0.1 km apart ranging from −2 to 2

km, y0 ranging from −2 km to 0 km with the same spacing as x0, and ẋ0, ẏ0 ranging

from −0.2 km/s to 0.2 km/s, equally spaced 0.01 km/s apart. We then isolate the

states x0 leading to higher reach-avoid probabilities, refine the mesh limited to these

values, and recalculate the reach-avoid probabilities.

Fig. 3.2 shows the probability of staying within K and reaching T in 5 time steps,

over varying x0 and y0 (using the refined mesh with 0.01 km between points), with

fixed ẋ0 = ẏ0 = 0.01 km/s, using the particle approach with 800 particles. The area

of non-zero probability is limited to where both x0 and y0 are negative, because the



Chapter 3. Stochastic Reachability Analysis with Perfect Observations 42

(a) (b)

Figure 3.3: The sets RA5(0.3;K,T ) and RA5
0.2(K,T ) (i.e. the sets of all X0 such

that p̃5
ra(x0;K,T ) ≥ 0.7 and p̃5

ra(x0;K,T ) ≥ 0.8) with ẋ0 = 0.01 km/s, ẏ0 = 0.01
km/s in (a), and ẋ0 = −0.01 km/s, ẏ0 = 0.01 km/s in (b), fixed. The reach-avoid
sets for α = 0.3 and α = 0.2 are shown for the convex approximation (black,
blue), and for the particle approximation using 800 particles (red, green) methods.
The dotted black line indicates the boundary of the LoS cone. RA sets are not
symmetric when ẋ0 switches from positive to negative because of the asymmetric
nature of the dynamics.

(a) (b)

Figure 3.4: The sets RA5(0.3;K,T ) and RA5(0.2;K,T ) (i.e. the sets of all x0 such
that p̃5

ra(x0;K,T ) ≥ 0.7 and p̃5
ra(x0;K,T ) ≥ 0.8) with x0 = −0.9 km, y0 = −1

km in (a), and x0 = 0.9 km, y0 = −1 km in (b), fixed. The reach-avoid sets for
α = 0.3 and α = 0.2 are shown for the convex approximation (black, blue), and
for the particle approximation using 800 particles (red, green) methods. In both
figures, the RA sets span only a few m/s in each direction, demonstrating the
importance of accuracy in the initial velocities for rendezvous to be successful.
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initial velocities are both positive, and over the time period of N = 5, the controller

cannot sufficiently reverse the velocity of the deputy to enable it to still reach the

origin. Further, the x0 and y0 leading to positive probability only lie in a range

of approximately −1.1 km to −0.8 km, somewhat in the middle of the LoS cone.

This is because we have restricted the deputy to rendezvous with the chief at exactly

N = 5 time steps. Starting too far away, the controller cannot bring the deputy to

the chief within the small time frame, and starting too close, the controller cannot

prevent the deputy from overshooting the chief, hence the small region with positive

probability of success. Taking the union over N of all reach-avoid sets with N ≤ 5,

would expand the full reach-avoid set of Fig. 3.2. Finally, there is no initial position

leading to a reach-avoid probability higher than 0.9, even with the choice of a small

noise covariance. Without feedback, the reach-avoid probability will grow smaller as

N increases, which is already evident in just over 5 time-steps.

Fig. 3.3a shows specific reach-avoid probabilities (for a given probability 1− α),

computed with the particle and convex approaches. The set of all initial states x0, y0

leading to trajectories that will stay within K and reach T at N = 5, with probability

0.7 and 0.8 when ẋ0 = ẏ0 = 0.01 km/s, is shown. The sets generated by the particle

approach (using 800 particles) are slightly larger than those from the convex approach,

consistent with the fact that the convex approach gives a slight under-approximation

of the reach-avoid set. A comparable scenario, with ẋ0 = −0.01 km/s, is shown in

Fig. 3.3b. Note in this case that the reach-avoid sets occur in the region where x0 is

positive, for the same reason that they appear where x0 is negative when the initial

x-velocity is positive.

The reach-avoid sets are not symmetric, because the zero-input dynamics also

are not symmetric. Plotting sample trajectories of the zero-input, zero-noise CWH

equations demonstrates this. Fig. 3.5 shows RA5(0.2;K,T ) for ẏ0 = 0.01 km/s,

computed with the particle approach. As ẋ0 decreases, the size of the reach-avoid set

shrinks in the y-direction, as in Fig. 3.3. The scale of the axis shows that the range

of ẋ0 for a given x0 and y0 is in fact much smaller relative to the ranges of x0 and

y0 when ẋ0 is fixed. This indicates that the reach-avoid probability is much more
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Figure 3.5: Three-dimensional reach-avoid set RA5(0.2;K,T ), with ẏ0 fixed at
10 m/s, generated using the particle approximation method. As x0 ranges from
negative to positive, ẋ0 ranges from positive to negative. The cross-sections for
fixed ẋ0 shrink as x0 becomes positive due to the asymmetric nature of the zero-
input dynamics. The difference in cross-sections for x0 positive versus negative
are highlighted in Fig. 3.3.

sensitive to the initial velocity than it is to the initial position. Fig. 3.4 explores this

further.

Reach-avoid sets for fixed x0, y0 and varying ẋ0, ẏ0 using a mesh with 1 m/s

between points using both the convex and particle approaches are given in Fig.

3.4. In Fig. 3.4a, x0 = −0.9 km and y0 = −1 km, and in Fig. 3.4b, x0 is +0.9

km. The reach-avoid sets using the particle approach are approximately symmetric

across the two values of x0. The convex reach-avoid sets in Fig. 3.4a are slightly

misshapen relative to all the other reach-avoid sets, which is unfortunately caused by

the MATLAB algorithm, which is unable to find an optimal solution to Problem 3.4

for various initial guesses. Regardless, it is clear that for a given starting position x0,

y0, the initial velocities must be specified to within an accuracy of a couple m/s, or

the probability of success drops drastically, and in fact will drop to zero very quickly,

at least in the case of an open loop controller.

To compare the performance of the open-loop controller to one that uses feedback,

we next present results for the reach-avoid set calculated by solving Problem 3.5, in
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Fig. 3.6. We fix ẋ0 = ẏ0 = 0.01 km/s in Fig. 3.6a, and x0 = −0.9 km, y0 = −1 km in

Fig. 3.6b. All parameters (i.e. Σ and N) are kept the same as in the open-loop case,

although the number of particles is reduced to 500, and a slightly coarser grid is used,

in order to decrease computation time. A feedback controller drastically increases

the size of the reach-avoid set, because it can steer those trajectories driven away

from the origin by the process noise back to the desired path. This contrast in results

between controllers highlights the importance of considering the type and effect of

the controller to avoid overly conservative reachability results, and merits further

discussion. It is therefore an area of potential future work.

Finally, we briefly compare the performance of both methods used to produce the

above results in the open-loop case. Neither method is perfect, and both produce

approximations to the true reach-avoid probabilities. Figs. 3.3 and 3.4 showed that the

convex chance-constrained approach consistently under-approximates (as expected)

the reach-avoid probabilities relative to the particle approximations, although never to

the point of being unreasonable. We found that the particle method was consistent in

its results, and has the advantage of allowing for a quick, coarse approximation using

less particles, to then narrow down the region where the reach-avoid probabilities

should be calculated more accurately. Both methods have the disadvantage that,

if the reach-avoid probability for a given initial point is very small or zero, they

will possibly never converge to a solution (or take an unreasonable amount of time),

particularly in the case of Problem 3.4, since the problem is in fact no longer convex.

Hence we found the need to stop the algorithm after it had taken sufficient time to

find an optimal solution, were one to exist.

Computation times for the particle method depend heavily on the amount of

particles used, which affects both the number of variables and constraints making up

the problem. For instance, using 500 particles over N = 5 time steps, there are a total

of 510 variables: 500 indicator variables zi, one for each particle, and 10 variables for

U , since u ∈ R10. Further, to define inequality constraints ensuring x1, . . . , x4 ∈ K

and X5 ∈ T , we need Ml = 48 (al, bl) pairs of inequalities, producing 500×48 = 24000

constraints of the form aTl x(i)− bl ≤ C(1− zi). However, using commercially available
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MILP solvers, such as CPLEX, for a single given x0 this problem was solved in 6.88

seconds on a 2 GHz Macbook with 2 GB of RAM.

Compared to the particle approach, Problem 3.3 has far fewer variables and

constraints. For the same case with N = 5 time steps, we again have Ml = 48

constraints aTl X ≤ bl confining x1, . . . , x4 ∈ K and x5 ∈ T . Associated to each

constraint is a variable αl, so that there are 48 + 10 = 58 variables total (and again

the 10 variables correspond to u ∈ R10). The drawback here is the nonlinear constraint

involving the Gaussian normal density function, 1− Φ
(

bl−a
T
l x

a
T
l GVG

T
al

)
≤ αl. Nonlinear

solvers can be more time consuming if the initial solution point provided to the

algorithm is far from the optimal solution. For an initial solution generated randomly,

and the same x0 as was implemented in the particle method, Problem 3.4 was solved

in 2.81 seconds using MATLAB’s fmincon function and its active-set algorithm.

However, for some initial points the algorithm can fail to converge completely and

the process must be repeated with a different initial point, adding to the overall

time of the algorithm. With the same x0 but a different initial point, the problem

was solved in 50.99 seconds with 7 different initial points before finding the solution.

Using different algorithms or software and “good” initial guesses may help speed up

the algorithm.

The convex method was generally faster, but only when the initial values over

which the reach-avoid sets were calculated had been narrowed down enough to

eliminate most of the low probability calculations, and when “good enough” initial

solutions were provided to avoid recalculating the reach-avoid probability several

times.

The data for Figs. 3.3 and 3.4 generally took about 20 minutes each to calculate

(with no significant difference in time between the methods). However, the particle

approach was used to generate Fig. 3.2 and Fig. 3.5 because over a wide range of

values it was found to be faster. The particle approximation does not get “stuck” at

certain initial states x0 like the convex approximation, when computation takes much

longer (e.g. a 6.88 second computation for the particle approximation versus a 50.99

second computation for the convex approximation).
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(a) (b)

Figure 3.6: The sets RA5
0.1(K,T ) (black) and RA5

0(K,T ) (red) (i.e. the sets of all
X0 such that p5

X0
(K,T ) ≥ 0.9 and p5

X0
(K,T ) = 1) with ẋ0 = 0.01 km/s, ẏ0 = 0.01

km/s in (a), and x0 = −0.9 km, y0 = −1 km in (b), when using state feedback,
calculated using the particle method with 500 particles. The dotted black line
in (a) shows the LoS cone. The RA sets are much larger, and attain greater
probabilities, than in the case of open loop control, spanning more than half of
the LoS cone in (a) and a much larger range of velocities in (b).

While the results presented are for a four-dimensional system, both approaches

should be suitable for reachability calculations of higher-dimensional systems as well.

The number of constraints in either Problem 3.2 or 3.4 will not increase for higher

dimensional systems (except possibly in the number of control inputs u to be bounded,

which is insignificant compared to the other constraints). The main computation

will lie in calculating the actual reach-avoid set, where the problem must be solved

repeatedly over a much larger grid of x0 values. Again, the process can be sped up

by solving over a coarse grid, and in the particle approximation case using a small

number of particles, and then focusing and refining the grid to where the success

probabilities are estimated to be highest.

Further, both methods can be used for reachability calculations of any linear

system with additive Gaussian noise. The convex chance-constrained approach of

Problem 3.4 will only work with Gaussian noise, but the particle method could be

applied to noise following any known distribution. We required the reach and the

complement of the avoid set to be convex, but nonconvex regions could also be
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addressed by decomposition into multiple convex regions (see, e.g. [OBW10]).

3.6 Summary

Two novel methods for reachability calculations on higher-dimensional linear stochastic

systems have been presented. One involves sampling from the noise distribution to

generate a particle approximation to the expected value in Problem 3.1, which would

otherwise be too difficult to evaluate, and using mixed integer linear programming to

find p̃Nra(x0;K,T ). The other exploits the linearity of the dynamics and the Gaussian

assumption on the noise to produce a convex optimization problem also approximating

p̃Nra(x0;K,T ), by making the reach-avoid probability a chance constraint whose bound

is actually the objective to be maximized. An open-loop control vector u was found

to maximize the reach-avoid probability in both cases.

The obvious setback is that with the propagation of the noise, an open-loop

controller cannot optimally control all realizations of the dynamics over an extended

length of time. The noise leads to dynamics which diverge over time, so that the

chances of reaching the target set T using an open-loop controller go to zero very

quickly as the time horizon is extended.

We were able to impose a state-based feedback controller using the particle

approximation method, despite the increasing number of variables and constraints.

The natural next step is then to look more closely at closed-loop controllers. While

the particle approximation method still works, the convex approximation technique

breaks down when feedback is introduced, because the constraints are no longer

convex. One possible approach to maintain convexity would be to use a model

predictive controller to simulate feedback (although it may not help the speed of the

algorithm), to see how this improves the stochastic reach-avoid probability.
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Chapter 4

Stochastic Reachability Analysis

with Partial Observations

We now focus on the reachability problem for stochastic hybrid systems with incom-

plete state information. We establish the theoretical foundations for both generating

probabilistic reachable and viable sets and synthesizing controllers to maximize the

likelihood of meeting such specifications. Our approach utilizes a sufficient statistic

that reduces the problem to one of perfect state information. We develop a dynamic

programming recursion for the solution of the equivalent perfect information problem,

and prove that the recursion is valid, an optimal solution exists, and results in the

same solution as to the original problem. A simplified dynamic programming recur-

sion is also given, through the introduction of a change of measure to the sufficient

statistic.

4.1 Introduction

The goal of this chapter is to extend the stochastic optimal control formulations for

reachability presented in Chapter 2 to the case of a partially observable system, in

which the controller only has access to noisy or incomplete measurements of the state.

We examine the viability problem, and then extend those results to the reachability
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and reach-avoid problem. Incomplete state information requires a controller designed

to account for the lack of full knowledge of the state. Ignoring the need for a controller

tailored to the incomplete information problem could ultimately lead to suboptimal

control inputs as compared to the case in which the true state of the system is

known. For safety verification and reachable set calculations, if the controller is falsely

assumed to have perfect knowledge of the state, the reachability probability may be

overestimated. This is certainly undesirable in the context of safety verification.

Optimal control in the presence of a stochastic observation process can be directly

related to a partially observable Markov decision process (POMDP). POMDPs provide

a generalized modeling framework for a stochastic system whose state obeys the

Markov property and is subject to a control input. The control input is often chosen

optimally to maximize the expected value of a sum of rewards, such that at each time

step some reward is accrued. The optimal control and maximum expected reward are

found by using a sufficient statistic, which encapsulates and condenses all necessary

information for control of the system. The sufficient statistic produces an alternate

state over which the POMDP is defined, and which is known completely. For an

additive cost (or reward) function, the posterior distribution, or probability density

of the state given all available information (observations, control inputs) up to the

present, provides sufficient information for control of the system (this result is derived

in, e.g., [BS96]).

For a non-additive cost function the posterior distribution is no longer sufficient

(see [Shi64]). A different sufficient statistic for reducing the problem to one of perfect

information must be derived, which is the main focus of this chapter. We derive a)

sufficient statistics for the multiplicative viability, reachability, and reach-avoid cost

functions with hybrid state dynamics, and b) the dynamic programming equations to

solve each problem in terms of the sufficient statistic. We also introduce a change

of measure to the hybrid space, so that the observations are independent of the

state of the system (and are in fact independent and identically distributed). This

makes for simpler dynamic programming equations, and should aid in computation

and simulations. Our main focus is on the theoretical foundations for solving the
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reachability problem for a partially observable DTSHS. We note that implementation

of our technique requires further work in approximation strategies as well as in special

classes of systems for which exact solutions are available. This is the subject of

Chapters 5 and 6.

The chapter is organized as follows. First, we provide an overview of some

of the related literature on verification of partially observable systems. We then

extend the definition of a DTSHS to one with partial observations in 4.3, and modify

the optimal control formulation for the viability problem (see 2.1) to reflect the

limited information available to the controller. We then give a detailed overview of

POMDPs in Section 4.4, because our approach directly relates to the optimal control

of POMDPs. A sufficient statistic is derived for the viability problem in Section

4.5.1, and the equivalence of the original problem to one with perfect information

expressed in terms of the sufficient statistic is established in Section 4.5.2. Alternate

sufficient statistics that 1) incorporate a change of measure, and 2) are appropriate

for reachability and reach-avoid cost functions, are given in Sections 4.5.3 and 4.5.4,

respectively. In Section 4.6, we describe two examples of partially observable discrete

time stochastic hybrid systems, demonstrate how to reformulate them in terms of

our sufficient statistic, and discuss some of the computational challenges as well as

possible solution strategies. Concluding remarks are given in Section 4.7.

4.2 Related Work

Until recently, verification of partially observable DTSHS had not been addressed.

Concurrently with our efforts, however, [DAT13] considered safety specifications for

partially observable DTSHS through a new optimal control formulation of the viability

problem. Although viability was originally presented in terms of a multiplicative cost

function ([APLS08]), [DAT13] rewrite it as a terminal cost function, by appending to

the state of the hybrid system a binary variable representing whether the state has

remained within the desired region up to the previous time step. This formulation

produces a cost function that is additive, and the standard approach of re-framing
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the problem in terms of the belief state, and solving the equivalent perfectly observed

problem, applies. Indeed, inspired by this approach, [TMKA13] reformulate the

reachability problem more generally as an additive cost optimal control problem,

although they do not discuss the partially observable case.

Although we preserve the multiplicative cost function, leading to a seemingly more

complex problem, the additive cost formulation effectively moves the complexity from

the cost function to the modified state of the system. The posterior distribution of the

new state is actually the same as the distribution produced by the sufficient statistic

we derive, so that ultimately the only advantage to the additive cost formulation is

its familiar and well-studied form.

Our approach is inspired by similar work in risk-sensitive control problems [JBE94],

[FGM97]. The risk-sensitive control problem minimizes the exponential of a sum of

costs, rather than a sum of costs, so that the cost objective is in fact non-additive.

In particular, [JBE94] derive a sufficient statistic for a partially observable discrete

time nonlinear system, which is further analyzed and extended in the context of a

POMDP in [FGM97]. In the latter, the state, observation, and control take values

from finite, discrete sets, whereas in the former the state, observation, and control

spaces are continuous. We also draw upon the theory from [BS96] to establish the

definition of a sufficient statistic and validity of the dynamic programming equations.

4.3 Problem Formulation

4.3.1 Partially Observable Stochastic Hybrid System

We extend the DTSHS of Definition 2.1 in Chapter 2 to include an observation process,

which we call a partially observable DTSHS (PODTSHS). Only the observation process

is available to the controller, and is of the form yn = (yxn, yqn), where yxn is associated

with xn, and yqn with qn. The observations are stochastic as well, and governed by

independent stochastic kernels that are combined to produce a probability measure
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on the full observation process.

Definition 4.1. (Partially Observable Discrete Time Stochastic Hybrid System Hpo).

A PODTSHS is a tuple Hpo = (X ,Q,Yx,Yq,U ,Tx,Tq,Tyx ,Tyq , ρ) where

1. X ⊆ R
n is a set of continuous states

2. Q = {q1, q2, ...qNq} is a finite set of discrete states with cardinality Nq, with

S = X ×Q the hybrid state space

3. Yx ⊆ R
n is a set of continuous observations

4. Yq ⊆ Q is a set of discrete observations, with Y = Yx×Yq the hybrid observation

space

5. U is a finite, bounded set of possible control inputs, affecting discrete and

continuous state transitions

6. Tx : B(Rn)×Q× S × U → [0, 1] is a Borel-measurable stochastic kernel which

assigns a probability measure to xn+1 given sn = (xn, qn),un, qn+1 for all n:

Tx(dxn+1 ∈ B|qn+1, sn,un) where B ∈ B(Rn), the Borel σ-algebra on R
n

7. Tq : Q×Q× U → [0, 1] is a discrete transition kernel assigning a probability

distribution to qn+1 given qn,un for all n: Tq(qn+1|qn,un)

8. Tyx : B(Rn)×X → [0, 1] is a continuous Borel-measurable observation function

assigning a probability distribution to observation yxn given state xn for all n:

Ty(dy
x
n ∈ B|xn)

9. Tyq : Yq×Q×U → [0, 1] is a discrete observation function assigning a probability

distribution to yqn given qn and un for all n: Tyq(y
q
n|qn,un)

10. ρ : B(Rn)×Q → [0, 1] is an initial Borel-measurable density lying in the space

of all probability measures on S, such that ρ(dx0 ∈ B, q)
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We again let τs(ds
′|s,u) be the hybrid state transition kernel defined as the product

of Tx and Tq. Similarly, the hybrid observation kernel τy(y|s,u) is

τy(dyn|sn,un−1) = Tyx(dy
x
n|xn,un−1)Tyq(y

q
n|qn,un−1). (4.1)

Kernels Tyx and Tyq are more specifically defined according to

yxn = h(xn,un−1) + vn,

yqn ∼ Qqn,y
q
n
(un−1).

(4.2)

The continuous state observation yxn is subject to additive noise vn, which is indepen-

dent and identically distributed with positive density ϕ(v) (i.e. Gaussian), and the

function h is assumed bounded and continuous, as in [JBE94]. The distribution of the

discrete state observation yqn follows the discrete map Qq,y
q(u) : Q×Q× U → [0, 1],

so that P [yqn = i | qn = q, un−1 = u] = Qq,i(u).

The filtrations Gn and Yn are generated by the sequences {s0, . . . , sn, y1, . . . , yn−1}

and {y1, . . . , yn}, respectively. Denote in = (y1, . . . , yn,u0, . . . ,un−1) ∈ Yn ×Un = In,

the vector of information available at time n, with Un the n-times product space of

U . The information vector in is available to the controller, so that policy π (defined

in Chapter 2) is now a sequence of functions mapping In to U .

The initial density ρ over s0 = (x0, q0) lies in the space of all probability measures

on S, P (S) and assigns likelihoods to all possible s0 ∈ S. Finally, based on ρ, τ ,

φ, and Q(u), we obtain a probability measure Pπ induced by the control policy π

defined over the full state space Ω, which includes sn and yn for all n. The PODTSHS

is therefore related to a POMDP, just as a DTSHS is related to an MDP. We will

elaborate upon POMDPs in Section 4.4, and exploit this relationship when examining

reachability properties of a PODTSHS.

4.3.2 Reachability Analysis for a PODTSHS

Problems 2.1 - 2.3 are formulated in the same manner for a DTSHS or a PODTSHS.

The cost function remains the same, and we still seek to maximize the probability of
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some objective over a control policy π. However, the probability measure Pπ over

which the probabilities (and equivalent expected value formulations) are evaluated

changes. The optimal control policy also must be modified, since it is no longer a

function of state s.

For instance, recall the viability problem 2.1 has cost function

pNviab(s0;K) = sup
π∈Π

E
π

[
N∏
n=0

1K(s)

∣∣∣∣∣ s0

]
. (4.3)

The state s0 is no longer known, and so our viability probability must be a function

of ρ instead. We therefore write

pNviab(ρ;K) = sup
π∈Π

E
π

[
N∏
n=0

1K(s)

∣∣∣∣∣ ρ
]

. (4.4)

In turn, the expected value with respect to measure Pπ is expanded as

E
π

[
N∏
n=0

1K(s)

∣∣∣∣∣ ρ
]

=

∫
S

∫
S

∫
Y
. . .

∫
S

∫
Y

N∏
n=1

1K(sn)τy(dyn|sn,un−1)

× τs(dsn|sn−1,un−1)1K(s0)ρ(ds0). (4.5)

The control inputs un are chosen according to policy π = (µ0, . . . ,µN−1) with µi :

Ii → U for all i, and the optimal policy is

π∗ = arg sup
π∈Π

pNviab(ρ;K). (4.6)

We therefore define a modified version of Problem 2.1.

Problem 4.1. Consider a PODTSHS Hpo (defined in Definition 4.1). Given a safe

set K and time horizon N we would like to

1. Find the maximal probability (4.4) of remaining within K for N time steps.

2. Find the optimal policy π∗ given by (4.6).

In the case of perfect state information, the viability probability and optimal

policy can be found via dynamic programming as described in Chapter 2, with a
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value function mapping S to probabilities in [0, 1]. To use a dynamic program to

solve Problem 4.1, the value function will be in terms of the information vector in,

which grows over time. One approach for partially observable problems in general is

a reformulation of the state in in terms of a sufficient statistic, and to then solve the

equivalent problem using dynamic programming. This is the standard approach for

POMDPs, which we describe next.

4.4 POMDP Overview

We provide an overview of POMDPs and a dynamic programming formulation for

optimally controlling them. The relation between a PODTSHS and a POMDP allows

us to take a similar approach when solving Problem 4.1.

A POMDP is an MDP (Definition 2.3) with the addition of an observation process.

POMDPs provide a framework for analyzing a controlled discrete time system, where

the controller is designed to optimize a known objective without knowledge of the

current state of the system. The state evolves stochastically and is Markovian (e.g.,

the state at the next time step depends only on the current state and action). We

first define a POMDP with finite states, actions, and observations, and an additive

cost function. The theory and solution techniques for this type of POMDP provide

the foundation for our extension to a PODTSHS and the solution of Problem 4.1.

Definition 4.2. (Partially Observable Markov Decision Process J po) A POMDP is

a tuple J po = (S,U ,Y ,T ,Y ,R) where

1. S is a finite set of states

2. U is a finite set of possible actions the agent can take

3. Y is a finite set of observations

4. T : S × S × U → [0, 1] is a state transition function assigning a probability

distribution to state sn+1 given state sn and action un for all n: T (sn+1|sn,un)
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5. Y : Y × S × U → [0, 1] is an observation function assigning a probability

distribution to observation yn given state sn and action un for all n: Y (yn|sn,un)

6. R : S × U → R is a function assigning a reward at each time step n, given the

current state sn and action un, R(sn,un)

The goal is to maximize the expected sum of rewards over a (possibly infinite)

time horizon N by optimally choosing a control policy π that selects inputs un based

on available information.

sup
π
E

[
N∑
n=0

R(sn,un)

]
(4.7)

In Chapter 2 we discussed a Markov policy that maps the current state to a control

input. However, an optimal policy in the partially observed case cannot be Markov

with respect to the observations [PGT06], i.e. the controller cannot only consider

the currently available observation and still make optimal decisions. One option is

to consider the internal information vector in as defined above (the sequence of all

past actions and observations) and design a policy based on the current information

vector. Because the information vector grows over time, recording and storing in is

difficult as n increases.

Instead, the optimal control at time n can be based on a belief state that sum-

marizes all available information up to time n, as opposed to a recorded history of

all past actions and observations. The belief state is a sufficient statistic for the

set of all observations and actions {u1, . . . ,un−1, y1, . . . , yn} because it condenses all

information necessary for making optimal decisions [Ber05]. For reward function R of

Definition 4.2 that is additive, the belief state is a probability density function that

describes the likelihood of being in state s given all past observations and actions,

b(sn) = P [sn|u1, . . . ,un−1, y1, . . . , yn]. By treating the belief state as the true state

of the system, J po can be equivalently solved as a perfect state information Markov

decision process. An optimal policy π∗ for the POMDP is then defined in terms of the

belief state, and maps beliefs to actions: π∗ : B → U , with B the set of all possible

belief states.
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The optimal policy for a particular belief state can be found by maximizing a

value function that describes the cumulative reward from time n to the final time N

(or over N − n+ 1 time steps), presuming the system behaves optimally from time

n+ 1 to N . The value function is defined recursively as

V ∗n (b) = max
u∈U

{∑
s

R(s,u)b(s) +
∑
y

V ∗n+1

(
My,ub

)
P(y|u, b)

}
, (4.8)

with the transition operator My,ub that provides the next belief state bn+1 given the

current observation, action, and belief state(
My,ub

)
(s′) =

Y (y|s′, b,u)
∑

s∈S T (s′|s,u)b(s)

P(y|b,u)
, (4.9)

and likelihood of the observation given by

P(y|b,u) =
∑
s∈S

b(s)
∑
s
′∈S

T (s′|s,u)Y (y|s′,u). (4.10)

We next adopt this formulation for verification of a PODTSHS.

4.5 Reformulation of Viability Problem

We give a detailed description of how the viability problem 4.1 with only an observation

process available to the controller is reformulated. This is done in the same manner

as for a POMDP, i.e. through a sufficient statistic that generates a new, perfectly

observed state. The viability problem is then posed as a dynamic program over the

new state. Similar results for reachability (Problem 2.2) and reach-avoid (Problem

2.3) are presented in less detail in Section 4.5.4.

The difficulty in solving Problem 4.1 is twofold. First, since the cost function is

multiplicative, standard sufficient statistics are not valid (i.e. the sufficient statis-

tic cannot be the posterior distribution of the state at time n given all available

information up to time n). Second, the hybrid nature of the dynamics complicates

the probability space our problem is defined on. A new sufficient statistic must be

derived, and its corresponding theoretical results carefully extended.
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4.5.1 Sufficient Statistic

We first formally define a sufficient statistic in relation to the multiplicative optimal

control problem 4.1, which is modified from Definition 10.6 in [BS96].

Definition 4.3. A statistic for Problem 4.1 is a sequence of Borel-measurable func-

tions η = (η0, η1, . . . , ηN ) with ηn : P (S)×In → Σn in which Σn is a nonempty Borel

space, for all n = 0, . . . ,N . The sequence η = (η0, . . . ηN) is a statistic sufficient for

control if

1. There exist Borel-measurable stochastic kernels τ̂n(dσn+1 | σn,un) on Σn+1 given

Σn, U such that

P
π[ηn+1(ρ, in+1) ∈ Σn+1 | ηn(ρ, in) = σn,un = u]

= τ̂n(Σn+1 | σn,u) (4.11)

for Pπ-almost every (σn,u) ∈ Σn × U (i.e. the set {(s0,u0, y1, . . . , yn, sn,un) ∈

Sn × Un × Yn | (4.11) holds when σn = ηn(ρ, in),un = u} has Pπ-measure 1),

where Σn+1 ∈ B(Σn+1), the Borel σ-algebra on Σn+1.

2. There exist functions gn : Σn → [0,∞) such that for all ρ ∈ P (S), n = 1, . . . ,N ,

and π ∈ Π

E
π

[
n∏
i=0

1K(si)

∣∣∣∣∣ ηn(ρ, in) = σn

]
= gn(σn)

for Pπ-almost every σn.

In other words, the distribution of σn = ηn(ρ, in) (a specific element of the sufficient

statistic at time n which we refer to as the information state to distinguish from the

belief state of Section 4.4) must follow the Markov property, and therefore be updated

recursively according to σn−1 and un−1. There also must exist an equivalent cost

function whose argument is σn, so that the cost corresponding to a specific policy can

be determined solely through the distribution of the information state. Problem 4.1

can then be redefined according to the information state σ, which is defined according

to the sufficient statistic η.
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We now propose a sufficient statistic for Problem 4.1, and demonstrate that it

obeys Definition 4.3.

We claim that under the measure Pπ we can define a sufficient statistic for Problem

4.1.

ηn(ρ, in) = E
π

[
1dx(xn)1q(qn)

n−1∏
i=0

1K(si)

∣∣∣∣∣ ρ, in

]
(4.12)

The statistic (η0, η1, . . . , ηN) given by (4.12) for all n generates a sequence of proba-

bility densities on the state sn, combined with the probability that all previous states

are in K, conditioned on the information vector in, with dependence on ρ implicitly

defined in the measure Pπ.

ηn(ρ, in) = P
π[xn ∈ dx, qn = q, s0, . . . , sn−1 ∈ K|in] (4.13)

The information state σn is therefore a modification of the posterior distribution,

representing a conditional density of the current state joined with the probability

that all previous states are in K, given a specific in. In the following, we show that

(4.12) satisfies conditions (1) and (2) of Definition 4.3, and is therefore a sufficient

statistic, by examining the information state σn = ηn(ρ, in) directly. Although ηn is

a function of ρ and in, σn is a function of the state sn, and is implicitly dependent

on ρ and in. We first show that σn can be defined recursively via a bounded linear

operator Φy,u, and therefore satisfies (1) of Definition 4.3.

Lemma 4.1. There exists a bounded linear operator Φ : L1(S)→ L1(S) such that σ

is defined recursively as

σ0 = ρ

σn = Φyn,un−1
σn−1

(4.14)

with Φy,uσ given by(
Φy,uσ

)
(s′) =

1

P(y|σ,u)
τy(y|s′,u)

∫
K

τs(s
′|s,u)σ(s) ds. (4.15)

Note we have incorporated the factor P(y|σ,u) equal to
∫
S

∫
S τy(y|s

′,u)τs(ds
′|s,u)σ(ds)

that ensures σ integrates to one over Sn (i.e. over all S and either
∏n

i=0 1K(si) = 0

or
∏n

i=0 1K(si) = 1). In addition, σn ∈ L1(S) for all n since σ0 = ρ ∈ L1(S) and Φ

maps L1(S) into L1(S).
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Proof. We first show that Φ is a bounded linear operator mapping L1(S) to itself.

We then show that σn can be defined recursively using Φ. We drop the normalizing

constant P(y|σ,u) for convenience, because it does not affect subsequent derivations.

Linearity follows obviously from the properties of integrals. For any function

ν ∈ L1(S), u ∈ U , y ∈ Y ,

‖Φy,uν‖L1
(S)

=

∫
S

∣∣∣∣τy(y|s′,u)

∫
K

τs(ds
′|s,u)ν(ds)

∣∣∣∣ (4.16)

≤
∫
K

∫
S
Tyq(y

q|q′,u)φ(yx − h(x′,u))τs(ds
′|s,u)|ν(ds)| (4.17)

≤ φ∗y

∫
K

[∫
S
τs(ds

′|s,u)

]
|ν(ds)| (4.18)

≤ φ∗y‖ν‖L1
(S)

(4.19)

with φ∗y the maximum value of density φ (which may exceed one). Hence for any

ν ∈ L1(S), Φ is a bounded linear operator, with Φy,uν ∈ L1(S).

Induction shows that σn = Φy,uσn−1. Given σ0 = ρ,

(
Φy,uσ

)
(x, q) = τy(y|x, q,u)

∫
K

τs(x, q|s0,u)ρ(ds0)

= E
π
[
1q(q1)1x(x1)1K(s0)

∣∣ ρ, i1
]

= σ1(x1, q1)

Given σl = Φy,uσl−1 ∀ l = 2, . . . ,n,

(
Φy,uσn

)
(x, q) = τy(y|x, q,u)

∫
K

τs(x, q|s,u)σn(dsn)

= τy(y|x, q)

∫
K

. . .

∫
K

τs(x, q|sn−1,u)

×
n∏
i=1

τy(yi|si,ui−1)τs(dsi|si−1,ui−1)ρ(ds0)

= E
π

[
1x(xn+1)1q(qn+1)

n∏
i=0

1K(si)

∣∣∣∣∣ ρ, in

]

�

The stochastic kernel τ̂n for the distribution of σn+1 given σn and un can be
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written in terms of the new measure Pπ:

τ̂n(Σn+1|σn,un) =

∫
S

∫
S

∫
Y

τy(dy|sn+1,un)τs(dsn+1|sn,un)σn(dsn)

= P(Y |σn,un)

(4.20)

with Y = {y : Φy,un
σn ∈ Σn+1}. Note the similarity between (4.20) and (4.10). The

stochastic transition kernel for σ is directly related to the likelihood of observing

some y ∈ Y .

Next, we rewrite the cost function (4.4) in terms of the information state σ, for

part (2) of Definition 4.3. Since the indicator function 1K(s) is in the space L∞(S),

the inner product of σ and 1K is a well defined bounded linear operator, given by

〈σ, 1K〉 =
∑
q∈Q

∫
R
n
σ(x, q)1K(x, q) dx

The functions gn in Definition 4.3 can be defined as

gn(σn) =Eπ
[

n∏
i=0

1K(si)

∣∣∣∣∣ ηn(ρ, in) = σn

]

=Eπ
[

1K(sn)
n−1∏
i=0

1K(si)

∣∣∣∣∣ ρ, in

]
=〈σn, 1K〉 (4.21)

Hence the statistic given by (4.12) satisfies parts (1) and (2) of Definition 4.3, and is

a sufficient statistic for Problem 4.1.

4.5.2 Equivalence to Perfect State Information Problem

We can rewrite the viability probability in terms of σ and function gn(σ). First, we

define

p̃Nviab(ρ;K) = E
π [gN(σN)] (4.22)

as the equivalent cost function for the viability problem in terms of σ, using π̃ to

denote a policy in terms of σ (whereas π denotes a policy for the partially observed
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case in terms of in). Note that for a fixed vector of control inputs (i.e. open-loop),

u = [u0, . . . ,uN−1],

pNviab(ρ;K) = E
π

[
N∏
i=0

1K(si)

∣∣∣∣∣ ρ
]

= E
π

[
E
π

[
N∏
i=0

1K(si)

∣∣∣∣∣ ρ, iN

]]
= E

π [gN(σN)]

= p̃Nviab(ρ;K).

Lemma 4.2. A recursion for p̃Nviab(ρ;K) is given by

V π̃
N (σ) = gN(σ)

V π̃
n (σ) = E

π̃
[
V π̃
n+1(Φy,µ̃n(σ)σ)

] (4.23)

where

E
π̃
[
V π̃
n+1(Φy,µ̃n(σ))

]
=

∫
Σ

Vn+1(σ′)τ̂(σ′|σ, µ̃n(σ)) dσ′ (4.24)

=

∫
S

∫
S

∫
Y
Vn+1(Φy,µ̃n(σ)σ)τy(dy|s′, µ̃n(σ))

× τs(ds′|s, µ̃n(σ))σ(ds) (4.25)

so that V π̃
0 (ρ) = p̃Nviab(ρ;K) with p̃Nviab(ρ;K) computed using policy π̃ rather than the

supremum of all policies.

Proof. First, we redefine V π̃
n (σ) as

V π̃
n (σ) =

∫
S

∫
Y
. . .

∫
S

∫
Y

[
N∏

i=n+1

1K(si)τy(dyi|si, µ̃i−1(σi−1))

× τs(dsi|si−1, µ̃i−1(σi−1))

]
1K(sn)σ(dsn)

for all n = 0, . . . ,N − 1, and

V π̃
N (σ) =

∫
S

1K(s)σ(ds),
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and then show that V π̃
n can be expressed recursively according to V π̃

n+1. Clearly, V π̃
0 (ρ)

is equal to (4.5). The proof proceeds by induction. At time N − 1,

V π̃
N−1(σ) =

∫
S

∫
S

∫
Y

1K(sN)τy(dyN |sN , µ̃N−1(σ))

× τs(dsN |sN−1, µ̃N−1(σ))1K(sN−1)σ(dsN−1)

=

∫
Y
V π̃
N (Φy,µ̃N−1(σ)σ)τ̂(Φy,µ̃N−1(σ)σ|σ, µ̃N−1(σ))

= E
π̃
[
V π̃
N (Φy,µ̃N−1(σ))

]
.

At time n,

V π̃
n (σ) = (σ)

∫
S

∫
Y
. . .

∫
S

∫
Y

[
N∏

i=n+2

1K(si)τy(dyi|si, µ̃i−1(σi−1))

× τs(dsi|si−1, µ̃i−1(σi−1))

]
1K(sn+1)τy(dyn+1|sn+1, µ̃n(σ))

× τs(dsn+1|sn, µ̃n(σ))1K(sn)σ(dsn)

=

∫
Y
V π̃
n+1(Φy,µ̃n(σ))τ̂(Φy,µ̃n(σ))

= E
π̃
[
V π̃
n+1(Φy,µ̃n(σ))

]
.

�

Next, we provide two theorems: 1) a dynamic programming algorithm to find the

optimal solution p̃Nviab(ρ;K), and the optimal policy π̃∗ = arg supπ̃ p̃
N
viab(ρ;K) as a

function of the information state σ, and 2) proof that this optimal policy has the same

value as the optimal policy for the partially observed case. The proofs of Theorems

4.1 and 4.2 are provided in Appendix A.

Theorem 4.1. Using the recursion (4.23), the dynamic programming equations

V ∗N(σ) = 〈σ, 1K〉

V ∗n (σ) = sup
u∈U

E
π̃
[
V π̃
n+1(Φy,uσ)

] (4.26)

produce V ∗0 (ρ) = p̃Nviab(ρ;K), where Vn : Σn → [0,∞). For σ normalized, we have

Vn : Σn → [0, 1]. Furthermore, setting

µ̃∗n(σ) = arg sup
u∈U

E
π̃
[
V ∗n+1(Φy,uσ)

]
(4.27)
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for all n = 0, . . . ,N − 1 gives the optimal policy π̃∗ = (µ̃∗0, µ̃
∗
1, . . . , µ̃

∗
N−1), where

µ̃n : Σn → U .

Theorem 4.2. If u∗n = µ̃∗n(σn) is optimal as defined in Theorem 4.1, then u∗n is also

optimal for the partially observable Problem 4.1, and can be written as u∗n = µ∗n(in) =

µ̃∗n(ηn(ρ, in)) = µ̃∗n(σn). For π∗ = (µ∗0,µ∗1, . . . ,µ∗N−1), p̃Nviab(ρ;K) = pNviab(ρ;K).

These results guarantee that we can solve Problem 4.1 as a fully observed problem

for each n in terms of the new state σ, and generate a policy π̃ in which the optimal

action at each time step n is a function only of the information state at time n. The

policy is therefore a continuous mapping from information states to the control space.

Calculating the optimal policy π̃∗ and optimal value p̃Nviab(ρ;K) gives us the optimal

policy π∗ and optimal value pNviab(ρ;K).

4.5.3 Sufficient Statistic with Change of Measure

We also derive a sufficient statistic for Problem 4.1 that incorporates a change of

measure, which renders each observation process {yxn} and {yqn} independent and

identically distributed (i.i.d.). The change of measure simplifies the transition function

τ̂ for the information state (4.20), and subsequently the value function (4.23).

The ability to change probability measures stems from the Radon-Nikodym

Theorem.

Definition 4.4. The Radon-Nikodym Theorem (see [SS05]) states that given two

σ-finite measures ν and µ on a measurable space (Ω,M), if µ and ν are absolutely

continuous, then there exists a µ-integrable function f on Ω such that

ν(E) =

∫
E

f(ω) dµ(ω)

The function f is referred to as the Radon-Nikodym derivative, and is written as dν
dµ

.

Essentially, for two probability measures ν and µ, defined on the same space

(Ω,M) and that satisfy ν(E) = 0 whenever µ(E) = 0 for all E ∈M, we know that

E
ν [h(ω)] = E

µ[f(ω)h(ω)]
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for any M-measurable function h. We can define a change of measure P† from the

known measure Pπ on the space Ω, with M the Borel σ-algebra on Ω, so long as

the continuous observation process is nowhere zero, and the discrete observation

is nowhere zero on Q × Q × U (which would occur if certain discrete states were

perfectly observable). Following [JBE94] and [Ell93], we define the Radon-Nikodym

derivative Λn as

dPπ

dP†

∣∣∣∣
Gn

= Λn (4.28)

where

Λn =
n∏
l=1

ϕ(yxl − h(xl,ul−1))Qql,y
q
l
(ul−1)

ϕ(yxl ) 1
Nq

However, in contrast to [JBE94], we must contend with two separate observation

processes, one continuous and one discrete. Note that in (4.28) we restrict the

derivative to the filtration Gn rather than the full state space Ω, which enables

updates to the derivative as the hybrid process evolves.

Intuitively, the change of measure introduces a proposal distribution that can be

treated as a design parameter, as used in importance sampling and particle filtering

(see e.g. [MSAC02]) when the true distribution is difficult to sample from. This

is particularly relevant when solving Problem 4.1 numerically, as sampling-based

solutions are likely required. Further discussion of this point, and the role of the

change of measure, is presented in Section 4.6.

Lemma 4.3. Under P†, the processes {yxn} are independent and identically distributed

(i.i.d.) with density φ, and the processes {yqn} are i.i.d. with uniform density 1
Nq

.

Proof. The proof follows that of [Ell93].

P
† [yxn ∈ A, yqn = q | Gn] = E

† [1A(yxn)1{q}(y
q
n) | Gn

]
=
E
π
[
1A(yxn)1{q}(y

q
n)Λ−1

n | Gn
]

E
π
[
Λ−1
n | Gn

]
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Pulling Λ−1
n−1 outside the expected value from both the numerator and denominator

and canceling, since Λn−1 is Gn-measurable, the numerator reduces to∫
A

ϕ(y) 1
Nq

ϕ(y − h(xn,un−1))Qqn,q(un−1)

× Pπ [yxn = y, yqn = q|sn,un−1] dy

=
1

Nq

∫
A

φ(y)dy = P
† [yqn = q]P† [yxn ∈ A]

and the denominator becomes

Nq∑
q=1

∫
R
n

ϕ(y) 1
Nq

ϕ(y − h(xn,un−1))Qqn,q(un−1)

× Pπ [yxn = y, yqn = q|sn,un−1] dy

=

Nq∑
q=1

1

Nq

∫
R
n
ϕ(y)dy = 1

Hence,

P
† [yxn ∈ A, yqn = q | Gn] = P

† [yqn = q]P† [yxn ∈ A]

�

Under the change of measure, we define a new sufficient statistic η = (η0, . . . , ηN )

such that

ηn(ρ, in) = E
†

[
1q(qn)1x(xn)

n−1∏
i=0

1K(si)Λn

∣∣∣∣∣ in
]

(4.29)

and ηn(ρ, in) = σn(s). The linear operator Φy,u adapted from (4.15) is(
Φy,uσ

)
(x′, q′) = NqQq

′
,y
q(u)

ϕ(yx − h(x′,u))

ϕ(yx)

∫
K

τs(x
′, q′|x)σ(ds) dx (4.30)

Operator Φ shares the same properties as Φ (bounded linear operator) which can be

established in the same manner as for Lemma 4.1.

To show η is a sufficient statistic, and hence satisfies the conditions of Definition

4.3, we define functions τ̂ and g.

τ̂n(Σn+1|σn,un) =
∑
y
q∈Y q

∫
Y
x

1

Nq

ϕ(yx) dyx (4.31)
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with Y q × Y x = {(yq, yx) : Φy,uσ ∈ Σn+1}.

gn(σn) =Eπ
[

n∏
i=0

1K(si)

∣∣∣∣∣ ηn(ρ, ik) = σn

]

=E†
[

1K(sn)
n−1∏
i=0

1K(si)Λn

∣∣∣∣∣ in
]

=〈σn, 1K〉 (4.32)

The viability probability (4.4) is again rewritten in terms of σ.

pNviab(ρ;K) = E
† [〈σN , 1K〉] (4.33)

The dynamic programming recursion

V
∗
N(σ) = 〈σ, 1K〉

V
∗
n(σ) = sup

u∈U
E
†
[
V
∗
n+1(Φy,uσ)

]
= sup

u∈U

∑
y
q∈Yq

∫
R
n
V
∗
n+1(Φy,uσ)

1

Nq

ϕ(dyx)

(4.34)

produces V
∗
0(ρ) = pNviab(ρ;K). The equivalence of pNviab(ρ;K) and p̃Nviab(ρ;K) follows

directly from the Radon-Nikodym Theorem.

4.5.4 Sufficient Statistic for Reachability and Reach-Avoid

Problems

Sufficient statistics for the optimal control formulations of the reachability and reach-

avoid problems can be derived in the same manner as for viability. We do not provide

full derivations as for the viability sufficient statistic, but give the information state

and its transition function, and the dynamic program to solve the partially observable

versions of Problems 2.2 and 2.3.

We give the reach-avoid sufficient statistic first, because a reachability objective

follows directly from the reach-avoid or viability formulation. Recall the optimal
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control formulation for the reach-avoid problem has cost function

pNra(ρ;K,T ) = sup
π∈Π

E
π

[
N∑
k=0

(
k−1∏
n=0

1K\T (sn)

)
1T (sk)

∣∣∣∣∣ ρ
]

(4.35)

with initial state s0 replaced by distribution ρ to reflect the partial observability

of the state. The sufficient statistic, which we denote ηra = (ηra
0 , . . . , ηra

N ), provides

functions

ηra
n (ρ, in) = E

π

[
1x(xn)1q(qn)

n−1∏
i=0

1K\T (si)

∣∣∣∣∣ ρ, in

]
(4.36)

such that ηra
n (ρ, in) = σra

n (s). The information state can be defined recursively

according to

σra
0 = ρ

σra
n = Φra

y,uσn−1(
Φra
y,uσ

ra
)

(s′) =
1

P(y|σra,u)
τy(y|s′,u)

∫
K\T

τs(s
′|s,u)σ(ds)

(4.37)

with normalizing constant P(y|σra,u) equal to
∫
S

∫
S τy(y|s

′,u)τs(ds
′|s,u)σ(ds). Com-

pared to (4.12), the sufficient statistic for the reach-avoid problem produces a prob-

ability density over S coupled with the probability that all previous states have

remained within K\T rather than K alone. The dynamic program changes to reflect

the sum-multiplicative cost function (4.35).

V ∗N ,ra(σra) = 〈1T ,σra〉

V ∗n,ra(σra) = sup
u∈U

E
π̃
[
1T (s) + 1K\T (s)V ∗n+1,ra(Φra

y,uσ
ra)
]

= sup
u∈U

∫
T

σra(ds) +

∫
S\T

∫
S

∫
Y
V ∗n+1,ra(Φra

y,uσ)τy(dy|s′,u)τs(ds
′|s,u)σra(ds)

(4.38)

It is straightforward to show that (4.35) equals V ∗0,ra(ρ). We can also verify the value
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function recursion similarly to the proof of Lemma 4.2. If we redefine V π̃
n,ra(σra) as

V π̃
N ,ra(σra) =

∫
S

1T (s)σra(ds)

V π̃
n,ra(σra) =

∫
S

1T (sn)σra(dsn) +

∫
S

∫
Y
. . .

∫
S

∫
Y

[
N∑

j=n+1

(
j−1∏
i=n+1

1K\T (si)

)
1T (sj)

×
N∏

j=n+1

τy(dyj|sj, µ̃j−1(σj−1))τs(dsj|sj−1, µ̃j−1(σj−1))

]
1K\T (sn)σra(dsn)

(4.39)

for n = 0, . . . ,N − 1, an induction argument shows the validity of the recursive

expression for V π̃
n,ra in terms of V π̃

n+1,ra.

The reachability problem with partial observations, pNreach(ρ;T ), can be solved

using the reach-avoid sufficient statistic (4.36) and dynamic program (4.38) by setting

K = S, or by solving an equivalent viability problem as explained in Chapter 2.

4.5.5 Relationship to Additive Cost Formulation

The sufficient statistic (4.12) modifies the posterior distribution to include the proba-

bility that all previous states are in the set K. The sufficient statistic (4.12) derived

without the change of measure is identical (aside from a normalizing constant) to the

sufficient statistic for the additive cost function formulation in [DAT13] (see equation

(14)). In [DAT13], by extending the state to include a binary variable that represents

whether or not the system has remained within K up to the previous time step,

the posterior distribution is also the distribution of the current state sn, coupled

with the distribution of all previous states being in K. The transition kernel for the

modified state in equation (5) of [DAT13] incorporates an indicator function that

signals whether the state remained within the safe set at the previous time step.

The prediction and update steps for a Bayesian filter (see equations (11) - (13) of

[DAT13]) are used to express the sufficient statistic (14), which, without considering

the change of measure and normalization, is the same as (4.12).

The terminal payoff (15) of [DAT13] expresses the probability that the final state
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is in set K, and that all previous states are in set K, given the probability distribution

of all previous states in K as well as the current distribution of the final state. If the

terminal payoff was written in terms of the original state, it would be identical to

(4.21) for n = N . Prop. 3 in [DAT13] describes the solution of the terminal payoff,

and iteratively evaluates the expected value as in Theorem 4.1 (although integrating

the expected value over τ̂n(σn+1 | σn,un) does not reduce to (4.34) as ours does with

the change of measure). Thus, formulating the cost function as either multiplicative

or additive ultimately does not alter the end result.

4.6 Case Studies and Numerical Issues

We provide two examples in order to a) demonstrate the use of the viability sufficient

statistic with the change of measure in formulating various types of imperfect infor-

mation reachability problems, b) elucidate the difficulty in solving these problems

exactly, even when the problem seems relatively simple, and c) initiate a discussion of

possible approximation strategies, given that the problems cannot be solved in their

current form. Since solving (4.26) requires iterating over all functions σ ∈ L1(S),

an infinite space, we can only hope to use (4.26) as a practical solution method for

special cases in which σ can be defined over a finite subspace of L1.

4.6.1 Temperature Regulation

A stochastic version of the benchmark temperature regulation problem with perfect

state information is presented in [APLS08]. We consider the case of one heater,

which can either be turned off, or turned on to heat one of M rooms. The average

temperature of room i at time n is given by the continuous variable xi(n), and

the discrete state q(n) = i indicates room i ∈ {1, . . . ,M} is heated at time n, and

q(n) = 0 denotes the heater is off. The stochastic difference equation governing the
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average temperature for room i is given by

xi(n+ 1) = (1− bi)xi(n) +
∑
i 6=j

ai,j(xj(n)− xi(n)) + cihi + bixa + vi(n). (4.40)

The constant xa represents the ambient temperature, non-negative constants bi and

ai,j represent the average rates of heat loss to the ambient temperature and to other

rooms j 6= i, respectively, and constant ci represents the rate of heat being supplied by

the heater in room i. The disturbances vi(n) are i.i.d. normally distributed random

variables with mean zero and variance v2, representing uncertainty in the model

resulting from the linearized discretization of the dynamics and other uncontrollable

factors. The variable hi is a function of q(n), with hi = 1 for q(n) = i and hi = 0

otherwise. The control input is given by u(n) ∈ U with U = {0, 1, . . . ,M}, but

the chosen control is not always implemented with probability 1. Instead, q(n) is

updated probabilistically, dependent on u(n−1) and q(n−1), with transition function

Tq(q(n+ 1) | q(n),u(n)). So while function µ̃n(σn) deterministically returns a single

control input, control input u(n) = µ̃n(σn) may not always be implemented.

The average temperature in each room is unknown, and only a noisy measurement

yx(n) of each room’s temperature is available to the controller at each time step n. The

controller does, however, know which room is heated at time n (i.e. q(n) is perfectly

observed). The observation y(n) = (yx(n), yq(n)) with yx(n) = [yx1 (n) . . . yxn(n)]T is

given by

yxi (n) = xi(n) + wi(n)

yq(n) = q(n)

with wi(n) i.i.d. normally distributed with mean zero and variance w2 (so that the

distribution φ(w) is Gaussian). The transition matrix Q(u) is the identity matrix for

all u, so that Qq,y
q(u) = 1q(y

q). Because the discrete state is perfectly observed, we

do not keep track of a discrete observation, and it is not included in the sufficient

statistic.

The temperature of each room should stay between 17.5 and 22 degrees Celsius

at all times, producing the safe region K = [17.5, 22]× . . .× [17.5, 22], which does
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not depend on the discrete state q(n) (so 1K(s) = 1K(x)). To find the maximum

probability that each room’s temperature remains within K given that the controller

only has access to the observations y(n), we reformulate the problem in terms of the

information state σn. The dynamic programming equations (4.26) are given by

V ∗N(σ) =
M∑
q=0

∫
R
n

1K(x)σ(x, q) dx

V ∗n (σ) = max
u∈U

∫
R
n
V ∗n+1(Φy,uσ)φ(yx) dyx

. (4.41)

With xi(0) ∼ N (µi, s
2) for each i = 1, . . . ,M and q(0) = 0, the initial information

state is

σ0(x, q) = 10(q)
M∏
i=1

ρi(xi)

for ρi(x) Gaussian with mean µi and variance s2.

However, even for the trivial case of M = 1 (e.g. a one room system), updating

σn becomes complicated very quickly. Using Lemma 4.1, we obtain

σ1(x, q) =
φ(yx1 − x)

φ(yx1 )
Tq(q|q(0) = 0,u(0))

×
∫
K

Tx(x|x(0), q,u(0))σ0(x(0), q(0)) dx(0)

without the normalizing constant. The main difficulty with solving for σ1 is the fact

that the integral is evaluated over K, as opposed to over R. Because of the bounds on

the integral, we cannot claim σn is Gaussian given that σn−1 is. However, since the

expression does quite closely resemble a Gaussian distribution, it may be possible to

approximate σn by an unnormalized Gaussian distribution without losing significant

accuracy. We intend to explore this possibility in future works. Further, we note that

there may be classes of systems for which such straightforward sufficient statistics

may be found.

4.6.2 Skid-Steered Vehicle

A skid-steered vehicle (SSV), modeled as a switched system, is presented in [CM11].

The SSV moves according to lateral sticking and sliding of its four wheels. [CM11]
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identify four modes associated with the vehicle: In mode 1, front and rear wheels

stick laterally; in mode 2, front wheels stick and rear wheels skid laterally; in mode 3,

front wheels skid and rear wheels stick; in mode 4, both front and rear wheels skid

laterally. For each mode, the vehicle’s continuous states X, Y , and θ are governed

by a different set of second order ordinary differential equations (ODEs). The states

X and Y represent the Cartesian coordinates for the vehicle’s center of geometry,

and θ gives the heading of the vehicle. We can represent the continuous state of

the system by x = (X, Ẋ,Y , Ẏ , θ, θ̇), such that ẋ = fq(x) = f(x, q), with discrete

state q ∈ Q = {1, 2, 3, 4}. See [CM11] for expressions for fq, which are too lengthy to

reproduce here. We discretize the ODEs using an Euler approximation method to

produce an equivalent discrete time system.

The control input can be expressed as a command informing the vehicle of

what mode it should be in. If the vehicle responded perfectly, we would have

qn = un for the mode at time n. Instead, let us assume that the mode changes

behave similarly to the temperature regulation problem above, where the control

command is implemented with a certain probability, dependent on the current mode:

Tq(qn+1|qn,un). The continuous state is assumed to be deterministic given the mode,

so that Tx(xn+1|xn, qn,un) = 1f(xn,qn)(xn+1). Note that we assume the continuous

state updates first, then the discrete mode, so that the state xn+1 is dependent

on mode qn rather than qn+1. Finally, assume we have a noisy observation of the

continuous state, and have an observation of the mode which is not completely

reliable.

yxn = xn + wn

yqn ∼ Qq,y
q

The vector wn ∈ R6 is an i.i.d. sequence of multivariate Gaussians with wn ∼ N (0,W).

The matrix Qq,y
q is given by

Qq,y
q =


.9 .033 .033 .033

.033 .9 .033 .033

.033 .033 .9 .033

.033 .033 .033 .9

 .
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Thus, the probability that the observed mode equals the true mode is 0.9, and if the

observed mode is not the true mode, it is equally likely to be any of the other three

modes.

The safe region K is defined as a path the vehicle should stay on. For instance,

we could define K as a rectangular strip K = {X,Y : −1 ≤ X ≤ 1, −10 ≤ Y ≤ 10}.

Assuming the initial position of the vehicle, x0, is known and equal to x̂0 ∈ K, and

the initial mode is independent of x0, uniformly distributed, and represented by ρ(q0),

σ0 is given by

σ0(x, q) = 1x̂0(x)ρ(q) =
1

4
1x̂0(x).

In this case σ1 is easily calculated.

σ1(x, q) =
4∑

q0=1

∫
K

4Qq,y
q
1
Tq(q|q0,u0)

φ(yx1 − x)

φ(yx1 )
1f(x0,q0)(x)σ0(x0, q0) dx0

=
4∑

q0=1

Qq,y
q
1
Tq(q|q0,u0)

φ(yx1 − f(x̂0, q0))

φ(yx1 )
1f(x̂0,q0)(x)

Thus there are four possible values of x for which σ1(x, q) is nonzero. Similarly, given

an xn value, σn+1(x, q) will only be nonzero for four values of x.

σn+1(x, q) =
4∑

qn=1

∫
K

4Qq,y
q
n+1
Tq(q|qn,un)

φ(yxn+1 − f(xn, qn))

φ(yxn+1)
1f(xn,qn)(x)σn(xn, qn) dxn

(4.42)

Even when σn takes the above seemingly simple form, there is no immediately obvious

way to avoid evaluating the value functions for all σ ∈ L1 in order to solve (4.26).

4.6.3 Computational Challenges

Because of the complexity of the hybrid dynamics and cost function, the sufficient

statistic and dynamic programming equations are computationally intensive. The

dynamic programming equations require iterating over an infinite state space. For the

two examples presented here, one major challenge is circumventing the evaluation of
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the value functions for all σ ∈ L1(S) to solve (4.26). One possible alternative is using

approximate dynamic programming to estimate the value functions Vn by sampling

from yn for each n to get sample trajectories of the σn. Since via our change of

measure the yn are i.i.d, such sampling should be straightforward. Each yxn is sampled

from φ( · ), and each yqn is sampled from the uniform distribution on {1, . . . ,Nq}. Some

work has explored approximate dynamic programming for DTSHS (see [KSS+13]), in

which the value function is approximated using a linear combination of basis functions,

and constraints on the value function are evaluated by sampling from the state space.

It is possible a similar approach could be applied to the partially observed case, where

we must sample from the observation space to obtain instances of σ.

In addition, some work has been done on approximating continuous state POMDPs

using point-based value iteration (see [PVSP06]), albeit in the context of additive

cost functions with the belief state as a sufficient statistic. The method exploits the

structure of the value function, and uses Monte Carlo methods to generate a set

of samples from the belief space, in order to approximate the value function at a

given starting belief state. Further, [BKLPR10] have applied this to a system with

hybrid dynamics. These methods are the subject of the next chapter, and particularly

how verification of a PODTSHS can be approximately solved by modifying existing

algorithms for optimally controlling POMDPs.

4.7 Summary

We have presented a statistic sufficient for the control of a partially observable

discrete time stochastic hybrid system, first for a viability objective, then for a

viability objective with a change of measure, and finally for reach and reach-avoid

objectives. By redefining the partially observed optimal control problem as one that is

fully observed, with state variable σ (the information state generated by the sufficient

statistic), we are able to define an optimal control policy as a function of σ. This

control policy is equivalent to the policy defined as a function of the information

vector, and leads to the same maximal safety probability. Further, we showed the
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equivalence between our approach and one that uses an additive cost function.

The major disadvantage of the sufficient statistic is that the dynamic programming

equations must be solved for every possible σ ∈ L1 at every time step. As a direct

solution method, it is seemingly impractical. However, there may be cases where σ

can be limited to a subset of L1 so that the dynamic programming equations can be

solved. Further, our choice of measure in defining the sufficient statistic may lend

itself well to approximate dynamic programming techniques that avoid looping over

all possible states. We present approximate solution strategies in the next chapter.
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Chapter 5

Computational Methods for

Reachability with Partial

Observations

Although the sufficient statistic and dynamic program derived in the previous chapter

provide a solution framework for the reachability problem under partial observations,

they do not provide a practical means of generating probabilistic reachable sets. This

chapter therefore focuses on numerical methods to approximately solve the reachability

problem, based on the dynamic programming formulation of the previous chapter.

We again focus on the viability problem in greatest detail, and explain how the

methods for the viability problem extend to reachability and reach-avoid objectives.

Two methods for approximately solving the dynamic program are presented. The

first method approximates the stochastic hybrid system as an equivalent finite state

Markov decision process, so that the information state is a probability mass function.

The second approach approximates an indicator function over the safe region using

Gaussian radial basis functions, to represent the information state as a Gaussian

mixture. In both cases, we discretize the hybrid observation process and generate

a sampled set of information states, then use point-based value iteration to under-

approximate the viability probability. We obtain error bounds and convergence results
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in both cases, assuming additive Gaussian noise in the continuous state dynamics and

observations. We compare the performance of the finite state and Gaussian mixture

approaches on a simple numerical example.

5.1 Introduction

The focus of this chapter is on developing numerical approximation methods to the

viability problem with partial observations. Building upon the work of the previous

chapter, we exploit the relation between a PODTSHS and a POMDP, and the dynamic

programming formulation we derived for the viability problem, to utilize established

approximation methods for optimal control of POMDPs.

POMDPs are plagued by dimensionality on an even greater scale than MDPs.

While MDPs suffer from the curse of dimensionality, and become intractable over state

spaces of even moderate dimensions, the optimal control of a POMDP requires dealing

with a so-called “curse of history” as well. Although a sufficient statistic may be used

to condense the information provided in the history of observations and actions, the

belief state produced by the sufficient statistic is a conditional probability function.

Therefore, a dynamic programming solution that requires repeatedly solving a value

function over all possible conditional probability distributions is clearly intractable.

In particular, a continuous state space (e.g. S = R
n), requires a belief state that is a

continuous function defined over an infinite domain (probability density function),

and it is impossible to enumerate over all such functions. Therefore the study of

efficient, approximate solutions to POMDPs is essential.

Although finding the solution to a general POMDP is hard [LGM01], many

algorithms for approximating solutions to finite state POMDPs have been developed.

These mainly rely on point-based value iteration (PBVI) schemes that only consider a

subset of the belief space to update the value function used in the dynamic program.

Because the value function is piecewise-linear and convex [Son71] (and so equivalently

represented by a finite set of so-called α-vectors), sampling from the belief state
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provides a systematic way of storing a finite subset of those vectors. Such methods

must be tailored to continuous state POMDPs because of the dimensionality of the

belief state.

Therefore, as the first investigation into approximate probabilistic verification

of PODTSHS, we formulate the viability problem for a PODTSHS as a partially

observable Markov decision process with a non-additive cost function, and investigate

representations of the belief state in either vector or Gaussian mixture form through

finite- and continuous-state approximations to the PODTSHS. These representations

allow us to exploit point-based methods developed for POMDPs, by sampling from

the belief space and approximating the value function with a finite set of observations.

All results for the viability problem can be readily extended to reachability and

reach-avoid problems.

In this chapter we make several contributions to the solution of reachability

problems for PODTSHS. First, we validate the use of POMDP solution techniques

for viability analysis of a PODTSHS, by demonstrating that the value function

is convex and admits an α-function representation similar to the piecewise-linear

α-vector representation of a finite state POMDP. Second, we present a finite state

approximation to the DTSHS that allows the belief state to take vector form under

certain conditions, and show convergence for the approximation. Third, we preserve

the continuity in the hybrid state space through a Gaussian mixture representation

for the belief state, and approximate the indicator function that represents the safe

region using Gaussian radial basis functions. In this case, we provide an error bound

as a function of the L1 error of the indicator function approximation. We outline

a solution method that converges to the true solution from below, using either the

finite or continuity-preserving belief state. Finally we demonstrate both approaches

on a simple temperature regulation problem.

The rest of the chapter is organized as follows. Section 5.2 lists some of the related

literature for solving POMDPs and viability problems for a perfectly observable

DTSHS. Section 5.3 briefly reviews the viability problem for a PODTSHS, and

Section 5.4 outlines PBVI for sub-optimal control of POMDPs. Section 5.5 justifies
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the use of POMDP solution techniques, and gives the finite and Gaussian mixture

approximations to the viability problem for a PODTSHS as well as error bounds.

Section 5.6 describes the use of point-based approximation techniques, through

sampling of belief states and discretization of the observations. Section 5.8 provides

preliminary numerical results, and Section 5.9 provides concluding remarks and

directions for future work.

5.2 Related Work

To the best of our knowledge, this is the first work to provide computational results

for verification of a PODTSHS. However, we draw upon related computational results

for verification of a DTSHS, as well as approximation strategies from the POMDP

community. We highlight some of the related work in both of these areas.

Computational results for analysis of perfectly observable stochastic hybrid systems

are limited. Solutions via dynamic programming require evaluation of the value

function over all possible states, which is infinite when those states are continuous.

Discretization procedures can be employed to impose a finite number of states, as

in [AAP+07], [AKLP10], and [SA13], which present rigorous uniform and adaptive

gridding methods for verification of DTSHS.

A related approach is to generate an approximate abstraction of the original

model (often in the form of a finite state system) that has the same properties [SA13],

[FHH+11], [ZTA14]. The approximation is more easily solved than the original

problem, and the approximate solution is directly related to the actual solution.

Other solution strategies include approximate dynamic programming, where the value

function of the dynamic program is approximated by a set of basis functions, as in

[KSS+13]. Even so, current applications are limited to those with only a few discrete

states and X ⊆ R
n for n small.

Because an exact solution is often impossible to obtain for even a finite state

POMDP, approximation strategies have been studied extensively. Many variants of
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PBVI are available (e.g. [PGT06], [KHL08], [NJ00], [SV05]) that generally differ in

how they sample from the belief space (for example [SPK13] for an overview). More

recently, approximate solutions for continuous-state POMDPs have been studied (for

example [Thr00], [BMWDW06], [ZFM10], [PTKLP10], [ES10], [PTKLP11]).

Often the continuous state can be discretized and approximately solved as a

finite state POMDP using PBVI methods. Depending on the dimensionality and

behavior of the system, it may be more informative or computationally more efficient

to preserve the continuity of the state space. Many existing methods for continuous

state POMDPs assume the belief state is Gaussian (e.g. [BMWDW06], [ZFM10]),

and represent the belief state in a parameterized form which is then discretized and

solved as a finite state MDP. When the belief state cannot adequately be represented

using a single Gaussian, a Gaussian mixture may be used instead. An equivalent

point-based algorithm for continuous-state POMDPs using Gaussian mixtures is

presented in [PVSP06], and demonstrated on a stochastic hybrid system with hidden

modes in [BKLPR10].

The results of this chapter are mainly inspired by the discretization procedure of

[AKLP10] and the Gaussian mixture formulation of [PVSP06].

5.3 Problem Formulation

The problem we wish to solve is similar to that of Chapter 4. We again consider

a PODTSHS (Definition 4.1) with hybrid state space S = X × Q, observation

space Y = Yx × Yq, finite control space U , stochastic transition function τs(ds
′|s,u),

stochastic observation function τy(dy|s,u), and initial density ρ on S. We make some

additional simplifying assumptions on the state transitions and observation process,

although as pointed out later these are not necessary for all subsequent results to

hold.

In what follows we assume the continuous state x obeys the affine difference
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equation

xn+1 = Axn + g(qn,un, qn+1) + vn. (5.1)

Matrix A is assumed invertible, and vn are independent and identically distributed

Gaussian random variables for all n, vn ∼ N (0,V). Therefore kernel Tx admits a

Gaussian density, with Tx(dx
′ ∈ B|q′,x, q,u) =

∫
B
φ(dx′;Ax + g(q,u, q′),V). The

function φ is used to represent a Gaussian probability density function (pdf); φ(x;µ, Σ)

is equal to a Gaussian pdf with mean µ and covariance Σ evaluated at x.

We assume that the continuous observation yxn is equal to the state xn, disrupted

by additive Gaussian noise wn ∼ N (0,W).

yxn = xn + wn (5.2)

The observation function Tyx therefore also has a Gaussian density, with Tyx(dy ∈

B|x) =
∫
B
φ(dy;x,W). The discrete observation space is defined for simplicity as

Yq = Q.

Finally, the initial density ρ is assumed Gaussian in x: ρ(x, q) = Q0(q)φ(x;µ0, Σ0)

such that
∑

q∈Q
∫
X ρ(x, q) dx = 1.

Because Tyx , Tx, and ρ are Gaussian, and U is finite and bounded, the following

Lipschitz properties hold.

‖Tx(x′|q′, s,u)− Tx(x′|q′, s,u)‖ ≤ h(1)
x ‖x′ − x′‖

‖Tx(x′|q′,x, q,u)− Tx(x′|q′,x, q,u)‖ ≤ h(2)
x ‖x− x‖

‖Tyx(y|x)− Tyx(y|x)‖ ≤ h(1)
y ‖y − y‖

‖Tyx(y|x)− Tyx(y|x)‖ ≤ h(2)
y ‖x− x‖

(5.3)

We define the maximum values of the densities associated with Tx and Tyx as φ∗v and

φ∗w, respectively, with φ∗v = (2π)−
n
2 |V|−

1
2 and φ∗w = (2π)−

n
2 |W|−

1
2 .

We focus on Problem 2.1 of Chapter 2 in the case of partial observations, and so
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would like to find

pNviab(ρ;K) = sup
π∈Π

E
π

[
N∏
n=0

1K(s)

∣∣∣∣∣ ρ
]

, (5.4)

π∗ = arg sup
π∈Π

{
pNviab(ρ;K)

}
(5.5)

which is formally stated as

Problem 5.1. Consider a PODTSHS Hpo (defined in Definition 4.1). Given a safe

set K and time horizon N we would like to:

1. Compute the maximal probability (5.4) of remaining within K for N time steps.

2. Compute the optimal policy π∗ given by (5.5).

If the maximal probability and optimal policy cannot be computed exactly (which is

quite likely [LGM01]), an approximation that produces a suboptimal policy and lower

bound on the maximal viability probability is desired.

5.4 Approximation Strategies for POMDPs

For a finite state POMDP J po (see Definition 4.2), Sondik [Son71] first showed that

over a finite horizon N <∞, the value function (4.8) at each time n is piecewise-linear

and convex in the belief state, and thus can be expressed as

V ∗n (b) = max
α
i
n∈Γn

∑
s

αin(s)b(s). (5.6)

The functions αin ∈ Γn, or “α-vectors”, represent a policy tree that starts from a

specific action u and state s, and specifies optimal actions conditioned on observations

for time steps n+ 1 to N . The α-vectors thus characterize the current value of being

in state s and taking action u, plus the expected sum of future rewards assuming all

subsequent actions are chosen optimally. Because each α-vector is associated with a

specific action, by picking the α-vector that maximizes
∑

s α
i
n(s)b(s), we also define

the optimal policy for belief b at time n.
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Calculating the value function and optimal policy requires knowledge of the

complete sets of α-vectors, Γn, for all n. The α-vectors at time n are computed

recursively from the α-vectors calculated at time n+ 1. For each action, we observe

one of |Y| observations (where | · | indicates the cardinality of the set), and for

each observation there is a subsequent α-vector defined at time n+ 1, resulting in

|U||Γn+1||Y| α-vectors at time n. Hence using the α-vector representation to optimize

a POMDP is often infeasible, because the number of α-vectors grows exponentially.

An approximate solution can be obtained though point-based value iteration

(PBVI), in which a lower bound to the value function is computed using a finite

subset B ⊂ B, the set of all belief states. The general idea is to generate a collection

of points b ∈ B, and for each of these points, estimate the value function via a

“backup” operation. PBVI approaches are distinguished by how B is selected [PGT06],

[SPK13].

We summarize the most common method of under-estimating the value function,

assuming B has already been selected. One α-vector is generated for each belief

point bi ∈ B, B = (b0, b1, . . . , bm), so that Γ̃n = (α0
n,α1

n, . . . ,αmn ) for all n. We assume

that an α-vector αjn corresponding to bj will apply to all belief points in a region

around bj (i.e. for any b in a neighborhood of bj the same action will likely be

optimal). Hence the value at some b not necessarily in B can be approximated by

V ∗n (b) ≈ max
α
i
n∈Γ̃n

∑
s α

i
n(s)b(s) as in (5.6) but with a restricted set Γ̃n ⊂ Γn. The

set Γ̃n is generated recursively from Γ̃n+1, but without enumeration over all possible

combinations of observations and subsequent α-vectors in Γ̃n+1, by using the following

backup operation for each b ∈ B.

backup(b) = arg max
α
i
n∈Γ̃n

∑
s∈S

αin(s)b(s) (5.7)

The overall PBVI algorithm then consists of selecting a set of belief points B,

and repeatedly applying (5.7) to each element of B. In the case of a finite horizon of

length N , the backup operator will be applied N times, and for an infinite horizon,

the backup operator will be applied until some tolerance level is reached (for example,

where ‖Vn+1(b)− Vn(b)‖ < ε).
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The above derivations apply to a model with discrete state, action, and observation

spaces, but can be extended to POMDPs with a continuous state space and discrete

observation and action spaces [PVSP06]. In this case, the α-vectors are replaced by

α-functions defined over the continuous space S. Because the observations and actions

are discrete, the number of α-functions is finite, and the value function is piecewise-

linear and convex under the α-function representation. Further, summations over S

are replaced by integrals, hence (5.7) is written as backup(b) = arg max
α
i
n∈Γ̃n
〈αin, b〉.

We maintain this notation in our derivations, where in the case of a hybrid state

space with continuous state x and discrete state q, 〈f , g〉 =
∑

q

∫
f(x, q)g(x, q) dx for

well-defined functions f and g.

5.5 Reformulation of Problem 5.1

We exploit PBVI to solve Problem 5.1, by transforming it into an optimal control

problem for a POMDP. Hence we first restate the dynamic programming formulation

for the viability problem given Hpo from Chapter 4. We then show that the value

function admits an α-function representation, that the α-functions and belief states can

be approximately represented in closed form (as either vectors or Gaussian mixtures),

and that finite collections of each may be generated and used to approximate (5.4),

similar to a point-based POMDP solver.

We present two approximations of Problem 5.1 for the PODTSHS Hpo. The first

discretizes S to produce a finite state POMDP, and the second preserves continuity

in S by using a Gaussian mixture approach, thus characterizing the PODTSHS by a

collection of weights, means, and covariances.
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5.5.1 Validity of POMDP Formulation

We restate the sufficient statistic η = (η0, . . . , ηN ) and value function for Problem 5.1

presented in Chapter 4.

ηn(ρ, in) = E
π

[
1q(qn)1x(xn)

n−1∏
i=0

1K(si)

∣∣∣∣∣ ρ, in

]
(5.8)

Recall the information state σn(xn, qn) ∈ Σ ⊆ L1(S) (where L1(S) is the space of

integrable functions defined on S) such that ηn(ρ, in) = σn, which is distinct from

the belief state (e.g. the conditional distribution of the current state).

σ0 = ρ

σn = Φyn,un−1
σn−1

(5.9)

where Φy,uσ is given by

(
Φy,uσ

)
(s′) =

1

P(y|σ,u)
τy(y|s′,u)

∫
K

τs(s
′|s,u)σ(s) ds. (5.10)

The dynamic programming recursion over σ is

V ∗N(σ) = 〈σ, 1K〉

V ∗n (σ) = max
u∈U

E
π
[
V ∗n+1(Φy,uσ)

] (5.11)

with solution V ∗0 (ρ) = pNviab(ρ;K). The optimal policy is π∗ = (µ∗0, . . . ,µ∗N−1), with

µ∗n(σn) = arg max
u∈U

V ∗n (σn) (5.12)

for all n ∈ [0,N ].

Lemma 5.1. For any n, the value function (5.11) can be written as

V ∗n (σ) = sup
α
i
n∈Γn

〈αin,σ〉.

Proof. By induction. At time N ,

V ∗N(σ) =

∫
S

1K(s)σ(ds).
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By defining αN(s) = 1K(s), we obtain the desired result. Note that this definition of

αN is in line with the definition given in Section 5.4, because although it does not

represent a full policy tree (being at the terminal time, there are no more branches

on the tree), it does represent the immediate value of being in state (x, q), given by

1K(x, q).

Next, assuming V ∗n+1(σ) = supΓn+1
〈αin+1,σ〉, V ∗n can be written as

V ∗n (σ) = max
u∈U

E
π

[
sup

α
i
n+1∈Γn+1

〈αin+1,σ〉

]

= max
u∈U

∫
Y

sup
α
i
n+1∈Γn+1

〈αin+1, Φy,uσ〉P(dy|σ,u)

= max
u∈U

∫
Y

sup
α
i
n+1∈Γn+1

[∫
K

∫
S
αin+1(s′)τy(y|s′,u)τs(ds

′|s,u)σ(ds)

]
dy.

Then for a specific observation y, action u, and αin+1 function, the function αiy,u can

be defined as

αiy,u(s) =

∫
S
αin+1(s′)τy(y|s′,u)τs(ds

′|s,u)1K(s). (5.13)

Because αiy,u does not depend on σ, we can redefine the supremum over all Γn+1 to

be over all αiy,u.

V ∗n (σ) = max
u∈U

∫
Y

sup
{αiy,u}

〈αiy,u,σ〉 dyx

For a specific σ, u, and y, we define

αy,u,σ(s) = arg sup
i
〈αiy,u,σ〉

=

∫
S
α
∗(y)
n+1(s′)τy(y|s′,u)τs(ds

′|s,u)1K(s)
(5.14)

with ∗(y) denoting the index i of the α-function αiy,u that maximizes the inner product.

We further simplify V ∗n as

V ∗n (σ) = max
u∈U

∫
Y
〈αy,u,σ,σ〉 dy

= max
u∈U

〈∫
Y
αy,u,σ dy,σ

〉
.

(5.15)
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Therefore, the set of all {αin} is described by

Γn =
⋃
σ

{∫
Y
αy,u

∗
,σ dy

}
(5.16)

with u∗ the control inputs chosen according to (5.15), and V ∗n may be written as

V ∗n (σ) = sup
α
i
n∈Γn

〈αin,σ〉 (5.17)

�

Lemma 5.2. The value function (5.11) is convex in σ for all n = 0, . . . ,N , σ,σ ∈ L1

and 0 ≤ λ ≤ 1:

V ∗n (λσ1 + (1− λ)σ2) ≤ λV ∗n (σ1) + (1− λ)V ∗n (σ2).

Proof. The proof follows directly from Lemma 5.1. Because the inner product operator

is linear, and Lemma 5.1 states that

V ∗n (σ) = sup
α
i
n∈Γn

〈αin,σ〉,

it follows directly that

V ∗n (λσ + (1− λ)σ) = sup
α
i
n∈Γn

〈αin,λσ + (1− λ)σ〉

= 〈α∗n,λσ + (1− λ)σ〉

= λ〈α∗n,σ〉+ (1− λ)〈α∗n,σ〉

≤ sup
α
i
n∈Γn

λ〈αin,σ〉+ sup
α
i
n∈Γn

(1− λ)〈αin,σ〉

≤ λV ∗n (σ) + (1− λ)V ∗n (σ).

�

Since Lemmas 5.2 and 5.1 show that the value function (5.11) is convex and

admits an α-function representation, Hpo is amenable to POMDP solution techniques.

Note that Lemma 5.1 is not useful for solving Problem 5.1 directly, since Γn is not

finite and the α-functions and information states have no common structure. If we
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assume a finite number of observations and control inputs, i.e. |Y| <∞ and |U| <∞,

then the value function is piecewise-linear and convex, and the size of Γn (number of

α-functions stored at time n, |Γn|) is finite. However, we do not make this assumption,

and will require additional approximation strategies, discussed in Section 5.6.

5.5.2 Finite State Approximation

We first consider a finite state POMDP [AKLP10], whose solution converges to

the true viability probability (5.4) and optimal policy (5.5). The state space S is

discretized to obtain a vector representation of α and σ. The observation space is

unchanged (i.e. hybrid), because the set of observations only affects the finiteness of

sets Γn and Σn. We defer discussion of producing finite collections of Γn and Σn to

section 5.6.

Given compact safe set K ∈ B(S), let K =
⋃
q∈QKq × {q}. Denote λ =

maxq∈Q L(Kq), the finite Lebesgue measure of Kq ⊂ R
n. Each Kq is partitioned

into a finite number of subsets, so that Kq =
⋃mq
i=1Ki,q, with Ki,q pairwise disjoint

(i.e. Ki,q ∩Kj,q = ∅ for all i 6= j), Ki,q ∈ B(Rn). Finally, let δxi,q be the diameter of

partition Ki,q so that δxi,q = sup{‖x− x‖ : x,x ∈ Ki,q}, with δx = maxi,q δ
x
i,q.

The partition of K is denoted by Gs =
⋃
i=1,...,mq ,q∈Q G

s
i,q with Gsi,q = Ki,q × {q}.

Each element Gsi,q has a representative point (xi,q, q) and the set Kδ = {(xi,q, q) :

i = 1, . . . ,mq, q ∈ Q} is the discrete representation of K. We do not consider here

how the points (xi,q, q) are selected, but an example is provided in Section 5.8. The

function ξ : K → Kδ maps a state s ∈ Gsi,q to its representative point (xi,q, q) and

the function Ξ : Kδ → K is the set-valued map from discrete point (xi,q, q) to its

corresponding set Gsi,q. The discrete state space is defined as Zδ = Kδ

⋃
{ψs}, with

ψs a single variable that represents all states s ∈ S\K.

Definition 5.1. (POMDP approximation to PODTSHS, Ĥpo). The POMDP ap-

proximation is a tuple Ĥpo = (Zδ,Y ,U , τ δs , τy, ρδ) where

1. Zδ is a finite set of discrete states
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2. Y is as defined in Definition 1

3. U is as defined in Definition 1

4. τ δs : Zδ × U × Zδ → [0, 1] is a discrete state transition function that assigns

probabilities to elements of Zδ

5. τy is as defined in Definition 1

6. ρδ : Zδ → [0, 1] is a function that assigns probabilities to elements of Zδ at time

zero

We define the transition function as

τ δs (z′|z,u) =



τs(Ξ(z′)|z,u), if z′ ∈ Kδ and z ∈ Kδ

1−
∑

z∈Kδ τs(Ξ(z)|z,u), if z′ = ψs and z ∈ Kδ

1, if z′ = ψs and z = ψs

0, if z′ ∈ Kδ and z = ψs

(5.18)

with
∑

z
′∈Zδ τ

δ
s (z′|z,u) = 1, and the initial distribution ρδ on Zδ as

ρδ(z) =

ρ(Ξ(z)), if z ∈ Kδ

1−
∑

z∈Kδ ρ(Ξ(z)) if z = ψs

(5.19)

Recall that τs(Ξ(z′)|z,u) = Tx(Ki,q
′ |q′, z,u)Tq(q

′|q,u), and Tx evaluated over Borel

set Ki,q
′ is a Gaussian density integrated over set Ki,q

′ . The discrete probability

space is (Ωδ,σ(Ωδ),P
πδ
δ ) with Ωδ = ZN+1

δ × YN , σ(Ωδ) the σ-algebra on Ωδ, and

P
πδ
δ the probability measure uniquely defined by ρδ, τy, τ

δ
s , and a control policy

πδ = (µδ0, . . . ,µδN−1), µδn : Σδ → U , with Σδ the set of all information states σδ.

We further define the operator Φδ
y,u and the intermediate vector αδy,u,σδ

as(
Φδ
y,uσδ

)
(z′) =

1

P(y|σδ,u)
τy(y|z′,u)

∑
z∈Kδ

τ δs (z′|z,u)σδ(z) (5.20)

αδy,u,σδ
(z) =

∑
z
′∈Kδ

α
∗(y)
n+1,δ(z

′)τy(y|z′,u)τ δs (z′|z,u)1Kδ(z) (5.21)
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for y ∈ Y , u ∈ U , z′, z ∈ Zδ. The viability problem for Ĥpo is

sup
πδ∈Πδ

pNviab(πδ, ρδ;Kδ) = sup
πδ∈Πδ

P
πδ
δ [zn ∈ Kδ, ∀ n ∈ [0,N ]] . (5.22)

To solve (5.22), we formulate the information state σδ and the value function V ∗n,δ :

σδ → [0, 1] for n = 0, . . . ,N .

The discrete information state represents a probability mass function over Zδ,

and can be expressed as an integral over an equivalent density (just as τ δs (z′|z,u) =

τs(Ξ(z′)|z,u))

σn,δ(z) =


∫

Ξ(z)
σ̂n(ds), if z ∈ Kδ∫

S\K σ̂n(ds), if z = ψs

(5.23)

with σ̂n(s) given by

σ̂n(s′) =


ρ(s′), if n = 0(

Φ̂y,uσ̂n−1

)
(s′) =

1

P(y|σ̂n−1,u)
τy(y|ξ(s′),u)

×
∫
K

τs(s
′|ξ(s),u)σ̂n−1(ds),

if n > 0
(5.24)

This can be verified by substituting the expression for τ δs in terms of τs into (5.20)

and using an induction argument.

The value function is

V ∗N ,δ(σδ) =
∑
z∈Kδ

σδ(z)

V ∗n,δ(σδ) = max
u∈U

∫
Y
V ∗n+1,δ(Φ

δ
y,uσδ)P(dy|σδ,u)

. (5.25)

The maximum probability of remaining within Kδ over N time steps (5.22) is

pNviab(ρδ;Kδ) = V ∗0,δ(ρδ). (5.26)

We now show that the viability probability for the finite state approximation Ĥpo

converges to the true solution as grid size parameter δx tends to zero. To do so, we

first describe the error between the continuous information state σ and the vector

approximation σδ.
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Information State Approximation Error

We first characterize the relationship between the densities σ (5.9) and σ̂ (5.24) in

the following theorem.

Theorem 5.1. The density σ̂ defined in (5.24) satisfies

|σn(s)− σ̂n(s)| ≤ ησnδ
x

for all s ∈ S, σn ∈ Σ, and ησn given by

ησn =
n∑
i=1

c1,i

(
n∏

j=i+1

c2,j

)
,

with c1,i = min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
[φ∗vh

(2)
y + φ∗wh

(2)
x ], and

c2,j = min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
φ∗wNqλ.

Proof. By induction. At time n = 0, σ0(s) = ρ(s) = σ̂0(s) and the inequality is

trivially satisfied. For all i = 0, . . . ,n, assume |σi(s)−σ̂i(s)| ≤ ησi δ
x. At time i = n+1,

for any y ∈ Y and any u ∈ U ,

|σn+1(s′)− σ̂n+1(s′)| ≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
×
∣∣∣∣τy(y|s′,u)

∫
K

τs(s
′|s,u)σn(ds)

− τy(y|ξ(s′),u)

∫
K

τs(s
′|ξ(s),u)σ̂n(ds)

∣∣∣∣ (5.27)

We add and subtract τy(y|ξ(s′),u)

∫
K

τs(s
′|s,u)σn(ds) and

τy(y|ξ(s′),u)

∫
K

τs(s
′|ξ(s),u)σn(ds) and apply the triangle inequality.

|σn+1(s′)− σ̂n+1(s′)| ≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
×
[∣∣τy(y|s′,u)− τy(y|ξ(s′),u)

∣∣ ∫
K

τs(s
′|s,u)σn(ds)

+ τy(y|ξ(s′),u)

∫
K

∣∣τs(s′|s,u)− τs(s′|ξ(s),u)
∣∣σn(ds)

+ τy(y|ξ(s′),u)

∫
K

τs(s
′|ξ(s),u) |σn(s)− σ̂n(s)| ds

]
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|σn+1(s′)− σ̂n+1(s′)| ≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
sup
s
′∈K

[
Tyq(y

q|q′,u)

×
∣∣Tyx(yx|x′)− Tyx(yx|ξ(x′))∣∣φ∗v + φ∗wTq(q

′|q,u)

×
∣∣Tx(x′|q′, s,u)− Tx(x′|q′, ξ(s),u)

∣∣
+ φ∗w‖σn − σ̂n‖∞

∫
K

τs(s
′|ξ(s),u) ds

]
≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
+

[
h(2)
y ‖x′ − ξ(x′)‖φ∗v + φ∗wh

(2)
x ‖x′ − ξ(x′)‖

+φ∗w‖σn − σ̂n‖∞
∑
q∈Q

Tq(q
′|q,u)

∫
Kq

Tx(x
′|ξ(s),u) dx

]
(5.28)

Since Tx is bounded by φ∗v, and the Lebesgue measure of Kq is at most λ, we obtain

|σn+1(s′)− σ̂n+1(s′)| ≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
×
[
h(2)
y φ∗vδ

x + φ∗wh
(2)
x δx + φ∗wNqλ‖σn − σ̂n‖∞

]
≤ min

{
1

P(y|σn,u)
,

1

P(y|σ̂n,u)

}
×
[
h(2)
y φ∗vδ

x + φ∗wh
(2)
x δx + φ∗wNqλ (ησnδ

x)
]

.

Combining terms gives the desired result. �

Convergence of (5.26) to (5.4)

The value function (5.11) requires integrating over spaces Y and S of unbounded

size. To prove convergence of the value function V ∗n,δ to V ∗n , we must show that these

integrals are bounded.

Consider the following two lemmas regarding integration of Tyx and Tx over

unbounded sets Yx and X , respectively.

Lemma 5.3. For any x,x ∈ Ki,q, for all i = 1, . . . ,mq, q ∈ Q, the following holds:∫
Yx
|Tyx(y

x|x)− Tyx(y
x|x)| dyx ≤

[
βy1,ih

(2)
y + βy2

]
δxi,q
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with βy1,i =
∫
{yx:‖yx−x‖22≤w

∗
σ ,y

x∈Yx,x∈Kq,i}
1 dyx and βy2 = φ

∗
w

2

√
2w∗σπ. In other words, βy1,i

is the Lebesgue measure of region Ki,q scaled by
√
w∗σ in all directions, with w∗σ the

largest singular value of W (so if Ki,q is a hyperrectangle, each side will increase by a

factor of 2
√
w∗σ).

Proof. We exploit properties of the derivative of a Gaussian distribution, which

bounds the Lipschitz constants for Tyx from above. The constant h(2)
y is the maximum

value of the derivative of φ(yx;x,W) with respect to x:∥∥∥∥∂φ∂x
∥∥∥∥

2

≤ 1

(2π)
n
2 |W|

1
2w∗σ
‖x− yx‖2e

− ‖x−y
x‖22

2w
∗
σ . (5.29)

Since ‖W‖2 = |ρ(W)| = w∗σ (with ρ(W) the largest eigenvalue of W), the maximum

of (5.29) occurs at ‖x− yx‖ =
√
w∗σ.

Although ‖∂φ
∂x
‖ ≤ h(2)

y , we create a tighter bound for the case in which ‖x− yx‖ is

greater than
√
w∗σ (for yx ∈ Yx such that there exists x ∈ Ki,q for which ‖x− yx‖2 =√

w∗σ, the upper bound h(2)
y is attained) by representing the Lipschitz bound as a

function of yx.

hy(y
x) = max

x∈Ki,q

{
1

(2π)
n
2 |W|

1
2w∗σ
‖x− yx‖2e

− ‖x−y
x‖22

2w
∗
σ

}
. (5.30)

Then,∫
Yx
|Tyx(y

x|x)− Tyx(y
x|x)| dyx ≤

∫
Yx
hy(y

x)‖x− x‖ dyx (5.31)

≤ δxi,q

∫
{yx:‖x−yx‖22≤w

∗
σ ,y

x∈Yx,x∈Ki,q}
h(2)
y dyx

+ δxi,q

∫
{yx:‖x−yx‖22>w

∗
σ ,y

x∈Yx,x∈Ki,q}
hy(y

x) dyx

= δxi,qβ
y
1,ih

(2)
y

+ δxi,q

∫
{yx:‖x−yx‖22>w

∗
σ ,y

x∈Yx,x∈Ki,q}
hy(y

x) dyx (5.32)
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We use the change of variable v = ‖x∗ − yx‖2, with x∗ = arg minx∈Ki,q ‖x− y
x‖, to

rewrite the second term of (5.32), and apply an identity for integrals of polynomials.∫
{yx:‖x−yx‖2>w∗σ ,y

x∈K,x∈Ki,q}
hy(y

x) dyx =
1

(2π)
n
2 |W|

1
2w∗σ

∫ ∞
√
w
∗
σ

1

2
v2e
− v

2

2w
∗
σ dv

≤ 1

(2π)
n
2 |W|

1
2w∗σ

∫ ∞
0

1

2
v2e
− v

2

2w
∗
σ dv

≤ 1

(2π)
n
2 |W|

1
2w∗σ

w∗σ
2

√
2w∗σπ (5.33)

Inserting (5.33) into (5.32) proves the lemma. �

A similar result holds for the integral of Tx over X .

Lemma 5.4. For any x,x ∈ Ki,q, for all i = 1, . . . ,mq, q ∈ Q, the following holds:∫
X
|Tx(x′|q′,x, q,u)− Tx(x′|q′,x, q,u)| dx ≤

[
βx1,ih

(2)
x + βx2

]
δxi,q

with βx1,i =
∫
{x′:‖x′−Ax−g(q,u,q

′
)‖22≤v

∗
σ ,x
′∈X ,x∈Kq,i}

1 dx and βx2 = a
∗
σφ
∗
v

2

√
2v∗σπ, with a∗σ the

largest singular value of A.

The proof follows that of Lemma 5.3 with mean and covariance appropriate to Tx.

In order to show convergence of (5.26) to (5.4), we need some additional definitions.

First, similarly to σ̂, we define piecewise constant function α̂ as α̂n(s) = αn,δ(ξ(s)),

so that

α̂n(s) =

∫
S

∫
Y
α̂
∗(y)
n+1(s′)τy(dy|ξ(s′),u)τs(ds

′|ξ(s),u)1Kδ(ξ(s)). (5.34)

We also define α̃n(s) in the same manner as α̂n(s), except that it is directly related

to αn(s), i.e. uses the same optimal control input u, and the same combination of

αn+1-functions (determined by ∗(y)). In other words, α̃n(s) is identical to αn(s) in

terms of the optimal policy tree from time n to N , but the values are calculated using

τy(y|ξ(s′),u) and τs(s
′|ξ(s),u).

α̃in(s) =

∫
S

∫
Y
α̃
i(y)
n+1(s′)τy(dy|ξ(s′),ui)τs(s′|ξ(s),ui)1Kδ(ξ(s)) (5.35)
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for a specific α-function i associated with αin. The superscript i for ui and i(y)

indicates that the same choice of u and combination of αjn+1(s) are used for both

αin(s) and α̃in(s). A bound on the difference between αin(s) and α̃in(s) is given in the

following lemma.

Lemma 5.5. For any n ∈ [0,N ], and any function αin(s) ∈ Γn, the associated

function α̃in(s) defined in (5.35) satisfies

|αin(s)− α̃in(s)| ≤ (N − n)Nq

[
βy1h

(2)
y + βx1h

(2)
x + βy2 + βx2

]
δx

for all s ∈ S. The constants βy1 and βx1 are equal to maxi=1,...,mq ,q∈Q β
y
1,i and

maxi=1,...,mq ,q∈Q β
x
1,i from Lemmas 5.3 and 5.4, respectively.

Proof. By induction. At time N ,

|αiN(s)− α̃iN(s)| =
∣∣∣∣∫
S

(
1K(s)− 1Kδ(ξ(s))

)
ds

∣∣∣∣ = 0 (5.36)

since for any s ∈ K, by definition ξ(s) ∈ Kδ. Assume for all j = N − 1, . . . ,n + 1,

|αij(s)− α̃ij(s)| ≤ (N − n)Nq

[
βy1h

(2)
y + βx1h

(2)
x + βy2 + βx2

]
δx. For j = n,

|αin(s)− α̃in(s)| =
∣∣∣∣∫
S

∫
Y
α
i(y)
n+1(s′)τy(dy|s′,ui)τs(ds′|s,ui)1K(s)

−
∫
S

∫
Y
α̃
i(y)
n+1(s′)τy(dy|ξ(s′),ui)τs(ds′|ξ(s),ui)1Kδ(ξ(s))

∣∣∣∣
(5.37)

≤
∫
S

∫
Y

∣∣∣αi(y)
n+1(s′)− α̃i(y)

n+1(s′)
∣∣∣ τy(dy|s′,ui)τs(ds′|s,ui)1K(s)

+

∫
S

∫
Y
α̃
i(y)
n+1(s′)

∣∣τy(dy|s′,ui)− τy(dy|ξ(s′),ui)∣∣ (5.38)

× τs(ds′|s,ui)1K(s)

+

∫
S

∫
Y
α̃
i(y)
n+1(s′)τy(dy|ξ(s′),ui)

×
∣∣τs(ds′|s,ui)− τs(ds′|ξ(s),ui)∣∣ 1K(s) (5.39)

≤
∣∣∣αi(y)

n+1(s′)− α̃i(y)
n+1(s′)

∣∣∣+Nq

[
βy1h

(2)
y + βy2

]
δx

+Nq

[
βx1h

(2)
x + βx2

]
δx (5.40)
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The second term of (5.39) simplifies according to Lemma 5.3 and noting that α(s)

represents a probability that is bounded above by one. The third term simplifies

according to Lemma 5.4. The term 1K(s) does not affect the bound, and only

indicates that both αn(s) and α̃n(s) are equal to zero for s /∈ K. Applying the

induction hypothesis to (5.40) gives the desired result. �

We now can show convergence of the approximate viability probability over the

discretized state space to the true viability probability.

Theorem 5.2. For any time n ∈ [0,N ], and any σ ∈ Σ, σδ ∈ Σδ, the error between

the value function (5.11) and the value function (5.25) based on the finite state

approximation is bounded above by

∣∣V ∗n (σn)− V ∗n,δ(σn,δ)
∣∣ ≤ ηαnδ

x

with ηαn = Nqλη
σ
n + (N − n)Nq(β

y
1h

(2)
y + βx1h

(2)
x + βy2 + βx2 ).

Specifically, the viability probability for PODTSHS Hpo over time horizon N

satisfies∣∣∣pNviab(ρ;K)− pNviab(ρδ;Kδ)
∣∣∣ ≤ [NqN(βy1h

(2)
y + βx1h

(2)
x + βy2 + βx2 )

]
δx.

Proof. By construction. At any time n ∈ [0,N ], given σn ∈ Σ and σn,δ ∈ Σδ, we can

rewrite the value function evaluated at σ in terms of α-functions.

∣∣V ∗n (σn)− V ∗n,δ(σn,δ)
∣∣ =

∣∣∣∣∣ sup
α
i
n∈Γn

〈αin,σn〉 − sup
α
i
n,δ∈Γn,δ

〈αin,δ,σn,δ〉

∣∣∣∣∣ (5.41)

=
∣∣∣〈αkn,σn〉 − 〈αln,δ,σn,δ〉

∣∣∣ (5.42)

Assume without loss of generality that 〈αkn,σn〉 ≥ 〈αln,δ,σn,δ〉. Then, because
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〈α̃kn, σ̂n〉 ≤ 〈α̂ln, σ̂n〉 by definition of the optimality of α̂ln, we can write

∣∣V ∗n (σn)− V ∗n,δ(σn,δ)
∣∣ = 〈αkn,σn〉 − 〈αln,δ,σn,δ〉 (5.43)

≤ 〈αkn,σn〉 − 〈α̃kn,δ,σn,δ〉 (5.44)

≤
∣∣∣〈αkn,σn〉 − 〈α̃kn,σn〉

∣∣∣+
∣∣∣〈α̃kn,σn〉 − 〈α̃kn, σ̂n〉

∣∣∣ (5.45)

≤
∫
S

∣∣∣αkn(s)− α̃kn(s)
∣∣∣σn(ds) +

∫
S
α̃kn(s) |σn(ds)− σ̂n(ds)|

(5.46)

Applying Lemma 5.5 to the first term of (5.46), and noting that the integral in the

second term is in fact taken over K rather than S since α̃kn(s) is zero for all s /∈ K,

we obtain

∣∣V ∗n (σn)− V ∗n,δ(σn,δ)
∣∣ ≤ (N−n)Nq

[
βy1h

(2)
y + βx1h

(2)
x + βy2 + βx2

]
δx+Nqλη

σ
nδ

x (5.47)

which completes the proof. �

Theorem 5.2 shows that the finite state approximation Ĥpo provides a means to

approximately compute (5.4) through the viability probability for Ĥpo, (5.26). As

δx → 0, the finite state viability probability (5.26) converges to the true value (5.4),

and the policy π∗δ converges to π∗.

5.5.3 Gaussian Mixture Approximation

We now consider a different approximation by representing the information state σ and

α-functions from Lemma 5.1 as Gaussian mixtures. That is, the information states

and α-functions are each characterized by a set of weights, means, and covariances,

dependent on the discrete mode q.

Difficulty arises from the incorporation of the indicator function 1K in (5.14)

and (5.10). Integration over the compact set K rather than all of S violates the

preservation of the Gaussian form of σ under operator Φy,u, and similarly for the

α-functions. To preserve the Gaussian mixture structure, we therefore propose a
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radial basis function (RBF) approximation [PS91] to the indicator function, using

Gaussians as the basis function. For each Kq, we set

1Kq(x) ≈
Iq∑
i=1

wIi (q)φ(x;µIi (q), ΣI
i (q)) (5.48)

using the most general form of the RBF with covariance Σi rather than εI. For

simplicity we will denote φ(x;µIi (q), ΣI
i (q)) by φIi (x). This approximation is valid

since the RBFs are dense in Lp [PS91], i.e. given any function f in Lp, a weighted com-

bination of RBFs can approximate f to arbitrary accuracy given enough components,

and 1K is in L1.

However, the discontinuity in 1Kq produces the Gibbs phenomenon at the boundary

of Kq in the RBF approximation. Although these oscillations will always exist for a

finite number of components, they could possibly be mitigated [FF11]. The oscillations

can be constrained to a smaller region of K (shorter wavelength) with the addition

of more components, indicating that the Lp error can be reduced but the pointwise

error may not. Because we are interested only in integrating over K, this works to

our advantage.

We define a new operator Φg and a new α-function αgy,u,σ by inserting the RBF

approximation (5.48) into (5.10) and (5.14), respectively.(
Φg
y,uσg

)
(s′) =

1

P(y|σg,u)
τy(y|s′,u)

×
∑
q∈Q

∫
X

 Iq∑
i=1

wIi (q)φ
I
i (x)

 τs(s′|s,u)σg(s) dx (5.49)

αgy,u,σ(s) =
∑
q
′∈Q

∫
X
α
∗(y)
n+1,g(s

′)

× τy(y|s′,u)τs(s
′|s,u) dx′

 Iq∑
i=1

wIi (q)φ
I
i (x)

 (5.50)

We presume continuous observations, as in Section 5.5.2 (the inclusion of a finite

number of observations will be addressed in Section 5.6). We provide two lemmas

stating that the operator Φg
y,u (5.49) and the α-function update (5.50) preserve the

Gaussian mixture representation of σn,g and αn,g for all n.
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Lemma 5.6. The operator Φg
y,u (5.49) is closed under Gaussian mixtures, i.e. for

σg a Gaussian mixture with L components, Φg
y,uσg is also a Gaussian mixture with

NqIqL components for any u ∈ U , y ∈ Y.

Lemma 5.7. The expression (5.50) is closed under Gaussian mixtures, i.e. if α
∗(y)
n+1,g

is a Gaussian mixture with M components, αgy,u,σ is also a Gaussian mixture with

NqIqM components, for any u ∈ U , y ∈ Y, σ ∈ Σ.

The proofs of Lemmas 5.6 and 5.7 are straightforward and can be shown through

extensive manipulation of products of Gaussian pdfs. Lemma 5.6 implies that we can

approximate σ through a Gaussian mixture and use the equivalent update operator

Φg
y,u, hence the Gaussian mixture approximation of σ is

σ0,g(x, q) = σ0(x, q) = Q0(q)φ(x;µ0; Σ0)

σn,g(x, q) =
L∑
l=1

wσl,n(q)φ(x;µσl,n(q), Σσ
l,n(q))

. (5.51)

Similarly, the Gaussian mixture approximation of any α-function is written:

αN ,g(x, q) =

Iq∑
i=1

wIi (q)φ
I
i (x)

αn,g(x, q) =
M∑
m=1

wαm,n(q)φ(x;µαm,n(q), Σα
m,n(q))

. (5.52)

The weights, means, and covariances are defined recursively. Their exact represen-

tations are lengthy, but again easy to derive through manipulations of Gaussians.

Appendix B provides a proof of Lemma 5.6 and Lemma 5.7, and gives the recursive

expressions for αn,g(x, q) and σn,g(x, q).

Note that although the Gaussian mixture representation of αgy,u,σ has a finite

number of components given that the representation of αn+1,g is finite, the actual

α-function, αn,g, is expressed as the integral of αgy,u,σ over Y . Therefore, without the

assumption that Y is finite, αn,g must have an infinite number of components (by

breaking the integral over Y into a summation over regions of size ∆ ⊂ Y and taking

the limit as ∆→ 0). We take some liberty in overlooking this discrepancy, because it
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does not affect the proofs in this section. We impose a finite set Y in Section 5.6,

which makes the Gaussian mixture representation of the α-functions indeed valid,

and discuss additional error implications.

The viability problem for the Gaussian mixture approximation is defined as

sup
πg∈Πg

pNviab(πg, ρg;Kg) = sup
πg∈Πg

P
πg
[
sn ∈ Kg, ∀ n ∈ [0,N ]

]
= V ∗0,g(ρg) (5.53)

with Kg an approximation of K according to (5.48). The value function V ∗n,g(σn,g) is

described through the recursion

V ∗N ,g(σg) =
∑
Q

∫
X

Iq∑
i=1

wIi (q)φ
I
i (x)σg(x, q) dx

V ∗n,g(σg) = max
u∈U

∫
Y
V ∗n+1,g(Φ

g
y,uσg)P(dy|σg,u)

. (5.54)

Since Tx, Tyx , and ρ are Gaussian, the Gaussian mixture representation of α and

σ are exact, aside from the approximation of 1K using RBFs. To quantify the error

incurred from calculating V ∗0,g as opposed to V ∗0 (from integration of (5.48) over S

rather than over K), we define the error

εI =

∥∥∥∥∥∥1K −
Iq∑
i=1

wIi (q)φ
I
i (x)

∥∥∥∥∥∥
L
1
(S)

. (5.55)

We additionally constrain the RBF approximation (5.48). The weights wIi (q) must

satisfy the following three conditions.

∫
X

Iq∑
i=1

wIi (q)φ
I
i (x) dx ≤

∫
Kq

1 dx ∀ q ∈ Q

∫
S

Iq∑
i=1

wIi (q
′)φIi (x

′)τs(s
′|s,u) ds′ ≤ 1 ∀ s ∈ S, s′ ∈ S,u ∈ U

∫
S

Iq∑
i=1

wIi (q)φ
I
i (x)τs(s

′|s,u) ds ≤ 1 ∀ s ∈ S, s′ ∈ S,u ∈ U

(5.56)
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The first condition assures that
∫
S
∑Iq

i=1 w
I
i (q)φ

I
i (x) ds ≤ Nqλ. The second and third

conditions assure that no probability exceeds one. All conditions are easily satisfied

by calculating the optimal weights and reducing them slightly if necessary.

Information State Approximation Error

The error between σ and σg is stated in terms of the L1 norm on S, although a nearly

identical result is available for the pointwise error.

Theorem 5.3. The Gaussian mixture approximation σn,g of σ satisfies

∥∥σn − σn,g

∥∥
L
1
(S)
≤ γσnεI

for any n ∈ [0,N ], y ∈ Y, and u ∈ U , with γσn =
n∑
j=1

(φ∗w)jφ∗σ,j and φ∗σ,j =

max
l∈1,...,L;q∈Q

(2π)−
n
2 |Σσ

l,j(q)|−
1
2 .

Proof. By induction. At time zero, σ0,g(s) = σ0(s), so that ‖σ0 − σ0,g‖1 = 0. Assume

that ‖σi− σi,g‖L1
(S)
≤ γσi εI for all i = 1, . . . ,n. Then at time n+ 1 we have, for some

y ∈ Y and u ∈ U ,

∥∥σn+1 − σn+1,g

∥∥
L
1
(S)
≤
∫
S
τy(y|s′,u)

∫
S

∣∣∣∣∣∣1K(s)σn(ds)

−
Iq∑
i=1

wIi (q)φ
I
i (x)σn,g(ds)

∣∣∣∣∣∣ τs(ds′|s,u)

≤ φ∗w

∫
S

∣∣1K(s)σn(ds)− 1K(s)σn,g(ds)
∣∣

+

∫
S

∣∣∣∣∣∣1K(s)σn,g(ds)−
Iq∑
i=1

wIi (q)φ
I
i (x)σn,g(ds)

∣∣∣∣∣∣


(5.57)
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∥∥σn+1 − σn+1,g

∥∥
L
1
(S)
≤ φ∗w

∥∥σn − σn,g

∥∥
1

+

∫
S

∣∣∣∣∣∣1K(s)−
Iq∑
i=1

wIi (q)φ
I
i (x)

∣∣∣∣∣∣σn,g(ds)

 (5.58)

The first term of line (5.58) follows because the integral over K is less than the

integral over all of S, since K is a compact subset of S. The induction hypothesis

completes the proof. �

Convergence of (5.53) to (5.4)

As for the proof of Theorem 5.2, we define the function α̃in,g(s) which utilizes the

same policy tree as αin(s) for a specific αin(s) ∈ Γn.

α̃in,g(s) =

∫
S

∫
Y
α̃
i(y)
n+1,g(s

′)τy(dy|s′,ui)τs(ds′|s,ui)ds′
 Iq∑
i=1

wIi (q)φ
I
i (x)

 (5.59)

with ui the optimal control input associated with αin(s) and i(y) indicating that

α
i(y)
n+1,g(s) is chosen according to the indices selected by ∗(y) for αn(s). The following

lemma describes the relation between αn(s) and α̃n(s).

Lemma 5.8. For any n ∈ [0,N ], and any αin(s) ∈ Γn, the associated function α̃in,g(s)

defined in (5.59) satisfies

∥∥αin(s)− α̃in,g

∥∥
L
1
(S)
≤

(
N∑
k=n

(λφ∗v)
N−k

)
εI

Proof. By induction. At time N ,

∥∥αN(s)− α̃N ,g

∥∥
L
1
(S)

=

∫
S

∣∣∣∣∣∣1K(s)−
Iq∑
i=1

wIi (q)φ
I
i (x)

∣∣∣∣∣∣ ds (5.60)

= εI (5.61)

and the result is satisfied. Assume for j = N − 1, . . . ,n+ 1 that ‖αij(s)− α̃ij,g(s)‖1 ≤
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k=j(λφ

∗
v)
N−k

)
εI for any αij ∈ Γj. Then for j = n,

∥∥αin(s)− α̃in,g(s)
∥∥

1
=

∫
S

∣∣∣∣∣∣
∫
S

∫
Y
α
i(y)
n+1(s′)τy(dy|s′,ui)τs(ds′|s,ui)1K(s)

− α̃
i(y)
n+1,g(s

′)τy(dy|s′,ui)τs(ds′|s,ui)
Iq∑
i=1

wIi (q)φ
I
i (x)

∣∣∣∣∣∣ ds
(5.62)

≤
∫
S

∫
S

∫
Y

∣∣∣αi(y)
n+1(s′)− α̃i(y)

n+1,g(s
′)
∣∣∣ τy(dy|s′,ui)

× τs(ds′|s,ui)1K(s)ds

+

∫
S

∫
S

∫
Y
α̃
i(y)
n+1,g(s

′)τy(dy|s′,ui)

× τs(ds′|s,ui)

∣∣∣∣∣∣1K(s)−
Iq∑
i=1

wIi (q)φ
I
i (x)

∣∣∣∣∣∣ ds
(5.63)

≤
∫
S

∣∣∣αi(y)
n+1(s′)− α̃i(y)

n+1,g(s
′)
∣∣∣φ∗vds′ ∫

S
1K(s)ds

+

∫
S

∣∣∣∣∣∣1K(s)−
Iq∑
i=1

wIi (q)φ
I
i (x)

∣∣∣∣∣∣ ds (5.64)

≤ λφ∗v

(
N∑

k=n+1

(λφ∗v)
N−k

)
εI + εI (5.65)

=

(
N∑
k=n

(λφ∗v)
N−k

)
εI (5.66)

�

Theorem 5.4. For any time n ∈ [0,N ], and any σ ∈ Σ, σg ∈ Σg, the error between

the value function (5.11) given σ and the value function (5.54) given σg using the

Gaussian mixture approximation is bounded above by

∣∣V ∗n (σn)− V ∗n,g(σn,g)
∣∣ ≤ γαn εI

with γαn =
(∑N

k=n (λφ∗v)
N−k

)
φ∗σ,n + γσn .
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Specifically, the viability probability for PODTSHS Hpo over time horizon N

satisfies

∣∣∣pNviab(ρ;K)− pNviab(ρg;Kg)
∣∣∣ ≤ [ N∑

k=0

(λφ∗v)
N−k

φ∗σ,0

]
εI .

Proof. By construction. For any time n ∈ [0,N ], given σn ∈ Σ and σn,g ∈ Σg, we can

rewrite the value function evaluated at σ in terms of α-functions.

∣∣V ∗n (σn)− V ∗n,g(σn,g)
∣∣ =

∣∣∣∣∣ sup
α
i
n∈Γn

〈αin,σn〉 − sup
α
i
n,g∈Γn,g

〈αin,g,σn,g〉

∣∣∣∣∣ (5.67)

=
∣∣∣〈αkn,σn〉 − 〈αln,g,σn,g〉

∣∣∣ (5.68)

As in the proof of Theorem 5.2, assume without loss of generality that 〈αkn,σn〉 ≥

〈αln,g,σn,g〉.∣∣V ∗n (σn)− V ∗n,g(σn,g)
∣∣ = 〈αkn,σn〉 − 〈αln,g,σn,g〉 (5.69)

≤ 〈αkn,σn〉 − 〈α̃kn,g,σn,g〉 (5.70)

≤
∣∣∣〈αkn,σn〉 − 〈α̃kn,g,σn〉

∣∣∣+
∣∣∣〈α̃kn,g,σn〉 − 〈α̃kn,g,σn,g〉

∣∣∣
(5.71)

≤
∫
S

∣∣∣αkn(s)− α̃kn,g(s)
∣∣∣σn(ds)

+

∫
S
α̃kn,g(s)

∣∣σn(ds)− σn,g(ds)
∣∣ (5.72)

≤

(
N∑
k=n

(λφ∗v)
N−k

)
φ∗σ,nεI + γσnεI (5.73)

�

Theorem 5.4 shows that the convergence of the Gaussian mixture approximation of

both σ and the value function depends on the L1 error between the indicator function

over K and the RBF approximation (5.48), rather than the pointwise error. Although

the pointwise error may not converge to zero for a finite number of components in

the RBF, the integral of the error can be small, as we will show in Section 5.8.
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5.6 Approximate Numerical Solution with Lower

Bound

A numerical solution of Problem 5.1 via either a discrete or Gaussian mixture

approximation additionally requires sets Γn and Σ to be finite, whereas we have sets

of infinite size because of the uncountable nature of Y. However, a lower bound on

the viability probabilities (5.26) and (5.53) can still be obtained, by characterizing

the error that results from using Γ̃n ⊂ Γn and Σ̃ ⊂ Σ, finite collections of α-functions

and information states, respectively.

We again exploit point-based approximation methods described in Section 5.4.

We examine the generation of subsets of the information states and α-functions, and

prove that each guarantees a lower bound to the viability probability of whichever

approximation of Section 5.5 we choose. In contrast to most point-based solvers,

we do not assume a finite set of observations, and hence discretize the observations

merely for the computation of the α-functions. Combining belief space sampling with

discretized observations assures a lower bound to the viability probability.

5.6.1 Sampling from the information space

We characterize the error from using a sampled subset of Σ for performing backup

operations (as in (5.7)). Presume that a finite number of information states has been

generated according to one of the many methods available [SPK13]. We generate a

finite set Γ̃n of α-functions, one for each σ ∈ Σ̃. The convexity of the value functions

guarantees that the subset Γ̃n provides a lower bound on V ∗n . Further, we can show

that the error between the approximate value function Ṽ ∗n and the true value function

V ∗n depends on how densely we sample Σ.
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The value function Ṽ ∗n is formally defined as Ṽ ∗n (σ) = supα̃n∈Γ̃n
〈α̃n,σ〉 with

α̃n(s) =

∫
Y

∫
S
α̃
∗(y)
n+1(s′)τy(dy|s′,u)τs(ds

′|s,u)1K(s)

α̃
∗(y)
n+1(s′) = arg

{
sup

α̃
i
n+1∈Γ̃n+1

∫
S
α̃in+1(s′)τy(y|s′,u)

∫
K

τs(ds
′|s,u)σ(ds)

} (5.74)

so that Ṽ ∗n is characterized by the finite set Γ̃n at each time step. We also define an

intermediate value function V̂ ∗n = supα̂n∈Γ̃n
〈α̂n,σ〉 that generates Γ̃n recursively from

Γn+1, i.e. that introduces one point-based backup from the full set Γn+1. Then α̂n is

written as a function of α∗n+1 rather than α̃∗n+1, with

α
∗(y)
n+1(s′) = arg

{
sup

αn+1∈Γn+1

∫
S
αn+1(s′)τy(y|s′,u)

∫
K

τs(ds
′|s,u)σ(ds)

}
. (5.75)

Finally, let δσ be the maximum L1 distance between points in Σ̃ and points in Σ.

δσ = sup
σ̃∈Σ̃

inf
σ∈Σ
‖σ̃ − σ‖1 (5.76)

In the following, we do not distinguish between the vector and Gaussian mixture

representations of σ and α, because the results apply to both cases.

Lemma 5.9. For any n ∈ [0,N ] and σ ∈ Σ, the error introduced in one iteration of

point-based value iteration is at most δσ.

|V̂ ∗n (σ)− V ∗n (σ)| ≤ δσ

Proof. The proof is modified from [PGT06]. Let σ̃ ∈ Σ̃ be the closest point in the

L1 sense to σ. Let α̂∗ ∈ Γ̃n be maximal at σ̃, and α∗ ∈ Γn (and not in Γ̃n) is the

function that would be maximal at σ had it been calculated.

Then

|V̂ ∗n (σ)− V ∗n (σ)| ≤ |〈α∗,σ〉 − 〈α̂∗,σ〉|

≤ |〈α∗,σ〉 − 〈α̂∗,σ〉+ 〈α∗, σ̃〉 − 〈α∗, σ̃〉|

≤ |〈α∗,σ〉 − 〈α̂∗,σ〉+ 〈α̂∗, σ̃〉 − 〈α∗, σ̃〉| (5.77)

≤ |〈α∗ − α̂∗,σ − σ̃〉|

≤ ‖α∗ − α̂∗‖∞‖σ − σ̃‖1 (5.78)

≤ ‖α∗ − α̂∗‖∞δσ (5.79)
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Line (5.77) follows because α(2) is optimal for σ(2), implying 〈α(1),σ(2)〉 ≤ 〈α(2),σ(2)〉.

Line (5.78) follows from Hölder’s Inequality. Line (5.79) can be further simplified

by noting that the α-functions are bounded between 0 and 1 for all s ∈ S, and so

‖α(1) − α(2)‖∞ ≤ 1.

�

We now use Lemma 5.9 to derive a bound between the true value function and

the point-based approximation at any time n.

Theorem 5.5. For a set of information states Σ, sampled set Σ̃, and any time

n ∈ [0,N ] and any σ ∈ Σ, the error from using point-based value iteration versus full

value iteration is bounded above by

|Ṽ ∗n (σ)− V ∗n (σ)| ≤ (N − n)δσ.

Proof. By induction. At time N , V ∗N = Ṽ ∗N for all σ and the inequality is trivially

satisfied. Assume for all i = n+ 1, . . . ,N − 1 that |Ṽ ∗i (σ)− V ∗i (σ)| ≤ (N − i)δσ. At

time n,

|Ṽ ∗n (σ)− V ∗n (σ)| = |Ṽ ∗n (σ)− V ∗n (σ) + V̂ ∗n (σ)− V̂ ∗n (σ)|

≤ |Ṽ ∗n (σ)− V̂ ∗n (σ)|+ |V̂ ∗n (σ)− V ∗n (σ)|

≤

∣∣∣∣∣
∫
Y

sup
Γ̃n+1

〈α̃n+1, Φy,uσ̃〉P(dy|σ,u)

−
∫
Y

sup
Γn+1

〈αn+1, Φy,uσ̃〉P(dy|σ,u)

∣∣∣∣∣+ δσ (5.80)

≤ |Ṽ ∗n+1(σn+1)− V ∗n+1(σn+1)|+ δσ (5.81)

≤ (N − n− 1)δσ + δσ (5.82)

Line (5.80) follows from Lemma 5.9 and because V̂ ∗n and Ṽ ∗n are computed over

the same set Σ̃ (allowing us to write V̂ and Ṽ in terms of σ̃ ∈ Σ̃ corresponding to

α̃∗n ∈ Γ̃n), and line (5.82) from the induction hypothesis. �
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Thus the error between the point-based approximation and the actual value

function is directly proportional to how densely Σ̃ is sampled, and converges to zero

as Σ̃ approaches Σ.

5.6.2 Calculating the Alpha-functions

Over the uncountably infinite space Y , we cannot calculate αy,u,σ for all y ∈ Y , despite

a finite set of u and σ. We therefore compute a subset of αy,u,σ for the finite set yi,

to approximate αn as αn(s) ≈
∑

y
i α

y
i
,u,σ

(s). We discretize Y in a similar fashion to

the discretization of S in Section 5.5.2.

However, since Yx is not compact, we consider an expanded set K =
⋃
y
q∈QKy

q ⊃

K defined so that the probability of observing a value y for s ∈ K that is outside

of K is approximately zero, i.e. τy(Y\K|s ∈ K,u) < ε, ε � 1. For example,

Ky
q = {x+ ŵ : x ∈ Ky

q , ||ŵ|| ≤ 3w∗} with w∗ the largest diagonal entry of W results

in the probability of observing any y outside of K as less than 0.003, which can

be essentially dismissed with minimal impact on resulting calculations. The sets

Ky
q are divided into disjoint subsets Ki,y

q ,
⋃
i=1,...lq

Ki,y
q = Ky

q . We also define

ψy = K
c

= Y\K, such that
⋃
i=1,...,lq

Ki,y
q × {ψy} = R

n.

The partition of K is denoted Gy =
⋃
i,y
q Gy

i,y
q with Gy

i,y
q = {Ki,y

q × yq : i =

1, . . . lq, y
q ∈ Q}. The diameter of partition Ki,y

q is δy
i,y
q = sup{‖y−y‖ : y, y ∈ Ki,y

q},

with maximum diameter δy = maxi,yq δ
y

i,y
q . Each partition Gy

i,y
q has a representative

element (yx,i,y
q

, yq) and a set Yδ = {(yx,i,y
q

, yq) : i = 1, . . . , lq, y
q ∈ Q}. The function

θ : Y → Yδ maps observation y ∈ Y to its representative value (yx,i,y
q

, yq); the

set-valued function Θ : Yδ → K maps the point (yx,i,y
q

, yq) to the corresponding set

Gi,yq .

The finite observation space is Wδ = Yδ
⋃
{ψy}. For the finite state approximation,

the transition function τ δy : Wδ ×Kδ × U → [0, 1] is defined as

τ δy (w|z,u) =

τy(Θ(w)|z,u), if w ∈ Yδ

1−
∑

w∈Yδ τy(Θ(w)|z,u), if w = ψy

. (5.83)
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For the Gaussian mixture approximation, we define the transition function τ gy in

the same fashion as (5.83), but with

τy(Θ(w)|z,u) ≈ Tyq(y
q|q,u)

My∑
j=1

cjφ
y
j (y

x,i,y
q

j ;x,W) (5.84)

so that the α-functions will also be Gaussian mixtures at each time step. This is

further discussed in Appendex B. Note that w = (yx,i,y
q

, yq), yx,i,y
q

j is a set of mesh

points inside Gi,yq associated with w, and cj is a weight proportional to the mesh

spacing (determined, e.g., by the trapezoidal rule for numerical integration).

Discretized observations for finite state approximation

We use Γ̃n,δ and Ṽ ∗n,δ to denote the approximation using a finite subset of Γn,δ, with

the important distinction that the subset is now generated by a finite collection of

observations (as opposed to Σ̃).

The value function is then

Ṽ ∗n,δ = sup
α̃n,δ∈Γ̃n,δ

∑
z∈Kδ

α̃n,δ(z)σδ(z),

with

α̃n,δ(z) =
∑
w∈Wδ

α̃δw,u,σ(z) (5.85)

α̃δw,u,σ(z) =
∑
z
′∈Kδ

α
∗(w)
n+1,δ(z

′)τ δy (w|z′,u)τ δs (z′|z,u)σδ(z) (5.86)

α̃
∗(w)
n+1,δ(z

′) = arg

 sup
α̃
i
n+1,δ∈Γ̃n+1,δ

∑
z
′∈Kδ

α̃in+1,δ(z
′)τ δy (w|z′,u)τ δs (z′|z,u)σδ(z)

 .

(5.87)

Similarly to (5.75), V̂ ∗n,δ(σδ) = supα̂∈Γ̃n,δ

∑
z α̂n,δ(z)σδ(z) is the intermediate value

function, with α̂n,δ calculated using α
∗(w)
n+1,δ ∈ Γn+1,δ (as opposed to Γ̃n+1).

We can bound the error introduced in one iteration of approximating the α-vectors

through discretized observations.
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Lemma 5.10. For any time n ∈ [0,N ] and σδ ∈ Σδ, the error between V ∗n,δ(σδ) and

V̂ ∗n,δ(σδ) satisfies

0 ≤ V ∗n,δ(σδ)− V̂ ∗n,δ(σδ) ≤ Nqλh
(1)
y δy +

ε

N

given that the discretized observations w are chosen so that∑
z
′∈Kδ

α
∗(w)
n+1,δ(z

′)τ δy (w|z′,u) >
∑
z
′∈Kδ

α
∗(w)
n+1,δ(z

′)τy(w|z′,u)|Θ(w)|,

and with λ the largest Lebesgue measure of sets Ky
q .

Proof. Define K such that τy(Y\K|z ∈ Kδ,u) < ε
N

. Then

|V ∗n,δ(σδ)− V̂ ∗n,δ(σδ)| =

∣∣∣∣∣∣ sup
αn,δ∈Γn,δ

∑
z∈Kδ

αn,δ(z),σδ(z)− sup
α̂∈Γ̃n,δ

∑
z

α̂n,δ(z)σδ(z)

∣∣∣∣∣∣
≤
∫
K

∑
z,z
′∈Kδ

[
α
∗(y)
n+1,δ(z

′)τy(dy|z′,u∗)τ δs (z′|z,u∗)σδ(z)

−α∗(θ(y))
n+1,δ (z′)τy(dy|z′,u∗)τ δs (z′|z,u∗)σδ(z)

]
+

∫
Y\K

∑
z,z
′∈Kδ

α
∗(y)
n+1,δ(z

′)τy(dy|z′,u∗)τ δs (z′|z,u∗)σδ(z)

−
∫
Y\K

∑
z,z
′∈Kδ

α
∗(ψy)

n+1,δ(z
′)τy(dy|z′,u∗)τ δs (z′|z,u∗)σδ(z)

≤
∫
K

∑
z,z
′∈Kδ

[
α
∗(y)
n+1,δ(z

′)τy(dy|z′,u∗)τ δs (z′|z,u∗)σδ(z)

−α∗(θ(y))
n+1,δ (z′)τy(dy|z′,u)τ δs (z′|z,u∗)σδ(z)

]
+

ε

N
(5.88)

Note that (5.88) is nonnegative, meaning that using α̂∗δ produces a lower bound to the

actual value function given by α∗δ . This follows because α
∗(y)
n+1,δ is chosen optimally for

only a subset of Y (at the points θ(y)), and for all other y ∈ Y , αn+1,δ is suboptimal,

producing a lower value.

Next, we can bound α
∗(θ(y))
n+1,δ τy(dy|z

′,u) from below based on how the points w are
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defined.

|V ∗n,δ(σδ)− V̂ ∗n,δ(σδ)| ≤
∫
K

[
α
∗(y)
n+1,δ(z

′)τy(y|z′,u∗)− α
∗(θ(y))
n+1,δ (z′)τy(θ(y)|z′,u)

]
dy

+
ε

N

≤ Nqλh
(1)
y δy +

ε

N

�

Lemma 5.10 requires defining the representative points w = (yx,i,y
q

, yq) so that

the α-vectors satisfy an inequality. Without this requirement, finding α
∗(w)
n+1,δ at a

finite set of points still guarantees a lower bound to the value function for any time

n, and is intuitively more accurate as δy → 0.

Lemma 5.10 leads to the following theorem regarding the error between V ∗n,δ(σδ)

(based on continuous observations) and Ṽn,δ(σδ) (based on discretized observations).

We again use the notation Ṽ to indicate that Ṽ is represented by the set Γ̃ of

α-functions calculated using the discretized observations.

Theorem 5.6. Given discretized observation process Wδ with transition function

(5.83), for any time n ∈ [0,N ], the error between V ∗n,δ(σδ) calculated according to Y

and Ṽ ∗n,δ(σδ) calculated according to Wδ satisfies

0 ≤ V ∗n,δ(σδ)− Ṽ ∗n,δ(σδ) ≤ (N − n)Nqλh
(1)
y δy +

(N − n)ε

N

for any σδ ∈ Σδ, with λ the largest Lebesgue measure of sets Ky
q .

Specifically, the viability probability for Ĥpo satisfies

pNviab(ρδ;Kδ)− Ṽ ∗0,δ(ρδ) ≤ NNqλh
(1)
y δy + ε.

Proof. By induction. At time N , V ∗N ,δ(σδ) = Ṽ ∗N ,δ(σδ) since ΓN = Γ̃N = 1Kδ . Assume

for all i = n+ 1, . . . ,N − 1 that V ∗i,δ(σδ)− Ṽ ∗i,δ(σδ) ≤ (N − i)Nqλh
(1)
y δy + (N−j)ε

N
. Then,
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at time n,

|V ∗n,δ(σδ)− Ṽ ∗n,δ(σδ)| = 〈α∗n,δ,σδ〉 − 〈α̃∗n,δ,σδ〉

= 〈α∗n,δ,σδ〉 − 〈α̂∗n,δ,σδ〉+ 〈α̂∗n,δ,σδ〉 − 〈α̃∗n,δ,σδ〉

≤ Nqλh
(1)
y δy +

∫
Y

sup
Γn+1,δ

〈αn+1,δ, Φδ
y,û
∗σ̃δ〉P(dy|σδ, û∗)

−
∫
Y

sup
Γ̃n+1,δ

〈α̃n+1,δ, Φδ
y,ũ
∗σ̃δ〉P(dy|σδ, ũ∗) +

ε

N

≤ Nqλh
(1)
y δy + V ∗n+1,δ(σn+1,δ)− Ṽ ∗n+1,δ(σn+1,δ) +

ε

N

≤ Nqλh
(1)
y δy +

ε

N

+ (N − n− 1)Nqλh
(1)
y δy +

(N − n− 1)ε

N

Combining terms completes the proof. �

Algorithm 5.1 summarizes the procedure for numerically solving Problem 5.1

using the finite state approximation Ĥpo, discretized observations, and a sampled set

Σ̃ ⊂ Σ. The algorithm assumes the sets Zδ, Wδ, and Σ̃ have already been generated.

Discretized observations for Gaussian mixture approximation

The results of discretizing the observations for the Gaussian mixture abstraction

are nearly identical to those for the finite state abstraction. The main difference

arises in approximating the integral τy(Θ(w)|s′,u) with a Gaussian sum: To ensure

the approximate value function provides a lower bound to V ∗n,g, we must under-

approximate the integral τy(Θ(w)) for each w. We again define Ṽ ∗n,g similarly to Ṽ ∗n,δ,

with

α̃n,g(s) =
∑
w∈Wδ

α̃gw,u,σ(s) (5.89)

α̃gw,u,σ(s) =

∫
S
α̃
∗(w)
n+1,g(s

′)τ gy (w|s′,u)τs(ds
′|s,u)

Iq∑
i=1

wIi (q)φ
I
i (x) (5.90)
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α̃
∗(w)
n+1,g(s

′) = arg

{
sup

α̃
i
n+1,g∈Γ̃n+1,g

∫
S
α̃in+1,g(s

′)τ gy (w|s′,u)τs(ds
′|s,u)

×
Iq∑
i=1

wIi (q)φ
I
i (x)

 (5.91)

and V̂ ∗n,g is the intermediate value function that finds the optimal α
∗(w)
n+1,g ∈ Γn+1,g,

rather than in Γ̃n+1,g. We can bound the error between V ∗n,g and V̂ ∗n,g, and between

V ∗n,g and Ṽ ∗n,g, equivalently to Lemma 5.10 and Theorem 5.6, respectively.

Lemma 5.11. For any time n ∈ [0,N ] and σg ∈ Σg, the error between V ∗n,g(σg) and

V̂ ∗n,g(σg) satisfies

0 ≤ V ∗n,g(σg)− V̂ ∗n,g(σg) ≤ Nqλh
(1)
y δy +

ε

N

given that the observations w are chosen so that∫
S
α
∗(w)
n+1,g(s

′)T gy (w|s′,u)τs(s
′|s,u)

Iq∑
i=1

wIi (q
′)φIi (x

′)

>

∫
S
α
∗(w)
n+1,g(s

′)τy(w|s′,u)|Θ(w)|τs(s′|s,u)

Iq∑
i=1

wIi (q
′)φIi (x

′),

and with λ the largest Lebesgue measure of sets Ky
q .

Theorem 5.7. Given discretized observation process Wδ with transition function

(5.84), for any time n ∈ [0,N ], the error between V ∗n,g(σg) calculated according to Y

and Ṽ ∗n,g(σg) calculated according to Wδ satisfies

0 ≤ V ∗n,g(σg)− Ṽ ∗n,g(σg) ≤ (N − n)Nqλh
(1)
y δy +

(N − n)ε

N

for any σg ∈ Σg, with λ the largest Lebesgue measure of sets Ky
q .

Specifically, the viability probability for the Gaussian mixture approximation satis-

fies

pNviab(ρg;Kg)− Ṽ ∗0,g(ρg) ≤ NNqλh
(1)
y δy + ε.

The proofs of Lemma 5.11 and Theorem 5.7 follow directly from the proofs of

Lemma 5.10 and Theorem 5.6.
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Algorithm 5.1 PBVI for Finite State Approximation to Viability

Input: Hpo, Ĥpo, Wδ, τ
δ
y , Σ̃, safe set K, terminal time N

Output: Estimate Ṽ ∗0,δ(ρδ) to viability probability V ∗0 (ρ)

1: n = N

2: α = 1K , Γ̃n = {α}

3: for n = N − 1; n ≥ 0; n = n− 1 do

4: Γ̃n = ∅

5: for all σ ∈ Σ̃ do

6: for u ∈ U do

7: for w ∈ Ỹδ do

8: Calculate α̃δw,u,σ according to (5.86)

9: end for

10: α̃δu,σ =
∑

w∈Ỹδ α̃
δ
w,u,σ

11: end for

12: α̃δσ = arg max
α̃
δ
u,σ
〈α̃δu,σ,σ〉

13: if α̃δσ /∈ Γ̃n then

14: Γ̃n = Γ̃n ∪ {α̃δσ}

15: end if

16: end for

17: end for

Algorithm 5.2 summarizes the procedure for numerically solving Problem 5.1

using the Gaussian mixture approximation, discretized observations, and a sampled

set Σ̃ ⊂ Σ. The algorithm assumes the RBF approximation {wi(q),φi(x)}Iqi=1, Wδ,

and Σ̃ have already been generated.

To summarize, given either the finite state or Gaussian mixture approximation,

we can subsequently 1) sample y from Y and u from U to generate a subset Σ̃δ or

Σ̃g, and 2) discretize Y and use the set Wδ
y to calculate α̃δw,u,σδ

or α̃gw,u,σg
, which are

then used to generate α̃n,δ ∈ Γ̃n,δ and α̃n,g ∈ Γ̃n,g. Using sets Σ̃n,δ and Γ̃n,δ in place
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Algorithm 5.2 PBVI for Gaussian Mixture Approximation to Viability

Input: Hpo, {wi(q),φi(x)}Iqi=1, Wδ, τ
g
y , Σ̃, safe set K, terminal time N

Output: Estimate Ṽ ∗0,g(ρg) to safety probability V ∗0 (ρ)

1: n = N

2: α = {wi(q),φi(x)}Iqi=1, Γ̃n = {α}

3: for n = N − 1; n ≥ 0; n = n− 1 do

4: Γ̃n = ∅

5: for all σ ∈ Σ̃ do

6: for u ∈ U do

7: for w ∈ Ỹδ do

8: Calculate α̃gw,u,σ according to (5.90)

9: end for

10: α̃gu,σ =
∑

w∈Ỹδ α̃
g
w,u,σ

11: end for

12: α̃gσ = arg maxα̃gu,σ〈α̃
g
u,σ,σ〉

13: if ασ /∈ Γn then

14: Γ̃n = Γ̃n ∪ {ασ}

15: end if

16: end for

17: end for

of Σn,δ and Γn,δ provides a lower bound to the viability probability pNviab(ρδ;Kδ) that

converges to pNviab(ρδ;Kδ) as δσ and δy approach zero (and similarly for Σ̃n,g and Γ̃n,g).

5.7 Extension to Reachability and Reach-Avoid

We can use the alternate information state and value function presented in Chapter

4 for the reach-avoid problem to apply an approximation method similar to that

for the viability problem presented above. Adjustments must first be made in the
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α-function representation, dependent on the different value function. A similar finite

state approximation can be utilized for the reach-avoid problem, where rather than

discretizing over K, we discretize over K∪T . For the Gaussian mixture approximation,

we will require two separate RBF approximations, one for 1K , and one for 1T . Once

the above adjustments are made, the same type of PBVI algorithm (Algorithm 5.1 or

5.2) can be used.

The reachability problem is more difficult if formulated as a type of reach-avoid

problem, in that all of S must be discretized and a finite representation is not possible.

However, by representing the reachability problem as the dual of the viability problem,

we can solve an equivalent viability problem to generate estimates of reachability

probabilities. Recall the relation

pNreach(ρ;T ) = 1− inf
π∈Π

pNviab(π, ρ;T c) (5.92)

given in Chapter 2. Then we can apply the approximation methods for the viability

problem to generate reachability probabilities, by changing all maximizations to

minimizations when calculating the α-functions. However, we require T c, T , and K

to all be compact sets. Otherwise the discretization procedure for both the state

space S and observation space Y will have to be altered.

5.8 Numerical Example

We again consider the temperature regulation problem presented in Chapter 5. We

consider the case of one heater, which can either be turned on to heat one room, or

turned off. The temperature of the room at time n is given by the continuous variable

xn, and the discrete state qn = 1 indicates the heater is on at time n, and qn = 0

denotes the heater is off. The stochastic difference equation governing the temperature

is given in (4.40) with the number of rooms M = 1. The constants b1, c1, and xa

are set to b1 = 0.0167, c1 = 0.8, and xa = 6, and vn ∈ R are i.i.d. Gaussian random

variables with mean zero and variance v2. The control input is given by un ∈ U with

U = {0, 1}, but the chosen control is not always implemented with probability 1.
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(a) (b)

Figure 5.1: Comparison of viability probabilities over varying initial distribution
ρ = φ(x;µ0, 1) and q0 = 0, using the finite state approximation (a) and Gaussian
mixture approximation (b). In both (a) and (b) δy = 0.5. Fig. (a) compares
probabilities for δx = 0.1 (black dashed line) and δx = 0.01 (red solid line). Fig.
(b) compares probabilities for Iq = 10 (black dashed line) and Iq = 30 (red solid
line). The refinement of δx and increase in Iq has a small impact on the viability
probabilities. The finite state approximation estimates higher probabilities for µ0

in the interior of K than the Gaussian mixture approximation.

(a) (b)

Figure 5.2: Comparison of optimal control inputs as a function of ρ = φ(x;µ0, 1)
with q0 = 0, using the finite state approximation (a) and Gaussian mixture
approximation (b). In both (a) and (b), δy = 0.5. Fig. (a) compares control
inputs for δx = 0.1 (black dashed line) and δx = 0.01 (red solid line). Fig. (b)
compares control inputs for Iq = 10 (black dashed line) and Iq = 30 (red solid
line), which in this case are the same. All approaches produce a thresh-hold
policy that turns the heater off for µ0 > 18.7, except the finite approximation
with δx = 0.1, which turns the heater off for µ0 > 18.8.
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Instead, qn is updated probabilistically, dependent on un−1 and qn−1, with transition

function Tq(qn+1|qn,un). So while function µn(σn) deterministically returns a single

control input, control input un = µn(σn) may not always be implemented.

As in the previous chapter, we assume the actual temperature is unknown, and

only a noisy measurement is available to the controller. The controller does, however,

know whether the heater is on or off at time n (i.e. qn is perfectly observed). The

observation yn = yxn is given by yxn = xn + wn, with wn i.i.d. Gaussian random

variables with mean zero and variance w2.

It is desirable to keep the temperature of the room between 17.5 and 22 degrees

Celsius at all times, hence the safe region K = [17.5, 22] does not depend on the

discrete state qn (so 1K(s) = 1K(x)). We consider the viability probability of remaining

within K for N = 5 time steps given initial temperature distribution ρ normally

distributed with varying mean µ0 ∈ K and variance Σ0 = 1. The initial mode is

given as q0 = 0. The finite state and Gaussian mixture approximations are used in a

PBVI algorithm in the style of Perseus [PVSP06].

We consider a uniform grid (δxi,q = δx constant for all i, q) over the region K ⊂ R

for the finite state approximation, with representative points at the end-point of each

grid cell. For example, setting δx = 0.1 gives x1,q = 17.5, x2,q = 17.6, . . . for q = 0

and q = 1, and a total of mq = 45 cells Ki,q. The function ξ(x, q) maps q to itself,

and maps x to the nearest xi,q in absolute value.

The Gaussian mixture approximation utilizes an RBF approximation of the

indicator function calculated using MATLAB’s gmdistribution function. We used a

reduction process to limit the number of components of each α and σ for the Gaussian

mixture approximation. Similar Gaussians are combined into a single component

based on the L2 distance between functions [ZK10]. Each mixture was limited to 30

components to reduce overall computation time without overly sacrificing accuracy.

This number can easily be changed, however, depending on the importance of speed

versus accuracy.

Both approximations employ a sampled set Σ̃ and a finite set of observations
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to calculate the α-functions for the PBVI algorithm. To generate the set Σ̃, we

initialized a set of 40 states σ0 normally distributed with variance Σ0 and mean µ0

randomly chosen uniformly on K. Each σ0 was updated according to Φg
y,u with u

chosen randomly and y sampled from the corresponding σ0 (i.e. y ∼ P(y|σ0,u)). This

process was repeated N times, so that for each time step we had a set of 40 sampled

σs. The finite set of observations were produced by a uniform grid over K = [16, 24],

again using end-points as the representative observations.

To compare performance of the finite state and Gaussian mixture approximations,

we present computation times and viability probability estimates for each, with

varying δx, δy, and number of components in the indicator approximation. Viability

probabilities for varying initial distributions ρ are presented in Figs. 5.1a and 5.1b for

the finite state approximation and Gaussian mixture approximation, respectively. The

optimal policy at time zero is shown for varying ρ in Figs. 5.2a and 5.2b for the finite

and Gaussian approximations, respectively. Computation times for the finite state

approximation are given in Table 5.1, and for the Gaussian mixture approximation in

Table 5.2.

δx = 0.1 δx = 0.01

δy = 1.0 δy = 0.5 δy = 0.1 δy = 1.0 δy = 0.5 δy = 0.1

Comp. time (s) 50.5 205.1 1599.8 8961.1 15343.7 108591.3

Table 5.1: Computation times using PBVI with finite state approximation, for
varying continuous state spacing δx and discretized observation spacing δy.

We also show sample Gaussian mixture approximations to the indicator function

1K in Fig. 5.3 with varying numbers of components Iq. The L1 error between the

RBF approximation and 1K for varying Iq is shown in Fig. 5.4. As the number of

components increases, the approximation becomes more accurate, although as seen in

Fig. 5.3, oscillations remain at the endpoints of K. The increasing accuracy is most

apparent in Fig. 5.4, and demonstrates the convergence towards zero of the L1 error

with increasing Iq.
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Iq = 10 Iq = 30

δy = 1.0 δy = 0.5 δy = 1.0 δy = 0.5

Comp. time (s) 365.5 1625.9 1865.0 5586.1

Table 5.2: Computation times using PBVI with Gaussian mixture approximation,
for varying number of components Iq for RBF approximation to 1K and discretized
observation spacing δy.

(a) (b) (c) (d)

Figure 5.3: Comparison between 1K(x) (in black, dashed line) to RBF approx-
imation (red, solid line) for (a) Iq = 10 components, (b) Iq = 30 components,
(c) Iq = 100 components, and (d) Iq = 400 components. As the number of
components increases, the approximation improves, although oscillations at the
endpoints remain.

Figure 5.4: The L1 error for RBF approximations to indicator function 1K with
a varying number of components Iq. As the number of components increases, the
error converges towards zero.

We show viability probabilities for δy = 0.5 only, because the change in viability

estimates when varying δy is not noticeable enough to merit comparison. Decreasing

δy causes a slight increase in the viability probabilities, as expected, but there is not

a significant improvement in the probability estimates, although as seen in Tables 5.1
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and 5.2, the increase in computation time is significant. This is likely problem-specific,

and the value of δy may have a greater impact for some applications.

The viability probability estimates for the finite state approximation are in general

greater than for the Gaussian mixture approximation. The mixture reduction method

employed, as well as the indicator function approximation, make the Gaussian method

seemingly less accurate than the finite state approximation. However, over a finer

mesh δx, the finite state method results in greater computation time. Although the

coarse grid produces similar results to the fine grid (δx = 0.1 versus δx = 0.01), in

higher dimensional problems the number of grid cells becomes prohibitive even when

δx is large. All scenarios produce a nearly identical optimal thresh-hold policy based

on the initial mean µ0, indicating that an optimal policy may be computed fairly

quickly using any of the above methods.

Interestingly, increasing the number of components in the RBF approximation

to the indicator function only slightly improves the viability estimates of the Gaus-

sian mixture approximation, although the L1 error from increasing the number of

components to 30 drops significantly. This may be caused by the mixture reduction

technique, leading to a loss in the added benefit of an increased number of com-

ponents when that number is again reduced. However, although the L1 error with

Iq = 10 is large, we obtain viability estimates that are quite similar to the finite

state approximation. This requires further investigation, but may help in decreasing

computation time without losing significant accuracy by choosing Iq to be small.

5.9 Summary

We have presented the first numerical results for verification of a partially observable

DTSHS, via two approximations that enable the use of a well-known POMDP

optimization technique. The first approximation discretizes the state space over

a compact set K and enables a vector representation of the information states

and α-functions. The second approximates the indicator function over compact
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set K using a finite set of Gaussian radial basis functions and enables a Gaussian

mixture representation of the information states and α-functions. We can apply

point-based value iteration to either approximation, and guarantee a lower bound to

the viability probability, which is proven to converge to the true viability probability

of the original PODTSHS. A simple numerical example shows that both methods

provide similar viability estimates. The finite state approximation is faster when a

coarse discretization is used, but quickly becomes slower than the Gaussian mixture

approximation with a finer discretization. Although we present a linear system with

additive Gaussian noise, both approximations may be extended to non-Gaussian

systems. Convergence results for the finite state approximation apply to arbitrary

transition kernels Tx and Ty. The Gaussian mixture approximation further requires

approximating Tx and Ty with Gaussian mixtures, and introduces additional error.
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Chapter 6

Linear Time-Invariant Systems

with Noisy Observations

This chapter considers linear time-invariant (LTI) systems with noisy state mea-

surements, and develops an improved algorithm based on the PBVI approach of

the previous chapter for computing reachability probabilities tailored to the class

of LTI systems. For a linear system with Gaussian measurement noise and without

process noise, the information state is shown to be a truncated Gaussian, and a novel

PBVI algorithm PointBasedSafety is proposed that extends existing point-based

solvers to include the truncated Gaussian information state. We also extend the

generic discretization procedure for the observation space from the previous chapter

to an adaptive grid scheme that reduces estimation error and increases speed of

computation. Preliminary results show the method to be promising in terms of

computation time as compared to other approaches.

6.1 Introduction

Chapter 5 provided two systematic ways of numerically approximating probabilistic

reachable sets for a PODTSHS. While we applied both methods to a simple tem-

perature regulation problem, the lengthy computation times indicate the need for
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specialized algorithms in order to make either approach feasible on higher-dimensional

problems. We therefore consider a special class of system with LTI dynamics, no

process noise (i.e. the state of the system evolves deterministically), and with an ob-

servation process that is a linear function of the current state with additive Gaussian

noise. LTI systems, although seemingly simple, have a wide range of applications;

even the spacecraft relative motion dynamics of Chapter 3 are modeled as an LTI

system. Further, although we do not consider hybrid dynamics in this chapter, we

hope the improved algorithm for LTI dynamics may be extended to piecewise-linear

systems, which have even greater modeling power.

The main benefit of considering an LTI system with Gaussian measurement noise

and no process noise is that the information state can be modeled as a truncated

Gaussian, i.e. a Gaussian density that is nonzero only over a subset of Rn, rather than

all of Rn. As such, we do not require storage of a large vector of values, nor do we

need to store a large collections of weights, means and covariances as with a Gaussian

mixture. Updating the information state to incorporate new observations and control

inputs is also made simpler, by only requiring three closed form expressions for the

updated mean, covariance, and support of the Gaussian, where the support is the

region over which the Gaussian is nonzero.

We also implement an adaptive gridding scheme for the observations, inspired by

a similar scheme presented in [SA13]. Whereas in the previous chapter we presented a

generic means of dividing a superset of the safe region K into cells, each of which has a

representative point (yx, yq), we now generate a grid of cells that varies in number, and

with nonuniform cell sizes. The size and shape of the cells are determined repeatedly

in the new point-based algorithm, once for each backup operation (each time we

estimate the value function at a different sampled information state). By varying the

size and shape of the cells, we are able to increase the speed of the algorithm while

simultaneously decreasing the error of the value function approximation.

To summarize, the contributions of this chapter are threefold. First, while in

general the information state for the viability problem does not have a closed form

representation, we show that for an LTI system with Gaussian measurement noise,
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the information state is a truncated Gaussian. Second, instead of discretizing the

observation space explicitly, we generate a grid over the observation space with

non-uniform cell sizes, for each information state that we sample, and derive an error

bound on the value function. Finally, we present a unique point-based algorithm

that combines the continuous belief state with a vector representation of the value

function, leading to some of the first numerical results for safety calculations in

partially observable domains. We again focus on the viability problem, because as

shown in previous chapters, extensions to reachability and reach-avoid problems are

implicit.

The rest of the chapter is organized as follows. We describe the LTI system model

and simplified dynamic programming recursion in Section 6.2. Section 6.3 proves that

the information state is a truncated Gaussian, and describes the adaptive gridding

procedure, including an error bound on the value function approximation when using

the nonuniform grid. It also gives the updated point-based algorithm for an LTI

system. In section 6.4 we provide two numerical examples that demonstrate the

improved performance of the algorithm. The first is a two-dimensional temperature

regulation problem modified from the previous chapter to include two separate rooms

to be heated. We use this example to compare the performance of our algorithm with

other variations of the point-based algorithm that either uniformly grid the observation

space, or take a full discretization approach as in the previous chapter. The second

example concerns automated anesthesia delivery, modeled as a three-dimensional

system.
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6.2 Problem Formulation

6.2.1 System Model

We consider a discrete time dynamical system with state space X ⊆ R
n, finite control

space U ⊂ R
n, and linear time-invariant (LTI) dynamics given by

xn+1 = Axn + g(un) (6.1)

in which we assume A is an invertible n× n matrix and g is a function mapping U to

Rn. We use x rather than s to represent the state of the system, to emphasize that

we are not considering a hybrid state space. Further, the true state x is unknown to

the controller, and only a noisy observation is available,

yn = Cxn + wn (6.2)

with yn ∈ Y = R
n, and C an invertible n × n matrix. The variable wn is assumed

Gausian with zero mean and diagonal covariance matrix W = diag{w(i)}, wn ∼

N (0,W). Finally, the initial state x0 is assumed unknown but Gaussian, x0 ∼

ρ(x0) = N (µ0, Σ0).

Given dynamics (6.1) and measurements (6.2), we wish to determine whether

the state x of the system can remain within some predefined safe region K ⊆ B(X )

(B(X ) denoting the Borel σ-algebra on X ), over a finite time horizon N .

Recall that the viability probability is given by

pNviab(ρ;K) = sup
π∈Π

E
π

[
N∏
n=0

1K(xn)

∣∣∣∣∣ ρ
]

. (6.3)

The problem we wish to solve, modified from Chapter 5 to incorporate the simplified

dynamics, is as follows.

Problem 6.1. Consider a system that evolves according to (6.1), with measurements

(6.2) and initial Gaussian distribution ρ(x). Given a safe set K and time horizon N :

1. Compute the maximal probability (6.3) of remaining within K for N time steps.
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2. Compute the optimal policy π∗ that maximizes (6.3).

If the maximal probability and optimal policy cannot be computed exactly (which is

quite likely [LGM01]), an approximation that produces a suboptimal policy and lower

bound on the maximal safety probability is desired.

6.2.2 Dynamic Programming Solution

We again present an information state encapsulating all available information for

making control decisions, as well as a dynamic programming recursion that uses a

value function evaluated over the information state. We modify the operator Φ for

updating the information state, and the value function for the dynamic program, to

reflect the LTI dynamics (6.1) and observation process (6.2).

We use φ(x;µ,S) to denote a normal probability density function evaluated at x

with mean µ and covariance S. The function τs, a stochastic transition kernel for the

state variable x, is now an impulse function

τs(x
′|x,u) = δ(x′ − Ax− g(u)). (6.4)

The information state is defined as

σ0 = ρ

σn = Φyn,un−1
σn−1

(6.5)

with Φy,uσ given by

Φy,uσ(x′) = βφ(y;Cx′,W)

∫
X

1K(x)δ(x′ − Ax− g(u))σ(x) dx (6.6)

and β is a normalizing constant. The information state σ therefore lies in the space

of probability distributions on X , σ : X → [0, 1].

The dynamic programming recursion over the information state σ for Problem 6.1
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is

V ∗N(σ) = 〈σ, 1K〉

V ∗n (σ) = max
u∈U

∫
Y
V ∗n+1(Φy,uσ)P(dy|σ,u)

= max
u∈U

∫
Y

∫
K

V ∗n+1(Φy,uσ)φ(dy;C(Ax+ g(u)),W))σ(dx)

(6.7)

resulting in V ∗0 (ρ) = pNviab(ρ;K). The value function still admits an α-function

representation, such that for all n, V ∗n (σ) = sup
α
i
n∈Γn
〈αin,σ〉 with

αin(x) =

∫
Y
α
y,u,σ

i(x) dy (6.8)

αy,u,σ(x) = α
∗(y)
n+1(Ax+ g(u))φ(y;C(Ax+ g(u)),W)1K(x) (6.9)

α
∗(y)
n+1(x′) = arg

{
sup

α
i
n+1∈Γn+1

∫
K

αin+1(Ax+ g(u))φ(y;C(Ax+ g(u)),W)σ(dx)

}
(6.10)

We now consider approximately solving Problem 6.1 again using point-based value

iteration (PBVI).

6.3 PBVI for Verification of an LTI System

6.3.1 Information State

Ideally, we would like to represent the information state σ as a Gaussian, since a

Gaussian can be characterized solely through its mean and covariance, and Gaussians

are preserved under multiplication and integration. The presence of the indicator

function in (6.6) unfortunately ruins any hope of maintaining σ as a Gaussian, even

when ρ, wn and τ are assumed Gaussian.

However, in the case in which τ is a delta function (i.e. deterministic state

dynamics), the information state can be represented by a truncated Gaussian, meaning

a Gaussian that is nonzero only over a subset of Rn. We will denote a truncated
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Gaussian by φ(x;µ, Σ, I) where I is the interval over which φ is nonzero (also known

as the support of φ). The nature of the sufficient statistic does not, however, guarantee

that the integral of the truncated Gaussian over support I is equal to one. Instead,

σn(x) is a scaled, truncated Gaussian that integrates to one over a superset of I, as

we will demonstrate.

Proposition 6.1. Given dynamics (6.1) and measurements (6.2), τ defined as in

(6.4), ρ(x0) Gaussian, and update equation (6.6), σn is given by

σn(x) = βnφ(x;µn, Σn, In)

for all n = 0, . . . ,N . The parameters µn, Σn, and In are given by

µn = Σn

((
C−1WC−T

)−1

Cy +
(
AΣn−1A

T
)−1

(Aµn−1 + g(u)

)
,

Σn =

((
C−1WC−T

)−1

+
(
AΣn−1A

T
)−1
)−1

,

In =
{
x : A−1(x− g(u)) ∈ K ∩ In−1

}
.

The scaling factor βn = 1
P(y|σn−1,u)

ensures that
∫
Ĩn
σn(dx) = 1, with Ĩn = {x :

A−1(x− g(u)) ∈ In−1}.

Proof. By induction. At time 0, σ0 = ρ is normally distributed by definition,

with mean µ0, covariance Σ0, and support I0 = R
n. At time n − 1, we assume

σn−1(x) = βn−1φ(x;µn−1, Σn−1, In−1). Then according to (6.5), for observation y and

control input u, we obtain

σn(x′) =
βn−1

P(y|σn−1,u)
φ(y;Cx′,W)

∫
X

1K(x)δ(x′−Ax−g(u))φ(dx;µn−1, Σn−1, In−1).

(6.11)

Expanding gives

σn(x′) =
βn−1φ(y;Cx′,W)

∫
X 1K(x)δ(x′ − Ax− g(u))φ(dx;µn−1, Σn−1, In−1)

βn−1

∫
X φ(y;Cx′,W)

∫
X δ(x

′ − Ax− g(u))φ(dx;µn−1, Σn−1, In−1)dx′
(6.12)

We first examine the numerator alone (after canceling the terms βn−1), which can be

rewritten as

φ(y;Cx′,W)φ(A−1(x′ − g(u));µn−1, Σn−1)

× 1K(A−1(x′ − g(u)))1In−1
(A−1(x′ − g(u))). (6.13)
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Figure 6.1: Example of how truncated region In for the information state is
updated at each time step, for an LTI system in R

2. At time step n, In is
intersected with K, and the resulting set is propagated through the dynamics,
resulting in In+1 = {Ax+Bu : x ∈ K ∩ In}.

The denominator is written as∫
X
φ(y;Cx′,W)φ(A−1(x′ − g(u));µn−1, Σn−1)1In−1

(A−1(x′ − g(u)))dx′. (6.14)

Using the identity φ(A−1(x′−g(u));µn−1, Σn−1) = |A−1|φ(x′;Aµn−1+g(u),AΣn−1A
T ),

the second Gaussian in both (6.13) and (6.14) is rewritten as a function of x′ alone,

and the two Gaussians are combined according to known identities to produce another

Gaussian up to scaling factor κ = φ(C−1y;Aµn−1 + g(u),C−1WC−T + ASn−1A
T ).

σn(x′) =
κφ(x′;µn, Σn)1K(A−1(x′ − g(u)))1In−1

(A−1(x′ − g(u)))

κ
∫
X φ(x′;µn, Σn)1In−1

(A−1(x′ − g(u)))dx′
(6.15)

= βnφ(x′;µn, Σn, In) (6.16)

with µn, Σn, and In defined as above, and βn a normalizing factor that guarantees∫
Ĩn
σn(dx) = 1. �

A graphical representation of the propagation of the truncated region In of the

information state is given in Fig. 6.1, for a system with state x ∈ R2 and dynamics

xn+1 = Axn + Bun, and safe region K a rectangle adjacent to the origin. At each

time step, the truncated region In is intersected with set K, and the entire resulting

set is propagated through the linear dynamics to create the new truncated region

In+1.
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Representing the information state σ as a truncated Gaussian requires much less

storage than if the state space were discretized and σ were represented as a vector.

It also gives an exact representation, and no information is lost through a coarse

discrete approximation.

6.3.2 Observations

PBVI iteration schemes typically use a small, discrete set of observations. Tailoring

these methods to solve (6.7) requires discretization of continuous observations, however

repeated evaluation of (6.9) will increase computation time exponentially in the

dimension of y.

We therefore propose an adaptive gridding scheme for the continuous observation

space Y. For a single information state σ, it is reasonable to assume that nearby

observations y in some neighborhood will produce the same ∗(y), i.e. will be associated

with the same optimal α
∗(y)
n+1 in (6.9). Hence we grid Y into cells and find an upper

bound on the error associated with the value function V ∗n when assuming all y in a

single cell are associated with the same αin+1.

Because Y = R
n, we consider an expanded set K ⊃ K defined so that the

probability of observing a value y for x ∈ K that is outside of K is approximately

zero, i.e. φ(Y\K;Cx,W) < ε, ε� 1 when x ∈ K. Gaussian density φ evaluated over

set Y\K is
∫
Y\K φ(dy;Cx,W).

The set K is divided into disjoint subsets Ki,
⋃
i=1,...mKi = K. We also define

ψy = K
c

= Y\K, such that
⋃
i=1,...,mKi × {ψy} = R

n. The partition of K is denoted

G = {Ki, i = 1, . . . ,m}. Each cell Ki has a representative point yi, and the diameter

of partition Ki is δi = supy∈Ki
‖y − yi‖. The maximum diameter is δ = maxi δ

i.

Finally, the function θ maps observation y to its representative value yi, and Θ is a

set-valued mapping from yi to Ki.

For a given grid configuration G, V ∗n,G denotes the value function approximation at

time n using grid G to calculate the α-vectors. We write V ∗n,G(σ) = supαn,G∈Γn,G
〈αn,G ,σ〉
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with

αn,G(x) =
m∑
i=1

αG
y
i
,u,σ

(x) + αGψy ,u,σ(x) (6.17)

for some σ ∈ Σ, u ∈ U , and intermediate function

αG
y
i
,u,σ

(x) =

∫
X
α
∗(yi)
n+1 (x′)φ(Θ(yi);Cx′,W)τ(dx′|x,u)1K(x). (6.18)

We pick points yi so that

α
∗(yi)
n+1 (x′)φ(Θ(yi);Cx′,W) > α

∗(yi)
n+1 (x′)φ(yi;Cx′,W)|Θ(yi)|. (6.19)

To quantify the error resulting from using grid G, we first describe a Lipschitz

property for Gaussian φ(y;Cx;W) similar to that in [SA13].

Lemma 6.1. The Gaussian φ(y;Cx,W) satisfies

|φ(y;Cx,W)− φ(y;Cx,W)| ≤ h(x)‖y − y‖2 (6.20)

for y, y ∈ Ki, and h piecewise convex.

h(x) =


h = 1

(2π)
n
2 |W|

1
2
√
w
∗
σ

e−
1
2 if x ∈ Ai

1

(2π)
n
2 |W|

1
2w
∗
σ

‖fi(x)‖e
− ‖fi(x)‖

2

2w
∗
σ if x /∈ Ai

. (6.21)

We define fi(x) = ŷi−Cx, ŷi = arg miny∈Ki
‖y−Cx‖, and Ai = {x : fi(x) ≤

√
3w∗σ}.

Proof. The Lipschitz constant h is the maximum value of the norm of the derivative

of φ with respect to y:∥∥∥∥∂φ∂y
∥∥∥∥

2

≤ 1

(2π)
n
2 |W|

1
2w∗σ
‖y − Cx‖2e

− ‖y−Cx‖
2
2

2w
∗
σ . (6.22)

Since ‖W‖2 = w∗σ, the largest eigenvalue of W, the maximum of (6.22) occurs at

‖y−Cx‖ =
√
w∗σ. For y ∈ Ki, we obtain the upper bound h when ‖y−Cx‖ <

√
3w∗σ,

and a tighter bound than h when ‖y − Cx‖ ≥
√

3w∗σ (the tighter bound is also a

convex function of ‖y − Cx‖ for ‖y − Cx‖ >
√

3w∗σ). We can therefore modify the

Lipschitz bound to be a piecewise convex function of x, for y, y ∈ Ki, in terms of the

derivative of φ. �
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Figure 6.2: The function ‖∂φ
∂y
‖ (in black), expressed for clarity as a function of

‖fi(x)‖ rather than x, assuming W = [1 , 0; 0 , 1] and n = 2. The function h(x)
(in red, dashed) shown here as a function of fi(x), is derived from ‖∂φ

∂y
‖ and

represents a tighter Lipschitz bound on the Gaussian observation.

A visualization of h(x) is given in Fig. 6.2. We can now use Lemma 6.1 and the

manner of choosing yi (6.19) to show the following theorem.

Theorem 6.1. For grid scheme G, information state σ ∈ Σ, u ∈ U , and yi chosen

to satisfy (6.19), the error between V ∗n (σ) and V ∗n,G(σ) for any n ∈ [0,N ] satisfies

V ∗n (σ)− Vn,G(σ) ≤ δy
m∑
i=1

|Ki|
[
h

∫
K∩I∩Ai

σ(x) dx

+h

(∫
{K∩I}\Ai

(Ax+ g(u))σ(x) dx

)]
+

ε

N
(6.23)

with h and Ai defined in Lemma 6.1, |Ki| the Lebesgue measure of set Ki, and I the

support of σ.
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Proof. First, we define K such that φ(Y\K;Cx,W) ≤ ε
N

. Then

V ∗n (σ)− V ∗n,G(σ) =

∫
K

∫
K∩I

α
∗(y)
n+1(x′)φ(dy;Cx′,W)σ(dx)

−
m∑
i=1

∫
K∩I

α
∗(yi)
n+1 (x′)φ(Θ(yi);Cx′,W)σ(dx)

+

∫
K
c

∫
K∩I

α
∗(y)
n+1(x′)φ(dy;Cx′,W)σ(dx)

−
∫
K∩I

α
∗(ψy)

n+1 (x′)φ(K
c
;Cx′,W)σ(dx)

≤
∫
K

∫
K∩I

min{α∗(y)
n+1(x′),α

∗(θ(y))
n+1 (x′)}

×
(
φ(y;Cx′,W)− φ(θ(y);Cx′,W)

)
σ(dx) dy +

ε

N

with x′ = Ax+ g(u). Since αn+1(x) is a probability and hence bounded above by one,

and applying Lemma 6.1, we obtain

V ∗n (σ)− V ∗n,G(σ) ≤
m∑
i=1

∫
Ki

∫
K∩I

h(Ax+ g(u))‖y − yi‖2σ(dx) dy +
ε

N

≤ δy
m∑
i=1

|Ki|
[
h

∫
K∩I∩Ai

σ(dx)

+

∫
{K∩I}\Ai

h(Ax+ g(u))σ(x) dx

]
+

ε

N

Finally, recalling that h is convex, we use Jensen’s inequality to take integration

over σ inside the function evaluation h, which is much easier to evaluate than the

original integral, completing the proof. �

Theorem 6.1 provides a systematic scheme for generating an adaptive grid G of

the observation space Y. Starting with a coarse grid of rectangular cells, an upper

bound on the error in each cell is calculated using the term inside the summation

of (6.23). Each cell is subdivided at the midpoint of its longest edge, until either all

errors are less than some tolerance, or the sum of all errors is less than some tolerance.

The procedure is summarized in Algorithm 6.1.

Note that we assume both V ∗n and V ∗n,G are calculated recursively from the exact

value function V ∗n+1 in Theorem 6.1. We can extend the above theorem to express the
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error introduced when using V ∗n,G for all n, i.e. when αG
y
i
,u,σ

is modified from (6.18)

to

αG
y
i
,u,σ

(x) =

∫
X
α
∗(yi)
n+1,G(x

′)φ(Θ(yi);Cx′,W)τ(dx′|x,u)1K(x) (6.24)

and using an induction argument.

Theorem 6.2. For grid scheme Gn used at time n ∈ [0,N ], the error between the

exact value function V ∗n (σ) and V ∗n,G(σ) calculated using α-functions (6.24) satisfies

V ∗n (σ)− V ∗n,G(σ) ≤ δy
N∑
j=n

mj∑
i=1

|Kj
i |

[
h

∫
K∩I∩Aji

σ(x) dx

+h

(∫
{K∩I}\Aji

(Ax+ g(u))σ(x) dx

)]
+

(N − n)ε

N
(6.25)

with mj, K
j
i and Aji corresponding to the grid Gj at time j (since Gj may change at

each time step).

Theorem 6.2 shows that the error converges to zero as δ → 0, and also that a

lower bound is guaranteed, because (6.25) is always nonnegative. This follows because

α
∗(yi)
n+1,G is chosen optimally for only a subset of Y , and for all y 6= yi, αn+1,G is chosen

sub-optimally.

6.3.3 Alpha-vectors

There is no exact closed form representation for the α-functions, so we use a vector

approximation. The α-functions are calculated on a grid of uniformly spaced values

in K, since α(x) is equal to zero for x /∈ K. When performing the update calculation

(6.9), the function τ (6.4) is approximated by mapping Ax+ g(u) to the nearest grid

point x′. The error associated with approximating α-functions with α-vectors is small,

and decreases with additional grid points.

With different types of representations for α and σ, we ensure the inner product

〈α,σ〉 is well defined by implementing a numerical integration scheme with function



Chapter 6. Linear Time-Invariant Systems with Noisy Observations 138

Algorithm 6.1 AdaptiveGrid

Input: K, σ, TOL (error tolerance for each cell), maxIT (maximum number of

iterations)

Output: G, decomposition of K into cells of varying size, whose error does not

exceed TOL

1: ctr = 0;

2: G = G0 an initial coarse grid

3: while ctr < maxIT do

4: for i = 1, . . . , |G| do

5: error(i) = calcError(Ki,σ), according to (6.23)

6: if error(i) > TOL then

7:
[
Ki1

,Ki2

]
= subdivide(Ki), described in 6.3.2

8: G = {G\Ki}
⋃
{Ki1

,Ki2
}

9: ctr + +

10: end if

11: end for

12: end while

values of α(x)σ(x) taken along the grid points of α. For example, in R, using a

trapezoidal rule evaluated at grid points x1, . . . ,xM with grid spacing h, we have

〈α,σ〉 =
h

2

[
α(x1)σ(x1) + α(xM)σ(xM) + 2

M−1∑
i=2

α(xi)σ(xi)

]
. (6.26)

6.3.4 Approximate Solution to Problem 1

Combining a point-based approach similar to Perseus [PVSP06] with our results on

the truncated Gaussian belief state and on the adaptive gridding algorithm (Algorithm

6.1), we can now describe the overall algorithm for approximately solving Problem

6.1.
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The first step is to generate a finite set of information states Σ̃ ⊂ Σ. We take

a naive sampling approach, first initializing σ
(i)
0 = N (µi, Σ0) for a range of initial

means µi that are of interest, and then sequentially sample observations according

to σin and choose random actions, generating a sequence σi0, . . . ,σiN for i = 1, . . . ,M

according to the formulas given in Proposition 6.1. Based on the set Σ̃, we implement

Algorithm 6.2 (PointBasedSafety).

At each time step, we cycle through all σ ∈ Σ̃ and generate a grid G based on

σ using Algorithm 6.1 (AdaptiveGrid, line 8). The vector α
y
i
,u,σ

is calculated based

on the representative point yi ∈ Ki in line 11 according to (6.18). The vector ασ is

defined in line 15 as the vector αu,σ associated with the u ∈ U that maximizes the

inner product between αu,σ and σ (calculated as in (6.26)).

6.4 Numerical Examples

The benefits of 1) a truncated Gaussian representation of the belief state, and

2) adaptively gridding the observation space are demonstrated first on a simple

benchmark temperature regulation problem [APLS08] extended from the previous

chapter, and second on a more complicated anesthesia delivery system. The reduction

in computation time using our method is significant as compared to an approach that

assumes a discretized belief state, discretized observation space, or both (what we

call the fully discretized version).

6.4.1 Temperature Regulation

We consider a two room heating system with state x(n) = [x1(n),x2(n)]T , xi(n) being

the temperature in degrees Celsius of room i at time n, so that X = R
2. The control

input u ∈ U = {0, 1, 2} is a command that tells the heater to heat room one (u = 1),

room two (u = 2), or shut off (u = 0). The effect of the input is in q(u) ∈ Z2, for
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Algorithm 6.2 PointBasedSafety

Input: Safe set K, terminal time N , belief states Σ̃, X , Y, U , K, dynamics (6.1)

and measurements (6.2)

Output: Γ0, a collection of vectors estimating V ∗0

1: Xg = a grid of values in X ∩K

2: n = N

3: TOL = tol, maxIT = max

4: α = 1K(Xg), Γn = {α}

5: for n = N − 1; n ≥ 0; n = n− 1 do

6: Γn = ∅

7: for all σ ∈ Σ̃ do

8: G = AdaptiveGrid(K,σ, tol,max)

9: for all u ∈ U do

10: for all Ki ∈ G do

11: calculate α
y
i
,u,σ

according to (6.18)

12: end for

13: αu,σ =
∑|G|

i=1 αyi,u,σ

14: end for

15: ασ = arg max〈αu,σ,σ〉

16: Γn = Γn ∪ {ασ}

17: end for

18: end for

which the i’th element is 1 if u = i.x1(n+ 1)

x2(n+ 1)

 =

.9613 .022

.022 .9613

x1(n)

x2(n)

+

0.8 0

0 0.9333

 q(u) +

.1002

.1002

 (6.27)

The state xn is unknown to the controller, and a noisy observation

y(n) = x(n) + w(n) (6.28)

is available, with Y = R
2 and w(n) ∼ N (0, [0.5 0; 0 0.5]).
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Adaptive Grid Uniform Grid Fully Discretized

TOL = 0.05 TOL = 0.01 0.5 Spacing (σ as vector)

Comp. time (s) 2949.7 7029.5 8055.9 43603.8

Nbr. of obs, |G| 90 (avg.) 225 (avg.) 289 289

Table 6.1: Comparison of computation times. Adaptive gridding of Y is clearly
more effective than a uniform grid spacing. Likewise, computational performance
is degraded with discretization of σ.

Using the PointBasedSafety Algorithm, we can get an estimate of the probability

that for varying initial distributions ρ(x(0)) the temperature stays within a desired

range K = [17.5, 22] over N time steps. We sample a set of 50 belief states, initialized

as Gaussians with randomly selected means lying within the safe set K, µi0 ∼

U [17.5, 22] × [17.5, 22], and covariance fixed at Σ0 = [0.4 0; 0 0.4], such that σi0 =

N (µi0, Σ0,R2). Each σ is propagated using Proposition 6.1 over a period of N = 10

time steps.

The set K is defined as [16, 24] × [16, 24] since the probability of recording an

observation associated with a state xn ∈ K outside of this range is negligible. The

grid Xg used for computing the α-vectors is the set [17.5, 22]× [17.5, 22] subdivided

uniformly with spacing 0.1 in each dimension.

We implement Algorithm PointBasedSafety first using an adaptive gridding scheme

with error tolerance TOL = .05 in each cell, initialized with a spacing of 2 degrees in

each dimension (e.g. [16, 18; 16, 18] would be an initial cell), and σ represented as a

truncated Gaussian. The probability of staying within K for N = 10 time steps as a

function of the mean µ0 from initial Gaussian distribution σ0 is shown in Fig. 6.3a.

The optimal control choice u0 associated with each µ0 is given in Fig. 6.3b. While

for this simple system, decreasing the error tolerance to TOL = .01 did not result

in significant improvements, for more complex systems (with more control actions

to choose from) we would anticipate more sensitivity in the computed probabilistic

viable sets to error tolerance.
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The increase in computation time when using TOL = .01 rather than TOL = .05

is significant, because the average number of cells that must be iterated over in line

10 of Algorithm 6.2 increases from an average of 90 for TOL = .05 to an average

of 225 for TOL = .01. Computation times are summarized in Table 6.1. Despite

this increase in computation time, the adaptive gridding scheme is still faster than a

uniformly gridded observation space, with a 0.5 grid spacing in each dimension. In

the case of uniform discretization, the number of observations increases to 289, and

even with only an additional 65 observations, the time to iterate over these additional

observations exceeds the time it takes to compute the adaptive grid G for each σ.

Further, we saw no distinction between the viable sets computed using an adaptive

versus uniform grid on Y .

(a) (b)

Figure 6.3: (a) The estimated probability of staying within safe set K over N = 10
time steps as a function of x1, x2 with σ0 = N (µ0, Σ0) and µ0 = [x1,x2]. (b) The
optimal control input u(0) as a function of µ0. The optimal control u(0) = 2 is
in red (i.e. heat room 2), u(0) = 1 in green, and u(0) = 0 in blue. As expected,
the probability of staying within K drops towards the boundaries of K, and the
optimal control is a threshhold policy that switches when the mean µ0 falls inside
certain regions. This result is computed using the AdaptiveGridding algorithm
with TOL = 0.05 (computation time given in Table 6.1).

Finally, to demonstrate the additional benefit of using a truncated Gaussian

representation for the information state (rather than a vector), we also ran a fully

discretized version of Algorithm 6.2, in which the observations are uniformly gridded

with spacing 0.5, and α and σ are stored and computed as vectors, with Xg a uniform

grid with spacing 0.1. This is where we see the greatest increase in computation time,
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as shown in Table 6.1. Clearly, the combination of an adaptive grid scheme for the

observation space and the truncated Gaussian representation of the information state

leads to a significant decrease in computation time, and will help to make reachability

and safety calculations in partially observable systems feasible across a wide range of

applications.

It should be noted that we have not incorporated any techniques from ad-

vanced point-based solvers such as SARSOP [KHL08] and online planning algorithms

[RPPCd08], which have led to great improvements in computation time for fully

discretized POMDPs. However, such techniques should be applicable to all of the

approaches we have compared, and lead to equal time improvements for the adaptive

gridding and truncated Gaussian scheme as well as the fully discretized one. We

intend to incorporate such techniques in future work.

6.4.2 Anesthesia Delivery

We look at a three dimensional model for anesthesia delivery [Kay12]. The three

compartment pharmokinetic system determines the concentration of Propofol in

different compartments of the body (the states x(t) = [x1(t)x2(t)x3(t)]T ) given input

u(t), the Propofol administration rate.


ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


−(k10 + k12 + k13) k12 k13

k21 −k21 0

k31 0 −k31



x1(t)

x2(t)

x3(t)

+


1
V1

0

0

u(t) (6.29)

The parameters are selected for an 11 year old child weighing 35 kg, taken from

the Paedfusor data set.

Table 6.2: Model Parameters from Paedfusor Data Set

k10 k12 k13 k21 k31 V1

0.4436 0.1140 0.0419 0.0550 0.0033 16.044
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The model (6.29) is discretized using a zero-order hold with a time step of 20

seconds.


x1(n+ 1)

x2(n+ 1)

x3(n+ 1)

 =


0.8192 0.0341 0.0127

0.0165 0.9822 0.0001

0.001 0.00002 0.9989



x1(n)

x2(n)

x3(n)

+


0.0188

0.0002

0.00001

u(n) (6.30)

The administration rate u(n) is assumed to be either a constant infusion rate of 0

mg/20 seconds, 2.5 mg/20 seconds, 5 mg/20 seconds, or 7.5 mg/20 seconds. There is

also an option to deliver a bolus dose, or one concentrated injection of Propofol. The

bolus dose is assumed to be 10 mg, or 30 mg/min over one 20 second time step. The

control space is U = {0, 2.5, 5, 7.5, 30}.

We consider the viability problem of trying to maintain propofol levels within

safe limits for each compartment of the body described by model (6.30). The safe

set K = [1, 3] × [0, 2] × [0, 2] is smaller than that considered in [Kay12] (in which

K = [1, 6], [0, 10], [0, 10]) in order to increase computation speed (by having smaller

regions K and K to discretize) while still producing informative probabilistic viable

sets.

Unlike the temperature regulation example of Section 6.4.1, we now assume

the initial Gaussian distribution ρ(x) = φ(x;µi0, Σ0, I0) is also truncated. We set

the support I0 equal to K, so that we are certain that the initial propofol levels

[x1(0),x2(0),x3(0)] lie inside the safe region. The covariance Σ0 is a diagonal matrix

with entries [.4, .4, .25]. The initial mean µi0 = [x1,x2,x3]
T is sampled uniformly

over K for i = 1, . . . , 40. We therefore sample a set of 40 σi0 at time zero, with

σi0 = N (µi0, Σ0,K), and continually update each σi0 to produce σin for n = 1, . . . ,N .

The observations y(n) = [y1(n), y2(n), y3(n)]T satisfy
y1(n)

y2(n)

y3(n)

 =


x1(n)

x2(n)

x3(n)

+ w(n)
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(a) (b)

(c)

Figure 6.4: Probabilistic viable sets for initial distribution ρ(x) = φ(x;µ0, Σ0,K)
with µ0 = [x1,x2,x3]. Each figure shows viability probabilities for µ0 varying in
x1, x2 and x3 fixed at a) x3 = 0.0, b) x3 = 1.0, and c) x3 = 2.0. The peaks at the
boundaries of K are a result of initializing ρ as a truncated Gaussian limited to
lying within K. This essentially provides additional information regarding the
starting position of x0 when µ0 is near the boundary.

with wn ∼ N (0,W) and W a diagonal covariance matrix with entries [0.5, 0.5, 0.5],

so that Y = R
3. The set K is defined as [−1, 5]× [−2, 4]× [−2, 4].

We implement Algorithm PointBasedSafety using an adaptive grid scheme with

tolerance TOL = 0.05 over N = 5 time steps. Fig. 6.4 shows viability probabilities

over varying µ0 = [x1,x2,x3] with x3 fixed at x3 = 0.0, x3 = 1.0, and x3 = 2.0 in Figs.

6.4a, 6.4b, and 6.4c, respectively. The optimal initial control input u(0) for varying

µ0 is shown in Fig. 6.5, again with x3 fixed at levels x3 = 0.0, x3 = 1.0, and x3 = 2.0.
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(a) (b)

(c)

Figure 6.5: Optimal control input u(0) (initial dosage of anesthesia) for initial
distribution ρ(x) = φ(x;µ0, Σ0,K) with µ0 = [x1,x2,x3] for a) x3 = 0.0, b)
x3 = 1.0, and c) x3 = 2.0.

Initializing ρ as a truncated Gaussian restricted to set K significantly impacts

the viability probabilities for µ0 at or near the boundaries of K. Because x(0) is

ensured to lie inside K, our knowledge of the range of value x(0) is most likely to take

increases (the greatest value of the Gaussian density are restricted to a smaller region

inside K). We therefore see the greatest viability probabilities at the boundaries of

K, because we can make better control input decisions. There are, however, also

peaks in probabilities for µ0 lying towards the center of K, as expected.

The optimal control inputs at time zero are also intuitive. For µ0 small, making

low concentrations of propofol most likely, it is optimal to deliver a bolus dose initially.
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As µ0 increases, the initial dose decreases. For x3 = 2.0, it is not optimal to deliver a

bolus dose even for x1 = 1.0 and x2 = 2.0.

We do not compare performance for varying tolerance levels associated with the

adaptive grid, nor do we compare to a fully discretized approach, as in the temperature

regulation example above. We did consider various tolerances for the adaptive grid

scheme, and discretization levels for the α-vectors, but found that decreasing the

tolerance level or gap size for discretizing the state space did not significantly alter

the results.

6.5 Summary

We have presented an algorithm for solving the partially observable safety problem

for LTI systems with Gaussian measurement noise. We represent the information

state as a truncated Gaussian, and adaptively grid the observation space for each σ

in order to decrease computation time. In combination with a point-based approach,

we present a computationally feasible method, and demonstrate its effectiveness first

on a two dimensional temperature regulation problem, and second on a problem

of automated anesthesia delivery. Exploiting the structure of an LTI system with

Gaussian observation noise provides significant computational benefits as opposed to

using the discretization or Gaussian mixture approximations of Chapter 5. However,

the adaptive gridding scheme is not limited to an LTI system, and can be extended to

the viability problem for a general PODTSHS Hpo. And again, the results presented

are for the viability problem, but can be equivalently applied to a reachability or

reach-avoid objective, as explained in previous chapters.
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Chapter 7

Conclusion

Stochastic hybrid systems provide a modeling framework well suited to a variety of

applications. The flexibility of the model, coupled with the incorporation of stochastic

uncertainties, allows for insightful analysis of complex control systems. Specifically,

we can use stochastic reachability analysis to generate probabilistic guarantees of

safety and reachability for such systems, which may be more insightful when failure

to meet the given objective (safety, reachability, etc.) is possible but unlikely.

Although stochastic reachability analysis provides an elegant formulation for

verification of hybrid systems, its applicability to larger scale, realistic systems is

currently limited. Computationally, the generation of either deterministic or stochastic

reachable sets is a difficult task, and current methods do not scale well to higher-

dimensional problems except for special cases, such as deterministic linear systems

with well behaved safe or target sets.

The task of generating reachable sets in the presence of a stochastic observation

process is even more difficult, and has received almost no attention. It is, however,

an important problem, especially when synthesizing controllers to meet safety or

reachability specifications. Many systems, such as the space docking and anesthesia

examples considered in this dissertation, must use sensors to measure information

about the state of the system, which is then used as an input to the controller.
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The aim of this dissertation was to address both of the above areas that still

need development in order to make reachability analysis a more widely applicable

verification tool. We have addressed both computational concerns for reachability

analysis of a perfectly observable discrete time stochastic linear system, as well

as theoretical and computational concerns for reachability analysis of a partially

observable discrete time stochastic hybrid system. There is, however, much more to

be done, particularly in the area of computational methods for partially observable

systems. We first summarize our contributions in Section 7.1, and describe some

potential directions for future work in Section 7.2.

7.1 Summary of Contributions

For a linear stochastic system with additive Gaussian noise, we have presented two

methods for generating reachable sets that do not require dynamic programming,

and so can be applied to higher dimensional systems, in Chapter 3. The first method

uses a particle approximation to estimate the reachability probability. We generate

trajectories of the state using a Monte Carlo method to sample from the Gaussian

noise (thus generating “particles”). Using the sample trajectories we formulate a

mixed integer linear program and design a controller to maximize the number of

trajectories that satisfy the reachability objective. The particle approximation method

works to design both an open-loop and closed-loop controller in linear feedback form

u = Wx. The second method exploits the linear and Gaussian nature of the dynamics

to design a convex optimization problem, with the probabilistic reachability objective

a chance constraint to be enforced. The parameter we optimize is the tolerance level

α such that the reachability objective is satisfied with probability at least 1 − α.

The convex formulation only produces an open-loop controller. Both methods were

demonstrated on a spacecraft rendezvous example in four dimensions.

We then examine a DTSHS with noisy observations of the continuous and discrete

states in Chapter 4. The general approach for optimal control of a partially observable

system is to generate an equivalent information state that is fully known, and to
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solve a dynamic program over the information state instead. For an additive cost

function, the information state is the distribution of the current state of the system

conditioned on all past observations and actions. For the non-additive reachability

cost function, this result no longer holds. We therefore derived a novel sufficient

statistic that produces a perfectly observed information state for optimal control of

the DTSHS to satisfy reachability specifications, which incorporates the probability

that all past states have remained within the safe region (for the viability problem) in

addition to the conditional distribution of the current state. We also gave reachability

and reach-avoid formulations for the information state, and an information state

that incorporates a change of measure, rendering the stochastic observation processes

independent and identically distributed. We then provided a dynamic programming

formulation in terms of the information state, and proved that the new problem over

the information state is equivalent to the original reachability problem.

The dynamic programming formulation derived in Chapter 4 is important for

establishing a solution framework, but is difficult to implement numerically. We

therefore considered approximate reachable set computation in Chapter 5 using the

information state and value function derived in Chapter 4. The similarities between

a PODTSHS and a POMDP inspired the use of existing approximation techniques

for optimal control of POMDPs. We first proved that the value function for the

reachability problem shares the same properties (convex, piecewise-linear in the case

of finite observations and control inputs) as for an additive cost POMDP, and we

can therefore produce a lower bound to the value function by sampling from the

information state in a process known as point-based value iteration. However, because

the hybrid state and observation spaces are not finite, additional steps must be taken

to approximately represent the information state and value function before using

PBVI. We developed two approaches. The first is a finite state approximation to the

DTSHS, which enables the information state and value function to be represented in

vector form. The second approximates the information state and value function as

Gaussian mixtures, by representing the indicator function over convex region K as a

Gaussian mixture. In both cases we discretized the observation space to ensure the
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value function is piecewise-linear. We then presented the first numerical results for

calculating reachable sets for a PODTSHS.

Finally, we considered the special case of a system with linear dynamics, no process

noise, and Gaussian observation noise in Chapter 6. We showed that in this case

the information state is a truncated Gaussian distribution, and does not need to be

approximated. We still use PBVI, but developed an adaptive discretization scheme for

the observations to generate fewer finite observations while minimizing the error from

the approximation. We presented an algorithm for choosing the observations, and

for approximating the reachability probabilities. The simple form of the information

state and the selection of the finite observations enabled much faster reachable set

computation as compared to the approaches presented in Chapter 5 for a general

PODTSHS. We were then able to compute stochastic viable sets for an automated

anesthesia delivery example.

7.2 Future Directions

The work we have presented leaves many opportunities for further research. Particu-

larly for reachability analysis of a PODTSHS, where so little work has been done,

there are many possible directions to take. We describe below some of the directions

for future research that we believe to be the most interesting and promising.

First, reachable set computation for perfectly observable systems without dynamic

programming must be further explored for stochastic reachability analysis to be ap-

plicable to higher dimensional systems. Ideally, we would like to find results for linear

systems with Gaussian noise that are equivalent to the ellipsoidal/zonotope/support

vector representations of the deterministic reachable set for linear systems. It may

be possible to propagate the 1 − α probabilistic reachable set in the same fashion

as the deterministic reachable set for linear systems, described in [KV07], [Gir05],

and [GG10]. Short of that, improving upon the single-stage stochastic optimization

formulations presented in Chapter 3 may be possible. The advantage of the convex
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formulation over the particle approximation is that it guarantees a lower bound to

the reachable set, however we were unable to implement a feedback controller as

for the particle approximation. We may be able to use model predictive control to

simulate feedback and to get a better estimate of the reachable set while still solving

a convex optimization problem. Another possibility is to use stochastic branch and

bound methods [NPR98] to generate open loop controllers, which may be faster than

the particle or convex approaches, although this requires further exploration.

There are also many possibilities for improvements to the approximate computation

of reachable sets for a PODTSHS. We implemented a naive PBVI algorithm that

sampled information states randomly and required backing up every information state

at every time step. Other PBVI algorithms have been developed that significantly

reduce computation time, such as [KHL08] and [SS04], by sampling information

states in a more systematic fashion and producing iterative approximations to the

value function. However, these methods are defined for optimization over an infinite

horizon, so to calculate reachability probabilities over a finite horizon they will need

to be modified, if possible. Another possibility is to use an online POMDP planning

algorithm [RPPCd08], which can be done over finite horizons, and may prove faster

than PBVI methods in some cases.

Whichever existing POMDP algorithm we use, its speed will be limited by the

size of the problem. We would therefore like to find smaller, simpler representations

of any system we wish to analyze. The further study of abstractions for a PODTSHS

may be helpful in generating equivalent, simpler systems. For example, the adaptive

gridding procedure presented in Chapter 6 is not limited to a linear system without

process noise. We should therefore be able to use a similar gridding procedure for

both the continuous state space X and observation space Yx to reduce the size of the

finite state approximation given in Chapter 5. There may also be other classes of

systems that admit a simple expression for the information state, as is the case for a

linear system without process noise and with Gaussian observation noise.

As demonstrated in Chapter 6, the truncated Gaussian representation of the

information state leads to significant improvements in computation time to generate
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the reachable sets. However, there are still some details that require attention

to improve its applicability. For our numerical examples we only used safe sets

represented as hyper-rectangles, i.e. the safe set K is represented as K = {xi : ai ≤

xi ≤ bi, ∀i = 1, . . . ,n} for an n-dimensional system, because the support of the

Gaussian maintains this shape and we only need to update the values ai and bi at

each time step. However, we give a general expression for the support of the truncated

Gaussian at each time step without the assumption that K is a hyper-rectangle,

which turns out to be the same expression as for the viability kernel as described in

[MKM+13]. We should therefore be able to update the support using the algorithm

presented in [MKM+13].

The next concern is with the integration of α(x) multiplied by σ(x). We only

store the value of α(x) at a finite set of points xi, and must numerically integrate∫
I
α(x)σ(x)dx over the support I of σ(x). In low dimensions, and for I a hyper-

rectangle, we can easily and fairly accurately approximate the integral using, e.g.,

the trapezoid or Simpson’s rule for integration at the points xi. In higher dimensions,

and with I a more complex region, this is no longer possible. We are currently

investigating ways to approximate the integral over an arbitrary convex region I

using Gaussian quadrature methods. Once an adequate numerical integration scheme

is found, we plan on applying the method of Chapter 6 to the space docking problem

of Chapter 3 with the Gaussian process noise removed, and with the inclusion of

Gaussian measurements. Finally, we would like to explore the possibility of extending

the truncated Gaussian representation to piecewise-linear systems that allow switching

between linear dynamics dependent on a discrete mode.



154

Appendix A

Proofs of Theorems from Chapter

4

A.1 Proof of Theorem 4.1

In order to prove the Theorem 4.1, we first define some notation and give some

intermediate results. The following proofs are based on those in [BS96], Chapters

6 and 11. To facilitate the connection between these proofs and those appearing in

[BS96] we first reformulate the recursion (4.26) as a minimization

sup
π
V π̃

0 (σ0) = − inf
π̃
−V π̃

0 = − inf
π̃
J π̃0

Let J π̃n (σ) = −V π̃
n (σ) and Π̃ = {π̃ = (µ̃0, µ̃1, . . . ) : µ̃n(σn) ∈ U ∀n ∈ [0,N ]}. The

recursion for J∗n(σ) is identical to that of V ∗n (σ) in (4.26) except that J∗N(σ) =

−〈σ, 1K〉.

Next we define the operators

Hµ̃[J ] = E
π̃
[
J(Φy,µ̃(σ)σ)

]
=

∫
K

∫
S

∫
Y
J(Φy,µ̃(σ))τy(dy|s′, µ̃(σ))τs(ds

′|s, µ̃(σ))σ(ds)

H[J ] = inf
µ̃(σ)∈U

Hµ̃[J ]
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The operator Hµ̃[J ] preserves the linearity and boundedness of value function J(σ) for

all σ in L1, which can be seen from a straightforward induction argument. Because

J π̃N (σ) is a bounded linear functional, this then implies that J π̃n (σ) is a bounded linear

functional for all n = 0, . . . ,N and for all σ in L1.

Lemma A.1. For all bounded linear functionals J , σ ∈ L1, π̃ ∈ Π̃, and r ∈ R+

Hµ̃[J ] ≤ Hµ̃[J + r] ≤ Hµ̃[J ] + r

Proof. Because J ≤ J + r when r ≥ 0, we get the following:

Hµ̃[J ] =

∫
K

∫
S

∫
Y
J(Φy,µ̃(σ))τy(dy|s′, µ̃(σ))τs(ds

′|s, µ̃(σ))σ(ds)

≤
∫
K

∫
S

∫
Y
J(Φy,µ̃(σ) + r)τy(dy|s′, µ̃(σ))τs(ds

′|s, µ̃(σ))σ(ds)

≤ Hµ̃[J + r]

≤
∫
K

∫
S

∫
Y
J(Φy,µ̃(σ))τy(dy|s′, µ̃(σ))τs(ds

′|s, µ̃(σ))σ(ds) + r

≤ Hµ̃[J ] + r

�

Proposition A.1. For any M ∈ N, where J∗0 (σ) = inf π̃∈Π̃ J
π̃
0 (σ),

J∗0 (σ) = HM [J∗M ](σ)

Further, for any ε > 0 there exists an M-stage ε-optimal policy π̃ε, defined as

J∗0 ≤ J π̃ε0 ≤ J∗0 + ε

Proof. By backwards induction. For M = N ,

J∗N(σ) = H0[J∗N ](σ)

because H0[J ] = J . Also, because JN does not depend on a control input, J∗N(σ) =

J π̃N(σ) for any policy π̃ ∈ Π̃. Therefore, for any ε > 0, J π̃εN (σ) = J∗N(σ) ≤ J∗N(σ) + ε.
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Assume for M = n+ 1 that J∗n+1(σ) = HN−n−1[J∗N ](σ) and that for all ε > 0 there

exists a policy π̃ε such that J π̃εn+1(σ) ≤ J∗n+1(σ) + ε. Then by Lemma A.1, for any µ̃

an element of π̃ such that π̃ ∈ Π̃,

Hµ̃[J π̃εn+1] ≤ Hµ̃[J∗n+1 + ε] ≤ Hµ̃[J∗n+1] + ε.

By aggregating µ̃ with the control policy π̃ε to get ˆ̃πε = (µ̃, π̃ε), we then have

inf
π̃
J π̃n (σ) ≤ J

ˆ̃πε
n (σ) = Hµ̃[J π̃εn+1]

≤ Hµ̃[J∗n] + ε.

Since the above holds for any µ̃ ∈ Π̃,

inf
π̃
J π̃n (σ) ≤ H[J∗n+1](σ)

= H[HN−n−1[J∗N ]](σ) = HN−n[J∗N ](σ).

By definition HN−n[J∗N ](σ) ≤ J∗n(σ), hence HN−n[J∗N ](σ) = J∗n(σ).

Next, by the induction argument, for any ε̂ > 0, define ˆ̃π so that

J
ˆ̃π
n+1(σ) ≤ J∗n+1(σ) +

ε̂

2

Define ˆ̃µ ∈ Π̃ so that

H ˆ̃µ[J∗k+1] ≤ H[J∗k+1] +
ε̂

2

Define ˆ̃πε = (ˆ̃µ, ˆ̃π). Then

J
ˆ̃πε
n = H ˆ̃µ[J

ˆ̃π
n+1] ≤ H ˆ̃µ[J∗n+1] +

ε̂

2

≤ H[J∗n+1] +
ε̂

2
+
ε̂

2

= J∗n + ε̂

It follows from induction that J∗0 ≤ J π̃ε0 ≤ J∗0 + ε for any M . �

We also use the result from [BS96] on the existence of a uniformly N-stage optimal

policy π̃∗ = (µ̃∗0, µ̃∗1, ...), which we give without proof (see Ch. 6), since the proof does

not change in our context.
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Proposition A.2. A policy is uniformly N-stage optimal if and only if

Hµ̃
∗
n
[HN−n−1[J∗N ]] = HN−n[J∗N ] for all n = 0, . . . ,N , and this policy exists if and only

if the infimum of

HN−n[J∗N ] = inf
u∈U

Hu

[
HN−n−1[J∗N ]

]
is attained for all σ ∈ L1 and n = 0, . . . ,N . A sufficient condition for the infimum to

be attained is that

Un(σ,λ) =
{
u ∈ U : Hu

[
HN−n−1[J∗N ]

]
≤ λ

}
is compact for all σ ∈ L1, λ ∈ R, and n = 0, . . . ,N .

We can now use the above results to prove Theorem 4.1.

Proof. (Of Theorem 4.1)

Substituting V ∗n = −J∗n, it is clear that Prop. A.1 validates the dynamic program-

ming algorithm (4.26), and proves the existence of at least an ε-optimal policy, and so

the first part of Theorem 4.1 is proved. Finally, using Prop. A.2, because U is defined

as a compact (i.e. closed and bounded) Borel set, and Jn (and so Vn) is bounded for

all σ ∈ L1 and for each u ∈ U , then there exists some u ∈ U such that the infimum

in infu∈U Hu

[
HN−n−1[J∗N ]

]
= infu∈U E[Jn(Φy,uσ)] is attained for all n (and likewise

the supremum of Vn is achieved for all n). Therefore, for (4.26), there always exists

an optimal policy π̃∗ given by (4.27). �

A.2 Proof of Theorem 4.2

Proof. (Of Theorem 4.2) For a vector u = [u0,u1, . . . uN−1] with each un ∈ U , we

have by definition that

rK(u) = rK(u) ∀u ∈ UN

Since σn = ηn(ρ, in), the control policy π̃ = (µ̃0(σ0), µ̃1(σ1), . . . ) can be rewritten as

a function of the information vector in, where µ̃n(σn) = µ̃n(ηn(ρ, in)) = µn(in). Then
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by defining the policy π in terms of µ, we obtain pNviab(ρ;K) = p̃Nviab(ρ;K) for any

π̃ ∈ Π̃. If π̃∗ is optimal for p̃Nviab(ρ;K), it then must be optimal for pNviab(ρ;K) as well,

and further,

pNviab(ρ;K) = p̃Nviab(ρ;K)

�
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Appendix B

Gaussian Mixture Results from

Chapter 5

We provide constructive proofs of Lemmas 5.6 and 5.7 from Chapter 5. Lemma

5.6 leads to a recursive expression for σn+1,g in terms of the weights, means, and

covariances characterizing σn,g. Similarly, Lemma 5.7 leads to a recursive expression

for αgy,u,σ in terms of the weights, means, and covariances characterizing α
∗(y)
n+1,g. We

first prove Lemma 5.6, show that σn,g can therefore be represented by a Gaussian

mixture for all n ∈ [0,N ], and give the recursive expression for σn+1,g given σn,g in

Section B.1. The process is repeated for the α-functions in Section B.2.

Before providing proofs, we give some identities for Gaussian distributions. First,

the product of two Gaussian densities is again a Gaussian density, up to a constant

factor.

φ(x;µ1, Σ1)φ(x;µ2, Σ2) = φ(µ1;µ2, Σ1 + Σ2)φ(x; µ̃, Σ̃) (B.1)

with

µ̃ = Σ̃
(
Σ−1

1 µ1 + Σ−1
2 µ2

)
Σ̃ =

(
Σ−1

1 + Σ−1
2

)−1
(B.2)

Second, for invertible matrix A, constant b, and variables x and y,

φ(y;Ax+ b, Σ) = |A−1|φ(x;A−1(y − b),A−1ΣA−T ). (B.3)
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Both identities are easily shown directly. Also recall the radial basis function approx-

imation 1K(s) is given by

1K(x, q) ≈
Iq∑
i=1

wIi (q)φ(x;µIi , ΣI
i ) (B.4)

B.1 Information State as a Gaussian Mixture

Proof. (Of Lemma 5.6) By construction. Given σn,g(x, q) =
L∑
l=1

wσl,n(q)φ(x;µσl,n(q), Σσ
l,n(q)), observation y ∈ Y, and control input u ∈ U , the

operator Φg
y,uσn,g produces

Φg
y,uσn,g =

1

P(y|σn,g,u)
τy(y|s′,u)

×
∑
q∈Q

∫
X

 Iq∑
i=1

wIi (q)φ
I
i (x)

 τs(s′|s,u)σn,g(s) dx. (B.5)

The normalizing factor P(y|σn,g,u) is removed, because the Gaussian mixture can be

normalized independently be rescaling all of the weights to sum to one. Replacing

σn,g by its Gaussian mixture representation in (B.5), and expanding τy and τs, gives

(
Φg
y,uσn,g

)
(x′, q′) = Tyq(y

q|q′,u)φ(yx;x′,W)
∑
q∈Q

∫
X

 Iq∑
i=1

wIi (q)φ
I
i (x)


× Tq(q′|q,u)φ(x′;Ax+ g(q,u, q′),V)

×

[
L∑
l=1

wσl,n(q)φ(x;µσl,n(q), Σσ
l,n(q))

]
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=

Nq∑
q=1

L∑
l=1

Iq∑
i=1

wIi (q)w
σ
m,n(q)Tyq(y

q|q′,u)Tq(q
′|q,u)φ(x′; yx;W)

×
∫
X
φ(x;µIi (q), ΣI

i (q))φ(x;µσl,n(q), Σσ
l,n(q))

× |A−1|φ(x;A−1(x′ − g(q,u, q′)),A−1VA−T ) dx (B.6)

=

Nq∑
q=1

L∑
l=1

Iq∑
i=1

|A−1|wIi (q)wσm,n(q)Tyq(y
q|q′,u)Tq(q

′|q,u)φ(x′; yx;W)

× φ(µIi (q);µ
σ
l,n(q), ΣI

i (q) + Σσ
l,n(q))

∫
X
φ(x; µ̃, Σ̃)

× φ(x;A−1(x′ − g(q,u, q′)),A−1VA−T ) dx (B.7)

=

Nq∑
q=1

L∑
l=1

Iq∑
i=1

|A−1|wIi (q)wσm,n(q)Tyq(y
q|q′,u)Tq(q

′|q,u)φ(x′; yx;W)

× φ(µIi (q);µ
σ
l,n(q), ΣI

i (q) + Σσ
l,n(q))φ(A−1(x′ − g(q,u, q′); µ̃, Σ̃))

(B.8)

Line (B.6) follows from (B.3), line (B.7) from combining φ(x;µIi (q), ΣI
i (q)) and

φ(x;µσl,n(q), Σσ
l,n(q)) according to (B.1), and (B.8) from a second application of (B.1)

and setting the integral of a Gaussian density over X equal to one.

A final application of (B.1) and (B.3) gives

(
Φg
y,uσn,g

)
(x′, q′) =

Nq∑
q=1

L∑
l=1

Iq∑
i=1

wIi (q)w
σ
m,n(q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(µIi (q);µ
σ
l,n(q), ΣI

i (q) + Σσ
l,n(q))

× φ(yx;Aµ̃+ g(q,u, q′),W + V + AΣ̃AT )

× φ(x;µσq,l,i,n+1(q′), Σσ
q,l,i,n+1(q′))

which is again a Gaussian mixture with NqLIq components. �

Using Lemma 5.6, we can make a stronger statement regarding the information

states.

Theorem B.1. Given RBF approximation (B.4) to 1K(s) and operator Φg
y,u (B.5),

the information state σn,g satisfy the following.
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1. The information states σn,g(s) are Gaussian mixtures for all n ∈ [0,N ], for

any sequence of control inputs u0, . . . ,uN−1, un ∈ U , and any sequence of

observations y1, . . . , yN , yn ∈ Y.

2. For σn,g(x, q) =
L∑
l=1

wσl,n(q)φ(x;µσl,n(q), Σσ
l,n(q)), observation y ∈ Y and control

input u ∈ U , σn+1,g(x
′, q′) is given by

σn+1,g(x
′, q′) =

Nq∑
q=1

L∑
l=1

Iq∑
i=1

wσq,l,i,n+1(q′)φ(x′;µσq,l,i,n+1(q′), Σσ
q,l,i,n+1(q′)),

with

wσq,l,i,n+1(q′) = wIi (q)w
σ
l,n(q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(µIi (q);µ
σ
l,n(q), ΣI

i (q) + Σσ
l,n(q))

× φ(yx;Aµ̃+ g(q,u, q′),W + V + AΣ̃AT ),

µσq,l,i,n+1(q′) = Σσ
q,l,i,n+1(q′)

[
W−1yx +

(
AΣ̃AT + V

)−1 (
Aµ̃+ g(q,u, q′)

)]
,

Σσ
q,l,i,n+1(q′) =

[
W−1 +

(
AΣ̃AT + V

)−1
]−1

,

and

µ̃ = Σ̃

[(
ΣI
i (q)

)−1

µIi (q) +
(
Σσ
l,n(q)

)−1
µσl,n(q)

]
,

Σ̃ =

[(
ΣI
i (q)

)−1

+
(
Σσ
l,n(q)

)−1
]

.

Proof. Part one of the theorem follows by induction. At time n = 0, σ0,g(x, q) = ρ(x, q)

and ρ(x, q) = Q0(q)φ(x;µσ0 , Σσ
0) by definition (see Section 5.3 of Chapter 5). The

induction argument then follows directly from Lemma 5.6.

Part two of the theorem follows directly from the derivation provided in the proof

of Lemma 5.6. �

B.2 Alpha-Function as a Gaussian Mixture

Proof. (Of Lemma 5.7) By construction. Given α
∗(y)
n+1,g(x

′, q′) =
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M∑
m=1

wα,y
m,n+1(q′, y)φ(x′;µα,y

m,n+1(q′, y), Σα,y
m,n+1(q′, y)) for some observation y ∈ Y , then

αgy,u,σ(x, q) for control input u ∈ U is written

αgy,u,σ(x, q) =
∑
q
′∈Q

∫
X
α
∗(y)
n+1,g(s

′)τy(y|s′,u)τs(s
′|s,u) dx′

 Iq∑
i=1

wIi (q)φ
I
i (x)

 (B.9)

=
∑
q
′∈Q

∫
X

[
M∑
m=1

wα,y
m,n+1(q′)φ(x′;µα,y

m,n+1(q′), Σα,y
m,n+1(q′))

]

× Tyq(y
q|q′,u)φ(yx;x′,W)Tq(q

′|q,u)

× φ(x′;Ax+ g(q,u, q′),V) dx′

 Iq∑
i=1

wIi (q)φ
I
i (x)


(B.10)

=

Nq∑
q
′
=1

M∑
m=1

Iq∑
i=1

wα,y
m,n+1(q′)wIi (q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(x;µIi (q), ΣI
i (q))φ(yx;µα,y

m,n+1(q′),W + Σα,y
m,n+1(q′))

×
∫
X
φ(x′; µ̂, Σ̂)φ(x′;Ax+ g(q,u, q′),V) dx′ (B.11)

=

Nq∑
q
′
=1

M∑
m=1

Iq∑
i=1

wα,y
m,n+1(q′)wIi (q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(x;µIi (q), ΣI
i (q))φ(yx;µα,y

m,n+1(q′),W + Σα,y
m,n+1(q′))

× |A−1|φ(x;A−1(µ̂− g(q,u, q′)),A−1(Σ̂ + V)A−T )

(B.12)

=

Nq∑
q
′
=1

M∑
m=1

Iq∑
i=1

wα,y
m,n+1(q′)wIi (q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(µIi (q);A
−1(µ̂− g(q,u, q′)), ΣI

i (q) + A−1(Σ̂ + V)A−T )

× φ(yx;µα,y
m,n+1(q′, y),W + Σα,y

m,n+1(q′, y))

× φ(x;µα,y

q
′
,m,i,n

(q), Σα,y

q
′
,m,i,n

(q) (B.13)

Line (B.11) follows from one application of (B.1), line (B.12) from (B.3) and another

application of (B.1), and a final product of Gaussian densities gives (B.13). Hence

αgy,u,σ is a Gaussian mixture with NqMIq components. �
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Lemma 5.7 leads to the following theorem concerning the α-functions as Gaussian

mixtures. As expressed in Chapter 5, the α-functions have an infinite number of

components when Y is not finite. In practice, the Gaussian mixture representation is

therefore only feasible for finite Y . We write the expression for αn,g using a summation

over Y, and assume that the number of components for each αn+1,g is finite, but

stress that this will not be the case unless we make the additional assumption that Y

is finite, as discussed in Section 5.6 of Chapter 5.

Theorem B.2. Given RBF approximation (B.4) to 1K(s) and the expression for

αgy,u,σ (B.9), the α-functions satisfy the following.

1. The α-functions αn,g(s) are Gaussian mixtures for all n ∈ [0,N ], for any

sequence of control inputs u0, . . . ,uN−1, un ∈ U .

2. For α
∗(y)
n+1,g(x

′, q′) =
M∑
m=1

wα,y
m,n(q′)φ(x′;µα,y

m,n(q′), Σα,y
m,n(q′)) for all indices ∗(y),

y ∈ Y, and control inputs u ∈ U , αn,g(x, q) is given by

αn,g(x, q) =
∑
y∈Y

Nq∑
q=1

M∑
m=1

Iq∑
i=1

wσ
y,q
′
,m,i,n+1

(q)φ(x;µα
y,q
′
,m,i,n+1

(q), Σα
y,q
′
,m,i,n+1

(q)),

with

wαy,q,l,i,n+1(q) = wα,y
m,n+1(q′)wIi (q)Tyq(y

q|q′,u)Tq(q
′|q,u)

× φ(µIi (q);A
−1(µ̂− g(q,u, q′)), ΣI

i (q) + A−1(Σ̂ + V)A−T )

× φ(yx;µα,y
m,n+1(q′, y),W + Σα,y

m,n+1(q′, y))

µα
y,q
′
,m,i,n+1

(q) = Σα
y,q
′
,m,i,n+1

(q)

[(
ΣI
i (q)

)−1

µIi (q)

+AT
(

Σ̂ + V
)−1

(µ̂− g(q,u, q′))

]
Σα
y,q
′
,m,i,n+1

(q) =

[(
ΣI
i (q)

)−1

+ AT
(

Σ̂ + V
)−1

A

]−1

,

and

µ̂ = Σ̂
[
W−1yx +

(
Σα,y
m,n+1(q′)

)−1
µα,y
m,n+1(q′)

]
Σ̂ =

[
W−1 +

(
Σα,y
m,n+1(q′)

)−1
]−1

.
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Proof. The first part of the theorem is by induction. At time N , αN ,g(x, q) =∑Iq
i=1w

I
i (q)φ(x;µIi (q), ΣI

i (q)) by definition, and is therefore a Gaussian mixture. As-

suming that αj,g(x, q) is a Gaussian mixture for all i = N − 1, . . . ,n + 1, αn,g(x, q)

is ∑
y∈Y

αgy,u,σ(x, q)

which is again a Gaussian mixture by Lemma 5.7, and allowing for an abuse of

notation via the summation over Y .

The second part of the theorem follows directly from the derivation provided in

the proof of Lemma 5.7. �

The concern over the validity of a Gaussian representation of the α-functions is

addressed by discretizing the space Y, as discussed in Section 5.6. Because the α-

functions can only be derived and stored in practice for a finite number of observations,

we proposed a discretization scheme over a region K ⊃ K. For the Gaussian mixture

approximation, this requires a new observation function τ gy , with

τ gy (w|s,u) =

τy(Θ(w)|s,u), if w ∈ Yδ

1−
∑

w∈Yδ τy(Θ(w)|z,u), if w = ψy

, (B.14)

and additionally,

τy(Θ(w)|s,u) ≈ Tyq(y
q|q,u)

My∑
j=1

cjφ
y
j (y

x,i,y
q

j ;x,W). (B.15)

Hence the probability associated with each discretized observation w is approximated

by a Gaussian sum.

We can generate the approximation by considering a numerical integration scheme

to represent the integral τy(Θ(w)|s,u). The region Ki,y
q associated with Θ(w) =

Ki,y
q×yq is subdivided into a finer mesh of points yx,i,y

q

j , j = 1, . . . ,My. These points

are distinct from the representative element yx,i,y
q

of Ki,y
q (with w = (yx,i,y

q

, yq)).

The weights cj are chosen according to the numerical integration scheme.
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For example, if Yx = R, we can divide the interval associated with Ki,y
q into

equally spaced points yx,i,y
q

1 , . . . , yx,i,y
q

My
, with spacing ∆y and yx,i,y

q

1 and yx,i,y
q

My
each an

endpoint of the interval. Weights c1 and cMj
are equal to

∆y

2
, and all other cj equal

∆y. Then, for w ∈ Yδ,

τ gy (w|s,u) =

∫
Θ(w)

τy(dy|s,u)

≈ Tyq(y
q|q,u)

∆y

2
φ(yx,i,y

q

1 ;x,W) +

Mj−1∑
j=2

∆yφ(yx,i,y
q

j ;x,W)

+
∆y

2
φ(yx,i,y

q

My
;x,W)

 . (B.16)

We do not consider w = ψy when doing actual computations, and so do not need a

finite Gaussian sum representation for that case.
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