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Abstract

As automated control systems grow in prevalence and complexity, there is an increasing
demand for verification and controller synthesis methods to ensure these systems
perform safely and to desired specifications. In addition, uncertain or stochastic
behaviors are often exhibited (such as wind affecting the motion of an aircraft),
making probabilistic verification desirable. Stochastic reachability analysis provides a
formal means of generating the set of initial states that meets a given objective (such
as safety or reachability) with a desired level of probability, known as the reachable
(or safe) set, depending on the objective. However, the applicability of reachability
analysis is limited in the scope and size of system it can address. First, generating
stochastic reachable or viable sets is computationally intensive, and most existing
methods rely on an optimal control formulation that requires solving a dynamic
program, and which scales exponentially in the dimension of the state space. Second,
almost no results exist for extending stochastic reachability analysis to systems with
incomplete information, such that the controller does not have access to the full state

of the system.

This thesis addresses both of the above limitations, and introduces novel computa-
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tional methods for generating stochastic reachable sets for both perfectly and partially
observable systems. We initially consider a linear system with additive Gaussian
noise, and introduce two methods for computing stochastic reachable sets that do
not require dynamic programming. The first method uses a particle approximation
to formulate a deterministic mixed integer linear program that produces an estimate
to reachability probabilities. The second method uses a convex chance-constrained
optimization problem to generate an under-approximation to the reachable set. Using
these methods we are able to generate stochastic reachable sets for a four-dimensional
spacecraft docking example in far less time than it would take had we used a dynamic

program.

We then focus on discrete time stochastic hybrid systems, which provide a flexible
modeling framework for systems that exhibit mode-dependent behavior, and whose
state space has both discrete and continuous components. We incorporate a stochastic
observation process into the hybrid system model, and derive both theoretical and
computational results for generating stochastic reachable sets subject to an observation
process. The derivation of an information state allows us to recast the problem as
one of perfect information, and we prove that solving a dynamic program over the
information state is equivalent to solving the original problem. We then demonstrate
that the dynamic program to solve the reachability problem for a partially observable
stochastic hybrid system shares the same properties as for a partially observable
Markov decision process (POMDP) with an additive cost function, and so we can
exploit approximation strategies designed for POMDPs to solve the reachability
problem. To do so, however, we first generate approximate representations of the
information state and value function as either vectors or Gaussian mixtures, through
a finite state approximation to the hybrid system or using a Gaussian mixture
approximation to an indicator function defined over a convex region. For a system
with linear dynamics and Gaussian measurement noise, we show that it exhibits
special properties that do not require an approximation of the information state,
which enables much more efficient computation of the reachable set. In all cases we

provide convergence results and numerical examples.
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Chapter 1

Introduction

1.1 Motivation

The scale and complexity of modern control systems makes the analysis and design
of controllers equally complex. In particular, the push towards fully automated
systems, ranging from vehicles to medical devices to traffic flow and regulation, places
an increasingly high demand on the performance of the controllers designed for
automation. Many of these systems are classified as “safety-critical,” meaning that
the cost of failure is deemed unacceptable, whether that cost is in property, in the

loss of human life, or both.

The ability to assess the performance of such systems, and to determine whether
they meet all desired specifications established in their design, is therefore paramount.
Indeed, controllers should be designed to meet all specifications, and in particular to

meet safety requirements when labeled as safety-critical.

For example, there is increasing interest in the development of unmanned spacecraft
that can perform automated maneuvers, particularly in coordination with other
spacecraft such as rendezvous, docking, and holding formation patterns. In 2005
NASA launched DART, a spacecraft designed to demonstrate automated docking and

close proximity maneuvers between another spacecraft [NAS07]. The mission ended
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Figure 1.1: Artistic rendering of DART and target satellite MUBLCOM. Source:
NASA [NAS07]

prematurely after DART collided with the other craft, costing millions of dollars.
One of the reasons cited for the failure was an inadequate guidance, navigation, and
control software development process. One recommendation was that “simulations
and math models used to validate flight software must be verified and validated to

the same rigorous level as the flight software itself” [NAS06].

Although it was a software failure caused by human error, it does highlight the
need for mathematical models of control systems that are able to adequately verify
the performance of the system in practice, and the need in general for sophisticated

verification tools to ensure that such costly failures do not occur.

Another example of a safety-critical system is the automated, closed-loop control
of anesthesia delivery [DMAQ09]. The anesthetic must be delivered in such a way
as to stay within pre-specified therapeutic bounds on concentration levels subject
to limitations on how quickly the drug can be delivered (infusion rate). Further
complications arise from the uncertain nature of individual patient response, and from
monitoring drug levels and depth of anesthesia [BMSS06]. In order for automated
anesthesia delivery to be accepted as a safe practice, thus meeting regulatory standards,

theoretical guarantees of its ability to satisfy safety specifications are essential.

We are concerned in this thesis with designing controllers and analyzing perfor-
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mance, particularly in relation to safety specifications, of certain classes of systems,
such as space docking maneuvers and automated anesthesia delivery. In these two
examples, the system benefits from safety verification, in addition to controller syn-
thesis that assures safety specifications are met. However, there are a wide range of
examples for which the techniques presented in this thesis are applicable. Analysis
and control for safety specifications can and has been applied to areas from motion
planning algorithms to routing packets through wireless networks. The stochastic
techniques we focus on are also desirable in general for cyber-physical systems, whose
integration of modal logic into physical processes makes them both complex to model
with certainty and often safety-critical. Generating probabilistic assurances of safety
that are not overly conservative and that can adequately capture behavior and
performance characteristics are essential for such systems, and is the focus of this

dissertation.

1.2 Reachability Analysis for Hybrid Systems

We consider safety requirements in the form of bounds on the state of the system,
so that if the state falls outside of some predefined region of the state space, it is
considered unsafe. Our approach employs reachability analysis, which is commonly
used to determine whether a control system satisfies given specifications, such as

safety.

There are three properties that fall under the general concept of reachability
analysis, and all are intricately related. First is reachability, which refers to controlling
the state of the system to a given target region within some time horizon. The second
is viability, alternately referred to as safety, which refers to controlling the state of
the system to remain within predefined safe parameters, or a set of states that has
been deemed safe. The third is reach-avoid, which combines reachability and viability
objectives to control the state of the system to reach a target region while in the
interim remaining within a safe region. As we will describe in subsequent chapters,

these objectives can all be studied within the same framework.
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In particular, reachability analysis is concerned with generating the set of all
initial states that satisfy the given objective (i.e. the set of all initial states that will
reach the target set, or the set of all initial states that will remain within the safe
region) referred to as the reachable set, viable set, or reach-avoid set, depending on
the objective of interest. For control systems, reachability analysis takes possible
control inputs into account by determining whether a controller exists to satisfy the
objective. A related problem of invariance assesses whether the state of the system
remains within a given region for all possible controllers. Dependent on the method
used to compute reachable sets, reachability analysis can also be used to synthesize
controllers to meet the given specifications. Synthesizing a controller to meet the

reachability specifications proves its existence.

Reachability analysis is often addressed in the context of hybrid systems (e.g
[LTS99], [GLQO6]). A hybrid system provides a general modeling framework well-
suited for a wide range of applications. It allows for versatile dynamics that incorporate
codependent discrete and continuous states, often exhibited in systems that may switch
between different modes of operation. Safety verification and controller synthesis
for systems that integrate hierarchical mode logic with nontrivial physical dynamics
(often modeled by differential equations) is both highly complex and essential, given
that many modern control systems exhibit such behavior. There is a large body of
literature on hybrid system modeling and control (e.g. [ASLI3], [BBM98], [AHS96]),
and hybrid systems have been used as a modeling framework for applications ranging
from air traffic management [TPS98] to analyzing motor skills of patients with

Parkinson’s disease [OMAMI11].

1.3 Stochastic Hybrid Systems

Most systems are subject to some form of uncertainty, whether from wind patterns
affecting aircraft flight, the sometimes unpredictable response of a patient to anesthe-
sia, or from nonlinearities and other factors that are overly complex, or simply not

known, and therefore cannot be included in our models. Especially when verifying
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safety and other specifications of the system, these uncertainties should be taken into
account in order to have accurate assessments of system performance (or to recognize
when we cannot have accurate assessments). Modeling a system as stochastic allows
the state to evolve randomly, but with some notion of which states are mostly likely
to occur. This is distinct from a model that incorporates uncertainty in the form of a
disturbance whose behavior is completely unknown, but whose impact on the model

may be confined to a certain range of possibilities.

Reachability analysis for uncertain hybrid systems typically treats the disturbance
as a bounded input to the model. The disturbance acts as an adversary, behaving in
direct opposition to the controller and the given objective. This enables a dynamic
game formulation of the reachability problem [KV02], [GLQO6], [DKS*13], and the
controller and reachable set are then robust to the worst-case manifestation of the

uncertainty:.

A stochastic hybrid system considers stochastic transitions in either the discrete
mode, the continuous dynamics, or both. Rather than assume worst-case scenarios,
we can assign likelihoods to different possible hybrid states. One advantage of a
stochastic hybrid system (SHS) model is in the equivalent notion of probabilistic
reachability. Rather than generate the set of initial states that reach or remain within
a given region of the state space, we can produce the set of initial states that do so
with a certain probability. This is particularly useful when uncertain events may
drive the system into an unsafe region, but with such a small likelihood that they
can be ignored. Depending on the application, a 99 percent probability of satisfying
the reachability objective is most likely tolerable. We therefore choose to confine our

attention to stochastic systems.

One of the first SHS models was developed in [HLS00], and describes the continu-
ous state process with a stochastic differential equation. Mode transitions remain
deterministic, but occur at stopping times associated with the diffusion process (see
[Res02] for a description of stopping times). The stopping times, and stochastic
transitions occurring at each stopping time, lead to the notion of an embedded Markov

process, over which some properties of the original SHS can be verified. This model
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was extended in [PHO6] to include stochastic mode switching as well. A general SHS
model was proposed in [BLO6] using a new concept they term a Markov string, which

is essentially a sequence of Markov processes.

The additional complications from introducing stochastic dynamics into the hybrid
system framework are significant. Combining a jump process (for mode switching)
and a diffusion process (for continuous state evolution) leads to measurability concerns
regarding events of interest, such as identifying stopping times and reachability events.
These concerns are addressed in [Buj04], which uses Dirichlet forms associated with
a right-Markov process to study reachability, and again in [BLO7], which employs
martingale theory and characterizes reachability in terms of variational inequalities.
Although these papers establish some theoretical foundations for posing reachability
as a well-defined problem over an SHS with “nice” properties, their use for practical

purposes is at present limited.

These concerns led to the development of an equivalent discrete time stochatic
hybrid system (DTSHS) [APLS08]. In discrete time, many of the measurability
complications arising from a continuous time model disappear, and numerical solutions
to reachability problems can be obtained. For this reason, we are concerned only
with discrete time systems in this thesis, although as will be seen, computational

methods remain limited in the size and scale of problems they can address.

1.4 Computational Approaches

The reachability problem can be equivalently posed as an optimal control problem.
This is true for reachability in general, and is not specific to hybrid systems, deter-
ministic systems, etc. The optimal control formulation introduces a cost function
that assigns a reward of one to states that remain safe, or reach the target set, and
assigns a reward of zero to all other states (see, e.g. [LTS99], [TLS00]). Alternately,
the cost function can be formulated as a signed distance function to the target set

(for backwards reachability), so that all states for which the cost function is negative
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are inside the reachable set [TMBOO03]. Through the optimal control formulation, the

vast literature on computing optimal costs and optimal controllers can be utilized.

Specifically, the reachable set is characterized as the zero level-set of the value
function associated with the optimal control objective [TMBOO03], [Lyg04], [MBT05].
The value function is the viscosity solution to a Hamilton-Jacobi equation (a first order
partial differential equation), which arises from Bellman’s principle and the dynamic
programming formulation utilized in optimal control problems [Ste94]. Computational
methods for generating the level-sets are presented in [MT02], [Mit08]. All of the

above results consider continuous time systems.

The Hamilton-Jacobi formulation can in some cases still be applied to reachability
analysis for continuous time stochastic systems, as in [MT05] and [KR06], although
neither allows for a control input. Switching to discrete time, however, makes
the inclusion of a control input easier. The reachability problem for a controlled
discrete time stochastic system (hybrid or otherwise) can again be expressed as an
optimal control problem, now drawing upon the related literature for Markov decision
processes and discrete time stochastic optimal control [Ber05], [BS96]. Because of
the stochastic nature of the state, the cost function is modified from the binary cost
function described above, so that the reward of zero or one is placed inside an expected
value, which in turn gives the probability of safety or reachability, starting from some
initial state. Dynamic programming formulations for the safety/reachability problem,
reach-avoid problem, and a dynamic game formulation, are given in [APLS08], [SL10],

and [DKS™'13], respectively.

One significant drawback to the dynamic programming formulation (for both
stochastic and deterministic systems), is that its numerical implementation requires
a discretization of the state space. The computation time scales exponentially in the
dimension of the state space, a problem known as the “curse of dimensionality.” Hence
for systems lying in higher dimensions, i.e. for hybrid systems with a continuous
state that lies in R" for n greater than three or four, computation time to produce
the reachable or viable set is so great that a solution is essentially unattainable.

Alternative methods for generating reachable and viable sets are therefore desirable.
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For deterministic systems some methods rely on over- or under-approximating
the reachable set using shapes such as ellipses [KV07] or zonotopes [Gir05], or
characterizing the convex reachable set using support vectors [GG10], although all
of these methods require linear system dynamics. More recently, these results were

extended to generating viable sets as well [MKM™"13], [KO].

Alternately, there has been a great deal of work on producing abstractions for both
deterministic and stochastic systems, which are simpler to analyze but exhibit the same
properties as the original system (for instance [Girl2], [ADB11]). Abstractions for
reachability analysis of stochastic hybrid systems are often a finite state approximation
to the original system, and dynamic programming is then used for the discretized
system [AKLP10], [SA13]. Finite state abstractions can also be used as inputs
to model-checking tools such as PRISM [KNP11], that have been developed to
verify properties of finite state systems, such as Markov decision processes, using
dynamic programming and abstraction refinement [KKNP10]. These model-checking
techniques are still limited by the size of the finite state abstraction, and are not
amenable to complex systems that require a large number of finite states to generate

accurate reachability probabilities.

Finally, approximate dynamic programming techniques that employ Monte-Carlo
sampling and basis function approximations to the value function generated by the
dynamic program are possible, but generally lack convergence results or bounds on

the relation between the approximation and the true reachable set [KSS™13].

1.5 Extension to Imperfect State Information

A significant portion of this thesis is devoted to computational considerations of
discrete time stochastic hybrid systems with the added constraint that the controller
does not have access to the true state of the system. Most of the computational
results for reachability analysis of even deterministic hybrid systems are limited to

low dimensional problems, and other approaches that try to mitigate the effects of the
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curse of dimensionality are restricted to very specific classes of systems (i.e. linear).

Adding an observation process further complicates an already difficult problem.

We specifically consider a stochastic observation process. This is particularly
useful for systems that rely on sensors to take state measurements that may be
inaccurate or corrupted by noise. Spacecraft rendezvous and docking procedures are
a prime example of a system that must be carefully controlled in the presence of

limited, noisy sensor readings.

When the state is not perfectly observed, some form of estimate must be generated
that allows for optimal control of the system subject to the limited information
available. Unlike linear quadratic Gaussian (LQG) regulators, in which an estimate
of the state can be used to produce an optimal control law, state estimation cannot in
general be considered separately from the control problem. There has been extensive
work on hybrid state estimation without considering the optimal control problem
simultaneously, i.e. where the main objective is to reconstruct the hybrid state as
accurately as possible given a noisy or incomplete measurement (see for instance

[HW04], [LH12], [KKZ03]).

Almost no work has been done, however, on reachability analysis for a controller
with access only to an observation process (an optimal control problem). The
work that has been done mainly focuses on deterministic hybrid systems subject to
unknown (but not stochastic) disturbances. A hybrid system with hidden modes
(unknown to the controller) is considered in [VdV12], and treats estimation of the
mode separately to generate a non-deterministic information state that includes the
mode estimate, to determine the set of initial states that cannot be controlled to stay
within the safe region. A more general uncertain system with a form of input/output
order preservation between states and observations (the output must be at most
two-dimensional and bounded by extremal trajectories) is considered in [GdV14],
where an information state is generated that represents the set of all possible states
the system could be in given the observed output, and the output is controlled to

remain outside of an unsafe region.
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For a stochastic observation process, we cannot in general produce a finite set of
possible states that could arise given the observation. Instead, we want to consider
the likelihood of possible states given the observation. Stochastic optimal control
of a partially observable system uses a sufficient statistic to condense all necessary
information for control of the system, producing the information state [Ber05]. A
dynamic program over the information state can then be formulated, as if we were
solving an optimal control problem for a system with perfect information. The
technique of producing an information state, and solving an equivalent problem over
the information state, however, is similar for both the uncertain systems in [VdV12],

[GdV14], and for a stochastic system.

Two problems arise when solving the reachability problem for a stochastic system
with partial observations. The first is that the information state is a probability
distribution. Dynamic programming requires iteration over all possible states of the
system to generate the value function evaluated at all of those states; iterating over
all possible probability distributions is infeasible. The second problem is that the
reachability cost function is multiplicative in nature, meaning that the cost of being
in past states affects the cost function at the current time step. For an additive cost
function, the information state is the probability distribution of the current state
of the system conditioned on all past observations and control inputs [Ber05]. The
cost function for the reachability problem is non-additive, and so the conditional
distribution of the state is no longer sufficient for optimal control. These concerns
are the focus of a significant portion of this thesis, and are described in greater detail

in subsequent chapters.

1.6 Contributions and Organization

The main focus of this thesis is on the computation of reachable and viable sets for
stochastic systems, especially in the presence of partial observations. We make several
important contributions to the advancement of reachability analysis as a verification

tool for more complex and realistic systems, i.e. systems of higher dimension and
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systems that rely on sensor measurements and observations for control. These

contributions are described in detail in the following chapters, and summarized here.

1. Development of two novel optimal control formulations to compute stochastic
reachable sets for moderate dimensional systems with linear time-invariant
(LTT) dynamics: 1) Particle approximations that produce a mixed integer-linear
program, and 2) Convex chance-constrained optimization. We apply both

techniques to a four-dimensional spacecraft rendezvous problem.

2. Derivation of an information state and dynamic programming formulation to
generate stochastic reachable sets and controllers for a partially observable

discrete time stochastic hybrid system.

3. Development of two novel computational techniques for generating approximate
stochastic reachable sets for partially observable discrete time stochastic hybrid
systems: 1) Finite state approximations, and 2) Gaussian mixture approxima-
tions. Both methods are proven to provide convergence to the original reachable

set, and their performance is demonstrated on a temperature regulation problem.

4. Derivation of the information state as equal to a truncated Gaussian distribution
for an LTI system with Gaussian measurement noise. An adaptive gridding
scheme is also established for the observations. Computational results are
provided for a two-dimensional temperature regulation problem and a three-

dimensional anesthesia delivery problem.

Figure 1.2 gives an overview of both existing computational methods for stochastic
reachability analysis and the methods proposed in this dissertation, and highlights

distinguishing features of each method.

1.6.1 Publications

Most of the work presented here has previously been published, or submitted for
publication. The work of Chapter 3 is presented in:
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[i] K. Lesser, M. Oishi, and R.S. Erwin. Stochastic reachability for control of
spacecraft relative motion. In IEEE Conference on Decision and Control,

pages 4705 - 4712, 2013.
The results of Chapter 4 are published in

[ii] K. Lesser and M. Oishi. Reachability for partially observable discrete time
stochastic hybrid systems. Automatica, 50(8):1989-1998, 2014.

The results of Chapter 5 have been submitted for publication in IEEE Transactions
on Automatic Control and for presentation at Hybrid Systems: Computation and

Control as part of CPS Week.

[iii] K. Lesser and M. Oishi. Approximate verification of partially observable
discrete time stochastic hybrid systems. IEEE Transactions on Automatic

Control, 2014. Submitted, under review.

[iv] K. Lesser and M. Oishi. Finite state approximation for verification of partially
observable stochastic hybrid systems. Submitted to Hybrid Systems:
Computation and Control, 2015.

The results of Chapter 6 have been submitted for presentation at the American

Control Conference.

[v] K. Lesser and M. Oishi. Computing probabilistic viable sets for partially
observable systems using truncated Gaussians and adaptive gridding.

Submitted to American Control Conference, 2015.

Although not discussed in this dissertation, we have applied stochastic reachability
techniques to several relevant and well-motivated problems. The first is the problem of
assessing routing performance and generating packet delivery guarantees in multi-hop
wireless network routing. By modeling a wireless network as a dynamical system whose
state includes the availability of links in the network, we were able to apply stochastic
reachability analysis to the system in order to generate probabilistic guarantees of

packet delivery, as well as an optimal packet routing scheme.
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[vi] T. Biswas, K. Lesser, M. Oishi, and R. Dutta. Using linear system reliability
to obtain theoretical understanding of wireless routing. To appear in The

IEEFE Global Communications Conference, 2014.

The second is a motion planning problem in the presence of stochastically moving
obstacles. We were able to generate stochastic reachable sets that indicate the pairwise
probability of collision between a controlled robot and a stochastically moving obstacle,
and use these pairwise probabilities to either weight edges of a roadmap (where a
higher weight indicates a higher probability of collision) or to generate potential fields
that steer the robot away from areas of high probabilities of collision. The robot
can then navigate through an environment with hundreds of obstacles with a high

probability of success.

[vii] H.T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Aggressive
moving obstacle avoidance using a stochastic reachable set based potential
field. In The International Workshop on Algorithmic Foundations in Robotics,
2014.

[viii] N. Malone, K. Lesser, M. Oishi, and L. Tapia. Stochastic reachability
based motion planning for multiple moving obstacle avoidance. In Hybrid

Systems: Computation and Control, pages 51 - 60, 2014.

1.6.2 Organization

Chapter 2 provides an overview of some of the main themes of the dissertation,
including a more detailed description of stochastic reachability analysis, and how it
is formulated and solved as an optimal control problem. We define a discrete time
stochastic hybrid system, and also review Markov decision processes (MDPs), since
the optimal control of a discrete time SHS is directly related to the optimal control

of an MDP.

In Chapter 3 we consider a stochastic system with linear dynamics and perfect state

information. We present two computational alternatives to dynamic programming
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for reachability analysis, which enable reachable set calculation for systems whose
state is greater than three dimensional. The methods considered are a) particle
approximations to reachability probabilities (i.e. a sampling based method) and b)
conversion of the reachability probability to a chance constraint inside of a stochastic
optimization problem. The work of Chapter 3 is motivated by a spacecraft rendezvous

and docking application, and numerical results are given for a simple docking example.

We switch focus in Chapter 4 to reachability analysis subject to a stochastic
observation process. We give additional background information on partially observ-
able stochastic hybrid systems and their optimal control, as well as an introduction
to partially observable Markov decision processes (POMDPs). As with MDPs, the
optimal control of a POMDP is directly related to the optimal control of a partially
observable discrete time stochastic hybrid system. The theoretical foundations for
formulating the reachability problem under partial observations are then presented,
by deriving an information state and dynamic programming formulation over the
information state. We prove equivalence between the dynamic program over the

information state and the original reachability problem.

The information state and dynamic program are not directly useful for computation
of reachable sets. We therefore focus in Chapter 5 on how the formulation of Chapter
4 can be used to generate approximate reachable and viable sets. We consider two
approximation strategies. The first generates a finite state approximation to the
SHS, similarly to some of the abstraction methods mentioned above. The second
introduces a Gaussian mixture approximation for both the information state and
value function. Both methods then utilize an existing approximation strategy for

POMDPs based on sampling information states.

Chapter 6 provides improved numerical results as compared to the previous chapter
by considering a subclass of systems with linear dynamics and no process noise (only
the observations are stochastic). Considering this type of system allows us to compute
the reachable set more efficiently, by representing the information state as a truncated
Gaussian and employing an adaptive discretization scheme for the observations. The

adaptive grid is designed to reduce the number of finite observations we consider,
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while simultaneously minimizing the error in the approximation. We are able to

implement the new approach on an example of automated anesthesia delivery.

Finally, concluding remarks and a discussion of future directions are given in
Chapter 7. Supplementary material to Chapter 4 is given in Appendix A, which
contains the proof of Theorem 4.1 and Theorem 4.2. Appendix B contains supple-
mentary material for Chapter 5, including the proof of Lemma 5.6 and Lemma 5.7, as
well as a complete description of how Gaussian mixture approximations are generated

for the information state and value function.
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Chapter 2

Preliminaries

We begin with a general overview of the type of problem we wish to solve, the
dynamical system model over which it is posed, and a solution framework from an
optimal control perspective. We first describe discrete time stochastic hybrid systems
in Section 2.1. We then discuss the reachability problem and its variants in Section
2.2, give an overview of Markov decision processes in Section 2.3, and close with
how reachability can, in theory, be solved in a similar manner to Markov decision

processes using optimal control techniques, in Section 2.4.

2.1 Discrete Time Stochastic Hybrid Systems

The term “stochastic” implies a system with uncertainty, and in particular with
uncertainty that may be quantified in the form of a probability distribution. In other
words, a stochastic system or process progresses in time randomly [Res02], but all
outcomes can be assigned a likelihood of occurring based on some prior knowledge
or assumptions. Where the uncertainty comes from, and how it is modeled, varies.
Uncertainty may be in the model itself, or in external factors beyond our control (wind
affecting an aircraft, demand for a product on any given day, etc.). Incorporating
stochastic uncertainty brings a level of robustness to a model without necessarily

being overly conservative, and is accompanied by a host of well-developed probabilistic
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tools to help in its analysis.

Stochastic hybrid systems provide a modeling framework well-suited to a wide
range of applications, including complex and interconnected systems. Stochastic
hybrid systems couple physical processes, that are often naturally expressed in
continuous spaces, with discrete or finite state processes, often associated with
computer logic and switching modes. The discrete state may affect the evolution of
the continuous dynamics, and the continuous dynamics may affect when the discrete
state changes. Both the discrete and continuous dynamics may be characterized by
stochastic kernels, the product of which determines the stochastic transition kernel

governing the combined discrete/continuous state of the system.

We present a discrete time stochastic hybrid system (DTSHS) model, adapted
from [APLSO0S].

Definition 2.1. (Discrete Time Stochastic Hybrid System). A DTSHS is a tuple

H=(X,Q,U,T,,T,) where

1. X CR" is a set of continuous states

2. Q =Aq, ¢, ...qu} is a finite set of discrete states with cardinality N,, with
S =X x Q the hybrid state space

3. U is a compact Borel space which contains all possible control inputs affecting

discrete and continuous state transitions

4. T, : B(R") x @ xS xU — [0,1] is a Borel-measurable stochastic kernel which
assigns a probability measure to x,,; given S, = (Tn,n): Ups Qi1 for all n:

T,.(dx, 1 € Blgpi1s Sp,u,) where B € B(R"), the Borel o-algebra on R"

5. T,: Qx QxU —[0,1] is a discrete transition kernel assigning a probability

distribution to q,.1 given q,,u, for all n: T, (qui1]qn, un)

The restriction to Borel spaces and functions ensures that integration of the

transition kernels T, and T} over the hybrid state space S is well defined. Kernels T,
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and T}, can be combined for ease of notation to produce the hybrid state transition

kernel
7,(ds" | s,u) = T,(d' | z,q,u,¢")T,(¢ | z,q,u), (2.1)

with > /o I 7,(dz’, ¢’ |z, q,u) = 1. The discrete state g, ., update depends on q,, z,,
and u,,, and the continuous state =, update depends on z,,, u,,, and according to the
specific problem may also be governed by ¢,, ¢,.1, or both. For ease of notation, we
assume that the discrete state updates first, and the updated discrete state affects the
continuous state, i.e. that T, (dx, |z, , Uy, ¢.41), although modifying T, to include

¢, would not alter any subsequent results.

The uncertainty in the evolution of both z and ¢ is defined by the functions T,
and T}, which are problem specific. These functions will be defined explicitly as

necessary in subsequent chapters, dependent on the specific problem to be analyzed.

The control inputs u are chosen according to a policy, which maps observable
outcomes to control inputs. When the state of the system is perfectly observed and
available to the controller at all times, the policy maps states to control inputs. A
Markov policy chooses control inputs based on information available at the current
time step only, and is associated with generating optimal control inputs for Markov

decision processes [Ber05], (Section 2.3).

Definition 2.2. For a DTSHS H, a Markov policy m for some time horizon N is a
sequence of functions, T = (fg, .., fin_1), such that u, : S — U. The policy is said
to be stationary if u, = p for all n € [0, N], i.e. the mapping does not depend on the

time.

The set of all Markov policies is denoted II. The optimal policy for an optimal
control problem over a finite time horizon is generally non-stationary [Put05], and
we will mostly consider only non-stationary policies. A Markov policy is equivalent
to a simple feedback control law, because it is based solely on the state of the system
at any time. A policy representing an open loop problem would map a single state s,
to a vector of control inputs, u(sy) = [ug, ..., uy_1]. An open loop formulation will

be used in Chapter 3 but otherwise Definition 2.2 is assumed.
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For a fixed policy 7, the DTSHS H evolves as a stochastic process
{s, = (z,, qn)}i:[:o. The transition kernel 7, assigns a likelihood to state s’ conditioned
only on s and u, and so the DTSHS as defined is specifically a controlled Markov
process. As shown in [APLS08], the process {s,} is a Markov process defined on
space Q = 8" endowed with o-algebra B(2) and probability measure P™, which is
uniquely defined dependent on transition kernel 7,, control policy 7 € Il and initial

state sg.

The DTSHS #H is equivalent to a Markov decision process [Put05] with state
space S, control space U, and transition function 7,. This equivalence will be used
repeatedly throughout the remaining chapters, and in particular will be exploited

when examining a partially observable DTSHS in Chapters 4 - 6.

2.2 Reachability Analysis

We would often like to verify certain properties of H, i.e., if there are states deemed
“unsafe”, is it possible for the state to become unsafe when initialized from various
starting conditions? Similarly, if there are desirable states that should be reached, are
these states indeed reachable from various starting conditions? Can we characterize
the set of all initial states that remain safe for a given time horizon, or will reach a

target set of states in a given time horizon?

Verification of such safety and performance specifications can be framed under the
guise of reachability analysis, which is a term used generally to refer to several system
properties that can all be verified using the same or similar techniques. Specifically,

we present three related terms: Viability, reachability, and reach-avoid.

Viability (sometimes referred to as safety verifiction) addresses the problem of
determining whether the state of a system will remain within a predefined region of
the state space for a given time horizon. Reachability refers to whether the state of a
system can reach a predefined target region within a given time horizon. Reach-avoid

is a combination of the two, and determines whether the state of the system can
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reach a target set while avoiding an unsafe set of states. The set of all initial states
satisfying these properties are denoted the viable, reachable, and reach-avoid sets.

Fig. 2.1 shows an example of all three sets.

Safe Set, K

Target Set, T
Viable Set

Reachable Set | | Reach-Avoid Set |

Figure 2.1: Example of viable, reachable, and reach-avoid sets.

The added advantage of reachability analysis is that it provides a means for
controller synthesis as well, when the system being studied has a control input.
The question can be posed as: “Does there exist a controller for which the desired
specification (safety, reaching a target, etc.) can bet met?” For the stochastic setting,
reachability analysis requires an additional specification, however. Rather than asking
whether the specification is met (i.e. a controller exists), with a yes/no answer, the
question must be posed in terms of probabilities. For some applications we would like
to guarantee safety or reachability with probability equal to one. In other applications,
such a requirement may be overly conservative, and a threshold probability of 1 — «
may be tolerated. In this sense, probabilistic reachability is flexible, and can be
more informative than in the deterministic case if probabilities of failure are low but

nonzero.

Since we want to determine whether a controller exists such that the controlled
system satisfies some property with a given probability, it is natural to ask what
is the maximum probability of satisfying that property, and in turn what control
scheme produces the maximal value. Probabilistic reachability analysis is therefore

naturally expressed as a stochastic optimal control problem, with the added benefit
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of controller synthesis, as will be shown in Section 2.4. First, we define three relevant

reachability problems.

Problem 2.1. Given a controlled DTSHS H (Def.2.1), a compact Borel set K C
X x Q, an initial state sy € K, and a time horizon N, we would like to find the

maximum probability that state s, stays within K for allm =0,... N:

p{,\ifab(so;K) =supP"[s; € K,...,sy € K|s]. (2.2)
well

We may also wish to find the set of all sy € K such that pi\ifab(so; K)>1-—«, known

as the probabilistic viable set:
Viab™ (a; K) = {so e K : pNo(s0: K) > 1— a} . (2.3)

Problem 2.2. Given a controlled DTSHS H (Def.2.1), a compact Borel set T C
X x Q, an initial state sq € S, and a time horizon N, we would like to find the

mazximum probability that state s,, reaches T for some n € [0, N|:

Pran(s0:T) =supP™ [In € [0, N] s.t. s, € T)s) - (2.4)
mell

We may also wish to find the set of all sy € S such that pﬁ\e[ach(so; T)>1—«, known

as the probabilistic reachable set:
Reach™ (a; T) = {30 €S pNon(seT)>1— a} . (2.5)

Problem 2.3. Given a controlled DTSHS H (Def.2.1), the compact Borel sets
KCXXxQandT C X x Q, an initial state sy € K, and a time horizon N, we
would like to find the mazimum probability thst state s,, reaches T for some n € [0, N],
and stays within K until time n:

P (so; K, T) =supP™ [3n € [0,N] s.t. s, €T,

well

andVi=1,...,n—1,s; € Kl|sg]. (2.6)

We may also wish to find the set of all sy € K such that pg(so; K, T)>1—«, known

as the probabilistic reach-avoid set:

RAN(o; K, T) = {SQ €S: ph(sg; K, T)>1— a}. (2.7)
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The above three problems can be posed in a related fashion. For instance, Problem
2.2 is the dual to Problem 2.1 [TMKA13]. Letting pﬁab(ﬂ, So; K') and P (7, 50: T)
be the viability and reachability probabilities for a given policy m, respectively, the
reachability probability can be expressed in terms of a viability probability.

pi\e{ach(so; T) =1- ;rellfl ple\ifab(ﬂ-7 505 TC) (28>

and similarly

Phan(s0; K) =1 — }Trelgpﬁiach(m s0; K°). (2.9)

The reach-avoid set is inherently a subset of either the reachable or viable sets,
because the probability of meeting both specifications will always be bounded above
by the probability of meeting only one of those specifications. In addition, the
reachability problem can be formulated as a reach-avoid problem with an empty avoid
set (K = 8), so that the objective is to reach a target set while remaining within the

entire state space S, which is trivially satisfied.

Dependent on the type of solution strategy employed, the existence of a solution
for one of the above problems implies the ability to solve the other problems, although
which formulation (reachability, viability, or reach-avoid) is easiest to consider from a
computational standpoint will be problem specific, and dependent on the structure

of the target or safe set being considered.

2.3 Markov Decision Processes

Problems 2.1 - 2.3 can be formulated as an optimal control problem, in a similar
manner to the optimal control of Markov decision processes (MDPs). As shown in
[APLSO08] and [SL10], the reachability /viability problem and reach-avoid problem,
respectively, can be formulated as stochastic optimal control problems and solved
using dynamic programming, similar to how MDPs are formulated and solved [Put05].
We therefore first provide an overview of MDPs, to clarify the relation between

reachability analysis of a DTSHS and optimal control of an MDP.
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Definition 2.3. (Markov Decision Process J) An MDP is a tuple J = (S,U,T, R)

where

1. S is a finite set of states
2. U 1s a finite set of control inputs

3. T :8%x8xU — [0,1] is a state transition function assigning a probability

distribution to state s, ., given state s, and action w, for all n: T(s,1]S,, Uy,)

4. R:S8 xU — R is a function assigning a reward at each time step n, given the

current state s, and action u,, R(s,,u,)

For the system to be Markov, the state s, at time n must include enough
information to make optimal decisions, i.e. the optimal control policy is Markov
[SPK13] (Definition 2.2). The transition function 7" also must assign a probability to
being in state s,, conditioned only on the previous state s,,_; and control input u,,_;.

Additional information does not change the probability [Res02], so that
T(SplSn_1s--3S0sUn_1s---,Ug) = T(Sp|Sp_1,Un_1)- (2.10)
Generally, when considering the optimal control of an MDP, the control objective

is to maximize a reward (or cost) function expressed as the expected value of a sum of

rewards R(s,,u,), accrued at each time step n, as a function of the state and control

input, i.e.
N
max ;R(sn,un(sn))]- (2.11)

The linearity property of expected values allows (2.11) to be broken down sequentially.
Minimizing the multi-stage problem (2.11) reduces to a series of one stage optimization

problems.

This simplification comes from Bellman’s Principle, which states that any optimal
policy over a time horizon [0, N] will necessarily be optimal over any sub-horizon

[n1,ns] € [0, N]. In other words, whatever the decision at time n; — 1, the policy
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over [n,,ny| will be optimal given the state resulting from the decision at time n; — 1

[Pow11].

Bellman’s principle allows the cost function to be broken down into a series of
value functions, representing the “cost-to-go” starting in state s,, and acting according
to the optimal policy until the terminal time N. For cost function (2.11), the value
function at time n is recursively defined in terms of the value function at time n + 1.

Vi (s,) = max ¢ R(s,,u,) +7 > Viea (8)7(|s,u) (2.12)

uel >
s €S

The optimal cost over horizon N is therefore computed backwards in time. The value
function is first calculated at time N, and control input u, is determined, for each
state sy. Then Vy is used to compute Vy_;, etc. The ability to break down the
optimal control problem into a sequence of smaller subproblems is known as dynamic

programming. The procedure of iteratively solving (2.12) is called value iteration.

The policy is implicitly defined as a look-up table that assigns an optimal control

input at each time step according to

n(s,) = argmax V' (s,,). (2.13)

ueU

The maximum operator “max” is used in place of the supremum operator “sup”

because for U finite, the maximum is attained. For an infinite time horizon N = oo,
the subscript n in (2.12) and (2.13) is dropped. The value function (2.12) is iteratively
solved until some convergence criteria is met, such as ||V,, — V,,_;|| < €. The infinite
reward for starting in any state s is then V™ (sy), with V" the final value function

once the convergence criteria is met. The optimal policy is stationary, and given by

p(s) = arg max, e, V7 (s).

2.4 Stochastic Optimal Control Formulations

Although similar in nature to an MDP, the stochastic optimal control formulations

for Problems 2.1 - 2.3 have more complex cost functions. The viability problem, as
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shown in [APLS08], actually has a multiplicative rather than additive cost function

structure, and the reach-avoid problem has a sum-multiplicative cost function [SL10].

The probability (2.2) of Problem 2.1 can be equivalently expressed as an expected

value:

mell

N
pf/\ifab<80; K) sup [Eﬂ [H 1K(Sn)
n=0

80] (2.14)

with E™ the expected value taken with respect to the probability measure P™ induced

by policy w. The notation 1, denotes the indicator function over set K, with

1, ifse K
1 (s) = . (2.15)
0, else
The equivalence arises because P[s € K] = E[1x(s)] for any set K and random

variable s. This property is well-known and easy to verify. The property can be more
generally stated as: For an event B, the probability that B occurs is equal to the

expected value of the indicator function over event B.

For the viability problem, the event of interest is remaining within K for N time

steps. Writing it as a product of indicator functions gives

N 1, ifs,€c K¥n=0...,N
I tx(s0) = . (2.16)
n=0

0, otherwise

The probability (2.2) is hence equal to the expected value over the product of indicator

functions.

Skipping to the reach-avoid problem 2.3 (reachability will follow directly from
the reach-avoid formulation), we can derive its cost function in a similar manner to
viability. Again, indicator functions are used to express the probability (2.6) as an

expected value.
In this case, the event of reaching set T" while remaining within set K is given as

n_l 1, ifdnst. s, €T ands;, e KVi=0,....,.n—1
1T(8n): .

0, otherwise
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(2.17)

Then (2.6) is equal to

N
Pra(s0; K, T) = sup E7 [Z

well

30] (2.18)

n=0
The reachability probability (2.4) is equal to (2.18) with K = S, or to the viability
probability (2.14) with respect to T using the infimum rather than supremum over

all policies, as in (2.8).

Both (2.14) and (2.18) have a value function representation and can therefore be
solved using dynamic programming. The value function for the viability probability

is recursively defined as

Vz@,viab(SN) = 1k (sy)

(2.19)
Vrzviab(sn) = sup {1K(Sn> / V;—&—l,viab(sn—}—l)Ts(dSn—l—l‘Sna U)}
S

ueU

so that piay(s: K) = Vi'(se). The optimal policy 7 for Problem 2.1 is then ©* =

(s ihe—r) with

i) = argsup Le(s) [ Viea(suaa)(dsycals. (2.20)
S

ueU

for all n.
Similarly for (2.18), the value function is given by
v]tf,ra(SN> = 17(sy)

Via(2) = sup {msn) s |

ueU S

(2.21)
V:—l—l,ra(sn—&-l)Ts (dsn—i-l |Sn7 u) }

The advantage to the optimal control formulation is that it not only computes
probabilistic viable and reachable sets, but that it also synthesizes a controller designed
to maximize the given objective. The disadvantage is that to feasibly solve Problems
2.1 - 2.3 using the value function representations (2.19) and (2.21), i.e. using dynamic
programming and value iteration, the state space & should be finite and small. If

not, the value function and policy must be generated for a large number of states. In
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particular, for S hybrid, the continuous space X must be discretized [AAP*07]. In
higher dimensions, the discretization leads to prohibitive computation times, and a

trade-off between accuracy and speed of obtaining a solution.

It is the shortcomings of the dynamic programming formulation that motivate

the next chapter.
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Chapter 3

Stochastic Reachability Analysis

with Perfect Observations

This chapter examines two novel methods for the calculation of stochastic reachable
sets. In particular, we examine a) particle (or scenario) approximations to expected
values, and b) conversion of the reach-avoid probability to a chance-constrained
convex optimization problem. Both methods allow for computation of the reach-avoid
set in higher dimensions, as compared to other existing methods for computing
stochastic reachable sets. This work was motivated by the desire to extend stochastic
reachability verification techniques to spacecraft applications, and in particular to
assessing performance of rendezvous maneuvers at close range. Numerical results
for the particle and convex approximations to reachability probabilities are therefore

presented for the spacecraft rendezvous problem.

3.1 Introduction

Current solution strategies for reachability analysis of stochastic systems (namely
dynamic programming) do not extend well to higher dimensional systems because of
the need to use a finite state abstraction, such as a discretization of the state space.

The computational effort required for larger problems renders a solution unattainable.
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Current efforts have been limited to at most three dimensional systems. The focus of
this chapter is therefore on more efficient means of generating probabilistic reachable
sets that do not require discretization of the state space. We examine in particular
the stochastic reach-avoid problem 2.3 of Chapter 2 in order to analyze a spacecraft

rendezvous and docking problem.

The ability to safely perform spacecraft rendezvous and docking maneuvers is
crucial in many applications, for instance in repairing satellites, resupplying the space
station, and other missions. The potential for damage or loss in such expensive
systems, in combination with prohibitively long communication delay, means that
autonomy must be accurate, reliable, and effective despite uncertainties in modeling
and in disturbance forces. For spacecraft dynamics, there are many initial states
from which no control input will lead to a safe or desirable outcome (i.e. successful
docking or rendezvous). The risk of costly failures can be reduced by determining
whether a rendezvous-type maneuver is initialized from a position where success is

guaranteed, or is guaranteed with high probability.

The linearized discrete time Clohessy - Wiltshire - Hill (CWH) equations for
spacecraft relative motion with added stochastic noise can be broken up into in-
plane and out-of-plane motion, i.e. a four-dimensional problem in x, y, , ¥ and a
separate two-dimensional problem in z and 2, within the Hill reference frame [Wie89].
Unfortunately, even the four-dimensional problem is beyond the limits of standard
dynamic programming. This has led us to explore alternative methods for calculating

reach sets which are more tractable for larger scale problems.

The rest of the chapter is organized as follows. After presenting some of the related
work upon which the results of this chapter are based, we describe the general problem
formulation in Section 3.3. The two methods we use for reach-avoid calculations are
given in Section 3.4. Both methods are applied to the spacecraft rendezvous problem
in Section 3.5 and their performance is discussed. Finally some concluding remarks

are given in Section 3.6
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3.2 Related Work

This chapter draws upon existing literature for solving stochastic control problems
with chance constraints in order to develop novel techniques for calculating stochastic
reach-avoid sets for higher dimensional systems. A chance constrained optimal control
problem requires minimizing some objective (such as minimizing the control effort)
while enforcing a probabilistic constraint, such as remaining within a safe region
K with some desired probability. We examine two approaches: The first is based
on sampling from the distribution of the noise to approximate expected values and
probabilities (referred to as a “particle” or “scenario” approximation, see [NS06]),
and was used in chance-constrained predictive control in [BOBW10] amongst others.
The second approach is based on a convex under-approximation of the probability of
remaining within a set K, assuming the additive noise is Gaussian, that allows the
reachability problem to be solved using convex optimization methods. This method
was presented in [BO09] and used again in [VT11], and applied to systems in two
dimensions. In both cases, we exploit the linearity of the dynamics when applying

them to the reachability problem.

While there is extensive literature on control mechanisms for performing spacecraft
rendezvous maneuvers, particularly the use of model predictive control with approach
and docking constraints for successful rendezvous (see, e.g. [WKBE12], [PDCK11],
[HTRM12], [GVC12]), almost no work has been done on characterizing the initial set

of states from which such maneuvers can be performed safely.

3.3 Problem Formulation

The DTSHS formulation of Definition 2.1 is simplified to a single continuous state, so
that S = X = R™. Rather than write s, for the state of the system at time n, we
use x,, to indicate that the state is not hybrid, and is a vector in R™ (to distinguish

between Cartesian coordinate x in R).
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The dynamics that propagate the state are
X1 = Ax, + Bu, + v, (3.1)

with A € R™™, B € R™ and u € R". The Gaussian noise v, € R™ is assumed
zero mean with covariance matrix V. The space of control inputs I/ is assumed a
hyper-rectangle of the form U = {u € R": ||u||; < tyay} for simplicity, although any

convex U is appropriate.

The techniques we utilize to solve Problem 2.3 most naturally express the reach-
avoid objective with a terminal reach condition, i.e. that give the probability of
reaching target set T" at final time IV specifically. All subsequent derivations assume
a terminal reach constraint, and the true reach-avoid probability of (2.6) can be
approximated by combining the reach-avoid probabilities given terminal times n =

0,...,N:

N
P K, T) <) (05 K, T) (3.2)

n=0
with p denoting the reach-avoid problem with a terminal reach constraint. The
summation in (3.2) must of course be capped at one, so that the probability makes

sense.

3.4 Calculating Reach-Avoid Probabilities

The linearity of the system allows us to rewrite the dynamics (3.1) in vector form,
. T T T
1ett1ng X = [Xh Xoy "t XN] , U= [u07 Ug, o0y uN—l] and v = [/007 Uy, o0y UN—I]

Then

X =X, + Hu+ Gv (3.3)
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with X,, H, and G defined as in [SB10].

- - [ B 0 0 --- 0]
Ax
\ AB B 0 --- 0
_ Axq )
X=| | ,H=| A*B AB B --- 0],
N
) AN B
I 0 0
A I 0
G: .
ANfl AN72 [

The problem of finding ﬁfg(xo; K, T) can be posed as a constrained stochastic opti-

mization problem.

Problem 3.1. (Stochastic Optimal Control Formulation)

max e [(1:[ 1K(Xn)> Ip(xy)

Subject to:

x=Xy+ Hu+ Gv
U, EUYn=0,....,.N—1

Problem 3.1 is expressed as a single optimization problem rather than a multistage
one that the value function (2.21) is designed to solve. Therefore, it returns an

open-loop control vector u rather than a feedback policy .

3.4.1 Particle Approximation

When taking the expected value of a function of a random variable f(x) with

respect to some distribution p(x), it is necessary to evaluate an integral of the form
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E[f(x)] = [ f(x)p(z)dz. However, this integral is often difficult or impossible to
solve (as is the case for (2.18), where the dimension of the integral grows quite large).

Instead, it is possible to approximate the integral by drawing independent, identically

distributed random samples (particles) xM x® ... from a proposal distribution q(x)
and calculating a weighted sample mean
. 1 X .
E[f()] = 57 D wif () (34)
i=1

@
with w; = 2 Exu); and ¢(x) chosen so that ¢(x) > 0 whenever p(x) > 0. By the strong
q(x

law of large numbers (and so making some weak assumptions on the boundedness of

f(x) and the moments of p(x)), it follows that E [f(x)] — E[f(x)] as M — oc.

Because we can easily sample from the multivariate Gaussian distribution, we let

q(x) = p(x), where p(x) is Gaussian, and so w; = 1. We therefore draw M samples

v v@ v where vV € RV

vV 0 0
~ o v 0

v~ N(0,Y), V=
0 0 v

We then have M realizations of the dynamics, given by x® = Xg+ Hu + Gv(i), for
1=1,...,M. To approximate the cost function of Problem 3.1 we create an indicator
variable z;, where

1 if X(i), .. .X(i)_ € K and xW eT
- 1 N—1 N (3.5)

0 else

Then ;ﬁﬁ\;(xo; K, T)~ ﬁ Zi‘il z;. Next, if the sets K and T are assumed convex, we
may exploit the property that convex sets can be represented by a finite intersection

of hyperplanes (see [BOBW10]), i.e.

Xy 1 €EKAxy €T — xeﬂ{x: alTxgbl} (3.6)
l
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To convert Problem 3.1 to a mixed integer linear program, as in [BOBW10], we

enforce constraints of the form (3.6) by using z; and (3.5), and some large number C
afxW - <CA—-2z)Vi=1,--- M, 1=1,---, M, (3.7)

so that for appropriately defined a;, b; representing sets K and 7', and C' large enough,
we force z; = 0 when x¥ ¢ K for some 1 <n <N —1,or xg\i,) ¢ T. We want to find

an open loop control u that produces as many z; equal to 1 as possible.

Problem 3.2. (Particle Approximation to Problem 1)

M
maXZZi
-
Subject to:
X(i)zio—l—Hu—{—Gv(i) Vi=1,...,.M
alxV - <C(l—2z) Vi=1,...,M,l=1,..., M,
[tp] < Upax VR =0,...,N—1

5 €{0,1}Vi=1,....M

Problem 3.2 has a large number of variables that grow as the number of particles
M and the number of time steps IV increase, and is therefore still limited in terms of

how many particles can be used and the amount of time given to reach the target.

One advantage to the particle method is that accuracy can be traded for compu-
tation time. Fewer particles can lead to a quick approximation of the reach-avoid
probability for different x;, and those x, that seem to produce larger probabilities

can be recalculated with more particles to obtain a more accurate result if desired.

3.4.2 Convex Chance-Constrained Approximation

An alternative to the particle approximation approach is to reformulate Problem 3.1
by moving ﬁg(xo; K, T) from the objective function to a chance constraint that must

be enforced with probability 1 — a.
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Problem 3.3. (Chance Constrained Formulation of Problem 1)

min o
u

Subject to:
Pra(x0; K, T) > 1=« (3.8)

[tp] < Upax VR =0,...,N—1

Generally, this would not make the problem any easier to solve, since we still
have to evaluate ﬁﬁ\;(xo; K, T). However, because of the linearity and Gaussian noise,
we can actually approximately solve Problem 3.1 by breaking (3.8) into univariate
Gaussian constraints, which are convex (see [BO09], [VT11]). To see this, use the

converse of (3.6) and Boole’s inequality to write
X1 N1 %KVXN¢T$XEU{X: alTX>bl}:
l

Plxiy 1 ¢ K Vxy ¢ T) = P {x cal'x > b,}] <Y Plafx>1b) (3.9)

The inequality in the above expression indicates an upper bound on the probability
of not being in K (or T at time N), and therefore a lower bound on the actual

reach-avoid probability, which is still desirable.

Noting that a; x is a scalar, and o/ x = a] (X, + Hu + Gv), it follows that
al x ~ N(a] (Xo+ Hu), af GVGTa;) has a univariate Gaussian distribution. Applying
(3.9), constraint (3.8) can be rewritten as follows.

M,
(%o K. T) = 1= Y P laf X > | >1-a
=1
M,

:»ZPWXMJ <a

=1
By taking a “risk allocation” approach as in [BOBW10], we can allow for a different
probability of violating each individual constraint, i.e. for each [, P [an > bl] < q,
with > «; = a. We then require each a; > 0 and > oy = a < 1, leading to the

following approximation to Problem 3.3.
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Problem 3.4. (Chance Constrained Convex Approximation to Problem 1)

Subject to:
b — ai x
11— T oA AT SOQVZZ].,...,MZ
ap GVG a;

[tp] < Upaxe VR =0,...,N—1
M,
Zalgl
1=1

OCZZOVZZ:[,...,MI

The function ®( -) indicates the standard normal cumulative distribution function,
which is a concave function so long as its argument is non-negative (®(x) is concave
for all z > 0), implying that 1 — ®(x) is convex for all # > 0. Problem 3.4 is therefore
convex so long as b, — ai x > 0, or oy < 0.5 for all [. If any oy is greater than 0.5, the
reach-avoid probability for the given X, will be quite low, so that we will likely only
be concerned with those instances of Problem 3.4 when the problem is indeed convex,

and hence we are guaranteed a solution.

3.4.3 Particle Approximation Using Feedback

We now show how to calculate ﬁg(xo; K,T) when u = Wx + u, with W block
lower triangular, and wu,, bounded between known maximum and minimum values,
Le. U ={W,uy: |[Wx+ug| < Unax} (Wpax = Umax X [1,...,1]). We only consider
the particle approximation method in the case of feedback, because the chance-
constrained method will no longer be convex, and the constraint in 3.4 involving
P (aszlG_V—alGTT)iw> becomes difficult to enforce. Problem 3.2, however, can be modified
nicely to accommodate a feedback controller.

First, the expression for x must be modified to incorporate feedback in (3.3).

Both x and u can be written as affine functions of the random vector v, as shown in
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[SB10]:

%
= PV +

u u

G+ HK(I-HW)'G
W —HW)'G

X %o+ Huy + HW(I — HW) (X, + Huy)
W(I — HW) (X, + Hug) + ug

o

Since these equations are not convex in the variables W and u,, new variables
Q=W —HW) " and R = (I + QH)U, are introduced to make the equations
convex. The variables of interest, W and u,, can be recovered after solving for
optimal @ and R, as in [SB10]. Note that u is random, because it is a function of
the Gaussian vector v. We therefore cannot impose with certainty constraints on the

maximum and minimum values of u. We instead require E[|u|] < u,,,,, which can

max)

also be evaluated in the manner of (3.4). Problem 3.2 is reformulated as:

Problem 3.5. (Particle Approximation with Feedback)

M
max Z Z;
=1
Subject to:
x = (I+HQ)GVY + I+ HQ)Xy+ HR Vi=1,....M
' — QGv(i) +Qxy+R Vi=1,...,. M
afx" —p<C—-2z) Vi=1,..., M, 1=1,..., M,

1 &
— > [ <,

=1
5 €{0,1} Vi=1,...,M

Q@ block lower triangular

The number of variables and constraints significantly increases in comparison to

Problem 3.2, as does the solution time.
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3.5 Application to Spacecraft Rendezvous and
Docking
We apply both of the open-loop methods (Problem 3.2 and Problem 3.4) to the

reach-avoid problem for the final phase of in-plane space rendezvous, as described in

[WKBE12).

The in-plane dynamics for an approaching spacecraft (the deputy) relative to its

target (the chief) are given by the linearized time-invariant CWH equations [Wie89]:

F
i —3wir — 2wy = = (3.10)
mC
F
j+ 2wi = 2 (3.11)
m

o

Here F, and F), are the components of the external force vector (i.e. the thruster
control input), m, is the mass of the deputy, and w = \/Rz8 where p is the gravitational
constant and R, is the orbital radius of the spacecraft. In the following we will only
consider the in-plane motion since the out-of-plane motion is decoupled from the z, y
dynamics. We then discretize (3.10)-(3.11) using time-step A according to [AMO7],
and let x = [z, y, %, y]T, u= [Fx, Fy}T. We obtain discretized dynamics of the form

(3.1) with

: T
A:eAT, B:/ M Bdt
0

and
0 0 1 0] (0 0]
N 0 0 0 1 _ 0 0
A: B:
3w 0 0 2w L0
|0 0 —2w 0 0 L

with added Gaussian process noise vector v, € R*, that represents uncertainty in the

model due to external forces on the spacecraft not captured in the linearized model.

The problem of controlling the deputy to approach the chief according to the

dynamics (3.10) - (3.11) includes many safety constraints that must be satisfied for
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the operation to be successful. For instance, the spacecraft should come close to
the chief without hitting it, while staying within a line-of-sight (LoS) cone relative
to the chief. Staying within an LoS cone is necessary when there are sensors on
the chief measuring the location of the approaching spacecraft. While we do not
incorporate sensor measurements, it is a natural next step, and so we assume all

necessary requirements as if sensor measurements were taken.

We define the safe set K that the deputy should remain within for all time steps
0 to N — 1 as the LoS cone at the origin in z and y (unchanging over time), and a
square in & and 7, i.e. the maximum and minimum velocities are bounded for all
time steps. Target set T is defined as a box close to the chief that the deputy should
reach at time N. The set T also includes bounds on the velocity components X y
and YN so that the deputy does not crash or dock with excess force. Fig. 3.1 shows

the safe set K and target set T for states x and y.

We set covariance V as a diagonal matrix with entries [le — 4, le —4, 5e — 8, 5e — §].
The noise covariance is kept small, since open-loop controllers do not deal well with
noise over longer periods of time (and the covariance grows with N). As the covariance
grows, the potential distance between different realizations of the trajectory x grows

as well, and it is harder for one controller, without feedback, to drive all possible

0 T 7N
T := Target Set Behind Chief

05
B
= -1
2 K :=LoS Cone

15}

_2 1 1 Il
-2 -1 0 1 2
zo (km)

Figure 3.1: The sets K and T in the x and y dimensions. The black lines represent
the LoS cone the deputy is trying to remain within, and the green box shows the
target that is close to the chief (placed at the origin).
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Figure 3.2: Reach-avoid probability starting at various x, and y,, for positive
initial velocities &, = 0.01 km/s, g, = 0.01 km/s, using the particle approximation
method with 800 particles. The dotted black line indicates the boundary of the
LoS cone stemming from the origin. The area of nonzero probability is contained
in the region where z, and gy, are both negative, because both initial velocities
are positive.

realizations to the origin while keeping them within an LoS cone.

Problems 3.2 and 3.4 are solved over a mesh of initial x; values ranging from 2
km behind the chief to directly behind it. We compute the reachable sets over a
period of N =5 time steps, A = 20 seconds per time step (as in [WKBE12]), and
compare the particle approach of Section 3.4.1 to the convex optimization approach
of Section 3.4.2. Problem 3.2 is solved in CPLEX [IBM99] and Problem 3.4 using an
active-set algorithm through fmincon in MATLAB’s Optimization toolbox. We start
with a coarse grid for x,, with z, equally spaced 0.1 km apart ranging from —2 to 2
km, y, ranging from —2 km to 0 km with the same spacing as z, and %, 1, ranging
from —0.2 km/s to 0.2 km/s, equally spaced 0.01 km/s apart. We then isolate the
states x, leading to higher reach-avoid probabilities, refine the mesh limited to these

values, and recalculate the reach-avoid probabilities.

Fig. 3.2 shows the probability of staying within K and reaching 7" in 5 time steps,
over varying x, and y, (using the refined mesh with 0.01 km between points), with
fixed &y = gy = 0.01 km/s, using the particle approach with 800 particles. The area

of non-zero probability is limited to where both z, and y, are negative, because the
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Figure 3.3: The sets RA’(0.3; K, T) and RAG,(K,T) (i.e. the sets of all X, such
that po,(xo; K,T) > 0.7 and p2,(x0; K,T) > 0.8) with 4, = 0.01 km/s, g, = 0.01
km/s in (a), and &y = —0.01 km/s, g5 = 0.01 km/s in (b), fixed. The reach-avoid
sets for & = 0.3 and a = 0.2 are shown for the convex approximation (black,
blue), and for the particle approximation using 800 particles (red, green) methods.
The dotted black line indicates the boundary of the LoS cone. RA sets are not
symmetric when z, switches from positive to negative because of the asymmetric
nature of the dynamics.
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Figure 3.4: The sets RA®(0.3; K, T) and RA®(0.2; K, T) (i.e. the sets of all x, such
that oy (xo; K, T) > 0.7 and 5o, (xo; K, T) > 0.8) with x5 = —0.9 km, y, = —1
km in (a), and z; = 0.9 km, y; = —1 km in (b), fixed. The reach-avoid sets for
a = 0.3 and a = 0.2 are shown for the convex approximation (black, blue), and
for the particle approximation using 800 particles (red, green) methods. In both
figures, the RA sets span only a few m/s in each direction, demonstrating the
importance of accuracy in the initial velocities for rendezvous to be successful.
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initial velocities are both positive, and over the time period of N = 5, the controller
cannot sufficiently reverse the velocity of the deputy to enable it to still reach the
origin. Further, the z;, and y, leading to positive probability only lie in a range
of approximately —1.1 km to —0.8 km, somewhat in the middle of the LoS cone.
This is because we have restricted the deputy to rendezvous with the chief at ezactly
N =5 time steps. Starting too far away, the controller cannot bring the deputy to
the chief within the small time frame, and starting too close, the controller cannot
prevent the deputy from overshooting the chief, hence the small region with positive
probability of success. Taking the union over N of all reach-avoid sets with NV <5,
would expand the full reach-avoid set of Fig. 3.2. Finally, there is no initial position
leading to a reach-avoid probability higher than 0.9, even with the choice of a small
noise covariance. Without feedback, the reach-avoid probability will grow smaller as

N increases, which is already evident in just over 5 time-steps.

Fig. 3.3a shows specific reach-avoid probabilities (for a given probability 1 — «),
computed with the particle and convex approaches. The set of all initial states xg, y,
leading to trajectories that will stay within K and reach 7" at N = 5, with probability
0.7 and 0.8 when &, = ¢y = 0.01 km/s, is shown. The sets generated by the particle
approach (using 800 particles) are slightly larger than those from the convex approach,
consistent with the fact that the convex approach gives a slight under-approximation
of the reach-avoid set. A comparable scenario, with &, = —0.01 km/s, is shown in
Fig. 3.3b. Note in this case that the reach-avoid sets occur in the region where z is
positive, for the same reason that they appear where z, is negative when the initial

x-velocity is positive.

The reach-avoid sets are not symmetric, because the zero-input dynamics also
are not symmetric. Plotting sample trajectories of the zero-input, zero-noise CWH
equations demonstrates this. Fig. 3.5 shows RAS(O.Q;K,T) for g, = 0.01 km/s,
computed with the particle approach. As i, decreases, the size of the reach-avoid set
shrinks in the y-direction, as in Fig. 3.3. The scale of the axis shows that the range
of z, for a given x, and g, is in fact much smaller relative to the ranges of x, and

Yo when 1, is fixed. This indicates that the reach-avoid probability is much more
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Figure 3.5: Three-dimensional reach-avoid set RA®(0.2; K, T), with g, fixed at
10 m/s, generated using the particle approximation method. As z, ranges from
negative to positive, &, ranges from positive to negative. The cross-sections for
fixed &, shrink as xy becomes positive due to the asymmetric nature of the zero-

input dynamics. The difference in cross-sections for z, positive versus negative
are highlighted in Fig. 3.3.

sensitive to the initial velocity than it is to the initial position. Fig. 3.4 explores this

further.

Reach-avoid sets for fixed xg, y, and varying Z,, 9, using a mesh with 1 m/s
between points using both the convex and particle approaches are given in Fig.
3.4. In Fig. 3.4a, ry = —0.9 km and y, = —1 km, and in Fig. 3.4b, z, is +0.9
km. The reach-avoid sets using the particle approach are approximately symmetric
across the two values of x,. The convex reach-avoid sets in Fig. 3.4a are slightly
misshapen relative to all the other reach-avoid sets, which is unfortunately caused by
the MATLAB algorithm, which is unable to find an optimal solution to Problem 3.4
for various initial guesses. Regardless, it is clear that for a given starting position x,
Yo, the initial velocities must be specified to within an accuracy of a couple m/s, or
the probability of success drops drastically, and in fact will drop to zero very quickly,

at least in the case of an open loop controller.

To compare the performance of the open-loop controller to one that uses feedback,

we next present results for the reach-avoid set calculated by solving Problem 3.5, in
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Fig. 3.6. We fix &, = gy = 0.01 km/s in Fig. 3.6a, and z, = —0.9 km, y; = —1 km in
Fig. 3.6b. All parameters (i.e. ¥ and N) are kept the same as in the open-loop case,
although the number of particles is reduced to 500, and a slightly coarser grid is used,
in order to decrease computation time. A feedback controller drastically increases
the size of the reach-avoid set, because it can steer those trajectories driven away
from the origin by the process noise back to the desired path. This contrast in results
between controllers highlights the importance of considering the type and effect of
the controller to avoid overly conservative reachability results, and merits further

discussion. It is therefore an area of potential future work.

Finally, we briefly compare the performance of both methods used to produce the
above results in the open-loop case. Neither method is perfect, and both produce
approximations to the true reach-avoid probabilities. Figs. 3.3 and 3.4 showed that the
convex chance-constrained approach consistently under-approximates (as expected)
the reach-avoid probabilities relative to the particle approximations, although never to
the point of being unreasonable. We found that the particle method was consistent in
its results, and has the advantage of allowing for a quick, coarse approximation using
less particles, to then narrow down the region where the reach-avoid probabilities
should be calculated more accurately. Both methods have the disadvantage that,
if the reach-avoid probability for a given initial point is very small or zero, they
will possibly never converge to a solution (or take an unreasonable amount of time),
particularly in the case of Problem 3.4, since the problem is in fact no longer convex.
Hence we found the need to stop the algorithm after it had taken sufficient time to

find an optimal solution, were one to exist.

Computation times for the particle method depend heavily on the amount of
particles used, which affects both the number of variables and constraints making up
the problem. For instance, using 500 particles over N = 5 time steps, there are a total
of 510 variables: 500 indicator variables z;, one for each particle, and 10 variables for
U, since u € R'. Further, to define inequality constraints ensuring x, ...,x, € K
and X5 € T, we need M; = 48 (a;, b;) pairs of inequalities, producing 500 x 48 = 24000

constraints of the form alTx(i) — b, < C(1 —z;). However, using commercially available
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MILP solvers, such as CPLEX, for a single given x; this problem was solved in 6.88
seconds on a 2 GHz Macbook with 2 GB of RAM.

Compared to the particle approach, Problem 3.3 has far fewer variables and
constraints. For the same case with N = 5 time steps, we again have M; = 48
constraints af X < b, confining x,,...,x, € K and x5 € T. Associated to each
constraint is a variable oy, so that there are 48 4+ 10 = 58 variables total (and again
the 10 variables correspond to u € R'%). The drawback here is the nonlinear constraint
involving the Gaussian normal density function, 1 — @ (alfgv—‘ga) < ;. Nonlinear
solvers can be more time consuming if the initial solution point provided to the
algorithm is far from the optimal solution. For an initial solution generated randomly,
and the same x, as was implemented in the particle method, Problem 3.4 was solved
in 2.81 seconds using MATLAB’s fmincon function and its active-set algorithm.
However, for some initial points the algorithm can fail to converge completely and
the process must be repeated with a different initial point, adding to the overall
time of the algorithm. With the same x; but a different initial point, the problem
was solved in 50.99 seconds with 7 different initial points before finding the solution.

Using different algorithms or software and “good” initial guesses may help speed up

the algorithm.

The convex method was generally faster, but only when the initial values over
which the reach-avoid sets were calculated had been narrowed down enough to
eliminate most of the low probability calculations, and when “good enough” initial
solutions were provided to avoid recalculating the reach-avoid probability several

times.

The data for Figs. 3.3 and 3.4 generally took about 20 minutes each to calculate
(with no significant difference in time between the methods). However, the particle
approach was used to generate Fig. 3.2 and Fig. 3.5 because over a wide range of
values it was found to be faster. The particle approximation does not get “stuck” at
certain initial states x, like the convex approximation, when computation takes much
longer (e.g. a 6.88 second computation for the particle approximation versus a 50.99

second computation for the convex approximation).
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Figure 3.6: The sets RAG (K, T) (black) and RAJ(K,T) (red) (i.e. the sets of all
X, such that px, (K,T) > 0.9 and p, (K,T) = 1) with &, = 0.01 km/s, g, = 0.01
km/s in (a), and g = —0.9 km, y, = —1 km in (b), when using state feedback,
calculated using the particle method with 500 particles. The dotted black line
in (a) shows the LoS cone. The RA sets are much larger, and attain greater
probabilities, than in the case of open loop control, spanning more than half of
the LoS cone in (a) and a much larger range of velocities in (b).

While the results presented are for a four-dimensional system, both approaches
should be suitable for reachability calculations of higher-dimensional systems as well.
The number of constraints in either Problem 3.2 or 3.4 will not increase for higher
dimensional systems (except possibly in the number of control inputs u to be bounded,
which is insignificant compared to the other constraints). The main computation
will lie in calculating the actual reach-avoid set, where the problem must be solved
repeatedly over a much larger grid of x; values. Again, the process can be sped up
by solving over a coarse grid, and in the particle approximation case using a small
number of particles, and then focusing and refining the grid to where the success

probabilities are estimated to be highest.

Further, both methods can be used for reachability calculations of any linear
system with additive Gaussian noise. The convex chance-constrained approach of
Problem 3.4 will only work with Gaussian noise, but the particle method could be
applied to noise following any known distribution. We required the reach and the

complement of the avoid set to be convex, but nonconvex regions could also be
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addressed by decomposition into multiple convex regions (see, e.g. [OBW10]).

3.6 Summary

Two novel methods for reachability calculations on higher-dimensional linear stochastic
systems have been presented. One involves sampling from the noise distribution to
generate a particle approximation to the expected value in Problem 3.1, which would
otherwise be too difficult to evaluate, and using mixed integer linear programming to
find p.(xo; K, T). The other exploits the linearity of the dynamics and the Gaussian
assumption on the noise to produce a convex optimization problem also approximating
ﬁﬁ\;(xo; K, T), by making the reach-avoid probability a chance constraint whose bound
is actually the objective to be maximized. An open-loop control vector u was found

to maximize the reach-avoid probability in both cases.

The obvious setback is that with the propagation of the noise, an open-loop
controller cannot optimally control all realizations of the dynamics over an extended
length of time. The noise leads to dynamics which diverge over time, so that the
chances of reaching the target set 7" using an open-loop controller go to zero very

quickly as the time horizon is extended.

We were able to impose a state-based feedback controller using the particle
approximation method, despite the increasing number of variables and constraints.
The natural next step is then to look more closely at closed-loop controllers. While
the particle approximation method still works, the convex approximation technique
breaks down when feedback is introduced, because the constraints are no longer
convex. Omne possible approach to maintain convexity would be to use a model
predictive controller to simulate feedback (although it may not help the speed of the

algorithm), to see how this improves the stochastic reach-avoid probability.
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Chapter 4

Stochastic Reachability Analysis

with Partial Observations

We now focus on the reachability problem for stochastic hybrid systems with incom-
plete state information. We establish the theoretical foundations for both generating
probabilistic reachable and viable sets and synthesizing controllers to maximize the
likelihood of meeting such specifications. Our approach utilizes a sufficient statistic
that reduces the problem to one of perfect state information. We develop a dynamic
programming recursion for the solution of the equivalent perfect information problem,
and prove that the recursion is valid, an optimal solution exists, and results in the
same solution as to the original problem. A simplified dynamic programming recur-
sion is also given, through the introduction of a change of measure to the sufficient

statistic.

4.1 Introduction

The goal of this chapter is to extend the stochastic optimal control formulations for
reachability presented in Chapter 2 to the case of a partially observable system, in
which the controller only has access to noisy or incomplete measurements of the state.

We examine the viability problem, and then extend those results to the reachability
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and reach-avoid problem. Incomplete state information requires a controller designed
to account for the lack of full knowledge of the state. Ignoring the need for a controller
tailored to the incomplete information problem could ultimately lead to suboptimal
control inputs as compared to the case in which the true state of the system is
known. For safety verification and reachable set calculations, if the controller is falsely
assumed to have perfect knowledge of the state, the reachability probability may be

overestimated. This is certainly undesirable in the context of safety verification.

Optimal control in the presence of a stochastic observation process can be directly
related to a partially observable Markov decision process (POMDP). POMDPs provide
a generalized modeling framework for a stochastic system whose state obeys the
Markov property and is subject to a control input. The control input is often chosen
optimally to maximize the expected value of a sum of rewards, such that at each time
step some reward is accrued. The optimal control and maximum expected reward are
found by using a sufficient statistic, which encapsulates and condenses all necessary
information for control of the system. The sufficient statistic produces an alternate
state over which the POMDP is defined, and which is known completely. For an
additive cost (or reward) function, the posterior distribution, or probability density
of the state given all available information (observations, control inputs) up to the
present, provides sufficient information for control of the system (this result is derived

in, e.g., [BS96)).

For a non-additive cost function the posterior distribution is no longer sufficient
(see [Shi64]). A different sufficient statistic for reducing the problem to one of perfect
information must be derived, which is the main focus of this chapter. We derive a)
sufficient statistics for the multiplicative viability, reachability, and reach-avoid cost
functions with hybrid state dynamics, and b) the dynamic programming equations to
solve each problem in terms of the sufficient statistic. We also introduce a change
of measure to the hybrid space, so that the observations are independent of the
state of the system (and are in fact independent and identically distributed). This
makes for simpler dynamic programming equations, and should aid in computation

and simulations. Our main focus is on the theoretical foundations for solving the
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reachability problem for a partially observable DTSHS. We note that implementation
of our technique requires further work in approximation strategies as well as in special
classes of systems for which exact solutions are available. This is the subject of

Chapters 5 and 6.

The chapter is organized as follows. First, we provide an overview of some
of the related literature on verification of partially observable systems. We then
extend the definition of a DTSHS to one with partial observations in 4.3, and modify
the optimal control formulation for the viability problem (see 2.1) to reflect the
limited information available to the controller. We then give a detailed overview of
POMDPs in Section 4.4, because our approach directly relates to the optimal control
of POMDPs. A sufficient statistic is derived for the viability problem in Section
4.5.1, and the equivalence of the original problem to one with perfect information
expressed in terms of the sufficient statistic is established in Section 4.5.2. Alternate
sufficient statistics that 1) incorporate a change of measure, and 2) are appropriate
for reachability and reach-avoid cost functions, are given in Sections 4.5.3 and 4.5.4,
respectively. In Section 4.6, we describe two examples of partially observable discrete
time stochastic hybrid systems, demonstrate how to reformulate them in terms of
our sufficient statistic, and discuss some of the computational challenges as well as

possible solution strategies. Concluding remarks are given in Section 4.7.

4.2 Related Work

Until recently, verification of partially observable DTSHS had not been addressed.
Concurrently with our efforts, however, [DAT13] considered safety specifications for
partially observable DTSHS through a new optimal control formulation of the viability
problem. Although viability was originally presented in terms of a multiplicative cost
function ([APLS08]), [DAT13] rewrite it as a terminal cost function, by appending to
the state of the hybrid system a binary variable representing whether the state has
remained within the desired region up to the previous time step. This formulation

produces a cost function that is additive, and the standard approach of re-framing
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the problem in terms of the belief state, and solving the equivalent perfectly observed
problem, applies. Indeed, inspired by this approach, [TMKA13] reformulate the
reachability problem more generally as an additive cost optimal control problem,

although they do not discuss the partially observable case.

Although we preserve the multiplicative cost function, leading to a seemingly more
complex problem, the additive cost formulation effectively moves the complexity from
the cost function to the modified state of the system. The posterior distribution of the
new state is actually the same as the distribution produced by the sufficient statistic
we derive, so that ultimately the only advantage to the additive cost formulation is

its familiar and well-studied form.

Our approach is inspired by similar work in risk-sensitive control problems [JBE94],
[FGMO7]. The risk-sensitive control problem minimizes the exponential of a sum of
costs, rather than a sum of costs, so that the cost objective is in fact non-additive.
In particular, [JBE94] derive a sufficient statistic for a partially observable discrete
time nonlinear system, which is further analyzed and extended in the context of a
POMDP in [FGM97]. In the latter, the state, observation, and control take values
from finite, discrete sets, whereas in the former the state, observation, and control
spaces are continuous. We also draw upon the theory from [BS96] to establish the

definition of a sufficient statistic and validity of the dynamic programming equations.

4.3 Problem Formulation

4.3.1 Partially Observable Stochastic Hybrid System

We extend the DTSHS of Definition 2.1 in Chapter 2 to include an observation process,
which we call a partially observable DTSHS (PODTSHS). Only the observation process
is available to the controller, and is of the form y,, = (yy, ys), where y; is associated
with z,,, and y! with g,. The observations are stochastic as well, and governed by

independent stochastic kernels that are combined to produce a probability measure
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ont

he full observation process.

Definition 4.1. (Partially Observable Discrete Time Stochastic Hybrid System H').

AP

10.

ODTSHS is a tuple H” = (X, Q,Y*, Y, U, T,,T,, T, T, p) where

. X CR" is a set of continuous states

. Q =A{q, ¢, ...qu} is a finite set of discrete states with cardinality N,, with
S = X x Q the hybrid state space

V¥ C R" is a set of continuous observations

. Y1 C Qs a set of discrete observations, with Y = Y*xY? the hybrid observation

space

U is a finite, bounded set of possible control inputs, affecting discrete and

continuous state transitions

T, :B(R") x QxS xU — [0,1] is a Borel-measurable stochastic kernel which
assigns a probability measure to x,,; given s, = (Tn,qn), Uns Gny1 for all n:

T,.(dx, 1 € Blgpi1s Sp,u,) where B € B(R"), the Borel o-algebra on R"

T,: Qx QxU —[0,1] is a discrete transition kernel assigning a probability

distribution to g, given q,,u, for all n: T, (qui1]qn, un)

T : B(R") x X — [0,1] is a continuous Borel-measurable observation function

assigning a probability distribution to observation vy, given state x, for all n:

T,(dy; € Blz,)

Tya: Y'xQxU — [0,1] is a discrete observation function assigning a probability

distribution to y, given q, and u, for all n: T a(y}|qy,, u,)

p: B(R") x Q@ — [0,1] is an initial Borel-measurable density lying in the space

of all probability measures on S, such that p(dzxy € B, q)
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We again let 7,(ds'|s, u) be the hybrid state transition kernel defined as the product
of T, and T,. Similarly, the hybrid observation kernel 7,(y|s, u) is

Ty(dyn‘sna un—l) = Tyz (dyf‘i’xna un—l)qu (y;]LIQn7 un—l)' (41>
Kernels T)» and T« are more specifically defined according to

' (4.2)

y;]L ~ Qqn,yz (unfl)'
The continuous state observation ., is subject to additive noise v,,, which is indepen-
dent and identically distributed with positive density ¢(v) (i.e. Gaussian), and the
function h is assumed bounded and continuous, as in [JBE94]. The distribution of the

discrete state observation y;; follows the discrete map Q, a(u) : @ x Q@ x U — [0, 1],

so that Plyp =i | q, = ¢, u,—1 = u] = Qg,(u).

The filtrations G,, and ), are generated by the sequences {sq, ..., Sn, Y1, Yn_1}
and {yi,...,y,}, respectively. Denote i,, = (Y1, ..., Yp, Ug, -, Up_1) € Vo X U" =T,
the vector of information available at time n, with 4" the n-times product space of
U. The information vector 4, is available to the controller, so that policy 7 (defined

in Chapter 2) is now a sequence of functions mapping Z,, to U.

The initial density p over sy = (g, q) lies in the space of all probability measures
on S, P(S) and assigns likelihoods to all possible s, € §. Finally, based on p, 7,
¢, and Q(u), we obtain a probability measure P™ induced by the control policy 7
defined over the full state space €2, which includes s,, and y,, for all n. The PODTSHS
is therefore related to a POMDP, just as a DTSHS is related to an MDP. We will
elaborate upon POMDPs in Section 4.4, and exploit this relationship when examining

reachability properties of a PODTSHS.

4.3.2 Reachability Analysis for a PODTSHS

Problems 2.1 - 2.3 are formulated in the same manner for a DTSHS or a PODTSHS.

The cost function remains the same, and we still seek to maximize the probability of
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some objective over a control policy w. However, the probability measure P over
which the probabilities (and equivalent expected value formulations) are evaluated
changes. The optimal control policy also must be modified, since it is no longer a

function of state s.

For instance, recall the viability problem 2.1 has cost function

mwell

Putab($0; K) = sup E” [H L (s

] . (4.3)

The state s, is no longer known, and so our viability probability must be a function

of p instead. We therefore write

pﬁab(ﬂ? = sup [Eﬂ- [H 1K

mell

] | (14)

In turn, the expected value with respect to measure P”" is expanded as

e [fiold - £ L [ [fTcommn

X Ts(dsn"sn—lvun—l)lK(SO)p(dSO>' (4.5)

The control inputs u,, are chosen according to policy © = (pg, .., tiy—1) With g; :

Z, — U for all ¢, and the optimal policy is

" = arg sup piiap (p; K). (4.6)

mell
We therefore define a modified version of Problem 2.1.

Problem 4.1. Consider a PODTSHS H" (defined in Definition J.1). Given a safe

set K and time horizon N we would like to

1. Find the maximal probability (4.4) of remaining within K for N time steps.

2. Find the optimal policy ™ given by (4.6).

In the case of perfect state information, the viability probability and optimal

policy can be found via dynamic programming as described in Chapter 2, with a
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value function mapping S to probabilities in [0, 1]. To use a dynamic program to
solve Problem 4.1, the value function will be in terms of the information vector i,,,
which grows over time. One approach for partially observable problems in general is
a reformulation of the state ¢,, in terms of a sufficient statistic, and to then solve the

equivalent problem using dynamic programming. This is the standard approach for

POMDPs, which we describe next.

4.4 POMDP Overview

We provide an overview of POMDPs and a dynamic programming formulation for
optimally controlling them. The relation between a PODTSHS and a POMDP allows

us to take a similar approach when solving Problem 4.1.

A POMDP is an MDP (Definition 2.3) with the addition of an observation process.
POMDPs provide a framework for analyzing a controlled discrete time system, where
the controller is designed to optimize a known objective without knowledge of the
current state of the system. The state evolves stochastically and is Markovian (e.g.,
the state at the next time step depends only on the current state and action). We
first define a POMDP with finite states, actions, and observations, and an additive
cost function. The theory and solution techniques for this type of POMDP provide
the foundation for our extension to a PODTSHS and the solution of Problem 4.1.

Definition 4.2. (Partially Observable Markov Decision Process J"°) A POMDP is
a tuple J%° = (S,U, Y, T,Y, R) where

1. S is a finite set of states

2. U 1s a finite set of possible actions the agent can take

3. Y is a finite set of observations

4. T:8x8xU — [0,1] is a state transition function assigning a probability

distribution to state s, given state s, and action w, for all n: T(s,1]S,, Uy,)
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5Y 1 Y xS xU — [0,1] is an observation function assigning a probability

distribution to observation y,, given state s, and action u, for alln: Y (y,|s,, u,)

6. R:S XU — R is a function assigning a reward at each time step n, given the

current state s, and action u,, R(s,,u,)

The goal is to maximize the expected sum of rewards over a (possibly infinite)
time horizon N by optimally choosing a control policy 7 that selects inputs u,, based

on available information.

Z R(s,, un)] (4.7)

n=0

sup b

™

In Chapter 2 we discussed a Markov policy that maps the current state to a control
input. However, an optimal policy in the partially observed case cannot be Markov
with respect to the observations [PGT06], i.e. the controller cannot only consider
the currently available observation and still make optimal decisions. One option is
to consider the internal information vector i,, as defined above (the sequence of all
past actions and observations) and design a policy based on the current information
vector. Because the information vector grows over time, recording and storing i,, is

difficult as n increases.

Instead, the optimal control at time n can be based on a belief state that sum-
marizes all available information up to time n, as opposed to a recorded history of
all past actions and observations. The belief state is a sufficient statistic for the
set of all observations and actions {uy,...,u,_1,Y1,--.,Y,} because it condenses all
information necessary for making optimal decisions [Ber05]. For reward function R of
Definition 4.2 that is additive, the belief state is a probability density function that
describes the likelihood of being in state s given all past observations and actions,
b(s,) = P[sp|uy, ..., Up_1,Y1,---,Ys].- By treating the belief state as the true state
of the system, J"° can be equivalently solved as a perfect state information Markov
decision process. An optimal policy 7 for the POMDP is then defined in terms of the
belief state, and maps beliefs to actions: 7* : B — U, with B the set of all possible

belief states.
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The optimal policy for a particular belief state can be found by maximizing a
value function that describes the cumulative reward from time n to the final time N
(or over N —n + 1 time steps), presuming the system behaves optimally from time

n+ 1 to N. The value function is defined recursively as

V(b)) = IBQJ({ZR s, u)b +ZV”+1 P(y|u, b)} (4.8)

with the transition operator M, ,b that provides the next belief state b, ; given the

current observation, action, and belief state

Y(yls',b,u) 3,es T(s']s, u)b(s)
P(y[b, u) ’

and likelihood of the observation given by

(M,,..0) (s') = (4.9)

P(y|b, u) Zb ZT (s']s,u)Y (y|s', u). (4.10)

SES ses

We next adopt this formulation for verification of a PODTSHS.

4.5 Reformulation of Viability Problem

We give a detailed description of how the viability problem 4.1 with only an observation
process available to the controller is reformulated. This is done in the same manner
as for a POMDP, i.e. through a sufficient statistic that generates a new, perfectly
observed state. The viability problem is then posed as a dynamic program over the
new state. Similar results for reachability (Problem 2.2) and reach-avoid (Problem

2.3) are presented in less detail in Section 4.5.4.

The difficulty in solving Problem 4.1 is twofold. First, since the cost function is
multiplicative, standard sufficient statistics are not valid (i.e. the sufficient statis-
tic cannot be the posterior distribution of the state at time n given all available
information up to time n). Second, the hybrid nature of the dynamics complicates
the probability space our problem is defined on. A new sufficient statistic must be

derived, and its corresponding theoretical results carefully extended.
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4.5.1 Sufficient Statistic

We first formally define a sufficient statistic in relation to the multiplicative optimal

control problem 4.1, which is modified from Definition 10.6 in [BS96].

Definition 4.3. A statistic for Problem 4.1 is a sequence of Borel-measurable func-
tions 1 = (N, M, - - -, M) with n, : P(S) x Z,, — %, in which ¥, is a nonempty Borel
space, for allm =0,...,N. The sequence n = (1, ...nx) s a statistic sufficient for

control if

1. There exist Borel-measurable stochastic kernels 7,,(do, 11 | 0,,u,) on X, given

Y,, U such that

[Pﬂ-[nnJrl(pv in+1> € ZnJrl | nn(pa Zn) = 0Op, Uy = ’LL]
- 7A-n(ZnJrl | Ons u) (411>

for PT-almost every (o,,u) € X, X U (i.e. the set {(So, Uy, Y1s- -+ Yn, Sn, Up) €
S, xU, x Y, | (4.11) holds when o, = n,(p,i,), u, = u} has P"-measure 1),

where ¥, | € B(X,11), the Borel o-algebra on ¥, 4.

2. There exist functions g, : %, — [0,00) such that for all p € P(S),n=1,...,N,
and m € 11

n

H L (s;)

1=0

E” NP5 1) = Un] = gn(0y)

for P"-almost every o,,.

In other words, the distribution of o,, = 1,,(p, i,,) (a specific element of the sufficient
statistic at time n which we refer to as the information state to distinguish from the
belief state of Section 4.4) must follow the Markov property, and therefore be updated
recursively according to o,_; and u,_;. There also must exist an equivalent cost
function whose argument is ,,, so that the cost corresponding to a specific policy can
be determined solely through the distribution of the information state. Problem 4.1
can then be redefined according to the information state o, which is defined according

to the sufficient statistic 7.



Chapter 4. Stochastic Reachability Analysis with Partial Observations 60

We now propose a sufficient statistic for Problem 4.1, and demonstrate that it

obeys Definition 4.3.

We claim that under the measure P™ we can define a sufficient statistic for Problem

4.1.

nn(pa Zn) = [EW 1dm<xn)1q(qn> H 1K(Si)

P; zn] (4.12)

The statistic (ng, 7y, ...,ny) given by (4.12) for all n generates a sequence of proba-
bility densities on the state s,,, combined with the probability that all previous states
are in K, conditioned on the information vector 7,,, with dependence on p implicitly

defined in the measure P”.
M(p,in) = Pz, € dr,q, = q,S0, -, 5,1 € K]iy] (4.13)

The information state o, is therefore a modification of the posterior distribution,
representing a conditional density of the current state joined with the probability
that all previous states are in K, given a specific i,,. In the following, we show that
(4.12) satisfies conditions (1) and (2) of Definition 4.3, and is therefore a sufficient
statistic, by examining the information state o,, = n,(p,,) directly. Although n, is
a function of p and i,,, o,, is a function of the state s,,, and is implicitly dependent
on p and 7,,. We first show that o, can be defined recursively via a bounded linear

operator @, ., and therefore satisfies (1) of Definition 4.3.

Yyur
Lemma 4.1. There exists a bounded linear operator ® : L'(S) — L'(S) such that o

s defined recursively as

Oy =p
’ (4.14)
Opn = <I);:;Tb,un,1(7-11—1
with @, 0 given by
1
®, ,0) ()= ——7,(ylsu /7’8 s'ls,u)o(s) ds. 4.15
(#,0) () = gyl ) [ 7(s1s,u)os) (4.15)

Note we have incorporated the factor P(y|o,u) equal to [¢ [s7,(y|s", u)7,(ds'|s, u)o(ds)
that ensures o integrates to one over 8" (i.e. over all S and either [ 1x(s;) =0
or [17-, 1x(s;) = 1). In addition, o, € L'(S) for alln since oy = p € L'(S) and ®
maps L'(S) into L'(S).
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Proof. We first show that ® is a bounded linear operator mapping LI(S) to itself.
We then show that o, can be defined recursively using ®. We drop the normalizing

constant P(y|o,u) for convenience, because it does not affect subsequent derivations.

Linearity follows obviously from the properties of integrals. For any function

ve 'S, ueld,ycy,

18y ul1 ) = /S (s ) /K r.(ds')s, w)v(ds) (4.16)
</ / Tyo(yld, w)o(y” — h(w', w)r,(ds')s, w)lv(ds)]  (4.17)
<o) [ | [tasts. o] mias) (1.18)
< Gl (4.19)

with ¢, the maximum value of density ¢ (which may exceed one). Hence for any

v € L'(S), ® is a bounded linear operator, with b, v € LY(S).

Induction shows that o, = ®, ,0,_1. Given o, = p,

(@y40) (,0) = 7, (], g, ) /K 7,(, qlso, u)p(dso)

= £ [1,(00) 1L, (1) 1 (50)]| p ]

= 01(3717(11)

Given o0y = &, ,00 VI =2,...,n,

((Dy,uon) (7,q) = 7,(y|z,q,u) /Kfs(x,q|s,u)an(dsn)

:Ty(y|x7Q>/ / Ts(x7Q|8n—17u)
K K

X H Ty<yi|5i7 ;1) Ts(ds;] 8,1, u;—1)p(dsg)
=1

P Zn]

The stochastic kernel 7,, for the distribution of o, ; given o, and u, can be

n

= [EW llx(l‘n+1)1q<Qn+l) H 1K<Si)

=0
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written in terms of the new measure P”:

7A—n(szrllo-nuun) :///Ty(dy|8n+17un)Ts<d8n+1|8n7un)an(dsn)
SJSJY

- [P(X|O-na un)

(4.20)

with Y ={y: ®,, 0, € ¥,,,}. Note the similarity between (4.20) and (4.10). The
stochastic transition kernel for ¢ is directly related to the likelihood of observing

some y € ).

Next, we rewrite the cost function (4.4) in terms of the information state o, for
part (2) of Definition 4.3. Since the indicator function 1x(s) is in the space L™(S),

the inner product of ¢ and 1y is a well defined bounded linear operator, given by

<O-a 1K> = Z/[Rn O'(ZL’,(])IK((L‘,Q) dx

qeQ

The functions g,, in Definition 4.3 can be defined as

n

gnl0n) =L H Le(si)

1=0

N0y 1n) = an]

s zn]

=(o, 1i) (4.21)

=L" | 1x(sn) H Lye(sy)

Hence the statistic given by (4.12) satisfies parts (1) and (2) of Definition 4.3, and is

a sufficient statistic for Problem 4.1.

4.5.2 Equivalence to Perfect State Information Problem

We can rewrite the viability probability in terms of ¢ and function g, (o). First, we

define

Buian (0 K) = E" [gn (on)] (4.22)

as the equivalent cost function for the viability problem in terms of o, using 7 to

denote a policy in terms of o (whereas m denotes a policy for the partially observed



Chapter 4. Stochastic Reachability Analysis with Partial Observations 63

case in terms of i,,). Note that for a fixed vector of control inputs (i.e. open-loop),

u = [UO, .. >UN—1]7
[ N
pf/\ifab<p; K)=FE" H g (s:) P]
L :=0

=" |E7 [ﬁlK(s)

=E" [gn(on)]

= Puian (03 K.
Lemma 4.2. A recursion for ﬁf,\i[ab(p; K) is given by

VJ@(U) = gn(0)

) L (4.23)
Vilo) = B [V (@, 0)0)]
where
E [V @y, 0)] = | Vs (02010 n()) o’ (4.24)
-1/ / 1@y 5 010V (]S ()
X 74(ds'|s, i, (0))o(ds) (4.25)

so that V' (p) = P (03 K) with ph (p: K) computed using policy & rather than the

supremum of all policies.

Proof. First, we redefine V' (o) as

// // [H Lic(si)7y (dyilsi, fii-1(0i-1))

1=n-+1

X Te(ds|s;_1, flio1(0i-1)) | 1k ()0 (ds,,)

forallmn=20,...,N —1, and
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and then show that V," can be expressed recursively according to VnﬁH. Clearly, Voﬁ(p)

is equal to (4.5). The proof proceeds by induction. At time N — 1,

Vi_a( ///h( sn)Ty(dynlsy, fin—1(0))

X Ts(dSN|SN—1a ﬂN—l(U))lK(SN—l)U(dSN—l)
= [ Vi@ 00V @y 710 i1(0))

[0 0]

// // [H Lie ()7 (dyslsi, i (071))

1=n+2

At time n,

X To(ds;|8;_1, i1 (Uil))] 1K(3n+1)7'y(dyn+1 |Spt15 fln(0))

X Ts(dsn-i—l |8n7 /:Ln(o-))lK(sn>o-(dSn)

)T (P

= / Vn7r+1(®
Yy

=[E" [Vnﬂ+1(®y,ﬁ7L(U))} ’

wiin (@) T ( Py i (o))

Next, we provide two theorems: 1) a dynamic programming algorithm to find the
optimal solution pl,,(p; K), and the optimal policy 7* = argsups po,(p; K) as a
function of the information state o, and 2) proof that this optimal policy has the same
value as the optimal policy for the partially observed case. The proofs of Theorems

4.1 and 4.2 are provided in Appendix A.
Theorem 4.1. Using the recursion (4.23), the dynamic programming equations

V(o) = (o, 1k)
V(o) = sup E” [VnH(CI) U)}

ueld

(4.26)

produce Vi (p) = oy (p: K), where V,, - £, — [0,00). For o normalized, we have
V, %, = [0,1]. Furthermore, setting

fin(0) = argsup E™ [V,ry1(®, ,0)] (4.27)

uel



Chapter 4. Stochastic Reachability Analysis with Partial Observations 65

for alln = 0,...,N — 1 gives the optimal policy ©° = (fig, fi1,-- -, fin_1), where
[y 2 2, — U.

Theorem 4.2. If u, = ji,(0,) is optimal as defined in Theorem 4.1, then u,, is also

optimal for the partially observable Problem 4.1, and can be written as u, = i, (i,) =

[LZ(nn<pv Zn)) = ﬂ;(an) For 7T* = (M&Hi s 71“7\771)7 ﬁi\i[ab(p; K) = p{/\i[ab(p; K)

These results guarantee that we can solve Problem 4.1 as a fully observed problem
for each n in terms of the new state o, and generate a policy 7 in which the optimal
action at each time step n is a function only of the information state at time n. The
policy is therefore a continuous mapping from information states to the control space.
Calculating the optimal policy 7* and optimal value ﬁiviab(p; K) gives us the optimal

policy #* and optimal value p{,\gab(p; K).

4.5.3 Sufficient Statistic with Change of Measure

We also derive a sufficient statistic for Problem 4.1 that incorporates a change of
measure, which renders each observation process {y,} and {y} independent and
identically distributed (i.i.d.). The change of measure simplifies the transition function

7 for the information state (4.20), and subsequently the value function (4.23).

The ability to change probability measures stems from the Radon-Nikodym

Theorem.

Definition 4.4. The Radon-Nikodym Theorem (see [SS05]) states that given two
o-finite measures v and p on a measurable space (2, M), if p and v are absolutely

continuous, then there exists a p-integrable function f on € such that

v(E) = /E £ (w) dis(w)

The function f is referred to as the Radon-Nikodym derivative, and is written as o

Essentially, for two probability measures v and u, defined on the same space

(©, M) and that satisfy v(E) = 0 whenever p(E) = 0 for all E € M, we know that

E[h(w)] = E*[f (w)h(w)]
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for any M-measurable function k. We can define a change of measure P' from the
known measure P™ on the space 2, with M the Borel o-algebra on €2, so long as
the continuous observation process is nowhere zero, and the discrete observation
is nowhere zero on Q x @ x U (which would occur if certain discrete states were
perfectly observable). Following [JBE94] and [El93], we define the Radon-Nikodym
derivative A, as

dP™

dP'

=A, (4.28)
Gn

where

oyl —h@huzfl))@ql,y;’(uzfl)
=11 Uik
-1 P W,
However, in contrast to [JBE94], we must contend with two separate observation
processes, one continuous and one discrete. Note that in (4.28) we restrict the
derivative to the filtration G, rather than the full state space €2, which enables

updates to the derivative as the hybrid process evolves.

Intuitively, the change of measure introduces a proposal distribution that can be
treated as a design parameter, as used in importance sampling and particle filtering
(see e.g. [MSACO02]) when the true distribution is difficult to sample from. This
is particularly relevant when solving Problem 4.1 numerically, as sampling-based
solutions are likely required. Further discussion of this point, and the role of the

change of measure, is presented in Section 4.6.

Lemma 4.3. Under P', the processes {yn} are independent and identically distributed

(i.i.d.) with density ¢, and the processes {y.} are i.i.d. with uniform density Ni
q

Proof. The proof follows that of [E1193].

Py € Ayl = q | Ga = EN [1a(yi) 10 (42) | Gu)
E™ [La(yn) Lig (WAL 1G]
E" [A ]G]
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Pulling A;,'; outside the expected value from both the numerator and denominator

and canceling, since A,,_; is G,,-measurable, the numerator reduces to

/ (Y w
A (P(y - h(xru unfl))Qqn,q(unfl)
X |]37l' [yz = y7ygz = q|8na U’nfl] dy

— Niq /A d(y)dy = P [yl = ] PT [y € A]

and the denominator becomes

oY)

(]:21 /[R" oy — M@y, tp—1))Qq, (1)

X P™ [yn = v,y = q|Sn, u, 1] dy

Nq 1
Zzﬁ/ns@(y)dyz 1
g=1 1’k

Hence,

Pyt € A, yl =q |G, =P [yl = ¢ P [y € A]

|
Under the change of measure, we define a new sufficient statistic 7 = (7, ..., 7x)
such that
n—1
i=0

and 7, (p, i,) = 7,(s). The linear operator ®,, adapted from (4.15) is

(y" = h(z',u))
©(y")

(@,.7) (7', d) = N,Qy o) 2 /K (2 )F(ds)dr (4.30)

Operator ® shares the same properties as ® (bounded linear operator) which can be

established in the same manner as for Lemma 4.1.

To show 7 is a sufficient statistic, and hence satisfies the conditions of Definition

4.3, we define functions 7 and .

FCulun) = Y [ et d (431)

yq GXq X q
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= llK(sn) ﬁ 1y (5;) M| i,
=@, 1g) (4.32)

The viability probability (4.4) is again rewritten in terms of &.

Poan (03 K) = EN [T, 1)) (4.33)

The dynamic programming recursion

Tk

V(@) = (@, 1x)

J— —x J—

V' () = supE' [vnﬂ(@yvua)]

ueU (434)
1
= sup Z / Vn+1(<1>y,ua)ﬁg0(dy)
UGUquyq R" q

produces Vo(p) = phap(p: K). The equivalence of p,, (p; K) and pliy (p; K) follows
directly from the Radon-Nikodym Theorem.

4.5.4 Sufficient Statistic for Reachability and Reach-Avoid

Problems

Sufficient statistics for the optimal control formulations of the reachability and reach-
avoid problems can be derived in the same manner as for viability. We do not provide
full derivations as for the viability sufficient statistic, but give the information state
and its transition function, and the dynamic program to solve the partially observable

versions of Problems 2.2 and 2.3.

We give the reach-avoid sufficient statistic first, because a reachability objective

follows directly from the reach-avoid or viability formulation. Recall the optimal
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control formulation for the reach-avoid problem has cost function

Pralp; K, T) = sup E7 [Z (H 1K\T<Sn)> 17(sy)

mell

p] (4.35)

with initial state s, replaced by distribution p to reflect the partial observability
of the state. The sufficient statistic, which we denote " = (ny*,...,nx), provides

functions

77:1&<:07 Zn) =" lli(xTZ)lq(Qn) 1:[ 1K\T<S ) Ps Zn] (436>

such that 0" (p,i,) = o,'(s). The information state can be defined recursively

according to

oy =P
Ufla = (I)Z,auanfl (437)

1
B0™) () = g s [ n(lsao(ds)
S P(ylo™,u) ¥ K\T
with normalizing constant P(y|o™, u) equal to [ [¢7,(y|s', u)7,(ds'|s, u)o(ds). Com-
pared to (4.12), the sufficient statistic for the reach-avoid problem produces a prob-
ability density over & coupled with the probability that all previous states have
remained within K'\T rather than K alone. The dynamic program changes to reflect

the sum-multiplicative cost function (4.35).

—sup / (ds) + / ; / / (@000, (dyls' u) (d5'] s, u)o™ (ds)

(4.38)

It is straightforward to show that (4.35) equals Vi, (p). We can also verify the value
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function recursion similarly to the proof of Lemma 4.2. If we redefine anfra(ara) as

VE a(0™) = / 1 ()0™ (ds)

S
] N j—1
Via@™) = [rtseas)+ [ [ ] Lr(s:) ) 1r(s,)
S SJY SJYy 'zn;-l 1111 ' ’
N
X H Ty(dyj‘sjaﬁj—l(aj—l))Ts(dsﬂsj—l’ﬂj—1(f7j—1>)] Lievr(s,)0™ (dsy,)
j=n+1
(4.39)
for n = 0,...,N — 1, an induction argument shows the validity of the recursive

expression for V', in terms of V7 ...

The reachability problem with partial observations, pgach(p; T), can be solved
using the reach-avoid sufficient statistic (4.36) and dynamic program (4.38) by setting

K =8, or by solving an equivalent viability problem as explained in Chapter 2.

4.5.5 Relationship to Additive Cost Formulation

The sufficient statistic (4.12) modifies the posterior distribution to include the proba-
bility that all previous states are in the set K. The sufficient statistic (4.12) derived
without the change of measure is identical (aside from a normalizing constant) to the
sufficient statistic for the additive cost function formulation in [DAT13] (see equation
(14)). In [DAT13], by extending the state to include a binary variable that represents
whether or not the system has remained within K up to the previous time step,
the posterior distribution is also the distribution of the current state s,,, coupled
with the distribution of all previous states being in K. The transition kernel for the
modified state in equation (5) of [DAT13] incorporates an indicator function that
signals whether the state remained within the safe set at the previous time step.
The prediction and update steps for a Bayesian filter (see equations (11) - (13) of
[DAT13]) are used to express the sufficient statistic (14), which, without considering

the change of measure and normalization, is the same as (4.12).

The terminal payoff (15) of [DAT13] expresses the probability that the final state
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is in set K, and that all previous states are in set K, given the probability distribution
of all previous states in K as well as the current distribution of the final state. If the
terminal payoff was written in terms of the original state, it would be identical to
(4.21) for n = N. Prop. 3 in [DAT13] describes the solution of the terminal payoff,
and iteratively evaluates the expected value as in Theorem 4.1 (although integrating
the expected value over 7,,(0,41 | 0,,u,) does not reduce to (4.34) as ours does with
the change of measure). Thus, formulating the cost function as either multiplicative

or additive ultimately does not alter the end result.

4.6 Case Studies and Numerical Issues

We provide two examples in order to a) demonstrate the use of the viability sufficient
statistic with the change of measure in formulating various types of imperfect infor-
mation reachability problems, b) elucidate the difficulty in solving these problems
exactly, even when the problem seems relatively simple, and ¢) initiate a discussion of
possible approximation strategies, given that the problems cannot be solved in their
current form. Since solving (4.26) requires iterating over all functions o € L'(S),
an infinite space, we can only hope to use (4.26) as a practical solution method for

special cases in which ¢ can be defined over a finite subspace of L.

4.6.1 Temperature Regulation

A stochastic version of the benchmark temperature regulation problem with perfect
state information is presented in [APLS08]. We consider the case of one heater,
which can either be turned off, or turned on to heat one of M rooms. The average
temperature of room i at time n is given by the continuous variable z;(n), and
the discrete state ¢(n) = ¢ indicates room ¢ € {1,..., M} is heated at time n, and

q(n) = 0 denotes the heater is off. The stochastic difference equation governing the
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average temperature for room ¢ is given by

zi(n+1) = (1= b)ay(n) + Y ayj(z;(n) — z;(n) + iy + by, + vi(n). (4.40)
i#]

The constant x, represents the ambient temperature, non-negative constants b, and
a; ; represent the average rates of heat loss to the ambient temperature and to other
rooms j # i, respectively, and constant ¢; represents the rate of heat being supplied by
the heater in room i. The disturbances v;(n) are i.i.d. normally distributed random
variables with mean zero and variance v?, representing uncertainty in the model
resulting from the linearized discretization of the dynamics and other uncontrollable
factors. The variable h; is a function of ¢(n), with h; = 1 for ¢(n) =i and h; = 0
otherwise. The control input is given by u(n) € U with &4 = {0,1,..., M}, but
the chosen control is not always implemented with probability 1. Instead, g(n) is
updated probabilistically, dependent on u(n—1) and g(n—1), with transition function
T,(q(n+1) | g(n),u(n)). So while function fi,(c,) deterministically returns a single

control input, control input u(n) = fi, (o, ) may not always be implemented.

The average temperature in each room is unknown, and only a noisy measurement
y"(n) of each room’s temperature is available to the controller at each time step n. The
controller does, however, know which room is heated at time n (i.e. g(n) is perfectly
observed). The observation y(n) = (y*(n),y%(n)) with y*(n) = [yi(n)...y5(n)]" is
given by

yi (n) = x;(n) +w;(n)

y'(n) = q(n)

with w;(n) i.i.d. normally distributed with mean zero and variance w” (so that the
distribution ¢(w) is Gaussian). The transition matrix ((u) is the identity matrix for
all u, so that @, ,¢(u) = 1,(y?). Because the discrete state is perfectly observed, we
do not keep track of a discrete observation, and it is not included in the sufficient

statistic.

The temperature of each room should stay between 17.5 and 22 degrees Celsius

at all times, producing the safe region K = [17.5,22] x ... x [17.5,22], which does
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not depend on the discrete state g(n) (so 1x(s) = 1x(x)). To find the maximum
probability that each room’s temperature remains within K given that the controller
only has access to the observations y(n), we reformulate the problem in terms of the

information state o,. The dynamic programming equations (4.26) are given by

Vi) =3 [ tu@otag) do
q=0 VR (4.41)

ueU

Vilo) =max [ V(@000 dy
R

With 2;(0) ~ N (y;, %) for each i = 1,..., M and ¢(0) = 0, the initial information

state is
M
oo(x,q) = 1o(q) sz(xl)
i=1

. . . 2
for p;(x) Gaussian with mean p; and variance s°.

However, even for the trivial case of M =1 (e.g. a one room system), updating

0,, becomes complicated very quickly. Using Lemma 4.1, we obtain

_ oyr — )
01 (I, Q) - ¢(yz)

1

T, (qlq(0) = 0,u(0))

< [ Tutalo(0).0,u(0) 0 2(0) (0) da(0)
without the normalizing constant. The main difficulty with solving for ¢, is the fact
that the integral is evaluated over K, as opposed to over R. Because of the bounds on
the integral, we cannot claim o, is Gaussian given that o,_; is. However, since the
expression does quite closely resemble a Gaussian distribution, it may be possible to
approximate o, by an unnormalized Gaussian distribution without losing significant
accuracy. We intend to explore this possibility in future works. Further, we note that
there may be classes of systems for which such straightforward sufficient statistics

may be found.

4.6.2 Skid-Steered Vehicle

A skid-steered vehicle (SSV), modeled as a switched system, is presented in [CM11].
The SSV moves according to lateral sticking and sliding of its four wheels. [CM11]
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identify four modes associated with the vehicle: In mode 1, front and rear wheels
stick laterally; in mode 2, front wheels stick and rear wheels skid laterally; in mode 3,
front wheels skid and rear wheels stick; in mode 4, both front and rear wheels skid
laterally. For each mode, the vehicle’s continuous states X, Y, and 6 are governed
by a different set of second order ordinary differential equations (ODEs). The states
X and Y represent the Cartesian coordinates for the vehicle’s center of geometry,
and 6 gives the heading of the vehicle. We can represent the continuous state of
the system by x = (X,X,Y,Y, 0,9), such that = = f,(x) = f(z,q), with discrete
state ¢ € Q = {1,2,3,4}. See [CM11] for expressions for f,, which are too lengthy to
reproduce here. We discretize the ODEs using an Euler approximation method to

produce an equivalent discrete time system.

The control input can be expressed as a command informing the vehicle of
what mode it should be in. If the vehicle responded perfectly, we would have
¢, = u, for the mode at time n. Instead, let us assume that the mode changes
behave similarly to the temperature regulation problem above, where the control
command is implemented with a certain probability, dependent on the current mode:
T,(¢n+114n> uy). The continuous state is assumed to be deterministic given the mode,
so that T, (41|70, @ns Un) = 14z, 4.)(Tns1). Note that we assume the continuous
state updates first, then the discrete mode, so that the state z,,; is dependent
on mode ¢, rather than ¢,,;. Finally, assume we have a noisy observation of the
continuous state, and have an observation of the mode which is not completely

reliable.
Yn ~ Qg0

The vector w,, € R® is an i.i.d. sequence of multivariate Gaussians with w,, ~ N(0, W).

The matrix (), ¢ is given by

9 .033 .033 .033
033 .9 .033 .033
033 .033 .9 .033
033 .033 .033 .9

Qq,yq =
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Thus, the probability that the observed mode equals the true mode is 0.9, and if the
observed mode is not the true mode, it is equally likely to be any of the other three

modes.

The safe region K is defined as a path the vehicle should stay on. For instance,
we could define K as a rectangular strip K = {X,Y : -1 < X <1, =10 <Y < 10}.
Assuming the initial position of the vehicle, z(, is known and equal to z, € K, and
the initial mode is independent of xz(, uniformly distributed, and represented by p(qp),
oy is given by

1

—1;,(x).

70(,0) = 1, (2)pla) = |

In this case o, is easily calculated.

oY1 — )
(z,q) Z/ 4qu1 q (9190, uo) ¢1(yf) 1f(zo,q0)($)00($07QO)dx0
qo=1

- Z Qq yitq Q‘QOﬂUO) (b(yl ;é}é‘a):o’qo»lf(io,qo)(x)

qo=1

Thus there are four possible values of z for which o,(z, ¢) is nonzero. Similarly, given

an z,, value, o, (x,q) will only be nonzero for four values of .

(yfb—i-l _ f(xn7 qn))
On+1 .1' q / 4@ q‘qnv n) T 1 Ty Qn (x)o-n(xnaqn) d$n
+ qnz_l TYn i1 T, O(yZ 1) f(@nsan)

(4.42)

Even when o,, takes the above seemingly simple form, there is no immediately obvious

way to avoid evaluating the value functions for all o € L' in order to solve (4.26).

4.6.3 Computational Challenges

Because of the complexity of the hybrid dynamics and cost function, the sufficient
statistic and dynamic programming equations are computationally intensive. The
dynamic programming equations require iterating over an infinite state space. For the

two examples presented here, one major challenge is circumventing the evaluation of
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the value functions for all ¢ € L'(S) to solve (4.26). One possible alternative is using
approximate dynamic programming to estimate the value functions V,, by sampling
from y,, for each n to get sample trajectories of the o,. Since via our change of
measure the y,, are i.i.d, such sampling should be straightforward. Each y;, is sampled
from ¢( - ), and each y;, is sampled from the uniform distribution on {1,..., N,}. Some
work has explored approximate dynamic programming for DTSHS (see [KSS™13]), in
which the value function is approximated using a linear combination of basis functions,
and constraints on the value function are evaluated by sampling from the state space.
It is possible a similar approach could be applied to the partially observed case, where

we must sample from the observation space to obtain instances of o.

In addition, some work has been done on approximating continuous state POMDPs
using point-based value iteration (see [PVSP06]), albeit in the context of additive
cost functions with the belief state as a sufficient statistic. The method exploits the
structure of the value function, and uses Monte Carlo methods to generate a set
of samples from the belief space, in order to approximate the value function at a
given starting belief state. Further, [BKLPR10] have applied this to a system with
hybrid dynamics. These methods are the subject of the next chapter, and particularly
how verification of a PODTSHS can be approximately solved by modifying existing
algorithms for optimally controlling POMDPs.

4.7 Summary

We have presented a statistic sufficient for the control of a partially observable
discrete time stochastic hybrid system, first for a viability objective, then for a
viability objective with a change of measure, and finally for reach and reach-avoid
objectives. By redefining the partially observed optimal control problem as one that is
fully observed, with state variable o (the information state generated by the sufficient
statistic), we are able to define an optimal control policy as a function of . This
control policy is equivalent to the policy defined as a function of the information

vector, and leads to the same maximal safety probability. Further, we showed the
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equivalence between our approach and one that uses an additive cost function.

The major disadvantage of the sufficient statistic is that the dynamic programming
equations must be solved for every possible o € L' at every time step. As a direct
solution method, it is seemingly impractical. However, there may be cases where o
can be limited to a subset of L' so that the dynamic programming equations can be
solved. Further, our choice of measure in defining the sufficient statistic may lend
itself well to approximate dynamic programming techniques that avoid looping over

all possible states. We present approximate solution strategies in the next chapter.
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Chapter 5

Computational Methods for
Reachability with Partial

Observations

Although the sufficient statistic and dynamic program derived in the previous chapter
provide a solution framework for the reachability problem under partial observations,
they do not provide a practical means of generating probabilistic reachable sets. This
chapter therefore focuses on numerical methods to approximately solve the reachability
problem, based on the dynamic programming formulation of the previous chapter.
We again focus on the viability problem in greatest detail, and explain how the
methods for the viability problem extend to reachability and reach-avoid objectives.
Two methods for approximately solving the dynamic program are presented. The
first method approximates the stochastic hybrid system as an equivalent finite state
Markov decision process, so that the information state is a probability mass function.
The second approach approximates an indicator function over the safe region using
Gaussian radial basis functions, to represent the information state as a Gaussian
mixture. In both cases, we discretize the hybrid observation process and generate
a sampled set of information states, then use point-based value iteration to under-

approximate the viability probability. We obtain error bounds and convergence results
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in both cases, assuming additive Gaussian noise in the continuous state dynamics and
observations. We compare the performance of the finite state and Gaussian mixture

approaches on a simple numerical example.

5.1 Introduction

The focus of this chapter is on developing numerical approximation methods to the
viability problem with partial observations. Building upon the work of the previous
chapter, we exploit the relation between a PODTSHS and a POMDP, and the dynamic
programming formulation we derived for the viability problem, to utilize established

approximation methods for optimal control of POMDPs.

POMDPs are plagued by dimensionality on an even greater scale than MDPs.
While MDPs suffer from the curse of dimensionality, and become intractable over state
spaces of even moderate dimensions, the optimal control of a POMDP requires dealing
with a so-called “curse of history” as well. Although a sufficient statistic may be used
to condense the information provided in the history of observations and actions, the
belief state produced by the sufficient statistic is a conditional probability function.
Therefore, a dynamic programming solution that requires repeatedly solving a value
function over all possible conditional probability distributions is clearly intractable.
In particular, a continuous state space (e.g. S = R"), requires a belief state that is a
continuous function defined over an infinite domain (probability density function),
and it is impossible to enumerate over all such functions. Therefore the study of

efficient, approximate solutions to POMDPs is essential.

Although finding the solution to a general POMDP is hard [LGMO01], many
algorithms for approximating solutions to finite state POMDPs have been developed.
These mainly rely on point-based value iteration (PBVI) schemes that only consider a
subset of the belief space to update the value function used in the dynamic program.
Because the value function is piecewise-linear and convex [Son71] (and so equivalently

represented by a finite set of so-called a-vectors), sampling from the belief state
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provides a systematic way of storing a finite subset of those vectors. Such methods
must be tailored to continuous state POMDPs because of the dimensionality of the

belief state.

Therefore, as the first investigation into approximate probabilistic verification
of PODTSHS, we formulate the viability problem for a PODTSHS as a partially
observable Markov decision process with a non-additive cost function, and investigate
representations of the belief state in either vector or Gaussian mixture form through
finite- and continuous-state approximations to the PODTSHS. These representations
allow us to exploit point-based methods developed for POMDPs, by sampling from
the belief space and approximating the value function with a finite set of observations.
All results for the viability problem can be readily extended to reachability and

reach-avoid problems.

In this chapter we make several contributions to the solution of reachability
problems for PODTSHS. First, we validate the use of POMDP solution techniques
for viability analysis of a PODTSHS, by demonstrating that the value function
is convex and admits an a-function representation similar to the piecewise-linear
a-vector representation of a finite state POMDP. Second, we present a finite state
approximation to the DTSHS that allows the belief state to take vector form under
certain conditions, and show convergence for the approximation. Third, we preserve
the continuity in the hybrid state space through a Gaussian mixture representation
for the belief state, and approximate the indicator function that represents the safe
region using Gaussian radial basis functions. In this case, we provide an error bound
as a function of the L' error of the indicator function approximation. We outline
a solution method that converges to the true solution from below, using either the
finite or continuity-preserving belief state. Finally we demonstrate both approaches

on a simple temperature regulation problem.

The rest of the chapter is organized as follows. Section 5.2 lists some of the related
literature for solving POMDPs and viability problems for a perfectly observable
DTSHS. Section 5.3 briefly reviews the viability problem for a PODTSHS, and
Section 5.4 outlines PBVTI for sub-optimal control of POMDPs. Section 5.5 justifies
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the use of POMDP solution techniques, and gives the finite and Gaussian mixture
approximations to the viability problem for a PODTSHS as well as error bounds.
Section 5.6 describes the use of point-based approximation techniques, through
sampling of belief states and discretization of the observations. Section 5.8 provides
preliminary numerical results, and Section 5.9 provides concluding remarks and

directions for future work.

5.2 Related Work

To the best of our knowledge, this is the first work to provide computational results
for verification of a PODTSHS. However, we draw upon related computational results
for verification of a DTSHS, as well as approximation strategies from the POMDP

community. We highlight some of the related work in both of these areas.

Computational results for analysis of perfectly observable stochastic hybrid systems
are limited. Solutions via dynamic programming require evaluation of the value
function over all possible states, which is infinite when those states are continuous.
Discretization procedures can be employed to impose a finite number of states, as
in [AAPT07], [AKLP10], and [SA13], which present rigorous uniform and adaptive
gridding methods for verification of DTSHS.

A related approach is to generate an approximate abstraction of the original
model (often in the form of a finite state system) that has the same properties [SA13],
[FHH"11], [ZTA14]. The approximation is more easily solved than the original
problem, and the approximate solution is directly related to the actual solution.
Other solution strategies include approximate dynamic programming, where the value
function of the dynamic program is approximated by a set of basis functions, as in
[KSS™13]. Even so, current applications are limited to those with only a few discrete

states and X C R" for n small.

Because an exact solution is often impossible to obtain for even a finite state

POMDP, approximation strategies have been studied extensively. Many variants of
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PBVI are available (e.g. [PGT06], [KHLO8], [NJ0O0], [SV05]) that generally differ in
how they sample from the belief space (for example [SPK13] for an overview). More
recently, approximate solutions for continuous-state POMDPs have been studied (for

example [Thr00], [BMWDWO6], [ZFM10], [PTKLP10], [ES10], [PTKLP11]).

Often the continuous state can be discretized and approximately solved as a
finite state POMDP using PBVI methods. Depending on the dimensionality and
behavior of the system, it may be more informative or computationally more efficient
to preserve the continuity of the state space. Many existing methods for continuous
state POMDPs assume the belief state is Gaussian (e.g. [BMWDWO06], [ZFM10]),
and represent the belief state in a parameterized form which is then discretized and
solved as a finite state MDP. When the belief state cannot adequately be represented
using a single Gaussian, a Gaussian mixture may be used instead. An equivalent
point-based algorithm for continuous-state POMDPs using Gaussian mixtures is
presented in [PVSPO06], and demonstrated on a stochastic hybrid system with hidden
modes in [BKLPR10].

The results of this chapter are mainly inspired by the discretization procedure of

[AKLP10] and the Gaussian mixture formulation of [PVSP06].

5.3 Problem Formulation

The problem we wish to solve is similar to that of Chapter 4. We again consider
a PODTSHS (Definition 4.1) with hybrid state space S = X x Q, observation
space ) = V* x Y?, finite control space U, stochastic transition function 7,(ds'|s, u),
stochastic observation function 7,(dy|s, u), and initial density p on S. We make some
additional simplifying assumptions on the state transitions and observation process,
although as pointed out later these are not necessary for all subsequent results to

hold.

In what follows we assume the continuous state x obeys the affine difference
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equation

mn+1 = Axn + g(qn7 Up,, qn+1) + Uy - (51)

Matrix A is assumed invertible, and v,, are independent and identically distributed
Gaussian random variables for all n, v, ~ N(0,V). Therefore kernel T, admits a
Gaussian density, with T, (dx" € B¢, z,q,u) = I P(da’; Az + g(q,u,q'), V). The
function ¢ is used to represent a Gaussian probability density function (pdf); ¢(z; u, )

is equal to a Gaussian pdf with mean p and covariance Y evaluated at x.

We assume that the continuous observation g, is equal to the state x,,, disrupted

by additive Gaussian noise w,, ~ N (0, W).
Yn = T + Wy, (5.2)

The observation function T,+ therefore also has a Gaussian density, with T +(dy €
Blz) = [,¢ 5 @(dy; 2, W). The discrete observation space is defined for simplicity as
Vi=0Q.

Finally, the initial density p is assumed Gaussian in z: p(x,q) = Qo(q)o(x; 1o, Xo)
such that 3° o [, p(z,q) dv = 1.

Because 1=, T, and p are Gaussian, and U is finite and bounded, the following

Lipschitz properties hold.
IT.(2'|dss,0) = To(@|d, s, 0)]| < B [|2" = 7|
||, 2, q,0) = Tol(@'l¢', T, g, u) || < B2 |le — 7

T, (ylz) — T, (@lo)|| < BV |ly — 7
T, (ylz) — T, (y|7)|| < B |Jx — 7|

(5.3)

We define the maximum values of the densities associated with T, and T+ as ¢, and

¢n,, respectively, with ¢, = (27?)7%|V|7% and ¢, = (27T)7%|W|7%.

We focus on Problem 2.1 of Chapter 2 in the case of partial observations, and so
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would like to find

mell

N
Putan(p; K) = sup E™ [H 1x(s)

p] , (5.4)

n=0

7" = argsup {piviab(p; K )} (5.5)

mell

which is formally stated as

Problem 5.1. Consider a PODTSHS H" (defined in Definition J.1). Given a safe

set K and time horizon N we would like to:

1. Compute the mazimal probability (5.4) of remaining within K for N time steps.

2. Compute the optimal policy 7 given by (5.5).

If the mazimal probability and optimal policy cannot be computed exactly (which is
quite likely [LGMO1]), an approximation that produces a suboptimal policy and lower

bound on the maximal viability probability is desired.

5.4 Approximation Strategies for POMDPs

For a finite state POMDP J%° (see Definition 4.2), Sondik [Son71] first showed that
over a finite horizon N < oo, the value function (4.8) at each time n is piecewise-linear
and convex in the belief state, and thus can be expressed as
V() = max Y ap(s)b(s). (5.6)
anel,

The functions a; eI, or “a-vectors”, represent a policy tree that starts from a
specific action u and state s, and specifies optimal actions conditioned on observations
for time steps n + 1 to N. The a-vectors thus characterize the current value of being
in state s and taking action u, plus the expected sum of future rewards assuming all
subsequent actions are chosen optimally. Because each a-vector is associated with a
specific action, by picking the a-vector that maximizes ) ol (s)b(s), we also define

the optimal policy for belief b at time n.
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Calculating the value function and optimal policy requires knowledge of the
complete sets of a-vectors, I',,, for all n. The a-vectors at time n are computed
recursively from the a-vectors calculated at time n + 1. For each action, we observe
one of |Y| observations (where |-| indicates the cardinality of the set), and for
each observation there is a subsequent a-vector defined at time n + 1, resulting in
|U||IT n+1||y | a-vectors at time n. Hence using the a-vector representation to optimize

a POMDP is often infeasible, because the number of a-vectors grows exponentially.

An approximate solution can be obtained though point-based value iteration
(PBVI), in which a lower bound to the value function is computed using a finite
subset B C B, the set of all belief states. The general idea is to generate a collection
of points b € B, and for each of these points, estimate the value function via a
“backup” operation. PBVI approaches are distinguished by how B is selected [PGT06],
[SPK13].

We summarize the most common method of under-estimating the value function,
assuming B has already been selected. One a-vector is generated for each belief
point b € B, B = (1°,b",...,b™), so that I',, = (a2, . ..., o) for all n. We assume
that an a-vector o, corresponding to &’ will apply to all belief points in a region
around ¥’ (i.e. for any b in a neighborhood of Y the same action will likely be
optimal). Hence the value at some b not necessarily in B can be approximated by
Vi (b) ~ max i p S, al(s)b(s) as in (5.6) but with a restricted set T, C T,,. The
set T, is generated recursively from an, but without enumeration over all possible
combinations of observations and subsequent a-vectors in T, 11, by using the following

backup operation for each b € B.

backup(b) = arg max o (5)b(s) (5.7)

The overall PBVT algorithm then consists of selecting a set of belief points B,
and repeatedly applying (5.7) to each element of B. In the case of a finite horizon of
length N, the backup operator will be applied N times, and for an infinite horizon,
the backup operator will be applied until some tolerance level is reached (for example,

where [[Vi,41(b) = Vo (0)[| < €).
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The above derivations apply to a model with discrete state, action, and observation
spaces, but can be extended to POMDPs with a continuous state space and discrete
observation and action spaces [PVSP06]. In this case, the a-vectors are replaced by
a-functions defined over the continuous space S. Because the observations and actions
are discrete, the number of a-functions is finite, and the value function is piecewise-
linear and convex under the a-function representation. Further, summations over &

are replaced by integrals, hence (5.7) is written as backup(b) = arg max ol b).

€T, <
We maintain this notation in our derivations, where in the case of a hybrid state
space with continuous state z and discrete state ¢, (f,9) =>_, [ f(z,q)g(x, q) dz for

well-defined functions f and g.

5.5 Reformulation of Problem 5.1

We exploit PBVI to solve Problem 5.1, by transforming it into an optimal control
problem for a POMDP. Hence we first restate the dynamic programming formulation
for the viability problem given H"’ from Chapter 4. We then show that the value
function admits an a-function representation, that the a-functions and belief states can
be approximately represented in closed form (as either vectors or Gaussian mixtures),
and that finite collections of each may be generated and used to approximate (5.4),

similar to a point-based POMDP solver.

We present two approximations of Problem 5.1 for the PODTSHS #H"°. The first
discretizes S to produce a finite state POMDP, and the second preserves continuity
in § by using a Gaussian mixture approach, thus characterizing the PODTSHS by a

collection of weights, means, and covariances.
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5.5.1 Validity of POMDP Formulation

We restate the sufficient statistic 7 = (7, ...,ny) and value function for Problem 5.1

presented in Chapter 4.

nn(p’ Zn) =" 1q(Qn)1x(xn) H 1K<Si) P, Zn] (58)

Recall the information state o,(z,,q,) € & C L'(S) (where L'(S) is the space of
integrable functions defined on S) such that n,(p,4,) = o,, which is distinct from

the belief state (e.g. the conditional distribution of the current state).

Og =P

(5.9)

Op = yn,un,lan—l

where @, ,0 is given by
(@,.0) (s) = ;Ty(gﬂs/,u)/ 7,(s'|s,u)o(s) ds. (5.10)

P(y|J,U) K
The dynamic programming recursion over o is
VJ:;(O-) = <Uv 1K>

(5.11)

V:<O_) = rileazj( [EW [VT;-I ((I)y,ua)}
with solution Vg (p) = pNay(p: K). The optimal policy is 7 = (u), . .., jiv_1), With
pin(0n) = argmax V. (o, ) (5.12)
ueE
for all n € [0, N].

Lemma 5.1. For any n, the value function (5.11) can be written as

V(o) = sup {ap,0).

a;EFn

Proof. By induction. At time NV,

V(o) :/SlK(s)a(ds).
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By defining ay(s) = 1x(s), we obtain the desired result. Note that this definition of
ay is in line with the definition given in Section 5.4, because although it does not
represent a full policy tree (being at the terminal time, there are no more branches

on the tree), it does represent the immediate value of being in state (z,q), given by
]J((xaQ)‘

. * 7 * .
Next, assuming V(o) = supr, | (agy1,0), V,, can be written as

ueU

V(o) = maxE" [ ~sup <a2+1,0>]

k2
Q1€ 41

—max [ s (ad, 0] Pldylor )
Yy

ueu a;+1ern+l
:maX/ sup [/ /a;+1(s')ry(y|s',u)Ts(ds']s,u)a(ds) dy.
ueU YV KJS
ap 1€l

Then for a specific observation y, action u, and o, function, the function o, can

be defined as
0ty () :/a2+1(8')7y(y!8'7U)Ts(dS'ls,U)lK(S)- (5.13)
S

Because o}, does not depend on o, we can redefine the supremum over all I' to
Y,u 9 n+1

i
be over all o, ,,.

V(o) = max/ sup {ay ., o) dy”
Yy

uel i
{ayu}

For a specific o, u, and y, we define
Qyu0(s) = argsup (o, 0)
' (5.14)
— [ @m0l ) (@l w)1(s)
S

with *(y) denoting the index i of the a-function a;u that maximizes the inner product.

We further simplify V,, as

ueU

= max o dy,o ).
well <QZ; Y,U,0 Y, >

V() = max / @y, o) dy
Y (5.15)
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Therefore, the set of all {a}} is described by

r,=J {/y Oyt o dy} (5.16)

g

with «* the control inputs chosen according to (5.15), and V,, may be written as

V(o) = sup (a,0) (5.17)
a;EFn
|
Lemma 5.2. The value function (5.11) is convex in o for alln =0,...,N, 0,7 € L!
and 0 < A< 1:

Vii(Aoy + (1= Noy) < AV, (01) + (1 = NV, (0).

Proof. The proof follows directly from Lemma 5.1. Because the inner product operator
is linear, and Lemma 5.1 states that
Vo(o) = sup (ay,0),
aiEFn
it follows directly that
ViAo + (1 = N)7) = sup (o, Ao + (1 — \)7)
aiGFn
= {ap, Ao+ (1 — \)7)
::A<@:,U>—F(1‘—'A)<@Z,5?

< sup Maj, o) + sup (1 — N}, )

a,€er, an€elr,

<AV (o) + (1 = NV (@).

Since Lemmas 5.2 and 5.1 show that the value function (5.11) is convex and
admits an a-function representation, H*’ is amenable to POMDP solution techniques.
Note that Lemma 5.1 is not useful for solving Problem 5.1 directly, since I, is not

finite and the a-functions and information states have no common structure. If we
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assume a finite number of observations and control inputs, i.e. |Y| < oo and |U| < oo,
then the value function is piecewise-linear and convex, and the size of I, (number of
a-functions stored at time n, |I',,|) is finite. However, we do not make this assumption,

and will require additional approximation strategies, discussed in Section 5.6.

5.5.2 Finite State Approximation

We first consider a finite state POMDP [AKLP10], whose solution converges to
the true viability probability (5.4) and optimal policy (5.5). The state space S is
discretized to obtain a vector representation of o and . The observation space is
unchanged (i.e. hybrid), because the set of observations only affects the finiteness of
sets I',, and X,,. We defer discussion of producing finite collections of I',, and ¥, to

section 5.6.

Given compact safe set K € B(S), let K = [J,o K, X {q}. Denote A =
max,co £(K,), the finite Lebesgue measure of K, C R". Each K, is partitioned

into a finite number of subsets, so that K, = Uqu K, ,, with K; , pairwise disjoint

(ie K;,NK;,=0foralli#j), K;, € B(R"). Finally, let 6;, be the diameter of

partition K, so that 0;, = sup{||lz — 7| : 2,7 € K}, with 0* = max; ,d;,.

The partition of K is denoted by G° = Uizl’..wmq,qegg;q with G, = K, , x {q}.
Each element G;, has a representative point (z"?,¢) and the set K; = {(2",q) :
i=1,...,m,q € Q} is the discrete representation of K. We do not consider here
how the points (2", ¢) are selected, but an example is provided in Section 5.8. The
function § : K — K; maps a state s € G;, to its representative point ("9, ¢) and
the function = : K5 — K is the set-valued map from discrete point (xi’q, q) to its
corresponding set G;,. The discrete state space is defined as Zs = K; (J{t;}, with
1, a single variable that represents all states s € S\ K.

Definition 5.1. (POMDP approzimation to PODTSHS, H"). The POMDP ap-

prozimation is a tuple H" = (Zs, Y, U, Tf,Twp(;) where

1. Zs 1s a finite set of discrete states
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2. Y is as defined in Definition 1
3. U 1s as defined in Definition 1

4. Tf c Zs x U x Zs — [0,1] is a discrete state transition function that assigns

probabilities to elements of Zs
5. T, 1s as defined in Definition 1
6. ps: Zs— [0,1] is a function that assigns probabilities to elements of Zs at time

ZET0

We define the transition function as

;

75(2(2)|2,u), if 2/ € Ks and z € K
1—-> J(2(2)]z,u if 2/ =1, and z € K
1, if 2/ =1, and z = 1,
07 le/EK(; andZ:g/)S

\
with > e 79(Z|z,u) = 1, and the initial distribution p; on Z; as
p(E(Z)), if z € K6

ps(z) = (5.19)
1= ek, P(EE) if 2 =1

Recall that 7,(2(2)|z,u) = Tx(Ki7q/|q/, z,u)T,(¢'|g, v), and T,, evaluated over Borel
set I,/ is a Gaussian density integrated over set K .- The discrete probability
space is (Qs,0(Qs), P5) with Q5 = Z3' T x YV, 0(Q;) the o-algebra on Q, and
P3° the probability measure uniquely defined by ps, 7, Tf , and a control policy

Ts = (#3, . ,u‘;v,l), 10 85 — U, with X4 the set of all information states o;.

We further define the operator @g’u and the intermediate vector ag,u,aé as

(q)g’ua(;) (') = ;)Ty(y]z',u) Z (2|2, u)o5(2) (5.20)

[P(y|0'5,u 2€K,

Zaffﬁu V1, (yl2 w) (22, u) g, (2) (5.21)

z €K§
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forye Y, uell, 7,z € Zs. The viability problem for H*° is
sup pfr\i[ab(ﬂ-&pz?;KcS) = Sup [Pga [Zn € Kéa Vne [OaN]] : (522>
7T5€H5 7T5€H5

To solve (5.22), we formulate the information state o5 and the value function Vs :

os = [0,1) forn=0,...,N.

The discrete information state represents a probability mass function over Zj,

and can be expressed as an integral over an equivalent density (just as 7°(2|z, u) =

7 (E(2)2,u))

. W(ds), ifze K
o) = | 150 ’ (5.23)

fS\K (ds), if z =,

with &,,(s) given by

p(s'), ifn=20

z A / 1 !
o) = § (Byu001) ) = g W) ) e

x /K (5 |€(5), )y (ds),

This can be verified by substituting the expression for 7% in terms of 7, into (5.20)

and using an induction argument.

The value function is

Vns(os) = Z 05(2)

z€K;

V7 5(05) = ma / Vs 5@ o) P(dylos, w)
y

ueU

(5.25)

The maximum probability of remaining within Kj over N time steps (5.22) is

pi\i[ab(%; K&) = Vof&(ﬂ&)- (5'26>

We now show that the viability probability for the finite state approximation HP°
converges to the true solution as grid size parameter 6 tends to zero. To do so, we
first describe the error between the continuous information state ¢ and the vector

approximation oy.
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Information State Approximation Error

We first characterize the relationship between the densities o (5.9) and ¢ (5.24) in

the following theorem.

Theorem 5.1. The density ¢ defined in (5.24) satisfies

|Un(8> - a-n(8>| < 772536

foralls €S, 0, €%, andn, given by
Ty = ch,i ( H C2,j> ,
i=1 j=it1
1 1
Pylon, u)” P(yl6,, u)

1
Cy i = min : - G N .
N {P(y!%w P(y|0mu)} ’

with Cl,’i = min { } [gb;kjhg(f) + ¢Tuh§32)]7 and

Proof. By induction. At time n = 0, g4(s) = p(s) = dy(s) and the inequality is
trivially satisfied. For alli = 0,...,n, assume |o;(s) —;(s)| < ny6*. At time ¢ = n+1,

for any y € Y and any u € U,

1 1
A NI < mi
|0‘n+1(8) On+1(8)| B mln{[l)(y|o-n7u>’ P(y|5’n,U)}

Rls) [ 761 0 (ds)
Y RACICORILACS

X

(5.27)

We add and subtract 7, (y|¢(s"), u)/ 7,(s'|s,u)o,(ds) and
K

7, (ylE(s), ) / 7,(8'|€(5),u)o,(ds) and apply the triangle inequality.
K

owias) = G ()] < min{ L (y‘;,u }
x{m(y\s’,u) 0] [ s s
) ) [ (s = nlsl€(s) 0] o)

T 7, (), v) /K (S 1€(5), ) [on(s) — 6(s)]| ds
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1 1
o, S/ . a_n S, S mln{ , — } sup |iTq yq q/’u
’ +1( ) +1( )‘ P(y|an,u) |P(y|0n,u) Jer Y ( ‘ )
< | Ty (y° |2") — T (y"1€(2")) | @ + 02T, (d'|g, )

X }Tx<‘r/‘q/7 S,U) - Tx(‘r |q 75(8>7u)’
* _ A / d
. muégwwam%

1 1
< min ) -
- {P(yIUmU) ”’(ylan,U)}
WP 2" = &) |lgy + duhP |2’ — ()|

+

63 llo, - Auquml/xwm%w@

qeQ
(5.28)

Since T, is bounded by ¢,, and the Lebesgue measure of K is at most A, we obtain

1 1
h%ﬂwv—@ﬁx@|3mm{ — }

P(ylow, u) P(ylo,, )
X |BP6187 + 6uhP5 + SN Ao, — 6l

1 1
< min ) -
- {[P(ymu) P(4]6, 0) }
x [BP6107 + GuhP6” + N (1767)]

Combining terms gives the desired result. [

Convergence of (5.26) to (5.4)

The value function (5.11) requires integrating over spaces ) and S of unbounded
size. To prove convergence of the value function V, 5 to V,;, we must show that these

integrals are bounded.

Consider the following two lemmas regarding integration of T)= and T, over

unbounded sets Y* and X, respectively.

Lemma 5.3. For any x,7 € K, ,, foralli=1,...,m,, q € Q, the following holds:

%,q7

L/J%%fh%—%dfﬁﬂ@xS[lzy+ﬂﬂ
Yy
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with By ; = 1dy" and 8 = %Z’\/QZU;?T. In other words,
is the Lebesque measure of region K; , scaled by \/w, in all directions, with w, the

2 *
f{yz:”y27w”2gwa7yz€yz’m€Kq,i}

largest singular value of W (so if K, , is a hyperrectangle, each side will increase by a

factor of 2\/w_§)

Proof. We exploit properties of the derivative of a Gaussian distribution, which
bounds the Lipschitz constants for T+ from above. The constant hf) is the maximum

value of the derivative of ¢(y”; xz, W) with respect to x:

x

1 _nz—y*u%
1 H r—ylae e . (5.29)
2 (2m) 2|VV]

H@x

Since | W]y = |p(W)| = w,, (with p(W) the largest eigenvalue of W), the maximum

of (5.29) occurs at ||z — y*|| = /w,.

Although ||82|| < WP we create a tighter bound for the case in which [l — y|| is
greater than \/wy (for y* € Y such that there exists x € K, , for which ||z —y"[|, =
w,, the upper bound h?(f) is attained) by representing the Lipschitz bound as a

function of y".

1 _Hz—y:né
hy(y") = max § —————|[[z —y’[re o o. (5.30)
Y T€EK; 4 { (27T)§|W|§w; 2
Then,
/y Ty (1) — Ty (717 dy” < /y hy(y)le — 7] dy” (5.31)

< diq /
, ) )
{y":lla—y" a<ws v €V’ weK; 4}

{y :||a:—y ||2>wo’y 6)7 7336K7l,q}

T 2
= 5i,qﬁ%’,ih2(4 )

+ 074 / , hy(y*) dy” (5.32)
{yz:”xiy1”2>w;7yz€yz 7x€Ki,q}
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We use the change of variable v = [|2" — y*[|5, with 2" = argmin,c, |7 — y*|, to
rewrite the second term of (5.32), and apply an identity for integrals of polynomials.

2

1 1, -2
h,(y") dy* = n—/ ot nE gy
/{yz:|:py12>w;,yz€K,m€Kl—,q} Y (271')5 2 Vw 2

S /°° Lo
(27T)5|W|§w* 2

Yo fow (5.33)

T (2n)f IWIW* 2

Inserting (5.33) into (5.32) proves the lemma. |

A similar result holds for the integral of T, over X.

Lemma 5.4. For any x,7 € K, ,, for alli=1,...,m,, q € Q, the following holds:
[ 1@ .0 - Tl )] de < [ﬁ@h? + 35| o
X

with f7; = ldx and B3 = %\/21);7?, with a, the

f{w ]2’ — Az—g(q,u,q ) |3<vy 2’ €X 2K, 3}

largest singular value of A.

The proof follows that of Lemma 5.3 with mean and covariance appropriate to 7).

In order to show convergence of (5.26) to (5.4), we need some additional definitions.
First, similarly to &, we define piecewise constant function & as &, (s) = ay, 5(£(s)),

so that

/ / 629 () (dy ("), W) (A€ (5), u) L, ((5)). (5.34)

We also define &,,(s) in the same manner as &,,(s), except that it is directly related
to «a,(s), i.e. uses the same optimal control input u, and the same combination of
a,41-functions (determined by *(y)). In other words, &, (s) is identical to «,(s) in

terms of the optimal policy tree from time n to N, but the values are calculated using

R I€(). ) and 7, (516 (s), ).
)= [ ] Gy (€06 1) Ly €05) (539
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for a specific a-function i associated with o’. The superscript ¢ for «’ and i(y)
indicates that the same choice of u and combination of o/ +1(s) are used for both
ol (s) and @’ (s). A bound on the difference between a,(s) and & (s) is given in the

following lemma.

Lemma 5.5. For any n € [0,N], and any function al(s) € T,, the associated
function &l (s) defined in (5.35) satisfies

a4 (s) = @h(s)] < (N = )N, | BIR + BERSY + BY + 55 0

for all s € S. The constants i and Bi are equal to max_; ., gcoBi; and

my.qeQ B1i from Lemmas 5.3 and 5.4, respectively.

,,,,,

Proof. By induction. At time NV,

|y (s) — av(s)] = =0 (5.36)

/5 (Lic(s) — L (€(5)) ds

since for any s € K, by definition £(s) € Ks5. Assume for all j = N —1,...,n+ 1,
a5 (s) = 5()] < (N = m)N, | VA + GRS + 34 + B3] 6%, For j =,

0l () - &, \—\// 0D, (s (gl () 3, ) L ()

/ / D) () (dyl€ (1), ) (s (5), ) L, (E(5)
(5.37)

W (s — all (s))

+ [ / &0, (") |7, (dyls' ') — 7, (dyle(s), )] (5.38)
x 7,(ds'| s, u") 1 (s)

w [ [ ahemn e )

x |7s(ds’ |s,u") — 7,(ds'|€(s), ’1}( s) (5.39)
i(y) 51 [5%(2 i 52] 5

7y(dyls', u')7,(ds| s, u') L (s)

<ol

S an+1(3/) - an+1( )

+ N, [prn® + 53] 6° (5.40)
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The second term of (5.39) simplifies according to Lemma 5.3 and noting that «a(s)
represents a probability that is bounded above by one. The third term simplifies
according to Lemma 5.4. The term 1x(s) does not affect the bound, and only
indicates that both a,,(s) and &,(s) are equal to zero for s ¢ K. Applying the
induction hypothesis to (5.40) gives the desired result. [

We now can show convergence of the approximate viability probability over the
discretized state space to the true viability probability.

Theorem 5.2. For any time n € [0, N]|, and any o € &, 05 € 3, the error between
the value function (5.11) and the value function (5.25) based on the finite state

approximation is bounded above by
Vi(0,) = Viis(0ns)| < nié”
with 1y = NN+ (N = )Ny (8/h? + 570 + BY + 53).

Specifically, the viability probability for PODTSHS H' over time horizon N

satisfies
Pan(03 ) = Dl s K5)| < [N NSRS + BERS + 58 + 65)| 8"

Proof. By construction. At any time n € [0, N], given 0,, € ¥ and 0, 5 € ¥;, we can

rewrite the value function evaluated at ¢ in terms of a-functions.

‘Vn* (0n> - V?’iﬁ(anﬁ)‘ = SU.p <aiu Un> - 'Sup <Oéiz,57 O-n,5> (541>
azlern O/;L,éer'n,é
= ’<afw Gn) - <afl,57 On,§> (542)

Assume without loss of generality that (Oszar) > <o/n,5,an75>. Then, because
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(&% 6,) < (&, 6,) by definition of the optimality of &, we can write

‘V:(gn) - Vrzﬁ(an,é) = <Cl/i, 0n> - <a£1,670n,5> (543)
< <afw gn> - <O~é7’2,(57 O-n,5> (544)

(5.45)

ok (s) — a5 ()] 0, (ds) + / G5(5) [0 (ds) — 5,(ds)|

(5.46)

Applying Lemma 5.5 to the first term of (5.46), and noting that the integral in the
second term is in fact taken over K rather than S since % (s) is zero for all s ¢ K,

we obtain

Vi (0,) = Virs(0ns)| < (N=n)N, | BYRS) + BTREY + BY + B | 6%+ N, \iyg o™ (5.47)

)

which completes the proof. [ |

Theorem 5.2 shows that the finite state approximation HP° provides a means to
approximately compute (5.4) through the viability probability for H?°, (5.26). As
d* — 0, the finite state viability probability (5.26) converges to the true value (5.4),

and the policy 75 converges to 7.

5.5.3 Gaussian Mixture Approximation

We now consider a different approximation by representing the information state o and
a-functions from Lemma 5.1 as Gaussian mixtures. That is, the information states
and a-functions are each characterized by a set of weights, means, and covariances,

dependent on the discrete mode q.

Difficulty arises from the incorporation of the indicator function 1y in (5.14)
and (5.10). Integration over the compact set K rather than all of S violates the
preservation of the Gaussian form of o under operator ®,,, and similarly for the

a-functions. To preserve the Gaussian mixture structure, we therefore propose a
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radial basis function (RBF) approximation [PS91] to the indicator function, using

Gaussians as the basis function. For each K, we set

Z wi (q)d(w; i (q), i (q) (5.48)

using the most general form of the RBF with covariance »; rather than e/. For
simplicity we will denote ¢(x; p; (¢), 21 (¢)) by ¢i(z). This approximation is valid
since the RBF's are dense in L” [PS91], i.e. given any function f in L”, a weighted com-
bination of RBFs can approximate f to arbitrary accuracy given enough components,

and 1j isin L'.

However, the discontinuity in 1 K, produces the Gibbs phenomenon at the boundary
of K, in the RBF approximation. Although these oscillations will always exist for a
finite number of components, they could possibly be mitigated [FF11]. The oscillations
can be constrained to a smaller region of K (shorter wavelength) with the addition
of more components, indicating that the L” error can be reduced but the pointwise
error may not. Because we are interested only in integrating over K, this works to

our advantage.

We define a new operator Y and a new a-function of, , by inserting the RBF

approximation (5.48) into (5.10) and (5.14), respectively.

((I)g,uag) (s") = m@(yb’/, w)
X Z/ o1 (x) | To(s|s,u)ay(s)dz  (5.49)
qeQ
o)=Y [ (s
q'GQ/X

q
x 7y (yls', w)r(s'ls,u)da’ | 3 wi(@oi(x) | (5:50)

i=1
We presume continuous observations, as in Section 5.5.2 (the inclusion of a finite
number of observations will be addressed in Section 5.6). We provide two lemmas
stating that the operator ®7 , (5.49) and the a-function update (5.50) preserve the

Gaussian mixture representation of o, , and a,, , for all n.
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Lemma 5.6. The operator @7, (5.49) is closed under Gaussian miztures, i.e. for

o, a Gaussian mizture with L components, ®; ,0, is also a Gaussian misture with

g g

N I,L components for anyu €U, y € Y.

)

Lemma 5.7. The expression (5.50) is closed under Gaussian miztures, i.e. if Ozn(f;'l g

is a Gaussian mizture with M components, ay , , is also a Gaussian misture with

NI ,M components, for anyu e, y€ Y, o € X.

The proofs of Lemmas 5.6 and 5.7 are straightforward and can be shown through
extensive manipulation of products of Gaussian pdfs. Lemma 5.6 implies that we can
approximate o through a Gaussian mixture and use the equivalent update operator

q)g

> hence the Gaussian mixture approximation of o is

00.4(7,q) = 00(7, q) = Qo(q)P(; p10; Xo)

L : (5.51)
Ong(1,0) = > wn(@)d(; 17, (0), 7 (q))

=1

Similarly, the Gaussian mixture approximation of any a-function is written:

]q
ang(r,q) =Y wi(q)¢i (v)

A:; : (5.52)
Qg (@,0) = > win o (0) (@ 1150 (q), S (0)

m=1

The weights, means, and covariances are defined recursively. Their exact represen-
tations are lengthy, but again easy to derive through manipulations of Gaussians.
Appendix B provides a proof of Lemma 5.6 and Lemma 5.7, and gives the recursive

expressions for o, ,(x,q) and o, ,(z,q).

Note that although the Gaussian mixture representation of aj, , has a finite

number of components given that the representation of a4 , is finite, the actual

g

vae over V. Therefore, without the

a-function, «,, ,, is expressed as the integral of «

n,g?
assumption that ) is finite, o, , must have an infinite number of components (by
breaking the integral over ) into a summation over regions of size A C ) and taking

the limit as A — 0). We take some liberty in overlooking this discrepancy, because it
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does not affect the proofs in this section. We impose a finite set ) in Section 5.6,
which makes the Gaussian mixture representation of the a-functions indeed valid,

and discuss additional error implications.

The viability problem for the Gaussian mixture approximation is defined as
sup plap(7my, pg1 K,) = sup P [s, € K,, ¥ n € [0, N]]
my€lly me€lly

= Vog(pg) (5.53)

with K, an approximation of K according to (5.48). The value function V,7 (0, ,) is

described through the recursion

Viglo) =Y / S w! (g)! ()0, (2, q) da
o YX =1 .

Vi,

9

(5.54)

(0,) = max /y V(@70 P(dylo,, )

ueU

Since T, Tz, and p are Gaussian, the Gaussian mixture representation of « and
o are exact, aside from the approximation of 15 using RBFs. To quantify the error
incurred from calculating Vi, as opposed to V5" (from integration of (5.48) over S

rather than over K'), we define the error

€ = 1K—Zw5(q>¢{(as> . (5.55)

LY(S)

We additionally constrain the RBF approximation (5.48). The weights w; (¢) must

satisfy the following three conditions.

Iq
/X;wﬂq)(bf(:c)dxs/K LdrVqeQ

q

Iq
/ Zw{(q')d(w')@(s']s,u) ds' <1Vse S, eS,uel (5.56)
S =1

Iq
/Zw{(q)gﬁf(m)g(sﬂs,u) ds<1VseS,s eS,uel
S =1
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The first condition assures that [ fil w; (q)¢1 (v) ds < N,A. The second and third
conditions assure that no probability exceeds one. All conditions are easily satisfied

by calculating the optimal weights and reducing them slightly if necessary.

Information State Approximation Error

The error between o and o, is stated in terms of the L' norm on S, although a nearly

identical result is available for the pointwise error.

Theorem 5.3. The Gaussian mizture approximation o, , of o satisfies

nhg

o — Un,gHLl(S) < Yner

n

for any n € [O,N], y € Y, and u € U, with v, = Z(¢Z)j¢;j and ¢, ; =

j=1
max_(27) 2|57 (q)| 2.

lel,...,L;qgeQ

Proof. By induction. At time zero, o ,(s) = 0¢(s), so that ||og — 0o ,||; = 0. Assume

that ||o; — < ~i€er foralli =1,...,n. Then at time n 4 1 we have, for some

TigllLrs
yeYanduel,

H0—n+1 _0”+179HL1(S) S LTy(y|S/au)[g 1K(s)0n(ds)
—Zw ng(ds)| T4(ds']s, w)

/|1K 2 (ds) = 1 (5)7, o)

~

+ /S 1K(S)O'n,g(d8) - wiI(Q)QbiI@)Un,g(ds)

i=1

(5.57)
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*
||‘7n+1 - JnH,gHLI(S) < Pu Han - Un,g”1

/ Z w! no(ds)|  (5.58)

The first term of line (5.58) follows because the integral over K is less than the
integral over all of S, since K is a compact subset of §. The induction hypothesis

completes the proof. [ |

Convergence of (5.53) to (5.4)

As for the proof of Theorem 5.2, we define the function &, ,(s) which utilizes the

.9

same policy tree as o, (s) for a specific aly(s) € T,.

// ~:fi)lg N, (dyls, u) T, (ds'|s, u')d Zw (5.59)

with u’ the optimal control input associated with o/, (s) and i(y) indicating that

aﬁi)17g(s) is chosen according to the indices selected by *(y) for a,,(s). The following

lemma describes the relation between a,,(s) and &,,(s).

Lemma 5.8. For any n € [0, N], and any o/y(s) € T, the associated function &;,g(s)
defined in (5.59) satisfies

o 6) = gl < (Zwm )

k=n

Proof. By induction. At time N,

Ja(s) — awallr = [ 1) = Sty as (5.60)
=€ (5.61)

and the result is satisfied. Assume for j = N —1,...,n+ 1 that [|a}(s) — &} ,(s)|; <
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(ij:j()\gﬁq’j)]v_k) ¢; for any o’ € T';. Then for j = n,

o) =yl = | [ [ sl i 5,00 1t

Iy

— Ay () (dyls' )Ty (ds|s,u') Y w! (q)gl (x)] ds

<L
x 7,(ds'| s, u") 1 (s)ds
@m0

Iq
< 7 (ds']s, ') |Lie(s) = 3wl (q)6l (2)| ds
=1

(5.62)

:1(11 ij@l g(sl)‘ Ty(dy|3/, u')

(5.63)

@l (s) — al, (s)

<),

oyds’ /s 1x(s)ds

T / 1s) = 3wl (@)l (@) ds (5.64)
< Ao} ( > (Aqb:)“) er+ € (5.65)

= (Z(A¢;)N—k) €r (5.66)

Theorem 5.4. For any time n € [0, N], and any 0 € ¥, 0, € ¥, the error between

the value function (5.11) given o and the value function (5.54) given o, using the

Gaussian mixture approximation is bounded above by
‘V:(an) - V:,g<0'n,g)| < '7361

with 7 = (il 060 ™) 650+
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Specifically, the viability probability for PODTSHS H'° over time horizon N

satisfies

N

JN—

pf/\ifab (pa K) pv1ab (pgﬂ [Z )‘va ¢0' 0] €r-
0

Proof. By construction. For any time n € [0, N], given 0,, € ¥ and 0, , € 3, we can

rewrite the value function evaluated at o in terms of a-functions.

Vi (0n) = Vig(ong)| = | sup (an,0,) = sup (g, 00,) (5.67)
Otl elr, O‘;,gern,g
= [(ak, ) = (kg 0) (5.68)

As in the proof of Theorem 5.2, assume without loss of generality that (a* o,) >

<a’lfl,g7 Un,g) N
Vi (0,) = Vi (0ng)| = (i, 0,) = (g, Tg) (5.69)
< (an, 0,) = (@ g, Tng) (5.70)
’ O‘nao- &Z,gaa > + ‘<dfz,gao-n> <dfzg?0-ng>
(5.71)
k k

< / o (5) — Gt o ()| o (ds)
+ /s&n’g(S) |0n(ds) - an’g(dsﬂ (5.72)
< (Z(A@f)]v_k) Do n€r + Tn€r (5.73)

k=n

Theorem 5.4 shows that the convergence of the Gaussian mixture approximation of
both o and the value function depends on the L' error between the indicator function
over K and the RBF approximation (5.48), rather than the pointwise error. Although
the pointwise error may not converge to zero for a finite number of components in

the RBF, the integral of the error can be small, as we will show in Section 5.8.
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5.6 Approximate Numerical Solution with Lower

Bound

A numerical solution of Problem 5.1 via either a discrete or Gaussian mixture
approximation additionally requires sets I',, and ¥ to be finite, whereas we have sets
of infinite size because of the uncountable nature of ). However, a lower bound on
the viability probabilities (5.26) and (5.53) can still be obtained, by characterizing
the error that results from using T',, € T,, and £ C %, finite collections of a-functions

and information states, respectively.

We again exploit point-based approximation methods described in Section 5.4.
We examine the generation of subsets of the information states and a-functions, and
prove that each guarantees a lower bound to the viability probability of whichever
approximation of Section 5.5 we choose. In contrast to most point-based solvers,
we do not assume a finite set of observations, and hence discretize the observations
merely for the computation of the a-functions. Combining belief space sampling with

discretized observations assures a lower bound to the viability probability.

5.6.1 Sampling from the information space

We characterize the error from using a sampled subset of ¥ for performing backup
operations (as in (5.7)). Presume that a finite number of information states has been
generated according to one of the many methods available [SPK13]. We generate a
finite set T, of a-functions, one for each o € 3. The convexity of the value functions
guarantees that the subset T, provides a lower bound on V,*. Further, we can show
that the error between the approximate value function \7: and the true value function

V" depends on how densely we sample X.
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The value function V" is formally defined as V' (o) = SUps cp (G, o) With

//ﬁi 7 (dyls', )7 (ds'] s, u) 1 (5)

a%whm%_m>/%mwwww/mwwwmﬁ
5 T S K

Qp1€l 41

(5.74)

so that V,* is characterized by the finite set I',, at each time step. We also define an
intermediate value function V: =sup, ¢ (G4y,,0) that generates T, recursively from
I, 11, i.e. that introduces one point-based backup from the full set I',, ;. Then &, is

written as a function of o, rather than &, with

Oz:;(ﬂ(s’) = arg sup / i1 ()7, (yl]s, u)/ 7,(ds'|s,u)a(ds) p . (5.75)
7L+1€Fn+1 S K
Finally, let 6 be the maximum L' distance between points in 3 and points in 3.

07 = sup II€l£||U—O'||1 (5.76)

Fex
In the following, we do not distinguish between the vector and Gaussian mixture

representations of ¢ and «, because the results apply to both cases.

Lemma 5.9. For any n € [0, N] and o € 3, the error introduced in one iteration of

point-based value iteration is at most 0.

Vi(o) = Vi(o)] <6

Proof. The proof is modified from [PGT06]. Let & € 3 be the closest point in the
L' sense to 0. Let @ € T, be maximal at &, and o* € T, (and not in T,,) is the

function that would be maximal at o had it been calculated.

Then

(a*,0) — (a”, )] (5.77)

< [lo” =& flcllo = a1l (5.78)

Q)| ou6” (5.79)
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Line (5.77) follows because a'? is optimal for ¢'® | implying (a'V, ) < (a'?,o®).
Line (5.78) follows from Hoélder’s Inequality. Line (5.79) can be further simplified
by noting that the a-functions are bounded between 0 and 1 for all s € S, and so

la® — | < 1.

We now use Lemma 5.9 to derive a bound between the true value function and

the point-based approximation at any time n.

Theorem 5.5. For a set of information states ¥, sampled set , and any time
n € [0, N] and any o € 3, the error from using point-based value iteration versus full

value iteration is bounded above by

V(o) = Vi (o) < (N —n)d”.

Proof. By induction. At time N, Vi = V3 for all o and the inequality is trivially
satisfied. Assume for all i =n +1,..., N — 1 that |V;*(0) — Vi*(0)| < (N —1)0°. At

time n,

< Vi(o) = Vi (o) + Vi (o) = Vi (0)]
< / sup (@41, ®,,.,0)P(dy|o, u)
Y,
- / sup (v, 1, @, ,0)P(dylo, u)| + 07 (5.80)
yFn+1
<NVii1(Opg1) = Viria (00 0) | + 67 (5.81)
<(N—-—n—-1)6 446 (5.82)

Line (5.80) follows from Lemma 5.9 and because V,f and V;* are computed over
the same set % (allowing us to write V and V in terms of 6 € & corresponding to

& eT,), and line (5.82) from the induction hypothesis. |
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Thus the error between the point-based approximation and the actual value
function is directly proportional to how densely 3 is sampled, and converges to zero

as Y approaches ¥.

5.6.2 Calculating the Alpha-functions

Over the uncountably infinite space ), we cannot calculate o, ,, , for all y € ), despite
a finite set of w and 0. We therefore compute a subset of o, , , for the finite set Y,
to approximate «, as a,(s) &~ Zyi ayi,u,a(s)' We discretize ) in a similar fashion to

the discretization of S in Section 5.5.2.

However, since J* is not compact, we consider an expanded set K = Uyq co Fyq D
K defined so that the probability of observing a value y for s € K that is outside
of K is approximately zero, i.e. 7,(V\K|s € K,u) < ¢, ¢ < 1. For example,
Ky ={z+w:z € Ky,|lw|| <3w"} with w" the largest diagonal entry of W results
in the probability of observing any y outside of K as less than 0.003, which can
be essentially dismissed with minimal impact on resulting calculations. The sets
Fyq are divided into disjoint subsets 71,;,‘17 U K, = Fyq. We also define

i=1,...0, %,y

Y, = K = V\K, such that Uz‘:l,...,zq Fi’yq x {1, } =R".

The partition of K is denoted GY = Ui,yq nyq with nyq = {Fi7yq xyl 1=
1,...1,,y* € Q}. The diameter of partition K, is 5qu =sup{|ly—yll : v, € K, 1},
with maximum diameter 0¥ = max; o 5Z.yyq. Each partition gfy,, has a representative

x,i,y7 a:; q . 7 .
element (y**¥ ,y?) and a set Vs = {(y*" ,y?) :i=1,...,1,,y" € Q}. The function
6 :Y — Y5 maps observation y € ) to its representative value (ym’i’yq,yq); the
set-valued function © : J); — K maps the point (yx’i’yq, y?) to the corresponding set

Gi -

The finite observation space is Wy = Vs (J{¢, }. For the finite state approximation,

the transition function 7'5 : Ws x Kz xU — [0, 1] is defined as

(O(w)|z,u), if w e Y

Ty

. (5.83)
1= ey, H(O@)]2,u), if w=1,

7y (wlz,u) =
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g :

For the Gaussian mixture approximation, we define the transition function 7,/ in
the same fashion as (5.83), but with
My
~ q y (o wiy’
7,(Ow)|z.u) = Tya(y’la, u) Y ;o (7™ 12 W) (5.84)
i=1

so that the a-functions will also be Gaussian mixtures at each time step. This is

-4 "
i,y i,y

further discussed in Appendex B. Note that w = (y YY), is a set of mesh
points inside G, « associated with w, and ¢; is a weight proportional to the mesh

spacing (determined, e.g., by the trapezoidal rule for numerical integration).

Discretized observations for finite state approximation

We use fn#; and f/,f’(; to denote the approximation using a finite subset of I',, 5, with
the important distinction that the subset is now generated by a finite collection of

observations (as opposed to X).

The value function is then

Visg= sup > d,4(2)0s(2),

dn,&EFn,(S ZGK(;

with

&n,d(z) - Z &fu,u,a<z) (585>

weWy

Fopue(2) = D i) ()7 (], u)7d (2] 2, u)05(2) (5.86)
ZIGK(S

() =ag . sup S dlys(2)7 (] )Tl (2 |2, w)os(2)

~1 -
an+1,éern+1,§ Z/EK5

(5.87)

A

Similarly to (5.75), V;/5(05) = Supser, D, Gn5(2)0s(2) is the intermediate value

function, with &, 5 calculated using az(fl) s € I'ni1s (as opposed to r, 41)-

We can bound the error introduced in one iteration of approximating the a-vectors

through discretized observations.
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Lemma 5.10. For any time n € [0, N]| and o5 € X5, the error between V) 5(05) and
V;,(;(U(;) satisfies

0 < V;is(as) — Viis(as) < NARDSY 4 N

given that the discretized observations w are chosen so that

Z a1 syl u) > Y a5 () (]2 w) O (w)],

z €K5 ZEK(;

and with X the largest Lebesque measure of sets Fyq.

Proof. Define K such that 7,(V\K|z € K;,u) < <. Then

|V;,5(05)—V;,5(05)| Sup Z@na ,05(2) — sup Zané z)os(z
"5€F"526K5 aEFn5 2
< [ 3 [t ) on(o
K
2,2 €Ky

—a:<f§y§><z'>f (dyls' w7 (|2, u)os(2)|

/\ Z Om+15 dylz U )Tf(zl\z,u*)aé(z)
WK

zzEK

*(ty) é *
o D SR I ERTS S e e
K
z,2 €Ky

< [ X [ mlanl o)

z,z/EK5

—a D (mdyl w2 |z w)os(2) | + 5 (5:88)

Note that (5.88) is nonnegative, meaning that using & produces a lower bound to the

actual value function given by «aj. This follows because afffi s 1s chosen optimally for
only a subset of ) (at the points §(y)), and for all other y € Y, o, s is suboptimal,

producing a lower value.

(

Next, we can bound o} %)’7, (dy|z’, u) from below based on how the points w are
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defined.

K
i €
N
< N AR + ~

Lemma 5.10 requires defining the representative points w = (yz’i’yq, y?) so that

*(w)

netl,o at a

the a-vectors satisfy an inequality. Without this requirement, finding «
finite set of points still guarantees a lower bound to the value function for any time

n, and is intuitively more accurate as ¢ — 0.

Lemma 5.10 leads to the following theorem regarding the error between V, s5(0s)
(based on continuous observations) and f/n’(;(a(;) (based on discretized observations).
We again use the notation V to indicate that V is represented by the set T of

a-functions calculated using the discretized observations.

Theorem 5.6. Given discretized observation process Wy with transition function
(5.83), for any time n € [0, N], the error between V, s5(c5) calculated according to Y

and \7;’5(05) calculated according to Wy satisfies
0< Vislos) — Viglos) < (8 = mNwnav e
for any o5 € X5, with X the largest Lebesque measure of sets Fyq.
Specifically, the viability probability for H satisfies
Pan(ps; Ks) — ‘704:5(05) < NNthél)cT“’ + €.

Proof. By induction. At time N, Vy 5(05) = Vi s(05) since Ty =Ty = ly,. Assume

forall i = n+1,..., N —1 that Vis(05) — V(o) < (N — ) NP SY + A0 Then,
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at time n,
Vis(os) — ‘7;,5(05” = (5, 05) — (Gin5: 05)

= (.5, 05) — (G5, 05) + (G 5, 05) — (O 5, 05)

< Nthél)éy +/ sup (114, (I)g’ﬁ*(}gﬂP(dy’O'(;,’&*)

N Fn+1,6
~ ~ ~ % €
- / ~Sup <an+1,67 ®27a*05>[|3(dy|0-6a Uu ) + N
yFn+l,6
N * 7k €
< Nq/\h§1)5y + Vii16(0ns1s) — Vag1,6(0ng15) + N
< N AWDoY + ~
— N—-n-1
+ (N —n— )N + (#Nk
Combining terms completes the proof. [

Algorithm 5.1 summarizes the procedure for numerically solving Problem 5.1
using the finite state approximation HP °. discretized observations, and a sampled set

> C X. The algorithm assumes the sets Z;, W;, and & have already been generated.

Discretized observations for Gaussian mixture approximation

The results of discretizing the observations for the Gaussian mixture abstraction
are nearly identical to those for the finite state abstraction. The main difference
arises in approximating the integral 7,(0O(w)|s’, u) with a Gaussian sum: To ensure
the approximate value function provides a lower bound to V, ,, we must under-
approximate the integral 7,(©(w)) for each w. We again define f/gig similarly to ‘77;5,

with

Gpg(s) = Y @ 0(5) (5.89)

’LUGW(;

]q
a9, (s) = / &) ()0 (wls' u)r(ds']5,u) 3wl (@) (x) (5.90)
S =1
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alt) (s) = arg{ sup / &1 o ()72 (w]s', u) T, (d |5, u)

~1 =
Ont1,9€n 1,9

Iy

x Y wi(q)gi(x) p (5.91)

=1

and \7; ¢ is the intermediate value function that finds the optimal a;ﬂg SN S

rather than in T, +14- We can bound the error between V,;, and V; 4> and between

V., and ‘7;79, equivalently to Lemma 5.10 and Theorem 5.6, respectively.

Lemma 5.11. For any time n € [0, N] and 0, € ¥,, the error between V,, ,(o,) and

Vi (0,) satisfies

(1)6?/ + i

0 < Vi (0,) — Vi, (o,) < NARS N

n7g

given that the observations w are chosen so that
Iq
[ e Ol s 0 3wl )o@
i=1

Iq
> /S Aty () my(wls W) [©(w)| 7 (s']s,u) Y wi ()i (o),
1=1

and with \ the largest Lebesque measure of sets Fyq.

Theorem 5.7. Given discretized observation process W with transition function
(5.84), for any time n € [0, N|, the error between V,, ,(o,) calculated according to Y

and ‘N/,Zg(ag) calculated according to Wy satisfies

(N —n)e

0 < Viiylo,) = Vig(o,) < (N —n)NARDSY + ¥

Jor any o, € 3y, with X\ the largest Lebesque measure of sets K .

Specifically, the viability probability for the Gaussian mizture approximation satis-

fies

Potan (i K) — Vg (pg) < NN RS 4 e

The proofs of Lemma 5.11 and Theorem 5.7 follow directly from the proofs of

Lemma 5.10 and Theorem 5.6.
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Algorithm 5.1 PBVI for Finite State Approximation to Viability
Input: H?°, H, W, 7'5, ¥, safe set K, terminal time N

Output: Estimate V;'5(ps) to viability probability Vg (p)

:n=N

2 a=1g, T, ={a}
3 forn=N—-1;n>0n=n—-1do
4 T,=0

5. forall o€¥do
6 for u e U do

7 for w € Y5 do
8

9

Calculate &fwu’a according to (5.86)

end for
10: Ao = Dy, Voo
11: end for
12: & = arg max ;s U(di,g, o)
13: if a¢r, then
14 r,=r,u{al}
15: end if
16:  end for
17: end for

Algorithm 5.2 summarizes the procedure for numerically solving Problem 5.1
using the Gaussian mixture approximation, discretized observations, and a sampled
set ¥ C . The algorithm assumes the RBF approximation {w;(q), (bi(x)}ilq:l, W,

and X have already been generated.

To summarize, given either the finite state or Gaussian mixture approximation,
we can subsequently 1) sample y from ) and u from U to generate a subset S5 or
flg, and 2) discretize ) and use the set Wyv to calculate &?u,up(g Or (y 0,0, Which are

then used to generate a, 5 € f‘n’(; and a,, , € fn,g' Using sets in’(g and f‘n’(; in place
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Algorithm 5.2 PBVI for Gaussian Mixture Approximation to Viability

Input: H", {w;(q), ¢;(x) fil, Ws, 7., 3, safe set K, terminal time N

Output: Estimate ‘Z{fg(pg) to safety probability Vi (p)

1: n=N

I ~
2= {wz(Q>7¢z(m) iil? Fn = {Oé}
3:forn=N—-1;n>0n=n—-1do
4: fn:@

5 for all o € X do
6 for u € U do
T: for w € 3}5 do
8 Calculate a3, ,, , according to (5.90)
9 end for
10: Voo = D wey; Vo
11: end for
12: ad = arg maxdg,g@i,m o)
13: if o, ¢, then
14: r,=T,U{a,}
15: end if
16:  end for
17: end for

of ¥, s and I, 5 provides a lower bound to the viability probability o (ps: K5) that

converges to pray (ps: Ks) as 07 and 8Y approach zero (and similarly for img and f‘n,g).

5.7 Extension to Reachability and Reach-Avoid

We can use the alternate information state and value function presented in Chapter
4 for the reach-avoid problem to apply an approximation method similar to that

for the viability problem presented above. Adjustments must first be made in the
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a-function representation, dependent on the different value function. A similar finite
state approximation can be utilized for the reach-avoid problem, where rather than
discretizing over K, we discretize over K UT'. For the Gaussian mixture approximation,
we will require two separate RBF approximations, one for 1, and one for 1. Once
the above adjustments are made, the same type of PBVI algorithm (Algorithm 5.1 or

5.2) can be used.

The reachability problem is more difficult if formulated as a type of reach-avoid
problem, in that all of S must be discretized and a finite representation is not possible.
However, by representing the reachability problem as the dual of the viability problem,
we can solve an equivalent viability problem to generate estimates of reachability

probabilities. Recall the relation

Dreacn (5 T) =1 — Tirrelgpiviab(m p; T°) (5.92)

given in Chapter 2. Then we can apply the approximation methods for the viability
problem to generate reachability probabilities, by changing all maximizations to
minimizations when calculating the a-functions. However, we require 7°, T', and K
to all be compact sets. Otherwise the discretization procedure for both the state

space § and observation space ) will have to be altered.

5.8 Numerical Example

We again consider the temperature regulation problem presented in Chapter 5. We
consider the case of one heater, which can either be turned on to heat one room, or
turned off. The temperature of the room at time n is given by the continuous variable
x,, and the discrete state ¢, = 1 indicates the heater is on at time n, and ¢, = 0
denotes the heater is off. The stochastic difference equation governing the temperature
is given in (4.40) with the number of rooms M = 1. The constants b;, ¢;, and z,
are set to by = 0.0167, ¢; = 0.8, and x, = 6, and v,, € R are i.i.d. Gaussian random
variables with mean zero and variance v®. The control input is given by u,, € U with

U = {0, 1}, but the chosen control is not always implemented with probability 1.
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Figure 5.1: Comparison of viability probabilities over varying initial distribution
p = ¢(x; g, 1) and g, = 0, using the finite state approximation (a) and Gaussian
mixture approximation (b). In both (a) and (b) ¢ = 0.5. Fig. (a) compares
probabilities for 6* = 0.1 (black dashed line) and 6 = 0.01 (red solid line). Fig.
(b) compares probabilities for I, = 10 (black dashed line) and I, = 30 (red solid
line). The refinement of 6* and increase in /, has a small impact on the viability
probabilities. The finite state approximation estimates higher probabilities for p
in the interior of K than the Gaussian mixture approximation.

18 19 20 21 22 023 19 20 21 22

Figure 5.2: Comparison of optimal control inputs as a function of p = ¢(x; g, 1)
with ¢y = 0, using the finite state approximation (a) and Gaussian mixture
approximation (b). In both (a) and (b), §Y = 0.5. Fig. (a) compares control
inputs for 6“ = 0.1 (black dashed line) and 6* = 0.01 (red solid line). Fig. (b)
compares control inputs for I, = 10 (black dashed line) and I, = 30 (red solid
line), which in this case are the same. All approaches produce a thresh-hold
policy that turns the heater off for p, > 18.7, except the finite approximation
with ¢ = 0.1, which turns the heater off for u, > 18.8.
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Instead, ¢,, is updated probabilistically, dependent on u,,_; and ¢,_;, with transition
function 7,(q,+1|4,, u,). So while function ,,(0,,) deterministically returns a single

control input, control input u,, = u,(0,) may not always be implemented.

As in the previous chapter, we assume the actual temperature is unknown, and
only a noisy measurement is available to the controller. The controller does, however,
know whether the heater is on or off at time n (i.e. g, is perfectly observed). The
observation ¥, = vy, is given by ¥y, = xz, + w,, with w, ii.d. Gaussian random

. . . 2
variables with mean zero and variance w”.

It is desirable to keep the temperature of the room between 17.5 and 22 degrees
Celsius at all times, hence the safe region K = [17.5,22] does not depend on the
discrete state ¢, (so 1x(s) = 1x(x)). We consider the viability probability of remaining
within K for N = 5 time steps given initial temperature distribution p normally
distributed with varying mean p, € K and variance >, = 1. The initial mode is

given as gy = 0. The finite state and Gaussian mixture approximations are used in a

PBVI algorithm in the style of Perseus [PVSP06].

We consider a uniform grid (47, = ¢ constant for all 7, ¢) over the region X C R
for the finite state approximation, with representative points at the end-point of each
grid cell. For example, setting ° = 0.1 gives ™7 = 17.5,2%7 = 17.6,... for ¢ = 0
and ¢ = 1, and a total of m, = 45 cells K, ,. The function {(z,q) maps ¢ to itself,

and maps z to the nearest 27 in absolute value.

The Gaussian mixture approximation utilizes an RBF approximation of the
indicator function calculated using MATLAB’s gmdistribution function. We used a
reduction process to limit the number of components of each o and o for the Gaussian
mixture approximation. Similar Gaussians are combined into a single component
based on the L distance between functions [ZK10]. Each mixture was limited to 30
components to reduce overall computation time without overly sacrificing accuracy.
This number can easily be changed, however, depending on the importance of speed

VEI'sus accuracy.

Both approximations employ a sampled set ¥ and a finite set of observations
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to calculate the a-functions for the PBVI algorithm. To generate the set X, we
initialized a set of 40 states oy normally distributed with variance ¥, and mean pj
randomly chosen uniformly on K. Each o, was updated according to ®j, with u
chosen randomly and y sampled from the corresponding o (i.e. y ~ P(y|og, u)). This
process was repeated N times, so that for each time step we had a set of 40 sampled
os. The finite set of observations were produced by a uniform grid over K = [16, 24],

again using end-points as the representative observations.

To compare performance of the finite state and Gaussian mixture approximations,
we present computation times and viability probability estimates for each, with
varying 0%, Y, and number of components in the indicator approximation. Viability
probabilities for varying initial distributions p are presented in Figs. 5.1a and 5.1b for
the finite state approximation and Gaussian mixture approximation, respectively. The
optimal policy at time zero is shown for varying p in Figs. 5.2a and 5.2b for the finite
and Gaussian approximations, respectively. Computation times for the finite state

approximation are given in Table 5.1, and for the Gaussian mixture approximation in

Table 5.2.

3" =0.1 5" =0.01

=10 ¢"=05 ¢ =01 =10 =05 0¢'=0.1

Comp. time (s) 50.5 205.1 1599.8 8961.1 15343.7 108591.3

Table 5.1: Computation times using PBVI with finite state approximation, for
varying continuous state spacing ¢” and discretized observation spacing ¢”.

We also show sample Gaussian mixture approximations to the indicator function
1 in Fig. 5.3 with varying numbers of components I,. The L' error between the
RBF approximation and 1y for varying I, is shown in Fig. 5.4. As the number of
components increases, the approximation becomes more accurate, although as seen in
Fig. 5.3, oscillations remain at the endpoints of K. The increasing accuracy is most
apparent in Fig. 5.4, and demonstrates the convergence towards zero of the L' error

with increasing I,.
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I,=10 I, =30
=10 =05 =10 =05
Comp. time (s) 3655  1625.9 1865.0  5586.1

Table 5.2: Computation times using PBVI with Gaussian mixture approximation,
for varying number of components I, for RBF approximation to 1, and discretized
observation spacing ¢”.

12 12 12 1.2
AN I

1 v Vaay, U 1 1 I ¥ 1
0.8 0.8 0.8 0.8
06 06 06 0.6
0.4 0.4 0.4 0.4
0.2 L 0.2 0.2 0.2

15 20 25 15 20 25 15 20 25 15 20 25

(a) (b) (c) (d)

Figure 5.3: Comparison between 1, (z) (in black, dashed line) to RBF approx-
imation (red, solid line) for (a) I, = 10 components, (b) I, = 30 components,
(c) 1, = 100 components, and (d) I, = 400 components. As the number of
components increases, the approximation improves, although oscillations at the

endpoints remain.

04

0.35-
0.3+

L wid||

0.25+

I
(5

=32

0.2
0.15;
0.1+

0.0% 100 200 300 200

1,

q

Figure 5.4: The L' error for RBF approximations to indicator function 1 with
a varying number of components I,. As the number of components increases, the
error converges towards zero.

We show viability probabilities for 4¥ = 0.5 only, because the change in viability
estimates when varying 6Y is not noticeable enough to merit comparison. Decreasing
0¥ causes a slight increase in the viability probabilities, as expected, but there is not

a significant improvement in the probability estimates, although as seen in Tables 5.1
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and 5.2, the increase in computation time is significant. This is likely problem-specific,

and the value of ¢ may have a greater impact for some applications.

The viability probability estimates for the finite state approximation are in general
greater than for the Gaussian mixture approximation. The mixture reduction method
employed, as well as the indicator function approximation, make the Gaussian method
seemingly less accurate than the finite state approximation. However, over a finer
mesh §“, the finite state method results in greater computation time. Although the
coarse grid produces similar results to the fine grid (0° = 0.1 versus ¢* = 0.01), in
higher dimensional problems the number of grid cells becomes prohibitive even when
0" is large. All scenarios produce a nearly identical optimal thresh-hold policy based
on the initial mean g, indicating that an optimal policy may be computed fairly

quickly using any of the above methods.

Interestingly, increasing the number of components in the RBF approximation
to the indicator function only slightly improves the viability estimates of the Gaus-
sian mixture approximation, although the L' error from increasing the number of
components to 30 drops significantly. This may be caused by the mixture reduction
technique, leading to a loss in the added benefit of an increased number of com-
ponents when that number is again reduced. However, although the L' error with
I, = 10 is large, we obtain viability estimates that are quite similar to the finite
state approximation. This requires further investigation, but may help in decreasing

computation time without losing significant accuracy by choosing I, to be small.

5.9 Summary

We have presented the first numerical results for verification of a partially observable
DTSHS, via two approximations that enable the use of a well-known POMDP
optimization technique. The first approximation discretizes the state space over
a compact set K and enables a vector representation of the information states

and a-functions. The second approximates the indicator function over compact
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set K using a finite set of Gaussian radial basis functions and enables a Gaussian
mixture representation of the information states and a-functions. We can apply
point-based value iteration to either approximation, and guarantee a lower bound to
the viability probability, which is proven to converge to the true viability probability
of the original PODTSHS. A simple numerical example shows that both methods
provide similar viability estimates. The finite state approximation is faster when a
coarse discretization is used, but quickly becomes slower than the Gaussian mixture
approximation with a finer discretization. Although we present a linear system with
additive Gaussian noise, both approximations may be extended to non-Gaussian
systems. Convergence results for the finite state approximation apply to arbitrary
transition kernels T, and T,. The Gaussian mixture approximation further requires

approximating T, and T, with Gaussian mixtures, and introduces additional error.



125

Chapter 6

Linear Time-Invariant Systems

with Noisy Observations

This chapter considers linear time-invariant (LTT) systems with noisy state mea-
surements, and develops an improved algorithm based on the PBVI approach of
the previous chapter for computing reachability probabilities tailored to the class
of LTI systems. For a linear system with Gaussian measurement noise and without
process noise, the information state is shown to be a truncated Gaussian, and a novel
PBVTI algorithm PointBasedSafety is proposed that extends existing point-based
solvers to include the truncated Gaussian information state. We also extend the
generic discretization procedure for the observation space from the previous chapter
to an adaptive grid scheme that reduces estimation error and increases speed of
computation. Preliminary results show the method to be promising in terms of

computation time as compared to other approaches.

6.1 Introduction

Chapter 5 provided two systematic ways of numerically approximating probabilistic
reachable sets for a PODTSHS. While we applied both methods to a simple tem-

perature regulation problem, the lengthy computation times indicate the need for
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specialized algorithms in order to make either approach feasible on higher-dimensional
problems. We therefore consider a special class of system with LTI dynamics, no
process noise (i.e. the state of the system evolves deterministically), and with an ob-
servation process that is a linear function of the current state with additive Gaussian
noise. LTI systems, although seemingly simple, have a wide range of applications;
even the spacecraft relative motion dynamics of Chapter 3 are modeled as an LTI
system. Further, although we do not consider hybrid dynamics in this chapter, we
hope the improved algorithm for LTI dynamics may be extended to piecewise-linear

systems, which have even greater modeling power.

The main benefit of considering an LTI system with Gaussian measurement noise
and no process noise is that the information state can be modeled as a truncated
Gaussian, i.e. a Gaussian density that is nonzero only over a subset of R", rather than
all of R". As such, we do not require storage of a large vector of values, nor do we
need to store a large collections of weights, means and covariances as with a Gaussian
mixture. Updating the information state to incorporate new observations and control
inputs is also made simpler, by only requiring three closed form expressions for the
updated mean, covariance, and support of the Gaussian, where the support is the

region over which the Gaussian is nonzero.

We also implement an adaptive gridding scheme for the observations, inspired by
a similar scheme presented in [SA13]. Whereas in the previous chapter we presented a
generic means of dividing a superset of the safe region K into cells, each of which has a
representative point (y*, y?), we now generate a grid of cells that varies in number, and
with nonuniform cell sizes. The size and shape of the cells are determined repeatedly
in the new point-based algorithm, once for each backup operation (each time we
estimate the value function at a different sampled information state). By varying the
size and shape of the cells, we are able to increase the speed of the algorithm while

simultaneously decreasing the error of the value function approximation.

To summarize, the contributions of this chapter are threefold. First, while in
general the information state for the viability problem does not have a closed form

representation, we show that for an LTI system with Gaussian measurement noise,
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the information state is a truncated Gaussian. Second, instead of discretizing the
observation space explicitly, we generate a grid over the observation space with
non-uniform cell sizes, for each information state that we sample, and derive an error
bound on the value function. Finally, we present a unique point-based algorithm
that combines the continuous belief state with a vector representation of the value
function, leading to some of the first numerical results for safety calculations in
partially observable domains. We again focus on the viability problem, because as
shown in previous chapters, extensions to reachability and reach-avoid problems are

implicit.

The rest of the chapter is organized as follows. We describe the LTI system model
and simplified dynamic programming recursion in Section 6.2. Section 6.3 proves that
the information state is a truncated Gaussian, and describes the adaptive gridding
procedure, including an error bound on the value function approximation when using
the nonuniform grid. It also gives the updated point-based algorithm for an LTI
system. In section 6.4 we provide two numerical examples that demonstrate the
improved performance of the algorithm. The first is a two-dimensional temperature
regulation problem modified from the previous chapter to include two separate rooms
to be heated. We use this example to compare the performance of our algorithm with
other variations of the point-based algorithm that either uniformly grid the observation
space, or take a full discretization approach as in the previous chapter. The second
example concerns automated anesthesia delivery, modeled as a three-dimensional

system.
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6.2 Problem Formulation

6.2.1 System Model

We consider a discrete time dynamical system with state space X C R", finite control

space U C R", and linear time-invariant (LTT) dynamics given by

in which we assume A is an invertible n X n matrix and g is a function mapping U to
R". We use x rather than s to represent the state of the system, to emphasize that
we are not considering a hybrid state space. Further, the true state x is unknown to

the controller, and only a noisy observation is available,
Yo = Cxp +w, (6.2)

with y,, € Y = R", and C an invertible n x n matrix. The variable w,, is assumed
Gausian with zero mean and diagonal covariance matrix W = diag{w”}, w, ~

N(0,W). Finally, the initial state x, is assumed unknown but Gaussian, x, ~
p(xo) = N (1o, Xo).

Given dynamics (6.1) and measurements (6.2), we wish to determine whether
the state  of the system can remain within some predefined safe region K C B(X)

(B(X) denoting the Borel o-algebra on &), over a finite time horizon V.

Recall that the viability probability is given by

mell

Puian(p; K) = sup E™ [H Lg(z ] : (6.3)

The problem we wish to solve, modified from Chapter 5 to incorporate the simplified

dynamics, is as follows.

Problem 6.1. Consider a system that evolves according to (6.1), with measurements

(6.2) and initial Gaussian distribution p(z). Given a safe set K and time horizon N :

1. Compute the mazimal probability (6.3) of remaining within K for N time steps.
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2. Compute the optimal policy ©* that maximizes (6.3).

If the mazimal probability and optimal policy cannot be computed exactly (which is
quite likely [LGMO1]), an approximation that produces a suboptimal policy and lower

bound on the mazimal safety probability is desired.

6.2.2 Dynamic Programming Solution

We again present an information state encapsulating all available information for
making control decisions, as well as a dynamic programming recursion that uses a
value function evaluated over the information state. We modify the operator ¢ for
updating the information state, and the value function for the dynamic program, to

reflect the LTI dynamics (6.1) and observation process (6.2).

We use ¢(z; 1, S) to denote a normal probability density function evaluated at z
with mean p and covariance §. The function 7, a stochastic transition kernel for the

state variable x, is now an impulse function
(2|2, u) = §(2' — Az — g(u)). (6.4)
The information state is defined as

Op = p

(6.5)
On = yn,unflan—l
with ®,,0 given by
o, ,0(2') = Boly; Ca', W) / 1e(2)8(2 — Az — g(u))o(z) do (6.6)
X

and f is a normalizing constant. The information state o therefore lies in the space

of probability distributions on X, o : X — [0, 1].

The dynamic programming recursion over the information state o for Problem 6.1
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is
Vn(o) = (0, 1K)

V(o) = max /y Viy (@, ,0)P(dylo, u) 6.7)

ueU

ueU

— ma /y | Vi@ u)otdy; €z + g(w) W)olde)

resulting in Vi'(p) = pfj\gab(p; K). The value function still admits an a-function

representation, such that for all n, V) (¢0) = SUp,i (ol o) with

ap (1) = /y a,, () dy (6.8)
Uy o () = ) (A + g(w))d(y; C(Az + g(u)), W) 1k (z) (6.9)

) (a) = arg { sup a1 (Az + g(u)g(y; C(Az + g(u)), W)U(dff)}

i
an+1€Fn+l K

(6.10)

We now consider approximately solving Problem 6.1 again using point-based value

iteration (PBVI).

6.3 PBVI for Verification of an LTI System

6.3.1 Information State

Ideally, we would like to represent the information state o as a Gaussian, since a
Gaussian can be characterized solely through its mean and covariance, and Gaussians
are preserved under multiplication and integration. The presence of the indicator
function in (6.6) unfortunately ruins any hope of maintaining o as a Gaussian, even

when p, w,, and T are assumed Gaussian.

However, in the case in which 7 is a delta function (i.e. deterministic state
dynamics), the information state can be represented by a truncated Gaussian, meaning

a Gaussian that is nonzero only over a subset of R". We will denote a truncated
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Gaussian by ¢(z; u, X, I) where [ is the interval over which ¢ is nonzero (also known
as the support of ¢). The nature of the sufficient statistic does not, however, guarantee
that the integral of the truncated Gaussian over support [ is equal to one. Instead,
o,(z) is a scaled, truncated Gaussian that integrates to one over a superset of I, as
we will demonstrate.

Proposition 6.1. Given dynamics (6.1) and measurements (6.2), T defined as in

(6.4), p(xy) Gaussian, and update equation (6.6), o, is given by
for alln=0,...,N. The parameters p,,, ¥, and I, are given by

o = 5y ((Olon)l Cy+ (Azn_lAT)l (Aptny + g(u)) ,

5, — ((c—lwc—T)_l + (AEn_lAT)_l) N ,
I, = {:U ANz —g(u) € KN In_l} .

The scaling factor (3, = m ensures that [; o,(dr) = 1, with I, = {z
AN @ —g(u)) € I, 1}

Proof. By induction. At time 0, 0, = p is normally distributed by definition,
with mean i, covariance X,, and support I, = R". At time n — 1, we assume
Op1(2) = Bp_10(x; piy_1,2p_1, I,_1). Then according to (6.5), for observation y and

control input u, we obtain

On(‘rl> = ng(y? Cl‘l? W) L ]_K([L')(S(ZL'/—ACL’—Q(U))Qb(dJ], Hn—1, Zn—lv ]n—l)'
(6.11)

Expanding gives
Un<I/) o anlgb(ya CI’I, W) f)( 1K(:L‘)5("L‘/ — Axr — g(U»Qb(dl', Hpn—1, anh Infl) (612)

 Bucr [y 0(y; C' W) [, 62" — Az — g(u))d(dw; 1, Sy, Loy )da!

We first examine the numerator alone (after canceling the terms (,_;), which can be

rewritten as

o(y; O’ W)p(A™ (2" = g(w)); fin—1, S 1)
X 1e(A7 (2" — g(u)1;, (A7 (2" — g(u))). (6.13)
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I, =R? I ={A7+Bu:7 € K} L={AZ+Bu:T€e Knl}
1

y I y F 3 Il J & q

) K ) K - K

Figure 6.1: Example of how truncated region I, for the information state is
updated at each time step, for an LTI system in R?. At time step n, I, is
intersected with K, and the resulting set is propagated through the dynamics,
resulting in [, ., = {AT+ Bu:7 € KN1I,}.

The denominator is written as
/ o(y; C2' W)G(A™ (2" — g(w)); pt1, B 1)1 (A7 (2" — g(w)))da’. (6.14)
X

Using the identity ¢(A™" (2" —g(w)); a1, Zn_1) = |[A7 |p(2; Aptyy_1+9(u), AZ, 1 AT),

the second Gaussian in both (6.13) and (6.14) is rewritten as a function of z’ alone,

and the two Gaussians are combined according to known identities to produce another

Caussian up to scaling factor k = ¢(C'y; Ap,_q + g(u), - WC™T + AS,,_1 A").

ROy Sn) L (A7 (@' = g(w)))1;, (A7 (2" — g(u)))
f fy 85 1 B 1y, (AT (2" = g(u)))de’

= Bud(@"; tin; B 1) (6.16)

o,(z") = (6.15)

with u,,, 2, and I, defined as above, and 3, a normalizing factor that guarantees

ffn op(dx) = 1. [

A graphical representation of the propagation of the truncated region I, of the
information state is given in Fig. 6.1, for a system with state z € R* and dynamics
Zpy1 = Az, + Bu,, and safe region K a rectangle adjacent to the origin. At each
time step, the truncated region [, is intersected with set K, and the entire resulting

set is propagated through the linear dynamics to create the new truncated region

In+1.
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Representing the information state o as a truncated Gaussian requires much less
storage than if the state space were discretized and o were represented as a vector.
It also gives an exact representation, and no information is lost through a coarse

discrete approximation.

6.3.2 Observations

PBVI iteration schemes typically use a small, discrete set of observations. Tailoring
these methods to solve (6.7) requires discretization of continuous observations, however
repeated evaluation of (6.9) will increase computation time exponentially in the

dimension of y.

We therefore propose an adaptive gridding scheme for the continuous observation
space ). For a single information state o, it is reasonable to assume that nearby
observations y in some neighborhood will produce the same *(y), i.e. will be associated
with the same optimal oz;(ﬂ in (6.9). Hence we grid ) into cells and find an upper
bound on the error associated with the value function V, when assuming all y in a

single cell are associated with the same o, 41

Because Y = R", we consider an expanded set X O K defined so that the
probability of observing a value y for € K that is outside of K is approximately
zero, i.e. ¢(Y\K;Cz,W) < ¢, ¢ < 1 when z € K. Gaussian density ¢ evaluated over
set Y\ K is fy\K o(dy; Cz, W).

The set K is divided into disjoint subsets K, Ui:L._m K, = K. We also define
Y, = K° = Y\K, such that Uictm K; x {1,} = R". The partition of K is denoted
G={K, i=1,...,m}. Each cell K, has a representative point y', and the diameter
of partition K; is 6; = sup,ez, |y — y'||. The maximum diameter is § = max; ¢".
Finally, the function # maps observation y to its representative value y', and © is a

set-valued mapping from ¢’ to K.

For a given grid configuration G, V,’g denotes the value function approximation at

time 7 using grid G to calculate the a-vectors. We write V,,g(0) = sup,, o€l g (pg,0)
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with
m

an,g(x) - Z agi’%a('r) + agy,u,a(m) (617)

i=1

for some o € ¥, u € U, and intermediate function

0o (@0) = [ )00 O W)r(d o)1) (6.18)
We pick points y’ so that

@) @)o(O ) Co'. W) > allt) (@)oly's o' W) e ()] (6.19)

To quantify the error resulting from using grid G, we first describe a Lipschitz

property for Gaussian ¢(y; Cz; VW) similar to that in [SA13].
Lemma 6.1. The Gaussian ¢(y; Cz, W) satisfies
|6(y; Co, W) = 6(7; Cx, W)| < h(2)lly — 7l (6.20)

fory, 5 € K;, and h piecewise convex.

E = %6_% Zfl‘ € Az
_ (2m)2 W2 \/wg
hz) = 1 Ve . (6.21)
—T1 || ]: 2w, ) A;
@ﬂﬂwﬁ@ff@me i g
We define fi(x) = §' —Cx, §' = argmin . |ly—Cx||, and A; = {z : f;(z) < \/3w;}.

Proof. The Lipschitz constant h is the maximum value of the norm of the derivative

of ¢ with respect to y:

Since ||W||y = w;, the largest eigenvalue of W, the maximum of (6.22) occurs at
|y —Cz| = \/w}. Fory € K,, we obtain the upper bound & when |y —Cz|| < /3w,
and a tighter bound than & when |jy — Cz| > \/3w} (the tighter bound is also a
convex function of ||y — Cz| for ||y — Cz|| > v/3w}). We can therefore modify the

1 _ Hy*C:Hg
—— 1y = Cxfse 2 . (6.22)
)3 WlPw;

Lipschitz bound to be a piecewise convex function of z, for v, € K, in terms of the

derivative of ¢. [ ]
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Figure 6.2: The function ||g—$|| (in black), expressed for clarity as a function of
|| fi(z)|| rather than x, assuming W = [1, 0;0, 1] and n = 2. The function h(z)
(in red, dashed) shown here as a function of f;(x), is derived from ||g—‘§|| and
represents a tighter Lipschitz bound on the Gaussian observation.

A visualization of h(x) is given in Fig. 6.2. We can now use Lemma 6.1 and the

manner of choosing ' (6.19) to show the following theorem.

Theorem 6.1. For grid scheme G, information state 0 € X, uw € U, and yi chosen

to satisfy (6.19), the error between V, (o) and V, g(o) for any n € [0, N| satisfies

NINA,;

V(o) = Voglo) < 6Y ZE: | K| [E/K o(x)dr
+h (/{Kﬁ[}\Ai<A$ + g(u))o(x) dx)} + % (6.23)

with h and A; defined in Lemma 6.1, |K;| the Lebesgue measure of set K;, and I the
support of .
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Proof. First, we define K such that ¢(Y\K;Cz,W) < <. Then

V(o) — // n+1 o(dy; Cx' . W)o(dx)
KNI

:L(fr’l @(yi); Cx', W)o(dx)

/
/ / &) () (dy; Caf, W) (da)

-/ manff”( )oK Cal, Wy (de)

<[] minfo@) 080 @))

< (6(y: Ca', W) = 9(0(y); C', W) o(dar) dy +

with 2’ = Az + g(u). Since a,,,() is a probability and hence bounded above by one,

and applying Lemma 6.1, we obtain
* * — i €
Vi)~ Vig@) <3 [ [ hde s+ gy~ o' laotdo)dy +
— JEK, JKrnI N

< 5yé 7| {E /K o (dz)

NINA,;

+ /{Kru}\A h(Az + g(u))o(z) dx| + =

Finally, recalling that h is convex, we use Jensen’s inequality to take integration
over ¢ inside the function evaluation h, which is much easier to evaluate than the

original integral, completing the proof. [

Theorem 6.1 provides a systematic scheme for generating an adaptive grid G of
the observation space ). Starting with a coarse grid of rectangular cells, an upper
bound on the error in each cell is calculated using the term inside the summation
of (6.23). Each cell is subdivided at the midpoint of its longest edge, until either all
errors are less than some tolerance, or the sum of all errors is less than some tolerance.

The procedure is summarized in Algorithm 6.1.

Note that we assume both V7 and V¢ are calculated recursively from the exact

value function V| ; in Theorem 6.1. We can extend the above theorem to express the
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error introduced when using Vg for all n, i.e. when o, is modified from (6.18)

Uy

to

7
Yy ,u,o

af  (z)= /X @) ()0 y); Co', W) T (da' |, u) 1 ¢ () (6.24)
and using an induction argument.

Theorem 6.2. For grid scheme G, used at time n € [0, N], the error between the

ezact value function V,' (o) and V, (o) calculated using a-functions (6.24) satisfies

N my )
o) Vel ¥ Y i [ etoya

j=n i=1

(N —n)e
+h (/{Kﬂ[}\AZ(AI + g(u))o(z) dx)] + — (6.25)

with m;, Fﬁ and A{ corresponding to the grid G; at time j (since G; may change at

each time step).

Theorem 6.2 shows that the error converges to zero as ¢ — 0, and also that a
lower bound is guaranteed, because (6.25) is always nonnegative. This follows because

*(y")

O‘n+1,g

is chosen optimally for only a subset of ), and for all y # ¢/, Qyp1,g 18 chosen

sub-optimally.

6.3.3 Alpha-vectors

There is no exact closed form representation for the a-functions, so we use a vector
approximation. The a-functions are calculated on a grid of uniformly spaced values
in K, since a(x) is equal to zero for x ¢ K. When performing the update calculation
(6.9), the function 7 (6.4) is approximated by mapping Az + g(u) to the nearest grid
point z’. The error associated with approximating a-functions with a-vectors is small,

and decreases with additional grid points.

With different types of representations for a and o, we ensure the inner product

(o, o) is well defined by implementing a numerical integration scheme with function
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Algorithm 6.1 AdaptiveGrid

Input: K, o, TOL (error tolerance for each cell), mazIT (maximum number of
iterations)
Output: G, decomposition of K into cells of varying size, whose error does not

exceed TOL

1: ctr =0;

2: G = G° an initial coarse grid
3: while ctr < maxIT do

4: fori=1,...,|G| do

5: error(i) = calcError(K;, o), according to (6.23)
6: if error(i) > TOL then

7 Kil,Fd = subdivide(K;), described in 6.3.2
8: G ={9\K.} U{Fmﬁz’g}

9: ctr + +
10: end if
11:  end for

12: end while

values of a(z)o(z) taken along the grid points of a. For example, in R, using a

trapezoidal rule evaluated at grid points z', . .. ,xM with grid spacing h, we have
b M-1 . '
(a,0) = B a(zYo(z") + a(z™)o (™) + 2 Z alx)o(z")] . (6.26)
i=2

6.3.4 Approximate Solution to Problem 1

Combining a point-based approach similar to Perseus [PVSP06] with our results on
the truncated Gaussian belief state and on the adaptive gridding algorithm (Algorithm
6.1), we can now describe the overall algorithm for approximately solving Problem

6.1.
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The first step is to generate a finite set of information states ¥ C ¥. We take
a naive sampling approach, first initializing oéi) =N (,ui, Yy) for a range of initial
means g’ that are of interest, and then sequentially sample observations according
to " and choose random actions, generating a sequence oy, ..., o fori=1,..., M

according to the formulas given in Proposition 6.1. Based on the set 3, we implement

Algorithm 6.2 (PointBasedSafety).

At each time step, we cycle through all o € ¥ and generate a grid G based on
o using Algorithm 6.1 (AdaptiveGrid, line 8). The vector Uiy is calculated based
on the representative point y* € K; in line 11 according to (6.18). The vector a, is
defined in line 15 as the vector «,,, associated with the u € U that maximizes the

inner product between «,, and o (calculated as in (6.26)).

6.4 Numerical Examples

The benefits of 1) a truncated Gaussian representation of the belief state, and
2) adaptively gridding the observation space are demonstrated first on a simple
benchmark temperature regulation problem [APLS08] extended from the previous
chapter, and second on a more complicated anesthesia delivery system. The reduction
in computation time using our method is significant as compared to an approach that
assumes a discretized belief state, discretized observation space, or both (what we

call the fully discretized version).

6.4.1 Temperature Regulation

We consider a two room heating system with state z(n) = [z;(n), z5(n)]", x;(n) being
the temperature in degrees Celsius of room 7 at time n, so that X = R*. The control
input u € U = {0, 1,2} is a command that tells the heater to heat room one (u = 1),
room two (u = 2), or shut off (u = 0). The effect of the input is in ¢(u) € Z*, for
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Algorithm 6.2 PointBasedSafety
Input: Safe set K, terminal time N, belief states &, X, Y, U, K, dynamics (6.1)

and measurements (6.2)

Output: I'y, a collection of vectors estimating V'

—_

&, = a grid of values in X N K
n=N
TOL = tol, maxIT = max
a=1k(X,), I, = {a}
forn=N—-1,n>0;n=n—1do
r,=0
for all o € X do
G = AdaptiveGrid(K, o, tol, max)
for all w € 4 do
for all K, € G do

—_
= O

calculate ov i according to (6.18)

end for

[ —

_ N9l .
aU,U - Z’i:l ayl7u70'

end for

[ -

@, = argmax(ay, ,, o)
Fn = Fn U {aa}
17:  end for

_
>

18: end for

which the 7’th element is 1 if ©v = «.

2 (n+ 1) 9613 .022 | |z, ()| |08 0 1002
= + q(u) + (6.27)
zy(n + 1) 022 .9613| |2y(n) 0 0.9333 1002

The state x,, is unknown to the controller, and a noisy observation
y(n) = z(n) + w(n) (6.28)

is available, with J) = R* and w(n) ~ N(0,[0.5 0;0 0.5]).
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Adaptive Grid Uniform Grid Fully Discretized

TOL =0.00 TOL =10.01 0.5 Spacing (o as vector)
Comp. time (s) 2949.7 7029.5 8055.9 43603.8
Nbr. of obs, |G| 90 (avg.) 225 (avg.) 289 289

Table 6.1: Comparison of computation times. Adaptive gridding of ) is clearly
more effective than a uniform grid spacing. Likewise, computational performance
is degraded with discretization of o.

Using the PointBasedSafety Algorithm, we can get an estimate of the probability
that for varying initial distributions p(z(0)) the temperature stays within a desired
range K = [17.5,22] over N time steps. We sample a set of 50 belief states, initialized
as Gaussians with randomly selected means lying within the safe set K, uf ~
U[17.5,22] x [17.5,22], and covariance fixed at ¥, = [0.4 0;0 0.4], such that of =
N(ué, >0, IRQ). Each o is propagated using Proposition 6.1 over a period of N = 10

time steps.

The set K is defined as [16,24] x [16, 24] since the probability of recording an
observation associated with a state x,, € K outside of this range is negligible. The
grid &, used for computing the a-vectors is the set [17.5,22] x [17.5, 22] subdivided

uniformly with spacing 0.1 in each dimension.

We implement Algorithm PointBasedSafety first using an adaptive gridding scheme
with error tolerance TOL = .05 in each cell, initialized with a spacing of 2 degrees in
each dimension (e.g. [16,18; 16, 18] would be an initial cell), and o represented as a
truncated Gaussian. The probability of staying within K for N = 10 time steps as a
function of the mean p, from initial Gaussian distribution o is shown in Fig. 6.3a.
The optimal control choice u associated with each pg is given in Fig. 6.3b. While
for this simple system, decreasing the error tolerance to TOL = .01 did not result
in significant improvements, for more complex systems (with more control actions
to choose from) we would anticipate more sensitivity in the computed probabilistic

viable sets to error tolerance.



Chapter 6. Linear Time-Invariant Systems with Noisy Observations 142

The increase in computation time when using TOL = .01 rather than TOL = .05
is significant, because the average number of cells that must be iterated over in line
10 of Algorithm 6.2 increases from an average of 90 for TOL = .05 to an average
of 225 for TOL = .01. Computation times are summarized in Table 6.1. Despite
this increase in computation time, the adaptive gridding scheme is still faster than a
uniformly gridded observation space, with a 0.5 grid spacing in each dimension. In
the case of uniform discretization, the number of observations increases to 289, and
even with only an additional 65 observations, the time to iterate over these additional
observations exceeds the time it takes to compute the adaptive grid G for each o.
Further, we saw no distinction between the viable sets computed using an adaptive

versus uniform grid on ).

e
o
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Figure 6.3: (a) The estimated probability of staying within safe set K over N = 10
time steps as a function of zy, xy with oy = N (g, Xo) and gy = [z1,x5]. (b) The
optimal control input u(0) as a function of y. The optimal control u(0) = 2 is
in red (i.e. heat room 2), u(0) = 1 in green, and u(0) = 0 in blue. As expected,
the probability of staying within K drops towards the boundaries of K, and the
optimal control is a threshhold policy that switches when the mean p falls inside
certain regions. This result is computed using the AdaptiveGridding algorithm
with TOL = 0.05 (computation time given in Table 6.1).

Finally, to demonstrate the additional benefit of using a truncated Gaussian
representation for the information state (rather than a vector), we also ran a fully
discretized version of Algorithm 6.2, in which the observations are uniformly gridded
with spacing 0.5, and o and o are stored and computed as vectors, with X a uniform

grid with spacing 0.1. This is where we see the greatest increase in computation time,
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as shown in Table 6.1. Clearly, the combination of an adaptive grid scheme for the
observation space and the truncated Gaussian representation of the information state
leads to a significant decrease in computation time, and will help to make reachability
and safety calculations in partially observable systems feasible across a wide range of

applications.

It should be noted that we have not incorporated any techniques from ad-
vanced point-based solvers such as SARSOP [KHLOS] and online planning algorithms
[RPPCAO08], which have led to great improvements in computation time for fully
discretized POMDPs. However, such techniques should be applicable to all of the
approaches we have compared, and lead to equal time improvements for the adaptive
gridding and truncated Gaussian scheme as well as the fully discretized one. We

intend to incorporate such techniques in future work.

6.4.2 Anesthesia Delivery

We look at a three dimensional model for anesthesia delivery [Kay12]. The three
compartment pharmokinetic system determines the concentration of Propofol in
different compartments of the body (the states z(t) = [, () zo(t) 25(t)]") given input

u(t), the Propofol administration rate.

oy (t) — (k1o + kg +ki3) ko kg x4 (t) Vil
To(t) | = ko —koy 0 zo(t)] + |0 u(t) (6.29)
33"3@) ks 0 —ks 373@) 0

The parameters are selected for an 11 year old child weighing 35 kg, taken from
the Paedfusor data set.

Table 6.2: Model Parameters from Paedfusor Data Set

klO k12 k13 k21 k31 ‘/1
0.4436 0.1140 0.0419 0.0550 0.0033 16.044
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The model (6.29) is discretized using a zero-order hold with a time step of 20

seconds.
zy(n+1) 0.8192 0.0341 0.0127| |x1(n) 0.0188
To(n+1)| = [0.0165 0.9822 0.0001| |a5(n)| + | 0.0002 | u(n) (6.30)
z3(n+1) 0.001  0.00002 0.9989| |z3(n) 0.00001

The administration rate u(n) is assumed to be either a constant infusion rate of 0
mg/20 seconds, 2.5 mg/20 seconds, 5 mg/20 seconds, or 7.5 mg/20 seconds. There is
also an option to deliver a bolus dose, or one concentrated injection of Propofol. The
bolus dose is assumed to be 10 mg, or 30 mg/min over one 20 second time step. The

control space is U = {0,2.5,5,7.5,30}.

We consider the viability problem of trying to maintain propofol levels within
safe limits for each compartment of the body described by model (6.30). The safe
set K = [1,3] x [0,2] x [0,2] is smaller than that considered in [Kay12] (in which
K =11,6],[0,10], [0,10]) in order to increase computation speed (by having smaller
regions K and K to discretize) while still producing informative probabilistic viable

sets.

Unlike the temperature regulation example of Section 6.4.1, we now assume
the initial Gaussian distribution p(x) = ¢(z; i), X, Iy) is also truncated. We set
the support I, equal to K, so that we are certain that the initial propofol levels
[21(0), 25(0), z5(0)] lie inside the safe region. The covariance ¥ is a diagonal matrix
with entries [4,.4,.25]. The initial mean pu = [z, 29, x;3]" is sampled uniformly
over K for i = 1,...,40. We therefore sample a set of 40 o}, at time zero, with

oh = /\/’(,ué, Yo, K), and continually update each o} to produce o', forn=1,...,N.

The observations y(n) = [y;(n),y2(n), y3(n)]" satisfy
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Figure 6.4: Probabilistic viable sets for initial distribution p(z) = ¢(z; g, 2o, K)
with pg = [z, 9, 23]. Each figure shows viability probabilities for p, varying in
xy, Ty and x4 fixed at a) x5 = 0.0, b) 23 = 1.0, and ¢) x5 = 2.0. The peaks at the
boundaries of K are a result of initializing p as a truncated Gaussian limited to
lying within K. This essentially provides additional information regarding the
starting position of z, when i is near the boundary.

with w,, ~ A(0, W) and W a diagonal covariance matrix with entries [0.5,0.5,0.5],
so that Y = R®. The set K is defined as [—1,5] x [—2,4] x [-2,4].

We implement Algorithm PointBasedSafety using an adaptive grid scheme with
tolerance TOL = 0.05 over N = 5 time steps. Fig. 6.4 shows viability probabilities
over varying py = [x;, Ty, x3] with x5 fixed at z3 = 0.0, 3 = 1.0, and x5 = 2.0 in Figs.
6.4a, 6.4b, and 6.4c, respectively. The optimal initial control input «(0) for varying

o is shown in Fig. 6.5, again with x5 fixed at levels x3 = 0.0, 3 = 1.0, and x5 = 2.0.
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Figure 6.5: Optimal control input «(0) (initial dosage of anesthesia) for initial

distribution p(x) = ¢(x; g, 3o, K) with py = [y, 29,24 for a) x5 = 0.0, b)
x5 = 1.0, and ¢) x5 = 2.0.

Initializing p as a truncated Gaussian restricted to set K significantly impacts
the viability probabilities for p, at or near the boundaries of K. Because z(0) is
ensured to lie inside K, our knowledge of the range of value z(0) is most likely to take
increases (the greatest value of the Gaussian density are restricted to a smaller region
inside K'). We therefore see the greatest viability probabilities at the boundaries of
K, because we can make better control input decisions. There are, however, also

peaks in probabilities for p lying towards the center of K, as expected.

The optimal control inputs at time zero are also intuitive. For pg small, making

low concentrations of propofol most likely, it is optimal to deliver a bolus dose initially.
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As pg increases, the initial dose decreases. For x3 = 2.0, it is not optimal to deliver a

bolus dose even for x; = 1.0 and x4, = 2.0.

We do not compare performance for varying tolerance levels associated with the
adaptive grid, nor do we compare to a fully discretized approach, as in the temperature
regulation example above. We did consider various tolerances for the adaptive grid
scheme, and discretization levels for the a-vectors, but found that decreasing the
tolerance level or gap size for discretizing the state space did not significantly alter

the results.

6.5 Summary

We have presented an algorithm for solving the partially observable safety problem
for LTT systems with Gaussian measurement noise. We represent the information
state as a truncated Gaussian, and adaptively grid the observation space for each o
in order to decrease computation time. In combination with a point-based approach,
we present a computationally feasible method, and demonstrate its effectiveness first
on a two dimensional temperature regulation problem, and second on a problem
of automated anesthesia delivery. Exploiting the structure of an LTI system with
Gaussian observation noise provides significant computational benefits as opposed to
using the discretization or Gaussian mixture approximations of Chapter 5. However,
the adaptive gridding scheme is not limited to an LTI system, and can be extended to
the viability problem for a general PODTSHS H*°. And again, the results presented
are for the viability problem, but can be equivalently applied to a reachability or

reach-avoid objective, as explained in previous chapters.
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Chapter 7

Conclusion

Stochastic hybrid systems provide a modeling framework well suited to a variety of
applications. The flexibility of the model, coupled with the incorporation of stochastic
uncertainties, allows for insightful analysis of complex control systems. Specifically,
we can use stochastic reachability analysis to generate probabilistic guarantees of
safety and reachability for such systems, which may be more insightful when failure

to meet the given objective (safety, reachability, etc.) is possible but unlikely.

Although stochastic reachability analysis provides an elegant formulation for
verification of hybrid systems, its applicability to larger scale, realistic systems is
currently limited. Computationally, the generation of either deterministic or stochastic
reachable sets is a difficult task, and current methods do not scale well to higher-
dimensional problems except for special cases, such as deterministic linear systems

with well behaved safe or target sets.

The task of generating reachable sets in the presence of a stochastic observation
process is even more difficult, and has received almost no attention. It is, however,
an important problem, especially when synthesizing controllers to meet safety or
reachability specifications. Many systems, such as the space docking and anesthesia
examples considered in this dissertation, must use sensors to measure information

about the state of the system, which is then used as an input to the controller.
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The aim of this dissertation was to address both of the above areas that still
need development in order to make reachability analysis a more widely applicable
verification tool. We have addressed both computational concerns for reachability
analysis of a perfectly observable discrete time stochastic linear system, as well
as theoretical and computational concerns for reachability analysis of a partially
observable discrete time stochastic hybrid system. There is, however, much more to
be done, particularly in the area of computational methods for partially observable
systems. We first summarize our contributions in Section 7.1, and describe some

potential directions for future work in Section 7.2.

7.1 Summary of Contributions

For a linear stochastic system with additive Gaussian noise, we have presented two
methods for generating reachable sets that do not require dynamic programming,
and so can be applied to higher dimensional systems, in Chapter 3. The first method
uses a particle approximation to estimate the reachability probability. We generate
trajectories of the state using a Monte Carlo method to sample from the Gaussian
noise (thus generating “particles”). Using the sample trajectories we formulate a
mixed integer linear program and design a controller to maximize the number of
trajectories that satisfy the reachability objective. The particle approximation method
works to design both an open-loop and closed-loop controller in linear feedback form
u = Wz. The second method exploits the linear and Gaussian nature of the dynamics
to design a convex optimization problem, with the probabilistic reachability objective
a chance constraint to be enforced. The parameter we optimize is the tolerance level
a such that the reachability objective is satisfied with probability at least 1 — a.
The convex formulation only produces an open-loop controller. Both methods were

demonstrated on a spacecraft rendezvous example in four dimensions.

We then examine a DTSHS with noisy observations of the continuous and discrete
states in Chapter 4. The general approach for optimal control of a partially observable

system is to generate an equivalent information state that is fully known, and to
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solve a dynamic program over the information state instead. For an additive cost
function, the information state is the distribution of the current state of the system
conditioned on all past observations and actions. For the non-additive reachability
cost function, this result no longer holds. We therefore derived a novel sufficient
statistic that produces a perfectly observed information state for optimal control of
the DTSHS to satisfy reachability specifications, which incorporates the probability
that all past states have remained within the safe region (for the viability problem) in
addition to the conditional distribution of the current state. We also gave reachability
and reach-avoid formulations for the information state, and an information state
that incorporates a change of measure, rendering the stochastic observation processes
independent and identically distributed. We then provided a dynamic programming
formulation in terms of the information state, and proved that the new problem over

the information state is equivalent to the original reachability problem.

The dynamic programming formulation derived in Chapter 4 is important for
establishing a solution framework, but is difficult to implement numerically. We
therefore considered approximate reachable set computation in Chapter 5 using the
information state and value function derived in Chapter 4. The similarities between
a PODTSHS and a POMDP inspired the use of existing approximation techniques
for optimal control of POMDPs. We first proved that the value function for the
reachability problem shares the same properties (convex, piecewise-linear in the case
of finite observations and control inputs) as for an additive cost POMDP, and we
can therefore produce a lower bound to the value function by sampling from the
information state in a process known as point-based value iteration. However, because
the hybrid state and observation spaces are not finite, additional steps must be taken
to approximately represent the information state and value function before using
PBVI. We developed two approaches. The first is a finite state approximation to the
DTSHS, which enables the information state and value function to be represented in
vector form. The second approximates the information state and value function as
Gaussian mixtures, by representing the indicator function over convex region K as a

Gaussian mixture. In both cases we discretized the observation space to ensure the
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value function is piecewise-linear. We then presented the first numerical results for

calculating reachable sets for a PODTSHS.

Finally, we considered the special case of a system with linear dynamics, no process
noise, and Gaussian observation noise in Chapter 6. We showed that in this case
the information state is a truncated Gaussian distribution, and does not need to be
approximated. We still use PBVI, but developed an adaptive discretization scheme for
the observations to generate fewer finite observations while minimizing the error from
the approximation. We presented an algorithm for choosing the observations, and
for approximating the reachability probabilities. The simple form of the information
state and the selection of the finite observations enabled much faster reachable set
computation as compared to the approaches presented in Chapter 5 for a general
PODTSHS. We were then able to compute stochastic viable sets for an automated

anesthesia delivery example.

7.2 Future Directions

The work we have presented leaves many opportunities for further research. Particu-
larly for reachability analysis of a PODTSHS, where so little work has been done,
there are many possible directions to take. We describe below some of the directions

for future research that we believe to be the most interesting and promising.

First, reachable set computation for perfectly observable systems without dynamic
programming must be further explored for stochastic reachability analysis to be ap-
plicable to higher dimensional systems. Ideally, we would like to find results for linear
systems with Gaussian noise that are equivalent to the ellipsoidal/zonotope/support
vector representations of the deterministic reachable set for linear systems. It may
be possible to propagate the 1 — « probabilistic reachable set in the same fashion
as the deterministic reachable set for linear systems, described in [KV07], [Gir05],
and [GG10]. Short of that, improving upon the single-stage stochastic optimization

formulations presented in Chapter 3 may be possible. The advantage of the convex
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formulation over the particle approximation is that it guarantees a lower bound to
the reachable set, however we were unable to implement a feedback controller as
for the particle approximation. We may be able to use model predictive control to
simulate feedback and to get a better estimate of the reachable set while still solving
a convex optimization problem. Another possibility is to use stochastic branch and
bound methods [NPRIS8| to generate open loop controllers, which may be faster than

the particle or convex approaches, although this requires further exploration.

There are also many possibilities for improvements to the approximate computation
of reachable sets for a PODTSHS. We implemented a naive PBVI algorithm that
sampled information states randomly and required backing up every information state
at every time step. Other PBVI algorithms have been developed that significantly
reduce computation time, such as [KHLO8] and [SS04], by sampling information
states in a more systematic fashion and producing iterative approximations to the
value function. However, these methods are defined for optimization over an infinite
horizon, so to calculate reachability probabilities over a finite horizon they will need
to be modified, if possible. Another possibility is to use an online POMDP planning
algorithm [RPPCd08], which can be done over finite horizons, and may prove faster

than PBVI methods in some cases.

Whichever existing POMDP algorithm we use, its speed will be limited by the
size of the problem. We would therefore like to find smaller, simpler representations
of any system we wish to analyze. The further study of abstractions for a PODTSHS
may be helpful in generating equivalent, simpler systems. For example, the adaptive
gridding procedure presented in Chapter 6 is not limited to a linear system without
process noise. We should therefore be able to use a similar gridding procedure for
both the continuous state space X and observation space Y* to reduce the size of the
finite state approximation given in Chapter 5. There may also be other classes of
systems that admit a simple expression for the information state, as is the case for a

linear system without process noise and with Gaussian observation noise.

As demonstrated in Chapter 6, the truncated Gaussian representation of the

information state leads to significant improvements in computation time to generate
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the reachable sets. However, there are still some details that require attention
to improve its applicability. For our numerical examples we only used safe sets
represented as hyper-rectangles, i.e. the safe set K is represented as K = {x; : a; <
x; < b, Vi =1,...,n} for an n-dimensional system, because the support of the
Gaussian maintains this shape and we only need to update the values a; and b; at
each time step. However, we give a general expression for the support of the truncated
Gaussian at each time step without the assumption that K is a hyper-rectangle,
which turns out to be the same expression as for the viability kernel as described in
[MKMJ“B]. We should therefore be able to update the support using the algorithm
presented in [MKM™"13].

The next concern is with the integration of a(x) multiplied by o(z). We only
store the value of a(x) at a finite set of points z', and must numerically integrate
J; ax)o(z)dz over the support I of o(z). In low dimensions, and for I a hyper-
rectangle, we can easily and fairly accurately approximate the integral using, e.g.,
the trapezoid or Simpson’s rule for integration at the points z*. In higher dimensions,
and with I a more complex region, this is no longer possible. We are currently
investigating ways to approximate the integral over an arbitrary convex region [
using Gaussian quadrature methods. Once an adequate numerical integration scheme
is found, we plan on applying the method of Chapter 6 to the space docking problem
of Chapter 3 with the Gaussian process noise removed, and with the inclusion of
Gaussian measurements. Finally, we would like to explore the possibility of extending
the truncated Gaussian representation to piecewise-linear systems that allow switching

between linear dynamics dependent on a discrete mode.
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Appendix A

Proofs of Theorems from Chapter

4

A.1 Proof of Theorem 4.1

In order to prove the Theorem 4.1, we first define some notation and give some
intermediate results. The following proofs are based on those in [BS96], Chapters
6 and 11. To facilitate the connection between these proofs and those appearing in

[BS96] we first reformulate the recursion (4.26) as a minimization
sup Vg (o) = —inf Vg = —inf J§

Let J (o) = =V (o) and IT = {7 = (jig, fi1,...) : fin(0n) € UV¥n € [0,N]}. The
recursion for J, (o) is identical to that of V, (o) in (4.26) except that Jy(o) =
_<Ua 1K>

Next we define the operators

o = £ [ ]
- / / / . (dy|s', fi(o)),(ds'|s, i(0))o (ds)
H[J] = inf H;[J]

a(o)eu K
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The operator H;[.J] preserves the linearity and boundedness of value function .J(o) for
all o in L', which can be seen from a straightforward induction argument. Because
Jy (o) is a bounded linear functional, this then implies that J (o) is a bounded linear

functional for all n = 0,..., N and for all ¢ in L'.

Lemma A.1l. For all bounded linear functionals J, o € L', # € II, and r € R"

Hﬂ[J] < Hﬂ[J+r] < Hﬂ[J] +r
Proof. Because J < J + r when r > 0, we get the following:

- / / / J(®y )Ty dyls', (o)) (ds']s, () (ds)

u/l/l/ Dy () + 1)1y (dyls’, fi(0))7,(ds'|s, fi(0))o(ds)

/// D, (o)) Ty (dyls’, fi(0)) 7 (ds'|s, fi(0))o(ds) + 7
< HglJ]+

Proposition A.1. For any M € N, where Jj(0) = inf._q J§ (o),
Ty (o) = H"[J3)(0)

Further, for any € > 0 there exists an M-stage e-optimal policy ., defined as
Jo < Ty < Jg+e

Proof. By backwards induction. For M = N,
In(o) = H'[J3](0)

because H°[J] = .J. Also, because Jy does not depend on a control input, Jx (o) =

J%(0) for any policy 7 € II. Therefore, for any € > 0, Ja(0) = Ji(0) < Ju(o) + €.
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Assume for M = n+1 that J',,(0) = HY ""'[Jx](0) and that for all € > 0 there
exists a policy 7, such that inl(a) < Jy1(0) + €. Then by Lemma A.1, for any /i
an element of 7 such that 7 € I,

Hy[ 7] < Hyl gy + € < Hy[ ] + e
By aggregating ji with the control policy 7, to get T, = (i, 7r.), we then have
inf J7(0) < JE(0) = Hy[J™]

< H;[J,] + e

Since the above holds for any i € II,
int J5(0) < H[T31](0)
= H[H"" I3 (0) = HY " [J3](0).
By definition H" "[Jx](0) < Ji(0), hence HN"[Jx](0) = Ji(0).

Next, by the induction argument, for any € > 0, define 7 so that

N | ™

Talo) < i (o) +

Define ji € II so that

N | ™

Hi i) < H[ g +

Define 7, = (fi,7). Then

7 7 X €
Jn6 - Hﬁ[ n+1] S Hﬁ[‘]n—&-l] + 5
€ €
< H[J, -+ -
=J,+€
It follows from induction that J§ < J3° < J§ + € for any M. [

We also use the result from [BS96] on the existence of a uniformly N-stage optimal
policy ©° = (fig, fi1, ---), which we give without proof (see Ch. 6), since the proof does

not change in our context.
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Proposition A.2. A policy is uniformly N-stage optimal if and only if
Hg- [HN_”_I[J;(,H = HN_”[J;(,] forallmn =0,...,N, and this policy exists if and only
if the infimum of

HY"[Jy] = inf H, [HN‘"*[JJ*V]]

uel
is attained for allo € L' andn =0,...,N. A sufficient condition for the infimum to
be attained is that

U, (0,)) = {u cu:H, [HN’"’l[Jj{,]} < )\}

is compact for allo € L', X € R, andn=0,...,N.
We can now use the above results to prove Theorem 4.1.

Proof. (Of Theorem 4.1)

Substituting V, = —J, it is clear that Prop. A.1 validates the dynamic program-
ming algorithm (4.26), and proves the existence of at least an e-optimal policy, and so
the first part of Theorem 4.1 is proved. Finally, using Prop. A.2, because U is defined
as a compact (i.e. closed and bounded) Borel set, and J, (and so V},) is bounded for
all o0 € L' and for each u € U, then there exists some u € U such that the infimum
in inf,, H, [HN—"*[J;;]} — inf, E[J,(®, ,0)] is attained for all n (and likewise
the supremum of V,, is achieved for all n). Therefore, for (4.26), there always exists

an optimal policy 7 given by (4.27). [

A.2 Proof of Theorem 4.2

Proof. (Of Theorem 4.2) For a vector u = [ug, u,...uy_,] with each u, € U, we

have by definition that

Since o,, = n,(p,,), the control policy 7 = (fiy(0y), fi1(01), ... ) can be rewritten as

a function of the information vector i,,, where fi,,(0,,) = fi,(7,(p, i) = pin(i,,). Then
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by defining the policy 7 in terms of i, we obtain p2u, (p; K) = pha(p; K) for any
7 e IL If 7 is optimal for jii,, (p; K), it then must be optimal for p, (p; K) as well,

and further,

PRan (05 K) = Poyan(p; K)
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Appendix B

Gaussian Mixture Results from

Chapter 5

We provide constructive proofs of Lemmas 5.6 and 5.7 from Chapter 5. Lemma
5.6 leads to a recursive expression for o, , in terms of the weights, means, and
covariances characterizing o,, ;. Similarly, Lemma 5.7 leads to a recursive expression

for o

. . . . . *
»u,o i terms of the weights, means, and covariances characterizing an(fg g We

first prove Lemma 5.6, show that o, , can therefore be represented by a Gaussian
mixture for all n € [0, N], and give the recursive expression for o, , given o, , in

Section B.1. The process is repeated for the a-functions in Section B.2.

Before providing proofs, we give some identities for Gaussian distributions. First,
the product of two Gaussian densities is again a Gaussian density, up to a constant

factor.

A(ws5 pay, 1) (05 1o, o) = @13 po, X + Lo) (23 f1, X) (B.1)

with

=% (37 + 550
/f ( 1 M 721 MQ) (B.2)
Y= (2 + %Y

Second, for invertible matrix A, constant b, and variables x and v,

Oy; Az +0,5) = [A |¢(a; AN (y — ), ABAT). (B.3)
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Both identities are easily shown directly. Also recall the radial basis function approx-

imation 1x(s) is given by

g (z,q) = wa(Q)sﬁ(x; 57 (B.4)

B.1 Information State as a Gaussian Mixture

Proof. (Of Lemma 5.6) By construction. Given o, ,(z,q) =
L
Zwﬁn(qw(x;uﬁn(q),Z}’m(q)), observation y € ), and control input u € U, the
1=1
operator ®J 0, , produces

1

oI = — !
y,ugn,g [P(y|0-n7g7 U) Ty(y|5 ) u)
Iq
«3 / S wl (@6l ()| 7(s')s, wong(s)do.  (B.5)
e’ | i=1

The normalizing factor P(y|o,, ,,u) is removed, because the Gaussian mixture can be
normalized independently be rescaling all of the weights to sum to one. Replacing

0,4 by its Gaussian mixture representation in (B.5), and expanding 7, and 7;, gives

(®4.u00) (2',d') = Ty (y'|q )by 2", W) Y /X wa (q)¢i (x)

qeQ

x T,(q'|q,w)(z"; Az + g(q,u, q), V)

X [Z win(@)o(x; 1 (), Zin(Q))]
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Nq L Iq
DY wi@wh (@) T, (', w) T (' lg, w)d (s 5 W)
g=1 [=1 i=1
x / o 1 (0), 1 (0))B(: 1 (0). (@)
X
< |A o(z; A2 — glq,u,q)), AT VAT dx (B.6)
N I

L
=>> Z |A™ i (@)wi, () Ty (¥0lq  w) Ty (¢ lg, w)d(a's s W)

X (i (q); 1 n(a), S (q) + ZZn(Q))/ch(rc;ﬂ, )

X o(z; A_l(x' —g9(q,u,q")), A_ll/A_T) dx (B.7)
= Z ‘ |A™ w] (q)wh, (@) Ty (y71d , w) T (' g, w)d(a's s W)
X &1 (q): 17 (0), 1 (q) + 570(0) (A7 (2" = g(q,u,q); /1, X))
(B.8)

Line (B.6) follows from (B.3), line (B.7) from combining ¢(x; i (¢), 21 (¢)) and
(x5 17 ,(q), X7 ,(q)) according to (B.1), and (B.8) from a second application of (B.1)

and setting the integral of a Gaussian density over X equal to one.

A final application of (B.1) and (B.3) gives

N, 1 I,
(®5.000) (@, d) =D wi(@w, o (@) Ty (v, w)T,(q |g. u)
g=1 =1 i=1
x 613 (q); 17 (), i (q) + 70(a))
x p(y"; Afi + glq,u, ¢ ), W+ V + AZAT)
X ¢(x; Ng,l,i,n+1(q/)> Z,l,i,n+1(q/))
which is again a Gaussian mixture with N LI, components. [ |

Using Lemma 5.6, we can make a stronger statement regarding the information

states.

Theorem B.1. Given RBF approzimation (B.4) to 1x(s) and operator ®j , (B.5),

the information state o,, , satisfy the following.
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1. The information states o, ,(s) are Gaussian mistures for all n € [0, N], for
any sequence of control inputs ug,...,uy_1, U, € U, and any sequence of
observations yy,...,Yn, Yn € V.

2. For o, ,(x,q) Zwln (x5 17 ,(q), X7 (q)), observation y € Y and control

input u € U, an+17g(a: ,q') is given by

Ny Iy

L
On+1 g [E q Z Z wg,hi,n—i-l (q/)¢(x/7 :ug,l,i,n—i-l (q/)v Eg,l,im,—i-l (q/))a
=1

q=1 i=1

with

WY ins1(d) = w (@wl (@) T (y'|d s )T, (q'|q, )
x (1 (9); 1 (9), BF(q) + X7 (q))
x o(y"; AfL+ g(q,u, ¢ ), W+ V + AXAT),

. -1 )
tgrin1(4) = Xq1in1(d) [W_lyx + (ASAT + V) (Aﬂ +9(q,u,q ))
. —17 71t
i) = Wk (4247 9) )

and

Proof. Part one of the theorem follows by induction. At timen =0, o ,(z,q) = p(x, q)
and p(z,q) = Qo(q)o(x; ug, Xg) by definition (see Section 5.3 of Chapter 5). The

induction argument then follows directly from Lemma 5.6.

Part two of the theorem follows directly from the derivation provided in the proof

of Lemma 5.6. |

B.2 Alpha-Function as a Gaussian Mixture

Proof. (Of Lemma 5.7) By construction. Given afl(fig(x/, q) =
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Z w (L y)o(a’s ph (dy), X1 (¢ ) for some observation y € Y, then

ag’uya(x q) for control input u € U is written

CCRDS / BoEm s (s u) da’ | Y wl@)el@)| (B9)

- Z/ [Z wmn+1 / J;;M%ﬁz+l(q/)7zg{?n+l(q,)>
qde€Q
Ty (y'ld', ) (y"; 2", W)T, (¢ lg, w)
x ¢(x's Az + g(q, u, q'), V) da’ Zw

(B.10)

Nq M Iq
=3 3wt (dwi (@) Ty (v w) T, (' g, w)

g =1m=1i=1

x (x5 i (), 21 () (y"s o1 (@) W + S 1 (d))
/ o(a's i )o('s Az + g(g, u,¢), V) da’ - (B.11)

Nq M Iq
=D > wpt L (@wi ()T (e w)T,(q g, w)

g—1m=1i=1
X o(x; 11 (q), B1 () (Y™ ot o1 (d), W + S0 1(d))
x| A7 oz A7 (i — g(qyu,q)), AN (E+W)A™T)

(B.12)
Nq M Iq
=3 3wt (d)wi (@) Ty (v w) T, (g, w)
g =1m=1 i=1
X (i (q); A~ (e — g(g,u,4)), Bl (g) + AN (S +V)ATT)
X 0”5 tmin (4 9), W+ 208, 11(d, y)
X ool (@), 50 (q) (B.13)

Line (B.11) follows from one application of (B.1), line (B.12) from (B.3) and another

application of (B.1), and a final product of Gaussian densities gives (B.13). Hence

@Z,u,a is a Gaussian mixture with N M1, components. [
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Lemma 5.7 leads to the following theorem concerning the a-functions as Gaussian
mixtures. As expressed in Chapter 5, the a-functions have an infinite number of
components when ) is not finite. In practice, the Gaussian mixture representation is
therefore only feasible for finite ). We write the expression for o, , using a summation
over ), and assume that the number of components for each a,, , is finite, but
stress that this will not be the case unless we make the additional assumption that )

is finite, as discussed in Section 5.6 of Chapter 5.

Theorem B.2. Given RBF approzimation (B.4) to 1x(s) and the expression for
oy uo (B.9), the a-functions satisfy the following.

1. The a-functions a, ,(s) are Gaussian miztures for all n € [0, N], for any

sequence of control inputs ug, ..., un_q, U, € U.

2. For ozn(Hg (z',q") Zw (s i (d), S (q)) for all indices *(y),

y € Y, and control mputs u€el, Ozng(:c q) is given by

1y

n,9 (L’ q ZZ Z Zqu m,l,n+1 )¢< /”Lyq mzn+1(q)7 E;q/,m,i,n—&—l(q))’

yeY q¢=1 m=1 i=1

with

w;q,l,i,nJrl (Q) = wg{?{n—i—l (q/)wlI(Q)qu (yq|q,a U)Tq(q/|q7 U)

X o(ui (@) A7 (i — 9(q,u,q')), Sl (q) + ATHE + V)A™

X OY"; o (@ y), W+ S0 1 (4, y)
-1
i 0 = Zit @) | (510) k@
~ -1 ,
+A" (E + V) (i —g(q,u,q ))]
B -1

i@ = [ (2H@) a7 (849) 4]
and
=SV (S () )]

[W* sEa )]

™M»
I

")



Appendix B. Gaussian Mixture Results from Chapter 5 165

Proof. The first part of the theorem is by induction. At time N, ay,(z,q) =

Z-Iil w; (q)o(x; T (q), 21 (q)) by definition, and is therefore a Gaussian mixture. As-
suming that a; ,(z,q) is a Gaussian mixture for all i = N —1,....,n+1, a,, ,(x,q)
is

> af..(x,q)

yey
which is again a Gaussian mixture by Lemma 5.7, and allowing for an abuse of

notation via the summation over ).

The second part of the theorem follows directly from the derivation provided in

the proof of Lemma 5.7. [ |

The concern over the validity of a Gaussian representation of the a-functions is
addressed by discretizing the space Y, as discussed in Section 5.6. Because the a-
functions can only be derived and stored in practice for a finite number of observations,
we proposed a discretization scheme over a region K O K. For the Gaussian mixture

approximation, this requires a new observation function 7,/, with

T,(O(w)|s, u), ifwe)
9(wls, u) = y(O(w)[s,u) 3 (B14)
1— ZEG% 7,(0W)|z,u), ifw=1,
and additionally,
My
7,(O(w)ls, u) = Tya(ylq, u) > ;@ (y7 ™" s 2, W), (B.15)
j=1

Hence the probability associated with each discretized observation w is approximated

by a Gaussian sum.

We can generate the approximation by considering a numerical integration scheme
to represent the integral 7,(©(w)|s, u). The region K, associated with ©(w) =
Kiqu x y? is subdivided into a finer mesh of points yf’i’yq, j=1,...,M,. These points
are distinct from the representative element y**¥" of K; o (with w = (ym’i’yq, y?h).

The weights ¢; are chosen according to the numerical integration scheme.
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For example, if Y* = R, we can divide the interval associated with F%yq into

3 x7i7yq x,i,yq 1 3 x7i7yq Iviqu
equally spaced points y;" ..., y,;” , with spacing A, and y; and y;;” each an
Yy Y

endpoint of the interval. Weights ¢; and Cap, are equal to %, and all other c; equal

A,. Then, for w € Vs,

8 (wls, u) = /@ Tl )
A z.iy? z.i,y?
~ Tye(y'lg,u) | 5 o™ o, W) + > AGYT W)
+ S oy e W) (B.16)

We do not consider w = v, when doing actual computations, and so do not need a

finite Gaussian sum representation for that case.
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