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ABSTRACT

InAs/GaSb type-II strained layer superlattices are a material used for infrared detec-

tion. By adjusting the thickness of the InAs and GaSb layers, the material bandgap

can be tuned to absorb photons from 3-30 µm. Compared to competing materials

such as HgCdTe and InSb, InAs/GaSb superlattices are more mechanically robust,

have reduced tunneling currents, and can use strain to suppress Auger recombination.

In spite of these advantages, this material still faces several challenges, including low

minority carrier lifetime, resulting from trap levels that cause Schockley-Read-Hall

recombination. These low lifetimes lead to reduced signal-to-noise ratio and higher

dark current. Therefore, increasing the lifetime is important for improving this mate-

rial’s performance. However, to increase the carrier lifetimes, the origin of the traps

must first be understood.

In this work, several key suspect causes of the ”killer” defect were evaluated.
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A commonly explored suspect in literature, the interfaces, was studied using time-

resolved photoluminescence for three different samples. This characterization method

was also used to determine if the doping atom and its layer placement significantly

impacted the minority carrier lifetime. There is a substantial amount of evidence

that the presence of gallium, or the GaSb layer itself harbors the defect. Thus,

the rest of the study focused on aspects of GaSb. Layer intermixing of the In and

As atoms into the GaSb layer was studied by intentionally incorporating In and As

in bulk GaSb and using photocapacitance characterization to observe any possible

defect level formation. In addition, trap level formation for different GaSb growth

temperatures was also explored with this characterization technique. Finally, in an

attempt to reduce trap densities, GaSb was grown with an increased level of Sb

monomers rather than dimers. This material was characterized using dark current

density measurements and photoluminescence.
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Chapter 1

Introduction

InAs/GaSb type-II strained layer superlattices (T2SL) have the potential to be a

very useful infrared detector material. Their main competitor is the tried-and-true

HgCdTe which is a mature technology that originated in the 1950’s. Even though

T2SL system (proposed in the late 1970’s) has better compositional uniformity, larger

substrates, is more mechanically robust, and suppressed Auger recombination, all of

which are major problems in the HgCdTe system, it has a fatal flaw that continues to

hold it back. The minority carriers (electrons or holes) have such short lifetimes (∼

30 ns for LWIR, ∼ 100 ns for MWIR) that many of them die before they can reach

the contacts and produce a signal. This reduces the signal-to-noise ratio and leads to

larger dark currents; this problem alone renders T2SL a less desirable material than

HgCdTe. In order to gain a competitive edge, the minority carrier lifetimes must be

increased by at least an order of magnitude. The way to end this is to get rid of

whatever is killing the carriers. However, while we have clues, much about the killer

remains unknown.

Two decades [1] have passed since the Shockley-Read-Hall recombination (SRH)

process was identified as the killer. This type of recombination is caused by defects,

typically with energies in the middle of the bandgap, that act as places for an electron

1



and hole (lack of electron) to annihilate each other. These defects could be caused

by a number of different things such as contaminants, crystallographic interfaces,

intermixing of the T2SL layers, and growth temperature, to name a few. So, although

it is well-known that defects are responsible for the deaths of the charge carriers, an

exact cause has yet to be identified.

This thesis documents the search for this illusive defect to make the T2SL a safer

place for the electron and hole. The scope of this work is limited to mid-wave (3-5 µm)

infrared material. First, what we already know about T2SL and defect is described

in Chapter 2. This information leads us to some suspects (see figure 1), including

T2SL interfaces and the constituent T2SL materials themselves. The charge carrier

“murder investigation” is then described in Chapters 4 and 5, using such charac-

terization methods as photocapacitance, time-resolved photoluminescence, and dark

current levels to try to catch the killer red-handed. Finally, we reach the harrowing

conclusion in Chapter 6, which also outlines future work.

Figure 1.1: Map showing scope of work. The problem being addressed is a defect
in T2SL, which causes short minority carrier lifetimes in T2SL, while interfaces and
constituent materials are investigated as possible culprits, subsets of the culprits are
below, and finally methods used to characterized them are below that.

2



Contributions of dissertation:

1. Uses photocapacitance measurements to study traps in GaSb for improving the

lifetime of the charge carriers in InAs/GaSb superlattice:

• Layer intermixing (effect of GaSb mixed with In and As)

• Growth temperature (effect of growing GaSb at its optimal temperature

compared to growing it at the T2SL growth temperature)

• Effect growing GaSb with various Sb cracking zone temperatures (which

produces different ratios of Sb monomers and dimers)

2. Compares the effect on carrier lifetime of different interfaces formed by using

the following between InAs and GaSb layers:

• growth interrupts

• InSb strain compensation layers

• Sb soaks

3. Compares effect on carrier lifetime for different doping atoms and their place-

ment within the superlattice layers

• Beryllium

• Tellurium

• InAs layer doped

• GaSb layer doped

• All layers doped

3
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Chapter 2

Basics of InAs/GaSb Type-II

Strained Layer Superlattices

This chapter provides the foundation to understand InAs/GaSb type-II strained layer

superlattices. Before diving into the details of IR detectors, a description of the elec-

tromagnetic spectrum is provided, detailing the different parts of the infrared range.

This is followed by applications of infrared detectors, a discussion of the different

sensing techniques, and types of infrared sensors. Finally, InAs/GaSb strained layer

superlattices are discussed, including a brief history, its best performance metrics,

and its advantages and challenges.

2.1 Infrared spectrum, detectors, and applications

Since the discovery of the invisible realms of the electromagnetic spectrum [2] people

have endeavored to understand and harness its usefulness. Between wavelengths of

10 nm and 1 mm lies the realm useful for optics and optoelectronic devices. This

consists of the ultra-violet (10-400 nm), visible (400-700 nm), and infrared (IR) (700

nm - 1 mm) regions. The infrared can be further segmented by atmospheric trans-

mission windows, sections of the IR spectrum which are transmitted through earth’s
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atmosphere. The near-IR (0.75 µm - 1.4 µm), short-wave IR (1.4-3 µm), mid-wave IR

(MWIR) (3-5 µm), long-wave IR (LWIR) (8-12 µm), and very-long wave IR (30µm

- 1mm). For example, the near- and short-wave IR is often used for fiber-optic com-

munication, while MWIR and LWIR are of interest for infrared cameras. Humans

beings also emit IR, with a peak intensity corresponding to approximately 9.2 µm.

Thus, the ability to sense photons in the LWIR allows us to observe people in ways

that would otherwise indiscernible by cameras operating in the visible.

There are numerous applications for IR detectors, including night vision, nav-

igation, security and surveillance, atmospheric monitoring, and astronomy [3]. IR

detectors are used in multi-spectral imaging which allows monitoring of vegetation

health or amount of water, from satellite views of the earth. The atmospheric com-

position can be monitored by IR sensors, search and rescue utilizes IR cameras to

find missing people, and defects in fruit can be observed long before the fruit shows

signs of decay in the visible wavelengths.

Because IR detectors have so many uses, many different methods for sensing IR

have been developed. Thermal IR detectors, such as thermometers, Golay cells, py-

roelectric detectors, and Bolometers, operate by absorbing photons which heats up

the detector and changes some measurable physical property of the detector [2]. Pho-

ton detectors work by incident photon interaction with electrons [2] and are made of

semiconductors of numerous structures (bulk semiconductor, quantum well, quantum

dot, quantum dot-in-well, and superlattices) and materials (InSb, HgCdTe, Si:X) [4].

Each of these IR detectors has its own drawbacks as well as advantages. Thermal

detectors are much slower and less responsive than photon detectors, as it takes time

for them to heat. Photon detectors, especially for MWIR and LWIR, often have to by

cryogenically cooled in order to operate. Rivalries between photon detectors also ex-

ist. HgCdTe and InSb are mature, dominant detector technologies for MWIR (InSb,

HgCdTe) and LWIR (HgCdTe) applications, but are followed closely in device per-
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formance by younger technologies utilizing quantum confinement and heterostructure

engineering. One such material, InAs/GaSb strained-layer superlattice (SLS) has the

potential to beat the dominant technologies.

Many of the optoelectronic devices we know today could not have been made

without the realization of heterostructures [5, 6]. At their simplest, heterostructures

are semiconductors made of two different materials joined together at an abrupt junc-

tion; this configuration consists two materials of dissimilar bandgap [7, 8]. A classic

example is AlGaAs and GaAs, which forms the basis for one type of semiconductor

laser. This concept of a heterostructure seems rather simple, yet was revolutionary

at its inception. An abrupt transition from one semiconductor material to another

offered superior control of junction location, which was unattainable with dopant

atoms. Further, the refractive index was also abruptly changed with the heterojunc-

tion; not only could spatially abrupt junctions be formed, but also could be doubly

used as waveguides [8]. The concept of heterostructures paved the way for many new

types of semiconductor materials, such as quantum wells, quantum wires, quantum

dots, and superlattices.

2.2 InAs/GaSb Type-II Strained Layer Superlat-

tices

InAs/GaSb type-II strained layer superlattices are made by alternating thin (6-30

monolayers, or 18-100 Å) InAs and GaSb layers, as shown in figure 2.1. A set of one

InAs and GaSb layer comprises a single period of the superlattice; the thickness of

each layer of InAs and GaSb together dictate the bandgap formed by the superlattce.

The story of the superlattice began in 1970, when it was first conceptualized by Nobel

laureate Leo Esaki and his colleague Ray Tsu [9]. They predicted that if alternat-

ing layers of material, either through doping or by heterojunction, had thin enough
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periods, a new set of allowed and forbidden energy levels would form. It took the

greater part of a decade, however, for the concept of a broken-gap superlattice to be

introduced [10]. A broken gap superlattice was special compared to previous designs,

consisting of two materials with band alignments so different that the valence band

of one material is above the conduction band of the other. This unusual band align-

ment caused spatial de-localization of the charge carriers; the GaSb confines the holes

and InAs confines the electrons, leading to independent tunability of the conduction

and valence band edges [11]. Finally, in 1987, Smith and Mailhiot proposed that

InAs/GaSb type-II strained-layer superlattice (T2SL) was an advantageous material

for infrared detection because of its bandgap tunability, and small diode tunneling

currents, good mobilities and diffusion lengths [12].

Figure 2.1: InAs/GaSb type-II strained layer superlattice structure and electron-hole
interaction.

Today, T2SL is usually grown by molecular beam epitaxy (MBE), though a

few attempts have also been made through metalorganic chemical vapor deposition

(MOCVD) [13, 14]. The mature techniques of III-V processing have enabled the

fabrication of focal plane arrays (FPA), ranging in size from 288 x 384 [15] to 1K x

1K pixels [16]. Rule 07 [17, 18], a benchmark that defines the state-of-the art dark
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currents of HgCdTe, has become the operating goal for T2SL to outperform.

T2SL has shown to have several advantages. It is part of the “6.1 Å family” [19]

consisting of InAs, GaSb, AlSb, and InSb, which can be combined to produce a num-

ber of heterostructure designs, including the nBn [20], CBIRD [21], M-Structure [22],

pBiBn [23], and interband cascade [24], which would be difficult to make with other

IR detector materials. InAs and GaSb also have much stronger chemical bonds [2] and

a higher degree of mechanical robustness [11] than their more common counterparts,

such as HgCdTe and InSb, making them easier to grow and manufacture. Because of

their higher effective mass, the T2SL also suppresses band-to-band tunneling, which

allows for their absorber region to be doped at least an order of magnitude higher

than HgCdTe, thus improving their signal-to-noise ratio [25]. Although InAs and

GaSb have similar lattice constants, T2SL still have a considerable amount of strain.

This strain, along with quantum confinement, causes the light- and heavy-hole va-

lence bands to separate energetically; if the separation exceeds the bandgap, Auger

recombination becomes suppressed [26, 1]. With all of these advantages, T2SL is

the only IR detector material that is theoretically capable of out-performing HgCdTe

[27].

Despite the many advantages of T2SL, this material has yet to live up to its the-

oretical performance predictions. Because of its inhomogeneous dispersion relation,

the mobility of its charge carriers in the direction of intended current flow (vertical

mobility) is low compared to the mobility in other directions (lateral mobility) [28].

Furthermore, because T2SL has no common cation or anion between its two con-

stituents, a reliable passivation method to alleviate surface leakage current [29] has

yet to be developed. Additionally, although Auger recombination can be suppressed

[1], T2SL is wrought with Shockley-Read-Hall recombination [30], reducing its mi-

nority carrier lifetime by 2-3 orders of magnitude less than HgCdTe. Realistically, in

order for T2SL to be a competitive IR detector material, solutions to these problems
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must be found.

2.3 Recombination mechanisms in semiconductors

Photon detectors operate by electrons interacting with incident photons. The detector

material absorbs photons with enough energy to form electron-hole pairs, using the

energy imparted from the photon to promote an electron to the conduction band.

If an electric field is also present, either by a junction or applied reverse bias, the

electron and hole pairs can be separated spatially and drawn to metal contacts of

the device. Thus, a photocurrent is formed and can be measured. The more charge

carriers that reach the contacts, the stronger the photocurrent signal and the higher

the signal-to-noise ratio (SNR). Unfortunately, not all of the charge carriers live long

enough to reach the contacts and contribute to the signal; there are several ways that

the an electron in the conduction band can recombine with a hole that satisfy energy

and momentum conservation, including radiative, Shockley-Read-Hall, Auger, and

surface recombination. Refer to figure 2.2 as each of these processes is described.

When an electron in the conduction band returns to directly a hole in the valence

band, emitting a photon of energy approximately equal to the bandgap, radiative

(or bimolecular) recombination has occurred. While all semiconductor materials

have radiative recombination, it happens much more readily in direct rather than

indirect bandgap materials [32]. Band-to-band photon emission rate is [32]

Rrad = Bnp (2.1)

where n and p are the electron and hole densities, and B is the radiative recombination

coefficient (cm3/s). This rate is dependent on the material itself, specifically the

electron and hole effective masses, mn and mp, as well as the bandgap (Eg) and the
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Figure 2.2: Recombination mechanisms in semiconductors. Radiative and Shockley-
Read-Hall are shown on the top, and two possible Auger recombination processes [31]
are on the bottom.

material temperature (T) [32]:
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)3/2
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The effective mass in this equation is related to the curvature of the conduction

and valence bands. The curvature dictates the overlap between carriers in the two

bands; more overlap is found in material with more band curvature, or lower effective

mass. More overlap between the conduction and valence bands causes higher B and

increased recombination rate. Strain can be used to modify the effective masses in

materials, which changes B. Not just band-to-band recombination produces radiative

recombination; exitonic transitions [33] and Shockley-Read-Hall recombination can

also be radiative, depending on the recombination centers [34].

A second recombination process, known as Shockley-Read-Hall (SRH) re-

combination, occurs because of the presence of trap levels in the bandgap. These
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traps capture minority carriers to facilitate recombination. Energy is conserved by

imparting the carrier’s energy to lattice vibrations (phonons). Most SRH recombi-

nation occurs when the trap level is close or at midgap, because thermal emission

quenches the SRH recombination for traps close to the band edges [32]. This is seen

in the SRH rate equation:

RSRH =
σpσnvthNt[pn− n2

i ]

σn
[
n+ niexp

(
Et−Emid

kT

)]
+ σp

[
p+ niexp

(
Emid−Et

kT

)] (2.3)

where σp (σn) is the capture cross section of holes (electrons) (cm2), vth is thermal

velocity (cm/s), Nt is trap density (cm−3), ni is intrinsic carrier density (cm−3), Et

is trap energy (eV), Emid is the midgap (eV), k is Boltzmann’s constant, and T

is temperature. Notice that when Et equals Emid, the recombination rate becomes

maximized. Also, this equation shows that increasing the capture cross sections,

thermal velocity, trap or carrier extrinsic carrier density increases the recombination

rates for the minority carrier. The SRH recombination rate A is dependent on material

quality, and can be reduced by improving material quality [4].

Auger recombination is where a carrier recombines by imparting energy to

another charge carrier which then dissipates the excess energy through phonons [32,

33]. Because this process involves interactions between carriers, it is highly dependent

on carrier density, with recombination rates of:

Ra = anp+ Cn2 (2.4)

for an n-type material and,

Ra = anp+ Cp2 (2.5)

for a p-type material. In these equations, a represents energy transfer to the minority

carrier and C is the energy transfer to the majority carrier. This recombination rate
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is inherent to each material and cannot be improved by improving material quality.

However, T2SL have been theoretically [26] and experimentally [1] shown to suppress

Auger recombination.

Another way to think of a semiconductor surface is as a break in the periodic

structure, which leaves dangling bonds. These bonds double as a range of midgap

trap states as well as impurity getters [32, 33], causing surface recombination. In-

terface recombination is similar, but results from a junction of two bulk materials

rather than a semiconductor-air interface. The surface recombination rate Rsurface is

dependent on the surface recombination velocity S (cm/s), and the minority carrier

density at the surface ρs (cm−3) [32]:

Rsurface = ρsS (2.6)

where the surface minority carrier density is a function of the downward bending

surface potential (Vs) and bulk density ρ,

ρs = ρe−qVs/kT (2.7)

and the surface recombination velocity depends on the majority carrier surface

density Nst:

S = σvthNste
−qVs/kT (2.8)

While surface recombination is distinguished from the three main types of bulk

recombination processes, it is nonetheless important for understanding experimental

lifetime results and for experiment design. Electronic barriers made of materials with

larger bandgaps can be used to separate surface recombination from bulk recombina-

tion by separating the surface from the bulk material.
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Table 2.1: Reported lifetime measurements of T2SL and similar materials. NID is
non-intentionally doped, and the various methods, photoconductive response (PCR),
electron-beam-induced current (EBIC), current-voltage data fitting (IVF), optical
modulation response (OMR), time-resolved differential transmission (TRDT), and
time-resolved photoluminescence (TRPL) are described in Appendix A.

Reference Year τ (ns) λcutoff (µm) Doping Method

Youngdale [35] 1994 0.13-6 at 77 K 8.8 NID PCR
Yang [36] 2003 30 at 77 K 11.3 NID PCR

15 at 77 K 12.9 NID PCR
6 at 77 K 9.4 3x1016(p) PCR

Li [37] 2004 0.13 at 100 K 7.7 p-n jct. EBIC
Pellegrino [38] 2009 35 at 77 K LWIR p-n jct. IVF
Donetsky [39] 2009 80 at 77 K 4 NID TRPL, OMR
Svensson [40] 2011 84, 92 at 77 K 4 NID TRPL, OMR
Connelly [41] 2010 30 at 77 K LWIR p-type TRPL
Donetsky [42] 2010 100 at 77 K 3.9 NID (2x1016) OMR

31 at 77 K 10.3 1x1016 (p) OMR
Bandara [43] 2011 17 10 5x1015 OMR

32 10 1x1016 OMR
11 10 2x1016 OMR

Olson [44] 2012 92 at 77 K 4.9 NID TRDT
Zuo [45] 2013 48.4 (h), 50.8 (e) 10 p-n jct. EBIC

157 (h) , 70.3 (e) 11.8 p-n jct. EBIC
Murray [46] 2014 58 - 82 at 77 K 4.4 - 5 NID TRPL

Steenbergen [47] 2011 412 at 77 K 8.2 NID ( 3x1016) TRPL
Olson [44] 2012 9,000 at 77 K 5.4 NID TRDT

2.4 T2SL and constituents’ lifetimes

InAs/GaSb type-II superlattice has proved to be both successful at Auger recombi-

nation suppression and disastrous due to its large Shockley-Read-Hall recombination.

Initially, T2SL seemed advantageous for its Auger recombination suppression. How-

ever, material lifetime measurements revealed low lifetimes in T2SL due to SRH

recombination. Table 2.1 lists reported T2SL minority carrier lifetimes, showing that

T2SL lifetimes were found to be short (100 ns at most), regardless of doping level or

type, institution of growth, cutoff wavelength, or characterization technique.

Within these references, insights into the low lifetime problem are provided. Three
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groups reported on the relative energy of the trap within the bandgap. Yang [36] used

electroluminescence to measure this and found them to be ∼1/3 of the bandgap (Eg)

from the conduction band edge in a 9 monolayer (ML) InAs / 5 ML GaSb T2SL.

Connelly reported a trap 20 meV above the valence band in LWIR samples [41] and

in a different publication a trap 60 ± 15 meV above the valence band for MWIR

samples (Eg ∼ 250 meV) [48]. These results show that the energetic location of

detected trap levels varies, which may vary by the cutoff wavelength of the material.

Other lifetime studies have hypothesized specific causes of the traps and attempted

to increase the lifetime from these guesses. An extensive study by Svensson [40] tar-

geted both the interfaces and growth temperature as possible causes of SRH recombi-

nation. By measuring the lifetime as a function of T2SL interfaces per volume, it was

assumed a variation in lifetime would point to interfaces as the cause of low lifetimes.

However, no correlation was found between lifetime and interfaces per volume, indi-

cating that interfaces were not the culprit. Intriguingly, their study also found that

the optimum growth temperature for T2SL produces similar lifetimes in bulk GaSb

(∼ 50 ns), as in T2SL, but not InAs (∼ 250 ns). They observed that increasing the

growth temperature of the GaSb increased its carrier lifetime, from ∼50 ns at 440◦C

to 150 ns at 510◦C. The authors also pointed out that if higher T2SL growth tem-

peratures were possible without reducing the coherence of the T2SL, higher lifetimes

might be achievable. A separate study of different interface combinations (samples

with and without Sb and As soaks at interfaces) by Murray [46] found that inter-

face roughness is not the cause of SRH recombination in T2SL, in agreement with

Svensson’s conclusion that interfaces are not responsible for reduced lifetime. How-

ever, a report by Zuo [45] found that carefully chosen thickness of the InSb strain

compensation layer increases the hole lifetime in n-doped regions (but the electron

lifetimes were unchanged), which is somewhat contradictory of Murray and Svens-

son’s conclusions. Murray [46] also investigated the effect of growth rate on T2SL
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lifetime, and found a maximum lifetime of (82 ns) for InAs and GaSb growth rates of

0.5 monolayers per second. Therefore, even though optimal growth rates exist, they

do not allow for significant improvements.

The last two references in Table 2.1 report on InAs/InAsSb (Ga-free) superlattice

lifetimes. In 2011, a breakthrough in carrier lifetime for type-II superlattices hap-

pened; by replacing the GaSb layers with InAsxSb1−x, carrier lifetimes were increased

by over an order of magnitude [44, 47]. This result implied that the low lifetimes in

InAs/GaSb superlattice are related to the presence of gallium, and sparked an interest

in Ga-free T2SL. Indeed, based on Svensson’s [40] observations of low lifetimes in bulk

GaSb grown at T2SL temperatures, it seems possible that the low growth temper-

atures crystallographically optimal for T2SL (approximately 400 ◦C) are deleterious

for its GaSb layers (optimally grown at 500 - 550 ◦C). Both T2SL and Ga-free super-

lattices are grown on GaSb substrates [47] and can have similar layer thicknesses [44].

Unlike T2SL, Ga-free superlattices with long lifetimes did not require any specific

strain compensation layer or interface control, the InAsSb was not lattice matched

to GaSb, and in Ga-free superlattices each layer has indium as a cation, rather than

having gallium and indium in alternating layers.

From the literature, it is apparent that optimizing the lifetime of T2SL depends

partially on optimizing the carrier lifetime of GaSb at low growth temperatures.

However, because of the conflicting data of Murray [46], Svensson [40], and Zuo [45]

it is not possible to rule-out interfaces as a potential for improvement as well. Part of

the reason for conflicting data over the interface issue arises because ”interfaces” is a

broad term. It could refer to either the junction between the InAs and GaSb layers

(eg. GaAs-like or InSb-like interfaces), or diffusion of atoms between these layers and

prevention of this diffusion through proper interface growth.

There are several types of defects that could be responsible for the SRH recombi-

nation in superlattices:
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1. Impurities / doping atoms

2. Inter-diffusion of layers

3. Interfaces

4. Constituent material (GaSb)

Impurities, either intentionally added to the sample or unintentionally from the

growth chamber or subsequent processing steps, can contribute to SRH. Defects such

as substitutionals or antisites (substitute the incorrect atom in place of the correct

one), vacancies (atom is missing), and interstitials (atom out of place from the crys-

tallographic order) can also form, either with native atoms or impurities [49]. Often,

these defects appear in complexes, such as a vacancy and an antisite pair, for example.

Some defects are mobile during growth [50], while others are mobile during regular

device operation. Defects can be either deep or shallow, which defines whether or not

they contribute to SRH recombination. A shallow defect is near the band edges and

is easier to ionize, while a deep level lies near midgap. Because of thermal emission,

a shallow defect is rendered innocuous; any trapped carriers can escape with extra

energy from thermal emission [32]. Deep levels are too far from either band to allow

carriers to escape through thermal emission. A defect thought to be responsible for

GaSb’s propensity to be residually p-type is the VGaGaSb (Ga vacancy and Ga on Sb

site) complex [51].

Previous work allows us to chose what aspects to target for increasing T2SL

lifetime. Many studies have focused on the interface control, with limited success.

Few, however, have examined how the constituents effect lifetime, in spite of the

growing evidence that GaSb has an important role in lifetime reduction. This project

did explore different interfaces and their impact on lifetime, but most of the focus is

on GaSb for use in T2SL. Before diving into the details of this study in chapters 4
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and 5, basic growth, fabrication, and characterization techniques used in this work

are covered in the following chapter.
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Chapter 3

Sample Growth, Fabrication, and

Basic Characterization

3.1 Growth

Molecular beam epitaxy (MBE) is a growth method in which molecular beams of

material impinge on a substrate in ultra-high vacuum. Shutters covering the sources

allow the user to finely control the growth thickness atomic layer by layer. While a

sample is growing, the growth rates are calibrated and surface quality is monitored

by reflection high energy electron diffraction (RHEED). Each epitaxial layer needs

specific growth temperatures and flux ratios, which depend on what elements the epi-

taxy is composed of. In addition, InAs/GaSb superlattice has stringent requirements

on InAs and GaSb layer thickness to control the bandgap, as well as interface growth

and composition to control layer intermixing and strain.

All samples discussed in this dissertation were grown in a VG-80 MBE system

with Ga and In SUMO sources and group V valved crackers to supply Sbx and Asx.

Our reactor grows III-V semiconductors, meaning that at least one element from

column III and from V of the periodic table are used simultaneously during growth.
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Epitaxy-ready substrates, such as GaSb, GaAs, or InAs, bought from a manufacturer,

are mounted on Mo plates and loaded into the machine through a load lock. These

substrates are then transferred to the preparation chamber which is under UHV,

where they are baked to remove any impurities such as water vapor.

After the bake, the substrates are moved to the main growth chamber, which has

heated III-V sources, shutters to cover the sources, pumps such as a liquid nitrogen

shroud, a cryo-pump, and an ion pump, ion gauges, a residual gas analyzer (RGA),

and a reflection high-energy electron diffraction (RHEED) gun. The pumps keep the

chamber pressure in the 10−10 mBar regime; the liquid nitrogen shroud encompasses

the substrate to capture impurities before they can come in contact with the substrate.

An RGA is used to monitor the composition and relative quantity of molecules within

the chamber.

To control growth rates, the sources are heated up to specific temperatures and

maintained to within 0.1 ◦C with proportional-integral-differential (PID) controllers.

Group V material initially sublimates into As4 and Sb4. To crack these molecules into

a more useful form, the tip of the source crucible (nearest to the growth chamber) are

heated 400-500 ◦C more than the base (furthest from the growth chamber) where the

group V material is. These high temperatures break the As4 and Sb4 molecules into

As2 and Sb2 or Sb1. Using cracked group V material has the advantage of increasing

the range of substrate temperatures such that the crystalline quality is still high.

The Ga source also has a higher tip temperature than base temperature, in order

to prevent droplets of Ga from forming around the mouth of the source and falling

back into the liquid gallium at the base, causing splashing or spitting on the epitaxy’s

surface.

Each source opens into the main growth chamber, pointing at the substrate.

Molecular beams are formed by heating high-purity (“7N” or 1015 background dop-

ing) elemental material in pyrolytic boron nitride (PBN) crucibles, whose openings
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face the substrate. Parts that are heated within the chamber are made of materials

such as PBN, molybdenum, or tantalum that do not introduce as many unwanted

materials to the chamber. To control which beams are impinging on the substrate

and when, mechanical shutters cover or reveal the source mouth. Because the growth

rates are slow (less than 3 Å/s) the growth thickness can be controlled to within

fractions of an atomic layer by shutter timing.

An ion gauge is present that can move into the exact location of the substrate. This

is used to measure the flux of molecules coming from each source and is especially

useful for measuring flux ratios, the ratio of one source’s flux to another (group

V/group III). Flux ratios are important because if there is too much or not enough

of one material relative to another, defects can form. Prior to growth, flux ratios

are optimized by fixing the group III fluxes and varying the group V fluxes through

valves at the crucible opening. Typical flux ratios for growth are given in Table 3.1.

Substrates grown by the Czochralski method arrive from the manufacturer as

“epi-ready”, implying that the grower does not need to prepare the substrate prior to

loading it into the MBE. These substrates are covered with a passivating layer of oxide,

introduced by the substrate manufacturer. The oxide reduces carbon contamination

of the substrate when it is exposed to the atmosphere [52]. Once a substrate has been

loaded into the growth chamber, it is heated while under group V flux to remove

these oxides prior to growth. A list of oxide desorption temperatures for various

substrates is given in Table 3.1. The progress of the oxide desorption is observed

with a RHEED system, in which electrons (from an electron gun directed at the

substrate) are diffracted by the crystal onto a phosphor screen. When an oxidized

substrate is present, the RHEED screen reveals a few spots or no features at all, but

when the oxide is removed, spots and streaks appear.

After oxides are desorbed, the substrate temperature is reduced to a desired

growth temperature. This temperature is highly dependent on what the epitaxial
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layer will be (see Table 3.1 for select growth temperatures). Then, the source shut-

ters open and molecules interact with the substrate to form an epitaxial layer. If the

growth does not go well, streaks will disappear or blur and more spots will form, indi-

cating that the surface is becoming rougher. If the growth is successful, the diffracted

RHEED pattern shows the dots and few streaks of the oxide-desorbed surface gradu-

ally change to long streaks. RHEED is also used to calibrate group III growth rates.

This is done by monitoring the intensity of the diffraction spots with time. When a

layer of molecules begins to grow, the surface has only patches of molecules, which

makes it slightly rough and the spot dim. Then, as the molecules begin to fill in the

layer, the spot brightens again. This process repeats as single layers of the material

grow, causing the spot intensity to oscillate. These oscillations are monitored with a

camera, to measure the growth rate.

The temperature of the substrate is measured by a pyrometer during growth.

However, this pyrometer has a limited range, and cannot determine sample tempera-

tures less than ∼440◦C. Other means of determining substrate temperature are used

instead, such as the RHEED reconstruction transition, where the RHEED pattern of

GaSb switches from a 1x3 pattern to a 1x5 pattern [53]. In our MBE, this transition

happens at about 425◦C. InAs/GaSb superlattice is grown at approximately 400◦C

(or 25◦C below the RHEED reconstruction transition temperature) and has flux ratios

of 4 for Sb/Ga and 4 to 9 for As/In. Before the main structure is grown, a layer of the

same material as the substrate (GaSb) is grown. This helps prepare the substrate by

making a smooth, high-quality crystalline layer. Then the superlattice is grown. Each

period of the superlattice is made of several layers of material (as shown in Figure

2.1), including an InAs layer, one interface, a GaSb layer, and a second interface. The

thickness of the InAs and GaSb layers dictate the bandgap of the superlattice, while

the interfaces are used to manipulate strain and reduce atomic mixing of the separate

layers. Because InAs and GaSb have different lattice constants, strain forms as the
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Table 3.1: Growth recipes for T2SL and its constituents
Material Toxide Tgrowth V/III flux ratio References

InAs 520-540 440-520 12-18 [54, 55, 56, 57]
GaSb 530-540 500 4-5
GaAs 650 600 10-12
T2SL NA ∼ 400 (Ttransition−25 to 45◦) Sb/Ga = 4 [58]

As/In = 4-9

superlattice grows. To compensate for the smaller lattice constant of InAs (aInAs =

6.058 Å), an InSb layer (aInSb = 6.47 Å) is grown between the GaSb and the InAs.

The required InSb layer thickness is calculated by considering lattice mismatch:

∆ = (a1 − a2)/a2 (3.1)

where a1 denotes lattice constant of material the epitaxy and a2 is the lattice constant

of the host material. Using this equation for both the InAs and InSb lattice mismatch

with respect to GaSb leads to a required InSb thickness of:

dInSb = dInAs(aInAs − aGaSb)/(aInSb − aGaSb) = 0.098× dInAs. (3.2)

If strain compensation is not possible, a mismatched layer can be grown as long

as it does not exceed the critical thickness (hc), the maximum thickness an epitaxial

layer of one lattice constant (a) can be, when grown on a crystal of different lattice

constant (ao), before excessive strain causes defects to form:

hc ≈ a2/[2(ao − a)] (3.3)
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Table 3.2: Photoresist recipes. Notes: a) post-exposure bake at 112◦C, flood exposure
for 30 s. b) follow with five minute air dry and edge bead removal. c) perform edge
bead removal after spin. d) follow with post-exposure bake of 95◦C for 130 s.
Photoresist Spin (RPM) Bake (time / temp) Exposure (s) Develop (s)

AZ4330 5000 90 s / 90◦C 5.4 70 (AZ400K 1:4)
AZ5214-IR 5000 90 s / 90◦C 1.9a 35 (AZ400K 1:5)

AZ4620 3000b 60 s / 90◦C 30 390 (AZ400K 1:4)
SU-8 2002 3000c 60 s / 95◦C 2.3d 45 (SU-8 developer)

Table 3.3: Plasma etching. The sample temperature is fixed at 25◦C.
Recipe Gas / Flow RF Power ICP Power Chamber Pressure

Zia-InP BCl3 / 35 sccm 90 W 500 W 2.5 mTorr

3.2 Fabrication

Fabrication describes the process of creating features on a semiconductor wafer, and

can include such steps as an etch to make electrically isolated devices, metal deposi-

tion to create electrical contacts, or dielectric deposition to electrically passivate the

semiconductor surface. Each of the steps is associated with a mask, which is a piece

of glass with metal patterns on it. In each fabrication step, a layer of photoresist (a

light-sensitive material, see Table 3.2 for more specific photoresist recipes) is applied

to the sample, the sample and mask are aligned, and then the sample is exposed to

UV light through the mask. This exposure transfers the pattern of the mask onto the

sample, by causing a chemical reaction in only the exposed parts of the photoresist.

Then, the sample is developed to remove the unwanted parts of resist and to retain

the desired pattern. There are several processes that can be done on a patterned

sample, such as etching, metal deposition, or passivation.

Etching the sample removes sections of the sample to define electrically isolated

devices. This can be accomplished with either wet (acid) or dry (plasma) etching.

Plasma etching was used for all of the work in this dissertation. Table 3.3 shows

recipes used for various material etching.
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Two kinds of mask sets were used for the characterization described in this disser-

tation, a single-pixel photodiode mask set and a Schottky diode mask set. The single

pixel mask was developed by another student and consists of 410 x 410 µm square

mesas with apertures of 300 µm, 200 µm, 150 µm, 100 µm, 50 µm, and 20 µm. There

is also a set of square mesas with variable area dimension, without apertures, with

sides of 400 µm, 300 µm, 200 µm, 100 µm, 50 µm, and 30 µm long. The steps for this

mask set are: 1) mesa delineation with AZ4330 photoresist feature definition followed

by inductively coupled plasma (ICP) etching with BCl3 (Zia-InP recipe), 2) metal

deposition with AZ5214-IR photoresist feature definition, followed by a 30 s acid dip

(1 HCl : 10 H2O), and metal deposition of 500 Å Ti, 500 Å Pt, 300 Å Au, 3) 30 s acid

dip (1 HCl : 10 H2O) followed by passivation with SU-8 2002. After SU-8 is applied,

the sample is baked at 175◦C for 30 minutes to solidify the SU-8. The acid dip steps

are used to remove native oxides from the surface where metal or passivation will be

applied.

Figure 3.1: Process steps for single-pixel diode mask. 1) Mesa lithography, 2) mesa
etch, 3) SiNx passivation, 4) passivation etch mask, 5) passivation etch, 6) metal
lithography, 7) metal deposition, 8) metal liftoff.

The Schottky diode mask set, shown in figure 3.3, was developed specifically for

this project, and consists of inter-digitated mesas of various areas. Each finger is

100 µm wide, with an 80 µm-wide top contact. The width of the mesa was chosen

based on lateral diffusion data of T2SL [59]. This mesa was defined with AZ4330

and etched with the Zia-InP ICP recipe. After this a 50 Å layer of SiO2 was applied,
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Figure 3.2: Left: Single-pixel diode microscope images of variable area and variable
aperture diodes. Right: structure of a variable aperture device.

to help improve the quality of the Schottky diode. There is also an optional layer

that makes a dielectric ring, which prevents leakage and breakdown effects near the

edges of the metal. Next are two metal layers that are deposited in separate steps, 1)

a wirebonding pad, and 2) a thin metal that forms the Schottky barrier and allows

for light transmission. The wire bonding pad was defined by AZ5214-IR photoresist,

then native oxides were removed with a 30 s acid dip (1 HCl : 10 H2O), and then

500 Å Ti / 500 Å Pt / 1000 Å Au is deposited. After liftoff, the sample is again

dipped in the HCl acid solution for 30 s, and then 150 Å of Au is deposited. After

this liftoff, the sample is complete.

3.3 Photoluminescence spectroscopy

Photoluminescence occurs when above bandgap photons incident on a sample are

absorbed. This promotes electrons from the valence band to the conduction band

or to a trap level. The electrons that return to the valence band through radiative

recombination will then emit a photon, which has an energy equal to that of the

energy lost by the electron during recombination (approximately the band gap en-

ergy). This technique allows for measurement of the band gap of the material. It can
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Figure 3.3: Schottky diode mask microscope images and structure.

also be used to compare material quality, which is measured, roughly, by the inten-

sity of the PL as well as its full-width-half maximum. The reason the PL intensity

cannot be correlated directly with defect densities is because there are several types

of recombination that contribute, including surface recombination [49]. To compare

the intensity of different samples, the measurements should be made consecutively,

in the same characterization session, and without changing the alignment of any of

the optics. This makes the data more comparable, though there are still intensity

variations expected over the area of each sample.

A schematic of the PL setup is shown in figure 3.4. The light from either a HeNe

(632 nm) or Argon (514 nm) laser is directed through a chopper (spinning at ∼215

Hz) and is focused onto the sample. The PL from the sample is then collected by a

lens (CaF2) and directed and focused onto the entrance slit of a monochromator. A

diffraction grating within the monochromator is used to select an output wavelength,

which is then directed through the monochromator’s exit slit and onto a detector
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(InSb, operational from 1-5 µm). The detector measures the PL intensity for the

selected wavelength, and sends that signal to a lock-in amplifier, which locks on to

the frequency specified by the chopper. This means that it discards any signal that

doesn’t have a frequency matching in the chopper frequency, using only the ones that

match. This signal intensity is then sent to a computer which saves and plots the

data. Often, the light entering the monochromator is filtered so that light from the

laser beam is not accidentally measured.

Figure 3.4: Diagram of photoluminescence setup. Light from either the argon or
HeNe laser is directed through an optical chopper and focusing lens, and onto the
sample. The sample absorbs the laser light, and then re-emits photons at a wavelength
corresponding to its bandgap. This light gets collected and directed by lens 2 and
3 and mirror 4 and 5 to the monochromator. The monochromator scans through a
requested wavelength range, and the intensity at each wavelength is measured by the
detector. The detector signal and the frequency of the chopper are sent to the lock-in
amplifier, which measures the intensity of signals only if they have the same frequency
as the chopper. This intensity information is then sent to a computer which plots the
PL intensity verses wavelength.
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Chapter 4

Time-Resolved Photoluminescence

for Interface and Doping Effects on

Lifetime

Many causes of SRH recombination in T2SL have been suspected, and can be gen-

eralized under three main categories: interfaces, low growth temperature, and layer

mixing. Our research group had previously examined five interface recipes and com-

pared them using PL intensity as a metric [60]. Of these five, the three best recipes

were chosen for the interface study described in this chapter, where the lifetimes of

these recipes are compared using time-resolved photoluminescence. The motivation

was to be able to recommend an interface recipe that would promote the longest

carrier lifetimes. Another aspect that would not be expected to drastically improve

carrier lifetime, but rather is an essential component in most detector structures is the

doping. The type of dopant atom, Be or Te, as well as its placement within the T2SL,

GaSb layer, InAs layer, or both, is examined for its effect on carrier lifetime. First,

an overview of TRPL is given, for both the underlying physics and a walk-through

of the experimental setup used in this study. Then, the experiment and results are
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discussed for the doping and interface studies.

4.1 Physics of TRPL

Time-resolved photoluminescence (TRPL) is a time-domain measurement technique

in which the photoluminescence (PL) intensity decay of a sample is collected as a

function of time to measure directly the carrier lifetime [41, 39, 32, 61]. The sample

architecture in this measurement is designed to minimize the effects of surface recom-

bination, with aluminum-based layers (typically AlSb or AlGaSb) sandwiching the

material of interest, that segregate the bulk material from the surface. This measure-

ment is performed in the time domain instead of the frequency domain. Pulsed laser

light incident on the sample, with greater energy than the bandgap, excites electrons

to the conduction band. The electrons “live” in this excited state for some time before

recombining with holes in the valance band, emitting photons as a result (photolu-

minescence). The emitted photons are directed to a detector, which measures the PL

intensity as a function of time. The carrier lifetime is then determined by fitting an

exponential decay model to the intensity measurements. For simple decays, where

carrier injection is low and SRH recombination dominates, the exponential decay

model is:

IPL(t) = e−t/τminority (4.1)

Where τminority is the minority carrier lifetime. For high carrier injection conditions

the model is adjusted to:

IPL(t) = e−t/(τminority+τmajority) (4.2)

where τmajority is the majority carrier lifetime. For more complex PL decay this
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Table 4.1: Commonly employed T2SL minority carrier lifetime measurement tech-
niques, including photoconductive response (PCR), electron-beam-induced current
(EBIC), current-voltage fitting (IVF), optical modulation response (OMR), time-
resolved differential transmission (TRDT), and time-resolved photoluminescence
(TRPL).
Method Assumptions Direct Indirect Time Dom. Freq. Dom. Steady-State

PCR X X
EBIC µe,h X X
IVF µe,h, m*, NT X X

OMR X X
TRDT α X X
TRPL X X

model is extended to [41]:

IPL(t) = Bδn2
t=0[e−2t/τ + (p/δnt=0)e−t/τ ] (4.3)

where B is the radiative recombination coefficient, δnt=0 is the initial carrier in-

jection level, p and n are the electron and hole background densities, and IPL(t) is

the time-dependent PL intensity. TRPL is a direct measurement of carrier lifetime

with no assumptions; it is a very reliable method for determining carrier lifetime.

For a description of other lifetime measurement techniques, refer to Appendix A.

A comparison of the different lifetime measurement techniques is presented in Table

4.1. Direct methods that make zero to few assumptions about the sample and fitting

process are the most reliable. Current - voltage fitting (IVF) and electron beam

induced current (EBIC) use assumed values to fit a mathematical model to data,

making these methods dubious, while optical modulation response (OMR), time-

resolved differential transmission (TRDT) and TRPL are more reliable. Another

advantage of OMR, TRDT, and TRPL is that these measurements are performed

on unfabricated samples, eliminating the effects of processing uncertainties from the

resulting lifetimes.
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4.2 Time-Resolved Photoluminescence Setup

Following the discussion of the basic principles of a time-resolved photoluminescence

measurement from Section 4.1, the specific setup used to perform TRPL measure-

ments can now be addressed (please follow figure 4.1 for reference). All lifetime mea-

surements were performed at Army Research Lab in Adelphi, MD. Each sample was

mounted in a cryostat with a temperature range of 8 - 300 K. PL was excited using a

2 µm wavelength laser with a 100 fs pulse width and a 250 kHz repetition rate. The

intensity of this source (and thus carrier injection levels) was controlled using various

neutral density filters. Injection intensities corresponded to initial carrier densities of

7.3× 1016, 3.6× 1016, 2.1× 1016, 1.1× 1016, 5.5× 1015, 3.1× 1015, 1.6× 1015, 1.0× 1015,

and 5.1×1014 cm−3. To calculate initial carrier injection (δn0), the incident power (P,

1 mW maximum), absorption coefficient (α, 2000 cm−2), epitaxial layer thickness (d,

2 µm), sample reflection coefficient (R, 2%), photon energy from the laser (Ephoton,

0.62 eV), laser beam area (Abeam, 1 × 10−5 m2), and repetition rate of the pulsed

laser beam (r, 250 kHz) were used:

δn0 = Pd(1− e−αd) 1−R
EphotonAbeamr

(4.4)

Off-axis parabolic mirrors were used to collect and direct the PL signal onto a

HgCdTe detector, which had a maximum cutoff wavelength of 10 µm and a minimum

response time of 3 ns. The signal from the detector was sent through an amplifier

and sent to a data acquisition system. To improve the signal-to-noise ratio and the

reliability of the measurement, several decay plots were collected and averaged.
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Figure 4.1: Diagram of TRPL setup. A laser beam is directed onto the sample held
within a cryostat. The resulting photoluminescence is collected by off-axis parabolic
mirrors, and concentrated onto an IR detector. The signal from the IR detector gets
amplified, and is recorded on a data acquisition system. A representative plot of the
resulting TRPL decay plots is shown for a wide range of temperatures.

4.3 Minority Carrier Lifetime Measurements of T2SL

All samples grown in this study used the basic growth process outlined in section 3.1.

The universal structure used for this study consisted of 6 layers (see figure 4.2): 1)

GaSb Te-doped substrate, 2) a ∼500 nm smoothing layer, 3) a 10 nm AlSb electrical

barrier, 4) a 2 µm thick 8 ML InAs / 8 ML GaSb superlattice region-under-test, 5)

a second 10 nm AlSb electrical barrier, and finally 6) a 5 nm GaSb capping layer to

prevent oxidation of layer 5. Note that the 10 nm of AlSb was far below the cal-
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culated critical thickness (48 nm) of AlSb on GaSb (from equation 3.3). Empirical

pseudopotential modeling (code courtesy of Nutan Gautam) was used to calculate

the relative band alignments of the different layers to confirm that the AlSb layers

acted as barriers to both electrons and holes. If they did not act as barriers, surface

recombination would dominate the TRPL measurement, producing much lower life-

times than the bulk lifetimes of interest. Using this architecture in conjunction with

the described TRPL setup, two different investigations were undertaken: 1) a doping

study to determine if doping atom element or placement impact lifetime, and 2) an

interface study where different growth sequences were used to form different interfaces

to determine if an optimal interface recipe with long lifetimes could be found.

Figure 4.2: Universal structure used in all TRPL experiments discussed in this work:
A) relative band energies calculated by empirical pseudopotential method (code cour-
tesy of Nutan Gautam), which shows that the AlSb layer acts as a barrier for both
electrons and holes, B) illustration of sample layers and thicknesses (smoothing layer
of GaSb between substrate and AlSb not shown).
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Table 4.2: Measured lifetime of doping study samples at different temperatures and
injection conditions: low-injection (1 to 5 x1015 cm−3) and high-injection (7.3 x1016

cm−3).

Layer A B C D E F G

InAs NID Te NID Te Be NID Be
GaSb NID NID Te Te NID Be Be

Injection Temperature (K) τ (ns)

Low 8 49.4 3.1 ≤3 ≤3 12.2 11.7 12.8
77 48.5 ≤3 ≤3 ≤3 14.8 11.6 9.4
300 47.9 NA NA NA 44 34.3 33

High 8 37.7 13.9 8.4 ≤3 35.4 33.6 29.1
77 36.3 16.2 8.4 3.1 38.2 34.7 29.7
300 39.2 NA NA NA 38.9 37.2 31.6

4.3.1 Doping Study

Seven samples were grown for the doping study named samples A-G in table 4.2. In

the table, below the name of each sample, is the corresponding layer (InAs and GaSb

layers) doping, either non-intentionally doped (NID), Te-doped, or Be-doped. Each

sample was grown at ∼ 25◦C less than the RHEED transition temperature from a

1x3 pattern to a 1x5 pattern [53]. Growth rates of 0.23 ML/s for Al and 0.48 for Ga

and In were used. The growth sequence for each superlattice period was: 1) 8 ML of

InAs, 2) 0.6 s Sb soak, 3) 8 ML GaSb, 4) 0.5 ML InSb (1 s).

After growth, the samples were characterized with x-ray diffraction and photolu-

minescence. The XRD results, with a representative plot shown in figure 4.3A, had an

average percent mismatch for the 0th order satellite T2SL peak to the substrate peak

of 1.2% (compressive), and the 0th order peak had a full-width half-maximum of 44

arc-seconds. Room-temperature photoluminescence, shown in a representative plot

in figure 4.3B, had oscillations which we have attributed to Fabry-Perot resonance.

There is also a notch at ∼4.2 µm, which is due to CO2 absorption of the PL. This

spectrum, while broad compared to other materials, is typical of a T2SL. All samples

had similar intensities, roughly on the same order of magnitude.
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Figure 4.3: Representative plots of the A) XRD data and B) photoluminescence
spectrum of samples from the TRPL studies.

From the lifetime values in table 4.2, it is apparent that lifetime does depend on

the type of dopant. Te-doped samples showed the lowest lifetimes (around 3 ns at low

injection), regardless of which layer was doped, Be-doped showed increased lifetimes

(10-40 ns at low injection), and the control (NID) samples showed the highest lifetimes

(∼48 ns). The effects on lifetime of doping different layers is illustrated in figure

4.4, which shows that whether Te or Be are used, doping the InAs layer produces

marginally (∼5 ns) longer lifetimes.

Trap saturation [61], which happens when the SRH capture rate of the majority

carrier is slower than the capture rate of the minority carrier, was observed in the

Be- and Te-doped samples. Trap saturation manifests as a bowing in the TRPL plots

(see figure 4.5 for example). The reason this is significant is that for high injection

levels, the injected carrier density (I) decays by the sum of the minority and majority

carriers [61]:

I(t) = e−t/(τminority+τmajority) (4.5)

rather than simply as the minority carrier, which is seen for low injection levels:
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Figure 4.4: Lifetimes of the doping samples at 77K for different injection levels. From
reference [62].

I(t) = e−t/τminority (4.6)

The transition from the high-injection regime, where the majority and minority

carriers play a role, to the low-injection regime, where the minority dominates, causes

the bowing in the time-resolved PL decay in figure 4.5A. Therefore, any lifetime

information extracted from a decay plot that has this bowing is not strictly the

minority carrier lifetime, but is more likely a combination of both the majority and

minority lifetimes. This means that what is referred to as low-injection data provides

a more realistic representation of the minority carrier lifetime than high-injection

data, but even this may be influenced by the majority carrier. This should always be

taken into consideration when interpreting TRPL data.
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Figure 4.5: A) Example of bowing due to trap saturation. The TRPL decay is non-
linear on a logarithmic plot, but rather the decay rate increases at lower injection
levels. B) Lifetime as a function of injected photons, for a number of different sample
temperatures.

4.3.2 Interfaces

Because of the conflicting results on the effect of interfaces on carrier lifetimes in

T2SL (described in section 2.4), it seemed justifiable to investigate interfaces in this

study as well. We looked strictly at the effect of different types of interfaces that can

be formed during growth, to see if an optimal growth method could be determined

(within the samples of this study).

Table 4.3 shows the interface growth conditions for the three samples of this study

(Labeled A-C). A number of previous publications are available that document the

different chemistries that form from different interface treatments [63, 64, 65, 66, 67,

68]. In this study, interfaces are referred to as Interface 1, which is above the InAs

layer and below the next GaSb layer (as the sample is grown), and Interface 2 is above

the GaSb layer and below the next InAs layer. Interface 1 had two different types of

interface, including a 0.6 s Sb soak, where only the Sb shutter is open with the intent
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Table 4.3: Measured lifetime of interface study samples at different temperatures and
injection conditions: low-injection (1 to 5 x1015 cm−3) and high-injection (7.3 x1016

cm−3).

Layer A B C

InAs
Interface 1 Uncontrolled Sb soak Sb soak

GaSb
Interface 2 Strain comp. Interrupt Strain comp.

Injection Temperature (K) τ (ns)

Low 8 47.1 31.5 49.4
77 48 36.4 48.5
300 44 42.8 47.9

High 8 36.5 30.9 37.7
77 29.8 31.3 36.3
300 36.5 34.8 39.2

of forming an InSb-like interface, or an ”uncontrolled” interface, where no particular

action was taken to force the chemistry of the interface to be InSb-like or GaAs-

like. Literature [66] has shown that T2SL grown with InSb-like interfaces showed

improved mobilities and reduced interface roughness compared to those with GaAs-

like interfaces. Interface 2 also had two different types, an InSb strain compensation

layer, where InSb is used to balance the strain caused by growing InAs layers, or

a growth interrupt, where all shutters are closed with the intent of promoting an

InSb-like interface [67, 68]. Sample A had an uncontrolled Interface 1 and a strain

compensation layer for Interface 2; sample B had an Sb soak for Interface 1 and a

growth interrupt for Interface 2; sample C had a Sb soak for Interface 1 and a strain

compensation layer for Interface 2.

Because this study used identical sample architecture (figure 4.2) to that of the

doping study, the representative XRD and PL plots of figure 4.3 also apply to this

study. The average strain and FWHM of the dopant study also applied to samples

A and C of the interface study. However, because sample B lacked an InSb strain

compensation layer, the XRD results were different from A and C (which had an

43



average lattice mismatch of 1.2% compressive and 44 arc seconds FWHM), with a

tensile lattice mismatch of -0.14% and FWHM of 50 arc seconds.

Figure 4.6: Interface study lifetimes for different initial carrier densities at 77 K.

The lifetime data revealed slight differences in carrier lifetime between samples A-

C. Sample C exhibited the longest lifetimes (36-60 ns), followed by sample A (30-48

ns), and sample B had the lowest lifetimes (31-39 ns). This trend is seen in figure 4.6,

which plots the lifetime of samples A-C at 77 K for different initial carrier densities.

In this figure, all samples have a decreasing lifetime with increasing carrier density

(which shows that trap saturation is not present in these undoped samples). Of the

three samples examined, sample C’s interfaces produced the longest lifetimes. Also,

both of the samples with strain compensation layers (A and C) had longer lifetimes

than the sample that had a growth interrupt instead (B). In fact, sample B exhibited

something unusual that the other samples did not have, a fast initial decay at only 110

and 150 K (all other temperatures did not show this). This fast initial decay is shown

in figure 4.7, where after the initial injection, there is a rapid decay in the 110 K and

150 K plots, followed by the slower decay, similar to the other temperatures’ decay
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rates, after about 5-10 ns. Because the fast decay appeared at only two temperatures,

laser scattering or radiative recombination are probably not the cause, because both

of these are temperature independent. Auger is also not likely, since the fast initial

decay is most prominent at low injection levels, whereas Auger is most prominent at

high temperatures. Therefore, the fast initial decay is attributed to a second SRH

recombination trap level. Because this does not appear in the samples A or C, it is not

caused by the uncontrolled interface, the Sb soak, or the InSb strain compensation

layer. The unique interface in sample B is the 1-second growth interrupt, which we

attribute this fast initial decay to.

Figure 4.7: Fast initial decay at 110 and 150 K for only sample B.

4.4 TRPL summary and conclusions

Time-resolved photoluminescence was used to study the effects of doping placement

and type, and interface type on carrier lifetime. Sample temperatures ranged from 8

to 300 K and initial carrier densities varied from 5.1× 1014 to 7.3× 1016 cm−3.
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For the doping study, seven samples were examined, where the doping was either

only in the InAs layer, only in the GaSb layer, or in all layers for both Be and Te

doping. It was found that the sample that was non-intentionally doped had the

longest lifetimes (∼48 ns), Be had the second longest (10-40 ns), and Te had the

shortest (∼3 ns). Also, the lifetime also followed consistent trends with which layer

was doped, regardless of the doping. Placing the doping in the InAs layer produced

(∼5 ns) longer lifetimes than if the doping was placed in the GaSb layer, which was,

in turn, ∼5 ns longer than placing the doping in both layers.

In the interface study, three samples were grown with interfaces of either an Sb

soak, a growth interrupt, an InSb strain compensation layer, or an ”uncontrolled”

interface. Of the three samples, the best performer had an Sb soak (interface 1)/

InSb strain compensation layer (interface 2), with lifetimes from 36-60 ns. The worst

performer had an Sb soak (interface 1)/ growth interrupt (interface 2), with lifetimes

from 31-39 ns, and the middle performer had an uncontrolled (interface 1) / InSb

strain compensation layer (interface 2), with lifetimes of 30-48 ns. The worst per-

former also showed evidence of a secondary SRH trap level, presumably caused by

the growth interrupt of interface 2.

While there were obviously some samples that outperformed others within this

study, no radical improvements in carrier lifetime were observed. However, the re-

sults of this study do allow us to make recommendations for interfaces and doping

placement and type, such as using an Sb soak for interface 1 and InSb strain com-

pensation layer for interface 2, or using Be or non-intentional doping, rather than

Te.
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Chapter 5

Defect characterization of GaSb for

use in InAs/GaSb Superlattices

To help understand why InAs/GaSb superlattices have such short lifetimes compared

to Ga-free superlattices, the GaSb layer itself needed to be carefully studied from the

perspective of its use in T2SL. While GaSb has been previously studied for defects,

the effects of its use in T2SL have rarely been. Two key differences between bulk GaSb

and GaSb in T2SL are: 1) bulk GaSb is grown at much higher temperatures (500◦C),

compared to T2SL (400-440◦C), and 2) there is intermixing of the In and As from the

alternate layers with the GaSb. These differences could potentially contribute to the

low lifetimes found in the Ga-containing superlattices. This chapter focuses on defects

in GaSb, using steady-state photocapacitance as a characterization method to show at

what energy levels defects appear. First, the effect of growth temperature and In/As

incorporation in GaSb is examined using photocapacitance and photoluminescence

characterization techniques. Then, the use of increased cracking zone temperature

of the Sb, so that the Sb monomer-to-dimer ratio is increased, is investigated as a

possible method to mitigate defects.
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5.1 Physics of capacitance methods for defect char-

acterization

A metal-to-semiconductor interface or a p-n junction results in (at equilibrium) a

volume ideally devoid of mobile charges, called the space charge region (SCR). On

either side of the SCR, mobile charges exist, which forms a situation analogous to

a parallel-plate capacitor. Thus, the diode has capacitance, which depends on the

area of the diode (area parallel to the SCR), the material’s dielectric constant (εs =

εrε0), the built-in (Vbi) and applied (V) voltages across the diode, and the density of

ionized fixed charges in the SCR (Nscr) [49]:

C = A

√
qεs
2

√
Nscr

Vbi − V
(5.1)

Because capacitance depends on Nscr, it can be utilized as a tool to characterize

defect levels. Lang [69] has reviewed several capacitance-based defect characteriza-

tion methods such as DLTS, admittance spectroscopy, photocapacitance, thermally-

stimulated capacitance. These methods rely on an external stimulus (such as tem-

perature, voltage pulses, or incident light wavelength) that interacts with the trap,

in order to study it. A trap level can be negatively, positively, or neutrally charged,

but contains either an electron or a hole at any given time. This can be used to

define four processes in the trap dynamics: electron capture, electron emission, hole

capture, and hole emission. Figure 5.1 illustrates these processes, for a trap at energy

level ET sitting in between the valence band at energy EV B and the conduction band

at energy ECB.

In photocapacitance measurements, energy from incident light is used to set off

emission and capture processes. This happens if the incident light is at an energy of ET

- EV B or ECB - ET , which satisfies conservation of energy requirements. These emis-
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sion and capture processes modify the density of ionized impurity atoms in the SCR,

which changes the capacitance. By monitoring the capacitance of a sample while

sweeping from higher to lower wavelengths of incident light, the emission/capture

processes at specific wavelengths can be observed. Capacitance changes in photoca-

pacitance measurements can show trap energy levels with respect to the band edges,

or relative energy levels of the traps. The higher the density of that particular trap

level, the more the capacitance changes. This method has been used previously for

several studies [70, 71, 72].

Figure 5.1: How traps interact with charge carriers: capture and emission processes.
Electrons are blue and holes are hatched.

5.2 Steady-state photocapacitance setup

A diagram of the photocapacitance setup for this project is illustrated in Figure 5.2.

A HawkEye IR-18 glow-bar with a maximum temperature of 1150◦C and equipped

with a parabolic reflector is the broad-spectrum IR source. This light gets focused

onto the input slit of the monochromator (CM110 1/8-meter) by an off-axis parabolic

mirror (not shown in diagram), the monochromator’s internal diffraction grating is

used to select an output wavelength which is then directed out of the monochroma-

tor. This light is focused by a KBr lens onto the sample under test held within the
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cryostat (Janis VPF-100). The cryostat has windows made of materials such as KBr,

ZnSe, KRS-5, or CaF2 that transmit wavelengths of interest. A cryostat is useful for

cryogenically cooling a sample (using liquid nitrogen or helium) under vacuum so that

water vapor does not condense on the sample’s surface while it is being character-

ized. To control the sample’s temperature, a resistive heater and temperature sensor

mounted near the sample, are used by a PID temperature controller (LakeShore 330)

to monitor and change the temperature. A capacitance meter (Agilent 4263 LCR

meter) is connected to the sample by electrical throughputs; the meter records the

capacitance of the sample as the incident wavelength is varied. These values are sent

to a computer via GPIB and the data is saved.

Figure 5.2: Diagram of photocapacitance setup. Light from the IR source gets focused
into a monochromator with an off-axis parabolic mirror (not shown). The monochro-
mator selects the wavelength of light to send out through the lens and to the sample
in the cryostat. The cryostat is cooled using either liquid nitrogen or liquid helium
and the sample temperature is controlled through resistive heating by the temper-
ature controller. A capacitance meter measures the capacitance of the sample, and
this value is recorded on a computer.

Initial versions of the photocapacitance setup did not show changes of capacitance
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Table 5.1: Photocapacitance design considerations
Component Choices Advantage Disadvantage Selection

IR source TOPAS No monochromator Pulsed
IR-18 / Monoch. CW, non-pulsed Reduced intensity

C Measure Lock-in Amp. Tunable test f Drift in data
Capacitance Bridge Inexpensive, tunable f Results delayed
Commercial Meter Reliable / Immediate Fixed test f

Architecture Schottky No doping Fab. challenges
Homojunction Easy to fabricate Doping necessary

with variation of incident wavelength. Suspected reasons were a) too low of light

intensity on the sample, b) the capacitance meter was not sensitive enough to detect

changes, c) the sample was not sensitive enough to detect changes. Each of these

aspects was simultaneously tackled and improved, as discussed below, with the final

result being an operational setup. Design decisions made along the way are displayed

in Table 5.1.

Insufficient light on the sample was suspected because the capacitance remained

the same when the light was blocked from or allowed on the sample, even though it

should have changed. A higher intensity, tunable IR source was needed in order for

the sample to be responsive. Two viable options were an increased-intensity broad-

spectrum IR source to use with the monochromator, or an optical parametric amplifier

(OPA/TOPAS). As shown in Table 5.1, the TOPAS does not need a monochromator

to achieve wavelength tunability, which is a big advantage since a monochromator

attenuates most of the light intensity. However, a major disadvantage is that the

TOPAS intensity out is pulsed as a function of time, so that the capacitance varies

for a constant incident wavelength. In contrast, the IR-18 and monochromator com-

bination has intensity attenuation, but also provides a continuous, non-pulsed light

source. Therefore, the IR-18 and monochromator combination were selected for this

setup, instead of the TOPAS.

Several different capacitance measurement schemes were attempted and evaluated
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for this project. Important aspects in choosing a capacitance measurement method

were the ability to vary test frequency, apply a voltage bias, ease of data collection,

measurement accuracy, capacitance range, and system price. A lock-in amplifier was

connected to a circuit to measure changes in capacitance. While it was capable of

measuring capacitance values, and the test frequency could be tuned over a wide

range, but the circuit tended to drift over time, which introduced unwanted noise

(variation of several pF). A capacitance bridge circuit had similar advantages and

disadvantages as the lock-in amplifier setup, with tunable test frequencies and suffered

from drift over time. This drift was what led us to favor the commercial capacitance

meter, which was reliable, had little time variation for a fixed capacitance, and also

provided an immediate value in capacitance, rather than having to calculate it from a

linear relationship of output voltages vs. capacitance. One major disadvantage of the

commercial capacitance meter that we could afford was there were a limited number

of available test frequencies.

Finally, the device structure had to be considered. From the description in Section

5.1, in order to perform a photocapacitance measurement, the sample has to have a

space-charge region, either from a Schottky metal contact or by forming a homo-

junction through doping. The major problem with using a homojunction is that the

doping atoms used to form the space-charge region could potentially appear in the

resulting photocapacitance data, which is not a problem for the Schottky diodes that

use a metal-insulator-semiconductor interface to form the space-charge region. Yet,

producing a high-quality Schottky diode for such narrow-bandgap materials is chal-

lenging, whereas for the homojunction this was not expected to be an issue. Because

the homojunction had to be doped, which had the potential to impact the results, it

was not used in this study.

The design of both the Schottky diode had to account for the theoretically-

predicted depletion widths as well as processing constraints. In theory, the depletion
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region width created by a metal-semiconductor junction is [73]:

W =

√
2εs(Vbi + Vr)

eNa

(5.2)

Figure 5.3 shows the calculated depletion widths for different metals on p-type

GaSb. The values were used to design the thicknesses of GaSb Schottky diode struc-

tures. Figure 5.4a illustrates the metal-semiconductor structure.

Figure 5.3: Calculated values of Schottky diode depletion width for different metals
on GaSb.

In practice it is difficult to predict real depletion widths and what metals will make

the best Schottky diodes. Literature has shown barrier heights of 0.65 eV for Al, 0.6

eV for Au, and 0.5 eV for Ni [74], for example, on n-type GaSb. Because Schottky

barriers can be difficult to fabricate, especially for narrow-gap semiconductors, a

metal-insulator-semiconductor structure was also considered. A thin layer of oxide

(see figure 5.4b) produces a more ideal Schottky diode [75]. Before applying the oxide,

the samples were dipped in a solution of HCl : H2O (1: 5) for 30 seconds, to remove
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native oxides. Then, to make the oxide layer, 40 to 50 Å of SiO2 was deposited using

electron-beam evaporation of SiO2 pellets in a vacuum chamber.

A diagram of a metal-insulator-semiconductor (MIS) is shown in figure 5.4c. The

top metal layer is where the voltage bias is applied, which rests on top of a insulator

layer of thickness d with fixed capacitance Ci, which is then on top of the semiconduc-

tor layer with variable capacitance Cd [7]. A thinner oxide layer allows for tunneling;

too thick of a layer will act as a barrier. Therefore, 30 Å is the recommended thickness

[75].

Figure 5.4: Schottky diode structures. a) Semiconductor-metal junction, b) metal-
insulator-semiconductor junction, c) MIS equivalent circuit.

5.3 Photocapacitance sample preparation

Since photocapacitance measurements are performed on fabricated devices at cryo-

genic temperatures, there are a number of steps the samples go through before these

measurements can be made. After the samples are grown in a molecular beam epi-

taxy system (described in section 3.1), they were fabricated into single-pixel device

structures, either with the Schottky or homojunction diode mask set (described in

section 3.2). These samples were then cleaved into individual dies, and glued onto

68-pin chip carriers with silver epoxy. Next, the epoxy was cured and the individual

test pixels were wire bonded to the chip carrier’s electrical leads. Finally, current-
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voltage characteristics were collected for each sample, to both evaluate the quality

of rectification of each diode, as well as to determine which were the best devices to

characterize with photocapacitance.

5.4 Photocapacitance measurements

Each photocapacitance data set was taken using the same method. First, the sample

was cooled in the cryostat to the desired temperature and allowed to stabilize for a

minimum of half an hour. Then, the sample was connected to the capacitance meter

by a 4-point probe configuration. Light from the IR source and monochromator

combination was directed onto the sample, and the sample was carefully positioned

by a 3-dimensional linear translation stage to maximize the change in capacitance

between when light was allowed on it and when light was blocked.

To condition the sample prior to every run, any hole traps were filled by briefly

shining above-bandgap light on the sample. Then, the photocapacitance data was

collected, starting with the lowest energy (highest wavelength) and scanning to the

highest energy (lowest wavelength) of interest, while the capacitance of the sample

was monitored. At each wavelength, the sample was allowed a settling time before

capacitance data was collected. The capacitance data from each wavelength was

measured by collecting several data points and averaging.

There are several variables that can be tuned in a photocapacitance measurement,

including bias voltage, AC capacitance measurement frequency, AC measurement

voltage, sample temperature, and monochromator slit size. Each of these (see figure

5.5) was examined before the majority of the sample measurements were performed.

This allowed for guidelines to be defined for test conditions, for optimal ranges of

these variables.

Following figure 5.5, the AC test voltage of the capacitance meter was varied from
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0.02 to 1.0 V, and the best defect resolution was obtained around 0.4 V. Near the

extremes tested, the signal to noise ratio reduces and it is more difficult to discern

changes in capacitance. Varying the AC test frequency of the capacitance meter from

100 Hz to 100 kHz also showed an optimal range. The low test frequencies (100 and

120 Hz) produced noisy signals, while the 1, 10, 20 and 100 kHz had strong signals

with clearly defined capacitance changes. DC bias appeared to have little effect on

the sample, though a stronger signal-to-noise ratio might be expected with increasing

negative bias, because the space-charge region would become wider, allowing for a

larger volume of the sample that could react to the incoming photons. Sample tem-

perature had a major impact on the results. A jump from 80 K to 150 K obscures

most features. This may indicate that going to even lower temperatures would aid in

producing more meaningful data. Notice that there are jumps in the sample temper-

ature plot. This is due to bad connections, which were fixed in later measurements.

Finally, the monochromator slit size data shows that there is a trade-off between

wavelength resolution and signal-to-noise ratio. For this particular sample slit size of

0.6 mm provided enough light to have good signal-to-noise, but with enough resolu-

tion to see less prominent details in the photocapacitance plot. Selection in slit size

depends strongly on the sample response to light.

For all of the photocapacitance experiments (unless otherwise noted) the following

conditions were used: a AC test frequency of 10 kHz, a AC test voltage of 0.4 V, a

sample temperature of 77 K. The DC bias and monochromator slit size varied too

much to generalize.

5.5 Photocapacitance results

Table 5.2 displays all of the samples characterized with the photocapacitance tech-

nique. Chapter 2 discussed possible causes of low lifetimes in T2SL; the remainder of
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Figure 5.5: Tested photocapacitance variables: AC test voltage, AC test frequency,
DC bias, sample temperature, and the slit size of the monochromator. This test
helped determine what effects these different parameters would have on the measure-
ment, and provided guidelines for test conditions.
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Table 5.2: List of samples characterized by photocapacitance, dark current, and pho-
toluminescence. Samples 8 and 9 had a n-i-p architecture.

# Sample Tgrow (◦C) Sb Cracker (◦C)

1 GaSb 400 900
2 GaSb : In 400 900
3 GaSb : As 400 900
4 GaSb 500 900
5 GaSb 400 1100
6 8/8 T2SL 400 900
7 8/8 T2SL 400 1100
8 nip 10/10 T2SL 400 900
9 nip 10/10 T2SL 400 1100

this chapter focuses on relating defect levels identified by photocapacitance to specific

causes from growth conditions. Three different conditions are explored: 1) effect of

In and As incorporation in GaSb, 2) effect of growth temperature on GaSb, 3) effect

of growing with Sb1 vs. Sb2 on GaSb and T2SL.

5.5.1 Incorporation study

Samples 1-3 in table 5.2 were grown to see if any defects, observable through photo-

capacitance measurements, were formed in GaSb through doping by In and As. Since

these atoms constitute the layers above and below each GaSb layer, they are very

likely to mix into the GaSb. Each of these samples was grown on undoped (resid-

ually p-type) GaSb epi-ready, double-side polished (100)-oriented substrates, at the

T2SL growth temperature (∼400◦C). The epitaxy was approximately 4 µm-thick for

all three devices, and was designed to be fabricated into Schottky diodes (see section

3.2). Sample 1 was an undoped GaSb control, sample 2 was GaSb incorporated with

1.2% In (or In0.012Ga0.988Sb), and sample 3 was incorporated with 2.2% As by opening

the valve to 200 mils but growing with the As shutter closed.

Incorporation levels were confirmed by overlaying the x-ray diffraction (XRD)

data from each sample with simulated XRD from RADS Mercury simulation soft-
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ware, to reconstruct the concentration of In and As in the ternary (GaAs0.022Sb0.978

and Ga0.988In0.012Sb) epitaxy based on substrate-to-epitaxy lattice constant mismatch.

An example is shown in figure 5.6. Nomarski interference microscopy was also used

for post-growth characterization. This revealed a relatively defect-free surface for

sample 1 and cross-hatching for samples 2 and 3. This cross-hatching indicates that

this ternary growth on GaSb was beyond the critical thickness, which is the maxi-

mum thickness an epitaxial layer of one lattice constant can be, when grown on a

crystal of different lattice constant before excessive strain causes defects to form (see

section 3.1). Using equation 3.3, the critical thickness for the epitaxy of sample 2

(In-incorporated) was ∼400 nm and ∼190 nm for sample 3 (As-incorporated).

Figure 5.6: X-ray diffraction plot and simulation overlay for the Ga0.978As0.022Sb
sample. By varying the % composition of the As in the simulation, the simulation
was matched to the measured XRD plot, allowing determination of the composition.

Photoluminescence plots of these three samples are given in figure 5.7. The addi-

tion of In actually increased the PL intensity compared to the control sample, while

As reduced it. The control sample’s intensity was 80% of the GaInSb sample’s, and
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Figure 5.7: Photoluminescence of the incorporation samples at room temperature.

the GaAsSb sample’s intensity was 60% of the GaInSb sample’s. The stronger PL of

the In-incorporated sample is expected; a previous study [48] had shown increasing

lifetime in InAs/InxGa1−xSb superlattices with increasing In content. The reduced

PL intensity of the GaAsSb sample may support why growers promote InSb-like inter-

faces rather than GaAs-like ones. Degrading PL intensity may coincide with reduced

sample performance for T2SL grown with GaAs-like interfaces.

These samples were then fabricated into Schottky diodes, wire bonded, and charac-

terized with steady-state photocapacitance. Initial wavelength scans at 77 K starting

from 7 µm and ending at 0.8 µm (with the monochromator equipped with a grating

optimized for 2.5 to 9 µm) revealed a number of rises and falls in capacitance, shown

in Figure 5.8. To delineate which features were actually at the correct wavelengths

and which were artifacts of the monochromator, two long-pass filters, one that passed

wavelengths above 2500 nm (energy below ∼0.5 eV) and one that passed wavelengths

above 800 nm (energy below 1.55 eV), were used. The 2500 nm filter showed a pho-
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Figure 5.8: Capacitance variation for different incident wavelengths. The optimal
ranges for the available gratings are shown. Grating 2 was used to collect this par-
ticular spectrum.

tocapacitance plot with no changes in capacitance, while the 800 nm showed all of

the features from figure 5.8. Therefore, all of the features above 2500 nm are most

likely due to higher-order diffraction of the light from the 800 - 2500 nm range. The

photocapacitance for Samples 1-3 is thus plotted in figure 5.9, for the range where

higher-order diffraction did not play a role. This measurement was performed with a

0.6 mm monochromator slit size, and zero voltage bias.

Two features appear in the photocapacitance plots for all of the samples, labeled

as features A and B. Feature A begins at approximately 0.5 eV with a maximum at

about 0.6 eV and feature B is at approximately 0.8 eV. Because the bandgap of GaSb

is calculated to be 0.8 eV at 77K [76], feature B can be attributed to transitions from

traps slightly above the valence band edge to the conduction band. Feature A is near

mid-gap, and appears regardless of whether the material is pure GaSb, or alloyed

with In or As, suggesting that it is intrinsic to GaSb. These results appear to confirm

the presence of a GaSb trap feature at 0.63eV first reported by Kuramochi [77]. They
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Figure 5.9: Corrected photocapacitance spectrum in which higher-order diffraction
effects from the monochromator are discounted. Data is stacked for easier comparison.

had attributed this trap to Te diffused into the GaSb from the Te-doped substrate.

Te is likely not the cause of this level in the photocapacitance results, since Te was

not intentionally put into the structure and the substrates were undoped. However,

it could still be present in the background levels of the growth chamber and cannot

be completely ruled out. The change in capacitance of feature A is smaller for the

sample with In incorporation. This may indicate a reduction in the trap density for

this sample.

5.5.2 GaSb growth temperature study

Because Svensson [40] had such a convincing argument that the low lifetimes in

T2SL were due to growing GaSb at low temperatures, we wanted to find out if any

change in defect levels could be detected through photocapacitance measurements.

For the growth temperature study, a GaSb sample (sample 1) grown at T2SL growth

temperature (∼400◦C) and one at 500◦C (optimal GaSb growth temperature, sample

4) were fabricated into Schottky diodes and their photocapacitance spectra were
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measured with 2.4 mm monochromator slits and a 1 V applied reverse bias. The

results are shown in figure 5.10, which shows that the peak normally observed at 0.5

eV for the samples grown at T2SL temperature is much smaller in sample 4. This

plot looks very similar to the GaInSb photocapacitance result in figure 5.9.

Figure 5.10: Photocapacitance spectrum comparison for GaSb grown at 400◦C and
500◦C. These plots are stacked for easier comparison.

The reduced change in capacitance of this feature may suggest that the trap level

seen in sample 1 has changed for sample 4. However, there is still a feature present,

even for the sample with increased the growth temperature. Future work for this

study will require several samples grown over the range between 400 to 500◦C, to

document more gradual changes in the photocapacitance results. Lower-temperature

measurements could be useful in clearer observations of the changing capacitance of

this trap feature.

Photoluminescence measurements were conducted on these samples as well, with

room-temperature results plotted in figure 5.11. The GaSb grown at 500◦C does have

a slightly higher intensity, 1.3 times that of the sample grown at∼400◦C. This suggests

that there might be a slight improvement in GaSb quality with higher temperatures,
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though this difference is small enough that it could be within the variation of the PL

intensity across the sample.

Figure 5.11: Room-temperature photoluminescence comparison for GaSb grown at
400◦C and 500◦C.

5.5.3 Comparison of GaSb grown with Sb1 vs. Sb2

Literature [40] has shown that the substrate temperature required to grow T2SL is

sub-optimal for growing GaSb because the carrier lifetimes in the GaSb are reduced.

Bulk GaSb is typically grown at ∼500◦C, whereas T2SL is grown about 100◦C colder.

Since the growth temperature cannot be raised without destroying the superlattice,

the best approach is to find ways to grow high-quality GaSb at T2SL growth tem-

peratures.

One solution may be to use Sb monomers (Sb1) rather than dimers (Sb2). An

order of magnitude photoluminescence intensity improvement of GaSb grown with

Sb1 instead of Sb2 has been previously reported on by Xie [78]. A separate study
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by Brewer [79] found that Sb1 more readily bonded to defect sites, thus reducing the

number of active defects and lowering the residual p-type nature of GaSb by half.

The goal for this experiment is to try using majority Sb1 for growing GaSb at

T2SL growth temperatures, to see if there are any performance improvements in the

T2SL. This was approached from two angles 1) characterize the defect levels for GaSb

grown with Sb1 and Sb2, and 2) characterize and compare the dark current for SLS

structures grown with higer Sb1 to Sb2 ratios. Initially, Sb is sublimated in the base

of the source as Sb4. The end of the source, near the shutter is heated enough to crack

the Sb4 into Sb2 and Sb1. By increasing the cracking zone from our typical 900◦C

to 1000◦C or 1100◦C, we increase the ratio of Sb1 to Sb2. The structures for each of

these tests is shown in figure 5.12; a) shows a 10/10 T2SL-based n-i-p diode that was

used to characterize dark current, b) shows bulk 8/8 T2SL design to be characterized

by the photocapacitance setup.

Figure 5.12: Structures grown for studying the effects of growing with majority Sb1

compared to Sb2. Structure (a) is composed of 10/10 T2SL, while structure (b) is
composed of 8/8 T2SL.

Prior to growing these structures, Sb fluxes were optimized for increased Sb1/Sb2

ratio to produce low surface defect counts visible using Nomarski interference mi-
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Table 5.3: Sb valve setting (Sb/Ga flux ratio) optimization for GaSb samples grown
with the Sb cracker at 1000◦C.

Sample Valve Opening Defect pixel count

1 50 mil 0.056
2 64 mil 0.009
3 81 mil 0.1

croscopy. It is important to note that increasing the cracker temperature significantly

reduced (by a factor of 4) the number of defects visible by Nomarski. Also, this re-

duction was repeatable on both our V80 and Gen10 MBE systems. Table 5.3 displays

the samples grown with various Sb valve settings and the resultant defect percentage.

This defect count was determined using in-house image processing software (see fig-

ure 5.13) that removes the background intensity variation from the Nomarski image,

increases the contrast, and utilizes a user-defined threshold level to mark pixels as

defects. The defect pixels were then counted and divided by the number of non-

defective pixels, to get the defect pixel count. It was found that an Sb valve setting

of 64 mil produced the lowest defect counts. This valve setting was used for the next

experiments.

Figure 5.13: Image processing to perform defect count on Nomarski images.

From table 5.2, the n-i-p samples, sample 8 (900◦C Sb cracking zone) and sample

9 (1100◦C Sb cracking zone), and the bulk 8/8 T2SL samples (sample 6 (900◦C Sb

cracking zone) and sample 7 (1100◦C Sb cracking zone) were grown.
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After growth, photoluminescence spectroscopy was performed to compare samples

6 and 7, as shown in figure 5.14. The PL intensity of the sample 7 with higher cracker

temperature, has approximately twice the PL intensity of sample 6. This may indicate

a reduced SRH recombination and increased radiative recombination.

Figure 5.14: PL intensity comparison between samples 8 ML InAs / 8 ML GaSb
T2SL samples grown with different Sb cracker temperatures.

The n-i-p samples were then processed into single-pixel device structures, using

a plasma etch, SiNx passivation, and Ti/Pt/Au contacts. Next, the samples were

attached to chip carriers and wire bonded, to make electrical contacts to various

devices. Temperature-dependent dark current measurements were performed in a

close-cycle cryostat, with an available temperature range of ∼15 K to above room

temperature. A cold shield was placed around the sample to minimize the noise

from the surrounding environment. The dark current of the sample 9 (higher Sb1)

was found to be ∼1-2 orders of magnitude higher than the dark current of sample 8

(lower Sb1), as shown in figure 5.15, for four different devices on each sample. We
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attribute this dark current to the Sb source needing more outgassing and at higher

temperatures than we had used initially. Because of the lower surface defect counts

and improved PL intensity, we are not yet ready to rule-out this method as a potential

way to improve T2SL performance.

Figure 5.15: Dark current density comparison for samples 8 and 9 from 90 K to 300
K.

5.6 GaSb defect study conclusions

The defects of GaSb, specifically those likely to be in the GaSb layers of T2SL were

studied. First, the effect of adding 1.2% In and 2.2% As to GaSb was investigated.

PL measurements indicated that adding In slightly increased the PL intensity, while

As decreased it, relative to the control sample. Photocapacitance results showed two

main features, a capacitance change (Feature B) at 0.8 eV, which was attributed to

traps near the conduction and valence bands, and a capacitance change (Feature A)

at about 0.5 eV, attributed to trap levels close to the middle of the bandgap. The

GaInSb sample had a smaller change in magnitude for its Feature A, and this sample

had the brightest photoluminescence intensity of the three samples. This result could

68



be compared to a lifetime study that had shown an increase in InAs/GaxIn1−xSb

superlattice lifetimes with higher In concentrations. This mitigation of traps from In

incorporation might be observed in this photocapacitance study.

Photocapacitance was also used to compare bulk GaSb samples, one grown at the

preferred GaSb growth temperature of 500◦C and the other at ∼400◦C. Similar to

the GaInSb sample, the sample grown at a higher temperature had a less pronounced

change in capacitance for the 0.5 eV feature, once again possibly indicating a reduction

in the trap density. The higher temperature sample also had slightly higher PL

intensity than the lower temperature sample. This observation supports the idea

that the low growth temperatures of T2SL promotes defect formation in the GaSb

layers.

Growth of GaSb and T2SL with higher Sb cracker temperatures was also re-

searched. The motivation was that increased cracking zone temperature would pro-

duce more Sb monomers, which have been previously reported to improve photolumi-

nescence intensity and reduce the residual p-type background of GaSb [79, 78]. The

residual p-type background is thought to be due to the Ga-vacancy and Ga on Sb

antisite complex (VGaGaSb) [51]. Growing with increased Sb monomoers was pursued

as a possible strategy for growing GaSb at the lower temperatures required for T2SL.

Growing GaSb with the higher Sb cracking zone temperature (1000 - 1100◦C) pro-

duced samples with far fewer surface defects visible with a Nomarski microscope, and

the 8/8 T2SL sample grown with this recipe had double the photoluminescence inten-

sity compared to that grown with the typically used cracking temperature (900◦C).

However, the n-i-p devices grown with a 1100◦C Sb cracking temperature had higher

dark current than those grown with the 900◦C cracking temperature. So, although

the photoluminescence intensity and Nomarski images show improvements for GaSb

with higher Sb cracking temperatures, the dark current is actually worse. Future work

would be to try this growth in a different MBE system, to see if this is a universal
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problem, or merely an issue with this particular Sb source.
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Chapter 6

Conclusions and Future Work

InAs/GaSb type-II strained layer superlattices suffer from reduced minority carrier

lifetimes, resulting from trap levels that cause Schockley-Read-Hall recombination.

These low lifetimes lead to reduced signal-to-noise ratio and higher dark current.

Therefore, increasing the lifetime is important for improving this material’s perfor-

mance. However, to increase the carrier lifetimes, the origin of the traps must first

be understood. The traps could come from several places, including the interfaces

between the InAs and GaSb layers, the intermixing between these layers, or the con-

stituent materials themselves.

Temperature-dependent time-resolved photoluminescence was used to determine

the effect on the carrier lifetime of the InAs and GaSb interfaces formed using different

growth parameters (such as Sb soak, growth interrupt, InSb strain compensation

layer, or no deliberate interface). Three samples were grown for this study. It was

found that using an Sb soak between the InAs and GaSb growth sequence and an InSb

strain compensation layer between the GaSb and InAs growth sequence produced the

longest lifetimes of the samples examined, with lifetimes of 36-60 ns, as compared

to the lowest performer (Sb soak between the InAs and GaSb, and growth interrupt

between the GaSb and InAs) with lifetimes of 31-39 ns. The third, middle-performer
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sample had lifetimes of 30-48 ns and had no deliberate interface between the InAs

and GaSb, and an InSb strain compensation layer between the GaSb and InAs. The

worst performer also showed evidence of a secondary trap level caused by the growth

interrupt. Although modifying the interface did cause differences in lifetimes between

samples, no observation in dramatic improvement in lifetime was observed. The

results of this study do point to an optimal choice within the scope of this work, but

the root cause of the low lifetimes is not removed from these samples by modifying

the interfaces.

Temperature-dependent time-resolved photoluminescence was also used to see the

effect of doping atom placement and type on carrier lifetime. Two types of doping

atoms, either Te or Be, were placed in either the InAs layer, the GaSb layer, or

both layers, and the lifetimes were compared. The control sample exhibited the

highest lifetimes (48 ns), while doping with Be reduced the lifetime to 10-40 ns, and

doping with Te lowered the lifetime below 3 ns, the minimum resolvable time of the

measurement system. As for the placement of the doping atom, regardless of the

doping type, doping the InAs layer allowed for ∼5 ns longer lifetimes than doping

the GaSb layer, and doping the GaSb layer, in turn, produced lifetimes ∼5 ns longer

than doping both the InAs and GaSb layers.

The GaSb layer in the InAs/GaSb superlattices was targeted as a source the re-

combination centers. Bulk GaSb was grown under various conditions and defects were

characterized using photocapacitance spectroscopy. To learn how mixing between the

InAs and GaSb impacts the GaSb, bulk GaSb, Ga0.988In0.012Sb, and GaAs0.022Sb0.978

were grown at T2SL typical growth temperatures, processed, and characterized with

photocapacitance at 77 K. The photocapacitance plots revealed a capacitance change

starting at 0.5 eV in each sample. At this temperature, GaSb has a bandgap of 0.8

eV, and the trap level is about 0.1 eV from midgap. The capacitance change was

reduced in the sample incorporated with In, compared to the control and the sample
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with As incorporation. This observation suggests a possible improvement when In is

added, and this is supported by previous observations that adding In to the GaSb

layer in T2SL increases the carrier lifetime.

Next, the effect of growth temperature on traps was examined. Two bulk GaSb

samples were grown, one at about 500◦C (typical GaSb growth temperature), and

the other at the typical T2SL growth temperature, which was 25◦C less than the

RHEED transition temperature (or approximately 400◦C). A comparison of these

samples’ photocapacitance plots showed that the mid-gap trap seen in the incorpo-

ration study at 0.5 eV was not as pronounced in the sample with the higher growth

temperature. This suggests that the trap level is mitigated, but not completely re-

moved when the GaSb growth temperature is increased. Future investigations are

needed to characterize GaSb samples grown at different temperature steps, to see the

variation of the trap levels with temperature.

Finally, the effect of growing GaSb with higher ratios of Sb monomers-to-dimers

was considered. By increasing the Sb source’s cracking zone temperature, a greater

number of Sb tetramers and dimers are cracked into monomers. Previous reports

of GaSb grown with more monomers have shown improvements in material quality,

thought to be due to Sb monomers acting as trap getters. To test the validity of

this, photoluminescence and dark current measurements were used. First, two GaSb

photocapacitance samples were grown, both at T2SL growth temperature, one with

the Sb cracker at 900◦C and the other at 1100◦C. Then, two 8/8 T2SL samples were

grown, with the same Sb cracker temperatures as above. All of the samples with

higher Sb cracker temperatures showed a four-fold reduction of surface defects visible

with Nomarski microscopy. Photoluminescence intensity also improved; with the

Sb cracker at 1100◦C, the intensity was twice as high as the sample grown with the

cracker at 900◦C. However, the recipe for higher cracker temperatures did not perform

as well for dark current levels. Two 10/10 T2SL samples with n-i-p architecture were
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grown and fabricated, and dark currents were found to be 1-2 orders of magnitude

higher in the sample grown with the Sb cracker at 1100◦C, compared to the 900◦C

sample. The higher dark current levels in the samples grown with increased Sb cracker

temperatures are most likely due to impurities from the growth chamber.

There are several avenues for future work for this experiment. Higher-temperature

bake-out sessions for the Sb cracker, trying a broader range of cracking zone and sub-

strate temperatures, or growing in a different MBE are a few examples. There may

be other ways to improve the GaSb during growth as well. Svensson [40] suggested

exposing a sample to hydrogen during growth as a way to mitigate defects. A com-

bination of photocapacitance, dark current, and TRPL characterizations could be

used to show potential improvements in lifetime, pinpoint defect energy levels, and

correlate device performance with growth methods.

The photocapacitance measurements could, in general, be improved by going to

lower temperatures. Previously in this chapter, the effect of sample temperature on

photocapacitance measurements was shown. It was clear that as the sample temper-

ature was lowered, more changes in the photocapacitance plots became visible. This

would be especially important for T2SL characterization, which has a much narrower

bandgap than the GaSb.
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Appendix A

Lifetime Measurement Techniques

A.1 Carrier lifetime measurement techniques

This section outlines several key lifetime measurement techniques for T2SL reported

in literature, that were not covered in Chapter 4.

A.1.1 Photoconductive response

Photoconductive response (PCR) is an indirect, no-assumption measurement of car-

rier lifetime (τ), described and used by Yang [36]. The lifetime is extracted by mea-

suring mobility (µe, µh) and change in conductivity (∆σxx) as a function of incident

light (I). These are related to lifetime by:

∆σxx
σ0
xx

=
∆ne(µe + µh)

n0eµe + p0eµh
=

(1−R)Iατ(µe + µh)

h̄ω(n0µe + p0µh)
(A.1)

where σ0
xx is the conductivity without illumination, n,n0, p0 are the carrier densities

of photogenerated electrons, electrons without illumination, and holes without illu-

mination, respectively, R is the reflection coefficient, α is the absorption coefficient,

75



and h̄ is Planck’s constant. Since I is known and α, R, mobilities, and conductivities

are measured, τ can be determined by a linear fit of ∆σxx
σ0
xx

as a function of I.

A.1.2 Electron-beam-induced current

Electron-beam-induced current (EBIC) uses an electron beam to excite electron-hole

pairs to measure the diffusion length and lifetime of minority carriers. The generic

theory and method is discussed by [80], while measurements on T2SL is presented in

Li 2004 and Zuo 2013 [37, 45]. A device used in an EBIC measurement will can be

either a p-n junction or a Schottky diode. Mesas are etched on the sample, contact

metals are deposited, and diodes are cleaved through the center of the mesa to expose

a cross-section of the p-n junction. These samples are loaded into a scanning electron

microscope (SEM) and electrically connected to a current meter (ammeter). An

electron beam incident on the sample causes a current to form, which is measured

as a function of electron beam position. The measured current (I) is related to

the diffusion length (L) and electron beam position (d) by I(d) ∝ (e−d/L)/d3/2 [80].

Zuo [45] used a model which assumed values for vertical mobility and the surface

recombination-to-diffusion ratio to fit the data to extract carrier lifetimes. Li [37]

reported a similar approach, where a model simulating the EBICurrent was fitted to

the data to extract diffusion length. To get carrier lifetime, this measured diffusion

length and an assumed mobility (µ) were used:

τ = L2/D = L2/(µkT/q) (A.2)

where k is Boltzmann’s constant, T is sample temperature, and q is electronic charge.

Because assumptions have to be made about the vertical mobility in this method, the

accuracy of the absolute lifetime must be questioned. Even samples in the same study

may have different vertical mobilities, making even comparisons of samples within the
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same study tenuous.

A.1.3 Current-voltage data fitting

Minority carrier lifetimes have also been obtained by fitting to I-V data from pn-

junction devices [38, 81]. This is performed using equations for current modeling,

including generation-recombination (JG−R), diffusion (Jdiff ), direct tunneling (JT ),

and trap-assisted tunneling (JTAT ) current densities. Of these current densities, Jdiff

contains carrier lifetime components. The diffusion current density is written as:

Jdiff = n2
i

√
qkT

(
1

NA

√
µe/τe +

1

ND

√
µh/τh

)
(eqV/kT − 1) (A.3)

and depends on the intrinsic carrier concentration (ni), the acceptor (NA) and donor

(ND) doping concentrations and the electron (τe) and hole (τh) lifetimes. Fitting

all the current components and using assumptions about carrier mobilities, effective

mass, and trap density, carrier lifetimes can be extracted from current-voltage data.

A.1.4 Optical Modulation Response

Optical modulation response (OMR) is a frequency-domain method that measures

the intensity of PL as a function of incident laser modulation frequency and in-

tensity to determine carrier lifetime [39, 82, 42, 40, 43]. The sample architecture

in this measurement is designed to minimize the effects of surface recombination,

with aluminum-based layers (typically AlSb or AlGaSb) sandwiching the material

of interest, that segregate the bulk material from the surface. A laser with tunable

modulation frequency (ω) is incident on the sample. The sample absorbs the light,

promoting electrons to the conduction band. After some time, the electrons return to

the valence band, emitting a photon in the process known as photoluminescence. This

light is collected and focused onto a broad-band detector whose output is connected
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to a lock-in amplifier to measure PL intensity as a function of modulation frequency.

Knowing the modulated carrier generation rate (G1), the lifetime is found by fitting

IPL(ω) ∝ G1τ√
1 + ω2τ 2

(A.4)

to the data. Collecting the lifetime for a number of excitation levels makes a lifetime

vs. excitation intensity plot; using linear extrapolation, the lifetime for zero excitation

power can be obtained. Because OMR does not rely on assumptions, it is a good

though indirect method for determining carrier lifetime.

A.1.5 Time-Resolved Differential Transmission

Time-resolved differential transmission (TRDT) is a pump-probe measurement that

monitors transient changes in sample transmission, used to determine ultrafast carrier

dynamics such as carrier lifetime[44, 83]. Like OMR, samples for TRDT use cladding

layers surrounding the material of interest to reduce the effects surface recombination.

Two pulsed lasers, a pump laser with higher energy (lower wavelength) and a probe

with lower energy (higher wavelength), are used for this measurement. The two laser

spots are spatially overlapped on the sample but delayed in time. The pump pulse

arrives first, creating excess minority carriers and then the probe beam arrives after a

specific time delay. The transmission of the probe is measured as a function of its time

delay, which provides recombination rates. Collecting the differential transmission for

a number of excess carrier densities enables a measurement of the carrier lifetime, with

a fit to the carrier-dependent recombination rate equation:

R(N) = A+BN + CN2 (A.5)

where R is the recombination rate (s−1), N is the excess carrier density (cm−3), and A,

B, and C are the SRH, radiative, and Auger recombination coefficients, respectively.
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For the case of T2SL under low-injection conditions where only SRH is present and is

independent of excess carrier density, the radiative and Auger terms can be neglected;

for materials where these coefficients cannot be ignored, the sample’s coefficients have

to be measured, calculated, or assumed in order to perform the fit. For T2SL, TRDT

is a direct measure of carrier lifetime with no assumptions, providing highly reliable

lifetime figures.
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