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ABSTRACT 

Medical image analysis techniques are becoming ever useful in allowing us to 

better understand the complexities and constructs of the brain and its functions. These 

analysis methods have proven to be integral in revealing trends in brain activity within 

individuals with mental disorders that are distinguishable from what would be considered 

“normal” activity within healthy populations. This has led us to gaining a better 

understanding of functional connectivity within the brain, especially within populations 

suffering from mental disorders. 

Functional magnetic resonance imaging (fMRI) is one of the leading techniques 

currently being implemented to explore cognitive function and aberrant brain activity 

resulting from mental illness. Functional connectivity has investigated the associations of 

spatially-remote neuronal activations in the brain. Independent component analysis (ICA) 

is the leading analytical method in functional connectivity research and has been 



vii 

 

extensively implemented in the analysis of fMRI data, allowing us to draw group 

inferences from that data. However, there is mounting interest in the functional network 

connectivity (FNC) among components estimated through ICA. This type of analysis 

allows us to delve further into the temporal dependencies among components or 

“regions” within the brain. In this thesis, we investigate the implementation of group ICA 

and FNC analysis on two large-scale psychopathology studies – the first from a multi-site 

study involving the comparison of schizophrenia patients with healthy controls using a 

sensorimotor task paradigm, and the second from an investigation in psychopathy in 

prisoners performing an auditory oddball task. In both studies, we analyzed the fMRI 

data with group ICA and implemented FNC analysis on the resulting ICA output. The 

purpose of these studies was to investigate differences in modulation of task-related and 

default mode networks, identifying any potential temporal dependencies among selected 

components.  

Our ultimate objective was to demonstrate the effective application of group ICA 

and FNC analysis together on two large-scale studies of two, distinct psychopathologies. 

The results of this combined method of analysis establish the practicality and general 

applicability of group ICA-FNC analysis in the growing fields of functional connectivity 

and functional network connectivity. 
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CHAPTER 1 – INTRODUCTION TO THESIS 

INTRODUCTION AND MOTIVATION 

Mental disorders are defined as patterns of psychological or behavioral activity in 

an individual that are deemed as abnormal and are not part of the normal, healthy 

development of the brain or psyche. Mental illness can develop and progress for a variety 

of reasons, including, but not limited to: genetic predisposition, traumatic brain injury, 

traumatic experience, stress, brain degeneration, substance abuse, disease, etc. Quite 

often, mental disorders occur as a result of a combination of triggers, and there is a 

general consensus that no one particular source or cause can be established for the 

development of a disorder. However, we understand that both genetics and environmental 

factors together play a role in the development and progression of these types of 

disorders. 

More than one-third of people worldwide report having experienced at least one 

mental disorder in their lives (2000). In the United States alone, that number jumps to 

almost half the population suffering from a mental disorder at least once in their lifetimes 

(Kessler et al., 2005). Despite the high prevalence of mental illness worldwide, these 

disorders are often misunderstood and/or are difficult, if not seemingly impossible, to 

treat. This is understandable given the various types of disorders currently classified and 

the diversities consisting within each type. As a result, there have been several continued 

attempts over the centuries to research, document, and diagnose the origins and 

epidemiology of mental disorders. Thus, the field of neuroscience was born.  

Several research methods have been developed to better understand the cognitive 

functions of the brain. Many of these involved the documentation of behaviors and 
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symptoms related to both healthy and dysfunctional mental health. In addition to this 

documentation, the majority of brain research consisted of anatomical studies of the 

physical brain. Until these most recent decades, these research methods had their many 

limitations, primarily due to the primitive technology in existence at the time. However, 

thanks to the strides we have made in advancing our computer and imaging technology, it 

is now possible to directly study the cognitive brain in ways that would be nearly 

impossible using the former anatomical approach. The field of neuroimaging involves the 

use of medical imaging techniques to study the changes or variations in brain structure or 

function/activation and how they correlate to documented aberrations in behavior and 

cognition. And, one of the leading imaging methods that is increasingly and extensively 

used is functional magnetic resonance imaging. 

Functional magnetic resonance imaging (fMRI) is a method of brain imaging that 

measures the blood oxygen level dependent (BOLD) changes in the brain in response to a 

given task. This is also known as the hemodynamic response. The signals extracted 

during the MRI scans can then be processed and analyzed in a variety of ways to 

indirectly obtain information on the location and modulation of possible neuronal activity 

that occurred within the subjects’ brains either during rest or in response to a task. The 

need for more efficient, accurate, and informative methods for the analysis of fMRI data 

has led to the development of a variety of techniques in the study of “functional 

connectivity.” 

Functional connectivity is defined as the study of the correlations between 

neuronal activations between spatially-remote regions within the brain (Friston, 1994). In 

the field of neuroimaging, statistical analyses is performed on the time series of imaging 
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data collected from subjects who are either at rest or who perform a cognitive task. Early 

analysis studies on functional connectivity consisted of the correlation of seed voxels 

(volumetric pixels within the 3D space of the brain) within particular functional regions 

in the brain with fMRI time courses, after which differences between these correlations 

were analyzed (Biswal et al., 1995; Biswal et al., 1997; Cordes et al., 2002; Cordes et al., 

2001; Cordes et al., 2000; Lowe et al., 1998).  

However, the introduction of independent component analysis (ICA) greatly 

transformed the field of functional connectivity (Calhoun et al., 2001b, c; McKeown et 

al., 1998). When applied to fMRI data, ICA is a multivariate method of analysis that 

works to separate and reconstruct linearly-mixed signals, which is similar in nature to the 

separation of different voices recorded by a single microphone, as in the “cocktail party” 

problem (Bell and Sejnowski, 1995; McKeown and Sejnowski, 1998). Taking these 

recovered signals, ICA determines a set of maximally-dependent “components” (Calhoun 

and Adali, 2006). Assuming that the brain consists of a set of sparse, spatially-

independent functional networks, ICA works to reveal and distinguish these networks, 

associating each with its own specific time course. ICA characterizes each network it 

reveals as a maximally-independent component in its output. In essence, each component 

is a functionally connected network consisting of a set of voxels within the brain that 

have the same time course and exhibit a temporally coherent signal (Calhoun et al., 

2009a). Benefits to this analysis technique include (yadda). Group ICA improved on the 

original method of ICA by expanding the application of this technique to group studies, 

allowing us the ability to make group inferences from a collection of data from several 

subjects (Calhoun et al., 2001b). Thus, taking the components output from group ICA, we 
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are able to draw group inferences on the functional networks discovered based on a series 

of statistical analyses on the voxels and time courses characterized by each component. 

These group inferences allow us to characterize trends in modulation that distinguish the 

cognitive performance of those with a mental disorder from a healthy population. 

While group ICA has been effective in revealing trends in modulation related to 

the functional connectivity, it does not address the existence of possible temporal 

relationships among those spatially-independent networks. These temporal relationships 

are the weaker dependencies that may exist among distinct components identified by 

ICA. These dependencies, though significant, are considerably weaker than the 

dependencies between regions found within a particular component, thus preventing the 

distinct components from being combined as a single component (Calhoun et al., 2003). 

The temporal dependencies among components revealed through ICA are defined as the 

“functional network connectivity” among these components (Jafri et al., 2008). 

Functional network connectivity (FNC) is a relatively new topic of research that goes 

beyond functional connectivity by focusing on the functional integration among different 

brain regions and examines the interactions among these regions. These interactions may 

provide information on how activity in one region of the brain may affect the activity in 

one or more other regions. The motivation behind investigating these temporal 

dependencies is to better understand how activity in one region or component network 

may affect or even instigate activity in another completely separate region in the brain. 

FNC analysis allows us to describe the temporal dependencies between the components 

revealed through group ICA, depending on the method implemented. There are several 
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approaches to the study of the dependencies among components. However, this thesis 

will focus on the group correlation approach toward these temporal relationships. 

 

THESIS STATEMENT AND CONTRIBUTIONS 

In this thesis, I will demonstrate the application of two fMRI image analysis 

techniques, group ICA and FNC analysis, on two very different psychopathology studies. 

Previously, no other schizophrenia studies into the sensorimotor network have been 

conducted on such a large scale. Additionally, this is the first study known to not only 

reveal through ICA specific and distinct sensorimotor networks implicated in 

schizophrenia, but also examine the group differences in task modulation between 

patients who vary greatly in their duration of illness and a demographically-matched 

healthy control population. 

Imaging research into the cognitive dysfunctions involved in psychopathy has 

been very limited for a variety of reasons. Psychopathy as a mental disorder can be very 

difficult to diagnose, and the behavioral symptoms exhibited can vary greatly, depending 

on the psychopathy checklist revised (PCL-R) clinical scoring of the individual (Hare, 

1991). It is well-known that many prisoners incarcerated for serious crimes suffer from 

some degree of psychopathy, but gaining safe access to such individuals for the purpose 

of neuroimaging research has been nearly impossible until very recently. The 

psychopathy study highlighted in this thesis is innovative in its data collection approach 

in that it uses fMRI data collected via a mobile MR scanner that was taken directly to a 

New Mexico prison site. As a result, we were able to collect functional imaging data 

from a large pool of psychopathy subjects with a wide range of PCL-R clinical scores. To 
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date, this is the first large-scale fMRI study of psychopathy subjects that not only reveals 

distinct functional networks from an auditory oddball task, but also shows group 

differences in modulation based on the PCL-R scoring of subjects. 

FNC analysis is a relatively new field of imaging research that is beginning to 

gain interest within the neuroimaging community. Though group ICA has been 

effectively implemented to reveal functional networks within the brain that may be 

implicated in particular psychopathologies, information on how these network 

components interact with one another is relatively unknown. These interactions, or 

temporal dependencies, among distinct brain regions may essentially be the cause for 

dysfunctional communication among those same distributed brain regions, resulting in 

the functional deficits of the particular mental disorder. Research into FNC has been very 

limited, and to date, there are no known studies that have investigated FNC in the 

sensorimotor network of schizophrenia or in psychopathy, especially on such a large 

scale. Because FNC analysis does not require additional data collection or analysis other 

than the data already acquired through fMRI scans and analyzed through group ICA, it is 

the next logical and easily implemented step in fMRI research. The application of both 

group ICA and FNC analysis together may provide in-depth information not only on 

functional brain networks implicated in a variety of psychopathologies, but also reveal 

clues on the temporal dependencies and interactions of these distinct brain regions to 

better characterize the cognitive dysfunctions observed within individuals suffering from 

mental disorders. 
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THESIS SUMMARY 

Chapter 1 of this thesis introduced the topic of mental illness, in particular 

schizophrenia and psychopathy, and the current approaches being implemented in 

combating these diseases. It discussed how fMRI image analysis techniques have become 

increasingly vital in understanding the cognitive functions of the brain and introduced the 

topics of functional connectivity and functional network connectivity in fMRI research. 

Finally, it detailed how the implementation of group ICA and FNC analysis together can 

effectively address the questions posed by these research topics. 

In Chapter 2, we will present background information on the two image analysis 

methods highlighted in this study – group ICA and FNC analysis. We will provide 

detailed information into the technical theory behind each method and discuss how, when 

implemented together, they can provide an extra dimension of understanding in how the 

networks implicated in an illness interact and affect one another. We will show how this 

knowledge is the next logical step needed in understanding causality among brain 

networks. 

In Chapter 3, we will demonstrate the application of group ICA and FNC analysis 

on fMRI data collected in a large-scale, multi-site research study comparing the brain 

modulations of schizophrenia patients with healthy controls. After providing some 

extensive background information on the subject of schizophrenia and the benefits of 

using a robust sensorimotor paradigm, we will show how ICA was effective in revealing 

several distinct networks within the brain that demonstrated high task-modulation and 

showed significant differences in that modulation between patients and controls. In 

addition, we show how that modulation correlates with the duration of illness within the 
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patient group. We will then provide the results of the FNC analysis and discuss the 

possible implications regarding causality among the networks. 

In Chapter 4, we will again demonstrate the application of these analysis tools on 

fMRI data collected from subjects diagnosed with psychopathy. We will provide an 

extensive introduction to the topic of psychopathy and the rating of the severity of this 

disorder in subjects through PCL-R scoring. As well, I will discuss the aspects of the 

auditory oddball paradigm. We will next provide the results of the ICA and FNC 

analysis, demonstrating not only the trends and differences in modulation among groups 

with different PCL-R scores, but also the potential temporal dependencies among the 

networks identified. 

Chapter 5 will bring this thesis to a close with a discussion of the conclusions that 

we established from the two research studies implementing group ICA and FNC analysis. 

We will also introduce potential topics for future investigation in the development of 

improved versions and implementations of these analysis tools.   



9 

 

CHAPTER 2 – FMRI IMAGE ANALYSIS METHODS 

INDEPENDENT COMPONENT ANALYSIS 

Independent component analysis (ICA) is a multivariate method of analysis to 

measure the functional connectivity of spatially distinct regions within the brain. 

Assuming a set of linearly mixed signals stemming from statistically independent 

hemodynamic sources, it works decompose and separate these signals from one another. 

Based on those signals, it determines a set of spatially distinct and temporally coherent 

components consisting of regions or networks within the brain that exhibit a BOLD 

response that is either task-related or resulting from brain activity during rest. 

In group ICA, we expand this analysis method to take in raw fMRI data from 

several subjects to not only produce components and time courses that are combined 

across subjects, but also still maintain the ability to examine the individual time courses 

generated for each subject in the study. It is from these group components and time 

courses that we are able to make group inferences about the hemodynamic responses 

observed and compare how these responses may differ among groups of subjects within a 

single study. This allows us to comparatively explore the functional connectivity of 

subjects with a particular mental disorder against a healthy population or with other 

groups of individuals with varying degrees of dysfunction. 

Next, we provide a background on the theory behind the processes involved in 

group ICA, as developed by Calhoun et al (Calhoun et al., 2001b). 
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Theory 

 

 

Figure 1: Group ICA model  

In Figure 1, we examine the various steps and processes involved in group ICA. 

The entire system can be broken down into two primary blocks consisting of sequential 

procedures: the data acquisition block and the post-processing and analyses block. During 

data acquisition, raw fMRI data is collected from subjects who undergo an fMRI scan. 

These test subjects are either at rest (for resting-state studies) or perform a specific task 

(for cognitive function studies) according to a pre-determined task design paradigm. 

Assuming a set of statistically independent hemodynamic source locations within the 

brain, for M total test subjects and N total sources within the brain, 

        TpNppi vsvsvsvs ,...,, 21                                            (1) 
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 vsi  represents the i
th 

source at a location v for the p
th 

test subject. Each source has a 

weight attributed to it based on how much that source contributes to a voxel within the 

brain’s 3D space. Each weight is multiplied by the time course associated with its 

particular source. Assuming that each voxel is a linear mixture that is the summation of 

all sources contained within the brain of a subject, we can derive a sampling of these 

source signals contained within system A in the brain via Equation 2. 

        TpNppi vuvuvuvu ,...,, 21                                           (2) 

 The first step in data acquisition is to collect raw imaging data from all M subjects 

via an fMRI scan. During each scan, there is a total of K discrete time points during 

which we discretely sample the hemodynamic responses produced in the brain. For a set 

number of voxels, V, this sampling is described by Equation 3. 

        TpKpppp iyiyiyiy ,...,, 21                                            (3) 

Once this sampled fMRI data is collected, we enter the post-processing and 

analyses stage in the ICA system model. In this stage, the raw data is run through a series 

of processes and analyses, resulting in a set of grouped components to represent the 

collective modulation observed in all subjects. The first step in this stage is the 

preprocessing and spatial normalization of data into a standard space (Talairach and 

Tournoux, 1988). Next we perform data reduction through principal component analysis 

(PCA) to minimize the computational load during ICA (McKeown et al., 1998). This is 

followed by the actual ICA, in which we estimate a set of independent components. In 

the final stage of the post-processing and analyses block, a set of group maps and time 

courses are generated by grouping and thresholding the components estimated during 

ICA across all subjects (Calhoun et al., 2001b).  
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Because we initially assumed during data acquisition that imaging data from each 

scanned subject are statistically independent from that of the other subjects, we can 

derive the joint probability density function (pdf) to represent the statistical observations 

of the source signals collected from each subject in the population of all subjects in a 

study. This allows for the separability of the unmixing matrix that is generated during 

group ICA. 

In order to estimate the number of components to be output during ICA, we must 

first estimate the total number of sources from the aggregate set of subjects and reduce 

the magnitude of the data collected. Source estimation is accomplished through the 

minimum description length (MDL) criterion (Rissanen, 1983). PCA decomposition is 

the method by which we reduce the dimension of the aggregate data collected from all 

subjects. Again, the MDL criterion determines the dimension to which we can effectively 

reduce this data for the final estimation of the number of components to be output by 

group ICA. 

The next step in the post-processing stage of ICA is to estimate and produce a set 

of “group” components that is identical across all subjects, such that group inferences 

may be interpreted from the results. This is accomplished by performing ICA on all 

subjects and only estimating one set of components. As described previously, data 

reduction must be performed prior to the application of ICA. This occurs in two stages – 

first, the dimension of the data collected from each individual is reduced and then 

concatenated for all subjects; next, the concatenated data is further reduced into an 

aggregate mixing matrix, from which we can back-reconstruct the ICA maps for each, 

individual subject. As stated previously, the unmixing matrices used in back-
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reconstruction are separable across all subjects because the dependence among the 

signals is minimal. 

As part of the back-reconstruction stage of group ICA, we generate spatial maps 

and time courses that represent the hemodynamic response observed during the scan. The 

time courses generated for individual subjects may be averaged across a set of subjects to 

create a time course that represents the modulation of that particular group. Finally, the 

group ICA maps generated must be thresholded through the reconstruction of the 

individual ICA maps. These single-subject maps are reconstructed from the group ICA 

maps via a “random effects” inference that is made on a set of random variables 

consisting of the magnitudes and weights of the voxels found within the ICA 

components. These random variables are then subjected to a one-sample t-test, in which 

the hypothesis is null (zero magnitude). 

 

FUNCTIONAL NETWORK CONNECTIVITY 

While group ICA is essential in revealing trends in dysfunction within the 

components associated with the brain regions/networks implicated by a BOLD response, 

it does not provide information on the relationships among these components. Functional 

network connectivity expands on the study of functional connectivity by investigating the 

weaker temporal relationships among the time courses generated for the functional 

networks revealed by group ICA. Even though the components estimated through ICA 

are spatially independent and distinct, there may exist weaker temporal dependencies 

among these components that can affect the hemodynamic responses among networks, 

which is the key theory behind causation.  
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There are a few methods that have been developed to investigate these temporal 

relationships among components. However, the method implemented in this thesis is the 

maximal lagged correlation method, wherein we perform a correlation among all the pair-

wise combinations of the time courses for each component to identify trends in the 

hemodynamic latency among the networks. Next, we provide a background on the theory 

behind the processes involved in FNC analysis, as developed by Jafri et al (Jafri et al., 

2008). 

Theory 

The first step in the FNC analysis process is the implementation of group ICA on 

a set of test subjects, estimating a series of independent components from the processed 

fMRI data collected. Once these components are generated, components of interest must 

be systematically selected from the entire set of estimated components. Selection of these 

components is based on how much a particular component is associated (correlated) with 

task-modulated activation (indicating association with a hemodynamic response in gray 

matter), cerebral spinal fluid (CSF), white matter, or is an artifact. Artifactual 

components can be generated through head motion or eye movements during a scan 

and/or caused by blood pulses at the base of the brain. Components that are not 

associated with signal changes within the brain’s gray matter are generally discarded 

from further analyses. 

Once the number of components has been reduced to only include components of 

interest, the time courses for these components are filtered to remove any residual noise. 

After noise removal, the total number of pair-wise combinations among the time courses 

for these components is calculated. These correlations will indicate how similarly any 
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two components were modulated by the task, indicating a potential association in the 

hemodynamic response between the two regions being compared. So, for a given number 

of components of interest, n, each with its associated time course, the total number of 

pair-wise combinations would be:  

2

n
                                                           (4) 

The maximal lagged correlation is performed on each of these pair-wise combinations of 

time courses. The mathematics behind this correlation are given in Equation 5. 
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To calculate the correlation,  , between any two time course pairs, we are given the total 

number of time points for the time courses, T. Each time course is assigned a dimension, 

X  or Y , each with a starting reference of 0i , with the time change in seconds, i . Y is 

circularly shifted by i  from its reference point. i  thus represents the lag between the 

two time courses T

iX
0
 and T

iiY 0
. The maximal correlation and its corresponding lag time 

are saved for each of the two time courses for later analysis. 
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CHAPTER 3 – SCHIZOPHRENIA  

INTRODUCTION 

Models of cognitive dysfunction in schizophrenia focus on bottom-up and top-

down pathophysiological models of brain dysfunction. Previous studies have shown that 

patients with schizophrenia have deficits in basic sensory and motor processing 

consistent with a model of bottom-up and top-down cognitive deficits (Braff and 

Saccuzzo, 1981; Holzman et al., 1974; Javitt, 2009; Nuechterlein et al., 1994; Saccuzzo 

and Braff, 1981). The consequences of basic auditory sensory processing deficits will 

have upstream consequences such as deficits in attention, phonetic and prosodic 

processing (Javitt, 2009). Both bottom-up and top-down deficits in sensory processing 

may result in impaired cognition and low quality of life for afflicted patients with 

schizophrenia (Green et al., 2000).  

Cognitive dysfunction in schizophrenia may be related to failures in coordination 

of brain regions (Ford and Mathalon, 2008; Friston and Frith, 1995). The application of 

group independent component analysis (ICA) to fMRI data is a method of assessing the 

coordination of components or neural networks in the temporal domain. The components 

identified by group ICA are understood to be functionally connected regions or 

temporally coherent networks within the brain.(McKeown et al., 2002). Each spatially 

independent component has a respective time course that can be regressed with a model 

of the hemodynamic response for a particular cognitive paradigm. The resulting beta 

weights provide a measure of task-related connectivity and allow for group comparisons 

(Calhoun et al., 2001b).  
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Previous investigators have used the ICA time course to test for aberrant 

connectivity in schizophrenia (Garrity et al., 2007; Kim et al., 2009a; Kim et al., 2009b). 

The fMRI paradigms have included the auditory oddball discrimination task (novelty 

detection paradigm) and the Sternberg item recognition paradigm (working memory). 

These studies have consistently shown less positive modulation of task related networks 

in the patients with schizophrenia. The affected networks have included working memory 

(dorsolateral prefrontal cortex), motor (cerebellar), and auditory (temporal lobes) 

functions. The default mode of brain function is defined as a baseline condition in which 

the brain is in a resting state (Raichle et al., 2001). In contrast to the task-related 

networks, the default mode network is typically active during rest and decreases during 

an attention-demanding task. Previous studies have also shown that the patients with 

schizophrenia have less modulation of the default mode network relative to controls 

(Garrity et al., 2007; Kim et al., 2009a; Kim et al., 2009b). Aberrant connectivity with 

both task-related and default mode networks may be particularly relevant to the 

pathophysiology of schizophrenia (Williamson, 2007).  

The goal of the present study was to apply ICA to assess potential differences in 

functional connectivity between patients with schizophrenia and healthy controls during a 

basic, auditory sensorimotor task. This study is, to our knowledge, the first application of 

ICA to uncover distinct sensory and motor networks that are affected by the onset and 

progression of schizophrenia. We use a simple and robust auditory paradigm initially 

developed as a calibration task in multi-center fMRI studies (Friedman et al., 2008). 

Based on prior studies that show patients with schizophrenia are impaired in basic 

sensorimotor processes, we hypothesized that patients with schizophrenia would have 
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less task-related modulation in auditory, sensorimotor, and default mode networks. We 

also compare the effect of duration of illness on the functional connectivity of these 

networks. We hypothesized that increased duration of illness will be associated with a 

further reduction of task-related modulation of these respective networks. These 

abnormalities would suggest basic information processing deficits in patients with 

schizophrenia.  

 

METHODS 

Participants 

The Mind Clinical Imaging Consortium (MCIC) is a multisite, collaborative effort 

of four investigative teams from New Mexico, Minnesota, Iowa, and Massachusetts. The 

primary goal of this consortium was the study of the neural mechanisms of schizophrenia 

patients who were at various stages of illness. This collaborative, multisite design 

allowed for the collection of data from a large pool of both healthy control subjects and 

patients with schizophrenia. Participants consisted of 122 patients with schizophrenia and 

145 matched healthy controls. The breakdown by site is as follows: New Mexico (32 

patients, 38 healthy controls), Iowa (35 patients, 56 healthy controls), Minnesota (30 

patients, 26 healthy controls), and Massachusetts (25 patients, 25 healthy controls). We 

further subdivided the patient group using a median split into two equal-size groups 

based on the patients’ duration of illness (DOI). The sole purpose for this split during the 

analysis of the collected data was to evaluate whether both groups showed similar 

directionality in task modulation. The patients were recruited from clinics, inpatient units, 

group homes or vocational training programs, and from referrals from community 
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physicians. Controls were recruited from the local community through newspaper 

advertisements and through fliers. All healthy control subjects were screened to rule out 

any medical, neurological, or psychiatric illnesses, including any history of substance 

abuse.  

Diagnoses were based on a DSM-based interview using either the Structured 

Clinical Interview for DSM-IV-TR Disorders (First et al., 1997) or the Comprehensive 

Assessment of Symptoms and History (Andreasen et al., 1992). Inclusion criteria for our 

schizophrenia patients included diagnoses of schizophrenia, schizophreniform disorder, 

or schizoaffective disorder. Measures of positive and negative schizophrenia symptoms 

were obtained using the Scale for the Assessment of Positive Symptoms (SAPS) 

(Andreasen, 1984) and the Scale for the Assessment of Negative Symptoms (SANS) 

(Andreasen, 1983), respectively. Patients with schizophrenia ranged in age from 18 to 60 

years of age. These patients were taking either first generation antipsychotic or atypical 

medications. All subjects were age and sex-matched, and the healthy controls span the 

full age range of the patients (including the patients with a shorter DOI). All were fluent 

in English. A breakdown of the demographic and clinical data is provided in Table 1. 
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All Patients All Healthy Controls 

Average Age / 
Standard Deviation 

33.8 yrs / 

11.2 SD 

31.7 yrs / 

11.3 SD 

Gender 93 M / 29 F 87 M / 58 F 

Handedness 

Right: 106 

Left: 4 

Ambi: 8 

Right: 133 

Left: 7 

Ambi: 4 

Parental SES 2.81 2.67 

SAPS Average / 
Standard Deviation 

4.6 / 2.9 SD N/A 

SANS Average / 
Standard Deviation 

7.6 / 3.7 SD N/A 

Table 1: Subject demographics at intake 

Task 

In order to robustly activate the auditory cortex, participants were presented with 

a series of audio tones of varying frequencies. This task used a block design paradigm in 

which the auditory stimuli were presented to each participant over the course of two runs 

while undergoing the fMRI scan. Within each run there were 15 blocks, each with 

duration of 16s on and 16s off. For the duration of the on-block, 200 msec tones were 

presented with a 500 msec SOA (stimulus onset asynchrony). During a test scan, the 

volume was calibrated to ensure that all test subjects were able to hear the tones 

comfortably over the background noise of the actual scanner. Consequently, the volume 

of the tones varied depending on the subject's degree of hearing during the audio setup 

for the task, therefore minimizing any auditory signal differences among groups with 

different hearing capabilities.  
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The auditory scale consisted of 16 different tones, ranging in frequency from 236 

Hz to 1318 Hz. The first tone presented within a given block was set at the lowest pitch. 

Each tone that followed was at a higher pitch than the previous, creating a stair-step 

pattern of tones, which rose to a peak, followed by a symmetric descent. The participant 

was instructed to press the right thumb of the MIND input device 

(http://www.mrn.org/mind-input-device/index.php) each time after hearing each 

individual tone. This pattern of ascending and descending scales continued for the 

duration of the 16 sec block. The total duration of each run was 240 sec (120 TRs, TR = 

2000 msec). Prior to execution of the task in the scanner, all subjects practiced 

performing this task to ensure capability in completing it correctly. This was done either 

on a computer in a console room or in a mock scanner session. 

 

Figure 2: Auditory sensorimotor paradigm 

Imaging Parameters 

Functional data were acquired at all four sites with EPI sequences on Siemens 

scanners at 3.0 Tesla (T), except at the New Mexico site where a 1.5T scanner was used. 

The imaging sequence parameters for these functional scans are as follow: Pulse 

sequence = PACE-enabled, single shot, single echo EPI, scan plane = oblique axial, AC-

PC, copy T2 in-plane prescription, FOV = 22 cm, 27 slices, slice thickness = 4mm, 1 mm 
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skip, TR = 2000 ms, TE = 30ms (3.0T); 40ms (1.5T), FA = 90 degrees, BW = ±100 kHz 

=3126 Hz/Px, 6464 matrix, 1 shot. 

Data Analysis 

Preprocessing: FMRI data were preprocessed using the SPM5 software package. 

Images were motion-corrected using INRIalign – an algorithm unbiased by local signal 

changes (Freire and Mangin, 2001; Freire et al., 2002). Data were spatially normalized 

into the standard Montreal Neurological Institute space (Friston, 1995) and slightly sub-

sampled to 333 mm, resulting in 536346 voxels. Next the data were spatially 

smoothed with a 101010 mm full width at half-maximum Gaussian kernel. The 

resulting coordinates were converted to the Talairach and Tournoux standard space for 

anatomical mapping (Talairach and Tournoux, 1988). 

Independent Component Analysis 

Following the SPM5 preprocessing, a group ICA was performed on the 

preprocessed data (Calhoun et al., 2001b). The methods prescribed by this process were 

performed via the group ICA of fMRI (GIFT) Matlab toolbox version 1.3c 

(http://icatb.sourceforge.net). ICA is a data-driven multivariate analysis method that 

identifies distinct groups of brain regions with the same temporal pattern of 

hemodynamic signal change. FMRI time series data for all participants were first 

compressed through principal component analysis (PCA). Three PCA data reduction 

stages reduce the impact of noise and make the estimation computationally tractable 

(Calhoun et al., 2001b; Calhoun et al., 2009b; Schmithorst and Holland, 2004). The final 

dimensionality of the data was estimated to be twenty maximally-independent 

components using the modified minimum description length (MDL) criteria tool built 
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into GIFT (Li et al., 2007). The data reduction was followed by a group spatial ICA, 

performed on the participants’ aggregate data, resulting in the final estimation of our 

independent components. The algorithm used in this process was the infomax algorithm, 

which minimizes the mutual information of network outputs (Bell and Sejnowski, 1995). 

From the group spatial ICA, we reconstructed spatial maps and their 

corresponding ICA time courses that represented both the spatial and temporal 

characteristics of each component, subject, and session. These characteristics are able to 

depict component and subject group variability existent in the data. In all, this resulted in 

10,680 independent component spatial maps (267 subjects  2 sessions  20 independent 

components), each with an associated ICA time course of the data. These maps and time 

courses were then subjected to a second-level analysis to determine whether the resultant 

components were task-related or simply noise and/or artifacts. Components that are 

deemed as noise exhibit values that are randomly scattered throughout the brain or appear 

as rings on the edge of the brain (likely related to head motion) and are not plausibly 

caused by BOLD activity. For the remaining components, we report on only those 

components that were significant based on our planned comparison (e.g. task-related 

components exhibiting group differences). 

Statistical Analysis of Spatial Components: We averaged the spatial maps 

produced during the spatial ICA across the two sessions. The spatial maps were then 

converted to z-score maps and then entered into a second level one-sample t-test to 

identify voxels which contributed significantly to a given component for all subjects, 

Next, these components were analyzed statistically and compared with group-specific 
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thresholds to observe regional brain activations and any potential trends among 

participant groups.  

Statistical Analysis of ICA Time Courses: We performed a temporal sorting of the 

ICA time courses using an SPM5 design matrix containing one regressor corresponding 

to the auditory sensorimotor stimuli. Temporal sorting is a method by which we compare 

the model’s time course with the ICA time course. Using a multiple linear regression 

sorting criteria, the concatenated ICA time courses were fit to the model time course. 

Upon completion of this step, components were then sorted according to the R-square 

statistic. This resulted in a set of beta weights for each regressor associated with a 

particular subject and independent component. The purpose of this temporal regression 

was to illustrate the significance of a particular component with respect to certain 

characteristics of the cognitive task that it represented. In other words, the value of the 

resulting beta weight directly indicated the degree to which the component was 

modulated by the task. From here, we calculated the event-related averages of the time 

courses for all components. Each plot of the event-related average depicts the level of 

task-related functional activity for that particular component over the course of the 

experimental period.  

Statistical Analyses 

For each independent component in this study, we performed a variety of analyses 

on the beta weights resulting from the ICA. These analyses included averages of the beta 

weights, one and two-sample t-tests, and correlations with symptoms and duration of 

illness for patients. The average beta values for regional task-modulation were calculated 

and sorted by subject group, by site as a whole, and by subject group for each site. The 
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one and two-sample t-tests were performed on the beta values obtained for each 

component to observe any possible significant differences in modulation within and 

among the various participant groups. One-sample t-tests provided information on the 

magnitude and direction of the modulation for each experimental group (schizophrenia 

patient groups and healthy controls) within particular brain regions, whereas the two-

sample t-tests compared the differences in task modulation between the patient and 

control groups, as well as between the two patient groups based on duration of illness. 

The two-sample t-tests allowed us the opportunity to compare differences in the degree to 

which certain brain regions activated in response to this task.  

The next step in the analysis of the fMRI data collected was to identify any 

potential correlations with positive and/or negative symptoms and with the duration of 

illness for all the schizophrenia patient groups. To complete this analysis, we conducted 

Pearson correlations of the beta weights with the positive and negative symptoms scores, 

as well as Spearman rank order correlations of the beta weights with the duration of 

illness in years. These comparisons were thresholded and corrected for multiple 

comparisons and between-group comparisons based on the false discovery rate (FDR). 

FNC Analysis 

Taking the five components that we considered to be of interest, we performed 

FNC analysis on these components to test for any possible temporal dependencies among 

them, as well as to explore the group differences between patients and control subjects. 

FNC analysis using the maximal lagged correlation method was performed on these five 

components using the FNC Matlab toolbox version 2.3beta 
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(http://mialab.mrn.org/software/index.php). These correlations were FDR corrected for 

multiple comparisons. 

 

RESULTS 

Behavioral Results 

There were no significant differences found between schizophrenia patients and 

healthy controls in their response times to the auditory stimuli. Results showed that both 

patients and controls showed on average more than a 90% correct response to the 

auditory stimuli presented. 

Selected Independent Components 

Twenty estimated independent components (ICs) were found. Of these, five ICs 

exhibited significant activation differences between patients and controls. These BOLD 

components overlapped very little with one another and were similar to those reported by 

others (Smith et al., 2009). The ICs and their respective component numbers are: a 

temporal lobe – left unilateral motor cortex IC (IC 18), a default mode IC (IC 8), a 

second default mode IC (IC 12), a right lateral frontoparietal lobe IC (IC 20), and a 

bilateral motor cortex IC (IC 11) (see Figure 4). A summary of the results observed is 

provided in the next section. 
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Figure 3: Regions of sensorimotor task-modulation 

Comparison of Task-related Time Courses  

From the results of the statistical analysis of the beta weights shown in Table 2, 

we observed statistical trends toward increasingly positive or negative modulation as we 

progressed from the healthy control group, to the shorter DOI patient group, and finally 

to the longer DOI patient group. Details of these results are as follow. 

Temporal Lobe – Left Unilateral Motor Cortex (IC 18): This particular IC showed 

a combination of temporal lobe and left unilateral motor cortex activation, which was 

highly task-modulated. The patient group had significantly less positive modulation 

relative to the control group (t165 = -1.88, p < 0.05). In addition, the patients with a longer 
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DOI had less positive modulation of this network relative to the patient group with the 

shorter DOI (t120 = -2.28, p < 0.05).  

Default Mode 1 (IC 8): The anterior default mode network included the medial 

and superior frontal gyri, anterior cingulate gyrus, basal ganglia, and the precuneus. The 

patient group had significantly less negative modulation of this network relative to the 

control group (t265 = 2.08, p < 0.05). We did not find any differences in the patient group 

in relation to DOI.  

Default Mode 2 (IC 12): The posterior default mode network included the 

posterior cingulate gyrus, preceneus, cuneus, and paracentral lobule. Like the anterior 

default mode, the patient group had significantly less negative modulation relative to the 

control group (t265 = 2.75, p < 0.05). We did not find any differences in the patient groups 

in relation to DOI.  

Right Lateral Frontoparietal (IC 20): The patient group had significantly less 

positive modulation of this network compared to the healthy control group (t265 = -3.77, p 

< 0.05). The patient group with the longer DOI had significantly less positive modulation 

relative to the shorter DOI patients (t120 = -2.42, p < 0.05). The longer DOI patient group 

showed almost no positive modulation of this network.  

Bilateral Motor Cortex (IC 11): The healthy control group had very weak 

modulation of this network that appeared to correlate weakly with the experimental run. 

The patient group had significantly more positive modulation of this network than the 

healthy controls (t265 = 5.39, p < 0.05). We did not find any differences in the patient 

groups in relation to DOI.  
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The ages of the patients were somewhat correlated with their duration of illness (r 

= 0.32). To ensure the reliability of our results, we also ran our analysis covarying for 

age, and the results were consistent with the findings reported. 

   

Temporal 
Lobe - 

Unilateral 
Motor 

Default 
Mode 1 

Default 
Mode 2 

Right 
Lateral 
Fronto-
parietal 

Bilateral 
Motor 

   
Component 
Number  

18 8 12 20 11 

Two-sample 
T-tests  
(t-values)  

Patients vs. 
Controls  

-1.88  2.08  2.75  -3.77  5.39  

Beta Values           
(by subject 
group)  

Healthy 
Controls  

1.34  -0.41  -0.70  0.28  -0.11  

Shorter DOI 
Patients  

1.30  -0.31  -0.53  0.20  0.10  

Longer DOI 
Patients  

1.11  -0.26  -0.47  0.03  0.20  

All Patients  1.20  -0.29  -0.50  0.12  0.15  

Symptom 
Correlations 
(rho)  

All Patients / 
Positive  

0.22  -0.11  -0.13  0.14  0.02  

All Patients / 
Negative  

0.22  -0.04  -0.08  0.07  0.03  

Correlation 
with DOI (rho)  

All Patients  -0.24  0.06  0.08  -0.13  0.07  

Table 2: Statistical results of sensorimotor data 
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Figure 4: Task-related modulation results based on one-sample t-tests 

Correlations with Symptoms Scores and with Duration of Illness 

Correlations between task-modulated responses in the patient groups and the 

positive and negative symptom values and duration of illness in years were calculated 

and then thresholded at p < 0.05 (FDR corrected) using a nonparametric permutation 

approach. We found that activation for the temporal lobe-left unilateral motor IC 

correlated for the patient group with positive (r = 0.22, p < 0.05) and negative symptoms 

(r = 0.22, p < 0.05).  

For the calculations of task-related connectivity with the DOI in the patient group, 

again, the temporal lobe-left unilateral motor IC showed significant results. We found a 

significant negative correlation with DOI for all patients (r = -0.24, p < 0.05). Detailed 

information on our findings is summarized in Table 2. 
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Site Differences 

To further verify the results derived in this investigation, we examined the effects 

separately for each of the four investigation sites (New Mexico, Iowa, Massachusetts, and 

Minnesota). By observing how the results from all the sites compared to one another, we 

were able to determine whether or not the modulations found for each of the significant 

independent components were similar to one another. We were encouraged to find 

similar trends in task modulation for all four sites. Averages of the one-sample t-test 

results were calculated by subject group and then by subject group for each site.  

 

Figure 5: Average magnitude and direction of beta weights, differentiated by site, for all subject test groups 
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Figure 6: ICA time courses for all significant components 
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Figure 7: Differences in task-related modulation among the subject test groups based on two-sample t-tests 
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Brain Regions 
Brodmann Regions /  
Alternate Labels 

R/L (mm3) 
R/L max t-values  
(MNI coordinates) 

Component 8 – Default Mode 1 

Medial Frontal Gyrus 9, 10, 6, 8, 11, 25  32.4/32.3  42.8(-3,50,14)/42.5(3,56,14) 

Superior Frontal Gyrus 9, 10, 8, 6, 11  45.6/48.1  40.0(-3,54,22)/37.6(6,54,25) 

Anterior Cingulate 32, 24, 10, 33, 9, 25  12.9/13.4  39.4(-3,47,6)/42.2(3,47,6) 

Basal Ganglia 
19, 37 / Corpus Callosum, 
Optic Tract, Red Nucleus, 
Dentate, Hypothalamus 

 4.9/5.9  27.9(0,42,31)/14.2(42,22,-16) 

Cingulate Gyrus 31, 32, 24, 23  19.1/16.0  23.2(-3,36,29)/25.5(6,36,26) 

Precuneus 31, 7, 39, 23, 19  9.0/11.6  22.1(0,-54,33)/23.0(3,-51,33) 

Component 11 – Bilateral Motor 

Medial Frontal Gyrus 6, 32, 8, 10, 9, 11, 25  22.7/26.1  42.9(0,0,50)/37.8(3,-3,50) 

Cingulate Gyrus 24, 31, 32, 23, 9  20.6/20.7  40.6(0,-3,47)/38.6(3,-1,47) 

Superior Frontal Gyrus 6, 8, 9, 10, 11  41.3/45.1  34.6(0,5,49)/27.7(3,6,52) 

Paracentral Lobule 5, 6, 31, 4, 7  6.1/5.6  34.3(0,-9,47)/31.2(9,-44,60) 

Precentral Gyrus 4, 6, 3, 9, 44, 43, 13  30.2/26.7  34.1(-36,-26,57)/25.2(50,-19,37) 

Postcentral Gyrus 3, 5, 40, 2, 1, 7, 43  25.2/21.2  34.0(-39,-23,56)/33.0(27,-38,60) 

Component 12 – Default Mode 2 

Cingulate Gyrus 31, 23, 24, 32  20.5/15.1  42.1(-3,-39,38)/37.6(3,-36,40) 

Precuneus 7, 31, 23, 39, 19  32.6/31.8  38.9(-3,-39,43)/39.7(6,-60,28) 

Posterior Cingulate 31, 23, 30, 29, 18  8.2/9.4  35.5(-9,-54,19)/35.9(3,-60,25) 

Cuneus 7, 19, 18, 30, 17, 23  8.3/8.8  34.8(-6,-65,31)/36.0(3,-65,31) 

Paracentral Lobule 5, 31, 6, 4, 7  6.8/5.1  31.1(0,-41,49)/28.2(3,-38,49) 

Sub-Gyral 37, 7, 40, 2 / Hippocampus  21.7/19.5  28.7(-12,-54,22)/28.3(12,-57,19) 

Component 18 – Temporal Lobe / Left Unilateral Motor 

Superior Temporal Gyrus 22, 13, 41, 21, 42, 38, 39  41.7/39.5  36.7(-48,-17,6)/38.9(48,-20,7) 

Insula 13, 40, 22, 41  12.2/14.5  33.2(-45,-17,4)/36.1(45,-17,6) 

Transverse Temporal Gyrus 41, 42  2.2/1.9  29.4(-48,-26,10)/37.2(48,-26,10) 

Middle Temporal Gyrus 21, 22, 38, 39, 19, 37, 20  27.0/27.0  25.7(-56,-6,-5)/20.6(65,-29,4) 

Culmen    18.9/9.0  23.7(-18,-53,-15)/6.6(3,-67,-7) 

Declive    14.9/14.5 
 22.7(-15,-56,-12)/10.5(27,-62,-
17) 

Component 20 – Right Lateral Frontoparietal 

Medial Frontal Gyrus 8, 6, 9, 10, 32, 11, 25  25.2/25.8  29.4(-9,37,34)/22.1(3,28,43) 

Superior Frontal Gyrus 8, 6, 9, 10, 11  47.3/44.2  28.7(-6,31,43)/21.0(3,34,43) 

Inferior Parietal Lobule 40, 7, 39  19.5/17.4  27.6(-45,-50,49)/17.6(50,-47,44) 

Middle Frontal Gyrus 8, 9, 6, 46, 10, 11, 47  59.3/52.8  26.5(-45,28,29)/12.2(42,19,38) 

Precentral Gyrus 9, 6, 44  12.5/18.9  26.5(-45,22,35)/13.0(42,22,35) 

Cingulate Gyrus 32, 31, 24, 23  22.9/20.8  24.5(-3,36,29)/18.0(3,36,29) 

Table 3: Talairach coordinates for the group ICA 
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FNC Analysis Results 

Significant correlations among time courses were detected for the primary 

components of interest, as shown in Figure 8. The direction and color saturation of the 

arrows indicate the direction and magnitude of the trend between a pair of components, 

such that for any two components a and b, ba   indicates that component b lags behind 

component a in its hemodynamic response by the number of seconds indicated by the 

color saturation of the arrow. The most significant pair-wise correlations are between the 

right lateral frontoparietal component and the temporal lobe-unilateral motor component 

within the healthy congrol group, as well as between the bilateral motor component and 

the temporal lobe-unilateral motor component in the patient group. There is a directional 

difference in the correlation between the bilateral motor and default mode 1 components. 

FNC analysis also revealed several significant differences in the time course correlations 

between the patient and healthy control groups. 
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Figure 8: FNC results for healthy control subjects (top left), schizophrenia patients (top right), and the 

group differences detected between the two subject groups (HC – SZ) (bottom) 

DISCUSSION 

The aim of this study was to compare group differences in functional connectivity 

between patients with schizophrenia and healthy controls, as well as to explore the 

functional network connectivity among the implicated regions of interest, using a basic 

sensorimotor task. The block-design paradigm implemented was used to stimulate 

auditory and sensorimotor regions. This task provided subjects with auditory stimuli, to 

which they responded with a motor reaction (button press). Using this simple design 
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paradigm, we were able to measure a robust response that was both auditory and motor in 

nature. 

Consistent with our hypotheses, we found less positive modulation of temporal 

lobe-left unilateral motor and right lateral frontoparietal networks. We also found less 

negative modulation of both default mode networks in patients with schizophrenia 

relative to the healthy controls. The loss of positive modulation of the task related 

networks (temporal lobe-left unilateral motor and right lateral frontoparietal) and loss of 

negative modulation of the default mode networks in schizophrenia suggests that the 

diminished modulation of these networks may be relevant to the pathophysiology of 

schizophrenia.  

Previous investigators have also demonstrated the loss of anticorrelation between 

the task related networks and default mode networks irrespective of task (working 

memory, target detection) and data analysis methods (ICA, region of interest approach) 

(Kim et al., 2009a; Kim et al., 2009b; Whitfield-Gabrieli et al., 2009). We have extended 

the findings by showing that the loss of positive modulation in task related networks 

(temporal lobe-left unilateral motor, right lateral frontoparietal) also occurs in a simple 

sensorimotor task that minimizes the effect of cognitive effort and motivation. In this 

block design, subjects are aware of the tone and subsequently allocate endogenous 

attention to sensory and perceptual filters (Cowan, 1995). The temporal lobe-left 

unilateral motor network includes the temporal cortex and insula, which represent the 

auditory cortex. Patients with schizophrenia have significantly less positive modulation 

of this network in this basic, sensory task. The decrease in positive modulation of this 

network suggests deficits in basic sensory processing of auditory stimuli. Furthermore, 
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this network correlates with both positive and negative symptoms. These results suggest 

that, within the patient group, increased modulation of this network is related to the 

severity of symptoms characteristic of schizophrenia.  

Patients with schizophrenia also have a significant decrease in the right lateral 

frontoparietal network relative to the healthy controls. This reflects a deficit in patients 

with schizophrenia at the level of the upstream executive function used for endogenous 

attention (Cowan, 1995). This is also consistent with the repeated findings of dysfunction 

in the dorsolateral prefrontal cortex in schizophrenia (Goldman-Rakic, 1994; Honey and 

Fletcher, 2006). These results may be consistent with aberrant top-down processing of 

attentional networks in patients with schizophrenia during a basic sensorimotor task. 

Consistent with our hypothesis, the patients with schizophrenia had significantly 

less negative modulation of the default mode networks relative to the healthy control 

group during the sensorimotor task. This finding is consistent with previous investigators’ 

findings of diminished negative modulation of these networks in patients with 

schizophrenia during auditory oddball discrimination, as well as during a working 

memory task (Garrity et al., 2007; Kim et al., 2009a; Kim et al., 2009b). The deactivation 

of the default mode networks in our study may be related to the combined sensory and 

motor component that our task required. Modulation of this network also correlated with 

the positive symptoms with the shorter DOI group. These findings are consistent with 

previous investigators using a similar methodology. Garrity et al. found a correlation of 

the medial frontal, temporal and cingulated gyri of the default mode also correlating with 

the severity of positive symptoms (Garrity et al., 2007). 
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The patients with the longer DOI (average 18.1 years) have less positive 

modulation of the temporal lobe-left unilateral motor and right lateral-frontal parietal 

network than the patients with the shorter DOI (average 2.9 years).  Additionally, we 

observed statistical trends toward increasingly positive or negative modulation across all 

components as we progress from the healthy control group to the shorter DOI patient 

group to the longer DOI patient group. These results are consistent with structural studies 

showing evidence of progressive volume loss over the course of the illness in 

schizophrenia. A meta-analysis on voxel-based morphometry revealed that the most 

consistent findings were deficits in the left superior temporal gyrus and the left medial 

temporal lobe (Honea et al., 2005). Both of these anatomic locations are located in the 

temporal lobe - left unilateral motor component. Our findings suggest that the changes 

after the onset of schizophrenia may be progressive and limited to specific networks and 

anatomic locations. We also note that the default mode networks did not show any 

evidence of progressive changes with DOI.  

FNC analysis revealed significant temporal dependencies among the components 

of interest for both the patient and healthy control groups. Consistent with previous 

research, there appear to be several associations in the hemodynamic responses within the 

sensorimotor network in healthy controls that differ or do not appear within the patient 

group (Jafri et al., 2008). Additionally, there were several significant differences in the 

correlations of the time courses between the two subject groups. This may indicate 

widespread differences in the functional integration of these networks, which may be 

associated with a dysfunction within the sensorimotor network of schizophrenia patients. 
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Future analysis could include a correlation of these results with DOI to further investigate 

a possible association of these trends with the duration and severity of this illness. 

It has been shown that patients who exhibit symptoms of more chronic auditory 

hallucinations have reduced functional connectivity within the temporo-parietal area of 

the brain (Vercammen et al.). Our investigation did not assess how auditory 

hallucinations may have affected the functional connectivity of the regions described. 

However, given the possibility of overlap in the brain regions implicated in our study 

with those related to auditory hallucinations, we suggest this as a topic of interest for 

further investigation. The possible effect of antipsychotic medications on this simple 

motor task limits the interpretation of our study. Previous investigators have found 

significant differences in the BOLD response between medicated and unmedicated 

schizophrenia subjects during a simple motor task (finger-tapping) (Muller et al., 2002a; 

Muller et al., 2002b). These results have also been extended to differences in the BOLD 

signal among patients taking different types of antipsychotics based on relative 

antagonism of the dopamine D2 receptor (Braus et al., 1999). These previous results 

suggest that patients with schizophrenia treated with antipsychotics have less positive 

modulation of cortical motor areas relative to controls. We did find differences in the 

temporal lobe – left unilateral motor cortex (less positive modulation) and the bilateral 

motor cortex (more positive modulation) between the patients with schizophrenia and the 

controls. Both of these motor components may be susceptible to the effect of 

antipsychotics. Comparisons of neuroleptic naïve patients with medicated patients are 

challenging but would be particularly informative.  
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Another limitation of our results includes the cross-sectional design. Previous 

functional connectivity studies on first episode patients have found no changes in 

functional connectivity or increased functional connectivity in certain networks relative 

to healthy controls (Lui et al., 2009; Whitfield-Gabrieli et al., 2009). The loss of 

functional connectivity later in the disease course in our study is consistent with these 

previous findings. Our study also included data from four sites, but we did not find any 

site-related differences. It is evident that the beta-value results from the Massachusetts 

site followed the same trend in task-modulated response as the other three sites. 

However, the magnitude of the responses from this site appeared to be significantly lower 

than that of the other sites. To verify the validity of our statistical results and the 

inclusion of the Massachusetts data in this investigation, we removed the Massachusetts 

data and repeated all statistical analyses using only data from the three remaining sites. 

We found no significant difference between the results with the Massachusetts data 

included compared to the results with that data removed. The modulation response trends 

and correlations that we observed after the removal of the Massachusetts data were not 

significantly different from the original statistical results. For this reason, we feel justified 

in the inclusion of the Massachusetts data in this study. We also recognize that we have 

not excluded the possibility of top-down abnormalities on sensory processing in patients 

with schizophrenia. Further research using effective connectivity is needed to delineate 

the relationship between sensory processing deficits, attention networks and the default 

mode networks in patients with schizophrenia. 

The block design including both auditory and motor aspects has a limitation in 

that the responses elicited are intrinsically related to one another and cannot be separated. 
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As such, we are not able to distinguish whether there is only an auditory deficit, only a 

sensorimotor deficit, or both. However, it is likely the last, given that several prior studies 

show both auditory and motor activity differences in patients. We can however say that 

for this particular task we found robust differences between patients and controls. In 

future investigations, it would be germain to separate these two domains in a controlled 

experiment. 

The large number of subjects tested in this study helped to identify population 

trends with greater sensitivity, as well as to draw more accurate conclusions from the 

data. The implications of these findings for the diagnosis (and possible treatment) of 

schizophrenia are of interest and suggest a sensory processing deficit in acoustic and 

attentional networks in schizophrenia. Future studies are needed to delineate the effect of 

antipsychotic drugs on motor networks in a simple sensorimotor task, as well as long-

term effects of antipsychotics on changes in functional connectivity in motor networks.  
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CHAPTER 4 – PSYCHOPATHY  

INTRODUCTION 

Psychopathy is a psychological personality disorder that affects approximately 

1% of the total population, but a significantly larger percentage of the prison population. 

It is characterized by chronic immoral impulses and antisocial behavior. This construct is 

theorized to originate from neurological dysfunction within the brain. This syndrome 

manifests itself through a variety of symptoms, from aggressive narcissism and lack of 

guilt and remorse to severe patterns of irresponsibility, juvenile delinquency, prolific 

substance abuse, and socially deviant lifestyles. Diagnosis is currently based upon a 

thorough review of these symptoms that meet a scaled, diagnostic threshold. 

It is widely considered that the psychopathic personality disorder is ultimately 

untreatable and that those who suffer from this are unable to be rehabilitated into society. 

As such, those who commit crimes and are diagnosed as psychopathic are generally left 

untreated and are either institutionalized in psychiatric hospitals, or more often, detained 

in prison. Given the currently limited options for treatment, there is increasing research 

into the neurological causes and correlates of psychopathy. The symptoms that are 

exhibited in psychopathy may be associated with a disruption in the communication 

between brain regions, resulting in the diversity of symptoms that present. Advances in 

applied functional neuroimaging techniques have been shown to quantify regional brain 

connectivity (Calhoun et al., 2001a; McIntosh, 1999). Previous studies have suggested 

that individuals who exhibit psychopathy symptoms may differ from control populations 

(Calhoun et al., 2001b).  
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The application of group independent component analysis (ICA) to fMRI data has 

been used in order to identify spatially distinct and temporally coherent components of 

brain activity (McKeown et al., 2002) When applied in conjunction with a specific task, it 

provides a measure of both functional connectivity and task-relatedness. This allows for 

the identification of brain networks involving multiple brain regions, as well as the ability 

to test for which of these networks are affected by the psychological disorder under 

investigation (Calhoun et al., 2001a). 

The ultimate purpose of this investigation was to document the manner in which 

functional networks are affected by psychopathy and how the hemodynamic responses 

occurring within these networks correlate with scored psychopathy symptoms. In 

addition, we intended to probe the possibility for the existence of temporal dependencies 

among the components detected through FNC analysis. Based on prior studies on 

psychopathy in prison inmates, our hypothesis was that we would find evidence of 

aberrant connectivity within the paralimbic brain network (Calhoun et al., 2001b). We 

also hypothesized differences in connectivity between inmates who have low PCL-R 

scores and those who scored high on the PCL-R scale.  

We implemented group ICA and FNC analysis to study the imaging results of an 

auditory oddball task performed by a large group of prison inmates diagnosed as 

exhibiting psychopathic symptoms. We present results from a remote, mobile-site fMRI 

study involving 102 prison inmates with psychopathy symptoms, each of whom 

performed the same auditory oddball task.  
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METHODS 

Participants 

The primary goal of this investigation was the study of the neural mechanisms of 

psychopathy at various levels of psychosis. In all, the MRN study members collected 

blood oxygen level dependent (BOLD) fMRI data from a total of 102 prison inmates. 

Participants were recruited all recruited from New Mexico prison populations and 

scanned remotely at the prison site in the Mobile MRI Scanning Facility 

(http://www.mrn.org/mobile-mri-scanning-facility/index.php). 

Participants underwent a clinical interview to determine their level of 

psychopathy. Diagnoses were based on the Hare Psychopathy Checklist-Revised (PCL-

R), successor to the Hare Psychopathy Checklist first formulated in 1980 (Hare, 1991). 

The PCL-R is used as a psycho-diagnostic rating scale to diagnose and assess the type 

and degree of severity of psychopathy within an individual. This scale contains twenty 

items, each of which is scored on a three-point scale. These twenty items are divided into 

two groups or “factors,” each factor being further subdivided into two “facets” each. The 

combination of the facet 1 and facet 2 scores will give the total factor 1 score, and the 

combination of the facet 3 and facet 4 scores will give the factor 2 scores. The sum of the 

factor 1 and factor 2 scores give the total PCL-R score for the subject. The PCL-R total 

score provides information on the severity of psychopathy within an individual. Those 

with a total PCL-R score of 30 or greater qualify for a diagnosis of psychopathy.  

The individual factor scores are meant to provide insight on the manner in which 

a subject is psychopathic. Factor 1 scores correspond to characteristics of “aggressive 

narcissism,” whereas factor 2 scores correspond to antisocial characteristics and 
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Factor 1: Personality "Aggressive narcissism" 

 Glibness/superficial charm 

 Grandiose sense of self-worth 

 Pathological lying 

 Conning/manipulative 

 Lack of remorse or guilt 

 Shallow affect 

 Callous/lack of empathy 

 Failure to accept responsibility for own 

actions 

Traits not correlated with either factor 

 Many short-term marital relationships 

 Criminal versatility 

 

Factor 2: Case history "Socially deviant 

lifestyle" 

 Need for stimulation/proneness to boredom 

 Parasitic lifestyle 

 Poor behavioral control 

 Promiscuous sexual behavior 

 Lack of realistic, long-term goals 

 Impulsivity 

 Irresponsibility 

 Juvenile delinquency 

 Early behavior problems 

 Revocation of conditional release 

 

criminality associated with impulsive violence and socially deviant lifestyles. A complete 

listing of the twenty items and their breakdown in the PCL-R are given in Figure 9. 

Subjects are scored on these items based on specific criteria, such as from clinical file 

information and from an interview with a professional licensed to administer these tests. 

However, the quality of these tests and interviews is based solely upon the background 

information available for the subject and how honestly the subject responds during the 

clinical interview. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: PCL-R list items broken down by factor 

Measures of the degree of severity of psychopathy symptoms were obtained using 

the PCL-R list. Participants ranged in age from 18 to 61 years of age, with an average age 

of 34.6 years and standard deviation of 10 year, and were generally untreated by 

medication. Any recruited subjects who were found unable to correctly perform the task 
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during practice were excluded from participating in the study. All subjects were 

completely fluent in English. A breakdown of the demographic and clinical data is 

provided in Table 4. 

  
Age Factor 1 Factor 2 

Total  
Score 

Mean (all subjects) 34.6 6.7 12.7   21.5 

Standard Deviation  10.0 3.4 4.1   7.1 

Mean  
(PCL-R total score <= 20) 

36.0 4.4 9.6   15.3 

Standard Deviation 10.4 2.3 3.4   3.8 

Mean                                          
(20 < PCL-R total score < 30) 

33.7 7.4 14.6   24.4 

Standard Deviation 10.0 2.4 2.2   2.5 

Mean  
(PCL-R total score >= 30) 

32.9 11.4 17.3   32.4 

Standard Deviation 8.5 2.1 1.9   2.6 

Table 4: Psychopathy demographics and PCL-R scores 

Task 

This task implemented a block design, auditory oddball paradigm in which the 

auditory stimuli were presented to each participant over the course of two runs while 

undergoing the fMRI scan. Wearing headphones to shield from the noise of the scanner, 

each participant was presented with a series of pseudorandom auditory stimuli (tones). 

Participants were asked to respond only to target stimuli by pressing a single button of 

the MIND input device (http://www.mrn.org/mind-input-device/index.php), while 
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ignoring (no button press) the standard tones and novel, computer-generated tones. 

During a test scan, the volume was calibrated to ensure that all test subjects were able to 

hear the tones comfortably over the background noise of the actual scanner. 

Consequently, the volume of the tones varied depending on the subject's degree of 

hearing during the audio setup for the task, therefore minimizing any auditory signal 

differences among groups with different hearing capabilities.  

The auditory stimuli consisted of standard, target, and novel tones. In an auditory 

oddball paradigm, the standard stimuli are presented the most frequently, usually at a 

probability of about 80.0p . The pitch of these standard stimuli is typically about 1 

kHz. The target and novel stimuli are presented more infrequently, generally at a 

probability of 10.0p  each. The target stimuli tones are presented at a different pitch 

from the standard tones, typically at about 1.2 kHz, whereas the novel stimuli are 

complex, computer generated sounds that vary in pitch during a single presentation. In 

all, these tones are presented in pseudorandom order, each tone lasting for about 200 ms. 

Because of the pseudorandom order in which they are presented, the interstimulus 

interval between tones will range from 500 – 2100 ms each time, depending on the 

paradigm design. In this study, there were a total two sessions per subject. There were 

multiple runs of the paradigm during each scanning session, each run consisting of the 

same number of stimuli (usually 100~ ). To ensure that hemodynamic responses were not 

induced by the type of stimuli presented, the target and novel presentation sequences 

were exchanged between runs in this study to balance their presentation. Prior to 

execution of the task in the scanner, all subjects practiced performing this task to ensure 
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capability in completing it correctly. Participants unable to perform the task correctly 

were excluded from the study. 

 

Figure 10: Auditory oddball paradigm sample sequence - the three different stimuli are represented by 

different shapes and are unevenly-spaced to demonstrate the pseudorandom presentation  

Imaging Parameters 

Functional data were acquired at the remote site with EPI sequences on a Siemens 

1.5 Tesla (T) MR scanner. The imaging sequence parameters are as follow: TR = 

2000ms, TE = 29ms, FA = 65 degrees, FOV = 24x24cm, 6464 matrix, 3.4 by 3.4mm in 

plane resolution, slice thickness = 5mm, 27 slices. This sequence covers the entire brain 

(150mm) in 1.5 seconds. 

Data Analysis 

Preprocessing: FMRI data were preprocessed using the SPM5 software package. 

Images were motion-corrected using INRIalign – an algorithm unbiased by local signal 

changes (Freire and Mangin, 2001; Freire et al., 2002). Data were spatially normalized 

into the standard Montreal Neurological Institute space (Friston, 1995) and slightly sub-

sampled to 3×3×3 mm, resulting in 53×63×46 voxels. Next the data were spatially 

smoothed with a 10×10×10 mm full width at half-maximum Gaussian kernel. The 

resulting coordinates were converted to the Talairach and Tournoux standard space for 

anatomical mapping (Talairach and Tournoux, 1988). 

Independent Component Analysis 

Following the SPM5 preprocessing, a group ICA was performed on the 

preprocessed data (Calhoun et al., 2001b). The methods prescribed by these processes 

were organized in batch scripts and performed via the group ICA of fMRI (GIFT) Matlab 
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toolbox version 1.3c (http://icatb.sourceforge.net). FMRI time series data for all 

participants were first compressed through principal component analysis (PCA). There 

were three PCA data reduction stages which helped to reduce the impact of noise as well 

as to make the estimation computationally tractable (Calhoun et al., 2001b; Calhoun et 

al., 2009b; Schmithorst and Holland, 2004). The final dimensionality of the data from 

was estimated to be twenty-five maximally-independent components using the modified 

minimum description length (MDL) criteria tool built into GIFT (Li et al., 2007). The 

data reduction was followed by a group spatial ICA, performed on the participants’ 

aggregate data, resulting in the final estimation of our independent components. The 

algorithm used in this process was the infomax algorithm, which attempts to minimize 

the mutual information of network outputs (Bell and Sejnowski, 1995). 

From the group spatial ICA, we reconstructed spatial maps and their 

corresponding ICA time courses that represented both the spatial and temporal 

characteristics of each component, subject, and session. These characteristics are able to 

depict component and subject group variability existent in the data. In all, this resulted in 

5100 independent component spatial maps (102 subjects  2 sessions  25 independent 

components), each with an associated ICA time course of the data. These maps and time 

courses were then subjected to a second-level analysis to determine whether the resultant 

components were task-related or simply noise and/or artifacts.  

Statistical Analysis of Spatial Components: We averaged the spatial maps 

produced during the spatial ICA across the two sessions. The spatial maps were then 

converted to z-score maps and then entered into a second level one-sample t-test to 

identify voxels that contributed significantly to a given component for the group. Next, 
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these components were analyzed statistically and compared with group-specific 

thresholds to observe trends in task modulation among the subjects.  

Statistical Analysis of ICA Time Courses: We performed a temporal sorting of the 

ICA time courses using an SPM5 design matrix containing three regressors 

corresponding to the three auditory oddball stimuli (standards, targets, and novels). 

Temporal sorting is a method by which we compare the model’s time course with the 

ICA time course. Using a multiple linear regression sorting criteria, the concatenated ICA 

time courses were fit to the model time course. Upon completion of this step, components 

were then sorted according to the R-square statistic. This resulted in a set of beta weights 

for each regressor associated with a particular subject and independent component. The 

purpose of this temporal regression was to illustrate the significance of a particular 

component with respect to certain characteristics of the experiment that it represented. In 

other words, the value of the resulting beta weight directly indicated the degree to which 

the component was modulated by the task. From here, we calculated the event-related 

averages of the time courses for all components. Each plot of the event-related average 

depicts the level of task-related functional activity for that particular component over the 

course of the experimental period. 

Statistical Analyses 

For each independent component in this study, we performed a variety of analyses 

on the beta weights resulting from the ICA. These analyses included the mean and 

standard deviation of the beta weights, one and two-sample t-tests on the beta weights, 

spectral analyses of the time courses, and two sets of correlations – the first of the beta 

weights with PCL-R scores, and the second of the spectral analysis results with PCL-R 
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scores. We had initially intended on performing an analysis based solely on the 

comparison of the task-modulated differences between the set of subjects who scored 

“low” on the total PCL-R scale (PCL-R 20 ) and the set of subjects who scored “high” 

on the total PCL-R scale (PCL-R 30 ), using the correlations of the beta weights with 

the PCL-R scores to further support these results. However, because we were unable to 

find many significant differences between these groups with strong beta weight 

correlations with scores, we decided to include an analysis of the time course frequency 

spectra to see how those results correlated with the PCL-R scores. 

The mean and standard deviation for task modulation of the hemodynamic 

response were calculated for the entire set of subjects and for the score-related subject 

subgroups. Next, one and two-sample t-tests were performed on the beta values obtained 

for each component to observe any possible significant differences in modulation within 

and among the various participant groups. The one-sample t-tests provided information 

on the degree and direction of the task modulation for each subject group within 

particular brain regions, whereas the two-sample t-tests compared the differences in 

modulation between the low PCL-R group (those subjects with a PCL-R score 20 ) and 

the high PCL-R group (those subjects with a PCL-R score 30 . The two-sample t-tests 

allowed us the opportunity to compare differences in the degree to which certain brain 

regions exhibited a hemodynamic response to this task.  

The next step in the analysis of the fMRI data collected was to identify any 

potential correlations between the beta weights and PCL-R scores for both group ICA 

results. To complete this analysis, we conducted Pearson correlations for the 



53 

 

aforementioned groups. These comparisons were thresholded and corrected for multiple 

comparisons based on the false discovery rate (FDR). 

The final statistical analysis we performed was the spectral analysis of the time 

courses for all components. Spectral analysis employs the fast Fourier transform to 

estimate the component frequencies within a set of data. In this case, we estimated the 

frequencies based on the time courses for each of the components in this study. The 

resulting frequencies for each component in this analysis were output and separated into a 

set of six bins, which correspond to a histogram of the component’s frequency spectra. 

Using these results, we then performed a correlation between these spectra and the series 

of PCL-R scores (factor 1, factor 2, and total). 

FNC Analysis 

Taking the components that we considered to be of interest, we performed FNC 

analysis on these components to test for any possible temporal dependencies among 

them, as well as to explore the group differences PCL-R subgroups. FNC analysis using 

the maximal lagged correlation method was performed on these components using the 

FNC Matlab toolbox version 2.3beta (http://mialab.mrn.org/software/index.php).  These 

correlations were FDR corrected for multiple comparisons. 

 

RESULTS 

We performed a full statistical analysis on the group ICA results. Twenty-five 

independent components (ICs) were estimated through group ICA. Of these, four ICs 

exhibited notable trends in modulation and/or significant correlations with PCL-R scores. 

The ICs and their respective component numbers are: a default mode component (10), a 
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parietal component (14), a second default mode component (21), and a visual component 

(24) (see Figure 3). Additionally, ten estimated ICs were found for the paralimbic ICA 

results. A summary of the results observed are provided in the next section. 

Comparison of Task-related Time Courses  

From group ICA, we revealed that modulation in the default mode 1 region (IC 

10) was focused in the posterior, visual parietal brain region. We also discovered a 

second default mode (IC 21) that showed modulation focused in the anterior region of the 

brain. In addition to those ICs, the parietal (IC 14) and visual components (IC 24) showed 

task-related modulation trends that were deemed significant enough to continue with 

statistical analyses. However, only the visual component showed any significant 

differences between the low and high-scoring PCL-R subjects. Statistics on the one and 

two-sample t-test results on the beta weights are provided in the proceeding tables. 

Following these tables are figures illustrating the trends in modulation for the group ICA 

components of interest, along with their associated time courses. 
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T-tests 
Default 
Mode 1 

Parietal 
Default 
Mode 2 

Visual 

Component Number  10 14 21 24 

One-sample T-test         

PCLR <= 20         

Standard -3.50 -9.45 -4.85 -4.32 

Target -3.85 5.52 -9.25 5.41 

Novel -5.50 -3.56 -6.51 1.13 

20 < PCLR <30          

Standard -5.12 -9.41 -3.02 -4.70 

Target -5.90 1.70 -8.14 1.52 

Novel -6.54 -3.85 -7.94 -1.20 

PCLR >= 30         

Standard -0.62 -7.19 -2.63 -2.38 

Target -0.67 1.80 -4.61 0.85 

Novel -2.22 -3.96 -3.30 -0.82 

Two-sample T-test         

PCLR low vs. high         

Standard -1.40 0.08 0.21 -0.24 

Target -1.18 1.46 -1.07 1.99 

Novel -0.52 1.24 0.32 1.37 

Table 5: Results from the one and two-sample t-tests performed on the beta weights, broken down by  

PCL-R subject group 
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Default Mode 1 (IC 10) 

 

Parietal (IC 14) 

 

Default Mode 2 (IC 21) 

 

Visual (IC 24) 

Figure 11: Regions of auditory oddball task-modulation  
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Figure 12: Associated time courses for the significant components  

Correlations with PCL-R Scores 

In addition to the standard t-tests, we calculated correlations of the beta weights 

with the factor 1, factor 2, and total PCL-R scores to see if we could find any significant 

correlations with any of the PCL-R symptom factors and/or overall total PCL-R 

symptoms. From statistics calculated for the group ICA beta weight results, we found 

significant, negative correlations of the parietal and visual component beta weights with 

the total PCL-R scores. Additionally, we show significant correlations of the beta weights 

across all the components for the high-scoring PCL-R group with the factor 2 scores. 

Results of the correlations with factor 1, factor 2, and total PCL-R scores are given in the 

proceeding tables. 
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Correlations with PCL-R  
Total Scores 

Default 
Mode 1 

Parietal 
Default 
Mode 2 

Visual 

Component Number  10 14 21 24 

Correlations: PCLR <= 20  
        

Standard 0.07 -0.04 0.11 -0.05 

Target 0.15 -0.11 0.10 0.03 

Novel -0.07 -0.13 0.16 -0.32 

Correlations: 20 < PCLR < 30 
        

Standard -0.11 -0.23 -0.12 -0.19 

Target 0.31 0.17 -0.16 -0.13 

Novel -0.11 -0.25 -0.10 -0.15 

Correlations: PCLR >= 30  
        

Standard -0.16 -0.39 -0.28 -0.19 

Target 0.13 -0.11 -0.19 0.12 

Novel 0.22 -0.09 -0.04 -0.28 

Correlations: All Subjects  
        

Standard 0.01 -0.16 -0.07 -0.20 

Target 0.14 -0.21 0.12 -0.20 

Novel 0.01 -0.10 0.01 -0.13 

Table 6: Correlations of the beta weights with PCL-R total scores for the normal ICA 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

Correlations with  
Factor 1 Scores 

Default 
Mode 1 

Parietal 
Default 
Mode 2 

Visual 

Component Number 10 14 21 24 

Correlations: PCLR <= 20  
        

Standard -0.01 -0.18 -0.19 -0.07 

Target 0.05 -0.30 0.02 0.16 

Novel -0.28 -0.14 -0.04 0.00 

Correlations: 20 < PCLR < 30 
        

Standard -0.19 -0.08 -0.07 -0.24 

Target -0.04 -0.23 0.02 -0.14 

Novel 0.05 -0.10 -0.15 -0.15 

Correlations: PCLR >= 30  
        

Target 0.10 -0.45 0.54 -0.10 

Standard -0.11 -0.18 -0.19 -0.13 

Novel 0.25 -0.09 0.06 -0.12 

Correlations: All Subjects  
        

Standard -0.18 -0.08 -0.16 -0.25 

Target -0.05 -0.25 -0.07 -0.08 

Novel -0.08 -0.02 -0.11 -0.06 

Table 7: Correlations of the beta weights with PCL-R factor 1 scores 
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Correlations with  
Factor 2 Scores 

Default 
Mode 1 

Parietal 
Default 
Mode 2 

Visual 

Component Number 10 14 21 24 

Correlations: PCLR <= 20  
        

Standard -0.07 0.11 0.19 -0.08 

Target -0.16 0.22 0.21 -0.08 

Novel -0.26 0.08 -0.17 0.16 

Correlations: 20 < PCLR < 30 
        

Standard 0.00 0.26 0.08 0.14 

Target -0.16 0.16 -0.10 0.10 

Novel -0.06 0.27 0.09 0.09 

Correlations: PCLR >= 30  
        

Standard -0.22 0.28 -0.45 -0.01 

Target 0.26 -0.07 -0.01 0.53 

Novel -0.23 0.49 -0.24 0.25 

Correlations: All Subjects  
        

Standard -0.11 0.10 0.00 -0.13 

Target -0.12 0.03 -0.04 -0.08 

Novel -0.16 0.16 -0.10 0.10 

Table 8: Correlations of the beta weights with PCL-R factor 2 scores 

Analysis of Frequency Spectra 

To supplement the correlation results of the beta weights with the PCL-R scores, 

we calculated the frequency spectra of the time courses for all the components. The 

output of this spectral analysis is a histogram of all the components’ spectra, with six bins 

per component. We correlated this output with the PCL-R series of scores to get an idea 

of how the time course frequencies correlated with those scores. We found that the time 

course frequency spectra for the default mode 2 component correlated the strongest with 

all these scores, with the default mode 1 component not too far behind. The results of 

these correlations are displayed in the following table. 
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Correlations for 
Spectral Frequencies 
with PCL-R Scores 

Default 
Mode 1 

Parietal 
Default 
Mode 2 

Visual 

Component Number 10 14 21 24 

Factor 1 0.70 0.50 0.88 0.45 

Factor 2 0.61 0.62 0.97 0.53 

Total Scores 0.69 0.55 0.93 0.46 

Table 9: Correlations of the time course frequency spectra with the factor 1, factor 2, and total PCL-R 

scores 

FNC Analysis Results 

FNC analysis revealed several significant associations among the component time 

courses, as shown in Figure 14. Within both the low and high PCL-R subgroups we 

detected significant correlations among the time courses for all the components. 

However, the significance in the association between the visual component and the 

anterior default mode component disappears in the high PCL-R group. Analysis also 

revealed a difference between the two subgroups in the direction of the correlational 

association between the visual component and the posterior default mode component. No 

significant differences between the low PCL-R subjects and the high PCL-R subjects 

were detected. 
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Figure 13: FNC results for low PCL-R subjects (left) and high PCL-R subjects (right) 

 

DISCUSSION 

Based on the results of these analyses, we found that group ICA was able to 

successfully detect trends of task-related modulation induced by the auditory oddball task 

in psychopathy subjects. Of particular significance were the results of the two-sample t-

test within the visual component for the target stimulus presentation, as well as the 

correlations of the beta weights with the PCL-R total scores for the parietal and visual 

components. Additionally, we found significant correlations for the beta weights of the 

high-PCL-R scoring subjects with the factor 2 scores across all the components. Because 

factor 2 has the more severe, criminal characteristics of the total PCL-R list, this may 

indicate a relationship between aberrant modulation within these regions and criminal 

behavior.  

To further supplement and support this information, we continued to perform an 

analysis on the frequency spectra of the time courses for the significant components 
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indicated. The results of these correlations showed relatively high significance. This 

investigation is still in the process of interpretation of the statistical results. 

We were successful in detecting significant correlations among the time courses 

of the components of interest for both the low and high PCL-R subject groups. The 

disappearance of the significance in the association in modulation between the visual and 

anterior default mode components in the high PCL-R subjects may indicate a dysfunction 

in the functional integration of those networks in psychopathy subjects. The difference in 

the direction of the correlation between the visual component and the posterior default 

mode component may also indicate a functional network difference between healthy 

populations and psychopathy subjects. We were unable to detect group differences 

between low-scoring and high-scoring PCL-R subjects in the temporal dependencies 

among the implicated components. This may have been caused by a variety of factors, 

including the task design paradigm used during the scan. However, the methods 

implemented in this study show a potential for the successful analysis of fMRI data 

collected from psychopathy subjects, upon which concrete and viable results may be 

discovered. 
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CHAPTER 5 – CONCLUSION AND FUTURE WORK 

CONCLUSION 

In this thesis, we described the widespread problem of mental disorders and the 

necessity for innovative medical imaging techniques to deconstruct the possible neural 

correlates involved in those disorders. We posed the fMRI image analysis methods of 

group ICA and FNC analysis as novel and efficient methods of investigating the 

functional connectivity and functional network connectivity of brain networks implicated 

in various psychopathologies.  

We implemented these image analysis techniques on two large-scale and distinct 

psychopathology studies (schizophrenia and psychopathy) to demonstrate the capabilities 

of each method in not only detecting several, distinct task-modulated networks exhibiting 

a significant hemodynamic response to very different tasks, but also in revealing potential 

temporal dependencies among those network components. FNC analysis revealed 

significant dependencies in the temporal relationships among distinct brain regions for 

both the schizophrenia and psychopathy studies, as well as group differences between 

patient and control groups in the schizophrenia study. A major advantage to the 

implementation of group ICA and FNC analysis together is that FNC analysis does not 

require any additional or extraneous brain imaging data collection other than what has 

already been collected. This technique is merely an additional analysis step that simply 

takes the components estimated through group ICA as its input. FNC analysis is the next 

logical step in solidifying the versatility and usefulness of group ICA in both functional 

connectivity and functional network connectivity research. Used together, these image 

analysis methods provide an additional dimension of knowledge on the functional 
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mechanisms of the brain, with the potential to reveal deficits in the functional networks 

of those afflicted by a mental disorder. It has practicality and general applicability in the 

fields of functional connectivity and functional network connectivity. 

 

FUTURE RESEARCH TOPICS 

Though group ICA has been implemented extensively in the field of functional 

connectivity with very solid and consistent results, the field of functional network 

connectivity is still relatively new and widely unexplored. This thesis focused on the 

method of FNC analysis that calculated the maximal lagged correlation between pair-

wise combinations of components and provided information on the latency differences 

between those networks. However, this method is merely a look at the correlational 

trends between network activations and does not necessarily imply hemodynamic 

causation among the components being compared. Other methods of FNC analysis, such 

as Granger causality, are currently being developed and investigated to address the issue 

of causality in the hemodynamic responses among networks. Future development of this 

method of FNC analysis, along with other as yet undiscovered algorithms, is vital in the 

future FNC analysis as a reliable, analytical technique for the detection of causal 

relationships among the functional networks within the brain.  
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