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Abstract 
This dissertation focuses on the development of high-quality image reconstruction 

methods from a limited number of Fourier samples using optimized, stochastic and 

deterministic sampling geometries. Two methodologies are developed: an optimal 

image reconstruction framework based on Compressive Sensing (CS) techniques and 

a new, Spectral Statistical approach based on the use of isotropic models over a 

dyadic partitioning of the spectrum. The proposed methods are demonstrated in 

applications in reconstructing fMRI and remote sensing imagery. 

Typically, a reduction in MRI image acquisition time is achieved by sampling 

K-space at a rate below the Nyquist rate.  Various methods using correlation between 

samples, sample averaging, and more recently, Compressive Sensing, are employed 
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to mitigate the aliasing effects of under-sampled Fourier data.  The proposed solution 

utilizes an additional layer of optimization to enhance the performance of a 

previously published CS reconstruction algorithm.  

Specifically, the new framework provides reconstructions of a desired image 

quality by jointly optimizing for the optimal K-space sampling geometry and CS 

model parameters.  The effectiveness of each geometry is evaluated based on the 

required number of FFT samples that are available for image reconstructions of 

sufficient quality. A central result of this approach is that the fastest geometry, the 

spiral low-pass geometry has also provided the best (optimized) CS reconstructions. 

This geometry provided significantly better reconstructions than the stochastic 

sampling geometries recommended in the literature. An optimization framework for 

selecting appropriate CS model reconstruction parameters is also provided. Here, the 

term “appropriate CS parameters” is meant to infer that the estimated parameter 

ranges can provide some guarantee for a minimum level of image reconstruction 

performance.  Utilizing the simplex search algorithm, the optimal TV-norm and 

Wavelet transform penalties are calculated for the CS reconstruction objective 

function.  Collecting the functional evaluation values of the simplex search over a 

large data set allows for a range of objective function weighting parameters to be 

defined for the sampling geometries that were found to be effective. The results 

indicate that the CS parameter optimization framework is significant in that it can 

provide for large improvements over the standard use of non-optimized approaches. 

 The dissertation also develops the use of a new Spectral Statistical approach 

for spectral reconstruction of remote sensing imagery.  The motivation for pursuing 
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this research includes potential applications that include, but are not limited to, the 

development of better image compression schemas based on a limited number of 

spectral coefficients.  In addition, other applications include the use of spectral 

interpolation methods for remote sensing systems that directly sample the Fourier 

domain optically or electromagnetically, which may suffer from missing or degraded 

samples beyond and/or within the focal plane.   

For these applications, a new spectral statistical methodology is proposed that 

reconstructs spectral data from uniformly spaced samples over a dyadic partition of 

the spectrum. Unlike the CS approach that solves for the 2D FFT coefficients 

directly, the statistical approach uses separate models for the magnitude and phase, 

allowing for separate control of the reconstruction quality of each one. A scalable 

solution that partitions the spectral domain into blocks of varying size allows for the 

determination of the appropriate covariance models of the magnitude and phase 

spectra bounded by the blocks.  The individual spectral models are then applied to 

solving for the optimal linear estimate, which is referred to in literature as Kriging.  

  The use of spectral data transformations are also presented as a means for 

producing data that is better suited for statistical modeling and variogram estimation. 

A logarithmic transformation is applied to the magnitude spectra, as it has been 

shown to impart intrinsic stationarity over localized, bounded regions of the spectra.  

Phase spectra resulting from the 2D FFT can be best described as being uniformly 

distributed over the interval of π− toπ .  In this original state, the spectral samples 

fail to produce appropriate spectral statistical models that exhibit inter-sample 

covariance.  For phase spectra modeling, an unwrapping step is required to ensure 
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that individual blocks can be effectively modeled using appropriate variogram 

models. The transformed magnitude and unwrapped phase spectra result in unique 

statistical models that are optimal over individual frequency blocks, which produce 

accurate spectral reconstructions that account for localized variability in the spectral 

domain.   

 The Kriging spectral estimates are shown to produce higher quality magnitude 

and phase spectra reconstructions than the cubic spline, nearest neighbor, and bilinear 

interpolators that are widely used. Even when model assumptions, such as isotropy, 

violate the spectral data being modeled, excellent reconstructions are still obtained.  

Finally, both of the spectral estimation methods developed in this dissertation are 

compared against one another, revealing how each one of the methods developed here 

is appropriate for different classes of images.    For satellite images that contain a 

large amount of detail, the new spectral statistical approach, reconstructing the 

spectrum much faster, from a fraction of the original high frequency content, 

provided significantly better reconstructions than the best reconstructions from the 

optimized CS geometries.  This result is supported not only by comparing image 

quality metrics, but also by visual assessment. 
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Chapter 1 

Introduction 

1.1  Motivation 

The 2D Discrete Fourier Transform (DFT) from discrete time signals has been 

used ubiquitously over the past forty years.  The relationship between the spatial 

image and its spectral representation is utilized in various image processing 

techniques, including image filtering, image denoising, and image restoration.   

 

It is important to recognize that the 2D FFT is just one of many possible 

discrete frequency sampling geometries of the continuous, periodic 2D Fourier 

representation of discretely sampled images. A central point in this dissertation is 

that we want to explore different Fourier-domain sampling geometries and 

explore if they can result in high-quality image reconstructions. We constrain our 

sampling geometries to subsets of the 2D FFT frequency samples to allow for 

both efficient sampling and fast reconstructions. 

 

In certain applications, data is directly sampled in the frequency domain, 

and the Fourier transform allows the data to be represented in a way that we can 

visually understand.  Examples of such applications include MRI and CT 

scanning in medicine; and radio telescopes and, more recently, synthetic aperture 
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radar (SAR) in remote sensing.  Often times such systems operate under 

constraints where the spectral data is partially collected, resulting in an image of 

reduced quality.  In such cases, a mechanism for spectral estimation over the 

missing frequencies (interpolation or extrapolation) would be useful to enhance 

the final image. 

  

There are a number of specific open problems that have not been 

addressed in the image processing community pertaining to task of spectral 

estimation.  For instance, fast MRI data acquisition based on limited K-space 

samples and subsequent high fidelity image reconstructions.  Another problem 

which has been explored extensively is the development of better image 

compression schemas based on entropy encoding a limited number of spectral 

coefficients.  Optical and radio frequency imaging systems often suffer from 

missing or degraded Fourier samples beyond and/or within the focal plane, and 

spectral estimation often seeks to mitigate the detrimental effects that are 

manifested in the image domain.   

  

In the following work, we seek to address the above problems.  

Specifically, for a fast MRI acquisitions, we present an a solution that utilizes 

compressive sensing theory to find the optimal Fourier sampling geometries that 

are associated with fixed CS model parameter ranges that guarantee levels of 

image reconstruction quality. The same methodology can be extended to other 

image acquisition problems, provided that the data are collected in the Frequency 
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domain.  To address spectral image compression and restoration approaches, new 

statistical models are explored for modeling the discrete Fourier spectra of 

different types of satellite images. Our approach is to explore statistical models 

that lead to fast and optimal interpolation methods that can be used to reconstruct 

the spectra from limited numbers of samples.  These novel approaches provide a 

general framework that is extendable beyond the applications explored here; 

namely partial fMRI K-space acquisition and reconstruction and satellite image 

reconstruction from reduced magnitude and phase spectra samples. 

 

This dissertation presents two different methods that share the same 

motivation – to reconstruct digital images from limited frequency domain samples 

using both deterministic and statistical models of the discrete Fourier spectra.  

The first approach uses compressive sensing (CS) theory and numerical 

optimization to find the best solution to the spectral reconstruction problem for a 

given convex system of equations over any arbitrary sampling geometry.  The 

second approach is based on a new framework that applies geostatistical theory to 

the discrete Fourier domain and uses the optimal linear estimator, referred to as 

Kriging, to reconstruct uniformly sampled magnitude and phase spectra. 

 

1.2.  Thesis Statement 

The spectral models and techniques developed in this dissertation seek to achieve 

the best image reconstructions from data that is partially sampled in the Fourier 

domain.  To accomplish this I present extensions of two relatively new 
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mathematical theories.  In reverse chronological order, the first is based on 

compressive sensing, which has recently (since 2004) found much popularity in 

the field of digital signal processing, and especially in image processing.  The 

second is based on statistical models for spatial data, which was formalized from 

geostatistics in 1993.   

  

 Since these disciplines are relatively new, I seek to both enhance and 

extend their application to specific problems in medical imaging and remote 

sensing.  In the case of CS, where I propose to find the optimal partial K-space 

sampling geometry for fMRI reconstructions, enhancing prior work that has 

shown improved images are obtained by solving specifically designed CS 

optimization problems.   The solution adds a layer of optimization on top of the 

CS objective function that seeks deterministic cost function weights that 

maximize the reconstructed image quality.  

  

 The second half of this dissertation claims to be the first extensive 

application of spatial statistics for the discrete Fourier space.  Here, I extend 

concepts developed for describing spatial covariance to the Fourier domain. I 

found that appropriate statistical models can be developed for a dyadic partition of 

the Fourier spectrum. Here, unlike the CS models that model the 2D FFT complex 

coefficients, I investigate independent models for the magnitude and phase. This 

is an important distinction because it allows one to develop scalable models that 

can be adjusted for providing independent quality control for the magnitude and 
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phase. Here, as I will demonstrate in the results, optimal model fitting produces 

high quality reconstructions for the magnitude and lower quality for the phase. 

Furthermore, appropriate spatial statistical models are only possible because of 

the dyadic partitioning of the spectrum and after applying the logarithm to the 

magnitude spectrum and performing phase unwrapping. As I discuss in the 

results, there are significant statistical variations over different parts of the Fourier 

spectrum. The proposed approach provides localized spectral covariance 

modeling and optimal estimation using Kriging for a variety of types of images. 

Here, I consider various satellite imagery specifically selected to represent one of 

three commonly encountered scene types: rural, urban, and natural. 

  

 Both of the methods presented in this dissertation result in image 

reconstructions with significant image quality improvement over comparable 

methods that do not utilize the proposed methods. 

 

1.3.  Innovations and Contributions 

A summary of innovations and contributions in this dissertation are listed below: 

• Development of an optimization framework that can provide, prior to MRI 

scanning, appropriate CS model parameter weights for guaranteeing the 

quality of the reconstructed images.  

• Design of a collection of functional MRI (fMRI) partial K-space sampling 

geometries that can be described as either (i) sampling in such a way that 

sampling time is reduced as much as possible and (ii) sampling in such a 
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way to adhere to the requirement of sample to transform basis incoherence 

laid forth in CS theory. 

• Using the previously mentioned optimized CS framework, the 

development of a catalog of sampling geometries that are optimized for 

fast data acquisition and from which the resulting partial K-space samples 

can be reconstructed from a range of determined reconstruction weights 

that for the majority (> 75%) of the fMRI scans are guaranteed to produce 

a certain level of reconstruction quality. 

• Development of a Matlab framework for importing spectral image 

components into the R statistical software suite. This allows for the 

utilization of extensive geostatistical packages to perform variogram 

estimation and Kriging steps in a compiled, run-time environment. 

• Development of statistical models describing the spectral covariance that 

are used in Kriging interpolation of discrete magnitude and phase samples 

obtained by the 2D FFT applied to satellite imagery of various scene types 

(rural, urban, and natural). 

• Development of various spectral covariance models for unwrapped 2D 

phase spectra, as wrapped phase values, which are constrained between 

( ]ππ ,− , do not exhibit spectral covariance.   

• Development of a scalable partitioning of the discrete Fourier spectrum 

that is dyadic, which allows for the following statistical applications to be 

explored: 
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1. The excellent approximation of the Fourier magnitude spectrum 

over a localized, intrinsically stationary random field over a 

bounded domain from non-stationary data samples, by the 

application of the logarithm operator. 

2. The verification of the appropriateness of an isotropic covariance 

model of the Fourier magnitude spectrum over medium spectral 

regions. Here, we recognize that the medium spectral blocks 

contain more energy and it is very encouraging to confirm that we 

can provide accurate fits using isotropic statistical models that also 

provide for very fast and optimized (Kriging) reconstructions. 

3. Explore a scalable approach by assigning different sample rates to 

high frequency, medium frequency, and low frequency regions of 

the Fourier domain. 

• Development of spectral sampling geometries based on the above 

partitioning that allow for fast interpolation of any spectral component at 

any spectral frequency. 

• Development of an adaptive model selection procedure that ensures each 

spectral block generated by spectral portioning and the associated 

removed samples are interpolated in a way that high quality spatial image 

reconstructions are achieved for a variety of image types and sizes. 

 
1.4.  Overview of the dissertation 
The dissertation is organized into the following chapters: 
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• Chapter 2 presents a brief background on partial K-space sampling and 

reconstructions, focusing primarily on fast partial K-space sampling 

geometries and the use of CS for partial K-space reconstruction.  This is 

followed by a theoretical description of the CS objective function we 

optimized and presents the steps required for calculating the optimal 

weight parameters using the Nelder-Mead simplex search algorithm.  We 

present four specifically engineered sampling geometries of which two are 

designed to quickly sample the partial K-space domain by restricting 

samples in the phase encoded dimension in a deterministic fashion.  The 

other two sampling geometries incorporate a degree of randomness to 

ensure meet the theoretical requirements stated in CS theory.  The results 

of the parameter search process are then used to determine the optimal 

range of parameters that can be used to achieve desired reconstruction 

PSNR values of individual fMRI image slices for each sampling geometry 

class.  These results are compared to zero-filling the partial K-space 

defined by the sampling geometries. 

 
• Chapter 3 presents the development of statistical interpolation models of 

magnitude and phase for the Fourier spectra reconstruction of satellite 

imagery.  Again, a brief literature review is presented that describes the 

use of geostatistics in remote sensing applications.  Particular attention is 

paid to studies that have used Kriging for spatial image (pixel domain) 

interpolation.  This review is followed by a description of the data set that 

was obtained from various public sources.  The development of a spectral 

8 



 

statistical approach is described, in which the need for partitioning the 

Fourier spectrum is presented, as well as magnitude and phase spectra 

transformations using the logarithm and phase unwrapping algorithms, 

respectively.  Optimal interpolation using ordinary Kriging is then 

presented, followed with a description of the spectral sampling methods, 

considerations for estimating and fitting the proper variogram model to 

individual spectral blocks, and the optimization of selecting the proper 

number of known samples for Kriging.  The description of the above 

methods is followed by a series of related results and a comparison the 

Kriging interpolated magnitude spectra to other commonly used 2D 

interpolation algorithms.  The phase spectra reconstructions using the 

various phase unwrapping methods are compared to determine which 

method is best suited for simple Kriging. 

 
• Chapter 4 presents a comparison of spatial image reconstructions using 

Kriging and the optimal CS procedure from Chapter 2.  First, a brief 

description of the structural similarity index is presented, which is used to 

quantify the quality of the reconstructed image, along with the PSNR.  

This is followed by a comparison of image reconstructions using the 

magnitude and phase spectra sample rates first presented in Chapter 3.  

This is followed by the comparison of both spectral data estimation 

methods.  A sub image data set is selected to allow for the comparison of 

CS and Kriging to be made without additional preprocessing required by 

transform constraints in the CS procedure.  Care is taken to ensure the 
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• Chapter 5 summarizes the work described in this dissertation and 

discusses the conclusions inferred from this dissertation.  A list of 

extensions of what is presented in this dissertation is formalized and 

presented as future work. 
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Chapter 2 

Optimal Compressed Sensing 

Reconstructions of fMRI using 

Deterministic and Stochastic 

Sampling Geometries 

 

2.1.  Introduction  

Using compressed sensing (CS), we can recover certain signals and images 

exactly from limited numbers of Frequency domain samples. In theory, to 

reconstruct images from a limited number of samples, we require that the signal 

exhibits sparsity and the sensing modality exhibits incoherence. For one-

dimensional signals, when these conditions are met, the sampling rate can be 

reduced to  where N denotes the Nyquist rate [1]. ( )Nlog

 

When the required conditions are met, perfect reconstruction is possible 

from a limited number of samples. For example, for piecewise constant signals, 

very impressive results have been obtained from a very limited number of Fourier 

samples.  Figure 2.1 contains the popular example where the Shepp-Logan 
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phantom is exactly reconstructed from the Fourier coefficients along 22 radial 

sampling lines, which equates to a sampling rate almost 50 times smaller than the 

Nyquist rate [1]. 

 

  
(b) (a) 

 

 
(c) 

 
(d) 

 
Figure 2.1: Example of a simple CS reconstruction problem.  (a) The Logan-Shepp phantom test 

image.  (b) The sampling geometry from which Fourier coefficients are sampled along 22 

approximately radial lines.  (c) The zero-filling result, where non-sampled coefficients are set to 

zero and an inverse Fourier transformation is applied. (d) Reconstruction obtained using CS 

methods.  The reconstruction is an exact replica of the image in (a). 
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Unfortunately, such idealized models may not necessarily fit more complex, non-

piecewise smooth images, such as standard MRI images [2].  To help appreciate 

the problem, we present a typical fMRI slice image in Figure 2.2. Figure 2.2 

depicts an fMRI data set, containing a brain slice of a patient “at rest” and the 

same patient while performing a prescribed task or activity. The K-space data is 

also depicted, revealing the energy in K-space being concentrated around the 

center of K-space. 

 

In what follows, we will extend the reconstruction paradigm first 

developed in [3] by exploring more general sampling geometries that take into 

consideration MRI scanner acquisition time instead of complying with the 

conventional compressive sensing requirements that require the use of random, 

radial, or other more complicated sampling geometries (such as those presented in 

[4]) that incur a longer acquisition time.  Because our focus is on low acquisition 

times, we explore an optimization process that solves for the compressive sensing 

objective function parameters that maximize the PSNR obtained by fast, yet 

somewhat, non-traditional CS sampling geometries. 

 

Acquisition time is a function of both the number of Frequency-domain 

samples as well as the required scanner motion from sample to sample. In other 

words, the Frequency-domain scanning order is very important in determining the 

actual image acquisition times. In particular, the fastest reconstructions can be 

obtained by scanning using a spiral sampling geometry [5]. 
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(a) 

 
(b) 

 

  
(c) (d) 

Figure 2.2: MRI image slices with the corresponding Fourier magnitude Spectra. Here, we 

approximate the Fourier magnitude spectra using a 2D FFT. (a) At rest (OFF) brain slice. (b) 

Active (ON) brain slice. (c) Log-magnitude 2D FFT of (a). (d) Log-magnitude 2D FFT plot of (d). 

On the other hand, to satisfy theoretical Compressive Sensing 

requirements, we are led to consider random sampling geometries. In addition to 

these two, we also consider a sampling geometry that restricts the number of 

phase encoded samples, as they require greater acquisition time than the 

frequency encoded samples.   Our solution for such a sampling geometry was to 
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down-sample along the phase encoded dimension at dyadic intervals in the outer 

parts of K-space. 

 

To compare different sampling geometries, we also want to optimize for 

the best reconstructed image quality. As we shall describe in this chapter, 

parameter optimization for the Compressive Sensing formulation can have a 

dramatic impact on the reconstruction. We investigate the estimation of optimal 

parameter regions that can provide high quality reconstructions over 75% of the 

MRI images. We also investigate the relative impact of each parameter and the 

regularity of the optimal region. Therefore, we provide an optimization 

framework to help determine scanning parameters and scanning geometries that 

should work for the majority of the cases. 

 

Here, we note the conflicting goals. Clearly, the best reconstructions will 

require the largest number of Frequency domain samples. Thus, we are interested 

in determining the minimum acceptable quality that also yields acceptable 

reconstruction with the minimum number of required Frequency-domain samples. 

To this end, we determine effective PSNR ranges and associate them with 

different image reconstruction qualities. 

 

We limit our study to optimizing for the best MRI image reconstructions 

without solving for activity detection. We thus avoid issues of activity artifact 

removal and activity detection optimization. We refer to the body of work 
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described in [6-13], which utilize a wide variety of signal detection, correlation 

analysis, and statistical tests to infer brain activity in fMRI difference images.  

In this chapter, we present literature review of partial K-space reconstruction 

using CS and traditional methods, noting the restrictions imparted upon K-space 

by the described methods.  We will then provide a theoretical description and 

motivation of the algorithms used in this study.  A detailed description of our 

method of identifying the optimal range of CS reconstruction parameters is 

provided in Chapter 2.4, followed by a summary of our results.  We close this 

chapter with a discussion of the results, and a conclusion that briefly reviews the 

key concepts and notable results developed and presented here. 

 

2.2.  Literature Review 

As mentioned earlier, one key component of the CS framework for MRI is the 

exploitation of the transform sparsity of MRI images.  Transform sparsity refers 

to objects that are being recovered that have a sparse representation in a known 

and fixed mathematical transform domain.  Medical images of complex 

physiological structures may not be sparse in the spatial (pixel) domain, but they 

do exhibit transform sparsity in certain domains (Fourier and Wavelet being two 

examples).  The second requirement imposed by CS theory states that the reduced 

K-space samples must result in incoherent artifacts in the chosen transform 

domain. This incoherence requirement is dependent upon on how K-space is 

sampled. Intuitively, completely random sampling within K-space would produce 

high incoherence of artifacts in the transform domain. 
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CS methods have been developed that resulted in improved spatial 

resolution from reduced K-space sampling, and encompass the fourth class of 

partial K-space reconstruction techniques.  The work presented here falls into this 

category of partial K-space reconstruction methods, and is closely related to that 

of Lusting, Donoho, and Pauley [14].  Lustig et al. also provide a general 

framework for K-space sampling and reconstruction using CS theory [4].  While 

the sampling geometries presented here are designed to maximize the CS criteria, 

random and pseudo-random sampling of K-space would result in slower 

acquisition due to scanner programming constraints.  We intend to support the use 

of deterministic sampling geometries that result in faster acquisitions, at the 

expense of incoherence.  The studies listed below all incorporate a type of random 

sampling in an attempt to satisfy the incoherence requirement set forth in the CS 

theory. 

 

Most of the subsequent literature on CS applications to MRI imaging 

explores the merging of CS theory and other fast MRI acquisition techniques, 

unique K-space sampling methods, and novel reconstruction algorithms.  Gamper, 

Boesiger, and Kozerke meet the sparsity condition of CS theory by applying the 

Fourier transformation along the temporal dimension while assuming that the only 

parts of the filed-of-view change at a high temporal rate while other parts remain 

stationary or change slowly.  Their methods show the effectiveness of CS 

reconstruction for accelerated dynamic (continuous sampling) MRI reconstruction 

by comparing them to k-t BLAST reconstructions over the same data sets [15].  
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Their sampling scheme can be described as randomly skipping phase-encoding 

lines in each dynamic frame.  Jung et al. developed k-t FOCUSS to provide a 

general framework beyond k-t SENSE and k-t BLAST for model-based dynamic 

MRI by applying CS theory to randomly sampled reconstruction of the prediction 

and residual encoding that are significantly sparse [16].   

 

Recent studies have focused on extending the work in [14] to non-Fourier 

bases. Haldar, Hernando, and Liang use selective RF pulses to better satisfy the 

incoherence requirement of CS theory [17].  Liu, Zou, and Ling apply CS theory 

to parallel reconstruction using sensitivity encoding.  Their extension of SENSE 

to CS is based upon a reconstruction method using Berman iteration [18].  

Trzakso, Manduca, and Borisch present a CS method that minimizes the L-0 

semi-norm using  re-descending M-estimator functions instead of L-1 norms 

typically found in CS literature [19].  The extension of the sparsity measure to 

multi-scale form allows for rapid reconstructions compared to the non-trivial 

solutions described in [14-19].  Jeromin, Calhoun, and Pattichis have shown that 

additional constraints in the non-linear reconstruction step of CS methods can be 

optimized so that reconstructions using deterministic sampling trajectories 

perform better reconstruction (in terms of PSNR) than random sampling on fMRI 

data collections [3].   

 

Many non-CS methods have been developed to help preserve image 

quality when the number of K-space samples violates the Nyquist criterion.  One 
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class of such methods can be described as attempting to seek incoherence in the 

artifact responses, which would make them less noticeable in the spatial (image) 

domain.  Typically, such approaches come at the expense of a lower signal to 

noise ratio (SNR).  One such method, presented by Marseille et al., utilizes non-

uniform down sampling in the phase-encoding dimension of K-space and 

performs Bayesian reconstruction and edge preserving filters to reduce ringing 

artifacts in the interpolated image [20].  Wajer et al present an iterative Bayesian 

image reconstruction technique on sparsely, non-uniformly sampled K-space data.  

For the 2-D case, a spiral sampling geometry is used, resulting in significant 

acceleration to the maximum a-posteriori reconstructed image by weighting the 

likelihood term with the inverse of the sampling density [21].  Circular field-of-

view imaging techniques were shown to reduce reconstruction artifacts when 

polar K-space sampling is under sampled to increase temporal and spatial 

resolution [22].  Tsai and Nishimura propose a variable-density K-space sampling 

method to reduce aliasing artifacts.  The premise of their work is that 

downsampling the outer regions of K-space, where little energy is contained 

compared to the center of K-space, will result in less low-frequency aliasing 

artifacts [23].  Most methods purposefully retain the central region of K-space 

intact, as image reconstruction is improved with its inclusion over high-frequency 

K-space spectra. 

 

Methods that exploit the spatial and/or temporal redundancy of K-space 

data provide a way of describing another class of partial K-space reconstructions. 
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A recent study by Lindquist et al. describes methods for obtaining a 3-D echo-

volumar fMRI imaging sequence by sampling the small central portion of K-

space at a high temporal rate [5].  The sampling trajectory is sampled successively 

across temporal samples instead of successively over each temporal slice, and is 

constrained to a spiral pattern. Other temporal MRI processing techniques can be 

found in [24, 25, 26, 27, 28]. 

 

2.3.  Theoretical Background 

2.3.1.  Compressed Sensing Image Reconstruction Framework 

Most applications of CS theory are based upon the seminal works of Candès and 

Donoho [29, 30].  This subsection will describe the CS techniques used to 

reconstruct fMRI images containing  pixels from  samples of K-space, where 

.  The need for sparsity and incoherence will be first discussed, followed 

by the motive for the reconstruction techniques employed herein.   A signal can 

be thought of as sparse if the number of samples that contain information are 

much less than the samples that contain little information.  In some unique cases, 

an image is “naturally” sparse, meaning that the number of non-zero pixels in the 

image is small compared to the image size.  Since this is not the typical case, CS 

image reconstruction utilizes transform sparsity. 

n m

nm <<

  

To provide a summary of the basic ideas, we begin with the input image 

expanded in terms of Wavelet basis functions as given by  
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where the input image  is expanded in terms of a finite number of wavelet basis 

functions given by 

f

[ ]21 nψψψ K=Ψ  and x is the vector of transform coefficients. 

Here, the transformation matrix is given by Ψ . Using this matrix notation  can 

be expressed as .  Next, we let  denote the reconstructed image using signal 

samples that have been transformed by a subset of coefficients  containing S 

“large” coefficients. Such a basis is referred to as being S-sparse. The 

orthonormality of Ψ allows implies that: 

f

Ψ sfx

sx

22 ll ss xxff −=− .                                   (2) 

If the sorted magnitudes of x  decay quickly then x  can be approximated well by 

, resulting in the error sx
2lsff − being small.  One can infer that the remaining 

S-n coefficients can be discarded and an acceptable reconstruction via the basis 

transformation is possible. 

 

Incoherence, in the light of CS theory, can be defined as the least amount 

of correlation between the sensing basis (in this case, the K-space/Fourier 

samples) , and the transform basis functions Φ Ψ .  The incoherence between 

bases can be measured using 

( ) jknjk
n ψϕμ ,max,

;1 ≤≤
⋅=ΨΦ .                  (3) 

It is clear that from (3) if Φ  and Ψ  are highly correlated, the sensing coherence 

is large.  The metric in (3) is used in the determination of the m, the number of 
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sparse measurements required for optimal reconstruction within the context of 

CS. The review of CS theory in [31] provides a concise description of various 

signal/basis pairs that have high incoherence.  

  

The work in [1], which includes a discussion on the lower theoretical 

bounds of m in light of incoherence and sparsity, concludes that if the transform 

coefficients x  of  in the basis f Ψ is S-sparse, then the number of measurements 

samples in Φ  must be such that 

nSCm log),(2 ⋅⋅ΨΦ⋅≥ μ               (4) 

for some constant .   0>C

 

The publications which first presented CS signal recovery move on from 

establishing and proving the sparsity and incoherence requirements for exact 

signal recovery to the use of  minimization.  The reconstruction method 

typically employed in CS image reconstruction uses  where  is the 

solution to the convex optimization problem 

1l

xf ˆˆ Ψ= x̂

1
min

l
x

x
                                           (5) 

such that 

.)(
2

ε≤−Ψℑ
l

yx  

where  denotes the Fourier transform sampling operator, y contains the 

measured Fourier samples, 

ℑ

ε  is a nominal (low) value to ensure the transformed 

data using the x  coefficients are consistent with the observed image samples.  
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Many solutions to (5) have been developed over the past few years, and those 

specific to MRI image reconstruction from sparse K-space sampling have already 

been summarized in Section 2.2. 

  

The addition of a total variation term to the objective function of  norm 

minimization problem (4) has been shown to improve MRI image reconstruction 

[14].  Here, the total variation of a signal can be thought of as a finite-difference 

approximation to the gradient and is well suited for data recovery when the 

primary tenets of CS theory (incoherence between sparsely sampled data) are met 

[1].  The total variation norm (TV Norm) is defined as 

1l

∑ +=
yx

yxmDyxmDXTV
,

2
2

2
1 ),(),()(      (6) 

where ,  denote finite differences 

along each dimension. TV Norm minimization is the key component to the 

problem of recovering data from a sparse basis.  The TV Norm is an excellent 

candidate for reconstructing piece-wise constant signals, but tends to over-smooth 

the resulting pixel data.  It is well documented in [1] as the objective function 

being minimized to provide a solution for the reconstruction of an under-sampled 

Fourier spectrum of the Shepp-Logan phantom image (refer back to Figure 2.1). 

),1(),(1 yxmyxmmD −−= )1,(),(2 −−= yxmyxmmD

 

When considering sparse image reconstruction of data that is not piece-

wise constant, the TV-Norm tends to lack the ability to pick up regions of smooth 

gradients. We follow [14, 32] and include a TV penalty on the objective function 
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in (5) to counter the effects of the  term.   Thus, our objective function 

becomes 

2l

( )xx
x

Ψ+ TVmin
1

αβ
l                                (7) 

such that 
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2

ε≤−Ψℑ
l

yxk  

where we have added the TV penalty parameter α , as well as a transform penalty 

parameter β  to allow for a compromise between the opposing effects of  and 

 norms in the objective function and the constraint.   

1l

2l

 

To account for different spectral sampling geometries, we use  where 

 is used to denote the kth sampling geometry from the general geometry class 

denoted by . 

kℑ

k

Κ

  

2.3.2.  Optimal TV Norm and Wavelet Transform Penalty  

For each spectral sampling geometry we optimize the cost parameters α  and β  

for optimal reconstruction.  An optimal solution is sought so that the peak signal 

to noise ratio (PSNR) of the reconstructed fMRI image using (7) is maximized.  

For all candidate values of the penalty parameters, we solve (7) via the non-linear 

conjugate gradient and backtracking algorithm described in [14], (for which 

reliable Matlab implementation is available). 
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To define the new optimization framework, let z  denote the original input 

image. As discussed earlier, we let kℑ  denote the Fourier sampling geometry that 

is being considered. For each sampling geometry, we seek the optimal CS model 

parameters  such that the PSNR is maximized. Here, let  denote the optimal 

PSNR level that can be achieved. It is given by 

βα , kP
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The nested optimization problem can thus be expressed as: 

( )zxPk ,max
, βα

                                                       (8) 

where the transform coefficients x are obtained using 

( )xx
x
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αβ
l  

such that 
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yxk  

 For the CS model parameter optimization, we choose the Nelder-Mead or 

simplex search algorithm [33] since it does not require the derivative calculations 

typically found in steepest descent optimization algorithms.  Such a requirement 

would be difficult to achieve since the parameter search objective function (8) 

relies on the solution to a separate objective function (7).  Instead, the simplex 

search algorithm only requires function values at given points in the R2 search 

space, putting it in the class of solvers known as direct search methods [34].   
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Our basic problem here is that the original images are not available to us if 

they are to be collected using a reduced K-space geometry. Thus, our basic 

assumption is that the same range of optimal parameters can be made to work for 

most of the images of the same class. As we demonstrate in the results section, 

this basic assumption is valid and can be verified. Thus, we can select appropriate 

parameter ranges for βα ,  and use them to provide image reconstructions that will 

provide a PSNR level that is above a certain desired level. 

  

To estimate appropriate parameter ranges, we consider a class of fMRI 

images collected from the same scanner. Using the objective function values at 

each simplex step, which is the PSNR of the on or off image reconstruction using 

the current α and β  values, we can interpolate to a range of values for both 

parameters that we claim will produce a specific PSNR value for that image.  We 

then overlap the estimated ranges of values for all images so that we can provide a 

recommended range of operating parameters. 

  

For comparing among different sampling geometries we looked at the 

PSNR level that can be achieved as a function of the number of spectral samples 

that are used. Thus, when both geometries use the same number of spectral 

samples, the one with the highest PSNR values will be considered to be better. 

Here, we note that we do not consider the acquisition time directly. Thus, in the 

results section, we will also comment on the expected acquisition time associated 
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with each sampling geometry. Fortunately, as we shall discuss later, the best 

geometries will turn out to be the fastest in terms of acquisition time. 

 

2.4. Methods 

2.4.1.  Data Set and fMRI Activity Detection 

In blood oxygenation-level dependent (BOLD) fMRI, neural activity is detected 

by changes in the T2* relaxation time due to changes in blood oxygenation levels 

in response to local activation.  All images were acquired on a 3T Siemens TIM 

TRIO system with a 12-channel radio frequency (RF) coil. The fMRI experiment 

used a standard Siemens gradient-echo EPI sequence modified so that it stored 

real and imaginary data separately. We used a Field-of-View (FOV) = 240 mm, 

Slice Thickness = 3.5 mm, Slice Gap = 1 mm, Number of slices = 32, Matrix size 

= , TE = 29ms, and TR = 2s. The fMRI experiment used a block design 

with periods of 30 s OFF and 30 s ON. The subjects who participated in this study 

tapped the fingers of their right hand during the ON period. There were five and a 

half cycles, starting with OFF and ending with the OFF period. 

6464×

 

The BOLD fMRI data was then preprocessed to account for motion 

artifacts and spatially normalized into the standard Montreal Neurological 

Institute space. This spatial normalization was then sub-sampled to 3x3x4 mm, 

resulting in  voxels.  An individual slice was then selected that 

ensured measureable regions of activity based on the task being performed by the 

test subjects.  

466353 ××
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Temporal smoothing also tends to better localize detected activity across 

all temporal slices within a single run. Instead of utilizing the temporal 

information, our reconstructions are of two individual ON and OFF BOLD 

images.  The less dense collection of temporal samples provides a worst-case 

scenario for detecting neural activity.  We detected neural activity in fMRI by 

calculating the difference image of the reconstructed ON and OFF images.  

Individual slices were reconstructed by resolving (7) using the parameters 

obtained by solving (8) for different sampling geometries.  At this juncture, the 

neural activity detection problem becomes a segmentation problem.  Localized 

regions in the difference image with high relative values denote the region of the 

brain where activity occurred.      

 

Activity segmentation can be performed by many alternate methods than 

the rudimentary process that was described above.  Here, we will not consider 

optimization over a variety of different activity detection algorithms. We do note 

however that the activity detection algorithms that employ low-pass filtering will 

tend to favor zero-filling over interpolation by Compressive Sensing or any other 

method. The reason for this is that low-pass filtering attenuates high-frequency 

components that are estimated by the interpolation/reconstruction method. 

Ultimately, any segmentation for BOLD fMRI images will be governed by the 

accuracy of the reconstructed images themselves. Thus, for considering activity 

detection, we present the reconstructed difference images for visual quality 

comparisons.  
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2.4.2. Partial K-Space Sampling Geometries 

The sampling geometries we pursued in this work are similar to those presented in 

[3], but we took more care to design our sampling geometries based on the 

literature (e.g. spiral sampling around DC as in [5]) and fast acquisition times.  

Two sampling geometry classes, a spiral low-pass and dyadic downsampling 

along phase encodes, are deterministic, while two geometry classes are based on 

random sampling. 

 

First, we consider geometries that restrict down sampling in the phase-

encoded dimension only.  Our chief motivation of including a constraint on how 

samples are obtained is that reducing the number of phase encodes provides a 

greater reduction in scan time when considering only down sampling the 

frequency encoded samples instead.  In addition, we wish to compare partial K-

space sampling in just the phase-encoded dimension to partial K-space sampling 

in both dimensions around the center of K-space. 

  

As noted in the literature review, the central region of K-space is essential 

in obtaining reconstruction performance that is acceptable.   Almost all non-CS 

reconstruction of partial K-space included the center of K-space in the data that 

was sampled. A dyadic sampling geometry class was developed that considers 

sparse sampling along the phase-encoded dimension of K-space.  All geometries 

of this class are shown in the first row of Table 2.1.  This geometry includes 

samples from a collection of contiguous frequency encoded vectors centered over 
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the center of K-space.  The width of the central region can be varied to generate a 

number of unique geometries that are members of this class.  Nine unique 

geometries are generated based on a central region that sample 1/2, 1/3, 1/4, 1/6, 

1/8, 1/10, 1/12, 1/16, and 1/32 of the phase encoded samples.  Beyond the bounds 

of the central region of the geometry, additional frequency encoded vectors are 

sampled every 2nd, 4th,  8th, etc. phase encoded sample until the entire support of 

the scanned K-space has been included.   The dyadic characteristic of the gap size 

between subsequent high-frequency samples was intentionally designed to sample 

more densely near the center of K-space, and in hopes that such sampling in K-

space might coincide with the Wavelet transform our reconstruction method 

utilized.  

 

An interesting characteristic of this class is that the size of the central 

region is inversely proportional to the number of frequency-encoded vectors at 

higher frequencies. This class will be referred to as the Dyadic Phase Encoded 

(DPE) geometry class in the remainder of this paper.  We note that the DPE class 

does not attempt to utilize randomness in sampling to decrease coherence in terms 

of CS reconstruction.  We are relying on the system incoherence between samples 

of K-space (Fourier) data, wavelet coefficients, and the spatial image space. 

  

We also consider two additional geometry classes which attempt to 

increase the incoherence between the sensing (Φ ) and transform bases ( ) by 

introducing an element of randomness in how the samples were selected.  The 

Ψ
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first class, which is referred to as the Random Phase Encoded (RPE) geometry 

class, samples frequency-encoded vectors along random phase encoded samples.  

This sampling method was selected as a comparison to the dynamic CS MRI in 

[16].  In a two image, single fMRI study, such sampling would not expect to 

provide acceptable reconstruction due to the possibility of excluding a portion of 

the central region of K-space.  This deficiency is less apt to be problematic in 

dynamic applications as successive temporal samples likely include central K-

space data that can be utilized in the final analysis.   Each of the Random Phase 

Encoded geometries contains the same number of samples as one of the Dyadic 

Phase Encoded geometries.  Due to the one-to-one geometry correspondence 

across classes, there are nine total geometries in the RPE class.  All of the 

Random Phase Encoded geometries are shown in the second row of Table 2.1. 

  

The second geometry class that incorporates randomness into the sampling 

scheme can be described as random sampling along a 1-D probability distribution 

function across the phase encoded samples at each frequency-encoded sample.  

This geometry class will be referred to the Random Sampling PDF (RSP) class.    

 

The motivation of this geometry is from [14], but we alter the distribution 

to be replicated at each frequency-encoded sample instead being defined over 

both K-space dimensions.  We use a fifth-order polynomial of the form 

( )
22

,
22

,1),(
5

22 VvVUuUvuvuf ≤<≤<−−−∝ ,               (9) 
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where U and V are the number of K-space samples in the frequency and phase 

encoded dimension. Our motivation for this geometry was to attempt a 

compromise between the inclusion of the center of K-space and also imparting 

incoherence into the CS problem through a pseudo-random sampling geometry.  

All of the representative geometries of the RSP class are depicted in the third row 

in Table 2.1.  It is important to note that while the RSP geometry would ensure 

high incoherence, regardless of the basis relationships of our CS framework, but 

would require more scanning time during acquisitions. 

  

Finally, we include a geometry class that restricts K-space sampling in 

both the phase encoded and frequency-encoded dimensions.  This geometry is 

very similar to the Centered Low Pass geometry in [3], but we generate the nine 

geometries by sampling along a Cartesian spiral emanating from the center of K-

space. Such sampling geometries are more typical of the classical partial K-space 

reconstruction techniques found in literature [21-25].  This class is referred to as 

the Spiral Low Pass (SLP) geometry class all geometries that comprise this class 

are shown in the fourth row of Table 2.1. 

 

2.4.3. Optimization of CS Penalty Parameters 

We want to compute optimal α and β  values in (7) that maximize the PSNR of 

the image reconstructed from one of the partial K-space geometries presented 

above.  The primary motivation of the following methods was to provide a range 
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of α andβ  values for each geometry that would achieve a minimum acceptable 

PSNR level. 

To accomplish this, we first reconstructed the twenty-four fMRI images 

from the twelve runs that were obtained for this study.  While differences between 

these two images are not readily apparent to the human eye, the method of data 

encoding provides meaningful information when properly processed for neural 

activity detection.   First, we zero pad the images from size to 6353× 6464× .  

We use the 2D FFT to generate K-space data for our experiments. 

  

The thirty-six geometries shown in Table 2.1 were applied to the K-space 

samples.   A baseline reconstruction is obtained by applying the inverse-Fourier 

transform to the partial K-space data.  This reconstruction will exhibit the aliasing 

artifacts that the approaches presented in the introduction seek to suppress.  The 

partial K-space data is then operated upon by the two-level optimization scheme 

described above. 

  

We initialize the α and β  values with zeros.  At each new simplex in the 

parameter space (7) is re-solved for the values of α andβ  at each vertex of the 

simplex.  The PSNR of the solutions to (7) for each simplex are treated as the 

functional evaluation upon which the simplex will adjust.  One of the drawbacks 

of the simplex search algorithm is that it can take a long time to converge to the 

optimal solution; continually re-adjusting without gaining much improvement on 



TABLE 2.1 
K-SPACE SAMPLING GEOMETRY CLASS EXAMPLES 

 

 
          % Retained  

                  Samples 
Geometry 
Class 

 
 

62.5% 

 
 

48.5% 

 
 

40.6% 

 
 

32.8% 

 
 

28.1% 

 
 

26.6% 

 
 

25.0% 

 
 

 
 

21.9% 20.3% 

          

Dyadic Phase 
Encoded (DPE) 

 
         Random Phase 

Encoded 
(RPE) 

 
         Random Samples 

on a PDF 
(RSP) 
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Spiral Low Pass 
(SLP) 

 

This table contains all of the geometric sample masks explored in this study.  The columns of the table are sorted by the percentage number of samples.  The rows of the table indicate 

a geometry class.  We are interested in comparing the results of geometries across columns, as they can provide insight into the minimum number of samples that can be used that still 

allow us to obtain an acceptable level of PSNR. 



 

the functional being explored.  We applied three stopping criteria to the search 

algorithm that solved (8).  The first is that if the change in α and β  fell below a 

tolerance of 1e-5, the algorithm would terminate.   This tolerance was selected 

after trial runs revealed the scale of the α andβ  space.  The second stopping 

criterion is a threshold on the change of the functional.  If the difference between 

the current functional(s) and the functional(s) of the previous simplex exceeded 

the functional tolerance of 0.05 the algorithm would terminate.  The final stopping 

criterion was a limit on functional evaluations, which was selected at 200. 

  

All of the above reconstruction steps are depicted in the flowchart in 

Figure 2.3.  We then analyzed the search surfaces for each partial K-space sample 

on each image with the intention of finding consistency in the optimal solutions 

across patients.  The simplex steps for each image processed by our method were 

interpolated to provide a smooth, 2-D parameter search surface.  Inspection of 

these contours revealed flat regions around the minimum, which lend themselves 

to a threshold operation based on the functional value (PSNR) within these 

regions.  These can then be intersected across patients for each mask, taking care 

to note the number of intersections within the parameter space. 

 

 Analysis of the intersecting parameter surfaces would then provide 

a range of values for both α and β  that achieve a certain level of reconstruction  
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Figure 2.3:  Parameter optimization flow chart.  The above chart depicts the 

sequential process that is implemented in this work for determining the 

optimal reconstruction parameters for each image.  This process is repeated 

on the same image for all thirty-six partial K-space data generated by the 

sampling geometries depicted in Table 2.1.   
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performance for any partial K-space data set sampled by any of the geometries 

outlined by the four classes in this study. 

 

To provide a quantitative method for region consistency, we estimate 

outer and inner bounding boxes of the optimal regions (see Figure 2.8).  Here, we 

use the ratio of the outer to inner bounding boxes as an indication of the 

complexity of the optimal operating region.  Empirically, a value between 1 and 2 

indicates the inner bounding box closely follows the contours of the outer 

bounding box.  Higher values indicate a more complex region, where the range of 

α  might be much larger than the corresponding range for β .  Our approach seeks 

to identify partial K-space geometries that provide acceptable image quality from 

a well defined range for the objective function parameters used in the CS 

reconstruction in (7). 

 

2.5. Results 

We considered the TV penalty coefficients,α  and β , as being “sufficiently 

optimal” if they lead to partial K-space reconstructions that achieve a suitable 

level of PSNR quality.  For each image ON and OFF image, the optimal PSNR 

values for each reconstruction using the solution to (8) are shown for the four 

geometry classes in Figure 2.4.  The PSNR values obtained by simply zero-filling 

the missing partial K-pace samples are displayed as a comparison.  Figure 2.4(a) 

and Figure 2.4(d) are the two non-random classes (DPE and SLP), and a brief 

inspection reveals the PSNR values for the DPE and SLP geometry classes are 
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higher than the RPE and RSP geometry classes.  The Dyadic Phase Encoded 

geometry class exhibited the most consistency between PSNR values across 

images for the same geometry, but had a lower average PSNR value across 

images than the Spiral Low Pass geometry class.  The random classes exhibited a 

greater improvement over zero-filling, but did not achieve reconstructed images 

as accurately as the deterministic classes (for the same number of samples).  It 

was concluded that the spiral low pass sampling technique continued to 

demonstrate the best results in terms of PSNR, in which each mask resulted in 

average PSNR values that could be described as producing excellent 

reconstructed (PSNR > 40 dB) images.  The average PSNR values for each class 

are listed in Table 2.2 for all four classes. 

 

The linearly interpolated function evaluations during the Nelder-Mead 

simplex search algorithm of the reconstruction of the fMRI images in Figure 

2.2(a) and Figure 2.2(b) are shown as contour plots in Figure 2.5.  Figure 2.5(a) is 

the contour plot of theα and β search surface when solving for the optimal 

parameters for reconstructing the OFF image, Figure 2.5(b) is a contour plot of 

the parameter space when solving for the optimal parameters for reconstructing 

the ON image.   The PSNR values are included for each simplex vertex calculated 

during the search.  In the examples depicted in Figure 2.5, the Nelder-Mead 

simplex method demonstrated rapid “descent” toward the optimal solution, but 

then slowed down, while performing many smaller iterations until the tolerances 

were achieved.  We observed near-exact search surfaces between the ON and  
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(a)  (b) 

(c) (d) 
 

Figure 2.4: Optimal PSNR values for CS reconstructions for each sampling geometry for both ON 

and OFF images.  (a) The results of sampling K-space with the DPE geometry class.  (b) The 

results of the RPE geometry class.  (c) The results of the RSP geometry class.  (d) The results of 

the SLP geometry class.  

 

 

TABLE 2.2 
AVERAGE MAXIMUM PSNR PER GEOMETRY CLASS 

% K-space 
Samples DPE Class RPE Class RSP Class SLP Class 

62.5 48.67 dB 13.65 dB 53.03 dB 49.01 dB 
48.5 43.59 dB 12.93 dB  33.03 dB 46.90 dB 
40.6 40.87 dB 13.44 dB 30.27 dB 45.05 dB 
32.8 37.71 dB 13.91 dB 27.39 dB 43.49 dB 
28.1 35.31 dB 13.08 dB 16.84 dB 42.99 dB 
26.6 34.88 dB 13.05 dB 28.78 dB 42.27 dB 
25.0 34.18 dB 20.61 dB 32.27 dB 41.28 dB 
21.9 31.54 dB 13.41 dB 20.64 dB 41.19 dB 
20.3 29.11 dB 13.95 dB 18.43 dB 40.29 dB 

 

39 



 

 

 
(a) 

 
(b) 

 
βFigure 2.5:  Parameter optimization surface of an fMRI image pair.  (a) The α and  

parameters for the ON image.  (b) The βα and  parameters for the OFF image.  Of note is the 

consistency of the contour plots in (a) and (b).  
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OFF resulting optimal parameter search method for all of the twelve runs.  This 

result would allow for additional fMRI studies to be processed with the above 

methods in less time, since either the ON or OFF image would provide a surface 

that alone represents the patient.The plots in Figure 2.6 show the α  and β values 

at the Nelder-Mead simplex iterations for both the ON and OFF images of a 

single fMRI sample, depicting how the final parameter values for both images are 

equal. 

(a) (b) 

  
(c) (d) 

 
Figure 2.6:  Individual parameter values at each simplex iteration for an fMRI image pair.  (a) 

and (c) are the OFF image parameter values.  (b) and (d) are the ON image parameters.  The 

parameters are identical for each simplex iteration.  
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The flat attribute of the search surface in the parameter space was 

consistently observed for the DPE and SLP geometry classes.  It was this 

observation that motivated the use of parameter search surface intersections 

across images to provide a range of reconstruction parameters for all geometries.  

Binning the PSNR results at the optimal operating parameters allowed us to 

establish a comparison of the effectiveness of the sampling geometries.  This also 

allowed for the quantification of generalized solutions for the geometries based on 

an area metric from the intersected parameters spaces. 

    

Based on visual evaluation of the results, we consider an excellent 

reconstruction resulting from PSNR values greater or equal to 40 dB.  An 

acceptable reconstruction can be described as having a PSNR value between 30 

and 40 dB, while an marginal reconstruction can be described as having a PSNR 

value less than or equal to 30 dB.  Figure 2.7 contains the resulting reconstruction 

of an ON image using two of our sampling geometries using reconstruction 

parameters to that result in PSNR values of each of these quality levels. 

 

To determine the minimum acceptable reconstruction quality, we consider 

PSNR values from 20 dB to 45 dB (see Figure 2.7).  For a given sampling 

geometry and a required image quality, all parameter regions were intersected 

together to determine the maximum number of images for which the same 

parameter regions will work.  Thus, for each quality level, we can have a  



Excellent 
≥

Original Marginal Acceptable 

 

 

(< 30 dB) ( 30 dB, < 40 dB) ≥ ( 40 dB) 

 
(a) (b) (c) (d) 
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(g) (f) (h) (e) 

 
 
Figure 2.7: Example of reconstruction quality for two sample images.  The top row contains reconstructions from various SLP sampling 

geometries, not necessarily using the optimal reconstruction parameters.  The bottom row contains reconstruction from the RSP sampling 

geometry class.  (a) and (e) are the original ON images.  (b) and (f) are marginal reconstructions of 28.35 and 24.22 dB, respectively. (c) and (g) 

are acceptable reconstruction of 34.97 and 39.64 dB.  (d) and (h) are excellent reconstructions of 48.35 and 56.69 dB, respectively. 



 

  

 

Figure 2.8:  Reconstruction image quality as a function of parameter optimization. The surface 

shown here is generated from the functional evaluations of the simplex search parameter search 

method using the DPE geometry retaining 62.5% of K-space samples on a single image. 

maximum of 24 images, indicating that the same optimal region provided this 

minimum quality for all reconstructions.  To avoid outliers, we consider an 

optimization region to be successful in meeting the image quality criterion if 75% 

or more of the images maintain a level above what is required. 

 

The resulting parameter regions ranged from –0.0007 to 0.007 for α  and 

from –0.0002 to 0.006 for β .  A bounding box area technique was employed to 

quantify the extent of each parameter space.  The ratio of the smallest outer 

bounding box to the largest inner bounding box was calculated as an indicator of 
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the complexity of the optimal region.  Larger outer and inner areas, combined 

with lower ratios indicate a more desirable solution. Here, our interest in stable 

solutions reflects our desire to use the same parameter setting for a variety of 

different images. 

 

Table 2.3 contains all of the bounding box ratios for each geometry and 

PSNR reconstruction quality level.  The data in Table III reveals that the DPE and 

SLP geometry class outperform the RPE and RSP classes.  Neither of the random 

classes provided a suggested set of optimal parameter values to achieve excellent 

reconstruction.  It was expected that the RPE class exhibit poor reconstruction, 

since the geometries do not contain sufficient samples from the center of K-space.  

And only a single geometry, the Random Sampled on a PDF geometry including 

62.5% of samples resulted in a suggested operating parameter space for achieving 

acceptable reconstruction.   

 

On the other hand, the DPE class achieved excellent reconstruction from 

two geometries (62.5% and 48.5%) and the SLP class achieved excellent 

reconstruction from the three geometries that retained the most number of K-

space samples (60.5%, 48.5%, and 40.6%).  As the reconstruction requirement 

becomes more lenient, fewer samples are required for acceptable reconstruction.  

 

Twelve additional DPE geometries were found to satisfy the parameter 

space threshold and intersection procedure.  All eighteen SLP geometries that  



 

 

TABLE 2.3 
BOUNDING BOX RATIOS FOR PARTIAL K-SPACE GEOMETRIES; 

LARGER VALUES INDICATE MORE COMPLEX OPTIMIZATION REGIONS. 
         

62.5 % 
Sampling 

Rate 

48.5 % 
Sampling  

40.6% 
Sampling 

Rate 

32.8 % 
Sampling  

28.1% 
Sampling 

Rate 

26.6 % 
Sampling 

Rate 

25 .0 21.9 % 
Sampling 

Rate 

20.3 % 
Sampling 

Rate 

Class T % Sampling  
Rate Rate Rate 

DPE 20 dB 2.85  3.32 3.33 2.88 3.80 3.62 4.07 2.94 2.77 

DPE 25 dB 2.85 3.32 3.33 2.88 3.80 3.95 4.45 3.33 4.88  

DPE 30 dB 2.85  4.15 3.41 4.18 8.75 8.21 6.00 12.83 N/A 

DPE 35 dB 3.32  5.30 5.90 11.92 N/A N/A N/A N/A N/A 

DPE 40 dB 3.97  5.71 N/A N/A N/A N/A N/A N/A N/A 

DPE 45 dB 3.79  N/A N/A N/A N/A N/A N/A N/A N/A 

RPE 20 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 

RPE 25 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 

RPE 30 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 

RPE 35 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 
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RPE 40 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 

RPE 45 dB N/A N/A N/A N/A N/A N/A N/A N/A N/A 

RSP 20 dB 3.07 31.59 33.71  18.00 N/A N/A N/A N/A N/A 

RSP 25 dB 3.07  29.79 52.07 13.3 N/A N/A N/A N/A N/A 

RSP 30 dB 3.07  N/A N/A N/A N/A N/A N/A N/A N/A 

RSP 35 dB 3.54  N/A N/A N/A N/A N/A N/A N/A N/A 

RSP 40 dB 4.38 N/A N/A N/A N/A N/A N/A N/A N/A 

RSP 45 dB 6.00 N/A N/A N/A N/A N/A N/A N/A N/A 

SLP 20 dB 3.00  2.18  2.84  4.00  9.38 10.31 9.17 10.31  6.88  

SLP 25 dB 3.00  2.18  2.84  3.73  7.88 9.63 8.56 8.75  7.00 

SLP 30 dB 3.00  2.18  2.84 3.47  13.00  10.00  10.00 9.00  9.00 

SLP 35 dB 3.00  2.18 2.84 3.84  18.00  16.00  16.00  14.77 18.00  

SLP 40 dB 3.27  3.86  5.96  N/A N/A N/A N/A N/A N/A 
SLP 45 dB 5.77  N/A N/A N/A N/A N/A N/A N/A N/A 



were included in this experiment satisfied our requirement for acceptable 

reconstruction.  Based on the results in Figure 2.4 and Table 2.3, we limited the 

reconstruction and brain activity analysis to only the DPE and SLP classes.   

 

These classes outperformed the RPE and RSP classes in peak PSNR and 

in the attributes for all geometries that sampled less than 50% of K-space.  The 

best geometry designed with randomness was the RSP geometry sampling at 

62.5%.  While reconstructions performed with this geometry could be considered 

excellent, only two other geometries from the RSP class would be considered 

acceptable in performance. 

 

We also compared the difference images of the original ON and OFF 

samples, the CS reconstructed ON and OFF samples, and also the reconstruction 

values of zero-filling the missing partial K-space samples.  We selected the lowest 

SLP geometry (sampling only 20.3% of K-space) as our comparison. 

  

We also provide a qualitative assessment of the difference images. As 

shown in some selected examples in Figures 2.9, 2.10, and 2.11, the difference 

images from CS reconstructions appear sharper than the smother, zero-filled 

reconstructions. The ON and OFF slices were reconstructed using the 20.3% 

sampled SLP geometry.  The geometry is shown in the last entry of Table 2.1.  

We divide this entire image set into three separate figures to allow for larger 

representation (four patients per figure) to support visual assessment claims.  We 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (i) (h) 

   
(k) (l) (j) 

Figure 2.9:  Difference images obtained from four individual fMRI sample sets I.   (a), (d), (g), and 

(j)  are the difference images obtained from full K-space sampling.  (b), (e), (h), and (k) are the 

difference images obtained by reconstructing the partial K-space our proposed CS methods.  The 

final column, containing images (c), (f), (i), and (l), are obtained by zero-filling the missing K-

space samples.  Visual assessment of the second and third columns reveals a greater amount of 

detail. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 2.10:  Difference images obtained from four individual fMRI sample sets II.   (a), (d), (g), 

and (j)  are the difference images obtained from full K-space sampling.  (b), (e), (h), and (k) are 

the difference images obtained by reconstructing the partial K-space our proposed CS methods.  

The final column, containing images (c), (f), (i), and (l), are obtained by zero-filling the missing 

K-space samples.  Visual assessment of the second and third columns reveals a greater amount 

of detail. 
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(a) (b) (c) 

 
(f) (d) (e) 

 
(g) (h) (i) 

0

0

0

0

0

0
 

(l) (j) (k) 
Figure 2.11:  Difference images obtained from four individual fMRI sample sets III.   (a), (d), 

(g), and (j)  are the difference images obtained from full K-space sampling.  (b), (e), (h), and 

(k) are the difference images obtained by reconstructing the partial K-space our proposed CS 

methods.  The final column, containing images (c), (f), (i), and (l), are obtained by zero-filling 

the missing K-space samples.  Visual assessment of the second and third columns reveals a 

greater amount of detail. 



 

 feel that the reconstructed high-frequency content resulting from the CS method 

enhances the individual ON and OFF sample reconstructions, resulting in a more 

detailed difference image than what was obtained with zero-filling.  This result 

implies that more accurate activity segmentation would be possible with a CS 

reconstructed difference image than a zero-filled reconstructed difference image. 

 

The majority of the CS reconstructed images depicted in Figures 2.9, 2.10, 

and 2.11 resulted in acceptable reconstructions when using visual assessment 

techniques.  A single sample, shown in Figure 7(e) does not appear to have been 

reconstructed as well as all of the other remaining samples.  Examination of the 

individual ON and OFF slice reconstructions revealed ringing artifacts due to 

non-convergence of the CS solution in (7).  

 

2.6.  Discussion 

We have found that parameter optimization achieved significant image quality 

improvements using a relatively small number of iterations. Typically, five 

iterations were required to improve PSNR by over 10 dB from the initial values of 

0,0 == βα and achieve reconstructions that were within 5% of the optimal 

quality value.  

  

Smaller parameter regions result from higher performance criteria.  The 

sampling geometry governs the size of the optimal performance area.  Sampling 
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geometries with lower sampling densities result in lower PSNR values, as shown 

in Figure 2.4.   

 

The combined parameter plots over all images indicate the number of 

images that meet the quality criteria. We present an example in Figure 2.12.  

Figure 2.12(c) depicts the inner and outer bounding regions, where 75% of the  

(b) (a) (c) 
 

Figure 2.12:  Optimal parameter regions over an entire fMRI image data.  (a) Parameter 

region plot indicating the number of images that were reconstructed with >40 dB image 

quality level (max=24). (b) Parameter region where 75% of the images exhibited image 

quality >40 dB (c) Inside and outside bounding boxes meant to characterize the 

complexity of the optimization region. 
 

images meet the quality requirements.  The complexity of this optimal region is 

reflected in an area ratio of 5.71, indicating that the area of the outer box is 5.71 

times larger than the inner bounding box.   

 

The relative shape of the bounding boxes indicate that the α parameter is 

more sensitive (has a smaller dimension) than the β  parameter.  Our experiments 
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did not reveal that the ratio of α to β ranges was consistent across geometries or 

geometry classes.   We want to take a closer look at theα andβ ranges for select 

geometries from the DPE and SLP classes.  We selected both the DPE and SLP 

geometries with the least number of samples that still provided reasonable 

performance regions in the optimal quality regions for 30 dB, 35 dB, 40 dB, and 

45 dB.   

   

TABLE 2.4 
ESTIMATED PARAMETER RANGES FOR SELECT BOUNDING BOX REGIONS 

Inner Bounding Box 
Geometry Class Threshold 

α

Examining the range of the parameters provides a more detailed 

description of the parameter space, and which constraint in (7) is essential for 

acceptable reconstructions.  The minimum and maximum parameter values that 

define the vertices of the inner and outer bounding boxes are listed in Table 3.4.   

Min  Max α β β Max   Min 
DPE 62.5 % 45 dB 8.0808e-05 2.8687e-04 2.5758e-04 3.9697e-04 
DPE 48.5 % 40 dB 1.4949e-04 2.5253e-04 2.3434e-04 3.9697e-04 
DPE 32.8 % 35 dB 2.1111e-04 3.0404e-04 3.8990e-04 4.9293e-04 

30 dB 4.2424e-04 6.3030e-04 2.8081e-04 3.2727e-04 DPE 21.9 % 

      

SLP 62.5 % 45 dB 2.5253e-04 4.2424e-04 1.4141e-04 1.8788e-04 
SLP 40.6 % 40 dB 1.4949e-04 2.8687e-04 7.1717e-05 2.1111e-04 
SLP 20.3 % 35 dB 8.0808e-05 1.4949e-04 4.8485e-05 9.4949e-05 
SLP 20.3 % 30 dB 1.2121e-05 1.4949e-04 2.5253e-05 9.4949e-05 

Outer Bounding Box 
Geometry Class Threshold 

αMin  Max α β Min  Max β  
DPE 62.5 % 45 dB -2.2222e-05 3.8990e-04 1.8788e-04 4.6667e-04 
DPE 48.5 % 40 dB 4.6465e-05 3.2121e-04 1.6465e-04 5.1313e-04 
DPE 32.8 % 35 dB 1.1818e-04 3.7374e-04 1.4949e-04 5.9596e-04 

30 dB 1.4141e-04 3.9697e-04 2.5253e-04 7.3333e-04 DPE 21.9 % 
      

SLP 62.5 % 45 dB 4.6465e-05 4.5859e-04 7.1717e-05 3.0404e-04 
SLP 40.6 % 40 dB 2.8687e-04 4.2424e-04 2.0202e-06 3.0404e-04 
SLP 20.3 % 35 dB -2.2222e-05 2.5253e-04 -2.1212e-05 1.8788e-04 
SLP 20.3 % 30 dB -5.6566e-05 2.5253e-04 -2.1212e-05 2.5758e-04 
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Three instances in the above table stand out because the minimum alpha 

and/or beta parameters are negative.  These values are a by-product of the 

interpolation and intersection method used to calculate the parameter ranges.  

When negative parameter values were inserted into the optimization algorithm, 

the reconstruction algorithm breaks down.  In these cases, we replace the negative 

value with zero, which still results in an acceptable result. 

 

It is imperative that our discussion turn to the effect of a zero parameter 

value for either constraint in the reconstruction problem.   Typically, the effect of 

0=α is a more prominent presence of high-frequency errors in the spatial 

domain, as well as a higher amount of artifacts from the sampling geometry.  

Conversely, the effect of 0=β is a loss of high-frequency spatial components in 

the spatial domain reconstruction.   In this case, the TV-norm tends to drive the 

solution to a result whose finite differences in each dimension is minimized.  

Thus, we observed the equalization of pixel intensities in contiguous regions of 

the reconstructed image.  Examples of reconstructions using the 20.3% SLP 

sampling geometry where 0=α and β is chosen from within the inner bounding 

box as well as the converse; where 0=β  are shown in Figure 2.13.  When 

0=α and β = 6e-5 (the inner bounding box in this case was [2.5253e-5, 9.494e-

5]) the reconstructed PSNR for a randomly selected image was 37.04 dB.  The 

reconstructed image is shown in Figure 2.13(c).  When 0=β and α = 1.2e-4 (the 

inner bounding box is [1.2121e-5, 1.4949e-4]) the reconstructed PSNR for a  
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(a) (b) 

  
(d) (c) 

  
(e) (f) 

 
Figure 2.13: A comparison of results when either of the reconstruction parameters is zero.  (a) 

and (b) are the original images.  (c) is reconstructed with β0=α  and chosen from within the 

inner bounding box for the 20.3% SLP sampling geometry.  (d) is reconstructed with 0=β  and 

α chosen from within the same inner bounding box.  (e) and (f) are reconstructions with both 

parameters equal to zero. 



 

 randomly selected image was 40.47 dB.  We show the special case of 0=α and 

0=β for each image in Figure 2.13(e) and Figure 2.13(f) resulting in PSNR 

values of 26.28 dB and 24.53 dB.  In both cases, when non-zero values were used 

for either parameter, the PSNR increased.  This indicates that removing one of the 

penalty terms in the CS objective function may result in a usable reconstruction, 

but it is not the optimal solution. 

 

For most cases, the results in Table 3.4 coincide with the theoretical 

support for the inclusion of the two penalty parameters in (7).  The transform 

penalty parameter (β ) helps maintain the details in the reconstruction, while the 

TV-norm penalty increases the effectiveness of the  reconstruction by utilizing CS 

theory.  If both parameters are zero, then the reconstruction simply becomes a 

solution based on wavelet coefficients which minimize the difference in K-space 

samples.   This special parameter case served as our initial value for the parameter 

search method, which resulted in reconstruction accuracy nearly 10dB lower on 

average than the optimal values.  But we have shown that for some sampling 

geometries, it is possible to achieve acceptable image quality when one of the two 

parameters is zero, but not both.  While completely removing one of the penalty 

terms in (7) may result in acceptable reconstructions in terms of PSNR, increased 

PSNR can be achieved by using non-zero, optimal values.  
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2.7. Conclusion 

While compressive sensing has shown that exact signal recovery can be achieved 

under certain conditions (see Figure 2.1), images exhibiting more finer texture 

and objects of interest that are spatially represented by a small number of pixels  

require a more robust objective function beyond the total variation norm.  A 

modified objective function, first shown to be useful in reconstructing MRI data 

by [14], was improved upon by constructing an optimization framework around 

the objective function that solved for the cost parameters that result in 

reconstructed images with maximized PSNR.  We have found that CS parameter 

optimization can dramatically improve fMRI image reconstruction quality. 

Furthermore, fast MRI scanning geometries based on [5] consistently provided for 

the best image reconstruction results. 

  

The implication of this result is that less complex sampling geometries 

will suffice to achieve better reconstructions than random sampling, provided the 

TV-Norm and Transform penalty parameters are selected from the range of values 

we have calculated in our proposed methodology. We have found that parameters 

from stable parameter-space regions can be used to achieve specific levels of 

image reconstruction quality when combined with specific K-space sampling 

geometries.   Our results allow for reconstruction performance of certain quality 

to be obtained with a 75% probability of achieving the desired quality. 
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This work not only introduces significant implications for the use of 

compressive sensing reconstruction of partial K-space data in MRI, but it also 

reveals that the commonly accepted tenets of CS (data sparsity and incoherence) 

are not required if exact signal reconstruction is not required.   The solution to the 

convex reconstruction algorithm used in this work resulted in excellent image 

reconstructions using well thought out deterministic sampling geometries.  Our 

geometries did not require MRI scanning to conform to compressive sensing 

theory.  Rather, our approach fit a compressive sensing solution into the 

constraints of MRI data scanning with impressive results. 
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Chapter 3  

Fourier Spectra Reconstructions of 

Satellite Imagery Part I: Statistical 

Interpolation Models of the 

Magnitude and Phase 

 
3.1.  Introduction  

We propose a new spectral-domain model based on statistical (variogram) models 

and Ordinary Kriging [1].  In this chapter, we consider a fast, spectral domain 

extension for interpolating the magnitude and phase spectra over different sub 

regions.  Reconstruction is performed using the Inverse Fast Fourier Transform. 

 

Not only does Kriging produce reconstructions of the magnitude and 

phase spectra with significantly higher peak signal to noise ratios than other two 

dimensional interpolation techniques, the predictor also provides an error bound 

for the predicted values that fall within a 95% confidence interval. 

 

 

62 



 

3.2.  Literature Review 

We present a review of work related to employing Kriging applications in image 

processing.  In remote sensing, Kriging has been used to estimate the values of 

obscured pixels from cloud cover and shadows, denoising, and image 

enhancement using super-resolution techniques.  These applications are described 

below. 

 

Past uses of Kriging in remote sensing applications vary considerably.  

Cheng, Yeh, and Tsai used Kriging to interpolate terrain elevation information to 

rectify SPOT satellite images [2]. An example of utilizing Kriging to interpolate 

missing data in remotely sensed images is the interpolation of pollution maps. 

This work, performed by Kanaroglou et al. uses Differential Texture Analysis to 

measure the Aerosol Optical Thickness in the Visible spectrum (AOTV).  

Universal Kriging was used to estimate the missing pollution map levels when 

ground cover and clouds obstruct measurement. In this case, a second-degree 

surface model was used to de-trend the data [3]. 

 

Rossi, Dungan, and Beck [4] use the Indicator Kriging to interpolate 

unknown image regions of Landsat Thermatic Mapper images. Ferretti, Prati, and 

Rocca, utilize Kriging to filter and resample the atmospheric permanent scatterers 

that influence the accuracy of SAR interferometry [5].  Blaschke utilized Kriging 

for object classification in remotely sensed images to assist in appending a 

geographic information system (GIS) database to the image data [6]. 
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Djamdji and Bijaoui utilize Kriging to map the disparities over a couple of 

stereo images. The disparity map is then used to register the two images that 

constitute the pair [7]. Image restoration can also be performed via Kriging 

methods, as shown by Pham and Wagner [8], and their results are compared to the 

Weiner Filter. Oh and Lindquist develop the Indicator Kriging to assign a 

probability of whether a boundary pixel between two class objects falls into either 

class. After assigning pixels based on two global thresholds, the ambiguous pixels 

that fall between the thresholds are assigned a class based on a Kriging estimate 

from a finite pixel neighborhood [9].  Chandra et al. attempt to reconstruct 

complex textures using Kriging from samples of the original image [10]. Carr 

demonstrates that Kriging can be modeled in a way to achieve less smoothing in 

Kriging by performing a two-step Kriging process, where the outputs are 

combined in a way that is analogous to summing high and low-pass filtered 

images [11]. 

 

Kriging has been applied to image sequence coding and data compression. 

A study by Decenciere et al. resulted in a smoothing function termed Inverse 

Kriging which can be used to smooth textures and interpolation of motion vector 

fields [12]. Here, Kriging was applied to a small set of control points in the 

moving region of a subsequent video frame to interpolate the motion vector field 

for the entire image. The Kriging result was used for effective motion 

compensation in sample image sequences.  In addition to the exploration of point 
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Kriging/Inverse Kriging methods on motion vector fields, the authors explored 

the various point Kriging techniques on digital images.   The authors 

downsampled uniformly by 8 pixels when reconstructing the actual grayscale 

pixel values and used the empirical covariance instead of variogram models in 

their estimators.  They also explored Kriging using samples non-uniformly 

selected from the image based on texture measurements, such as the Laplacian.     

 

Grinstead, Koschan, and Abidi use a simple Kriging method to preserve 

the sharp features of 3-D images in the form of digital elevation maps obtained by 

laser scanning [13]. In this study, the authors compared Kriging to other 

commonly used spatial interpolation techniques for non-uniformly sampled data 

(linear, bi-cubic estimators and Inverse-Distance Weighting).   To compensate for 

the over-smoothing that results from applying Kriging to the entire image, regions 

of interest were automatically detected using region growing and merging 

techniques.  To address the need for localized variogram estimation over the 

detected ROIs, a variogram model was selected and fitted using a least squares 

optimization technique on lag shorter lag values.     

 

Kriging interpolation was used by Panagiotopoulou and Anastassopoulos 

to create high-resolution image reconstructions from sub-pixel shifted, aliased 

low-resolution frames [14].  In their approach, they use Kriging as a super-

resolution technique which combines twenty low-resolution into a single high-

resolution image.   Their technique is only applicable after motion estimation 

65 



 

results are used to calculate any displacement between frames, which places the 

low-resolution frame pixel locations into the super-resolution data space.  

Experiments were performed on a single set of data, using a fitted Gaussian 

variogram as the covariance model when performing Kriging.   

 

As one can see from the above literature review, the applications of 

Kriging have been broad in the field of remote sensing.  Although the use of 

Kriging in remote sensing image processing has expanded over the past decade, 

the application of Kriging to magnitude and phase spectra reconstruction is new 

and we have not seen any prior research in this area. 

 

3.2.1.  Data Set Description 

The images analyzed in this study were obtained from various multispectral and 

satellite image databases. Since satellite imagery varies widely based on the 

content in the scene being imaged, we intended to obtain a collection of images 

that could be described as depicting representative examples of rural, urban, and 

natural scenes.  The rural scene type can be best described as containing few 

manmade structures, but do exhibit the effects of human activity.  Examples of 

human activity include the presence of roads and agriculture.  Urban scenes can 

be described as having significant manmade structures, including infrastructure 

(roads, utilities) and buildings.  Natural scenes can be described as having little to 

no evidence of human activity in the scene.  Such data is typically collected for 

environmental studies.  In our data samples, urban and natural scenes tend to 
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exhibit a greater amount of high-frequency content in the Fourier domain, while 

rural scenes have less high-frequency content and subsequently contain smooth 

regions in the image domain. 

 

Two rural scenes we explored in this study were obtained from the 

Laboratory for Applications of Remote Sensing at Purdue University.  Both of the 

images we have selected from this data set were obtained using the ITD Spectral 

Visions multispectral sensor and contain aerial views of the Agronomy Research 

Center [15] and the Farm Progress Show Site [16].  A view of the Purdue 

Agronomy Research Center is shown in Figure 3.1(a) and a view of the Farm 

Progress Show site is shown in Figure 3.1(b).   An additional rural scene was 

obtained by selecting an outlying region of a large (2635x3685 pixels) satellite 

image of London, England.   The source image was obtained by ASTER 

(Advanced Spacebourne Thermal Emission and Reflection Radiometer) sensor 

onboard the NASA Earth Observing System (EOS) [17].  The third rural sample 

image is shown in Figure 3.1(c). 

 

The full-sized image of London, from which we selected five sub-regions 

to comprise our urban satellite data set, is shown in Figure 3.2.  The locations of 

the sub-regions are indicated by the boxes overlaid on the image.  Each of the 

sub-regions are shown in Figure 3.3, along with their representative Fourier 

spectrum. 
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(a) 

      
(b) 

       
(c) 

Figure 3.1: Rural scene satellite image data set and log-transformed magnitude Fourier spectrum. 

(a) Purdue University Agronomy Research Center1, size 1069x1374.  (b) Farm Progress Show 

Site2, size 267x343.  (c) Rural sub scene outside of London, England3, size 311x451. 

1. http://www.lars.purdue.edu/home/image_data/spectral_vision_data.html, Name: sv010813_ARC_F106_1m 

2 http://www.lars.purdue.edu/home/image_data/spectral_vision_data.html, Name: sv010706_FPS_south_1m 

3 http://asterweb.jpl.nasa.gov/gallery/images/london-final.jpg 
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Figure 3.2: Full resolution satellite image of London, England1 depicting five urban sub regions.  

The third rural sub region is also indicated.   

1. http://asterweb.jpl.nasa.gov/gallery/images/london-final.jpg 

 

The two natural images we obtained bring the total number of 

multispectral images explored in this study to ten.  The first natural image depicts 

the Grand Canyon and other natural features in Northern Arizona, and is shown in 

Figure 3.4(a).  This image was generated using the NASA Multi-angle Imaging 

SpectroRadiometer sensor [19].  Another ASTER-generated image contains a 

view of the Erebus Ice Tongue protruding from the Erebus glacier in Antarctica 

into McMurdo Sound. 
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(a) 

      
(b) 

       
(c) 

    
(d) 

   
(e) 

Figure 3.3: Urban scene satellite image data set and log-transformed magnitude Fourier spectrum. 

These were selected from the full sized satellite image of London, England in Figure 3.2  (a) 1 in 

Figure 3.2, size 501x751.  (b) 2 in Figure 3.2, size 301x451. (c) 3 in Figure 3.2, size 401x501. (d) 

4 in Figure 3.2, size 236x401. (e) 5 in Figure 3.2, size 296x501. 
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(a) 

      
(b) 

Figure 3.4: Natural scene satellite image data set and log-transformed magnitude Fourier spectrum. 

(a) The Grand Canyon and surrounding country1, size 351x501.  (b) Erebus Ice Tongue2, size 

254x231.  

1. http://photojournal.jpl.nasa.gov/catalog/PIA03402 

2 http://asterweb.jpl.nasa.gov/gallery/images/glacier-tongue.jpg 

To recapitulate the content of our data set, three images were classified as 

containing rural scenes.  Five images, each of which were sub images of single 

ASTER image of London, England, were classified as containing urban scenes.  

Finally, two satellite images were classified as containing natural scenes.  These 

classifications will be used in categorizing the assessment of our reconstruction 

method.  
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3.3.  Theoretical Background 

3.3.1.  Spectral Statistical Approach 

Digital images are characterized by a discrete spectrum that is periodic, with a 

fundamental 2D Frequency support from π−  to π . The 2D Fast Fourier 

Transform (FFT) of an image produces a discrete lattice of regularly-spaced 

frequency samples from the continuous-interval of [ ]2− ,ππ . Here, we would like 

to investigate the use of methods from Spatial Statistics that allow us to 

interpolate the 2D FFT frequencies from a limited subset. 

 

The implication of discrete spectral interpolation goes beyond standard 

frequency domain image processing techniques such as image restoration.  

Various applications, such as magnetic resonance imaging (MRI), computed 

tomography (CAT scans), and synthetic aperture radar (SAR) sample data in the 

Fourier domain.  Under certain conditions, such applications may be band-limited 

and the ability to interpolate Fourier data would provide improvement to the final 

data product (typically an image). 

 

Here, we are interested in the discrete frequency spectrum lattice as 

indexed by .  We shall denote the horizontal frequency coordinate 

with and the vertical frequency coordinate with v . 

),( ii vu

iu i
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For any increment, 21 ss − , defined by the spectral locations F∈21 , ss , 

and the measured values at these locations, and , the second-order 

stationary variogram is defined as: 

)( 1sZ )( 2sZ

))()(var()(2 2121 ssss ZZ −=−γ .                (1) 

Here, the variogram is a function of the increment, normally called the lag, and 

commonly denoted as h. 

 

For an intrinsically stationary random field, the method of moments 

estimator, commonly referred to as the classical variogram estimator, is given by: 

∑
∈

−≡
)(),(

2))()((
)(

1)(ˆ2
h

ss
h

h
Nji

ji ZZ
N

γ                         (2) 

where is defined by )(hN { }hssh =−≡ jijiN :),()(  and )(hN is the number of 

elements in the set . The classical estimator is unbiased but not robust.  

When estimating the variogram, intrinsic stationarity is often assumed.  

)(hN

 

Due to the periodic nature of the 2D FFT domain, intrinsic stationarity 

cannot be assumed over the entire spectrum.  In order to have confidence in our 

variogram estimates, we sought a partitioned spectral domain that allowed 

independent spectral statistical modeling within the regions defined by the 

partition.  Figure 3.5 depicts the fourteen partitions generated by dividing the 

entire 2-D FFT domain into dyadic blocks.  We assume intrinsic stationarity of 

the semivariance model over each of the sub regions.  Mathematically, we are 

assuming 
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holds for the spectral components contained within each of the sub regions, where 

)(2 ji ss −γ  is unique for each region.  

 

 
Figure 3.5: Spectral partition map.  The partitions shown above define the regions of the spectral 

data which we model individually for analysis.  The original size of the image used to generate this 

map was 301x401 pixels.  The spectral data contained in regions 13 and 14 was not included in 

any of the down sampling rates used in this study.  The sizes of the outer regions for this mask are 

75x112 pixels, while the sizes of the inner regions are 37x56 pixels. 

We selected a dyadic partitioning scheme because it is well supported in 

Wavelet theory, and we want to ensure a scalable down sampling model that 

emphasizes the importance of retaining low frequency components.  In other 

words, the dyadic approach allows us to refer to two distinct portions of the 

spectrum based on whether it encompasses the high frequency or medium 

frequency regions of the centered Fourier spectrum.  In addition, we desire the 

freedom to explore our spectral models using a scalable framework.  The dyadic 

partitioning results in outer regions that are four times as large as the next smaller 



 

regions.  These high frequency regions contain less spectral energy and we would 

like to perform more interpolation here.  Conversely, the inner-most contain the 

low frequency information of the image and we want to preserve this.  So in all of 

our experiments regions 13 and 14, assuming DC is at the center of the spectrum, 

remain intact.  Logically, the intermediate frequencies, indentified by regions 7-

12, are not interpolated as much as the high frequency regions.  We are restricting 

the spectral modeling over half of the 2-D FFT domain because we can utilize the 

symmetry of the spectrum to extrapolate the upper half. 

 

3.3.2.  A Magnitude Spectrum Model using the Logarithm 

In what follows, we want to argue for the use of the logarithmic function over 

each spectral domain region. Suppose that a given spectral-domain region violates 

the stationarity assumptions. 

 

In this case, it may be reasonable to expect that we can provide good, 

stationary, approximations over a disjoint partition of sub-regions of the original 

region. Furthermore, instead of requiring stationarity over the entire region, it is 

reasonable to assume that the relative variogram, defined by 

,/)(2 2)(
j

j
Z μγ h                                (4) 

will remain approximately constant over all sub regions, independent of j.  It can 

be shown that the application of the logarithmic transformation will produce an 

approximately intrinsically stationary random field over the entire region [1].  The 

importance of this result is that here, the logarithmic transformation allows us to 
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apply our methods over the entire region, without requiring any knowledge of the 

specific boundaries of the constituent sub regions.  

 

Within the framework of the logarithmic approximation to the relative 

variogram, we are able to estimate the variogram using the method of moments 

estimator shown in (2) on the log-transformed magnitude spectrum within each 

sub-region. For each spectral region, we sought to fit each empirical variogram 

with one of the following three theoretical semivariance models: 

• The Spherical Model: 
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• The Exponential Model: 
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• The Gaussian Model: 
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In the above models, σ  is the nugget effect, which was termed by Matheron as a 

representation of small scale variations (in our case, sub spectral sample 
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variations) that manifest themselves as a discontinuity at the minimum 

measureable range value.  α  is referred to as the variogram sill, and it is defined 

as the limit of the variogram as the distance between samples approaches infinity.  

Typically, a good estimate for the variogram sill is the sample variance.  Finally, 

β  is referred to as the variogram range, and can be thought of as the lag at which 

 and  are no longer correlated.  It can be used a guide to 

determining the lag distances required to include in spatial prediction.   

)s(Z )( hs +Z

 

We selected the spherical and Gaussian model because they are bounded 

by the total variance of the individual spectral region.  The exponential model is 

commonly used as well, and it asymptotically approaches the total variance 

between all points in the spectral sub region. 

 

3.3.3.  Two-Dimensional Phase Unwrapping 

Since we are reconstructing the Fourier domain samples of the satellite images in 

our dataset, special attention had to be shown in processing the phase of the 

Fourier spectra.  The phase data generated by a Fourier transformation of an 

image is constrained to the interval ( ]ππ ,− .  Since phase is related to the temporal 

and/or spatial wavelength, its influence on the signal is only through phase values 

that lie within the above interval.  Mathematically, the absolute phase, ϕ , is 

wrapped into the interval ( ]ππ ,−  by the following operation within the Fourier 

transform  

),,(2),(),( vukvuvu πϕψ +=                   (8) 
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where is an integer function that constrains the wrapped phase to ),( vuk

πψπ ≤<−  and the spectral coordinate pair define a spectral location (s). ),( vu

   

While many coherent signal applications seek )(sϕ because it represents a 

physical measurement such as surface topography in interferometry [20-27], we 

seek the absolute phase because the wrapped phase typically does not provide a 

spatial variance field that can be well modeled using the variogram. 

  

We explored the use of five different two-dimensional phase unwrapping 

techniques that are described and implemented software [28].  Three of the 

algorithms we applied to the phase spectra are path following techniques: 

Goldstein’s Branch Cut method, quality guided path following, and Flynn’s 

minimum discontinuity method.  The other two methods can be described as 

minimum norm methods, which approach phase unwrapping in a mathematically 

formal manner.  These are the preconditioned conjugate gradient (PCG) algorithm 

and the weighted multigrid algorithm. 

  

While we are referring to each of these algorithms as being unique, all but 

the Goldstein algorithm represent a class of phase unwrapping algorithms that 

support a wide variety of approaches.  For the sake of brevity, we limited our 

exploration of the effects of the various phase unwrapping algorithms to a single 

algorithm of each type.  We will now briefly describe each of the algorithms. 
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3.3.3.1 Path Following Algorithms 

Path following algorithms try to find the best integration path to one pixel of 

unwrapped phase starting from another pixel.  The first path following algorithm 

we applied to the phase spectra was Goldstein’s Branch Cut algorithm [21], which 

uses a nearest neighbor method to find a configuration of branch cuts with lengths 

that have a minimized sum.  Branch cuts are boundaries connecting positive and 

negative phase residues (points within a contour integral whose phase derivative 

are ±2π) through which a phase integration path cannot cross.  This method 

produces an unwrapped phase surface where the wrapped phase discontinuities 

are confined to the branch cuts, approximately minimizing the discontinuities. 

 

The quality guided path following algorithm does not depend on residues 

and branch cuts, but instead uses an iterative technique that uses region growing 

of regions of unwrapped pixels [29].  The paths that the region growing procedure 

follows are dependent on the quality map, which can be defined by a number of 

metrics to follow.  We limited our exploration of this algorithm to following the 

paths that minimize phase gradients contained along a path. 

 

The third path following algorithm applied to the phase spectra was 

Flynn’s minimum discontinuity algorithm with we used without a quality map.  

Flynn’s algorithm finds the surface that is congruent to the wrapped phase data 

whose solution minimizes the amount of integer multiples of 2π required to 

remove phase discontinuities (pairs of pixels whose difference exceeds π in 
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magnitude) [30].  It has been shown that this process is equivalent to minimizing 

the norm of the congruent solution.  We prefer this method over other path 

following methods because it provides a globally minimized solution, although it 

does require more computational resources than Goldstein’s or the quality guided 

algorithms. 

1l

3.3.3.2 Minimum-Norm Algorithms 

Minimum norm techniques deviate significantly from path following techniques 

in the sense that they seek a global solution that minimizes some measure of the 

difference between the gradients of the wrapped and unwrapped phase.  This 

approach tends to remove the undesirable characteristic of path following 

techniques: path following techniques tend to generated lines of discontinuity in 

the unwrapped phase spectra.  We selected two weighted least-squares algorithms 

as they have been shown to compensate for residues, while unweighted 

algorithms unwrap through residues rather than around them.   

 

The preconditioned conjugate gradient (PCG) algorithm introduces 

weights that are defined by a user-supplied quality map.  This process intends to 

zero-weight regions where residues are likely to lie.  The search algorithm is 

preconditioned using the unweighted solution to speed convergence.  The 

conjugate gradient solution is described in detail in [31].   

 

Similarly, the weighted multi-grid algorithm utilizes weights on the 

residual to correct the phase derivatives at the boundaries of discontinuity regions.  
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It is a desirable example of a weighted least-squares phase unwrapping solution 

because it tends to converge more quickly than the PCG algorithm. It also does 

not require the use of discrete cosine transforms or fast Fourier transforms since it 

does not use conjugate gradient techniques. A comparison of the different 

representation of each of these algorithms applied to the actual phase spectra of 

one of our images is shown in Figure 3.6. 

  

Figure 3.6(a) contains the original unwrapped phase.  Figure 3.6(b) 

contains the result of Goldstein’s branch cut algorithm.  The discontinuities at the 

branch cuts are evident.  Figure 3.6(c) contains a result of the quality guided 

algorithm using the minimum variance as a quality mask.   It clearly depicts the 

distinct regions that were grown in the unwrapping process.  Figure 3.6(d) shows 

the result of Flynn’s minimum discontinuity algorithm.  This is the best global 

result, which is supported by having the smallest range of unwrapped phase 

values compared to the other results.  Finally, Figure 3.6(e) and Figure 3.6(f) 

contain the result of the weighted multi-grid algorithm and the precondition 

conjugate gradient methods, respectively.  The minimum norm methods produce 

the smoothest surfaces, but result in a very large range of unwrapped values.  

Severe unwrapping is undesirable because the quality of the reconstructed phase 

is bounded within the range of ( ]ππ ,− , regardless of the unwrapping method.  

Larger unwrapped phase values will, in turn, result in larger absolute error values 

of the interpolated phase values.  Thus, we focus on unwrapped surfaces with the 
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smallest range of unwrapped values (e.g. Flynn’s minimum discontinuity 

method). 

 

Due to the localized discontinuities of wrapped phase data, it is ill suited 

for our spectral statistical approach and does not adhere to our regionalized 

spectral modeling paradigm.  Figure 3.7 shows the variogram estimates for the 

wrapped phase of two spectral sampling regions (4 and 7) from a representative 

urban image from our data set.  Figure 3.8 shows the variogram estimates for the 

same regions, but from the unwrapped phase using Flynn’s minimum 

discontinuity method.  The same variogram models in (5), (6), and (7) were 

revealed as acceptable, bounded spectral statistical models for the phase data we 

typically encountered in this work.  

 

It is clear from Figures 3.7 and 3.8 that the unwrapped phase does not 

support any spectral covariance model, as the empirical variogram values are all 

located near the global variance within the selected block.  In addition, the sample 

covariance within individual blocks is equal to the global sample variance.  This 

is expected based on the fundamental property of phase spectra exhibiting a 

probability density function that is uniform spanning the interval ]ππ ,− . 

 

The unwrapped phase, on the other hand, produces excellent spatial 

covariance model estimates, which are well fitted by all three of the theoretical 



   
(a) (b) (c) 
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(d) (e) (f) 

Figure 3.6: Comparison of phase unwrapping methods.  This figure contains the original, wrapped phase spectra of an image from our data set that 

contains a natural scene and the five results of the two-dimensional phase unwrapping techniques we explored in this work.  (a) The original phase. (b) 

The result of Goldstein’s branch cut algorithm.  (c) The result of the quality-guided algorithm using the minimum variance as a quality mask.  (d) The 

result of Flynn’s minimum discontinuity algorithm.  (e) The result of weighted multi-grid algorithm and (f) shows the result of the precondition 

conjugate gradient (PCG) methods. 
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(a) 

 
(b) 

 
(c) 

Figure 3.7: The wrapped phase image of a sample urban scene.  (a) and the empirical 

variograms from a medium frequency and high frequency block.  (b) The empirical 

variogram of the high frequency block shaded in (a).  (c) The empirical variogram of the 

medium frequency block shaded in (a). 
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(a) 

 
(b) 

 
(c) 

Figure 3.8: The unwrapped phase image of a sample urban scene obtained by Flynn’s minimum 

discontinuity method.  (a) and the empirical variograms from a medium frequency and high 

frequency block.  (b) The empirical variogram of the high frequency block shaded in (a).  (c) The 

empirical variogram of the medium frequency block shaded in (a). 

 



models listed above.  We also note that the maximum lag, h, in Figure 3.7(b) and 

Figure 3.8(b) is greater than the maximum in Figure 3.7(c) and Figure 3.8(c).  The 

reason for this is that we adaptively calculate the variogram out to a lag that is 

dependent on the bounds imposed by our partitioning of the spectrum into distinct 

blocks.  This is discussed in greater detail later. 

  

3.3.4.  Optimal Interpolation using Kriging 

Over each spectral sub-region we assume that the random field can be modeled 

using 

ℜ∈∈+= μμ ,),()( FnZ sss .      (9) 

where μ is a constant mean term, is a spatially varying covariance function 

defined by locations within the Fourier spectrum.  We simplify this model by 

assuming isotropy, which we verified experimentally.  An isotropic covariance 

model, when intrinsic stationarity is met, allows  to be defined radially, 

instead of along specific directions.  The implication of this assumption is two-

fold.  First, it allows for more data samples in both the covariance model estimate 

and the interpolation step.  Second, it removes the need analytical assessment of 

directional variogram estimates to discern which directional model (typically, the 

directional variogram with that provides the best fit in the least-squares sense is 

selected) best fit  the model in (9). 

)(sn
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In ordinary Kriging, we estimate the optimal linear predictor based on the 

random model of (9) using a weighted sum of the known data points within a 

region, B: 

∑
=

=
n

i
ii Zp

1
)();( sBZ λ .                       (10) 

Since we assume that the random field model is zero-mean, we also require that 

the optimal data points should satisfy: 

∑
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n

i
i

1

,1λ                (11) 

which guarantees uniform unbiasedness. The optimal filter provided by (10) must 

minimize the mean-squared prediction error: 

{ }22 ));()(( BZB pZEe −≡σ                  (12) 

while upholding the constraint in (12). 

 

The minimization of (12) carried out over nλλ K,1 , subject to the weight 

constraint (11), for the data model in (10) is assumed to hold with the variogram 

defined in (1). For single point prediction, say { }0s=B , the problem can be 

reformulated to one of minimizing 
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with respect to nλλλ ,,, 21 K , and m, where m is the Lagrange multiplier that 

ensures the constraint holds. Using the constraint that the lambdas must add up to 
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1, and after taking partial derivatives with respect to m and the lambdas, we get 

the following n+1 equations and n+1 unknowns: 
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The system of equations in (14) can be represented as the following system of 

linear equations 

000 γλ =Γ          (15) 

where: 

[ ]Tn m,,,10 λλλ K≡               (16) 

[ ]Tn 1),(,),( 0100 ssss −−≡ γγγ K    (17) 
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which results in a real-symmetric matrix 0Γ  of size )1()1( +×+ nn , which solve 

the system of equations.  Next, consider the following substitutions: )1( +n

),(by    0 ji ss −≡ΓΓ γ        (19) 

where the (i,j)th element is ),( ji ss −γ  

[ ]Tni )(,),(by    000 ssss −−= γγγγ K ,       (20) 
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[ ]Tnλλλλ ,,by    10 L=      (21) 

These substitutions, provided from the information from the fitted variogram 

model over the region of data used for estimation, result in the following 

simplified equations: 
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)/()( 11 1111 −− ΓΓ−−= TTm γ        (23) 

where which is length n. [ T1,,1,1 K=1 ]

  

Using the equations for the optimal predictor, we can estimate the 

minimized variance, often referred to the Kriging (or prediction) variance, which 

is given by 
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which is equal to  from (23) and (24). mT +γλ

  

If is Gaussian, then over the joint distribution of 

, we have from (10), (15), and (24) that the predicted 

value 

(.)Z

,), K )((),( 10 nZZZ sss

Ẑ has 
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)(96.1)(ˆ),(96.1)(ˆ( 0000 ssssA kk ZZ σσ +−=      (25) 

as a 95% confidence interval for in the sense that .  It 

is important to note that the variance defining the prediction interval is 

underestimated since it is based on variogram estimates [1]. 

)( 0sZ %95))(ˆPr( 0 =∈AsZ

 

The computational complexity of the Kriging interpolation step is 

dependent on the size of Γ , which has dimensions size NN × , where N is the 

number of interpolated samples being sought. 

 

3.4. Methods 

3.4.1.  Spectral Sampling Rates 

At this point, we present two diagrams that concisely represent the procedures we 

follow in the Kriging approach to spectral data estimation.   The first diagram, 

shown in Figure 3.9, summarizes the procedure of frequency domain sampling 

and modeling, which we based on the theoretical background provided above.  

The second diagram, shown in Figure 3.10, summarizes the procedure we follow 

to reconstruct an image from the statistical models produced by the procedure 

depicted in the first diagram. 

 

Our reconstruction technique utilizes a region-based spatial statistical 

model.  Taking this into consideration, we developed a scalable, adaptive spectral 

lattice sampling scheme that can be effectively implemented using the 2D FFT.  
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Compute Frequency Samples 

Using the 2D FFT 

Partition 2D Spectrum into low, 
medium, and high frequency 

blocks 

Calculate statistical model for each frequency block of the 
transformed magnitude and phase. 

(i) Apply log‐transformation to magnitude spectrum 

(ii) Apply phase unwrapping to the phase spectrum 

Calculate statistical model for each frequency block of the 

transformed magnitude and phase. 

Select frequency domain phase and magnitude samples for each 
block based on sampling geometry. 

 
 
Figure 3.9: Spectral modeling procedure flow chart.  The above procedure diagram that shows the 

logical flow of operations we perform to statistically model and sample the magnitude and phase 

spectra of the Fourier domain. 

 
 
 
 



 

 
  Use statistical model parameters to reconstruct each frequency block from 
its samples (Kriging step) 

Combine the frequency blocks to reconstruct the 2D FFT spectrum 

Apply the exponential transformation to the magnitude spectrum 

Apply the inverse FFT to reconstruct the input image. 

 
 

 
Figure 3.10:  Fourier and spatial image reconstruction flow chart.  This diagram summarizes 

the procedure we use for Fourier spectrum reconstruction from the spectral statistical models 

obtained by the procedure in Figure 3.9 to reconstruct the input image from reduced spectral 

samples. 
 

Here, we consider different Frequency-domain sampling rates for the magnitude 

and phase components of the spectrum. 

 

First, we utilize the symmetry that is inherent to the Fourier domain.  

Since we are working with real-valued images, we note that the Fourier transform 

satisfies: 

),(),( * vuFvuF −−= ,                                  (26) 

where is the complex conjugation operation.  When expressing the Fourier 

domain as magnitude and phase samples, then the Magnitude symmetry gives 

*F

),(,( vuFvuF −−) =  and the phase symmetry gives ),(),( vuFvuF −−−∠=∠ .   
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Thus, we can represent an NN ×  image completely with  

NN ∗+ )12( spectral samples.  Before continuing, we want to define terms that 

denote which spectral region is being considered – both for consistency sake here 

and in the descriptions of our reconstructions which are presented later.  We will 

refer to the three classifications of spectral regions; the region denoted by the high 

frequency blocks, the region denoted by the medium frequency blocks and low 

frequency blocks.  Referring back to Figure 3.5, we connect the labeled regions 

with our new terminology.  The high frequency blocks are represented by the 

outer blocks (labeled as 1-6 in Figure 3.5). The medium frequency blocks are 

represented by the next layer of blocks (labeled as 7-12 in Figure 3.5). The 

innermost blocks represent the low frequency blocks. 

 

Next, we want to consider different sampling rates for the three types of 

blocks. For providing a standard comparison of the proposed sampling rates, we 

use the uniformly-spaced sampling produced by the 2D FFT as a reference. Here, 

we are interested in reducing the number of frequency samples as a function of 

the relative frequency magnitude. 

 

First, we note that the majority of the image energy is concentrated around 

the low frequency components. It is thus of little benefit to expect any significant 

reduction in sampling rates for the low frequencies. Instead, we expect most of 

the reductions to come from reducing sampling rates of the higher and medium 

frequency components. We will thus consider the use of the uniform 2D FFT 
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sampling rates over the lower frequencies. Here, we are treating the lower 

frequency component as a “base layer” that will help us provide a minimum level 

of reconstruction quality.  

 

Our goal is thus one of considering sampling rate reductions for the 

medium and high frequency blocks that can still provide us with acceptable image 

reconstructions. Given the fact that the medium frequency components are 

expected to contain significantly more energy than the higher frequency 

components, we want to consider denser sampling rates for the medium frequency 

components. Given the dyadic configuration of the blocks, we are led to consider 

sampling rates that are twice as dense (in each dimension) for the medium 

frequencies compared to the high frequency components. 

 

For example, we consider a minimum sampling rate reduction of 2 along 

each dimension. This will result in a four-fold reduction in the sampling rate as 

compared to the standard 2D FFT over the same frequencies. Furthermore, for a 

four-fold reduction of the medium frequencies, we will have a sixteen-fold 

reduction for the high frequency blocks.  

 

Ultimately, we are interested in the overall reduction in the number of 

samples, as summarized in Table 3.1. 
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TABLE 3.1 
SPECTRAL STATISTICAL DATA SAMPLE RATES 

                          MAGNITUDE SAMPLING 
PHASE                     REDUCTION  RATE 

 

3.4.2.  Statistical Models for Magnitude and Phase Spectra 

To compute an appropriate statistical model, we begin with the collection of 

variogram models described in Section 2.3.1.   Here, we present our approach at 

discovering the optimal model and parameters that best describe the medium and 

high frequency blocks in terms of interpolation accuracy.  There are three main 

items that must be taken into consideration when developing a model that best 

describes the spectral correlation of the data being modeled.  The first is whether 

or not isotropy can be assumed and the implications of such an assumption.  The 

second is selecting the proper range parameter when calculating the empirical 

variogram.  Finally, we must consider the effects of various variables under our 

SAMPLING                              
REDUCTION RATE 

4X/16X 16X/64X 64X/256X 
 

NONE: 1X/1X 18.75% 11.97% 10.17% 

1X/4X 17.26% 15.57% 15.12% 

4X/16X 9.38% 7.68% 7.23% 

16X/64X 7.68% 5.99% 5.54% 

 

This table contains all of the sampling rates that were explored in this study. We report two 

values for each sampling geometry. The first value (e.g. ×
×

M
N×N from ) refers to the 

sampling rate reduction rate for the medium frequency blocks. The second number refers to the 

reduction rate for the high frequency blocks. Here the reduction rate refers to the number of 

samples kept divided to the samples kept by the standard uniform sampling rate produced by the 

2D FFT. The percentage values refer to the overall reduction. 

95 



 

control in the process of fitting the empirical variogram to a theoretical model.  

We explore each of these items in the following sub sections. 

 

3.4.2.1  Isotropy Model Considerations 

The variogram models we defined above are isotropic, which implies that they are 

defined by the relationship of all points that are radially separated across a desired 

range of lag values.  Anisotropy, in our case, would imply that spatial correlation 

between points is dependent on direction and distance.  The primary implication 

of a non-isotropic model would be additional computational complexity arising 

from the need to calculate as many separate variograms as directions being 

considered.   

 

At this point, it is important to remind the reader that our models are 

defined in a bounded, discrete representation of the continuous Fourier spectrum.  

Therefore, lag that is expressed in terms of distances in the discrete (FFT) 

frequency domain does not depend on the size of the input image.   This is a 

considerable deviation from the traditional understanding of classical 

geostatistics.  Our samples are defined in a normalized domain that is represented 

by multiplying the traditional spatial distance index, which is unity in the image 

domain, by N
π2  where the input image size is NN × .   
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Because the portions of the spectrum represented by the frequency blocks 

in which we sample are continuous, we can define our models with fewer samples 

in the discrete frequency plane.  It is important to realize that the number of 

samples is not indicative of distance.  Even though the 2D FFT generates uniform 

FFT samples, other discrete signal processing methods can generate an arbitrary 

number of samples in any of the continuous, bounded spectral blocks.  One way 

to accomplish this would be by using the Chirp-Z transform, which generates any 

number of samples in any continuous bounded region within the Fourier domain 

[32]. 

 

Isotropic variograms more accurately estimate the variogram because we 

do not have to consider a large number of discrete directions in order to fit the 

model.  Each direction constrains the number of sample pairs along the 

considered vector.  For example, an anisotropic model that considers N discrete 

directions to fit the continuum of possible directions will utilize only ~1/N of the 

total samples that would be available to the isotropic model.  In addition to 

providing a more accurate empirical variogram estimate, the isotropic model will 

be computationally faster as we will not need to consider a large class of 

variogram models.  The isotropic models are also easier to computationally fit, as 

fewer parameters are optimized. 
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3.4.2.2 Variogram Range Selection 

Due to the scalability of our design, we want to ensure that the variogram is 

estimated across the extent of all the samples within the frequency block under 

consideration.  Therefore, we calculate the maximum radial distance that can exist 

from a known sample to an unknown sample and calculate over the lag values 

ranging from spectral data points separated by one sample out to the number of 

samples between the approximate center sample of the frequency block to the any 

of the samples located at the corners of the frequency block. 

 

While acceptable reconstruction may be achieved for lower sampling rates 

when the size of the maximum lag considered in the variogram calculation is 

scaled to better reflect the sampling rate of the data, we accept the additional 

computational cost of variogram calculation over the entire frequency block.  

Again, we support this design decision to ensure that our method is scalable; 

allowing multiple sampling rates to be explored from a single variogram estimate.  

In other words, we ensure that the estimated model provides a semivariance for 

the largest possible sampling rate.  We now consider methods that provide the 

optimal spectral model that fits our scalable design constraint. 

3.4.2.3 Variogram Model Selection and Fitting 

Since we take care to calculate the variogram from the full extent of samples in 

each frequency block, we can dictate how far out the spectral covariance model is 

defined.  From the empirical variogram of each frequency block, we can fit a 
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theoretical variogram model by solving for the model parameters. Here, we 

calculate the model parameters so that they minimize the error between the model 

and the empirical data using the interior trust-region algorithm provided in the 

lsqcurvefit Matlab function. 

 

The sampling rate in applied to each block will govern the size of the 

maximum lag we select to which we fit the models.   Since Kriging utilizes the 

theoretical covariance model to adaptively weight known samples based on the 

distance of the samples to the unknown data point, we see that there is an optimal 

range in which distant samples beyond it are shown to have little effect on the 

interpolated result.  In addition to this, we note that variogram estimates at larger 

lag values tend to be less accurate than estimates at shorter distances.  This is due 

to the variability in the number of samples available for producing the covariance 

estimates.  Since our estimation is from gridded data over bounded domains, it is 

clear that fewer samples are used to estimate the variogram at large distances.   

 

Furthermore, the more accurately the model fits the estimated variogram 

at shorter lag values, the better the Kriging interoplator will perform.  This is 

because there is much more correlation over shorter distance than larger distances.  

An example, we note the success of the nearest neighbor interpolator, where the 

unknown value is assigned the single sample that is nearest.  Over large distances, 

the correlation between samples tends to zero, and fitting variogram models at 
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large discrete frequency distances amounts to fitting semivariance values that do 

not accurately model the covariance field 

 

Therefore, we limit the parameter optimization to a range of lag values 

that are between two and five times the radial distance defined by the sampling 

rate, but not exceeding 25.  Exploration of our data set revealed that three times 

the radial distance of the sampling rate resulted in the best interpolated magnitude 

and phase spectra on a block by block basis.  If this value exceeds 25 for a given 

sampling rate, the model fit will be truncated. 

 

Next, we optimize the parameters for each of the three models in (5)-(7) 

and ultimately select the model that produced the lowest error when comparing 

the estimated semivariance values to the model evaluated at the selected 

maximum value of h.  In other words, we select the model that best fits the 

estimated variogram. 

 

3.4.3.  Kriging Interpolation of Magnitude and Phase Spectra 

3.4.3.1 Magnitude Spectra Estimation 

The second step for reconstruction is to perform simple Kriging, which provides 

the optimal linear estimator of the missing FFT samples. The basic idea is that we 

can provide near-perfect reconstruction by interpolating the missing FFT samples 

and performing an inverse 2D FFT. 
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There are two parameters that we need to consider for optimal 

interpolation performance: the max-distance and the max-samples as shown in 

Figure 3.11. Here, the max-distance parameter refers to the circular radius of the 

maximum discrete-frequency space distance that needs to be considered for 

estimating the missing sample. For Kriging, all known FFT sample values that fall 

within the circle with radius max-distance are used to form the estimate. The max-

samples parameter refers to the exact maximum number of known FFT samples 

that are considered when solving for the Kriging sample estimate. The idea is that 

the number of available samples is a function of the location of the unknown 

missing value, as demonstrated in Figure 3.11.   

 

Two examples of the number and location of the known points used for 

estimation that are limited by a specified radial distance are shown in Figure 3.11.  

The solid circle in Figure 3.11 has the same radius as the dashed circle (seven 

samples), but depending on the location of the unknown point being estimated 

(represented by the ‘x’ marker), the number of known samples used in the 

estimator differs.  The solid circle contains eight known samples (represented by 

the ‘•’ marker), while the dashed circle contains ten known samples.  If a 

maximum number of points is explicitly specified, the location of the points will 

depend on the sampling rate that was applied to the spectral block being 

reconstructed.    
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Significant edge artifacts will occur when specifying the number of known 

samples for Kriging is based on the max-distance parameter.  At the corners of the 

frequency blocks, the circle of radius max-distance that includes known samples 

is constrained to a quarter-circle.  This effectively reduces the number of samples 

that could be included in the sampling region by 75%.  Not as dramatic, but also 

influential would be the known samples selected by a radius of max-

distance for unknown points along the edge of the frequency block.  In this case, 

the most samples that can be included will fall within a half-circle, effectively 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 -7
-7
-6
-5
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-3
-2
-1
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Δ 
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Figure 3.11:  A grid of FFT discrete frequency samples, where we only consider one of every four 

samples in each dimension. The circles represent the region, centered at two unknown samples 

(unknown samples are represented using the ‘x’ marker) with a radius of seven samples.  The 

number of neighboring available samples (known samples are represented using the ‘•’ marker) 

differs based on the location of the unknown sample being estimated.  The solid circle encompasses 

eight known samples, while the dashed circle encompasses ten known samples. 
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reducing the number of known points by 50%.  While these special cases are 

extreme examples of the inconsistency of the reconstruction model provided by 

using max-distance, they support our selection of using the max-samples 

parameter. 

 

For sufficiently large values of the max-distance and max-samples 

parameters, we have found that optimization for either parameter performed 

equally well. Ultimately, we chose to use max-samples in further experiments 

because the number of known samples used in the estimate does not change based 

on the location of the unknown sample being estimated. We provide more details 

on the number of samples in the results section. 

  

Using the best Kriging parameter resulting from the above process, we 

reconstructed the magnitude spectra using a fixed number of semivariance values 

to fit the theoretical variogram models.  The empirical variograms were calculated 

from the full spectra. The individual magnitude spectra estimates for each spectral 

block were compared to other two-dimensional interpolation algorithms:  the 

nearest-neighbor, bilinear, and spline interpolation algorithms [33].  A 

quantitative comparison was made using the PSNR of the reconstructions 

compared to the log-transformation of the original magnitude data. 
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3.4.3.2 Phase Spectra Estimation 

We conducted two studies on the five two-dimensional phase unwrapping 

methods described above.  The first was a quantitative study on the variogram 

estimates obtained from each inner and outer spectral block.  Our intention was to 

learn if any of the unwrapped phase surfaces produced empirical variograms that 

were not well fit by any of the models defined by (2-4) using the residual least-

squared error from the optimal model fitting approach described in the magnitude 

spectral estimation section.   

 

For the sake of consistency, we constrained the variogram length to be 

twenty-five samples and we fit all twenty-five semivariance values for all of the 

spectral blocks under test. The second study consisted of comparison of 

reconstruction quality between the five two-dimensional phase unwrapping 

algorithms used in this study.  Each method was applied to the wrapped phase 

resulting from the Fourier transformation operation on the original satellite image 

and the phase spectra contained in the medium and high frequency spectral blocks 

were sampled and then reconstructed in accordance to the sample rates shown in 

Table I.  Using the estimated variogram model of the fully sampled, unwrapped 

phase spectra and the samples resulting from each sampling rate, we reconstructed 

the phase data using Kriging and compared PSNR values of the reconstructed 

phase to competing interpolation algorithms used to compare the magnitude 

spectra reconstructions.  These methods were the nearest-neighbor, bilinear, and 

cubic spline interpolation methods. 
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3.5. Results 

We present the results of our spectral modeling methods based on image type and 

frequency blocks.  In the following, representative images from the three class 

types are used to support the assumptions we have made regarding the use of 

isotropy, the size of the empirical variograms calculated for the blocks, and our 

approach to finding the optimal theoretical model.  

 

The variogram model results are followed by tabulated results comparing 

the reconstruction results for various sampling rates of both the magnitude and 

phase based on the statistical models we concluded worked best. 

 

3.5.1.  Variogram Isotropy 

Typically, isotropy is validated by visual assessment of variograms 

estimated from samples along discrete directions.  We selected directions are 

defined as 0, 45, 90 and 135 degrees, where 0 is defined as the vertical direction 

upwards from the center of the spectrum.  Figure 3.12 contains the directional 

variograms of four blocks (one medium frequency unwrapped phase block, one 

medium frequency magnitude block, one high frequency unwrapped phase block 

and one high frequency magnitude block) from a single rural image.  We selected 

Block 6 for the high frequency block and Block 11 for the medium frequency 

blocks.  The magnitude and Flynn’s Minimum Discontinuity unwrapped phase for  
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 (e)   (f) 

Figure 3.12: Anisotropic variograms of a high and medium frequency block from a rural image. (a) 

The magnitude spectra. (b) The unwrapped phase spectra. (c) High frequency block magnitude 

variograms. (d) High frequency block phase variograms. (e) Medium frequency block magnitude 

variograms. (f) Medium frequency block phase variograms.   
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Figure 3.13: Anisotropic variograms of a high and medium frequency block from an urban image. 

(a) The magnitude spectra. (b) The unwrapped phase spectra. (c) High frequency block magnitude 

variograms. (d) High frequency block phase variograms. (e) Medium frequency block magnitude 

variograms. (f) Medium frequency block phase variograms.   
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(e) (f) 

Figure 3.14: Anisotropic variograms of a high and medium frequency block from a natural 

image. (a) The magnitude spectra. (b) The unwrapped phase spectra. (c) High frequency block 

magnitude variograms. (d) High frequency block phase variograms. (e) Medium frequency 

block magnitude variograms. (f) Medium frequency block phase variograms.   
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the rural sample image are shown in Figure 3.12(a) and Figure 3.12(b), 

respectively.  Figure 3.13 and Figure 3.14 are the directional variograms over the 

same blocks as in Figure 3.12, but the spectra are representative of an urban 

image (Figure 3.13) and a natural image (Figure 3.14).  

 

From these results, it is clear that the phase spectra exhibit anisotropy for 

all image types, regardless of the spectral block description.  There are clear 

directional trends evident in the unwrapped phase images above.  Exploration of 

the phase spectra from bounded by the blocks we selected do clearly show greater 

variation among samples in the direction associated with the larger semivariance 

values.  The magnitude spectrum, on the other hand does exhibit isotropy for the 

medium frequency blocks, but not as much for the high frequency blocks.  The 

magnitude spectra in the above images are an indication of whether or not 

isotropy is the correct model assumption.  For example, the urban sample in 

Figure 3.13 does not reveal significant directional correlation in the magnitude 

plot (Figure 3.13(a)), and accordingly, the directional variograms exhibit the least 

amount of variation compared to the directional variograms of the magnitude of 

the rural scene in figure 3.12(a), which exhibits strong directional correlation. 

 

Also, the medium frequency blocks tend to exhibit less variation than the 

high frequency blocks for magnitude data samples.  This result is considerable, as 

the number of samples available for variogram estimation is bounded by the 

spectral partitioning, and samples could be limited to the point where the 
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directional variogram estimates are not stable.  In addition, we have confidence 

that our isotropic model assumptions hold for the more critical medium frequency 

regions of the magnitude spectrum, as more energy is contained within the spectra 

encompassed by the medium frequency blocks.  Accurately predicting values 

within these regions will have a larger effect on overall image quality. 

 

We now present a plot of an example of directional variograms from a 

spectral block with the isotropic variogram over the same spectral block included 

as well.   Figure 3.15 depicts both the variogram when isotropy is assumed (the 

dashed line in the plot) and the directional variogram when anisotropy is assumed.  

The isotropic variogram is an approximate bisection of the directional variograms, 

since we have examined directions that were uniformly divided between 0 and 

180 degrees.   This model behavior was shown to be consistent for all of our 

images. 

 
(b) (a) 

Figure 3.15: Isotropic and anisotropic variogram estimates.   (a) The medium frequency block 

(index 11) unwrapped phase of the Erebus Ice Tongue natural image.  (b) Isotropic variogram is 

depicted by the dashed plot, while the directional variograms are the solid plots. 
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3.5.2.  Variogram Range Selection, Estimation, and Model Fitting 

Here, we present the estimated variograms based on spectral block classification 

(high or medium), spectra type (magnitude and phase), and image type (rural, 

urban, or natural).  The most concise way to present all of this information is by 

displaying the variograms of all frequency blocks from one image for each scene 

type.  We also fit each variogram using the distance associated with a reduction of 

the FFT sampling rate by 8 in each dimension for the high frequency blocks and 

by 4 in each dimension for the middle frequency blocks.  Thus, we keep one out 

of every 64 samples in the high frequency blocks and one out of every 16 samples 

in the medium frequency blocks.  The calculated parameters from the fit are 

tabulated for each image. 

 

 

  
(c) (b) (a) 

Figure 3.16: Selected image for which we calculate all of the variogram estimates for each 

spectral block.  (a) Sample rural image. (b) Sample urban image. (c) Sample natural image. 

Figure 3.17 depicts the high frequency blocks and magnitude spectrum 

isotropic variogram estimates and fitted models for the rural image shown in 

Figure 3.16(a).  Figure 3.18 is similar to Figure 3.17, but instead of showing the 

high frequency log transformed magnitude data and associated variograms, it  



0 5 10 15 20 25
0.35

0.355

0.36

0.365

0.37

0.375

0.38
Empirical Variogram
Gaussian Model

0.38

 

     
(a?) 

    0 5 10 15 20 25 30
0.35

0.355

0.36

0.365

0.37

0.375

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

 
(b) 

0 5 10 15 20 25 30
0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

0 5 10 15 20 25 30
0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

    

11
2      (d) 

(c) 

0 5 10 15 20 25 30
0.345

0.35

0.355

0.36

0.365

0.37

0.375

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

0 5 10 15 20 25 30
0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

          
(e) (f) 

Figure 3.17:  The high frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the rural image 

depicted in Figure 3.16(a).  (a) Block 1, MSE = 3.4519e-004 (b) Block 2, MSE = 8.0585e-005 (c) Block 3, MSE = 6.1308e-005. (d) Block 4, MSE = 

8.7423e-005. (e) Block 5, MSE = 4.6925e-005. (f) Block 6, MSE = 7.3069e-005.
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Figure 3.18:  The medium frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the rural image 

depicted in Figure 3.16(a).  (a) Block 7, MSE = 1.7851e-004 (b) Block 8, MSE = 2.9468e-004 (c) Block 9, MSE = 3.7012e-004. (d) Block 10, MSE = 

1.6075e-004. (e) Block 11, MSE = 2.6847e-004. (f) Block 12, MSE = 3.3123e-004. 
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Figure 3.19:  The high frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra using Flynn’s Minimum 

Discontinuity method of the rural image depicted in Figure 3.16(a).  (a) Block 1, MSE = 0.8544 (b) Block 2, MSE = 3.7851 (c) Block 3, MSE = 0.7454 (d) 

Block 4, MSE = 0.4016  (e) Block 5, MSE 0.9805 (f) Block 6, MSE 0.9265 
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Figure 3.20:  The medium frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra using Flynn’s Minimum 

Discontinuity method of the rural image depicted in Figure 3.16(a).  (a) Block 7, MSE = 0.5604 (b) Block 8, MSE = 0.6049 (c) Block 9, MSE = 0.4175  (d) 

Block 10, MSE = 0.3800 (e) Block 11, MSE = 0.5496 (f) Block 12, MSE = 3.3123e-004. 

 



 

 

TABLE 3.2 
RURAL IMAGE VARIOGRAM MODEL PARAMETERS 

RURAL IMAGE LOG-TRANSFORMED MAGNITUDE SPECTRA FLYNN’S MINIMUM DISCONTINUITY UNWRAPPED PHASE 
SPECTRA 

HIGH FREQUENCY MODEL NUGGET PARTIAL SILL RANGE MODEL NUGGET PARTIAL SILL RANGE 
BLOCKS σ  α  β  σ  α β  

BLOCK #1 Gau 0.3616 0.0547 41.4781 Exp 2.3030 12.3223 15.8918 

BLOCK #2 Exp 0.3590 1.3359 38.4214 Exp 2.7546 13.3833 19.8413 

BLOCK #3 Gau 0.3694 0.9123 130.0659 Exp 2.3093 9.4190 13.6046 

BLOCK #4 Gau 0.3579 7.6244 304.3171 Exp 1.6964 6.4891 6.6871 

BLOCK #5 Gau 0.3684 0.0800 36.8298 Exp 2.0602 9.0636 8.9176 

BLOCK #6 Gau 0.3527 0.0659 39.3733 Exp 2.4397 10.6408 14.9786 

11
6 

MEDIUM MODEL NUGGET PARTIAL SILL RANGE MODEL NUGGET PARTIAL SILL RANGE 
FREQUENCY BLOCKS σ  α  β  σ  α β  

BLOCK #7 Gau 0.3630 0.1911 75.8179 Exp 2.7399 23.0698 36.7073 

BLOCK #8 Exp 0.3451 0.1286 61.3807 Exp 2.0909 9.3389 11.3517 

BLOCK #9 Gau 0.3678 0.1208 37.2828 Exp 2.0055 11.8192 14.7781 

BLOCK #10 Gau 0.3478 0.0937 28.9546 Exp 1.9269 17.2233 20.5342 

BLOCK #11 Gau 0.3520 0.9406 136.7583 Exp 2.3750 25.0061 40.7375 

BLOCK #12 Sph 0.3553 0.0449 36.1683 Exp 1.8129 7.9293 7.8809 
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Figure 3.21:  The high frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the urban image 

depicted in Figure 3.16(b).  (a) Block 1, MSE = 2.214-005 (b) Block 2, MSE = 2.314-005 (c) Block 3, MSE = 5.049-005. (d) Block 4, MSE = 4.475-005. 

(e) Block 5, MSE = 2.6847e-004. (f) Block 6, MSE = 3.124-005. 
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Figure 3.22:  The medium frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the urban image 

depicted in Figure 3.16(b).  (a) Block 7, MSE = 1.692-004 (b) Block 8, MSE = 1.797-004 (c) Block 9, MSE = 1.837-004 (d) Block 10, MSE = 1.146-004. 

(e) Block 11, MSE = 1.900-004. (f) Block 12, MSE = 6.492-005.  
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Figure 3.23:  The high frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra of the urban image depicted in 

Figure 3.16(b).  (a) Block 1, MSE = 9.6371  (b) Block 2, MSE = 10.9645 (c) Block 3, MSE = 11.7188. (d) Block 4, MSE = 8.6363. (e) Block 5, MSE = 

9.5283. (f) Block 6, MSE = 6.8242. 

 



 

 

0 5 10 15 20
2

4

6

8

10

12

14

16

||h||

γ(
h)

 

 

Empirical Variogram
Spherical Model

25

     
(a) 

    
0 5 10 15 20

0

5

10

15

20

||h||

γ(
h)

 

 

Empirical Variogram
Spherical Model

 
(b) 

0 5 10 15 20
0

5

10

15

20

25

||h||

γ(
h)

 

 

Empirical Variogram
Spherical Model

0 5 10 15 20
2

4

6

8

10

12

14

16

18

||h||

γ(
h)

 

 

Empirical Variogram
Spherical Model

         

12
0 (c) (d) 

0 5 10 15 20
0

5

10

15

20

25

||h||

γ(
h)

 

 

Empirical Variogram
Gaussian Model

0 5 10 15 20
2

4

6

8

10

12

14

16

18

||h||

γ(
h)

 

 

Empirical Variogram
Spherical Model

          
(e) (f) 

Figure 3.24:  The medium frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra of the urban image depicted 

in Figure 3.16(b).  (a) Block 7, MSE = 4.5509 (b) Block 8, MSE = 11.1402 (c) Block 9, MSE = 12.6231 (d) Block 10, MSE = 6.0065. (e) Block 11, MSE = 

13.7835 (f) Block 12, MSE = 8.0128.  

 



 

 

TABLE 3.3 
URBAN IMAGE VARIOGRAM MODEL PARAMETERS 

URBAN IMAGE LOG-TRANSFORMED MAGNITUDE SPECTRA PRECONDITIONED CONJUGATE GRADIENT UNWRAPPED 
PHASE SPECTRA 

HIGH FREQUENCY MODEL NUGGET PARTIAL SILL RANGE MODEL NUGGET PARTIAL SILL RANGE 
BLOCKS σ  α  β  σ  α β  

BLOCK #1 Exp 0.3519 0.0121 10.0644 Gau 5.2124 35.5886 27.1156 

BLOCK #2 Gau 0.3531 0.0381 75.4755 Gau 5.1938 75.1953 36.2740 

BLOCK #3 Sph 0.3583 0.0679   197.7969 Gau 5.2389 40.9733 28.2459 

BLOCK #4 Exp 0.3546 0.0326    34.8910 Gau 5.0000 82.1963 40.8793 

BLOCK #5 Exp 0.3434 0.0225     2.6090 Gau 4.9716 93.4360 36.7180 

BLOCK #6 Gau 0.3612 0.0286    42.0272 Gau 4.9786 80.7191 39.7428 

12
1 

MEDIUM MODEL NUGGET PARTIAL SILL RANGE MODEL NUGGET PARTIAL SILL RANGE 
FREQUENCY BLOCKS σ  α  β  σ  α β  

BLOCK #7 Gau 0.3606 0.1274 87.9702 Sph 1.6614 4.310e3 36.7073 

BLOCK #8 Exp 0.3650 0.0271 22.6977 Gau 5.2857 4.960e2 11.3517 

BLOCK #9 Exp 0.3449 0.3302 189.8808 Gau 5.4041 3.606e3 14.7781 

BLOCK #10 Gau 0.3517 0.2952 88.2899 Gau 4.9790 6.210e2 20.5342 

BLOCK #11 Sph 0.3737 -0.0091 7.9741 Gau 5.2371 1.956e3 40.7375 

BLOCK #12 Gau 0.3550 0.0353 34.3829 Gau 5.2610 1.450e3 7.8809 
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Figure 3.25:  The high frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the natural image 

depicted in Figure 3.16(c).  (a) Block 1, MSE = 6.0171e-005 (b) Block 2, MSE = 6.2416e-005 (c) Block 3, MSE = 7.9567e-005. (d) Block 4, MSE = 

2.2777e-004. (e) Block 5, MSE = 1.3775e-004. (f) Block 6, MSE = 2.0030e-004. 
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Figure 3.26:  The medium frequency block variogram estimates and adaptively fitted models for the log-transformed magnitude spectra of the natural image 

depicted in Figure 3.16(c).  (a) Block 7, MSE = 7.8661e-004 (b) Block 8, MSE = 4.5098e-004 (c) Block 9, MSE 5.6939e-004 (d) Block 10, MSE = 

4.9588e-004. (e) Block 11, MSE = 2.6569e-004. (f) Block 12, MSE = 4.4269e-004.  
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Figure 3.27:  The high frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra of the natural image depicted in 

Figure 3.16(c).  (a) Block 1, MSE = 9.7911 (b) Block 2, MSE = 4.5381 (c) Block 3, MSE = 7.0495. (d) Block 4, MSE = 5.9942. (e) Block 5, MSE = 9.2806. 

(f) Block 6, MSE = 7.3173. 
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Figure 3.28:  The medium frequency block variogram estimates and adaptively fitted models for the unwrapped phase spectra of the natural image depicted 

in Figure 3.16(c).  (a) Block 7, MSE = 9.1889 (b) Block 8, MSE = 3.6291 (c) Block 9, MSE = 8.4823 (d) Block 10, MSE = 5.8084. (e) Block 11, MSE = 

6.0859 (f) Block 12, MSE = 6.8156.  
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TABLE 3.4 
NATURAL IMAGE VARIOGRAM MODEL PARAMETERS 

NATURAL IMAGE LOG-TRANSFORMED MAGNITUDE SPECTRA FLYNN’S MINIMUM DISCONTINUITY UNWRAPPED PHASE 
SPECTRA 

HIGH FREQUENCY 
BLOCKS 

MODEL NUGGET 
σ  

PARTIAL SILL 
α  

RANGE 
β  

MODEL NUGGET 
σ  

PARTIAL SILL 
α  

RANGE 
β  

BLOCK #1 Exp 0.1628 0.1986 0.8389 Gau 3.9231 75.9363 39.0670 

BLOCK #2 Exp 0.1976 0.1643 0.8758 Sph 1.4454 3.1683e3 7.0682e3 

BLOCK #3 Exp 0.1752 0.1883   0.9391 Gau 3.5527 103.9497 42.7032 

BLOCK #4 Exp 0.2134 0.1515    1.0536 Gau 3.4094 178.5269 50.8369 

BLOCK #5 Exp 0.2850 0.0755     2.0114 Gau 3.8578 62.4113 34.8267 

BLOCK #6 Exp 0.1921 0.1767    1.0022 Gau 3.5847 1.1276e3 146.4274 
MEDIUM 

FREQUENCY BLOCKS 
MODEL NUGGET 

σ  
PARTIAL SILL 

α  
RANGE 
β  

MODEL NUGGET 
σ  

PARTIAL SILL 
α  

RANGE 
β  

BLOCK #7 Exp 0.3185 0.0501 5.7614 Gau 3.3833 9.9424e3 290.9899 

BLOCK #8 Exp 0.1930 0.1535 0.9115 Gau 3.3199 2.9957e3 195.2382 

BLOCK #9 Exp 0.3072 0.0527 3.8801 Gau 1.7931 1.2738e4 336.3380 

BLOCK #10 Exp 0.3180 0.0664 4.0010 Gau 3.5976 3.6167e3 213.5812 

BLOCK #11 Exp 0.2427 0.1320 1.2398 Gau 3.2356 7.8627e3 298.6366 

343.9256 BLOCK #12 Exp  0.2914 0.0845 2.2580 Gau 1.0624e3 2.2609 
 

 



contains the magnitude spectra contained in the medium frequency blocks.  Figure 

3.19 and Figure 3.20 are the extensions of Figures 3.17 and 3.18 to the unwrapped 

phase spectrum.  Table 3.2 summarizes these figures by providing model and 

parameters that were selected for the magnitude and phase spectra blocks. 

 

We present the related results of the urban and natural images in the 

subsequent figures and tables after Table 3.2.  Figures 3.21-3.24 and Table 3.3 

contain the spectral model fitting results of the urban sample image in Figure 

3.16(b).  Figure 3.25-3.28 and Table 3.4 contain the spectral model fitting results 

of the natural sample image depicted in Figure 3.16(c). 

 

In the above figures, we note that the number of variogram coefficients 

that were fit for the high frequency blocks was truncated to be 25, since the high 

frequency sample rate was one out of every eight samples.  The radial lag 

spanning three samples in each dimension is 33.94, which is beyond the limit we 

have found to produce the best fits.  The medium frequency blocks are fit out to a 

lag of 17, since the sample rate in these blocks is one out of every four samples in 

each dimension.  These plots are a good representation of the adaptive and 

scalable solution our method provides.  We also deviated from the use of Flynn’s 

minimum discontinuity method in the urban image unwrapped phase.  Here we 

used the PCG method, which demonstrated the highest median unwrapped phase 

reconstruction PSNR. 
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3.5.3. Magnitude and Phase Kriging 

The results of Kriging methods are best summarized by a comparison of the 

individual reconstruction quality of the magnitude spectra, the individual 

reconstruction quality of the phase spectra. The overall comparison of the 

reconstructed spatial image using Fourier synthesis of the reconstructed 

magnitude and phase spectra is deferred to the following chapter, in which the 

Kriging result is compared to other spectral estimators. 

 

Since the magnitude spectra do not require the additional processing steps 

introduced by phase unwrapping, we limited the comparison of the extent of the h 

to constrain the number of semivariance values used in the model-fitting step to 

the magnitude spectra Kriging results.  In addition, we combined this experiment 

with the grid search described above to compare the affect of n, the number of 

neighboring known samples used in the predictor.  The value for n was selected 

for both the max-distance and max-samples parameter.  For the basic Kriging 

parameters, we summarize our consistent observations into three points: 

1. The number of data semivariance values used in the variogram model-

fitting step does not have a significant impact on reconstruction 

performance. 

2. As the number of known samples used in the Kriging estimator increases, 

the reconstruction quality approaches an asymptotic maximum. 

3. The max-distance and max-samples Kriging parameters that govern the 

number of known samples used by the estimator provide differing results 
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at lower values for n, with the max-distance parameter outperforming the 

max-samples parameter.  As n approaches the asymptotic PSNR limit, the 

performance of the two parameters is virtually equal. 

3.5.3.1 Parameter Optimization Results 

Figure 3.29 provides a high frequency block example of our observations. In the 

example in Figure 3.29, we reduce the FFT sampling rate by 4 in each dimension. 

Thus in two-dimensions, we keep one out of every 16 samples.   

 

For the adaptive variogram estimation problem, we considered the 

following parameters: (i) the max-distance, (ii) the max-sample and (iii) the 

number of samples that were fitted. From our experiments, it became clear that 

the max-distance parameter provided better interpolation results and that these 

results were asymptotically, closely approximated by the max-samples parameter. 

We demonstrate this observation in the example of Figure 3.29.   

 

Based on the sampling rates that were considered and the range of the 

empirical variogram models, we considered fitting the variogram from five to 

twenty samples.  

 

The combination of these parameters led us to perform a search for the 

optimal estimation parameters for Kriging reconstruction on both the magnitude 

and unwrapped phase data, respectively.  The inclusion of the h parameter in this 

experiment results in the flat regions of the PSNR plots in Figure 3.29.  The top 
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(a) (b) 

Fig. 3.29:  Kriging parameter optimization example for the max-distance and max-samples parameters. The plots shown above compare the 

PSNR values of the Kriging reconstructed magnitude spectra of the spectral block labeled “8” in Figure 2.  The steps present in the plots are 

from a result of fitting the variogram model (Gaussian, in this case) using the first five through twenty empirical semivariance values.  The 

max-distance parameter provides a better result when a smaller number of known samples are included in the estimator.  Figure 5(b) is a 

detailed region of Figure 5(a) and reveals that the reconstruction performance converges as the max-distance and max-samples increase.  In 

addition, the plot shows that fitting less semivariance values  results in a slightly higher reconstruction quality, although the difference is 

negligible (<0.01%). 

 



 

 

 
(a) 

  
(b) (c) 

  
(d) (e) 

Figure 3.30:  Variogram model fitting for a medium-frequency block of an urban scene. (a) lower-

half of log magnitude FFT spectrum with block boundary. (b) Gaussian model fit for first 20 

samples, least squares error = 3.4727e-5. (c) Spherical model fit for first 15 samples, least squares 

error = 2.4805e-5. (d) Gaussian model for the first 10 samples, least squares error = 1.4023e-5. (e) 

Exponential model fit for the first 5 samples, least squares error = 2.985e-6. 

plot in Figure 3.29(a) depicts the PSNR value when max-distance is adjusted, 

while the bottom plot in Figure 3.29(a) depicts the PSNR value for when the max-

samples parameter is adjusted.   Figure 3.29(b) shows the region in which the 

plots asymptotically approach the limit of achievable reconstruction quality.   This 
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search was intended to provide a comparison of the interaction between the 

number of semivariance values used in the model fitting step and the number of 

known samples, n in (11), used in the predictor.  Figure 3.30 contains plots of the 

empirical variogram of an inner region of the magnitude spectra of an urban scene 

and the fitted theoretical variogram models when the number of empirical 

semivariance values used in the fitting procedure is altered.  Figure 3.30(a) 

depicts the portion of the magnitude spectra that is being modeled by the 

variogram.  Figure 3.30 (b) – 3.30 (e) show the empirical variograms  and the 

optimal model based on fitting the first 20, 15, 10, and 5 semivariance values, 

respectively. 

 

3.5.3.2 Magnitude Reconstruction Results 

Table 3.5 contains non-parametric summary statistics of the high frequency block 

magnitude reconstruction PSNR values over all ten images.  The statistics we 

have chosen are the minimum, first quartile, median, third quartile, and maximum 

PSNR values of all reconstructions at the three high frequency sample reduction 

rates and the three medium frequency sample reduction rates.  We include the 

same statistics for the cubic spline, nearest neighbor and linear interpolation 

algorithms as a comparison.   The mean PSNR values of the magnitude 

reconstructions for the high frequency bocks are shown in Figure 3.31(a).  Table 

3.6 and Figure 3.31(b) show the analogous statistics for the medium frequency 

blocks.  These results were obtained by fitting the minimum number of 

semivariance values up to either a radius of 25 for sample rates greater than 8; or  
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(a) (b) 

Figure 3.31: High frequency and low frequency block magnitude reconstruction comparison of 

Kriging, splines, Nearest Neighbor and linear interpolators.  (a) The mean PSNR of the high 

frequency block reconstructions.  (b) The mean PSNR of the medium frequency block 

reconstructions. 

 

 

TABLE 3.5 – HIGH FREQUENCY BLOCK RECONSTRUCTION PSNR, MAGNITUDE 

                               Statistic 1st 3rd Min Median Max 
Sample 

 Reduction Rate 
Quartile Quartile 

44.9250 50.2470 52.1638 53.3509 55.0397 16x 

K
ri

gi
ng

 

46.7038 51.6753 53.7825 54.7097 56.7870 8x 

46.7038 53.4854 55.1832 55.7543 57.7496 4x 

16x 43.5644 47.8149 50.0642 51.1259 53.3444 

Sp
lin

e 

8x 45.8346 48.8110 50.8671 51.2437 52.9376 

4x 45.8207 50.0140 50.3334 51.6328 53.4519 

16x 41.7850 45.9392 48.2797 49.5575 51.3172 

N
ea

re
st

  

8x 43.7956 46.6477 48.2320 49.4008 51.0215 

4x 43.8480 47.8078 48.8800 49.5472 51.3849 

16x 45.7441 49.1677 51.5058 52.3860 53.7980 

L
in

ea
r 

8x 46.7093 50.2485 51.4099 52.5443 54.2441 

4x 47.2029 51.2519 52.2092 52.9615 54.7953 
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TABLE 3.6 – MEDIUM FREQUENCY BLOCK RECONSTRUCTION PSNR, MAGNITUDE 

the radial distance equal to three times the sampling rate for sample rates less than 

8.  The Kriging steps were performed using the derived max-samples from a max-

distance parameter value of 25 for the high frequency blocks and 20 for the 

medium frequency blocks.  Experiments on both the high and medium frequency 

blocks revealed that these are the optimal parameter values.  Going beyond 25 

neighbors does not gain significant improvement in reconstructions.  The 

additional computational cost is not worth an unperceivable gain in reconstruction 

quality.   

 

Focusing on the unwrapped phase spectra interpolation, we compared the 

summary statistics of the Kriging interpolated frequency blocks using each phase 

unwrapping method.  While we have noted that the phase unwrapping methods  

                               Statistic 1st 3rd Min Median Max 
Sample 

 Reduction Rate 
Quartile Quartile 

50.2653 53.6246 54.7165 55.6315 57.4620 8x 
K

ri
gi

ng
 

51.0898 54.8056 56.0640 56.8262 58.4081 4x 

54.8583 57.6402 58.6109 59.6397 61.1700 2x 

8x 45.8346 48.8110 50.0642 51.2437 52.9376 

Sp
lin

e 

4x 45.8207 50.0140 50.8671 51.6328 53.4519 

2x 48.8627 52.7184 53.7884 54.5474 56.4266 

8x 43.7956 46.6477 48.2320 49.4008 51.0215 

N
ea

re
st

  

4x 43.8480 47.8078 48.8800 49.5472 53.8498 

2x 46.3429 50.0563 51.2612 52.0159 51.3849 

8x 46.7093 50.2485 51.4099 52.5443 54.2441 

L
in

ea
r 

4x 47.2029 51.2519 52.2092 52.9615 54.7953 

2x 49.8943 53.7752 54.7845 55.5544 57.4253 

 

134 



 

 

TABLE 3.7 – HIGH FREQUENCY BLOCK RECONSTRUCTION PSNR, UNWRAPPED PHASE 

 

                               Statistic 1st 3rd Min Median Max 
Sample 

 Reduction Rate 
Quartile Quartile 

Fl
yn

n 8x 13.42 41.62 52.94 62.50 83.20 

4x 18.23 47.99 62.14 70.20 93.44 

2x 21.96 55.14 67.54 76.04 112.14 

G
ol

ds
te

in
 

8x 8.90 27.25 38.25 43.45 56.94 

4x 24.21 40.27 46.18 50.36 64.89 

2x 21.06 46.79 51.96 54.80 63.99 

8x 11.36 41.70 46.94 55.22 77.20 

Q
ua

lit
y 

4x 11.36 44.63 54.30 60.61 86.05 

2x 16.50 45.12 56.49 62.32 80.48 

8x 11.36 46.30 57.50 65.38 86.12 

W
M

G
 

4x 16.28 52.27 60.71 71.65 94.32 

2x 20.82 58.12 65.94 76.82 101.02 

PC
G

 8x 8.41 49.33 65.96 71.84 85.21 

4x 11.70 52.27 68.50 75.03 89.14 

2x 11.71 51.61 69.61 77.87 94.48 

TABLE 3.8 – MEDIUM FREQUENCY BLOCK RECONSTRUCTION PSNR, UNWRAPPED PHASE 

                               Statistic 1st 3rd Min Median Max 
Sample 

 Reduction Rate 
Quartile Quartile 

Fl
yn

n 4x 14.93  42.88 50.10 57.93 94.54 

2x 29.63 50.60 59.22 64.67 103.66 

4x 12.24 32.51 38.87 44.10 52.68 

G
ol

d 

2x 27.57 44.28 46.68 50.91 61.29 

Q
ua

lit 4x 14.01 40.19 52.29 57.34 72.91 

y

2x 29.90 44.33 53.04 61.69 76.67 

4x 4.99 52.27 49.97 71.65 77.52 

W
M

G
 

2x 11.60 58.12 55.57 76.82 89.93 

PC
G

 4x 14.97 44.40 55.97 63.29 79.14 

2x 26.12 49.07 61.30 70.10 84.33 
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differ in computational complexity, we intend to explore the difference between 

the methods in terms of effectiveness in adaptive model selection and, subsequent 

spectral estimation via Kriging.  Table 3.7 and Table 3.8 contain the summary 

statistics for each unwrapping method for the high and medium frequency blocks, 

respectively. 

 

The first noticeable characteristic of these results is the large amount of 

variability between these results.  We want to consider the median values as an 

indicator of which unwrapping method is better suited for Kriging based on the 

PSNR of the unwrapped frequency block reconstructions.  According to the 

tables, the Preconditioned Conjugate Gradient method shows the highest median 

PSNR values.  The overall best reconstructions (based on the maximum achieved 

PSNR) were achieved using Flynn’s Minimum Discontinuity method.  Both of 

these results are indicated by the bold font in Table 3.7 and Table 3.8.   Both 

methods show similar statistical values and our choice again is motivated by the 

amount of unwrapping performed by each method. 

 

As noted previously, Flynn’s Minimum Discontinuity method produces 

the globally minimal phase unwrapping solution.  Errors within an unwrapped 

surface that is represented by a smaller range of phase values will produce a 

smaller absolute error when the phase is re-wrapped by the inverse FFT operation 

than an unwrapped surface with greater range in the unwrapped phase values.  

The PCG and Flynn method are both iterative as they solve optimization 
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problems.  From our tables, it is clear that the other path following algorithms, 

although very fast, do not achieve acceptable results.  Our assumption is that 

computational cost is not as much a factor as overall reconstruction performance.    

To provide a summary of the above results, we present the mean PSNR values of 

each of all phase unwrapping methods in Figure 3.32. 

 

(a)  (b) 

Figure 3.32: High frequency and low frequency block unwrapped phase reconstruction using 

Kriging to compare unwrapping methods. (a) The mean PSNR of the high frequency block 

reconstructions.  (b) The mean PSNR of the medium frequency block reconstructions. 

In Figure 3.32(b), we see that the mean PSNR values for the medium 

frequency reconstructions were the best when modeling the phase that has been 

unwrapped with Flynn’s Minimum Discontinuity method.  This result further 

supports our assumption, as the medium frequency components of the discrete 

FFT require more accurate reconstruction.  As mentioned previously, 

reconstruction errors over the medium frequency blocks will be more noticeable 

in the spatial domain image. 

 

137 



 

3.6. Discussion 

In this section, we briefly review some of the key concepts that were developed in 

this chapter and provide further analysis on the results that were obtained.  

Because this chapter focused on the development of statistical spectral models 

and the interpolation of the magnitude and phase of the images in our data set, the 

results and subsequent analysis of the spatial image reconstruction summarized in 

the reconstruction procedure diagram in Figure 3.10 are deferred to the next 

chapter.    

 

Here, we want to return to the three main concepts of spectral model 

selection and the application of the optimal models used in Kriging 

reconstruction.  Recall that three points must be considered when defining the 

statistical model for each spectral block.  These are whether or not isotropy is 

assumed, the size of the variogram that is to be estimated in each block, and how 

much of the empirical variogram is to be used in calculating the best model.   

 

3.6.1  Remarks on Spectral Statistical Models 

We conclude that the isotropic model assumption is valid for the medium 

frequency blocks on the log-transformed magnitude spectra.  This is a key result, 

as the isotropic model will result in a larger number of spectral samples from 

which to calculate the method of moments estimate in (2).   Following the law of 

large numbers, the greater the number of samples used in the estimate, the more 

accurately the variogram estimate becomes.   If we were required to work under 
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an anisotropic model, the number of points for each directional variogram would 

be reduced by a factor equal to the number of individual directions considered.   

 

In spectral blocks where the isotropic model assumption violates the actual 

data, as was the case for both the high and medium frequency blocks of the 

unwrapped phase, we still argue for the use of isotropic variogram estimation and 

models.  We showed that the isotropic model is a general model that is 

approximately equal to the mean of the directional variograms (refer to Figure 

3.15).  The use of an isotropic model also reduces the complexity of the model in 

each spectral block.  Thus, we accept a generalized model over the high frequency 

blocks in magnitude, when the data exhibits some anisotropy, to reduce the 

complexity of the solution.  Again, we note that when our assumptions violate the 

spectral covariance in this way, the generalization is isolated to a bounded region 

of the spectrum due to the scalability built into the design of our spectral sampling 

procedure.   

 

Our results revealed that it is not necessary, and even advantageous, to fit 

a reduced number of lag values when calculating the variogram model.  Further 

exploration into the effects of reducing the size of the variogram estimates on 

reconstruction is something that we have considered to be outside of the scope of 

this work.   We did find that all variogram coefficients should not be fitted, 

because the models that are calculated from the full empirical variogram tend to 

over-fit the coefficients at large lag values.   It is more beneficial for the model to 
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fit the variogram estimate at the smaller lag values, as the samples that are the 

closest neighbors to the sample being estimated have are more influential than 

known samples further away.   

 

Our experiments revealed that a single empirical variogram can be 

represented by a number of unique model parameters based on the extent of the 

lag that is being fit.  Each model shown in Figure 3.30 is the best fit for the 

number of lag values being considered.  This supports our claim that an adaptive 

model, based on the spectral sampling rate, is feasible and results in a more 

accurate predictor.   

 

3.6.2  Magnitude and Phase Kriging Remarks 

A key contribution we have presented is the fact that we have found the limit of 

the number of samples that produce the optimal reconstructed spectral blocks.  

Going beyond the number of samples contained in a radius of 25 in the high 

frequency and 20 in the medium frequency blocks does not result in a noticeable 

improvement in the Kriging process.  Based on the range parameters presented in 

Tables 3.2, 3.3, and 3.4, we realize that the theoretical range that best fits the 

empirical variogram does not provide a reasonable value for the number of 

samples to include in the estimator.  Since our process is adaptive and seeks the 

optimal model for each frequency block being tested, we expected and observed 

large variation in the range parameter of the model.  Since these values are used to 
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mathematically define the model applied in Kriging, we rely on the consistencies 

revealed by our search for the optimal number of prediction points for each block. 

 

Clearly, the magnitude reconstruction using Kriging outperforms the 

competing interpolation methods we tested.  When comparing the behavior of the 

magnitude and phase reconstructions, we notice a considerable difference 

between the Kriging reconstructions of the magnitude spectra and the unwrapped 

phase spectra.  We also see the potential for magnitude spectra extrapolation of 

samples that are restricted to the low frequency regions based on the overall 

performance of the magnitude spectra reconstructions here.  We defer this 

experiment to Chapter 4, as its effects will be best noted by examining the spatial 

image from the extrapolated magnitude and full phase spectra.  The phase spectra 

exhibit much more variability in reconstruction performance.  We note the large 

range between the minimum and maximum values for all phase unwrapping 

methods in Tables 3.7 and 3.8 compared to the tight bounds of the Kriging results 

in Tables 3.5 and 3.6.   

 

Inaccurate phase reconstructions will result in spatial domain 

reconstruction artifacts and a poor overall reconstruction.  We take this into 

consideration when selecting the amount of phase sampling to be included.  A 

discussion on our decision making process for sample rate selection is deferred to 

Chapter 4, which examines the input image reconstruction for various magnitude 

and phase rates. 
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We show two spectral reconstructions in Figure 3.33.  The phase 

reconstruction for the first image was selected because it resulted in the best phase 

reconstruction using the 4x/2x sample rate of all images in our data set.  The 

average phase PSNR for the high frequency blocks in Figure 3.33(b) is 88.40 dB 

and the medium frequency blocks is 87.42 dB. 

 (a)   
(b) 

  
(c) (d) 

Figure 3.33:  Example of best and worst phase reconstructions.  (a) Original unwrapped phase 

spectra for rural image in Figure 3.1(c).  (b) Kriging reconstruction of (d).  (c) Original unwrapped 

phase spectra for natural image in Figure 3.4(b).  (d) Kriging reconstruction of (c). 

 

The phase reconstruction for the second image was selected because it 

resulted in the worst phase reconstruction using the 4x/2x sample rate.  The 
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average phase PSNR for the high frequency blocks in Figure 3.33(d) is 42.31 dB 

and the medium frequency blocks is 44.52 dB.  This example shows the wide 

variability in unwrapped phase reconstruction performance, and leads us to focus 

on reconstructions of Fourier spectra where the magnitude spectra is sampled and 

reconstructed and the phase spectra is left undisturbed.  These experiments are 

developed and presented in Chapter 4. 

 

3.7.  Conclusion 

In this chapter, we have developed a spectral covariance modeling technique and 

Fourier spectra reconstruction method by extending geostatistical theory to the 

discrete Fourier domain.  We found that the problem of spectral modeling is well 

suited for scalability, in which magnitude and phase sampling is performed in a 

manner that the frequency content with more energy (which, for naturally 

occurring images, is located at the center of the spectrum) is given greater 

importance in governing the spatial image quality.  Therefore, we proposed 

combinations of sampling rates that are applied separately to the high and medium 

frequency blocks generated by the dyadic partitioning of the spectral data.   

 

By bounding the discrete Fourier domain into blocks, we were able to 

localize the problem of determining the spectral covariance model over small, 

intrinsically stationary regions.   Theoretical variogram models were then 

adaptively calculated for each block variogram estimate, ensuring the best model 

for each high and medium frequency block sampling rate.  Using the optimal 
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models, we were able to interpolate the removed magnitude and phase spectrum.  

Using the large number of individual reconstructions from ten images and twelve 

frequency blocks per image, we were able to explore the effect of the number of 

samples (which is proportional to the block sample rate) used in the Kriging 

estimate, and discovered that a relationship exists between the number of samples 

used in Kriging and the reconstruction accuracy.  We discovered that an 

asymptotic limit exists for both the high and medium frequency blocks.  This 

discovery revealed that including samples beyond the limit will only increase the 

computational cost of model fitting and estimation. 

 

The large number of Kriged phase blocks allowed for a quantitative 

comparison between phase unwrapping methods.  The path following phase 

unwrapping algorithms resulted in unique phase surfaces.  We have shown that 

some unwrapping methods resulted in phase data that is better suited for our 

spectral statistical modeling approach.  It was shown that both the Flynn’s 

Minimal Discontinuity and both minimum norm methods (Weighted Multi-Grid 

and Preconditioned Conjugate Gradient) resulted in much better block 

reconstructions.  Our decision to implement Flynn’s method was due to the fact 

that it generally results in a smaller range in the unwrapped values, from which 

localized interpolation values will result in a smaller absoluter error when the 

inverse 2D FFT is applied to the reconstructed magnitude and phase spectra. 
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Overall, our adaptive approach yielded spectral reconstructions that were 

between 2 and 4 dB higher than a 2D linear interpolator, 3 to 6 dB higher than 

cubic spline interpolation, and 4 to 9 dB higher than nearest-neighbor 

interpolation.  The ordinary Kriging model we present is well suited for the 

difficult task of discrete Fourier spectrum estimation.  While more complicated 

Kriging algorithms do exist, the computational complexity they require increases 

the attractiveness of our simple, general models. 
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Chapter 4 

Fourier Spectra Reconstructions of 

Satellite Imagery Part II: 

Reconstructions from Statistical 

Models and Compressive Sensing. 
 

4.1 Introduction 

Two different approaches to spectral reconstruction have been presented thus far, 

and while the end goal of each method is similar, the means to the end used by 

each approach differ considerably.  Image reconstruction from under sampled 

data in a sparse (e.g. Fourier) basis is the primary motivation of compressive 

sensing theory.  Spatial data estimation using Kriging, on the other hand, is based 

on spatial statistical modeling known spatial data points and using semivariance 

models to provide the best weighted linear predictor for unknown values. 

     

Clearly, Kriging relies on statistical models of the known data to provide 

an interpolated result, while the compressed sensing approach can be viewed as a 

black-box (from the perspective of the Fourier domain samples), brute-force 

optimization approach to finding the interpolated result.  Using the following 
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comparisons, we want to explore whether there is any significant image 

reconstruction benefit from the statistical modeling method required by Kriging.  

In other words, we want to understand which Fourier spectra reconstruction 

method gives the best reconstruction perceptually by using the structural 

similarity and in the mean-squared error sense by calculating the peak signal to 

noise ratio.  The answer will become clear as we approach the same data set with 

the spectral estimation techniques we developed using CS and Kriging and 

compare the results based on these image quality metrics.  

 

 The quality of image reconstruction is typically quantified by the peak 

signal to noise ratio (PSNR) and provides a measure of the amount of noise 

introduced to the image from the reconstruction method used.   The PSNR is 

defined as: 
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 MSE is the mean square error result between the reconstruction result Kc and the 
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While the PSNR metric provides objective measure of reconstructed image 

quality, the subjective assessment of an observer is tends to play a large part in 

determining the performance of an image compression result.  The human vision 

system (HSV) can be assumed to be highly adapted in extracting structural 

information from a scene and can judge the effectiveness of compression or 
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“correctness” of the reconstructed image.  It is this characteristic of the HSV that 

the Structural Similarity Index (SSIM) attempts to quantify [1]. 

 

 SSIM attempts to provide an image quality metric based on the fact that 

natural images are highly structured.  In other words, there is high dependence 

between pixels that are in close proximity to one another because they are likely 

to be part of the same object, or structure, in the image.  A key difference between 

SSIM and other metrics of structural degradation is that SSIM assumes that the 

structural information in an image is independent of scene illumination.  The 

SSIM index can be defined as a function of three comparison operators on the 

original and distorted (reconstructed) image:  a luminance comparison , a 

contrast comparison , and a structural comparison component : 
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In what follows, we will provide mathematical definitions of each component. 

First, we note that to ensure that the component definitions need to allow for (i) 

SSIM index adheres to the conditions of symmetry, (ii) boundedness (the SSIM 

index is less than or equal to 1), and (iii) produces a unique maximum.  The 

luminance comparison is defined as: 
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where  is a constant that is included to ensure stability if is very close 

to zero.  Typically,  is selected based on a small percentage of the dynamic 

range of the image being reconstructed. Also, 
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Iμ  is the mean value of the original 
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image and Kμ is the mean value of the distorted image.  The contrast comparison 

is similar to (4), but instead of being based on the mean intensity value of the 

image, it is based on Iσ  and Kσ , the unbiased discrete estimate of the standard 

deviation of the original and distorted images, respectively: 
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The structure comparison is defined as: 

3

3),( KI
C

C
s

KI

IK

+
+

=
σσ

σ
   (6) 

and is combined with (4) and (5) to provide a formal definition for the SSIM 

index between the original image, I, and the compressed image, K: 

[ ] [ ] [ ]γβα ),(),) KIsKKSSIM ⋅= (Ic⋅,(Il,( KI

0

,    (7) 

where >α , 0>β , and 0>γ are parameters that allow for emphasis on specific 

comparison measurements.  We applied the mean SSIM index with 1=α , 1=β , 

and 1=γ , along with the default values for the constants in each term as defined 

by mean-opinion scores from large data sets described in [1].   

 

We selected a new sub image data set, taking care to provide significant 

variation of image scenes in the satellite data set, to provide us with an indication 

of general performance of both spectral estimation approaches.  Since the 

sampling method utilized in each approach differ, care was taken to ensure that 

the number of samples retained for both methods was equal when reconstructions 

were compared.   In other words, the number of samples from the high, medium, 
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and low frequency blocks used in the Kriging reconstruction will define the 

number of samples used in the compressive sensing sampling geometries.  

 

 A secondary image quality comparison will be presented in which select 

images from the original satellite data set are used instead of sub images of a 

fixed size.  Since the original satellite image data set contains arbitrarily shaped 

samples, additional pre and post processing steps are required to reshape the 

Fourier spectrum so both dimensions are an equal power of two in length for the 

CS algorithm. 

 

 Finally, this chapter will conclude with a comparison of the 

computational cost of the two methods by examining processing time between the 

two reconstruction approaches and an approximation of the total number of 

multiplications and additions for a given image required by each technique.  

While newer CS reconstruction algorithms have been developed to increase the 

efficiency in solving problems minimizing the  norm, such as [2], we can still 

expect that the latest compressive sensing solutions would still require 

significantly more computational resources than Kriging.  A summary of the 

computational complexity in terms of function evaluations and matrix inversions 

of each method will also be presented.  

1l
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4.2 Sub Image Data Set Selection 

The image subset we chose to use in this experiment is made up of nine satellite 

sub images and a single brain slice.  This comparison data set selected from the 

satellite data set was chosen in a way that each scene type (rural, urban, and 

natural) was represented by three sub images.  Therefore, the comparison image 

set totals ten images.  These images, along with the magnitude of the Fourier 

spectrum (after a logarithmic transformation to compress the dynamic range for 

better visual representation) are depicted in Figure 4.1.  Three sub images of the 

rural scene class are shown in Figure 4.1(a)-(c).  Figure 4.1(d)-(f) are the three 

sub images of the urban scene class.  Figure 4.1(g)-(i) depict the three sub images 

that represent the natural scene class.  Figure 4.1(j) is the brain slice that was 

included in the comparison study.   

 

The nine sub images selected from the satellite data set are 

pixels.  The height and width of the images used in the fMRI study were 

constrained to of size  using zero padding to allow the use of the WaveLab 

software package [3].   The brain scan in Figure 4.1(j) was zero-padded to be 

 pixels.   

128128×

6464×

N2

 

The compression rates explored on each of the sub images are consistent 

with the experiments performed in Chapter 3.  Compressive sensing sampling 
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(a) (b) 

    
(c) (d) 

     
(e) (f) 

    
(h) (g) 

    
(i) (j) 

Figure 4.1: Images that comprise our sub image data set.  The subsequent magnitude spectrum of the 

Fourier domain for each image is also shown.  (a)-(c) Rural sub images. (d)-(f) Urban sub images (g)-(i) 

Natural sub images.  Figure (j) Single brain slice image. 



 

geometries were generated of the Spiral Low Pass (SLP) class in Chapter 2, as 

well as a modified version of the Random Sampling on a PDF (RSP) class.  In 

this case, we defined the sampling probability distribution function along both 

image dimensions instead of just along the phase-encoded (image width) 

dimension.  This new class was motivated by the success of the SLP class in the 

fMRI reconstruction experiments, and this referred to as the RSP2 class.  The 

(a) (b) 

(c) (d) 

Figure 4.2: (a) SLP using 18.75% of the data samples. (b) SLP using 9.91% of the data samples. (c) 

RSP2 using 18.75% of the data samples.  (d) RPS2 using 9.91% of the data samples. 
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random nature of the RSP2 sampling geometry class is supported by the 

compressive sensing theory of maximizing incoherence between the 

transformation basis and the reconstructed sample space.  Two sampling 

geometries of different rates for the SLP class and the new RSP2 class are shown 

in Figure 4.2.  We differentiated the Kriging reconstructions into two approaches:  

interpolation of the magnitude spectra only and interpolation of both the 

magnitude and the phase spectra.   Due to the small size of the images in the 

comparison data set, the sampling reduction rates was limited to 4, 8, 16, and 24 

samples in the high frequency spectral blocks and 2, 4, 8, and 12 for the medium 

frequency spectral blocks  as shown in Figure 3.5 in Section 3.3.1.  These rates 

were used for the magnitude spectra interpolation.  Combining the first three 

magnitude rates with high frequency sampling reduction rates of 8, 4, and 2 and 

medium frequency reduction rates of 4, 2, and 0 for the phase spectra, we were 

able to compare nine  (eight unique) data reduction rates when Kriging both 

magnitude and phase.  In terms of sample reduction, we compared sampling rates 

of 18.75%, 11.97%, 10.17%, and 9.91% when estimating magnitude spectra only, 

and reconstructing using all of the phase spectral samples.  When performing 

Kriging on both magnitude and phase, we compared sampling rates of 17.26%, 

15.57%, 15.12%, 9.38%, 7.68%, 7.23%, 5.99%, and 5.54%.  

 

For comparing full size images, we selected one image of each of the three 

satellite image types.  The images we selected are significantly larger than those 

in the sub image data set above:  the largest is 501351× pixels, while the smallest 
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we have chosen in 401236× pixels.  The larger image sizes in the full 

comparisons allowed us to explore several sampling reduction rates for both the 

medium and the high frequency spectral blocks.  We increased the high frequency 

spectral block reduction rate from 24 to 32 and 64 times and the medium 

frequency spectral block reduction rate from 12 to 16 and 32 times. 

 

4.3 Comparison of Reconstructed Image Quality  

4.3.1 Kriged Magnitude Spectra and CS Reconstruction 

Comparison  
Our intention in this comparison study was three-fold.  First, we desired to know 

whether or not the optimized compressive sensing objective function provides a 

general solution that can be applied to other image types, such as aerial images.  

Second, we used this opportunity to quickly analyze the positive or detrimental 

effects of phase spectra interpolation using Kriging.  This is an important point to 

consider, as estimating the phase spectra comes at an additional computational 

cost in the form of phase unwrapping, which may be considerable when one 

considers the straight-forward approach of applying Ordinary Kriging to the 

magnitude data.  This must be taken into consideration, especially when phase 

interpolation does not achieve a substantial reduction in samples beyond 

magnitude interpolation by itself.  And, of course, the third motivation of this 

comparison was already mentioned in the introduction and holds considerable 

significance.   If our Kriging model outperforms compressive sensing then a new 
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approach to spectral and, in turn, image reconstruction paradigm has been 

developed using elegant statistical models that result in a simple solution from a 

linear system of equations.   

 

Beginning with the more conservative and simple Kriging 

implementation, we compared the image reconstruction metrics when 

interpolation the magnitude spectra at Fourier sampling rates 18.75%, 11.97%, 

10.17%, and 9.91%.   Comparable SLP and RSP2 compressive sensing sampling 

geometries were generated at these rates.  Summary statistics for the PSNR and 

the mean SSIM index values for this comparison shown in Table 4.1 through 

Table 4.4.  The statistical measurements we chose were the non-parametric 

minimum, 1st quartile, median, 3rd quartile, and maximum. 

  

From Tables 4.1, 4.2, 4.3, and 4.4, it is clear that Kriging interpolation of 

the limited samples of the magnitude spectra significantly outperforms the CS 

reconstructions.  Figure 4.3 depicts the mean PSNR and mean SSIM index for 

each method.  We also included the mean zero-filling reconstructions using the 

CS sampling geometries.  Here, the zero-filled PSNR and SSIM values were 

slightly (1-2 dB) higher for the zero filled result than the CS result when using the 

SLP sampling geometry for the urban image class. This indicates that the 

optimization of the CS Wavelet coefficients did not produce the appropriate 

results, since our search for the optimal CS model parameters starts with the zero- 



 

 

TABLE 4.1  
SUMMARY STATISTICS OF PSNR AND SSIM FOR 18.75% EFFECTIVE SAMPLING RATE  

(MAGNITUDE SAMPLING RATE IS 9.375%) 

 PSNR SSIM 
Reconstruction 

 

 

TABLE 4.2 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 11.97% EFFECTIVE SAMPLING RATE 

 (MAGNITUDE SAMPLING RATE IS 5.985%) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging (Mag) 52.71 dB 56.94 dB 63.13 dB 78.30 dB 86.48 dB 0.8060 0.8138 0.8569 0.8961 0.9509 

Opt CS, SLP 
Class 

39.12 dB 45.00 dB 50.83 dB 69.83 dB 80.43 dB 0.5065 0.5779 0.7107 0.8194 0.9586 

Opt CS. RSP2 
Class 

36.06 dB 41.92 dB 46.85 dB 51.94 dB 62.26 dB 0.3983 0.4265 0.5636 0.6389 0.8806 

 

Method Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging (Mag) 0.9632 52.71 dB 58.80 dB 64.45 dB 81.31 dB 88.98 dB 0.8181 0.8285 0.8835 0.9086 

Opt CS, SLP 41.62 dB 46.20 dB 52.27 dB 72.98 dB 86.41 dB 0.6316 0.6612 0.7887 0.8661 0.9756 
Class 

Opt CS. RSP2 38.04 dB 42.67 dB 50.20 dB 61.68 dB 74.97 dB 0.4169 0.4859 0.5959 0.7230 0.8807 
Class 
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TABLE 4.4 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 9.91% MAGNITUDE SAMPLING RATES 

(MAGNITUDE SAMPLING RATE IS 4.955%) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging (Mag) 44.33 dB 44.81 dB 57.00 dB 64.53 dB 79.00 dB 0.6795 0.7109 0.7890 0.8425 0.9198 

Opt CS, SLP 
Class 

38.37 dB 43.54 dB 49.68 dB 68.10 dB 77.70 dB 0.4642 0.5299 0.6720 0.7908 0.9497 

Opt CS. RSP2 
Class 

35.96 dB 40.24 dB 45.97 dB 56.70 dB 60.83 dB 0.0224 0.3170 0.4822 0.5681 0.8364 

 

TABLE 4.3 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 10.17% MAGNITUDE SAMPLING RATE 

(MAGNITUDE SAMPLING RATE IS 5.085%) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging (Mag) 47.47 dB 49.07 dB 59.38 dB 68.25 dB 83.39 dB 0.7263 0.7490 0.8302 0.8689 0.9388 

Opt CS, SLP 
Class 

38.48 dB 43.85 dB 49.79 dB 67.99 dB 77.82 dB 0.4675 0.5328 0.6777 0.8016 0.9487 

0.8915 0.5950 0.6250 Opt CS, RSP2 
Class 

36.14 dB 39.79 dB 49.63 dB 57.57 dB 64.63 dB 0.3502 0.4714 

 



 

 

 
(a) 

 
(b) 

Figure 4.3:  The mean PSNR and mean SSIM values for magnitude sample rates. (a) Mean 

PSNR for all sub images.  (b) Mean SSIM index for all sub images.  We used magnitude Kriging 

and the associated sample rates for the SLP and RPS2 CS sampling geometries.  The mean 

values from zero-filling the CS sampling geometries reconstructions are also included in these 

filling and attempts to improve it. However, in the defense of the original code 

from Stanford, it is important to note this starting point worked in nearly all cases, 

despite that fact that it is clearly an extreme case. The CS result when using the 
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RSP2 sampling geometries was consistently better than the zero filled result for 

the RSP2 sampling geometries. 

 

Figures 4.4 – 4.8 contain a comparison of the reconstructed sub images 

from each class that resulted in the greatest combined SSIM and PSNR 

improvement using Kriging over the CS SLP method at a given sampling rate.  

Figure 4.4 shows the original and reconstructions of the second rural sub image 

from 11.97% of the Fourier samples.  In this example, the PSNR values were 

85.32dB for the Kriging reconstruction, 79.07 dB for the CS SLP reconstruction, 

and 48.62 dB for the CS RSP2 reconstruction.  Visual assessment of this result 

supports the result that the Kriging reconstruction is better, even though the mean 

SSIM index value for magnitude interpolation for Kriging was 0.9373 compared 

to 0.9527 for the CS SLP reconstruction.  The smooth regions of the image, 

representing uniform vegetation (grass, wheat, etc.) and roads, were more 

accurately reconstructed using the SLP compressive sensing sampling method.  

Referring to Figure 4.1(c), one can quickly see that the spectral energy is 

concentrated near the center of the Fourier spectrum.  Since these samples are 

retained by the SLP mask, the analogous spatial domain pixels are better 

reconstructed (note the ringing effects of interpolating portions of the low 

frequency content in the spectral domain with Kriging). Conversely, the 

magnitude Kriging interpolation results depict much better reconstruction of the 

finer details of the image, such as the structures in the upper left portion of the 

image.  Figure 4.9(a) and (b) contains the SSIM maps of the reconstructions 
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shown in Figure 4.4(b) and (c).  From these maps, it is clear that the low pass 

 

sampling geometry boosted the reconstruction in terms of structural similarity on 

an image with many piecewise constant regions.   

 
(a) (b) 

 
(d) (c) 

 
Figure 4.4:  Comparative example for a rural sub scene reconstruction using 11.97% of the 

original samples. (a) Original image, (b) Kriging magnitude reconstruction (85.32 

dB/SSIM=0.9373), (c) Optimal CS reconstruction using SLP reconstruction (79.07 

dB/SSIM=0.9527), (d) Optimal CS reconstruction using RSP2 sampling geometry (48.65 

dB/SSIM=0.6923). 
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(a) (b) 

 
(d) (c) 

 
Figure 4.5:  Comparative example for an urban sub scene reconstruction using 18.75% of the 

original samples. (a) Original image, (b) Kriging magnitude reconstruction (65.26 

dB/SSIM=0.7263), (c) Optimal CS reconstruction using SLP reconstruction (50.06 dB/SSIM= 

0.7877), (d) Optimal CS reconstruction using RSP2 sampling geometry (50.21 dB/SSIM= 0. 

6398). 

While the rural figures contained many smooth (piecewise constant) 

regions, the urban images represent the other extreme where many spatial 

characteristics of the image are governed by high frequencies in the Fourier 

domain.   Figure 4.5 contains the results of the first urban image reconstructed 

from 18.75% of the spectral samples.  The PSNR values calculated from these 
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reconstructions were 65.26 dB, 50.06 dB, and 50.28 dB for the Kriging, CS SLP 

and CS RSP2 reconstruction methods.  The urban images, due to their 

characteristic of having more high frequency content, exhibited better 

reconstructions from interpolation of high frequency spectral points.  This is also 

supported by the fact that random CS sampling geometry, which does sample 

from high frequency regions, outperformed the SLP CS sampling geometry.  The 

  
(a) (b) 

  
(c) (d) 

Figure 4.6: Comparative example for a natural  sub scene reconstruction using 11.97% of the 

original samples. (a) Original image, (b) Kriging magnitude reconstruction (50.90 

dB/SSIM=0.8540), (c) Optimal CS reconstruction using SLP reconstruction (39.13dB/SSIM= 

0.5065), (d) Optimal CS reconstruction using RSP2 sampling geometry (36.06 dB/SSIM= 

0.3513).
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CS reconstructions, from a visual grading perspective, tend to be highly 

quantized, and small details in the image are completely lost, even though the 

SLP CS reconstruction resulted in a mean SSIM value of 0.7877.  Included in 

Figure 4.9(c) and (d) are the SSIM index maps for the Kriging and CS SLP 

reconstruction for the urban sub image sample. 

 

The natural sub images are unique in that they contain characteristics of 

both the rural (piecewise constant regions) and urban (small structures, highly 

textured regions) image scenes.  Interestingly, the results in Figure 4.6 reveal that 

the CS reconstructions were of very low quality compared to the Kriging result. 

Figure 4.6 contains the comparison of reconstructed images using 11.97% of the 

spectral samples.  These reconstructions resulted in PSNR values of 62.31 dB, 

49.23 dB, and 46.86 dB using the Kriging, SLP CS, and RSP2 CS methods, 

respectively.  The compressive sensing reconstructions are good examples as to 

why the SSIM index is a good additional indicator for reconstruction quality, as 

visual assessment reveals that neither of the reconstructions is of acceptable 

quality.  Not only are the images overly smoothed, but considerable 

reconstruction artifacts are also present.  The SLP geometry results in vertical and 

horizontal artifacts along the major axes of the reconstructed image, while the 

RSP2 geometry results in erroneous pixels that are not consistent with 

neighboring pixels.  The SSIM results for these images do indicate that these 

images are significantly worse than the examples shown in Figures 4.4 and 4.5, as 

the difference in SSIM index for the SLP CS reconstruction of the urban sub 
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image is 0.2065, or roughly 20% of total range of SSIM values, while the 

difference in PSNR is 0.72 dB, or roughly 1.2% of the total range of PSNR values 

for the natural image type. 

(a) (b) 

(d) (c) 
Figure 4.7: Comparative example for a brain image  reconstruction using 18.75% of the original 

samples. (a) original image, (b) Kriging magnitude reconstruction (82.60 dB/SSIM=0.8209), (c) 

Optimal CS reconstruction using SLP reconstruction (74.18 dB/SSIM= 0. 8571), (d) Optimal CS 

reconstruction using RSP2 sampling geometry (60.52 dB/SSIM= 0. 6406). 
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The brain image reconstructions are shown in Figure 4.7 using 18.75% of 

the spectral samples.  Again, the Kriging reconstruction outperformed the 

compressive sensing reconstructions.  The difference in PSNR between the 

Kriging and the SLP CS reconstructions was 8.42 dB at the 18.75% data sampling 

rate and 5.89 dB at the 11.97% data sampling rate.  We were unable to down 

sample the inner and outer spectral blocks at rates greater than 2x/4x and 4x/8x 

due to the smaller size of the input image ( 6464× ). 

 

A consistent result across all of these reconstructions where Kriging was 

applied to magnitude spectra interpolation only was better reconstruction of the 

high-frequency portion of the Fourier domain.   This resulted in higher quality 

reconstructions than the optimal compressive sensing method of reconstructions, 

even when high frequency content was retained using the random sampling 

geometry.   

 

4.3.2 Kriged Magnitude and Phase Spectra and CS 

Reconstruction Comparison 
While it may seem that the phase spectrum appears random, without an apparent 

connection to the spatial data, the information in the phase spectrum plays an 

important role in image reconstruction from Fourier samples.  It defines the 

relative position of each two-dimensional complex exponential comprising the 

Fourier representation of the image and plays a much larger role in defining the 
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overall interpretability of the spatial image, preserving the general structure in the 

spatial image and placing sharp edges in a scene.  While incorrect magnitude 

estimated values will add an overall noise-like perturbation to the reconstructed 

image, slight errors in the phase values could destroy the fidelity of the 

reconstructed image.  Thus, we are interested to see the effect that phase 

interpolation using Kriging has on the reconstructed images.  Since we used less 

aggressive sampling rates for the inner and outer spectral phase blocks, the 

increase in overall data reduction is not as significant.   Statistics of the PSNR and 

SSIM values for the eight data reduction rates achieved with magnitude and phase 

Kriging are shown in Table 4.5 through Table 4.12    

 

 The results in Tables 4.3 and 4.4 reveal that inclusion of the phase spectra 

for better data reduction is not beneficial, as Kriging was outperformed by the 

SLP CS reconstructions.  The mean PSNR and SSIM values for these 

reconstruction results are shown in Figure 4.8(a) and 4.8(b), respectively.  In these 

plots, it is clear that the probability distribution function based random sampling 

did not result in optimal compressive sensing reconstructions at the levels of 

Kriging or the spiral low pass sampling CS methods.  The magnitude-only 

Kriging results showed greater improvement over the compressive sensing 

techniques on the urban and natural image types than on the rural and brain 

images.   



 

TABLE 4.5 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 17.26% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE). 

 PSNR SSIM 
Reconstruction 

 

TABLE 4.7 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 15.12% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE). 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

41.20 dB 44.02 dB 51.69 dB 70.77 dB 81.75 dB 0.5911 0.6449 0.7165 0.7957 0.9231 

Opt CS, SLP 
Class 

40.14 dB 45.69 dB 50.96 dB 72.38 dB 83.64 dB 0.5642 0.6075 0.7571 0.8577 0.9694 

Opt CS. RSP2 
Class 

33.88 dB 41.44 dB 49.10 dB 55.95 dB 69.10 dB 0.3502 0.4714 0.5950 0.6250 0.8915 

TABLE 4.6 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 15.57% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE). 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

42.02 dB 46.60 dB 51.88 dB 71.56 dB 81.75 dB 0.6577 0.6818 0.7476 0.8089 0.9333 

Opt CS, SLP 
Class 

40.50 dB 45.51 dB 52.22 dB 72.21 dB 84.45 dB 0.5867 0.6271 0.6720 0.8559 0.9712 

Opt CS. RSP2 
Class 

37.38 dB 42.47 dB 49.19 dB 49.28 dB 63.39 dB 0.3983 0.4265 0.5636 0.6389 0.8806 

Method Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 83.47 dB 
Mag+Phase 

42.54 dB 46.79 dB 52.22 dB 73.21 dB 0.6951 0.7109 0.7698 0.8205 0.9460 

40.11 dB 46.08 dB 51.78 dB 72.84 dB Opt CS, SLP 0.5870 0.5299 0.7821 85.42 dB 0.8627 0.9735 
Class 

37.38 dB 42.33 dB 50.54 dB 56.08 dB 66.65 dB 0.4169 0.4859 0.5959 0.8627 0.8807 Opt CS, RSP2 
Class 
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TABLE 4.8 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 9.38% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE) 

 PSNR SSIM 
Reconstruction 

 

TABLE 4.10 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 7.23% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

36.55 dB 41.12 dB 48.04 dB 63.01 dB 72.05 dB 0.4546 0.4735 0.5649 0.6818 0.8746 

Opt CS, SLP 
Class 

37.20 dB 42.57 dB 49.21 dB 65.72 dB 72.49 dB 0.3864 0.4549 0.6113 0.7553 0.9248 

Opt CS. RSP2 
Class 

35.73 dB 36.19 dB 44.64 dB 48.35 dB 63.93 dB 0.3020 0.3727 0.4572 0.5322 0.8491 

TABLE 4.9 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 7.68% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

37.23 dB 41.92 dB 47.91 dB 63.50 dB 72.16 dB 0.4726 0.5031 0.5778 0.6847 0.8765 

Opt CS, SLP 
Class 

37.12 dB 42.67 dB 49.31 dB 65.50 dB 72.59 dB 0.3978 0.4732 0.6147 0.7666 0.9254 

Opt CS. RSP2 
Class 

35.22 dB 37.83 dB 44.76 dB 46.83 dB 61.02 dB 0.3028 0.3237 0.4485 0.4895 0.8430 

Method Min 25% Median 75% Max Min 25% Median 75% Max 

37.48 dB 42.06 dB 48.08 dB 64.21 dB 73.18 dB Kriging 0.5110 0.5873 0.6907 0.8728 0.4831 
Mag+Phase 

Opt CS, SLP 0.4449 38.08 dB 42.65 dB 48.85 dB 67.54 dB 76.39 dB 0.5153 0.6531 0.7816 0.9438 
Class 

29.07 dB 35.29 dB 45.16 dB 49.21 dB 59.19 dB 0.0224 0.3170 0.4822 0.5681 0.8364 Opt CS. RSP2 
Class 
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TABLE 4.12 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 5.54% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

36.50 dB 40.74 dB 46.99 dB 61.19 dB 70.24 dB 0.4160 0.4733 0.5456 0.6599 0.8669 

Opt CS, SLP 
Class 

35.54 dB 41.71 dB 47.64 dB 64.09 dB 68.42 dB 0.2902 0.4162 0.5550 0.6831 0.8984 

Opt CS. RSP2 
Class 

32.77 dB 35.70 dB 45.27 dB 48.31 dB 58.54 dB 0.2717 0.3122 0.4261 0.5508 0.8330 

 

TABLE 4.11 
SUMMARY STATISTICS OF PSNR AND SSIM FOR 5.99% TOTAL SPECTRAL SAMPLING RATES (KRIGING BOTH MAGNITUDE AND PHASE) 

 
Reconstruction 

Method 

PSNR SSIM 

Min 25% Median 75% Max Min 25% Median 75% Max 

Kriging 
Mag+Phase 

36.36 dB 40.47 dB 46.99 dB 61.48 dB 70.80 dB 0.4138 0.4644 0.5335 0.6575 0.8645 

Opt CS, SLP 
Class 

36.13 dB 41.71 dB 47.34 dB 64.09 dB 69.16 dB 0.3224 0.4162 0.5658 0.6831 0.9026 

0.8644 0.4622 0.5798 Opt CS. RSP2 
Class 

32.10 dB 34.85 dB 44.15 dB 54.01 dB 66.84 dB 0.2588 0.3242 

 



 

 

(b) (a) 
Figure 4.8: Magnitude and phase data reconstruction results.  (a) The mean PSNR of all sub images 

are shown for magnitude and phase Kriging data rate.).  (b) The mean SSIM values for all sub 

images. 

 To explore whether or not magnitude and phase Kriging is a viable 

solution to data reconstruction, we explored the mean PSNR and SSIM values for 

each of the four image types.  These results, depicted in Figure 4.9 and Figure 

4.10, reveal that the image type does indeed play a large role in determining 

which reconstruction method is the best choice for a given image.  We decided to 

exclude the optimal CS reconstructions using RSP2 sampling geometry class 

average performance. 

 

 In addition to providing a suggestion of reconstruction method selection, 

the results reveal the difficulties with reconstructing the phase spectra and the 

resultant poor reconstruction of highly textured, non-smooth images when phase 

is processed.  Figure 4.9(a), which represents the rural image class, shows an 

improvement in PSNR by magnitude and phase Kriging over SLP CS 
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reconstruction at the lowest data rates.  The SSIM values in Figure 4.10(a), on the 

other hand, do not improve.  Both the PSNR and SSIM values are consistently.    

  
(a) (b) 

  
(c) (d) 

Figure 4.9: The mean PSNR values for each data sample rates based on Magnitude and Phase 

Kriging.  (a) Mean PSNR for Rural image scenes.  (b) Mean PSNR for Urban image scenes.  (c) 

Mean PSNR of Natural image scenes.  (d) Mean PSNR for Brain image. 

 

Although at first glance, magnitude and phase Kriging may seem like a 

viable solution higher from the CS SLP reconstructions for the urban image class 

(Figures 4.10(b) and 4.11(b)).  The difficulty of phase spectra interpolation plays 

a significant role in reducing the performance of Kriging for this image type for 
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 the natural image class, but closer examination of the mean PSNR and SSIM 

values reveal that the quality level of the reconstructions was unacceptable.  The 

overall poor performance of the CS methods on the natural images in the 

magnitude Kriging comparison above reveal that slight (<3dB) improvement in 

PSNR and SSIM (<0.10) over the SLP CS reconstructions at these reduction rates 

is unsatisfactory.   

(a) (b) 

 
(c) (d) 

Figure 4.10: The mean SSIM Index values for each data sample rates based on Magnitude and 

Phase Kriging.  (a) Mean SSIM Index for Rural image scenes.  (b) Mean SSIM Index for Urban 

image scenes.  (c) Mean SSIM Index of Natural image scenes.  (d) Mean SSIM Index for Brain 

image. 
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Again, we turn to visual assessment to reveal that the magnitude and phase 

Kriging methods do not result in suitably reconstructed images.  We select two 

cases to examine more extensively.  The first set of images, shown in Figure 4.11, 

is the Kriging and SLP CS results of the first rural sub image from 7.68% of the 

Fourier samples.   The PSNR value of Kriging result was 72.16 dB, while the 

PSNR value of the SLP CS result was 65.31 dB.  The 6.85 dB difference achieved 

by Kriging was the greatest difference of all the sub images, while the difference 

in SSIM values was a decrease of 0.0316 (0.8548 was achieved with Kriging and 

0.8855 was achieved with SLP CS).  When comparing the Kriging reconstruction 

in Figure 4.12(b) and the SLP CS reconstruction in Figure 4.11(c) to the original 

rural image in Figure 4.11(a), one can easily recognize the increase ringing 

throughout the image in the Kriging reconstruction from phase error artifacts.  

The upper and lower left-side corners contain prominent phase error artifacts.  

This is a classic example of PSNR incorrectly quantifying a worse reconstruction 

as the better quality image.  The SSIM maps of the two reconstructions (Figure 

4.11 (d) and Figure 4.11(e)) reveal the ringing artifacts of the Kriging 

reconstruction and poor structural similarity due to blurring in the CS 

reconstruction.  If having to visually grade which reconstruction is better, the 

blurred errors would be more acceptable than the periodic ringing in the Kriging 

reconstruction. 

 

The second case will compare the images related to the best Kriging 

reconstruction of the natural sub images. Our results revealed that the second 
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natural sub image at a data sampling rate of 18.75% resulted in a Kriging PSNR 

that was 2.06 dB greater than the SLP CS  PSNR (52.22 dB and 50.16 dB).  The 

SSIM index values for these results were 0.7129 and 0.6313 using Kriging and 

SLP CS, respectively.  The original image, along with the reconstructions and 

SSIM maps are depicted in Figure 4.12.  In this specific case, the Kriging 

reconstruction visually appears to be a better reconstruction, although it also 

exhibits significant phase error artifacts (ringing) in localized regions of the 

image. 

 

All of these sub image comparisons lead to two significant conclusions.  

The first is that magnitude Kriging consistently produces better image 

reconstructions over CS methods.  The second result is that the drop in image 

quality due to phase reconstruction errors is significant and the reduction in data 

samples is not great enough to justify the inclusion of phase interpolation.  The 

Kriged magnitude and phase spectra used to reconstruct the image in Figure 

4.11(b) are shown in Figure 4.13.  In this example, it is clear that the phase 

reconstruction is inadequate to result in a reconstructed image of sufficient 

quality.  The reconstruction errors at higher frequencies in the phase 

reconstruction are the cause for the significant ringing in the reconstructed image 

in Figure 4.11(b).   In addition, the phase unwrapping process required for phase 

Kriging adds a significant computational burden, which has been shown to not 

improve image reconstruction, but rather degrade it. 



 

 
 

 

   
(b) (c) (a) 
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(d) (e) 

Figure 4.11: Comparison of rural sub image reconstruction and related SSIM index maps using a 7.68% data sample rate.  (a) Original rural 

sub image. (b) Magnitude and phase spectra reconstruction with Kriging (72.16 dB). (c) The SLP CS reconstruction (65.31 dB).  (d) SSIM 

index map of Kriging reconstruction (mean SSIM = 0.8548).  (e) SSIM index map of SLP CS reconstruction (mean SSIM = 0.8855). 
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Figure 4.13: Comparison of natural sub image reconstruction and related SSIM index maps using a 17.26% data sample rate.  (a) Original 

rural sub image. (b) Magnitude and phase spectra reconstruction with Kriging (52.22 dB). (c) The SLP CS reconstruction (50.16 dB).  (d) 

SSIM index map of Kriging reconstruction (mean SSIM = 0.7129).  (e) SSIM index map of SLP CS reconstruction (mean SSIM = 0.6313). 

  
(a) 

 
(b) (c) 

 
(e) 

 
(d) 

 



 

 

 
(b) (a) 

(c) (d) 
Figure 4.13:  Example of Kriging reconstructed magnitude and phase spectra of rural scene in 

Figure 4.11(a).  (a) Original log-transformed magnitude spectra.  (b) Flynn’s unwrapped original 

phase spectra.  (c) Kriging interpolation magnitude using rats of 4x/8x (d) Kriging interpolation 

of unwrapped phase spectra using rates of 2x/4x. 

4.3.3 Original Satellite Image Comparison 
We wanted to explore additional, more aggressive (limited) sampling in the outer 

and inner spectral blocks for magnitude Kriging.  To accomplish this, we used 

three selected full size images, one of each satellite image class.  Again, we 

ensured that the number of spectral samples is equivalent between the Kriging and 

the SLP CS methods.   We excluded the RSP2 CS sampling geometry from this 
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comparison due to its poor performance on the sub image data set.  We did 

include the zero-filled result of the SLP sampling geometries to indicate how 

much of an improvement the optimal CS method obtained. 

  

Table 4.13 contains the PSNR values of each sample image at the six 

sample rates defined by the outer and inner spectral block sampling rates 

described in Section 4.2. Table 4.14 contains the related mean SSIM index values 

for the full image reconstruction.   Figure 4.14 depicts the rural image 

reconstructions and the PSNR and SSIM index plots associated with the sample 

rates.  The reconstructed images were generated using the least number of 

samples (9.64% of the spectral samples).  For the rural test image, PSNR values 

were between 5 dB and 12 dB higher using Kriging.  The SSIM performance was 

also substantially better for Kriging. 

 

Figure 4.15 depicts the collection of results from the sample urban satellite 

image.  While the overall PSNR and SSIM values are lower than the rural scene, 

the increase in PSNR and SSIM obtained by Kriging is again substantial, ranging 

from 7 dB to 11 dB in PSNR.  Visual assessment does reveal that such aggressive 

uniformly reduced sampling rates (using one every 64 FFT samples in the outer 

spectral blocks and one every 32 FFT samples in the inner spectral blocks) does 

not result in an acceptable image.  But in comparison to the SLP CS result, the 

Kriging result is substantially better. 



 

 

TABLE 4.13 
MEAN PSNR FOR MAGNITUDE SAMPLING RATES ON FULL IMAGE RECONSTRUCTION & 

VISUAL IMAGE QUALITY SCORE (LOW/MEDIUM/HIGH) 

                          Magnitude Sample         

 

                                                Rate  
Reconstruction 
Method and Statistic 

18.75% 11.97% 10.17% 9.91% 9.78% 9.64% 

78.33 dB, 
High 

76.84 dB, 
High 

76.13 dB, 
High 

75.11 dB, 
High 

73.32 dB, 
High 

69.78 dB, 
High 

Kriging PSNR, Rural Image 

68.00 dB, 
High 

65.04 dB, 
Medium 

64.16 dB, 
Medium 

63.79 dB, 
Medium 

63.93 dB, 
Medium 

63.79 dB, 
Medium 

CS SLP PSNR, Rural Image 

69.93 dB, 
High 

66.07 dB, 
Medium 

64.93 dB, 
Medium 

64.80 dB, 
Medium 

64.67 dB, 
Medium 

64.60 dB, 
Medium 

Zero Filling PSNR, Rural Image 

56.94 dB, 
Medium 

55.56 dB, 
Medium 

54.46 dB, 
Medium 

53.64 dB, 
Medium 

51.35 dB, 
Medium 

49.58 dB, 
Medium 

Kriging PSNR, Urban Image 

44.60 dB, 
Low 

43.01 dB, 
Low 

41.81 dB, 
Low 

42.25 dB, 
Low 

42.36 dB, 
Low 

42.28 dB, 
Low 

CS SLP PSNR, Urban Image 
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46.74 dB, 
Low 

44.24 dB, 
Low 

43.45 dB, 
Low 

43.28 dB, 
Low 

43.23 dB, 
Low 

43.12 dB, 
Low 

Zero Filling PSNR, Urban Image 

69.45 dB, 
High 

68.23 dB, 
High 

67.48 dB, 
High 

67.38 dB, 
High 

63.36 dB, 
High 

63.08 dB, 
High 

Kriging PSNR, Natural Image 

56.34 dB, 
Medium 

54.61 dB, 
Medium 

53.03 dB, 
Medium 

52.52 dB, 
Medium 

52.61 dB, 
Medium 

52.53 dB, 
Medium 

CS SLP PSNR, Natural Image 

57.69 dB, 
Medium 

55.30 dB, 
Medium 

54.61 dB, 
Medium 

54.49 dB, 
Medium 

54.44 dB, 
Medium 

54.37 dB, 
Medium 

Zero Filling PSNR, Natural Image 
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TABLE 4.14 
MEAN SSIM INDEX FOR MAGNITUDE SAMPLING RATES ON FULL IMAGE RECONSTRUCTION & 

VISUAL IMAGE QUALITY SCORE (LOW/MEDIUM/HIGH) 

                          Magnitude Sample   
                                                Rate  
Reconstruction 
Method and Statistic 

 
18.75% 

 
11.97% 

 
10.17% 

 
9.91% 

 
9.78% 

 
9.64% 

Kriging SSIM, Rural Image 0.9231, 
High 

0.9131, 
High 

0.9074, 
High 

0.9017, 
High 

0.8842, 
High 

0.8453, 
Medium 

CS SLP SSIM, Rural Image 0.8720, 
High 

0.8042, 
Medium 

0.7834, 
Medium 

0.7750, 
Medium 

0.7777 
Medium 

0.7750, 
Medium 

Zero Filling SSIM, Rural Image 0.8671, 
High 

0.8004, 
Medium 

0.7765, 
Medium 

0.7734, 
Medium 

0.7703, 
Medium 

0.7688, 
Medium 

Kriging SSIM, Urban Image 0.8779, 
Medium 

0.8622, 
Medium 

0.8483, 
Medium 

0.8367, 
Medium 

0.8046, 
Medium 

0.7921, 
Medium 

CS SLP SSIM, Urban Image 0.6661, 
Low 

0.5501, 
Low 

0.4983, 
Low 

0.4978, 
Low 

0.4969, 
Low 

0.4931, 
Low 

Zero Filling SSIM, Urban Image 0.6878, 
Low 

0.5781, 
Low 

0.5368, 
Low 

0.5275, 
Low 

0.5240, 
Low 

0.5187, 
Low 

Kriging SSIM, Natural Image 0.8156, 
High 

0.7992, 
High 

0.7841, 
High 

0.7758, 
High 

0.7258, 
High 

0.7170, 
High 

0.6468, 
Medium 

CS SLP SSIM, Natural Image 0.7582, 
Medium 

0.6828, 
Medium 

0.6552, 
Medium 

0.6502, 
Medium 

0.6491, 
Medium 

0.6364, 
Medium 

0.6397, 
Medium 

0.6412, 
Medium 

0.6461, 
Medium 

0.6724, 
Medium 

0.7499, 
Medium 

Zero Filling SSIM, Natural Image 

 



 

 

Original Image Kriging, from 9.64% of Magnitude Samples

  

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

 

Figure 4.14: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling 

the SLP sampling geometry on a full sized image of the rural class. 
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Original Image Kriging, from 9.64% of Magnitude Samples

 
 

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

 

Figure 4.15: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling the 

SLP sampling geometry on a full sized image of the urban class. 
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Original Image Kriging, from 9.64% of Magnitude Samples

 

CS-LPF, from 9.64% of Magnitude Samples

 

Zero Filled, from 9.64% of Magnitude Samples

Figure 4.16: Results of magnitude spectra interpolation using Kriging, SLP CS, and Zero Filling 

the SLP sampling geometry on a full sized image of the rural class. 

 

Figure 4.16 contains the results of the full natural image comparison.  The 

Kriging result for this image showed the most improvement over the competitive 
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methods of any of the three full satellite image comparisons.  PSNR increases 

ranged from 9dB to 14 dB.  The unique features of the urban and rural image 

types are representative in this natural image sample, and the Kriging 

reconstruction, from a visual assessment perspective, is acceptable at even the 

greatest downsampling rates. 

 

 These results are encouraging; as they begin to show the effectiveness of a 

relatively straight forward spatial statistical model can achieve amazing image 

reconstruction by interpolating discrete Fourier blocks independently of each 

other.  This work not only reveals the potential of image reconstruction from 

uniformly sampled magnitude spectra, but it is also based on a general framework 

that allows for ease of scalability for use on a wide variety of images.   

 

4.4 Magnitude Spectrum Extrapolation  
Successful magnitude Kriging led us to explore the effectiveness of extrapolating 

the magnitude spectra in both dimensions.  We selected an initial low pass mask 

size 4
1

4
1 × in each dimension, resulting in a reduced set of the center 6.25% 

magnitude samples.  In this experiment, we followed the following steps to 

identify how much, if any, improvement in image reconstruction PSNR and SSIM 

can be achieved through iteratively expanding the square low pass sampling mask 

on each of the ten sub images.   
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We were able to expand each to a certain extent, all the while increasing 

the reconstructed SSIM and PSNR values.  For each image type, an effective 

region could be identified that provided the maximum PSNR that can be obtained 

by this extrapolation method.  The plots in Figure 4.17 show the PSNR values of 

the extrapolation magnitude spectra for each image type.  The vertical lines 

denote the region of maximum performance in terms of increased PSNR for each 

image class.  One result, though, did not exhibit the consistent behavior exhibited 

by the other images, as it never reached a maximum extrapolation bound, after 

which additional magnitude estimation began reducing the reconstructed image 

PSNR and mean SSIM values.  This image, shown in Figure 4.1(i), does not 

reveal any unique trait that would set it apart from the other natural images.  

Figure 4.17(e) and 4.17(f) show two of the reconstructions from this 

extrapolation, revealing that image quality is significantly improved at an 

extrapolation of 40 samples compared to just ten FFT samples.  Finally, a good 

measure of the impact of the phase extrapolation is by calculating the ratio of the 

percentage of additional samples and the percentage of original samples for which 

an increase in PSNR is obtained.    For the rural image class, the ratio of 

extrapolated samples is 150%.  For the urban class, the ratio of extrapolated 

samples to original samples is 192.34%.   For the natural class, the ratio of 

extrapolated samples to original samples is 245.83%.  These results reveal that 

super resolution techniques may benefit greatly from Kriging extrapolation 

techniques of the magnitude spectra. 
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 (a) 

(b) 

  
(d) (c) 

  
(e) (f) 

  
  

Figure 4.17: The magnitude spectra extrapolation.  (a) Rural sub image extrapolation PSNR  (b) Urban sub 

image extrapolation PSNR.   (c) Natural sub image extrapolation PSNR.  (d) Brain image extrapolation 

PSNR. (e) Example sub image with an additional 16 samples extrapolated.  (f ) Example sub image with an 

additional 41 samples extrapolated. 
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4.5 Comparison of Computational Complexity  
The difference in computational complexity between the compressive sensing and 

Kriging methods we have developed is worth noting.    If there was an 

opportunity to improve upon the compressive sensing methods (e.g. exploring 

additional sampling geometry classes, including a wider variety of image types, or 

modification to the objective function) to an extent that a new compressive 

sensing algorithm consistently outperforms the magnitude Kriging method, the 

computational complexity of compressive sensing would be something that needs 

to be taken into consideration.  The question now becomes: What is the cost, 

resource wise, for a hypothetical increase in image quality?  Our experience 

shows that within our current CS paradigm, the computational burden is too great 

to consider it as a viable solution in any practical application.  We support this 

argument by comparing computational times. 

 

 Throughout the image quality comparison experiments above, we 

measured the collective processing time of the CS and Kriging methods to show 

that the Kriging solution, while producing reconstructed images of lesser quality 

in terms of PSNR and structural similarity, may be a more attractive solution.  

Table 4.15 contains the average total reconstruction times for each compression 

rate applied to the sub image data set of Section 4.2.1.  Note that the search for 

optimal CS reconstruction parameters is included in the time for reconstructing an 

image using compressive sensing.  The Kriging duration includes the variogram 
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estimation, variogram optimal model fitting, and Kriging steps for each 

compression rate.  Some calculations of both methods are obtained by remote 

procedure calls (RPCs) to complied C-code (either in the form of Matlab mex-

functions in Matlab or in the form of an Active-X server call to the R Software 

Package).   The experiments were performed on a 32-bit Windows XP 

workstation with 2.50 GHz Intel Xeon processor and 3.00 GB of RAM.  The 

results presented in Table 4.4 reveal an average time savings on the order of .     410

 

 The difference in computing time when an entire image is being 

processed, as in the comparisons described in section 4.2.2, is even more 

pronounced.  The upsampling requirement imposed by the CS reconstruction 

method places an even greater computational burden on the CS optimization 

procedures.  The time required to simply reconstruct the urban and natural images 

given that the optimal parameters were already known was 344.08 and 283.37 

seconds, respectively.  Thirty-seven simplex search steps were required to find the 

optimal reconstruction parameters for the urban image resulted in a total search 

time of 189.2 minutes, or 11,532 seconds.  Total search time for the natural image 

reconstruction was 277.81 minutes or 16,668 seconds.  The total time required for 

the Kriging reconstruction of the urban and natural images was 15.678 seconds 

and 23.542 seconds, respectively. 
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TABLE 4.15 
COMPUTATIONAL COST, IN SECONDS, OF RECONSTRUCTION METHODS IN THE 

ABOVE COMPARISONS 
Data Sample Rate Mean CS Reconstruction Mean Kriging Reconstruction 

A primary cause for the extreme difference in computational times is that 

the spatial statistical operations (variogram estimation and Kriging) were 

performed in a compiled programming environment called from Matlab.  

Similarly, the Kriging times measured did not include the time required for the 

two-dimensional phase unwrapping steps.  Therefore, an analysis of relative 

computational cost by examining the number of high-cost computational steps in 

each algorithm is also required.  

 

 Kriging estimates are obtained from a single system of equations that are 

combined using a Lagrange multiplier, resulting in a single matrix inversion per 

Time (s) 1 Time (s) 

18.75% 234.08 1.9543 

17.26% 329.06 2.0048 

15.57%  308.72 3.5371 

15.12% 289.75 3.4866 

11.97% 303.27 3.5071 

10.17% 289.64 4.2488 

9.91% 265.82 4.2282 

7.68% 348.05 4.2787 

7.23% 403.07 4.2745 

5.99% 460.85 4.2540 

5.54% 349.84 4.3045 
The average reconstruction times of both the CS and Kriging methods on the 10 sub 
images employed in the comparison experiments in Section 4.2.1. 

 
1 Using software described in [3] and [5] 
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spectral block.  The variogram estimate requires NM × multiplications, where M  

is the number of lags being considered, and N is the number of pairs of points 

defined by the lag.  When using P  samples to estimate the variogram, we have 

that , due to inherent symmetry in computing the lags (positive and 

negative lag vectors correspond to the same lag due to stationarity).  Thus, 

variogram estimation requires  additions and multiplications, for an input 

of sample of size 

MPN ×= )2/(

2/2P M×

P .  Following variogram estimation, we need to fit the 

variogram model.  This step is clearly not a function of the number of input 

points, and will thus not be considered in what follows. 

 

 Next, we consider the additional cost of computing the Kriging 

interpolation estimate.  Here, we note that for all internal samples, we have the 

same system of linear equations to solve, at every point.  Thus, we only need to 

invert the variogram matrix once.  For boundary points, we would have to invert 

slightly different matrices at different samples.  However, the number of 

boundary points grow linearly with the dimension of the spectral block, as 

opposed to the quadratic (area) growth associated with the number of internal 

points.  Thus, the effective computational cost is only due to the linear vector 

multiplication of the spectral samples ( )iSZ  by the coefficients iλ .  Thus, the 

overall Kriging cost is of the order of ( )PMO ×  for considering M  lags at P  points. 
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 Similar comments apply when we consider all spectral blocks.  After 

dropping the constant terms associating with sparse sampling, the overall growth 

of the algorithm is of the order of ( )2MPO ×  in terms of the number of lags and the 

number of points. Here, it is important to note that we only have linear growth. 

 

 In our experiments, M in the medium and high frequency blocks is equal 

to 20 and 25, respectively.   As an approximation, we consider the medium 

frequency blocks to contain ~64 samples (based on the sub image size of 

).  If we assumed a sample rate of keeping one out of every four samples 

in each dimension, the number of estimates becomes 

128128×

≈N 144.  Thus, we can 

approximate a requirement of 59,968 multiplications and additions per medium 

spectral block.  Similarly, for the high frequency blocks, we can assume ≈N 900 

sample estimates are required based on a sample rate of keeping one out of every 

8 samples in each dimension. The approximate number of multiplications and 

additions per high frequency block becomes 562,500. We can approximate the 

number of required multiplications and additions for an entire image 

reconstruction as the combination of 6 magnitude spectra medium frequency 

blocks, 6 magnitude spectra high frequency blocks, 6 phase spectra medium 

frequency blocks, and 6 phase spectra high frequency blocks.  The total 

computational cost can be approximated as requiring 7,469,616 multiplications 

and additions for an image size 128128× . 
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 The compressive sensing method we utilize has a significant number of 

additional functional evaluations, including the calculation of the Wavelet 

transform, the TV-Norm transform, and the Fourier transform at each conjugate 

gradient iteration [4,5].  Each of these are non-trivial calculations, and since we 

optimize two cost parameters using the simplex search method, the conjugate 

gradient objective function must be solved at each simplex step.  In our 

experiments, the number of simplex iterations was typically around thirty, 

although stopping the simplex search after the first 10 iterations is justifiable 

based on the search surfaces discussed in Chapter 2.  In the paper on which this 

software was originally applied, it is reported that approximately 80 to 200 

conjugate gradient iterations are required based the data sets of ranging in size 

from  to 100100× 480480×  [5].   The total number of conjugate gradient 

iterations required for the reconstruction of a sample 128128×  sub image from 

our data set using arbitrary reconstruction parameters was equal to 928.   This 

value is subjective, as we chose to run ten iterative reconstructions, using the 

result of the N-1st iteration on the Nth iteration.    

 

The Big-O complexity of each conjugate gradient iteration is based on the 

three functionals that constitute the CS reconstruction algorithm we utilized.  In 

terms of the number of points being considered, a 4-coefficient Wavelet transform 

has complexity [6], while the 1-D FFT is shown to have complexity of 

 [7], which becomes 

)(PO

)log( 2 PPO )log()log( 22 PPOPPO = for square images.  Finally, 

the total variation functional is represented as having complexity .  Since the )(PO
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FFT functional is the largest, the complexity of the constraint becomes , 

which is the largest growth rate for the CS reconstruction algorithm.  Based on the 

required number of iterations, we are led to require 

)log( PPO

P  conjugate gradient steps 

for convergence.  This gives a total complexity of   without accounting 

for parameter optimization. 

)log( 5.1 PPO

 

 For a sub image at the Kriging rate provided in the above 

example (a 4x sample rate for medium frequency blocks and an 8x sample rate for 

high frequency blocks), P becomes 12,528 unknown samples.  The computational 

complexity at each conjugate gradient step is 5,746,217.  When all conjugate 

gradient steps are taken into account, this value becomes 5,171,595,489 

multiplications and additions.  When comparing this value to the 7,469,616 

multiplications and additions required for an image of the same size, the 

computational benefit of using Kriging on small, spectral blocks is clear. 

128128×

 

4.6 Conclusion 
The comparisons provided above reveal to the reader the strengths that are evident 

in the Spectral Statistical modeling approach to Fourier sample estimation.   First, 

we note that on the sub image data set, when estimating magnitude samples only, 

the Kriging results consistently outperformed the optimal Compressive Sensing 

reconstruction using the same number of overall complex spectral data samples.  

On full size images, the Kriging reconstructions were significantly better than the 
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best optimized CS reconstruction using the spiral sampling geometry class.  In 

test images where there is considerable variation in the scene, such as the urban 

images we explored, the inclusion of high-frequency samples in the spectral 

sampling geometry has a considerable impact on reconstruction quality. 

 

We noted, however, that for specific scene types, when phase interpolation 

was included in the Spectral Statistical reconstruction, the detrimental effects of 

high-frequency reconstruction inaccuracies (where we sample at a much lower 

rate) result in lower SSIM values than the CS reconstructions. Here, optimal CS 

reconstructions performed better when scenes contained large regions that can be 

well approximated by piecewise constant models, such as for the rural sub images 

in our sub image data set.  This leads us to recommend Spectral Statistical 

modeling and reconstruction of the magnitude spectra only.   

 

We also observed that the CS reconstructions often failed to achieve any 

improvement over the initial guess during the reconstruction parameter 

optimization procedure.   In many of the satellite image reconstructions optimal 

parameters included a Wavelet transform penalty value that was negative.  As was 

mentioned in Chapter 2, a negative transform penalty will result in a 

reconstruction that is over-smoothed in small, well defined regions of the spatial 

image due to an over-emphasis on the total variation minimization term in the 

objective function.   This is clearly evident in the CS reconstruction in Figure 

4.15.  In such instances it is clear that the optimization algorithms employed by 
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our method failed in providing any improvement over the initial value (e.g. the 

zero-filled spatial image reconstruction). 

 

Finally, the computational complexity of most CS image reconstruction 

algorithms do not lend themselves to some practical applications due to the 

considerable amount of computational cost associated with solving the nested 

optimization paradigm required for general use.  In the case of the fMRI study in 

Chapter 2, we were able to calculate well-defined bounds on the reconstruction 

parameters that provide a general solution to the specific image type we were 

exploring.  Applying our optimal CS methods to any image requires the 

calculation of unique parameters for each image being processed, assuming that 

the images are significantly different from one another. 
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     Chapter 5 

Final Conclusions and Future Work 

 

5.1 Final Conclusions 

The dissertation is focused on providing quality image reconstructions from a 

limited number of Fourier samples. In particular, the dissertation also provides an 

optimization framework for comparing different methods in terms of the 

maximum image quality that can be achieved. 

 

 First, an optimized solution for four different sampling geometry classes 

was found to lead to significant increases in the image reconstruction quality of 

partial K-space samples using Compressive Sensing.  The sampling geometry 

classes were specifically designed to compare deterministic sampling geometries 

that we characterized as providing fast fMRI acquisitions from random 

geometries that are supported by Compressive Sensing theory.  The fast sampling 

geometries were obtained by either sampling a small, central portion of K-space 

over a spiral or by omitting phase encoded vectors in a dyadic manner.  The 

random geometries were developed to add a level of incoherence between 

samples, and in one case, also reduce the number of phase encoded vectors 

scanned in the K-space acquisition process. 
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 Our optimization technique provides both the best CS reconstruction 

parameters for a given image for each geometry, but also produces a range of 

acceptable parameter values resulting in reconstructions of sufficient quality.  

Using both of these results, we observed that the fast, deterministic sampling 

geometries result in consistently better reconstructions than those designed for use 

in CS applications.  This research, which makes up a large portion of this 

dissertation, was not part of the proposal submitted to the committee in 

December, 2006.  As we were introduced to more literature on the topic of 

Compressive Sensing, exploration of this application seemed like a good problem 

to explore in parallel as it seeks to find similar results to those provided by the 

Spectral Statistical approach that was formally proposed. 

 

 The new Spectral Statistical method for reconstructing remote sensing 

imagery was developed specifically as a flexible framework for estimating high 

and medium frequency components of the Fourier spectrum at independent 

Spectral sampling rates.  This was accomplished by estimating individual 

statistical models that are optimized to best fit the magnitude and unwrapped 

phase spectra of non-overlapping, dyadic sampling blocks.  Using Kriging, an 

optimized statistical interpolator, we observed that the magnitude and phase 

reconstructions produced higher quality magnitude and phase estimates than other 

widely accepted interpolators. Finally, the reconstructed images obtained from 

Kriging were shown to result in higher PSNR and mean SSIM index values than 
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those reconstructed using two selected optimized CS sampling geometry classes 

for an equal number of Fourier samples. 

 

 

 5.2 Future Work 

Both of the spectral estimation techniques presented here are based on numerical 

optimization theory, which is becoming an important aspect in image processing 

applications.  The scope of optimization is rather large, and could lead to further 

extension of the methods we have presented.  In addition, we have limited our 

application to a single specific Fourier sampling application (K-space) and a 

representative  collection of publicly available aerial images.  Seeking data from 

other optical or electromagnetic Fourier sample platforms or various high-

resolution imagery on which to apply our methods would provide an indication of 

how successful we were in designing portability into our approaches.   

 

Finally, we mention some more specific areas that are noteworthy and should 

receive additional attention: 

• Specifically to the problem of CS reconstructions of fMRI samples, it 

would be interesting to explore the optimization of sampling geometries 

over slices of various depths and provide an adaptive solution that is based 

on the combination of (i) the extent of the image containing tissue and (ii) 

the knowledge of the physiological structures that are common among 
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patients during a full brain scan.  This could lead to feasible solutions for 

fast MRI acquisitions, especially for spatio-temporal applications. 

• More generally, it would be interesting to explore how effectively the CS 

sampling geometries presented here are applicable to other 1l -norm 

minimization algorithms. 

• The Spectral Statistical framework we developed here is intended to be 

extended in future studies.  It would also be interesting to explore 

additional benefits from more complex Kriging approaches that have been 

shown to produce accurate data interpolation.  These include, but are not 

limited to: Universal Kriging where localized spectra trends, specifically 

in unwrapped phase, are accounted for; Co-Kriging of samples from 

adjoining spectral blocks; and Bayesian Kriging where Monte-Carlo 

Markov Chains simulations are used to solve for the best statistical model 

parameters from a large number of observations. 

• Another alternative is to explore non-dyadic Fourier partitioning 

geometries that are adaptively selected based on indicators from the full 

Fourier spectrum. 

• Future work can also focus on the use of Chirp-Z transform methods to 

generate dense samples over different frequency domain regions.   By 

generating more dense samples we can also consider the use of anisotropic 

models. Here, we note that for bounded objects, such the MRI images, we 

can interpolate by simply zero-padding. In this case, we can thus generate 

a very large number of discrete Frequency samples over very limited 
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discrete Frequency space regions and use them to allow for much more 

complex spectral statistical models. 

• The Spectral Statistical model approach lends itself to applications in 

compression using quantization and entropy encoding.  For example, the 

sampled spectral data of a given image can be stored along with the 

optimal covariance model parameters.  This would reduce the amount of 

data required to be stored and/or transmitted and Kriging could then 

reconstruct the image for display or representation in the spatial domain. 

• Spectral data reconstruction using Kriging also lends itself to the field of  

super-resolution image processing.  The few experiments on magnitude 

spectra extrapolation attempted to simulate such a scenario. For super-

resolution applications, we would need to simply first upsample the 

original data and then apply a low-pass filter to eliminate any higher 

frequency components introduced by the upsampling. Then, to produce 

high-frequency information from the low-frequency filtered data, we 

would need the critical extrapolation step that was demonstrated in this 

dissertation.  Phase spectra would have to be considered for completeness. 
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