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Abstract

Computer simulation techniques are widely adopted nowadays in many areas like

manufacturing, engineering, graphics, animation, virtual reality and so on. However,

the standard finite element based simulation is notorious for its expensive compu-

tation. To address this challenge, I present a GPU-based parallel implementation

for simulating large elastic deformation. Classic modal analysis provides a set of

orthonormal bases vectors, which span a spectral space encoding the dynamics of

the elastic body. As each basis vector is orthogonal to each other, the computa-

tion is completely decoupled and can be well-fit into the modern GPGPU platform.

We further explore the latest feature of NVIDIA CUDA so that the result of GPU

computation can be directly used for upcoming rendering/visualization and a signif-

icant amount of overheads for transmitting data from client GPU and host CPU via

the PCI-Express bus are avoided. Real-time simulation is made possible with this

technique for many cases that otherwise is not possible.
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Chapter 1

Introduction

1.1 Overview

The work described in this document aims to implement a deformed model simu-

lation algorithm in parallel on the GPU (Graphics Processing Unit) using modal

warping, based on physics techniques to approximate the behavior of an object when

its subject totally or partially to a force applied. Using the architectural advantages

of GPUs, this GPGPU (General Purpose Computing on the GPU) algorithm can

be implemented efficiently even with a small device, obtaining a considerable speed

improvement over conventional algorithms and also providing accurate results.

In the following sections an explanation of why certain tools such as computer lan-

guages were chosen and how they were used to implement the algorithm can be

found.

1



Chapter 1. Introduction

1.2 Computer Simulation

1.2.1 History

Computer simulation has become one of the most important areas of research in

the last couple of decades, its history dates back to the World War II era, when 2

mathematicians: John Von Neumann and Stanislaw Ulam, faced the complicated

problem of neutrons behavior.

Stan made the following remarks about his ideas in the 1980’s:

” The first thoughts and attempts I made to practice the Monte Carlo method, were

suggested by a question which occurred to me in 1946 as I was convalescing from an

illness and playing solitaires. The question was: what are the chances that a Canfield

solitaire laid out with 52 cards will come out successfully?, After spending a lot of

time trying to estimate them by pure combinational calculations, I wondered whether

a more practical method than ”abstract thinking” might not be to lay it out say one

hundred times and simply observe and count the number of successful plays. This

was already possible to envisage with the beginning of the new era of fast computers,

and I immediately thought of problems of neutron diffusion and other questions of

mathematical physics, more generally how to change processes described by certain

differential equations into an equivalent form interpretable as a succession of random

operations. Later... in 1946 I described the idea to John Von Neumann and we began

to plan the actual calculations”.[1]

Von Neumann was intrigued, doing statistical sampling using newly developed elec-

tronic computing techniques seemed a great idea, in March of 1947 Von Neumann

wrote a letter to Robert Richtmyer, who was the Theoretical Division Leader at

2



Chapter 1. Introduction

Los Alamos National Laboratory, where he concluded: ”the statistical approach is

very well suited to a digital treatment”, he outlined in some detail how this method

could be used to solve neutron diffusion and multiplication problems in fission de-

vices,further details about this method lay beyond the scope of this document.

Finally at the end of the letter, Von Neumann attached a tentative ”computing

sheet”, that he felt would serve as a basis for setting up this calculation on the

ENIAC, the ENIAC was the first general purpose computer built in secret at the

University of Philadelphia’s Moore’s School of Electrical Engineering [2].

The outline was the first formulation of a Monte Carlo computation for an electronic

machine.

From that moment on, hardware always predominated the simulation field, it wasn’t

until the 1950’s when programming languages began to emerge and computer simu-

lation started to be developed in several different areas. Computer simulations main

applications vary in different areas nowadays, such as:

• Medical

• Science

• Physics

• Engineering

• Military

One of the specific areas of research in computer simulation is deformable model

simulation, which is also applied in all the areas stated before.

This area has specifically been subject of research in the past three decades, the rea-

son being that, until the 1980’s computer based modelling techniques only allowed

modelling of rigid bodies. In 1984 a series of geometric operators for deforming a

3



Chapter 1. Introduction

solid object by transforming the coordinate space were introduced [3]. These were

the starting point for the development of better and improved techniques for de-

formed object modelling.

Computer based deformed modelling techniques are classified in non-physical, phys-

ical and approximate physical techniques:

• Non-Physical Techniques: Purely geometric techniques used to deform virtual

objects, accuracy is sacrificed for more computational efficiency.

– Splines and Patches.

– Free Form Deformation.

• Physical Techniques: Based on principles of continuum mechanics applied to a

geometric structure of a model, these techniques sacrifice computational com-

plexity but provide a more accurate, and realistic result.

– Discrete Models: Mass Spring Damper Methods.

– Continuum Models: Finite Element Methods (FEM).

• Approximate Physical Techniques: These techniques are not derived directly

from continuum mechanics equations, although they are physically motivated.

– Active Contour Models

4



Chapter 1. Introduction

While non-physical techniques are the most efficient and more simply imple-

mented computationally speaking, accuracy is also greatly sacrificed, the most widely

used techniques are physical based techniques [4], where FEM are state of the art

in physically based modelling becoming more used in the last few years as computa-

tional power increases.

Physics based techniques are more complex computationally speaking due to the

fact that they handle nonlinearities, this has the main advantage of providing a

more accurate and realistic result, but it becomes complex, for this specific case,

handling nonlinearities would not easily allow for a parallel algorithm to be created,

but omitting the nonlinear term would create unrealistic results, increasing the vol-

ume of the model inaccurately.

The modal warping technique used in this work omits the nonlinear term initially

when precomputing, although once the simulation is being run, the rotation infor-

mation is kept, even when the object is deformed, the precomputed modal basis is

warped according to the rotational information obtained [5], giving a realistic result

but also providing the opportunity of approaching the problem in a parallelizable

way.

A more profound classification survey and explanation of these techniques and their

advantages and disadvantages can be found on [6] and [4].

1.2.2 OpenGL

OpenGL is merely an API; a software library for accessing features in graphics hard-

ware, as of today it contains more than 500 different commands, used to specify

objects, images and operations needed to produce interactive 3-dimensional com-

5



Chapter 1. Introduction

puter graphics applications[7].

OpenGL is designed to be implemented on many different types of graphics hard-

ware, or it could even be implemented entirely in software, it is also independent of

the operating system the computer is running on, due to this type of implementa-

tion, some limitations may be considered, it does not provide functions to process

user input or creating windows, which means it needs to be used along with some

other library that performs this functions and complement it, OpenGL also has the

limitation if it may be called that, that lacks a functionality for describing models or

3D objects in any way, neither to read files of any sort. Instead the programmer must

read these files or construct the 3D objects from a small set of geometric primitives

(points, lines, triangles, etc.) these primitives will be explained in further detail on

section 2.1 of this document.

1.3 Parallel Computing

1.3.1 History

Computer technology made incredible progress in over 60 years since the first gen-

eral purpose computer was created, if we analyze the progress over time, we see that

during the first 25 years, progress was made in both creating new architectures and

developing new technologies, delivering a raise of approximately 25% per year on

performance.

By 1970 when the microprocessor emerged, it led to a higher rate of performance

improvement, around 35% per year.

In the early 1980’s a set of changes made possible the development of RISC (Re-

duced Instruction Set Computer), which used new performance techniques such as

instruction level parallelism and the use of caches, this started what some people

6



Chapter 1. Introduction

Figure 1.1: Processor Performance Over Time[8]

call the hardware renaissance of computers, where a 52% of improvement per year

was achieved. As figure 1.1 shows, the renaissance ended on the year of 2003, this

happened because as time passed transistors got smaller, faster and used less power,

so processor makers not only added more and more transistors on the same chip, but

they also increased the clock frequency of processors.

The question is: Why did they stop?. The simplest answer to that power, both

power and heat are the main issue when developing a microprocessor, due to the fact

that a billion of transistors generate a lot of heat , and when running at that speed

it is impossible to keep the chip from melting. The CPU’s or main processors may

have been hurt by this parameter, but GPUs have not, or at least not in the same

way, due to the fact that GPUs are different in architecture, they have a lot more of

compute units or ALU’s (Arithmetic Logic Units), but each of those is a lot simpler

7



Chapter 1. Introduction

too, they have small caches, memory accesses are extremely coherent, and memory

modules are usually a lot faster than the ones used for CPU’s (also known as system

memory), this means that when we have a problem which can be organized in a way

that there are a wide amount simple computations to do, instead of small amount of

complex ones, GPUs are a good option to solve this type of problem [9].

1.3.2 Classification

There are several types of different parallelization techniques, they are mainly clas-

sified according to how the calculations are organized to be computed in parallel.

1.3.2.1 Levels of Parallelism

Parallelism can be characterized in levels or forms of where the parallelism is applied

to, which could be exploited differently depending on the parallel architecture. Lev-

els of parallelism may be classified as follows:

• Bit Level Parallelism (BLP): BLP is a form of parallelism achieved by increas-

ing the processor word size, doing so reduces the number of instructions the

processor has to execute in order to perform an operation on variables whose

sizes are greater than the length of the processor word size, an addition between

two 32-bit integers using a 16-bit processor, requires the processor to first add

the 16 lower order bits from each of the integers and then add the 16 higher

order bits, requiring two instructions to complete a single operation [10].

• Instruction Level Parallelism (ILP): ILP is a form of parallelism achieved by

applying different techniques to the instructions sent to the processor, tech-

8



Chapter 1. Introduction

niques such as pipelining, which overlaps the execution of instructions and

improves performance, or loop unrolling, performing several loop operations

in just one cycle instead of one operation per cycle, limitations for this type

of parallelism include data dependencies and control hazards, when exploiting

this type of parallelism one must be sure that the data is independent from one

cycle to another, otherwise those 2 or more instructions cannot be executed

simultaneously or be completely overlapped, and also that the instructions are

not control dependent, meaning that the order in which the instructions are

executed does not matter, since it cannot be known for sure which operation

will be executed first when executed in parallel.

There are 2 main approaches for exploiting ILP, an approach that relies on

hardware to help discover and exploit the parallelism dynamically, and an

approach relying on software technology to find parallelism statically at compile

time [8].

• Data Level Parallelism (DLP): DLP is a form of parallelism where parallelism is

focused on the data itself, in a multiprocessor system when executing a single

set of instructions (SIMD) 1.3.2.2, data parallelism is achieved when each

processor performs the same computations on different pieces of distributed

data.

• Thread/Task Level Parallelism (TLP): TLP is a form of parallelism, focused

on distributing execution processes or threads across different computer nodes,

or processors, this is achieved when a thread or process is executed on each

different processor, where this threads may execute the same or different code

and on the same or different data, this form of parallelization requires inter-

communication amongst threads, in general TLP is more flexible than DLP

and thus more generally applicable[8].

9
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1.3.2.2 Parallel Architectures

The most popular characterization of different types of parallel architectures was

defined by Flynn in 1966 [11] and is specified as follows:

• SISD: Simple Instruction Simple Data - Conventional single processors com-

puters are classified as SISD systems, each arithmetic instruction initiates an

operation on a data item taken from a single stream of data elements.

• SIMD: Simple Instruction Multiple Data - The same instruction is executed by

multiple processors using different data streams, these type of systems exploit

DLP (Data Level Parallelism), by applying the same operations to multiple

items of data in parallel. In these type of systems each processor has its own

data memory, but there is only one instruction memory and control processor,

whose function is to fetch and dispatch instructions. There are three main

variants of SIMD: Vector Architectures, Multimedia SIMD Set extensions and

GPUs.

Given the fact that in this work I use a variant of SIMD’s I will explain a little

further each of these:

– Vector Architectures:

Vector architectures grab sets of data elements scattered in memory, place

them into large, sequential register files, operate on the data in those reg-

ister files and then disperse the results back into memory.

A single instruction operates on vectors of data, which in turn, results

in dozens of register-register operations on independent data elements.

These register files act as compiler-controlled buffers, both hide mem-

ory latency and leverage memory bandwidth, vector loads/stores are also

10
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deeply pipelined, so the program pays the long memory latency only once

per load/store instruction instead of doing it on every element.

– Instruction Set Extensions For Multimedia:

These extensions as the name implies are often used for multimedia pur-

poses or applications, since many of these applications operate on nar-

rower data types, than what conventional processors are optimized for,

they can be used for audio, graphics, etc. An instruction specifies the

same operation on vectors of data, but unlike vector architectures, which

have register files, these instructions tend to specify fewer operands and

use much smaller registers.

– Graphic Processing Units:

This variation of the SIMD taxonomy, offers high potential performance,

GPUs share some features with vector architectures, but they also have

their own distinguishing characteristics, these systems have a conventional

system processor and a system memory in addition to their own process-

ing units and graphics memory, that is why these systems are often called

heterogeneous [8]. Although GPUs do fall inside this category, this ex-

plains their functionality mainly for what they were initially developed

for: computer graphics; when these are utilized to perform GPGPU or in

other words, for applications traditionally handled by the CPU, they fall

into a new category (not part of Flynn’s taxonomy) SIMT (Simple In-

struction Multiple Thread) [12] which will be explained in further detail

later in this document 1.3.3.2.1 .

• MISD: Multiple Instruction Simple Data - Multiple instruction streams and a

single data stream, no commercial multiprocessor of this type has been built
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to this date.

• MIMD: Multiple Instruction Multiple Data - Multiple instruction streams and

also multiple data streams, where each processor fetches its own instructions

and operates on its own data, these type of systems exploit TLP (Thread Level

Parallelism) 1.3.2.1.

Although Flynn’s taxonomy characterizes very well the majority of commercial par-

allel architectures, it is a coarse model, and some multiprocessors are hybrids of these

categories.

1.3.3 GPU Computing Languages

GPU languages first appeared in 2003, it is shown how they have evolved over the

years in figure 1.2.

1.3.3.1 Brook

Back in the year 2003: Brook, or BrookGPU appeared [14], developed at Stanford

University, researchers realized GPUs could also be used to perform general com-

puting calculations, due to their underlying architecture, but at the time, the only

way to access GPUs resources was to use one of the graphics API’s (Application

Programming Interfaces): OpenGL or Direct3D, so researchers had to use them if

they wanted to perform calculations on the GPU, the problem was that one had to

become an expert in graphics programming to do this, which seriously complicated

things, since graphics programmers think in terms of shaders and textures, while

parallel programmers think in terms of kernels or streams. Brook was presented as
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a set of extensions to the C language; ”C with streams” is how they called it, brook

proposed to encapsulate all the management part of the 3D API and expose the

GPU as a coprocessor to perform parallel calculations, brook included a compiler,

which took a *.br file containing C++ code and extensions and generated standard

C++ code to be linked to a run-time library (DirectX, OpenGL, etc).

Brook’s collaboration to the GPGPU technology was primarily to popularize the use

of GPUs for high performance computing, it simplified access to GPU resources but

had some issues too, it generated excess of workload by using the 3D API, and it had

no compatibility, every time the GPU manufacturers updated their drivers, brook

compatibility could break. Figure 1.4 shows the performance improvement on the

first generation of programmable GPUs using Brook.

Figure 1.2: GPU Computing Language Timeline [13]
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1.3.3.2 NVIDIA CUDA

Brook’s success was enough to attract the attention of both major GPU manufac-

turing companies: ATI and specially of NVIDIA, so Brook’s researchers got into

development teams at NVIDIA’s headquarters with the idea of offering hardware/-

software suited for this type of calculations. But, since NVIDIA architects and

developers knew all about their own design there was no need to rely on graphics

API’s anymore, and they were able to design a set of software layers to communicate

with the GPU: CUDA (Compute Unified Device Architecture) [15].

CUDA provides 2 API’s:

• CUDA Runtime API (High-Level)

• CUDA Driver API (Low-Level)

Figure 1.3: BrookGPU System Outline[14]
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Although, each call to a function of the high level API is broken down into more

basic instructions managed by the low level API.

The CUDA Runtime API can be considered as very low level too, since it requires

knowledge of the hardware that is being used, but it still offers functions that are

highly practical in terms of initialization and context management.

Both API’s are able to communicate with graphics libraries such as Direct3D and

OpenGL, this is useful since one can generate resources using CUDA and these can

be passed to the graphics API, the advantage here being that the resources remain

stored in GPUs RAM without having to transit through the bottleneck of the PCI-

Express bus.

1.3.3.2.1 CUDA Hierarchy: SIMT Architecture

CUDA extends the C programming language by allowing the programmer to define

C parallel functions called kernels, when called, these functions are executed N times

Figure 1.4: Brook’s performance on 1st generation of programmable GPUs[14]
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in parallel by N different CUDA threads as opposed to regular C functions. Note

that originally the kernels could only be ”launched” from using the CPU, although

has NVIDIA introduced the Kepler architecture featuring the ability to launch ker-

nels from the GPU without CPU involvement.

Each thread that executes the kernel has its own local memory, and its given a

unique thread ID, which is accessible within the kernel. This unique ID variable is a

3 component vector or 3 dimensional vector.

These threads are organized in warps, warps are groups of 32 threads, which is the

minimum size of the data processed in SIMD by a CUDA SM (Streaming Multipro-

cessor). Due to granularity issues in CUDA; instead of manipulating warps directly,

threads are organized into blocks that can contain from 64 to 1024 threads on current

GPUs, and they all share a memory called ”shared memory”.

CUDA capable devices use this new execution model or architecture called SIMT

to manage and execute thousands of threads efficiently, which were both first intro-

duced by NVIDIA in 2006 with the G80 (Tesla Family) of GPUs [12].

Finally these blocks are organized into a one-dimensional, two-dimensional or three-

dimensional grid, where the number of thread blocks in a grid is usually dictated

by the size of the data being processed or the number of processors in the system,

this is where a the global memory is used, it is the slowest of them all but it can be

accessed from any threads on the device [16]. The advantage of grouping them in this

sort of hierarchy is that the number of blocks processed simultaneously by the GPU

are closely linked to the architecture of the GPU (hardware resources), the number

of blocks in a grid make it possible to totally abstract that constraint and apply a

kernel to a large quantity of threads in a single call, without worrying about fixed re-

sources. The CUDA Runtime library takes care of that, making this model extremely

extensible, if the GPU has only a few resources it executes the blocks sequentially,

but if it has a large number of processing units instead, it can process them all in
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Figure 1.5: CUDA Hierarchy [17]

parallel, this is why the same code can be run on different GPUs. NVIDIA’s GPU

architectures have evolved over the years, figure 1.7 shows the basic processing unit

utilized by NVIDIA for the Fermi Architecture, called SP (Streaming Processor) or

Figure 1.6: CUDA Scalability [17]
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Figure 1.7: Fermi Streaming Processor (CUDA Core) [18]

also called CUDA core, which is in charge of actually performing the calculations,

and figures 1.8 and 1.9 show the Streaming Multiprocessor units from the Tesla

Architecture (G80) (1st Generation) and the Fermi Architecture (3rd Generation),

and lastly figure 1.10 shows a new type of Streaming Multiprocessor introduced with

Figure 1.8: Tesla Streaming Multiprocessor [12]
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Figure 1.9: Fermi Streaming Multiprocessor [18]

Figure 1.10: Kepler Streaming Multiprocessor (SMX) [19]
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the Kepler Architecture called SMX, the first one capable of launching kernels from

the GPU. We can definitely see how the architectures have evolved in just a couple

of years.

1.3.3.3 OpenCL

The OpenCL (Open Computing Language) initiative was first introduced by Apple,

but the final proposal included support from several companies like AMD, NVIDIA,

IBM and Qualcomm, this proposal was submitted to the Khronos Group, a non-

profit organization that focuses on creation of open standards; on June 2008 the

Khronos Compute Working Group was formed, with representatives from these and

other companies, they released the specification for OpenCL 1.0 on November of the

same year [20].

Their design goals were as follows:

• Use all computational resources in the system (CPU’s, GPU, and/or other

processors).

• Consistent results on all platforms.

• Create an efficient parallel programming model.

– Provide data and task parallelism.

– Avoid the specifics of the underlying hardware.

– Specify the accuracy of floating-point operations.

– Based on ANSI C99 standard.

• Interoperability with graphics API’s

– Enable advanced visual computing applications.
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Figure 1.11: OpenCL Hierarchy [13]

– Efficient resource sharing for graphics data.

– Support graphics oriented built-in methods.

Then OpenCL is defined as: ”The open standard for developing cross-platform, ven-

dor agnostic, parallel programs that run on current and future multi-core processors

within workstations, desktops, notebooks and mobile devices”. OpenCL 2.0 specifi-

cation was released on November 14th, 2013 , and it supports the following vendors:

NVIDIA, AMD, Apple, Samsung, Qualcomm, ARM, Intel, IBM and others [21].

1.3.3.3.1 OpenCL Hierarchy :

In OpenCL programs are divided in 2 parts: One that executes on the device

(GPU) and the other that executes on the host (CPU); code that is to be executed

on the device must be inside a kernel and is where all the parallelism must happen,

these kernels can only be called from the host. Much like NVIDIA’s CUDA, OpenCL

kernels are executed N times in parallel by N different work-items, which are the

smallest execution entity, each work-item has its own ID, accessible from the kernel

and distinguishes it from the other ones, making it possible to process different data,

every work-item also has its own memory, referred to as private memory. Work-
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Figure 1.12: OpenCL Hierarchy [20]

items are grouped into work-groups, where they can share a memory called local

memory, these work groups also have their unique ID. Finally the work groups are

organized into an N-Dimensional grid called ND-Range, where N=1,2 or 3, and a

global memory is shared between the whole grid.

1.4 Conclusions

The work explained in section 3.1 was initially thought to be developed using MAT-

LAB, it was, and it provided advantages over the previous related work, being able

to accurately simulate rotations on large objects, but MATLAB libraries still pro-

vided a slower and slower rendering and computations as the object became larger

and larger, performance started to become an issue, that motivated the work ex-

plained in this document, to be able to provide not only a better and more efficient

renderer engine; using OpenGL, but also to be able to perform the computations
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faster, doing this in a compiled language such as C or C++, if programmed cor-

rectly, would have provided better results than the ones obtained using MATLAB,

although a better option was to use parallel programming on the GPU (GPGPU),

since the modal warping method efficiently decouples the physics equations on which

the simulation is based, making calculations independent from each other, it requires

a vast amount of operations on matrices, which also may be computed on an element

by element basis on independent data, meaning that an operation to compute ele-

ment i is independent on the one used to compute element j, these type of operations

are a perfect example to use parallel programming and more specifically on the GPU.

The parallel version was programmed using C++ as its main language, OpenGL was

used to program the renderer for the 3 dimensional object simulation, and CUDA

as its parallel programming platform, it must be noted that as explained in section

1.3.3.3 OpenCL and CUDA programming models are very similar, meaning that in

the future would allow for an OpenCL version to be developed ”easily” based on the

already existing version programmed in CUDA.
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Rendering on OpenGL

This part of the document will aim to explain in some basic level of detail what

was used in this work to render the 3-dimensional object or model onto the display,

including OpenGL functionality, functions, and external libraries.

2.1 OpenGL Primitives

The primary objective of using OpenGL is to render graphics into a framebuffer,

which will be displayed on a screen, complex objects are broken up into OpenGL

primitives, that when drawn at high enough density, give the appearance of a 3-

dimensional object.

OpenGL includes a vast amount of functions to describe the layout of primitives

in computer memory, these are arguably the most important functions in OpenGL,

since without them, the programmer would not be able to display anything on the

screen.

The are 3 primary types of primitives in OpenGL, even though OpenGL supports
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many primitives, in the end they all get rendered as one of the main primitives:Points,

Lines and Triangles, these may also be called native primitives, hence they are sup-

ported on most graphics hardware. Now a brief explanation of these native primitive

types:

• Points : Points are represented on OpenGL by a single vertex, the vertex

represents a point in a 4-dimensional homogeneous coordinates, OpenGL uses

a set of rules named rasterization rules, to determine which pixels on the screen

will be covered by a certain point. These are very simple, if a point falls within

a square centered on the point’s location, then the respective pixel is covered.

Size of the square is determined by the size specified by the programmer for

the points, in which one side of the square will equal to the point’s size, this is

set by an OpenGL state function (glPointSize()).

When points are rendered, each vertex essentially becomes, a single pixel on

the screen, if a different size is set, a point may end up being a little more than

one pixel.

• Lines: line in OpenGL refers to a line segment, meaning it does not extend

to infinity on both directions, lines are represented by pairs of vertices, one

for each endpoint of the line, lines may also be joined together to represent a

connected series or line segments(line strip), or may even be closed (line loop).

The rasterization rule used for lines is called the diamond exit rule: When

rasterizing a line running from point A to point B, a pixel should be lit if the

line passes through the imaginary edge of a diamond shape drawn inside the

pixel’s square area on the screen, this is done so if another line going from B

to C needs to be drawn, the pixel in which B resides is lit only once.

• Triangles: Triangles are made up of collections of 3 vertices, when separate

triangles are rendered, each triangle is independent of all others. A triangle is
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rendered by projecting each of the 3 vertices into the screen space and forming

3 edges running between the edges. A sample is considered covered if it lies

on the positive side of all of the half spaces formed by the lines between the

vertices. Rules for triangles are:

– No pixel on a shared edge between 2 triangles that together would cover

the pixel should be unlit.

– No pixel on a shared edge between 2 triangles should be lit by more than

one of them.

Meaning that there will be no gaps between the triangles and they wont be

overdrawn.

Triangles may also be drawn onto strips or fans, which may result in more efficient

rendering, reutilizing vertices described on previous triangles, in the case of a triangle

strip, the first triangle is drawn using the 3 first vertices, then each subsequent vertex

forms another triangle along with the last 2 vertices of the previous triangle, for the

triangle fan the first vertex forms a shared point that is included in each subsequent

triangle, triangles will be drawn using that shared vertex along with the next two

vertices.

2.2 OpenGL Rendering Pipeline

The OpenGL rendering pipeline it’s defined as a sequence of processing stages for

converting the data the application provides to OpenGL into a final rendered image.
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Figure 2.1: OpenGL 1.0 Fixed Pipeline [22]

2.2.1 Fixed Function Pipeline

In the beginning, when OpenGL 1.0 was released in the year of 1994, it’s pipeline

was entirely fixed-function, when an API uses the fixed-function model, it consists

of a set of functions entry points that approximately or directly map to a dedicated

logic in the GPU specific for its functionality, in other words, the only operations

available are fixed by implementation.

Although the pipeline evolved over time, it remained fixed-function until OpenGL

2.0.

2.2.2 Programmable Function Pipeline

As the GPU architecture evolved over time, GPUs were more and more capable of

doing different types of computations, more general computations, and not necessar-

ily dedicated to something specific, reason why OpenGL’s rendering pipeline evolved

too, OpenGL’s version 2.0 introduced officially a programmable function pipeline, in

the form of vertex shading and fragment shading.

Figure 2.2 shows a block diagram of OpenGL 4.3 (newest to this day) rendering

pipeline; each stage will be briefly explained next.
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Figure 2.2: OpenGL 4.3 Rendering Pipeline[7]

• Vertex shading: Receives the vertex data, specified in VBOs, processing each

vertex separately. This stage is mandatory for all OpenGL programs, and must

have a shader bound to it.

• Tessellation shading: This is an optional stage, that generates additional ge-

ometry within the OpenGL pipeline, as compared to having the application

specify each geometric primitive explicitly. This stage receives the output of

the vertex shading stage, and does further processing of the received vertices.

• Geometry shading: This is another optional stage, that can modify the entire

geometric primitives within the OpenGL pipeline, this stage operates on in-

dividual geometric primitives allowing each to be modified, additionally more
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geometry may be generated from the input primitive,change the type of geo-

metric primitive or discarding geometry altogether. It receives its input after

vertex shading has completed processing the vertices of a geometric primitive

or from the primitives generated from the tessellation shading stage.

• Fragment shading: This stage processes the individual fragments generated by

the OpenGL’s rasterizer, it must have a shader bound to it, here a fragment’s

color and depth values are computed and then sent for further processing in

the fragment-testing and blending parts of the pipeline.

• Compute shading: Although it is not part of the graphics pipeline as all the

other stages. A computer shader processes generic work items, driven by an

application-chosen range, rather than by graphical inputs like vertices and frag-

ments. Compute shaders can process buffers created and consumed by other

shader programs in the application.

2.2.2.1 GLSL

It is important to understand what shaders are, they work like a function call, where

data is passed in, some process is applied to the data and then its returned, these

functions are written in the OpenGL Shading Language (GLSL), which is a special

language very similar to C++ used specifically for constructing shaders. Here I will

give a very brief explanation on how to load GLSL shaders.

A GLSL shader is provided in a string of characters, it can either be loaded from a

file of declared as a string of characters on code, most times the first method being

more effective since, those files may be changed after compiling without a problem.

The first line on a shader file must specify the version of GLSL to be used, if it is

not specified GLSL 110 will be assumed and may be incompatible with the current

OpenGL version, just as in C or C++ variables are declared before the declaration
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of the main() function, these variables are the connection to the outside world, the

shader does not know where its data is coming from but it only sees its input variables

populated with data every time it executes, hence the importance of these shader

variables, if they are not specified correctly the shader won’t be able to do much.

In the main() function is where the shader actually performs calculations using

the variables populated with the input, a good and simple example is passing the

position of a node as the input to the vertex shader, using the vertex shader as a

pass-through shader copying the input to the output, which will; eventually be the

input of the fragment shader, in which in its main() function will perform some cal-

culation and based on the node’s position a different color may be obtained. The

shaders utilized for this work are located in the appendix of this document.

To associate data going into the vertex shader we need to connect the shader vari-

ables declared as ”in” to a vertex attribute array, which will be explained in section

2.3. Shaders also need to be compiled before they are used, they work in a similar

way as C programs, the compiler analyses the program, checking for errors, trans-

lates it into object code, which is then linked to generate an executable program, the

main difference is that the compiler and linker are also part of the OpenGL API.

This process is shown on figure 2.3. To create a shader object, the function glCre-

ateShader() is used as follows:

1 GLuint glCreateShader ( GLenum type ) ;

2 /* Allocates a shader object, type must be one of

3 GL_VERTEX_SHADER , GL_FRAGMENT_SHADER , GL_TESS_CONTROL_SHADER ,

4 GL_TESS_EVALUATION_SHADER , or GL_GEOMETRY_SHADER */

Once the shader object is created it needs to be associated with the source code of

the shader, that is done with the function glShaderSource().
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Figure 2.3: Shader compilation process[7]

1 void glShaderSource ( GLuint shader , GLsizei count ,

4 const GLchar ∗∗string , const GLint ∗length ) ;

5 /* Associates the source of a shader with a shader object shader.

6 string is an array of count GLchar strings that compose the

As explained in the figure the next step is to compile the shader object:

1 void glCompileShader ( GLuint shader ) ;

2 /* Compiles the source code for shader. The results of the

3 compilation can be queried by calling glGetShaderiv() with

4 an argument of GL_COMPILE_STATUS. */

After the shader object was compiled, they need to be linked to create an executable

shader program, this is a similar process as the one explained before for creating
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shader objects, first a shader program needs to be created, to be able to attach those

shader objects to it.

1 GLuint glCreateProgram (void ) ;

2 /* Creates an empty shader program. The return value is either

3 a nonzero integer, or zero if an error occurred. */

and to attach shader objects to it:

1 void glAttachShader ( GLuint program , GLuint shader ) ;

2 /* Associates the shader object, "shader" , with the shader

3 program, "program". A shader object can be attached to a shader

4 program at any time, although its functionality will only be

5 available after a successful link of the shader program.

6 A shader object can be attached to multiple shader programs

7 simultaneously. */

A shader object may be removed from a program with:

1 void glDetachShader ( GLuint program , GLuint shader ) ;

2 /* Removes the association of a shader object, "shader", from

3 the shader program, "program". If shader is detached from program

4 and had been previously marked for deletion (by calling

5 glDeleteShader()), it is deleted at that time. */

Now with all the shader objects attached to the program, they need to be linked in

order to become an executable program:

1 void glLinkProgram ( GLuint program ) ;

2 /* Processes all shader objects attached to "program" to generate

3 a completed shader program. The result of the linking operation

4 can be queried by calling glGetProgramiv() with GL_LINK_STATUS.
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5 GL_TRUE is returned for a successful link; GL_FALSE otherwise. */

After a program has been successfully linked it can be used like this:

1 void glUseProgram ( GLuint program ) ;

2 /* Use the linked shader program "program". */

Shader objects and shader programs may be deleted as follows respectively:

1 void glDeleteShader ( GLuint shader ) ;

2 /* Deletes shader. If shader is currently linked to one or more

3 active shader programs, the object is tagged for deletion and

4 deleted once the shader program is no longer being used by any

5 shader program. */

1 void glDeleteProgram ( GLuint program ) ;

2 /* Deletes program immediately if not currently in use in any

3 context, or schedules program for deletion when the program is

4 no longer in use by any contexts. */

2.3 Buffer Objects

Buffers objects are general purpose memory storage blocks allocated by OpenGL,

they give OpenGL implementations flexibility and improve performance, although

they are generic by definition, the programmer is required to specify or describe the

usage for them during the implementation, they can be used to store many types of

data, but in this work buffers are used for storing vertex information, hence they are

called Vertex Buffer Objects (VBOs).
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To allocate data on a buffer object, a buffer object first need to be created, this is

done using the glGenBuffers() command, and it has the following prototype:

1 void glGenBuffers ( GLsizei n , GLuint ∗buffers ) ;

2 /* Returns n currently unused names for buffer

3 objects in the array buffers. */

This will create an array of buffer objects names located at &buffers, although they

are not object buffers yet, they are only placeholders. The buffer objects are not

created until the name is bound to one of the buffer binding points on the con-

text. There are several types of buffer binding points or also called targets, such

as: GL ARRAY BUFFER for VBOs and GL ELEMENT ARRAY BUFFER for El-

ement Buffer Objects, which is where the vertex indices are contained.

Buffer objects will be actually created after the binding is done, using the glBind-

Buffer() command, with the following prototype:

1 void glBindBuffer ( GLenum target , GLuint buffer ) ;

2 /* Binds the buffer object "buffer" to the specified

3 buffer binding point as specified by "target". */

After creating the buffer, the next step to make something useful out of it, is to put

data on it. This is done via the glBufferData() function:

1 void glBufferData ( GLenum target , GLsizeiptr size ,

2 const GLvoid ∗data , GLenum usage ) ;

3 /* Allocate size bytes of storage for the object bound

4 to the target, data must be non-null, usage describes

5 the intended usage for that buffer */

The function glBufferData() allocates storage, if size is larger than the space allo-

cated for that buffer, the buffer will be resized, it is important to note the usage
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parameter, since it may have big influence on the performance of the program, it

should be specified as one of the OpenGL usage tokens.

These usage tokens are composed of 2 parts: The first one can be either STATIC,

DYNAMIC, STREAM, while the second one can be DRAW, READ or COPY, these

are explained in further detail in table 2.3. OpenGL will make decisions based on

STATIC Contents will be modified once and used many
times.

DYNAMIC Contents will be modified repeatedly, and used
many times.

STREAM Contents will be modified once and used at most
a few times.

DRAW Contents are modified by the application and used
as the source for OpenGL drawing and image spec-
ification commands.

READ Contents are modified by reading data from
OpenGL and used to return that data when
queried by the application.

COPY Contents are modified by reading data from
OpenGL and used as the source for OpenGL draw-
ing and image specification commands.

Table 2.1: Buffer Usage Tokens [7]

this parameter, such as placing the data on fast memory or avoiding to do so, if

considers it not convenient.

To modify a buffer, completely or partially, the function glBufferSubData() is used

like this:

1 void glBufferSubData ( GLenum target , GLintptr offset ,

2 GLsizeiptr size , const GLvoid ∗data ) ;

3 /* Replaces a subset of a buffer object’s data store

4 with new data. The section of the buffer object bound

5 to "target" starting at "offset" bytes is updated with
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6 "size" bytes of data addressed by "data". */

When the buffers are correctly populated with the required data, this data needs

to be hooked up to the shader. Vertex Array Objects (VAOs) are OpenGL objects

that describe how the vertex attributes are stored in a Vertex Buffer Object (VBO),

the VAO is not the object storing the vertex data but it is only the descriptor

of this data. To associate the data going into the vertex shader, the shader ”in”

variables need to be connected to a Vertex Attribute Array, doing so with the function

glVertexAttribPointer():

1 void glVertexAttribPointer ( GLuint index , GLint size , GLenum type ,

2 GLboolean normalized , GLsizei stride , const GLvoid ∗pointer ) ;

3 /* Specifies where the data values for the vertex attribute with

4 location "index" can be accessed. "pointer" is the offset in

5 bytes from the start of the buffer object currently bound to the

6 GL_ARRAY_BUFFER target for the first set of values in the array.

7 "size" represents the number of components to be updated per

8 vertex. "type" specifies the data type of each element in the

9 array. "normalized" indicates that the vertex data should be

10 normalized before being presented to the vertex shader. "stride"

11 is the byte offset between consecutive elements in the array. */

The state set by this function is stored in the currently bound VAO, there is only

one thing left to do to be able to use this data, the VAO needs to be enabled, and

this is done by the function glEnableVertexAttribArray():

1 void glEnableVertexAttribArray ( GLuint index ) ;

2 void glDisableVertexAttribArray ( GLuint index ) ;

3 /* Specifies that the vertex array associated with variable index

4 be enabled or disabled. index must be a value between zero and
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5 GL_MAX_VERTEX_ATTRIBS 1. */

Once the data is ready to be used by OpenGL, all that needs to be done is draw it

on the screen, for this the function glDrawElements() will be used.

1 void glDrawElements ( GLenum mode , GLsizei count ,

2 GLenum type , const GLvoid ∗indices ) ;

3 /* Defines a sequence of geometric primitives using "count"

4 number of elements, whose indices are stored in the buffer bound

5 to the Element Array Buffer (EAB). "indices" represents an offset

6 ,in bytes, into the EAB where the indices begin. "type" must be

7 one of GL_UNSIGNED_BYTE , GL_UNSIGNED_SHORT , or GL_UNSIGNED_INT ,

8 indicating the data type of the indices the EAB. "mode" specifies

9 what kind of primitives are constructed. */

2.4 External Libraries

2.4.1 GLUT

As explained before, OpenGL is designed to be implemented on different hardware

and it is independent of the operating system running on the computer, for this very

reason, OpenGL does not contain any functions or commands to manage windows,

this needs to be done manually depending on the operating system the software is

intended to run on, in this work the GLUT (OpenGL Utility Toolkit) library was

used to overcome this, facilitating the OpenGL initialization and window managing.

The version of GLUT used is called freeglut, it is based on the original version, but

it’s more updated and more compatible in many cases, a more in depth explanation
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of how GLUT works can be found at [23].

GLUT makes making OpenGL applications a simpler process, this is done in its most

basic form in the following way:

• Initialization: In the initialization part several functions are called, such as

glutInit(), and glutCreateWindow(), their names are very obvious of what they

do, but also in this phase other functions may be called, to specify the window

size, position or OpenGL display mode for example.

• Registering Callbacks: In this phase, the programmer must specify the func-

tions that will be called when a specific event happens, this functions could be

for example, what function to call when a key was pressed or released on the

keyboard (glutKeyboardFunc()), when the user uses a mouse button or even

moves the mouse(glutMouseFunc() and glutMotionFunc()), and some of them

more needed than others, such like what function to call when it’s time to

display or render something on the screen (glutDisplayFunc()), when OpenGL

is idle (glutIdleFunc()), or when the window is resized(glutReshapeFunc()).

• Main Loop: Lastly what needs to be done is to call the glutMainLoop() function

which basically loops between the functions previously specified and has an

event handler to perform the correct callback for a specific event.

2.4.2 GLEW

GLEW is the OpenGL Extension Wrangler, which is another external library used in

this work, it is a cross platform open source C/C++ extension loading library, GLEW

provides efficient runtime mechanisms for determining which OpenGL extensions

are supported on the target platform, OpenGL core and extension functionality is
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exposed in a single header file glew.h, all that needs to be done is to initialize it

calling the function glewInit() after creating the window using GLUT[].

2.4.3 GLM

OpenGL Mathematics or GLM is a header only c++ mathematics library for graph-

ics software based on the OpenGL Shading Language (GLSL), this library intends

to provide classes and functions designed and implemented following as strictly as

possible the GLSL conventions and functionalities so that when a programmer knows

GLSL, GLM will also look familiar, although it is not limited to GLSL, it provides

extended capabilities including matrix transformations, quaternions, random number

generation, among others, it also ensures interoperability with third party libraries

, SDKs and OpenGL, it replaces deprecated functions, and as a general purpose

library it can be used in many applications. In this work the GLM library is used

primarily to perform the object manipulations using matrices for transformations

and rotations, and camera manipulation.
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Parallelization

When using parallel computing to develop parallel algorithms it is a good idea to

follow some software engineering discipline or programming model, one good example

is the APOD (Analyze Parallelize Optimize and Deploy) model, which is defined as

a systematic automation process, that the programmer must follow to break down

the optimization process and succeeding not only at developing fast algorithms, but

also be efficient and organized about it.

First an explanation of the theory behind the algorithm will be explained

3.1 Modal Warping

This work is based primarily on the paper presented at the IEEE transactions on

visualization and computer graphics by Min Gyu Choi and Hyeong-Seok Ko [5].

In their work they present a technique to perform real time simulation of objects,

their work is based on implementing a special type modal analysis called modal

warping to FEM to improve simulation speed when using large objects, however what
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modal warping fails to achieve is being accurate for large deformations, extending

their modal analysis work to identify a rotational component of an infinitesimal

deformation and being able to keep track of it, achieving accurate results.

Reason why modal analysis is a good choice of algorithm to be implemented on

a GPU; it provides accurate results and applying modal analysis to FEM, as its

explained further in the next section makes it easy to decouple the calculation of the

modal amplitudes making every calculation independent from each other fitting for

the most part the threads organization used in GPGPU computing.

3.1.1 Rotational Part in a Small Deformation

The non-linear term in a strain sensor is the one responsible for the appearance and

disappearance of rotational deformations, since it is generally known that every in-

finitesimal deformation can be decomposed into a rotation followed by a strain this

serves as a basis for this technique, basically: at every timestep of the simulation,

small rotations are identified on every point of the material, then the effect of them

is integrated to obtain the deformed shape.

A brief explanation of this calculation goes as follows:

3.1.1.1 Kinematics of Infinitesimal Deformation

Given an elastic solid object; x ∈ R3 denotes the position of a material node/point

in an undeformed state, which will in turn move to a new position given by a(x) due

to a subsequent deformation.

a(x) = x+ u(x), x ∈ Ω
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where Ω is the domain of the solid.

Differentiating both sides with respect to x gives us:

da = (I + Ou)dx (3.1)

The infinitesimal strain tensor ε which measures the change in the squared length

of dx during an infinitesimal deformation is defined as:

ε =
1

2
(Ou+ OuT )

if we note that 1
2
(Ou+ OuT ) is a meaningful quantity, Ou can be decomposed as:

Ou =
1

2
(Ou+ OuT ) +

1

2
(Ou− OuT ) = ε+ ω (3.2)

The skew-symmetric tensor ω, is closely related to the curl of the displacement field

Ou and it may rewritten as:

ω =
1

2
(Ou− OuT ) =

1

2
(O× u)× = w× (3.3)

Where w× denotes the standard skew symmetric matrix of vector w. Therefore

1
2
(O × u)× can be viewed as a rotation vector that causes rotation of the material

points at and near x, by an angle given by θ = ‖w‖ about the unit axis ŵ = w
‖w‖

ω is called the infinitesimal rotation tensor

Finally if we substitute equations 3.3 and 3.2 into 3.1 we obtain:

da = dx+ εdx︸︷︷︸+ θŵ × dx︸ ︷︷ ︸ (3.4)

Showing that an infinitesimal deformation can be decomposed correctly into strain

and rotation.
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3.1.1.2 Extended Modal Analysis

The purpose of extending the modal analysis is to keep track of the rotation experi-

enced by each material point during deformation.

The governing equation for a finite element model is given by:

Mü+ Cu̇+Ku = F (3.5)

Where u(t) is a 3n-dimensional vector representing the displacements of the n nodes,

from their original positions and F (t) is a vector that represents the external forces

acting on the nodes. The mass, damping and stiffness matrices M, C and K respec-

tively are independent of time and are completely characterized at the rest state

under the commonly adopted assumption that C = ξM + ζK where ξ and ζ are

scalar weighting factors (Rayleigh Damping) [5].

In general M and K are not diagonal, thus equation 3.5 is a coupled system of ordi-

nary differential equations (ODEs). Let Φ and a diagonal matrix Λ be the solution

matrices to the generalized eigenvalue problem: KΦ = MΦΛ, such that ΦTMΦ = I

and ΦTKΦ = Λ.

Since the columns of matrix Φ form a basis of the 3n-dimensional space, u can be

expressed as a linear combination of the columns:

u(t) = Φq(t) (3.6)

Where Φ is the modal displacement matrix ; every column represents a different mode,

and q(t) is a vector containing the corresponding modal amplitudes.

Examining the eigenvalues, allows to only take dominant columns (modes) of Φ, re-

ducing significantly the amount of computation to be performed.

Substituting equation 3.6 in equation 3.5 followed by a premultiplication of ΦT de-

couples 3.5 as:

Mq q̈ + Cq q̇ +Kqq = ΦTF (3.7)
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where Mq = I , Cq = ξI + ζΛ, and Kq = Λ are now all diagonal matrices and ΦTF

is defined as the modal force.

Manipulating the previous equation the following equations can be obtained:

q̇k =
(α− I) ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1

h
(3.8)

qk = α ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1 (3.9)

Where h is the time step size and the coefficient matrices can be obtained by:

αi = 1− h2 ∗ ki
di

βi = h ∗ (1− h ∗ Ci + h2 ∗ ki
di

)

γi =
h2

di

di = Mi + h ∗ Ci + h2 ∗ ki

Where: Mi, Ci and Ki represent the diagonal entries of Mq,Cq and Kq

3.1.1.3 Modal Rotation

While the conventional way of accurately calculating strain and deformation is de-

fined as:

ε = Ou ∗ OuT (3.10)

The previous equation provides accurate results but it is computationally complex,

reason why it is chosen to use the infinitesimal strain sensor from equation 3.3,

trading off accuracy for complexity, to overcome this problem the calculation of

displacement for every node needs to be independent of rotation, and the rotation
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must be included afterwards.

The rotation matrix is defined as follows:

R =

∫ t

0

ω(t) ∗ dt (3.11)

Where ω(t) is the angular velocity of a certain node for in a specific timestep.

It can be assumed that the rotation linearly varies from 0 to t starting at 0 and ending

in w, for a certain time w∗τ
t
→ R, given this we can include define the composite

vector w(t) as follows:

w(t) = W ∗ Φ ∗ q(t) = Ψ(q(t) (3.12)

To make the calculation time independent Ψ can be defined as and be precomputed

as:

Ψ = W ∗ Φ (3.13)

Equation 3.12, will later be used to calculate the rotation using Rodrigues formula

[24]

Ri = [I + (ŵi×)
1− cos‖wi‖
‖wi‖

(ŵi×)2(1− sin‖wi‖
‖wi‖

)] (3.14)

Where: i indicates this calculation is for a specific node , ŵi× is defined as the

skew symmetric matrix for that specific node and ‖wi‖ is the magnitude of the skew

symmetric matrix and I is the identity matrix with a size of n ∗ n, given that it is a

3 dimensional node n = 3, and finally Ri will also be a n ∗ n matrix.

Lastly what needs to be done is to include the rotational part in the displacement

calculation doing so by applying Ri on equation 3.6 for a specific node:

ui(t) = Ri ∗ ui(t) (3.15)

After doing so u(t) will contain not only displacement information for all nodes but

also rotation information, which will only need to be applied to the nodes original

location to get the new location for a specific timestep.
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3.1.2 Implementation

The implementation of the modal warping technique will be explained in this section.

The displacement is given by equation 3.6, it is obtained by the multiplication of

the modal displacement matrix by the vector containing the corresponding modal

amplitudes, to get these two elements, we need to solve the eigen problem first to get

Φ; which in this case its precomputed and use equations 3.8 and 3.9 to obtain q.

Lastly using equation 3.14 we can also include the rotational information, providing

an accurate result.

A brief analysis of the equations previously will give the chronological order in which

the elements need to be obtained: The final goal is to obtain a displacement per

3-dimensonal node, which is given by:

u(t) = Φq(t)

To obtain u first Φ and q need to be obtained, in the case of Φ it is assumed it was

previously computed, and q will be given by the following equation:

qk = α ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1

Asit can be seen to get q we not only need to get q̇ first using equation:

q̇k =
(α− I) ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1

h

But also the coefficients matrices which are given by:

αi = 1− h2 ∗ ki
di

βi = h ∗ (1− h ∗ Ci + h2 ∗ ki
di

)

γi =
h2

di
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di = Mi + h ∗ Ci + h2 ∗ ki

Where: Mi, Ci and Ki represent the diagonal entries of Mq,Cq and Kq, and as

explained in section 3.1 we can assume that K contains the eigenvalues, M is the

Identity matrix and C is a linear combination of both. In chronological order of

execution, calculations need to be performed as follows:

1. Solve the Eigenproblem: From this: Φ and K will be obtained, being the

eigenvectors and the eigenvalues respectively.

2. Compute C : After getting K and knowing that M is the Identity matrix, C

can be computed as a linear combination of both.

3. Compute Coefficient Matrices: All the coefficient matrices will be diagonal

matrices obtained from the equations previously explained.

The elements previously mentioned are time independent and can be computed at

the beginning of the program, while the following need to be computed at every

timestep or iteration of the program:

1. Compute q̇

2. Compute q

3. Compute u

4. Compute rotation: rotational information needs to be calculated, and it can

be obtained using the Rodrigues’s formula

5. Include rotation: Including the rotational information obtained in the last

element is vital since it will give an accurate result
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3.2 Analyze Stage

The first step of the model is to analyze the problem, or in this case analyze the cur-

rent algorithm, which was developed using conventional computing, executing CPU

code exclusively, the original algorithm was developed using MATLAB as stated be-

fore, so the first step was to create or translate the original algorithm from MATLAB

to C/C++, doing so to not only to get a better performance already, but also to be

able to reuse parts of this code on the parallel version programmed in CUDA.

3.2.1 GNU Profiler

A good way of analyzing a program is using a technique called profile based analysis,

profiling an application will output some vital information of where the program

spends its time, and this in turn will facilitate developing algorithms that will improve

performance on the parts of the code where its most important, GNU profiler (gprof)

was the tool selected to do this task [25]. Below is the filtered output of the GNU

profiler:

1 $ gprof −p mwgpu

2

3 % cumulative self self total

4 time seconds seconds calls ms/call ms/call name

5 83 .01 1 .71 1 .71 135378 0 .01 0 .01 matrixByVec ( . . . )

6 8 .25 1 .88 0 .17 414 0 .41 0 .41 matrixTranspose ( . . . )

7 3 .88 1 .96 0 .08 132480 0 .00 0 .00 matrixMult ( . . . )

8 3 .40 2 .03 0 .07 414 0 .17 0 .17 insertZeros ( . . . )

9 0 .49 2 .05 0 .01 1656 0 .01 0 .01 vectorAdd ( . . . )

Listing 3.1: GNU Profiler Filtered Output
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From this output we can see easily in what functions the program spends more

time, it is important to also note the amount of times a certain function was called,

since noticing that a programs spends a lot of time on a certain function might not

necessarily mean its inefficient, it might be that it just needs to call that function a

lot of times.

As noted before the functions where the program spends more time are, in order of

time spent:

• matrixByVec()

• matrixTranspose()

• matrixMult()

• insertZeros()

• vectorAdd()

• computeR()

This is valuable information, since it gives a good start point on where the paral-

lelization would improve more the original algorithm, after getting this information,

singling out every one of this functions to analyze is the next step.

After analyzing all the functions, it can be stated that the functions matrixByVec(),

matrixTranspose() and matrixMult() can be parallelized in most of their computa-

tions, while insertZeros() and computeR() not so much, but since most of the time

spent is on the first three functions mentioned, it can be presumed that a good

optimization will be achieved.
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3.2.2 Amdahl’s Law

To be able to approximate the performance gain that can be obtained by improving

some portion of an algorithm may be improved, Amdahl’s Law is used. Amdahl’s

law states that the performance improvement to be gained from using some faster

mode of execution is limited by the fraction of time the faster mode can be used.

Amdahl’s law defines the speedup that can be gained by using a particular feature[8].

Where speedup is defined as:

Speedup =
Performance using the enhancementwhen possible

Performancewithout using the enhancement
(3.16)

Amdahl’s law gives a quick way to find the speedup from some enhancement, depend-

ing on two factors: The fraction of the computation time in the original algorithms

that can be converted to take advantage of the enhancement, and the improvement

gained by the enhanced execution mode (how much faster the task would run if the

enhanced mode where to be used for the entire algorithm. The execution time is

defined as follows:

ExecT imenew = ExecT imeold ∗ ((1−Fractionenhanced)+
Fractionenhanced
Speedupenhanced

) (3.17)

and the overall speedup is the ration of the execution times:

Speedupoverall =
ExecT imeold
ExecT imenew

(3.18)

or:

Speedupoverall =
1

((1− Fractionenhanced) + Fractionenhanced

Speedupenhanced
)

(3.19)

Amdahl’s law expresses the law of diminishing returns: The incremental improvement

is the speedup gained by an improvement of just a portion of the computation, it

diminishes as improvements are added. Analyzing the specific case of this algorithm

we can note that the fraction of the code that can be improved is a constant, where
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this fraction was approximated using the profiler in section 3.2.1, although the time

spent on executing it’s a variable, depending on how large the object used on the

simulation is, the number of nodes the object has and the number of eigenvalues used

in the calculation, will define the time spent on calculating the modal displacement.

It can be presumed then that as the object gets larger and larger, the gain on

algorithm performance will also increase.

3.2.3 Computer and device specs

It is also important to specify the specifications of the devices and software used to

measure performance improvement, these will be described in the following listings:

1 OS : Arch Linux x86_64 GNU/Linux

2 Kernel : 3.14.0−5−ARCH

3

4 GCC : gcc ( GCC ) 4 . 8 . 2 20140206 ( prerelease )

5

6 Make : GNU Make 4 .0

7

8 NVCC : NVIDIA (R ) Cuda compiler driver

9 Cuda compilation tools , release 6 . 0 , V6 . 0 . 1

Listing 3.2: Operating System & Software Specifications

The CPU and system memory specifications are a filtered version of the information

taken from the files /proc/cpuinfo and /proc/meminfo, gotten using the Linux kernel,

and some information using other commands.
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1 Processor : Genuine Intel (R ) Core 2 Duo CPU U7300 @ 1 .30 Ghz

2 CPU MHz : 1733 .00

3 Cache Size : 3072 KB

4

5 Memory :

6 Size : 4096 MB

7 Form Factor : SODIMM

8 Type : DDR3

9 Speed : 800 MHz

Listing 3.3: CPU and System Memory Specifications

GPU or device specifications listed below are a filtered version of the output obtained

by the deviceQuery utility given by NVIDIA with the CUDA release, and also the

information obtained using the NVIDIA Visual Profiler [26], whose functionality will

be explained in section 3.4.

1 GPU : GeForce GT 335M

2 CUDA Driver Version / Runtime Version 6 .0 / 5 .5

3 CUDA Capability Major/Minor version number : 1 . 2

4 Total amount of global memory : 1023 MBytes

5 ( 9) Multiprocessors , ( 8) CUDA Cores/MP : 72 CUDA Cores

6 GPU Clock rate : 1080 MHz

7 Memory Clock rate : 790 Mhz

8 Memory Bus Width : 128−bit

9 Warp size : 32

10 Maximum number of threads per multiprocessor : 1024

11 Maximum number of threads per block : 512

12 Max dimension size of a thread block (x , y , z ) : (512 , 512 , 64)

13 Max dimension size of a grid size (x , y , z ) : (65535 , 65535 , 1)
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14 Integrated GPU sharing Host Memory : No

17 Support host page−locked memory mapping : Yes

18 Device supports Unified Addressing ( UVA ) : No

Listing 3.4: GPU Specifications

The above is perhaps the most valuable information of all, since as specified before

in section 1.3.3.2, when using parallel computing on the GPU; the programmer must

develop algorithms somewhat based on the underlying architecture of the device,

for example the amount of maximum threads possible to execute per block is a

very important parameter, which was thought of when developing the algorithm, or

another important parameter would be the amount of CUDA cores available for a

specific device.

3.3 Parallelize Stage

With all the information previously obtained, CUDA can be integrated to an existing

C/C++ application, the CUDA entry point being a host only function, containing

the kernel or kernels, called from C/C++ code.

The compiler needed for CUDA code is called nvcc, and it only needs to compile

the file that contains the function previously specified, while any other file can be

compiled with a conventional compiler such as gcc. First, a host only function was

created called displacement(), parameters such as the force vector, number of nodes,

eigenvalues, among others were passed to it, the purpose of this function as mentioned

before was to be a entry point to CUDA, in this function the environment to use

CUDA is created, allocating GPU memory, copying memory from host to device or

vice-versa, calculating the amount of threads needed to be run per block (there is a
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maximum amount of threads depending on the device), etc. Although once all that

is done this function is also in charge of one of the most important things, which is

launching the kernels.

To implement the parallel algorithm the same ”sequence” found on the conventional

algorithm was followed, creating a parallel version of the functions needed, as it was

shown before the most important ones were matrixByVec(), matrixTranspose(), etc.

These functions were ”replicated” in the form or kernels.

In this first version the displacement() function would be called from inside the

OpenGL loop created by GLUT [23], it would allocate and copy all the memory

needed on the GPU, launch the kernels to perform different calculations, and after

a result for that node displacement was obtained it would return that result in the

form of an array which would then be used in the main code to modify the OpenGL

buffer previously created, to render the object on the screen.

3.3.1 Kernel Development

In this section a basic explanation of the kernels developed will be given.

The major kernels used in this work as it was shown in figure 3.3 are:

• kMatVector

• kInsertZeros

• kVectorAdd

• kModBuffer

• kComputeR

54



Chapter 3. Parallelization

These kernels are used to implement the equations found on section 3.1.2, the purpose

of these equations is to be able to get the location displacement from every node

contained on the object, while keeping the rotation information too.

The calculations that need to be parallelized are the ones to be computed on every

iteration of the program, hence obtaining a better improvement in performance.

Analyzing the following equation the q̇ vector can be obtained:

q̇k =
(α− I) ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1

h

It can be separated in 5 main operations:

result1 = (α− I) ∗ qk−1

result2 = β ∗ q̇k−1

result3 = γ ∗ ΦT ∗ F k−1

result = Σn
i resulti

q̇ =
result

h
= result ∗ 1

h

• The first part (result1) can also be separated in an addition between matrices

(α + (−Identity)) multiplied by qk−1 which is a vector.

• The second part (result2) is merely a matrix (β) multiplication by a vector

(q̇k−1).

• The third part (result3) performs two sequential multiplications, the first one

a matrix by a vector ΦT ∗ F k−1 assuming that the transpose of Φ was previ-

ously calculated, and the second one, multiplying the result obtained by the

coefficient matrix γ.
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• The next operation is to perform an addition of the result obtained from all

the previous ones.

• And the last one is to multiply that result which is a vector by a scalar ( 1
h
).

With the next equation q can be obtained:

qk = α ∗ qk−1 + β ∗ q̇k−1 + γ ∗ ΦT ∗ F k−1

Looking at the previous equation, it can be seen that it could be separated in the

following operations:

result1 = (α) ∗ qk−1

result2 = β ∗ q̇k−1

result3 = γ ∗ ΦT ∗ F k−1

q = Σn
i resulti

But looking closely, two of these operations were already calculated previously to get

q̇ (β ∗ q̇k−1 and γ ∗ΦT ∗F k−1), so the only one different is (α) ∗ qk−1 and then adding

them all together. This will take more space in memory but save time not performing

unnecessary calculations. With these results now the following calculation can be

computed:

u(t) = Φq(t)

This is again a matrix (Φ) multiplication by a vector (q(t))

After this the only computation needed is to include the rotational information in

vector u(t) although it is not that simple, to do this we need to implement equation

3.15:

ui(t) = Ri ∗ ui(t)
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This will include the rotation information in the u(t) but it will do it for every node,

the Ri matrix can be obtained using Rodrigues’s formula like this:

Ri = [I + (ŵi×)
1− cos‖wi‖
‖wi‖

(ŵi×)2(1− sin‖wi‖
‖wi‖

)]

To implement this the following calculations need to be performed first:

1. Compute w vector

2. Compute ŵi skew symmetric matrix

3. Calculate wi vector’s norm

4. Calculate the skew symmetric matrix squared: ŵi×2

Vector w(t) can be obtained by multiplying the Ψ matrix by vector q(t), where it is

assumed that this matrix was previously precomputed.

And the skew symmetric matrix of vector wi is given by:


0 −w3 w2

w3 0 −w1

−w2 w1 0


.

Generic kernels were created to perform matrix and vector operations, it was decided

this way instead of creating one major kernel to perform calculations per element

because the device available was not powerful computationally speaking.

After several tests and performance measurements it was proven that using generic

kernels was more efficient for this device while the same code could still work on

better devices.

A good example of this is the kmatrixByVec kernel which performs the multiplication

of a matrix by a vector, the original code developed was this:
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1 __global__ void kMatVector ( f loat ∗mat , f loat ∗vec , f loat ∗res ,

unsigned int RowsMat , unsigned int ColsMat ) {

2 f loat c = 0 ;

3 const unsigned int TID = threadIdx . x ;

4 const unsigned int BID = blockIdx . x ;

5 const unsigned int BDIM = blockDim . x ;

6

7 unsigned int i=BDIM∗BID+TID ;

8

9 i f (i > RowsMat ) return ;

10

11 extern __shared__ f loat vecsh [ ] ;

12 for ( int j=0;j<ColsMat ; j++){

13 vecsh [ j ]=vec [ j ] ;

14 }

15

16 __syncthreads ( ) ;

17

18 for ( int j=0;j<ColsMat ; j++){

19 c += mat [ i∗ColsMat+j ]∗ vec [ j ] ;

20 }

21 res [ i ]=c ;

22 }

This used some interesting features of CUDA, first it used the shared variable

declaration to specify that memory will be contained in shared memory, which as

explained in section 1.3.3.2.1: shared memory is faster than global memory, after that

it copied values from global memory to shared memory, using syncthreads() to make
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sure all threads were synchronized and the vector in shared memory contained all

the information needed, after that the actual matrix by vector multiplication was

calculated, nonetheless performance was slow and the code had to be modified to:

1 __global__ void kMatVector ( f loat ∗mat , f loat ∗vec , f loat ∗res ,

unsigned int RowsMat , unsigned int ColsMat ) {

2 f loat c = 0 ;

3 const unsigned int TID = threadIdx . x ;

4 const unsigned int BID = blockIdx . x ;

5 const unsigned int BDIM = blockDim . x ;

6

7 unsigned int i=BDIM∗BID+TID ;

8

9 for ( int j=0;j<ColsMat ; j++){

10 c += mat [ i∗ColsMat+j ]∗ vec [ j ] ;

11 }

12 res [ i ]=c ;

13 }

Getting rid of all shared memory operations.

The architecture on this device was not able to hold enough shared memory for

the vector in some of the models, and while a workaround could have been found

for this, the processors were still too slow and sacrificing the use of another for loop

to use shared memory, creating another branch in the thread code was simply not

feasible.

Two other important kernels used were the kModBuffer and kVectorAdd, which as

the name suggests, the first one modifies the OpenGL graphics buffer and the second
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one adds two vectors, these two kernels basically perform the same operation since

the graphics buffer is nothing more than a vector in memory. Again shared memory

operations had to be avoided:

1 __global__ void kModBuffer ( f loat ∗buffer , f loat ∗d_nodes , f loat

∗u , unsigned int totalThreads )

2 {

3 const unsigned int TID = threadIdx . x ;

4 const unsigned int BID = blockIdx . x ;

5 const unsigned int BDIM = blockDim . x ;

6

7 unsigned int index=BDIM∗BID+TID ;

8

9

10 i f ( index>totalThreads )

11 return ;

12 // Add displacement to original nodes

13 buffer [ index ]=d_nodes [ index ]+u [ index ] ;

14

15 }

The first part of the kernel is to know which thread is actually being executed, this

is how the index for the memory location to be modified is obtained. The if branch

is to make sure the that none of the threads will try to modify memory locations not

part of the buffer, as explained before this was part of the warp optimizations.

While these two kernels seem very simple, they are executed many times hence their

importance on performance.

60



Chapter 3. Parallelization

Lastly another important kernel to mention is the kInsertZeros kernel, this is

particularly important because along with the kComputeR kernel its one of the less

parallelizable parts of the program, in fact to be able to do this in parallel it has to

be executed several times, unlike the serial version which is able to do it in only one

execution.

1 __global__ void kInsertZeros ( f loat ∗Input , f loat ∗Output ,

unsigned int position , unsigned int number , unsigned int

numElements ) {

2 //Get element to work on

3 const unsigned int TID = threadIdx . x ;

4 const unsigned int BID = blockIdx . x ;

5 const unsigned int BDIM = blockDim . x ;

6

7 unsigned int i=BDIM∗BID+TID ;

8 //Array wil be increasin its size per execution

9 i f (i<numElements ) {

10 // Do it 3 times

11 // i for insert 0’s

12 i f (i>position−1 && i<=position+number−1)

13 Output [ i ]=0;

14 // i After 0’s

15 else i f (i>=position+number )

16 Output [ i ]=Input [ i−number ] ;

17 // i before 0’s

18 else i f (i<position )

19 Output [ i ]=Input [ i ] ;

20 }

21 }
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This kernel inserts three 0’s on the array containing the displacement, each zero

corresponds to a dimension (x,y,z), this is because some of the nodes of the object

are fixed to analyze the object’s behavior, meaning that these nodes should not have

a displacement, and since they are not used for the calculation, these locations in

memory need to be 0. The complex part here is that since it is being done in parallel,

there is no communication between the threads, the programmer cannot know the

order in which threads will be executed, and for this specific operation order does

matter, this is why this kernel needs to be executed several times. It is important to

note that a workaround for this is to use sparse structures which is one of the items

on future work to improve performance of this program.

The kComputeR kernel is very long but some important parts will be explained here,

this kernel implements the Rodrigues’s formula shown in equation 3.14, and it then

includes this information on vector u(t) it is not very parallelizable with the CUDA

version compatible with this device.

1 f loat sum=0;

2 // Compute Norm

3 for (j=0;j<size ; j++){

4 sum+=d_w [ rI+j ]∗ d_w [ rI+j ] ;

5 }

6 i f (sum<0.00001)

7 norm=1;

8 else

9 norm=sqrtf ( sum ) ;

This part is used to obtain the norm of the vector w, avoiding a future division by

zero, although it is a simple operation, but the usage of sqrt which is unavoidable

makes it slow.

This kernel has to work per node, meaning that unlike most other kernels that
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perform operations per location in memory, this one perform operations on three lo-

cations of memory, since every node contains information about its three dimensions.

Using CUDA 6 a kernel is able to launch more kernels, which could avoid this and

make every kernel to work on only one location per memory.

1 // Get skew matrix ^2

2 for (j=0;j<size ; j++){

3 for (k=0;k<size ; k++){

4 sum=0;

5 for (l=0;l<size ; l++){

6 sum+=skew_w [ j∗size+l ]∗ skew_w [ l∗size+k ] ;

7 }

8 skew_w2 [ j∗size+k ]=sum ;

9 }

10 }

11

12 // Get R Matrix

13 for (j=0;j<size∗size ; j++){

14 R [ j ]=Identity [ j ]+skew_w [ j ]∗ b+skew_w2 [ j ]∗ c ;

15 }

16

17 // Multiply R by uc and modify u

18 for (j=0;j<size ; j++){

19 sum=0;

20 for (k=0;k<size ; k++)

21 sum+=R [ j∗size+k ]∗ d_uc [ rI+k ] ;

22 d_u [ rI+j ]=sum ;

23 }
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It is clearly seen that inside this kernel many operations for which another kernel

was already developed (such as matrix multiplication, or multiplying a matrix by a

vector) are executed, again the usage of CUDA 6 could greatly improve performance,

by launching kernels from the GPU.

It is important to note that this kernel uses functions such as sine and cosine, the

implementation of this kernel uses a special library made available by NVIDIA which

contain intrinsics functions developed specifically to be executed on the GPU and

work a lot faster than their equivalent implementations of the Math.h library on C.

There were some other kernels developed to perform operations like matrix by ma-

trix multiplication, using shared memory which is not used at the moment but in a

future version it can be very well implemented, and a matrix transpose kernel which

is not as important since after the optimizations it is only executed once.

Another important fact is that, after analyzing the code it might seem serialized

in some way due to the fact that when launching kernels, one launch needs to wait

until the previous kernel finishes, but to overcome this problem CUDA Streams were

used, a CUDA stream is defined as a single operation sequence that will be executed

on a GPU device.

CUDA kernels by default are executed in the default stream, if all the kernels are on

the same stream, they do have to wait for the previous one to finish to be launched,

although if they are put on different CUDA streams, multiple kernels can run concur-

rently, performance can be improved by increasing the number of concurrent kernels

setting a higher degree of parallelism.
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A stream can be declared as follows:

1 //Declare the stream

2 cudaStream_t stream_1 ;

3 //Create the actual stream on CUDA

4 cudaStreamCreate(&stream_1 )

After being declared the stream can be used when launching a kernel, by specifying

on the kernel launch parameters on which stream it should run.

1 //Launch kMatVector Kernel on stream 1

2 kMatVector<<< blocksPerGrid , threadsPerBlock , stream_1>>>

And lastly when the program will not use the stream for any other calculations it

should be destroyed:

1 //Destroy the stream

2 cudaStreamDestroy ( stream_1 ) ;

An array of streams can also be created:

1 //Create array of streams

2 int nstreams= 3 ;

3 // Allocate and Initialize Array

4 cudaStream_t ∗streams = ( cudaStream_t ∗)

5 malloc ( nstreams ∗ s izeof ( cudaStream_t ) ) ;

6 for ( int i = 0 ; i < nstreams ; i++){

7 cudaStreamCreate (&(streams [ i ] ) ) ;

8 }
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This way many kernels can be launched on the several streams contained in the

array. The programmer needs to be aware that in some cases a synchronization

between steams needs to be performed, this to make sure that the data needed has

already been calculated correctly avoiding unwanted results.

1 //Synchronize streams

2 cudaStreamSynchronize ( )

So as an example: in the calculation of vector q̇(t), the first and second operations

are independent from each other so they can and should be executed on different

streams as it is shown in the following code snippet.

1 //Create array of streams

2 int nstreams= 2 ;

3 // Allocate and Initialize Array

4 cudaStream_t ∗streams = ( cudaStream_t ∗)

5 malloc ( nstreams ∗ s izeof ( cudaStream_t ) ) ;

6 for ( int i = 0 ; i < nstreams ; i++){

7 cudaStreamCreate (&(streams [ i ] ) ) ;

8 }

9

10 //Arguments: Matrix , Vector, Result Array Location ,

11 // Size of Matrix (m,n)

12 kMatVector<<< blocksPerGrid , threadsPerBlock , streams [0]>>>(

d_alphaI , d_qo , d_u1 , eigencount , eigencount ) ;

13 //Make sure no error was returned from CUDA

14 error = cudaGetLastError ( ) ;

15 i f ( error != cudaSuccess )

16 {

17 //Print Error Code and Line
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18 fprintf ( stderr , ” Fa i l ed to launch MatByVec ke rne l

21 ( r e s u l t 1 ) ( e r r o r code %s ) !\n” , cudaGetErrorString ( error ) ) ;

22 exit ( EXIT_FAILURE ) ;

23 }

24

25 //Arguments: Matrix , Vector, Result Array Location ,

26 // Size of Matrix (m,n)

27 kMatVector<<< blocksPerGrid , threadsPerBlock , streams [1]>>>(d_beta

, d_qdo , d_u2 , eigencount , eigencount ) ;

28 //Make sure no error was returned from CUDA

29 error = cudaGetLastError ( ) ;

30 i f ( error != cudaSuccess )

31 {

32 //Print Error Code and Line

33 fprintf ( stderr , ” Fa i l ed to launch MatByVec ke rne l

34 ( r e s u l t 2 ) ( e r r o r code %s ) !\n” , cudaGetErrorString ( error ) ) ;

35 exit ( EXIT_FAILURE ) ;

36 }

37

38 //Synchronize streams

39 cudaStreamSynchronize ( )

Basic chronologic diagrams of execution are shown in figures 3.1 and 3.2; the first

one shows how kernels are executed one after another when they are all in the default

stream, while the second one shows how kernels can be executed concurrently if they

are on different streams.
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Figure 3.1: CUDA’s Default Stream Behavior

Figure 3.2: CUDA’s Streams Behavior
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3.4 Experimentation Results - Deploy Stage

In this first occasion the optimize stage was skipped since the initial parallelization

may be considered as part of the optimize stage.

Here are the results in terms of simulation time when comparing the conventional

algorithm vs the parallel algorithm Although this work is to be tested only on much

# of Nodes # of Eigenvalues SimTime (ms) SimTime CUDA (ms)
336 100 7.2 13.3
336 500 31.97 30.3
336 900 95.33 70.32
48 100 2.1 4.12

Table 3.1: Initial Experimentation Results

larger objects, this table shows that even for small objects the parallel version does

not work as initially expected, it is even slower than the serial version in some cases,

it also shows that as the number of eigenvalues used increases, the parallel version

performance improves over the serial version, confirming what was explained in sec-

tion 3.2.2. To debug and check what is happening NVIDIA released a vital tool

called NVIDIA Visual Profiler [26], which does basically the same thing as the GNU

Profiler explained before in section 3.2.1, but working on CUDA programs.

The NVIDIA Visual Profiler not only gives information about the profiled program

such as the time spent on different kernels, allocating GPU memory, or performing

memory copy operations, but it also shows important information about the device

the program is being run on, similar information as the one obtained using the de-

viceQuery() tool from NVIDIA.
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Figure 3.3: NVIDIA Visual Profiler Analysis

Figure 3.3 shows the result of profiling the parallel application just developed.

After the initial analysis, it can clearly be seen that the program spends a lot

of time doing memory operations; either allocating GPU memory or copying mem-

ory, mostly copying it from host to device, to perform operations on the data.

Figure 3.4 shows the current flow diagram of the program in its most basic form. The

OpenGL Loop is where the calculations are performed, along with its main OpenGL

functions, the flow diagram of the the process followed to perform calculations on

the GPU is shown in figure 3.5.
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Figure 3.4: Basic Flow Diagram

Figure 3.5: CUDA Program Basic Flow Diagram
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3.5 Potential Improvements - Optimize Stage

After deploying the first application a loop can be created between the stages Op-

timize and Deploy, performing optimizations on the algorithm, as minimal as they

might be, deploying the application and testing it to see improvements, then going

back to the optimize stage to perform optimizations on different areas of the code

and so on.

After further analysis of the profile application, focusing on time spent on specific

operations, some stages of the diagrams shown in figures 3.4 and 3.5 may be im-

proved:

• GPU memory allocation:

Although it is technically better to work on Local memory than to work on

Global memory when performing calculations using the GPU, in this case it

was better to work on global memory, this avoid transferring vast amounts

of memory from host to device in every loop iteration. For this, the func-

tion allocate GPUmem() was created; it does more than then name indicates,

it allocates global memory on the GPU, transfers data from host to device,

amongst other small functionalities.

• Memory transfers:

Using the previous optimization, allows the GPU to keep in memory data that

will be used on the next iteration, again avoiding unnecessary data transfers

in in every iteration.

• Initial Transpose:

One of the operations needed to be calculates is a matrix transpose, it is un-

necessary to calculate this inside the loop since it can be calculated at the
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beginning of the program, and saved to global memory for it to be used later

during the execution of the loop.

• CUDA Streams:

Using CUDA streams can improve a program’s performance greatly, since sev-

eral operations can be executing at the same time.

• OpenGL Buffer modification:

Another way to avoid unnecessary usage of the PCI-Express bus is to take

advantage of the CUDA and OpenGL interoperability, basically rendering the

object directly from the result obtained; this is further explained in section

3.5.1

These were the main or more important optimizations that should be done, the basic

flow diagram of the whole program after these optimizations have been introduced

is shown in figure 3.6.

Some other optimizations that might seem minimal are very important, such as

optimizing kernel launches per warp, as explained in section 1.3.3.2.1 warps are

groups of 32 threads, these groups are the ones actually executed at the same time,

and it has been discovered that there is a small but noticeable lag, that happens when

launching a number of threads different than a multiple of 32, this can be corrected

by launching more threads than needed, rounding up the number of threads launched

to the next multiple of 32, this would represent a problem since when executing the

kernel code for a certain thread, it might try to operate on an undesired memory

location, causing in many cases a segmentation fault or other errors, this is corrected

by using a simple if() branch to make sure the thread to be executed will only operate

up to a desired index.
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Figure 3.6: Basic Flow Diagram After Optimizations
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3.5.1 OpenGL CUDA Interoperability

Benchmarks dedicated to measure performance of parallel algorithms on heteroge-

neous architectures, such as Parboil [27] and Rodinia [28], based on statistical meth-

ods such as Principal Component Analysis and Clustering Analysis provide metrics

independent of the underlying GPU architecture [29]. As an example; the Rodinia

benchmark suite was tested, comparing CPU vs GPU performance, where the GPU

showed a speedup of 5.5 to 80.8 CPU implementation and from 1.6 to 26.3 of the

CPU implementation [29].

Performing general purpose computing on the GPU, has some drawbacks, never-

theless all benchmark suites correlate on one point, amongst all of them, the most

important drawback is the time spent on memory transfers between CPU memory

and GPU memory this due to the fact that the GPU is located on a different chip

than the CPU and they communicate through the PCI-Express bus, which as of this

date has a bandwidth on the order of 6GB/s and creates a bottleneck [30].

This means that when developing parallel algorithms the programmer must try to

avoid memory transfers between system and device as much as possible, in this case,

the program is performing some type of computer simulation which is being rendered

on the screen using OpenGL, the object is described using nodes, and the simula-

tion calculates the nodes new location after some force has been applied to it, after

this; in memory the nodes location is updated so it can be rendered once again, this

is located on GPU or device memory, although to change it, it is first changed on

system memory, involving memory transfer between the CPU and GPU every single

time the new location for the nodes is calculated, to avoid this CUDA API provides

some interoperability with the graphics API, in this case OpenGL.

Vertex Buffer Objects are relatively easy to handle in CUDA, since the programmer
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needs not to be concerned about texture element fetching or texture filtering, VBOs

work much like C arrays that reside in device memory instead of system memory.

After declaring the VBO as previously referenced, the buffer object needs to be

registered so it can be used in CUDA, this is done using the cudaGraphicsGLRegis-

terBuffer() method as follows:

1 cudaError_t cudaGraphicsGLRegisterBuffer ( struct

2 cudaGraphicsResource ∗∗ resource , GLuint buffer ,

3 unsigned int flags ) ;

4 /* Registers the "buffer" object specified by buffer for access

5 by CUDA. A handle to the registered object is returned as

6 "resource". The register flags flags specify the intended

7 usage.*/

Before the registered resource can be accessed in CUDA, the resource must be

mapped , this will lock the resource to the CUDA resource object, if the VBO

was accessed while it was mapped in CUDA, an error will be thrown, after using the

resource in CUDA it must be unmapped when it is no longer needed.

1 cudaError_t cudaGraphicsMapResources ( int count ,

2 cudaGraphicsResource_t ∗ resources , cudaStream_t stream = 0) ;

3 /* Maps the "count" graphics resources in "resources" for access

4 by CUDA. The resources in resources may be accessed by CUDA until

5 they are unmapped. The graphics API from which resources were

6 registered should not access any resources while they are mapped

7 by CUDA. If an application does so, the results are undefined. */

So far the resource is mapped in memory so it can be guaranteed that it is safe to use

inside a CUDA kernel, but still have no access to the contents of that resource, the

last step needed to use the buffer object on CUDA is to get a pointer to the device
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memory, which will be used to access the contents of the resource inside a CUDA

kernel, this is done via the function cudaGraphicsResourceGetMappedPointer():

1 cudaError_t cudaGraphicsSubResourceGetMappedArray ( struct

2 cudaArray∗∗ array , cudaGraphicsResource_t resource ,

3 unsigned int arrayIndex , unsigned int mipLevel ) ;

4 /* Returns in *devPtr a pointer through which the mapped graphics

5 resource resource may be accessed. Returns in *size the size of

6 the memory in bytes which may be accessed from that pointer.

7 The value set in devPtr may change every time that resource

8 is mapped. */

After getting the pointer to device memory this can be accessed inside any CUDA

kernel, in this case, computing the nodes new location is done purely on device

memory, avoiding unneeded memory transfers. These avoided memory transfers

vary depending on the model used on the simulation, since models are of different

sizes, being all 3 dimensional, but containing a different amount of nodes.

3.6 Results

The models used to test performance of the first parallel version from section 3.4, are

considered small meshes, table 3.6 describe the models used to test performance on

the optimized version and their characteristics, another reason why these were not

tested at first was that at the time it was simply not feasible mostly due to memory

limitations; the only model considered in both the first and optimized version was

the Bar model, which can be used as a point of comparison between both, table

3.6 shows the results obtained when testing this specific model, and the tables that

follow, show the speedup obtained on all the other different models.
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Figure Object # of Nodes # of Elements

Bar 336 1080

Sphere 1130 3341

Cube 4913 24576

Armadillo 13144 49736

Table 3.2: Objects Tested

# of Eigenvalues SimTime (ms) SimTime CUDA (ms) Speedup (x)
10 1.65 3.21 0.51
100 6.45 5.07 1.27
500 65.37 17.82 3.66
900 147.18 28.22 5.21

Table 3.3: Bar Performance Results
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# of Eigenvalues SimTime (ms) SimTime CUDA (ms) Speedup (x)
10 42.01 15.94 2.63
100 54.63 17.95 3.04
500 103.93 32.11 3.23
700 155.09 39.80 3.89
1000 233.56 47.73 4.89
1500 411.03 66.31 6.19

Table 3.4: Sphere Performance Results

# of Eigenvalues SimTime (ms) SimTime CUDA (ms) Speedup (x)
10 108.94 53.33 2.04
100 167.23 60.04 2.78
200 356.77 66.69 5.34
300 422.09 77.08 5.47
500 577.55 108.5 5.77
1000 1039.41 172.37 6.03
2000 2570.36 331.27 7.75

Table 3.5: Cube Performance Results

# of Eigenvalues SimTime (ms) SimTime CUDA (ms) Speedup (x)
5 170.02 128.69 1.32
50 336.43 142.21 2.36
100 546.71 150.03 3.64
200 917.85 174.41 5.26
300 1590.38 192.96 8.24
500 2667.89 297.61 8.96
700 3691.06 343.01 10.76

Table 3.6: Armadillo Performance Results
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Figure 3.7: Performance by # Eigenvalues on Different Objects

Figure 3.8: Performance by Object’s Size
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Analyzing figure 3.7 we can see the behavior of the algorithm according to each

different object, varying the amount of eigenvalues used, and on figure 3.8, we can

analyze its behavior as the number of nodes contained within the object is increased.

All the optimizations applied represented a large performance improvement, it was

proven what was only presumed before, the parallel program performance improves

over the conventional program’s performance as the object becomes larger and the

number of eigenvalues increases, this is not surprising given the fact that GPUs in

general perform better when used on large datasets.

While the time taken to perform calculations on the serial version behaves somewhat

exponentially as the number of eigenvalues is increased, the parallel version’s behav-

ior is rather linear.

Profiling the optimized application to examine the memory transfers shows us that

in case of the armadillo for example the memory transfers between system and device

memory is now 40.54 KB per displacement calculation, we can then see that accord-

ing to table 3.6 the armadillo has 13144 3-dimensional nodes, stored in floating point

numbers (4 bytes):

ArmadilloKB =
13144 ∗ (3) ∗ (4)

1024
= 154.03

So by using the CUDA and OpenGL interoperability copying back the result to

system memory and then copying it back to GPU to render it is avoided, a total of

154.06∗2 = 308.06KB of memory transfers are avoided per displacement call, which

would account for:

308.06

308.06 + 40.54
∗ 100 = 88.36%

of transfers per call.
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Figure 3.9: Bar Analysis

The program also has the capability to save the object’s nodes location at a

certain time, giving the opportunity to the user perform a post simulation analysis

of the object’s behavior, figures 3.9 and 3.10 show an example of how an object may

be analyzed afterwards.

Figure 3.10: Armadillo Analysis
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Conclusion and Future Work

4.1 Limitations and Future Work

During the development of this project, possible new features and limitations were

encountered.

The limitations found are mostly related to the hardware available, the graphics

card used (NVIDIA GeForce GT 335M) is not only old but it is also only found on

personal computers, it is considered a small device, table 4.1 shows the comparison

of the hardware specifications of this card, against a newer one.

4.1.1 APU’s

Although using CUDA and OpenGL Interoperability minimizes memory transfers

between device and system memory, somewhat overcoming the PCI-Express bottle-

neck in some cases, there are other alternatives, this bottleneck is a known issue for

83



Chapter 4. Conclusion and Future Work

GeForce GT 335M GeForce GTX Titan Z
CUDA Compute capability 1.2 (Legacy) 3.5
Architecture Tesla G80 Kepler
# of Transistors 727 Million 14.2 Billion
Interface PCI-E 2.0 PCI-E 3.0
Memory 1GB GDDR3 (800MHz) 12GB GDDR5 (7 GHz)
Memory Interface Width 128 bit 768 bit
Streaming Processors 72 5760
L1 cache 16K 48K
L2 cache 1536
Warp Scheduler 1 4
Precision 32 bit 64 bit

Table 4.1: GPU Comparison

a vast number of applications in many different areas, and for this same reason it

has been tried to be fixed also on an architectural level.

In 2011 AMD announced the 1st generation of the Fusion project or APUs (Accel-

erated Processing Units), its first codename was called Llano (high-end) and Brazos

(low-power), 2nd generation Trinity and Brazos-2 were announced on June 2012 and

3rd generation Kaveri is expected to be released on 2014, the important thing about

the Fusion architecture or APUs is that its the first one to have both the CPU and

the GPU on the same chip, as this proposes many challenges its major advantage is

that it no longer suffers from the PCI-E bottleneck for memory transfers, although

one disadvantage is that they can only be programmed in OpenCL.

The Llano variant combines 4 x86 processor cores, a unified video decoder, a Di-

rectX11 graphics core, it fits on 227mm2 of die area in a 32 nm silicon insulator

process, it features a node called Northbridge which is where the processor, graph-

ics and multimedia are jointly managed, it connects the processor cores, the I/O

interfaces, graphics and video accelerators and 2 64-bit channels of DRAM through

a multi-stage memory controller (DDR3-1866). It uses a AMD Turbo Core (ATC)
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Figure 4.1: Llano APU block diagram [31]

technology to maximize core performance in the systems thermal design power, while

balancing power budget between processor and graphics cores using the same cooling

solution [31].

A Radeon Memory Bus (RMB) is a 256-bit bus used to access memory with a band-

width of 29 GB/s, the processor cores use an L2 cache of 1MB, a reordering buffer

to accommodate up to 84 micro-ops contributing to better ILP, a load/store buffer

handling up to 52 operations and an enhanced instruction-pointer-based prefetcher

contributing to better instructions per cycle, the GPU uses a VLIW-5 as a basic

building block, includes 4 stream cores, one special function core, a branch unit and

some general purpose registers.

16 AMD Radeon VLIW-5 elements combine to form a SIMD processing unit, the

graphics core compute unit consists of 5 such SIMDs, forming a structure of 400
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Figure 4.2: Knapsack Algorithm on APU [32]

stream cores, delivering throughput of 480 GFlops [31]. It uses a unified memory

architecture (UMA) where GPU and CPU share a common memory and traffic is

routed using the GMC (Graphics Memory Controller).

This new technology has already been adopted by the 8th generation of video game

consoles, both the Playstation 4 and the Xbox One, use a customized AMD APU.

Only a few researchers have tested/compared algorithm performance on APUs, some

examples are shown next: In figure 4.2 the Knapsack algorithm was tested on an

APU using a Radeon 5870 as GPU (mid-range) against an Intel i7 at 1.6 GHz.

In figures 4.3 and 4.4 it is shown the implementation of B+ tree searches (heavily

used on database management systems) on a high end discrete GPU and a high-end

CPU against a (mid-end) APU, where depending on the size of the problem they

APU performs better (4.9x best case, 2.5x average) than the discrete GPU imple-

mentation, the only case where the discrete GPU implementation is better its when
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Figure 4.3: Performance measurement on a Discrete GPU [33]

Figure 4.4: Performance measurement on an APU [33]

the tree already resides in the GPU memory (No transfers between the GPU and

CPU through the PCI-Express bus).

And finally the implementation of the finite difference stencil using OpenCL on two

generations of discrete GPUs and two generations of APUs, hardware specifications

are shown in figures 4.5 and performance on figure 4.6.

As it can be seen the best performance (as a function frequency of data snapshot-

ting) is always obtained on the discrete GPU Tahiti, while the 2nd gen trinity APU

may match the Tahiti performance and outperform the Cayman performance for a
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Figure 4.5: Hardware specs for finite stencil implementation [30]

snapshot retrieval after every stencil computation, also we can note that the APUs

always outperform the CPU implementation.

The new AMD APU architecture eliminates the PCI-Express bus which bottlenecks

Figure 4.6: Performance Comparison GPU vs GPU vs APU vs APU [30]
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many GPU applications, but since it is a new technology the APUs are not power-

ful computationally speaking, they perform a lot better than what the difference in

specifications between the discrete GPUs and APUs show, also the internal memory

bandwidth of the APUs its still a lot slower than the one from GPUs, new genera-

tions of APUs will rely on unified memory, but 1st and 2nd gen still have a distinct

GPU memory partition.Also note that the APUs architecture was designed thinking

in performance per watt, these APUs are 100 Watts TDP compared to 250 Watts on

the discrete GPUs. Once this technology takes off we can expect a lot of performance

improvement.

In contrast NVIDIA released CUDA 6 on November 18th 2013, where they introduce

a unified memory programming model, where now the programmer has access to the

whole memory address space (both CPU and GPU memory) using a single pointer,

and while this provides a simpler programming model, and uses a very complex

background process (transparent to the programmer) to migrate memory from the

GPU to the CPU and vice-versa, achieving performance improvement, this still does

not completely address the problem of having the bottleneck of the PCI-Express bus

bandwidth.

After deep analysis, these are some of the possible improvements that can be added

to this work in the future:

• C++ Code: At the beginning of this project the C language was selected for

many of its features, although it was selected it was not limited to it, during

the development of the project I have realized that C++ has some interesting

features that may be useful for this work, such as: using STL (Standard Tem-

plate Library) vectors instead of C arrays; for easier manipulation and in some

cases better performance, the use of Object Oriented Programming; for better

organization of the code and also better scalability, amongst other features, the

goal would be to make the code fully C++ compatible in the future.

89



Chapter 4. Conclusion and Future Work

• Eigenvectors: For the moment this work assumes the eigenvectors have been

precomputed, this is very computationally expensive, although to this date,

there is no known accurate algorithm to calculate the eigenvectors in parallel

efficiently, it would be an important addition to include this calculation, either

serially or in parallel.

• Click-to-Fix Feature: One important addition that is possible if the eigen-

vectors calculation is included is the click-to-fix feature, using the mouse to

interact with the 3D model, to fix certain nodes and not apply a force to them,

instead of pre-fixing them.

• Improve Rendering: Rendering may be improved, if the computation is only

done for the nodes on the surface, it is unnecessary to perform all the calcu-

lations for the nodes that are ”inside” the object since they don’t affect the

behavior of the object as a whole.

• OpenCL: As it was explained before in section 1.3.3.3 OpenCL programming

is similar to CUDA programming, and their code organization or hierarchy is

also similar, meaning it is potentially possible to create an OpenCL version of

the code, which would work on other graphic cards, instead of only NVIDIA

cards supported by CUDA.

• OpenMP: With the addition of an OpenCL version it would be also a good

addition to use parallel programming on both the CPU and GPU; each used for

different calculations that better fit their architecture, this could be done for

the CPU using POSIX threads or for more compatibility with OpenCL using

OpenMP.

• APUs: Lastly, as explained before, new architectures are arising, including

APUs which are still in an initial stage of development, creating an OpenCL
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version would also facilitate testing the program on these new architectures,

potentially achieving a great improvement in performance.

4.2 Conclusion

The work presented in this document shows how the parallel algorithm developed,

improves performance over the one using a conventional approach, with the right

conditions it improves performance over 10 times and potentially more, this condi-

tions are mostly met when a sufficiently large object is to be used in the simulation.

While performance using the conventional approach decreases in an exponential way

as the number of eigenvectors used is increased, this new approach keeps a linear be-

havior, due to memory limitations of the device used, tests with even larger models

were not feasible, but analyzing the behavior shown in plots, it can be presumed a

better performance improvement can be achieved.

While the graphics card available was enough to show a good improvement of the

usage of this algorithm, it is simply impossible to compare, its hardware capabili-

ties with a newer card, it is also important to note that the newer card used in the

comparison table 4.1 is meant for a desktop computer, if a workstation or a server

is available, it would potentially have even better hardware specifications.

There is work to be done in the future, such as creating a better and more intuitive

user interface and developing different versions of the algorithm capable of running

on a wide range of hardware.

The implementation of this new algorithm on new technologies only arising in the

last couple of years looks promising, some modifications may have to be done to

achieve peak performance, since GPGPU algorithms are indeed closely related to

the underlying architecture of the hardware used, but this is not only an important

area of research but it also has potential in the coming years.
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Appendix A - C++ Code

The updated code can be found at the following location:

https://github.com/aehs29unm/mwgpu
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