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Abstract

A novel model to study the resource allocation of a functioning brain is proposed. The

mechanism is based on the theory of competitive equilibrium(CE), where users (cortical

areas of the brain) are competing for a finite resource such asoxygenated blood. Con-

cepts of CE are mathematically adjusted to be used with functional magnetic resonance

imaging (FMRI) data. The current study uses imaging data were subjects are requested

to selectively attend and respond to either a visual or auditory metronome in the presence

of asynchronous cross-modal distractors. Two studies withdistinct patient populations

(patients with schizophrenia patients with mild traumaticbrain injuries) are used to asses

the applicability of the proposed method. Comparisons to traditionally used methods to

analyze simulated and real FMRI data are also provided. Results indicate that it is possi-

ble to mathematically formulate an underlying resource allocation mechanism of a human
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brain. Additionally, when comparing to traditional analysis methods, the proposed model

increases the sensitivity of these data when examining different stimuli conditions and also

increases the classification accuracy between the patient group versus normal controls.
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Chapter 1

Introduction

A new method to analyze human brain functioning is introduced. This approach math-

ematically models the resource allocation inside the brain, making use of a game-theory

concept, the theory of competitive equilibrium (CE). The proposed technique is based on

a resource allocation mechanism widely used and developed in financial interactions [20].

More recently, the same resource allocation model has been applied to explain resource

allocation in communication networks [25, 40]. With the useof functional magnetic reso-

nance imaging (FMRI), we are capable of observing the distribution of physical resources,

such as glucose and oxygen in the brain. A model that directlyassesses the resource allo-

cation of the brain seems realistic and appropriate. With the proposed method, the inter-

actions of brain cortical areas under different scenarios is observed. In this model, cortical

areas are thought of as of “competing” for resources. Additionally, a measurement of rel-

ative activation is defined and used to compare brain functionality across different stimuli

conditions. The model is tested on two FMRI experiments, a rate (RATE) experiment and

a mulitimodal attention task (MMAT) experiment. The RATE study was conducted with

healthy normal controls (NC) as well as with patients who suffer from schizophrenia (SZ).

The MMAT study is also with normal controls, but also includes patients who have suf-

fered a mild traumatic brain injury (mTBI). This is a multisession study, where subject are
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Chapter 1. Introduction

scanned twice, three to five months apart between each FMRI session.

1.1 Motivation

Similarities in the organization of the brain and electronic or communication networks has

been discussed in detail by Laughlin and Sejnowski [27]. They state: “... (brain) struc-

ture and function are governed by basic principles of resource allocation and constraint

minimization, and that some of these principles are shared with human-made electronic

devices and communication networks.” They also suggest that energy supply limits sig-

nal traffic in the brain. This is a strong indication that the brain must have an underlying

resource allocation mechanism. Other studies suggest thatthe brain is organized similar

to a communication network, where the human cortex is compared to small world net-

works [39, 4]. Others have argumented that the brain can alsobe modeled as a complex

network [2]. However, these studies focus mainly on brain structure, comparing them to

human made networks. On the other hand we wish to study the efficiency of the brain in

a functional sense, and observe how resources are allocatedthroughout the brain during

different experiment conditions. To our knowledge, the brain has not been studied from

this perspective.

Humans can only attend to a limited amount of simultaneous stimuli [34], therefore

some underlying allocation mechanism based on priorities is likely to be implemented in

the brain. For example, if a person is listening to music withtheir eyes closed, the pri-

mary auditory cortex shall receive more resources than the visual cortex. Additionally, a

human’s ability to multitask is severely limited [14], especially when the tasks require a

higher-level of attention. Other indications that the brain has an internal resource alloca-

tion mechanism is that the brain is limited in its information processing capabilities [29],

where it is considered that the brain is limited because of a bottleneck in the passage of

information in some cortical areas. Furthermore, indications that a functional resource

2



Chapter 1. Introduction

allocation is occurring in the brain can be seen in Kelly et al. [24]. They showed that there

is a direct negative temporal relationship in the BOLD response between task positive and

task negative networks, indicating that brain networks cannot all be active at the same

time, even at rest.

The resource allocation mechanism that is proposed is basedon a theoretical com-

petitive equilibrium (CE) approach, a means to mathematically equate how resources are

allocated. With CE, allocation of resources is based on the total amount available resources

of the system and also a “utility function” for each of the brain regions. Cortical areas are

considered to be competing for resources based on the “value” they give to the resource.

Unlike traditional methods that examine the absolute activation of cortical areas, with this

proposed method, the brain is viewed as a distributed mechanism. We are ultimately try-

ing to uncover the mechanism inside the brain that governs the allocation of resources, a

reverse engineering problem. A detailed description of CE is introduced in chapter 3.

1.1.1 Brain Equilibrium

To study the brain as an efficient resource allocation mechanism, we must understand how

it reaches a resource allocation equilibrium. By equilibrium, we can state that the brain

has reached a stable point, where through several changes (growth in size, reorganization

or plasticity) it reaches a point where no major structural and functional changes will

occur. This project mainly focused on the equilibrium of theattentional system. One

perspective that can be hypothesized is stabilization through normal growth of the brain

from childhood to an adult age (i.e.,pruning).

The structure of the brain is relatively the same in all normal adult humans, with some

small variations on the gyri folding and brain size. Structure is predetermined by our

genetic sequence. What makes us have unique personalities is the fact that the internal

“wiring” is different for each individual. This is due to thesynaptic formation that occurs

3



Chapter 1. Introduction

between neurons. The number of synapse in the human cortex isin the order of1014

[26]. It is believed that it is impossible that our genetic program could assign all these

connections, where only a general outline of the circuitry is encoded.

There is a large increase in synaptic density between embryonic life up to the age

of two in humans. Typically around the age of two is when humans have the highest

concentration of synapses followed by a plateau in density.Subsequently there is a large

decrease in synapses, characterized as pruning. This largeorganization of the circuitry

occurs up to the end of puberty. However, the rate of creatingand pruning of synapses

is not homogenous, where in the sensorimotor regions the process occurs earlier and in

higher cognitive areas the process is delayed. Reduction insynapses is dramatic; the

number of synapses at the end of puberty may fall to 50% compared to at the age of

two. There is a loss of up to 100,000 synapses per second in adolescence [26]. During

adulthood, existing circuits are still being modified (i.e., creating new memory) but at a

much slower pace. A detailed analysis of synaptic pruning can be seen in [26]. A cartoon

scheme of synaptic density in the human cortex is shown in Figure 1.1.

There are two general mechanisms of synaptic pruning,experience expectantandex-

perience dependent[26]. Experience expectant depends on the presence of certain sensory

experiences for the organization of the synapses. Usually,these patterns are the same for

members of the same species. For example, in the visual cortex synaptic formation is

dependent on exposure to features such as line orientation,color and movement. Experi-

ence dependent pruning occurs based on unique personal experiences, such as speaking a

distinguished language. Circuitry of the frontal lobe is believed to be formed by experi-

ence dependent pruning. Therefore it is believe that the sensorimotor cortex in an adult

human should have a similar structure since most are exposedto some common stimuli

(i.e., seeing, hearing and touching). Higher cognitive mechanisms may be more subject

dependent.

A study by Casey [9] showed that the prefrontal cortical activity in children was up to

4



Chapter 1. Introduction

Figure 1.1: Changes in density of synaptic connections in the prefrontal correct and in the
primary visual cortex of a healthy human.

four times larger compared to adults. Two theories were conceived by these results; with

age, cortical areas may become more specific with experience, while another interpreta-

tion is that the task was more difficult to children, therefore required more activation. The

first theory would speculate that a child’s brain is disorganized and function assignments

of cortical areas are not well defined. Another report by Casey [8] showed that “imma-

ture cognition is characterized by an enhanced sensitivityto interference from competing

sources (e.g., response competition).” In addition, experience-driven maturation process

“reflects fine-tuning of the neural systems with experience and development [8].” Finally,

pruning and elimination of connections with strengtheningof relevant ones contribute to

cognitive maturation.

Based on these findings it is possible to interpret that the brain starts as a system with-

out any organization (large density of synapses) and with life experience a equilibrium

is reached. Since the equilibrium or organization is also based on life experience, every
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person is at a different equilibrium point, especially at higher cognitive areas of the brain.

However, we can hypothesize that the sensorimotor system ina normal adult should have

a similar configuration, since the pruning in these areas is experience expectant.

1.1.2 Development of the Patient Brain

A deviation from a normal development to equilibrium (i.e.,resource allocation) might

be expected from patients that suffer from schizophrenia. An “optimal” distribution of

resources for the patient group might differ from the “optimal” of adults who do not suffer

from any mental disease. In addition, a patient who suffers atraumatic brain injury might

be subject to an unbalance in the normal “equilibrium” state. During maturity the pruning

process is considered to be normal. However, subsequent to suffering a head injury, this

equilibrium might be shifted. On the other hand, patients that suffer a minor injury are

capable of recovering to an optimal distribution of resources of the attentional system.

Therefore, the balance of how resources are allocation in the patient groups might defer

from NC. A hypothetical flowchart is seen in Figure 1.2.

An array of symptoms characterize a person suffering from schizophrenia; such as

hearing internal voices or experiencing other sensations not connected to an obvious source

(hallucinations), disorganized speech, and assigning unusual significance or meaning to

normal events or holding fixed false personal beliefs (delusions) [26]. It is believed that

schizophrenia is a developmental disease, where an “analysis of home movies showed that

people who later developed schizophrenia have shown subtle, but reliable, disturbance in

a variety of behavioral types (motor, cognition, social) many years before there are clini-

cal symptoms of schizophrenia [28]”. As an example, the auditory mechanism might be

altered compared to NC. This motivates the use of a resource allocation mechanism to

attempt to understand the interaction between neuronal areas of SZ.

For patients who suffer a minor traumatic brain injury (mTBI), we hypothesis that

6



Chapter 1. Introduction

Figure 1.2: Theoretical flowchart of development to a equilibrium of the attentional system
in the human brain and how other equilibriums are reached in patient groups.

the equilibrium of the brain is perturbed because of the accident, and through plasticity,

recovers over time to the optimal resource allocation mechanism. Therefore we would

expect to see significant differences in the resource allocation between mTBI patients and

NC immediately following injury and no differences 6 monthsto 1 year later. Post injury

symptoms injuries include but are not limited to problems with executive functioning,

working memory and attention [5, 32]. On Kaas’s paper on plasticity of motor and sensory

maps [23], results show that in mammals the sensory maps are reorganized following

lesions. Kaas also states that sensory maps in the somatosensory, visual, and auditory

systems are capable of change in location. This reorganization can occur within hours

up to many months. Even though plasticity is much more pronounced in children, it still

occurs in adults post-head injury. Plasticity can also be considered as a restructuring of

the synaptic connections in the brain. Therefore, the use ofpatients with traumatic brain

injuries is advantageous to test the proposed resource allocation mechanism, since there
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is a change in equilibrium following injury. However, typical symptoms of patients with

mTBI usually disappear 3-5 months post injury. Consequently, the proposed method could

be used again to test if a “normal” equilibrium is achieved.

It is important to note that it is beyond the scope of this dissertation to define the

reasons why people suffer from schizophrenia and acquire symptoms post mTBI, however,

this project is attempting to create new method that might help understand the disease and

recovery respectively.

1.2 Proposed Model

To evaluate and test the proposed model we used two FMRI experiments. The first exper-

iment (RATE) was performed on NC and SZ, where two conflictingstimuli are presented

in a block design, an auditory tone and a flashing checkerboard [30]. Stimuli are presented

in three different frequencies (0.5, 1.0, 2.0 Hz). Allocation of resources is observed based

on whether the subject is told to attend to one modality (auditory or visual stimuli) when

a conflicting stimulus is present. We predict that as there isan increase in the rate of the

stimulus, there is an increase of the specificity of how resources are allocated. The sec-

ond experiment (MMAT) consists of a similar experiment withtwo conflicting stimuli.

However, now the patient group has suffered a mTBI. Additionally, participants were now

asked to correctly identify a target number (one, two or three) presented in one sensory

modality (auditory or visual) while ignoring the stimuli presented in the opposing sensory

modality by pressing a button. Further details of the experiments are giving in chapter 2.

A comparison to traditional FMRI analytical methods is alsoprovided to emphasis the

advantage of using this new model to analyze FMRI data. This is done to test the sensitivity

and specificity of the proposed model. The most widely used methods for studying brain

behavior only analyze direct condition-by-condition behavior. Scalar values of the hemo-
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dynamic response are usually obtained through multiple regression [17] or a deconvolution

analysis [18]. Typically, statistical tests are performedthen directly on the multiple re-

gression beta coefficients (β) or percent signal change (PSC) of each voxel depending on

the condition. Additionally, since the task involves different rates of the stimuli, we also

are capable of looking at the slope of the activation, where the hemodynamic response is

assumed to be monotonic in relation to the stimulus [38].

1.3 Aims

In summary, the current study has three aims:

• Aim 1: Resource Allocation of the Brain

The first aim is to develop a resource allocation model of brain function as measured

by FMRI. This model incorporates the “importance” of receiving resources of each

neuronal area based on whether the subject is instructed to attend to one of the

sensory modalities.

• Aim 2: Resource Allocation in Patient Groups

The second aim of this project is to observe if there is a deviation of resource al-

location in two patient populations. Results from other traditional methods such as

statistical tests on the hemodynamic respose will be evaluated and compared to the

resource allocation model.

• Aim 3: Classification

A third and final aim will be to perform classification with features extracted from

the resource allocation mechanism. With the use of a machinelearning technique

(e.g., support vector machine), classification between groups will be evaluated to

test the performance of the resource allocation mechanism as a feature extraction

tool.

9
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1.4 Outline

Chapter 2 presents the FMRI experiments that are used to evaluate the resource allocation

model. The experiments and subject population are explained in detail. Also, the FMRI

data processing pipeline is presented. Chapter 3 introduces the proposed resource allo-

cation method. With the use of the FMRI experiments, mathematical models of resource

allocation are presented. Chapter 4 presents results of using the resource allocation model

on the two experiments. Results of statistical tests acrossconditions and also across pa-

tient populations are shown. Classification results using the resource allocation model as

a feature extraction tool are also presented. Additionally, results from other traditional

methods used in FMRI studies are also shown. In chapter 5 a discussion of the results is

presented and future direction in the study of resource allocation of the human brain are

discussed.

10



Chapter 2

FMRI Data and Preprocessing

2.1 Rate Study

The goal of the RATE study was to understand the selective attention brain mechanism

In patients with schizophrenia (SZ) a also heathy normal controls (NC)is also evaluated.

A paper discussing the results of a neurological assessmentof this experiment on NC has

been previously published [30]. A detailed discription of the study is shown as follows.

2.1.1 Subjects

This study evolved studying patients with SZ and NC while undergoing a FMRI session.

All SZ subjects were diagnosed by an experienced clinician or team member with the

Structured Clinical Interview for DSM-IV Axis-I Disorders, Clinician Version (SCID-

CV). Sixteen SZ (15 male, 1 female) and 16 NC (15 male, 1 female) participated in the

experiment. One female NC subject was identified as an outlier (excessive motion; above

3 standard deviations [31]) and was excluded from further analysis along with the matched

SZ. SZ with a history of other neurological disease, a history of psychiatric hospitalizations
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within the previous six months or a history of substance abuse within the past year were

excluded from the study. SZ were also required to be stable onan atypical, anti-psychotic

medication (Aripiprazole 4; Ziprasidone: 1; Risperidone:5; Quetiapine Fumarate: 4;

Olanzapine: 2) for at least three months to be included in thecurrent study. All HC were

screened and excluded from the study based on a history of major medical conditions,

neurological disease, major psychiatric disturbance, substance abuse or psychoactive pre-

scriptive medications usage. There were no significant differences (p> 0.10) between

SZ and the remaining HC for all major demographic categoriesincluding age (SP: 40.2

± 8.2, HC: 40.1 +/- 8.8), education (SP: 12.6 +/- 2.4, HC: 13.0 +/- 1.4), or handedness

(SP: 77.7 +/- 56.1, NC: 67.3± 68.9) as assessed by the Edinburgh Handedness Inventory

[35]. Informed consent was obtained from subjects according to institutional guidelines at

the University of New Mexico and the New Mexico Department ofVeterans Affairs. This

study is concluded and no more data will be collected.

2.1.2 Tasks

All stimuli were presented in a blocked design format. Priorto each block, there was a

baseline period in which a white fixation cross in the center of the projection was presented

on a black background. Subjects were requested to maintain fixation on the cross during

the experiment. To prevent the development of temporal expectations and to allow for the

best sampling of the hemodynamic response in the regressionmodel [6], the duration of the

baseline period was randomly varied between 10 and 14 s . During the task, participants

were instructed to bimanually tap their fingers into an inputdevice in synchrony with the

onset of a reversing checkerboard (duration = 100 ms) and/ora pure tone (1000 Hz with a

10-ms linear rise and fall; duration = 100 ms) that were presented at intervals of 2000 (0.5

Hz), 1000 (1 Hz), or 500 ms (2 Hz).

In the attend-bothcondition, auditory and visual stimuli were simultaneously pre-

12



Chapter 2. FMRI Data and Preprocessing

sented at the same frequency (0.5, 1.0, or 2.0 Hz), and subjects were instructed to at-

tend to and tap in synchrony with the auditory and visual stimulus. In theattend-auditory

andattend-visualconditions, subjects were instructed to selectively attend to, and tap in

synchrony with, either an auditory or a visual stimulus, respectively, while ignoring the

stimulus in the other modality. In both the attend-auditoryand attend-visual conditions,

the stimulus in the ignored modality always occurred at a different frequency. The ignored

stimulus always occurred either in or out of phase with the attended stimulus across the

8 second trial duration. Specifically, there were two trial types for each attended stimulus

rate based on the frequency of the unattended modality (e.g., attended auditory stimuli at

0.5 Hz were always paired with visual distracters occurringat either 1.0 or 2.0 Hz). Trial

order was pseudorandomized across all six functional neuroimaging runs. A description

of a stimulus block is shown in Figure 2.1.

+

10 – 14 s

1000 ms

1000 ms

100 ms

100 ms

400, 900, or 1900 ms
+

+

+

+

+

100 ms

8 s

400, 900, or 1900 ms

+

+

Figure 2.1: A diagrammatic representation of the trial structure for a representative of the
attend both stimulus block for the RATE study.
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2.1.3 MR Imaging

At the beginning of the scanning session, high resolution T1(time echo [TE] = 4.76 ms,

repetition time [TR] = 12 ms,20◦ flip angle, number of excitations [NEX] = 1, slice

thickness = 1.5 mm, field of view [FOV] = 256 mm, resolution =256 × 256) anatomic

images were collected on a 1.5-Tesla Siemens Sonata scanner. For each of the 6 imaging

series, 201 echo-planar images were collected using a single-shot, gradient-echo-planar

pulse sequence (TR = 2000 ms, TE = 36 ms, flip angle =90◦, FOV = 256 mm, matrix size =

64 3 64). The first image of each run was eliminated to account for T1 equilibrium effects,

leaving a total of 1200 images for the final analysis. Twenty-eight contiguous sagittal 5

mm thick slices were selected to provide whole-brain coverage (voxel size:4×4×5 mm).

2.2 Multimodal attention task (MMAT) study

The objective of this study was to analyze the effect on the brain of people who suffer a

mild traumatic brain injury (mTBI) and analyze their recovery. This is an ongoing study

and subject data are still being collected. Additionally, this is a multisession study, where

subjects are asked to return for a second FMRI session after 3-5 months from the first

session so that the recovery from the brain injury can be evaluated.

2.2.1 Subjects

Semi-acute mTBI (within 3 weeks) patients were recruited from our regional trauma one

center at the University of New Mexico Hospital. All mTBI subjects were scanned within

21 days of their accident and experienced a mental status change following the trauma.

Specific inclusion criteria for the study were based on the American Congress of Rehabil-

itation Medicine and included a Glasgow Coma Score of 13-15 at the initial assessment
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in the emergency room, loss of consciousness (LOC) if present was limited to 30 min-

utes, and post-traumatic amnesia was limited to a time gradient of 24 hours. Subjects and

matched controls were excluded from the study if there was a positive history of a neu-

rologic or psychiatric disease, substance/alcohol abuse,learning disorder, attention deficit

hyperactivity disorder, or a history of a head injury with a LOC of greater than 5 minutes.

Informed consent was obtained from all participants following guidelines set by the Uni-

versity of New Mexico. Up to the date of the conclusion of dataanalysis (August14th,

2009) at least 24 patients and 27 healthy controls have been scanned. Additionally, 10

patients and 27 healthy controls have participated in a second FMRI session. Therefore,

24 mTBI subjects and their matched NC (age, years of education, gender) are evaluated

for the first visit, and only 10 mTBI subjects and their matched NC are examined for the

second visit.

2.2.2 Tasks

Participants underwent a FMRI task in which they were simultaneously presented with au-

ditory and visual stimuli (numbers) occurring at two different frequencies (.33 or .66 Hz)

over a 9 second block (Figure 2.2). Participants were asked to correctly identify a target

number (one, two or three) presented in one sensory modality(auditory or visual) while

ignoring the stimuli presented in the opposing sensory modality by pressing a button as

quickly and accurately as possible. The multimodal stimuliwere either identical (congru-

ent condition) or conflicting (incongruent condition). Only the incongruent condition is

analyzed in this dissertation. Prior to the presentation ofthe target numbers, a cue word

was presented to indicate the modality for focused attention. The cue for the auditory

modality was “HEAR” and the cue for the visual modality was “LOOK.” There were also

passive attention trials in which the participant did not need to attend either modality, and

the cue for those trials was “NONE.” For example, if the cue was “HEAR,” participants

responded to the target numbers in the auditory modality while ignoring visual stimuli.
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Figure 2.2: A diagrammatic representation of the trial structure for a representative incon-
gruent stimulus block for the MMAT study.

All visual stimuli were presented in word rather than Arabicform, since words produce

more interference in numeric Stroop tasks [16]. To permit the full allocation of attentional

resources, the stimulus onset asynchrony (SOA) between thepresentation of the cue and

the stream of target numbers was 1000 ms. To establish a baseline resting state in the re-

gression model the time between trials was randomized between 8, 10 and 12 seconds [6].

Presentation software was used to control stimulus presentation, synchronization of stim-

ulus events with the scanner, and the collection of accuracyof the responses and reaction

time (RT) data for offline analysis.

2.2.3 MR Imaging

High resolution T1 (TE (echo time) = 1.64 ms, TR (repetition time) = 2.53 s,7◦ flip angle,

number of excitations (NEX) = 1, slice thickness = 1 mm, FOV (field of view) = 256

mm, resolution = 256 x 256) anatomic images were collected ona 3 Tesla Siemens Trio
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scanner at the beginning of each experiment. For the six FMRIseries, 162 echo-planar

images were collected using a single-shot, gradient-echo echoplanar pulse sequence (TR

= 2000 ms; TE = 29 ms; flip angle =75◦; FOV = 240 mm; matrix size = 64 x 64). The first

image of each run was eliminated to account for T1 equilibrium effects, leaving a total of

1127 images for the final analyses. Thirty-three contiguoussagittal 3.5 mm thick slices

with a gap factor of 1.05 mm were selected to provide whole-brain coverage (voxel size:

3.75 x 3.75 x 4.55 mm).

2.3 Functional Image Processing

Most of the FMRI data were analyzed in a hierarchical fashionusing AFNI [11], a widely

used freeware software for FMRI analysis. Additional processing (registration) was per-

formed using FSL [21]. Preprocessing of both datasets are identical unless stated. In

Figure 2.3 an outline of the preprocessing is shown.

Preprocessing

Raw FMRI

data (dicom)

Time-slice

corrected

2d and 3d

registration
Despike

Register to T1

image and warp to

Talairach space

Gaussian Blur

(8 mm)

Level 1 analysis

Deconvolution Calculate PSC
Calculate average PSC in

each neuronal area

Figure 2.3: FMRI preprocessing pipeline.

During the collection of FMRI data, each slice is acquired ata different time point

within the scanner. Therefore, the six individual task time-series were first temporally

aligned using a sinc interpolation to ensure that all data had the same temporal origin.

Second, the four-dimensional images were subsequently spatially registered to the second

image from the first task run (i.e., first image that was not contaminated by T1 equilibrium

17



Chapter 2. FMRI Data and Preprocessing

effects) in both two- and three-dimensional space to minimize effects of head motion.

Retrospective motion correction techniques can be conceptualized as occurring in two

distinct steps, motion detection and the subsequent correction of this motion [11, 3, 12].

Assumptions are based on the of stability in contrast valuesbetween successive images.

Relatively small movements compared to image resolution can be fixed using this method.

Motion is modeled according to six rigid-body parameters. In the detection phase, a cost

function,

C =
∑

V

(I(v) − R(v))2 (2.1)

which is posited to be an index of spatial displacement, is calculated between the image

of interest (I) and the reference image (R) across all voxelsv. An iterative optimization

algorithm (typically a least-squares fit) is then implemented to minimize the cost function,

thereby reducing the spatial displacement between the two images. During the correction

phase, the image of interest is interpolated to a new spatialgrid specified by the optimiza-

tion solution using a sinc function, correcting for the differences in spatial displacement.

Third, random spikes in the voxel time series due to machine or other artifacts were

eliminated. This was accomplished by first fitting the time-series of each voxel to a

smoothed curve. Next, the median absolute deviation (MAD) of the differences between

the data time series and the smoothed curve is calculated. For each time point of the voxel

s(t) = (x(t) − c(t))/σ (2.2)

is calculated, wherex(t) is the original BOLD intensity at timet, c(t) is the smoothed

fitted curve at timet andσ is the standard deviation of the residuals that is computed by
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σ =
√

π/2 · MAD. (2.3)

Any s(t) that is greater than2.5 is replaced by

s′(t) = 2.5 + 1.5 tanh((s(t) − 2.5)/1.5). (2.4)

Fourth, the data was spatially blurred using a 8 mm Gaussian full-width half-maximum

filter to improve the signal-to-noise ratio [36] and to increase compliance with random

field models [17]. All the images were then spatially registered to the anatomical T1 image

using a 12-parameter affine transformation and converted toa 1mm3 standard stereotaxic

coordinate space [41].

A deconvolution analysis [18] was used to generate one impulse response function

(IRF) for each of the 15 selective attention condition on a voxel-wise basis. For the RATE

study, each IRF was derived from the first twelve images (22 seconds) following the onset

of the cue (total trial length varied from 20 to 24 seconds). The peak images (eight to

twelve seconds post-stimulus onset) of the resultant IRFs were then compared against the

baseline period (i.e., maintaining visual fixation) to create the percent signal change (PSC).

In the MMAT study, the IRF was derived from the first 8 images and the peak was selected

from the fourth to the eight second post-stimulus. The PSC values were used to evaluate

the resource allocation of the brain as is shown in the next chapter.

For the RATE dataset, data were then averaged to simulate that the subject was attend-

ing to a stimulus and ignoring the other at the same frequency. With signal averaging,

a direct comparison of activation when the subjects are instructed to attend to the audi-

tory or visual while ignoring a cross-modal stimuli at the same frequency is permited. The

hemodynamic response is assumed to be monotonically increasing with the increase of the
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stimuli at the frequency range that is being used (0.5 to 2.0Hz) [38]. As an example, in the

attend auditory condition, the subject is instructed to attend to a auditory tone at 0.5 Hz,

while the visual stimulus is either at 1.0 or 2.0 Hz. Another condition is that the subject is

instructed to attend to an auditory stimulus at 1.0 Hz and ignore a visual stimulus at 0.5 or

2.0 Hz. Therefore if we calculate the average PSC’s of the attend auditory at 0.5 Hz/ignore

visual 1.0 Hz and attend auditory at 1.0 Hz/ignore visual 0.5Hz we will simulate that the

subject is attending to a auditory stimulus at 0.75 Hz and ignoring the visual stimulus at

the same frequency. With these signal averages, the new rateof attended and ignored fre-

quencies are at 0.75, 1.25 and 1.5 Hz. The same calculations are performed for the attend

both condition to maintain consistency in the stimuli frequency. Additionally, the slope of

activation is also calculated across these three new frequencies. For the MMAT study, no

signal averaging is necessary since the frequency of the attended and ignore signals are the

same.
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Resource Allocation of the Brain

Resource allocation of an infinitely divisible resource in an FMRI framework is presented

in this section. The model is presented to fit the Rate study framework, however the

concepts and equations are easily adjustable to the MMAT study. Competitive equilibrium

(CE) [25] finds a distribution of a resource that maximizes the aggregate utility among

the usersr, werer = 1, 2, ..., R. We define the “users” as the cortical areas of the brain

that are competing for a resource.R is the total number of cortical areas that the brain is

segmented into. The brain was segmented into fifty regions todefine the users based on

the Talairach atlas [41] (see Figure 3.1). Segmentation wasobtained from AFNIs TTatlas

(http://afni.nimh.nih.gov/afni/doc/misc/afnittatlas/). The brain is divided into 50 areas

and based on previously defined cortical areas, were each cortical area is individually

color-coded. Segmentation does not defer between hemispheres, therefore areas of both

sides are considered as one user. The list of neuronal regions are shown in Table 4.3. It

is important to note that the brain is only segmented in gray matter areas and not white

matter. Gray matter is where the true processing of information occurs in the brain while

the white matter is only responsible for transmission of information between gray matter

cells [26]. Other possible segmentation of brain into 66 regions is proposed by Desikan

[13], were it was further segmented into 998 regions by Hagmann [19]. Another possibility
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is to segment areas based on the functional data. This can be preformed using group ICA

[7], were each resulting independent component can be used as a mask to define the users

of the resource allocation model.

Figure 3.1: Segmentation of brain regions to create users.

The distributed resource is measured as the level of the hemodynamic response (PSC),

here defined asdr,f . A utility function Ur(dr,f) can be seen as the “value” or “impor-

tance” that the cortical arear furnishes while receiving a portion of the resource,dr,f , at

each stimulus frequencyf . An area will have a different utility function based on three

conditions; however, the function will be the same throughout the frequencies. As an

example, the “importance” function of receiving resourcesin the visual cortex does not

change based on the rate of the stimulus, but it does change based on whether or not the

subject is instructed to attend to the visual stimulus or not. The whole supply of resources

that will be divided among the neuronal areas is representedby Sf .

To simplify the presentation of the model and also without loss of generality, we will

address only one stimuli condition, where the subject is instructed to attend the auditory

stimulus and ignore the visual stimulus. A mechanism is created to define how the resource
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are subdivided among the cortical areas. To distribute the resources among the regions,

the following optimization problem can be addressed, wherea social welfare function is

maximized at each distinct frequency

Maximizef

∑

r

Ur(dr,f) (3.1)

The social welfare function is viewed here as the sum of all the utilities of the regions

based on the proportion of resources they receive. However,there are some constraints

that must be complied with

∑

r

dr,f ≤ Sf (3.2)

dr,f ≥ 0 (3.3)

where the sum of the resources given to the cortical areas cannot be greater than the to-

tal available supply (Eq. 3.2). In addition, cortical areasare not capable of supplying

resources to the system (Eq. 3.3). As modeled here, the system (brain) always attempts

to optimize the distribution of resources to the neuronal areas based on the areas’ utilities

and the total available supply to all of the brain.Sf is variable, since there is a change

in the total supply (oxygenated blood and glucose) to the whole brain dependent on the

frequency of the stimuli and on one of the three condition. The optimal allocation of re-

sources can be found using Lagrangian multipliers. Distribution of the allocation of the

resource is defined by the vectord = (d1, ..., dR), and the optimal distribution is defined

by d∗ = (d∗

1
, ..., d∗

R). As stated before, it is assumed that the brain always tries to optimally

distribute resources (findd∗) depending on the environment the person is encountering.

The utility functionUr(dr,f) for each arear, over the domaindr,f ≥ 0, is assumed to

be continuously differentiable, non-decreasing and is a strictly concave function. Since
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the objective function is continuous and the feasible region is compact, a unique optimal

solutiond∗

f exists, where:

∑

r

Ur(d
∗

r,f) ≥
∑

r

Ur(dr,f) ∀ df (3.4)

is satisfied for any other resource allocation distribution, andd∗ is unique.

3.1 Defining the Utility Function

A general class of utility functions that satisfies the previous defined requirements to obtain

a unique solution (Eq. 3.4), is defined as [40]:

Ur(dr) = wr

d1−α
r

1 − α
(3.5)

The variablewr is viewed as the weighting factor of the utility function. This is the key

point of the utility function which defines the “importance”that each neuronal region gives

to the resource being distributed. Therefore each area willhave a differentwr. Parameter

α changes the shape of the utility function.α is addressed in more detail later in this

chapter.

3.1.1 Calculating the Weights

As noted before, the utility function of each area does not change based on the rate of the

stimulus, but rather according to different conditions. From Eqs. 3.1, 3.2, and 3.3, and

incorporating the general class of utility functions (Eq. 3.5) we obtain for each frequency:
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Maximizef

∑

r

wr

d1−α
r,f

1 − α
(3.6)

∑

r

dr,f = Sf (3.7)

dr,f ≥ 0 (3.8)

Another change from the original equations is that now it is assumed that all the resources

are exhausted, as seen in Eq. 3.7. To find the optimal distribution, Lagrangian multipliers

are calculated for each frequency [15]:

L(df , λf) =
∑

R

wr

d1−α
r,f

1 − α
− λ

(

∑

R

dr,f − Sf

)

(3.9)

To find the maximum of Eq. 3.6 constrained to 3.7 and 3.8, the derivative of Eq. 3.9 in

relation todr is calculated and set equal to zero:

∂L(df , λf)

∂dr,f

= wrd
−α
r,f − λf = 0 (3.10)

Therefore:

dr,f = α

√

wr/λf (3.11)

In economic terms, theλf is viewed as the price per unit of the resource, where in

functional imaging,λf is an proportional inverse of availability of resources. Addition-

ally, from Eq. 3.11, asλf increases, the resources received by each areadr,f decreases.
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However, there is no way to directly calculateλf using functional imaging, as it is some-

thing internal to the system (brain). A solution to this problem is to first create a new user,

which is defined as the whole brain (WB). First, we fixwWB = 1, and with the WB PSC

we solve forλf (λf = S−α
f ) in Eq. 3.11. Other means to define the value ofS will be ad-

dressed in future projects. The use of a different constant value (wWB) does not effect any

changes in the final results, since it is only a relative value. Additionally, we are favored

by using this method. By fixing a value of the WB weighting factor, then calculatingλf ,

a reference weighting factor is created. Therefore, cortical areas that have a higher PSC

compared to the average of the brain will receive awr > 1. Also, since a differentλf is

calculated for each subject, the cortical weighting factors of each subject are relative to the

subjects’ WB activation.

With λf ’s defined, the weighting factor can be calculated for each region. Since the

weighting factorwr is assumed to be a constant across all frequencies, the weight is cal-

culated from an average from all frequencies:

wr =
1

3

(

λ0.75Hzd
α
r,0.75Hz + λ1.25Hzd

α
r,1.25Hz + λ1.5Hzd

α
r,1.5Hz

)

(3.12)

Therefore, thewr for each cortical area can be calculated. Statistical testswith the weight-

ing factors can be performed to compare resource allocationassociated with each of the

three conditions. In addition, these results can be compared to traditional methods, such as

directly comparing the PSC and the slope across different experimental conditions. Also,

the weighting factors are the features to be used in the classification of groups.

However, anα value must still be defined for the utility function (Eq. 3.5). Since we

are performing a reverse engineering problem, theα parameter must be found that best

mimics how the distribution of resources are actually occurring in the brain. By varying

theα parameter, different shaped of the utility function are defined. Testing different utility

functions, an optimal solution to Eq. 3.6, 3.7, and 3.8 is found, yieldingd∗. Theα that

26



Chapter 3. Resource Allocation of the Brain

minimizes the sum of the square error difference between thetrue PSC distribution and

the simulateddr,f in all 50 areas is selected. In order to generalize the solution, theα is

found for the averagedr,f across the subjects and also across the conditions.

3.2 Example of Resource Allocation Mechanism

In this example we observe the resource distribution between four users (R = 4) when

different levels of supply,S, are provided. Firstα = 1 is defined for allr. However,

equation (3.5) is not well defined forαr = 1. By considering the derivative of the utility

function in the limit asαr → 1

lim
α→1

U ′

r(dr) = lim
α→1

wrd
−αr

r

=
wr

dr

(3.13)

Calculating the integral of (3.13) leads to the utility function

Ur(dr) = wr ln(dr) (3.14)

The weights of the users are set towr = [0.5, 1.0, 2.0, 3.0]. Based on the utility functions,

we want to maximize the social welfare by changing the resources allocated to each user,

dr, with a supply constraint:

Maximize
∑

R wr ln(dr), 1, .., , R = 4 (3.15)

s.t.
∑

R dr ≤ S (3.16)
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Without loss of generality we can set
∑

R dr = S. The maximum of equation (3.15) with

the constraint in equation (3.16) can be found through the use of Lagrangian multipliers

L(d1, d2, d3, d4, λ) =
4
∑

r=1

wr ln(dr) − λ

(

4
∑

r=1

dr − S

)

(3.17)

To find the maximum ofL, we take the derivative with respect todr and set the result

equation to zero

∂L

∂dr

=
wr

dr

− λ = 0 (3.18)

therefore

dr =
wr

λ
∀r (3.19)

Next, taking the the derivative ofL in respect toλ and setting equal to zero

∂L

∂λ
=

4
∑

r=1

dr − S = 0 (3.20)

which yields:

4
∑

r=1

dr = S (3.21)
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With the use of the four equations, one for each user, in (3.19) and equation (3.21) we can

solve for the variables(d1, d2, d3, d4, λ) based on thewr’s andS.

Different values ofS (15, 50, 100, 250) were tested to evaluate the behavior of the

resource allocation mechanism. Table 3.1 and Figure 3.2 show the change in distribution

from different supply values. Table 3.1 shows the amount of resources that each of the

four users received based on the supply available. As can be noted from these results,

as the supply increases there is an increase for all users in the amount of resources that

they receive. However, the users with higher utility weights receive an increase in greater

proportion then the users with smaller weights. Additionally, as supply increases, there is

a decrease in the value ofλ. In some applications,λ is viewed as the price per unit of the

supply [33]. In this perspective, as supply increases, the price per unit is a function of the

inverse of the supply.

User w S = 15 S = 50 S = 100 S = 250

User 1 0.5 1.1538 3.8462 7.6923 19.2308
User 2 1.0 2.3077 7.6923 15.3846 38.4615
User 3 2.0 4.6154 15.3846 30.7692 76.9231
User 4 3.0 6.9231 23.0769 46.1538 115.3846

λ - 0.4333 0.1300 0.0650 0.0260

Table 3.1: Example of resource allocation at different supply levels.

Figure 3.2 shows in each panel the resource allocation for 4 different supply values.

The x-axis is the amount of resource that each user receives while the y-axis is the utility

function of each user. The blue lines show the utility function of each user as a function of

dr. The red dots show the amount of resources that each user receives solving for equations

(3.19) and (3.21) as a function of the supply.
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Figure 3.2: Example of resource allocation at different supply levels.

3.3 Creating Simulated Data

Simulations were performed to test the specificity and sensitivity of the proposed resource

allocation model. Data was created to simulate brain activation in four different areas of

the brain, including the auditory, visual, motor cortex andthe posterior cingulate (PCC1).

Simulated data in the three conditions of the Rate study (attend both, attend auditory or

attend visual) were created with the use of real brain activation. Activation in the areas are

based on the average measured whole brain activation (PSC) of each of the 15 subjects.

With the whole brain activation of each subject at each condition, a specific percentage

increase was attributed to the areas to simulate activationin each of the four areas. As an

1The PCC is known as one of the central hubs of the default mode network. These areas of the
brain are known to deactivate when goal-oriented activity is being performed [37].
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example, if the PSC of the whole brain is equal to 1, then in an area that has a 10% increase

of activation, the PSC of that area will be 1.1 for that specific condition. Decrease of

activation was also calculated using the same procedure. Table 3.2 specifies the percentage

of increase or decrease of activation for each of the four areas at each condition. Paired

t-tests were then performed to asses the ability to distinguish conditions using the resource

allocation weighting factors, the direct PSC at each frequency, and also the slope. As an

example, we would expect that the methods would be able to distinguish activation levels

in the auditory cortex when the subjects are either attending to the auditory stimulus versus

the visual stimulus. However, we would expect to not find any statistical difference in that

same area when the subject is either attending to both stimuli or just the auditory stimulus.

Task Auditory Cortex Visual Cortex Motor Cortex PCC

Attend Both 3% 3% 2% -5%
Attend Auditory 3% 0% 2% -3%
Attend Visual 0% 3% 2% -3%

Table 3.2: Simulation activation values.

3.4 Testing the Model

Several statistical tests were performed to asses the specificity and sensitivity of the re-

source allocation weighting factors as a method to asses neuronal activation. Statistical

tests include one way ANOVAs and also paired t-tests [22]. Tests were also conducted to

asses how well the proposed model is a feature extractor to perform classification between

groups (NC vs. SZ and NC vs. mTBI). Classification was carriedout using support vector

machines (SVM; [10])
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Results

To asses the reliability of the resource allocation model, attention can be focused on some

key areas of the brain where activation is expected to occur based on the stimuli of the

two experiments. Both task require auditory and visual attention, as well as motor motion.

Areas of interest in the brain include the auditory cortex [areas of the middle and superior

temporal gyrus, and transverse temporal gryus, including Brodmannareas (BA) 41 and

42], the visual cortex [lingual gyrus, occipital lobe (BA 17, 18 and 19) and also some of

the parietal lobe], primary motor [precentral gyrus (BA 4)]and also the two central hubs

of the default mode network [anterior and posterior cingulate cortex]. Areas of the DMN

are included in this list because they are known to reduce in activation when a cognitive

demanding tasks are being performed.

In this chapter only results are shown, while a discussion ofthe implications of the

presented results are addressed in chapter 5.
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4.1 Rate Study

This section presents the results of using the weighting factors and also the other tradi-

tional methods to analyze FMRI in the Rate study. First, results of statistical tests on the

simulated data (section 3.3) are shown. First, ANOVAS and t-tests are performed between

stimuli conditions using the all the methods. Next, theα parameter from the utility func-

tion (Eq. 3.5) is selected to minimize the estimation error of the resource allocation model

in relation to the subject data. Afterwords, the test are performed on the parameters to

assess if they are normally distributed. If they are, then parametric statistical tests can be

performed on these data. Subsequently, the weighting factors are calculated and statistical

tests are performed between conditions for the NC. The same is also performed for the tra-

ditional methods. Then, independent t-tests are performedbetween groups (NC vs. mTBI)

for each condition. Finally, classification between groupsusing support vector machines

is done to assess the power if feature extraction of the resource allocation model.

4.1.1 Simulations

For a few subjects in some conditions, the average WB PSC was negative. This is unex-

pected, since there is a drop of WB hemodynamic response whenthe task is being per-

formed compared to baseline. However, based on Eq. 3.8, the resource allocation model

cannot be calculated with negative PSC. Therefore a constant (=0.3) was added to all WB

PSC values. Table 4.1 shows the average PSC of the WB across the subjects for each

condition and frequency. This is illustrated to show the variability in WB PSC based on

the conditions and also intensity (frequency) of the tasks.Additionally, for the general

utility function (Eq. 3.5)α is defined asα = 0.5. Results were not affected by varying the

constant andα values.

For each of the four simulated areas (auditory cortex, visual cortex, motor cortex, and
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Stimuli Frequency
Stimuli Condition

Attend Both Attend Auditory Attend Visual

0.75 Hz 0.1139 0.0944 0.1450
1.25 Hz 0.1505 0.1397 0.1463
1.50 Hz 0.1715 0.1482 0.1782

Table 4.1: Average WB PSC across frequencies and stimuli conditions for the normal
controls in the Rate study.

Method
1-way Anova Attend Both vs Attend Auditory Attend Both vs Attend Visual Attend Auditory vs Attend Visual

Aud Vis Motor PCC Aud Vis Motor PCC Aud Vis Motor PCC Aud Vis Motor PCC

w
B>A A>B B>V V>B A>V V>A

p < 0.001 p < 0.001 p > .1 p < 0.05 p > .1 p < .001 p > .1 p < .05 p < .001 p > .1 p > .1 p < .001 p < .001 p < .001 p > .1 p > .1

PSC

.75Hz
V>B V>A V>A V>A V>A

p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p < .1 p < .05 p < .05 p < .05 p < .05

1.25Hz
p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1

1.5Hz
p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1

Slope
p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1 p > .1

Table 4.2: Simulation results.

PCC), 1-way ANOVAS were performed across the three tasks. Paired t-tests between the

conditions were also performed in each simulated area. Statistical p-values are shown in

Table 4.2. As displayed in the Table 4.2, test were performedon the weighting factors (w),

PSC at each frequency, and also on the slope. The directionality of the t-tests that show

significant (p < 0.05) or a trend (p < 0.1) between conditions are indicated.

To further address the power of using the utility function weighting factor’s as a mea-

surement of brain’s relative activation, different levelsof gaussian noise were applied to

the simulated signal. As previously, ANOVA tests where conducted but now at different

gaussian noise levels. However, the experiments are repeated 500 times at each noise level.

The noise levels tested ranged from an a signal to noise ratio(SNR) of 10 down to 0.33.

As expected, no significance was found in the motor area in alllevels of SNR. In the PCC

area, significance (p < 0.05) was still found between the conditions in an SNR of 5. As

for the auditory and visual areas, significance in the ANOVA was still present in a SNR as
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low as 0.5.

4.1.2 Alpha of the Utility Function

Initially, the α parameter must be estimated for the associated utility functions (Eq. 3.5).

To find a fixedα, first the average PSC across the 30 subjects (NC and SZ) for each of the

50 cortical areas were calculated for each condition. A constant (= 2) is added to all PSC

to guarantee that alldr values were not negative, therefore satisfying Eq. 3.8. Similar to

the simulations, results did not change based on the constant applied to the PSC’s. A range

of α values (0.001 ≤ α ≤ 20) were tested to estimate the final distribution of resources

for each regiondr. First, for eachα, theλf ’s were calculated. Then a solution for Eqs.

3.6, 3.7, and 3.8 was calculated for eachα. Results where then compared to the true PSC

of each of the 50 cortical areas. The average error across allthree conditions were then

averaged to select theα that best estimated the true distribution. The optimal valueα value

was found to be 2.287. Figure 4.1 shows the estimation error when varying theα for each

condition and also the average error across all conditions.

4.2 Normality Tests of the Weighting Factors

One-Sample Kolmogorov-Smirnov tests were calculated to assess the distribution of the

weighting factors in each of the 50 cortical areas. To compare, these tests were also per-

formed on the PSC’s (at each frequency) and the slope. The number of tests that rejected

the null hypothesis (p < 0.05; data is not normally distributed) for the weighting factor

are 3 (attend both), 2 (attend auditory), and 3 (attend visual) out of 50 areas. Considering

the number of Kolmogorov-Smirnov tests, this is the expected number of tests (∼ 2.5)

that would indicate a non-gaussian distribution (Type-I error). As for the PSC’s and the

slope, a similar number of areas also did not pass the gaussianity test, ranging from 0 to
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Figure 4.1: Minimizing estimation error by varyingα of the utility function (Eq. 3.5.)

5 at each condition. Since the weighting factor from the utility functions are statistically

considered to be gaussian distributions, parametric testssuch as ANOVAS and t-tests can

be performed on these data.

4.2.1 Weighting Factors of Normal Controls

After selecting the optimalα, the average weighting factor (w) from the utility function

(Eq. 3.5) were calculated in each of the 50 areas for the threeconditions (attend both, only

auditory, and only visual). The values of the weights are shown in Table 4.3. These values

were calculated from the average PSC of each area across the fifteen NC subjects.
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Neuronal Area
Weighting Factor (w) of Cortical Area

Attend Both Attend Auditory Attend Visual

C
o

rt
ic

al

Posterior Cingulate 0.9287 0.9089 0.9058
Anterior Cingulate 0.7663 0.7619 0.7562
Subcallosal Gyrus 0.8152 0.7902 0.7872
Transverse Temporal Gyrus 1.142 1.1352 1.1004
Uncus 0.8337 0.8222 0.8231
Rectal Gyrus 1.0221 1.0084 1.0189
Fusiform Gyrus 1.0556 1.0531 1.0614
Inferior Occipital Gyrus 1.0987 1.061 1.0414
Inferior Temporal Gyrus 0.9211 0.9207 0.9114
Insula 1.0176 1.0247 1.0088
Parahippocampal Gyrus 0.9109 0.9095 0.9072
Lingual Gyrus 1.3747 1.3533 1.371
Middle Occipital Gyrus 1.0702 1.0355 1.0854
Orbital Gyrus 1.0652 1.0737 1.1197
Middle Temporal Gyrus 0.8756 0.8817 0.8679
Superior Temporal Gyrus 1.0068 1.014 0.9859
Superior Occipital Gyrus 0.7821 0.7688 0.7833
Inferior Frontal Gyrus 0.896 0.901 0.8995
Cuneus 1.2434 1.2201 1.2421
Angular Gyrus 0.8003 0.8114 0.7849
Supramarginal Gyrus 0.9549 0.9759 0.958
Cingulate Gyrus 0.9117 0.921 0.9129
Inferior Parietal Lobule 1.0872 1.0914 1.0816
Precuneus 0.9368 0.9398 0.9578
Superior Parietal Lobule 0.9835 0.9731 1.0162
Middle Frontal Gyrus 0.8912 0.9095 0.896
Paracentral Lobule 0.8838 0.8747 0.8771
Postcentral Gyrus 1.1704 1.1497 1.136
Precentral Gyrus 1.1039 1.1032 1.1143
Superior Frontal Gyrus 0.8407 0.8478 0.8322
Medial Frontal Gyrus 0.863 0.8553 0.8495

C
er

eb
el

lu
m

Uvula of Vermis 1.0633 1.0592 1.098
Pyramis of Vermis 1.2318 1.2403 1.3295
Tuber of Vermis 1.3244 1.3236 1.4184
Declive of Vermis 1.7402 1.7304 1.8897
Culmen of Vermis 1.6307 1.6065 1.6659
Cerebellar Tonsil 1.0546 1.0582 1.0723
Inferior Semi-Lunar Lobule 0.9711 0.9742 0.974
Fastigium 1.1259 1.1265 1.1335
Nodule 1.0535 1.0537 1.0668
Uvula 1.2283 1.2387 1.2711
Pyramis 1.1856 1.2015 1.2181
Tuber 1.4011 1.445 1.4523
Declive 1.4949 1.495 1.5482
Culmen 1.2082 1.2029 1.2188
Cerebellar Lingual 1.1039 1.1142 1.1093

S
u

b
-

co
rt

ic
al

Lentiform Nucleus 0.9838 0.9824 0.9809
Claustrum 0.9922 0.997 0.9869
Thalamus 0.9815 0.9863 0.9987
Caudate 0.9083 0.9218 0.9187

Table 4.3: Utility function weighting factor (w) for each ofthe 50 cortical areas in each
three conditions for normal controls in the Rate study.
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4.2.2 Statistical Tests Between Conditions on Normal Controls

For each NC subject, the weighting factors in each neuronal area were calculated. With the

weighting factors, fifty one-way ANOVAs (one for each area) across the three conditions

were performed. Statistical results indicated that there were no significant differences

(p > 0.1) between any of the conditions. One-way ANOVAs were also performed directly

on the PSC at each frequency and also in the slope across the frequencies. The only

statistically significant (p < 0.05) result that was found was in the PSC at 0.75 Hz in the

middle occipital gyrus.

Even though there was not significance in the ANOVA in any of the areas using the

weighting factors, several paired two-sample t-tests werecomputed. Tests were done to

compare the three conditions (attend both vs. attend auditory; attend both vs. attend vi-

sual; attend auditory vs. attend visual). T-tests across the conditions with the PSC at each

frequency and also the slope were also calculated. Results of all the t-tests are shown in

Table 4.4, were the direction of tests that where significant(p < 0.05) are also indicated.

Conditions include attend auditory and ignore visual (A), attend visual and ignore audi-

tory (V), and attend both (B) stimuli. Statistical tests in bold are further examined in the

discussion session. Neuronal areas that did not have any statistical significance are not

shown.

4.2.3 T-tests Between Normal Controls and Patients with Schizophre-

nia

Independent t-tests were performed in all 50 areas to compare the weighting factors of

NC and SZ. Results of using the weighting factor and the othermethods are shown in

Table 4.5. Significant t-tests (p < 0.05) are indicated in the table with the corresponding

direction of the test. The bottom row indicates the total number of areas that showed
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Attend Both vs. Attend Auditory Attend Both vs. Attend Visual Attend Auditory vs. Attend Visual
Neuronal Areas

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.75Hz 1.25Hz 1.50Hz .75Hz 1.25Hz 1.50Hz .75Hz 1.25Hz 1.50Hz

Posterior Cingulate B>A B > A B > V
Transverse Temporal Gyrus B > A B > V B > V B > V A > V
Uncus V > A
Fusiform Gyrus V > A
Inferior Occipital Gyrus B > A B > V B > V
Inferior Temporal Gyrus A > V
Lingual Gyrus B > A V > A V > A
Middle Occipital Gyrus B>A B > A B > A V > A V > A V > A V > A
Middle Temporal Gyrus B > V A > V
Superior Temporal Gyrus B > V A > V
Cuneus B > A B > A V > A V > A
Angular Gyrus A > V
Supramarginal Gyrus A>B V > B A > V
Cingulate Gyrus V > B
Inferior Parietal Lobule B > A
Precuneus V > A
Superior Parietal Lobule B > A V > B V > A V > A V > A
Middle Frontal Gyrus A>B A > V
Paracentral Lobule B > A B > V V > A
Postcentral Gyrus B > A B > A B > V
Precentral Gyrus V > B V > A
Superior Frontal Gyrus A > V
Uvula of Vermis V > B V > B V > A V > A
Pyramis of Vermis V > B V > B V > A V > A
Tuber of Vermis V > B V > B V > B V > A V > A
Declive of Vermis V > B V > B V > B V > B V > A V > A V > A
Culmen of Vermis V > A V > A V > A
Cerebellar Tonsil V > B V > B V > A
Fastigium V > A V > A
Nodule V > B V > A V > A
Uvula V > B V > A
Tuber V > A
Declive V > B V > A V > A
Culmen V > A V > A
Cerebellar Lingual V > B V > A
Thalamus V > B V > B
Caudate V > B

Total 4 4 0 9 0 14 11 4 3 2 16 21 1 10 0

Table 4.4: Paired t-tests between conditions for normal controls in the Rate study.

significant differences. Areas that did not exhibit any significant results for any of the four

methods are removed from the table.

4.2.4 Classification Between Normal Controls and Patients with Schi-

zophrenia

This section shows the results of performing classificationbetween NC and SZ by us-

ing the weighting factors and the other method as features todistinguish between groups.

Classification was performed independently at each stimulicondition (attend both, attend
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Neuronal Areas
Attend Both Attend Auditory Attend Visual

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.75Hz 1.25Hz 1.5Hz .75Hz 1.25Hz 1.5Hz .75Hz 1.25Hz 1.5Hz

Posterior Cingulate NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ
Transverse Temporal Gyrus SZ>NC
Rectal Gyrus NC>SZ
Insula SZ>NC SZ>NC
Superior Temporal Gyrus SZ>NC
Cuneus NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ
Supramarginal Gyrus NC>SZ
Inferior Parietal Lobule SZ>NC SZ>NC
Precuneus NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ
Paracentral Lobule SZ>NC SZ>NC
Postcentral Gyrus NC>SZ
Precentral Gyrus SZ>NC SZ>NC NC>SZ SZ>NC
Culmen of Vermis NC>SZ
Tuber NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ NC>SZ

Total 8 3 4 4 1 9 2 2 5 2 4 5 4 1 0

Table 4.5: Results from independent t-tests comparing NC versus SZ in the Rate study

auditory, and attend visual). A linear support vector machine (SVM) was used as a clas-

sifier [10]. A leave one out approach was used to evaluate the classification, where the

classifier is built using data from all the subjects but one. The excluded subject is then

tested with the classifier, labeling the subject a NC or a SZ. This process was repeated

until all the 30 subjects were tested.

Initially, the features used in classification were the weighting factors of all the 50 ar-

eas. However, accuracy in classification between both groups was roughly around 50%

(chance) for all methods and conditions. This is likely to beoccurring from overfitting the

network to the training dataset by using to many features. Toincrease the robustness, an

adequate feature selection process is important in order tobuild a good classifier. There-

fore to improve classification results, the feature set was reduced. Only areas that showed

significant difference between groups (Table 4.5) were usedas features in the classifier.

As and example with the weighting factors, for the attend visual condition, only the pos-

terior cingulate, precuneus, precentral gyrus and the tuber were used as features. For the

other conditions and other methods, different areas were used as features. This is done

such that each method is independently performing feature selection and classification.

Classification accuracy is shown in Table 4.6.
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Method Attend Both Attend Auditory Attend Visual

w 73.33% 76.67% 60.00%

PSC
0.75Hz 63.33% 66.67% 60.00%
1.25Hz 70.00% 53.33% 66.67%
1.50Hz 56.67% 60.00% 60.00%

Slope 36.67% 50.00% 66.67%

Table 4.6: Classification accuracy between normal controlsand patients with schizophre-
nia using linear support vector machine in the Rate study.

4.3 Multimodal Attention Task Study

For the MMAT study, several types of tests were performed to asses the advantage or

disadvantage of using a resource allocation model to analyze FMRI data compared to

traditional methods. Tests include; between conditions atthe first FMRI session for NC,

between groups at each condition and also at each visit, and also for NC and mTBI between

their respective visits. Finally, classification using SVMwas also performed on these

analysis.

4.3.1 Alpha of the Utility Function

As previously done for the Rate study and seen in section 4.1.2, the alpha parameter of

the utility function (Eq. 3.5) must be defined. First, a constant (=8) is added to the PSC to

all conditions (None, Auditory, and Visual), frequency frequency (0.33 and 0.66 Hz) and

subjects (NC and mTBI). This constant is larger then for the Rate study since it is based

on the smallest PSC value of the study data across all subjects and conditions. The ideal

α was found to be equal to 1.288.
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4.3.2 Statistical Tests Between Conditions on Normal Controls

With the weighting factors calculated for the NC, parametric tests (ANOVA and paired t-

tests) were performed across conditions. Fifty ANOVAS (between conditions) where first

performed on the all neuronal areas. Follow up paired t-tests where then performed on the

areas that showed significance (p < 0.05) on the ANOVA. Results of the followup tests

that where also significant (p < 0.05) are presented in Table 4.7. Directionality of the

tests are shown, for all the conditions including attendingnone (N), attending auditory (A)

and also attending visual (V). As before, only the areas thatpassed the tests are shown.

Additionally, test in bold text are further addressed in thediscussion chapter (chapter 5).

4.3.3 T-tests Between Normal Controls and Mild Traumatic Brain In-

jury Patients

Initially a 2-way ANOVA (Condition x Subject) was performed. Of the 50 areas there

were no interaction effect (p > .1) in any of the neuronal areas using the weighting factor

or using directly the PSC at both frequencies. However, for the slope, the middle frontal

gyrus showed a interaction effect (p < 0.05) of condition.

Even though there are no interaction effects for the weighting factors and the PSC,

followup t-tests where still performed in all areas to assesthe proposed method. Table 4.8

ilustrated the results the group differences for the first visit of NC and mTBI. There are a

total of 24 subjects used in this analysis (12 per group). Table 4.9 refers to the same tests

but now in reference to the subjects second visit. Only a subset of subject participated in

the second visit (N=10).
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Neuronal Area
None vs Auditory None vs Visual Auditory vs Visual

w .33Hz .66Hz slope w .33Hz .66Hz slope w .33Hz .66Hz slope

Posterior Cingulate N>A
Anterior Cingulate N>A N>V
Fusiform Gyrus N>A V>A
Parahippocampal Gyrus N>A N>A N>V V>A
Middle Occipital Gyrus N>A N>V V>A
Middle Temporal Gyrus N>A N>V
Superior Occipital Gyrus V>A
Inferior Frontal Gyrus N>A V>A
Angular Gyrus N>A N>A N>V V>A V>A
Supramarginal Gyrus A>N N>A V>N A>V V>A
Cingulate Gyrus V>A
Inferior Parietal Lobule A>N A>N V>N V>N V>N A>V V>A V>A
Precuneus N>A V>A
Middle Frontal Gyrus A>N A>V V>A
Paracentral Lobule N>A V>A
Postcentral Gyrus V>N V>A
Precentral Gyrus A>N V>N V>N V>A V>A
Superior Frontal Gyrus N>A V>A
Medial Frontal Gyrus N>A V>A
Uvula of Vermis A>N A>N A>N V>N V>N V>N V>A
Pyramis of Vermis A>N A>N V>N V>N V>A
Tuber of Vermis A>N A>N A>N V>N V>N V>N V>A V>A
Declive of Vermis A>N A>N A>N V>N V>N V>N V>A V>A
Cerebellar Tonsil A>N A>N V>N V>N A>V
Fastigium A>N A>N V>N V>N
Nodule A>N A>N V>N V>N V>A V>A
Uvula A>N V>N V>A
Declive A>N A>N V>N V>N V>A V>A
Culmen A>N A>N A>N V>N V>N V>N
Cerebellar Lingual A>N A>N V>N V>N
Lentiform Nucleus A>N A>N V>N V>N V>A
Thalamus A>N A>N A>N V>N V>N V>N V>N V>A V>A

Total 11 16 13 10 11 15 13 4 2 4 8 23

Table 4.7: Statistical test between conditions for the normal controls in the MMAT study.

4.3.4 Statistical Tests Between Visits

This section describes results of comparing the weighting factors of the subject between

the first and second visit. Therefore, at each conditions, a paired t-test were done for all

subjects between their first (V1) and second (V2) visit. Results are separated by groups.

Ten subjects in each group where used in these tests. Significant results (p < 0.05) are

shown for NC (Table 4.10) and mTBI (Table 4.11).
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Neuronal Area
None Auditory Visual

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.33Hz .66Hz .33Hz .66Hz .33Hz .66Hz

Transverse Temporal Gyrus mTBI>NC
Parahippocampal Gyrus mTBI>NC
Middle Occipital Gyrus mTBI>NC
Inferior Frontal Gyrus mTBI>NC
Inferior Parietal Lobule mTBI>NC
Precuneus mTBI>NC NC>mTBI
Superior Parietal Lobule mTBI>NC
Middle Frontal Gyrus mTBI>NC
Paracentral Lobule NC>mTBI
Tuber of Vermis NC>mTBI NC>mTBI NC>mTBI
Declive of Vermis NC>mTBI NC>mTBI
Uvula NC>mTBI NC>mTBI NC>mTBI
Pyramis NC>mTBI NC>mTBI NC>mTBI
Tuber NC>mTBI
Declive NC>mTBI NC>mTBI NC>mTBI
Lentiform Nucleus mTBI>NC

Total 1 0 0 4 7 5 2 2 4 0 0 1

Table 4.8: Independent t-tests between normal controls andmild traumatic brain injury
patients for the first visit in the MMAT study.

Neuronal Area
None Auditory Visual

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.33Hz .66Hz .33Hz .66Hz .33Hz .66Hz

Uncus mTBI>NC mTBI>NC mTBI>NC mTBI>NC mTBI>NC mTBI>NC mTBI>NC mTBI>NC mTBI>NC
Lingual Gyrus NC>mTBI
Middle Frontal Gyrus mTBI>NC
Culmen NC>mTBI

Total 1 1 1 0 3 1 1 0 1 1 1 0

Table 4.9: Independent t-tests between normal controls andmild traumatic brain injury
patients for the second visit in the MMAT study.

4.3.5 Classification Between Normal Controls and Mild Traumatic

Brain Injury Patients

In this section, results of classification between groups and also within groups comparing

visits is shown. For the classification between subjects, SVM is used for the first visit and

Neuronal Area
None Auditory Visual

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.33Hz .66Hz .33Hz .66Hz .33Hz .66Hz

Rectal Gyrus V1>V2
Parahippocampal Gyrus V1>V2 V1>V2
Orbital Gyrus V1>V2 V1>V2
Middle Temporal Gyrus V2>V1
Superior Occipital Gyrus V1>V2
Pyramis of Vermis V1>V2
Pyramis V1>V2
Lentiform Nucleus V2>V1
Caudate V2>V1

Total 1 1 0 0 1 5 0 0 2 1 0 0

Table 4.10: Paired t-tests between visits for normal controls in the MMAT study.
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Neuronal Area
None Auditory Visual

w
PSC

Slope w
PSC

Slope w
PSC

Slope
.33Hz .66Hz .33Hz .66Hz .33Hz .66Hz

Posterior Cingulate V1>V2
Transverse Temporal GyrusV1>V2 V1>V2 V1>V2 V1>V2 V1>V2
Insula V1>V2
Superior Temporal Gyrus V1>V2
Postcentral Gyrus V1>V2
Inferior Semi-Lunar Lobule V2>V1
Culmen V1>V2
Thalamus V2>V1

Total 2 3 3 0 3 0 0 0 1 0 0 0

Table 4.11: Paired t-tests between visits for mild traumatic brain injury patients in the
MMAT study.

Method Attend None Attend Auditory Attend Visual

w 54.17% 66.67% 66.67%

PSC
0.33Hz - 58.33% -
0.66Hz - 41.67% -

Slope 66.67% 66.67% 66.67%

Table 4.12: Classification accuracy between groups (NC versus mTBI) for the first visit
on the MMAT study.

also at the second visit. Based on the hypothesis presented in Figure 1.2, it is expected

that there are more significant differences between groups in the first FMRI session while

much less for the second session. Results of these tests for the first and second visit are

shown in Tables 4.12 and 4.13 respectively. Similarly as theRate study classification

procedure, only areas that passes statistical tests (Tables 4.8 through 4.11) where used as

features. Therefore, for some methods, no classification was performed since there are no

significant differences in any of the neuronal areas.

The final set of classification results are shown in Tables 4.14 and 4.15. The first table

shows classification accuracy when comparing the features of NC at their first visit versus

their second visit. For all methods, an accuracy around 50% (chance) is expected since

NC should have no change in brain resource allocation. As forTable 4.15, classification is

performed between the first and second visit of the mTBI subjects.
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Method Attend Non Attend Auditory Attend Visual

w 55.00% 60.00% 65.00%

PSC
0.33Hz 55.00% 65.00% 60.00%
0.66Hz 55.00% 60.00% 60.00%

Slope - - -

Table 4.13: Classification accuracy between groups (NC versus mTBI) for the second visit
on the MMAT study.

Method Attend Non Attend Auditory Attend Visual

w 55.00% 70.00% 75.00%

PSC
0.33Hz 60.00% 75.00% 75.00%
0.66Hz - - -

Slope - - -

Table 4.14: Classification accuracy between visits for the normal controls on the MMAT
study.

Method Attend Non Attend Auditory Attend Visual

w 50.00% 60.00% 60.00%

PSC
0.33Hz 65.00% - -
0.66Hz 70.00% - -

Slope - - -

Table 4.15: Classification accuracy between visits for the mild traumatic brain injury pa-
tients on the MMAT study.
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Discussion

A novel method to analysis FMRI data is proposed. The method assumes that there is an

underlying resource allocation mechanism that distributes resources (oxygen and glucose)

throughout the brain. A resource allocation model was used to describe activation of brain

regions, where in a financial setting or in communication networks, competitive reasoning

is used to find an optimal distribution of resources between users. In FMRI, the proposed

model could potentially be used to study more in depth brain functionality.

With the use of the theoretical competitive equilibrium approach, we have mathemati-

cally equated a model that describes the fundamentals of resource allocation of the brain.

The equations are based on a measurement of “importance” or “value” of receiving re-

sources, defined by a utility function. By using the proposedmodel, the level of activation

of brain regions is transformed to a relative measurement ofactivation. As described in

chapter 3, the utility function of a specific cortical area ofthe brain changes based on the

environment the subject is encountering, such as internal thoughts or a focusing on intense

external stimuli. However, a strong assumption was proposed, where the brain always at-

tempts to maximize the social welfare (Eq. 3.1) based on the conditions it is encountering.

Basically, we are assuming that the brain is an efficient machine that always attempts to
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minimize the energy loss [1].

A discussion of the all the results and the findings of all the neuronal areas would seem

impracticable. Therefore, we will focus on discussing someof the key findings based on

the expected neuronal functioning dependent on the two studies. As stated in the introduc-

tion, this project is focused on the proposed resource allocation model, hence implications

of group differences will not be addressed in depth in this dissertation. Additionally, most

of the discussions will be based on the cortical areas, abstaining to discuss much about

cerebellum and also sub-cortical areas.

5.1 Rate Study

5.1.1 Simulations

Simulation tests indicated that the proposed resource allocation method is ideal to asses

relative activation throughout the brain (Table 4.2). Based on the results from the 1-way

ANOVA, only the resource allocation model was capable of finding the expected signifi-

cant difference between all the attended conditions in the auditory cortex, visual cortex and

the PCC. As expected, no significant difference between conditions were observed in the

motor area. Additionally, the t-test comparing attend auditory versus attend visual, using

directly the PSC at 0.75 Hz, there is always significant larger activation to attending the

visual condition. Since we created the simulated data, we would expect different results

in the auditory and PCC areas. They should be equal or similarto the weighting factors

results. This simulation validates the capability of the proposed method in discovering

relative activation throughout the cortical brain areas.
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5.1.2 Statistical Tests Between Conditions on Normal Controls

A discussion of section 4.2.2 is presented in this section. Based on findings from table

4.4, there are some key areas that deserve a more in depth discussion. Some cortical

areas of the brain are expected to have significantly different levels of activation based

on what condition the subjects are attending to. More specifically, we would expect that

the proposed method would find significant differences in theauditory and visual cortex

across the conditions. Even though there are no significant results from the ANOVA tests,

we assessed the difference in models the differences using paired t-tests. The middle and

superior temporal gyri are well known for their roll in auditory processing, however, there

is no significant level of activation detected by either the PSC at each frequency or either

the slope. On the other hand, the resource allocation model finds significant difference in

the weighting factor when either the subject is required to attend the auditory stimulus or

both stimuli versus attending only the visual stimulus. This is a clear indication of a higher

sensitivity of the proposed method. Additionally, the transverse temporal gyrus (BA 41

and 42 - primary auditory cortex) also shows the same directionality of the statistical tests

using the weighting factors. However, for the PSC at 1.25 and1.50 Hz when comparing

the attend both versus the attend visual, the expected directionality of the statistical test is

also found. Despite these results, a surprising results is also seen in the PSC at 1.50 Hz,

were the attend both shows greater activation then the attend auditory condition.

Areas of the brain responsible for visual processing include the occipital lobe, fusiform

gyrus and cuneus. The middle occipital gyrus shown significantly larger weighting factors

for attending visual and also attending both modalities versus only attending the auditory

stimulus. However in the inferior occipital gyrus the modelshowed that there is a larger

weighting factor when the subjects are attending both conditions rather then just attending

the visual stimuli. Even though not significant and just showing trend (p < 0.1), looking

at Table 4.3 there is a larger weighting factor for the attendvisual and also attend both

compared to attend auditory. The same holds for the cuneus. These results indicate that
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the proposed method can be used to asses an “importance” measurement of neuronal areas

based on the condition.

Additionally, the weighting factor found statistical differences in the posterior cingu-

late, where the attend to both condition is always higher then attending to only a single

stimulus. The posterior cingulate cortex (PCC) is known as one of the central hubs of

the default mode networks, where there is a decrease in neuronal activation when a goal-

oriented activity is being performed. By observing Table 4.3, it can be seen that weighting

factors from in the PCC are all below 1. This is indicative that the the “importance” of this

area is decreased as the stimuli are being presented. However, there is a larger decrease

when attending to a specific condition, rather then attending both. Attending to one con-

dition while ignoring the other condition requires larger concentration from the subjects,

therefore “stealing” more resources from areas that are notin much need.

These findings are based on several t-test that were not corrected for multiple compar-

isons. However, this dissertation is not assessing directly cortical brain functionality based

on used stimuli, this can be seen in [30], but it is a project toasses the proposed method,

where results clearly indicate that the proposed method is more sensitive to the different

conditions compared to the traditional methods for the Ratestudy.

Finally, by observing Table 4.1, it can be seen that the attend visual always has a greater

average WB PSC in all the stimuli frequency when comparing tothe attend auditory. This

has caused in the comparison between attending visual versus attending auditory, all the

significant findings are attend visual greater then attend auditory in all the frequencies

(Table 4.4 ). Relative neuronal activation is not observed when using directly the PSC,

unlike the resource allocation method.
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5.1.3 Group Differences and Classification

This section discusses the results from Tables 4.5 and 4.6 Clearly, when comparing the

attend both condition versus the other two conditions, the resource allocation method finds

the most difference between groups in neuronal areas. Another major observation from

Table 4.5, is that there is no specificity when comparing groups while using the traditional

methods. For all statistical significant results, NC alwaysshow greater activation than

SZ. By using the resource allocation’s weighting factor as ameasurement of neuronal

activation results show that nearly half of the significant differences between groups show

greater activation for SZ compared to NC.

The accuracy of the classification using SVM’s are low when using all the neuronal

areas as features to find which group the subject belongs to. This is likely due to overfit-

ting the training dataset. Therefore only using the areas that passed the statistical threshold

(p < 0.05) in Table 4.5 are used as features. Also, using a conjunctionof the methods for

the classifier was not performed since we are evaluating the capabilities of each individual

method. Therefore each of the methods must preform classification by itself, where a com-

bination across methods is highly likely to increase classification accuracy. Results from

Table 4.6 show that the resource allocation method clearly outperforms the other methods

in group classification when using the attend both (73.33%) and attend auditory (76.67%)

conditions. For the attend visual condition, all methods exhibit similar classification re-

sults.
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5.2 MMAT study

5.2.1 Statistical Tests Between Conditions on Normal Controls

This section will address results of each of the methods whencomparing across conditions

(attend none, auditory, and visual) in normal controls for the MMAT study (see Table 4.7).

The first result to note is that the resource allocation method is the only methods that accu-

rately locates the anterior cingulate as having significantdifference in activation when the

subjects are instructed to attend to a specific modality versus attending none. While attend-

ing to the task, a reduced activation in this central hub of the DMN is expected compared

to when the subject is instructed to not attend to any modality. The resource allocation

method was the only method to accurately find significant difference across these condi-

tions. There was also significance (p<0.001) in the posterior cingulate for the weighting

factor (N> A and V), however there was only a trend (p<0.1) for the effect of condition

from the ANOVA, therefore the result is not shown in the table. However, there are some

unexpected results from using the weighting factors as a neuronal activation measurement,

possibly a false positive (type I error). The none conditionshows a greater weighting fac-

tor then the attend visual condition in the middle occipitalgyrus (areas responsible for

visual processing). Another unexpected result is seen in the middle temporal gyrus, where

now the attend none has a greater weighting factor then the attend auditory.

Another significant finding from Table 4.7 is that most of the significant difference

between conditions for all methods is seen in subcortical and cerebellar regions. When

using directly the PSC in the two frequencies (0.33 and 0.66 Hz) as a measurement of

neuronal activation a general pattern is observed. For all t-tests, the attend none condition

is always showing lower hemodynamic response compared to both attending conditions

(auditory and visual). The slope method finds the most cortical areas with significant

difference, however there are no specificity in the findings.A general pattern [attend visual

> attend auditory> attend none] is seen across the significant findings in the neuronal
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areas.

5.2.2 Group Differences and Classification

First we will address results from Tables 4.8 and 4.12, whereneuronal activation between

NC and mTBI are compared for the subjects first FMRI session. Based on these results,

the performance of the resource allocation method is not as robust to compare groups as

was observed in the Rate study. In only a few cortical areas there was any significant

differences between groups. As a result, the accuracy of theclassification in lower then

before (< 67%). However, for the other methods (PSC’s and slope) results are of similar or

of inferior quality then the resource allocation. The classification between groups using the

PSC’s and slope are of similar accuracy compared to the weighting factors. Nonetheless,

by only using directly the PSC, there are no significant findings between group in cortical

brain areas where all results are located in the cerebellum.The slope however does find

some significant differences between groups in cortical areas as well as cerebellar and

subcortical areas of the brain.

As expected from the theoretical equilibrium pipeline (Figure 1.2), there is a general

decrease in differences of neuronal activation between groups (see Tables 4.9 and 4.13).

Even though there is no significant decrease in classification accuracy, there is a large de-

crease in neuronal areas that are significantly different between groups for all conditions.

These results postulate two theories, either the proposed equilibrium is a alternative to ex-

plain this effect or the decrease in number of subject (N=10)has decreased the significance

between groups.

The final set of results from this dissertation is comparing neuronal activation of sub-

jects between their first and second FMRI session. Results for NC can be seen in Tables

4.10 and 4.14, while results for mTBI are shown in Tables 4.11and 4.15. Based on the

equilibrium hypothesis (Figure 1.2), no differences between visits will be found for NC,
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while there will be significant differences for the mTBI. Forthe NC, the PSC at 0.66 Hz

and the slope outperform the resource allocation method andalso the PSC at 0.33 Hz,

since they do not find any differences between visits, therefore no classification can be

performed for these methods. Differences found between visits for the NC are possibly

due to the fact that the subjects are now accustomed to the FMRI environment and less

overall neuronal activation occurs. Additionally, as noted from Table 4.14, classification

results between visits are very similar for the resource allocation method and the PSC at

0.33 Hz. As for the patient group, significant difference between visits is only found in the

attend none condition when using the PSC as a measurement of neuronal activation. The

resource allocation finds differences between visits in allof the three conditions. There-

fore, by following the proposed feature extraction pipeline, in only the resource allocation

method can we perform classification in all the conditions. However, the best classification

result is seen of the PSC at 0.66 Hz for the attend none condition. Slope does not find any

differences between visits for NC, however, no differencesare also found between visits

for the patients. These poor results might also be due to the low amount of subjects per

group that are being used (N = 10).

5.3 Conclusions

Result from the Rate study have indicated that the proposed resource allocation method

accurately finds differences between conditions in areas ofthe brain that where expected

to behave differently dependent on the condition. The traditional methods such as using

directly the PSC and also the slope of activation are outperformed by using the weighting

factors as measurements of neuronal activation. Also, classification between groups is

improved with the resource allocation method, showing the potential as a feature extraction

tool with increased sensitivity. A possible argument of whythe proposed model is more

sensitive in some cortical areas relative to the other two methods (direct PSC and slope),
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is that an absolute activation level to perform tests is not being used, while a relative value

of activation in relation to WB activation is being exploited. To find theλ parameter, we

define the WB as a user and set the weighting factor equal to one, and later solve forλ

(Eq. 3.11). With the calculatedλ, the weighting factors of the cortical areas can also be

calculated. Areas that have the exact same level of activation (PSC) as the average of the

whole brain will have anwWB = 1. Also, any area with greater activation than the average

of the brain will have awr > 1, and less activation will havewr < 1. Additionally,

the computing ofλ’s are done on a subject-by-subject basis. Therefore the weighting

factors are relative to the individual subjects’ WB activation. This decreases the data inter-

subject variability such as correcting for subjects that have a very low or very high level of

activation throughout the brain.

Another advantage of the proposed method is that it is a measurement throughout the

frequencies without the assumption that the hemodynamic response is linear relative to the

rate of the stimulus. The model is based on the relationship of a whole brain signal, and

how the resources are distributed. The slope method is a summery of activation through-

out the frequencies, however, it assumes a direct linear relationship of the hemodynamic

response. Results from Table 4.4, indicate that the slope method is the least sensitive of

the methods when comparing to the three Rate study conditions.

For the MMAT study, the proposed model demonstrated satisfactorily results, where

some expected difference between conditions, visits and groups are captured using the

weighting factors. However, the other methods did not outperform the resource allocation

model.
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5.4 Future Work

Further research with other FMRI experiments can be performed could extend the appli-

cability of the new method. Additionally, the proposed method can be used with positron

emission tomography (PET) data, which directly measures resources being supplied to ar-

eas brain, such as glucose. The methods can also be expanded to other imaging modalities

such as Magnetoencephalography (MEG) and Electroencephalography (EEG)

Further testing with the proposed model can still be carriedout with other experimental

design paradigms. Both experiments used to asses the resource allocation methods are

block design paradigms, while an event-related design still needs to be evaluated.

The proposed model only uses a level of relative activation in relation to the task as

a parameter of resources. Also, only a summery of the averageactivation throughout

the experiment is used (PSC). However, the resource allocation model could be further

extended to a TR-by-TR framework. Where the equilibrium of brain is analyzed at each

TR. With this extension, resource allocation of resting state data can be studied. Also, the

use of independent component analysis (ICA; [7]) could alsobe used as a measurement

of resource allocation to study the resting state networks.The empirical z-score of the

components would substitute the PSC used in the current framework.

Finally, this model should be tested with other clinical populations, such as patients

with developmental, neurological, or psychiatric disorders.
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