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Abstract

A novel model to study the resource allocation of a functigrivrain is proposed. The
mechanism is based on the theory of competitive equilibiiGi), where users (cortical
areas of the brain) are competing for a finite resource suaxggenated blood. Con-
cepts of CE are mathematically adjusted to be used with ifumat magnetic resonance
imaging (FMRI) data. The current study uses imaging datawsebjects are requested
to selectively attend and respond to either a visual or apdihetronome in the presence
of asynchronous cross-modal distractors. Two studies digtinct patient populations
(patients with schizophrenia patients with mild traumatiain injuries) are used to asses
the applicability of the proposed method. Comparisonsdditionally used methods to
analyze simulated and real FMRI data are also provided. IRdadicate that it is possi-

ble to mathematically formulate an underlying resourcecation mechanism of a human
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brain. Additionally, when comparing to traditional anasymethods, the proposed model
increases the sensitivity of these data when examiningreéifit stimuli conditions and also

increases the classification accuracy between the patieap gersus normal controls.
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Chapter 1

Introduction

A new method to analyze human brain functioning is introduc&his approach math-
ematically models the resource allocation inside the braaking use of a game-theory
concept, the theory of competitive equilibrium (CE). Thegwsed technique is based on
a resource allocation mechanism widely used and developthincial interactions [20].
More recently, the same resource allocation model has hggied to explain resource
allocation in communication networks [25, 40]. With the e$éunctional magnetic reso-
nance imaging (FMRI), we are capable of observing the 8istion of physical resources,
such as glucose and oxygen in the brain. A model that dirasggsses the resource allo-
cation of the brain seems realistic and appropriate. Wighpifoposed method, the inter-
actions of brain cortical areas under different scenasabserved. In this model, cortical
areas are thought of as of “competing” for resources. Adddily, a measurement of rel-
ative activation is defined and used to compare brain funatity across different stimuli
conditions. The model is tested on two FMRI experimentsi@(RATE) experiment and
a mulitimodal attention task (MMAT) experiment. The RATEdy was conducted with
healthy normal controls (NC) as well as with patients whdesiffom schizophrenia (SZ).
The MMAT study is also with normal controls, but also inclsdeatients who have suf-

fered a mild traumatic brain injury (mTBI). This is a multsston study, where subject are
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scanned twice, three to five months apart between each FNRilose

1.1 Motivation

Similarities in the organization of the brain and electoomi communication networks has
been discussed in detail by Laughlin and Sejnowski [27].yT$tate: “... (brain) struc-
ture and function are governed by basic principles of resmatlocation and constraint
minimization, and that some of these principles are shaiéd vuman-made electronic
devices and communication networks.” They also suggestetinergy supply limits sig-
nal traffic in the brain. This is a strong indication that thraib must have an underlying
resource allocation mechanism. Other studies suggesththdirain is organized similar
to a communication network, where the human cortex is coatptr small world net-
works [39, 4]. Others have argumented that the brain cantesoodeled as a complex
network [2]. However, these studies focus mainly on braiacstire, comparing them to
human made networks. On the other hand we wish to study tlogeetty of the brain in
a functional sense, and observe how resources are allatatedyhout the brain during
different experiment conditions. To our knowledge, therbtes not been studied from

this perspective.

Humans can only attend to a limited amount of simultanecususit[34], therefore
some underlying allocation mechanism based on prioriidigely to be implemented in
the brain. For example, if a person is listening to music wlikir eyes closed, the pri-
mary auditory cortex shall receive more resources thanithelcortex. Additionally, a
human’s ability to multitask is severely limited [14], esply when the tasks require a
higher-level of attention. Other indications that the braas an internal resource alloca-
tion mechanism is that the brain is limited in its informatijorocessing capabilities [29],
where it is considered that the brain is limited because aftddmeck in the passage of

information in some cortical areas. Furthermore, indaaithat a functional resource
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allocation is occurring in the brain can be seen in Kelly ef24]. They showed that there
is a direct negative temporal relationship in the BOLD resmbetween task positive and
task negative networks, indicating that brain networksnocarall be active at the same

time, even at rest.

The resource allocation mechanism that is proposed is basedtheoretical com-
petitive equilibrium (CE) approach, a means to mathemiftieguate how resources are
allocated. With CE, allocation of resources is based onata¢ amount available resources
of the system and also a “utility function” for each of theibreegions. Cortical areas are
considered to be competing for resources based on the “hley give to the resource.
Unlike traditional methods that examine the absolute atibw of cortical areas, with this
proposed method, the brain is viewed as a distributed méanaWe are ultimately try-
ing to uncover the mechanism inside the brain that govemsilibcation of resources, a

reverse engineering problem. A detailed description of €iBtroduced in chapter 3.

1.1.1 Brain Equilibrium

To study the brain as an efficient resource allocation mashgnve must understand how
it reaches a resource allocation equilibrium. By equilibrj we can state that the brain
has reached a stable point, where through several changeglign size, reorganization
or plasticity) it reaches a point where no major structurad &nctional changes will
occur. This project mainly focused on the equilibrium of #téentional system. One
perspective that can be hypothesized is stabilizatiorutiitanormal growth of the brain

from childhood to an adult age (i.@uning).

The structure of the brain is relatively the same in all ndradalt humans, with some
small variations on the gyri folding and brain size. Struetis predetermined by our
genetic sequence. What makes us have unique persondities fact that the internal

“wiring” is different for each individual. This is due to ttsynaptic formation that occurs
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between neurons. The number of synapse in the human cortexttie order of10'
[26]. It is believed that it is impossible that our genetiogmam could assign all these

connections, where only a general outline of the circugrgncoded.

There is a large increase in synaptic density between emlaryidfe up to the age
of two in humans. Typically around the age of two is when husnhave the highest
concentration of synapses followed by a plateau in denSiiyasequently there is a large
decrease in synapses, characterized as pruning. Thisdeggaization of the circuitry
occurs up to the end of puberty. However, the rate of creatimdjpruning of synapses
is not homogenous, where in the sensorimotor regions theepsooccurs earlier and in
higher cognitive areas the process is delayed. Reducti@ynapses is dramatic; the
number of synapses at the end of puberty may fall to 50% cosdptar at the age of
two. There is a loss of up to 100,000 synapses per second lasagnce [26]. During
adulthood, existing circuits are still being modified (i.ereating new memory) but at a
much slower pace. A detailed analysis of synaptic prunimgbeaseen in [26]. A cartoon

scheme of synaptic density in the human cortex is shown iarEig. 1.

There are two general mechanisms of synaptic prurérgerience expectaandex-
perience dependeff?6]. Experience expectant depends on the presence oirceeiasory
experiences for the organization of the synapses. Usuléige patterns are the same for
members of the same species. For example, in the visualxcegyteaptic formation is
dependent on exposure to features such as line orientatitor,and movement. Experi-
ence dependent pruning occurs based on unique personaiesqas, such as speaking a
distinguished language. Circuitry of the frontal lobe ididaeed to be formed by experi-
ence dependent pruning. Therefore it is believe that theasenotor cortex in an adult
human should have a similar structure since most are exgosssime common stimuli
(i.e., seeing, hearing and touching). Higher cognitive ma@sms may be more subject

dependent.

A study by Casey [9] showed that the prefrontal corticahdistin children was up to
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Figure 1.1: Changes in density of synaptic connectionsermptiefrontal correct and in the
primary visual cortex of a healthy human.

four times larger compared to adults. Two theories were ewrd by these results; with
age, cortical areas may become more specific with experievitdée another interpreta-
tion is that the task was more difficult to children, therefoequired more activation. The
first theory would speculate that a child’s brain is disorged and function assignments
of cortical areas are not well defined. Another report by €48gshowed that “imma-
ture cognition is characterized by an enhanced sensitwiigterference from competing
sources (e.g., response competition).” In addition, depee-driven maturation process
“reflects fine-tuning of the neural systems with experien@evelopment [8].” Finally,
pruning and elimination of connections with strengtherohgelevant ones contribute to

cognitive maturation.

Based on these findings it is possible to interpret that thalstarts as a system with-
out any organization (large density of synapses) and wighekperience a equilibrium

is reached. Since the equilibrium or organization is alssetaon life experience, every
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person is at a different equilibrium point, especially ajtt@r cognitive areas of the brain.
However, we can hypothesize that the sensorimotor systenmarmal adult should have

a similar configuration, since the pruning in these areaspsmence expectant.

1.1.2 Development of the Patient Brain

A deviation from a normal development to equilibrium (i.eesource allocation) might
be expected from patients that suffer from schizophrenia.“dptimal” distribution of
resources for the patient group might differ from the “omlhof adults who do not suffer
from any mental disease. In addition, a patient who sufférawamatic brain injury might
be subject to an unbalance in the normal “equilibrium” stBring maturity the pruning
process is considered to be normal. However, subsequeunffésisg a head injury, this
equilibrium might be shifted. On the other hand, patientt guffer a minor injury are
capable of recovering to an optimal distribution of resesrof the attentional system.
Therefore, the balance of how resources are allocationeipé#tient groups might defer

from NC. A hypothetical flowchart is seen in Figure 1.2.

An array of symptoms characterize a person suffering fromzsphrenia; such as
hearing internal voices or experiencing other sensationsonnected to an obvious source
(hallucinations), disorganized speech, and assigninguadwsignificance or meaning to
normal events or holding fixed false personal beliefs (dehs [26]. It is believed that
schizophrenia is a developmental disease, where an “asalfsome movies showed that
people who later developed schizophrenia have shown stotieeliable, disturbance in
a variety of behavioral types (motor, cognition, socialymgears before there are clini-
cal symptoms of schizophrenia [28]". As an example, the tanglimechanism might be
altered compared to NC. This motivates the use of a resodil@msation mechanism to

attempt to understand the interaction between neuronas afeSZ.

For patients who suffer a minor traumatic brain injury (m),Bie hypothesis that
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Figure 1.2: Theoretical flowchart of development to a eqitlim of the attentional system
in the human brain and how other equilibriums are reachedtieipt groups.

the equilibrium of the brain is perturbed because of thedmrti and through plasticity,
recovers over time to the optimal resource allocation meisha Therefore we would
expect to see significant differences in the resource dltothetween mTBI patients and
NC immediately following injury and no differences 6 montbsl year later. Post injury
symptoms injuries include but are not limited to problemshwexecutive functioning,
working memory and attention [5, 32]. On Kaas'’s paper ontjaig of motor and sensory
maps [23], results show that in mammals the sensory mapsearganized following
lesions. Kaas also states that sensory maps in the somstogevisual, and auditory
systems are capable of change in location. This reorgamizatin occur within hours
up to many months. Even though plasticity is much more praned in children, it still
occurs in adults post-head injury. Plasticity can also hesidered as a restructuring of
the synaptic connections in the brain. Therefore, the ugaténts with traumatic brain

injuries is advantageous to test the proposed resourceatibda mechanism, since there
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is a change in equilibrium following injury. However, typicsymptoms of patients with
mTBI usually disappear 3-5 months post injury. Consequegthié proposed method could

be used again to test if a “normal” equilibrium is achieved.

It is important to note that it is beyond the scope of this @litdion to define the
reasons why people suffer from schizophrenia and acquing@syms post mTBI, however,
this project is attempting to create new method that miglgt hederstand the disease and

recovery respectively.

1.2 Proposed Model

To evaluate and test the proposed model we used two FMRI iexpets. The first exper-
iment (RATE) was performed on NC and SZ, where two conflichguli are presented
in a block design, an auditory tone and a flashing checked88j. Stimuli are presented
in three different frequencies (0.5, 1.0, 2.0 Hz). Allooatobf resources is observed based
on whether the subject is told to attend to one modality ¢auoglior visual stimuli) when

a conflicting stimulus is present. We predict that as theemiscrease in the rate of the
stimulus, there is an increase of the specificity of how resssiare allocated. The sec-
ond experiment (MMAT) consists of a similar experiment witto conflicting stimuli.
However, now the patient group has suffered a mTBI. Addélynparticipants were now
asked to correctly identify a target number (one, two ordhgresented in one sensory
modality (auditory or visual) while ignoring the stimuliggented in the opposing sensory

modality by pressing a button. Further details of the experits are giving in chapter 2.

A comparison to traditional FMRI analytical methods is gisovided to emphasis the
advantage of using this new model to analyze FMRI data. Flisie to test the sensitivity
and specificity of the proposed model. The most widely usethaus for studying brain

behavior only analyze direct condition-by-condition baba Scalar values of the hemo-
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dynamic response are usually obtained through multipkession [17] or a deconvolution
analysis [18]. Typically, statistical tests are perforntieein directly on the multiple re-
gression beta coefficientg) or percent signal change (PSC) of each voxel depending on
the condition. Additionally, since the task involves dréat rates of the stimuli, we also
are capable of looking at the slope of the activation, whieeehemodynamic response is

assumed to be monotonic in relation to the stimulus [38].

1.3 Aims

In summary, the current study has three aims:

e Aim 1: Resource Allocation of the Brain
The first aim is to develop a resource allocation model ofrdianction as measured
by FMRI. This model incorporates the “importance” of redegresources of each
neuronal area based on whether the subject is instructettetadato one of the

sensory modalities.

e Aim 2: Resource Allocation in Patient Groups
The second aim of this project is to observe if there is a diewiaof resource al-
location in two patient populations. Results from otheditianal methods such as
statistical tests on the hemodynamic respose will be eteduand compared to the

resource allocation model.

e Aim 3: Classification
A third and final aim will be to perform classification with te@es extracted from
the resource allocation mechanism. With the use of a madbaraing technique
(e.g., support vector machine), classification betweenggavill be evaluated to
test the performance of the resource allocation mechanssenfaature extraction
tool.
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1.4 Outline

Chapter 2 presents the FMRI experiments that are used toasggahe resource allocation
model. The experiments and subject population are exmlamdetail. Also, the FMRI
data processing pipeline is presented. Chapter 3 intradilneeproposed resource allo-
cation method. With the use of the FMRI experiments, mathiealanodels of resource
allocation are presented. Chapter 4 presents resultsraj tle resource allocation model
on the two experiments. Results of statistical tests aarosditions and also across pa-
tient populations are shown. Classification results udiegrésource allocation model as
a feature extraction tool are also presented. Additionadlgults from other traditional
methods used in FMRI studies are also shown. In chapter Scasdion of the results is
presented and future direction in the study of resourceation of the human brain are

discussed.

10



Chapter 2

FMRI Data and Preprocessing

2.1 Rate Study

The goal of the RATE study was to understand the selectientidin brain mechanism
In patients with schizophrenia (SZ) a also heathy normatrots(NC)is also evaluated.
A paper discussing the results of a neurological assessvhéns experiment on NC has

been previously published [30]. A detailed discriptiontod study is shown as follows.

2.1.1 Subjects

This study evolved studying patients with SZ and NC whileemgding a FMRI session.
All SZ subjects were diagnosed by an experienced cliniciateam member with the
Structured Clinical Interview for DSM-IV Axis-I Disorder<linician Version (SCID-
CV). Sixteen SZ (15 male, 1 female) and 16 NC (15 male, 1 fehpeicipated in the
experiment. One female NC subject was identified as an o@gieessive motion; above
3 standard deviations [31]) and was excluded from furthafyesis along with the matched

SZ. SZ with a history of other neurological disease, a hystdépsychiatric hospitalizations

11
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within the previous six months or a history of substance ebuhin the past year were
excluded from the study. SZ were also required to be stabnatypical, anti-psychotic
medication (Aripiprazole 4; Ziprasidone: 1; Risperidorg: Quetiapine Fumarate: 4;
Olanzapine: 2) for at least three months to be included irctineent study. All HC were
screened and excluded from the study based on a history afrmmegdical conditions,
neurological disease, major psychiatric disturbancestaumce abuse or psychoactive pre-
scriptive medications usage. There were no significaneuwdifices (p> 0.10) between
SZ and the remaining HC for all major demographic categanelsiding age (SP: 40.2
+ 8.2, HC: 40.1 +/- 8.8), education (SP: 12.6 +/- 2.4, HC: 13:01+4), or handedness
(SP: 77.7 +/- 56.1, NC: 67.& 68.9) as assessed by the Edinburgh Handedness Inventory
[35]. Informed consent was obtained from subjects accgrtinnstitutional guidelines at
the University of New Mexico and the New Mexico DepartmenYeterans Affairs. This

study is concluded and no more data will be collected.

2.1.2 Tasks

All stimuli were presented in a blocked design format. Ptmeach block, there was a
baseline period in which a white fixation cross in the centén@projection was presented
on a black background. Subjects were requested to maintaiticin on the cross during

the experiment. To prevent the development of temporalaagiens and to allow for the

best sampling of the hemodynamic response in the regressidel [6], the duration of the

baseline period was randomly varied between 10 and 14 s n®the task, participants
were instructed to bimanually tap their fingers into an ingeiice in synchrony with the

onset of a reversing checkerboard (duration = 100 ms) aaddare tone (1000 Hz with a

10-ms linear rise and fall; duration = 100 ms) that were presskat intervals of 2000 (0.5

Hz), 1000 (1 Hz), or 500 ms (2 Hz).

In the attend-bothcondition, auditory and visual stimuli were simultanegugte-

12
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sented at the same frequency (0.5, 1.0, or 2.0 Hz), and sahbjexe instructed to at-
tend to and tap in synchrony with the auditory and visual slirs. In theattend-auditory
andattend-visuakonditions, subjects were instructed to selectively attien and tap in
synchrony with, either an auditory or a visual stimuluspexgively, while ignoring the
stimulus in the other modality. In both the attend-auditang attend-visual conditions,
the stimulus in the ignored modality always occurred at gecbht frequency. The ignored
stimulus always occurred either in or out of phase with thenated stimulus across the
8 second trial duration. Specifically, there were two tiyglds for each attended stimulus
rate based on the frequency of the unattended modality ggtgnded auditory stimuli at
0.5 Hz were always paired with visual distracters occurengither 1.0 or 2.0 Hz). Trial
order was pseudorandomized across all six functional maaging runs. A description

of a stimulus block is shown in Figure 2.1.

Figure 2.1: A diagrammatic representation of the trialuite for a representative of the
attend both stimulus block for the RATE study.

13
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2.1.3 MR Imaging

At the beginning of the scanning session, high resolutiorftiide echo [TE] = 4.76 ms,
repetition time [TR] = 12 ms20° flip angle, number of excitations [NEX] = 1, slice
thickness = 1.5 mm, field of view [FOV] = 256 mm, resolutior256 x 256) anatomic
images were collected on a 1.5-Tesla Siemens Sonata sc&one&ach of the 6 imaging
series, 201 echo-planar images were collected using aessigit, gradient-echo-planar
pulse sequence (TR =2000 ms, TE = 36 ms, flip angle°=FOV = 256 mm, matrix size =
64 3 64). The firstimage of each run was eliminated to accaut® equilibrium effects,
leaving a total of 1200 images for the final analysis. Twegitht contiguous sagittal 5

mm thick slices were selected to provide whole-brain cayeaoxel size4 x 4 x 5 mm).

2.2 Multimodal attention task (MMAT) study

The objective of this study was to analyze the effect on tlaénbof people who suffer a
mild traumatic brain injury (mTBI) and analyze their recoxeThis is an ongoing study
and subject data are still being collected. Additionaltys is a multisession study, where
subjects are asked to return for a second FMRI session affem8nths from the first

session so that the recovery from the brain injury can beuatedl.

2.2.1 Subjects

Semi-acute mTBI (within 3 weeks) patients were recruitednflour regional trauma one
center at the University of New Mexico Hospital. All mTBI gabts were scanned within
21 days of their accident and experienced a mental statugyeHallowing the trauma.

Specific inclusion criteria for the study were based on theeAcan Congress of Rehabil-

itation Medicine and included a Glasgow Coma Score of 13tlthainitial assessment
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in the emergency room, loss of consciousness (LOC) if ptesan limited to 30 min-
utes, and post-traumatic amnesia was limited to a time gnadif 24 hours. Subjects and
matched controls were excluded from the study if there wagsitipe history of a neu-
rologic or psychiatric disease, substance/alcohol albeiaming disorder, attention deficit
hyperactivity disorder, or a history of a head injury with@C of greater than 5 minutes.
Informed consent was obtained from all participants follaywguidelines set by the Uni-
versity of New Mexico. Up to the date of the conclusion of daalysis (August4*”,
2009) at least 24 patients and 27 healthy controls have bemamed. Additionally, 10
patients and 27 healthy controls have participated in arskEMRI session. Therefore,
24 mTBI subjects and their matched NC (age, years of edutajiender) are evaluated
for the first visit, and only 10 mTBI subjects and their mattiNC are examined for the

second visit.

2.2.2 Tasks

Participants underwent a FMRI task in which they were siemébusly presented with au-
ditory and visual stimuli (numbers) occurring at two ditfat frequencies (.33 or .66 Hz)
over a 9 second block (Figure 2.2). Participants were askedrrectly identify a target
number (one, two or three) presented in one sensory modalitjitory or visual) while
ignoring the stimuli presented in the opposing sensory titgday pressing a button as
quickly and accurately as possible. The multimodal stiugie either identical (congru-
ent condition) or conflicting (incongruent condition). ®rthe incongruent condition is
analyzed in this dissertation. Prior to the presentatiotheftarget numbers, a cue word
was presented to indicate the modality for focused attentibhe cue for the auditory
modality was “HEAR” and the cue for the visual modality wasJOK.” There were also
passive attention trials in which the participant did natahéo attend either modality, and
the cue for those trials was “NONE.” For example, if the cus WdAEAR,” participants

responded to the target numbers in the auditory modalityewtnoring visual stimuli.
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duration
(ms)

1500 or 3000

Attend
Auditory

8000-12000

Figure 2.2: A diagrammatic representation of the trialdtite for a representative incon-
gruent stimulus block for the MMAT study.

All visual stimuli were presented in word rather than Arafoion, since words produce
more interference in numeric Stroop tasks [16]. To pernatfthl allocation of attentional
resources, the stimulus onset asynchrony (SOA) betweeprédsentation of the cue and
the stream of target numbers was 1000 ms. To establish armasesdting state in the re-
gression model the time between trials was randomized leet®e10 and 12 seconds [6].
Presentation software was used to control stimulus prasent synchronization of stim-
ulus events with the scanner, and the collection of accupétye responses and reaction

time (RT) data for offline analysis.

2.2.3 MR Imaging

High resolution T1 (TE (echo time) = 1.64 ms, TR (repetitiong) = 2.53 s7° flip angle,
number of excitations (NEX) = 1, slice thickness = 1 mm, FO¥Ifiof view) = 256

mm, resolution = 256 x 256) anatomic images were collected 8rTesla Siemens Trio
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scanner at the beginning of each experiment. For the six Fd#Rés, 162 echo-planar
images were collected using a single-shot, gradient-echomanar pulse sequence (TR
=2000 ms; TE = 29 ms; flip angle°; FOV = 240 mm; matrix size = 64 x 64). The first
image of each run was eliminated to account for T1 equilinreffects, leaving a total of
1127 images for the final analyses. Thirty-three contigusagittal 3.5 mm thick slices
with a gap factor of 1.05 mm were selected to provide whobarbcoverage (voxel size:
3.75x 3.75 x 4.55 mm).

2.3 Functional Image Processing

Most of the FMRI data were analyzed in a hierarchical fashising AFNI [11], a widely
used freeware software for FMRI analysis. Additional pssieg (registration) was per-
formed using FSL [21]. Preprocessing of both datasets aetichl unless stated. In

Figure 2.3 an outline of the preprocessing is shown.

Preprocessing

Register to T1

Raw FMRI ; Time-slice ; 2dand 3d ) . Gaussian Blur .
data (dicom) corrected registration (8 mm) | image and warp to

Talairach space

Level 1 analysis
Deconvolution H Calculate PSC }—P Caleulate average PSCin
each neuronal area

Figure 2.3: FMRI preprocessing pipeline.

During the collection of FMRI data, each slice is acquired atifferent time point
within the scanner. Therefore, the six individual task tiseeies were first temporally
aligned using a sinc interpolation to ensure that all daththa same temporal origin.
Second, the four-dimensional images were subsequentiabpaegistered to the second

image from the first task run (i.e., firstimage that was notaminated by T1 equilibrium
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effects) in both two- and three-dimensional space to mingneffects of head motion.
Retrospective motion correction techniques can be coonakped as occurring in two
distinct steps, motion detection and the subsequent d¢mmneaf this motion [11, 3, 12].
Assumptions are based on the of stability in contrast vahetaeen successive images.
Relatively small movements compared to image resolutiarbedfixed using this method.
Motion is modeled according to six rigid-body parametersthie detection phase, a cost

function,

C=> (@)= RW) (2.1)

which is posited to be an index of spatial displacement, isutated between the image
of interest () and the reference imag&) across all voxels. An iterative optimization

algorithm (typically a least-squares fit) is then implengeitb minimize the cost function,
thereby reducing the spatial displacement between themagés. During the correction
phase, the image of interest is interpolated to a new sgattbkpecified by the optimiza-

tion solution using a sinc function, correcting for the drfnces in spatial displacement.

Third, random spikes in the voxel time series due to machinaleer artifacts were
eliminated. This was accomplished by first fitting the tineeiess of each voxel to a
smoothed curve. Next, the median absolute deviation (MAQhe differences between

the data time series and the smoothed curve is calculateeak€b time point of the voxel

s(t) = (x(t) —c(t)/o (2.2)

is calculated, where(t) is the original BOLD intensity at time, ¢(¢) is the smoothed

fitted curve at time ando is the standard deviation of the residuals that is compuged b

18



Chapter 2. FMRI Data and Preprocessing

o=+/7/2- MAD. (2.3)

Any s(t) that is greater tha.5 is replaced by

s'(t) = 2.5 + L5 tanh((s(t) — 2.5)/1.5). (2.4)

Fourth, the data was spatially blurred using a 8 mm Gaussiémidth half-maximum

filter to improve the signal-to-noise ratio [36] and to inese compliance with random
field models [17]. All the images were then spatially registeto the anatomical T1 image
using a 12-parameter affine transformation and convertad tomm?® standard stereotaxic

coordinate space [41].

A deconvolution analysis [18] was used to generate one isgprésponse function
(IRF) for each of the 15 selective attention condition on @elavise basis. For the RATE
study, each IRF was derived from the first twelve images (22rs#s) following the onset
of the cue (total trial length varied from 20 to 24 secondshe Ppeak images (eight to
twelve seconds post-stimulus onset) of the resultant IREfe When compared against the
baseline period (i.e., maintaining visual fixation) to ¢esthe percent signal change (PSC).
In the MMAT study, the IRF was derived from the first 8 imaged #re peak was selected
from the fourth to the eight second post-stimulus. The PSGegawere used to evaluate

the resource allocation of the brain as is shown in the nesqbtein.

For the RATE dataset, data were then averaged to simulatththaubject was attend-
ing to a stimulus and ignoring the other at the same frequekidyh signal averaging,
a direct comparison of activation when the subjects areuottd to attend to the audi-
tory or visual while ignoring a cross-modal stimuli at thesafrequency is permited. The

hemodynamic response is assumed to be monotonically singeaith the increase of the
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stimuli at the frequency range that is being used (0.5 to 2)(B8]. As an example, in the
attend auditory condition, the subject is instructed teraitto a auditory tone at 0.5 Hz,
while the visual stimulus is either at 1.0 or 2.0 Hz. Anothendition is that the subject is
instructed to attend to an auditory stimulus at 1.0 Hz andnga visual stimulus at 0.5 or
2.0 Hz. Therefore if we calculate the average PSC'’s of tlemdtauditory at 0.5 Hz/ignore
visual 1.0 Hz and attend auditory at 1.0 Hz/ignore visualfizBve will simulate that the
subject is attending to a auditory stimulus at 0.75 Hz andrigug the visual stimulus at
the same frequency. With these signal averages, the newfrateended and ignored fre-
guencies are at 0.75, 1.25 and 1.5 Hz. The same calculatieqpeeormed for the attend
both condition to maintain consistency in the stimuli freqay. Additionally, the slope of
activation is also calculated across these three new fregese For the MMAT study, no
signal averaging is necessary since the frequency of teieddt and ignore signals are the

same.
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Resource Allocation of the Brain

Resource allocation of an infinitely divisible resource mrMRI framework is presented
in this section. The model is presented to fit the Rate stuamémwork, however the
concepts and equations are easily adjustable to the MMAlysttiompetitive equilibrium
(CE) [25] finds a distribution of a resource that maximizes #ggregate utility among
the users:, werer = 1,2, ..., R. We define the “users” as the cortical areas of the brain
that are competing for a resourck.is the total number of cortical areas that the brain is
segmented into. The brain was segmented into fifty regiometme the users based on
the Talairach atlas [41] (see Figure 3.1). Segmentationolbgsned from AFNIs TTatlas
(http://afni.nimh.nih.gov/afni/doc/misc/aftiatlas/). The brain is divided into 50 areas
and based on previously defined cortical areas, were eaticatarea is individually
color-coded. Segmentation does not defer between hemeghberefore areas of both
sides are considered as one user. The list of neuronal egi@nshown in Table 4.3. It
is important to note that the brain is only segmented in grayten areas and not white
matter. Gray matter is where the true processing of infaonaiccurs in the brain while
the white matter is only responsible for transmission obinfation between gray matter
cells [26]. Other possible segmentation of brain into 68aeg is proposed by Desikan
[13], were it was further segmented into 998 regions by Hagnja9]. Another possibility
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Chapter 3. Resource Allocation of the Brain

is to segment areas based on the functional data. This carefegrped using group ICA
[7], were each resulting independent component can be ssadnask to define the users
of the resource allocation model.

® &

& &
™ §

&> D

=

Figure 3.1: Segmentation of brain regions to create users.

The distributed resource is measured as the level of the ¢thgmamic response (PSC),
here defined ad, ;. A utility function U,(d, ;) can be seen as the “value” or “impor-
tance” that the cortical areafurnishes while receiving a portion of the resourég;, at
each stimulus frequency. An area will have a different utility function based on thre
conditions; however, the function will be the same throughtbe frequencies. As an
example, the “importance” function of receiving resourceshe visual cortex does not
change based on the rate of the stimulus, but it does charsgel o whether or not the
subject is instructed to attend to the visual stimulus or mbe whole supply of resources

that will be divided among the neuronal areas is represemytes}.

To simplify the presentation of the model and also withosslof generality, we will
address only one stimuli condition, where the subject igieted to attend the auditory

stimulus and ignore the visual stimulus. A mechanism isteret define how the resource
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are subdivided among the cortical areas. To distributeg¢leurces among the regions,
the following optimization problem can be addressed, wiaesecial welfare function is

maximized at each distinct frequency

Mazximizey Z U, (d, ) (3.1)

The social welfare function is viewed here as the sum of alutilities of the regions
based on the proportion of resources they receive. Howdware are some constraints

that must be complied with

> dny < Sy (3.2)

dry = 0 (3.3)

where the sum of the resources given to the cortical areasotée greater than the to-
tal available supply (Eg. 3.2). In addition, cortical arems not capable of supplying
resources to the system (Eq. 3.3). As modeled here, thensybtain) always attempts
to optimize the distribution of resources to the neuronehaibased on the areas’ utilities
and the total available supply to all of the braifi; is variable, since there is a change
in the total supply (oxygenated blood and glucose) to thelevhaain dependent on the
frequency of the stimuli and on one of the three conditione ®ptimal allocation of re-
sources can be found using Lagrangian multipliers. Digtidm of the allocation of the
resource is defined by the vectbr= (dy, ..., dg), and the optimal distribution is defined
byd* = (dj, ..., d},). As stated before, itis assumed that the brain always tieptimally

distribute resources (find) depending on the environment the person is encountering.

The utility functionU,.(d, ;) for each area, over the domair, ; > 0, is assumed to

be continuously differentiable, non-decreasing and igiatlst concave function. Since
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the objective function is continuous and the feasible neggacompact, a unique optimal

solutiond’} exists, where:
S UAdry) =Y Upldyy) Vdy (3.4)

is satisfied for any other resource allocation distributeomdd™ is unique.

3.1 Defining the Utility Function

A general class of utility functions that satisfies the poegidefined requirements to obtain

a unique solution (Eg. 3.4), is defined as [40]:

Uy (dy) = wr ' — (3.5)

The variablew, is viewed as the weighting factor of the utility function. i$hs the key
point of the utility function which defines the “importanddiat each neuronal region gives
to the resource being distributed. Therefore each aredhaii a differentv,. Parameter
« changes the shape of the utility function. is addressed in more detail later in this

chapter.

3.1.1 Calculating the Weights

As noted before, the utility function of each area does nahgle based on the rate of the
stimulus, but rather according to different conditionsorRrEgs. 3.1, 3.2, and 3.3, and

incorporating the general class of utility functions (Ecp)3ve obtain for each frequency:
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dl—a
Mazximizey Z w7 Zfa (3.6)
> dy=5; (3.7)

Another change from the original equations is that now issuaned that all the resources
are exhausted, as seen in Eq. 3.7. To find the optimal dissibl_agrangian multipliers

are calculated for each frequency [15]:

1—
d/”‘7f

L(dy, Ap) = wal —— = (Z dry = 5f> (3.9)
R R

To find the maximum of Eq. 3.6 constrained to 3.7 and 3.8, theatese of Eq. 3.9 in

relation tod, is calculated and set equal to zero:

OL(dg, Af)

R _ 1
od, ; wrd, 5 —Ap =0 (3.10)

Therefore:

dr,f = \a/ wr/)\f (311)

In economic terms, the, is viewed as the price per unit of the resource, where in
functional imaging,\; is an proportional inverse of availability of resources. ditn-

ally, from Eq. 3.11, as\; increases, the resources received by eachdredecreases.
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However, there is no way to directly calculatg using functional imaging, as it is some-
thing internal to the system (brain). A solution to this gesb is to first create a new user,
which is defined as the whole brain (WB). First, we i s = 1, and with the WB PSC
we solve for; (A; = S; ) in Eq. 3.11. Other means to define the valugofill be ad-
dressed in future projects. The use of a different constaoeviuyy, ) does not effect any
changes in the final results, since it is only a relative vakaditionally, we are favored
by using this method. By fixing a value of the WB weighting tacthen calculating,

a reference weighting factor is created. Therefore, carticeas that have a higher PSC
compared to the average of the brain will receive,a> 1. Also, since a differend, is
calculated for each subject, the cortical weighting factifreach subject are relative to the

subjects’ WB activation.

With \,’s defined, the weighting factor can be calculated for eagiore Since the
weighting factorw, is assumed to be a constant across all frequencies, the tieicgl-

culated from an average from all frequencies:

1

Wy = g (A0.75szg70_75Hz + >\1.25sz?‘71_25& + >\1.5sz?‘71_5&) (3.12)

Therefore, thew, for each cortical area can be calculated. Statistical teititsthe weight-
ing factors can be performed to compare resource allocassnciated with each of the
three conditions. In addition, these results can be condgareaditional methods, such as
directly comparing the PSC and the slope across differgrergxental conditions. Also,

the weighting factors are the features to be used in theifitag®n of groups.

However, am value must still be defined for the utility function (Eqg. 3.5ince we
are performing a reverse engineering problem,dhgarameter must be found that best
mimics how the distribution of resources are actually ogogrin the brain. By varying
thea parameter, different shaped of the utility function arertedi Testing different utility

functions, an optimal solution to Eq. 3.6, 3.7, and 3.8 imfibwyieldingd*. The « that
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minimizes the sum of the square error difference betweenrtieePSC distribution and
the simulatedi, ; in all 50 areas is selected. In order to generalize the swiuthea is

found for the averagé, ; across the subjects and also across the conditions.

3.2 Example of Resource Allocation Mechanism

In this example we observe the resource distribution betvieer users g = 4) when
different levels of supplyS, are provided. Firstv = 1 is defined for all-. However,
equation (3.5) is not well defined far, = 1. By considering the derivative of the utility

function in the limit asy, — 1

lim U.(d,) = limw,d *

a—1 a—1

_ W (3.13)

Calculating the integral of (3.13) leads to the utility ftioa

U, (d,) = w, In(d,) (3.14)

The weights of the users are settp= [0.5, 1.0, 2.0, 3.0]. Based on the utility functions,
we want to maximize the social welfare by changing the resesiallocated to each user,

d,., with a supply constraint:

Maximize Y ,w,In(d,), 1,..,,R=4 (3.15)
st Npd <8 (3.16)
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Without loss of generality we can sgi . d, = S. The maximum of equation (3.15) with

the constraint in equation (3.16) can be found through tleeofitagrangian multipliers

4 4
L(dy, dy, d3,ds, \) =Y w, In(d,) — A (Z d, — S) (3.17)
r=1

r=1

To find the maximum of, we take the derivative with respect & and set the result

equation to zero

oL  w,

8dr:d_r_/\_ (3.18)
therefore

d. = % Vi (3.19)

Next, taking the the derivative df in respect to\ and setting equal to zero

L
—~=>d,—85=0 (3.20)
o =
which yields:
4
Zd" =9 (3.21)
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With the use of the four equations, one for each user, in {248 equation (3.21) we can

solve for the variable&d,, d, ds, dy, \) based on the,’s andS.

Different values ofS (15, 50, 100, 250) were tested to evaluate the behavior of the
resource allocation mechanism. Table 3.1 and Figure 3.2 g change in distribution
from different supply values. Table 3.1 shows the amounesburces that each of the
four users received based on the supply available. As carotesl irom these results,
as the supply increases there is an increase for all usen® iarhount of resources that
they receive. However, the users with higher utility weggldceive an increase in greater
proportion then the users with smaller weights. Additibnas supply increases, there is
a decrease in the value &f In some applications) is viewed as the price per unit of the
supply [33]. In this perspective, as supply increases, tloe per unit is a function of the
inverse of the supply.

| User [ w [ S=15] §=50 | §=100] S =250 |
User 1] 0.5] 1.1538] 3.8462 | 7.6923 | 19.2308

User 2

1.0

2.3077

7.6923

15.3846

38.4615

User 3

2.0

4.6154

15.3846

30.7692

76.9231

User 4

3.0

6.9231

23.0769

46.1538

115.3846

[ X | - ]0.4333] 0.1300] 0.0650 | 0.0260 |

Table 3.1: Example of resource allocation at different $yfgvels.

Figure 3.2 shows in each panel the resource allocation faffeéreht supply values.
The x-axis is the amount of resource that each user receivis te y-axis is the utility
function of each user. The blue lines show the utility funtof each user as a function of
d,. The red dots show the amount of resources that each usem®selving for equations
(3.19) and (3.21) as a function of the supply.
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A)S=15

U,(dy)

20 40 60 80 100 120

C)S =100 D) S =250

Wi=340 : : : : W=30

Figure 3.2: Example of resource allocation at differentpdyfevels.

3.3 Creating Simulated Data

Simulations were performed to test the specificity and seitgiof the proposed resource
allocation model. Data was created to simulate brain aabiwan four different areas of
the brain, including the auditory, visual, motor cortex dné posterior cingulate (PGL

Simulated data in the three conditions of the Rate studer{dtboth, attend auditory or
attend visual) were created with the use of real brain antiraActivation in the areas are
based on the average measured whole brain activation (HSf2cb of the 15 subjects.
With the whole brain activation of each subject at each dwndia specific percentage

increase was attributed to the areas to simulate activatieach of the four areas. As an

1The PCC is known as one of the central hubs of the default meteonk. These areas of the
brain are known to deactivate when goal-oriented actigtlyging performed [37].
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example, if the PSC of the whole brain is equal to 1, then irraa that has a 10% increase
of activation, the PSC of that area will be 1.1 for that speaifondition. Decrease of
activation was also calculated using the same procedubte 32 specifies the percentage
of increase or decrease of activation for each of the fouasaa¢ each condition. Paired
t-tests were then performed to asses the ability to distaingronditions using the resource
allocation weighting factors, the direct PSC at each fregyeand also the slope. As an
example, we would expect that the methods would be able timgigsh activation levels
in the auditory cortex when the subjects are either attgniithe auditory stimulus versus
the visual stimulus. However, we would expect to not find aayistical difference in that

same area when the subject is either attending to both $tmjuist the auditory stimulus.

| Task | Auditory Cortex| Visual Cortex| Motor Cortex| PCC |
Attend Both 3% 3% 2% -5%
Attend Auditory 3% 0% 2% -3%
Attend Visual 0% 3% 2% -3%

Table 3.2: Simulation activation values.

3.4 Testing the Model

Several statistical tests were performed to asses thefisggcand sensitivity of the re-
source allocation weighting factors as a method to asse®mauactivation. Statistical
tests include one way ANOVASs and also paired t-tests [22$tsTevere also conducted to
asses how well the proposed model is a feature extractorforpeclassification between
groups (NC vs. SZ and NC vs. mTBI). Classification was caroigilising support vector
machines (SVM; [10])
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Results

To asses the reliability of the resource allocation modetnéion can be focused on some
key areas of the brain where activation is expected to ocasedb on the stimuli of the
two experiments. Both task require auditory and visuahditbe, as well as motor motion.
Areas of interest in the brain include the auditory cortaeda of the middle and superior
temporal gyrus, and transverse temporal gryus, includirgdBannareas (BA) 41 and
42], the visual cortex [lingual gyrus, occipital lobe (BA,118 and 19) and also some of
the parietal lobe], primary motor [precentral gyrus (BA djid also the two central hubs
of the default mode network [anterior and posterior cingtrtex]. Areas of the DMN
are included in this list because they are known to reducetivadion when a cognitive

demanding tasks are being performed.

In this chapter only results are shown, while a discussiothefimplications of the

presented results are addressed in chapter 5.

32



Chapter 4. Results

4.1 Rate Study

This section presents the results of using the weightingpfacand also the other tradi-
tional methods to analyze FMRI in the Rate study. First, ltesaf statistical tests on the
simulated data (section 3.3) are shown. First, ANOVAS atests are performed between
stimuli conditions using the all the methods. Next, thparameter from the utility func-
tion (Eqg. 3.5) is selected to minimize the estimation erifdhe resource allocation model
in relation to the subject data. Afterwords, the test ardgpered on the parameters to
assess if they are normally distributed. If they are, thelamatric statistical tests can be
performed on these data. Subsequently, the weightingriaate calculated and statistical
tests are performed between conditions for the NC. The saualsa performed for the tra-
ditional methods. Then, independent t-tests are perfotmetgleen groups (NC vs. mTBI)
for each condition. Finally, classification between groupsg support vector machines

is done to assess the power if feature extraction of the res@llocation model.

4.1.1 Simulations

For a few subjects in some conditions, the average WB PSC egetine. This is unex-
pected, since there is a drop of WB hemodynamic response thieetask is being per-
formed compared to baseline. However, based on Eq. 3.8e#oeirce allocation model
cannot be calculated with negative PSC. Therefore a canstar8) was added to all WB
PSC values. Table 4.1 shows the average PSC of the WB ac®sslbfects for each
condition and frequency. This is illustrated to show thaalality in WB PSC based on
the conditions and also intensity (frequency) of the taskdditionally, for the general
utility function (Eq. 3.5)x is defined asy = 0.5. Results were not affected by varying the

constant andv values.

For each of the four simulated areas (auditory cortex, Visoidex, motor cortex, and
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Stimuli Frequency

Stimuli Condition

Attend Both| Attend Auditory | Attend Visual

0.75Hz 0.1139 0.0944 0.1450
1.25Hz 0.1505 0.1397 0.1463
1.50 Hz 0.1715 0.1482 0.1782

Table 4.1: Average WB PSC across frequencies and stimudlitons for the normal
controls in the Rate study.

Method 1-way Anova Attend Both vs Attend Auditory \ Attend Both vs Attend Visual Attend Auditory vs Attend Visual
Aud Vis Motor | PCC Aud Vis Motor | PCC Aud Vis | Motor | PCC Aud Vis Motor | PCC
w B>A A>B B>V V>B A>V V>A

p<0.001| p<0.001|p>.1|p<0.05|p>.1|{p<.001|p>.1|p<.05| p<.00l|{p>.1|p>.1|p<.001||p<.001|p<.001| p>.1| p>.1

75Hz V>B V>A V>A V>A | V>A
) p>.1 p>.1 p>.1| p>.1 ||[p>.1| p>.1 |p>.1]|p>.1 p>.1 |p>1|p>.1] p<.l p<.05| p<.05|p<.05|p<.05

PSC| 1.25Hz p>.1 p>.1 |p>.1| p>.1 ||p>.1| p>.1 |p>.1| p>.1 p>.1 |p>1|p>.1| p>.1 p>.1 p>.1 | p>.1|p>.1
15Hz p>.1 p>.1 p>.1| p>.1 |p>.1| p>.1 |[p>.1| p>.1 p>.1 |p>.1|p>.1] p>.1 p>.1 p>.1 p>1]|p>.1
Slope p>.1 p>.1 p>.1| p>.1 ||p>.1| p>.1 |p>.1| p>.1 p>.1 |p>.1|p>.1| p>.1 p>.1 p>.1 p>.1]|p>.1

Table 4.2: Simulation results.

PCC), 1-way ANOVAS were performed across the three tasksedPttests between the
conditions were also performed in each simulated areaisttat p-values are shown in
Table 4.2. As displayed in the Table 4.2, test were perforametthe weighting factors (w),
PSC at each frequency, and also on the slope. The direationithe t-tests that show

significant ¢ < 0.05) or atrend f < 0.1) between conditions are indicated.

To further address the power of using the utility functiongiing factor’s as a mea-
surement of brain’s relative activation, different levefsgaussian noise were applied to
the simulated signal. As previously, ANOVA tests where amtdd but now at different
gaussian noise levels. However, the experiments are expBa0 times at each noise level.
The noise levels tested ranged from an a signal to noise (SN&) of 10 down to 0.33.
As expected, no significance was found in the motor area ienals of SNR. In the PCC
area, significancep(< 0.05) was still found between the conditions in an SNR of 5. As

for the auditory and visual areas, significance in the ANO\Wéswtill present in a SNR as
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low as 0.5.

4.1.2 Alpha of the Utility Function

Initially, the o parameter must be estimated for the associated utilitytimme (Eq. 3.5).

To find a fixeda, first the average PSC across the 30 subjects (NC and SZ)doroéthe

50 cortical areas were calculated for each condition. A tzonig= 2) is added to all PSC
to guarantee that adl, values were not negative, therefore satisfying Eq. 3.8.il&irto

the simulations, results did not change based on the cdragipled to the PSC’s. A range
of o values (.001 < a < 20) were tested to estimate the final distribution of resources
for each regioni,. First, for eachy, the As’'s were calculated. Then a solution for Egs.
3.6, 3.7, and 3.8 was calculated for eachResults where then compared to the true PSC
of each of the 50 cortical areas. The average error acrosisraél conditions were then
averaged to select thethat best estimated the true distribution. The optimalealualue
was found to be 2.287. Figure 4.1 shows the estimation ernenwarying they for each

condition and also the average error across all conditions.

4.2 Normality Tests of the Weighting Factors

One-Sample Kolmogorov-Smirnov tests were calculated sesssthe distribution of the
weighting factors in each of the 50 cortical areas. To compiese tests were also per-
formed on the PSC’s (at each frequency) and the slope. Théewof tests that rejected
the null hypothesisy( < 0.05; data is not normally distributed) for the weighting factor
are 3 (attend both), 2 (attend auditory), and 3 (attend \)iswe of 50 areas. Considering
the number of Kolmogorov-Smirnov tests, this is the exp@ctember of tests~ 2.5)
that would indicate a non-gaussian distribution (TyperbBr As for the PSC’s and the

slope, a similar number of areas also did not pass the gaitysiest, ranging from 0 to
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Figure 4.1: Minimizing estimation error by varyingof the utility function (Eg. 3.5.)

5 at each condition. Since the weighting factor from thatytflunctions are statistically

considered to be gaussian distributions, parametric sests as ANOVAS and t-tests can
be performed on these data.

4.2.1 Weighting Factors of Normal Controls

After selecting the optimak, the average weighting factor (w) from the utility function
(Eq. 3.5) were calculated in each of the 50 areas for the ttoeditions (attend both, only
auditory, and only visual). The values of the weights arenshim Table 4.3. These values

were calculated from the average PSC of each area acrosfidba tNC subjects.
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Neuronal Area Weighting Factor (w) of Cortical Area

Attend Both| Attend Auditory| Attend Visual
Posterior Cingulate 0.9287 0.9089 0.9058
Anterior Cingulate 0.7663 0.7619 0.7562
Subcallosal Gyrus 0.8152 0.7902 0.7872
Transverse Temporal Gyrus 1.142 1.1352 1.1004
Uncus 0.8337 0.8222 0.8231
Rectal Gyrus 1.0221 1.0084 1.0189
Fusiform Gyrus 1.0556 1.0531 1.0614
Inferior Occipital Gyrus 1.0987 1.061 1.0414
Inferior Temporal Gyrus 0.9211 0.9207 0.9114
Insula 1.0176 1.0247 1.0088
Parahippocampal Gyrus 0.9109 0.9095 0.9072
Lingual Gyrus 1.3747 1.3533 1.371
Middle Occipital Gyrus 1.0702 1.0355 1.0854
Orbital Gyrus 1.0652 1.0737 1.1197
= Middle Temporal Gyrus 0.8756 0.8817 0.8679
L Superior Temporal Gyrus 1.0068 1.014 0.9859
8 Superior Occipital Gyrus 0.7821 0.7688 0.7833
Inferior Frontal Gyrus 0.896 0.901 0.8995
Cuneus 1.2434 1.2201 1.2421
Angular Gyrus 0.8003 0.8114 0.7849
Supramarginal Gyrus 0.9549 0.9759 0.958
Cingulate Gyrus 0.9117 0.921 0.9129
Inferior Parietal Lobule 1.0872 1.0914 1.0816
Precuneus 0.9368 0.9398 0.9578
Superior Parietal Lobule 0.9835 0.9731 1.0162
Middle Frontal Gyrus 0.8912 0.9095 0.896
Paracentral Lobule 0.8838 0.8747 0.8771
Postcentral Gyrus 1.1704 1.1497 1.136
Precentral Gyrus 1.1039 1.1032 1.1143
Superior Frontal Gyrus 0.8407 0.8478 0.8322
Medial Frontal Gyrus 0.863 0.8553 0.8495
Uvula of Vermis 1.0633 1.0592 1.098
Pyramis of Vermis 1.2318 1.2403 1.3295
Tuber of Vermis 1.3244 1.3236 1.4184
Declive of Vermis 1.7402 1.7304 1.8897
Culmen of Vermis 1.6307 1.6065 1.6659
g Cerebellar Tonsil 1.0546 1.0582 1.0723
% Inferior Semi-Lunar Lobule  0.9711 0.9742 0.974
2 Fastigium 1.1259 1.1265 1.1335
@ Nodule 1.0535 1.0537 1.0668
© Uvula 1.2283 1.2387 1.2711
Pyramis 1.1856 1.2015 1.2181
Tuber 1.4011 1.445 1.4523
Declive 1.4949 1.495 1.5482
Culmen 1.2082 1.2029 1.2188
Cerebellar Lingual 1.1039 1.1142 1.1093
Lentiform Nucleus 0.9838 0.9824 0.9809
. 'S | Claustrum 0.9922 0.997 0.9869
= 'g Thalamus 0.9815 0.9863 0.9987
» © | Caudate 0.9083 0.9218 0.9187

Table 4.3: Utility function weighting factor (w) for each tie 50 cortical areas in each
three conditions for normal controls in the Rate study.
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4.2.2 Statistical Tests Between Conditions on Normal Conbis

For each NC subject, the weighting factors in each neuraealwaere calculated. With the
weighting factors, fifty one-way ANOVAs (one for each areajoss the three conditions
were performed. Statistical results indicated that theeeewno significant differences
(p > 0.1) between any of the conditions. One-way ANOVAs were alségoered directly

on the PSC at each frequency and also in the slope acrossetipgefrcies. The only
statistically significant{ < 0.05) result that was found was in the PSC at 0.75 Hz in the

middle occipital gyrus.

Even though there was not significance in the ANOVA in any &f éineas using the
weighting factors, several paired two-sample t-tests weraputed. Tests were done to
compare the three conditions (attend both vs. attend aydittend both vs. attend vi-
sual; attend auditory vs. attend visual). T-tests acrassdmditions with the PSC at each
frequency and also the slope were also calculated. Redudistbe t-tests are shown in
Table 4.4, were the direction of tests that where signifi¢art 0.05) are also indicated.
Conditions include attend auditory and ignore visual (Aderd visual and ignore audi-
tory (V), and attend both (B) stimuli. Statistical tests midare further examined in the
discussion session. Neuronal areas that did not have atmstist significance are not

shown.

4.2.3 T-tests Between Normal Controls and Patients with Scophre-
nia

Independent t-tests were performed in all 50 areas to camibar weighting factors of

NC and SZ. Results of using the weighting factor and the othethods are shown in

Table 4.5. Significant t-test® (< 0.05) are indicated in the table with the corresponding

direction of the test. The bottom row indicates the total bemof areas that showed
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Attend Both vs. Attend Auditory Attend Both vs. Attend Visual Attend Auditory vs. Attend Visual
Neuronal Areas w PSC Siope|  w PSC Slope w PSC Slope
.75Hz | 1.25Hz| 1.50Hz .75Hz | 1.25Hz| 1.50Hz .75Hz | 1.25Hz| 1.50Hz
Posterior Cingulate B>A B>A B>V
Transverse Temporal Gyrys B>A B>V B>V | B>V A>V
Uncus V>A
Fusiform Gyrus V>A
Inferior Occipital Gyrus B>A B>V B>V
Inferior Temporal Gyrus A>V
Lingual Gyrus B>A V>A V>A
Middle Occipital Gyrus B>A|B>A B>A V>A|V>A|V>A | V>A
Middle Temporal Gyrus B>V A>V
Superior Temporal Gyrus B>V A>V
Cuneus B>A B>A V>A V>A
Angular Gyrus A>V
Supramarginal Gyrus A>B VvV >B A>V
Cingulate Gyrus V>B
Inferior Parietal Lobule B>A
Precuneus V>A
Superior Parietal Lobule B>A VvV >B V>A|V>A V>A
Middle Frontal Gyrus A>B A>V
Paracentral Lobule B>A B>V V>A
Postcentral Gyrus B>A B>A B>V
Precentral Gyrus V>B V>A
Superior Frontal Gyrus A>V
Uvula of Vermis V>B|V>B V>A|V>A
Pyramis of Vermis V >B V>B V>A|V>A
Tuber of Vermis V>B|V>B|V>B V>A|V>A
Declive of Vermis V>B|V>B|V>B|V>B V>A|V>A V>A
Culmen of Vermis V>A|V>A V>A
Cerebellar Tonsil V>B|V>B V>A
Fastigium V>A V>A
Nodule V>B V>A V>A
Uvula V >B V>A
Tuber V>A
Declive V>B V>A|V>A
Culmen V>A V>A
Cerebellar Lingual V>B V>A
Thalamus V>B|V>B
Caudate VvV >B
Total 4 4 0 9 0 14 11 4 3 2 16 21 1 10 0

Table 4.4: Paired t-tests between conditions for normatrotsin the Rate study.

significant differences. Areas that did not exhibit any gigant results for any of the four

methods are removed from the table.

4.2.4 Classification Between Normal Controls and Patientsith Schi-

zophrenia
This section shows the results of performing classificabetween NC and SZ by us-

ing the weighting factors and the other method as featurdsstmguish between groups.

Classification was performed independently at each sticaudition (attend both, attend
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Attend Both Attend Auditory Attend Visual
Neuronal Areas w PSC Slope w PSC Slope w PSC Slope
.75Hz | 1.25Hz | 1.5Hz .75Hz | 1.25Hz | 1.5Hz .75Hz | 1.25Hz | 1.5Hz
Posterior Cingulate NC>SZ | NC>SZ | NC>SZ | NC>SZ NC>SZ NC>SZ | NC>SZ | NC>SZ | NC>SZ
Transverse Temporal Gyrus SZ>NC
Rectal Gyrus NC>SZ
Insula SZ>NC SZ>NC
Superior Temporal Gyrus SZ>NC
Cuneus NC>SZ | NC>SZ | NC>SZ | NC>SZ NC>SZ | NC>SZ | NC>SZ | NC>SZ NC>SZ | NC>SZ
Supramarginal Gyrus NC>SzZ
Inferior Parietal Lobule SZ>NC SZ>NC
Precuneus NC>SZ NC>SZ | NC>SZ NC>SZ NC>SZ NC>SZ | NC>SZ | NC>SZ
Paracentral Lobule SZ>NC SZ>NC
Postcentral Gyrus NC>SZ
Precentral Gyrus SZ>NC SZ>NC NC>SZ || SZ>NC
Culmen of Vermis NC>SzZ
Tuber NC>SZ | NC>SZ | NC>SZ | NC>SZ NC>SZ | NC>SZ | NC>SZ | NC>SZ NC>SZ | NC>SZ | NC>SZ
Total 8 3 4 4 1 9 2 2 5 2 4 5 4 1 0

Table 4.5: Results from independent t-tests comparing NOugeSZ in the Rate study

auditory, and attend visual). A linear support vector mael{SVM) was used as a clas-
sifier [10]. A leave one out approach was used to evaluatel#issification, where the

classifier is built using data from all the subjects but onée €xcluded subject is then
tested with the classifier, labeling the subject a NC or a 31s process was repeated

until all the 30 subjects were tested.

Initially, the features used in classification were the \éigg factors of all the 50 ar-
eas. However, accuracy in classification between both grewgs roughly around 50%
(chance) for all methods and conditions. This is likely taoeurring from overfitting the
network to the training dataset by using to many featuresind@iease the robustness, an
adequate feature selection process is important in ordawitd a good classifier. There-
fore to improve classification results, the feature set wdsiced. Only areas that showed
significant difference between groups (Table 4.5) were asefibatures in the classifier.
As and example with the weighting factors, for the attendi@isondition, only the pos-
terior cingulate, precuneus, precentral gyrus and thertwbee used as features. For the
other conditions and other methods, different areas wesd as features. This is done
such that each method is independently performing featlexton and classification.

Classification accuracy is shown in Table 4.6.
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| Method | Attend Both| Attend Auditory | Attend Visual|

w 73.33% 76.67% 60.00%
0.75Hz| 63.33% 66.67% 60.00%

PSC| 1.25Hz| 70.00% 53.33% 66.67%
1.50Hz| 56.67% 60.00% 60.00%
Slope 36.67% 50.00% 66.67%

Table 4.6: Classification accuracy between normal contnatspatients with schizophre-
nia using linear support vector machine in the Rate study.

4.3 Multimodal Attention Task Study

For the MMAT study, several types of tests were performedsses the advantage or
disadvantage of using a resource allocation model to aedy4RI| data compared to
traditional methods. Tests include; between conditiortafirst FMRI session for NC,
between groups at each condition and also at each visit lsméba NC and mTBI between
their respective visits. Finally, classification using S\Wiés also performed on these

analysis.

4.3.1 Alpha of the Utility Function

As previously done for the Rate study and seen in sectior 4tlie alpha parameter of
the utility function (Eqg. 3.5) must be defined. First, a cam${(=8) is added to the PSC to
all conditions (None, Auditory, and Visual), frequencyduency (0.33 and 0.66 Hz) and
subjects (NC and mTBI). This constant is larger then for tageRstudy since it is based
on the smallest PSC value of the study data across all selgadtconditions. The ideal

« was found to be equal to 1.288.

41



Chapter 4. Results

4.3.2 Statistical Tests Between Conditions on Normal Conbis

With the weighting factors calculated for the NC, parantetiests (ANOVA and paired t-
tests) were performed across conditions. Fifty ANOVAS \{lmetn conditions) where first
performed on the all neuronal areas. Follow up paired stekere then performed on the
areas that showed significange € 0.05) on the ANOVA. Results of the followup tests
that where also significanp (< 0.05) are presented in Table 4.7. Directionality of the
tests are shown, for all the conditions including attendiage (N), attending auditory (A)
and also attending visual (V). As before, only the areas plaased the tests are shown.

Additionally, test in bold text are further addressed indiszussion chapter (chapter 5).

4.3.3 T-tests Between Normal Controls and Mild Traumatic Bain In-

jury Patients

Initially a 2-way ANOVA (Condition x Subject) was performedf the 50 areas there
were no interaction effecp(> .1) in any of the neuronal areas using the weighting factor
or using directly the PSC at both frequencies. However,Herdlope, the middle frontal

gyrus showed a interaction effegt £ 0.05) of condition.

Even though there are no interaction effects for the wenghtactors and the PSC,
followup t-tests where still performed in all areas to agkegproposed method. Table 4.8
ilustrated the results the group differences for the firsit\if NC and mTBI. There are a
total of 24 subjects used in this analysis (12 per group)leTal® refers to the same tests
but now in reference to the subjects second visit. Only aefulifssubject participated in
the second visit (N=10).
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Neuronal Area None vs Auditory None vs Visual Auditory vs Visual
w [ .33Hz[ .66Hz[ slope|| w [.33Hz[.66Hz] slope] w [.33Hz].66Hz] slope
Posterior Cingulate N>A
Anterior Cingulate N>A N>V
Fusiform Gyrus N>A V>A
Parahippocampal Gyrug N>A N>A || N>V V>A
Middle Occipital Gyrus | N>A N>V V>A
Middle Temporal Gyrus | N>A N>V
Superior Occipital Gyrug V>A
Inferior Frontal Gyrus N>A V>A
Angular Gyrus N>A N>A || N>V V>A V>A
Supramarginal Gyrus A>N N>A V>N A>V V>A
Cingulate Gyrus V>A
Inferior Parietal Lobule A>N | A>N V>N [ V>N | V>N A>V | V>A | V>A
Precuneus N>A V>A
Middle Frontal Gyrus A>N A>V V>A
Paracentral Lobule N>A V>A
Postcentral Gyrus V>N V>A
Precentral Gyrus A>N V>N | V>N V>A | V>A
Superior Frontal Gyrus N>A V>A
Medial Frontal Gyrus N>A V>A
Uvula of Vermis A>N | A>N | A>N V>N | V>N | V>N V>A
Pyramis of Vermis A>N | A>N V>N | V>N V>A
Tuber of Vermis A>N| A>N | A>N V>N | V>N | V>N V>A | V>A
Declive of Vermis A>N| A>N | A>N V>N | V>N | V>N V>A | V>A
Cerebellar Tonsil A>N | A>N V>N | V>N A>V
Fastigium A>N | A>N V>N | V>N
Nodule A>N | A>N V>N [ V>N V>A | V>A
Uvula A>N V>N V>A
Declive A>N | A>N V>N | V>N V>A | V>A
Culmen A>N | A>N | A>N V>N | V>N | V>N
Cerebellar Lingual A>N | A>N V>N | V>N
Lentiform Nucleus A>N | A>N V>N | V>N V>A
Thalamus A>N| A>N | A>N V>N | V>N | V>N | V>N V>A | V>A
\ Total | 11 \ 16 \ 13 | 10 H 11 \ 15 | 13 \ 4 H 2 | 4 \ 8 \ 23 \

Table 4.7: Statistical test between conditions for the rawcontrols in the MMAT study.

4.3.4 Statistical Tests Between Visits

This section describes results of comparing the weightatpfs of the subject between
the first and second visit. Therefore, at each conditionsieg t-test were done for all
subjects between their first (V1) and second (V2) visit. Resare separated by groups.
Ten subjects in each group where used in these tests. Sagifiesults < 0.05) are
shown for NC (Table 4.10) and mTBI (Table 4.11).
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None Auditory Visual
Neuronal Area w PSC Slope w PSC Slope w PSC Slope
.33Hz | .66Hz .33Hz .66Hz .33Hz| .66Hz
Transverse Temporal Gyrus mTBI>NC
Parahippocampal Gyrus mTBI>NC
Middle Occipital Gyrus mTBI>NC
Inferior Frontal Gyrus mTBI>NC
Inferior Parietal Lobule mTBI>NC
Precuneus mTBI>NC NC>mTBI
Superior Parietal Lobule mTBI>NC
Middle Frontal Gyrus mTBI>NC
Paracentral Lobule NC>mTBI
Tuber of Vermis NC>mTBI | NC>mTBI | NC>mTBI
Declive of Vermis NC>mTBI | NC>mTBI
Uvula NC>mTBI | NC>mTBI NC>mTBI
Pyramis NC>mTBI | NC>mTBI | NC>mTBI
Tuber NC>mTBI
Declive NC>mTBI | NC>mTBI NC>mTBI
Lentiform Nucleus mTBI>NC
Total 1 0 0 4 7 5 2 2 4 0 0 1

Table 4.8: Independent t-tests between normal controlsw@tttitraumatic brain injury
patients for the first visit in the MMAT study.

None Auditory Visual
Neuronal Area w PSC Slope w PSC Slope w PSC Slope
.33Hz .66Hz .33Hz .66Hz .33Hz .66Hz
Uncus mTBI>NC | mTBI>NC | mTBI>NC mTBI>NC | mTBI>NC | mTBI>NC mTBI>NC | mTBI>NC | mTBI>NC
Lingual Gyrus NC>mTBI
Middle Frontal Gyruss mTBI>NC
Culmen NC>mTBI
Total 1 1 1 0 3 1 1 0 1 1 1 0

Table 4.9: Independent t-tests between normal controlsratttitraumatic brain injury

patients for the second visit in the MMAT study.

4.3.5 Classification Between Normal Controls and Mild Traunatic

Brain Injury Patients

In this section, results of classification between grougkaiso within groups comparing

visits is shown. For the classification between subjectdVI®/used for the first visit and

None Auditory Visual
Neuronal Area W PSC Slope w PSC Slope W PSC Slope
.33Hz | .66Hz .33Hz | .66Hz .33Hz | .66Hz
Rectal Gyrus V1>V2
Parahippocampal Gyrus V1i>V2 V1i>V2
Orbital Gyrus V1>V2 | V1>V2
Middle Temporal Gyrus | V2>V1
Superior Occipital Gyrus V1>V2
Pyramis of Vermis V1i>V2
Pyramis V1i>V2
Lentiform Nucleus V2>V1
Caudate V2>V1
[ Total [ 1 [ 1 ] [ o] 1 ] 5 | o0 o] 2 | 1 ] o] o]

Table 4.10: Paired t-tests between visits for normal cdémitrothe MMAT study.
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None Auditory Visual
Neuronal Area w PSC Slope w PSC Slope W PSC Slope
.33Hz | .66Hz .33Hz | .66Hz .33Hz | .66Hz
Posterior Cingulate V1>V2
Transverse Temporal GyrusV1>V2 | V1>V2 | V1>V2 V1>V2 V1i>V2
Insula V1i>V2
Superior Temporal Gyrus V1i>V2
Postcentral Gyrus V1i>V2
Inferior Semi-Lunar Lobule V2>V1
Culmen V1i>V2
Thalamus V2>V1
Total 2 3 3 0 3 0 0 0 1 0 0 0

Table 4.11: Paired t-tests between visits for mild traumhbtain injury patients in the
MMAT study.

| Method | Attend None| Attend Auditory | Attend Visual|

w 54.17% 66.67% 66.67%
0.33Hz - 58.33% -
PSC 0.66Hz - 41.67% -
Slope 66.67% 66.67% 66.67%

Table 4.12: Classification accuracy between groups (NQueeansTBI) for the first visit
on the MMAT study.

also at the second visit. Based on the hypothesis presemteidure 1.2, it is expected
that there are more significant differences between graupigifirst FMRI session while
much less for the second session. Results of these testsefdirst and second visit are
shown in Tables 4.12 and 4.13 respectively. Similarly asRaé& study classification
procedure, only areas that passes statistical tests §lal@ehrough 4.11) where used as
features. Therefore, for some methods, no classificatiapggormed since there are no

significant differences in any of the neuronal areas.

The final set of classification results are shown in Tabled drid 4.15. The first table
shows classification accuracy when comparing the featdid€at their first visit versus
their second visit. For all methods, an accuracy around SfiRance) is expected since
NC should have no change in brain resource allocation. Agdbte 4.15, classification is

performed between the first and second visit of the mTBI subje
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| Method [ Attend Non| Attend Auditory | Attend Visual|
w 55.00% 60.00% 65.00%
PSC 0.33Hz 55.00% 65.00% 60.00%
0.66Hz 55.00% 60.00% 60.00%
Slope - - -

Table 4.13: Classification accuracy between groups (NGugersl Bl) for the second visit

on the MMAT study.

| Method [ Attend Non| Attend Auditory | Attend Visual|
w 55.00% 70.00% 75.00%
PSC 0.33Hz 60.00% 75.00% 75.00%
0.66Hz - - -
Slope - - -

Table 4.14: Classification accuracy between visits for themal controls on the MMAT

study.

| Method [ Attend Non| Attend Auditory | Attend Visual|
w 50.00% 60.00% 60.00%
0.33Hz| 65.00% - -
PSC 0.66Hz| 70.00% - -
Slope - - -

Table 4.15: Classification accuracy between visits for tiild traumatic brain injury pa-

tients on the MMAT study.
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Discussion

A novel method to analysis FMRI data is proposed. The metkedraes that there is an
underlying resource allocation mechanism that distribusources (oxygen and glucose)
throughout the brain. A resource allocation model was usescribe activation of brain
regions, where in a financial setting or in communicationvoeks, competitive reasoning
is used to find an optimal distribution of resources betwesarsi In FMRI, the proposed

model could potentially be used to study more in depth bramnctionality.

With the use of the theoretical competitive equilibrium eggech, we have mathemati-
cally equated a model that describes the fundamentals afires allocation of the brain.
The equations are based on a measurement of “importance’atue” of receiving re-
sources, defined by a utility function. By using the propasedlel, the level of activation
of brain regions is transformed to a relative measuremeatt¥ation. As described in
chapter 3, the utility function of a specific cortical arealod brain changes based on the
environment the subject is encountering, such as intempalghts or a focusing on intense
external stimuli. However, a strong assumption was pragosbere the brain always at-
tempts to maximize the social welfare (Eqg. 3.1) based ondhditions it is encountering.

Basically, we are assuming that the brain is an efficient nmacthat always attempts to
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minimize the energy loss [1].

A discussion of the all the results and the findings of all teeronal areas would seem
impracticable. Therefore, we will focus on discussing sarhthe key findings based on
the expected neuronal functioning dependent on the twaestuds stated in the introduc-
tion, this project is focused on the proposed resourceatilme model, hence implications
of group differences will not be addressed in depth in théselitation. Additionally, most
of the discussions will be based on the cortical areas, mlisgato discuss much about

cerebellum and also sub-cortical areas.

5.1 Rate Study

5.1.1 Simulations

Simulation tests indicated that the proposed resourceatltmn method is ideal to asses
relative activation throughout the brain (Table 4.2). Bhea the results from the 1-way
ANOVA, only the resource allocation model was capable ofifigdhe expected signifi-
cant difference between all the attended conditions intid&ary cortex, visual cortex and
the PCC. As expected, no significant difference betweenitond were observed in the
motor area. Additionally, the t-test comparing attend sargliversus attend visual, using
directly the PSC at 0.75 Hz, there is always significant lagggivation to attending the
visual condition. Since we created the simulated data, wadvexpect different results
in the auditory and PCC areas. They should be equal or sitoildre weighting factors
results. This simulation validates the capability of thegmsed method in discovering

relative activation throughout the cortical brain areas.
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5.1.2 Statistical Tests Between Conditions on Normal Contis

A discussion of section 4.2.2 is presented in this sectioased on findings from table
4.4, there are some key areas that deserve a more in deptlssimt. Some cortical
areas of the brain are expected to have significantly diftelevels of activation based
on what condition the subjects are attending to. More speadlfi we would expect that
the proposed method would find significant differences inathéitory and visual cortex
across the conditions. Even though there are no signifiesuotts from the ANOVA tests,
we assessed the difference in models the differences uairegp-tests. The middle and
superior temporal gyri are well known for their roll in aushy processing, however, there
is no significant level of activation detected by either ti&&CPat each frequency or either
the slope. On the other hand, the resource allocation mauttd §ignificant difference in
the weighting factor when either the subject is requiredtena the auditory stimulus or
both stimuli versus attending only the visual stimulus.slikia clear indication of a higher
sensitivity of the proposed method. Additionally, the seerse temporal gyrus (BA 41
and 42 - primary auditory cortex) also shows the same doratity of the statistical tests
using the weighting factors. However, for the PSC at 1.25568 Hz when comparing
the attend both versus the attend visual, the expectedidmatity of the statistical test is
also found. Despite these results, a surprising resultsdsseen in the PSC at 1.50 Hz,

were the attend both shows greater activation then thedatteditory condition.

Areas of the brain responsible for visual processing inehing occipital lobe, fusiform
gyrus and cuneus. The middle occipital gyrus shown sigmifigdarger weighting factors
for attending visual and also attending both modalitiesweionly attending the auditory
stimulus. However in the inferior occipital gyrus the modkebwed that there is a larger
weighting factor when the subjects are attending both ¢mmdi rather then just attending
the visual stimuli. Even though not significant and just simgurend < 0.1), looking
at Table 4.3 there is a larger weighting factor for the atteisdal and also attend both

compared to attend auditory. The same holds for the cuneusselresults indicate that
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the proposed method can be used to asses an “importancetiraeesnt of neuronal areas

based on the condition.

Additionally, the weighting factor found statistical défences in the posterior cingu-
late, where the attend to both condition is always highen tigending to only a single
stimulus. The posterior cingulate cortex (PCC) is known a8 of the central hubs of
the default mode networks, where there is a decrease in mauaotivation when a goal-
oriented activity is being performed. By observing Tablg 4.can be seen that weighting
factors from in the PCC are all below 1. This is indicativetttne the “importance” of this
area is decreased as the stimuli are being presented. Howese is a larger decrease
when attending to a specific condition, rather then atteptioth. Attending to one con-
dition while ignoring the other condition requires largencentration from the subjects,

therefore “stealing” more resources from areas that arenmatich need.

These findings are based on several t-test that were nottedrior multiple compar-
isons. However, this dissertation is not assessing dyreottical brain functionality based
on used stimuli, this can be seen in [30], but it is a proje@dses the proposed method,
where results clearly indicate that the proposed methoi® reensitive to the different

conditions compared to the traditional methods for the Ratdy.

Finally, by observing Table 4.1, it can be seen that the dttgual always has a greater
average WB PSC in all the stimuli frequency when comparingécattend auditory. This
has caused in the comparison between attending visualsvatgnding auditory, all the
significant findings are attend visual greater then atterdit@y in all the frequencies
(Table 4.4 ). Relative neuronal activation is not observégnvusing directly the PSC,

unlike the resource allocation method.
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5.1.3 Group Differences and Classification

This section discusses the results from Tables 4.5 and £&g| when comparing the
attend both condition versus the other two conditions, ¢iseurce allocation method finds
the most difference between groups in neuronal areas. A&naotljor observation from
Table 4.5, is that there is no specificity when comparing gsouhile using the traditional
methods. For all statistical significant results, NC alwalsw greater activation than
SZ. By using the resource allocation’s weighting factor aseasurement of neuronal
activation results show that nearly half of the significaffedences between groups show

greater activation for SZ compared to NC.

The accuracy of the classification using SVM’s are low wheingisll the neuronal
areas as features to find which group the subject belongshis.ig likely due to overfit-
ting the training dataset. Therefore only using the areagtytassed the statistical threshold
(p < 0.05) in Table 4.5 are used as features. Also, using a conjunofitime methods for
the classifier was not performed since we are evaluatingapahislities of each individual
method. Therefore each of the methods must preform claatsificby itself, where a com-
bination across methods is highly likely to increase cfasgion accuracy. Results from
Table 4.6 show that the resource allocation method cleattiyesforms the other methods
in group classification when using the attend both (73.338d)attend auditory (76.67%)
conditions. For the attend visual condition, all methodsileix similar classification re-

sults.
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5.2 MMAT study

5.2.1 Statistical Tests Between Conditions on Normal Contis

This section will address results of each of the methods wberparing across conditions
(attend none, auditory, and visual) in normal controls lfierMMAT study (see Table 4.7).
The first result to note is that the resource allocation netikithe only methods that accu-
rately locates the anterior cingulate as having signifidéffegrence in activation when the
subjects are instructed to attend to a specific modalityugeaittending none. While attend-
ing to the task, a reduced activation in this central hub ef@MN is expected compared
to when the subject is instructed to not attend to any madalihe resource allocation
method was the only method to accurately find significanediffice across these condi-
tions. There was also significance<{(@.001) in the posterior cingulate for the weighting
factor (N> A and V), however there was only a trend(@.1) for the effect of condition
from the ANOVA, therefore the result is not shown in the tatiiewever, there are some
unexpected results from using the weighting factors as eonaliactivation measurement,
possibly a false positive (type | error). The none condisbows a greater weighting fac-
tor then the attend visual condition in the middle occipggfus (areas responsible for
visual processing). Another unexpected result is seereimilddle temporal gyrus, where

now the attend none has a greater weighting factor then tivechauditory.

Another significant finding from Table 4.7 is that most of thgngficant difference
between conditions for all methods is seen in subcorticdl @rebellar regions. When
using directly the PSC in the two frequencies (0.33 and 0.85d4 a measurement of
neuronal activation a general pattern is observed. Fottedits, the attend none condition
is always showing lower hemodynamic response comparedttoditending conditions
(auditory and visual). The slope method finds the most araceas with significant
difference, however there are no specificity in the findirggeneral pattern [attend visual

> attend auditory> attend none] is seen across the significant findings in theonal
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areas.

5.2.2 Group Differences and Classification

First we will address results from Tables 4.8 and 4.12, whergonal activation between
NC and mTBI are compared for the subjects first FMRI sessiaseB on these results,
the performance of the resource allocation method is noblasgst to compare groups as
was observed in the Rate study. In only a few cortical areasettvas any significant
differences between groups. As a result, the accuracy oflissification in lower then
before & 67%). However, for the other methods (PSC'’s and slope) restdtefasimilar or
of inferior quality then the resource allocation. The cifasation between groups using the
PSC'’s and slope are of similar accuracy compared to the weggfactors. Nonetheless,
by only using directly the PSC, there are no significant figdibetween group in cortical
brain areas where all results are located in the cerebellthne.slope however does find
some significant differences between groups in corticahsages well as cerebellar and

subcortical areas of the brain.

As expected from the theoretical equilibrium pipeline (Fig1.2), there is a general
decrease in differences of neuronal activation betweeonpgrg¢see Tables 4.9 and 4.13).
Even though there is no significant decrease in classificaibcuracy, there is a large de-
crease in neuronal areas that are significantly differetwéeen groups for all conditions.
These results postulate two theories, either the propagatiium is a alternative to ex-
plain this effect or the decrease in number of subject (Nfh&8)decreased the significance

between groups.

The final set of results from this dissertation is compariagronal activation of sub-
jects between their first and second FMRI session. Resultd@can be seen in Tables
4.10 and 4.14, while results for mTBI are shown in Tables 4dd 4.15. Based on the
equilibrium hypothesis (Figure 1.2), no differences betweisits will be found for NC,
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while there will be significant differences for the mTBI. Rbe NC, the PSC at 0.66 Hz
and the slope outperform the resource allocation methodatsulthe PSC at 0.33 Hz,
since they do not find any differences between visits, tloeeefio classification can be
performed for these methods. Differences found betweats\a the NC are possibly
due to the fact that the subjects are now accustomed to thel ERMERonment and less
overall neuronal activation occurs. Additionally, as mbfeom Table 4.14, classification
results between visits are very similar for the resourocecation method and the PSC at
0.33 Hz. As for the patient group, significant differencenssn visits is only found in the
attend none condition when using the PSC as a measuremeati@al activation. The
resource allocation finds differences between visits iofthe three conditions. There-
fore, by following the proposed feature extraction pipelim only the resource allocation
method can we perform classification in all the conditionewidver, the best classification
result is seen of the PSC at 0.66 Hz for the attend none condf@lope does not find any
differences between visits for NC, however, no differermesalso found between visits
for the patients. These poor results might also be due toothieainount of subjects per
group that are being used (N = 10).

5.3 Conclusions

Result from the Rate study have indicated that the propossalirce allocation method
accurately finds differences between conditions in aredlseobrain that where expected
to behave differently dependent on the condition. The ti@thl methods such as using
directly the PSC and also the slope of activation are outperéd by using the weighting
factors as measurements of neuronal activation. Alsosifieastion between groups is
improved with the resource allocation method, showing titemqtial as a feature extraction
tool with increased sensitivity. A possible argument of vihg proposed model is more

sensitive in some cortical areas relative to the other twthous (direct PSC and slope),
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is that an absolute activation level to perform tests is eatdpused, while a relative value
of activation in relation to WB activation is being explateTo find the\ parameter, we
define the WB as a user and set the weighting factor equal toamklater solve foi

(Eq. 3.11). With the calculated, the weighting factors of the cortical areas can also be
calculated. Areas that have the exact same level of adivéi@SC) as the average of the
whole brain will have amvy, 3 = 1. Also, any area with greater activation than the average
of the brain will have aw, > 1, and less activation will have, < 1. Additionally,

the computing of\’s are done on a subject-by-subject basis. Therefore thghtieg
factors are relative to the individual subjects’ WB actigat This decreases the data inter-
subject variability such as correcting for subjects thaetavery low or very high level of

activation throughout the brain.

Another advantage of the proposed method is that it is a measunt throughout the
frequencies without the assumption that the hemodynarsporese is linear relative to the
rate of the stimulus. The model is based on the relationshgwhole brain signal, and
how the resources are distributed. The slope method is a sayrohactivation through-
out the frequencies, however, it assumes a direct lineatioakhip of the hemodynamic
response. Results from Table 4.4, indicate that the slogkades the least sensitive of

the methods when comparing to the three Rate study conslition

For the MMAT study, the proposed model demonstrated satsfity results, where
some expected difference between conditions, visits andpgr are captured using the
weighting factors. However, the other methods did not atidpen the resource allocation

model.
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5.4 Future Work

Further research with other FMRI experiments can be peddroould extend the appli-
cability of the new method. Additionally, the proposed nugtitan be used with positron
emission tomography (PET) data, which directly measuresunees being supplied to ar-
eas brain, such as glucose. The methods can also be exparathditimaging modalities
such as Magnetoencephalography (MEG) and Electroenaegriaphy (EEG)

Further testing with the proposed model can still be camwigdvith other experimental
design paradigms. Both experiments used to asses the cesallmcation methods are

block design paradigms, while an event-related desigmstdds to be evaluated.

The proposed model only uses a level of relative activatiorelation to the task as
a parameter of resources. Also, only a summery of the avaetjation throughout
the experiment is used (PSC). However, the resource albocatodel could be further
extended to a TR-by-TR framework. Where the equilibrium i@t is analyzed at each
TR. With this extension, resource allocation of restingestiata can be studied. Also, the
use of independent component analysis (ICA; [7]) could dlsmsed as a measurement
of resource allocation to study the resting state netwoilkse empirical z-score of the

components would substitute the PSC used in the currentfrani.

Finally, this model should be tested with other clinical plapions, such as patients

with developmental, neurological, or psychiatric disosde
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