
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

6-26-2015

Predictive Warning System for a Class of Shared-
Control Vehicular CPS via Dynamic Information
Flow Tracking.
Rafael Figueroa

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Figueroa, Rafael. "Predictive Warning System for a Class of Shared-Control Vehicular CPS via Dynamic Information Flow Tracking.."
(2015). https://digitalrepository.unm.edu/ece_etds/85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151576545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/85?utm_source=digitalrepository.unm.edu%2Fece_etds%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Rafael Figueroa

Electrical and Computer Engineering

This thesis is approved, and it is acceptable in quality and form for publication: Approved by

the Thesis Committee:

Dr. Rafael Fierro

Chair

Dr. Asal Naseri

Member

Dr. Thomas Caudell

Member

Predictive Warning System for a Class of
Shared-Control Vehicular CPS via

Dynamic Information Flow Tracking

by

Rafael Figueroa

B.S., Mechanical Engineer, University of Carabobo, 2003

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Electrical Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2105

c�2015, Rafael Figueroa

iii

Dedication

Mare and Adriana.

iv

Acknowledgments

I would like to thank:
Dr. Rafael Fierro, my academic advisor, for his support and guidance.
Dr. Crandall, for introducing me to the subject of DIFT.
Dr. Thomas Caudell and Dr. Asal Naseri for their advice and for being part of my
committee.
Dr. Meeko Oishi, for her important input on the first version of the warning system
dynamic model.
Paul Groves and Coralis Nunes, my study partners.
MARHES Lab partners.

This work was supported by the NSF grant CNS 1017602

v

Predictive Warning System for a Class of
Shared-Control Vehicular CPS via

Dynamic Information Flow Tracking

by

Rafael Figueroa

B.S., Mechanical Engineer, University of Carabobo, 2003

M.S., Electrical Engineering, University of New Mexico, 2015

Abstract

Manned vehicles are maturing into robotics agents under shared control. Vehicle op-

erators will be confronted with understanding the expected response from the robotic

agent to their actions. I propose a warning system framework to continuously track

human inputs, identify possible conflicts and provide contextual warning information

to the operator to help avoid accidents. I consider a robotic agent which nominal

operation can be encoded using the hybrid automata framework with human inputs.

Trajectory prediction methods are used to identify possible conflicts, coded as the

avoid set of the system. Using Dynamic Information Flow Tracking (DIFT), human

inputs and their e↵ect over time are accumulated and classified in a continuous range

between spurious or legitimate inputs.

vi

Contents

List of Figures x

List of Tables xii

Glossary xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

1.3 Related Work . 4

2 Preliminaries 6

2.1 Hybrid Automata . 6

2.2 Dynamic Information Flow Tracking 7

2.3 Artificial Neural Networks . 8

2.4 ROS: Robot Operating System . 9

vii

Contents

3 Methodology 10

3.1 Warning System Design . 10

3.1.1 Spurious Tag . 10

3.1.2 Mode Tracker . 12

3.1.3 Trajectory Prediction . 12

3.1.4 Warning Level . 13

4 Framework Tools 16

4.1 Hybrid Automata Simulator . 16

4.2 ROS Implementation . 17

4.2.1 Human Input . 18

4.2.2 Robotic Agent . 18

4.2.3 Mode tracker . 19

4.2.4 Trajectory Prediction . 20

4.2.5 Dift . 21

4.2.6 Gui . 21

5 Case Study 23

5.1 Robotic and Human Agent . 23

5.2 Hybrid Automaton Model . 24

5.3 Nominal Input Distributions . 25

viii

Contents

5.4 Alarm Thresholds . 27

5.5 Test Inputs . 28

5.5.1 Arc Test Input: Low spurious tag, No conflict level 30

5.5.2 Diagonal Test Input: No spurious tag, High conflict level . . . 32

5.5.3 Bump Test Input: Low spurious tag, Medium conflict level . . 35

5.6 Control Theory Method . 37

5.7 Recurrent Neural Network Method 42

6 Conclusions 48

6.1 Future Work . 49

References 50

ix

List of Figures

4.1 ROS Nodes and Topics for Warning System Implementation 17

4.2 System Diagram for Warning System Implementation 18

4.3 Case Study GUI . 22

5.1 Hybrid automaton modes {q[0], q[1]}, racetrack example path and

avoid set A. 26

5.2 Path for Arc Test Input . 30

5.3 Inputs for Arc Test Input . 31

5.4 Dift tags and Conflict level for Arc Test Input 31

5.5 Path for Diagonal Test Input . 33

5.6 Inputs for Diagonal Test Input . 34

5.7 Dift tags and Conflict level for Diagonal Test Input 34

5.8 Path for Bump Test Input . 35

5.9 Inputs for Bump Test Input . 36

5.10 Dift tags and Conflict level for Bump Test Input 36

x

List of Figures

5.11 General second order system block diagram 37

5.12 Second order system block diagram used 38

5.13 Desired vs Learned Warning levels for Arc Test Input 39

5.14 Desired vs Learned Warning levels for Diagonal Test Input 40

5.15 Desired vs Learned Warning levels for Bump Test Input 41

5.16 Activation Function for ↵ = 10 . 44

5.17 Desired vs Learned Warning levels for Diagonal Test Input 45

5.18 Desired vs Learned Warning levels for Arch Test Input 46

5.19 Desired vs Learned Warning levels for Bump Test Input 47

xi

List of Tables

5.1 Alarm Threshold Configuration Scheme 27

xii

Glossary

term explantion

H hybrid automata

Q hybrid automata mode

F dynamics function set

G guard set

R reset map set

x system state

u human agent input

un nominal human agent input

i state index

j input index

e hybrid automata mode index

k discrete time index

f nominal input distribution

xiii

Glossary

f

n

nominal input distribution

� normalized legitimate tag function

& normalized spurious tag function

A avoid set

v warning level activation potential

r self-feedback gain

w constant spurious tag gain

� conflict level

m constant conflict level gain

'(·) warning level activation function

t

a

maneuverability time

t

c

time to conflict

t

f

trajectory tracking time horizon

y warning level

t0 simulation start

t

ss

spurious inputs start

t

se

spurious inputs end

t

cs

future conflict present start

t

ce

future conflict present end

xiv

Chapter 1

Introduction

1.1 Motivation

A significant challenge on the design of warning systems is attempting to identify the

intentions of the human agent and how this could a↵ect a robotic agent under shared

control. The warning system resides with the robotic agent or vehicle and has very

limited data regarding what the human agent is experiencing. This leads to creating

warning signals specific to the expected accidents or conflicts, e.g. a dangerous

bank angle on a commercial airplane. However, as vehicles become more complex,

increasing the number of alarms for specific situations becomes overwhelming for all

but specialized human agents.

To move beyond specific alarms, a warning system would need a basic grasp of

the human agent actions within the system operational plans and current conditions.

For certain classes of shared-control vehicles this information is partially available

and can be incorporated into the warning system. With this information, a warning

system would be able to provide a contextual warning to human agents and possibly

prevent accidents.

1

Chapter 1. Introduction

1.2 Overview

In this work, DIFT (Dynamic Information Flow Tracking)[1] has been adapted to

track the actions of the human agent. A key feature of DIFT is to be able to classify

information, in our case continuous or discrete inputs, into spurious or legitimate.

I consider a robotic agent which task or behavior can be modeled as a hybrid au-

tomaton, where data is available regarding the nominal actions for each continuous

evolution mode. Using this model, the human agent inputs will be compared with

the nominal inputs to classify the current actions with a probability of being either

spurious or legitimate.

There are two major event categories for which alarms are raised:

• There is a current or expected conflict.

• Human actions are potentially errors or intentional attacks (spurious inputs).

However, these events are not mutually exclusive. The warning system can be

tuned to be more sensitive to inputs that are tagged as spurious. Under this method-

ology, a warning alarm would be raised much faster for the scenario with a combina-

tion of spurious actions and a predicted conflict. Although this would be the worst

case scenario from the warning level point of view, it would be the scenario where

the alarm would be most e↵ective at avoiding accidents.

A common technique for conflict detection is to project the current or expected

actions into the future and detect possible conflicts. Trajectory prediction methods

alone could result in many false warnings in a system that allows for maneuvers from

the human agent, e.g. a quick aggressive action meant for a time much shorter than

the trajectory prediction time horizon. I propose to attenuate this disadvantage by

dynamically tracking the evolution over time of the relationship between actions and

possible conflicts.

2

Chapter 1. Introduction

The proposed warning system framework will function as a dynamic system, accu-

mulating warning levels associated with these the spuriousness and conflict detection

categories and providing a global warning level. This key characteristic will help to

di↵erentiate between a short term deviation from the nominal operation to a persis-

tent erratic or reckless behavior. The system’s alarms and context based presentation

to the human agent can then be designed to be triggered by the warning level.

In addition to providing additional information regarding the human agent ac-

tions, the proposed method would allow for the identification of the input or set

of inputs contributing to the trajectory in conflict. An advantage to tracking each

input separately is that a warning level can be assigned to each one. This allows for

customization of alarm levels at di↵erent conditions, a key feature needed for large

or complex systems.

By encoding the nominal behavior of the robotic agent as hybrid automaton,

the warning system designer will be able to use existing techniques from the hybrid

automata framework to analyze the system. Conflict conditions will also be encoded

into the hybrid automata framework as the avoid set of the system. These powerful

analysis techniques help to design warning systems adapted to the robotic agent

dynamics.

Finally, the system implementation is done using ROS or Robot Operating Sys-

tem in order to allow for direct real-world usage. A modular design approach is

used. The objective is to create a framework to be adapted for particular robots

or vehicles. A case study is presented with a di↵erential drive robot and a simple

task. The task and possible conflicts are encoded in a hybrid automaton and a basic

warning system model is proposed and simulated.

3

Chapter 1. Introduction

1.3 Related Work

The modeling of robotic agents dynamics is established as an application of hybrid

automata theory, or more in general hybrid system, model [2]. In particular, the

techniques developed to compute the reachability of the avoid set [3] would help

answer questions such as: can we guarantee that an alarm will be raised one second

before reaching the avoid set? (conflict condition). This provides a wealth of pub-

lications available to properly design a hybrid automaton model and analyze their

expected system response.

In this work, the hybrid automaton model is used specifically to model the nom-

inal operation of the robot. Related work in encoding the robotic agent behavior

based control system in the hybrid automata framework [4] is available. Similar

to the approach used in this work, each mode in a hybrid automaton represents a

specific robot behavior.

The research of shared control vehicles is prominent in commercial air trans-

portation systems. A relevant topic is the design of the user interface to provide

information to the aircraft pilot.The work on the verification of such systems [5] was

influential on this thesis; the authors implemented a procedural automaton to ana-

lyze the system, where each mode represents a step in the aircraft landing process.

Warning systems are designed taking into consideration the human agent response.

The objective is that the human would perform corrective actions in the event of

a conflict, however the information might not be available or the vehicle interface

might not be able to show it in the proper context.

In air transportation systems, the pilot intentions has been studied using proba-

bilistic trajectory prediction [6]. In addition, many short-term trajectory prediction

methods [7] have been studied. Due to the modular implementation used in this

thesis, the trajectory prediction method can be replaced without a↵ecting the rest

4

Chapter 1. Introduction

of the system.

DIFT [1] has been implemented in hardware [8] and software [9], as a mechanism

to prevent malicious attacks in computer security. The key mechanism of tagging

input information as either legitimate or spurious and tracking the evolution of these

tags is present in these implementations. In particular, [10] proposes a decoupling

of DIFT with a dedicated coprocessor. Their motivation is based on simplecity and

economy; in this thesis, the decoupling of DIFT with the main process is advanta-

geous as a basis for adaptation on existing vehicles. Ideally, the warning system and

associated information flow tracking should be done in parallel with the process with

minimum e↵ect.

Although research on conflict prediction and avoidance general frameworks is

abundant, the study of warning system frameworks tend to focus on more specific

solutions. In [11], a warning system is proposed which uses evolving neural networks

algorithms. Their approach included a conflict prediction method and a contex-

tual graphical user interface providing sensor information regarding the conflict (a

collision) and the current warning level.

Similar work on warning systems involving prediction methods includes a practi-

cal example in [12]. Their focus is on the trajectory prediction of both their vehicles

and pedestrians to detect possible future collisions between them. The warning sys-

tem implemented and shown in [13] includes two di↵erent alarm levels, a light and

sound at first and a higher level of alarm that actually breaks the vehicle automatic.

This is inline with the warning system design approach proposed in this thesis in

regards to conflict detection, however it does not include the di↵erence between spu-

rious and legitimate inputs.

5

Chapter 2

Preliminaries

2.1 Hybrid Automata

The following hybrid automata framework [14] will be used to describe the nominal

behavior of the robotic agent. The hybrid automatonH is a collection which includes

the set of continuous states, the set of discrete states or modes Q and for each mode:

the set of functions F, domain, edges, guard conditions G and reset map. For a

mode index e, the dynamics of the nonlinear agent can be described as:

x(k + 1) = F[e](x(k),u(k)) (2.1)

Where x is the state of the system and u(k) is the human agent input. Using

a nominal input un(k), written in terms of the state and nominal robotic agent

operation, results in the hybrid automata discrete-time dynamics model:

x(k + 1) = F

n[e](x(k)), (2.2)

6

Chapter 2. Preliminaries

To refer to specific member of a set, e.g. q[e] 2 Q, the following indexes will be

used:

i is the state index,

j is the input index,

e is the hybrid automata mode index,

k is the discrete time index.

2.2 Dynamic Information Flow Tracking

Dynamic Information Flow Tracking or DIFT, was created originally as a hardware

security mechanism to prevent attackers from taking control or damaging the pro-

gram in a computing system.

DIFT works by dynamically tracking the sources of data coming into the memory.

The sources are divided between legitimate sources and spurious sources. One cited

possible spurious source, for example, would be data taken from the communication

ports. When data from spurious sources is written into the memory a tag is assigned

to that memory location. DIFT then tracks the use of this spurious data and assigns

a dependency spurious tag to all the memory locations a↵ected by it. The tracking

is dynamic due that if legitimate data is stored in a memory location previously

considered spurious, the tag of that memory location would change, however any

spurious dependencies created would remain until changed.

Once a memory location has been tagged as spurious, the computer hardware

system is configured to warn of specific uses of this data. For example, if the spurious

data is used as a program pointer.

In particular, a warning is raised whenever a memory location tagged as spurious

is used as a program instruction. Using a variety of attacks, such as a memory

7

Chapter 2. Preliminaries

overflow, an attacker could write a program to memory disguised as legitimate data.

Once this program is ran by the hardware, without DIFT or a similar mechanism, it

could take control of the computing system and never return control to the original

program.

In this work, an analogy between a computer program and the hybrid automata

framework is drawn. Computer programs are ran by reading an executing instruc-

tions from the program memory in order until a jump is found to another block of

instructions. The orderly execution of a j block of instructions is made analogous to

the continuous evolution of the hybrid automaton dynamic system for mode j. The

decision or conditional jumps between blocks of instructions in a program are made

analogous to the system of edges and guards in a hybrid automaton.

2.3 Artificial Neural Networks

Artificial neural networks, inspired from biological neural networks, can be used as

a modeling system. Each computing node in the network is called a neuron. The

edges between nodes are directional and weighted. In general, teaching or training a

neural network refers to the adjustment of the network connection weights to achieve

a desired model behavior.

In particular, a dynamically driven recurrent neural network is used in this work.

Dynamically driven recurrent neural networks have feedback or recurrent connec-

tions. A State-Space model, similar to the models used in feedback systems in

control theory, is available for this architecture. Artificial neural networks are good

candidates to find a model based on available data. The network can be trained,

using optimization techniques like gradient descent, to minimize the error between a

desired response and the actual system response.

8

Chapter 2. Preliminaries

2.4 ROS: Robot Operating System

ROS or Robot Operating System allows for usage of advanced algorithms and tools

related to robotics. It is written entirely as open-source software.

ROS is not a proper operating system, it must be installed on an existing op-

erating system. Currently, the Linux Ubuntu distribution is the only one o�cially

supported. Other experimental installations exist for OS X, UbuntuARM and oth-

ers. ROS does not provide real-time control, however it can be interfaced with on

board real-time control computers as in the case of the Atlas Robot [15]. Each task

and element of the robot can be written as a di↵erent process and ROS takes care

of their coordination and execution.

Each computational process in ROS is called a node. There is a special node called

”Master” which coordinates the connection and execution between all other nodes.

The nodes are connected using topics, which are named directed edges between the

output of a node and the input of other nodes. The combination of nodes and topics

form a computational artificial network.

The information on topics are shared using either ROS standardized messages or

custom made messages. Common standardized robotic messages include the robot

pose or sensor readings. A node is said to publish a topic when it makes it available

for any other nodes to read. Nodes can read any published topic from other nodes

by subscribing to those topics.

Libraries are available to use existing sensor and actuator drivers and create an

API (Application Programming Interface) to fit their input/output mapping into a

ROS formatting. In addition, many other open-source software have been interfaced

with ROS. This allows a ROS developer to use advanced algorithms without fully

understanding their inner mechanisms.

9

Chapter 3

Methodology

3.1 Warning System Design

3.1.1 Spurious Tag

The nominal operation of the vehicle under shared-control is modeled using the

hybrid automata framework. Where every discrete event in a hybrid automaton

represents a mode of operation, e.g. plane landing or cruising could be broken into

2 or more modes.

The human agent provides inputs to maneuver the vehicle. The likely distribution

of the human nominal inputs is considered available data. The current inputs are

compared with the nominal inputs: similar inputs are considered legitimate and

dissimilar inputs are considered to be spurious.

For example, for a car cruising on the highway the steering wheel is expected to

have small and slow deviations from the center, a sharp turn during this particular

mode would signal possible conflicts.

10

Chapter 3. Methodology

The nominal input distribution for each input u[j], for each discrete event q[e],

will be represented in general by a distribution function similar to a probability

density function. The nominal input distributions could be then approximated based

on previous inputs with adequate operation or known probability density functions

such as Gaussian or normal distributions. The maximum(s) of the nominal input

distribution would represent the nominal input(s):

u

n[j,e] = argmax
u[j,e]

f

n[j,e](u[j,e]), (3.1)

where f

n[j,e] is the nominal input distribution for input index j and hybrid au-

tomata mode index e. An input equal to the nominal input is assigned the maximum

likelihood of being a legitimate input. In order to compare the legitimate or spurious

qualities of various inputs, the function is normalized so that the value “1” always

represents legitimate and the value “0” represents spurious. I define the normalized

legitimate tag function �[j,e] at time k as:

�[j,e](k) =
f

n[j,e](uc[j](k))

f

n[j,e](un[j,e])
, (3.2)

which maps each current input u

c[j] to a legitimate tag value. The normalized

spurious tag function &[j,e] is then defined as the complement of the normalized legit-

imate tag:

&[j,e](k) = 1� �[j,e](k). (3.3)

11

Chapter 3. Methodology

3.1.2 Mode Tracker

Using the hybrid automata framework, the current mode index e is continuously

tracked. Starting at mode q[e] as defined in the hybrid automaton Init set, the guards

conditions are verified. When a guard condition is activated, the mode changes

according to the particular model of the vehicle. The nominal input distributions,

and thus the legitimate and spurious tag functions, will change accordingly to the new

index e. Which means that inputs that were considered legitimate in the previous

mode, might become spurious in the new mode and vice versa. For example, a

plane that continues to ascend after reaching the cruising altitude and is expected

to change to cruising mode might indicate a conflict.

3.1.3 Trajectory Prediction

Due that actions are taken by a human agent with information not available to

the system, a prediction of the real input pattern is not considered. A short-term

trajectory prediction model is implemented holding the current inputs as constants

and observing the evolution of the possible conflicts at each time step. The prediction

will be done for a fixed time horizon t

p

which is chosen according to the dynamics of

the robot agent and expected tasks. A balance should be achieved when designing

this parameter, a larger time horizon would allow for more time for corrective actions

but would also increase the prediction error when the actions are not held constant.

With the current inputs uc(k) held constant, the dynamic model is simulated in

time for the fixed time horizon t

p

. During the simulation it is verified that the robot

agent does not enter any conflict condition. The conflict conditions will be in terms

of the avoid set x(k) 2 A [3] for this system. If the system reaches the avoid set, the

estimated time for conflict t
c

is calculated.

12

Chapter 3. Methodology

3.1.4 Warning Level

The warning system is modeled as a dynamic system. An output y[j](k) is defined

for each input u[j](k). The output of the warning system represents the warning

level associated with that input and is normalized such that y 2 [0, 1]. Using this

heuristic, alarms can be designed to be raised at di↵erent levels per input e.g. a low

level alarm when the warning level reaches 0.1 and a high level alarm when it reaches

0.9.

The warning level is calculated based on three factors: previous warning level, the

spurious tag of the current input and how imminent is a conflict in the finite horizon

trajectory prediction. The presence of a conflict heavily influences the system to

rise the warning level for all inputs, while the spurious tag of the current input only

raises the level associated with that input. With this information, a user interfacing

alarm system would be able to provide contextual information to the human agent.

Not covered in this work, a separate conflict response system could also be designed

to actuate the robotic agent to avoid the conflict if necessary.

The dynamic system model used for the warning level coincides with the model for

a single artificial neuron with negative self-feedback [17]. This is a useful model due

that accounts for the accumulation of the inputs history, given a more comprehensive

view on the human agent intentions. In addition, provides for a mechanism to reduce

the warning level as the robot agent is restored to safer conditions, i.e. the input

spurious tag has been reduced and/or the trajectory prediction conflict has been

resolved. The following are the equations describing the dynamic system:

v[j](k) = �'[j](v[j](k � 1))r[j] + &[j](k)w[j] + �[j](k)m[j], (3.4)

y[j] = '[j](v[j](k)), (3.5)

13

Chapter 3. Methodology

where:

v[j](k) 2 R is the warning level activation potential,

r[j] 2 R is the negative self-feedback gain,

&[j,e](k) 2 R is the input spuriousness tag function,

w[j] 2 R is a constant spurious tag gain,

�[j](k) 2 R is the conflict level,

m[j] 2 R is a constant conflict level gain,

'[j](·) is the warning level activation function,

y[j](k) 2 R is the warning level,

The three constant gains r[j], w[j] and m[j] are design parameters of the warning

system for each input j. In addition to system modeling techniques, these gains can

be seen as weights in a single layer artificial neural network and could be learned if

training data is available.

Warning Level Activation Potential

Without any conflicts or spurious tags, Equation (3.4) reduces to:

v[j](k) = �'[j](v[j](k � 1))r[j],

which will drive the warning level activation potential v[j](k) to zero exponentially.

This will allow the system to lower the warning levels of a system once the conflict

has been resolved. This is a key component of using a dynamic system, the time to

forget will directly impact the allowable maneuverability of the vehicle outside of the

nominal operation.

14

Chapter 3. Methodology

Conflict Detection

The conflict level function will be defined as:

�[j](k) =
t

a

t

c

, (3.6)

where:

t

a

maneuverability time,

t

c

time to conflict,

t

f

trajectory tracking time horizon,

The maneuverability time t

a

depends on the robot maneuverability characteris-

tics. It must be chosen to be smaller than the simulation time horizon t

c

with some

safety factor. This will allow the human agent to maneuver the robot away from the

conflict once the warning system provides an alert.

When the conflict is found exactly at the time horizon t

f

, meaning t

f

= t

c

, the

conflict level � will be ta
tf
.

This conflict condition of t
c

= t

a

will add the constant gain m[j] to the warning

level activation potential even if the inputs are not spurious. Without any spurious

tags and a high level when a conflict is present �[j](k) = 1, (Equation 3.4) reduces

to:

v[j](k) = �'[j](v[j](k � 1))r[j] +m[j],

which will drive the warning level activation potential v[j](k) to m[j] exponentially.

If the conflict worsens so that t
c

! 0, the conflict level function which will have

hyperbolic growth and will raise alarms regardless of all other parameters in the

system.

15

Chapter 4

Framework Tools

The warning system framework was implemented using ROS [18] an open-source

Robot Operating System. The code for software implementation is available with an

open-source license at [19]. In addition, an independent hybrid automata simulator

was written in the Python programming language for this work. It is also available

at [19] as “hasimpy”, or Hybrid Automata Simulator in Python.

4.1 Hybrid Automata Simulator

An independent simulator was built to be a key piece of this framework. The hybrid

automaton model is created using the same structure described in Section 2.1. The

size and complexity of the automaton model only limited by the simulating machine

and the programming language.

The characteristics of each system mode, such as the guards and edges, can be

easily encoded as Python functions and added to an mode object. After giving an

initial state and mode, the system will provide the projected path. The simulator

can take a control law depending on the mode, state and/or time.

16

Chapter 4. Framework Tools

4.2 ROS Implementation

At a basic level, ROS uses Nodes to represent processes and Topics to represent

topics being communicated though Nodes. The Nodes/Topics representation for the

framework was made to match the di↵erent methods defined in Chapter 3. Figure 4.1

shows a graph with the connections between Nodes (Ovals) and other Nodes, using

Topics (Rectangles) directly from ROS. Figure 4.2 shows a more legible diagram of

the same implementation.

By using ROS the warning system framework can be implemented directly to a

large variety of robots compatible or made compatible with the ROS API (Applica-

tion Programming Interface). Another possibility is to gather the state and input

information of the vehicle and implement the warning system in parallel to the vehi-

cle operation. This would be useful for implementation on existing robots that are

not compatible with the ROS API, like cargo trucks or heavy machinery vehicles.

Nodes or processes are connected as shown in Figure 4.1. The specific robot topic

names shown in this graph correspond to the Turtlebot, a di↵erential drive robot.

All robot topics names in ROS are su�xed with the robot name. This allows for the

identification of the topic in the event of multiple robots. Specific robot elements in

a robot can also have their own topic names unique su�x, for example to separate

the pose of the right arm from the pose of the left arm.

Figure 4.1: ROS Nodes and Topics for Warning System Implementation

17

Chapter 4. Framework Tools

Human
Input

Robotic
Agent

Mode
Tracker

Trajectory
Prediction

Dift

Warning
System

Warning
levels

u

u

tags

conflictx

x
e
e

u

Figure 4.2: System Diagram for Warning System Implementation

4.2.1 Human Input

This node takes the signals from all human controls, like the steering wheel or joy-

stick, and encodes it into a standard ROS message. The message is called a “Twist”

which contains the linear and angular velocities for all 3 axis.

The message can be published to any actuator or to a group of actuators. In the

case of a group of actuators, the message will be sent directly to the robot driver

which would process the message and send appropriate activation signals to all its

motors. This encapsulates the complexity of the robot construction details for the

robot user.

Publishes: Actuation command (Twist message at /turtle1/cmd vel)

4.2.2 Robotic Agent

This node handles the robot driver. It will be able to publish topics with information

from its sensors and internal processes. As a minimum, it will be subscribed to a

command topic, where other node will be able to move the robot with a twist message.

18

Chapter 4. Framework Tools

One significant advantage of this system is the ability to change the robot or an

element in the robot and have the same code work. In addition, ROS provides its

own simulator ”Gazebo”, which was used during the Darpa Robotic Challenge [20].

For several robots, a robot model can be installed in the simulator and the virtual

robot can be interacted using ROS nodes and topics. This makes the warning system

ROS implementation neutral to using the Gazebo simulator virtual robot or a real

robot. For this thesis, a small simulator specific to the di↵erential drive type of robot

was developed. The simulator was developed entirely to be compatible with ROS,

subscribing and publishing to the same topics as the real robot does.

Subscribes: Actuation command (Twist message at /turtle1/cmd vel)

Publishes: Robot pose (PoseStamped message at /turtle1/pose)

4.2.3 Mode tracker

The mode tracker is a version of the hybrid automata simulator hasimpy described

in Section 4.1. Instead of simulating the robot dynamics or kinematics, it just tracks

the real robot behavior to determine when a change in mode occurs, i.e., when any

of the guards in the current mode are activated. The mode tracker is initialized at

system start. It will subscribe to any state or condition stated in the guards in order

to make a decision.

Subscribes: Robot pose (PoseStamped message at /turtle1/pose)

Publishes: Mode index (UInt16 or Unsigned 16-bit Integer message at /q)

19

Chapter 4. Framework Tools

4.2.4 Trajectory Prediction

Starting from the current mode index provided by the mode tracker, this node in-

terfaces with hasimpy to provide information regarding the current trajectory pre-

diction. The system uses the current actuation command provided by the user for

the simulation time horizon. During the simulation, it automatically registers any

change in mode and verifies if the robot reaches a conflict (encoded as the avoid set)

for that mode.

It uses a standard ROS navigation message called “Path” to publish the projected

path to the graphical user interface. The information from the path is not used by

the warning system directly, it is instead contextual information that could be shown

to the user.

The current conflict level, as defined in Subsection 3.1.4, is published using a

custom message type called “Conflict” which contains information regarding the

first conflict found and the time to reach the conflict.

Subscribes: Robot pose (PoseStamped message at /turtle1/pose)

Subscribes: Mode index (UInt16 or Unsigned 16-bit Integer message at /q)

Subscribes: Actuation command (Twist message at /turtle1/cmd vel)

Publishes: Conflict level (custom Conflict message at /conflict)

Publishes: Navigation path (Path message at /paths)

20

Chapter 4. Framework Tools

4.2.5 Dift

This nodes compares the current human agent input with the nominal inputs ex-

pected for the current mode index. For each input, a spuriousness tag is assigned

following Subsection 3.1.1.

A vector containing all the input spuriousness tags is published in a custom

message called “Tags”.

Subscribes: Mode index (UInt16 or Unsigned 16-bit Integer message at /q)

Subscribes: Actuation command (Twist message at /turtle1/cmd vel)

Publishes: Spuriousness tags (custom Tags message at /tags)

4.2.6 Gui

A basic GUI or graphical user interface was created for this system. The interface

was created using the Qt Framework, in particular the Python library PyQtGraph

[21], a Python graphics library.

Subscribes: Navigation path (Path message at /paths)

Subscribes: Robot pose (PoseStamped message at /turtle1/pose)

Figure 4.3 shows a screen shot of the basic GUI developed. The GUI is divided

in two areas: top and bottom. In the top, the two white circles with the red needle

indicate the current input level.

21

Chapter 4. Framework Tools

In addition, it shows green zones to help the human agent know the nominal

values for the current mode. The pie chart type indicators next to them indicate the

current:

• Spurious Tag in yellow.

• Conflict level in red.

• Warning level in orange.

The robot is represented as a grey arrow head and the GUI is designed to show

the current path in the 2D plane predicted by the trajectory prediction model.

Figure 4.3: Case Study GUI

22

Chapter 5

Case Study

For this case study, open loop test inputs with a desired response will be used to

the chose the parameters of basic a warning system using the framework described

in this thesis.

A solution of the system dynamics and parameter design is provided using Control

Theory in Section 5.6 and Recurrent Neural Networks in Section 5.7.

A demonstration of the system in action is available at [23].

5.1 Robotic and Human Agent

The robotic agent used was a Turtlebot, a ROS compatible di↵erential drive robot. A

human agent can drive the robot using remote control and a graphical user interface

(Topic “/Gui”) on a separate computer.

The inputs for this robot, by its design, are the forward velocity ⌫ and angular

velocity !. Based on this, the trajectory prediction process will be using a kinematic

model to predict the Turtlebot behavior.

23

Chapter 5. Case Study

5.2 Hybrid Automaton Model

A single hybrid automaton will be used for the case study. The hybrid automaton

model used will be the following:

x = [x, y, ✓] (5.1)

u = [u[0], u[1]] = [⌫, !] (5.2)

Q = {q[0], q[1]} = {Straight, Curve} (5.3)

F = {F
turtle

(u), F
turtle

(u)} (5.4)

G = {x >= 2 or x <= �2, x < 2 and x > �2} (5.5)

A = {A1,A2} (5.6)

A1 = A2 = x > 4 or x < �4 or y > 3 or y < �3 (5.7)

where:

x, y are the position coordinates,

✓ is the orientation angle,

⌫ is the linear velocity,

! is the angular velocity.

The equation describing the continuous-time kinematics in this robot is:

ẋ(t) =

2

6664

ẋ

ẏ

✓̇

3

7775
=

2

6664

⌫ cos(✓)

⌫ sin(✓)

!

3

7775
(5.8)

Equation 5.8 will be used for the trajectory prediction process, which can use a

continuous-time or discrete-time equation.

24

Chapter 5. Case Study

5.3 Nominal Input Distributions

The system has 2 inputs and 2 modes, which results in 4 nominal input distributions

or one nominal input distribution per input, per mode. For this case study, Gaussian

distributions are used.

fn[j,e] =
1

�

[j,e]

p
2⇡

e

�
(u�µ[j,e])

2

2(�[j,e])
2
. (5.9)

The distribution function is normalized using equation 3.2, to obtain the legiti-

mate tag function �[j,e] and the spurious tag function &[j,e]. The distribution mean

will be set to the nominal value for that input and mode, so that µ[j,e] = u

n[j,e]. For

a semi-circle of radius = 1 and clockwise movement desired, the nominal inputs are

shown below, the resulting path ”racetrack” is shown in Figure 5.1.

u

n[j=0,e=0] = 0.2

u

n[j=0,e=1] = 0.2

u

n[j=1,e=0] = 0.0

u

n[j=1,e=1] = �0.2

The scaling factor � for the nominal input distribution functions in Equation 5.3

are:

25

Chapter 5. Case Study

(�[j=0,e=0])
2 = 0.1

(�[j=0,e=1])
2 = 0.1

(�[j=1,e=0])
2 = 0.1

(�[j=1,e=1])
2 = 0.05

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

q [1] q [0] q [1]

A

racetrack

Figure 5.1: Hybrid automaton modes {q[0], q[1]}, racetrack example path and avoid
set A.

26

Chapter 5. Case Study

5.4 Alarm Thresholds

Using the warning level value, alarm thresholds can be configured to trigger graphical

and/or auditory alarms to the human agent. A basic alarm thresholds configuration

desired for this case study is shown in Table 5.1

Table 5.1: Alarm Threshold Configuration Scheme

Spurious Tag Conflict Warning Level

None None None

Low None Low

High None Medium

None Low Medium

None High High

Low Low Medium

High Low Medium

Low High High

High High High

Where the following alarm ranges are defined:

None y < 0.1,

Low y >= 0.1 and y < 0.3,

Medium y >= 0.3 and y < 0.7,

High y >= 0.7

Where higher levels of alarm might trigger di↵erent responses in the vehicle con-

trol panel warnings or activate automated responses for a particular condition.

27

Chapter 5. Case Study

5.5 Test Inputs

During these test inputs, combinations from Table 5.1 are used. The following se-

quence of events will occur:

1. Robot uses nominal inputs.

2. Spurious inputs and/or future conflicts detected.

3. Robot recuperates to no warning level conditions.

For consistency the following variables will be used to indicate the time associated

with these events:

t0 simulation start,

t

ss

spurious inputs start,

t

se

spurious inputs end,

t

cs

future conflict present start,

t

ce

future conflict present end,

For each test input, a desired warning level response will be provided following the

characteristics of Table 5.1. In addition to the desired warning level, a ramp up/ramp

down is added to the desired values to empathize that a dynamic response is possible

from the warning system. This would contrast with performing a static mapping from

spurious tag and conflict level to the warning level, which would lose the history of

previous warning levels and thus possibly lose context. The ramp up/down time

chosen is 1.0 seconds, based on the robot maneuverability characteristics.

The start time of the desired ramp up response will be 1.0 seconds after t

ss

or

t

cs

, the end time of the desired ramp up time will be t

ss

or t
cs

, depending which is

28

Chapter 5. Case Study

present first. The start time of the desired ramp down response will be t
se

or t
ce

, the

end time of the desired ramp down time will be 1.0 seconds after t
se

or t
ce

, depending

which is present last.

During all the test inputs, the forward velocity ⌫ remains constant at the nominal

input value. All maneuvers are performed using only the angular velocity input !

with the intention of observing a clear relationship between the change in input

variable and warning level.

For each test input, 3 figures are provided: the path taken by the robot, the !

input values, the conflict level and the spuriousness tag or dift tag based on Section

5.3.

29

Chapter 5. Case Study

5.5.1 Arc Test Input: Low spurious tag, No conflict level

The robot is driven from the initial conditions:
2

66664

x0

y0

✓0

3

77775
=

2

66664

�1.0

1.0

0.0

3

77775

This test represents a change in mode in the wrong time. The movement after

t

ss

would be the nominal operation in q[1], however it is considered spurious in q[0].

The spurious tag is low and constant at & = 0.181269 during the arch section.

�4 �2 0 2 4

x (m)

�3

�2

�1

0

1

2

3

y
(
m

)

Path

racetrack

avoid boundary

tss

tse

Figure 5.2: Path for Arc Test Input

30

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

!

!

tss

tse

Figure 5.3: Inputs for Arc Test Input

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

Conflict level

Dift tag

tss

tse

Figure 5.4: Dift tags and Conflict level for Arc Test Input

31

Chapter 5. Case Study

5.5.2 Diagonal Test Input: No spurious tag, High conflict

level

The robot is driven from the initial conditions:
2

66664

x0

y0

✓0

3

77775
=

2

66664

�1.0

1.0

⇡

4

3

77775

During this test input the robotic agent uses nominal inputs for mode q[0], however

due that it started in an initial yaw angle ✓ of 45 �, the robot has a trajectory that

will result in a conflict if not corrected. In order to avoid the collision the robot uses

spurious inputs. However, following the scheme in Table 5.1, the warning level is

expected to decrease due that conflicts alone are considered worst cases than spurious

inputs alone.

32

Chapter 5. Case Study

Figure 5.5: Path for Diagonal Test Input

33

Chapter 5. Case Study

0 2 4 6 8

Time (s)

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

!

!

tss

tse

tcs

tce

Figure 5.6: Inputs for Diagonal Test Input

0 2 4 6 8

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

Conflict level

Dift tag

tss

tse

tcs

tce

Figure 5.7: Dift tags and Conflict level for Diagonal Test Input

34

Chapter 5. Case Study

5.5.3 Bump Test Input: Low spurious tag, Medium conflict

level

The robot is driven from the initial conditions:
2

66664

x0

y0

✓0

3

77775
=

2

66664

�2.0

1.0

0.0

3

77775

This is a more complex input pattern which involves both spurious inputs and a

expected conflict. This would be, for example, an aggressive maneuver to avoid an

obstacle.

�4 �2 0 2 4

x (m)

�3

�2

�1

0

1

2

3

y
(
m

)

Path

racetrack

avoid boundary

tss

tse

tcs

tce

Figure 5.8: Path for Bump Test Input

35

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

!

!

tss

tse

tcs

tce

Figure 5.9: Inputs for Bump Test Input

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

Conflict level

Dift tag

tss

tse

tcs

tce

Figure 5.10: Dift tags and Conflict level for Bump Test Input

36

Chapter 5. Case Study

5.6 Control Theory Method

The warning level activation function '(·) from Subsection 3.1.4 is replaced for a

second-order system response and a saturation function. The saturation function will

saturate the response to the desired warning level range from 0 to 1. The parameters

of the system are designed in the frequency domain due to the availability of closed-

form solutions for a general second-order system [22]. The system block diagram for

a general second order system is shown Figure 5.11.

Figure 5.11: General second order system block diagram

In this case, an underdamped second-order system is desired with a damping ratio

of 0.8 and a settling time of 1 second corresponding with the desired ramp up/down

time. In the frequency domain, this results in Figure 5.12 and the following transfer

function:

G(s) =
25

s

2 + 8s+ 25
(5.10)

37

Chapter 5. Case Study

Figure 5.12: Second order system block diagram used

The inputs to the second-order system remain a linear combination of the conflict

level � and the spurious tag &.

The weight or gain m for the conflict level is chosen as 0.9 following Equation 5.1

and Table 5.1. For conflict level of 1, the warning level will converge at 0.9, which

is approximately in the middle of the high alarm level range. Similarly, gain w is

chosen as 0.5, which is approximately in the middle of the medium alarm level range.

The system was simulated using the 3 test inputs explained in Section 5.5.

The following plots show the warning level desired response and saturated second-

order response. The construction of the desired response is based on Table 5.1. Flat

values were used for desired warning levels with spurious inputs following the spu-

rious tags observed in the simulations, adding ramps up and and down as indicated

in Section 5.5. For the section of rapid increase in conflict level, a straight line was

used as desired response reference.

The warning level provided by the second-order response function converges to

the desired values and shows the desired ramp up/down characteristics.

38

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

second order response

tss

tse

Figure 5.13: Desired vs Learned Warning levels for Arc Test Input

39

Chapter 5. Case Study

0 2 4 6 8

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

second order response

tss

tse

tcs

tce

Figure 5.14: Desired vs Learned Warning levels for Diagonal Test Input

40

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

second order response

tss

tse

tcs

tce

Figure 5.15: Desired vs Learned Warning levels for Bump Test Input

41

Chapter 5. Case Study

5.7 Recurrent Neural Network Method

A separate method was used to find the a warning level dynamic response using

recurrent neural networks. This exploits the coincidence between the dynamic model

presented in 3.1 and a recurrent neural network model for a single neuron.

The parameters of the system were calculated using a modified version of the real-

time recurrent learning algorithm [17]. The modification stems from having desired

data fitting a type of dynamic response from the simulation, instead of an input-

output mapping. In addition, 3 simulations were done following the 3 test inputs.

The chosen method trained the weights on each test input separately, averaged the

resulting weights and then trained the network using all the test inputs. Details of

the approach follow below.

The following steps were followed for each test input. The warning level inputs

are the same linear combination of the conflict level �, the spurious tag & and the

previous value y(k�1). The desired values for the dynamic system are the same as in

Section 5.6. The weights of the linear combination, in addition to a bias input set to

1 used for this algorithm, form the weight vector W . Finding the appropriate value

for W so that the warning level response fits the desired response is the objective of

this method.

The system must be initialized with a value for W , the initial value used was:

W0 = [�0.15, 0.1, 0.3, 0.4]

The following steps were followed to train the system:

1. Initialize same W0 to all test inputs.

2. For each test input:

42

Chapter 5. Case Study

• Present all the test input data with the current weights and record the

learning algorithm �W .

• Apply a change in W , according to W

new

= W

previous

+ �W , until con-

vergence to W

final

.

• Calculate the total change from the vector W0, �W

total

= W0 - W
final

.

3. Calculate the mean of all the �W

total

4. Re-initialize same W

mean

= W0 + �W

mean

to all test inputs.

5. Present the input data from all the test inputs sequentially and add the learning

algorithm �W from each one.

6. Apply a change in W to all the test inputs, according to W

new

= W

previous

+

�W , until convergence to W

final

.

The warning level activation function '[j](·) used corresponds to the following

sigmoid function:

'[j](v[j](k)) =
1

1 + exp (�↵(v[j](k)� 0.5))
, (5.11)

where ↵ > 0 is a design parameter chosen so that for v[j](k) = 0, '[j](v[j](k)) ⇡ 0;

and for v[j](k) = 1, '[j](v[j](k)) ⇡ 1. For ↵ = 10, the activation function is shown in

Figure 5.16

The response of the recurrent neural network system converged the warning level

at the desired ranges (low, medium and high) however not at the desired values

presented. In addition, the ramp up and ramp down desired characteristic was not

present in this method. The learning procedure chosen was not su�ciently robust

to try a wide range of initialization weights, values close to the solution were needed

for convergence. This limitation can be reduced by designing the simulation experi-

ments, with input and desired outputs, in conjunction with the learning procedure.

43

Chapter 5. Case Study

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

ϕ

Figure 5.16: Activation Function for ↵ = 10

44

Chapter 5. Case Study

0 2 4 6 8

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

Learned

tss

tse

tcs

tce

Figure 5.17: Desired vs Learned Warning levels for Diagonal Test Input

45

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

Learned

tss

tse

Figure 5.18: Desired vs Learned Warning levels for Arch Test Input

46

Chapter 5. Case Study

�5 0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

W
a
r
n

i
n

g
l
e
v
e
l

desired

Learned

tss

tse

tcs

tce

Figure 5.19: Desired vs Learned Warning levels for Bump Test Input

47

Chapter 6

Conclusions

A real-world warning system framework was developed in this thesis. The provided

tools can be used to design and use a warning system on a robotic agent under shared

control. In addition, the theoretical framework can be used to further research on a

warning system theory for robotics and other vehicles under shared control.

This thesis presented a contribution to forming such theory by applying an anal-

ogy to Dynamic Information Flow Tracking methods, which are able to provide an

alarm before any conflicts arise. These characteristics should make it attractive to

applications such as commercial airplanes warning systems, particularly due to the

complexity and number of inputs available to the human agent and the di�culty of

recovering from spurious inputs.

The framework used an encoding of the nominal operation of the robotic and

human agent by applying behavior based hybrid automata. The formulation of all

the components of the framework in terms of the hybrid automata theory helps

assure that performance analysis of the resulting warning system will be available.

Moreover, the implementation using open-source software and robotic software tools,

will increase the probability of its adaption and growth.

48

Chapter 6. Conclusions

6.1 Future Work

Performance analysis tools will be of great utility for this framework. Combining

techniques developed to compute the reachability of the avoid set and the warning

system parameters to find weak points or even optimize its behavior.

A key question to solve will be: Can it be guaranteed for a particular warning

system design that a warning will be provided before reaching a conflict? Ideally

before the maneuverability time. For example, in the case study presented the ori-

entation of the robot ✓ was not included in the definition of the avoid set. By not

including this variable, it is easy to see that if the robot travels parallel and close to

the avoid set, a small turn would result in reaching the avoid set boundary. For more

complex robots with dynamics of higher conventionality, a modified computation of

the reachability of the avoid set would help future warning system designers.

49

References

[1] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program execution
via dynamic information flow tracking.” in ASPLOS, S. Mukherjee and K. S.
McKinley, Eds. ACM, pp. 85–96.

[2] P. Antsaklis, J. Stiver, and M. Lemmon, “Hybrid system modeling and
autonomous control systems,” in Hybrid Systems, ser. Lecture Notes in
Computer Science, R. Grossman, A. Nerode, A. Ravn, and H. Rischel, Eds.
Springer Berlin Heidelberg, 1993, vol. 736, pp. 366–392. [Online]. Available:
http://dx.doi.org/10.1007/3-540-57318-6 37

[3] C. J. Tomlin, “Toward reachability-based controller design for hybrid systems
in robotics,” 2011.

[4] M. Egerstedt, K. Johansson, J. Lygeros, and S. Sastry, “Behavior based robotics
using regularized hybrid automata,” in Decision and Control, 1999. Proceedings
of the 38th IEEE Conference on, vol. 4, 1999, pp. 3400–3405 vol.4.

[5] M. Oishi, I. Mitchell, A. Bayen, C. Tomlin, and A. Degani, “Hybrid verifica-
tion of an interface for an automatic landing,” in Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, vol. 2, Dec 2002, pp. 1607–1613
vol.2.

[6] Inseok Hwang and Chze Eng Seah, “Intent-based probabilistic conflict
detection for the next generation air transportation system,” Proceedings of
the IEEE, vol. 96, no. 12, pp. 2040–2059, Dec. 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4745649

[7] G. Chatterji, “Short-term trajectory prediction methods,” 2014/09/27 1999.
[Online]. Available: http://dx.doi.org/10.2514/6.1999-4233

[8] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta, “Dynamic information
flow tracking on multicores,” in Proceedings of the Workshop on Interaction

50

References

between Compilers and Computer Architectures, 2008. [Online]. Available:
http://homepages.inf.ed.ac.uk/vnagaraj/papers/interact08.pdf

[9] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible information
flow architecture for software security,” in ACM SIGARCH Computer
Architecture News, vol. 35. ACM, 2007, pp. 482–493. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1250722

[10] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic information
flow tracking with a dedicated coprocessor,” in Dependable Systems Networks,
2009. DSN ’09. IEEE/IFIP International Conference on, June 2009, pp. 105–
114.

[11] N. Kohl, K. Stanley, R. Miikkulainen, M. Samples, and R. Sherony,
“Evolving a real-world vehicle warning system,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2006. [Online]. Available:
http://nn.cs.utexas.edu/?kohl:gecco06

[12] E. Coelingh, A. Eidehall, and M. Bengtsson, “Collision warning with full auto
brake and pedestrian detection - a practical example of automatic emergency
braking,” in Intelligent Transportation Systems (ITSC), 2010 13th International
IEEE Conference on, Sept 2010, pp. 155–160.

[13] E. Ackerman, “Volvo tech makes trucks smart enough to not run
you over,” http://spectrum.ieee.org/cars-that-think/transportation/safety/
volvo-tech-makes-trucks-smart-enough-to-not-run-you-over, 2014.

[14] J. Lygeros, S. Sastry, and C. Tomlin, Hybrid Systems: Foundations, advanced
topics and applications. Springer Verlag, unpublished, 2012.

[15] BostonDynamics, “Atlas,” http://archive.darpa.mil/
roboticschallengetrialsarchive/files/ATLAS-Datasheet v15 DARPA.PDF,
2013.

[16] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

[17] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[18] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA Work-
shop on Open Source Software, 2009.

51

References

[19] R. Figueroa, “Warning system framework tools,” https://github.com/
rafafigueroa/wsdift, 2014.

[20] E. Ackerman, “Darpa’s virtual robotics challenge: Osrf gets simula-
tor ready,” http://spectrum.ieee.org/automaton/robotics/robotics-software/
osrf-prepares-for-darpa-virtual-robotics-challenge, 2013.

[21] L. Campagnola, “Pyqtgraph,” http://www.pyqtgraph.org/, 2012.

[22] N. Nise, Control Systems Engineering. Wiley, 2010. [Online]. Available:
http://books.google.com/books?id=WVA8PwAACAAJ

[23] R. Figueroa, “Warning system framework demo,” https://www.youtube.com/
user/RafaelFigueroaEng, 2014.

52

	University of New Mexico
	UNM Digital Repository
	6-26-2015

	Predictive Warning System for a Class of Shared-Control Vehicular CPS via Dynamic Information Flow Tracking.
	Rafael Figueroa
	Recommended Citation

	tmp.1472502609.pdf.pzx1n

