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Abstract

A common problem in developing new gimbal products is predicting performance.

At the beginning of the design stage, typically the proposal writing stage, it is critical

to be able to anticipate the performance of a design, which may still be very roughly

defined. Static performance metrics such as pointing accuracy are easier to predict

and can be related to position sensor resolution and compliance in the structure and

drive. Dynamic performance metrics such as rate tracking and bandwidth are much

more difficult to estimate. These dynamic parameters will serve as the results of this

paper.

A gimbal model is usually developed in this early stage of design. A model is

built for each axis as cross-coupling is not usually significant. The development of

each model is inherently dependent on the integrity of the parameters used. Some
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parameters may be easily accessible and clearly defined, such as manufacturer specifi-

cations for commercial-off-the-shelf (COTS) components. An example of these would

be motors. A motor datasheet will usually include specifications such as winding re-

sistance, torque constant, etc. Some parameters have to estimated such as drive

friction, structural rigidity and drive parameters. There is also much less certainty

in these estimates due to their dependence on the integrated, final system. Building

an accurate and sufficient model of the system is a challenging task.

This thesis developments and validates a single axis gimbal model. Following this

is a recursion on the model parameters based upon empirical data. Finally, appli-

cation of different control laws are evaluated in simulation on the model. First, a

classical output feedback law is implemented. Secondly, a state observer is imple-

mented with state feedback. State feedback coefficients are found using both pole

placement (PP) algorithms and linear quadratic regulation (LQR) optimal control

formulas.
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Chapter 1

Introduction

1.1 Overview

Gimbals are pointing devices used in many diverse industries. RIEtech Global R©

(RTG) produces gimbals for medical devices, military applications, research labo-

ratories and commercial products. The payloads are typically sensors but can also

include any item which needs to be positioned in a highly accurate manner. Gimbals

can have one to several axes of rotation. Some gimbals have inertial stabilization

which tracks a command with respect to an inertial frame of reference and some

actuate to a very accurate vector with respect to the base of the gimbal.

A newly prototyped gimbal is utilized for this thesis experiment. This gimbal has

been given the moniker DAYS, or Dual Axis, Yoke, Stabilized. This gimbal is shown

in Figure: 1.1. Although the gimbal is designed for stabilization, which involves

high accelerations and bandwidth, the feedback sensors utilized on this gimbal are

actually not inertial sensors, but encoders. Encoders measure axis angular position

with respect to the base.
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Chapter 1. Introduction

Figure 1.1: RIEtech Global DAYS gimbal
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Chapter 1. Introduction

The architecture of the gimbal’s azimuth axis system is shown in Figure: 1.2.

This illustrates the components of the system and their interaction. This gimbal

azimuth axis serves as the foundation for this thesis investigation.

Current 

command

Digital Signal 
Processor

Drive 
Stage

Motor

Encoder

Differentiation 
and smoothing

Voltage

Back EMF

Compensation
Analog 

Voltage

command

Rate 

feedback

Positional 

feedback

RotoLok© Drive

Torque 

commanded

Payload

Torque loss 

to coupling

Output Torque 

commanded

Torque loss 

to coupling

K

Figure 1.2: Block diagram of single axis system
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Chapter 1. Introduction

This investigation addresses the problem statement introduced in the abstract.

The problem scope encompasses several aspects of predicting a gimbal’s dynamic re-

sponse. These aspects include: physics-based modeling of the system, incorporating

empirical data, and simulating controllers.

In Chapter 2, a physics-based model is derived from the block diagram presented

in Figure: 1.2. This chapter also compares the frequency response of the model to

the empirical Bode plot of the gimbal azimuth axis. The model is then adjusted to

more closely approximate the gimbal and the potential sources of the discrepancies

are discussed. In Chapter 3, controllers are applied to the model and compared with

the performance of the gimbal. The gimbal software architecture is currently limited

to classical output-feedback control. A similar output feedback scheme is simulated

on the model, for direct comparison, as well as more advanced controls techniques

including state feedback using pole placement and linear quadratic control.

A sampling of relevant papers is presented next. These papers represent con-

temporary research in the field of gimbal modeling, simulation and controls. The

literature review provides both a survey of current similar research and a delineation

between current work and the work presented in this thesis.

1.2 Literature Review

Work presented by Skoglar in [1], represents recent and similar research. This re-

search includes the simulation and implementation of an aircraft mounted gimbal

which is used to track regions on the ground. This is identical to the intended appli-

cation of the DAYS system. This research includes development of a gimbal model

and simulation of application of LQR control theory.

The gimbal axis modeling portion of this work [1] utilizes a simplified model to

4



Chapter 1. Introduction

predict the output of each axis. The system modeled is similar to the DAYS axis

system, with the exception that a DC brushed motor is used for the drive in [1] and

the DAYS system uses brushless torquer motors. The dynamics are fairly similar as

well. This work [1] omits the motor inductance, a practice also used in this thesis.

Skoglar also omits static friction but uses linear viscous friction. Note that in this

thesis static friction and linear viscous friction are modeled and used. The modeling

choices made for the DAYS gimbal are discussed further in Chapter 2: Physics-based

Mathematical Model. It is difficult to directly compare results between [1] and the

DAYS axis simulation as the results provided in [1] are of the final vector tracking

and not of the individual axis frequency response or step response.

This work also addresses the application, in simulation, of classical control PID

filters and LQR state feedback. Models of the link rigidity are used to indicate

compliance in the drive structure. Because of this, Skoglar is able to predict when

the actuator is tracking well and when it cannot perform. First, PI, PD and PID

control techniques are simulated and are not able to compensate for the compliance in

his simulations. The LQR simulation includes the linearization of the gimbal model

and the application of state feedback. The model is linearized about a value for each

state using the derivative of the state at that value. This model is then placed in a

state space representation to facilitate derivation of LQR state feedback coefficients.

This is a step which is accomplished using the Matlab function ”linmod.m” in this

thesis. The results for the LQR tracking are impressive.

In summary, work in [1] envelopes the area of research described in this thesis.

However, the scope is applied on a larger scale and does not include as detailed of a

model of the axis drive mechanism.

Another source of similar research is [2]. This research includes modeling and

simulation of a two axis, stabilized gimbal. This paper focuses primarily on the

development of the model, but it does produce some limited results in the form of a

5



Chapter 1. Introduction

Bode plot. The model development portion is thorough and worthy of discussion.

Two methods of modeling are discussed in [2]: rigid body models and flexible

body models. The authors describe rigid body models as having many simplifications.

These include assuming that the axes rotate about the same point always and that

they are always orthogonal. A notable limitation is that structural modes can limit

the bandwidth of a system and should be modeled if possible. This is a key distinction

between the work presented in [2] and work presented in this thesis: the RTG DAYS

gimbal dynamics which are not accounted for in the physics-based model are input

from empirical Bode data. Work in [2] utilizes finite element analysis and some

simplifications to feed the model.

Results from [2] reveal a Bode plot of the azimuth transfer function, from applied

torque to output position. This transfer function has a typical -40 dB
decade

roll off,

which represents the two free integrators present in a torque (acceleration) to position

transfer function. The structural resonant modes are present at 50 and 80 Hz and do

have a large impact on the potential bandwidth. These results are similar to to the

results presented in this thesis, but it would be beneficial to see hardware validation

of this model.

There is also applicable research in a paper by Maghami, in [3]. This includes

advanced techniques for refining FEA analysis of structures. These techniques in-

corporate eigensystem assignment after system identification has taken place. The

system identification process is followed and explained in this paper in the “Motor

subsystem” section of the modeling chapter. However, the dynamics found in the

DAYS system are either caused by the structure or the drive dynamics. As presented

in the modeling chapter, neither subsystem could be directly correlated to the dy-

namics witnessed. Further application of the techniques shown in [3] may clarify this

issue.

6



Chapter 1. Introduction

A final example of pertinent research is Fu’s paper [4] on the topic of LQR systems

with input saturation. This paper first illustrates the issue of input saturation in LQR

control systems, then current techniques for compensating are shown and finally, a

new, analytical, approach is presented. It should be readily apparent that any closed

loop control system will saturate the input authority if challenged sufficiently. This

will cause a non linearity in the system which negates all performance expectations.

The current approach to dealing with input saturation is anti-windup. This

technique was utilized in [1] and involves detuning the optimal controller as the

input approaches saturation. This process involves the art of defining invariant sets

containing the unsaturated controller and the saturated version. Typically, a sector

bound is used to relate the two controllers. Fu’s paper presents this and then provides

analytical tools for defining the invariant sets and sector bounds.

Input saturation was not checked for the purposes of this thesis paper. It was

considered “out of scope.” However, research in [4] does constitute a next step in

development and would be critical to hardware implementation of LQR in the DAYS

system.

1.3 Conclusion

This chapter presented an introduction to gimbals. This includes a functional block

diagram which illustrates how the components of the gimbal interact. This was

followed by a description of the problem defined in the abstract. Following this is

a road map which shows how the problem is addressed in this paper. Finally, a

literature review was provided to show relative published work. This chapter should

serve as a primer to the work following.

7



Chapter 2

Physics-based Mathematical

Model

2.1 Introduction

A physics-based system model is a powerful tool in many ways. It provides predic-

tions of how the system will act under varying conditions. It allows access to states

within the system which may not be directly measurable in the real implementation.

This access can be used for troubleshooting or optimization. For example, a state

may be saturating because of physical or power supply limitations. If you could

witness where the limitation was, then you could make adjustments to alleviate this

limitation. Another benefit to having an accurate system model is that it can be

used to evaluate controls techniques-as in this thesis. This benefit will be explained

further and evaluated in the next chapter. This chapter will develop the system

model and qualify the values and relationships used.

8



Chapter 2. Physics-based Mathematical Model

2.2 Approach

It is first necessary to create a mathematical model of the system using the laws

of physics and both known and measurable parameters. Known parameters and

“rule of thumb” estimates are used unless empirical data suggests otherwise. For

example, motor characteristics were gathered from the data sheet and used directly

in the model. Friction values were both directly measured and estimated. All pa-

rameters are appropriately described and justifications are provided as needed. Any

physics-based mathematical derivation is also provided in the appropriate subsystem

description. The subsystem descriptions will follow a brief presentation of the overall

system model.

The system model encompasses the azimuth drive of a RTG custom gimbal, from

command generation to sensor feedback. This model is broken down into subsystems

as in Figure 2.1 (block diagram) and Figure 2.2 (Simulink model).

2.3 Subsystem Decomposition

These subsystems include:

1) Command generation

2) Motor characteristics

3) Drive, Payload and Sensor parameters

2.3.1 Command Generation subsystem

The command generation subsystem includes compensation and scaling that would

take place in the digital signal processor (DSP). Please reference Figure 2.3 for the

9
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Digital Signal 
Processor

Drive 
Stage

Motor

Encoder

Differentiation 
and smoothing

Compensation

RotoLok© Drive

Payload

K

Command Generation 
subsystem

Motor Characteristics 
subsystem

Drive, Payload and 
Sensor subsystem

Figure 2.1: Block Diagram of System with Subsystems

Simulink subsystem representation. Included in this blockset is a software switch

between a simple rate gain and the compensation filterset. The filterset is used in

the simulation of classical controller compensation - which is applied in the next

chapter. The rate loop gain parameter is set to unity gain for the modeling effort

and used in a later chapter for evaluating the bandwidth of the open loop system.

The final block in this subsystem is the “rate to Volts” gain. This block serves to

convert the maximum rate commanded into the maximum analog voltage command

that can be output. This value is set to 1.5
2.5

( V
rad/sec

) and corresponds to the maximum

output analog voltage command possible divided by the maximum desired output

10



Chapter 2. Physics-based Mathematical Model

1

Open Loop output

Voltage  Command

rate (radians/second)

Motor torque (oz-in)

Motor Characteristics

FB_switch

Feedback Switch

motor torque (oz-in) rate (radians/second)

Drive, Payload and Sensor

Rate Cmd (rad/sec)

rate feedback (radians/second)

Voltage command

Command Generation

1

Rate Cmd
(rad/sec)

Figure 2.2: Single Axis Block Diagram with Subsystems

rate. This rate was determined based on limitations of the system. This is discussed

in more detail in subsection 2.3.3.

2.3.2 Motor subsystem

The next subsystem represents the drive stage and motor portion of the system. This

is depicted in Figure 2.4. This portion and the third subsystem together represent

the plant. The Servo Amp block is a simplified representation of a COTS motor

driver produced by Advanced Motion Controls (part number DZRALTE-012L080).
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Chapter 2. Physics-based Mathematical Model

1

Voltage command

rate_to_volts

rate to 
Voltage

rate_comp_num

rate_comp_den

rate loop
compensation

rate_comp_switch

compensation?

Switch

rate_gain

Rate loop gain

rate_gain_comp

Compensated
rate loop gain

2

rate feedback
(radians/second)

1

Rate Cmd
(rad/sec)

Figure 2.3: Command Generation subsystem

This is a digital servo amplifier with internal current loop tuning. The dynamics

of the servo amplifier and motor are purposefully omitted from this model. The

dynamics of the servo amplifier are set to the static gain of Ka = 28
1.5

(V
V

). This

represents an input output relationship between voltage command from the DSP

card and the resulting voltage applied across the motor windings. Following the

Servo amplifier output is a saturation block which constrains the voltage output to

the actual bus voltage.

The motor dynamics are also purposefully limited to the static gain of Kt

Rm
= 44.5

5.1

(oz−in/A
Ω

) and a ”Motor DC gain” block. This represents the overall static gain

12
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Voltage
Torque

1

Motor
torque
(oz-in)

Ktheta

1e3*2*pi*60

rad/sec to krpm

zero_tf

pole_tf

pseudo dynamics

Ka

Servo Amp
(V/V)

Saturation

2.73

Motor DC gain

Kt

Rm

Motor 
Characteristics

DR

Drive Ratio1

2
rate
(radians/second)

1

Voltage 
Command

Figure 2.4: Motor Characteristics subsystem

of the motor, at 1 Hz. This can be viewed as a three step process in the plant

subsystem. First, the voltage applied across the windings creates a current which

is determined by the resistance. Secondly, the motor torque is a product of the

motor’s specified torque constant, Kt. The second block, ”Motor DC gain”, is the 1

Hz gain of the motor dynamics when the winding inductance and resulting electrical

pole are included. The motor electrical pole location is a known parameter since

the winding inductance is specified by the manufacturer (Kollmorgen part number

RBE-01811-B00) and s = Rm

Lm
( radians
second

), which yields 823 radians
second

, or 131 Hz, for this

case.
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Chapter 2. Physics-based Mathematical Model

The frequency domain effects of the omission of the motor pole are shown in

Figure 2.5. It is important to note these dynamics, for purposes of being complete,

however, the justification for leaving them out is two-fold: they have an insignificant

impact on the bandwidth of a typical gimbal axis system, which is 6-15 Hz, and, the

inclusion of these dynamics causes difficulties with the advanced controls techniques

presented later in this paper. More explanation of this is presented in section 3.4.
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Figure 2.5: Frequency Response of Motor Pole

The remainder of this subsystem includes the back electromagnetic field (EMF)

effects of the motor on the supply voltage and a block labeled “pseudo dynamics”.

The back EMF constant is cited in the motor specification sheet (RBE-01811-B00,

14
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Kollmorgen). The back EMF effects are directly proportional to the rate of the

motor output and is typically represented by Kθ ( V
krpm

). The second block, labeled

“pseudo dynamics” is necessary to match the frequency response of the model with

the recorded gimbal Bode plot. This is a transfer function block with the following

frequency response function (FRF):

Hpseudo =
s2 + 2ζz8(2π)s+ (8(2π))2

s2 + 2ζp60(2π)s+ (60(2π))2
(2.1)

with ζz = 0.4 and ζp = 0.25. These are the damping factors of each pair. This is

a set of complex poles and zeros which are added to give a closer representation of

the actual gimbal axis system over the potential bandwidth. Figures 2.6 and 2.7

show the frequency response of the model and gimbal without and with the added

dynamics.

The source of these dynamics is theorized to be either in the drive system, a

RTG Roto-Lok R© drive, or in the structural modes of the payload. Ancillary analysis

was done by the RTG mechanical engineering department manager, Santiago Castro

(UNM, BSME ’04). This analysis used two mechanical engineering tools: a Roto-

Lok R© analysis tool and Ansys CFX finite element analysis (FEA). First resonant

mode of the drive may be responsible for the frequency response shown in the gimbal

Bode plot. This is is depicted in a frequency versus torque curve in Figure 2.8. An

active range was determined to be between zero and 15 lb-in. This is based upon

the maximum current available (5.5 A) and the motor’s torque constant, Kt (44.5

oz-in). It is then feasible that the first resonant mode of the RotoLok R© is low-

enough to be responsible for the added system dynamics. What is not available is

the damping on this mode. The FEA analysis of the yoke is similar in nature in that

natural frequencies predicted are within the band of interest, but the magnitude

and damping is not given. The first four resonant frequencies, and their physical

manifestations, are presented in Figure 2.9. The first three modes are within our
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Figure 2.6: Frequency Response of Model and Gimbal without Pseudo Dynamics

frequency band of interest. The first mode, while lower in frequency than the gimbal

resonance, could be envisioned as being in the direction that the azimuth drive would

torque the yoke. This is a “tuning fork” deformation. Note that the azimuth drive

would be on top in this illustration and the yoke would be hanging below it. A

payload shelf (coupling) is present in between the arms of the yoke and is hidden

in this figure. Further detail into the limitations of FEA structural analysis and a

potential solution are provided in [3].
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Figure 2.7: Frequency Response of Model and Gimbal with Pseudo Dynamics

2.3.3 Drive, Payload and Sensor subsystem

This subsystem includes frictional components of the drive along with payload inertia

and sensor feedback. This is illustrated in Figure 2.10. The frictional model utilizes

static friction, Coulomb friction and linear viscous friction. The definitions for these

parameters are taken from “Nonlinear Systems”, H. Khalil, page 10: [5]. Static

friction is directly measured in the gimbal system via a data recording of current

command and output position. This value is estimated as:

Ic =
|Ipos − Ineg|

2
(2.2)
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Figure 2.8: Predicted resonant mode of the RotoLok R© versus torque.

In this relationship Ic is the percentage of the maximum current command that

is required to overcome static friction in both the positive and negative directions.

Notice that this doesn’t have to be zero-biased. This is due to bias in the current loop

which usually provides some low-frequency offset. This measurement for the gimbal

azimuth drive is shown in Figure 2.11. Once Ic is established, the corresponding

torque applied can be calculated as:

τ = KtIcImax (2.3)
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Figure 2.9: Predicted Resonant Modes of the Yoke Structure

in which Kt is the corresponding torque constant specified by the manufacturer and

Imax is the maximum current allowed in the gimbal configuration. In this case, Kt

is 44.5 oz−in
A

and

Imax =
busV oltage

Rwinding

=
28V

5.1Ω
= 5.5A (2.4)

Then, applying 25 percent as Ic to equation 2.3 provides 61.2 oz-in.

Coulomb and linear viscous friction parameters are obtained from the mea-

sured static friction value and are strictly “rule of thumb” estimates. The value

for Coulomb friction is approximated as 2
3

of the static friction value. Linear viscous
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Figure 2.10: Drive, Payload and Sensor subsystem

friction, Kf is approximated as static friction. These three parameters are shown in

a friction versus velocity plot in Figure 2.12. Note that static friction is modeled as

a deadband block in the Simulink diagram. This value is switched on when ω = 0

and off otherwise. The maximum desired output rate can now be determined based

on the back emf effects and this friction model. This is established by commanding

the gimbal model to a very large rate and observing the actual rate output. This is

illustrated in Figure 2.13. The rate of 2.5( radians
second

) is then selected as a conservatively

high value. This value is used in the Command Generation subsection.
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Figure 2.11: Static Friction Recorded in the Gimbal Azimuth Drive

The next portion of this system includes a Drive Ratio block, which merely gains

up the torque output of the motor and conversion of torque to acceleration via the

load inertia block. This utilizes the relationship:

α =
τ

J
(2.5)

in which α is rotational acceleration, τ is torque and J is the moment of inertia. The

moment of inertia estimated by mechanical modeling of the gimbal is 2200 lb−in−s2.

Using this number the maximum acceleration available in this axis is 15.3
5.7

lb−in
lb−in−ss

= 2.7 ( radians
s2

).
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Figure 2.12: Friction Effects Modeled in System

It is then easy to see that rotational velocity and position then are:

ω =

∫
αdt (2.6)

and

θ =

∫
ωdt (2.7)

in which ω is rotational velocity and θ is output angular position. One obvious

omission on this portion of the model is payload to motor output coupling. Any
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Figure 2.13: Maximum Rate of the Gimbal Drive based on Friction and Back EMF
Limitations

compliance or dynamics in the coupling is assumed to be included in the pseudo

dynamics.

The final area of this subsystem is the sensor feedback. The gimbal used for this

experiment has on-axis positional encoders. In a typical RTG gimbal system, these

are fed back as position. The gimbal DSP can then utilize the position, in order to

create a closed position loop, or it can differentiate the position to get output rates.

For the purposes of this experiment, only the rate loop is being utilized. However,

the position output is retained as it will serve as a more direct measurement for
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observer input in section 3.4. The encoder-based rate is smoothed using a second

order low-pass filter (LPF). The cutoff frequency of this filter is 60 Hz. The encoder

position differentiation and smoothing is purposefully left out of the modeling effort

as well. The reasons for this are two-fold: first, the encoder position differentiation

causes a pole-zero cancellation, which causes issues with the application of advanced

controls techniques, and second, the smoothing filter frequency effects are outside of

the frequency band of interest. The pole-zero cancellation issue is described in more

detail in Chapter 3. The frequency response of the smoothing filter is depicted in

Figure 2.14.
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Figure 2.14: Frequency Response of Encoder Smoothing Filter
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2.4 Summary

The modeling effort produced a very similar frequency response to the recorded Bode

plot of the gimbal azimuth drive. This is presented again in Figure 2.15. The phase

does not match as well as the magnitude. Perhaps a higher-order approximation of

the pseudo dynamics could match this better. The phase discrepancy appears to be

a factor of the damping on the complex conjugate zero pair in the pseudo dynamics

block. This model will be used in the next chapter to evaluate different control laws.

10
0

10
1

10
2

-50

-40

-30

-20

-10

0

10

20

m
a
g
n
it
u
d
e
 (

d
B

)

 

 

10
0

10
1

10
2

-150

-100

-50

0

50

p
h
a
s
e
 (

d
e
g
re

e
s
)

frequency (Hz)

 

 

Magnitude from model

Magnitude from gimbal

Phase from model

Phase from gimbal

Figure 2.15: Frequency Response of Model and Gimbal with Pseudo Dynamics
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Chapter 3

Control Techniques

3.1 Introduction

This chapter focuses on the application of established control algorithms to the gim-

bal model. The results are then compared to the actual gimbal performance. Per-

formance can be measured in a variety of ways:

1) Bandwidth and phase margin

2) 10 to 90 percent rise time

3) Percent overshoot

4) Rate tracking

The expectation is that the simulated results will be better than that of the actual

gimbal. This is based on the ideal nature of the model.
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3.2 Overview

The model will now serve as a base for testing these different control laws. Two

control laws are tested and compared against the actual gimbal closed rate loop

performance. These include output feedback:

u = −ky (3.1)

This is the law currently implemented in the gimbal. It is also referred to as “classical

control”. The second control law simulated is state feedback:

u = −−→k −→x (3.2)

where
−→
k is a row vector and −→x is a column vector. This inner product then yields

a scalar, u, for feedback.

As aforementioned, each of these are established and well documented control

techniques. These will be developed as they are applied to the specific gimbal model

in the following sections. For more background information, please reference [6] and

[7].

3.3 Output Feedback Controller simulation

The gimbal architecture currently provides output feedback control. This is illus-

trated in Figure 1.2. Output position is directly measured and fed back through the

control electronics. This is differentiated and smoothed and becomes an approxima-

tion of the output rate. This is then differenced with a rate command signal, v, which

yields the rate error, er. This error is fed through a compensation filterset which
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becomes the motor command. The filterset used on the actual gimbal is referenced

in Table 3.1.

These filters are common to gimbal control. The proportional-integral filter adds

low frequency response and low frequency disturbance rejection. The lead filter

provides additional phase margin at the cross over frequency. The low pass filter

drives down noise and any higher frequency modes which are present. The Bode

diagram representing this combined filterset is presented in Figure 3.1 and the

resulting open loop response is presented in Figure 3.2.
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Figure 3.1: Frequency Response of Gimbal Filterset

All of the previously stated performance metrics were utilized to develop this
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Figure 3.2: Open Loop Bode Plot of Compensated Gimbal Rate Loop

filterset. The open loop Bode plot indicates 6.5 Hz bandwidth and 30 degrees of

phase margin. The gimbal step response is presented in Figure 3.3 and shows each

of the time history metrics. Some frequency content is visible in the rate tracking

inspection of this figure. A portion of this is at 4 Hz and is probably caused by lack

of phase margin at cross over. This behavior makes it difficult to provide an accurate

rise time. The ripple in the response causes two crossings of the 90 percent line. In

these occurrences, the second crossing is used. The frequency content is quantified

via Fourier analysis in Figure 3.4.

These results indicate that there is some ring out at the cross over frequency,
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but there is not any overshoot present. The 90 Hz is theorized to be a sharp high

frequency mode. This mode is not apparent in the system Bode plot.
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Figure 3.3: Gimbal Step Rate Response

A similar approach is then taken with the Matlab-generated model. These fil-

ter parameters are shown in Table 3.1. The gimbal filterset is presented also for

comparison.
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Figure 3.4: Gimbal step rate response frequency content.

These filters have a frequency response indicated in Figure 3.5. The application

of these filters to the model yields an open loop Bode plot depicted in Figure 3.6.

Note that the corresponding bandwidth is now 7.2 Hz and the phase margin is 60

degrees.

The resulting step response is presented in Figure 3.7. The corresponding metrics

are presented in the figure and in a following Table 3.2 comparing the metrics of

both model and gimbal.
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Table 3.1: Gimbal versus Model Compensation Filters
Application Filter Type Value Descriptor Units

Gimbal
Proportional-Integrator 0.9 cutoff f Hz
Lead 4.1 zero f , 6 dB gain Hz
Low Pass Filter 3.4 cutoff f , first order Hz

Model

Proportional-Integrator 1 cutoff f Hz
Lead 2.3 zero f , 20 dB gain Hz
Low Pass Filter 6 cutoff f , second order Hz
Low Pass Filter 12 cutoff f , second order Hz

Table 3.2: Gimbal versus Model Performance Comparison
Application Parameter Value Units

Gimbal

Bandwidth 6.5 Hz
Phase Margin 30 degrees
Rise Time 0.3 seconds
Percent Overshoot 0 percent

Model

Bandwidth 8.1 Hz
Phase Margin 60 degrees
Rise Time 0.15 seconds
Percent Overshoot 8 percent

3.4 State Feedback

As aforementioned, the gimbal architecture does not support full state direct feed-

back. Position and rate are both obtained via the on-axis encoder, but no direct

measurement is taken of the structural or drive modes. This feedback does allow

visibility of the other dynamics in the system, as was illustrated in the model de-

velopment chapter. In this case, the swept sine test, which is used to determine the

frequency response plot of the system, indicated dominant dynamics that were not

anticipated. As discussed in the previous chapter, these dynamics are thought to be

attributable to structural or drive compliance. These dynamics can be addressed by

using a state observer. A state observer will provide full state estimates for feedback.

The validity of these estimates is dependent on the accuracy of the system model.
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Figure 3.5: Model compensation frequency response.

Since a system model has been created based upon empirical data, a high confi-

dence can be placed upon the validity of the parameters, especially within the band

of interest. In order to create an observer-state feed back system, the model must be

linearized and placed in the confines of a state space representation. State space is a

standard which depicts the states in the form of a sequence of differential equations.

These equations take the form:

−̇→x = A−→x + B−→u (3.3)

−→y = C−→x + D−→u (3.4)
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Figure 3.6: Open loop Bode plot of compensated model rate loop.

where:

−→x is a column vector containing the system states and has dimension n (number of

states)

−→u is a column vector containing the system inputs and has dimension p (number of

inputs)

−̇→x is a column vector containing the derivatives of the states and has dimension n

−→y is a column vector containing the system outputs and has dimension q (number

of outputs)
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Figure 3.7: Model step rate response.

and

A is a matrix which indicates the state interrelation and has dimension n× n

B is a matrix which indicates which states are directly accessible from the input and

has dimension n× p

C is a matrix which indicates which states are directly output and has dimension

q × n

D is a matrix which indicates which inputs are fed forward to the output and has

dimension q × p
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Note that this format allows for multiple input and multiple output systems (MIMO).

Further information on state space representation can be referenced in [6] or [7].

This system model is nonlinear in two places: the saturation block in the Com-

mand Generation subsystem and the friction model in the Drive, Payload and Sensor

subsystem. Typically, when linearizing a system, an operating point must be chosen

and the instantaneous rate of change at that point, for each state, is used as the

linear equivalent. The Matlab command linmod.m was used with the Simulink block

diagram to create the model. The default operating point for this algorithm is zero

for each state. This default was used. Note also that the system is now linear and

time-invariant.

This yielded the following state space representation:

A =


0 1 0 0

0 −3.36 −457.8 −4.3098e5

0 −0.0038 −188.5 −1.4212e5

0 0 1 0



B =


0

844.8

273.63

0



C =
[

1 0 0 0
]

D =
[

0
]

In order to build an observer and subsequent state feedback, observability and

controllability must be checked with regards to this system.
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Observability is the ability to monitor the internal state of a system through the

output. Controllability is the ability to control internal states through the input.

The check for observability and controllability of a time invariant system is as fol-

lows: compute the observability and controllability matrices and check for full rank.

Full rank is defined as linear independence of all of the rows or columns of a ma-

trix. If a matrix has more rows than columns, the columns are checked for linear

independence, and vice-versa. The observability matrix is tall by definition (more

rows than columns) and the controllability matrix is fat. This is illustrated in their

time-invariant definitions below:

For a system consisting of state space matrices:

A ∈ Rn×n

B ∈ Rn×p

C ∈ Rq×n

D ∈ Rq×p

where n is the number of states, p is the number of inputs and q is the number of

outputs.

The observability matrix is then defined as:

O =



C

CA

CA2

...

CAn−1


and the controllability matrix is defined as:

C =
[
B AB A2B · · · An−1B

]
Most systems are observable and controllable. The exception being systems where

there is internal cancellation between poles and zeros. As mentioned in the previous
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chapter on modeling, an approximation of the rate was used in the model. This

was connected directly to the internal rate state, prior to the integrator block which

creates position. This did circumvent the encoder-based position differentiation and

smoothing. The reason for this bypass is to avoid the pole-zero cancellation that

takes place when the integrator block between the rate and position and subsequent

position differentiation are in the system. This would yield the system not fully

observable and not fully controllable. The impact of removing this dynamic is illus-

trated in Figure 2.14.

Another reduction of system order is the removal of the motor pole. This dynamic

was removed to reduce the eigenvalue spread in the A matrix. The motor pole resides

at s = Rm

Lm
= 822.6 radians

second
, or130.9Hz. This eigenvalue caused the observability and

controllability matrices to have very large entries - on the order of 1e18. The Matlab

functions ctrb.m and obsv.m would return partial ranks on each of these calculations.

The impact of removing the motor pole is illustrated in Figure 2.5. With these two

dynamics removed, Matlab returned full rank for both matrices.

Once observability has been checked, an observer can be built to provide state

estimates for feedback. The observer build requires an accurate model of the system.

This is due to the observer being primarily a model of the system, with a recursion

on the output error:

˙̂x = Ax̂+ Bu+ L(y − ŷ) (3.5)

The hat nomenclature indicates an estimation. Note that ˙̂x, x̂, u, y and ŷ are all

vectors. The arrow nomenclature has been dropped for this portion to reduce clutter.

L represents the observer feedback coefficients which can be found via Ackerman’s
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formula:

L = αd(A)Oen (3.6)

where en = [0 0 1] (in this case, generally [0 0 0 ... 1]T of length n), O is the

observability matrix and αd(A) is the desired characteristic equation of the system,

αd, evaluated with the A matrix as the eigenvalues. Note that αd is the desired

characteristic equation, with observer closed-loop poles as the eigenvalues. For this

simulation the more sophisticated Matlab function place.m was utilized. The choice

of closed loop poles for the observer were chosen to be sufficiently higher frequency

than the dominant eigenvalues of the system. These were chosen as 500, 520 and 530

Hz. All poles were assigned negative real values and no imaginary portion to ensure

stability.

A separate Simulink model was used to simulate the system with the observer.

Both the system and the observer can now be represented as state space systems.

The B̂ matrix (observer) was augmented to be:

B̂ =
[
B L

]
and both u and (y − ŷ) are input. This is depicted in Figure 3.8. The integrator

from rate to position is now carried outside of the state space model as it is not part

of the rate loop. State estimate error was checked to ensure convergence. This is

shown in Figure 3.9. for this test, the state estimates were given an initial condition

of one. The state feedback was turned off for this experiment.

Once the observer is shown to be performing adequately, which means conver-

gence much faster than bandwidth, the state feedback coefficients can be calculated.

These coefficients, the matrix K, can be calculated in a few different manners: pole

placement (PP) and Linear quadratic regulation (LQR).
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Figure 3.8: Observer Controller Model

Pole placement is utilized in the same manner as the observer closed-loop pole

placements above. Another variant of Ackerman’s formula can be used to place the

closed-loop poles in desirable locations. Matlab’s function place.m is used instead

for this test. The poles were chosen to have all negative real values. An iterative test

was done to check for the optimal placing of the poles with respect to each other.

This iteration is accomplished via three Matlab for loops with each of the three poles

being placed in range between -5 and -50 Hz. Each pole was incremented by steps of

5 and the rise time and overshoot was evaluated for each permutation. Place.m does

not allow for identical values so the cases where any of the eigenvalues were identical
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Figure 3.9: State Estimate Errors Converging to Zero

were omitted. It was noted that when the two pseudo dynamics poles were given

larger negative real values the rate step response showed significant, high frequency

overshoot. The optimal solution which allowed for this overshoot is presented first,

followed by the optimal case in which no overshoot was allowed.

The optimal case with overshoot was produced using poles at:

p1 = −30 Hz

p2 = −35 Hz

p3 = −40 Hz

which yields feedback coefficients:
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Kpp =
[

4.855 −13.295 −493.87
]

Stabilization (for this feedback coefficient vector) is checked by simulating the

model with the feedback coefficients and unity initial conditions for each state. A

zero rate command was issued. This is shown in Figure 3.10. The states do converge

to zero in a reasonable time, 0.04 seconds, which is above bandwidth ( 1
0.04s

= 25Hz).

Note that the position state will not converge to zero as it is an integration of the

rate state. The position state rate of change will reach zero.
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Figure 3.10: States Converging to Zero using Pole Placement with Overshoot allowed
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Next, a rate command can be issued. The rate command is input to the system

by the following relationship:

vd = H−1
k (0)yd (3.7)

where yd is the desired output and H−1
k is the inverse of the transfer function of

the closed loop system evaluated at zero Hz. This formula is directly taken from

reference [6], ”Linear Systems”, Kailath, page 207. The closed loop Bode diagram

of this system is shown in Figure 3.11.

This value was used to scale a unit step input and the results follow in Figure

3.12. Finally, the state error for the position and rate states is plotted in Figure

3.13.
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Figure 3.11: Bode plot of Closed Loop Pole Placement System
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Figure 3.13: Position and Rate error using Pole Placement with Overshoot allowed
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This level of overshoot is not acceptable and while the frequency response of the

overshoot would probably be attenuated by the gimbal plant, it does show up in the

ideal model. A second candidate is now presented which has no overshoot. It should

be noted that the feedback coefficient set which provided the fastest rise time and no

overshoot limited this high frequency response to 1 ( radian
second

). These poles were placed

at:

p1 = −10 Hz

p2 = −15 Hz

p3 = −20 Hz

which yielded feedback coefficients:

Kpp =
[

0.2898 −0.5798 −462.47
]

The result of the simulation with these parameters is shown in the next three figures

representing the stabilization test, the step response and the state error (Figures

3.14, 3.15 and 3.16). Note that the Closed Loop Bode plot is intentionally omitted.
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Figure 3.14: States Converging to Zero using Pole Placement with no Overshoot
allowed
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Figure 3.15: States Responding to Rate Step Command using Pole Placement control
with no Overshoot allowed
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Figure 3.16: Position and Rate error using Pole Placement with no Overshoot allowed
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The second technique for state feedback coefficient determination is LQR. To

obtain the state feedback coefficients using LQR theory, a few parameters need to

be established. LQR is used to minimize a cost function:

V =

∫ T

0

(x′Qx+ u′Ru)dt+ x′(T )Mx(T ) (3.8)

This contains the squares of the x vector of states, the u vector of inputs and the

terminal state vector: x(T ). These are minimized using the relative Frobenius norms

of the Q, R and M matrices. Relative state weighting is also performed by the

distribution within each matrix. Once these parameters are set, the coefficients can

be calculated using the algebraic Ricatti equation (ARE). For the purposes of this

experiment, the Matlab function lqr.m is used.

For this test, the individual state weight values were scaled with respect to each

other (within the Q matrix) and the R matrix was set to equal the Frobenius norm

of the Q matrix. Again, the weights were iterated through using for loops in Matlab.

The matrix M is omitted from this test as lqr.m doesn’t make allocations for terminal

state accuracy. The optimal solution with the fastest rise time is presented next.

The fastest rise time was obtained when the relative weighting within Q was set

as follows:

Q =


1 0 0

0 0.1 0

0 0 0.1


This yielded coefficients:

Klqr =
[

0.6655 0.4170 −69.27
]

The same tests and results are produced. First, stabilization was tested using a

51



Chapter 3. Control Techniques

zero rate command and non-zero initial conditions for each state. This is shown in

figure 3.17.
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Figure 3.17: States Converging to Zero using LQR

The state feedback model can now be given a rate step command to test tracking.

The closed loop transfer function was again evaluated at 0 Hz in order to find the

proper command scaling. The simulation results of this test are graphed in Figure

3.18. The error for states x1 (position) and x2 (rate) are also generated and plotted

in Figure 3.19.
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Figure 3.18: States Responding to Rate Step Command using LQR
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Figure 3.19: Position and Rate error using LQR
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3.5 Results

The results of the three state feedback simulations are tabulated alongside the previ-

ous output feedback results and presented in Table 3.3. Only rise time and overshoot

are presented for comparison. These metrics are chosen for comparison for two rea-

sons: rate tracking in each of the model simulations doesn’t include any ringing and

bandwidth is an ambiguous measure when dealing with state feedback systems.

Table 3.3: Gimbal versus Output Feedback and State Feedback Metric Comparison
Application Parameter Value Gains

Gimbal with Classical Control
Rise Time 0.3 s K
Percent Overshoot 0 % 5

Model with Classical Control
Rise Time 0.03 s K
Percent Overshoot 2 % 9

PP with Overshoot
Rise Time 0.029 s K1 K2 K3
Percent Overshoot 370 % 4.855 -13.295 -493.87

PP with no Overshoot
Rise Time 0.067 s K1 K2 K3
Percent Overshoot 0 % 0.2898 -0.5798 -462.47

LQR
Rise Time 0.12 s K1 K2 K3
Percent Overshoot 0 % 0.5966 0.0349 -64.2074

These results indicate that the fastest rise times are present in the model with

classical control and the pole placement with overshoot allowed. The PP with over-

shoot should only be considered because it represents an upper bound and an area

of further study. This result is the fastest rise time achieved, and, as mentioned

previously, the overshoot may not manifest itself in the actual gimbal rate response

because the frequency content is above bandwidth. Of course, the reason for the

decreased rise time is probably due to the internal state ”ringing” and driving the

system. Further investigations into this configuration might actually yield faster rise

times in the gimbal.

The model rise time is almost as short in duration. The discrepancy between the

model performance and gimbal performance may be attributable to a few factors.
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These include: inaccuracies in the model versus the gimbal and a difference in the

filter compensation set given to the gimbal and model. For example, the compensated

model has a phase margin of 60 degrees, yet has overshoot and a much faster rise

time. The gimbal, however, appears to be pushed to the extent of phase margin (30

degrees) and has ringing in the rate command response at a couple of frequencies.

The PP with no overshoot has a respectable rise time, relatively. This may be

misleading as the internal state ringing, albeit restricted to unity amplitude ring,

may be contributing to the response. As mentioned before, this may not occur in

the actual gimbal. In other words, this may be a byproduct of the model being more

idealistic than the actual gimbal plant.

Finally, the LQR step response yields a better rise time than the gimbal. While

not as impressive as the PP simulation with overshoot allowed, it was roughly equal

in rise time to the PP with no overshoot. The LQR control simulation was equal to

the model response in rise time, but had no overshoot and may be the most realistic.

LQR utilizes state feedback, in the same fashion as the pole placement technique,

but LQR also guarantees robustness attributes. This is thought to be the reason for

the LQR solution not performing as well as the PP variants. One of these attributes

is a 60 degree phase margin in each channel. This can be further referenced in [8].

3.6 Summary

This chapter covered the application and comparison of different control laws on the

empirically augmented gimbal model. Results were mixed. The output feedback

controller performed better than the gimbal in all metrics. The two PP instances

show fast rise times-potentially at the expense of internal stability. Finally, the LQR

controller yielded a better response than the gimbal and should produce the most

stable and robust controller. These results open the door for many avenues of further
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investigation. These topics will be introduced in the next chapter.
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Future Work

The research performed and documented here provides a foundation for future gim-

bal work. This would include modeling efforts and expanded work in the arena of

advanced controls. These two avenues of improvement are explained further next.

A baseline model has been established in this text and can be used in future sim-

ulations. This model and the resulting simulations illustrate which parameters are of

the greatest value in predicting gimbal performance over a bandwidth. For example,

the motor pole dynamics are deemed inconsequential to the gimbal performance over

the band of interest. This is a judgment call, based on the margin of performance

allowed, but reasonable in most applications. Secondly, the motor pole dynamics

could not be allowed when attempting full state feedback. This is due to the in-

ability to calculate observability and controllability (and therefore, use place.m or

acker.m) in Matlab. The discoveries made here will aid in the development of future

gimbal models.

This testing also indicates some areas of improvement that are necessary in order

to make the modeling effort effective. The RTG gimbal used in this test was domi-

nated by the dynamics of the structure or drive. The structure and drive dynamics
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play a large role in every gimbal system, although they are not usually as dominant

as in the DAYS system. This made it difficult to predict performance and forced

me to utilize the empirically-derived pseudo dynamics. The outcome of this process

exposed a weakness in the ability to predict both structural and drive dynamics.

The drive dynamics were bounded by a plot of torque applied versus frequency. The

structural dynamics were predicted via FEA software. The issue is that the damp-

ing of these modes and magnitude response is not predictable using the tools that

are used currently. A proposed path to gain more accuracy and information in this

region is presented in the Literature review section under [3].

The simulation and application of advanced controls is another area of future

work. The work presented here establishes an applicable and beneficial control

scheme for future gimbal designs. This thesis applied a limited solution in both

PP and LQR state feedback. The PP solution was limited in that the pole locations

were constrained to being all real and of a certain range. The LQR simulation pa-

rameters were limited as well in terms of the relative range of the weights in the Q

matrix (from 0.1 to 1). Both of these techniques could be refined and expanded upon.

The pole locations of the pole placement simulation could be strategically placed in

order to interact with the existing system zeros. As well, the LQR parameters could

be further skewed to look at maximizing the input authority. This would involve

adjusting the ratio of the Frobenius norms of the Q and R matrices.

Finally, future research and development can be done in the field of Kalman

filtering. The Kalman filter provides noise reduction in stochastic processes. This

filter estimates the noise variance and uses this estimate to improve the signal to

noise ratio (SNR). Applying this filter to analog, zero-mean signals can improve the

mean square error significantly. This filter was not simulated in this experiment

because the feedback sensor is an encoder, which is essentially digital. This can be

implemented in the future on gyro stabilized gimbals as well as other analog sensors.
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Appendix A

Resources

Matlab and Simulink are registered trademarks of The Mathworks, Inc.

Ansys CFX is a registered trademark of Autodesk

The code used to produce these results is available. Please contact the author at

mattbroilo@RIEtechGlobal.com
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