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Abstract

Mobile system-on-chip (SOC) technology is improving at a staggering rate spurred

primarily by the adoption of smartphones and tablets. This rapid innovation has al-

lowed the mobile SOC to be considered in everything from high performance comput-

ing to embedded applications. In this work, modern SOC’s heterogeneous computing

capabilities are evaluated with a focus toward digital signal processing (DSP). Eval-

uation is conducted on modern consumer devices running Android operating system

and leveraging the relatively new RenderScript Compute to utilize CPU resources

alongside other compute resources such as graphics processing units (GPUs) and

digital signal processors. In order to benchmark these concepts, several implemen-

tations of both the discrete Fourier transform (DFT) and the fast Fourier transform

(FFT) are tested across devices. The results show both improvement in performance

and energy efficiency on many devices compared to traditional Java implementations

and indicate that the mobile SOC is a relevant platform for DSP applications.
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Chapter 1

Introduction

In recent years, the explosion of smartphone usage has brought an amazing amount of

computing power to a typical consumer’s pocket. Demand for these devices has dra-

matically reduced the cost and increased the performance of mobile system-on-chips

(SOCs). Most Android smartphones and tablets now have quad-core processors with

a graphics processing unit (GPU) integrated into a single SOC. This rise of the mo-

bile platform means that applications, which were once limited to either customized

field-programmable gate array (FPGA) or a powerful computer, have become viable

on mobile SOCs. One such application is digital signal processing (DSP).

The mobile space’s SOC architecture is far less defined compared to the stan-

dard desktop or laptop computer. In the traditional desktop computer market there

are only two main processor vendors, Intel and AMD, and two main GPU vendors,

NVIDIA and AMD. This leads to standardized architectures, which are well under-

stood and supported. However, this is not true in the mobile space as there are many

processor vendors such as Apple, Samsung, Qualcomm, and Texas Instruments. In

addition, there are also many mobile GPU vendors including NVIDIA, ARM Mali,

Arduino, and PowerVR. One of the disadvantages of a diverse landscape of vendors

1



Chapter 1. Introduction

in the mobile market is that many details are not openly disclosed or published,

therefore the only way to understand performance is through benchmarking. This is

especially true when talking about general computing performance of mobile GPUs.

One key to getting performance out of a mobile SOC, especially energy-efficient

performance, is utilizing both the CPU and GPU. Until recently, this required use

of device specific frameworks which were fairly involved, but Google has released

a framework called RenderScript Compute which enables one to access processors,

GPU, and even DSP cores as generic compute units. This framework is similar to

both OpenCL and CUDA which have been used extensively in both desktop and

High Performance Computing (HPC) spaces to utilize CPU, GPU, and other DSP

hardware.

One drawback of heterogeneous computing is that it complicates the program-

ming model. To overcome this, software technologies are utilized which abstract this

diverse and complex hardware. This abstraction enables programmers to use familiar

constructs and languages with minimal performance cost. Although this abstraction

does not completely solve the additional complexity of heterogeneous hardware, it

can mitigate many of the issues and allow features such as code portability.

1.1 Motivation and Approach

Given the proven advantages of heterogeneous computing in both the desktop and

HPC space, it seems that the next logical step is to apply these techniques to the

mobile environment. Mobile computing offers many challenges and opportunities

when looking at heterogeneous computing. Challenges include limited computing

resources, restrictive programming environments, and sparsely documented hardware

and software interfaces. The opportunities include dynamic and rapidly evolving

hardware architectures, tightly coupled hardware resources (many times in a single

2



Chapter 1. Introduction

SOC), and huge demand for energy-efficient computing,

The approach taken for this work is to focus on technologies and techniques which

could be used in production software and utilized on consumer-class devices. In terms

of hardware, this means limiting platforms to tablets and smartphones. In software,

this means writing code on portable frameworks which can be deployed in the Google

Play Store and used across devices with minimal or no tuning or tweaking.

3



Chapter 2

Heterogeneous Computing

Hardware

Heterogeneous computing can be broadly defined as using varied computational hard-

ware such as GPUs, DSPs, or custom FPGAs in conjunction with a CPU to complete

a task. These platforms have the advantage that the strengths of multiple hardware

architectures can be combined to more efficiently solve a problem. A disadvantage is

that the complexity in the system is increased by multiple computation devices, this

has traditionally been the job of the programmer to address. A common example of

heterogeneous computing, is moving parallel operations to a GPU where the archi-

tecture allows for parallel computation with faster local memory, thus allowing the

CPU to focus on servicing IO and providing flow control for the rest of the program.

2.1 Typical Desktop Computer Architecture

To describe the architecture of a mobile SOC or heterogeneous computer, it is useful

to understand a modern desktop computer and how both the CPU and GPU may be

4



Chapter 2. Heterogeneous Computing Hardware

Figure 2.1: Typical CPU / GPU Architecture

exploited for DSP applications. In Figure 2.1 the CPU and GPU are connected via a

PCI-Express Bus (PCIe). The memory is connected to the CPU via the northbridge.

The GPU’s memory is separate and integrated on the PCI card itself. Traditionally,

computation is performed on the CPU, and the GPU is reserved for graphics only.

In the case of either a single-threaded or multi-threaded DSP algorithm, there

are many calculations to be done on a relatively small amount of memory. Thus the

memory bandwidth and cache sizes are rarely the limiting factor. The limiting factor

is often the number of cores which can perform the computation [1]. To address this

problem both AMD and Intel have added Streaming SIMD Extensions (SSE). These

extensions have been used by such projects as FFTW to improve performance [2].

Recently, applications have begun using both CPU and GPU for calculations

to improve performance. In this case, for DSP calculations, the data which is to be

operated on is moved via PCIe bus to the graphics card. Then the large parallel GPU

quickly does computation and the results need to be copied back to main memory.

In the case of DSP, the bus link between CPU and GPU is often the limiting factor

[1]. Both the GPU architecture and middleware involved are explored more deeply

5



Chapter 2. Heterogeneous Computing Hardware

in subsequent sections.

2.2 GPU Architecture

2.2.1 General

Modern GPUs are essentially programmable parallel computers which are capable

of handling both floating point and integer math on large datasets in a very efficient

way; however, GPUs did not always operate this way. Originally GPUs were designed

to be fixed function special purpose devices for graphics [1]. These devices, although

providing very powerful graphics acceleration, did not give programmers, graphics or

otherwise, much flexibility to optimize hardware utilization. Depicted in Figure 2.2

is a typical graphics pipeline showing the various steps that take place on a GPU to

take a set of vertices and convert them to a screen image [3].

Figure 2.2: Typical Graphics Pipeline

There are many stages involved in the rendering of modern computer graphics as

shown in Figure 2.2 of which two, depicted as programmable, are the most impor-

6



Chapter 2. Heterogeneous Computing Hardware

tant in the development of GPU programmability. The first operation is known as

vertex operation which does the following on a per-vertex basis: transformation into

screenspace, texture coordinate generation/transformation, and applying lighting ef-

fects. Next, the fragment stage using color information from vertices and textures,

computes each fragment’s color; other effects such as lighting can be applied at this

stage. Both of these operations are highly parallelizable as they are applied on a

per- vertex/fragment basis on a large numbers of objects. These computations have

always been configurable i.e. a programmer could choose from a handful of lighting

effects. However as graphics engines became more complex, it became clear that

fixed-function hardware could not support the plethora of desired effects; therefore

programmability support was required.

The process of changing from fixed-function hardware to a programmable plat-

form started slowly with per-vertex operations and per-fragment operations moving

from configurable fixed hardware implementations to having independent instruc-

tion sets which programmers could configure with shader programs. One limitation

of separate vertex and fragment instruction sets is applications can over utilize vertex

hardware and underutilize fragment hardware or vise versa leading to underutiliza-

tion of the hardware [1].

This limitation gave rise to the foundation of the modern GPU with the unified

shader model. The unified shader model allows the same hardware to be used for

both vertex and fragment operations. This not only solves the partitioning problem

expressed above but also gives rise to the possibility of these cores to be used for

applications which are no longer graphics specific. Along with software support, this

has enabled the General Purpose GPU (GPGPU) generation of devices to become

common practice in many problem spaces such as 3D CAD, simulation toolkits, and

even high performance computing (HPC).

In addition to the above major architectural shader change, many newer gen-

7



Chapter 2. Heterogeneous Computing Hardware

erations of GPUs have begun to support single and double precision floating point

operations. This improvement makes GPUs an especially relevant option for scien-

tific computing including signal processing. The main advantage of GPUs compared

to traditional CPUs for signal processing is that they have much more raw FLOP/S.

Not only do they have greater raw performance, in most cases their performance per

watt, usually measured as FLOPS/Watt, is 30-50% better [4].

2.2.2 NVIDIA Tesla K20X

A good example of a state-of-the-art GPU, which is designed from the ground up

to target GPGPU, is the NVIDIA Tesla K20X. This GPU has been used in several

HPC installations including Oak Ridge National Laboratory’s (ORNL) Titan super-

computer (see Figure 2.3). A similar Kepler architecture was utilized in the NVIDIA

Tegra K1 SOC. The architecture used by the Tesla K20X, and to be discussed in

this section, is the Kepler GK110 [5].

Depicted in Figure 2.3 is the overall block diagram of the Kepler architecture. The

GPUs interconnect to the main CPU and memory of the system is a 16-lane PCIe

Gen II bus with a maximum throughput of 8 GB/s. This link feeds the 6 memory

controllers on the Tesla K20X feed 6 GB GDDR5 memory with a peak bandwidth of

250 GB/s. Computation is performed by up to 15 streaming multiprocessors (SMX)

(14 for Tesla K20X) which all share a common L2 cache.

Each of the aforementioned SMX processing units (see Figure 2.4) contains 192

single precision CUDA cores, 64 doubleprecision units, 32 special function units

(SFU), and 32 load/store units (LD/ST). This hardware is utilized by 4 warp sched-

ulers each capable of dispatching 2 instructions per GPU clock cycle. Each warp

is capable executing 32 “threads” simultaneously. Another interesting feature of

the SMX processing units is the separate and configurable caches. First, the 48K

8



Chapter 2. Heterogeneous Computing Hardware

Figure 2.3: Kepler Block Diagram

read-only cache is static for the life of a thread. Second, the 64 KB cache can be

partitioned between L1 cache and shared memory cache in a 48/16KB spilt in favor

of either L1 or shared memory; or additionally in an even 32 KB split between the

two caches.

These specifications can be misleading if one does not translate them into classic

CPU terms. For example what NVIDIA calls a “warp” is similar to a 32-bit floating-

point or integer SIMD instruction [6]. This implies that CUDA cores are more like

traditional ALUs rather than having the complexity of a CPU core. This leads to

the important realization that special attention must be given when programming

for these architectures to use as many of the 32 “threads” of a warp as possible and

organize memory accesses to optimize for warp-level locality.
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Figure 2.4: SMX Block Diagram

2.3 Heterogeneous Supercomputer Architectures

An interesting case study for how heterogeneous computing is being applied to areas

in which purely CPU computing has recently dominated is supercomputers. A good

example of this seat change is the upgrade of the Jaguar supercomputer to the Titan

supercomputer at ORNL. The Jaguar supercomputer was composed of 18,688 nodes
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in 4,672 Cray XT5 blades each of which contains 2 x 2.3 GHz hex-core AMD Opteron

processors and 16 GB of DDR2 memory [7]. From Jaguar to Titan the XT5 blades

were upgraded to XK7 blades. This change upgraded processors to AMD 16-core

6200 series Opteron with 32 GB of DDR3 memory and paired each processor with

a Tesla K20X GPU with 6GB of GDDR5 memory. ORNL says that by relying on

its “CPU cores to guide simulations and allowing its new NVIDIA GPUs to do the

heavy lifting, Titan will enable researchers to run scientific calculations with greater

speed and accuracy” [8].

Figure 2.5: XK7 Blade Block Diagram

Shown in Table 2.1 is not only a ten-fold increase in computing power (FLOP/s)

but also a four-fold increase in energy efficiency (FLOPS/Watt). This ability of

GPUs to drive power efficiency is clear as the first 15 supercomputers on the June

2014 Green 500 [9] are GPU based. From this case study and others, GPUs and,

more generally, heterogeneous computers will have a central role in coming years.
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Table 2.1: ORNL Jaguar Versus Titan

Jaguar Titan

Date of Measurement November 2011 June 2014

Top500 Rank 3rd 2nd

Performance 1,759.0 TFLOP/S 17,590.0 TFLOP/S

Green500 Rank 149th 43rd

Energy Efficiency 0.58 GFLOPS/Watt 2.1 GFLOPS/Watt

2.4 Mobile SOC Architecture

In general, mobile architectures are very different from that of general-purpose or

high-performance computers. First, the entire system is integrated together, usually

on a single chip i.e. SOC. Inside this chip, it is very common place to integrate many

vendors’ intellectual property (IP). This IP can include computing resources such as

GPUs or DSPs, communication hardware such as LTE modems, IO peripherals such

as ADC or display controllers, and much more.

2.4.1 Qualcomm Snapdragon

Qualcomm’s Snapdragon SOCs are a dominate force in today’s smartphone and

tablet marketplaces. This dominance comes from its highly integrated design, par-

ticularly with cellular modems for 4G LTE [10]. The tight integration of all parts of

the design is critical to Snapdragon’s impressive power consumption numbers. This

dominance is so prevalent that even competitors like Samsung’s consumer-level de-

vices still use Snapdragon SOC inside their designs as in the Samsung Galaxy S4

[11]. This work will focus on two specific implementations of Qualcomm’s Snap-

dragon processor, namely the Snapdragon 600 (sometimes advertised as S4 Pro) and

Snapdragon 800.
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Table 2.2: Comparison of Snapdragon 600 and 800

Snapdragon 600 Snapdragon 800

Processor 1.51GHz Quad Kait 300 2.26GHz Quad Kait 400

GPU Adreno 320 Adreno 330

Memory Interface 2ch 533MHz LPDDR3 2ch 800MHz LPDDR3

Release Date 2013 Q2 2013

Example Device Nexus 7 Tablet Nexus 5 Phone

Qualcomm’s SOC designs are unique in that they are not simply an integration of

an ARM core with many peripherals. In fact, Qualcomm simply licenses the instruc-

tion set from ARM and does their own implementation. This allows Qualcomm to

tailor their designs to the needs of their SOCs as they deem fit. This holistic design

approach continues as Qualcomm purchased AMD’s hand-held graphics division in

2009 and rebranded their existing imagination cores to Adreno [12]. Add to this

Hexagon DSP IP which can be tailored to various applications such as audio, video,

and communication processing and the Snapdragon SOC is an amazingly complex

and powerful heterogeneous platform.

An unfortunate fact about Qualcomm’s SOCs is that many details are proprietary

and therefore not publicly available. It is clear that they believe in Heterogeneous

computing and have integrated many different computation devices into their SOC.

The first being Krait CPU cores which implements the ARMv7 instruction set. The

Krait architecture is the successor of Scorpion and has several improvements includ-

ing enhanced floating point performance and full out-of-order instruction execution.

The floating point improvements can be seen in the improved VeNum SIMD which

is very similar to NEON SIMD (see 2.4.2).

The second computing device inside Qualcomm’s Snapdragon SOC is the Adreno

GPU. The two varieties found in the 600 and 800 series are the Adreno 320 and 330,

respectively. In July 2012, Adreno 320 was found to have performance comparable
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Figure 2.6: Snapdragon S4 Architecture

to PowerVR’s GPUs which are integrated into Apple’s iPad [13]. The Adreno 330

is claimed to improve performance by 50% over the 320 [14]. Both Adreno 320 and

330 support a Direct X9 unified shader model, which implies a rich programmable

pipeline, and both 320 and 330 have OpenCL drivers, [15] although many times these

drivers are hidden from end-user devices.

The Hexagon DSP found Qualcomm SOCs serve many purposes such as com-

munication processing and multimedia processing [16]. This DSP provides paral-

lel operation by exposing both VLIW and SIMD. In the communication case, this

DSP is preassigned for communications and the user does not have access. On the

other hand, the multimedia processor is open for the user to utilize [16]. Qualcomm

provides libraries and a SDK for interfacing and many companies are developing

device-specific libraries for multimedia applications. It appears there is not cur-

rently Renderscript Compute support and therefore this technology was not utilized

in the body of this work.
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Table 2.3: Comparison of Exynos 4412 Quad and Exynos 5250 Dual

Exynos 4412 Quad Exynos 5250 Dual

Processor 1.4GHz Cortex-A7 1.7GHz Cortex-A15

GPU ARM Mali-400MP4 ARM Mali-T604MP4

Memory Interface 2 ch 400 MHz LPDDR2 2 ch 800 MHz LPDDR3

Release Date 2012 Q3 2012

Example Device Samsung Note II Nexus 10 Tablet

2.4.2 Samsung Exynos

Samsung’s approach to mobile SOCs is very different to that of Qualcomm’s; where

Qualcomm brings many parts of the IP under one company, Samsung integrates many

different IP vendors into a single SOC. This allows Samsung to get many advanced

features from the latest ARM processors and leverage many vendors’ domain- specific

knowledge into their products. This work will focus on two specific SOCs: the Exynos

4412 Quad and the Exynos 5250 Dual as shown in Table 2.3.

Figure 2.7: Cortex A9 Architecture

The ARM Cortex-A9 found in the Samsung Exynos 4412 shown in Figure 2.7
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is a quad core processor supporting the ARMv7 32-bit instruction set. On top of

the general ARM instruction set, this processor supports both NEON SIMD and

Jazelle RCT. Jazelle RCT provides hardware acceleration for JIT computation of

Java byte code [17]. The NEON SIMD can operate on 32 registers holding signed

or unsigned integers, 32-bit or 64-bit floating point; additionally, these registers

can be interpreted as 16 128-bit float values [18]. These instructions can be used

in vectorized instructions for sign/unsigned integers and single precision floating

point numbers. A couple of caveats for NEON should be covered for completeness.

First, normal floating point operations and NEON floating point operations share

the same register set, therefore, the transition from normal FPU operations and

NEON operations carries some configuration overhead. Second, NEON floating point

operations are not fully IEEE-754 compliant and some operations require software

support for compliance [18]. The Coretex A9 CPU core architecture is shown in

Figure 2.8.

Figure 2.8: Cortex A9 Architecture CPU Core Architecture

These processing elements are fed by a 64-bit AXI bus providing data to and

from both memory and peripherals cellular modem or GPU. The memory link is

supplemented by a 1 MB L2 cache shared among the cores. Each core of the 4
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Figure 2.9: Udgard Block Diagram

cores has both a 32 KB instruction and a 32KB data cache. The instructions are

dynamically branch predicted and feed to a dual decoder. Finally, these decoded

instructions are reordered to maximize ALU utilization.

Also integrated on the Exynos 4412 SoC is the ARM Mali-400MP4. This GPU is

based on ARM’s Utgard architecture which implements separate vertex and fragment

processors [19]. In the Mali-400MP4, there are 4 fragment processors and a single

vertex processor. With no unified shader or OpenCL support, it is unlikely that

Renderscript Compute is able to utilize this as a compute resource.

Another variant provided by Samsung is the Exynos 5250 which contains dual

Cortex-A15 cores shown in Figure 2.10. The A15 is targeted for better overall per-

formance and less power efficiency than the A7. Some enhanced features include

ECC on both L2 and L1 cache as well as double the bus width via the AXI bus [20].

The new AXI bus implements some interesting new features from the perspecive of

heterogeneous computing, namely Accelerator Coherency Port (ACP). This allows

coherency between GPU and CPU L2 caches which when both are involved in a

computation has huge performance benefits. It is interesting that the Jazelle RCT

is noticeably absent in this version of the Exynos hardware.

The Exynos 5250 also contains an improved Mali-T604MP4 which is based on
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Figure 2.10: Exynos 5250 Block Diagram

the new ARM Midgard architecture. This architecture implements both vertex and

fragment shaders via a unified architecture [19]. With the unified shader model and

full OpenCL 1.1 support this Mobile GPU has become one of the most widely used

heterogeneous computing experiments.
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Heterogeneous Software

Framework

One of the biggest challenges to mass adoption of heterogeneous computing is the

complexity it adds to the software developer’s programming model. Until the last

couple decades, heterogeneous computing was limited to a set of experts which ei-

ther developed for specific applications, like graphics or for custom platforms such

as FPGAs or DSPs. In order for heterogeneous computing to be widely adopted it

needs to allow development to occur at high-level languages which can target mul-

tiple platforms. These high-level languages will allow more developers to develop

applications more rapidly than is possible with lower-level languages.

There are many similarities between the evolution of the GPU hardware (see Sec-

tion 2.2) and the evolution of GPGPU software. Like GPU hardware, originally the

only interfaces available to the programmer reflected the special purpose hardware

which backed them. As GPUs implemented shader models and later unified shader

models, this interface slowly evolved. Early attempts such as BrooksGPU and Sh [1]

acted as translators to either OpenGL or DirectX. These third-party tools paved the
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way for vendors to begin providing interfaces to expose their parallel programming

potential.

The first vendor programming language was NVIDIA’s CUDA in 2006 [6] followed

quickly by OpenCL which was started by Apple but quickly became a managed by

the Khronos working group in 2008 [21]. With these two competing technologies

GPGPU programming started to become more common place. Now many high-

level tools such as Matlab parallel toolbox and Solidworks design tools use GPUs to

accelerate their applications.

3.1 CUDA and OpenCL

CUDA and OpenCL are very similar in programming models and features. In many

cases there are one to one relations between CUDA’s and OpenCL’s programming

constructs (see Figure 3.1). CUDA is recognized as a good platform for heteroge-

neous computing. Its main limitation is that it can only support hardware made

by NVIDIA and was not designed with the idea of generic hardware and is instead

optimized for NVIDIA architecture.

Figure 3.1: CUDA versus OpenCL contructs
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OpenCL, in contrast to CUDA, was designed from the ground up to support dif-

ferent vendors’ hardware and even different hardware platforms. OpenCL is standard

which is published by a Khornos working group. The Khornos group has about 15

active standards [21] including well known ones such as OpenGL and OpenCL and

lesser-known standards like OpenVX (computer vision) or StreamInput (sensor fu-

sion). Its members include NVIDIA, AMD, Altera, and Qualcomm. These members

provide technical support to different working groups and out of these standards,

APIs, conformance tests, and other supporting documentation/tools have been de-

veloped. OpenCL is an open platform for not only application developers, but also

other higher level frameworks such as WebCL or Aparapi. Even Renderscript Com-

pute utilizes OpenCL drivers to interact with some GPUs (this can be observed

through logging available in the debugger).

To leverage either CUDA or OpenCL one begins by writing the target parallel

code in what is known as a kernal (see Figure 3.2). This kernel, like a normal

C function, contains input and output parameters. However unlike a normal C

function, it is not directly passed an index in these structures. Instead this index is

encoded as a thread ID or thread index. This kernel is then invoked on a set of data.

This process in OpenCL is called a work group.

In typical programs device memory and host memory are not shared. Data to

be operated on in a work group must first be allocated and copied to the device.

When the data is copied to the device and the work group is properly setup, then a

user needs to simply invoke this kernel. This call is asynchronous allowing the host

program to continue with non-parallel tasks or begin setting up subsequent parallel

tasks. It is important to note that within these threads it is possible to operate in a

data-parallel manner, e.g. same function on different data, as above; in addition to a

task-parallel manner, e.g. different functions on same or different data. Once results

are required for program execution the host program executes a synchronization or
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// Kernel d e f i n i t i o n
g l o b a l void VecAdd( f l o a t ∗A, f l o a t ∗B, f l o a t ∗C)

{
i n t i = threadIdx . x ;
C[ i ] = A[ i ] + B[ i ] ;

}

i n t main ( )
{

. . .
// Kernel i nvoca t i on with N threads
VecAdd<<<1, N>>>(A, B, C) ;
. . .

}

Figure 3.2: Example Kernel

barrier function to ensure that the parallel computation is ready to be read back.

Once this blocking function returns, data can be read back and reported to the user.

In addition, to the above steps in both CUDA and OpenCL there are some minor

device initialization steps required. In the OpenCL case this can be complex if one

wants to target a specific device class or run different kernels based off a device class.

Finally, once both the host program and the device kernels have developed both

CUDA and OpenCL, provide compilation and runtime tools. In the CUDA case it

is typical to be target a specific device thus the nvcc compiler is invoked to compile

kernels into binary cubin objects or into PTX code (NVIDIA assembly) [6]. The

host program is then sent through a typical compiler where it links to the NVIDIA’s

runtime and driver environment. When a program is executed, cubins are loaded

to the device via the host program, or in the case of PTX code, the driver may

JIT compile into binary cubins and load code onto the device. OpenCL’s workflow

is similar except it is much more common to leave CL kernels as either C kernel

code or as LLVM IR. In both cases the kernel code is JIT compiled by the OpenCL

runtime to the target compute device(s) [22], enabling the final binary generation to
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take place during runtime allows for code portability.

Both of these runtimes have been used extensively for numerical and scientific

computing. As described in [23] code portability given by OpenCL does not translate

to performance portability. In this work the authors explored the porting of code

originally designed for the NVIDIA fermi architecture to the AMD’s TeraScale2

architecture. Their conclusion was that an auto-tuning routine was needed for work

group optimization. This performance portability is not a problem unique to OpenCL

as the author references several examples of this on both CPU only libraries and

CUDA based libraries.

Despite this performance portability issue, CUDA and OpenCL dominate the

heterogeneous computing market on HPC and desktop environments. This domi-

nation however has not translated in the mobile SOC space. Some of this can be

attributed to NVIDIA only releasing CUDA for ARM in June 2013 and with older

devices having little to no OpenCL support. This, however, is changing as most

devices now at the vendor level have OpenCL support. However, this support does

not translate to a reliable API which the programmer can write against.

3.2 RenderScript Compute

One solution to both the performance portability issue and to the lack of universal

device support has come from Google in the form of Renderscipt Compute. This

framework allows both programming model simplicity and easy Android application

deployment. Like OpenCL, it is not vendor specific and is intended to be run on

different GPUs and other unique compute cores such as DSPs or processor SIMD

extensions. RenderScript Compute guarantees that code written will run on any

device running Android versions 2.3 and above. This is accomplished by being able

to be run RenderScript Compute on the system processor [24] if no other hardware is
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available. Google’s main reason for creating a new language, rather than leveraging

an existing standard such as OpenCL, is the perceived belief that OpenCL application

would lead to only certain devices being optimized for [24].

To provide this device agnostic performance, Renderscipt Compute abstracts

work scheduling rather than allowing programmers to choose how work is sched-

uled. This abstraction allows code to be performance portable with the cost of the

programmer not being able to optimize and get the absolute peak performance out

of a particular architecture. Another drawback is that Renderscript Compute is cur-

rently only available on Android and therefore not applicable to the desktop domain

where CUDA and OpenCL dominate. Despite its drawbacks Renderscript Compute

is gaining popularity in the mobile space.

As with typical Android applications, everything starts from the MainActivity

class. A developer can simply call a Java implementation directly from this entry

point. Once this is configured the application can be packaged into an Android

package (APK) and subsequently loaded onto a device. The application then runs

on DalvikVM, Google’s implementation of the Java virtual machine [24].

Next, the algorithm is rewritten in RenderScript compute. This involves Ren-

derScript (rs) files, which are written in a C99-like syntax [25]. This is non-trivial

as the algorithm must be refactored in a parallel way. It is beyond the scope of this

study to describe the techniques required to convert a serial implementation to a

parallel one. Once a rs file is written, it is analyzed and a reflected ScriptC Java

class is generated by the Android compiler. This allows the exposed RenderScript

implementations to be called from the MainActivity. Once the application is ready

for packaging all of the Java code is packaged as normal. The rs file(s) are packaged

as well in the APK. When an application is run, the rs files are JIT compiled and

the reflected interface is implemented for target hardware.
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In general it is not known to the application whether the rs code is being ex-

ecuted on a GPU, DSP, or on the main CPU. This maintains the single APK for

any supported device and saves the programmer from being concerned with device

compatibility.

A more detailed look at Renderscript Compute implementation is done in Sec-

tion 5.1 and results of signal processing algorithms performance may be found in

Chapter 6. However, comparisons between Renderscipt Compute and OpenCL have

been conducted by [26]. In this work, code is generated for both OpenCL and Ren-

derscript Compute and compared. It can be seen that Renderscript Compute and

OpenCL trade performance benefits back and forth with OpenCL code leading to

the conclusion that Renderscript Compute holds its own in performance versus other

frameworks and gives the benefit of portability. Another interesting study of Ren-

derscipt Compute is done in [27] where Renderscript Compute is compared to pure

Java SDK and Android NDK (Native C/C++ Android implementation). In this

study, it is found that Renderscript Compute can provide performance on par with

NDK developed applications while providing better portability.
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Signal Processing Algorithms

Signal processing is the theory and practice of transforming signals from real world

sensors and processing it such that a useful output is obtained. In the context of

this work the focus is on digital signal processing. To simplify this broad and rich

area both the DFT and FFT were chosen to represent the class of computations and

workloads, which a platform must perform to implement these algorithms.

Both the DFT and FFT take time domain data and convert it to the frequency do-

main. This transform has applications including communications, image processing,

and mathematics. Many algorithms can be expressed in terms of DFT (and hence

FFTs) such as discrete cosine transform, fast convolution, and partial differential

equations [28].

4.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) algorithm was chosen to start benchmarking

mobile SOC performance. The formulation is as follows:
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Xk =
N−1∑
n=0

xn · e−j2πkn/N , k = 0, 1, ..., N − 1 (4.1)

The above formulation has a computational complexity of O(N2) where N is the

number of point DFT taken [29]. In practical applications, a fast Fourier trans-

form (FFT) is preferred over a DFT due to it superior computational complexity

of O(nlog2(n)) [30]. This work begins with the DFT as there are many competing

implementations of FFT which have large platform dependent performance. This

adds another element of uncertainty to the results. Notice that although the above

has the time complexity of O(N2), each inner sum has no data dependency to any

other inner sum therefore making this algorithm embarrassingly parallel.

4.2 Fast Fourier Transform

The FFT is defined as any algorithm which calculates the DFT transform in a faster

method than presented in the previous section. There is a large array of implemen-

tations available for the FFT. In general, these algorithms have O(nlog2(n)) and

match DFT results with no adverse effects. This work focuses on two algorithms:

a classic decimation in time (DIT) radix-2 FFT and a radix-2 Stockham FFT. In

addition, the assumption of is the input size of the data is a power of 2. While these

algorithms have adaptations that allow for efficient computation of any size, such a

comprehensive implementation is beyond the scope of this work [2].

Most FFT algorithms are derivations and reformulations on the ideas presented

here. First 4.1 is rewritten as

Xk =
N−1∑
n=0

xn ·W−kn
N , k = 0, 1, ..., N − 1 (4.2)
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where

WN = e−j2πkn/N (4.3)

WN terms are known as twiddle factors and some important identities can be

observed.

W 2
N = WN/2

W
k+N/2
N = −W k

N

W
k+N/2
N/2 = W k

N

(4.4)

The critical concept is the divide and conquer strategy which is composed of 3

steps [28]:

1. Divide the problem into two or more subproblems of smaller size.

2. Solve each subproblem recursively by the same algorithm. Apply the boundary

condition to terminate the recursion when the sizes of the subproblems are small

enough.

3. Obtain the solution for the original problem by combining the solutions to the

subproblems.

In the case of the DIT radix-2 FFT the division begins by splitting the even and

odd indices into two separate sums.
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Xk =

N/2−1∑
n=0

x2n ·W−2nk
N +

N/2−1∑
n=0

x2n+1 ·W−(2n+1)k
N

=

N/2−1∑
n=0

x2n ·W−2nk
N +W−k

N ·
N/2−1∑
n=0

x2n+1 ·W−2nk
N

=

N/2−1∑
n=0

x2n ·W−nk
N/2 +W−k

N ·
N/2−1∑
n=0

x2n+1 ·W−nk
N/2

=

N/2−1∑
n=0

yn ·W−nk
N/2 +W−k

N ·
N/2−1∑
n=0

zn ·W−nk
N/2

(4.5)

Notice this leaves two equations in the same form as 4.2. Namely

Yk =

N/2−1∑
n=0

yn ·W−kn
N

Zk =

N/2−1∑
n=0

zn ·W−kn
N

(4.6)

which allows recursive division of the problem until sums become single values.

Once the problem has been recursively divided the solutions can be combined as

follows. By substituting Yk and ZK in 4.5 it can be obtained

Xk = Yk +W−k
N · Zk (4.7)

Furthermore by applying the identities in 4.4 the following can be applied to

reduce the computations by 2.
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Xk+N/2 =

N/2−1∑
n=0

yn ·W (k+N/2)n
N/2 +W

k+N/2
N ·

N/2−1∑
n=0

zn ·W (k+N/2)n
N/2

=

N/2−1∑
n=0

yn ·W kn
N/2 −W k

N ·
N/2−1∑
n=0

zn ·W kn
N/2

= Yk −W−k
N · Zk

(4.8)

These combinations recursively applied up the chain yield the final frequency re-

sult. Together these two equations are known as a butterfly and are often represented

by the following graphical notation

Figure 4.1: Single Butterfly

Applying this notation to an 8-point FFT yields the flow graph representation

shown in Figure 4.2.

An important consideration that arises out of this graphical representation is that

a reorder is required to output a natural order FFT result. This reorder is referred

to as bit-reversal. A table showing the reversal required for an 8-point FFT is shown

in Figure 4.3.

With the above concepts combined a DIT radix-2 FFT can be implemented.

These same concepts with the butterflies applied in reverse yields a decimation in

frequency (DIF) FFT. Also, if the problem is divided into 4 parts rather than 2 a
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Figure 4.2: 8 point FFT Flow Diagram

Figure 4.3: 8 point FFT Bit Reversal

radix-4 algorithm emerges. In more complex libraries often a combination of algo-

rithms and techniques are used to optimize a given solution [2]. A more complete

derivation may be found in [28] or [30].

A variation on the above radix-2 FFT is done by the Stockham autosort algo-

rithm. The basic idea is to avoid bit-reversal by integrating this piecewise while

doing butterfly operations. The cost of this is doubling the size of the memory re-
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quired since at each butterfly stage the calculation is done out-of-place rather than

in-place as above. Derivation of this algorithm is described in both [28] and [31].

The Stockham autosort algorithm implemented in this work is a radix-2 DIF FFT.

This implementation is referred to as “stockham FFT” in the rest of the text.
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Evaluation Methodology

The following sections outline the methodology used for evaluating Renderscript

Compute’s performance on signal processing algorithms. In order to test on mobile

devices, an app is developed to benchmark three algorithms: DFT, radix-2 FFT,

and Stockham FFT. Next, a summary of devices used is presented and some differ-

ences highlighted. Then the methodology of testing these devices, both for runtime

performance and for power consumption, is explained. Finally, a brief explanation

of units chosen and calculation methods employed is provided.

5.1 App Implementation

The app was developed utilizing a combination of Java, Android libraries, and Ren-

derscript Compute framework. The Android user interface code itself is kept very

simple with few buttons or controls. This interface allows one to configure a test and

then dispatch an AsyncTask to do the actual processing thus allowing the MainAc-

tivity thread to respond to the Android OS. Otherwise, Android will detect this as

a non-responsive program and prompt the user to close the application. Inside this
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AsyncTask is where all of the computation setup, execution, and result saving occur.

Figure 5.1: Application Interface

The simple user interface shown in Figure 5.1 shows that different tests can

be selected and two parameters varied: the number of points FFT (nPts) and the

number of iterations. When running quick tests, a text summary is displayed showing

the average time taken per iteration. For benchmarking, a more automated function

is available which automates data collection by iterating over the following: a subset

of algorithms and all power of two input sets between limits. In addition, it performs

each of these combinations many times. This data on a per run basis is exported for

later analysis.
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Load Time-Domain Data

Copy data to RS Allocations

Perform DFT Computation

Copy data from RS Allocations

Save Frequency-Domain Results

Figure 5.2: Application Steps

The general test harness where the computation takes place is outlined in Fig-

ure 5.2. The process begins by loading the time domain data (step A). For testing

this data is loaded from a comma separated value (csv) file, but in real implementa-

tions could be read from a sensor such as a microphone. This data, if the application

is implemented in RenderScript Compute, needs to be loaded into structures known

as allocations (step B). Next, the Fourier transform computation is done (step C).

Then, if using RenderScript Compute, the data is copied back from allocations into

normal Java data structures (step D). Finally, the frequency data is saved to a csv

file for off-line verification of algorithm correctness. To understand performance im-

plications, step C has been written in several different implementations.

Only steps B through D are counted as part of the execution time (in the case of a

Java-only implementation only step C is considered). The benchmarking is done in a

very conservative way where the data is fully read back before the next computation

is started. This prevents algorithms from gaining advantage by streaming data. In

a library implementation, streaming of results to hide latency is a common practice
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but was considered an additional complexity not desired for comparisons done in this

work.

5.1.1 DFT Implementations

The first implementation of the DFT is named dftSerialDalvik. In this imple-

mentation, computation is done in a serial manner via Android Java virtual ma-

chine, Dalvik. The second and third implementations, dftJavaThreads 2 and dftJa-

vaThreads 4 are strictly in Java again except they use Java’s threading implementa-

tion to take advantage of the multicore processor. The computation is evenly divided

by the number of threads. As the name suggests, the only difference between these

implementations is the number of threads utilized.

The fourth implementation, dftSerialRS, is the same serial algorithm as the first

but is implemented in RenderScript Compute. In this case the time domain data

must be copied to RenderScript Compute via the allocation structure. Once this is

complete, a single non-blocking invocation of the serial RenderScript Compute kernel

is done. The AsyncTask is then blocked when the data is read out from the allocation.

This implementation allows for the Renderscript JIT compiler to utilize data parallel

constructs like SIMD instructions but does not allow any task parallelism.

The fifth implementation, dftPartialParlRS part C is divided between Java and

Renderscript Compute such that the inner real and imaginary calculations are done

with both task and data parallelism. The task parallelism is enabled in Renderscipt

Compute by invoking a for each call with both input and output allocation struc-

tures. This for each call allows independent and parallel calculation of the inner loop

iterations. Special attention needs to be taken when using these constructs as they

can create data race conditions if calculations are not independent. These calcula-

tions are retrieved from the resulting allocation and summed in the Java code. The
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summing is done for each frequency bin in the resulting frequency data.

The sixth RenderScript Compute implementation is dftFullParlRS where all com-

putation is executed in RenderScript Compute including both inner real and imag-

inary computations and the summation of the frequency bins. Allowing the sum-

mation to be done in Renderscript Compute has the advantage that only the final

summed frequency value needs to copied back to Java rather than N values.

5.1.2 Radix-2 FFT Implementations

In the radix-2 implementations many of the names and concepts carry over from DFT

implementations therefore each one is only discussed briefly. There are two Dalvik

implementations: the first one, fftRecurSerialDalvik, utilizes recursion to make the

code more compact. This implementation is useful only for understanding the me-

chanics of the code. A more optimized Dalvik implementation, fftRad2SerialDalvik,

is presented which includes optimizations such as calculating twiddle factors outside

the loops and referencing them.

The optimized Dalvik implementation was translated to Renderscript Compute

in fftRad2SerialRS to allow data parallelism. In fftRad2FullParaRS, each stage’s

outer loop is implemented using the for each construct to allow task parallelism. Fi-

nally, to minimize interactions between Renderscript Compute and the Java runtime,

fftRad2DispParaRS allows Java to make a single invocation to Renderscript Com-

pute. In Renderscript Compute C code a similar for each methodology is utilized to

implement the same algorithm as fftRad2FullPara.
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5.1.3 Stockham FFT Implementation

Building on the concepts explored in both DFT and Radix-2 FFT, implementations

Stockham FFTs are implemented. First, fftStockhamSerialDalvik implements the

algorithm in a straight-forward manner including not precalculating twiddle factors.

This implementation is then translated to Renderscipt Compute, in fftStockhamSe-

rialRS, to allow data parallelism in addition to optimizations such as twiddle precal-

culation. Next, the serial implementation is translated into a task parallel as well as

data parallel implementation in fftStockhamParaRS. Finally, fftStockhamParaDis-

pRS restructures the algorithm to allow for a single for each invocation instead of

two nested loops; with the additional complexity of calculating the previous indexes

inside the actual kernel.

5.2 Devices Evaluated

The devices selected are meant to represent the capability of high-end smartphones

available in late 2013 [11]. The Nexus 4 is utilized to show the generational improve-

ments from 2012 to 2014 [32]. It should be noted that many of the Renderscript

Compute functions may be implemented using CPU rather than either GPU or

SIMD due to limited driver support. Another challenge is that most of the smart-

phones released in the United States have Qualcomm chips due to the company’s IP

dominance in 4G LTE which made it difficult to find newer Samsung SOCs; how-

ever, the Note II has an Exynos SOC, and although not the newest, can be used for

comparison purposes.

The devices are evaluated with software versions which are up to date or near

up to date; it should be noted that Nexus devices get updates months ahead of

other devices therefore are usually at least one OS version ahead. In Section 6.2 the
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Table 5.1: Devices for Evaluation

Name Nexus 4 Nexus 5 Nexus 7 (2013) Galaxy S4 Galaxy Note 2

SOC Snapdragon S4 Pro Snapdragon 800 Snapdragon S4 Pro Snapdragon 600 Exynos 4412 Quad

Processor Quad 1.51 GHz Krait 300 Quad 2.26 GHz Krait 400 Quad 1.51 GHz Krait 300 Quad 1.9 GHz Krait 300 Quad 1.6 GHz Cortex-A9

GPU Adreno 320 Adreno 330 400 MHz Adreno 320 Adreno 320 ARM Mali-400MP

Memory 2 GB RAM 2 GB RAM 2 GB RAM 2 GB RAM 2 GB RAM

OS Version 4.2.2 4.4.2/4.4.4 4.4.2/4.4.4 4.3/4.4.2 4.1.2/4.4.2

difference of OS versions used in the study are shown to not be critical to performance

characteristics. Since the software is implemented within the Android sandbox no

rooting or custom configuration is required; devices are left in a configuration which

one would expect a typical user to have their phone i.e., utilizing carrier/vendor

provided Android versions.

5.3 Physical Setup

5.3.1 Run-Time Measurements

The run time of each test is measured and averaged over many iterations and tested

with different power of two input sizes. The device under test (DUT) is put into air-

plane mode i.e., there is no network connectivity and restarted to minimize software

running in the background. Additionally, the device’s display brightness is set to

a minimum, externally powered and externally air cooled to prevent thermal throt-

tling. The automated testing of many algorithms versus varying input sizes can take

hours to ensure that plenty of samples are taken to minimize OS software’s effect on

average run time.
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5.3.2 Power Consumption Measurements

Measuring the power of these highly integrated consumer devices can only conve-

niently be done at the system level, which means measuring the power consumed at

the USB power input. In order to minimize the amount power consumed, a similar

setup to the above is utilized. Also, the devices are fully charged and left sitting idle

for a minimum of 30 minutes before the tests are conducted to ensure as stable of

power state as possible.

The current is measured via a logging multimeter at a rate of 1 Hz and is averaged

over a number of iterations of the algorithm. The voltage has been verified to stay a

constant 4.97V which is approximated to 5V. The voltage and current are multiplied

for measured power. Next, the difference is then taken from the measured power by

the idle power to give delta power. Both power numbers are listed in Appendix A.

This measurement is then used in derived units such as joules per calculation or

MFLOPS/W.

5.4 Units

The primary unit chosen for comparing performance is FLoating point OPerations

per Second (FLOP/S). The number of FLOP/S done per point is determined by

counting the number of operations of floating point operations then dividing by the

execution time. For example in Figure 5.3 a DFT implementation is shown.

Here it can be assumed that addition, multiplication, sin, and cos functions all

take a single FLOP. In addition, it is assumed that the compiler has done constant

propagation so that 2π is precomputed. The number of FLOPs per point is thus

calculated to be 24. Finally, it can be seen that the algorithm complexity of a DFT

is O(N2), therefore, for a given input size ofN the FLOPs = 24N2. Similarly radix-2
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f o r ( i n t k = 0 ; k < nPts ; k++)
{

outReal [ k ] = 0 ;
outImag [ k ] = 0 ;
f o r ( i n t t = 0 ; t < nPts ; t++)
{

outReal [ k ] += inReal [ t ]∗ cos (2∗PI∗ t ∗k/nPts )
+inImag [ t ]∗ s i n (2∗PI∗ t ∗k/nPts ) ;

outImag [ k ] += −inReal [ t ]∗ s i n (2∗PI∗ t ∗k/nPts )
+inImag [ t ]∗ cos (2∗PI∗ t ∗k/nPts ) ;

}
}

Figure 5.3: C99 Implementation of DFT algorithm

FFT and stockham FFT can both be shown to both have 5Nlog2(N) FLOPs.

This unit of measure is an industry standard but is not without its flaws. In order

to be consistent, this number must stay constant regardless of the architecture ran

on. Thus, even though a SIMD architecture might be able to do four floating-point

additions in a single instruction, the FLOPs are counted as four FLOPs so that the

speedup can be observed between implementations. In addition this number is keep

constant for any given implementation. Finally this number does not directly express

any integer math (required usually for index calculation) or memory usage. Even

though these are not directly expressed by this unit, these latencies are accounted

for since they add execution time and therefore lower effective FLOP/S. Finally, the

results are presented in terms of MFLOP/S which equates to millions of FLOPs per

second.

Other units are available but are used less in the main body of text. These are

joules per calculation and average runtime. Average runtime is synonymous with

execution time and is the average time taken for a particular algorithm to compute

a given input size. Joules per calculation is equally straight forward since it is the
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delta power multiplied by average runtime. Both of these calculations are available

in Appendix A.
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Results

6.1 DFT Results
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Figure 6.1: MFLOP/S versus DFT Implementation

The results shown in the Figures 6.1a, 6.1b, 6.2a, and 6.2b display the MFLOP/S

for the different implementations across different devices. In all cases the Render-

Script Compute implementations require a large number of points to amortize the

overhead of copying into and out of allocations. In these larger cases Renderscript

43



Chapter 6. Results

20

40

60

80

100

120

256 512 1024 2048 4096

M
F

L
O

P
/S

dftSerialDalvik
dftJavaThreads-2
dftJavaThreads-4

dftSerialRS
dftPartialParlRS

dftFullParlRS

(a) Note II

20

30

40

50

60

70

256 512 1024 2048 4096

M
F

L
O

P
/S

dftSerialDalvik
dftJavaThreads-2
dftJavaThreads-4

dftSerialRS
dftPartialParlRS

dftFullParlRS

(b) Nexus 4

Figure 6.2: MFLOP/S versus DFT Implementation
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Figure 6.3: GalaxyS4 MFLOP/S versus DFT Implementation

Compute enables energy efficient computing.

The Nexus 5 and Nexus 7 show fairly similar results which can be attributed

to their similar Snapdragon chipsets. The Nexus 7 achieves the best performance

which can be attributed to its higher clocked GPU. However, achieving this peak

performance comes at the cost of energy efficiency. The results here show a larger

than expected overhead for RenderScript Compute when dealing with smaller DFT

calculations.
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One outlier that can be observed is the Galaxy S4 where the dftJavaThreads 4

consistently outperforms other implementations. It is not known whether this is

a driver issue within the S4 specific build of Android or some unknown hardware

limitation. It is worth noting that although RenderScript Compute was not able to

improve overall performance it did improve energy efficiency in the dftPartParlRS

case.

Finally, the Note II, which is the only non-Snapdragon processor, showed signifi-

cant power saving when using RenderScript Compute. This could be due to NEON’s

SIMD instructions are more power optimized for these floating point operations. This

could also be a result of more efficient memory transfers since both CPU and NEON

share cache and memory. Another explanation for this impressive performance comes

from both the Note II and the GalaxyS4 having significantly higher idle power. This

higher idle power may bias the delta power and therefore artificially inflate the power

savings.

6.2 Effect of Android Versions
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(a) Nexus 5 OS 4.4.4
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Figure 6.4: MFLOP/S versus DFT Implementation
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Figure 6.5: Galaxy S4 OS 4.4.2 MFLOP/S versus DFT Implementation

In Figures 6.4a, 6.4b, and 6.5 DFT results are shown from different Android

versions than originally developed on to if any performance differences can be seen. It

is clear that the performance has remained constant. This is quite different from the

results presented in [33] where performance of Google’s internal benchmarks improve

over 2.5 times from Android version 4.0 to 4.2. One conclusion which can be drawn

is that results from Android version 4.3 to 4.4.4 onwards are very comparable. Even

though not all permutations were run on every OS version, the performance appears

to stay stable.

6.3 Radix-2 FFT Results

Both Radix-2 FFTs and Stockham have surprisingly good results compared to DFTs.

Since the number of FLOPs is significantly reduced by the change in time complexity

from N2 to Nlog2(N) one would expect the performance in MFLOP/S to stay con-

stant. This is only the case when looking at Dalvik implementation which actually

reduces performance.

The more interesting case is when FFTs are implemented in Renderscript Com-
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Figure 6.6: MFLOP/S versus Radix-2 FFT Implementation
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Figure 6.7: MFLOP/S versus Radix-2 FFT Implementation

pute, the serial implementation MFLOP/S increases by 2 times. This can be ex-

plained by the nature of the FFT algorithms chosen. The accumulation steps are

moved from the inner-most loop of the algorithm to occurring at each stage of the

divide and conquer strategy. This allows the data dependency from the accumulation

to be moved to the highest level i.e., the log2(N) loop. Thus inside of each loop there

are N operations which have no data dependency, thus data parallelism can take full

advantage of the deep pipelines available in both CPU and GPU SIMD instructions.
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Figure 6.8: Galaxy S4 MFLOP/S versus Radix-2 FFT Implementation

This data parallelism is very dominate, so much so that only in very large point

FFT does task parallelism show an advantage. This effect is so dominate that task

parallelism actually hinders performance in all Radix-2 FFT cases. This is due to the

overhead of synchronization and added complexity in coding does not provide the

needed advantage to amortize the cost. In cases larger than 16K, performance starts

to decrease. Although a single factor does not stand out, some contributing factors

may be bit-reversal having a larger effect on performance, and memory accesses

exceed some bound. In addition, it can be seen in the power numbers that initiating

task parallelism has a significant energy cost.

6.4 Stockham FFT Results

The Stockham FFT results are similar to the Radix-2 FFT results in terms of impres-

sive speedup when compared to DFT results. Again, the data parallelism dominates

performance overall, but with no bit-reversal and easier memory strides, task paral-

lelism starts to show some advantage around 16K point FFT. Until this point there

are not enough computations to amortize the additional cost and complexity of a

task-parallel implementation brings. This task parallelism in addition to extra mem-
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Figure 6.9: MFLOP/S versus Stockham FFT Implementation
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Figure 6.10: MFLOP/S versus Stockham FFT Implementation

ory transition affect the power domain very heavily and are a significant detriment

to energy-efficient performance.

The main advantage of the Stockham algorithm is that it does not require bit-

reversal. The downside being that twice the memory is required to allow out-of-place

computation within each stage. This access pattern is more convenient for coding

as Renderscript Compute for each statements naturally have an input allocation

and an output allocation thus allowing for Stockham’s task parallel nature to be
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Figure 6.11: Galaxy S4 MFLOP/S versus Stockham FFT Implementation

directly expressed by input paramters rather than using an indirect index. This

is also a contributing factor in this implementation being better suited for task

parallel implementation. Although, the peak performance reached by radix-2 16K

was not exceeded, the Stockham FFT showed very good performance with larger

point FFT datasets. This implementation seemed to scale better than radix-2 and

allowed Renderscript Compute to utilize both task-parallel and data-parallel abilities

effectively.
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Conclusion

These results clearly show that use of the RenderScript Compute on mobile SOCs

running Android can improve performance of signal processing applications, but

great care must be taken in the implementation approach to in order to reach optimal

solutions. In addition, it shows that use of GPU and SIMD hardware can improve

energy efficiency as well as performance of digital signal processing workloads as

demonstrated by both DFT and FFT implementations. In the cases examined here,

task-parallel implementations are important only when computing very large FFTs.

The best FFT performance results were obtained with the Nexus 5 during a 16K

point radix-2 SerialRS FFT. In this case, over 500 MFLOP/S were obtained. In the

energy efficiency realm, the Nexus 5 with the same SerialRS FFT implementation

obtained about 280 MFLOPS/W putting it just barely ahead of the Note II. These

numbers are impressive and show that with improved data-parallelism, newer archi-

tectures with improved SIMD and GPUs can pull away from older platforms. With

newer generations implementing more complex GPUs and additional DSP resources

in SOCs these numbers should get better over time on new hardware with little to

no code changes needed.
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When comparing DFT numbers it is also clear, even with non-optimized algo-

rithms, a 30% overall energy savings is obtained. Specifically, this number is calcu-

lated by comparing Java Threads to Renderscript Compute numbers.

7.1 Comparison of Results

Looking at the results presented in this work in comparison to other systems these

power numbers seem very promising. One interesting comparison is between the

results presented versus the June 2014 Green500 list which ranks the most energy-

efficient supercomputers [9]. In terms of performance per watt, would rank 409th

spot in the DFT case or 284th spot in the FFT case. This is not a direct comparison

as this paper is not running the same benchmarks nor are all the same factors being

considered such as cooling, network communication, or AC power supply efficiency.

Other efforts to offload processing from the CPU to heterogeneous processors

have yielded similar results. In [34] the authors explore offloading machine learning

classification to a DSP located inside a SOC. This lead to a 17% overall power re-

duction, but when system overhead is excluded the offloaded classification algorithm

savings becomes 50%. In the case of DFTs the results presented here fall slightly

short at 40% but in the FFT case it is likely this number is slightly higher but since

threaded versions of FFT algorithms were not measured a direct number cannot be

computed.

Another comparison with similar workloads can be found in [4] where several

implementations of the FFT are examined with desktop CPUs and GPUs. This

study finds that GPUs can be as high as 5-8 GFLOPS/Watt and for Intel CPUs

can range from 1 to 4 GFLOPS/Watt. This study focused on datasets where the

number of point FFT was 64K or greater. These results show that Renderscript

Compute running on Mobile SOCs is competitive but still slightly lower than tradi-
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tional CPUs and GPUs. This suggests that where the high performance capabilities

of a supercomputer or desktop CPU are not feasible or required that a SOC solution

is ideal given its comparable performance per watt and its smaller overall footprint-

/form factor. As mobile SOC’s performance improve this current energy-efficiency

gap should close making this architecture more relevant for larger workloads.

One main advantage of the results presented in this work is as expected het-

erogeneous computing performance does seem to portable across devices. This is

not the case in the higher performing CPU/GPU implementations shown in [2], [4],

and [23]. This advantage is largely gained by employing Renderscript Compute but

is nonetheless important when considering implementation details for an algorithm.

It is unfortunate that this advantage is only available on Android and not realized

in a more generalized way. Additional testing may be needed on additional non-

Snapdragon processors to confirm this result.

7.2 Future Work

To continue the work presented, here the FFT algorithm should be explored in

more depth and its dominant performance drivers understood. This exploration is

probably easier in a framework like OpenCL which can be controlled with much finer

granularity than is possible in Renderscript Compute. Comparing this work with

other heterogeneous frameworks such as OpenCL, NDK, Aparapi, or even CUDA

would be interesting. Another avenue for further research is to investigate larger

radixes and combining different radixes; in [4] a 35-55% reduction in power is possible

when employing multiple radixes.

Another avenue for future work would be to implement these algorithms with real-

world sensors such as a microphone or a software-defined radio. This would provide

an interesting case study and uncover more implementation details which are not
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always clear when working on benchmarking exclusively. A less ambitious effort

might be to convert the implementations presented here into a more traditional FFT

framework where the optimal algorithm can be chosen given input parameters such

as size and deadline. Then such parameters such as latency and energy efficiency

can be balanced against the performance requirements of the application. Since

performance is fairly portable the heuristics involved would be much simpler than

in FFTW where benchmarking is performed on target systems to pick the optimal

implementation [2].
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Appendix A. Tabular Performance Results

Table A.1: Nexus 5 Power Calculations for 4096 DFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.44 N/A N/A N/A

dftSerialDalvik 2.26 1.82 12.90 31.20

dftJavaThreads-2 3.44 3.00 15.92 25.29

dftJavaThreads-4 3.9 3.46 11.52 34.95

SerialRS 2.12 1.76 5.97 67.49

dftPartParlRS 3.35 2.91 8.35 48.24

dftFullParlRS 3.60 3.16 8.12 49.56

Table A.2: Nexus 5 MFLOP/S across DFT Implementations

npts dftSerialDalvik dftJavaThreads-2 dftJavaThreads-4 dftSerialRS dftPartialParlRS dftFullParlRS

256 29.648709 70.563661 134.547819 101.671881 32.483767 29.333532

512 37.278284 77.091729 140.340308 113.482251 55.426447 56.817990

1024 47.892940 76.038869 112.312331 117.039457 88.487426 95.895378

2048 51.172411 77.849500 125.117514 118.352219 121.107444 120.990993

4096 56.663193 75.894972 120.978269 118.513155 140.421062 156.423626

Table A.3: Nexus 5 Power Calculations for 65K FFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.46 N/A N/A N/A

fftRecurDalvik 1.66 1.20 6.49 0.81

fftRad2SerialDalvik 1.73 1.27 0.57 9.27

fftRad2SerialRS 1.67 1.21 0.02 283.23

fftRad2FullParaRS 1.92 1.46 0.03 199.60

fftRad2DispParaRS 1.87 1.41 0.02 215.80

fftStockhamSerialDalvik 1.49 1.03 0.89 5.86

fftStockhamSerialRS 1.94 1.48 0.02 252.62

fftStockhamParaRS 1.96 1.50 0.03 166.06

fftStoickhamDispRS 2.80 2.34 0.03 207.36
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Table A.4: Nexus 5 MFLOP/S across Radix-2 FFT Implementations

npts fftRecurSerialDalvik fftRad2SerialDalvik fftRad2SerialRS fftRad2FullParaRS fftRad2DispParaRS

256 0.775061 10.090321 46.514478 11.130071 32.340249

512 0.756804 9.426928 101.999638 22.553625 65.130047

1024 0.776327 10.202388 180.704456 47.985428 132.509169

2048 0.755632 10.015599 307.576366 84.110747 225.357674

4096 0.737877 9.367130 393.474297 153.470041 329.427433

8192 0.728129 10.460356 456.793807 221.098483 347.493516

16K 0.788805 10.418416 517.257874 315.314850 365.735163

32K 0.922688 11.105336 499.999267 362.526434 310.476559

65K 0.971227 11.746795 342.423775 291.355003 304.864570

Table A.5: Nexus 5 MFLOP/S across Stockham FFT Implementations

npts fftStockhamSerialDalvik fftStockhamSerialRS fftStockhamParaRS fftStockhamParaDispRS

256 7.063551 59.335522 10.711526 18.542883

512 7.252408 112.582993 21.021827 37.213651

1024 5.964673 183.901152 40.670520 60.654786

2048 6.333529 257.708621 70.696285 119.677093

4096 5.821344 347.861345 121.683543 201.105041

8192 5.921162 357.438948 167.900823 277.657179

16K 6.101891 381.194753 216.900712 365.746175

32K 6.028334 370.820613 244.783325 392.690804

65K 6.057563 373.522957 248.601028 485.761244
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Table A.6: Nexus 7 Power Calculations for 4096 DFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.47 N/A N/A N/A

dftSerialDalvik 1.44 0.97 10.43 38.61

dftJavaThreads-2 2.15 1.69 11.91 43.10

dftJavaThreads-4 3.82 3.36 11.02 41.60

dftSerialRS 1.48 1.01 7.57 77.55

dftPartParlRS 2.89 2.42 6.83 70.23

dftFullParlRS 3.08 2.61 6.31 75.14

Table A.7: Nexus 7 MFLOP/S across DFT Implementations

npts dftSerialDalvik dftJavaThreads-2 dftJavaThreads-4 dftSerialRS dftPartialParlRS dftFullParlRS

256 38.157787 70.029564 130.962864 78.407976 28.875785 44.418639

512 38.893769 72.750416 106.906644 78.009374 51.179175 81.106820

1024 38.763168 72.199403 149.086635 78.823015 86.991683 119.842964

2048 38.362537 73.876438 148.923419 78.765656 120.091737 160.304636

4096 37.511348 72.681080 139.626389 78.446471 170.070952 196.233355

Table A.8: Nexus 7 Power Calculations for 65K FFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.46 N/A N/A N/A

fftRecurDalvik 1.69 1.22 9.01 0.58

fftRad2SerialDalvik 1.75 1.29 0.68 7.71

fftRad2SerialRS 1.66 1.20 0.02 214.57

fftRad2FullParaRS 1.88 1.42 0.03 175.62

fftRad2DispParaRS 1.88 1.42 0.03 153.57

fftStockhamSerialDalvik 1.79 1.33 1.27 4.12

fftStockhamSerialRS 1.95 1.49 0.03 186.62

fftStockhamParaRS 2.00 1.53 0.04 124.01

fftStockhamDispRS 2.95 2.49 0.03 180.95
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Table A.9: Nexus 7 MFLOP/S across Radix-2 FFT Implementations

npts fftRecurSerialDalvik fftRad2SerialDalvik fftRad2SerialRS fftRad2FullParaRS fftRad2DispParaRS

256 0.691231 8.670396 45.178984 14.921702 20.638720

512 0.706520 9.303562 92.013984 32.444122 41.075882

1024 0.711745 8.396543 166.275680 68.086587 77.982784

2048 0.704886 8.525422 235.755459 114.123663 131.604775

4096 0.682244 8.686473 298.681983 172.568114 185.430556

8192 0.649510 8.955872 310.330007 232.065446 236.535864

16K 0.646939 9.172333 352.082780 276.436312 262.501057

32K 0.685993 9.737022 355.982145 305.159349 274.189786

65K 0.711709 9.952480 257.385957 249.436212 218.481670

Table A.10: Nexus 7 MFLOP/S across Stockham FFT Implementations

npts fftStockhamSerialDalvik fftStockhamSerialRS fftStockhamParaRS fftStockhamParaDispRS

256 6.559622 38.387407 12.763192 10.900667

512 7.794736 48.827753 27.993130 21.641815

1024 7.529932 121.609277 51.485963 40.517825

2048 5.644437 174.812333 79.875945 71.723976

4096 5.557881 218.352638 116.276295 146.281038

8192 5.808150 256.966829 149.778569 207.133500

16K 5.518352 272.213389 173.704478 307.841347

32K 5.589455 286.920807 186.946221 395.852439

65K 5.461713 278.177763 190.339680 450.548613
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Table A.11: Nexus 4 Power Calculations for 4096 DFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.81 N/A N/A N/A

dftSerialDalvik 2.05 1.24 18.50 21.76

dftJavaThreads-2 2.87 2.06 16.82 23.94

dftJavaThreads-4 2.53 1.72 13.95 28.86

dftSerialRS 2.06 1.25 11.29 35.65

dftPartParlRS 2.82 2.01 13.24 30.40

dftFullParlRS 2.08 1.27 9.01 44.68

Table A.12: Nexus 4 MFLOP/S across DFT Implementations

npts dftSerialDalvik dftJavaThreads-2 dftJavaThreads-4 dftSerialRS dftPartialParlRS dftFullParlRS

256 26.932603 47.604843 41.610159 41.293358 21.146330 20.949174

512 27.100823 49.675926 46.219924 44.321634 28.226731 41.058905

1024 27.144085 51.330540 50.177103 44.496391 44.266282 50.407259

2048 27.149429 49.871583 51.774873 44.438836 54.618074 58.858819

4096 26.875563 49.200107 49.496457 44.387643 60.961229 56.515107

Table A.13: Nexus 4 Power Calculations for 65K FFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.83 N/A N/A N/A

fftRecurDalvik 2.17 1.33 13.98 0.38

fftRad2SerialDalvik 2.14 1.31 0.87 6.05

fftRad2SerialRS 2.02 1.19 0.05 110.19

fftRad2FullParaRS 2.04 1.21 0.06 89.81

fftRad2DispParaRS 2.27 1.44 0.07 73.37

fftStockhamSerialDalvik 2.22 1.39 0.82 6.42

fftStockhamSerialRS 2.30 1.47 0.07 76.47

fftStockhamParaRS 2.41 1.58 0.09 59.75

fftStockhamDispRS 2.41 1.58 0.07 76.74
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Table A.14: Nexus 4 MFLOP/S across Radix-2 FFT Implementations

npts fftRecurSerialDalvik fftRad2SerialDalvik fftRad2SerialRS fftRad2FullParaRS fftRad2DispParaRS

256 0.536700 6.493987 40.050647 12.792387 34.549457

512 0.546964 6.511659 73.121039 25.242393 65.241506

1024 0.549607 6.700139 116.686716 44.898483 83.928044

2048 0.540441 6.504367 157.391477 72.247641 121.334237

4096 0.522087 7.491612 157.378613 101.190753 119.085882

8192 0.471002 7.142956 161.786075 123.415982 111.398229

16K 0.477458 7.489439 130.832439 120.559229 102.374225

32K 0.477724 8.020720 136.006439 113.756852 108.295561

65K 0.500693 7.902821 131.401426 108.857433 105.604190

Table A.15: Nexus 4 MFLOP/S across Stockham FFT Implementations

npts fftStockhamSerialDalvik fftStockhamSerialRS fftStockhamParaRS fftStockhamParaDispRS

256 9.102963 48.265870 11.490457 22.809076

512 8.777755 74.104311 20.901847 35.254481

1024 9.807452 103.748786 35.942448 52.700537

2048 8.770024 114.459874 50.748478 72.258957

4096 8.598758 108.369739 69.179641 90.573417

8192 8.515318 115.160446 81.355835 106.025538

16K 8.597892 112.295618 82.299067 108.585688

32K 9.043073 107.292354 89.517276 113.904559

65K 8.899769 112.243590 94.613380 121.257910
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Table A.16: Note II Power Calculations for 4096 DFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.74 N/A N/A N/A

dftSerialDalvik 1.21 0.47 7.99 50.39

dftJavaThreads-2 1.49 0.745 6.21 64.84

dftJavaThreads-4 1.97 1.225 5.19 77.57

dftSerialRS 1.24 0.495 5.35 75.26

dftpartParlRS 1.24 0.50 2.26 177.81

dftFullParlRS 1.53 0.785 2.93 137.56

Table A.17: Note II MFLOP/S across DFT Implementations

npts dftSerialDalvik dftJavaThreads-2 dftJavaThreads-4 dftSerialRS dftPartialParlRS dftFullParlRS

256 23.860194 46.923150 83.975654 36.654952 23.559976 25.920633

512 23.954676 47.782000 89.177264 37.006388 40.803269 44.935762

1024 23.991214 48.555488 88.733909 37.174758 59.730903 67.826925

2048 23.914782 48.890360 95.981327 37.284912 78.714535 88.731563

4096 23.682152 48.307561 95.028577 37.254692 88.903183 107.983208

Table A.18: Note II Power Calculations for 65K FFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.79 N/A N/A N/A

fftRecurDalvik 1.40 0.61 4.80 1.09

fftRad2SerialDalvik 1.45 0.65 0.39 13.31

fftRad2SerialRS 1.39 0.60 0.02 266.04

fftRad2FullParaRS 1.41 0.62 0.02 212.58

fftRad2DispParaRS 1.44 0.65 0.03 192.73

fftStockhamSerialDalvik 1.30 0.51 0.27 19.08

fftStockhamSerialRS 2.02 1.23 0.05 100.32

fftStockhamParaRS 2.14 1.34 0.06 87.51

fftStockhamDispRS 2.32 1.53 0.04 148.74
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Table A.19: Note II MFLOP/S across Radix-2 FFT Implementations

npts fftRecurSerialDalvik fftRad2SerialDalvik fftRad2SerialRS fftRad2FullParaRS fftRad2DispParaRS

256 0.557557 7.000386 28.379421 6.893453 22.627244

512 0.570747 7.337801 68.900037 17.036027 44.431193

1024 0.616802 7.425077 82.245119 32.606138 71.026712

2048 0.625058 7.496950 156.849889 57.438280 76.314356

4096 0.640530 6.774709 189.102917 89.088453 127.705957

8192 0.633012 7.202211 180.395384 128.510206 124.029491

16K 0.645960 7.389627 188.359342 142.402822 97.692685

32K 0.661341 7.759719 134.274288 122.560005 107.516235

65K 0.667552 8.688884 159.991233 131.614122 125.323712

Table A.20: Note II MFLOP/S across Stockham FFT Implementations

npts fftStockhamSerialDalvik fftStockhamSerialRS fftStockhamParaRS fftStockhamParaDispRS

256 9.306673 38.456580 8.001913 18.225543

512 9.873537 64.307555 15.498847 33.036438

1024 9.636432 100.992351 28.456846 64.501286

2048 9.493388 113.142532 46.144382 93.007267

4096 9.471609 105.243897 68.725339 142.881520

8192 9.495371 117.309748 89.638932 170.950777

16K 9.727916 103.382986 101.449586 228.589329

32K 9.620879 115.113213 106.632293 235.508739

65K 9.687646 123.504353 117.617224 227.803493
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Table A.21: Galaxy S4 Power Calculations for 4096 DFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.75 N/A N/A N/A

dftSerialDalvik 2.80 2.05 15.34 26.24

dftJavaThreads-2 3.65 2.90 12.19 33.03

dftJavaThreads-4 3.70 2.95 8.41 47.89

dftSerialRS 2.60 1.85 7.73 52.12

dftPartParlRS 2.40 1.65 5.59 72.01

dftFullParlRS 3.15 2.40 6.97 57.80

Table A.22: Galaxy S4 MFLOP/S across DFT Implementations

npts dftSerialDalvik dftJavaThreads-2 dftJavaThreads-4 dftSerialRS dftPartialParlRS dftFullParlRS

256 36.740575 83.975654 138.945583 58.820643 19.492676 20.118496

512 42.869011 94.338821 163.456898 65.101987 35.016731 41.252744

1024 55.120519 87.021764 162.548921 84.110374 59.726650 67.094550

2048 53.767097 98.033069 151.137013 95.725761 92.636356 105.828800

4096 53.798490 95.797957 141.283802 96.424245 118.816707 138.715342

Table A.23: Galaxy S4 Power Calculations for 65K FFT

Power (Watt) Delta From Idle Energy for Calc (Joule) MFLOPS/Watt

idle 0.76 N/A N/A N/A

fftRecurDalvik 1.93 1.17 9.01 0.58

fftRad2SerialDalvik 1.77 1.01 0.66 7.93

fftRad2SerialRS 1.83 1.07 0.03 172.98

fftRad2FullParaRS 1.72 0.95 0.03 169.39

fftRad2DispParaRS 1.81 1.04 0.03 160.91

fftStockhamSerialDalvik 1.74 0.98 0.68 7.69

fftStockhamSerialRS 1.90 1.13 0.02 268.98

fftStockhamParaRS 1.72 0.96 0.03 161.62

fftStockhamDispRS 2.73 1.97 0.03 180.72
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Table A.24: Galaxy S4 MFLOP/S across Radix-2 FFT Implementations

npts fftRecurSerialDalvik fftRad2SerialDalvik fftRad2SerialRS fftRad2FullParaRS fftRad2DispParaRS

256 0.749878 8.273401 29.094278 6.991235 13.986258

512 0.761638 7.104508 64.549822 14.420849 34.478455

1024 0.778319 7.219143 118.407904 28.114784 65.423553

2048 0.767618 7.332787 204.215311 55.172536 107.019267

4096 0.776401 7.342273 314.339499 88.059745 134.025625

8192 0.768441 7.334499 349.518333 127.538628 165.678871

16K 0.760087 7.445567 378.485530 181.871241 168.458780

32K 0.790696 7.669912 329.713880 189.250961 222.012618

65K 0.681305 8.019037 184.463197 161.516548 167.952578

Table A.25: Galaxy S4 MFLOP/S across Stockham FFT Implementations

npts fftStockhamSerialDalvik fftStockhamSerialRS fftStockhamParaRS fftStockhamParaDispRS

256 7.517179 32.624630 6.748815 9.723667

512 8.598311 71.116685 13.707622 20.109065

1024 8.728223 125.184421 26.772438 40.269828

2048 7.853967 173.367191 46.658755 75.670655

4096 8.245793 242.190120 82.479630 124.379323

8192 7.844008 301.394055 120.800508 168.260763

16K 7.465871 322.295666 165.907918 224.526159

32K 7.524284 344.302515 136.715288 279.920598

65K 7.530650 304.908734 154.861770 355.595901
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B.1 dftFullParlRS

B.1.1 dftFullParlRS.java

1 ...

2 public void run ()

3 {

4 int n = inReal.length;

5 mRS_inReal.copyFrom(inReal );

6 mRS_inImag.copyFrom(inImag );

7

8 for (int k = 0; k < n; k++)

9 { // For each output element

10 m_Script.set_k(k);

11 m_Script.forEach_sumkern(mRS_count , mRS_sumOut );

12

13 m_Script.bind_sumIn(mRS_sumOut );

14 m_Script.invoke_sumFloat2 ();

15 }

16 mRS_outReal.copyTo(outReal );

17 mRS_outImag.copyTo(outImag );

18 }

19 ...

B.1.2 dftFullParl.rs

1 #pragma version (1)

2 #pragma rs java_package_name(com.example.dftFullParl)

3

4 float *inReal;

5 float *inImag;

6

7 int nPts;

8 int k;

9

10 float2* sumIn;

11 float* outReal;

12 float* outImag;

13

14 void sumkern (const int *in, float2 *out)

15 {

16 int t = *in;

17

18 out ->x = inReal[t]*cos (2*PI * t * k / nPts) + inImag[t]*sin(2*PI * t * k / nPts); // Real

19 out ->y = -inReal[t]*sin(2*PI * t * k / nPts) + inImag[t]*cos (2*PI * t * k / nPts); // Imag

20 }

21

22 void sumFloat2 ()

23 {

24 int i;

25 int length=nPts;

26 outReal[k] = 0;

27 outImag[k] = 0;
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28

31 for (i=0;i<length; i++)

32 {

33 outReal[k] += sumIn[i].x;

34 outImag[k] += sumIn[i].y;

35 }

36 }

B.2 fftRad2SerialRS

B.2.1 fftRad2SerialRS.java

1 ...

2 public void run ()

3 {

4 // Copying incoming data is done in bitRevOrder

5

6 m_Script.invoke_bitRevOrder ();

7 m_Script.invoke_calcTwiddle(outReal.length );

8 m_Script.invoke_fftRad2Serial ();

9

10 mRS_outReal.copyTo(outReal );

11 mRS_outImag.copyTo(outImag );

12 }

13 ...

B.2.2 fftRad2Serial.rs

1 #pragma version (1)

2 #pragma rs java_package_name(com.example.fftRad2Serial)

3

4 #include "mathUtils.rsh"

5

6 float *inReal;

7 float *inImag;

8 float *outReal;

9 float *outImag;

10 float2 *twiddle;

11 float2 *currTwid;

12

13 void bitRevOrder ()

14 {

15 unsigned int N = rsAllocationGetDimX(rsGetAllocation(inReal ));

16 unsigned int nBits = uiLog2(N);

17 unsigned int inIdx;

18 for (int i=0;i<N;i++)

19 {

20 inIdx = bitRevIdx(i, nBits );

21 outReal[i] = inReal[inIdx ];

22 outImag[i] = inImag[inIdx ];
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23 }

24 }

27

28 void calcTwiddle (unsigned int N)

29 {

30 for (int k=0; k<N/2; k++)

31 {

32 twiddle[k].x = (cos(2*k*PI/N));

33 twiddle[k].y = (sin(2*k*PI/N));

34 }

35 }

36

37 void fftRad2Serial ()

38 {

39 unsigned int N = rsAllocationGetDimX(rsGetAllocation(outReal ));

40 unsigned int nStages = uiLog2(N);

41 unsigned int L;

42 float2 a,b,cmplxTmp ,out;

43

44 // Both bitRevOrder and calcTwiddle should have been called from java

45 for (int stage = 0; stage < nStages; stage ++) // each power of two

46 {

47 L = 1<<(stage +1);

48

49 for (int k=0;k<N;k+=L) // Might need to stop at N-L

50 {

51 for (int n=0;n<L/2;n++)

52 {

53 a.x = outReal[n+k];

54 a.y = outImag[n+k];

55

56 b.x = outReal[n+k+L/2];

57 b.y = outImag[n+k+L/2];

58

59 cmplxTmp = cmplxMult(b, twiddle[n*(N/L)]);

60

61 // Butterflies

62 out = a+cmplxTmp;

63 outReal[n+k] = out.x;

64 outImag[n+k] = out.y;

65

66 out = a-cmplxTmp;

67 outReal[n+k+L/2] = out.x;

68 outImag[n+k+L/2] = out.y;

69 }

70 }

71 }

72 }
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B.3 fftStockhamSerialRS

B.3.1 fftStockhamSerialRS.java

1 ...

2 public void run ()

3 {

4 mRS_inCmplx.copyFrom(inCmplx );

5

6 m_Script.invoke_fftStockhamSerial ();

7

8 mRS_outCmplx.copyTo(outCmplx );

9 }

10 ...

B.3.2 fftStockhamSerial.rs

1 #pragma version (1)

2 #pragma rs java_package_name(com.example.fftStockhamSerial)

3

4 #include "mathUtils.rsh"

5

6 float2 *inCmplx;

7 float2 *outCmplx;

8

9 void fftStockhamSerial ()

10 {

11 unsigned int N=rsAllocationGetDimX(rsGetAllocation(outCmplx ));

12 unsigned int nStages = uiLog2(N);

13 unsigned int L0 ,r0,L,r;

14 unsigned int omegaIdx;

15 float2 b;

16

17 for (int stage = 0; stage < nStages; stage ++) // each power of two

18 {

19 // inner loop invariants

20 L = 1<<(stage +1);

21 r=N/L;

22 L0=L/2;

23 r0=N/L0;

24

25 // Copy inCmplx ->outCmplx

26 for (int idx=0;idx <N;idx ++)

27 {

28 outCmplx[idx] = inCmplx[idx];

29 }

30

31 for (int j=0; j<L0;j++)

32 {

33 omegaIdx = ((float)j/(float)L)*N;

34 for (int k=0;k<r;k++)

35 {

36 b = cmplxMult(omega[omegaIdx], outCmplx[j*r0+k+r]);
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37

40 inCmplx[j*r+k] = outCmplx[j*r0+k]+b;

41 inCmplx [(j+L0)*r+k] = outCmplx[j*r0+k]-b;

42 }

43 }

44 }

45 for (int idx=0;idx <N;idx ++)

46 {

47 outCmplx[idx] = inCmplx[idx];

48 }

49 }

B.4 fftStockhamParaDispRS

B.4.1 fftStockhamParaDispRS.java

1 ...

2 public void run ()

3 {

4 mRS_inCmplx.copyFrom(inCmplx );

5

6 m_Script.invoke_fftStockhamParaDisp(m_Script ,mRS_inCmplx , mRS_outCmplx );

7

8 mRS_inCmplx.copyTo(outCmplx );

9 }

10 ...

B.4.2 fftStockhamParaDisp.rs

1 #pragma version (1)

2 #pragma rs java_package_name(com.example.fftStockhamParaDisp)

3

4 #include "mathUtils.rsh"

5

6 unsigned int g_N;

7

8 unsigned int g_L0;

9 unsigned int g_L;

10 unsigned int g_r;

11

12 void fftStockhamParaDisp (rs_script stockhamKern , rs_allocation allocInCmplx , rs_allocation allocOutCmplx)

13 {

14 unsigned int nStages = uiLog2(g_N);

15 struct rs_script_call rs_call;

16 for (int stage = 0; stage < nStages; stage ++) // each power of two

17 {

18 g_L = 1<<(stage +1);

19 g_L0 = g_L >>1;

20 g_r=g_N/g_L;

21
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22 rs_call.strategy = RS_FOR_EACH_STRATEGY_DONT_CARE;

23 rs_call.xStart = 0;

26 rs_call.xEnd = g_L0*g_r;

27 rs_call.yStart = 0;

28 rs_call.yEnd = 0;

29 rs_call.zStart = 0;

30 rs_call.zEnd = 0;

31 rs_call.arrayStart = 0;

32 rs_call.arrayEnd = 0;

33

34 if ((stage % 2) == 0)

35 {

36 rsForEach(stockhamKern , allocInCmplx , allocOutCmplx , NULL , 0, &rs_call );

37 }

38 else

39 {

40 rsForEach(stockhamKern , allocOutCmplx , allocInCmplx , NULL , 0, &rs_call );

41 }

42 }

43 }

44 void root (const float2 *in, float2 *out , const void *usrL , uint32_t i)

45 {

46 float2 b;

47 unsigned int j, omegaIdx;

48

49 j = floor((float)i / (float)g_r);

50

51 omegaIdx = ((float)j/(float)g_L)*g_N;

52

53 b = cmplxMult(omega[omegaIdx], in[j*g_r+g_r ]);

54

55 out [0] = in[j*g_r]+b;

56 out[g_L0*g_r] = in[j*g_r]-b;

57 }
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