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Abstract

As an extension of conventional Fourier transform and a time-frequency signal

analysis tool, the fractional Fourier transforms (FRFT) are suitable for dealing

with various types of non-stationary signals. Taking advantage of the properties

and non-stationary features of linear chirp signals in the Fourier transform do-

main, several methods of extraction and parameter estimation for chirp signals

are proposed, and a comparative study has been done on chirp signal estimation.

Computation of the discrete fractional Fourier transform (DFRFT) and its chirp

concentration properties are dependent on the basis of DFT eigenvectors used

in the computation. Several DFT-eigenvector bases have been proposed for the

transform, and there is no common framework for comparing them. In this thesis,

we compare several different approaches from a conceptual viewpoint and point

out the differences between them.

We discuss five different approaches, namely: (1) the bilinear transformation

method, (2) the Grunbaum method, (3) the Dickenson-Steiglitz method, also

known as the S-matrix method, (4) the quantum mechanics in finite dimen-

sion(QMFD) method, and (5) the higher order S-matrix method, to find centered-
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DFT (CDFT) commuting matrices and the various properties of these commuting

matrices. We study the nature of eigenvalues and eigenvectors of these com-

muting matrices to determine whether they resemble those of corresponding con-

tinuous Gauss-Hermite operator. We also measure the performance of these five

approaches in terms of mailobe-to-sidelobe ratio, 10-dB bandwidth, quality factor,

linearity of eigenvalues, parameter estimation error, and, finally peak-to-parameter

mapping regions. We compare the five approaches using these several parameters

and point out the best approach for chirp signal applications.
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Chapter 1

Introduction

1.1 Overview

Stationary signals are well analyzed using the DFT. The DFT is a widely used

transform since it can be implemented in a very efficient way using the FFT

algorithm. However, many actual signals are non-stationary by nature. In some

of these signals, we could assume the signal might be stationary, if we choose

short segments, for instance; human speech. In general, analyzing non-stationary

signals using the DFT is not a good choice.

To incorporate the variability of the non-stationary signal parameters, it is nec-

essary to consider extensions of the Fourier-based representations that provide

instantaneous frequency information for multi-component signals. The FRFT is a

generalization of the conventional Fourier transform. It was introduced by Namias

[1] in 1980, and since then it has been applied to different problems in signal pro-

cessing and many other areas.

The discrete FRFT, a discrete version of the continuous FRFT, has become a vital

tool for chirp signal analysis and parameter estimation. Computation of this trans-

form and its use in chirp parameter estimation are dependent on the basis of the

eigenvectors and its eigenvalues used in this computation. Several bases of DFT-

eigenvectors derived from matrices that commute with DFT have been proposed.

1



CHAPTER 1. INTRODUCTION 2

But there is no common framework to compare those bases of DFT-eigenvectors.

In this thesis we compare these bases of DFT-eigenvector to find which basis is

the best one to use in chirp signal analysis. For the puropose of comparison, we

have used five different bases, namely, (1) the bilinear transform basis, (2) the

Grunbaum basis, (3) the infinite order second derivative approximation basis, (4)

the quantum mechanics in finite dimension(QMFD) basis and (5) the Dickenson-

Stieglitz basis, which are discussed individually in the later sections of the thesis.

All the above mentioned sets of eigenvector bases are approximations of the G-H

functions. Therefore, the application of the DFRFT to a sampled chirp will result

in a peak in the 2-D plane. However, unlike the continuous version of FRFT, there

are no known closed form solutions for the mapping between peak location and

chirp parameter (chirp rate and central frequency). Prior work has assumed that

this mapping is a sampled version of the mapping for the continuous FRFT, but

this is only accurate for very narrowband chirps and not suitable for wideband

signals because the basis functions of the continuous FRFT are not band-limited.

Therefore, the sampling process produces aliasing, and if we do oversampling it

translates to a non-orthogonal basis [2].

Prior work has used the norm of the error between the eigenvectors and sampled

G-H functions to compare them. However, error-norm estimation alone is not

sufficient for a thorough comparison. Therefore, we have used multiple parameters

like the mainlobe-to-sidelobe ratio, 10-dB bandwidth, quality factor, liniarity of

eigenvalues, error-norm of eigenvectors, 2D peak estimation error, percentage of

points where peak to parameter mapping is satisfied, etc., which are described

individually in the later sections of this thesis. We compute these for the proposed

five different methods, and this shows that each basis is considerably different from

each other.

1.2 Fractional Fourier Transform

The fractional Fourier transform (FRFT) is a family of linear transformations

which generalize the Fourier transform. It can be thought of as the Fourier trans-
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form to the nth power, where n need not to be an integer. Thus, it can transform

a function to any intermediate domain between time and frequency. Although the

continuous FRFT has existed for many years, it is only in recent years that it

has been used for signal processing. In particular, it has been shown that there is

close relationship between the linear chirp signal and the continuous FRFT. For

any real α, the α-angle FRFT of a function f is denoted by Fα(u) and defined by

Fα(u) =
√

1− cot(α)
2π exp

(
π cot(α)u2)

2

) ∞∫
−∞

Iαf(x)dx, (1.1)

where Iα = exp
(
−2π

(
csc(α)ux− cot(α)

2 x2
))

.

For α = π
2 , this becomes precisely the definition of the continuous Fourier trans-

form, and for α = −π
2 , it is the definition of the inverse continuous Fourier

transform.

In other words, The FRFT is an integral transform

Fα(u) =
∫
Kα(u,x)f(x)dx, (1.2)

where Kα(u,x) is the transformation kernel defined as

Kα(u,x) =



√
1−cot(α)

2π exp(Aα) , if α is not a miltiple ofπ

δ(u−x), if α is a multiple of 2π

δ(u+x), if α+π is a multiple of 2π

, (1.3)

where Aα =
(
x2+u2

2 cot(α)−uxcsc(α)
)
, and it is important to observe that the

kernel is continuous everywhere in α; and in particular, at multiples of π, it is seen

that

lim
α→nπKα = Knπ, (1.4)
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Substituting this kernel in the integral of the FRFT, we obtain

Fα(u) =



√
1−cot(α)

2π exp
(

(
u2

2 cot(α)
)) ∞∫
−∞

f(x)exp(Bα)dx, if α = kπ

f(x), if α = 2kπ

f(−x), if α+π = 2kπ

,

(1.5)

where Bα =
(
x2

2 cot(α) +uxcsc(α)
)
and k = integer.

1.3 Discrete Fractional Fourier Transform

In a similar way as the FRFT is based on the continuous Fourier transform, the

definition of a DFRFT is based on the DFT. Since the DFT is an operator that

can be expressed as a matrix vector multiplication, the starting point to define

a DFRFT is the well-known eigenvalue-eigenvector decomposition of a matrix.

DFRFTs have been developed by different researchers and can be put in a general

form as [3];

Aα(x) = W
2α
π (x) = VΛ

2α
π V−1x, (1.6)

where W is a DFT matrix, V is an eigenvector of DFT eigenvectors and Λ is a

diagonal matrix of DFT eigenvalues.

In the case of the DFT, the eigenvectors are not only linearly independent, but are

also orthonormal, and in this case the inverse of the eigenvector can be substituted

by its hermitian. For a DFT matrix W,

W = VΛV−1. (1.7)

Then equation 1.6 can be rewritten as

Aα(x) = W
2α
π (x) = VΛ

2α
π VHx. (1.8)

When Aα is evaluated for parameter value α = 0, π2 ,2π we obtain,
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A2π = I, Aπ
2

= W, Aπ = W2.

1.4 Discrete Rotational Fourier Transform

A first discussion on DFRFT was introduced by Santhanam and McClellan in

[3]. This transform was called rotational to emphasize the fact that it implies a

rotation in the time-frequency plane.

The formulation of DFRFT as a linear combination of integer power of the DFT

matrix is simple and elegant, but the resulting transform does not resemble the

behavior of the continuous version. The expression given in [3] is based on a

grouping of eigenvalues that results in eigenvectors of the DFT that are linearly

independent but form a non-orthogonal basis. The DFT matrix has only four

eigenvalues (1, -1, j, -j) regardless of its size for N ≥ 4 [4]. Therefore we have

repeated eigenvalues for N > 4. The fact that the DFT has repeated eigenvalues

for N > 4 produces two problems when a fractional DFT is defined as expressed in

equation (1.8). The first problem is that the DFT has several sets of orthogonal

eigenvectors. For a matrix to have a complete set of orthogonal eigenvectors, it

has to have unique eigenvalues [5]. Since this is not the case for DFT, there are

multiple sets of orthogonal eigenvectors.

N 1 -j -1 j
4m m+1 m m m-1

4m+1 m+1 m m m
4m+2 m+1 m m+1 m
4m+3 m+1 m+1 m+1 m

Table 1.1: Multiplicities of DFT eigenvalues

The second problem is the ambiguity in deciding the eigenvectors of the DFT

kernel matrix. Because any linear combinations of the DFT eigenvectors with

the same eigenvalue are still DFT eigenvectors, there is ambiguity in deciding

the eigenvectors of the DFT. The multiplicities of the eigenvalues of the DFT are

shown in Table 1.1. From this table, we can observe that the DFT has non-uniform

eigenvalues distribution when N is a multiple of four.
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1.5 Organization of Thesis

In this thesis, we compare the different algorithms used for the computation of

DFRFT using different comparison parameters. We studied the different proper-

ties of five different centered DFT commuting matrices and found the best algo-

rithm for chirp signal applications. In chapters 2 through 5, this thesis is organized

as follows;

The definition of a CDFRFT is discussed in Chapter-2. The eigenvectors, the

basis functions, and some of its properties are explained. In this chapter we also

studied the relationship between the defined transform and discrete linear chirp

signals. The ability to concentrate chirp signal into a few transform coefficients

was studied. A relation between the chirp rate and the angle of the transform is

also presented in this chapter.

In Chapter-3, we discuss the five different centered DFT commuting matrices. We

studied the nature of eigenvalues and eigenvectors of those commuting matrices

to see whether those eigenvalues and eigenvectors resemble that of corresponding

continuous G-H operator. We also plotted the error-norm of the eigenvectors to

analyze how far the eigenvectors are from that of continuous G-H operator. Lastly,

we looked at the valid mapping region for peak-to-parameter mapping to check

the connectivity and adjacency criteria of the commuting matrices.

Chapter-4 is dedicated to the purposes of comparison. We compare the perfor-

mance of five different CDFT commuting matrices based on 7 various parameters.

Finally, in Chapter-5, we conclude our research and discuss topics for future re-

search.



Chapter 2

Discrete Fractional Fourier

Transform

This chapter is mainly focused on the detailed analysis of the CDFRFT. We

discussed the centered DFT and its eigenvalues and eigenvector, and then we

studied the DFRFT. The rest of the chapter is dedicated to the Centered DFT

(CDFT) commuting matrix and to the linear chirp signals.

2.1 Discrete Fractional Fourier Transform

As an approach to solving the two problems discussed in the previous chapter,

Pei and Yeh [6] proposed an improved transform which addresses the issue of

ambiguity in deciding the fractional power of eigenvalues and ambiguity in deciding

the eigenvectors of the DFT kernel matrix, by narrowing the choice to a single set

of eigenvectors obtained from a Dickenson-Stieglitz DFT commuting matrix. The

matrix S defined by Dickenson and Stieglitz is given as,

7



CHAPTER 2. DISCRETE FRACTIONAL FOURIER TRANSFORM 8

S =



2 1 0 . . . 0 1

1 2cosω 1 . . . 0 1
... ... ... . . . ... ...

0 0 0 . . . 2cos(N −2)ω 1

1 0 0 . . . 1 2cos(N −1)ω


(2.1)

where ω = 2π
N .

Matrix S commutes with the DFT matrix, and its eigenvectors are also the eigen-

vectors of DFT matrix, but they correspond to different eigenvalues, except for

the case when the size of the matrix a is multiple of 4. Apart from this particular

case, as S is a symmetric matrix, the eigenvalues of matrix S are all real, and the

eigenvectors are orthonormal to one another, so that matrix S can play the same

role as Hermite function plays in a continuous case.

The other problem that is addressed in Pei’s method is ambiguity in deciding

the eigenvectors of the DFT kernel matrix. This problem is solved by creating a

separate rule of assignment that gives a different eigenvalue to each eigenvector.

This rule is inspired by the fact that the eigenvalues of the FRFT are e−nα and the

eigenvectors are Hermite functions. The nth order Hermite function has n zeros;

thus one can use the number of sign changes in the eigenvectors of matrix S to

determine the Hermite order to which the eigenvectors of DFT matrix correspond.

If the eigenvector has k sign changes, it plays the same role as the kth order Hermite

function in the continuous case. Table 2.1 shows the eigenvalue-assignment rule

for various cases of N.

N Eigenvalues
4m e−kα,k = 0,1,2, ..............,(4m−2),4m

4m+1 e−kα,k = 0,1,2, ..............,(4m−1),4m
4m+2 e−kα,k = 0,1,2, ..............,4m,(4m+ 2),
4m+3 e−kα,k = 0,1,2, ..............,(4m+ 1),(4m+ 2)

Table 2.1: Eigenvalue-assignment rule of DFRFT kernel matrix

The rule defines a set of eigenvalues that have equal angular spacing on the unit

circle due to parameter k, and the spacing is modified with the fractional power of

parameter α. It is important to note that with this definition of fractional powers,
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as α goes from 0 to π
2 , the eigenvalues move around the unit circle, and the larger

the k the larger the number of times they loop around the unit circle. Pei and Yeh

showed that the results of this transform display some similarity to the continuous

counterpart. They also showed that the fractional transform they define yields the

DFT when = π
2 .

2.2 Centered DFT

The DFT maps the samples of x[n], n = 1,2,......,N to [0,2π] discrete frequency

space with an interval 2π = N, whereas the CDFT maps to [−π,π], space assum-

ing n = −N−1
2 to N−1

2 . Santhanam and Vargas-Rubio [15] discussed the CDFT

operator A as the N * N matrix with entries

Am,n = 1√
N
e(−

2π
n (m−N−1

2 )(n−N−1
2 )), (2.2)

where m,n = 0,1,2,.............,N-1.

They have stated that the matrix defined in (2.2) is strictly centered, and the

argument of the exponential has a negative sign when it is used in signal processing.

Their definition of DFT results in a matrix that is the inverse of the centered

matrix used by Mugler and Clary [8], and since a matrix commutes with its inverse,

their CDFT has the same commuting matrix. The factor 1√
N

is used in the

definition because it is required to have a unitary transform, although in the

original definition of the DFT it is not used. With WN = e−
2π
N , we can rewrite

equation (2.1) as

Am,n = 1√
N
Wmn

N W−nN−1
2

N W−mN−1
2

N W(N−1
2 )2

N . (2.3)

In expression (2.3), the first term is conventional DFT and the last term is a

constant. The remaining two factors are also powers of WN whose properties

depend on the choice of N. When N is odd, the effect is equivalent to a shift in

rows and columns, because the powers of WN for those factors are integer.



CHAPTER 2. DISCRETE FRACTIONAL FOURIER TRANSFORM 10

In the case of even N, the powers are fractional, and the effect is not a simple

shift in rows and columns. This means that when computing the CDFT there is

no coefficient for zero frequency, and in some cases this may be an issue. This

problem can be solved by shifting the signal to be transformed by a frequency

of ± π
N . This can be achieved by multiplying the signal with a complex signal

e±π
n
N . If we need the DC component of a signal, this frequency shift procedure

will produce a DC component coefficient from the CDFT when N is even [15].

2.2.1 Eigenvalue of CDFT

One of the reasons to choose the CDFT as the starting point for defining the

fractional transform is that there is a fundamental difference in the multiplicities

of the eigenvectors with respect to the regular DFT that can be exploited to

simplify the computations. As defined by Mehta [9], the eigenvalues for the DFT

matrix of size N follow the sequence

1,(−j)2,(−j)3, ...............,(−j)N , (2.4)

while the eigenvalues for the CDFT have the sequence

1,(−j),(−j)2,(−j)3, ...............,(−j)N−1. (2.5)

Comparing these two sequences, we can see that the value (-j) is skipped in the

eigenvalues of DFT. The result of this difference is that when N is a multiple of 4,

the DFT has different multiplicities for the 4 eigenvalues, while, in this case, the

CDFT has the multiplicity of N/4 for each eigenvalue as is shown in Table 2.2.

The consequence of the different multiplicities of the eigenvalues of the DFT is

that the diagonal matrix of fractional power Λ 2α
π requires two different definitions

for the cases of N, even and odd. When we use the CDFT to define a fractional

power we can use a single definition for all values of N give as,

Λ
2α
π = diag(e−pα), with 0 ≤ p≤N −1. (2.6)
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N CDFT
1 -j -1 j

4m m m m m
4m+1 m+1 m m m
4m+2 m+1 m+1 m m
4m+3 m+1 m+1 m+1 m

Table 2.2: Multiplicities of the eigenvalues of the CDFT

2.2.2 CDFT Commuting Matrices and Their Eigenvectors

Having only four different eigenvalues, we know that for N > 4 the CDFT matrix

does not have a unique set of orthogonal eigenvectors, and we have the same

problem as with the DFT. In order to define a fractional transform we need an

orthogonal set of eigenvectors for the CDFT matrix. As we have described in the

previous chapter, the solution that has been used by many of the researchers is to

use the eigenvectors of the CDFT commuting matrices. From matrix theory [5],

we know that a pair of matrix A and B that commute, i.e. AB = BA, have a

common set of eigenvectors.

We are using five different bases, which are described later in the thesis, to ob-

tain the CDFT commuting matrix. All the eigenvalues obtained from those 5

bases have multiplicity one, therefore, its eigenvectors are orthogonal. We use

the eigenvector of those 5 matrices to construct the fractional transform. They

have been presented in [10], [11], [12], [13] and [14] as discrete versions of G-H

functions. The eigenvectors of those matrices look like a G-H function, however,

they are not exactly the same. Figure 2.1 shows a 9th order eigenvector of G-

H operator for sample size of 256. Figure 2.2 shows a 10th order eigenvector for

Grunbaum method. This looks like a 9th order eigenvector of G-H operator shown

in figure 2.1. The samples of the G-H function presented in figure 2.1 are taken

at x =
√

2π
N (n− N−1

2 ) with n = 0,1,.......,N-1 for N = 256, and normalized as is

done with the eigenvector. The eigenvectors are numbered by the corresponding

eigenvalue of the DFT commuting matrix in ascending order. Eigenvector 1 is

associated with the smallest eigenvalue.
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Figure 2.1: Plot of sample of G-H function
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Figure 2.2: Plot of 10th eigenvector of Grunbaum matrix for N = 256
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2.3 Centered Discrete FRFT

Vargas-Rubio and Santhanam [15] defined the centered DFRFT (CDFRFT) for

the fractional parameter α as

Aα = VTΛ
2α
π VH

T , (2.7)

where VT is a matrix whose columns correspond to the orthogonal eigenvectors

obtained from the commuting matrix T. The eigenvectors are sorted in ascending

order of its corresponding eigenvalue in T as it was explained earlier, and the

first column of VT corresponds to the eigenvector with smallest eigenvalue. Λ 2α
π

is a diagonal matrix whose elements are λk = e−jkα, 0 ≤ k ≤ N − 1. With this

substitution equation (2.7) becomes

Aα =
N−1∑
k=0

e−jαkvkvHk , (2.8)

where vk is the eigenvector with k sign changes.

With this definition, the CDFRFT at α= π
2 corresponds to the CDFT that is in-

terpreted as a rotation of 90◦ in the time-frequency domain. If we further increase

α to π, we have a time reversal transformation, and obviously with α = 3π
2 , we

have the inverse CDFT.

The definition assigns the eigenvectors in the standard order by the eigenvalues of

T, and it is equivalent to the assignment of the eigenvector with k sign changes to

the λk = e−jkα as is defined in [16]. In addition, this is the same correspondence

we have in the continuous transform with respect to the G-H functions. There

are other possible eigenvalue-eigenvector assignments that have been studied by

Cariolaro and Ehrsege [17] and [18]. We will only use the assignment explained in

[16] for the purpose of this thesis.



CHAPTER 2. DISCRETE FRACTIONAL FOURIER TRANSFORM 14

2.4 Multi-angle CDFRFT

Vargas-Rubio and Santhanam [15] discussed the multi-angle CDFRFT as;

{Aα}kn =
N−1∑
p=0

vkpvnpe
−pα, (2.9)

where vkp is the kth element of the pth eigenvector. Multiplying Aα by the signal

x[n], we obtain;

Xα[k] =
N−1∑
n=0

x[n]
N−1∑
p=0

vkpvnpe
−pα. (2.10)

For discrete set of angles α = αr = 2πr
N , r = 0,1, .........,N −1

Xk[r] =
N−1∑
p=0

zk[p]Wpr
N , (2.11)

where

zk[p] = vkp

N−1∑
n=0

x[n]vnp. (2.12)

Expressing the transform as a DFT allows us to use a regular FFT algorithm to

compute the CDFRFT. The resulting transform Xk[r] containing the CDFRFT

for these discrete angles is called multi-angle DFRFT (MA-CDFRFT).

It is important to observe that Xk[0] corresponds to the original signal x[n] with

k = n, and Xk[N4 ] corresponds to the CDFT of x[n] when N is a multiple four,

since in this case, αN
4

= π
2 . Figure 2.3 shows a graphical representation of the

array Xk[r] to illustrate how index k has different interpretations depending on

the value of r. For example, when r = 0, k is interpreted as time and when r = N
4 ,

k corresponds to frequency. This interpretation also shows that the upper half of

Xk[r] is a reversed version of the lower half.



CHAPTER 2. DISCRETE FRACTIONAL FOURIER TRANSFORM 15

Figure 2.3: Graphical representation of Xk [r] that shows how the interpretation of the index k
changes depending on the value of index r.

2.5 Linear Chirp Signal

One of the properties of FRFT is that its kernel includes a linear chirp signal [19].

Therefore the computation of the MA-CDFRFT can be applied to the estimation

of the chirp rate of a single signal, or multicomponent signal with similar average

frequency but different chirp rates [15].

2.5.1 Mono-component Chirp Signal

A complex chirp with zero average frequency can be expressed as [14],

x[n] = ecr(n−
N−1

2 )2
, 0≤ n≤N −1, (2.13)

where cr is the chirp rate.

A simple experiment shows that choosing a particular angle α produces the effect

of concentrating a linear chirp signal in a few coefficients of the resulting transform.

For the purpose of this thesis, we used cr = 0.001 and N = 256. Therefore the

chirp signal becomes;

x[n] = e0.001(n− 255
2 )2

, 0≤ n≤ 255. (2.14)
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After some trial and error with different values of α, we found that for α = 85.27

we obtain a good concentration in a few coefficients of the transform. Figure 2.4

describes the magnitude of the MA-CDFRFT of this signal and a slice of the

MA-CDFRFT matrix at the particular angle of 85.27, where the magnitude of the

MA-CDFRFT is maximum. Specifically we can observe that we actually have two

maxima, because the CDFRFT at α+π is the reversed version of the CDFRFT

at α. The location of the maxima is at r = 69.
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Figure 2.4: A slice of the MA-CDFRFT matrix at r = 69 and magnitude of the corresponding
MA-CDFRFT for cr = 0.001, wc = 0, α= 85.27, N = 256 and Grunbaum basis for monocompo-
nent chirp with zero average frequency

2.5.2 Multi-component Chirp Signal

When the MA-CDFRFT is applied to a multicomponent signal, we were able to

distinguish the different components of the signal if they had different chirp rates

even when their spectra overlap.

As an example we used the signal

x[n] = e(0.005(n− 127
2 )2) + e(−0.007(n− 127

2 )2), n= 0,1,2...........,127. (2.15)

This is a signal consisting of two linear chirps, one with a positive chirp rate, and

the other with a negative chirp rate. Both signals have an average frequency equal

to zero. As is shown in the image of figure 2.5, the magnitude of the transform

displays four peaks, two for each signal, and it can be clearly determined that
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the signal consists of two linear chirp components. We also noted that, unlike in

the case of a mono-component chirp, when we had two components, we saw some

fringes that result from the fact that the amplitude is no longer constant. A slice

of the MA-CDFRFT matrix at r = 36 can be seen in figure 2.5.
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Figure 2.5: Slice of the MA-CDFRFT at r = 36 and magnitude of the corresponding MA-
CDFRFT for cr1 = 0.005, cr2 = −0.007, wc = 0, N = 128 and Grunbaum basis for multi-
component chirp with zero average frequency

2.5.3 Chirps with non-zero average frequency

When a signal has an average frequency different from zero, the chirp signal is

described as [14],

x[n] = e(cr(n−
N−1

2 )2+w0(n−N−1
2 )), 0≤ n≤N −1. (2.16)

where w0 is the average frequency.

For this signal, we are interested in determining where peak occurs. This is im-

portant because we are interested in knowing how well the CDFRFT can localize

the average frequency of the signal.

We chose w0 = π
4 with cr = 0.001 and N=256 to see where the peak occurred.

Figure 2.6 describes the magnitude of the MA-CDFRFT of this signal and a slice

of the MA-CDFRFT matrix at r = 68. As shown in the figure, the peak occurs at

r = 68 and k = 160. From this figure, we can observe that the peak deviates from
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the origin. Because of non-zero average frequency, it is obvious that this must

occur.
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Figure 2.6: Slice of the MA-CDFRFT at r = 68 and magnitude of the corresponding MA-
CDFRFTT for cr = 0.001, wc = π

4 , N = 256 and Grunbaum basis for monocomponent chirp
with non-zero average frequency

2.6 Relation between α and cr

For better concentration of signal energy when analyzing linear chirps, an α be-

tween 45◦ to 135◦ is a good choice [15]. For this interval, an empirically developed

relationship between the angle of transform and chirp rate, with corresponding

error less than 2%, is given as;

cr = 2
tan

(
α− π

2

)
N

+ 1.41

(
α− π

2

)
N

, (2.17)

with α = 2πr
N .

This relationship is useful in determining the chirp rate from the angle, particularly

when we use the MA-CDFRFT algorithm.

We found the chirp rate using (2.17) for the signal we used in section 2.5.1, where

we found that the peak occurs at r = 69 for N = 256,

α = 2πr
N = 1.6935,
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and cr = 0.00163. This is close to 0.001, which is the value we took in this

particular case.

The MA-CDFRFT and the appropriate relations were applied to estimate the two

chirp rates associated with the two-component chirp signal used in the section

2.5.2. Using equation (2.18),

α = 1.3253 for r=27 and N=128,

α = 1.7671 for r=36 and N=128,

and using equation (2.17) we found that

cr =−0.0066 for r=27 and N=128,

cr = 0.0052 for r=36 and N=128.

Now we can observe that these chirp rates are close to -0.007 and 0.005, which we

had assumed in the section 2.5.2. Table 2.3 shows the chirp rate obtained using

equation (2.17). From this table we can see that the chirp rate obtained from the

equation is very close to the actual chirp rate. This proves that the relationship

in equation (2.17) is sufficient for chirp parameter estimation.

Actual Chirp Rate Chirp Rate using Equation 2.17
-0.012176346 -0.011628762
-0.008356316 -0.008056398
-0.004536286 -0.004338268
-0.000716256 -0.000326968
0.003103774 0.003649013
0.006923804 0.007656638
0.010743834 0.010743834

Table 2.3: Comparison between actual chirp rate and the chirp rate obtained from equation
(2.17)

Peacock and Santhanam [2] have derived an expression for peak-to-parameter

mapping. Using this expression for the QMOD method, they produce a mapping

region which is very similar to the continuous mapping for ω < π
3 ,

α =− π
N

cot
(
kπ

N

)
and ω = 2π

N

(
r− N −1

2

)
csc

(
kπ

N

)
, (2.18)
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Actual Parameters Parameters obtained from equation 2.24
ωc Cr ω̂c Ĉr
π
4 0.001 0.8015 0.0012
π
4 0.002 0.7846 0.0021
π
4 0.003 0.7970 0.003
π
4 0.004 0.7883 0.004
π
4 0.005 0.7836 0.005
π
4 0.006 0.7831 0.0061

Table 2.4: Comparison of actual chirp rates and chirp rate estimates from equation 2.19

where α is chirp rateand ω is central frequency

But we found that this mapping does not correcly map the peak location to the

corresponding chirp rate and central frequency.

We then modified this peak to parameter mapping expression to correctly map

the peak location to the corresponding chirp rate and central frequency as

Ĉr =− π
N

cot
(2rpπ
N

)
and ω̂c = 2π

N

(
kp−

N −1
2

)
csc

(2rpπ
N

)
, (2.19)

where Ĉr is the estimatated chirp rate, ω̂c is the estimated central frequency, rp is

the coefficient index of peak location and kp is the angular index of peak location.

With this expression, we can obtain the peak-to-parameter mapping with average

error of 0.4% for the QMOD method. Therefore we can conclude that equation

2.19 produces less error in terms of parameter estimation and peak to parameter

mapping in comparison to equation 2.17.Table 2.4 depicts the example of the peak

to pameter mapping for the QMOD method with G-H separation using equation

2.19.

2.7 Conclusion

In this chapter, we have discussed the centered DFRFT for various eigenvector

bases. We studied the eigenvalues and eigenvectors of the different commuting

matrix approaches. We further compared two analytical expressions for the peak
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to parameter mapping.



Chapter 3

CDFT Commuting Matrices

The FRFT has found many applications in various areas including signal process-

ing [20], time-frequency analysis [21], quantum mechanics [1], and signal recovery

[22]. FRFT is a potentially powerful tool in the analysis of chirp-type signals. As

chirp signals are widely used in radar, sonar and communication systems, esti-

mation of their parameters such as, amplitude, chirp rate, initial frequency and

initial phase has been an important problem [23].

In recent years, much efforts has been invested in obtaining the DFRFT that

inherits the properties of the continuous FRFT [24]. Early works on DFRFT

have shown that the eigenvectors of the CDFT commuting matrices are discrete

HGL functions [25]. Therefore, this chapter is dedicated to discussing the various

methods that can be used to obtain CDFT commuting matrices.

22
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3.1 The Dickinson and Steiglitz (D-S) Method

Dickinson and Steiglitz defined a DFT commuting matrix [11], whose eigenvectors

look like G-H function, as

S =



2 1 0 . . . 0 1

1 2cosω 1 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 2cos(N −2)ω 1

1 0 0 . . . 1 2cos(N −1)ω


, (3.1)

where ω = 2π
N .

Here the diagonal elements are 2cos(2π
N n), 0≤ n≤N −1. This makes the matrix

S commute with the DFT. We have been discussing the centered DFT (CDFT)

for the purpose of this thesis. If we change the range of n from 0≤ n≤N −1 to

−N−1
2 ≤ n≤ N−1

2 , we will have a new S-matrix which will commute with CDFT.

i.e. [W,Scen] = W∗Scen−Scen ∗W = 0, (3.2)

where W = Centered DFT and Scen = Centered version of S-matrix.

The 10th eigenvector of the centered S-matrix is shown in figure 3.1(a), which

looks like a 9th order G-H function. The plot of eigenvalues of the G-H operator

depicts a linear spacing [20]. Figure 3.1(b) shows the plot of the eigenvalues of

the S-matrix, which is not exactly a linear curve but we can say that it is nearly

linear.

We also plotted the error-norm of the eigenvectors to see how close the eigenvectors

were to the G-H function. For this, we first computed the Hemite-Gauss-Like

(HGL) eigenvectors of a size 64×64 of the S-matrix. Then we defined the error-

norm as the second norm of the difference vector between the HGL eigenvector and

the corresponding G-H function. Figure 3.2 shows the error-norm for the S-matrix

method for N = 64. From the figure, it is clear that the error-norm increases as
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Figure 3.1: (a)10th eigenvector of the S-matrix for N=256 and (b) Eigenvalues of the S-matrix
method for N=256
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Figure 3.2: Error-norm for the S-matrix method for N = 64

the number of zero crossings increases. This is obvious because a large number of

zero crossings implies a high frequency, and there is a high possibility of error for

high frequency.

To further analyze the quality of the CDFT commuting matrix, we looked at

the peak-to-parameter mapping. As discussed in [26], to calculate the peak-to-

parameter mapping, we generated 4N ×4N sample chirp functions evenly spaced

in the range of α ε (0,π) and ω ε
(
− π
N ,

π
N

)
, where α is a chirp rate and ω is the

center frequency. The peaks in the DFRFT for a chirp occur roughly between

k = N
4 . . .

3N
4 and r = N

2 . . .N , where r is the location of peak in MA-CDFRFT
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plane.

Application of the DFRFT to chirp parameter estimation has been discussed by

many researchers. This estimation is not meaningful if a complete analysis of the

invertibility of the peak-to-parameter mapping is ignored. The analysis of the

invertibility of the mapping refers the following [2];

• The set of all chirp parameters that map to a single location in the chirp-rate

versus center-frequency plane must form a connected set (Connectivity Criteria).

• Locations which are adjacent in the transform plane must map to adjacent

regions in the chirp parameter space (Adjacency Criteria).

Figure 3.3 depicts the region in the α−ω plane for the S -matrix method where the

mappings satisfied the connectivity and adjacency conditions for chirps of length

N = 256, with a transform size N×N , measured using 4N×4N chirps with center

frequencies and chirp rates evenly spaced over the shown area in the figure.

Figure 3.3: Valid mapping regions for the S-matrix method for N = 256 where black regions
depict where the connectivity criteria is not satisfied, whereas the grey region depict where the
adjacency criteria is not satisfied and white regions indicate that both criteria are satisfied.

This shows that the mapping region for the S-matrix method depicts a significantly

smaller invertible region in comparison to the diamond shaped region shown in

figure 3.4, where aliasing does not occur.
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Figure 3.4: Expected valid mapping region: Outside of the dashed region, the instantaneous
frequency of the chirps spills out of wε[−π,π], so the Nyquist sampling theorem is not satisfied.

3.2 The Bilinear Transformation Method

Another approach to generating a DFT commuting matrix is introduced by Serbes

and Durak-Ata in [12]. They defined a new DFT commuting matrix as;

B = B−1
1 E2 +FB−1

1 E2F−1, (3.3)

where

B1 =



k 1 0 . . . . . . 0 1

1 k 1 . . . . . . 0 0

0 1 k . . . . . .
... ...

... ... ... . . . . . . ... ...

1 0 0 . . . . . . 1 k


. (3.4)

E2 =



−2 1 0 . . . . . . 0 1

1 −2 1 . . . . . . 0 0

0 1 −2 . . . . . .
... ...

... ... ... . . . . . . ... ...

1 0 0 . . . . . . 1 −2


. (3.5)

F = DFT matrix and k = 109 is used in this thesis.

This newly generated matrix B commutes with DFT. In order to make it commute

with the centered version of DFT, we simply changed the off-centered DFT to a
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centered DFT. After replacing F with its centered version we got another matrix

B which commutes with centered DFT. i.e. [B,F] = B*F−F*B = 0, where F is

a centered DFT.

As we did in the previous section, we plotted the eigenvector and eigenvalues

of the matrix B to see how close the eigenvectors were to the continuous G-H

function and to see how linear the eigenvalues were. Figure 3.5(a) shows the 10th

order eigenvector of matrix B for N = 256, which looks like a 9th order G-H

function. Figure 3.5(b) shows the eigenvalues of matrix B of order 256. This plot

of eigenvalues looks similar to the plot with the S-matrix method, which is nearly

linear.
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Figure 3.5: (a)10th eigenvector of the matrix B for N=256 and (b) Eigenvalues of the Bilinear
transformation method for N=256

We plotted the error-norm of the eigenvector of matrix B for an order of 64 to

check the error on representing the G-H function by the eigenvectors of matrix B.

Figure 3.6 shows the error-norm for the bilinear transformation method for N =

64. This figure also shows that the error-norm decreases as the number of zero

crossings increases due to the fact that we discussed in the previous section.

We plotted the valid mapping region for matrix B in the α−ω plane to determine

in which region the two conditions mentioned in the previous section were satisfied.

Figure 3.7 depicts the region in the α−ω plane for the bilinear transformation

method where the mappings satisfied the connectivity and adjacency conditions

for chirps of length N = 256, with a transform size N ×N , measured using 4N ×

4N chirps with center frequencies and chirp rates evenly spaced over the shown
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Figure 3.6: Error-norm for the bilinear transformation method for N = 64

area in the figure. From the figure, it is clear that, as in theS-matrix method,

the mapping region for the bilinear transformation method depicts a significantly

smaller invertible region in comparison to the diamond shaped region shown in

figure 3.4.

Figure 3.7: Valid mapping regions for the bilinear transformation method for N = 256
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3.3 The Infinite Order Second Derivative Ap-

proximation Method

Inspired by the work of Grunbaum [27], Pei, Hsue and Ding proposed another

DFT-commuting matrix in [13], whose eigenvectors are even closer to the con-

tinuous G-H function than those of the Dickinson-Steiglitz matrix. The matrix

proposed by them is given as;

M2k =
k∑

m=1
(−1)m−1 2[(m−1)!]2

(2m)! Dm, (3.6)

where

D =



−2 1 0 . . . . . . 0 1

1 −2 1 . . . . . . 0 0

0 1 −2 . . . . . .
... ...

... ... ... . . . . . . ... ...

1 0 0 . . . . . . 1 −2


. (3.7)

For the purpose of this thesis, we have used k = 2. Therefore, for k = 2 ;

M4 = −1
12 D

2 +D. (3.8)

Now the DFT commuting matrix based on this analysis is proposed as;

S4 = M4 +FM4F−1. (3.9)

We referred to this matrix S4, which commutes with DFT, as a higher-order S-

matrix for the purpose of this thesis. If we change the off-centered DFT to its

centered version, then the higher-order S-matrix will become commutable with the

centered DFT. We again plotted eigenvectors and eigenvalues to compare them

with those of continuous G-H operator. Figure 3.8(a) shows the 10th eigenvector

of higher order S-matrix for N = 256, which looks like a 9th order G-H function,

however it is not exactly the same. We will discuss next how much the eigenvector

differs from the corresponding G-H function. Figure 3.8(b) shows the eigenvalues

of higher-order S-matrix for N = 256. This shows that the eigenvalues for the
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higher-order S-matrix is not as linear as that of the G-H operator; however, we

can see some improvement in comparison to the Dickinson-Steiglitz method.
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Figure 3.8: (a)10th eigenvector of the higher order S-matrix method for N=256 and (b) Eigen-
values of the higher order S-matrix method for N=256

Figure 3.9 shows the error-norm for the higher-order S-matrix method for N =

64. As in previous cases, the error-norm increases with the increase in number of

zero crossings; however we can also see that the error-norm for the higher-order

S-matrix seems less for a lower number of zero crossings in comparison to the

S-matrix method.
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Figure 3.9: Error-norm for the higher-order S-matrix method for N = 64

Figure 3.10 shows the region in the α−ω plane for the higher-order S-matrix

method where the mappings satisfied the connectivity and adjacency conditions
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for chirps of length N = 256, with a transform sizeN×N , measured using 4N×4N

chirps with center frequencies and chirp rates evenly spaced over the shown area

in the figure. As in previous cases, the higher-order S-matrix method also has a

smaller invertible region for peak-to-parameter mapping [26].

Figure 3.10: Valid mapping regions for the higher order S-matrix method for N = 256

3.4 The Grunbaum Method

Another approach to obtaining the DFT eigenvectors uses the tri-diagonal com-

muting matrix introduced by Grunbaum [27]. Mugler and Clary modified the

Grunbaum tri-diagonal incorporating a scaling factor, and the resultant eigenvec-

tors very closely resemble the G-H operators [28]. The tri-diagonal commuter of

Grunbaum is defined via its diagonal and off-diagonal elements in [28] as;

Tmn =



−2cos(πNτ)sin(πµτ)sin(π (N −µ−1)τ) , if m = n ,0≤ n ≤ N-1

sin(πµτ)sin(π(N −µ)τ) , if m = n + 1, n - 1,

1≤ n ≤ N-1

0, otherwise

,

(3.10)
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where 0≤ µ≤N −1 and τ = 1
N .

Santhanam and Vargas-Rubio focused their attention on the centered version of

the DFT matrix operator T [14]. The eigenvalues of the commuter matrix T for

the centered DFT are both real and unique and furnish the complete orthogonal

set of DFT eigenvectors;

Wmn = 1√
N
e(− 2π

N (m−a)(n−a)), (3.11)

where the shift parameter a= N−1
2 .

We plotted the eigenvectors and eigenvalues of the commuting matrix T to see

whether the eigenvector and eigenvalues of the matrix look like those of the G-H

operator. Figure 3.11(a) shows the 10th eigenvector for T-matrix for N = 256.

From this, it is clear that an eigenvector of matrix T looks like a corresponding

G-H function; however they are not exactly the same. The difference between

these two is defined as the error-norm, and discussed next. Figure 3.11(b) shows

the eigenvalues of T-matrix. This plot says that the eigenvalues are not as linear

as that of the G-H operator. Eigenvalues seems linear only for higher order.

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Sample No.

V
al

ue
s

GRUM Method

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Index

V
al

ue

Eigenvalue Plot of GRUM basis for N = 256

(b)
Figure 3.11: (a)10th eigenvector of the Grunbaum method for N=256 and (b) Eigenvalues of the
Grunbaum method for N=256

We plotted the error-norm of the eigenvector of the matrix T for an order of 64 to

check the error in representing the G-H function by the corresponding eigenvectors

of matrix T. Figure 3.12 shows the error-norm of the Grunbaum method for N =

64. From the plot, we can see that the error-norm for the Grunbaum method is

slightly less in comparison to all the previously discussed methods. Therefore, we
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can say that the eigenvectors of the T-matrix better resembles the corresponding

G-H function than the eigenvectors of the three previously discussed methods.
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Figure 3.12: Error-norm for the Grunbaum method for N = 64

We also plotted the mapping region for the Grunbaum method to determine the

region where there is a invertible mapping. Figure 3.13 shows the region in the α−

ω plane for the Grunbaum method where the mappings satisfied the connectivity

and adjacency conditions for chirps of length N = 256, with a transform size

N ×N , measured using 4N × 4N chirps with center frequencies and chirp rates

evenly spaced over the area shown in the figure. In the figure, black regions depict

where the connectivity criteria is not satisfied whereas the grey region depict where

the adjacency criteria is not satisfied. White regions indicate valid mapping regions

for the Grunbaum method for N = 256.

As in the three previous cases, the invertible region for peak-to-parameter map-

ping is smaller in the case of the Grunbaum method. However, we can see some

indication of a diamond-shape in this case, which we didn’t see in the previous

cases.
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Figure 3.13: Valid mapping regions for the Grunbaum method for N = 256

3.5 The Quantum Mechanics in Finite Dimen-

sion (QMFD) Method

Santhanam et. al. defined a discrete version of the G-H differential operator

H [31] that furnishes the basis for the centered version of the DFT matrix and

simultaneously have eigenvalues and eigenvectors that very closely resemble those

of the continuous G-H operator. They utilized concepts from quantum mechanics

in finite dimensions [29] and [30], in the context of the discrete harmonic oscillator

to the basis. The CDFT commuting matrix they defined is given as;

T = c1(P2 +Q2) + c2CH
1 C1 + c3I, (3.12)

where c1 = 1, c2 =−c3 =− π2

N2 , N is the size of DFT matrix,

P = WQWH ,

Qrr = q[r] =
√

2π
N r, −

N−1
2 ≤ r ≤ N−1

2 ,

{W}mn = 1√
N
e(− 2π

N (m−a)(n−a)) is a centered version of the DFT matrix ,
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a= N−1
2 , 0≤m,n≤ (N −1),

C1 = QP−PQ and

I is the identity matrix of dimension N.

We changed the range of r from −N−1
2 ≤ r≤ N−1

2 to the zero locations of the Nth

order G-H function to see improvement in terms of linearity of the eigenvalues and

the invertibility region in the peak-to-parameter mapping, and we found slight

improvement in both the parameters. Therefore, we kept the values of r as the

zero location of the N th order G-H operator throughout the thesis, and we referred

this method as ’modified QMFD’ or ’QMOD’.

We plotted the eigenvectors and eigenvalues of the commuter matrix T to see how

close the eigenvectors were to the continuous G-H operator, and to see how linear

the eigenvalues were. Figure 3.14(a) shows the 10th eigenvector for matrix T for

N = 256.
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Figure 3.14: (a)10th eigenvector of the QMOD method for N=256 and (b) Eigenvalues of the
QMOD method for N=256

From this, it is clear that an eigenvector of matrix T looks like a corresponding

G-H function; however they are not exactly the same. Figure 3.14(b) shows the

eigenvalues of matrix T for N = 256. This plot shows that the eigenvalues are

almost linear except for the higher order index and it is clear that these eigenvalues

for matrix T are closest to that of the continuous G-H operator in comparison to

the eigenvalues of other previously discussed methods.

We plotted the error-norm of the eigenvectors of matrix T for an order of 64 to
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check the error on representing the G-H function by the eigenvectors of matrix T.

Figure 3.15 shows the error-norm for QMOD method for N = 64.
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Figure 3.15: Error-norm for the QMOD method for N = 64

From this plot, we can see that the error-norm for the QMOD basis is very low

for lower number of zero crossings in comparison to all the methods discussed

above. Therefore, we can conclude that the eigenvectors of the QMOD method

are the closest to the corresponding G-H function in comparison to the other four

methods.

Figure 3.16 shows the region in the α−ω plane for the QMOD method where the

mappings satisfied the connectivity and adjacency conditions for chirps of length

N = 256, with a transform size N×N , measured using 4N×4N chirps with center

frequencies and chirp rates evenly spaced over the area shown in the figure.

From this plot, it is clear that the invertibility region for the peak-to-parameter

mapping, for the QMOD method is far better than that, for other previously

discussed methods. The invertibility region for the QMFD method is almost the

entire α−ω plane. We can say that the mapping region for the QMOD is similar

to the diamond shaped region shown in figure 3.4. Therefore, we can conclude that

the QMOD method gives the best invertibility region for the peak-to-parameter

mapping.
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Figure 3.16: Valid mapping regions for the QMOD method for N = 256

3.6 The Joint Diagonalization Method

All the methods that we have been discussing so far are unable to produce eigen-

value spectrum that is strictly linear. Similarly, none of these approaches produces

a valid mapping region for the entire α−ω plane. We therefore combined the two

approaches- the Grunbaum method and the QMOD method- to see whether this

combination would produce more linearity in eigenvalues than that of either of the

methods. Our intention in using joint diagonalization was also to get a better valid

mapping region than that of the individual methods. This joint diagonalization is

obtained using the matlab function ’eig’.

[V,D] = eig(TG,TQ), (3.13)

where V = eigenvectors, D = digonalized eigenvalues, TG = CDFT matrix ob-

tained using the Grunbaum method and TQ = CDFT matrix obtained using the

QMOD method. The eigenvalues obtained from this joint diagonalization are de-

picted in figure 3.17. We then calculated the linearity of the eigenvalues obtained

using the joint method, but we did not observe any improvement in linearity. In

fact, the linearity decreased in comparison to the QMOD method.
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Figure 3.17: Eigenvalue plot for the joint diagonalization method

We also checked the valid mapping region corresponding to the joint method.

Figure 3.18 shows the valid mapping region for the joint diagonalization method.

Contrary to our expectation , we did not observe any improvement in the mapping

region.

Figure 3.18: Valid mapping regions for the joint method for N = 256

From these observations, we can conclude that the joint diagonalization method

would not produce any improvement in the linearity of eigenvalues and in the map-
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ping region in comparison to the individual methods. In fact, the joint method

produces the average results of the two methods, which are used in joint diago-

nalization.

3.7 Conclusion

In this chapter, we discussed the five different methods, which we used to gener-

ate a centered DFT matrix, whose eigenvectors and eigenvalues closely resemble

those of the continuous G-H function. We also discussed some of the properties,

such as eigenvalues, eigenvectors, error-norm, and invertibility regions for peak-

to-parameter mapping, for each of those matrices.



Chapter 4

Comparison of Different CDFT

Approaches

Pei, Hsue and Ding used the error-norm parameter to compare the eigenvectors

of different DFT commuting matrices [13] to check the similarity between the

eigenvector and the continuous G-H function. Serbes and Durak-Ata also used

the same parameter for comparison in [12]. These analyses only determined how

close the eigenvectors were to the sampled G-H function. As stated in [31], the

linearity of the eigenvalues is another important parameter used to determine the

closeness of the generating matrix to the G-H functions. Santhanam and Peacock

introduced the valid mapping region criteria for peak-to-parameter mapping esti-

mation [2]. In addition to the all the above mentioned parameters, we employed

a few other parameters to find the best among the various CDFT commuting ma-

trix approaches. In order to compare the different methods, we used the following

parameters;

• Mainlobe-to-Sidelobe Ratio

• 10-dB Bandwidth

• Quality Factor

• Linearity of Eigenvalues

• Error-norm of the Eigenvectors

• Parameter Estimation Error

• Peak-to-Parameter Mapping Region

40
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Using these seven parameters we tried to find the best CDFT commuting matrix

among the five different methods to be used in chirp signal applications. As

discussed in the previous chapter, the five methods used in this thesis are (1) the S-

matrix method [11], (2) the Infinite order second derivative approximation method

[13], (3) the bilinear transformation method [12], (4) the Quantum mechanics in

finite dimension with modification (QMOD) [10] and (5) the Grunbaum method.

As we have already discussed in the previous chapters, the eigenvectors of these

commuting matrices are related to the continuous G-H function. Therefore, after

this comparison we will be able to find the particular commuting matrix whose

eigenvectors and eigenvalues are closest to those of the continuous G-H operator.

In addition, this comparison tells us the quality of a peak which corresponds to

the central frequency and chirp rate.

We considered a chirp signal to discuss the above mentioned parameters as;

x[n] = e(crm
2+wcn), 0≤ n≤ (N −1), m= n− N −1

2 , (4.1)

where, cr = chirp rate and wc = central frequency.

We assumed cr = 0.001 and wc = 0 for this analysis.

We used the MA-CDFRFT approach, as discussed in section 2.2.2, to see where

the peak occurs for a given chirp rate and a central frequency. Then we took

a row (where the peak occurs) of the MA-CDFRFT matrix to plot the peak

that corresponds to the given chirp rate and the central frequency. Figure 4.1

describes the magnitude of the MA-CDFRFT of the above signal obtained from

five different methods. From this plot, we can observe that we actually have two

maxima because the CDFRFT at α+π is the reversed version of the CDFRFT

at α.

We can observe from figure 4.1 that the least fringe occurs with the Grunbaum

basis and the QMOD method, which means that the Grunbaum method results

in the least side-lobes for MA-CDFRFT in comparison to the other four methods,

whereas the bilinear transformation method, the higher order S-matrix method
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(a) (b)

(c) (d)

(e)
Figure 4.1: 3D plot of magnitude of MA-CDFRFT at cr = 0.001 and wc = 0 for N = 256
obtained from (a) Bilinear transformation method, (b) Grunbaum method, (c) Higher order
S-matrix method, (d) QMOD method and (e) S-matrix method

and the D-S method produce larger sidelobes. We can see on a 2D plot of MA-

CDFRFT that the two peaks on the magnitude plot of MA-CDFRFT occur at

r = 68 and r = 196 for all the methods. We used only the lower half for our

consideration. Then we took a slice of the MA-CDFRFT at r = 68. Figure 4.2

shows the slice of the MA-CDFRFT at r = 68 for all the methods.

From figure 4.2, it is clear that the sharpest peak is obtained with the QMOD
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Figure 4.2: Plot of slice of MA-CDFRFT at r = 68 for cr = 0.001, wc = 0 and N = 256 obtained
from (a) Bilinear transformation method, (b) Grunbaum method, (c) Higher order S-matrix
method, (d) QMOD method and (e) S-matrix method

method. Note that the closer the is peak to the ideal delta function, the better

the peak. Hence we can conclude that the QMOD method is the best among

the five methods in terms of quality of the peak obtained from the MA-CDFRFT

approach.
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4.1 Mainlobe-to-Sidelobe Ratio

In antenna theory, main-lobe is the lobe containing the maximum power whereas

side-lobes are the lobes that are not the main lobe, and the ratio of the power

of these two lobes is defined as mainlobe-to-sidelobe ratio. For the purpose of

this thesis, in the same fashion, the ratio of the peak value to the value of the

second peak is defined as the mainlobe-to-sidelobe ratio. We can see those peak

values and side-lobes in figure 4.2. In order to compute mainlobe-to-sidelobe ratio

we first took the absolute value of the row of MA-CDFRFT matrix where peak

occurs. We then found the highest peak as mainlobe and the second peak as

sidelobe. Finally, we took the ratio of these two values as mainlobe-to sidelobe

ratio. Figure 4.3 shows the mainlobe-to-sidelobe ratio for different combinations

of cr and wc.

From these figures, it is clear that the mainlobe-to-sidelobe ratio (MLSLR) in-

creases as N increases only in the case of the Grunbaum basis. Also, the QMOD

method has a better mainlobe-to-sidelobe ratio in the case of zero central frequency

until N = 512, whereas the Grunbaum method has a better mainlobe-to-sidelobe

ratio in the case of non-zero central frequency. Therefore, we can conclude that

the QMOD method and the Grunbaum method are the best choice among all the

five methods towards attaininng a better mailobe-to-sidelobe ratio. We observed

that the mainlobe-to-sidelobe ratio decreases for some methods for higher values

of N. This is due to the fact that the MA-CDFRFT approach picks more side

lobes as we increase transform size.

4.2 10-dB Bandwidth

In communication systems, the X-dB bandwidth of a communication channel is

the part of the system’s frequency response that lies within X-dB of the response

at its peak, which in the pass-band filter case is typically at or near its center

frequency, and in the lowpass filter is near 0 hertz. If the maximum gain is 0 dB,

the X dB gain is the range where the gain is more than -X dB, or the attenuation
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Figure 4.3: Mainlobe-to-Sidelobe ratio comparison for (a) cr = 0.001 and wc = 0 and (b) cr =
0.0005 and wc = π

4

is less than X dB. Similarly, 10-dB bandwidth, in this thesis, is defined as the
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range of frequencies where the signal1 has its value 10 dB below the peak value

of the signal. Figure 4.4 shows the 10-dB bandwidth comparison for different

combinations of cr and wc.

From these figures, we can see that the bandwidth continuously decreases only for

the QMOD basis in the case of zero central frequency. And for non-zero central

frequency, the bandwidth requirement continuously decreases as N increases. The

bilinear transformation method and the S-matrix method have the least bandwidth

requirements for non-zero central frequency.

4.3 Quality Factor

Quality factor, also known as Q-factor, is a dimensionless quantity which char-

acterizes a signal’s bandwidth relative to its central frequency. It measures the

quality of the peak in relationship with central frequency. Mathematically, it is

the ratio of the central frequency to the bandwidth of the signal. i.e.

Q−factor = wc
BW

, (4.2)

where wc = Central frequency and BW = Bandwidth of the signal.

We set the central frequency as π
4 and chirp rate as 0.0005 in equation (4.1) to

find the Q-factor of the peaks for all the five methods. Therefore the signal used

to find Q-factor became;

x[n] = e(0.0005m2+π
4n), 0≤ n≤ 255, m= n− 255

2 . (4.3)

Figure 4.5 shows the quality factor comparison for cr = 0.0005 and wc = π
4 . From

this plot, it is clear that the Q-factor increases for all the bases as N increases,

1Signal refers to the magnitude of a slice of the MA-CDFRFT matrix at r = 36.
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Figure 4.4: 10-dB Bandwidth comparison for (a) cr = 0.001 and wc = 0 and (b) cr = 0.0005 and
wc = π

4

which is obvious from the previous section, because the lower bandwidth require-

ment for a fixed center frequency is equivalent to a higher quality factor. We
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can see from the figure that the bilinear transformation method and the S-matrix

method are the best choice for quality factor consideration.
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Figure 4.5: Quality factor comparison for cr = 0.0005 and wc = π
4

4.4 Linearity of Eigenvalues

Santhanam et. al. in [10] stated that eigenvalues of the G-H opertor is a linear

function. Therefore the eigenvalues of the matrices obtained from all the five

different approaches should be linear in nature in order to resemble the eigenvalues

of the continuous G-H operator. As discussed in chapter-3, we first plotted the

eigenvalues of the five different matrices to determine the extent of the linearity

of eigenvalue spectrum. Then we calculated the percentage of number of points

where the eigenvalues spread linearly for different values of N. Figure 4.6 shows

the percentage of number of points where the eigenvalues are as linear as that of

the continuous G-H operator.

From figure 4.6, it is evident that the eigenvalue spectrum from the QMODmethod

best resembles those of the continuous G-H operator. They are linear for about

80 percent of the total points which is far better than all other methods. The
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Figure 4.6: Percentage of number of points where eigenvalues are linear

linearity of the eigenvalue spectrum is directly related to the mapping region for

peak-to-parameter mapping which we will discuss in a later section of this chapter.

4.5 Error-norm of the Eigenvectors

We have already observed in the previous chapter that the eigenvectors of the

matrices that we discussed look like the corresponding G-H function; however

they are not exactly the same. Pei, Hsue and Ding defined the error-norm of

eigenvectors as the second norm of the difference between the eigenvectors obtained

from the G-H like eigenvector2 and the samples of its corresponding continuous

G-H function [13]. We, therefore, plotted the error-norm of the eigenvectors for all

the five different methods for N = 64 to determine eigenvectors of which matrix

better resembled those of the continuous G-H operator. Figure 4.7 depicts the

error-norm comparison for N = 64 for all the methods we discussed.

2G-H like eigenvectors are the eigenvectors of any of the matrices obtained from the five
different approaches.
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Figure 4.7: Error-norm comparison for N = 64

From this figure, it is clear that the error-norm increases as the number of zero

crossings increases for all the methods, as we discussed in the previous chapter. We

can also see that the QMODmethod results in a very low error-norm in comparison

to the other four methods. Therefore, eigenvectors of the QMOD matrix better

resemble the eigenvectors of the corresponding G-H operator in comparison to the

other four methods.

4.6 Parameter Estimation Error

Subspace decomposition techniques have been investigated for use in conjunction

with the DFRFT with the aim of providing a robust and accurate estimation in

the presence of noise [32]. Peacock and Santhanam discussed the chirp parameter

estimation error using 2D peak picking [2]. We used parameter estimaion error

as one of the bases for comparison of five proposed approaches. We measured the

parameter estimation error of those five approaches and compared them to the

Cramer-Rao lower bound and resolution bound. Figure 4.8 shows the parameter

estimation error using 2D peak picking for central frequency and chirp rate, for N

= 256.



CHAPTER 4. COMPARISON OF DIFFERENT CDFT APPROACHES 51

−20 −15 −10 −5 0 5 10 15 20
−60

−50

−40

−30

−20

−10

0

Center Frequency Estimation

Signal/Noise (dB)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 
Grunbaum Estimation
QMOD Estimation
Bilinear Estimation
2nd derivative Estimation2nd
D−S Estimation
Cramer−Rao Bound
Resolution Bound

−20 −15 −10 −5 0 5 10 15 20
−100

−90

−80

−70

−60

−50

−40
Chirp Rate Estimation

Signal/Noise (dB)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (
dB

)

 

 
Grunbaum Estimation
QMOD Estimation
Bilinear Estimation
2nd derivative Estimation
D−S Estimation
Cramer−Rao Bound
Resolution Bound

Figure 4.8: 2D parameter estimation error: The MSE was calculated at each SNR using 1000
chirps of length N = 256, in the ’safe’ range of |α|(N −1)+ |w|= IF < 0.85π.

From this figure, we can see that the detection error for the QMOD method

attains the resolution bound for higher SNR for both center frequency estimation

and chirp rate estimation, and the error for the Grunbaum method is close to that

of the QMOD method. However the other three methods result in significantly

more parameter estimation errors. This is because the peak-to-parameter mapping

depicts multiple disconnected regions of chirp parameters mapping to the same

peak location. We can also see that, both the center frequency estimation and

chirp rate estimation for the bilinear transformation method do not decrease as

gradually as in other methods. This is because of the fact that the particular

combination of center frequency and chirp rate, where the mean square error

goes up, does not lie withn the invertible mapping region. Figure 4.9 shows the

parameter estimation error calculated using the cross-hair technique combined

with the minimum-norm-subspace technique. From this figure, we can see that the

chirp parameter estimaion error for the QMOD method approaches the Cramer-
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Rao lower bound for chirp parameter estimation [26]. From this analysis, we can

conclude that either of these techniques has more success using the QMOD basis.
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Figure 4.9: Cross-hairs estimation error: The MSE was calculated at each SNR using 1000 chirps
of length N = 256, in the ’safe’ range of |α|(N−1)+ |w|= IF < 0.85π. A transform of size NXN
was used, refined using minimum norm subspace decomposition and FFT of size R = 4096.

4.7 Peak-to-Parameter Mapping Region

As we already discussed in section 3.1, application of the DFRFT to chirp pa-

rameter estimation is not meaningful if a complete analysis of the invertibility

of mapping is ignored. Therefore we looked at the peak-to-parameter mapping

region in the α−ω plane to see where the mappings satisfied the connectivity

and adjacency conditions. The connectivity criteria is satisfied when the set of

all chirp parameters that map to a single location in the chirp-rate versus center-

frequency plane form a connected set, and adjacency criteria is satisfied when

locations which are adjacent in the transform plane map to adjacent regions in

the chirp parameter space. In the previous chapter, we calculated the mapping

regions where both connecticity and adjacency criteria were satisfied for all the

five methods. We calculated the percentage of pixels in which both the connectiv-

ity and adjacency conditions were satisfied. Upon doing this, we had a clear idea

of which method, among the five proposed methods, had the best valid mapping

region in comparison to the expected mapping region shown in figure 3.4. Figure

4.10 depicts the percentage of pixels in α−ω plane in which both connectivity
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and adjacency criteria are fulfilled.
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Figure 4.10: Plot of percentage of pixels in α−ω plane where both connectivity and adjacency
criteria are fulfilled

From these mapping regions, we can see that the connectivity and adjacency con-

ditions are not fulfilled for large regions in the case of the bilinear transformation

method, the S-matrix method and the higher order S-matrix method. The regions

in which these two conditions are violated overlap in these three cases. In the

case of Grunbaum method, we can see that, the two conditions are not satisfied in

two different regions. The connectivity criteria is almost satisfied in the diamond

region for the Grunbaum method, but the adjacency criteria is not satisfied as

expected in the diamond region. Finally, both the criteria are satisfied in almost

entire region of the α−ω plane for the case of the QMOD method.

From this comparison, we can also see that the QMOD is the only method in

which the percentage of pixels satisfying both the connectivity and adjacency

criteria, increases as N increases. This fact is further related to the linearity of the

eigenvalue spectrum. We saw in section 4.4 that the linearity of the eigenvalue

spectrum increases when N increases only in the case of the QMOD basis. We
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also observed that the percentage of eigenvalue linearity for the QMOD method

is far above than that of all other methods. From figure 4.10, we can see that

the percentage of pixels reaches almost 90% for the QMOD method for N = 512,

which is far better than all the other methods. This confirms the fact that the

QMOD basis produces the least estimation error because it has the largest valid

peak-to-parameter mapping region in the α−ω plane. We can also say that the

valid mapping region will cover the entire α−ω plane if N is sufficiently large for

the QMOD basis. Note that if the valid mapping region spreads over the entire

α−ω plane, it will correspond to the case in which there is no estimation error

for both center frequency and chirp rate. This condition of no estimation error is

equivalent to the expected mapping region shown in figure 3.4.

4.8 Conclusion

In this chapter, we discussed different performance metrics to find the best method

for chirp signal applications. From these comparisons, we found that the QMOD

method produces the best results for all the parameters we discussed. Therefore,

we can conclude that the QMOD method is the most appropriate method to use

in chirp signal applications among all the five methods.



Chapter 5

Conclusions and Future Works

5.1 Conclusions

In this thesis, we studied the centered DFRFT, its properties, the nature of its

eigenvalues and eigenvectors, and its relationship with linear chirp signals. The

main objective of this thesis was to find the best algorithm to use for the compu-

tation of the centered version of DFRFT. We studied some properties of each of

the CDFRFT matrices that were obtained from different approaches. We looked

at the eigenvalues and eigenvectors of those matrices to see whether or not they

resembled those of the continuous G-H operator. We also calculated the error-

norm of eigenvectors to determine whether or not there were any deviations of

those eigenvectors from those of the corresponding G-H operator. In addition, we

calculated the chirp parameter estimation errors using 2D peak detection in the

MA-CDFRFT chirp-rate versus central-frequency plane. Finally, we measured the

peak-to-parameter mapping region where connectivity and adjacency criteria were

satisfied.

The main findings of this thesis can be summarized as;

• Among all the five methods discussed in this thesis, the QMOD method, a

method in which the diagonal matrix Q takes its diagonal as the zero crossings

55
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of the Nth order G-H function instead of taking its diagonal as equally spaced

values in between −N−1
2 and N−1

2 used in the conventional QMFD method,

produces the sharpest peak for single chirp application. This result was verified

by using different metrics such as mainlobe-to-sidelobe ratio, 10-dB bandwidth,

and quality factor.

• The QMOD method produces the best linearity on eigenvalues, which confirms

the fact that the eigenvalues obtained from the QMOD method are closest to

the eigenvalues of the continuous G-H operator.

• The QMOD method results in less error-norm than the other methods, which

confirms that the eigenvectors of the QMOD matrix are closest to that of the

continuous G-H operator.

• As is evident from the previous chapter, the QMOD method produces the least

parameter estimation error for both center frequency estimation and chirp rate

estimation. This estimation error almost attains the Camer-Rao lower bound

when it is calculated for the QMOD method in combination with the cross-hair

estimation technique.

• As we saw in the previous chapter, the QMOD method has an invertibility

region of almost 90% of the α−ω plane, which is far better than those of the

other four methods.

• Deviation from a fully linear eigenvalue spectrum produces a large proportion

of peak-to-parameter mapping where the invertibility criteria are violated.

• Loss of invertibility results in larger chirp parameter estimation error.

5.2 Future Work

We have seen that none of the approaches we discussed is able to produce the

entire region of the α− ω plane for peak-to-parameter mapping. This creates

error in chirp parameter estimation. We think that the future extension of this
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thesis could be focused on how to completely avoid parameter estimation error.

The approach that, we believe, could be used is described a s follows:

• Find a CDFT commuting matrix which has a completely linear eigenvalue spec-

trum. This spectrum is same as those of the eigenvalue spectrum of the corre-

sponding G-H operator. However, it is practically impossible to obtain a CDFT

commuting matrix whose eigenvalue spectrum is completely linear.

• Once we have such a matrix, we will be able to produce an invertibility region

of entire the α−ω plane for peak-to-parameter mapping. This provides us with

an easier way to do peak-to-parameter mapping by using a relationship between

chirp parameters (wc and cr) and peak location(r).

• Once there is an entire α− ω plane of invertibility region, there will be no

parameter estimation error for two reasons. The first reason is that the set

of all chirp parameters that map to a single location in the chirp-rate versus

center-frequency plane forms a connected set. This will satisfy the connectivity

criteria for the peak-to-parameter mapping. The second reason is that the

locations which are adjacent in the transform plane map to adjacent regions in

the chirp parameter space.

There are also some other research dimensions that could be considered as exten-

sions of this thesis work, which are applications of DFRFT.

Chirp signals are sinusoidal waveforms with linearly changing instantaneous fre-

quency. They find wide applications in radar systems, including synthetic aperture

radar. A robust method of multicomponent parameter estimation would enable

the estimation of the vibrational frequency of a target and improve estimation

performance in the presence of clutter. The DFRFT shows promise in multicom-

ponent chirp parameter estimation, as it generates a strong peak for each chirp

whose location in the 2D transform plane corresponds to the specific center fre-

quency and chirp rate.

A discrete version of the fractional sine and cosine transforms has been proposed

in [37], and it is therefore expected that significant progress will be made in the
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area of image processing. Some interesting applications of FRFT in the areas of

control systems and telecommunications are now being probed. It is, therefore,

quite reasonable to expect that the FRFT will eventually replace the Fourier

transform as the single most effective tool in signal analysis. Thus it becomes

exceedingly important both to develop and to implement the discrete version of

the FRFT.
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