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ABSTRACT 

The human brain is one of the most complex systems known to the mankind. 

Over the past 3500 years, mankind has constantly investigated this remarkable system in 

order to understand its structure and function. Emerging of neuroimaging techniques such 

as functional magnetic resonance imaging (fMRI) have opened a non-invasive in-vivo 

window into brain function. Moreover, fMRI has made it possible to study brain 

disorders such as schizophrenia from a different angle unknown to researchers before. 

Human brain function can be divided into two categories: functional segregation and 

integration. It is well-understood that each region in the brain is specialized in certain 

cognitive or motor tasks. The information processed in these specialized regions in 

different temporal and spatial scales must be integrated in order to form a unified 

cognition or behavior.  

One way to assess functional integration is by measuring functional connectivity 

(FC) among specialized regions in the brain. Recently, there is growing interest in 

studying  the FC among brain functional networks. This type of connectivity, which can 
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be considered as a higher level of FC, is termed functional network connectivity (FNC) 

and measures the statistical dependencies among brain functional networks. Each 

functional network may consist of multiple remote brain regions.  

Four studies related to FNC are presented in this work. First FNC is compared 

during the resting-state and auditory oddball task (AOD). Most previous FNC studies 

have been focused on either resting-state or task-based data but have not directly 

compared these two. Secondly we propose an automatic diagnosis framework based on 

resting-state FNC features for mental disorders such as schizophrenia. Then, we 

investigate the proper preprocessing for fMRI time-series in order to conduct FNC 

studies. Specifically the impact of autocorrelated time-series on FNC will be 

comprehensively assessed in theory, simulation and real fMRI data. At the end, the 

notion of autoconnectivity as a new perspective on human brain functionality will be 

proposed. It will be shown that autoconnectivity is cognitive-state and mental-state 

dependent and we discuss how this source of information, previously believed to 

originate from physical and physiological noise, can be used to discriminate 

schizophrenia patients with high accuracy.  
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1.1 Human Brain 

The human brain is one of the most complex systems known to mankind. This 

central nervous system organ weighs about 1400g (about 2% of body weight) but 

consumes about 20% of the body’s energy. This complex multilayer structure consists of 

more than 100 billion neurons interconnected with about 100 trillion synaptic 

connections (Azevedo et al., 2009; Williams and Herrup, 1988). From more than 3500 

years ago, the brain has been under constant investigation of different disciplines ranging 

from philosophy to modern neuroscience. While Aristotle believed that blood cooling 

was the only function of the brain (Finger, 1994), today the key functionalities of the 

brain such as information processing, perception, motor control, learning and memory are 

well studied and confirmed (Kandel et al., 2000). 

Anatomically, brain consists of gray matter, white matter and cerebrospinal fluid 

(CSF). Gray matter consists mostly of neuron body cells and is responsible for most of 

the higher level functionalities of the brain. White matter mostly consists of long 

myelinated axons and is responsible to transfer information among different gray matter 

regions. CSF is a clear liquid in the brain and spinal cord.  

1.2 Functional Segregation and Integration  

There are two key principles which can be used to describe brain function: 

functional segregation and functional integration (Friston, 2011; Tononi et al., 1998). 

Functional segregation refers to the fact that each brain region is specialized in specific 

tasks. Functional segregation has been demonstrated on multiple spatial scales ranging 

from brain networks to neuronal columns. For example, each region in the visual cortex 

is specialized in a distinct aspect of visual perception such shape, motion and color (Zeki, 
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1990; Zeki et al., 1991). The information processed by different specialized regions at 

different spatial and temporal scales should be functionally integrated to form unified 

cognition and behavior. The process of functional integration is harder to assess 

compared to functional segregation. Functional integration similar to functional 

segregation occurs at multiple spatial and temporal scales. In the visual system, for 

example, at the lower level elements such as dots and edges must group together to form 

shapes (Kanizsa, 1979). In the next level, different attributes such as shape. Color and 

size are grouped together to form objects. Finally objects should combine together to 

form a unified visual image (Treisman, 1996). This is a simplified scheme in just the 

visual system. In higher level, visual information must integrate with other sources of 

information processed in other brain regions such as auditory, somatosensory and 

memory networks to form a conscious scene (Tononi and Edelman, 1998). Figure 1-1 

illustrates and example of functional segregation and integration during resting-state in 

three groups. 

1.3 Functional Neuroimaging 

Advances in neuroimaging techniques such as electroencephalography (EEG), 

magnetoencephalography (MEG), positron emission tomography (PET), single-photon 

emission computed tomography(SPECT), structural magnetic resonance imaging (sMRI), 

functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI) and 

diffusion spectrum imaging (DSI) in the past few decades have open up an non-invasive 

window into human brain’s structure and function. These tools have made it possible to 

study the brain with high relatively temporal and spatial resolution.  
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Figure 1-1: An example of functional segregation and integration. A: Parcellation of brain into 

116 specialized regions. Structure of functional integration during resting-state in 3 groups: B: 

Control group, C: Yoga practitioner and D: Mediator group. Figure courtesy of (Gard et al., 2014). 

Specifically MRI-related techniques such as sMRI, fMRI, and DTI, have the 

benefit of providing localized spatial information. These MRI-related techniques have 
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provided new insight into the human brain and have brought hope to researchers trying to 

unravel the secrets of one of the most complex systems in the universe, the human brain. 

SMRI has made it possible to visualize the brain noninvasively at relatively high 

spatial resolution (1 mm
3
 or less). SMRI high-resolution images of the brain are useful 

for studying various brain structures as well as detecting physical abnormalities, lesions, 

and damages. DTI allows mapping the diffusion process of water in biological tissues. In 

brain imaging, DTI at each voxel is represented by a symmetrical 3×3 matrix, called 

diffusion tensor. In the white matter regions of the brain, there is a higher rate of 

diffusion along the direction of the fibers. This property enables this imaging technique to 

visualize anatomical connections between different brain regions.  

Among all neuroimaging tools, fMRI has been used extensively to study 

functionality of the brain in the past 2 decades. FMRI which is an indirect measure of 

neuronal activity, tracks blood oxygenation which is linked to neuronal activity. Upon 

activation of a brain region, blood flow and volume increases in that area to provide 

oxygen and glucose. MRI is sensitive to this increase in blood oxygenation since 

oxygenated blood has different magnetic properties compared to deoxygenated blood. 

FMRI uses this phenomenon better known as blood-oxygenation-level dependent 

(BOLD) to measure the underlying neuronal activity (Ogawa et al., 1990). Neuronal 

activity is linked to blood flow via hemodynamic response function. FMRI has a 

temporal resolution of about one second (recent imaging techniques have increased the 

temporal resolution to about 200mS) and spatial resolution of 1-3mm
3
. This modality 

also has been used to measure functional connectivity in the brain.  
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Since MRI can take three dimensional images of the brain, the term voxel is used 

as the smallest cubic element of the 3D image similar to pixel which is the smallest 

element in a 2D image. This is depicted in Figure 1-2. 

 

Figure 1-2: Voxel as a cubic element of a 3D image. Image on the left is sampled with a 3D grid 

and represented by voxels on the right. Figure courtesy of (Smith, 2004). 

1.4 FMRI Experiment 

In an fMRI experiment, Subject lies in a MRI machine. MRI machine consist of a 

main coil making high steady magnetic field (typically 1.5T or 3T but also at 7T and 

higher) in the chamber of the scanner, three gradient coils that make small changes in the 

steady magnetic field and radio frequency coil that emits radio frequency signals to excite 

the protons that are spinning at a certain frequency according to Larmor law.  

The research participant is instructed to not move his/her head since motion is one 

of the main artifacts in an fMRI experiment. Depending on the type of the task, the MR 

machine may be equipped with special tools such as projector, speaker, headphones, 

microphone and button boxes. In a typical task-based experiment, subject need to attend 

to a task and respond if it is required. For example auditory oddball task, different sounds 
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with different frequencies are played and the subject is supposed to respond to certain 

frequencies by pressing a button. Figure 1-3 illustrates a typical fMRI experiment. 

 

Figure 1-3: Typical fMRI experiment equipment. Figure courtesy of  

(http://culhamlab.ssc.uwo.ca/fmri4newbies/) 

There are two main types of task-based fMRI designs: block design and event-

related design. In block design experiment, two or more different conditions are 

alternated in order to determine the differences among them. Each block have duration in 

the order of tens of seconds and only one condition is presented in each block. Conditions 

should be designed in such a way that the fMRI signal can differentiate the cognitive 

process of interest. Alternation of a block of task with a block of resting-state is a typical 

block design experiment. This type of experiment design has more statistical power. 

Event-related is another type popular fMRI experiment design. In this type of 

design the stimuli is not presented in blocks, but is randomized throughout the course of 

the experiment. The duration between two consecutive stimuli can vary to make it less 

predictable by the subject. Event-related design allows more real world testing despite its 
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lower statistical power compared to block design experiment. These two designs are 

illustrated in Figure 1-4. 

 

Figure 1-4: Two typical designs in fMRI experimental: block-design and event-related 

design. 

1.5 Functional Connectivity 

As discussed earlier, function can be described via two key principles: functional 

segregation and functional integration. While the evidence for functional segregation or 

specialization is overwhelming, functional integration of specialized regions is more 

difficult to assess. The usual way to study functional integration is by measuring 

statistical dependency mostly in the form of correlation among activity of different brain 

areas. Functional connectivity (FC) is defined as the cross-correlation between activity of 

two specialized brain regions (Friston, 2002). FMRI is a powerful tool to study FC since 

it makes it possible to find the specialized regions with high spatial resolution and then 
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assessing FC by calculating correlation between the activities of those regions. FC 

analysis documents interactions among brain regions during a task as well as during 

resting state scans. FC is believed to characterize large-scale integrity in human brain 

(Van Dijk et al., 2010). Figure 1-5 illustrates an example of functional connectivity. 

 

Figure 1-5: Illustration of functional connectivity. Figure courtesy of (Dosenbach et al., 2010) 

Two widely used FC approaches are: (a) seed-based analysis (Biswal et al., 

1995b; Biswal et al., 1997; Cordes et al., 2002; Cordes et al., 2000; Fox et al., 2005; 

Lowe et al., 1998; Stein et al., 2000) and (b) spatial independent component analysis 

(ICA) (Calhoun et al., 2001b; Esposito et al., 2005; Garrity et al., 2007a; McKeown et al., 

1998; van de Ven et al., 2004). In the seed-based approach, individual seed voxels from 

predefined brain regions of interest (ROI) are chosen and the cross correlation of other 

voxels’ time courses with the selected seeds then computed, to derive a correlation map. 

This map can then be thresholded to identify voxels showing significant FC with the seed 

voxels. 

An alternative approach is based on ICA, a multivariate data-driven method 

which as a blind source separation method, can recover a set of signals from their linear 

mixtures and has yielded fruitful results with fMRI data (Calhoun et al., 2009b). ICA 
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estimates maximally independent components using independence measures based on 

higher-order statistics. ICA requires no specific temporal model (task-based design 

matrix), making it ideal for analyzing resting state data. Spatial ICA (sICA) is the 

predominant ICA approach used for fMRI data (Calhoun et al., 2001b; McKeown et al., 

1998).  

SICA decomposes fMRI data into a set of maximally spatially independent maps 

and their corresponding time-courses. Each thresholded sICA map may consist of several 

remote brain regions forming a brain functional network. Spatial ICA generates 

consistent spatial maps while modeling complex fMRI data collected during a task or in 

the resting-state (Turner and Twieg, 2005) although the task can result in a subtle 

modulation of the spatial patterns (Calhoun et al., 2008a). The dynamics of the BOLD 

signal within a single component is described by that component’s time course. Regions 

contributing significantly within a given component are strongly functionally connected 

to each other.  

1.6 Functional Network Connectivity 

It has been shown that a collection of remote specialized regions collaborate on 

performing a specific motor or cognitive task. The regions within this collection exhibit 

strong functional connectivity with each other and form a functional network. Recently, 

there is growing interest in studying FC among brain functional networks. This type of 

connectivity, which can be considered as a higher level of FC, is termed functional 

network connectivity (FNC) (Jafri et al., 2008) and measures the statistical dependencies 

among brain functional networks. Each functional network may consist of multiple 

remote brain regions. Spatial components resulting from sICA are maximally spatially 
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independent but their corresponding time-courses can show a considerable amount of 

temporal dependency. This property of sICA makes it an excellent choice for studying 

FNC, which can be studied by analyzing these weaker dependencies among sICA time 

courses. These dependencies can be analyzed by correlation methods (Jafri et al., 2008) 

or algorithms such as dynamic causal modeling (Stevens et al., 2007) or Granger 

causality (Allen et al., 2012; Havlicek et al., 2010; Stevens et al., 2009). Figure 1-6 

illustrates and example of functional network connectivity among seven brain networks. 

 

Figure 1-6: Example of functional network connectivity. Figure courtesy of (Jafri et al., 2008). 
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1.7 Independent Component Analysis 

Independent component analysis is mathematical method to separate multivariate 

signals into statistically independent components. ICA assumes a generative model where 

observations are linear mixture of independent sources. In a typical ICA setting, it is 

assumed that the both the sources and the linear mixing process are unknown. 

Mathematically ICA formulation can be written as: 

      (1-1) 

where                 is an M-dimensional observed vector and 

                is an N-dimensional vector whose elements are independent sources. 

     is the unknown mixing matrix. The goal of ICA is recover the unmixing matrix, 

     so that the sources can be approximated with   in the following equation: 

      (1-2) 

It has been shown that the problem is solvable with some assumptions and constraints 

(Hyvarinen and Oja, 2000). ICA assumes that the sources are independent and their 

distribution is non-Gaussian.  

 There are several methods for solving the ICA problem based on criteria such as 

mutual information, kurtosis and negenthropy and as a result there are several practical 

algorithms for ICA. The most popular methods are Infomax (Bell and Sejnowski, 1995), 

FastICA (Hyvarinen and Oja, 1997) and joint diagonalization of eigen-matrices (JADE) 

(Cardoso and Souloumiac, 1993).  

 Real fMRI data consists of two main dimensions, time and space. Depending on 

formation of the data matrix, two types of ICA can be performed on fMRI data. Temporal 

ICA (TICA) decomposes the fMRI data into independent time-series and spatial ICA 
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decomposes the data into independent spatial maps. These two methods are illustrated in 

Figure 1-7. Spatial ICA is more popular for fMRI data since it recovers independent 

specialized networks in the brain as well as their corresponding time-courses. Figure 1-8 

illustrates SICA.  

  

Figure 1-7: Illustration of two types of ICA on fMRI data: SICA and TICA. Figure courtesy of (Calhoun et 

al., 2001b) 

 

Figure 1-8: Spatial ICA for fMRI data. Data matrix,   is decomposed into independent sources that are 

rows of matrix   and corresponding time-courses that are columns of the mixing matrix, A. Figure is 

courtesy of (Ylipavalniemi and Vigario, 2008) 
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It is also possible to extend ICA to group level analysis. Usually the 

dimensionality of each subject’s data matrix is reduced with principal component 

analysis (PCA). Then all the reduced matrices are concatenated and another PCA is 

performed. Finally ICA is performed and the common components among the subjects 

are estimated. In order to recover subject specific spatial maps additional step named 

back-reconstruction is required. Group ICA and back-reconstruction are illustrated in 

Figure 1-9. 

 

Figure 1-9: Simplified group ICA and back –reconstruction. Figure courtesy of (Erhardt et al., 2011). 

1.8 Resting-state fMRI 

Hans Berger, inventor of the electroencephalogram stated in his seminal paper in 

1929: “We have to assume that the central nervous system is always, and not only during 

wakefulness, in a state of considerable activity” (Berger, 1929). But this brilliant finding 

was ignored for several decades and spontaneous fluctuations in the brain were mostly 

attributed to noise since brain was considered to be shut down during the resting-state. 

About 2 decades ago, it was shown that fMRI time-series of one part of the motor cortex 

is correlated with fMRI signals from other parts of the motor network during the resting-
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state (Biswal et al., 1995b). Since then, several other brain networks with correlated 

temporal patterns have been identified as resting-state networks (RSN). These networks 

have been identified even in other cognitive states such as during sleep (Fukunaga et al., 

2006) and even anesthesia (Vincent et al., 2007). One interesting RSN discovered about 

15 years ago is called default-mode network (DMN) which is a collection of brain 

regions that tend to be more active during the resting-state (Raichle et al., 2001; Raichle 

and Snyder, 2007). The activity of this network suppresses during a cognitive or motor 

task.  

Most of the RSNs are consistently present during the resting-state as well as during 

performance of a task (Calhoun et al., 2008a; Harrison et al., 2008; Laird et al., 2009; 

Smith et al., 2009a) and exhibit high reproducibility and reliability (Allen et al., 2011; 

Franco et al., 2009; Shehzad et al., 2009; Zuo et al., 2010).  

In recent years, spontaneous modulation of BOLD signal during the resting 

condition has found fruitful clinical applications (Fox and Greicius, 2010). Resting-state 

fMRI (rfMRI) experiments are less prone to multi-site variability, allow a wider range of 

patients to be scanned and make it possible to study multiple cortical systems from one 

dataset (Fox and Greicius, 2010). Moreover, more accurate connectivity maps can be 

detected using rfMRI data compared to task-based fMRI data (Xiong et al., 1999). 

1.9 Functional Network Connectivity during Rest and Task 

Most FNC research has been focused on either resting-state or task-based data but 

has not compared these two. Studying the differences between rest and task to explore 

changes in the interaction among functional networks in these two states can clarify how 

the brain responds to a given task in the network level. The relatively small amount of 
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research on comparison of brain connectivity in the resting state and during a particular 

task is limited mostly to seed-based approaches to measure the FC. Arfanakis et al. 

(Arfanakis et al., 2000) compared FC during rest, during simple tasks (bilateral finger 

tapping, passive listening to narrated text and looking at an alternating checkerboard) and 

also when the effect of task was removed using ICA. Hampson et al. (Hampson et al., 

2002) compared FC during rest and during continues listening to speech and showed 

strengthened connectivity among the language related brain regions during task. Another 

study by Hampson et al. (Hampson et al., 2004) compared FC in the resting state and 

during viewing moving concentric circles. They reported decreased FC between middle 

temporal (MT/V5) and dorsal cuneus, lingual gyrus and thalamus and increased FC 

between MT/V5 and middle occipital gyrus during viewing continuous motion task. 

Bartels et al. (Bartels and Zeki, 2005) showed that, natural viewing specifically increases 

correlations between anatomically connected regions while it decreases correlations 

between non-connected regions compared to rest. Nir et al. (Nir et al., 2006) compared 

brain’s visual system during rest and visual stimulation. They reported robust organized 

slow BOLD signal fluctuations and widespread FC in the visual cortex during complete 

darkness with eyes closed. Fransson and Marrelec (Fransson and Marrelec, 2008) studied 

FC within the default-mode network during rest and during continuous working memory 

task using the partial correlation method. They found global reduction in FC within the 

default mode network (DMN) during the memory task. Hasson et al. (Hasson et al., 2009) 

reported stronger FC during rest compared to continuous listening, between DMN and 

brain regions showing differential connectivity during listening. Shirer et al. (Shirer et al., 

2012) used whole brain connectivity patterns for cognitive state decoding in healthy 
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subjects. The found increased FC during memory and subtraction tasks among task-

related regions compared to rest. 

As part of this dissertation, we compare FNC during resting-state and during 

performance of an auditory task. This study can clarify more how large-scale functional 

integration differs during resting-state compared to other cognitive states. We devote 

Chapter 2 of this manuscript to this subject. 

1.10 Automatic Diagnosis of Mental Disorders 

In this section, we review the importance of accurate diagnosis of mental disorders 

using neuroimaging data. Later we discuss how abnormalities in functional network 

connectivity that were introduced in section 1.6, can be used as biomarker for mental 

disorders such as schizophrenia.  

Population studies show that lifetime prevalence of all psychotic disorders is as 

high as 4%
1
. These disorders can impair normal life significantly and impose huge 

societal cost (Rice, 1999). Clinically, the patient's self-reported experiences and observed 

behavior over the longitudinal course of the illness constitute the basis for diagnosis. The 

overlapping symptoms of mental disorders and the absence of standard biologically-

based clinical tests make differential diagnosis a challenging task. Early diagnosis of 

these diseases can significantly improve treatment response and reduce associated costs 

(McGlashan, 1998). 

Advances in neuroimaging technologies in the past two decades have opened a new 

window into the structure and function of the healthy human brain as well as illuminating 

many brain disorders such as schizophrenia. Schizophrenia is among the most prevalent 

                                                 
1
 http://www.nimh.nih.gov/statistics/SMI_AASR.shtml 

http://www.nimh.nih.gov/statistics/SMI_AASR.shtml
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mental disorders affecting about 1% of the population worldwide (Bhugra, 2005; Wyatt 

et al., 1995). This devastating, chronic heterogeneous disease is usually characterized by 

disintegration in perception of reality, cognitive problems and chronic course with lasting 

impairment (Heinrichs and Zakzanis, 1998). Multiple structural and functional brain 

abnormalities are widely reported in patients with schizophrenia (Calhoun et al., 2009a; 

Karlsgodt et al., 2010; Shenton et al., 2001). Most neuroimaging-based studies of 

schizophrenia focus on showing aberrations of some features (structural or functional) in 

a patient group by comparing them to a control group. While many of these findings are 

statistically significant in the average sense, discrimination ability of those features is 

under question for classification purposes on a case-by-case basis. Since classification 

provides information for each individual subject, it is considered a much harder task than 

reporting group differences. In the case of classifying schizophrenia patients, a small 

number of training samples (subjects) and high dimensional data make it a challenging 

task to design an accurate, robust classifier for such a heterogeneous brain disorder. 

In Chapter 3, we propose a framework for automatic diagnosis of mental disorders 

such as schizophrenia based on resting-state functional network connectivity features. 

The proposed framework can discriminate subjects with schizophrenia from healthy 

controls using just 5 minutes of resting-state fMRI data. 

1.11 Preprocessing of fMRI Time-Series for Functional Connectivity Studies 

While FC studies are pervasive, there has been little attention to the assumptions 

linked to these studies. In recent years, there has been a debate in the neuroimaging 

community regarding the possible impact of intrinsic autocorrelation in fMRI time-

courses on functional connectivity analysis outcome. Some researchers have even 
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questioned the validity of previous connectivity studies by arguing that not correcting for 

autocorrelation in fMRI time-series may result in spurious high correlation values 

(Christova et al., 2011; Georgopoulos and Mahan, 2013). These subject-level studies 

have confirmed that fMRI time-series are autocorrelated through the use of the Durbin-

Watson statistic and have suggested to reduce the autocorrelation by using an 

autoregressive integrated moving average (ARIMA) model which is called prewhitening 

(Granger and Morris, 1976; Haugh, 1976).  

Autocorrelation in fMRI data is assumed to originate from colored physical and 

physiological noise (Aguirre et al., 1997; Bullmore et al., 2001; Friston et al., 2000; 

Lenoski et al., 2008; Lund et al., 2006; Purdon and Weisskoff, 1998; Rajapakse et al., 

1998; Zarahn et al., 1997). Several methods have been proposed to deal with 

autocorrelation in the general linear modeling framework (Friston et al., 2000; Gautama 

and Van Hulle, 2004; Lund et al., 2006; Woolrich et al., 2001). While some studies have 

suggested that intrinsic fMRI time-series autocorrelation is negligible compared to 

smoothing induced autocorrelation (Friston et al., 1995), others found it to be a 

significant confound (Christova et al., 2011; Lenoski et al., 2008; Zarahn et al., 1997).  

In Chapter 4, the problem of autocorrelation on FC is discussed. We investigate 

Pearson correlation coefficient between two autocorrelated time-series. Furthermore, we 

discuss characteristics of fMRI time-series and propose a preprocessing pipeline for 

connectivity studies.  

1.12 Notion of Autoconnectivity 

In the past two decades, the main focus of the neuroimaging community in the 

context of autocorrelation in fMRI time-series has been on methods to remove or 
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compensate for it. Methods such as prewhitening and precoloring have been widely 

adopted by researcher to eliminate or reduce the effect of autocorrelation on fMRI data 

analysis. 

The neuronal process can be decomposed into evoked transients and intrinsic 

activity (Friston et al., 1995). If we assume that smooth hemodynamic response is the 

main source of autocorrelation in fMRI time-series, then it can be decomposed similar to 

the neuronal process into an evoked component which is phased-lock to the task and an 

intrinsic component (Friston et al., 1995). Worsley et al. (Worsley et al., 2002) showed 

that autocorrelation is mostly local to the gray matter. 

The sources of autocorrelation and exact connection between autocorrelation and 

neuronal process have been open questions with very limited amount of research. Also to 

the best of our knowledge no one has investigated the autocorrelation in fMRI time-series 

as a potential source of information about functionality of human brain and for clinical 

use.  

In Chapter 5 we introduce a new concept called autoconnectivity. Autoconnectivity 

is complementary to functional connectivity as it captures the connectivity of a 

voxel/region/network to itself. Properties of autoconnectivity during rest and task will be 

discussed and it will be shown how autoconnectivity is cognitive-state dependent (for 

example resting-state vs. task) and mental state dependent (for example in schizophrenia 

patients vs. healthy controls).  

1.13 Organization of the Dissertation 

Four main studies are discussed in this dissertation. While the main focus is on 

functional connectivity and functional network connectivity, each chapter is devoted to 
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one aspect of functional connectivity in the human brain. In chapter 2, comparison of 

FNC during resting-state and during auditory oddball task is presented. We also discuss 

FNC during rest and task in schizophrenia patients and compare it to healthy controls. 

Chapter 3 discusses an emerging field of neuroimaging-based automatic diagnostic of 

mental disorders. It will be shown that functional network connectivity pattern during 

resting-state fMRI can be used as a biomarker for schizophrenia. A classification 

framework will be proposed based on resting-state FNC features that discriminates 

schizophrenia patients from healthy controls with high accuracy. The problem of 

autocorrelation in functional connectivity studies will be investigated in chapter 4. This 

problem will be discussed in theory, simulation and real fMRI data. Specifically, the 

hypothesis testing on FNC values will be investigated when the corresponding time-

courses are autocorrelated. Autocorrelation is mostly attributed to noise in fMRI time-

series. In chapter 5, the concept of autoconnectivity as a new perspective of human brain 

functionality will be introduced. Autoconnectivity captures connectivity of a brain 

voxel/region/network with itself as can be considered as a complement to functional 

connectivity. Autoconnectivity during rest and task and between healthy controls and 

schizophrenia patients will be investigated. It will be shown that combining FNC features 

with autoconnectivity feature can increase the accuracy of automatic diagnosis systems 

for mental disorders. 

1.14 Datasets 

There are two main datasets used in the studies described in the following chapters. 

For convenience we call them “Hartford” dataset and “FBIRN” dataset hereafter. 
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1.14.1 Hartford Dataset 

Three sessions of fMRI data were collected from 28 healthy volunteers, two sessions 

of an AOD task and one session of resting state in the same day. All subjects gave 

written, informed, IRB approved consent at Hartford Hospital and were compensated for 

their participation. Exclusion criteria included having an axis I disorder on DSM IV-TR 

(First et al., 1995) as revealed by structured interview with the SCID, mental retardation 

(estimated full-scale IQ <70), history of major central nervous system injury or disease, 

family history of psychotic illness in a first-degree relative, past history of alcohol on 

drug dependence, or positive urine toxicologic screen for common drugs of abuse. 

Women were excluded for a positive urine pregnancy test. All subjects were screened for 

implanted ferromagnetic material. During practice prior to the scanning session, all 

participants were able to perform the oddball task successfully. All participants were 

scanned during both an auditory oddball task and at rest with eyes open while fixating on 

a cross hair.  

The auditory oddball task consists of detecting an infrequent target sound within a 

series of regular and different sounds. The task consisted of two runs of auditory stimuli 

presented to each participant by a computer stimulus presentation system 

(http://nilab.psychiatry.ubc.ca/vapp) via insert earphones embedded within 30-dB sound 

attenuating MR compatible headphones. The standard stimulus was a 500-Hz tone, the 

target stimulus was a 1,000-Hz tone, and the novel stimuli consisted of nonrepeating 

random digital noises (e.g., tone sweeps, whistles). The target and novel stimuli each 

occurred with a probability of 0.10; the standard stimuli occurred with a probability of 
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0.80. The stimulus duration was 200 ms with a 1,000, 1,500, or 2,000 ms interstimulus 

interval. Figure 1-10 illustrates the AOD task. 

 

Figure 1-10: The AOD task used to collect the Hardford dataset. Subject should press the button just upon 

hearing target tones. Figure courtesy of (Kiehl and Liddle, 2001). 

All stimuli were presented at 80 dB above the standard threshold of hearing. All 

participants reported that they could hear the stimuli and discriminate them from the 

background scanner noise. Prior to entry into the scanning room, each participant 

performed a practice block of 10 trials to ensure understanding of the instructions. The 

participants were instructed to respond as quickly and accurately as possible with their 

right index finger every time they heard the target stimulus and not to respond to the 

nontarget stimuli or the novel stimuli. An MRI compatible fiber-optic response device 

(Lightwave Medical, Vancouver, BC) was used to acquire behavioral responses for both 

tasks.  

The stimulus paradigm data acquisition techniques and previously found stimulus-

related activation are described more fully elsewhere (Kiehl and Liddle, 2001; Kiehl et 

al., 2005). Participants also performed a 5 min resting state scan (rest) and were 

instructed to rest quietly without falling asleep with their eyes open (eyes were open to 

avoid the possibility that participants would fall asleep). 
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1.14.1.1 Image Acquisition 

Scans were acquired at the Olin Neuropsychiatry Research Center at the Institute 

of Living/Hartford Hospital on a Siemens Allegra 3T dedicated head scanner equipped 

with 40 mT/m gradients and a standard quadrature head coil. The transaxial functional 

scans were acquired using gradient-echo echo-planar-imaging with the following 

parameters (repeat time (TR) = 1.50 s, echo time (TE) = 27 ms, field of view = 24 cm, 

acquisition matrix = 64 × 64, flip angle = 70 º, voxel size = 3.75 × 3.75 × 4 mm
3
, slice 

thickness = 4 mm, gap = 1 mm, 29 slices, ascending acquisition). Six “dummy” scans 

were performed at the beginning to allow for longitudinal equilibrium, after which the 

paradigm was automatically triggered to start by the scanner. auditory oddball task and 

resting state scans consisted of 8 and 5 minute run respectively. 

1.14.2 FBRIN Dataset 

FBRIN data set consist of 195 patients with schizophrenia and 175 healthy 

volunteers that were matched for age, gender, handedness, and race distributions. The 

subjects were recruited across seven different sites in the United States as a part of the 

Functional Imaging Biomedical Informatics Research Network (FBIRN) (Potkin & Ford, 

2009). All patients included in the study had been diagnosed with schizophrenia based on 

the Structured Clinical Interview for DSM-IV-TR Axis I Disorders (SCID-I/P)(First, 

Spitzer, Gibbon, & Williams, 2002a). All patients were clinically stable on antipsychotic 

medication for at least two months prior to scanning. Exclusion criteria for both 

schizophrenia patients and healthy volunteers included a history of major medical illness, 

contraindications for MRI, poor vision even with MRI compatible corrective lenses, an 

IQ less than 75, a history of drug dependence in last 5 years or a current substance abuse 
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disorder. Additionally patients with extrapyramidal symptoms and healthy volunteers 

with a current or past history of major neurological or psychiatric illness (SCIS-

I/NP)(First, Spitzer, Gibbon, & Williams, 2002b) or with a first-degree relative with 

Axis-I psychotic disorder diagnosis were also excluded.  

 All subjects gave written informed consent to share their de-identified data 

between centers and the study was approved by the Institutional Review Boards of the 

following participating data collection sites for the subjects included: University of 

California Irvine, the University of California Los Angeles, the University of California 

San Francisco, Duke University, University of North Carolina, University of New 

Mexico, University of Iowa, and University of Minnesota.  

1.14.2.1 Imaging Parameters 

Imaging data for six of the seven sites was collected on a 3T Siemens Tim Trio 

System and on a 3T General Electric Discovery MR750 scanner at one site. Resting state 

fMRI scans were acquired using a standard gradient-echo echo planar imaging paradigm: 

FOV of 220x220 mm (64x64 matrix), TR = 2 sec, TE = 30 ms, FA = 77
0
, 162 volumes, 

32 sequential ascending axial slices of 4 mm thickness and 1 mm skip. Subjects had their 

eyes closed during the resting state scan. 

1.14.2.2 Data preprocessing and quality control 

 First we computed signal-fluctuation-to-noise (SFNR)(Friedman & Glover, 

2006) for all 370 subjects’ EPI data sets as implemented in dataQuality matlab package
1
. 

SFNR is defined as the ratio of mean signal intensity across time and space to the average 

standard deviation of the same voxels’ time series in a ROI in the center of brain. Data 

                                                 
1
 http://cbi.nyu.edu/software/dataQuality.php 

http://cbi.nyu.edu/software/dataQuality.php
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processing was performed using a combination of toolboxes (AFNI
1
, SPM

2
, GIFT

3
) and 

custom code written in Matlab
4
. We performed rigid body motion correction using the 

INRIAlign(Freire & Mangin, 2001) toolbox in SPM to correct for subject head motion. 

All subjects that had SFNR < 150 and a maximum root mean squared translation > 4 mm 

were excluded from further analysis. Maximum root mean squared translation is defined 

as {√∑          } , where x , y and z are the estimated motion (in mm) in X, Y, and 

Z directions. This excluded a total of 56 subjects, resulting in 314 subjects (163 HC and 

151 SZ) for subsequent analysis. Similar stringent inclusion procedures have been shown 

to minimize the influence of head motion on the subsequent functional connectivity 

measures (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012; Satterthwaite et al., 

2012; Van Dijk, Sabuncu, & Buckner, 2012). The maximum translation as well as root 

mean square translation of the retained subjects did not differ between groups. Average 

framewise displacement (FD)(Power et al., 2012), i.e. the average across frames of the 

absolute sum of instantaneous head motion in each direction from the previous frame, 

was slightly higher in the patient group than healthy controls (mean FD for each group, t 

= X, p = X).  

 For the retained subjects, we performed slice-timing correction to account for 

timing differences in slice acquisition. Then the fMRI data were despiked using AFNI’s 

3dDespike algorithm to mitigate the impact of outliers. The fMRI data were subsequently 

warped to a Montreal Neurological Institute (MNI) template and resampled to 3 mm
3
 

isotropic voxels. Instead of Gaussian smoothing, we smoothed the data to 6 mm full 

                                                 
1
 http://afni.nimh.nih.gov/ 

2
 http://www.fil.ion.ucl.ac.uk/spm/ 

3
 http://mialab.mrn.org/software/gift/index.html 

4
 http://www.mathworks.com/products/matlab 

http://afni.nimh.nih.gov/
http://www.fil.ion.ucl.ac.uk/spm/
http://mialab.mrn.org/software/gift/index.html
http://www.mathworks.com/products/matlab
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width at half maximum (FWHM) using AFNI’s BlurToFWHM algorithm which 

performs smoothing by a conservative finite difference approximation to the diffusion 

equation. This approach has been shown to reduce scanner specific variability in 

smoothness providing “smoothness equivalence” to data across sites(Friedman, Glover, 

Krenz, & Magnotta, 2006). Since the mean signal (and therefore signal variance) at one 

site (GE scanner) was much higher than rest of the site data, data were variance 

normalized. This step removed site specific differences in signal fluctuation. 
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Chapter 2:  Functional Network Connectivity during Rest and Task 
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2.1 Motivation 

 Studying the differences between rest and task to explore changes in the 

interaction among functional networks in these two states can clarify how the brain 

responds to a given task. Most of the studies mentioned in section 1.9 used constant or 

block design tasks in order to steadily engage parts of the brain in that particular task and 

make the comparison more meaningful. However, a main drawback of the constant task 

is the possibility that the subject loses his/her concentration during the course of the 

paradigm. Also, predictability of block design tasks may affect brain connectivity. In 

contrast, the auditory oddball (AOD) task requires continuous attention throughout the 

experiment. A passive listening task is a combination of listening, attention and active 

responding and likely some resting as well. Moreover most of the mentioned studies used 

a small cohort.  

The motivation for this study is to comprehensively compare FNC among relevant 

(non-artifactual) functional networks during the resting state and during and event-related 

task such as AOD task in healthy subjects. The main question we addressed is how FNC 

differs during rest versus during task performance in healthy subjects. We predicted that 

DMN and task-related networks would play key roles in our findings. The default-mode 

network is a set of brain regions showing activation during the rest and deactivation 

during most cognitive tasks (Buckner et al., 2008; Raichle et al., 2001). This network is 

not only relevant to understanding brain’s intrinsic functional activity but is also 

important in studying a number of neurological disorders (Broyd et al., 2009; Garrity et 

al., 2007a; Greicius, 2008).  
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2.2 Proposed Approach 

The block diagram in Figure 2-1 shows our approach. For this study we used the 

Hartford dataset. The raw fMRI data was first preprocessed. Then prepossessed resting 

state and AOD data were analyzed with group ICA. Subject specific spatial maps and 

time-courses were computed for rest and AOD conditions using back reconstruction. 

Next, FNC analysis was performed on the subject specific ICA time-courses. Finally by 

using a paired t-test, significant differences in FNC during rest versus task are 

highlighted. Since filtering ICA time-courses prior to FNC analysis can impact the 

results, we also report and discuss the results on both strongly filtered and weakly filtered 

time courses. Each of these steps is described in more detail in the next sections. 

 

Figure 2-1: Block diagram of the proposed approach 

2.2.1 Preprocessing 

Data were preprocessed using SPM5 software (http://fil.ion.ucl.ac.uk/spm/

software/spm5). Data were motion corrected, spatially normalized into standard MNI 

space and slightly subsampled to voxel size 3 × 3 × 3 mm
3
, resulting in 53 × 63 × 46 

voxels. Next, spatial smoothing with a 10 × 10 × 10 mm
3
 FWHM Gaussian kernel was 

performed.  

2.2.2 Group ICA and Back Reconstruction 

Prior to the ICA, dimensionality of data was reduced at two levels using principal 

component analysis (PCA). First at the subject level, dimensionality was reduced to 80. 
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Then reduced data from all subjects and all sessions were concatenated together and put 

through another reduction step. The number of components for the second level reduction 

was estimated to be 20 by minimum description length (MDL) criterion (Li et al., 2007). 

This is also the number of IC components. Note the MDL is a data driven approach, so it 

is not dependent on whether data are collected at rest or during a task. 

Infomax group sICA (Calhoun et al., 2001a) was conducted to decompose the 

aggregated data into components using GIFT software (http://icatb.sourceforge.net/). 

SICA applied to fMRI data identifies temporally-coherent networks (TCNs) by 

estimating maximally independent spatial sources, referred to as spatial maps (SMs) and 

their corresponding time-courses (TCs). Rest and AOD data were analyzed in one group 

ICA instead of two separate ICAs so that a tighter comparison between rest and task 

could be performed without additional variability induced due to trying to match 

components from separate ICA analyses. As mentioned before, compared to rest the 

AOD task also modulates some of the spatial maps as discussed by Calhoun et al. 

(Calhoun et al., 2008a). But, the change is subtle and the spatial maps of the components 

for rest and task are highly spatially correlated. Moreover, each ICA component is a 

temporally coherent network since the ICA model constrains the fluctuations of each 

voxel in a given component to have the same time course. So, considering the fact that 

these components were matched by the group ICA approach, it is relevant and 

meaningful to compare the time-courses of TCNs in the resting state and during a task.  

In order to validate the number of ICA components chosen by MDL and also measure the 

robustness of each of them, ICA was repeated 10 times using ICASSO
1
. Each time ICA 

algorithm was started from a different initial point and the resulting components were 

                                                 
1
 http://www.cis.hut.fi/projects/ica/icasso 

http://www.cis.hut.fi/projects/ica/icasso
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clustered to estimate the reliability of the decomposition (Himberg et al., 2004). 

Robustness and reliability of components were well validated by ICASSO results 

showing compact clusters.  

In order to estimate subject-specific SMs and TCs, the recently developed GICA3 

back-reconstruction method based on PCA compression and projection was used 

(Calhoun et al., 2001a; Erhardt et al., 2011). Subject-specific TCs were reconstructed 

separately for rest and task. 

2.2.3 Component Selection 

Spatial maps were reconstructed and converted to Z values for each of the 

subjects. All of the components were visually inspected and the non-artifactual 

components were selected. To compute the degree of task-relatedness of the components, 

regression analysis of ICA TCs was conducted. Target, novel and standard stimulations 

were modeled by convolving each of their corresponding paradigms with canonical 

hemodynamic response function using SPM5. These three regressors along with their 

first derivative, 6 cosine signals for noise removal and a constant term were put together 

to form a regressor matrix. After performing regression analysis, t-tests were computed 

on the beta values corresponding to the target and novel stimulations. 

2.2.4 Functional Network Connectivity  

The functional network connectivity toolbox (http://icatb.sourceforge.net/fnc/

software/FncVer2.2.zip) was used for the FNC analysis. As mentioned before, significant 

temporal correlation can exist among the sICA TCs. The FNC toolbox computes 

maximum lagged correlation among the components. The maximum lagged correlation 

was computed as in (Jafri et al., 2008). First the TCs of the ICA components were 
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interpolated to allow us detection of any delays less than the TR of the scanner (Calhoun 

et al., 2000; Ford et al., 2005). We assume ρ for the correlation between two TCs named 

 ̅ and  ̅ of dimension T×1 where T is the number of time points in TCs. Starting 

reference point of the TCs is named    and    represents the non-integer change in time. 

    represents the correlation between   ̅ which is vector  ̅ at the reference time point    

and  ̅       which is vector   ̅ shifted    from the reference time point. This correlation 

between the overlapping points of   ̅ and   ̅      can be computed as follows: 

 
    

  ̅  
    ̅      

√ ̅  
  ̅   √ ̅     

  ̅     

 
(2-1) 

The     vector is calculated for each pair of TCs when one of TCs is shifted    

units from -3 to +3 seconds (i.e. ± 2 TR). The maximum correlation and the 

corresponding lag is calculated and saved for each of the subjects and separately for rest 

and task. Allowing lag between signals is important to account for variations in 

hemodynamic response shapes among brain regions as well as among subjects. Although 

the lag can give an idea of temporal order of fMRI TCs, but the source of the lag is not 

completely understood and could be due to mixture of functional and physiological 

effects. For these reasons, we will not report any analysis on the lag parameter in this 

study. The lag corresponding to the maximum correlation was checked to be distributed 

in ±3 seconds interval and often away from its maximum or minimum. 

Prior to computing correlations, ICA TCs were filtered. There are reports that 

show task-related and other interesting information resides in lower frequencies while 

noise and artifacts contributes mostly to the higher frequency contents of the TCs (Cordes 

et al., 2001a). We performed FNC analysis both on strongly filtered and weakly filtered 
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components to further explore the filtering effects. In the weak filtering approach, a band 

pass Butterworth filter with cut-off frequencies at 0.017 Hz and 0.32 Hz was used to 

suppress the very low and very high frequencies, respectively. In the strong filtering 

approach, the cut-off frequencies were set at 0.017 Hz and 0.15 Hz. In the remainder of 

the paper we call the weakly filtered and strongly filtered TCs, unfiltered and filtered 

TCs, respectively. 

2.2.5 Statistical Analysis 

For all FNC analyses, correlations were transformed to z-scores using Fisher's 

transformation (z = arctanh(r)). Then, robustness of maximum lagged correlation between 

each pair of TCs was tested separately for rest and task using t-tests. Finally, to determine 

the significant differences of rest versus task, paired t-tests were conducted on the two 

groups. The cut-off p-value for all of the tests was set at p<0.05 and was corrected for 

multiple comparisons using the false discovery rate (FDR) method (Benjamini and 

Hochberg, 1995; Genovese et al., 2002). 

2.2.6 Functional Network Volumes 

We found it interesting to compare functional network volumes during rest and 

task. So, we thresholded each back reconstructed IC component at mean+3*standard 

deviation level for each subject. Then we counted number of voxels survived the 

threshold for each subject in each state. We compared the volumes by means of paired-t-

test at .05 level corrected for multiple comparisons (FDR method). 
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2.2.7 Maximum Activation 

As the volume of functional networks may change between the states, the level of 

activation can change too. To measure this, we performed a voxel-wise one sample t-test 

on each component (each subject is an observation) for each state. Then the highest T-

value of the test was saved. Note that the highest activated voxel is not necessarily the 

same for rest and task.   

2.2.8 Validation 

After the whole experiment, we tried to identify the points of concern in our 

analysis and address them with additional validation steps. Specifically, we focused on 

two issues which are: one group ICA instead of two separate ones and effect of ICA on 

FNC analysis. Validation steps are described in this subsection. 

As shown in Figure 2-1, one group ICA was done on aggregated rest and AOD 

data for the reasons mentioned before. To show that this has not affected the results in an 

undesirable way, we repeated the FNC analysis with two separate ICA on rest and task. 

The results were compared with the one group ICA results using paired t-test and no 

effect was found (p-value threshold of 0.05 corrected for FDR).  

 FNC was computed on ICA TCs as defined in section 2.2.4. We compared the 

results with a hybrid ICA seed-based approach (Kelly et al., 2010). In the hybrid 

approach, first we created network masks by thresholding ICA SMs and then used them 

to extract original fMRI time courses for each subject. After detrending and filtering, the 

TCs of voxels within each map (network) were averaged together and the maximum 

lagged correlation coefficients were computed among the networks separately for rest 

and task. The same statistical tests mentioned in section 2.2.5 were conducted on the 
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outcomes. Again paired-t test was used to compare the FNC results with our method and 

no effect was found (p-value threshold of 0.05 corrected for FDR).This validates FNC 

analysis on ICA TCs. For clarity and due to lack of space, we only report results from the 

proposed approach. 

2.3 Results 

From the 20 ICA components, 10 components were selected as non-artifactual, 

relevant networks. Figure 2-2 illustrates the spatial maps of the selected IC components. 

These networks are: frontal-parietal networks (IC #6 and 7), visual network (IC #4), 

parietal network (IC #14), auditory network (IC #12), motor network (IC #16), 

cerebellum network (IC #15) and default-mode networks (IC #18,5, 3). In order to 

determine task-relatedness of each IC, we regressed the corresponding time-courses 

against task paradigms (see section 2.2.3 for more details). The p-value for the regression 

coefficients corresponding to novel and target stimulations are color-coded in the bottom 

left and right corners of each component in Figure 2-2 respectively (reference color bar 

shown on the right side of the figure). As expected, auditory component (IC #12) is the 

most task-related component. Parietal component (IC #14) is significantly more active 

during novel stimulations of the task compared to target stimulations. Detailed 

information of each spatial map such as regions of activation, Brodmann area, volume 

and peak activation t-value and coordinates are provided in Table 2-1. 
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Figure 2-2: Spatial maps of the ten selected IC components. The time-course of each component during 

AOD task was regressed against task paradigms (see section 2.3.3). The p-value for the regression 

coefficients corresponding to novel and target stimulations are color-coded in the bottom left and right 

corners of each component respectively. Reference color bar is shown on the right side of the figure. 

The maximum lagged correlation was computed for each of the subjects and for 

rest and AOD separately. For each of the correlation pairs, student t-test was conducted at 

0.05 level corrected for FDR. This process was repeated for filtered components. In 

Figure 2-3 the average correlation and the corresponding t-values are shown for rest and 

AOD. The black circles determine the correlation pairs that survived the t-test. 

To determine which correlation pairs are significantly different between rest and 

task, paired t-tests were conducted at FDR corrected 0.05 level. Also a mean correlation 

difference between rest and AOD (rest-aod) was computed for each correlation pair. The 

results are shown in Figure 2-4. Starred pairs indicate those surviving the paired t-test.  

Table 2-2 summarizes the information about the significant pairs surviving the 

paired t-test (pairs with black stars in Figure 2-4). Mean correlation, t-test results, mean 

correlation difference and paired t-test values are included in the table for both filtered 

and unfiltered components. 
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Table 2-1: Brain regions, corresponding Brodmann areas, volumes, maximum t-values and spatial 

coordinates of each component in Talairach space. 

 

Attentional 

Networks 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 6     
R  Middle Frontal 
Gyrus 

8 26.7 52.2 (42,20, 43) 

R Inferior Parietal 

Lobule 

40 21.2 26.2 (53, -44, 49) 

R Inferior Frontal 
Gyrus 

44, 
45 

25.5 19.9 (53, 27, 21) 

R Superior Frontal 

Gyrus 

6, 8, 

9 

23.4 24.5 (36, 20, 52) 

IC 7     

L  Middle Frontal 

Gyrus 

8 43.5 24.0 (-50, 25, 26) 

L Inferior Parietal 

Lobule 

40 21.7 25.3 (-50,-44,49) 

L Inferior Frontal 

Gyrus 

44, 

45 

32.4 20.8 (-50, 24, 21) 

L Superior Frontal 

Gyrus 

6,8,9 29.3 17.5 (-6, 31, 43) 

 

Default-Mode 

Networks 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 5     
R/L  Precuneus 7 28.0/ 

27.0 
43.1/ 
47.3 

(6, -51,  33)/    
(-3, -54, 33) 

R/L Cingulate 

Gyrus 

23, 

24, 

31 

14.5/ 

15.7 

45.3/ 

47.3 

(6, -48, 27)/     

(-6, -42, 35) 

IC 3     

R/L Anterior 
Cingulate Cortex 

32 10.8/ 
10.6 

30.8/ 
30.4 

(15, 14, -8)/       
(-9, 5, -10) 

R/ L Medial Frontal 

Gyrus 

9, 10 14.4/ 

13.2 

26.7/ 

27.0 

(3, 34, -12)/     

(-3, 43, -7) 

 

 

Frontal 

Network 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 18     

R/L Superior 
Frontal Gyrus 

6,8, 
9 

33.1/ 
35.6 

27.8/ 
24.6 

(3, 11, 49)/      
(0, 8, 49) 

R/L Medial Frontal 

Gyrus 

8,9, 

10 

21.8/ 

21.8 

29.7/ 

30.4 

(3, 17, 43)/       

(-3, 44, 14) 
 

 

Visual Network BA Vol. Tmax 
X-Y-Z 

Coordinates 

IC 4     

L/R Cuneus 7, 19 
15.0/ 
18.4 

33.3/ 
36.9 

(9, -61, 9)/        
(-12, -64, 6) 

L/R Lingual Gyrus 
18, 

19 

12.1/ 

14.9 

33.7/ 

35.7 

(3, -73, 1)/       

(-12, -61, 3) 

 

Parietal 

Network 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 14     
R/L Superior 

Parietal Lobule 
5, 7 

6.8/ 

6.5 

36.4/ 

31.2 

(21, -67, 56)/   

(-24, -82, 40) 

R/L Precuneus 7 
29.0/ 

27.6 

32.5/ 

35.4 

(3, -52, 61)/     

(-3, -52, 61) 

R/L Cuneus 7, 19 
8.5/ 

7.3 

10.9/ 

16.3 

(30, -83, 37)/   

(-27, -77, 31) 

 

Motor Network BA Vol. Tmax 
X-Y-Z 

Coordinates 

IC 16     
R/L Precentral 
Gyrus 

4, 

6 

26.4/ 

22.8 

33.7/ 

31.8 

(30, -29, 59)/  

(-27, -23,56) 
R/L Medial Frontal 

Gyrus 
6, 

32 

15.7/ 

17.1 

38.8/ 

34.1 

(3, -9, 58)/    

(-3, -12, 56) 

R/L Postcentral 

Gyrus 
1, 

2, 

3 

21.7/ 

28.1 

30.9/ 

29.8 

(30, -32, 62)/    

(-21, -35, 

63) 

 

Auditory 

Network 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 12     

R/L Superior 

Temporal Gyrus 

22 25.5/ 

24.8 

28.9/ 

29.6 

(50, 3, -3)/  

 (-56, -9, 3) 

R/L Postcentral 

Gyrus 

1, 2, 

3 

13.2/ 

16.2 

27.2/ 

25.1 

(59, -20, 15)/ 

(-48, -17, 15) 

R/L Insula 
13, 

47 

16.9/ 

17.0 

29.1/ 

26.4 

(45, 0, 0)/     

(-42, -6, 0) 

 

Cerebellum 

Network 
BA Vol. Tmax 

X-Y-Z 

Coordinates 

IC 15     

R/L Declive * 
17.3/ 

15.0 

28.6/ 

29.2 

(30, -68, -19)/  

 (-39, -62, -20) 

R/L Culmen * 
15.4/ 

15.3 

24.4/ 

25.8 

(30, -62, -25)/     

(-36, -56, -22) 
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Figure 2-3: Top row: mean of maximum lagged correlation pairs for rest and AOD. Bottom row: T-value 

of each correlation pair resulted from Student t-test. Left column: unfiltered components. Right column: 

filtered components. Black circles indicate the pairs surviving the t-test with a FDR corrected p-value 

threshold of 0.05. 

 



40 

 

 

Figure 2-4: Left: mean maximum lagged correlation difference between rest and AOD (rest-AOD) for 

filtered and unfiltered components. Right: T-value resulting from paired t-test with FDR corrected p-value 

threshold of 0.05 for filtered and unfiltered components. Stars: pairs surviving the paired t-test 

 

As described in 2.2.6 and 2.2.7, we also calculated network volumes and peak 

activation in each network during rest and task. The results are illustrated in Figure 2-5 

and Figure 2-6 respectively. 

Also the mean of all 45 correlation pairs, standard deviation, absolute mean and 

standard deviation for absolute mean values were computed for each subject. The results 

are averaged over subjects and are shown in Table 2-3. We conducted a t-test on the 

mean correlation and it survived the test at 0.05 level (p-value of 0.010 and 0.014 for 

unfiltered and filtered schemes respectively). 
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Table 2-2: Detailed information about significant pairs. Left: means of correlation, standard deviation and 

p-values resulting from the t-test for each pair in rest. Middle: mean of correlation, standard deviation and 

p-value resulting from the t-test for each corresponding pair in the AOD task. Right: mean correlation 

difference (rest-AOD) along with p-value resulting from paired t-test. Bolded p-values survived t-test or 

paired t-test with 0.05 threshold corrected for FDR. 
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Figure 2-5: Volume of each functional network during rest and task averaged over subjects. Each black 

error bar is symmetric and twice the standard error of the mean long. Red stars show components surviving 

paired t-test at FDR corrected 0.05 level between the volumes in the two states. 

 

Figure 2-6: Peak activation for each component during rest and task. A voxel-wise one sample t-test on 

each component (each subject is an observation) for each state was performend. Then the highest T-value 

of the test is illustrated in this Figure. The highest activated voxel is not necessarily the same for rest and 

task.   
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Table 2-3: Mean, standard deviation (Std), absolute (Abs) mean and standard deviation of absolute mean 

for all 45 correlation pairs averaged over all subjects. 

 Mean Abs. Mean Std Abs. Std 

Rest 

(unfiltered/filtered) 

0.136/ 

0.147 

0.345/ 

0.361 

0.326/ 

0.344 

0.138/ 

0.155 

AOD 

(unfiltered/filtered) 

0.066/ 

0.074 

0.301/ 

0.302 

0.314/ 

0.319 

0.122/ 

0.138 

 

 

2.4 Discussion 

We compared functional network connectivity in both the resting-state and during 

performance of an AOD task in healthy subjects. ICA was successfully applied to 

aggregated resting and AOD data and was capable of extracting most relevant networks. 

Maximum lagged correlation was computed on back-reconstructed subject-specific time-

courses of the selected networks. Statistical analysis showed several pairs of networks 

which differed significantly between rest and task in terms of correlation and robustness. 

Several interesting points can be inferred from the results.  

FNC is weaker than intra-network connectivity. The correlation between each pair 

of networks is limited to the [-0.55 +0.55] range. The maximum correlation was between 

two default mode networks (IC #3 and #5) (Rest: +0.498/ AOD: +0.398). The maximum 

negative correlation was between IC #16 and IC #3 (Rest: -0.339/ AOD: -0.426). IC #16 

is the motor network and IC #3 is the anterior node of DMN. As seen in Figure 2-3, most 

of the correlations are positive in both rest and AOD. 
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Black circles in Figure 2-3 show the pairs surviving the t-test. At rest 27 and during 

AOD, 24 pairs of 45 are consistent for unfiltered components. For filtered components 

these numbers are 24 and 26 respectively. Most of the difference comes from the pairs 

associated with IC #12 (auditory network), IC #15 (cerebellum) and IC #3 (anterior node 

of DMN).  

Starred pairs in Figure 2-4 differed significantly between rest and task. Detailed 

information regarding these pairs is presented in Table 2-2. There are 5 and 7 significant 

differences for unfiltered and filtered components respectively. Most the differences 

coming from pairs including temporal (IC #12), cerebellum (IC #15) and DMN networks 

(IC #3 and #5). It is evident that FNC is higher during rest compared to task in most of 

the pairs. This suggests that FC at network level is consistent with most the findings at 

region level reported higher connectivity during rest compared to task (Fransson, 2006; 

Hasson et al., 2009; Nir et al., 2006). For example, FNC between anterior and posterior 

nodes of DMN (IC #3 and #5) decreased significantly during AOD task consistent with 

work by Fransson (Fransson, 2006). 

We used t-test to compared FNC during rest and task. Our aim was to get very 

specific about the differences so we used this univariate test. But, there are well-

developed multivariate methods such as PCA (Damaraju et al., 2010) and canonical 

correlation analysis (CCA) that can be applied to the connectivity matrices in each state. 

We also examined the volume and peak activation of functional network during 

rest and task. As shown in Figure 2-5, just cerebellum and motor networks (IC #15 and 

#16) increased in volume significantly during task compared to rest. It has been 

previously shown that AOD task modulates brain functional networks (Calhoun et al., 
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2008a). The peak activation in Figure 2-6 shows significant increase in parietal (IC #14), 

motor (IC #16) and anterior node of DMN (IC #3) during task compared to rest. Posterior 

node of DMN (IC #5) demonstrates reduce peak activation during task. Other networks 

show similar level of peak activation in both states. 

Table 2-3 provides a summary of global decrease in FNC during the performance 

of AOD task compared to the resting state. The source of these phenomena is not well-

studied yet but our results accord well with the results of Nir et al. (2006) reported strong 

slow coherence activation patterns during the resting-state. It has also been proposed that 

performing demanding tasks requires full attention which can suppress spontaneous 

thoughts (Fransson, 2006). Our results also suggests that performing an active task like 

AOD, may be facilitated by using more neurons (larger functional network) and higher 

activation in specialized networks rather than collaboration of different brain networks. 

All pairs except one that show significant differential connectivity between rest and task 

(Table 2-2), includes networks with significant change in size or peak activation. Larger 

volume of selected networks along with reduction in connectivity during the performance 

of AOD task consolidates previously suggested idea that recruitment of neurons for 

performing cognitive task may reduce the hemodynamic coupling between the brain 

regions (Morgan and Price, 2004).  

Since contradicting results have been reported previously, it is plausible to accept 

that FNC during the task is task dependent. Some studies have reported stronger 

connectivity during the performance of the task (Aguirre et al., 1997; Harrison et al., 

2008; Shirer et al., 2012). Type, length and design of the task may change the results.  
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Our results extend previous works demonstrating that global FC reduction is 

present not only among specific brain regions but also among different functional 

networks. Most of the previous studies were limited to few preselected brain regions 

using seed-based approach while we used ICA to extract all non-artifactual brain 

networks. ICA methodology doesn’t require selecting seed voxels. The main advantage 

of using ICA in this experiment is its ability to decompose the fMRI data into 

independent spatial maps and corresponding time-courses. Since we want to measure the 

functional connectivity among networks (FNC) and not functional connectivity among 

regions (FC), ICA is an ideal choice. This is not trivial using seed-based or atlas-based 

methods. Moreover, ICA is a multivariate data driven method which does not require a 

specific temporal model. Some previous studies have used ICA but just for defining 

regions of interests (ROIs) and selecting the seed voxels and not for FNC analysis (Shirer 

et al., 2012). To our knowledge, this is the first study comparing FNC between rest and 

task. 

We examined both unfiltered and highly filtered IC time courses in the FNC 

analysis. A major observation is that FNC results are not significantly dependent on 

specific filtering choice. Figure 2-3 reveals that only three change in consistent pairs 

between unfiltered and filtered components at rest and two such changes in AOD. The t-

value is higher for most of the pairs for unfiltered components compared to filtered ones. 

Figure 2-4 demonstrates that are two more significant pairs for filtered components that 

are not seen for the unfiltered components. Only one pair for the unfiltered components is 

missing for the filtered components. The correlation is higher for filtered than unfiltered 

components in most pairs. We conclude that FNC fluctuations appear to be focused in a 



47 

 

narrow frequency range as weak and strong filtering of ICA time-courses did not alter the 

results significantly. This is in line with previous findings (Cordes et al., 2001a; Sun et 

al., 2004). 

The present study (Arbabshirani et al., 2013a) is a step toward better 

understanding how the brain responds during rest versus a straightforward constrained 

cognitive task. We show several interesting results. In summary, we found that FNC is 

stronger during rest compared to AOD task. A global drop in FNC was observed during 

the performance of AOD task. We also showed that motor and cerebellum networks are 

significantly larger during the performance of the task. Also, parietal (IC #14), motor (IC 

#16) and anterior node of DMN (IC #3) demonstrated significantly higher peak activation 

during task compared to rest. This suggests that performing an active task like AOD 

requires larger and more active brain networks and not necessarily higher collaboration 

among networks. Generalization of these results can be accomplished by evaluating 

additional task types, as well exploring different subjects (e.g., patients with brain-based 

disorders may show different changes than healthy control subjects). 
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Chapter 3:  Automatic Classification of Schizophrenia patients based on 

Resting-state FNC Features 
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3.1 Introduction 

Recently, there is a growing interest in designing objective prognostic/diagnostic 

tools based on neuroimaging and other data that display high accuracy and robustness. 

The relatively small amount of research on MRI-based classification of schizophrenia 

patients can be divided into three categories based on the type of discriminating features 

used: structural-based (Ardekani et al., 2011; Caan et al., 2006b; Caprihan et al., 2008; 

Csernansky et al., 2004; Davatzikos et al., 2005; Fan et al., 2005; Fan et al., 2007b; 

Kawasaki et al., 2007; Nakamura et al., 2004; Pardo et al., 2006; Sun et al., 2009; 

Takayanagi et al., 2010; Takayanagi et al., 2011; Yoon et al., 2007), functional-based 

(Arribas et al., 2010; Calhoun et al., 2008b; Demirci et al., 2008a; Georgopoulos et al., 

2007; Michael et al., 2008; Shen et al., 2010) or combination of structural and functional 

features (Fan et al., 2007a; Ford et al., 2002).  

There are several biological markers (so-called biomarkers) that can be extracted 

from each of these complementary imaging techniques. These biomarkers have the 

potential to explain effects of psychiatric disorders on the brain. Promising results of 

these studies in detecting and predicting mental disorders such as schizophrenia suggest 

potential clinical utility of neuroimaging data. In this chapter, we focus on automatic 

diagnosis of schizophrenia as a good example of heterogeneous mental. However, most 

of the methods are applicable to other disorders, such as Alzheimer’s disease, mild 

cognitive impairment, bipolar disorder, and even disorders such as psychopathy. 
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3.2 What is Schizophrenia? 

Schizophrenia is among the most prevalent mental disorders, affecting about 1 

percent of the population worldwide (Bhugra, 2005; Wyatt et al., 1995). This devastating, 

chronic heterogeneous disease is usually characterized by disintegration in perception of 

reality, cognitive problems, and a chronic course with lasting impairment (Heinrichs and 

Zakzanis, 1998). Social isolation, paranoia, and difficulties in memory (both working and 

long-term) are other common symptoms of schizophrenia. The average age of onset of 

schizophrenia is 18 and 25 for men and women respectively. Schizophrenia is thought to 

be related to a combination of genetic and environmental factors, although the exact 

cause is still unknown. Several psychological and neurological mechanisms have been 

associated with schizophrenia. Unfortunately, there is no clinical test for schizophrenia, 

and the diagnosis is based on either the American Psychiatric Association’s Diagnostic 

and Statistical Manual of Mental Disorders (DSM-IV) or the World Health 

Organization’s International Statistical Classification of Diseases and Related Health 

Problems. The criteria for diagnosis are usually based on self-reported symptoms and 

abnormalities in behavior. 

3.3 Previous Studies based on Structural Biomarkers 

Volumetric structural abnormalities measured by MRI are the main category of 

structural studies (Fan et al., 2007a; Kawasaki et al., 2007; Nakamura et al., 2004; Sun et 

al., 2009; Takayanagi et al., 2011). Neuroimaging studies using MRI have documented 

reductions in gray matter (GM) volume accompanied by proportionate increases in 

ventricular cerebrospinal fluid (CSF) volume. Also, some studies showed volumetric 

abnormalities in subcortical structures such as thalamus and hippocampus (Csernansky et 
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al., 2004; Honea et al., 2005). Various methods such as voxel-based morphometry 

(VBM) (Davatzikos et al., 2005; Fan et al., 2007b), cortical pattern matching (Sun et al., 

2009), cortical thickness surface based approach (Yoon et al., 2007), and manually 

selected regions of interest (ROIs) (Nakamura et al., 2004; Takayanagi et al., 2010) have 

been used to differentiate schizophrenia patients from healthy controls. 

Davatzikos et al. (2005) extracted GM, white matter, and CSF volumes in number 

of brain regions as features and trained and tested a classifier on a cohort of 69 patients 

and 79 healthy controls. They reported 81.1 percent mean classification accuracy. Fan et 

al. (2007) used a combination of deformation-based morphometry and machine learning 

methods to distinguish schizophrenia patients from healthy controls. First they computed 

local tissue volumes based on extracted tissue density maps. By using support vector 

machine (SVM), they selected the most important features, and then they trained and 

tested the SVM classifier using the leave-one-out strategy. Their method demonstrated 

high classification accuracy (91.8 percent for female and 90.8 percent for male subjects), 

which is very promising.  

Yoon et al. (2007) proposed pattern classification based on cortical thickness. They 

computed the cortical thickness based on Euclidean distance between linked vertices on 

inner and outer cortical surfaces. They demonstrated that the thickness of several brain 

regions, such as precentral, postcentral, superior frontal and temporal, cingulate and 

parahippocampal gyri, have high discriminative power between the patient and control 

groups. They reported 88 to 94 percent accuracy for the automatic classification based on 

these cortical thicknesses. 
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Sun et al. (2009) used cortical pattern matching method to differentiate patients 

from controls. This method is able to capture correspondence between brain surfaces. It 

was shown that patients show lower gray matter density especially in lateral surface of 

the prefrontal and temporal lobes, limbic regions, cingulated sulci and parieto-occipital 

fissures. By using multinomial logistic regression classifier, they reported 86.1% of 

accuracy for automatic classification of patients from controls using gray matter densities 

as features.  

Takayanagi et al. (2010) used volumes of 19 ROIs for differentiating first-episode 

schizophrenia patients from healthy controls. They reported 75.6% and 82.9% accuracy 

for male and female subjects respectively. Takayanagi et al. (2010) combined regional 

brain volumes with cortical thickness features and achieved above 80% accuracy in 

automatic classification of first-episode schizophrenia patients. They reported cortical 

thinning and volume reductions in prefrontal and temporal cortices of the patients. 

Another major category of structural studies is based on DTI technique. There are 

number of parameters that can be computed based on tensor matrices of each brain voxel 

in DTI imaging. One of these measures is called fractional anisotropy (FA) which shows 

the anisotropy of the self-diffusion of water molecules (Kingsley, 2006). Since in the 

white matter of the brain, water tends have higher rate of diffusion along the direction of 

fibers, it is anisotropic. So, FA can reflect white matter fiber integrity which has been 

shown to be associated with number of brain disorders such as schizophrenia (Kubicki et 

al., 2007; Szeszko et al., 2008). Another measure calculated from tensor matrices is mean 

diffusivity (MA) which shows the magnitude of self-diffusion of water molecules. MA 

abnormality has been reported in schizophrenia patients in number of studies (Ardekani 
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et al., 2005; Lee et al., 2009; Narr et al., 2009). FA and MA features have been used in 

automatic classification of schizophrenia patients in several studies (Ardekani et al., 

2011; Caan et al., 2006a; Caprihan et al., 2008). 

Caprihan et al. (2008) proposed applying discriminant principal component 

analysis (DPCA) to FA images of DTI of healthy controls and schizophrenia patients. 

They reported 80% accuracy using FA features for automated classification of patients. 

Ardekani et al. (2011) used both FA and MD maps to discriminate patients for controls. 

Using linear discriminant analysis the achieved very promising classification accuracy of 

94%.  

3.4 Previous Studies based on Functional Biomarkers 

Using functional connectivity methods, researchers have shown disrupted 

functional integration in schizophrenia patients (Bokde et al., 2006; Jafri et al., 2008; 

Liang et al., 2006; Meyer-Lindenberg et al., 2005b; Mikula and Niebur, 2006; Salvador et 

al., 2010). Liang et al. reported decreased functional connectivity among insula, 

prefrontal lobe and temporal lobe and increase connectivity between cerebellum and 

several other brain regions (Liang et al., 2006). Meyer-Lindenberg et al. (2001) reported 

abnormal functional connectivity in fronto-temporal interactions in schizophrenia in 

selected regions of interest (ROIs) using positron emission tomography (PET) brain scans 

on working memory task (Meyer-Lindenberg et al., 2005b). Salvador et al., (2010) 

reported hyper-connectivity within medial and orbital structures of the frontal lobe and 

hyper-connectivity between these regions and several cortical and sub-cortical structures 

in schizophrenia patients. 
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Automatic diagnosis of schizophrenia based on functional biomarkers is a 

relatively new.  These studies fall into two main groups based on the functional 

biomarker features they used; activation pattern of functional regions and networks of the 

brain and functional connectivity among brain regions and networks. (Arribas et al., 

2010; Calhoun et al., 2008b; Demirci et al., 2008a; Georgopoulos et al., 2007; Michael et 

al., 2008; Shen et al., 2010).  

Calhoun et al. (2008b) extracted temporal and default mode networks from fMRI 

data during the performance of an auditory oddball task using independent component 

analysis method. These networks were selected based on previous studies suggesting 

alteration of activation pattern of these networks in schizophrenia patients (Bluhm et al., 

2007; Calhoun et al., 2004; Garrity et al., 2007b). They used the combined maps of these 

two networks as the feature set to differentiate schizophrenia patients, bipolar disorder 

patients and healthy controls from each other. They reported an average sensitivity and 

specificity of 90% and 95% which is very significant taking into account the highly 

overlapping symptoms of bipolar and schizophrenia patients. 

Demirci et al. (2008) proposed applying projection pursuit algorithm on several 

ICA component of fMRI data obtained during auditory oddball task. 80%~90% was the 

reported accuracy of their automatic classification method for differentiating 

schizophrenia patients from healthy controls. 

Shen et al. (2010) used an atlas-based method to extract mean time-courses of 116 

brain regions in the resting-state for both healthy controls and schizophrenia subjects. 

The correlation between these features made the feature vector for each subject. By using 

feature selection and dimensionality reduction techniques, they reduced the 
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dimensionality down to three where they classified patients from controls with a high 

accuracy (93% for patients and 75% for healthy controls). 

Table 3-1 summarizes the previous studies on MRI-based automatic diagnosis of 

schizophrenia (Calhoun and Arbabshirani, 2013).  
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Table 3-1: Summary of neuroimaging-based automatic diagnosis of schizophrenia studies. OV: Overall 

accuracy, Schiz.: schizophrenia, DMN: Default mode network, SNP: single nucleotide polymorphism 

 Modality Features Disorder Results References 

1 DTI FA, MD Schiz. 98% OV accuracy 
(Ardekani et al., 

2011) 

2 DTI FA Schiz. 75% OV accuracy 
(Caan et al., 

2006a) 

3 DTI FA Schiz. 80% OV accuracy 
(Caprihan et al., 

2008) 

4 Structural MRI 
Thalamic and Hippocampal 

Shape and volume 
Schiz. 78% OV Error 

(Csernansky et al., 

2004) 

5 Structural MRI 

Gray matter, white matter, 

and ventricular cerebrospinal 

fluid volumes 

Schiz. 81% OV accuracy 
(Davatzikos et al., 

2005) 

6 Structural MRI 

gray matter (GM), white 

matter (WM) and 

cerebrospinal fluid (CSF) 

Schiz. 92% OV accuracy (Fan et al., 2005) 

7 Structural MRI Distribution of Gray Matter Schiz. 
80-90% OV 

accuracy 

(Kawasaki et al., 

2007) 

8 Structural MRI 

22 neuropsychological 

test scores and 23 structural 

brain 

measurements 

Schiz. & Bipolar 
100% OV 

accuracy 
(Pardo et al., 2006) 

9 Structural MRI 
principal components of 

cortical thickness 
Schiz. 

88%-93% OV 

accuracy 
(Yoon et al., 2007) 

10 Structural MRI 
Regional brain volume and 

cortical thickness 

first-episode 

Schiz. 
80% OV accuracy 

(Takayanagi et al., 

2011) 

11 Structural MRI 
Structural brain 

measurements 
Schiz. 

~80% OV 

accuracy 

(Nakamura et al., 

2004) 

12 Structural MRI Volume of 29 ROIs 
first-episode 

Schiz. 

75%~83% OV 

accuracy 

(Takayanagi et al., 

2010) 

13 Structural MRI 

gray matter (GM), 

white matter (WM), and 

cerebrospinal fluid (CSF) 

density maps 

Schiz. 91% OV accuracy (Fan et al., 2007b) 

14 Structural MRI Gray matter density 

schizophrenia, 

schizophreniform, 

or schizoaffective 

disorder 

86.1% OV 

accuracy 
(Sun et al., 2009) 

15 Functional MRI 

Activated voxels in DMN 

and temporal network during 

AOD task 

Schiz. & Bipolar 70%–72% 
(Arribas et al., 

2010) 

16 Functional MRI 

Activated voxels in DMN 

and temporal network during 

AOD task 

Schiz. & Bipolar 90%~95% 
(Calhoun et al., 

2008b) 

17 Functional MRI 
Functional Connectivity 

duting the resting-state 
Schiz. 

93.75% for 

schizophrenic 

patients, 75.0% 

for healthy 

controls 

(Shen et al., 2010) 

18 Functional MRI 
Functional Network 

Connectivity 
Schiz. 

67%~100% OV 

accuracy 

(Arbabshirani et 

al., 2012) 

19 Functional MRI 

DMN and temporal network 

from ICA and GLM 

activation map 

Schiz. 95% OV accuracy 
(Castro et al., 

2011) 

20 Functional MRI ICA Components Schiz. 98% OV accuracy (Du et al., 2012) 

21 
Functional MRI 

and Genetic  

fMRI activation maps and 

SNP 
Schiz. 87% OV accuracy (Yang et al., 2010) 
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3.5 Motivation and Objective 

It has been shown that there are significant FNC differences between schizophrenic 

patients and the control group in the resting-state possibly showing deficiencies in the 

brain functional processing in the patients (Jafri et al., 2008). Jafri et al. (2008) reported 

increased FNC among frontal, temporal, visual and default-mode networks and decreased 

FNC between temporal and parietal networks. We hypothesized that disrupted functional 

integration in schizophrenia patients as captured by FNC analysis entail valuable 

information that can be used to discriminate patients automatically.  

3.6 Proposed Approach 

For this study we used the resting state data from the Hartford dataset (see section 

1.14.1 for more information). The block diagram in Figure 3-1 shows our approach. We 

divided the data into separate training (16 healthy subjects + 16 patients) and testing (12 

healthy subjects + 12 patients) randomly. The raw fMRI data was first preprocessed. 

Then the training data were analyzed with group ICA. Subject specific spatial maps and 

time-courses were computed using back reconstruction. Next, FNC analysis was 

performed on the subject specific ICA time-courses. FNC was calculated between each 

pair of selected components.  
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Figure 3-1: The Proposed Approach. The pink blocks on the top show the feature extraction steps. The 

statistical analysis box (green) is not part of the classification approach. The light green blocks describe the 

classification stage. 

Several classifiers were trained using the training data and were evaluate using the 

testing data. Leave-one-out cross validation (LOOCV) inside the training set was used to 

select the hyperparameters for the classifiers. The optimum parameters for relevant 

classifiers were selected based on the averaged validation error over 32 validation 

iterations. In the testing phase, a separate ICA was performed on the testing dataset and 

the extracted brain networks where matched with those of training ICA based on 

maximum Pearson correlation coefficient. Finally, performances of trained classifiers 

were evaluated using the testing features.  

As a supplementary study, the FNC features were statistically analyzed within each 

group of subjects using one sample t-tests and between groups using two-sample t-tests 
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on the training dataset. The statistical tests within each group test the null hypothesis that 

each feature has a mean of zero. Features surviving the test have non-zero mean which is 

statistically significant (which tells us there is a significant correlation between the pair of 

components). Two-sample t-tests between groups test the null hypothesis that 

corresponding FNC features in the two groups (controls and patients) have the same 

mean. Features surviving this test are the ones significantly (from a statistical point of 

view) different between control and patient groups (and tell us that the correlation 

between the pair of components is greater in one group compared to the other group). 

Note that these results are presented for descriptive purposes but were not used for 

feature selection or at all in the classification process. Preprocessing, group ICA, 

component selection, functional network connectivity calculations and statistical analysis 

are similar to those described in 2.2.1, 2.2.2, 2.2.3 and 2.2.4 respectively.  

3.6.1 Classification 

We evaluated the performance of several well-known linear and non-linear 

classifiers. This will give us a better view of the complexity of the features. If simpler 

classifiers (such as linear classifiers) classify the data successfully, it means that the 

features have a simple structure (classes are almost linearly separable). However, if just 

complicated non-linear classifiers classify the data successfully, it is an indication that 

data has a more complex structure. The decision boundary in a linear classifier is a 

hyperplane while in a non-linear classifier the boundary can take any shape. In another 

sense, the classifiers can be divided into generative and discriminative. In generative 

classifiers, the probability density functions (pdf) of all classes are modeled and the 

Bayes theorem gives the posterior probabilities. On the other hand, discriminative 
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classifiers try to estimate the posterior probability directly or skip the challenging step of 

pdf estimation and determine the decision boundary based on the observed data 

(discriminant methods). Generative methods are often simpler and more computationally 

efficient but require estimation of pdf which require substantial amount of data. For 

complex data sets with few training samples, discriminative methods yield a better 

performance. It should be noted that in this study we computed the prior probabilities for 

the two classes from the data (which is equal) since the distribution of the data is very 

different from the real prevalence of schizophrenia (around 1%). All classifiers were 

implemented using Matlab (MathWorks, Inc.). Naïve Bayes, logistic linear and quadratic 

classifiers along with decision trees were implemented using PRTools
1
 which is a 

Matlab-based pattern recognition toolbox (Duin et al., 2007). In this section, these 

methods will be briefly reviewed. 

3.6.1.1 Linear Methods 

3.6.1.1.1 Linear Bayes Normal Classifier 

This simple classifier assumes Gaussian pdf for both classes with equal covariance 

matrices but different means. The joint covariance matrix is the weighted average of class 

covariance matrices (weighted by prior probabilities). Using the Bayes rule, these 

assumptions lead to a linear decision boundary. This classifier is also called linear 

discriminant classifier (LDC) (Duda et al., 2001). 

3.6.1.1.2 Fisher Linear Classifier (FLC) 

Fisher’s linear discriminant views classification as a dimensionality reduction 

task. Fisher formulation tries to maximize class mean separation while minimizing class 

overlap during linear dimension reduction. This choice of direction for projection can be 

                                                 
1
 http://www.prtools.org 

http://www.prtools.org/
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used as a linear classifier in a two class problem. Fisher’ linear classifier is special case of 

minimum least square linear classifier (Bishop, 2006). 

3.6.1.1.3 Logistic Linear Classifier (LLC) 

Logistic regression in method of learning functions from     .   

[         ] is the training vector with n variables and   is the target value (class). 

Logistic regression assumes a parametric for the distribution    |  . The parameters are 

estimated from the training data. Assuming that   is binary (two class problem), the 

logistic regression can be formulated as below: 

     |    
        ∑      

 
   

          ∑      
 
   

 (3-1) 

     |    
 

          ∑      
 
   

 (3-2) 

One of the nice properties of the logistic regression is its ability to provide a linear 

discriminant between the two classes. Each new object is assigned to a class that has a 

larger probability for that object. Simplifying this rule results in a classification rule: 

if    ∑                
   Otherwise     (3-3) 

 LLC also provides the weight for each feature so it can be used to rank the features. 

3.6.1.1.4 Linear Perceptron Classifier 

This classic linear discriminant tries to minimize the error function which is the 

number of misclassifications. This classifier can be considered as simple feed forward 

artificial neural network (Rosenblatt, 1958). First the input vector is transformed using a 

non-linear transformation to give a feature vector. The algorithm then tries to change the 

weight vector of the neural network using gradient stochastic descent algorithm to 

minimize the error in an iterative manner. At each iteration, the weight vector of the 
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network is manipulated by perceptron learning rule. The perceptron convergence theorem 

guarantees that the perceptron learning algorithm can find the solution in finite number of 

steps if such a solution (data is linearly separable) exists (Block et al., 1962). 

3.6.1.1.5 Linear Support Vector Machine (SVM) 

Over the last 15 years following the work by Cortes et al. (Cortes and Vapnik, 

1995), SVM has proven useful in many machine learning and pattern recognition analysis 

problems. Moreover, when data classes are heterogeneous with few training samples, 

SVMs appear to be especially beneficial (Melgani and Bruzzone, 2004). This binary 

classifier aims at finding a hyperplane that maximizes the margin between the two 

classes. The training samples closest to the decision boundary are called support vectors. 

By allowing a margin (called soft margin) that allows for misclassification of some noisy 

samples, SVMs avoid the overfitting problem. 

3.6.1.2 Non-Linear Methods 

3.6.1.2.1 K-Nearest Neighbor 

K-nearest neighbor (KNN) is a method of classifying objects based on proximity 

to the training samples (Cover and Hart, 1967). This instance-based learning method is 

among the simplest machine learning approaches. Each object is classified by the 

majority voting of the training samples in the neighborhood. The most common class 

among the k nearest neighbors is determined and is assigned to the object (Bremner et al., 

2005). KNN can result in complex decision boundaries. The optimum k is determined by 

cross validation. Different distance metrics such as Euclidean, city block, cosine and 

correlation can be used to measure the proximity of the samples. KNN is fast, simple and 
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guarantees an error rate no worse than twice the Bayes error if the amount of data 

approach infinity. We used just Euclidean distance metric in our analysis. 

3.6.1.2.2 Naïve Bayes Classifier (NBC) 

The naïve Bayes classifier is a simple generative classifier based on Bayes 

theorem. The naïve assumption of NBC is that it assumes independence among the 

features. Although this over-simplified assumption is violated in most of the machine 

learning problems, this approach worked very well for many complex problems even 

when the independence assumption is not valid (Domingos and Pazzani, 1997; Rish, 

2001). One of the main advantages of NBC is that it requires small amount of data to 

estimate the parameters of pdf function for each feature. Since the features are assumed 

to be independent, the joint pdf of the features is simply the multiplication of individual 

pdfs of each feature. When dealing with continuous data, typically Gaussian distribution 

is assumed for each feature. The pdf parameters are estimated from the training data. 

NBC works quite well in anti-spam filtering problems (Seewald, 2007). 

3.6.1.2.3 Quadratic Bayes Normal Classifier 

Quadratic discriminant analysis (QDC) is closely related to linear discriminant 

analysis. It assumes that the data is normally distributed with different mean and 

covariance matrices. This results in a quadratic decision boundary (Duda et al., 2001).  

3.6.1.2.4 Binary Decision Tree 

Decision trees (DT) find use in a wide range of applications. DT partitions the 

input space into cubic regions. In classification a class label is assigned to each region in 

the input space. Interpretability of the DT makes them very popular specially in medical 

diagnosis (Bishop, 2006). Each decision is a result of a sequence of binary decisions. In 
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order to learn a model from the training samples, the structure of the tree and the 

threshold value for each node should be determined. There are many variations of DT but 

most of them rely on the top-down greedy search in the space of possible trees called ID3 

algorithm (Quinlan, 1987) and its successor C4.5 (Quinlan, 1993). Selecting optimal tree 

structure is usually infeasible due to large number possibilities. Usually the tree is started 

with a single root node and then at each step one node is added to the tree. This is called 

greedy strategy for growing the tree. At each node an attribute (feature) should be 

selected to be tested.  

There are several criteria to measure the worth of each feature such as information 

gain, diversity index, Fisher’s criterion (the same used in Fisher discriminant analysis) 

and gain ratio. The threshold values and structure of the tree is chosen so that the 

classification error is minimized. A criterion to stop growing the tree (pruning) should 

also be devised. Often the tree is fully grown and then the tree is pruned back to find the 

best tree for that structure. Graphical representation and human interpretability of the DT 

makes them very popular. However, since the edges of the decision regions are aligned 

with the axis of the feature space they are very suboptimal (Bishop, 2006). One of the 

main advantages of decision trees is interpretability. Moreover, they show the importance 

of each feature for classification in a graphical illustration. 

3.6.1.2.5 Artificial Neural Network 

Multilayer ANN is the extension of linear perceptron classifier. These networks 

can result in complex non-linear decision boundaries. A well-known structure for a tree 

layer structure: Input layer, hidden layer and output layer. Each neuron in each layer has 

connections to other neurons of the subsequent layers. Non-linear transfer function of the 
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neurons in the hidden layer can take any form such as sigmoid. The weights of the nodes 

are changed using a technique called backpropagation (Werbos, 1990). At each iteration, 

the output of the network is compared to correct answers and based on a predefined error 

function, an error value is computed. This error is fed back to the network and the 

weights of each node are adjusted to minimize this error. This can be done by gradient 

descent technique if the activation function is differentiable. Other method of minimizing 

the error is using Levenberg-Marquardt algorithm (Levenberg, 1944).  

Another class of ANN uses radial basis activation function in the hidden layer 

(Chen et al., 1991). Usually this kind of network requires more neurons than standard 

feed forward back-propagation network but can be trained much faster. Topology of 

ANN used in this study can be found in the results section. 

3.6.1.2.6 Non-Linear Support Vector Machine 

By using the kernel trick, SVM can map the not-linearly separable data into a 

higher dimensional space where the samples are hopefully lineally separable. This 

mapping to higher dimensional space is difficult, but since SVM formulation depends on 

the inner product of each of training samples with the support vectors, the kernel is 

defined as this inner product so the problem is solved in the same fashion as the linear 

case. There are many kernel functions but the most widely used ones are Gaussian radial 

basis function (RBF) and polynomial kernel. There is at least one parameter in a kernel 

(except for the linear kernel) which should be optimized along with the soft margin 

usually by grid search over reasonable values of that parameter. RBF and polynomial 

kernels are defined as below: 

              
‖    ‖

 
              -

‖  - ‖

 
 (3-4) 
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         [      ]  (3-5) 

In the above equations, support vectors are denoted by    and each training point 

is denoted by  .   is a parameter proportional to the width of the RBF kernel. p is the 

degree of the polynomial kernel. A detailed mathematical formulation of SVM can be 

found in (Burges, 1998). 

3.6.2 Parameter Selection 

The parameters for each classifier were selected by grid search. Unfortunately, 

there is no exact theoretical solution for the optimum value for most of the parameter. 

The parameters were selected based on the average validation error. 

3.6.3 Effect of Medication 

One limitation of this study is the fact that patients are medicated. It is highly 

desirable to evaluate the performance of the proposed method on diagnosed but not yet 

medicated schizophrenia patients. It has been shown that antipsychotic medications have 

a normalizing effect on the functionality of the schizophrenia patients’ brain (Davis et al., 

2005). Moreover, prior fMRI and EEG studies on not medicated schizophrenia patients 

have reported altered functional connectivity (Meyer-Lindenberg et al., 2005a; Omori et 

al., 1995). 

 It has been shown that the main targets of antipsychotic treatments in 

schizophrenia patients are cortical and subcortical motor networks (Abbott et al., 2011; 

Muller et al., 2003; Rogowska et al., 2004; Wenz et al., 1994). Recently the effect of 

antipsychotic treatment on resting-state functional network connectivity was studied (Lui 

et al., 2010) and it was shown that after treatment patients showed 3 connectivity changes 

compared to healthy controls. From these 3 changes only one (FNC between the temporal 
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and parietal network) was present in this study. To further reduce the effect of medication 

on classification results, we repeated the classification with all described methods on 

reduced set of features where the motor network related features along with temporal-

parietal FNC feature were excluded.   

3.7 Results 

From the 20 ICA components, 9 components were selected as non-artifactual, 

relevant networks. Since we selected nine IC components and we were interested in 

connectivity between each pair of networks, we ended up with 36 FNC features for each 

subject ((
 
 
)). Figure 3-2 illustrates the spatial maps of the selected IC components. 

These networks are: auditory network (IC #2), frontal-parietal networks (IC #6 and 9), 

default-mode networks (IC #12,13, 19), visual networks (IC #15 and 20) and motor 

network (IC # 18).  

 

Figure 3-2:  Spatial maps of the nine selected IC components 
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The maximum lagged correlation was computed for each of the subjects in each group. 

For each of the correlation pairs, student t-test was conducted with an FDR-corrected p-

value threshold of 0.05 to identify significant correlations. Figure 3-3 shows the average 

correlation and the corresponding t-values. The black circles determine the correlation 

pairs that survived the FDR-corrected t-test. It is seen that there are more significant 

correlation pairs (12) in the control group compared to patients group (10). Interestingly, 

the mean correlation between the auditory network (IC #2) with each of the visual 

networks (IC #15 and 20) and the motor network (IC # 18) is significant for the healthy 

group but not for the patients. To determine which correlation pairs are significantly 

different between the two groups, two sample t-tests were conducted with a FDR 

corrected p-value threshold of 0.05. Also a mean correlation difference between the two 

groups (control-patients) was computed for each correlation pair. These results are shown 

in Figure 3-4. Starred pairs indicate those features surviving the paired t-test.  

 

Figure 3-3: Left: Mean of correlation pairs for controls and patients. Right: T-value of each correlation pair 

resulted from Student t-test with p-value threshold of 0.05 corrected for FDR. Black circles indicate the 

pairs surviving the t-test. 
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Figure 3-4: Left: Mean correlation difference between control subjects and patients(control-patient). Right: 

T-value resulting from two sample t-test with p-value threshold of 0.05 corrected for FDR. Stars show pairs 

that survived the paired t-test. 

 

The classification results on the testing dataset for described classification 

methods (section 3.6.1) are summarized in Table 3-2. For each method, overall 

classification accuracy, sensitivity, specificity, positive predicative value (PPN) and 

negative predictive value (NPV) are provided. Moreover, we reported the Wilson’s 

binomial confidence interval (Wilson, 1927) for each classifier. For relevant methods, the 

choice of parameters selected during the training phase along with the topology of 

artificial neural networks are also included in Table 3-2. As discussed in section 3.6.3, to 

reduce the effect of medication on the classification results we repeated the analysis on 

the reduced set of features. Out of 36 features, 9 features that were more susceptible to 

medications were excluded from the feature set and the whole classification was repeated 

on the remaining 27 features. The excluded features are 8 motor related features (all FNC 

features involving IC18) along with a temporal-parietal feature (FNC between IC2 and 

IC15). The results are summarized in Table 3-3. 
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One of the main advantages of using decision trees is the graphical representation. 

One can represent decision alternatives and possible outcomes schematically. The visual 

approach is particularly helpful in comprehending sequential decisions and outcome 

dependencies. Decision trees for both the Fisher’s and information gain criteria are 

illustrated in Figure 3-5 and Figure 3-6 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 

 

Table 3-2: Testing classification results using full set of features. Overall Acc.: overall accuracy, Sens: 

sensitivity, Spec: Specificity, PPV: positive predictive value, NPV: negative predictive value, CI: 

Wilson’s binomial confidence interval. Bold classifiers perform above the chance (lower bound of 

confidence interval is greater than 50%). 

 Method 
Overall 

Acc. 
Sens. Spec. PPV NPV CI Parameters 

L
in

ea
r 

M
et

h
o
d

s 

Linear 

Discriminant 

(LDC) 

71% 42% 100% 100% 63% [51%   85%]  

Fisher Linear (FLC) 67% 42% 92% 83% 61% [47%   82%]  

Logistic linear 

classifier (LLC) 
63% 33% 92% 80% 58% [42%   78%]  

Linear Perceptron 79% 75% 83% 82% 77% [59%   91%]  

SVM (Linear) 83% 75% 92% 90% 79% [66%   94%] C=1.5 

N
o

n
-L

in
ea

r 
M

et
h

o
d

s 

KNN (Euclidean) 96% 100% 92% 92% 
100

% 
[78%   100%] K=1 

Naive Bayes 

classifier 
79% 75% 83% 82% 77% [59%   91%]  

quadratic classifier  

(QDC) 
63% 33% 92% 80% 58% [42%   78%]  

Decision Tree 

(Info. Gain) 
88% 92% 83% 85% 91% [68%   96%] No Pruning 

Decision Tree   

(Fisher Criterion) 
96% 100% 92% 92% 

100

% 
[78%   100%] No Pruning 

Neural Net. by 

back-propagation 
92% 100% 83% 86% 

100

% 
[73%   99%] 

Layers: 3 

Hidden 

Nodes: 6 

RBF Neural Net. 96% 100% 92% 92% 
100

% 
[78%   100%] 

Layers: 3 

Hidden 

Nodes: 12 

SVM (RBF) 96% 100% 92% 92% 
100

% 
[78%   100%] 

C= 1.25 

σ=1 

SVM (Polynomial) 96% 92% 100% 100% 93% [78%   100%] 
C=.12 

P=3 
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Table 3-3: Testing classification results using reduced set of features (27 features). Overall Acc.: overall 

accuracy, Sens: sensitivity, Spec: Specificity, PPV: positive predictive value, NPV: negative predictive 

value, CI: Wilson’s binomial confidence interval. Bold classifiers perform above the chance (lower 

bound of confidence interval is greater than 50%). 

 Method 
Overall 

Acc. 
Sens. Spec. PPV NPV CI Parameters 

L
in

ea
r 

M
et

h
o
d

s 

Linear 

Discriminant 

(LDC) 

79% 58% 100% 100% 71% [59%   91%]  

Fisher Linear 

(FLC) 
79% 58% 100% 100% 71% [59%   91%]  

Logistic linear 

classifier (LLC) 
71% 42% 100% 100% 63% [51%   85%]  

Linear 

Perceptron 
75% 58% 92% 87% 69% [55%   88%]  

SVM (Linear) 83% 67% 100% 100% 75% [64%   94%] C=2 

N
o

n
-L

in
ea

r 
M

et
h

o
d

s 

KNN 

(Euclidean) 
96% 92% 100% 100% 92% [78%   100%] K=1 

Naive Bayes 

classifier 
67% 58% 75% 70% 64% [47%   82%]  

quadratic 

classifier  (QDC) 
58% 75% 42% 56% 62% [38%   75%]  

Decision Tree 

(Info. Gain) 
83% 83% 83% 83% 83% [64%   94%] No Pruning 

Decision Tree   

(Fisher 

Criterion) 

79% 83% 75% 77% 82% [59%   91%] No Pruning 

Neural Net. by 

back-

propagation 

88% 83% 92% 91% 85% [68%   96%] 

Layers: 3 

Hidden 

Nodes: 4 

RBF Neural Net. 75% 50% 100% 100% 67% [55%   88%] 

Layers: 3 

Hidden 

Nodes: 18 

SVM (RBF) 88% 100% 75% 80% 100% [68%   96%] 
C= 1.5 

σ=.75 

SVM 

(Polynomial) 
83% 83% 83% 83% 83% [64%   94%] 

C=.12 

P=3 
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Figure 3-5: Fisher’s decision tree using full set of features. This tree includes 8 features in 10 nodes. The 

number on each branch is FNC between the two networks preceding the branch. 

 

Figure 3-6: Information gain decision tree using full set of features. This tree includes 6 features in 6 

nodes. The number on each branch is FNC between the two networks preceding the branch. 
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3.8 Discussion 

We investigated whether resting-state functional connectivity features are able to 

discriminate between schizophrenia patients and healthy control groups. Using group 

ICA, the training dataset was decomposed into independent spatial components and their 

corresponding time courses. Then, FNC was computed between each pair of functional 

networks on the back reconstructed data using the maximum lagged correlation method. 

Several linear and non-linear classifiers were trained using the training data and were 

evaluated using the testing data. One of the common pitfalls in classification of mental 

diseases is using cross-validation to measure the generalized error (Demirci et al., 2008b; 

Wood et al., 2007). Another pitfall is selection of parameter/model in a way that 

maximize the performance in the final classifier in the testing dataset (Demirci et al., 

2008b). To avoid this, we used separate training and testing datasets. Separate ICAs were 

performed on training and testing datasets. Cross validation was used in the training 

phase just for parameter/model selection. ICA successfully extracted similar non-

artifactual networks from both training and testing datasets. This not surprising since it 

has been shown that there are several consistent functional networks across subjects in 

the resting state (Allen et al., 2011; Damoiseaux et al., 2006; Smith et al., 2009b). 

The high accuracy of different classifiers in this study consolidates the 

disconnection hypothesis in schizophrenia patients (Bokde et al., 2006; Friston and Frith, 

1995; Frith et al., 1995; Josin and Liddle, 2001; Mikula and Niebur, 2006; Salvador et al., 

2010). Using functional connectivity methods, researchers have shown disrupted 

connectivity patterns in schizophrenia patients during rest and task in several brain 

regions (Boksman et al., 2005; Honey et al., 2005; Jafri et al., 2008; Liang et al., 2006; 
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Meyer-Lindenberg et al., 2001). In our experiment, connectivity between two DMN 

nodes (IC # 12& 13) was found to be significantly lower in schizophrenia patients 

compared to healthy controls (Figure 3-4). This reduced within DMN connectivity is 

interesting and in line with recent findings (Camchong et al., 2011; Mingoia et al., 2012; 

Orliac et al., 2013). One explanation can be gray matter thinning and greater 

psychopathology in patients (Goghari et al., 2007; Jang et al., 2011). Some recent DTI 

studies have shown anatomical disconnection in several brain regions in temporal and 

frontal lobe in schizophrenia patients (Buchsbaum et al., 2006). Moreover some studies 

have associated anatomical damage and FC disconnection in patients by analyzing DTI 

and functional data together (Zhou et al., 2008). This anatomical-functional association 

may be the reason for successful automatic diagnosis studies using DTI (Ardekani et al.,; 

Caprihan et al., 2008) and fMRI studies (Arribas et al., 2010; Calhoun et al., 2008b; 

Demirci et al., 2008a; Georgopoulos et al., 2007; Michael et al., 2008; Shen et al., 2010). 

While anatomical studies using either DTI or structural MRI are popular in classification 

of schizophrenia patients, functional studies are limited mostly to task-based studies. 

Resting-state studies in case of classification of schizophrenia are rare and have been just 

recently started (Shen et al., 2010; Venkataraman et al., 2012). Most of the connectivity 

fMRI studies (resting-state or task-based) have used FC features which means that the 

features are temporal statistical dependencies among brain regions. Using FC methods 

have some limitation such as the choice of seed-voxel in each region (that may be 

different for patients and controls) and very high number of extracted features. Shen et 

al., extracted average time-courses from 116 brain regions which means 6670 features for 

each subject. High number of features requires additional step such as feature selection 
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and reduction to avoid curse of dimensionality. Moreover, most of the features in that 

fashion are not discriminative. Using functional network connectivity on the other hand, 

doesn’t require seed-voxel selection. Moreover, the number of extracted features is much 

less than FC methods (36 features in our experiment based on 9 functional networks). 

Based on our experiments, it can be inferred that FNC methodology is a concise 

abstraction of the connectivity pattern in the brain that can successfully capture the 

differences between schizophrenia patients from healthy controls.  

We have reported detailed classification results (sensitivity, specificity, positive 

predictive value and negative predictive value) as well as Wilson’s binomial confidence 

interval for each classification method. The classification results in Table 3-2 show that 

non-linear methods outperform linear methods, which was expected. Among the linear 

methods, LDC, Perceptron and linear SVM performed above the chance (lower bound of 

Wilson’s binomial confidence interval is greater than 50%). All linear methods show 

high specificity than sensitivity. Except for quadratic classifier, all non-linear methods, 

performed above the chance. In overall, discriminative approaches outperformed 

generative methods. As a general rule in this study, the less assumptions about the data, 

the better the performance. Simple classifiers such as KNN and decision tree performed 

very well on this specific machine learning problem. Also, non-linear SVM showed 

significant performance with only one misclassified sample. Despite of oversimplified 

assumptions and little training data available in this study, the performance of naïve 

Bayes is marginally above the chance (79.17% overall performance). A poor 

classification was achieved using the quadratic classifier. It can be hypothesized that 

whether the assumptions of this classifier that two classes are normally distributed with 



77 

 

different mean and covariance matrices are not valid or small amount of data is not 

sufficient to accurately estimate the mean and covariance matrix of each classifier. It 

should be noted that conclusions regarding the performance of different classifiers are 

limited to this specific problem using one dataset. Performance of each machine learning 

algorithm depends on the dataset and comparison among different classifiers has been 

heavily investigated in the machine learning literature. Since our main goal is not 

comparing classifiers, we didn’t conduct statistical tests to compare their performances 

and just reported Wilson’s binomial score interval for each classifier     

Table 3-3 shows the result of classification on reduced set of features. Surprisingly, 

the overall error was reduced for all the linear methods except for linear perceptron. The 

main reason for this phenomenon may be the curse of dimensionality (Pearlson, 2009) 

since we have only 32 samples for training and 36 features. Using the reduced feature set 

(27 features), most of the linear methods could estimate more accurate hyperplane. Linear 

SVM performs robustly and equally on both full and reduced set of features. Most non-

linear classifiers still show above the chance performance with lower overall performance 

compared to the full feature set. KNN still classifies with high accuracy. Again, QDC 

performed very poorly. In overall, reduction of features didn’t greatly affect the results 

and very high performances were still achievable. This suggests that medication didn’t 

bias the classification.  

Decision trees don’t transform the data from the original feature space. Moreover, 

they classify the data based on thresholds they put on each of the features. This makes it 

possible for the investigator to observe the decision tree and analyze it. One can see how 

features are distributed in different levels of the decision tree and what thresholds on 
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which features discriminate the classes. This property is especially of interest in the 

medical diagnosis field since decision tree provides classification structure which 

includes thresholds on the symptoms. This discriminative information of each feature is 

very valuable in medical problems.  

In our problem the symptoms are FNC features. One can observe that how each 

feature discriminate the two groups. This information may reflect FNC abnormalities in 

schizophrenia patients. First of all decision tree introduces the important features which 

are 8 and 6 in Figure 3-5 and Figure 3-6 respectively. Top node features are among the 

most important features which are among the feature identified by the two-sample t-test. 

Also, the decision tree can identify the type abnormality which is discriminative between 

the two groups. For example, it is seen from Figure 3-5 that subjects with temporal-motor 

FNC lower than 0.34 and temporal-visual higher than 0.25 are patients. Or from Figure 

3-6 it is evident that all subjects with temporal-visual FNC lower than 0.57 are healthy 

controls. In other words, all patients have higher temporal-visual FNC (as do some of the 

healthy controls).  

Prior studies mentioned in the introduction section reported accuracies ranging 

from 79% to 98% as described in 3.3 and 3.4. Several limitations and considerations 

make it very hard to compare different approaches of automatic classification of mental 

disorders. For example, study size, MRI scanner parameters, nature of extracted features, 

type of classifier, medication and disease severity in the patient group varies among the 

different studies. In the absence of standard training and testing datasets, comparison of 

different approaches based only on the classification rate is ambiguous.  
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One of the issues in the current study was that the patients were slightly older than 

healthy controls. We looked at the misclassified subjects in each of the classification 

experiments and couldn’t find any systematic age pattern. Note also, it has been shown 

that schizophrenia patients have stronger FNC (Jafri et al., 2008) whereas subjects that 

are older have reduced FNC (Allen et al, 2010). So, this potential confound would likely 

have a cancelling effect making the diagnosis even harder. Regardless, based on the 

above observation we do not believe age is a factor in our classification results. To avoid 

any bias, we also repeated the classification when age was regressed out from the FNC 

features and exactly same performance was achieved. 

In this study, we separated the data into training and testing dataset. One may 

wonder how our method works in a clinical situation when we have only one new 

subject. We assume that we have trained our model using enough training data. In this 

situation here are two options: 1) we can use the group ICA components of the training 

data as regressors and calculate the subject specific time-courses. 2) For a more accurate 

estimation another ICA can be done on an extended dataset containing training data and 

the new subject data. Note that we won’t use the information of this new ICA analysis for 

training the classifiers/models but just to extract IC networks/time-series for the new test 

subject. This approach is more accurate but slower especially in the case of big training 

data. Since the main goal of this study is to investigate the feasibility of using FNC 

features, we didn’t investigate methods.  

It was shown that the resting state FNC features can be successfully exploited in 

order to automatically discriminate schizophrenia patients. To the best of our knowledge 

this the first study using resting-state FNC features to classify schizophrenia patients. 
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Acquiring scans from schizophrenia patients is more feasible in the resting state due to 

the short acquisition time and avoidance of cognitive task-related impairment confounds. 

Moreover, the data is less prone to multi-site variability (Pearlson and Calhoun, 2009). It 

was demonstrated that just 5min resting state data can be used to classify patients reliably 

and accurately using FNC features and simple classifiers such as KNN. Moreover, 

performance of several linear and non-linear methods were evaluated and compared. 
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Chapter 4:  Impact of Autocorrelation of Functional connectivity 
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4.1 Introduction and Motivation 

As discussed in section 1.11, less attention has been given to the statistical 

assumptions underlying functional connectivity. As discussed in section 1.5 and 1.6, the 

usual way for assessing functional connectivity or functional network connectivity is by 

calculating the Pearson correlation coefficient between the time-series of two brain 

regions or networks. From statistical point of view, those time-series should meet certain 

conditions such as being stationary and white in order to result in valid correlation 

coefficient. However, it is well-know that fMRI time-series are neither stationary nor 

white. The non-stationarity is attributed to several factors such as scanner drift. The 

intrinsic autocorrelation in fMRI time-series is assumed to originate from physical and 

physiological noise (Aguirre et al., 1997; Bullmore et al., 2001; Friston et al., 2000; 

Lenoski et al., 2008; Lund et al., 2006; Purdon and Weisskoff, 1998; Rajapakse et al., 

1998; Zarahn et al., 1997). 

In recent years, there has been a debate in the neuroimaging community regarding 

the possible impact of intrinsic autocorrelation in fMRI time-courses on functional 

connectivity analysis outcome. Some researchers have even questioned the validity of 

previous connectivity studies by arguing that not correcting for autocorrelation in fMRI 

time-series may result in spurious high correlation values (Christova et al., 2011; 

Georgopoulos and Mahan, 2013). These subject-level studies have confirmed that fMRI 

time-series are autocorrelated through the use of the Durbin-Watson statistic and have 

suggested to reduce the autocorrelation by using an autoregressive integrated moving 

average (ARIMA) model which is called prewhitening (Granger and Morris, 1976; 

Haugh, 1976). 
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It should be noted that most of the recent discussions (Christova et al., 2011; 

Georgopoulos and Mahan, 2013) are based on previous works in economics and 

econometrics most notably those initiated by Granger. In his seminal paper, "Spurious 

regression in economics", published in 1974, he strongly warned economists regarding 

the side-effects of ignoring autocorrelated residuals in a regression model (Granger and 

Newbold, 1974). While these conclusions are fully valid when dealing with just two 

autocorrelated time-series, to the best of our knowledge, no one has investigated the 

impact of autocorrelation on functional connectivity based on a careful consideration of 

the specific differences that reign between the two fields. 

In neuroimaging, inference is largely related to hypothesis testing and not 

necessarily focused on the point estimation of the actual correlation value. Most 

connectivity analyses are performed at the group level. Answers to questions like "Is the 

connectivity between two brain regions/networks significant?" or "Is there any significant 

difference in connectivity between two groups/tasks?" are typically of greater interest 

than estimating the correlation coefficients themselves. While most of economics 

discussion on this issue consider point estimation, it is not clear to what extent 

autocorrelation affects group level statistics in functional connectivity studies. Another 

surprising fact is the lack of explicit calculation of the correlation coefficient of two 

autocorrelated time-series in the literature, at least to the best of our knowledge.  

The goal of this study is to investigate the impact of autocorrelation on functional 

connectivity, defined in this study as the Pearson correlation coefficient between time-

series of voxels, regions or networks. To better understand the impact of autocorrelation 

on Pearson correlation coefficient, first, we theoretically derive an approximation of the 
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bias and variance of correlation coefficient estimator in the presence of autocorrelation in 

a very simple case with the intent to better understand the process (this is distinct from 

fMRI time-series simulation, which is outside of the scope of this manuscript). These 

theoretical results don’t necessarily generalize to more complicated models due to the 

simplifying assumptions of this study. This is followed by simulations in order to validate 

the theoretical results. Finally, the impact of autocorrelation on real resting-state fMRI 

time-series is assessed. We also discuss proper preprocessing for connectivity analysis 

based on these observations. We focus on the resting-state FC given the growing interest 

in this condition and to avoid the confound that autocorrelation in task-based fMRI 

heavily depends on the task design. 

4.2 Theoretical Background 

4.2.1 Pearson Correlation Coefficient 

We start by taking a close look at the Pearson correlation coefficient and some of 

its properties. Let   and   denote two random processes (time series). The Pearson 

correlation coefficient is defined as the covariance between two random processes 

divided by the product of their standard deviations: 

     
        

√            
 (4-1) 

     measures the normalized linear dependency between   and  . In practice, the 

correlation coefficient is estimated from a limited sample from random variables   and 

 : 
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where   is the number of samples and  ̅ and  ̅ are the empirical mean values of   and  . 

Fisher (Fisher, 1914) derived the distribution of the Pearson correlation coefficient, 

        assuming a bivariate normal distribution for   and  : 
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The integral in (4-3) can be written in terms of a hypergeometric and gamma 

functions: 
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where              is Gaussian hypergeometric function and     is the gamma 

function. The first two moments of      are: 
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It is evident from (4-5) that      is a biased estimator of     . If   and   are 

uncorrelated (       , then the distribution      reduces to: 



86 

 

 (    )  
       

         

 (
 
  

   
 )

 (4-7) 

where   is the beta distribution. The mean and variance of      in this special case are  

0 and     respectively. The correlation coefficient      is a consistent estimator for     . 

Its variance is inversely proportional to the sample size,  , and its asymptotic bias is zero 

as can be read from (4-6). 

4.3 Pearson Correlation Coefficient of Two Autocorrelated Time-Series 

The most well-known method to model autocorrelation in a time-series is the Box-

Jenkins methodology (Box and Jenkins, 1970). In this method, the time-series are 

observed as outputs of autoregressive integrated moving average (ARIMA) processes. 

Since calculating the correlation coefficient between two time-series can quickly become 

highly involved in high ARIMA model orders, we try to assess the impact of 

autocorrelation in a simple case.  

Let   and   denote two white bivariate normally distributed time-series. We 

assume that the Pearson correlation coefficient between   and  ,     , is of interest but 

we only observe   and   that are autocorrelated versions of   and   respectively. In other 

words,   and   are latent random variables only observable through autocorrelated time-

series   and  . We can assume that the time-series are in stationary state. Also, we 

assume that time-series are de-meaned and de-trended without loss of generality, since 

the time-series can always be de-meaned and de-trended empirically. Moreover, this is 

almost always part of the preprocessing of functional connectivity analysis. We denote 

the sample correlation coefficient between   and   and between   and   with      and 

     respectively. Sample variances of  ,  ,   and   are denoted by   
 ,   

 ,   
  and   

 , 
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respectively. The variables      and      denote sample covariance between   &   and   

&  , respectively. We consider simple case of autoregressive process of model order one. 

4.3.1 Modeling the Time-Series with Autoregressive Process of Model Order One: 

AR(1) 

An AR(1) process can be written in its recursive form as: 

 

            (4-8) 

 

            (4-9) 

where the subscript   denotes the time index in the time-series and   and   are AR(1) 

coefficients of absolute value less than 1. This condition is necessary for    and    to be 

stationary. First, we calculate the variance of   and  . Since   and   are demeaned, the 

first moments of both series are zero. Also, without loss of generality—and for sake of 

simplicity—we may assume that initial point in both series is zero. The expected value of 

the sample variance can be derived and expressed as follows: 
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The expected value of the sample covariance between   and   can be calculated 

in the same fashion: 
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In order to find the expected value of      , we need to calculate: 

 [    ]    [
    

√      
] 

(4-13) 

which is theoretically complicated. In order to be able to simplify (4-13), we propose 

first-order multivariate Taylor series expansion approximation of the mean which is 

commonly used in many scientific and engineering applications (Ang and Tang, 1975; 

Hahn and Shapiro, 1967):  

 [    ]  
 [    ]

√ [   ] [   ]
 (4-14) 

Eq. (4-14) enables us to simplify Eq. (4-13) by replacing corresponding terms in Eq. 

(4-13) with (4-12), (4-13) and (4-14). So, the approximate expected value of sample 

correlation between   and   can be calculated as follows: 
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If we use the proposed approximation in Eq. (4-14) in reverse direction the above 

equation can be simplified as: 
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The first result is that the expected value of correlation coefficient between   and   is 

approximately a linear function of the expected value of correlation coefficient between 

  and  . Asymptotically (as    ),  (4-16) reduces to: 

 [    ]  
√            

      
 [    ] 

(4-17) 

(4-17) tells us that the asymptotic expected value of approximate correlation 

coefficient between   and   is always smaller than or equal to the expected value of 

the correlation coefficient between   and   since the numerator is always equal or 

smaller than the denominator. Expected values of      and      are approximately equal 

only if    . As the distance between   and   increases, expected value of      shrinks 

towards zero. 

The variance of the sample correlation coefficient estimator when the time-series 

follow an AR(1) model and with true correlation,      equal to zero was approximated 

about 80 years ago (Bartlett, 1935): 
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In the above equation     is the variance of the estimator when the true correlation 

between   and   is zero. We propose to generalize (4-18) to the case of non-zero      by 

replacing     in (4-18) with the first term in (4-6): 

          
       

   

 

    

    
 (4-19) 

The variance of the estimator,     , approximately decreases as the absolute value of the 

true correlation,      increases. The most important observation is that this variance 

increases as the product of autoregressive parameters,   , increases. In other words, 
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autocorrelation reduces the effective degrees of freedom for variance of the sample 

Pearson correlation coefficient which is a well-known phenomenon (Davey et al., 2013; 

Friston et al., 1994; Kruggel et al., 2002). 

4.3.2 Autoregressive Process in the Frequency Domain 

It is useful to look at the autoregressive process in the frequency domain. The 

autoregressive process can be modeled as a linear time-invariant (LTI) system with input 

of   , impulse response of    and output of   . Note that all signals are discrete-time. 

The relationship between    and    can also be expressed in frequency domain as 

illustrated in Figure 4-1: 

 

Figure 4-1: Autoregressive process modeled as a linear time-invariant system with the input of a white 

time-series (  ) and output of a autocorrelated time-series (  ). 

We can derive the frequency response of the above system,         for the 

AR(1) model by taking the Fourier transform of Eq. (4-8): 

  

 

 (   )         (   )          

⇒        
 (   )

      
 

 

       
 

(4-20) 
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This is a single pole system with | |    to ensure causality and stability. The magnitude 

of frequency response function can be easily derived: 

| (   )|   
 

√               
 (4-21) 

For positive and negative values for  ,        is a lowpass and highpass filter 

respectively. The magnitude of the frequency response function is plotted with different 

  values in Figure 4-2: 

 

Figure 4-2: AR(1) as a frequency filter: Magnitude of the frequency response function for AR(1) model for 

different   values (Eq. (4-21)). Note that   corresponds to the highest frequency possible in the signal. 

Positive and negative values of   results in low and high pass filters respectively. 

Note that in Figure 4-2,   is the highest frequency in the signal. It is evident that 

as | | increases the filter becomes sharper. We expect fMRI time-series to exhibit 

positive autocorrelation which corresponds to a low-pass filter. In other words, in a 
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AR(1) process with positive  , high-frequencies are attenuated and low frequencies are 

amplified. The cut-off frequency for this filter depends on the value of  . The purpose of 

autocorrelation correction is to cancel out the effect of this low-pass filter by applying a 

filter with inverse frequency response. Note in general case of AR(k) process, depending 

on the location of the poles, filter can be lowpass, highpass, bandpass or bandstop.    

4.4 Methods 

4.4.1 Simulated Data 

The statistical software R, was used to generate simulated datasets under different 

scenarios. First, two spectrally white time-series (  and  ) were generated from a 

bivariate normal distribution with different lengths,                  and correlation, 

  from -0.9 to +0.9 in 0.1 increments. Then,   and   were generated from   and   using 

Eq. (4-8) and Eq. (4-9) with different   and   values. Each simulation scenario was 

repeated 10,000 times. The mean and standard deviation of      and     were calculated 

from the 10,000 collected samples. These values were compared to those derived from 

theoretical estimates as detailed in the previous section. 

4.4.2 Real fMRI Data 

For this study we used the FBRIN Data set (See section 1.14.2 for more 

information). 

4.4.3 Group Independent Component Analysis 

All of the preprocessed functional data from both control and patient groups were 

analyzed using spatial group independent component analysis (GICA) framework as 

implemented in the GIFT software (Calhoun and Adali, 2012; Calhoun et al., 2001a; 
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Erhardt et al., 2011). Spatial ICA decomposes the subject data into linear mixtures of 

spatially independent components that exhibit a unique time course profile. A subject-

specific data reduction step was first used to reduce 162 time point data into 100 

orthogonal directions of maximal variability using principal component analysis. Then 

subject reduced data were concatenated across time and a group data PCA step reduced 

this matrix further into 100 components along directions of maximal group variability. 

One hundred independent components were obtained from the group PCA reduced 

matrix using the infomax algorithm (Bell and Sejnowski, 1995). To ensure stability of 

estimation, we repeated the ICA algorithm 20 times and using ICASSO
1
 aggregate spatial 

maps were estimated as the modes of component clusters. Subject specific spatial maps 

(SMs) and time courses (TCs) were obtained using the spatio-temporal regression back 

reconstruction approach (Calhoun et al., 2001a; Erhardt et al., 2011) implemented in 

GIFT software.  

4.4.4 Post ICA Processing 

The subject specific TCs corresponding to the ICNs selected were detrended (with 

polynomial of order two), orthogonalized with respect to estimated subject motion 

parameters, and then despiked. The despiking procedure involved detecting spikes as 

determined by AFNI’s 3dDespike algorithm and replacing spikes by values obtained 

from third order spline fit to neighboring clean portions of the data. The despiking 

process reduces the impact/bias of outliers on subsequent functional network connectivity 

(FNC) measures (Allen et al., 2012). 

                                                 
1
 http://www.cis.hut.fi/projects/ica/icasso 
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It is important to note that raw fMRI time-series are not stationary with respect to 

the mean due to many factors such as the scanner drift. This undesired property violates 

an important assumption in many statistical procedures. The common practice in 

analyzing fMRI time-series is to detrend them (e.g. by polynomial of order 2). This 

preprocessing step makes the stationary assumption much more realistic. 

4.4.5 Functional Network Connectivity 

FNC was computed as described in section 2.2.4. We use the term “uncorrected 

FC/FNC” to describe correlations between the original time series, whereas “correct 

FC/FNC” describes correlations between the autocorrelation corrected time-series 

hereafter. 

4.4.6 Autocorrelation Correction 

AR models with orders ranging from 1 to 15 were fit to each ICA time-series for 

each subject. The best model order was selected based on the Akaike information 

criterion (AIC) (Akaike, 1974). The residuals of the best model were used as the 

corrected, white time-series. The Durbin-Watson (DW) statistic is a common statistic to 

measure autocorrelation in a time-series (Durbin and Watson, 1950, 1951). A DW 

statistic of 2 signifies no autocorrelation and DW values less or greater than 2 signify 

positive and negative autocorrelation structure, respectively. The DW statistics for a 

time-series (  ) with   time points can be calculated as follows: 

 

  
∑          

  
   

∑   
  

   

 (4-22) 
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4.5 Results 

4.5.1 Simulated Data 

The theoretical results in the previous sections established the properties of the 

sample correlation coefficient between two autocorrelated time-series (    ). To verify the 

validity of the theoretical results, time-series  ,  ,   and   were simulated with different 

 ,  ,   and      values (see Section 4.3.1 for more details). The empirical bias of      

and      was computed by subtracting      from mean of      and      averaged over 

10,000 runs respectively. The empirical standard deviation of observed      and      

averaged over 10,000 runs is also reported. In Figure 4-3 summary of the simulation and 

theoretical results for          is depicted. The results for other correlation values are 

omitted from the main text since results followed Eq. (4-16) and Eq. (4-19), similar to the 

case of          , though  results for           and           are provided in 

the supplementary material. The bias for negative values of      was of the same size as 

for the positive values but in the opposite direction (bias was positive); variance for 

negative and positive      were the same. It is evident from Figure 4-3 that our 

theoretical approximations follow the empirical results closely. In only extreme 

autocorrelation coefficient values (e.g.        ) our theoretical approximation 

overestimate the empirical variance.  
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Figure 4-3: Empirical bias and standard deviation of estimation of true           based on      and 

     for different combination of AR(1) coefficients (  and   in Eq. (4-8) and (4-9) for time-series   and   

and different sample sizes (length of time-series   and  ) of (64, 256, 1024) obtained from 10,000 

simulations. The empirical results are compared with theoretical bias and standard deviation of      and 

     derived in Eq. (4-5) & (4-6) and Eq. (4-16) & (4-19) respectively. The whiskers show standard error of 

the estimation of the mean (square root of variance of the estimator). It is evident that theoretical and 

empirical results agree with each other. For equal coefficients, estimation of      based on      is unbiased. 

For different AR(1) coefficients, estimation is biased. The variance of the estimator increases as the product 

of AR(1) coefficients if    and    increases. 

To better portray the effect of autocorrelation on correlation coefficients in the 

simulated data, Figure 4-4 displays histograms of       and      as well as scatter plot of 

     against      for three simulation scenarios, all with a sample size of 256. 
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Figure 4-4: Top row: Histogram of corrected and uncorrected empirical Pearson cross correlation 

coefficients (     and     ) obtained from 10,000 simulations based on (4-8) and (4-9) with sample size of 

256 and true correlation of +0.5 for 3 different combination of   and   ((4-8) & (4-9)). Bottom Row: 

Scatter plot of uncorrected correlation coefficients,     , against corrected correlation coefficients     . 

Correlation coefficient between      and      is provided in the bottom row scatter plots ( ). 

4.5.2 Real fMRI Data 

After standard preprocessing, the functional imaging data from all subjects was 

decomposed into a set of 100 statistically independent spatial regions with common time 

course profile using group independent component analysis using GIFT toolbox 

(http://mialab.mrn.org/software/gift). Subject-specific spatial maps and time courses were 

obtained using spatio-temporal regression (Erhardt et al., 2011). Of these 100 

components, 47 components were identified as resting-state networks using the 

http://mialab.mrn.org/software/gift
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procedures described in our earlier work (Allen et al., 2012; Allen et al., 2011). For each 

subject, we computed the functional network connectivity, referred to as FNC, by 

computing pairwise Pearson correlation using the whole processed ICA time-courses 

resulting in 1081 connectivity values. ICA spatial maps were broadly categorized based 

on anatomical proximity and prior knowledge of their function into the following sub-

categories: subcortical (SC), auditory (AUD), visual (VIS), somatomotor (SM), a 

heterogeneous set of regions involved in various attentional and cognitive control 

processes (CC), default-mode (DMN), and cerebellar (CB) networks. These resting-state 

networks are illustrated in Figure 4-5: 

 

Figure 4-5: Spatial maps of selected 47 independent components grouped based on functionality into 7 

categories: subcortical (5 components), auditory (2 components), visual (11 components), senorimotor (6 

components), attention/cognitive control (13 components), default-mode network (8 components) and 

cerebellar (2 components). 

To assess the impact of autocorrelation on FC, ICA-time courses were corrected 

using autoregressive model. Best AR model order was selected based on AIC. The 

Durbin-Watson (DW) statistic was used to measure autocorrelation in the time-series 

before and after autocorrelation correction. Histograms of the DW statistics of ICA time-

series for both healthy and patient groups before and after autocorrelation correction are 

plotted in Figure 4-6. 
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Figure 4-6: Durbin-Watson statistics histogram for A: Uncorrected IC time-series for healthy controls B: 

Uncorrected IC time-series for schizophrenia patients C: Corrected IC time-series for healthy controls D: 

Corrected IC time-series for schizophrenia patients. Autocorrelation correction could successfully 

concentrate DW statistics around 2 which is a sign for absence of autocorrelation. 

We also performed a one-sample t-test on Fisher-Z transformed FNC values. The 

mean and standard deviation of FNC values along with corresponding p-values before 

and after autocorrelation correction for both healthy controls and schizophrenia patients 

are reported in Figure 4-7A,B and Figure 4-8A,B respectively. It is evident that both 

mean and standard deviation are inflated before autocorrelation correction. The bias in 
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the mean and standard deviation of FNC values cancel each other significantly in the t-

tests as illustrated in Figure 4-7C and Figure 4-8C making the hypothesis testing results 

very similar before and after correction. 

One of the common purposes of connectivity analysis is to compare groups (e.g. 

healthy controls and patients). To investigate the effect of autocorrelation on such 

problems, FNC was compared between healthy controls and schizophrenia patients using 

two-sample t-test before and after autocorrelation correction. The resulting p-values 

along with the difference in FNC before and after autocorrelation correction are 

illustrated in Figure 4-9. 

To better observe the relationship between FNC values before and after 

autocorrelation correction, histogram of FNC values (all pairs for all subjects pooled) 

before and after autocorrelation correction are plotted in Figure 4-10(A). Scatter plots of 

uncorrected FNC values (pooled) against corrected FNC values are illustrated in Figure 

4-10(B). We also plotted –                                    (Figure 4-7C, Figure 

4-8C) before and after correction for both groups in Figure 4-10(C) which shows a strong 

linear relationship.  

We also repeated the autocorrelation correction with just an AR(1) model to 

determine the range of AR(1) coefficients for real fMRI data and compare it to the 

theoretical and simulation results. The model worked reasonably well based on DW 

statistics. The histogram of AR(1) coefficients for healthy controls and schizophrenia 

patients are illustrated in Figure 4-11. 
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Figure 4-7: A,B: Mean and standard deviation of FNC grouped by functionality of brain networks (Figure 

2) for healthy controls before and after autocorrelation correction. C: -log(p-value)×sign of t-statics after 

subject-wise 1-sample t-test on each FNC pair before and after autocorrelation correction. Although the 

FNC values alter noticeably before and after autocorrelation correction, p-values remain very similar. 
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Figure 4-8: A,B: Mean and standard deviation of FNC grouped by functionality of brain networks (Figure 

2) for schizophrenia patients before and after autocorrelation correction. C: -log(p-value)×sign of t-statics 

after subject-wise 1-sample t-test on each FNC pair before and after autocorrelation correction. Although 

the FNC values alter noticeably before and after autocorrelation correction, p-values remain very similar. 
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Figure 4-9: A: Difference in mean of FNC between healthy controls and schizophrenia patients (healthy-

patients) grouped by functionality of brain networks (Figure 1) before and after autocorrelation correction. 

B: -log(p-value)×sign of t-statics after subject-wise 2-sample t-test between controls and patients before 

and after autocorrelation correction. Although the differences in FNC values between healthy controls and 

patients alter noticeably before and after autocorrelation correction, p-values of 2-sample t-test remain very 

similar. 
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Figure 4-10: A: Histogram of corrected and uncorrected FNC values (pooled all subjects and pairs) for 

healthy controls and schizophrenia patients. B: Scatter plot of uncorrected FNC values against corrected 

FNC values for healthy controls and schizophrenia patients. Correlation coefficient between corrected and 

uncorrected FNC values is high for both groups (       ). Compare these results with simulation 

results in Figure 4-4 (especially for        ). C: Scatter plot of 

–                                  before and after autocorrelation correction for healthy controls 

and schizophrenia patients (these are scatter plots of color-coded values in  Figure 4-7C and Figure 4-8C). 
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Figure 4-11: Histogram of AR coefficient for pooled IC time-series for all subject for healthy controls and 

schizophrenia patients if all time-series are corrected with AR(1). 

 

4.6 Discussion 

In this work, we comprehensively investigated the impact of autocorrelation on 

functional connectivity with theory, simulations and real fMRI data. We derived the 

approximate bias and variance of Pearson correlation coefficient for two autocorrelated 

time-series ( , ) with AR(1) structure as an estimator of the true correlation coefficient 

between white time-series component of the AR(1) models ( , ). Based on Eq. (4-16), 

approximately the expected value between two autocorrelated time-series is equal or less 

than the expected value between the white latent time-series in the AR(1) model. If the 

AR(1) coefficients for both time-series are equal, the estimation is unbiased. The 

estimation becomes biased as the distance between AR coefficients of the two time-series 

increases. Based on Eq. (4-19), the variance of this estimator increases as the product of 

the AR(1) coefficient of the two time-series increases.  

The autoregressive process has been investigated heavily in signal processing 

domain from frequency point of view. The AR(1) process has been modeled as a linear 
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time-invariant system with a white time-series input and autocorrelated time-series as the 

output (Figure 4-1). It was seen that feeding an AR(1) model (positive coefficient) with a 

white signal results in a lowpassed output signal (Figure 4-2). The process of 

autocorrelation correction (whitening) can be viewed as applying frequency response of 

the inverse system to the observed signal to even out the frequency spectrum.  

Figure 4-3 shows how bias and variance of estimation of      changes based on 

theoretical and empirical results of      and      with respect to AR(1) coefficients. It is 

evident that empirical results agree with and validate the theoretical results at least in the 

context of this study. It is also clear that the bias in estimation of       based on      is a 

function of distance between AR(1) coefficients of   and   while the variance is a 

function of the product of AR(1) coefficients. To better investigate the effect of 

autocorrelation on Pearson correlation coefficient, histogram of       and      as well as 

scatter plot of      against      for 3 different AR(1) coefficient pairs were illustrated in 

Figure 4-4. The bias and variance effect of autocorrelation on estimating      based on 

     is obvious in these three simulations.  

For real fMRI data, the FC values before and after autocorrelation correction show 

noticeable difference in both healthy controls and patients (Figure 4-7A, Figure 4-8A). 

We see the same pattern in standard deviation (Figure 4-7B, Figure 4-8B). The direction 

of change for both mean and standard deviation is the same. As a result, the p-values 

resulting from one-sample t-tests on each FC value across subjects are very similar before 

and after autocorrelation correction (Figure 4-7C, Figure 4-8C). In other words, bias in 

the mean is cancelled out significantly by bias in the standard deviation in the t-tests. The 

inflation in standard deviation of the correlation values is in line with theoretical results 
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(Eq. (4-19)) and simulation results (Figure 4-3). This is more clearly depicted in Figure 

7C. This suggests that inference related to the significance of FC is not strongly affected 

by autocorrelation correction. This interesting result argues against the recent debates 

about spuriousness of functional connectivity based on uncorrected correlation 

coefficient (Christova et al., 2011; Georgopoulos and Mahan, 2013). While the argument 

regarding the correlation values themselves remain valid, it appears that hypothesis 

testing remains relatively unbiased in the presence of autocorrelation. This observation is 

also present in differences in FC between healthy controls and schizophrenia patients 

(Figure 4-9). As illustrated in Figure 4-10, corrected and uncorrected functional network 

connectivity values are highly correlated with each other and exhibit a linear relationship. 

The scatter plots of p-values before and after autocorrelation correction show even 

stronger linear relationship as illustrated in Figure 4-10C. The uncorrected FNC values 

show larger variance compared to the corrected values, as expected from Eq. (4-19).  

In order to compare the real fMRI data with the simulation results, we also 

corrected for autocorrelation using AR(1) model. Based on DW statistics, AR(1) model 

was able to remove the autocorrelation reasonably well. The histogram of AR(1) model 

coefficients as illustrated in Figure 4-11 shows that the fMRI time-series in this study 

have AR(1) coefficients less than +0.8 and mostly in the range of [+0.1 +0.7]. Thus we 

don’t expect to see the extreme cases in real fMRI that we observed in the simulation 

results (Figure 4-3). 

It should be noted that in cases where the correlation coefficient itself is of interest, 

autocorrelation correction is more critical. However, it is always recommended to check 

for autocorrelation structure in fMRI time-series. Although the statistical analysis in this 
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study was conducted using R software, we provide MATLAB code for autocorrelation 

correction as it is the main technical computing software used by neuroimaging 

community
1
. There are several important issues regarding autocorrelation correction that 

we discuss below. 

4.6.1 Autocorrelation Correction and Frequency Filtering 

Temporal filtering is one the common preprocessing steps in functional 

connectivity studies. The reason for temporal filtering is that it is believed that signals of 

interest in connectivity studies reside in a narrow frequency band mainly from 0.01 Hz to 

0.08~0.15 Hz (Auer, 2008; Biswal et al., 1995a; Cordes et al., 2001b; Salvador et al., 

2005; Zhong et al., 2009) while scanner drift and physiological noise are in lower and 

higher frequency, range respectively (Bianciardi et al., 2009; Lowe et al., 1998; Thomas 

et al., 2002). Although some functional connectivity studies have shown that temporal 

filtering does not significantly impact the results in group studies (Arbabshirani et al., 

2013a), it is a common practice. It should be noted that modifying frequency spectrum of 

a signal with filtering changes the autocorrelation profile of the signal. Specifically, 

frequency filtering of a white signal induces autocorrelation. Thus, if fMRI time-series 

are corrected for their intrinsic autocorrelation with methods like ARIMA, frequency 

filtering can introduce a more complicated autocorrelation problem (Davey et al., 2013). 

This is demonstrated in Figure 4-12. 

                                                 
1
 http://mialab.mrn.org/software/autox_correction/index.html 
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Figure 4-12: Autocorrelation function with 95% confidence interval lines and amplitude of frequency 

spectra for two fMRI time-series,     , y(t) before autocorrelation correction (left column), after 

autocorrelation correction with AR(4) model (middle column) and after frequency filtering with a order 6 

Butterworth passband filter with cutoff frequencies of 0.01 Hz and 0.10 Hz (right column). While 

autocorrelation correction improves the autocorrelation function (all values are inside 95% confidence 

interval), frequency filtering introduce back the autocorrelation in a more severe and complicated manner. 
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In this example, two real fMRI time-series are shown along with their amplitude 

frequency spectra and autocorrelation functions. Some values of the autocorrelation 

function are outside the 95% confidence interval indicating significant autocorrelation. 

Also, the frequency spectra are not flat. After applying AR(4) model to correct both time-

series, the frequency spectra are closer to flat and autocorrelation functions is bounded 

inside the 95% confidence interval. Applying a bandpass frequency filter (0.01-0.10 Hz), 

reintroduces autocorrelation to an even more severe degree than compared to the intrinsic 

fMRI autocorrelation. This problem has been studied carefully and a correction on the 

correlation values between filtered time-series has been proposed based on degrees of 

freedom correction which is related to filter parameters (Davey et al., 2013). The 

assumption in this method is that two time-series are white before filtering. A reasonable 

preprocessing for connectivity studies is to correct for autocorrelation, perform frequency 

filtering, and then correct the correlation values based on the filter parameters.  

4.6.2 Model Order for Autocorrelation Correction 

One of the main issues in autocorrelation correction is the model order selection 

problem. As briefly discussed in the introduction, autocorrelation in fMRI time-series 

originates from physical and physiological noise. One of the main sources of 

autocorrelation is the hemodynamic response function (Friston et al., 1995; Rajapakse et 

al., 1998). FMRI time-series can be seen as samples from the hemodynamic response 

function (HRF) with sampling rate of      where    is the repetition time of the 

scanner. Since the HRF is a smooth curve, samples exhibit autocorrelation. A faster    

results in a higher sample rate but come with higher autocorrelation, thus model order 

should be directly related to   . Assume that there is a single event fMRI time-series. In 
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this case the resulting time-series is the sampled HRF. We sampled the HRF with 

different   s and corrected for autocorrelation by finding the best AR model order based 

on AIC. Figure 4-13A show a canonical HRF function. Figure 4-13B plots TR against the 

estimated model order. The best AR model order grows exponentially as    decreases. 

This example is for a single event while typical task-based fMRI consists of series of 

events or blocks which can result in different autocorrelation structure. However, Figure 

4-13B gives a rough idea of the model order required to correct for autocorrelation, and 

shows that autocorrelation correction becomes more crucial as the experimental    

decreases. 

 

Figure 4-13: A: Canonical HRF function B: Best model order based on AIC for correcting autocorrelation 

of samples taken with different    (repetition time) from the HRF function. Best model order increases 

exponentially as    decreases.  

 

4.6.3 Impact of Autocorrelation on FC: Hyperconnectivity, Hypoconnectivity or 

No Impact? 

In regression analysis it has been shown that estimation of model parameters ( ) 

in the presence of serial correlation in the residuals is still unbiased but not efficient 
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(Granger and Morris, 1976; Monti, 2011). It is important not to extend this result to the 

impact of autocorrelation on functional connectivity. Autocorrelation can bias the 

estimation of Pearson correlation coefficient based on our theoretical, simulated and real 

fMRI results. Eq. (4-16) as demonstrated by our empirical results in Figure 4-3, shows 

that if AR(1) coefficient of the two time-series differ, then the Pearson correlation 

coefficient is underestimated. If the coefficients are the same, then the estimation is 

unbiased. These results are plausible since we consider AR(1) as a filter (Figure 4-1 and 

Figure 4-2), then applying the same filter to two white time-series should not change their 

correlation coefficient but applying different filters can reduce it. However, our real fMRI 

results in Figure 4-7 and Figure 4-8are consistent with other studies (Christova et al., 

2011; Davey et al., 2013), suggest hyperconnectivity for uncorrected time-series, 

seemingly contradicting our theoretical and simulation results.  

The approximate theoretical results are just for AR(1) process while the real fMRI 

data was corrected with AR of order 1 to 15 based on AIC criterion. Also, it is assumed 

that the two time-series are uniformly correlated with respect to frequency. In other 

words, correlation is equally present in all frequency bands between    and  . This 

assumption is not generally true for real fMRI time-series. fMRI time-series consists of a 

low frequency component that is the major source of correlation which is corrupted with 

noise that is assumed to be more in higher frequencies (Cordes et al., 2001b). Thus, 

applying a low pass filter can remove the noise (or part of the noise) and enhance the 

correlation between the two time-series. To better illustrate this, we simulated a simple 

case where two correlated low frequency time-series (Figure 11A) were generated and 



113 

 

then high frequency noise was added (Figure 11B). Finally the noisy signals were passed 

through an AR(1) process (Figure 11C).  

 

Figure 4-14: A: Two correlated low frequency time-series (200 time-points) B: After adding high 

frequency noise to the original time-series in part A (        ) C: Time-series in part B passed 

through AR(1) process with coefficients of +0.6. Autocorrelation acts as a low pass filter and enhances the 

correlation between two noisy signals in part B close to the original level in part A.  

It is evident that autocorrelation (Figure 4-14C) behaves as a low pass filter as 

expected (refer to supplementary material for more detailed discussion) and removes part 

of the high frequency noise and therefore enhanced the correlation compared to the noisy 

situation (Figure 4-14B). Note that this increased correlation is very close to the original 

correlation between the two time-series before adding noise (Figure 4-14A). So, 

autocorrelation process is capable of removing noise (depending on the model order, 

coefficients and frequency spectra of the signals) and increasing correlation. We believe 

that this is the primary reason for hyperconnectivity in uncorrected functional 



114 

 

connectivity studies. Despite the hyperconnectivity, the result of hypothesis tests such as 

the t-test remain similar for corrected and uncorrected FC values since overestimation of 

the mean is significantly compensated with the bias in standard error of the mean (Figure 

4-7, Figure 4-8 and Figure 4-10). This simple example shows that autocorrelation 

correction may result in unwanted amplification of high frequency bands that is assumed 

to be dominated by noise in fMRI time-series. 

4.6.4 Limitations and Future Studies 

The current study compares FC before and after autocorrelation study with a 

specific choice of analysis pathway. There are several other choices for each analysis step 

that have not been considered in this study. For example, we removed autocorrelation by 

using autoregressive model while there are several more advanced methods to model 

autocorrelation. For functional connectivity we used group ICA followed by Pearson 

correlation coefficient among ICA time-courses (FNC). Seed-based analysis is another 

common method for connectivity studies. Correlation is not the only way of measuring 

statistical dependency and other methods such as mutual information are common too. 

We compared FNC before and after autocorrelation correction via t-tests on each FNC 

value. Although mean and standard error are the main component of many statistical tests 

such as t-test, we should emphasize that there are several other statistical analysis 

methods (like multivariate methods) to compare functional connectivity values within a 

group and between groups. Also, p-values are not the only measures of statistical 

significance. These choices were guided by our previous functional connectivity studies 

(Arbabshirani and Calhoun, 2011; Arbabshirani et al., 2013a; Arbabshirani et al., 2013b; 

Jafri et al., 2008; Meda et al., 2012) and others (Greicius et al., 2003; Wang et al., 2007). 
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One important subject for future studies is to assess the impact of autocorrelation in task-

based studies. Such a study has its own complications since the design paradigm affects 

the autocorrelation structure in fMRI time-series.  

With regard to theoretical results, an interesting topic of future studies may be to 

investigate the impact of autocorrelation on Pearson correlation in the general case of 

AR(N) where N is a positive integer. In the case of N>1, autocorrelation affects the time-

series as a more flexible frequency filter (compared to AR(1) as discussed in the 

supplementary material) depending on the AR coefficients which can impact the results 

differently. Moreover, theoretical results and simulation time-series characteristics could 

be matched more closely to the settings of real fMRI which is non-trivial due to complex 

signal and noise structure of fMRI time-series. 

4.7 Conclusion 

In this study, we assessed the effect of autocorrelation on functional connectivity. 

We started with approximate theoretical results in a simple AR(1) model and provided 

approximations for bias and variance of estimator of Pearson’s correlation coefficient 

between two autocorrelated time-series. The approximated theoretical results were well 

validated using simulations. We found that bias of the estimation depends on the 

difference between AR(1) coefficients of the two time-series while the variance is a 

function of product of the coefficients. We further investigated the effect of 

autocorrelation on functional connectivity in real fMRI data in both healthy controls and 

schizophrenia patients. We found that autocorrelation can slightly alter the Pearson’s 

correlation coefficients, however, the effect of this on the hypothesis tests of group 

differences based on t-statistics is very mild. It should be noted that the effect of 
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autocorrelation appears to directly depend on the    parameter of the MRI acquisition 

and the problem becomes more serious for fast acquisitions. Our results do not support 

the hypothesis that ignoring intrinsic autocorrelation in fMRI time-series results in 

meaningless spurious connectivity results, unlike some recent studies. While it remains 

important to assess and correct autocorrelation with appropriate model order to ensure the 

most accurate results, within the discrete domain of functional connectivity neuroimaging 

studies it does not appear that autocorrelation has a universally strong and indiscriminate 

biasing effect.  
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Chapter 5:  Autoconnectivity, a New Perspective on Human Brian’s 

Functionality 
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5.1 Introduction and Motivation 

As discussed in Chapter 4, Autocorrelation is a well-known characteristic of 

functional magnetic resonance imaging (fMRI) time-series attributed to colored physical 

and physiological noise (Aguirre et al., 1997; Bullmore et al., 2001; Friston et al., 2000; 

Lenoski et al., 2008; Lund et al., 2006; Purdon and Weisskoff, 1998; Rajapakse et al., 

1998; Zarahn et al., 1997). Various sources such as scanner drift (Lund et al., 2006), 

undersampled cardiac and respiratory signals (Aguirre et al., 1997; Bullmore et al., 2001; 

Friston et al., 2000; Lenoski et al., 2008; Lund et al., 2006; Purdon and Weisskoff, 1998; 

Rajapakse et al., 1998; Zarahn et al., 1997), smooth hemodynamic response and 

preprocessing steps such as temporal smoothing have been identified as major sources of 

autocorrelation (Friston et al., 1995). Treated as unwanted colored noise, autocorrelation 

has been one of the main confounds in fMRI data analysis using general linear modeling 

framework (Friston et al., 2000; Gautama and Van Hulle, 2004; Lund et al., 2006; 

Woolrich et al., 2001) and recently in functional connectivity studies (Christova et al., 

2011) since many statistical assumptions are getting violated in the presence of 

autocorrelation. In the past two decades, the main focus of the neuroimaging community 

in the context of autocorrelation in fMRI time-series has been on methods to remove or 

compensate for it. Methods such as prewhitening and precoloring have been widely 

adopted by researcher to eliminate or reduce the effect of autocorrelation on fMRI data 

analysis. 

While the exact sources of autocorrelation and their contribution to observed 

temporal dependency in fMRI time-series has remained as an open question, it was 

shown more than a decade ago that autocorrelation is mostly significant in the cortical 
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regions of the brain (Worsley et al., 2002). Based on this observation it can be postulated 

that smooth hemodynamic plays an important role in fMRI time-series autocorrelation 

structure. This plausible assumption explains the source of autocorrelation but not 

necessarily the amount of autocorrelation in the fMRI time-series as the latter can depend 

on the neural activity which is the input to the HRF.  

It is well known that the neuronal process can be decomposed into evoked transients 

and intrinsic activity (Friston et al., 1995). Similarly, autocorrelation can be decomposed 

into an evoked component which is phase-locked to the task and an intrinsic component 

(Friston et al., 1995).  

The main purpose of this study is to investigate intrinsic autocorrelation in resting-

state fMRI. We hypothesize that strength of intrinsic autocorrelation contains important 

information about brain’s functionality. We provide three distinct clues that demonstrate 

the usefulness of autocorrelation in understanding healthy human brain functionality as 

well as a novel look at brain disorders such as schizophrenia. We consider simple 

autoregressive process of order one and map the coefficient to the brain of healthy 

controls and schizophrenic patients. Following a comparison of these maps, we classify 

patients from controls using just the autoregressive coefficients. At the end we investigate 

the relationship between autoregressive coefficient during rest and hemodynamic 

response function during task in healthy controls and propose a hypothesis that intrinsic 

autocorrelation during rest is negatively correlated with the magnitude of evoked 

neuronal response during an auditory oddball task (AOD). To the best of our knowledge 

no one has investigated the autocorrelation in fMRI time-series as a potential source of 

information about the functionality of human brain and for clinical use.  
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5.2 Methods 

For this study we used both the Hartford dataset (section 1.14.1) and the FBIRN 

dataset (section 1.14.2) 

5.2.1 Time-Series Preprocessing 

Each fMRI time-series was detrended with polynomial of order two. In order to 

reduce effect of motion on the analysis, six motion parameters, six squared of motion 

parameters, six first differences of motion parameters and six squared of first difference 

of motion parameters (Friston et al., 1996) were regressed out of each time-series. All the 

time-series were z-scored. 

5.2.2 Autoregressive Modeling 

Autoregressive model of order one (AR1) coefficient was estimated for each 

time-series using the maximum likelihood approach. See section 4.3.1 for more 

information on AR(1) modeling. 

5.2.3 Classification 

AR1 coefficients for all the voxels were averaged together for each region in the 

automated anatomical labeling (AAL) atlas to form a 116 feature vector for each subject. 

Features were z-scored to bring them to the same scale. 10 fold cross validation was used 

to assess the strength of the classifier. In each run, 10 subjects were left out and a linear 

support vector machine (SVM) was trained on the rest of samples. The soft margin 

parameter for SVM was selected based on grid search over range of plausible values. The 

criterion for selecting the best parameter was overall accuracy which was achieved by 

leave-one-out cross validation inside the training set. 
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5.2.4 Hemodynamic Response Function Estimation 

All of the preprocessed functional data during AOD task from 28 healthy controls 

in the Hartford dataset were analyzed using spatial group independent component 

analysis (GICA) framework as implemented in the GIFT software (Calhoun and Adali, 

2012; Calhoun et al., 2001a; Erhardt et al., 2011). First at the subject level, 

dimensionality was reduced to 80. Then reduced data from all subjects and all sessions 

were concatenated together and put through another reduction step. The number of 

components for the second level reduction was estimated to be 20 by minimum 

description length (MDL) criterion (Li et al., 2007). This is also the number of IC 

components. Note the MDL is a data driven approach, so it is not dependent on whether 

data are collected at rest or during a task. In order to estimate subject-specific SMs, back-

reconstruction method was used (Calhoun et al. 2001b; Erhardt et al. 2010).  

The ICA time-courses of the auditory network were deconvolved against the 

stimulus paradigm to recover the HRF of that network. Amplitude height (H), time-to-

peak (T) and full-with at half-max (W) of the estimated HRFs were calculated.  

5.3 Results 

5.3.1 Mapping Autocorrelation Coefficient to the Brain during the Resting-State 

For each of the datasets, fMRI resting-state time series were modeled using 

AR(1). The AR(1) coefficient shows the amount of correlation or linear dependency 

between consecutive time points in a time series. In other words, AR(1) coefficient tells 

us to what extend current time point value is impacted by its immediate predecessor.   
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Figure 5-1A shows mapping of voxel-wise AR(1) coefficient to the brain in 

healthy controls and schizophrenia patients in both datasets. The average AR(1) ranges 

from zero to about 0.5 in both groups.  

In order to detect voxels with significant autocorrelation coefficient, 1-sample t-

test was performed for each voxel across subjects at 0.05 level corrected for multiple 

comparisons using false discovery rate (FDR) method. The t-maps are illustrated in 

Figure 5-1B. Figure 5-1B shows that autocorrelation is most significant in calcarine 

cortex, cuneus, parts of the precuneous and anterior cingulate cortex (ACC). It is evident 

that autocorrelation is significantly higher in cortical regions compared to white matter 

and CSF. The autocorrelation is less significant in Hartford dataset which can be related 

to lower statistical power due to its smaller sample size compared to the FBIRN dataset. 

The next question of interest is to see if there is any significant difference between 

healthy controls and patients in terms of strength of autocorrelation. We conducted two 

sample t-test between the two groups for each voxels. The T-maps (Figure 5-1C) shows 

that several regions in the visual system including cuneus and calcarine along with small 

regions in somatosensory and motor cortex have significantly lower autocorrelation in 

schizophrenia patients compared to healthy controls. Another interesting region following 

the same pattern is the thalamus. Similar to Figure 5-1B, the Hartford dataset exhibits 

fewer significant regions compared to FBIRN (which is expected in part because there 

are many fewer subjects) but also exhibits many similarities. 
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Figure 5-1: A: Resting-state AR(1) coefficient estimated for each voxel for both healthy control and 

schizophrenia patients. B: T-maps resulted from group-wise one-sample t-test on each voxel for both 

healthy control and schizophrenia C: T-maps resulted from two sample t-test between healthy controls and 

schizophrenia patients. 

5.3.2 Mapping Autocorrelation Coefficient to the Brain during the AOD Task 

Autocorrelation during performance of a task is composed of an evoked 

component as well as an intrinsic component. The evoked part is dependent on the task 

design which makes it hard to make inference about its strength as opposed to intrinsic 

autocorrelation during resting-state. However, it is interesting to compare autocorrelation 

during rest and task and see if autocorrelation changes meaningfully during performance 

of a simple task compared to the resting-state. The results are illustrated in Figure 5-2. 

Figure 5-2A shows the AR(1) mapping for both groups and Figure 5-2B shows results 
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from a of group-wise one sample t-test on each voxel’s AR(1) coefficient. We did not 

find any significant difference between the two groups in contrast to the resting-state 

analysis (Figure 5-1C).  

 

Figure 5-2: A: AOD task AR(1) coefficient estimated for each voxel for both healthy control and 

schizophrenia patients. B: T-maps resulted from group-wise one-sample t-test on each voxel for both 

healthy control and schizophrenia  

5.3.3 Relationship Between AR(1) during Rest and Task 

The AR(1) coefficients during rest and task for the Hartford dataset are illustrated 

in Figure 5-1 and Figure 5-2. In order to investigate the relationship between the 
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coefficients in the two states, AR1 coefficients were averaged for each region in 

automated anatomical labeling (AAL) atlas. Then the group-wise correlation between rest 

and task for each of the 116 regions in AAL atlas was calculated for both the healthy 

controls and schizophrenia patients.  

 

 

Figure 5-3: A: Group-wise correlation between average AR(1) coefficients during rest and AOD task for 

healthy controls (HC) and schizophrenia patients (SZ) B: Group-wise correlation between AR(1) 

coefficients during rest and task for each region in AAL atlas. The 116 regions are divided into eight 

groups based on the correlation pattern. 
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Figure 5-3A shows the correlation between average AR(1) for each AAL region 

during rest and task for both groups. Figure 5-3B illustrates the detailed information of 

Figure 5-3A for each of the 116 regions in the AAL atlas grouped into 8 categories.  

5.3.4 Classification of Schizophrenia Patients Based on Autoconnectivity Features 

To assess the discriminating power of AR1 coefficients, we investigated the 

possibility of classifying schizophrenic patients from healthy controls just based on AR1 

coefficients. AR1 coefficients were averaged for each region in automated anatomical 

labeling (AAL) atlas to form vector of 116 features for each subject. Leave-one-out cross 

validation overall accuracy achieved with linear support vector machine (SVM) classifier 

was 78.21% (sensitivity: 75.08%, specificity: 79.47%). The relationship between AR(1) 

during rest and HRF during the AOD Task 

We hypothesized that there is a relationship between the AR(1) coefficient during 

the resting-state with HRF during the performance of the task. To test this hypothesis, 

ICA was performed for the task data and the time-course for the auditory network was 

extracted. We chose this particular network since it is activated during the AOD task 

(Arbabshirani et al., 2013a). For each of the healthy subjects in the Hartford dataset, this 

time-course was deconvolved against the task paradigm to recover the HRF. From each 

HRF, 3 parameters were extracted: Amplitude height (H), time-to-peak (T) and full-

width-half-max (W). 

We also determined the activated voxels of the auditory network and extracted the 

same voxels from the resting-state data. AR(1) coefficients of those resting-state time-

courses were calculated. We found a relationship between the amplitude of HRF during 
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the task and AR(1) during the rest as illustrated in Figure 5-4. A relationship between 

AR(1) and time-to-peak and full-with-half-max was not found. 

 

Figure 5-4: Scatterplot of peak HRF during AOD task vs. AR(1) during the resting-state for the auditory 

network. 

5.4 Discussion 

Autocorrelation as a measure of temporal dependency has been mostly attributed to 

noise in fMRI time-series. In this study we showed that autocorrelation is mostly 

significant in cortical regions. This was partially shown by Worsley (Worsley et al., 

2002). We name this phenomenon as intrinsic autoconnectivity. While autocorrelation 

mostly originates from sampling a smooth HRF as discussed by Friston, the strength of 

autocorrelation in a typical fMRI time-series is also dependent on the underlying neural 
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activity. While we didn’t investigate this hypothesis directly in this study, we provided 

distinct clues supporting this hypothesis.  

We found lower autoconnectivity in schizophrenia patients compared to healthy 

controls in several brain structures such as calcarine, cuneus and thalamus (Figure 5-1). 

These areas have been reported repeatedly with abnormal activity in schizophrenia 

patients. Structural thalamus abnormalities in schizophrenia patients have been revealed 

in the past two decades (Andreasen et al., 1994; Buchsbaum et al., 1996; Konick and 

Friedman, 2001; Young et al., 2000). Schizophrenia patients have significantly lower 

number of neurons and volume in thalamic regions (Young et al., 2000). Also reduced 

thalamic activity and defect in sensory input filtering or gating have been proposed in the 

patient group (Andreasen et al., 1994; Buchsbaum et al., 1996; Tregellas et al., 2007). 

Moreover, thalamus malfunctioning has been highlighted in recent functional studies 

(Cetin et al., 2014; Rubia et al., 2001; Takahashi et al., 2004; Zhou et al., 2007). 

During the AOD task, the highest AR(1) was found in the frontal part of the brain 

in areas such as orbitofrontal cortex and anterior part of the cingulate cortex as opposed 

to visual cortex during the resting-state. This interesting finding shows that 

autocorrelation as measured by AR(1) coefficients, is cognitive-state dependent and 

changes meaningfully during the  performance of a task compared to the resting-state. 

This is another distinct clue confirming the neural basis of autocorrelation. To better 

compare autocorrelation during rest and task, correlation coefficient between the average 

AR(1) coefficients in the two states were computed for both groups and illustrated  in 

Figure 5-3. While this correlation is mostly positive for the healthy controls, it is mostly 

negative for schizophrenia patients. In some regions such as cerebellum the difference is 
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very significant (Figure 5-3B). This considerable difference can be another biomarker for 

schizophrenia patients. 

In order to investigate the discrimination power of resting-state AR(1), we 

classify patients from controls using just these features. The accuracy achieved using 

autocorrelation features is comparable with previous works based on structural features 

(Csernansky et al., 2004; Davatzikos et al., 2005), DTI features (Caan et al., 2006b; 

Caprihan et al., 2008), fMRI features (Arribas et al., 2010) and functional connectivity 

features. (Arbabshirani et al., 2013b) which is very promising. 

Also we found a negative relationship between resting-state AR(1) and peak HRF 

during the AOD task in healthy controls. The peak of the HRF should be related to the 

strength of neural activity. This relationship provides evidence that the AR(1) may be 

related to neural activity and not just colored noise. 

The evidences shown in this study suggest that neural activity may contribute to the 

autocorrelation of fMRI time-series. It was shown that autocorrelation is cognitive state 

dependent (resting-state vs. AOD task) and mental state dependent (healthy vs. controls). 

Autoconnectivity can be viewed as a complement to conventional functional connectivity 

(FC). FC documents interaction between brain regions while autoconnectivity documents 

temporal connection of voxel/region/network with itself. The results suggest that 

autoconnectivity is a new source of information about brain’s functionality that has been 

ignored for a long time. 
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5.5 Classification of Schizophrenia Patients based on Combination of 

Resting-State FNC and Autoconnectivity Features 

In Chapter 3, we propose a framework for classification of schizophrenia patients 

based on resting-state FNC features. In this chapter, it was shown that autoconnectivity 

features can classify the patients with high accuracy as well (section 5.3.4). The natural 

extension is to combine the two types of features and see if the classification is improved 

compared to each type of the features. The FBIRN data set was decomposed with group 

ICA as explained in section 4.4.3 into 47 networks (Figure 4-5). For each subject, we 

computed the functional network connectivity, referred to as FNC, by computing 

pairwise Pearson correlation using the processed ICA time-courses. We selected 47 

ICNs, resulting in 1081 FNC features for each subjects. Also the AR(1) coefficient of 

each ICA time-course was extracted as explained in section 5.2.2. This produced 47 

autoconnectivity features for each subject. 

5.5.1 Feature Selection 

In total we extracted 1128 features for each subject (1081+47). The high number 

of features compared to the subjects in our dataset can cause curse of dimensionality. To 

avoid this problem we used minimum redundancy maximum relevancy (MRMR) feature 

selection method. This method tries to maximize the mutual information between the 

selected features and class labels while minimize the mutual information among the 

selected features. We reduced the features to 50 by using MRMR (40 FNC feature, 10 

autoconnectivity features). 
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5.5.2 Classification  

Linear support vector machine was used for classification. We used 10 fold cross 

validation to calculate the generalized error of the classifier. In each run 10 subjects were 

set aside for testing and the rest were used for training. A leave-one out method was used 

inside the training set to find the optimal value for SVM hyperparameters along with 

optimal number of features to be selected by MRMR feature selection approach. Table 

5-1 summarizes the classification results based on each type of feature and the 

combination of both types. 

Table 5-1: Classification Results 

           Accuracy 
Overall 

Accuracy 
Sensitivity Specificity 

FNC 83.7% 81.4% 85.9% 

Autoconnectivty 80.2% 78.1% 82.2% 

FNC +Autoc 88.21% 86.7% 89.5% 

 

Adding novel autoconnectivity features to FNC features thus improved the 

classification performance significantly. Our results show that using these features can 

result in a robust and accurate classifier with about 88% overall accuracy which is very 

promising.  
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Chapter 6:  Conclusion and Future Works 
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6.1 Summary 

We discussed 4 main studies in this dissertation. All studies were related to 

functional connectivity as a method to assess functional integration of the brain. In 

chapter 2 functional network connectivity during rest and task were compared in healthy 

controls. We found that FNC is stronger during rest compared to AOD task. A global 

drop in FNC was observed during the performance of AOD task. We suggested that 

performing an active task like AOD requires larger and more active brain networks and 

not necessarily higher collaboration among networks.  

In chapter 3, we proposed a framework for automatic classification of mental 

disorder such as schizophrenia based on resting-state FNC features. The results show that 

resting-state FNC features can accurately discriminate schizophrenia patients from 

healthy controls.  

In chapter 4, impact of autocorrelation on FC and FNC was comprehensively 

investigated in theory, simulation and real fMRI data. We showed that despite the change 

in correlation coefficient with presence of autocorrelation in corresponding time-courses, 

the result of hypothesis testing remain very similar before and after correction of 

autocorrelation.  

In chapter 5, we introduced the concept of autoconnectivity. While most of previous 

works suggest that autocorrelation in fMRI time-series is originated from noise, we 

provided distinct evidences that neural activity also plays a role in fMRI autocorrelation. 

We showed that autocorrelation is most significant in the gray matter area and is 

cognitive state dependent. Also it was shown that schizophrenia patients show different 



134 

 

autocorrelation pattern compared to healthy controls and it is possible to use 

autocorrelation features to classify them form healthy controls with high accuracy.  

6.2 Future Works 

Each of the studies discussed in this dissertation can be extended in numerous ways. 

Here we provide suggestion for some the possible future works. 

For comparison of FNC during rest and task, generalization of these results can be 

accomplished by evaluating additional task types, as well as exploring different subjects 

(e.g. patients with brain-based disorders may show different changes than healthy control 

subjects). It is interesting to see if our results generalize to other cognitive states or not. 

Also instead of univariate, assessment of each FNC value, multivariate methods such as 

graph theory can be used to compare FNC among cognitive states. Such methods have 

been suggested and used recently in the neuroimaging community (Bullmore and Sporns, 

2009; Wang et al., 2010; Yu et al., 2012). 

Combining resting-state FNC features with other types of features suggested by other 

researchers (section 3.3 and 3.4) can be one of the main future works. There are several 

biomarkers based on different neuroimaging modalities for mental disorders such as 

schizophrenia (see section 3.3 and 3.4). Ultimately, these biomarkers should be compared 

and combined with each to make strong and robust feature set for automatic classification 

frameworks. In recent years, limited studies have combined two or three modalities. 

Yang et al., combined fMRI and genetics data for automatic classification of 

schizophrenia patients from healthy controls (Yang et al., 2010). Sui et al. proposed a 

framework based on canonical correlation analysis and joint ICA to combine fMRI and 

DTI data for classification of schizophrenia and bipolar (Sui et al., 2011). Sui et al., 
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extended their work to combine fMRI, DTI and structural MRI to classify schizophrenia 

patients (Sui et al., 2013). 

We investigated the impact of autocorrelation of functional connectivity in chapter 4. 

For future works, the problem can be investigated in general case of AR(N) process in 

theory and simulations. Also, in real fMRI data, other types statistical tests should be 

compared before and after autocorrelation correction. We suggested that maybe 

autocorrelation correction reduced the signal to noise ratio in fMRI time-series resulting 

in noisier estimation of correlation coefficient. This hypothesis should be studied in 

details for future works. 

Finally in chapter 5, we introduced the concept of autoconnectivity. An important 

future work is to determine what portion of autocorrelation in fMRI time-series originates 

from noise and what portion has neural basis. A following interesting question is whether 

it is possible to separate these two from each other. While we provided highly 

autoconnected regions in the brain during rest and task, and we show that they are 

different. In future works the role of autoconnectivity in brain’s functionality should be 

investigated more. Also the link between autoconnectivity and neural activity should be 

studied more rigorously.  
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