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The Relationship of Quizzing and Student Success 

In A College Level Core Statistics Course 

 

by 

 

David M Glavin 

B.S., Biological Science, University of Vermont, 1991 

M.S., Statistics, University of New Mexico, 2012 

 

ABSTRACT 

 This study investigated the relationship between quizzing and student success in 

an introductory college level statistics course.   Demographic and student performance 

data were collected from a 100-level introductory Statistics course at the University of 

New Mexico during the Fall 2011 semester.  Two statistical models were developed to 

determine if quizzing is related to student success as measured by final letter grades and 

final exam scores. Predictive modeling to determine the relationship between quizzing 

and students’ final exam scores using a Hierarchical Linear Model (HLM) found quizzing 

to be marginally significant (p-value = 0.0567).  Probabilistic modeling using logistic 

regression to predict if a student passes the course with a grade of C or higher yielded 

an odds ratio of 6.013 (95% Wald CI: 2.030, 17.813) for students who were given 

periodic quizzes versus students who were not given quizzes, while holding all other 
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variables in the model constant.  Results indicate that quizzing is positively associated 

with student performance. 
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CHAPTER 1:  INTRODUCTION 

 

Many students who enter college are underprepared for college-level 

mathematics and statistics, and lack of student success in these core disciplines both 

before and during college is well documented (ACT Inc., 2010). There have been many 

efforts in the U.S. to improve both secondary and post-secondary education in 

mathematics and statistics; the No Child Left Behind Act of 2001 (NCLB) is a recent 

major policy and funding initiative that intends to increase student achievement in 

mathematics and other domains. One of the key aspects of NCLB policy is that it links 

funding for K-12 schools with student attainment in mathematics as measured by 

standardized test scores. Although there is evidence that well designed standardized 

tests are useful tools for assessing students’ understanding of general concepts in 

mathematics, English, reading comprehension, etc., (Volante, L., 2004) one of the 

primary goals of educators is to maximize student development in critical thinking skills 

and mastering core concepts of all subjects studied. However, because the scores that 

students earn on these standardized tests have such a great impact on teachers and 

schools, critics of NCLB argue that secondary educators are “teaching to the test” 

(Volante, L., 2004) rather than focusing on methods for improving student learning, 

critical thinking skills, and subject matter retention.  Although NCLB primarily impacts 

secondary education administrators, educators, students and their parents (Heath, S., 

2002), the effects of NCLB are also felt at the university and college level. Increasingly, 

state and national policy makers as well as students and parents are asking whether the 
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money spent on higher education results in the student learning outcomes that 

students need to be successful in their careers. As a result, many colleges and 

universities are using standardized measures to gauge student learning. 

Several core courses in mathematics and statistics taught at the University of 

New Mexico (UNM), including Introduction to Statistics (STAT 145), use a “standardized” 

testing system to assess student performance.  The methodology is considered 

“standardized” in that the same mid-term and final exams are administered to all the 

students taking these courses regardless of instructor.  Because instructors are judged, 

at least in part, on their students’ passing rates, university instructors teaching these 

courses face the same challenge that their counterparts in secondary education 

encounter. 

The resulting conflict of balancing the need to improve students’ scores on 

standardized exams without compromising the depth of understanding of core concepts 

of subject matter leads to the question:   

What pedagogical methods should instructors employ that develop students’ 

core content knowledge and foster critical thinking skills so that they can use 

what they’ve learned across disciplines? 

The use of “low- or no-stakes testing” (i.e. quizzing) is one technique employed 

by instructors for assessment and as a method to improve learning and retention of 

course content (McDaniel, M.A., et al., 2011).  The use of quizzes is a tool that not only 

can assist instructors to assess how well their class is grasping a particular concept, but 
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also assist the student in achieving academic success in the course with minimal impact 

to the overall final grade by requiring them to study quiz-related material. 

As a first-year instructor of introductory statistics at UNM (STAT 145), the 

Principle Investigator was interested in developing methods of instruction that increase 

student comprehension and understanding of core competencies identified by the 

University.  Due to the fact that STAT 145 is a core mathematics/statistics course, the 

Department of Mathematics and Statistics attempts to employ uniform assessment of 

student achievement.  This is done by requiring all section instructors to administer 

three midterm exams, each worth 20 % of students’ final grade plus a cumulative final 

exam worth 25% of the final grade.  The remaining 15% is left to instructor discretion.  

Being new to teaching, the Investigator decided to weight all four exams equally (25% 

per exam) by dispersing the discretionary scoring to each of the three mid-term exams 

during the first semester of instruction in the Fall of 2010.   

In Spring 2011 the Investigator used in-class quizzing to account for the fifteen 

percent discretionary scoring and noted a marked increase in students’ pass rate (a 

grade of “C” or higher, with the passing score set by the instructor), as well as an 

increase of the minimum overall score required to pass the course (refer to Table 1.1)  

In particular, the score for receiving a grade of “C” in the course increased by 5% and 

the percent of students passing the course increased by 13% from the previous 

semester, when quizzes were not administered. 
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Table 1.1 

Pass Rates and Minimum Passing Score 

For Investigator’s First Two Semester of Instruction 

Semester Lowest Score for “C” Percent Pass 

Fall 2010 60% 68% 

Spring 2011 65% 81% 

 

 

The Investigator felt this observation implied that quizzing may have positively 

impacted student success in STAT 145, while noting that simply becoming familiar with 

instructional methods and classroom management may have had some impact as well.  

To determine if the implementation of periodic quizzing was, in fact, influencing student 

success in STAT 145, the Investigator decided to conduct an observational study using 

students from the Fall 2011 semester at UNM to quantitatively assess if the use of 

quizzing in an introductory college level statistics course is related to student success. 

 

BACKGROUND AND LITERATURE REVIEW 

 The education literature expoloring the relationship between quizzing and 

academic achievement has generally focused on primary and secondary education 

(Agarwal et al., 2010; Lloyd, 1995).  In addition, with the recent increase in use of 

Computer/Student Response Systems (CRS/SRS), commonly referred to as “clickers”, 

and online assessment tools such as WebCT or Blackboard Learning Systems, some 
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researchers have investigated whether the use of these devices to administer quizzes 

has a positive impact on academic performance (Morling et al., 2008; Urtel et al., 2006). 

 No studies were found in the literature to have been conducted on quizzing and 

academic success in large-scale, undergraduate statistics or mathematics courses.  

Research on periodic quizzing and academic performance has been conducted for 

disciplines other than math and statistics, such as physics and psychology (Roediger, H. 

& Karpicke, J. 2006).  A recent study comparing SRS and WebCT administered quizzes 

was performed using nursing students enrolled in “a spring 2004 General, Organic, and 

Biochemistry course,” however the sample size was relatively small (n = 41).  A 

limitation of these studies is that multiple linear regression methods were used to 

evaluate the relationship between explanatory and response variables, which may not 

account for correlation across instructors. 

 Educational studies are increasingly utilizing hierarchical linear models (HLM) to 

account for the influence of random effects correlated with instructors (Raudenbush, S., 

1988; Lee, et al., 1991).  The advantage of using hierarchical linear models arises from 

adjusting for random effects associated with instructors, prior to analyzing the effects of 

the explanatory variable of interest, i.e., quizzing (Raudenbush, S., 1988; Lee & Bryck, 

1989).  The Investigator assumes there are differences between instructors such as 

teaching style, experience, “good” instructors versus “bad” instructors, student 

satisfaction with instructors (Lee, et al., 1991) and other innate qualities associated with 

instructors that cannot be controlled for in an observational study.  By adjusting for 
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variation between instructors, the Investigator hoped to more clearly identify the 

association between quizzing and student achievement in STAT 145. 

In this observational study, the Investigator employed two models to assess the 

effectiveness of quizzing and its impact on students’ success in a large-scale (50 students 

or more) undergraduate introductory statistics course.  As previously indicated, a 

predictive modeling method utilizing an HLM was developed to determine the 

relationship between administration of quizzes and students’ final exam score while 

adjusting for other confounding variables. In addition, a probabilistic modeling method 

was used to examine the likelihood of passing STAT 145 with respect to quizzing while 

adjusting for other confounding variables.  The Investigator employed a logistic 

regression model (logit) to predict the likelihood a student will pass the course given 

that quizzes were administered, where passing is defined as receiving a grade of “C” or 

higher. 
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CHAPTER 2:  METHODS 

 

This thesis primarily focuses on two models to determine student success in a 

college-level introductory statistics course contingent on whether the student received 

periodic quizzing during the course.  Data were collected on all students who were 

enrolled in the course after the first three weeks of the semester. The main outcomes 

considered were: (1) whether or not the student passed the course based on their final 

course grade (a passing grade is considered as C or higher); and (2) the score (out of 

100) received on the cumulative final exam.   

The two models developed to assess student success were: (1) a mixed or 

hierarchical linear model (HLM) used to estimate the value of a quantitative response 

variable; and (2) a logistic regression (logit) model which is used to predict the 

probability of an outcome for a categorical variable. The response variable for the HLM 

was the final exam score attained by each student, and the response variable for the 

logit model was whether a student passed the course with a grade of C or higher or not.   

 

DATA SOURCE 

This observational study uses student data collected from 16 sections of an 

introductory statistics course (STAT 145) during the Fall semester of 2011 at The 

University of New Mexico, Albuquerque, New Mexico.  Data was collected from two 

sources:  
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(1) Information from instructors who agreed to participate in the study 

regarding quizzing policies and students’ final exam scores, and  

(2) Demographic and academic information for each student enrolled in sections 

taught by instructors who agreed to participate in the study from the 

University of New Mexico’s Data Warehouse (institutional database). 

Instructors (a mixture of graduate students, part-time instructors and lecturers), 

who taught Stat 145 during the Fall semester of 2011 were given a 30-minute 

presentation by the Investigator describing the study prior to commencement of 

instruction for the Fall 2011 term.  Instructors who agreed to participate in the study 

submitted signed consent forms, as required by UNM’s Internal Review Board (IRB), to 

the Investigator by August 26, 2011.  Data was only collected from students whose 

instructor agreed to participate in the study. 

Data was collected in two phases.  Demographic and academic performance 

data, not specific to Stat 145, was collected from the UNM Data Warehouse following 

the third week of the Fall 2011 semester, the last date a student could withdraw from 

the course without a grade and the official census date for enrollment figures at UNM.  

Table 2.1 provides student information obtained from the UNM Data Warehouse. 
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Table 2.1 

Explanatory Variables from UNM Data Warehouse 

 
Variable Type Explanation 

Gender Explanatory Male/Female 

Hispanic 

White Ethnicity Explanatory 

Other (Asian, Black, Native American, etc.) 

GPA Explanatory College GPA 

GPA Credits Explanatory GPA Credits Earned at UNM 

Credits Attempted Explanatory GPA Credits Attempted at UNM 

Credits Earned Explanatory All College-Level Credits Earned 

School GPA Explanatory High School GPA 

ACT Math Explanatory ACT Math Score 

SAT Math Explanatory SAT Math Score 

 

At the end of the semester, instructors participating in the study were asked to 

complete a questionnaire to determine which instructors used quizzing during the term, 

how the quizzing was employed such as frequency, style (web-based, written), and 

weight of quizzes given in computing the final grade for the course (see Appendix A, 

Post-Semester Questionnaire).  In addition, instructors were asked to submit a 

spreadsheet that included each student’s final exam score and final letter grade in the 

course.  Table 2.2 lists a summary of the information submitted by instructors. 

Table 2.2 

Instructor Submitted Data 

 

Variable Type Explanation 

Received Quizzes 
Quiz/No Quiz Explanatory 

Did not Receive Quizzes 

Frequency Explanatory Number of Quizzes Administered 

Time Explanatory Time of Section: AM/PM 

Weight Explanatory Percent of Final Grade Each Quiz was Worth 

Administered Explanatory How Quiz was Administered (written, web, clicker, take-home) 

Final Exam Score Response Final Exam Score (out of 100) 

Final Letter Grade Response Final Letter Grade Student Received in the Course 
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  To maintain student anonymity and compliance with the Family Educational 

Rights and Privacy Act (FERPA), each student was issued a unique Research 

Identification Number (RIDN) prior to submission of data to the Investigator.  Data 

obtained from the UNM Data Warehouse and submitted by each section instructor was 

merged using the RIDN. 

Ten instructors agreed to participate in the study.  Of these instructors, three 

taught multiple sections.  The data set included 905 students from 16 sections taught by 

the 10 instructors to represent the population of students enrolled in Stat 145 during 

the Fall 2011 term.  Of these observations, 35 were removed from the analysis because 

no final exam grade and no final grade were reported.  Fifty-seven observations were 

removed because these students received a grade of “W” (withdraw), “WP” (withdraw 

pass), “WF” (withdraw fail) and did not take the final exam, indicating they did not 

complete the course.  Of the remaining observations, 117 individuals did not report 

their Ethnicity; therefore these observations were removed prior to analysis.  A total of 

n = 696 of the original 905 submitted observations were used for analysis in the HLM 

and logit models.  For the remainder of this report all references to the sample size refer 

to the number of valid records used for analysis (i.e., n = 696). 
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EXPLANATORY VARIABLES 

Gender 

The gender of each student was used as an independent variable in both models 

of the study.  Of the 696 observations, 428 (61.49%) were female and 268 (38.51%) 

were male. 

 

Ethnicity 

The distribution of ethnicity for students in the survey as supplied by the UNM 

Data Warehouse is presented in Table 2.3.  To avoid issues related to small cell size, it 

was decided to categorize the ethnicity explanatory variable into three groups as 

Hispanic 262 (37.64%), White 275 (39.51%) and “Other” 159 (22.85%) where the latter 

included the Asian, Black, Native American and other reported ethnicities. Imputation 

was not performed for non-reported ethnic backgrounds. 

 

 

Table 2.3 

Separation Table of Students by Ethnicity 

 

   OTHER  

 White Hispanic 

Asian / 

Pacific 

Islander 

Black / 

Af. 

Amer. 

Native 

American 

Other 

Reported 

Ethnicity Total 

COUNT 275 262 29 23 46 61 n = 696 

PERCENT 39.51% 37.64 4.17% 3.31% 6.61% 8.76% 100% 
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College GPA 

Each student’s UNM Grade Point Average (GPA) at the time they entered the 

course was collected from the UNM Data Warehouse.  The 149 (21.41%) missing values 

associated with these observations were deemed to be first semester freshmen, 

(individuals with no college GPA, no credits attempted and no credits earned; 59 

observations, 8.48%) or transfer students, i.e. students with previous college experience 

at another institution (no college GPA and at least one college credit or at least one 

college credit attempted; 90 observations, 12.93%).  For the purpose of this study, an 

indicator variable was created to account for the difference between individuals who 

were either first semester freshmen and/or transfer students (cited as “Frosh”), and 

those who had already attended classes at UNM (cited as “UC”, or Upper Classmen). 

 

GPA Credits / Credits Attempted / Credits Earned 

The variables GPA Credits (college credits counting towards a students GPA), 

Credits Attempted (in college) and Credits Earned (college) were all highly correlated 

(see the Analysis section). Therefore it was determined to use only one of these 

explanatory variables for modeling. The Pearson Correlation Coefficients were 

calculated for each pair of continuous variables to determine which variable was most 

highly correlated with the continuous response variable, Final Exam Score.  Credits 

Attempted was selected by the Investigator for the purposes of this study.  59 (8.48%) 

observations had missing values for all of these three variables and therefore were 

assumed to be associated with incoming freshmen.  87 (12.5%) of the observations had 
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no GPA Credits or Credits Attempted but did have at least one credit earned.  These 

observations were determined to be transfer students with “Credits Earned” at another 

institution or possibly students who had received credit on an AP exam.  The remaining 

three (0.43%) missing observations were deemed to be transfer students who did not 

have transferrable credits from another institution, therefore reporting zero “Credits 

Earned.” 

 

ACT/SAT Math Scores (“Test”) 

ACT and SAT Math scores were used as explanatory variables in both analytical 

models.  Counts for students taking SAT, ACT, both or neither of the standardized exams 

are in Table 2.4. 

 

Table 2.4 

Separation Table of Students Taking Pre-College Standardized Tests 

 

 

ACT 

ONLY 

SAT 

ONLY BOTH NONE TOTAL 

COUNT 513 38 75 70 n = 696 

PERCENT 73.71% 5.46% 10.78% 10.05% 100% 

 

If a student took both exams, only their ACT exam was used for analytical purposes.  The 

ACT score was selected because a majority of the students in the sample (513 or 

73.71%) only took the ACT as a pre-college entry exam yielding a total of 588 (84.48%) 

individuals with ACT scores.  Thirty-eight students (5.46%) took only the SAT as their 

pre-college entry exam. The remaining 70 observations (10.05%) did not report a pre-
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college exam score.  It was assumed that these individuals were transfer students who 

were not required to submit these scores for admittance to the University. 

All observations that had reported ACT/SAT scores (626, 89.94%) were then 

standardized to z-scores to allow for uniform comparison of ACT and SAT pre-college 

assessment exams.    ACT scores were converted using µ = 21 and σ = 5.3 as reported by 

2010 National ACT Profile Report (The ACT, 2010).  SAT scores were converted using µ = 

516 and σ = 116 as reported by the 2010 College Board Total Group Profile Report (The 

College Board, 2010). 

Two methods were employed to impute missing values for standardized 

ACT/SAT scores.  Multiple linear regression using quantitative variables from the 

students with reported ACT/SAT scores was initially employed.  This method yielded an 

extremely weak coefficient of determination (R
2 = 

0.03) making imputation of the 

missing values unreliable.  As a result, the mean value of reported standardized test 

score was used to impute the 70 missing values.   

 

Quiz 

Instructors participating in the study were asked to indicate if they employed 

quizzing during the Fall semester of 2011.  In addition, instructors were asked if quizzes 

counted toward the final overall grade for students within their section(s).  Five 

instructors indicated that they administered quizzes during the Fall 2011 semester and 

all five of these instructors used quiz scores as part of the students’ final overall grade in 

the course.  Of the 696 observations that were used in the modeling process, 219 
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students (31.47%) received quizzing while the remaining 477 (68.53%) were not 

administered quizzes during the semester. 

 

Time 

The time of day each student took the course was collected from the instructor 

as part of the post-semester survey.  The time variable was converted to a binary 

variable for the purposes of analysis, either AM or PM, depending on if the student took 

the class before 12:00 PM or 12:00 PM and after.  351 (50.43%) students were 

categorized as “AM” while 345 (49.57%) were categorized as “PM”. 

 

RESPONSE VARIABLES 

Final Exam Score 

Final exam scores were reported for each student whose instructor participated 

in the study.  This continuous random variable was used as the response variable in the 

mixed model (HLM) to determine the relationship between quizzing and students’ 

performance on the final exam.  The final exam administered for Stat 145 in the Fall of 

2011 was cumulative and therefore it is considered a reasonable measure of student 

aptitude with regards to course material.  In addition, instructors do not grade their 

students’ final exams individually; rather, all exams are pooled together and graded 

collectively by all instructors of Stat 145.  Because all the exams are randomly graded by 

different instructors, grading bias is significantly reduced and therefore the variable is 

considered a good response measure for student aptitude in the course. 
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Final Grade 

The final letter grade was reported for each student in the study.  It was used as 

the response variable in the logit model as a measure of whether a student passed the 

course (a grade of C or higher) versus not passing the course.  Students who withdrew 

before the end of the semester were not included in the final analysis because these 

individuals did not complete the course, and therefore did not have a final grade that 

could be used to determine if they, in fact, passed or failed the course. 

 

UNUSED VARIABLES 

Data associated with the following explanatory variables was collected, but was 

not used in either model for analysis: Quiz Frequency, Quiz Weight, Quiz Type, and High 

School GPA.  The Investigator chose not to include frequency, weight or type of quiz 

variables during analysis of the data set because these variables varied significantly 

between instructors and no logical partitioning of these variables could be derived.  An 

example is that some instructors used blended approaches to what they called a “quiz,” 

employing both homework assignments and in-class quizzing as a method of quizzing.  

The Investigator decided to categorize any student whose instructor issued an in-class 

quiz that counted toward the final grade, regardless of employment method (i.e. paper-

based or a combination of “clickers” and PowerPoint) as “quiz.”  Any student who did 

not receive in-class quizzing or was administered a quiz but the quiz score had no impact 

on the student’s final grade was classified as “no quiz”. 
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Students’ High School GPA was included in the dataset supplied by the UNM 

Data Warehouse.  There were four-hundred-seventy-two (472) missing values for this 

measure and therefore this variable was not used in model development or final 

analysis. 

 

MODELS 

Logistic Regression Model (Logit) 

Because passing rates are typically a measure of interest to school 

administrators, a logistic model, using the SAS procedure PROC LOGISTIC (SAS Institute, 

2012), was employed to determine the relationship between the administration of 

quizzes and students passing the course with a grade of C, or higher.  This model is 

commonly used to predict the outcome of a categorical variable with a binary result, 

such as zero vs. one, using several explanatory variables, including the variable of 

interest (Downer, R.G. & Richardson, P.J., 2002) In this case, the response variable was 

“pass” vs. “not pass” and the variable of interest is “Quiz”.  Adjusted odds ratios and the 

95% corresponding confidence intervals were used to estimate the underlying 

relationship between the explanatory variables and response. 

Model selection was performed by initially fitting a full model with the following 

explanatory variables included:  Quiz, Time, Gender, Ethnicity, GPA (college), Test (the 

standardized ACT/SAT score), and an indicator variable for new students to UNM 

(freshmen and/or transfers) versus students who had previously completed coursework 

at UNM.  Non-significant variables were dropped using α = 0.05. 
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Two methods were employed to determine the strength of the model.  The first 

was the Receiver-Operator Curve (ROC), which yields the percent of values correctly 

predicted by the final model when compared to the observed values included in the 

data set.  In the case of this study, the ROC indicates the percent of students the final 

model correctly predicts will pass or fail the class when compared to the actual, 

observed value for each student. A cross-validation technique was used as the second 

measure of the logit model strength.  This method uses a Monte-Carlo approach to 

estimate the cross-validation error.  For each iteration of the cross-validation process, a 

training set is randomly selected from the data to develop the model.  This model is 

then used to predict the remaining, “unused” observations, called the test set, and then 

compares predicted responses (pass or fail) to the actual responses of the test set. 

 

Hierarchical Linear Model (HLM) / Mixed Model 

A mixed or hierarchical linear model (HLM), using the SAS procedure PROC 

MIXED, was employed to determine the relationship between the administration of 

quizzes and students’ final exam score.  This model is often used in educational studies 

because it takes into account the variation between instructors. The adjustment for 

standard errors associated with the random effects attributed to instructors yields a 

more accurate measure of variability between students, nested within an instructor’s 

class (Raudenbush, S. & Bryck, A.S., 1986).  In this study, the HLM should yield a better 

estimate of quizzing and its’ impact on students’ final exam score than a multiple 
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regression model.  We note the restricted maximum likelihood (REML) was used to 

estimate the parameters in the model. 

To maintain valid assumptions in modeling, the Investigator applied a power 

transformation to the response variable in the HLM utilizing the Box-Cox method.  

Interactions between variables were analyzed; however the interaction terms were not 

deemed statistically significant therefore these were not included in the final model. 
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CHAPTER 3: ANALYSIS 

 

Two models were developed to analyze this data set (n=696), a multiple logistic 

regression model (logit) using the binary dependent variable “pass/fail” for the course, 

and a hierarchical linear regression model (HLM) using the students’ final exam score as 

the response variable. 

 

LOGISTIC REGRESSION MODEL 

The general logistic regression model is: 

[1] 
0 1 1

log   
1

i

ji ij
i

x x
π

β β β
π

 
= + + + 

− 
�  ;  

iy  |    ( )
ind

i iBernπ π∼  

Where yi = 1 if student i passed the course and zero otherwise, and iπ  = P (student i 

passed).  The Xj’s are the explanatory variable values (i.e., quiz, gender, etc) for student i 

and the βj’s are the parameters of interest, where increasing values of the parameters 

increase the log odds. 

Because logistic regression is not a linear function, there are no assumptions for 

normality or equal variance of the independent variables included in the model.  The 

Investigator used Wald χ
2
 tests to evaluate the likelihood a student would pass the 

course based on administration of quizzes, a standardized math aptitude test score, 

college GPA entering the course, as well as ethnicity and gender.  In addition, a χ
2
 

goodness-of-fit test to determine model adequacy was employed.  The SAS procedure 

PROC LOGISTIC was employed allowing the Investigator to evaluate the relationship 
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between quiz administration and student success in the course.  Finally, a Monte-Carlo 

Cross-validation method for logistic regression models was employed using the SAS 

macro-procedure CVLR (Cross-Validation for Logistic Regression). 

 

MODEL SELECTION – LOGIT 

In the logistic regression model, the effect of quizzing and the likelihood of a 

student passing the course were analyzed given that quizzes were administered in that 

section.  Standardized math test scores (SAT or ACT), the time the class was taken (i.e., 

before or after noon), gender, current college GPA, and ethnicity were included in the 

model to adjust for confounding variables. 

Separation tables were generated to determine the frequency of observations 

for the categorical variables included in the model (refer to Tables 3.1 and 3.2).  

Relatively small cell counts for (i.e., ≤  10) associated with the indicator variable “Time” 

were noted (refer to Table 3.2).  The Investigator retained this variable to account for 

potential confounding effects, although some argue this variable should be dropped for 

small cell counts (Peduzzi et al., 1996).  As Table 3.1 indicates, we observed 647 “Pass’s” 

(or ‘yes’s) and 49 “No Pass’s” (or ‘no’s). 

 

 

Table 3.1 

Response Profile for Logistic Model 

 

Ordered Value PASS Total Frequency 

1 NO PASS 49 

2 PASS 647 
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Table 3.2 

Separation Table for Factors 

 

Obs. Quiz Gender Ethnicity Time Count Percent 

1 N F H AM 37 5.3161 

2 N F H PM 82 11.7816 

3 N F O AM 32 4.5977 

4 N F O PM 41 5.8908 

5 N F W AM 44 6.3218 

6 N F W PM 71 10.2011 

7 N M H AM 30 4.3103 

8 N M H PM 34 4.8851 

9 N M O AM 10 1.4368 

10 N M O PM 24 3.4483 

11 N M W AM 20 2.8736 

12 N M W PM 52 7.4713 

13 Y F H AM 35 5.0287 

14 Y F H PM 6 0.8621 

15 Y F O AM 21 3.0172 

16 Y F O PM 8 1.1494 

17 Y F W AM 44 6.3218 

18 Y F W PM 7 1.0057 

19 Y M H AM 29 4.1667 

20 Y M H PM 9 1.2931 

21 Y M O AM 17 2.4425 

22 Y M O PM 6 0.8621 

23 Y M W AM 32 4.5977 

24 Y M W PM 5 0.7184 
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A multiple linear regression model using the variables Final Exam Score, Gender 

and Credits Earned was employed to impute the value of “Test” for 131 missing values.  

This analysis did not yield a suitable model to impute these scores so the average of 

reported “Test” scores ( x  = 0.17) was used as a means to impute this data (Greenless, 

J.S., et al., 1982). 

To account for the difference between students “new” to the University and 

upper-class students, this variable was converted to an indicator variable.  The 

reference for this variable is cited as “UC”, or upper-classmen while the alternative is 

cited as “Frosh” for freshman/new students. 

It should be noted that PROC LOGISTIC was used on the two subsets of data with 

missing values and compared to the model using imputed data.  Since there were no 

significant differences in the output between the models with missing values and the 

model using imputed data, the model using the imputed data was selected as the final 

reduced model for the purposes of analysis. 

 

RESULTS - LOGIT 

Analysis of the model effects (explanatory variables) indicate that the effect of 

quizzing (Quiz) is significant (p-value = 0.0012) as were the standardized test scores 

(Test, p-value = 0.0002).  Gender, Time, GPA (college) and Ethnicity were found not to 

be significant at α = 0.05 but were left in the model to account for potential 

confounding effects (Tables 3.3 and 3.4). 
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Table 3.3 

Type III Analysis of Model Effects 

 

Effect DF 

Wald 

Chi-Square Pr > ChiSq 

Quiz 1 10.4811 0.0012 

Time 1 0.0012 0.9718 

GPA 1 0.0072 0.9325 

Test 1 13.8279 0.0002 

Gender 1 1.6065 0.2050 

Ethnicity 2 0.1245 0.9397 

 

Table 3.4 
2

χ -test Analysis of Maximum Likelihood Estimators 

 

 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept  1 3.1391 0.3064 104.9366 <.0001 

QUIZ Quiz 1 0.8969 0.2771 10.4811 0.0012 

TIME AM 1 -0.00569 0.1612 0.0012 0.9718 

GPA Frosh 1 0.0179 0.2111 0.0072 0.9325 

TEST  1 0.9103 0.2448 13.8279 0.0002 

Gender F 1 0.2011 0.1587 1.6065 0.2050 

race H 1 -0.0537 0.2092 0.0659 0.7974 

race O 1 -0.0170 0.2435 0.0049 0.9442 

 

The final model derived from the observed data is: 

 

[2]   
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log   
1
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where the parameters and variables are defined in Table 3.5. 

Table 3.5 

Logistic Regression Model Parameters and Variables 

 

Parameter Variable Definition Reference for Indicator 

βo  Intercept  

β1 X1 Quiz  

β2 X2 Time (AM) PM 

β3 X3 GPA (Frosh) UC 

β4 X4 Gender (F) Male 

β5 X5 Test  

β6 X6 Ethnicity (H) Ethnicity (W) 

β7 X7 Ethnicity (O) Ethnicity (W) 

 

 

Testing the hypothesis Ho: βi = 0,  i∀ ≠  0 versus H1: at least one βi ≠ 0, the likelihood 

ratio goodness-of-fit test statistics has a p-value < 0.0001, indicating that there are no 

gross deficiencies with the model (Table 3.6). 

 

Table 3.6 

Logistic Regression Model Likelihood Ratio Test 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 34.7064 7 <.0001 

Score 30.6267 7 <.0001 

Wald 26.8969 7 0.0003 
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The odds ratio is the ratio of the odds of an event occurring in one group to the 

odds of it occurring in another group. Table 3.7 gives a summary of the odds ratios point 

estimators for each of the explanatory variables included in the final logit model. 

 

Table 3.7 

Odds Ratio Estimates and 95% Confidence Intervals 

 

Effect Point Estimate 

95% Wald 

Confidence Limits 

QUIZ    Quiz vs. No Quiz 6.013 2.030 17.813 

TIME    AM vs. PM 0.989 0.526 1.860 

GPA      Frosh vs. UC 1.036 0.453 2.371 

TEST 2.485 1.538 4.015 

Gender  F vs. M 1.495 0.803 2.785 

race       H vs. W 0.883 0.439 1.774 

race       O vs. W 0.916 0.405 2.072 

 

In the case of quizzing, the primary focus of this study, students whose instructor 

employed in-class quizzes were 6.013 times more likely to pass the course than students 

who receive no quizzing with a 95% confidence interval of (2.030, 17.813), given that all 

other variables in the model are kept constant.  The lower bound of the confidence 

interval is particularly interesting when one takes into account the very small p-value of 

0.0012 associated with quizzing in the model.  The results suggest that, at a minimum, 

students in this sample whose instructors gave quizzes in Stat 145 were more than twice 

as likely to pass the course than students whose instructors did not give quizzes, 

conditional on all other variables remaining constant. 
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Also of interest is the strength of a student’s mathematical ability, as measured 

by the standardized pre-college math aptitude exam (Test).  A student is 2.485 times 

more likely to pass the course (95% CI: (1.538, 4.015); p-value = 0.0011) for each 

increase in their standardized test score of 0.9103 points (equivalent to an increase of 

105.59 points on the SAT or 4.8 points on the ACT) with all other variables in the model 

are kept constant.  This indicates that students with increased math aptitude are more 

likely to pass the course versus students with presumably lower math aptitude, based 

on pre-college standardized testing. 

We now consider the variable GPA that compares new students to students who 

have had prior coursework at the University of New Mexico.  There appears to be no 

advantage for students with previous coursework performed at the University according 

to the odds ratio for this data set.  For the case of this study, the odds of a student with 

no prior experience at the University (Frosh) is almost equivalent to Upper Classmen 

with an odds-ratio of 1.036 for new students (95% CI: 0.453,  2.371). 

Odds ratio analysis of the categorical variables ethnicity and gender yield 

interesting, but less compelling results.  The logit model suggests Females are 1.495 

more likely to pass the course (95% CI: 0.803, 2.785) relative to Males, with all other 

variables kept constant.  The model also suggests that students of Hispanic or Other 

ethnic backgrounds are less likely, on average, to pass the course as compared to White 

students.  In the case of Hispanic versus White students, the odds ratio is 0.883 (95% CI: 

0.439, 1.774).  The variable “Other”  that includes students who reported their ethnicity 

as Asian, Black, Native American and Other, yielded an odds ratio of 0.916 (95% CI: 
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0.405, 2.072) when compared to White students and keeping all other variables 

constant.  However, these results all include an odds ratio of 1.0 within each confidence 

interval indicating that the odds-ratios for gender and ethnicity are not statistically 

significant. 

 

MODEL STRENGTH –LOGIT 

Receiver-Operator Characteristic (ROC) 

To validate the strength or predictive power of the derived logit model, analysis 

of the Receiver-Operator Characteristic (ROC) Curve and the associated area under this 

curve (c) was performed.  The ROC curve provides a method of mapping predicted 

binary outcomes, in the case of this study “pass” versus “not pass”, based on the 

derived model against observed values in the data set.  The ROC curve plots the 

proportion of true positive rates against false positive rates.  The true positive rate (TPR) 

yields the number of predicted positive results (i.e. “pass”) that correctly match the 

observed result.  The false positive rate (FPR) yields the number of predicted positive 

results that did not correctly match the observed result, in other words, when the 

model predicted a result of “pass” for a particular observation, but the actual observed 

value was “not pass.”   For this model, the proportion of the TPR (predicted “pass” to 

observed “pass”), or the percent concordant, was 73.9% versus the FPR (predicted 

“pass” to observed “not pass”), or the percent discordant, was 25.9% yielding an area 

under the ROC curve, c = .740.  This statistic implies that the model correctly predicts a 

student’s performance in the class (“pass” versus “not pass”), based on the explanatory 
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variables included in the model, approximately 74% of the time, which is an indication 

of strong predictive power (refer to TABLE 3.8 and Figure 3.1). 

 

Table 3.8 

Concordant/Discordant Values 

 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 73.9 Somers' D 0.480 

Percent Discordant 25.9 Gamma 0.481 

Percent Tied 0.2 Tau-a 0.063 

Pairs 31703 c 0.740 

 

Figure 3.1 

Receiver-Operator Curve 
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Figure 3.2 plots the probability a student will pass the course (with 95% 

Confidence Limits) against their standardized pre-college math aptitude score, Test (at 

gender = Male and ethnicity = White) for Quiz (vs. No Quiz), Time (AM/PM) and GPA  

(Frosh/UC).  Consistent with the derived model, as individuals’ standardized test score 

increases, the probability that they will pass the course increases, regardless of the time 

of day or if they were new students (Frosh) versus upperclassmen (UC).  Of considerable 

interest is the difference in the likelihood of passing the course for students with low 

math aptitude scores.  These students benefit significantly from quizzing.  The lower 

curves in the graph are associated with students who did not receive quizzing while the 

upper curves yield probabilities for students who received quizzing.  For students with 

standardized math aptitude scores approximately two standard deviations below the 

mean, the probability of passing the course increases at least 20% ( P (pass | no 

quizzing) ≈ .65 vs. P (pass | quizzing) ≈ .87). 
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Figure 3.2 

Probability to Pass Given: Quiz, Time, GPA by Test Score 

 

 

 

 

CROSS-VALIDATION - LOGIT 

Cross-validation of the data set was performed to estimate the general 

performance of the model’s ability to correctly predict if a student will pass or not pass 

the course (Refaeilzadeh, P., et al., 2007).  This method of cross-validation removes a 

subset of observations, called a testing set, and uses the remaining observations to 

create the model, referred to as the training set.  The subsequent model is then used to 

predict results for the testing set and then compares the predicted results to the 

observed results in the testing subset.  For this study the SAS macro CVLR, using a 
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Monte-Carlo selection method to create the training set, was employed to perform the 

cross-validation procedure.  Thirty percent (30%) of the data was used as the testing set 

while the remaining 70% of the data was used for the logistic regression.  The cross-

validation method was employed 1,000 times, each time yielding the percent correctly 

classified.  The CVLR procedure then averages the percent correctly classified for all 

iterations of estimable models.  The results of this procedure were compelling, yielding 

a mean percent correctly classified of 92.92% with a Monte Carlo standard error of 

0.05%. 

 

LIMITATIONS – LOGIT 

 Because there were several cases where values were not reported, imputation of 

observations for several missing variables was employed.  Initially, the Investigator 

attempted to use available quantitative variables and employ multivariate linear 

regression techniques to impute missing values.  These models (used to impute 

standardized SAT/ACT math scores (“Test”)) were not robust; therefore the mean of 

observed scores was used to impute these values. (Greenless, J.S., et al., 1982)  Using 

this method of imputation introduces bias into the model because we assume the 

observations with missing standardized math scores have an average standardized score 

of approximately 0.1712.   In addition, the process of multiple imputation can lead to 

inaccurate parameter estimates, standard errors and hypothesis tests (Little, R.J.A. & 

Rubin, D.B., 1987). 
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As cited earlier, some argue that small cell counts for categorical variables can 

lead to inaccurate parameter estimates.  According to Peduzzi (1996) the minimum 

number of events per variable (EVP) is 20.  "Logistic regression is a large sample method. 

A rule of thumb is that there should be at least 10 'yes's and 10 'no's, and preferably 20, 

for each predictor variable” (Peduzzi, P., et al. 1996).  The Investigator felt that because 

this was an observational study the influence of confounding variables outweighs this 

school of thought and decided to retain this factor in spite of small cell counts. 

 

ANALYSIS – Hierarchical Linear Model (HLM) / Mixed Model 

A mixed model, sometimes referred to as an HLM, was used to describe the 

relationship between administration of quizzes in the course and students’ final exam 

score (FES), a continuous response variable, while adjusting for other variables.  The 

general form of the mixed model is: 

[3]        ,Y X Zβ τ ε= + +  

In this model, Y is an (n x 1) vector of response variables where X is an (n x p) design 

matrix of predictors (including a column of 1s, n = 696); β  is a p-dimensional vector of 

fixed-effects parameters, Z is an (m x 1) vector of instructors (m is the number of 

instructors), and τ  is a (1 x m) vector of random effects.  It is assumed that 

2   (0,   I)pN ττ σ∼ ,  2   (0,   I)nN εε σ∼  and ( )cov , 0τ ε = , where Ik is an (k x k) identity 

matrix.   

It is worth noting that usually there is no interest in comparisons among the 

levels of random effects.  Rather, there is interest in studying the variability of these 
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effects or in controlling for that variation so that we can derive reliable conclusions 

about fixed effects. 

The following explanatory variables were used to fit the full model to estimate 

the Final Exam Score (FES) for students whose instructors participated in the study: 

Quiz, Test, Credits Attempted, GPA (college), Gender, Ethnicity and Time.  The 

Investigator used a Z-test for Covariance Parameter Estimates (H0: 2 = 0τσ  vs. H1: 

2 > 0τσ ) to determine if the random effects due to instructors are significant.  

All analyses were performed using type III sum of squares to account for unequal 

sample sizes for evaluating parameters associated with the model’s fixed effects.  Least 

Square Means (LSM) were used to construct 95% confidence intervals for predicted final 

exam scores given students’ were (or were not) administered quizzes during the course.  

SAS procedures PROC CORR and PROC SGSCATTER (SAS Institute, 2012) were used to 

calculate Pearson Correlation Coefficients and to construct Correlation Scatter Plot 

matrices respectively. 

To adjust for possible confounding effects due to the variables Test, Credits 

Attempted, GPA (college), Gender, Ethnicity and Time, a regression analysis, taking into 

account random effects (using SAS PROC MIXED), was employed to examine if there 

were significant differences between students' quizzing status with respect to 

achievement (final exam scores). We note that PROC MIXED fits random effects models 

in order to accommodate several sources of variation instead of just one as stated in [1].  

Finally, Tukey-Kramer’s test was used to explore pair-wise comparisons between levels 

of the categorical variables used in the final model (see Methods). 
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MODEL SELECTION - HLM 

Missing values for students’ standardized pre-college math exam (Test) were 

imputed using the sample mean similar to the logit model multiple imputation method.  

A scatterplot diagram of the response and explanatory variables was generated to 

determine if any of the explanatory variables were highly correlated with each other, 

thus allowing the opportunity for variable reduction prior to fitting the full model 

(Figure 3.3).  The scatterplot diagram and a Pearson Correlation Matrix (Table 3.9) show 

that GPA Credits, Credits Attempted and GPA Credits Earned were highly correlated with 

each other.  Credits Attempted was the most highly correlated of these variables with 

the Final Exam Score.  To reduce potential multicollinearity, the Investigator chose to 

use only Credits Attempted for the purposes of fitting the full model. 

 



36 

Figure 3.3 

  Scatterplot Diagram for Model Response and Explanatory Variables 
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Table 3.9 

Pearson Correlation Coefficients 

 

 

Prob > |r| under H0: Rho=0 

Number of Observations 

 

Final Exam 

Score 

Credits 

Attempted 

Credits 

Earned 
GPA 

(college) 

GPA 

Credits H.S. GPA Test 

Final Exam Score 1.00000 

 

818 

-0.05514 

0.1151 

818 

-0.01997 

0.5685 

818 

0.33797 

<.0001 

610 

-0.01893 

0.5887 

818 

0.34317 

<.0001 

364 

0.22920 

<.0001 

695 

Credits 

Attempted 

-0.05514 

0.1151 

818 

1.00000 

 

818 

0.97341 

<.0001 

818 

-0.23736 

<.0001 

610 

0.71537 

<.0001 

818 

-0.17125 

0.0010 

364 

-0.26765 

<.0001 

695 

Credits Earned -0.01997 

0.5685 

818 

0.97341 

<.0001 

818 

1.00000 

 

818 

-0.15288 

0.0002 

610 

0.73575 

<.0001 

818 

-0.12110 

0.0208 

364 

-0.24522 

<.0001 

695 

GPA (college) 0.33797 

<.0001 

610 

-0.23736 

<.0001 

610 

-0.15288 

0.0002 

610 

1.00000 

 

610 

-0.22638 

<.0001 

610 

0.35102 

<.0001 

340 

0.22665 

<.0001 

539 

GPA Credits -0.01893 

0.5887 

818 

0.71537 

<.0001 

818 

0.73575 

<.0001 

818 

-0.22638 

<.0001 

610 

1.00000 

 

818 

-0.07201 

0.1704 

364 

-0.25744 

<.0001 

695 

H.S. GPA 0.34317 

<.0001 

364 

-0.17125 

0.0010 

364 

-0.12110 

0.0208 

364 

0.35102 

<.0001 

340 

-0.07201 

0.1704 

364 

1.00000 

 

364 

0.36916 

<.0001 

349 

Test 0.22920 

<.0001 

695 

-0.26765 

<.0001 

695 

-0.24522 

<.0001 

695 

0.22665 

<.0001 

539 

-0.25744 

<.0001 

695 

0.36916 

<.0001 

349 

1.00000 

 

695 

 

As in the logit model, the researcher used an indicator variable to account for 

the difference between students “new” to the University and upper-class students. The 

reference for this variable is cited as “UC”, or upper-classmen, while the alternative is 

cited as “Frosh” for freshman/new students. 

After fitting the full model and a review of diagnostics was completed, it was 

determined that the assumption of constant variance was violated.  A Box-Cox 

procedure was employed to determine the best power transformation for the response 
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variable, yielding 1.7λ = .  It was determined that a square transformation on the 

response variable, Final Exam Score (FES), corrected the non-constant variance issue.  

Estimating conditional variance components associated with the random 

(instructor) effects was performed.  The total error associated with the model is 

2 2 5,644, 3 6  3 τ εσ σ+ = . The variance component estimate associated with instructor 

effects is 2   357,063τσ =  while the value of the estimate for fixed effects is 

εσ =2   5,287,243 . The interclass correlation (ICC) yields the proportion of the total 

variance between instructors:  

[4]  ICC = 2
τσ  / ( 2 2  τ εσ σ+  ) = 0.0633. 

This value indicates that approximately 6.33% of the total variation in the model is 

associated with instructors.  The remaining variation is associated with the residuals of 

the fixed effects retained in the model.  

Covariance parameter estimates using the 2
χ - test for the instructor random 

effects terms ( iτ ) were significant at α = 0.05.  The SAS output yields a p-value = 0.0579, 

however, “testing the significance of variance components is a nonstandard problem 

since the null hypothesis (i.e., random effects has zero variance) is on the boundary of 

the parameter space of the alternative hypothesis” (Van Dongen, S., et al., 1999).  Van 

Dongen suggests that dividing the p-value by two yields a corrected level of significance, 

in this case a p-value = 0.02895 (Refer to Table 3.10).   
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Table 3.10 

Covariance Parameter Estimates 

 

Cov Parm Estimate 

Standard 

Error Z Value Pr > Z 

INSTRUCTOR 357063 227036 1.57 0.0579 

Residual 5287243 286670 18.44 <.0001 

 

The final reduced model is: 

2

1 1 2 2 3 3 4 4 5 5 6 6 7 7

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

[5]       

                    

o i i i i i i ii

ii i i i i i i i i i

x x x x x x xy

z z z z z z z z z z

β β β β β β β β

τ τ τ τ τ τ τ τ τ τ ε

= + + + + + + + +

+ + + + + + + + + +
  

for i = 1, 2, … , 696 

The HLM parameters and variables are defined in Table 3.11 as follows: 

Table 3.11 

HLM Parameters and Variables 

 

Parameter Variable Definition Reference for Indicator 

β1 X1 Test  

β2 X2 Time (AM) PM 

β3 X3 Gender (F) Male 

β4 X4 Ethnicity (H) White 

β5 X5 Ethnicity (O) White 

β6 X6 Quiz No Quiz 

β7 X7 GPA (Frosh) UC 

τ1 Z1 Instructor A  

τ2 Z2 Instructor B  

τ3 Z3 Instructor C  

τ4 Z4 Instructor D  

τ5 Z5 Instructor E  

τ6 Z6 Instructor F  

τ7 Z7 Instructor G  

τ8 Z8 Instructor H  

τ9 Z9 Instructor I  

τ10 Z10 Instructor J  
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RESULTS - HLM 

The primary variable of interest, Quiz, was marginally significant (p-value = 

0.0567).  The variables TEST (p-value < 0.001) and Gender (p-value = 0.012) were both 

found to be significant at α = 0.05.  To account for confounding effects the variables 

Time, Ethnicity and GPA were retained in the final model, although all parameter 

estimates associated with these variables were deemed not statistically significant (refer 

to Table 3.12). 

Table 3.12 

Solution for Fixed Effects 

 

Effect Ethnicity Quiz Gender Time GPA Estimate Standard Error DF t Value Pr > |t| 

Intercept      4491.51 343.45 8 13.08 <.0001 

Test      927.95 128.28 680 7.23 <.0001 

Time    AM  -115.16 260.54 680 -0.44 0.6586 

Gender   F   457.50 182.12 680 2.51 0.0122 

Ethnicity H     281.22 202.53 680 1.39 0.1654 

Ethnicity O     288.64 231.23 680 1.25 0.2123 

Quiz  Quiz    860.55 450.83 680 1.91 0.0567 

GPA     Frosh -83.0814 228.13 680 -0.36 0.7158 

 

 

We note that the prediction for each student is the sum of the solution for fixed effects 

plus the solution for random effects found in Table 3.13.  The solution for random 

effects reveals that the source of variation between instructors is due to instructors B, E 

and H which is illustrated in Figure 3.4. 
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Table 3.13 

Solution for Random Effects 

 

Effect INSTRUCTOR Estimate Std Err Pred DF t Value Pr > |t| 

INSTRUCTOR A 342.77 337.59 680 1.02 0.3103 

INSTRUCTOR B 810.95 382.59 680 2.12 0.0344 

INSTRUCTOR C -197.22 375.54 680 -0.53 0.5996 

INSTRUCTOR D 228.17 391.21 680 0.58 0.5599 

INSTRUCTOR E -613.49 329.02 680 -1.86 0.0627 

INSTRUCTOR F -371.65 377.69 680 -0.98 0.3255 

INSTRUCTOR G -316.00 370.03 680 -0.85 0.3934 

INSTRUCTOR H 696.41 344.25 680 2.02 0.0435 

INSTRUCTOR I -109.69 374.50 680 -0.29 0.7697 

INSTRUCTOR J -470.25 414.41 680 -1.13 0.2569 

 

 

Figure 3.4 graphically displays the distribution of conditional residuals for each 

instructor who participated in the study.  Analyzing the box plots for instructors B, E and 

H confirm the larger variation estimates cited in Table 3.13. 
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Figure 3.4 

Distribution of Final Exam Score-Squared by Instructor 

 

 

 

Means Comparisons 

Means comparisons for levels within the following categorical variables were 

performed: Quiz, Ethnicity, Gender, Time and GPA.  LS Means comparisons for the 

factors Ethnicity, Time and GPA were not found to be statistically significant.  Plots and 

Tukey-Kramer Multiple Comparison output for these factors can be found in Appendix 

A.  The computed LS Means are for the squared final exam score, the power 

transformation required to adjust for non-constant variance of the initially fitted model. 



43 

Tukey-Kramer tests the null hypothesis that means of the factor levels are equal 

versus the alternative that at least one of the factor level means is different.  The test 

also assumes observations are independent and variance across observations is 

constant.  The test performs multiple comparisons simultaneously, which controls the 

overall probability of a Type-1 error, α (the probability of rejecting the null hypothesis 

when the null hypothesis is true). 

 

Quiz – LS Means Comparison 

A Tukey-Kramer t-test was performed for the factor Quiz which has two levels: 

Quiz and No Quiz as defined in the Methods section.  Estimates for the LS Means for the 

squared final exam scores and associated confidence intervals are given in Table 3.14 for 

each factor level.  The actual mean estimates and 95% confidence intervals for final 

exam scores (out of 100) are:  Quiz (LS Mean Est. = 76.26; 95% CI: 71.91, 80.38); No Quiz 

(LS Mean Est.  = 70.39; 95% CI: 65.95, 74.57). 

The results of the Tukey-Kramer adjusted t-test (Table 3.15) indicate that the 

difference between administering quizzes and not administering quizzes is marginally 

significant (p-value = 0.0567).  Figure 3.5 further illustrates that there appears to be a 

difference between students who received quizzes versus students who did not receive 

periodic quizzing. 
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Table 3.14 

Quiz Least Squares Means 

 

Quiz Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

Quiz 5815.73 328.45 680 17.71 <.0001 0.05 5170.83 6460.63 

NO Quiz 4955.16 308.44 680 16.07 <.0001 0.05 4349.56 5560.77 

 

 

Table 3.15 

Tukey-Kramer Adjusted t-test for Quiz 

 

Differences of Quiz Least Squares Means 

Adjustment for Multiple Comparisons: Tukey-Kramer 

Quiz Quiz Estimate 

Std. 

Error DF t Value Pr > |t| Adj P Alpha Lower Upper 

Adj 

Lower 

Adj 

Upper 

Quiz NO 

Quiz 

860.57 450.89 680 1.91 0.0567 0.0567 0.05 -24.7354 1745.87 -24.7356 1745.87 

 

 

Figure 3.5 

LS Means Comparison of Final Exam Score-Squared by Quiz 
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Gender – LS Means Comparison 

 The Tukey-Kramer t-test for the factor Gender as associated with the response 

variable “Final Exam Score” indicates that there is a significant difference when 

comparing females and males (p-value = 0.0122).  Root adjusted LS Mean values for final 

exam scores and associated confidence intervals are as follows:  Females: {LS Mean = 

74.93, (71.80, 77.93)}; Males: {LS Mean Est. = 71.81, (68.29, 75.17)}.  See Tables 3.16 

and 3.17.  Figure 3.6 graphically displays the difference in LS Means between males and 

females, with the scale being final exam score squared. 

 

Table 3.16 

Gender Least Squares Means 

 

Gender Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

F 5614.20 233.92 680 24.00 <.0001 0.05 5154.91 6073.49 

M 5156.70 251.45 680 20.51 <.0001 0.05 4662.98 5650.41 

 

 

Table 3.17 

Tukey-Kramer Adjusted t-test for Gender 

 

Differences of Gender Least Squares Means 

Adjustment for Multiple Comparisons: Tukey-Kramer 

Gender Gender Estimate Standard Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

F M 457.50 182.12 680 2.51 0.0122 0.0122 0.05 99.9284 815.08 99.9283 815.08 
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Figure 3.6 

LS Means Comparison of Final Exam Score-Squared by Gender 

 

 

 

 

DIAGNOSTICS - HLM 

The model assumptions for the HLM are non-constant variance of error terms, 

normal distribution of error terms and independence of error terms.   

Figure 3.7 yields the diagnostic results for the model.  The plot of predicted 

values versus the residuals indicates no violation of constant variance, with no apparent 

pattern to the scatter plot (e.g. random).  Also the residuals are found to be roughly 

normally distributed with mean 0 and standard deviation of 1 and they fall primarily 

within 2 standard deviations of the center and are randomly scattered about zero, with 

few observations deviating from this trend.  The Q-Q Plot indicates no evident deviation 
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from normality.  Further, the histogram shows that the distribution of residuals is 

slightly left-skewed, however; this assumption could be relaxed due to homogeneity of 

variance.  The interpretation is that the assumptions of normally distributed error terms 

and constant variance are not violated. 

 

 

 

Figure 3.7 

Diagnostic Plots and Residual Statistics for the HLM 
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LIMITATIONS – HLM 

 As with the logit model, due to the fact there were several cases where values 

were not reported, multiple imputation of missing observations for the variable “Test” 

was used.  This method, as previously discussed, introduces bias by assuming that all 

students with missing standardized math test scores are “average” students.  

Furthermore, Little and Rubin (1987) argue that multiple imputation can lead to 

inaccurate estimates for parameters, standard errors and hypothesis tests. 

 Also, the assumption of normally distributed error terms for the random effects 

associated with instructors is hard to evaluate due to the small number of instructors in 

the sample.  In particular, there were only 10 instructors included in this study, 

therefore, when performing diagnostics on the final model, we only considered the 

conditional studentized residuals which correspond to the students, not instructors.  
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CHAPTER 4:  ANALYTICAL CONCLUSIONS 

 

LOGISTIC REGRESSION MODEL 

 The purpose of the logistic regression model was to determine the relationship 

between quizzing status in an introductory college-level statistics course and the 

likelihood students pass the course (i.e., receive a grade of C or higher).  Results suggest 

that a student who receives periodic quizzing, while holding all other variables constant, 

is over six times more likely to pass the course when compared with students who 

receive no quizzing.  It also appears that, for each increase of 0.9103 points of the 

standardized math aptitude score, while holding all other variables constant, students 

are nearly 2.5 times more likely to pass the course. 

 In addition, it was shown that students who have low prior achievement 

differentially benefit from quizzing.  Students with very low standardized math aptitude 

scores (approximately two standard deviations below the mean) are at least 20% more 

likely to pass the course if quizzes are administered by their instructor. 

 Non-significant variables were retained in the model to account for potentially 

confounding effects.  These variables were gender, the time of day the class was taken 

(AM versus PM), ethnicity (white, Hispanic, other) and students new to the University 

(Frosh) versus upperclassmen (UC).  All of these variables included a value of 1 in their 

respective confidence intervals for odds-ratio estimates. This indicates that there was 

no significant difference in the probability a student would pass the course based on 

these factors given the other factors remained constant. 
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 The model is considered good based on the ROC area under the curve value (c = 

0.740) (Jones, C.M. & Athanasiou, T., 2005), indicating that the model correctly predicts 

the observed value “pass” 74% of the time.  The Monte-Carlo Cross Validation method 

was employed to further determine the model’s strength at correctly predicting if a 

student passes or does not pass the course.  The cross-validation procedure correctly 

classified pass or not pass at a rate of 93% for 1,000 iterations. 

 

HIERARCHICAL LINEAR MODEL (HLM) / MIXED MODEL 

 A Hierarchical Linear Model (HLM) was fitted for the data to evaluate the 

relationship between quiz status and students’ final exam score.  The HLM was 

employed to account for variability associated with different instructors that could not 

be accounted for quantitatively.  The model takes into account that students who have 

the same instructor are highly correlated.  As a result, the model reduces the noise 

associated with variability due to instructors allowing us to more readily evaluate the 

fixed effects of quizzing on students’ final exam score. 

 A power transformation was required to correct for non-constant variance after 

initially fitting the model.  Results of the HLM analysis indicate a positive association 

between students who have instructors who administer quizzes and students’ final 

exam scores, with the parameter estimate being marginally significant at α = 0.05 (p-

value = 0.0567).  Random effects associated with instructors were considered significant 

(p-value = 0.02895) and accounted for approximately 6% of the variability within the 

model. 
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 LS Means comparisons using a Tukey-Kramer t-test were performed for the 

variable “Quiz.”  The difference in LS Means was found to be significant at α = 0.05 (p-

value = 0.0567) with a mean final exam score of 76.26 out of 100 for students who 

received quizzing versus 70.39 out of 100 for students who did not receive quizzing. 

 Both the logistic regression model and the HLM suggest that quizzing has a 

positive association with students’ performance in the introductory statistics course on 

which this observational study was based.  However, observational studies always run 

the risk of finding correlations that mask real relationships because truly predictive 

variables are unobserved. For example, it is possible that instructors’ use of quizzing is 

correlated with another unobserved variable that actually predicts performance in this 

introductory statistics course. For this reason, we cannot conclude that it was the 

quizzing per se that explains the phenomena we observe in the data. Due to the 

limitations of collecting and analyzing data in an observational study, an experiment, 

controlling for random effects due to students within classrooms and variability 

between instructors, would provide more robust results, allowing us to better 

determine the impact of quizzing in an introductory college level statistics course. 
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CHAPTER 5:  DISCUSSION 

 

The two models used to analyze the effect of quizzing on student success were 

developed based on the response data collected by the Investigator: students’ final 

exam scores and students’ final letter grades.  The Investigator explored the likelihood 

that a student would pass STAT 145 given that quizzes were administered by the 

instructor. A probabilistic method, employing a logistic regression model was used to 

model the binary response of either passing or not passing the course.  The Investigator 

used a grade of “C” or higher to define “passing.”  Logit modeling is a commonly 

employed statistical regression method used for dichotomous categorical outcomes 

given a set of explanatory variables. 

For the continuous random variable, final exam score, a predictive modeling 

method using a hierarchical linear model (HLM) was employed.  The purpose of using an 

HLM versus a single-level multiple regression model is to account for variation between 

instructors.  As Raudenbush and Bryk argue, ignoring this variation may lead to 

inaccurate estimates of the response variable in terms of its association with 

explanatory variables included in the model (Raudenbush, S. & Bryk, A.S., 1986). 

 

LOGISTIC REGRESSION MODEL (LOGIT) 

 To analyze the probability a student passes STAT 145 at the University of New 

Mexico, the Investigator employed a logit model.  Results of this probabilistic modeling 

method are consistent with the results of the HLM, that quizzing has a positive impact 
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on student achievement in the large undergraduate core statistics course investigated in 

this study.  The parameter estimate for quizzing in the logit model (0.8969, p-value = 

0.0012) indicates a positive association between quizzing and the likelihood a student 

passes the course with a grade of “C” or higher. 

Odds-ratio results for quizzing indicate that a student is approximately 6 times 

more likely to pass the course given quizzing versus similar students who do not receive 

quizzing.  It is important to note the lower bound of confidence interval associated with 

the odds-ratio estimate of 6.013 (95% CI: 2.030, 17.813), indicating that a student who 

receives quizzing is at least two times more likely to pass the course with the probability 

of making a Type I error less than 5%.  

 The logit model also indicates that math aptitude is an important factor when 

predicting how well a student will perform in STAT 145.  Math aptitude, as measured by 

the standardized SAT/ACT score (“Test”), was shown to be significant within the model 

(p-value = 0.0002).  The point estimate for the odds-ratio associated with the variable 

“Test” indicates that for each increase of 0.9103 points of the standardized math 

aptitude score students are nearly 2.5 times more likely to pass the course than 

students who receive a score equivalent to the standardized national average.  Once 

again, this result is consistent with the HLM giving further evidence that quizzing 

positively affects student achievement in the course. 

 Of note is that gender did not appear to make a difference in terms of a 

student’s likelihood to pass the course.  The parameter estimate for gender was not 

significant (p-value = 0.2050).  While the point estimate for the odds-ratio of gender 
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indicates that females are 1.5 times more likely to pass the course than males, closer 

inspection of the confidence interval associated with this estimate shows that the 

interval contains 1.0 (95% CI: 0.803, 2.785).  The interpretation of this observation is 

that gender does not play a significant role when determining if a student will pass the 

course or not.  As Christensen (1990) points out, “…if the odds ratio is one, the two sets 

of odds are equal”; the interpretation for gender is that it is not relevant if a student is 

male or female in terms of the likelihood of passing the class because the confidence 

interval contains one (i.e. equal likelihood to pass the course). 

 The Investigator felt it important to determine the predictive strength of the 

logit model by performing cross-validation using a Monte Carlo selection method to 

create training and testing sets.  The results of the cross-validation (CV) were compelling 

such that the model correctly classified students as either passing or failing the course 

approximately 93% of the time for 1,000 simulated models generated from the data set.  

This method of cross-validation was selected as previous studies indicate that, although 

methods such as bootstrapping and jack-knife are good measures of model accuracy, 

multiple-fold CV (in this study 1,000-fold) tends to yield equivalently accurate results, 

especially for models with multiple categorical variables (Kohavi, R., 1995). 

 The second method the Investigator used to determine how well the logit model 

predicts if a student will pass the course was through analysis of a Receiver-Operator 

Curve and the associated area under the curve (AUC).  This curve yields the percent 

concordant and discordant, as discussed in the analysis section.  The AUC is denoted by 

“c” and is a measure of the percent concordant as determined by the model.  For this 



55 

study c = 0.740, or correctly predicts a student passing or not passing the course 74% of 

the time.  Jones and Athanasiou developed a “scale” to determine the accuracy of the 

AUC.  “A fair test shows better than average accuracy, and has an AUC above 0.5. To 

demonstrate excellent accuracy, the AUC should be in the region of 0.97 or above. An 

AUC of 0.93 to 0.96 is very good; 0.75 to 0.92 is good. Less than 0.75 can still be 

reasonable but the test has obvious deficiencies.”  They go on to say “It is important to 

remember that the AUC must be interpreted according to the context of the individual 

analysis and that these guidelines are not absolute.” (Jones, C. & Athanasiou, T., 2005)  

Park, Goo, and Jo state that “The closer AUC is to 1, the better the overall diagnostic 

performance of the test, and a test with an AUC value of 1 is one that is perfectly 

accurate…” (Park, S.H., et al., 2004).  Of course an AUC of 0.5 is merely the same as 

flipping a coin when trying to predict if a student passes or does not pass the course.  

Park, Goo, and Jo go on to say, “A diagnostic test with an AUC value greater than 0.5 is, 

therefore, at least better than relying on pure chance, and has at least some ability to 

discriminate between subjects…” (Park, S.H., et al., 2004). The Investigator argues that, 

for an observational study with no experimental controls, an AUC of 0.74 is high enough 

to provide some evidence of the impact of quizzing on student success. This study 

suggests that further, more careful research into the effects of quizzing on student 

success is warranted.   
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HIERARCHICAL LINEAR MODEL (HLM) / MIXED MODEL 

It was shown that there is a positive association between a student’s final exam 

score and the administration of quizzes.  For example, a white, male upperclassman, 

with an average standardized SAT/ACT score who takes the course in the afternoon is 

predicted to score 6% higher on the final exam if quizzes are administered. This is 

consistent with the Investigator’s research hypothesis for this study; in other words, 

students’ performance in an introductory college level statistics course can be improved 

by the implementation of periodic quizzing.  A similar study to determine if online 

quizzing techniques (SRS and WEB CT based quizzes) affected student achievement 

using a randomized experimental design was performed by researchers at the Catholic 

University of America. The study, as cited in the introduction of this paper, involved 

nursing students taking a “General, Organic, and Biochemistry course”. Their study 

showed that WebCT-based quizzes “have a significantly positive effect on student 

achievement on teacher written exams.”  In addition, their study yields a mean score on 

teacher-written exams of 89.87% (s = 12.25) versus 75.18% (s = 15.41) when no quizzing 

was employed (Bunce, D.M., et at., 2006).  Their study used multiple linear regression 

for analysis but did not employ an HLM to account for random effects associated with 

instructors. 

The HLM in this study found the variation between instructors to be significant 

(p-value = 0.02895).  The ICC of 0.0633 indicates that variability between instructors 

accounts for 6.33% of the total variation in the model.  Considering that data used to 
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construct the model utilized the 696 observations associated with students, the 

variability associated with instructors is important.  By employing an HLM, the “noise” in 

the model is reduced through accounting for instructor random effects, thereby 

allowing the Investigator to more accurately estimate the true effect of quizzing on final 

exam scores (Raudenbush, S. & Bryk, A.S., 1986). 

Another interesting but somewhat expected result of the HLM is that math 

aptitude, accounted for by a standardized SAT or ACT score for each student, was found 

to be significant (p-value < 0.0001).  Research by Goldstein and High (1992) indicate that 

math aptitude has a positive association with achievement in college level business 

statistics, supporting the results of this study. 

Consider comparing an “average” math student, one near the 50
th

-percentile of 

standardized math scores, versus a “good” math student, one who is in the upper 15
th

-

percentile (or one standard deviation above the mean).  If we observe a white, male, 

upperclassman that takes an afternoon course and is administered quizzes, the simple 

effect of being a “good” math student versus an “average” math student (as measured 

by SAT/ACT) results in an estimated 5.66% increase on the final exam score (84.9% 

versus 79.24%, respectively). 

 The last explanatory variable that was significant within the HLM is gender.  

Numerous studies have been conducted to determine if there are differences in the 

quality of students based on gender, often with conflicting results.   In a study that 

focused on how men and women approached taking college level courses, it was 

determined that women, in general, were better students (Zusman M., et al., 2005).  
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However studies that compared men and women in terms of math aptitude have shown 

that men often times outperform women (Felson, R.B. & Trudeau, L., 1991).   

According to the HLM and the Tukey-Kramer adjusted t-test for gender, results 

from this study indicate that women scored higher on the final exam in STAT 145.  

Comparing the gender response estimates for white, upperclassmen with an average 

math aptitude (50
th

-percentile) who takes the course in the afternoon, females are 

predicted to score 3 percentage points higher on the final exam.  Although this value 

does not account for a half letter grade increase (considered to be approximatley 5%), it 

does appear that female students at UNM tend to perform better in STAT 145 versus 

their male counterparts. 

 

CONFOUNDING VARIABLES 

In this paper, the final HLM and logit models retained several explanatory 

variables that were not significant but may have potentially confounding effects on the 

response had they not been kept in the model.  The variables retained are associated 

with variation between students that the Investigator could not control for due to the 

fact that this is an observational study.  Leaving these variables in the model is similar to 

accounting for instructor variation, however the variables retained are considered fixed 

in the context of the model(s).  The factors retained for each model are cited in Table 

5.1. 



59 

 

 

Table 5.1 

Confounding Variables Retained 

 

Variable Explanation Model Retained In 

Time AM/PM HLM and Logit 

Gender Female/Male Logit 

Ethnicity Hispanic/White/Other HLM and Logit 

GPA (college) New Student 

(Frosh)/Upperclassman 

HLM and Logit 

  

By retaining factors that are statistically not significant but may still influence the 

response variable the Investigator argues that a more accurate estimate of the influence 

of quizzing on the response variable can be determined.  Prentice (1976) points out that 

retaining variables (in a logit model) that are either known or assumed to influence the 

response variable “leads to a direct estimation of the odds ratio associated with the 

(response) and of the dependence of the odds ratio on other explanatory variables.”  

Retaining non-significant demographic variables to adjust for confounding effects in 

regression models is not uncommon.  In a study to determine the association of air 

pollution and lung function growth the authors retained gender and ethnicity (as well as 

other non-significant, but potentially confounding variables) in their model to adjust 

“for subject-specific covariates” (Gauderman W.J., et al., 2000). 

 Multiple studies on gender and student achievement have been performed, 

yielding some evidence that gender can influence student learning and material 

retention.  In particular, studies have been performed to determine if the time of day 
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students take classes impacts their performance, (Klein, J., 2001; Morton, L.L. & 

Kershner, J.R., 1985; Morton, L.L. & Kershner, J.R., 1993).  Results from these studies 

indicate that the time of day can influence learning and retention; however other 

dependencies such as the age of students also influenced if they were more successful 

in the morning versus the afternoon.  Because these studies imply that time of day does 

influence student learning but there is no consensus with regards to which time of day is 

most influential, the Investigator chose to retain this variable to account for differences 

between students’ time choices. 

 Similarly, ethnicity and GPA (college) were also retained in both models 

developed for this study.  As discussed in the methods section of this paper, GPA was 

converted to an indicator variable with the factor “FROSH” defining the population of 

students “new” to university studies (no college GPA) versus upperclassmen (UC), or 

students with previous college experience.  The Investigator recognized that these two 

populations are essentially different and felt it is necessary to include a variable 

accounting for such differences in both models.  Alternatively the study could have 

retained the continuous random variable “GPA” and analyzed the subset of students 

with previous college experience, i.e., students with a college GPA at the time of the 

study.  The Investigator recognizes that information is lost due to converting the 

continuous random variable to an indicator function however we do not expect this 

transformation to influence the final results. 

 Student ethnicity and its effect on scholastic achievement has been a topic of 

interest debated by educators and school administrators for many years (Trueba, E.H., 
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1997).  Studies indicate there are differences associated with student success as it 

depends on ethnicity (Strage, A., 1999) however there is no definitive method for 

classifying ethnicity.  Classification can be limited by the ethnicities a student is 

“allowed” to choose from when submitting demographic information to the University.  

As a result, the Investigator retained this factor, as well, to account for differences 

between students’ demographic background as it pertains to ethnicity. 

 

FUTURE STUDIES 

 Results from this study are consistent with the notion that quizzing has a positive 

impact on student success in a college level core statistics course.  Because this is an 

observational study, the Investigator was limited in terms of “matching, randomization, 

random sampling, and other methods of controlling extraneous variation.” (Rubin, D.B., 

1974)  Limitations associated for control over random effects were accounted for 

through use of a hierarchical linear model.  Non-significant variables with potentially 

confounding effects on the response variables evaluated were retained to further 

control for variation between students.  To control for variation between students and 

instructors the Investigator proposes that a randomized, designed experiment be 

performed.  The purpose of a designed experiment is to be able to estimate the counter 

factual through random assignment.  Also, to conclude that quizzing causes students to 

perform better, a well designed experiment is the preferred method over “the use of 

carefully controlled nonrandomized data to estimate causal effects.” (Rubin, D.B., 1974)  

Rubin goes on to state that use of controlled nonrandomized data is often “a reasonable 
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and necessary procedure in many cases,” however experimental data should be used, 

when possible, in lieu of nonrandomized data “especially in the social sciences where 

much of the variability is often unassigned to particular causes.” (Rubin, D.B., 1974) 

 One possible experiment is to create four equal size sections for STAT 145, with 

two instructors teaching two sections each.  Students would be randomly assigned to 

each section in an attempt to account for demographic differences between students 

(gender, ethnicity, etc.).  To account for time of day, the first two sections would be 

taught simultaneously, with one section/instructor administering quizzes while the 

other does not.  For example, Instructor A would teach Section 1 at 10:00 AM and 

administer quizzes, while Instructor B, teaching Section 2 at 10:00 AM would not 

administer quizzes.  At 11:00 AM Instructor A would teach Section 3, but not administer 

quizzes while Instructor B would teach Section 4 and administer quizzes.  The format of 

all four sections, in terms of course structure, grading format, number of quizzes, the 

type of quizzes, etc. would be the same.  This design would help control for the 

potential confounding effects on the response variable of interest and allow us to 

conclude if quizzing causes improved student performance.  Of course there still is 

variation between different students and different instructors; however it is hoped that 

this design would reduce a substantial amount of this variation, allowing for a more 

direct analysis of the association between quizzing and student success. 
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CHAPTER 6:  CONCLUSION 

 

 Education administrators and instructors are constantly seeking pedagogical 

methods to improve student learning of core subject content in mathematics and 

statistics.  In addition, there is a need for administrators and instructors to assess how 

well students understand the material being taught.  This can be challenging for classes 

with a large number of students, as is often the case with entry level or “core” courses 

offered by colleges and universities.  One technique of “low-stakes” assessment and 

instruction is the implementation of periodic quizzing.   

Quizzing, when effectively administered, allows students to solve problems in a 

“testing environment” without the grading impact of an exam, which typically accounts 

for a higher percentage of students’ final course grade.  Another benefit for students is 

that, through the process of studying for and taking a quiz, they become better 

prepared for exams which ultimately can assist them passing the course. Quizzing also 

allows educators to periodically assess student understanding of specific subject matter, 

as quizzes usually focus on only one or two concepts.  This methodology allows the 

instructor to augment instruction during the course of a semester so that they can focus 

attention on subject matter that students may be struggling with as assessed through 

quizzing, which further benefits the students. 

This study is consistent with the hypothesis that quizzing positively impacts 

student achievement in a college level statistics course as measured by final letter 

grades and final exam scores.   Although further investigations are needed to 
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demonstrate a causal link between quizzing and performance as well as to determine 

the best way to employ quizzes it, should be encouraging to students, instructors and 

education administrators that this pedagogical technique shows promise in assisting 

students to become proficient in the subjects they choose to study. 
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APPENDIX A 

 

POST – SEMESTER QUESTIONNAIRE: 

Research Study:  Post- Semester Questionnaire (Fall 2011) 
 

“The Relationship of Quizzing and Student Success in A College Level Core Statistics Course” 
 

You have agreed to participate in a research study being conducted by David M. Glavin, Graduate 
TA in Statistics on the relationship between quizzing and student success in college level core 
statistics courses.   
 
Please answer the following questions regarding the section of STAT 145 you taught during the Fall 
2011 Semester at the University of New Mexico: 
 
 

1. List the section number, days of week and associated time you taught STAT 145 during the Fall 
Semester, 2011: 

 
 
 Section No. Day(s) of Week Time  
 
        
 
 

2. Did you administer quizzes as part of instruction for your section? 
 

�   YES   �   NO 
 
 
If you answered YES respond to questions (3) – (7). 
 
If you answered NO skip to question (8). 
 
 

3. How many quizzes (total number) did you administer during the semester? 
 

 
 
 
4. How often were quizzes administered (approximate # per week or per exam, please specify)? 

 
 

 
 
5. On average, approximately how long was each quiz (number of questions)? 
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6. How much was each quiz worth in terms of the students’ overall grade (percent of final grade)?  

Please indicate if quizzes administered did not have any value with respect to overall grade. 
 
 

 
 
 

 
 
 
7. How was the quiz administered (i.e.: written, web-based, clicker/PowerPoint, take-home)? If 

multiple methods were used please indicate the methods and number of quizzes administered for 
each method. 
 
 

 
 
 
 

 
 
 
8. Submission of Final Exam Scores and Final Letter Grade 

 
a. Please use an MS Excel Spreadsheet to submit this information. 
b. Strip all student identification information (name, banner id, etc.) from the Excel 

Spreadsheet.  The spreadsheet should include only three columns: 
i. The Research Identification Numbers (RIDN) provided by the UNM Dept. of 

Mathematics and Statistics Department’s IT Support Manager 
ii. Final Exam Scores associated with the student’s RIDN 
iii. Final Letter Grades associated with the student’s RIDN 

c. If a student has withdrawn prior to the Final Exam, please leave this cell blank and enter 
only the appropriate Final Letter Grade (WP, WF, I, F, etc.) 

d. Please email the Excel Spreadsheet. to: dglavin@unm.edu.  If this is not feasible, please 
submit a printed copy of the spreadsheet in a sealed envelope to the Dept. of 
Mathematics and Statistics Office located on the 2nd Floor of the Science and Math 
Learning Center (SMLC), addressed to:  ATTN: David M. Glavin, MSC01 1115. 

 
 
Please sign and date this form.  A signed hard-copy of this form will be returned to you by David M. 
Glavin by no later than Jan. 31, 2012. 
  
 
 
        /  
Name of Instructor (printed)   Instructor’s Signature / Date 
 
 
        /  
Name of Researcher (printed)   Researcher’s Signature / Date 
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Supplementary Figures and Tables 

 

 

Table A.1 

Separation Table – Including Factor: TIME 

 

Obs QUIZ Gender race TIME COUNT PERCENT 

1 N F H AM 37 5.3161 

2 N F H PM 82 11.7816 

3 N F O AM 32 4.5977 

4 N F O PM 41 5.8908 

5 N F W AM 44 6.3218 

6 N F W PM 71 10.2011 

7 N M H AM 30 4.3103 

8 N M H PM 34 4.8851 

9 N M O AM 10 1.4368 

10 N M O PM 24 3.4483 

11 N M W AM 20 2.8736 

12 N M W PM 52 7.4713 

13 Q F H AM 35 5.0287 

14 Q F H PM 6 0.8621 

15 Q F O AM 21 3.0172 

16 Q F O PM 8 1.1494 

17 Q F W AM 44 6.3218 

18 Q F W PM 7 1.0057 

19 Q M H AM 29 4.1667 

20 Q M H PM 9 1.2931 

21 Q M O AM 17 2.4425 

22 Q M O PM 6 0.8621 

23 Q M W AM 32 4.5977 

24 Q M W PM 5 0.7184 
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Table A.2 

Ethnicity Least Squares Means 

 
Ethnicity Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

H 5476.71 252.82 680 21.66 <.0001 0.05 4980.32 5973.11 

O 5484.13 274.79 680 19.96 <.0001 0.05 4944.60 6023.67 

W 5195.49 249.46 680 20.83 <.0001 0.05 4705.69 5685.30 

 

 

Table A.3 

Tukey-Kramer Adjusted t-test for Ethnicity 

 

Differences of Ethnicity Least Squares Means 

Adjustment for Multiple Comparisons: Tukey-Kramer 

Ethnicity Ethnicity Estimate Standard Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

H O -7.4198 233.11 680 -0.03 0.9746 0.9994 0.05 -465.13 450.29 -554.97 540.13 

H W 281.22 202.53 680 1.39 0.1654 0.3475 0.05 -116.45 678.89 -194.50 756.94 

O W 288.64 231.23 680 1.25 0.2123 0.4252 0.05 -165.36 742.64 -254.48 831.76 

 
 

Figure A.1 

LS Means Comparison of Final Exam Score-Squared by Ethnicity 
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Table A.4 

Time Least Squares Means 

 

TIME Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

PM 5443.04 262.61 680 20.73 <.0001 0.05 4927.42 5958.67 

AM 5327.85 257.57 680 20.69 <.0001 0.05 4822.13 5833.57 

 

 

Table A.5 

Tukey-Kramer Adjusted t-test for Time 

 

Differences of TIME Least Squares Means 

Adjustment for Multiple Comparisons: Tukey-Kramer 

TIME TIME Estimate Standard Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

PM AM 115.19 260.54 680 0.44 0.6585 0.6585 0.05 -396.37 626.75 -396.37 626.75 

 

Figure A.2 

LS Means Comparison of Final Exam Score-Squared by Time 
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Table A.6 

GPA (college) Least Squares Means 

(Using indicator values for freshmen and upper classmen) 

 

 

GPA Estimate Standard Error DF t Value Pr > |t| Alpha Lower Upper 

Frosh 5343.90 281.23 680 19.00 <.0001 0.05 4791.71 5896.10 

UC 5426.99 219.76 680 24.70 <.0001 0.05 4995.51 5858.47 

 

Table A.7 

Tukey-Kramer Adjusted t-test for GPA (college) 

(Using indicator values for freshmen and upper classmen) 

 

 

Differences of GPA (college) Least Squares Means 

Adjustment for Multiple Comparisons: Tukey-Kramer 

GPA GPA Estimate Standard Error DF t Value Pr > |t| Adj P Alpha Lower Upper Adj Lower Adj Upper 

Frosh UC -83.0865 228.13 680 -0.36 0.7158 0.7158 0.05 -531.01 364.84 -531.01 364.84 

 

Figure A.3 

LS Means Comparison of Final Exam Score-Squared by GPA (college) 

(Using indicator values for freshmen and upper classmen) 
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