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Abstract 

 In this research we examine high voltage breakdowns (HVBs) during neutron 

tube conditioning which has been a problem for decades. In the recent past there has been 

much debate on whether or not to procure a real-time airborne monitoring system for the 

commercial production of neutron tubes in order to determine the effect and calculate the 

impact of airborne particles. The main problem is, such monitoring system is costly, and 

with the exact causes of HVBs not being fully known, the expense must be justified.  

The goal of this thesis was to analyze the instrumentation used in airborne particle 

monitoring in order to assert that the instruments were reliable in obtaining the data 

needed to make improvements. General reliability studies on the instruments were 

conducted followed by a quasi-experiment which led to the finding that airborne 

particulates have a measureable effect on external HVBs. This finding led to an 

observational study on the production floor which examines internal HVBs. An 
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exploratory analysis of the data obtained was conducted and preliminary results showed 

that the particles may influence the occurrence of internal HVBs in the tubes. As a result 

of this research the data justified the need to have a real-time airborne monitoring system 

in order to conduct further research and funding for the system was granted. 
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Chapter I 

Introduction  

The goal of this thesis is to determine if airborne particulate contamination 

increases the likelihood of high voltage breakdowns (HVBs) in vacuum neutron 

generator tubes. Neutron tubes are a subcomponent of a neutron generator (NG) that 

produces neutrons. Neutron tubes are used in future commercial product design, 

development, lifecycle testing, as well as NG product production. Production yields can 

diminish unexpectedly and the causes need to be identified. Mathematical analyses are 

used to make data-driven decisions and maintain production capability and product yield 

(Galaviz, M., 2008).  

The highest product yield loss is observed during the neutron tube conditioning 

sequence. This operation is near the end of the build sequence, and a yield loss this late is 

costly in both time and money.  The leading cause of the loss is due to HVBs. The 

greatest challenge with HVBs during the conditioning sequence is determining why they 

occur. The vacuum sealed neutron tube is a small linear accelerator used as a neutron 

source, (Jing, S., Li, W., Gu, L. & Liu, L. 2000). In order to test the function of a vacuum 

sealed neutron tube it is necessary to apply a high voltage across the tube without 

breakdown. This form of testing confirms the tube‟s functionality, and it is simply 

referred to as functional testing via the method of conditioning. Some HVBs are 

expected, in fact, the intent of the conditioning sequence is to “clean up” the inside of the 

tube, which naturally results in HVBs (D. Lifke, personal communication, September 21, 

2009). This is because during conditioning, current is shot across a tube and a particulate 
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or contaminant will attract the current causing a breakdown. Excessive HVBs are thought 

to be a product quality issue. If a tube has internal imperfections that are “cleaned up” 

during the conditioning sequence resulting in expected internal HVBs, and the tube also 

has additional HVBs from other causes, the tube would be rejected due to excessive 

HVBs (Lifke, D, 2009). Ultimately, it is the total count of HVBs that rejects a tube, 

regardless of the cause. Occasionally there are unexpected HVBs that can crack or 

puncture the tube, resulting in immediate tube rejection. For the purpose of this study, 

HVBs will be discussed in general terms as a negative occurrence since HVBs will only 

be related to non-conforming units which require re-work or were scrapped.  

 In 1981, during functional testing, T. K. Mehrhoff (1981) observed HVBs were a 

prevalent cause for rejection of neutron vacuum tubes.  Thus HVB‟s have been a 

persistent primary cause of neutron tube loss. Therefore, the goal is to determine if 

airborne particulate contamination increases the likelihood of HVBs in vacuum neutron 

tubes. 

It is known that the critical size in particulate contamination for the neutron tubes 

is between 5 to 10 microns. The plot of particulate types and sizes is shown in figure 1, 

and displays types of material that lie within this range. The type of particle is also of 

interest, i.e. insulator, conducting airborne particulates that generate or can hold a static 

charge are a heightened issue because as small particles increase in number they bind 

together. If the type of particulate contamination is known specific methods of 

intervention to prevent contamination of the neutron tube product can be taken.  

As an example, production experienced a problem with salt contamination. A 

sudden increase in tube failures during the functional testing was observed during a 
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heavy snowfall winter. The tubes were sent for post-mortem analysis and particles of 

NaCl (salt) were identified within the tube assemblies. It was determined that the tubes 

that failed were assembled during these winter months when salt was used in the parking 

lots and sidewalks around the production facility to reduce slippery surfaces. When these 

two pieces of information were connected, the cause of tube loss was identified and the 

cause was salt contamination. 

A major problem with particulate data is timely detection and identification of 

particulate contamination. The current process involves a weekly surface sample of 

several work areas, and a single point air sample of each room. The surface sample 

requires tedious visual inspection under a microscope where particulates are manually 

counted by an inspector and then an estimated amount is determined based on numerical 

assumptions. The data for the surface sample is then manually entered into a data base 

along with the single point air sample. The data can be collected as fast as 3 days after 

sampling but may take up to two weeks. The production floor then only has old data with 

which it must make reactive decisions about work stoppages. 

No real-time airborne particulate monitoring is in place to determine the condition 

of work areas during production. The consequences from salt contamination were a 

significant yield loss. Therefore, neutron tube production concluded that a real-time air 

monitoring system was needed to provide the production engineers with the necessary 

data to halt production if high particulate concentrations were detected to prevent these 

events from happening again. The MET ONE Handheld Airborne Particle Counter 

(HHPC-6) was selected for its monitoring capabilities, 500 sample data buffer, ease of 

data downloads, and remote network capabilities to be used in developing the monitoring 
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system in the fall of 2007. Later, it was debated whether or not the proposed network was 

actually feasible.  

A detailed background on neutron tubes, HVB‟s and particulate metrology are 

given in Chapter 2. Studies are conducted to determine the reliability of using the HHPC-

6 in monitoring airborne particulate contamination that may lead to tube loss in Chapter 

3. Studies are conducted to understand the effect of airborne particulates on external 

HVBs during conditioning in Chapter 4. Finally, in Chapter 5, a study is conducted to 

determine the effect of airborne particulates during piece part assembly of a neutron tube 

until the process of Conditioning.  All of these components of this research resulted in 

important information about airborne particulate contamination effect on the neutron 

tube. 
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Figure 1,  Particle Size Chart 
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Chapter II 

Problem Background 

To better understand the neutron tube yield loss problem it is essential to understand the 

theory behind HVBs in vacuum sealed tube settings. It is also important to understand 

how particules are involved in HVB phenomena. In this chapter a review of the relevant 

literature is presented. The theory behind particulate metrology and behind the function 

and calibration of particle monitoring is reviewed in Section 2.1. Past studies involving 

vacuum-sealed tubes and HVBs within the neutron tube production center, as well as, in 

other facilities that produce vacuum sealed tubes are reviewed in Section 2.2. A 

schematic diagram of the neutron tube has been provided as a reference tool for the 

neutron tube problem discussion, figure 2.   

2.1 Particulate Metrology 

This thesis is based on the assumption that particulate contamination is most 

likely what causes tube failures during testing. Realistically, there are many factors 

involved in completely eliminating the tube loss due to HVBs. However, if particulate 

contamination is a contributing factor, then the model developed in this research will 

identify the particles as a function that increases the probability of HVB losses.  

Clean room environments decrease particulate concentrations. However, clean 

rooms are expensive to build, launch and maintain. The production line is currently not 

all within a clean room environment and prior to investing in a real-time particulate 

monitoring system to alert production of high particulate rates, a relationship revealing 

the negative effect of particles on production must be found.   
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One of the purposes of this study is to determine if the particles being measured 

by the sensors used in airborne particulate contamination control could be reliable as the 

first line of detection.  To make this determination the methods at which these devices 

collect the particulate data were evaluated, Appendix A.  

A review of two past studies where discrete airborne particulate counters 

(DAPCs) were used in non-clean rooms was done in order to deduce how well the DAPC 

in this study would trend relationships. The review can be found in Appendix B, in 

summary the use of particulate count data in research reveals quantifiable relationships 

and reliable uses of particulate monitors. The literature furthers the potential for 

developing a model to identify the problem in neutron tube production and airborne 

particulate contamination.  

The key findings in these studies showed that airborne particulate monitors can be 

used in non-clean-room settings and that DAPCs are a reliable source of detection even 

outdoors. In the study by Klepeis, N.E., Ott, W.R., and Switzer, P., (2007) smoke 

particles are found within the 0.02-2 micron range and the level of coincidence occurring 

in a non-clean room setting did not eliminate the instruments ability to characterize the 

smoke particulate behavior. Therefore, it is reasonable to assume that the use of the 

HHPC-6 in non-clean room areas will be a reliable method of monitoring. Additionally, 

the study at the LIGO facility using the Model 227 provided promising data for the 

purpose of cleaning an area and the HHPC-6 is from the same manufacturer and 

functions similar to the 227 model. These studies increase the confidence of the reliability 

of the HHPC-6 instrument used in this study. In Chapter 3, simple studies are conducted 
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to determine the reliability of the HHPC-6 for the use of particulate monitoring in neutron 

tube production floor.  

2.2 Understanding High Voltage Breakdowns 

The phenomena behind general high voltage breakdowns in vacuum sealed tubes 

will only be examined where particulates are the source of contamination. Understanding 

the various factors behind HVBs is beyond the scope of this research. At SNL, 

contamination is defined as anything that affects the form, fit, or function of the product 

of interest. Therefore, the interest is to quantify at what level particulates are considered 

contamination in the manufacturing of neutron tubes. 

In a study on vacuum breakdowns conducted at SNL, [insulator] particles 

between 10 and 50 micron diameter were deliberately placed on the cathode (target) see 

figure 2, (Brainard, J.P &Reidel A.A., 1976). The cathode was bombarded for a short 

time period with ions generated from the [gap in voltage] and, these particles were found 

to induce a breakdown, (Brainard, J.P & Reidel, A.A., 1976). It was later generalized that 

particulates of size 5 microns or greater on the target surface caused HVBs of the 

[neutron tube], (Purson et al, LANL, 1996). A special glove box system was designed for 

the target loading phase which created a Class 10, (no more than ten 0.5 micron particles 

per cubic foot), to prevent particulate contamination on the target (Purson et al, 1996). 

When NG production was relocated to SNL, the glove box system was placed in a clean 

room. This was a further improvement since it prevents particulate contamination prior to 

parts entering the glove box.  Identifying the targets‟ sensitivity to particulates reduced 

HVBs caused specifically by particulate contamination on the target. With HVBs 
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continuing to be a prevalent issue, further investigation on the other tube assemblies is 

required and that is the goal of this research. 

The manufacturing of the neutron tube does not take place in a clean environment 

as described above for the target loading process.  Although, the production areas do have 

preventative contamination controls in place they are not of clean room grade. The 

amount of airborne contamination control varies among the areas. Following 

subassemblies in non-clean room areas; the product moves into a certified clean room 

where the tube is welded. Then the tube is moved to a lower level certified clean room 

where it becomes a vacuum sealed tube. After it is sealed preventative airborne 

contamination controls are no longer used. The tube goes to an area for what are 

considered to be dirty processes (i.e. the processes themselves produce high particle 

counts) and finally it is moved to functional testing for conditioning.  

The functional testers used in the neutron tube conditioning process categorize 

breakdowns into two types, either internal high voltage breakdowns (IHVBs) or external 

high voltage breakdowns (EXHVBs). Mehrhoff (1981) examined three types of HVBs: 

the insulator wall, vacuum, and external. Insulator wall breakdowns occur along the high 

voltage insulator and it was found that this type of breakdown originates at the “triple 

junction” area where the cathode meets the insulator vacuum side, figure 2. The vacuum 

breakdown was defined as occurring through the tube but not touching the insulator. An 

external high voltage breakdown occurs on the external side of the tube (Mehrhoff, 

1981). The difference between an IHVB and EXHVB is signaled by the tester during 

conditioning as “light and sound.” If the tester “sees” light, and detects “sound” it means 
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the HVB happened externally. This is meant literally; since the tester has sensors that see 

light and detect sound. These occurrences indicate an EXHVB occurred. 

In Appendix C, HVBs in SF6 gas vacuum system applications by Maller, V.N. & 

Naidu, M.S., (1981) are reviewed as an example of the different ways that particles 

present HVB problems in practical applications. Additionally, a study Brainard and 

Reidel (1976) conducted on dielectric particles including salt is reviewed as background 

for the research done in this thesis.  

In Chapter I, the salt contamination in neutron tube production resulted in 

significant losses was discussed. The HVBs increased during that season both internally 

and externally, despite special precautions taken with the target. Further steps need to be 

taken to determine where other contamination vulnerabilities exist. Particulate counters 

can be used to identify the presence of contaminants effectively by a non-destructive 

method.   
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Figure 2, Schematic Diagram of a Neutron Generator 

 

This figure was adapted from an illustration provided by Lifke, D. (2009) and modified 

with information found in Mehrhoff, T.K. (1981).  
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Chapter III  

Implementing Statistical Process Control in Neutron Tube Production 

In this chapter preliminary experiments were used to determine the ability of the HHPC-6 

to perform airborne particulate monitoring for the needs of the production floor 

(ANNEX). Trial baselines were developed for the rooms in the ANNEX in order to 

implement the multivariate T
2
- control chart. The T

2
-chart is useful in implementing 

statistical process control (SPC). When there are multiple correlated data sources such as 

particulate counts, SPC helps identify shifts in the process. This in turn can help us 

understand the relationship between HVBs and particle counts.  

 3.1 Reliability of Airborne Particulate Monitor Instrumentation 

 As discussed briefly in Chapter 1, there was some apprehension in regards to the 

reliability of instruments selected for particulate monitoring in the ANNEX. The concern 

was based on how well the particulate counters (DAPC) tracked particles that would 

actually affect the product. The concern stemmed from the large amount of variation in 

particle counts when multiple DAPCs sampled a single location. Therefore, the ANNEX 

community assumed that one DAPC per area was not sufficient. However, due to limited 

funds, there was only one DAPC per room. Before the study could use the HHPC-6 as the 

instrument to track particulate effects, we needed to determine how much measurement 

variability existed within the DAPC. 

In ASTM (2001) Designation: F 649-01 a secondary method for calibrating a 

DAPC was described using a comparison procedure. The idea is to use one DAPC under 

test and another DAPC as a reference. The reference DAPC is calibrated in accordance 
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with ASTM (2003), discussed in Appendix A. The secondary calibration method in 

ASTM (2001) uses an aerosol chamber, figure 3, prepared by attaching a blower to one 

end of the chamber and a filtered air supply line is placed in the center of the chamber so 

that it exhausts and mixes with the air from the blower. At the other end of the chamber 

the inlet line of plastic tubing would be attached to the inlet of the two DAPCs. The 

sample tubes inside of the chamber are placed as close together as possible so that a 

nearly identical sample can be obtained.  

In this experiment the purpose of using the secondary calibration method in 

ASTM (2001) is not to calibrate, but to determine if multiple instruments are needed for a 

single room. The premise behind the secondary method of calibration is a comparison 

study of two DAPCs and a single sample of air. This can be used to determine if DAPCs 

truly vary in collecting a single sample of air, by showing that the DAPCs are statistically 

collecting the same information even though visually (i.e. on the DAPC display screen) 

the air sample reading is different, see display in  figure 4. This experiment was a “proof 

of concept” pilot study using the procedure in ASTM (2001) as a very general guideline 

to test the hypothesis.  

The following DAPCs were available for use to replicate the procedure: a HHPC-

6 used often for demonstrations, usually not in a clean environment would play the role 

of the test DAPC. Another HHPC-6 that was considered to be close to new was available 

to be used as the reference DAPC. Both of the instruments were purchased 

simultaneously, and had the same calibration expiration dates. The only difference was 

the amount of usage each instrument underwent. It would have been preferred to have a 
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reference instrument that had a recent calibration, and was only used for the purpose of 

secondary calibration; however, this was not possible. 

A simple linear regression analysis on the instruments for each particulate size 

was selected to test the significance of the relationship between the instruments.  The R
2 

was used to measure the variability and agreement between the two instruments since R
2
 

takes into account the paired nature of the experiment. The residuals were expected to be 

correlated, if the DAPCs were collecting a similar air sample. Six plots of the raw data 

with Test DAPC vs Reference DAPC were used to display this relationship.   

One of the limitations of the study was that it would not be controlled by an air 

chamber as in ASTM (2001) and even though the nearly new instrument is the reference 

DAPC, it does not meet the specifications described in ASTM (2003) since it had not 

been recently calibrated. In general, the pilot study will capture the needed result. The 

data obtained from the reference particle counter and the test particle counter is to be no 

more than twice the variance anticipated in order to conclude the instruments are the 

same. The expected variance is ±15% for the smallest size range (x1=0.5-0.7μ) and ±20 

to 30% for the other particles sizes (ASTM, 2001). The instruments can be considered to 

be measuring air particle samples differently if the instrument variation is within the 

range of ±40% or greater. However, small sample count (<1000 particles) resulting from 

short sample times (i.e. 1 minute collection), will result in wide differences between 

measurements and the data will be outside of the limit and fall two [or more] standard 

deviations [away from] the mean 95% of the time (ASTM, 2001).  
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3.1.1 Experiment 1: Pilot Study for Instrument Variation 

Method 

Particle Data 

 Data were collected from two Met One HHPC-6 Handheld Airborne Particle 

Counters. The counters record date, time, counts, sample labels, volume, alarm flags, 

temperature and relative humidity. The counts include six sizes of particulates labeled as 

x1= (0.5-0.7μ), x2= (0.7-1μ), x3= (1-2μ), x4= (2-5μ), x5= (5-10μ), and x6= (>10μ). The 

HHPC-6 count mode was placed on “Totalize” which is the particle count as it 

accumulates during the sample period. The sample period was set for 1 minute which is 

equivalent to collecting 0.1 cubic foot of sampled air. The delay timer of the counters was 

set to collect a sample every 9 minutes. The data is easily obtained after the experiment is 

completed using the HHPC-6 Utility software which allows the user to download the data 

onto a computer.   

Materials and Apparatus 

 In addition to the HHPC-6‟s, Tygon tubing, an Envirco clean air flow lab bench, a 

polypropylene male T-pipe fitting and a flask clamp were used. Two pieces of plastic 

tubing placed on one end to fit the “Hose Barb Fitting” of the HHPC-6, figure 4. The 

other end was attached to an arm of the T pipe fitting. A final long piece of the Tygon 

tubing was attached to the long end of the T pipe fitting and was clamped at the top of the 

lab flow bench, figure 6.   

Design and Procedure 

 This apparatus was configured under the design idea described by ASTM (2001). 

Two HHPC-6 instruments were selected for this experiment. The instrument settings 
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were manually set as described in the Particle Data section and placed inside the flow 

bench. The Tygon tubing was attached to each instrument through the T-pipe fitting and 

then clamped as stated in the Apparatus section and illustrated in, figure 5.  

 The clean flow lab bench was then turned on during the data collection to reduce 

the probability of problems with coincidence since no chamber was constructed. The 

particle counters were started simultaneously. The particle counters were left collecting 

samples over a weekend, Friday, Saturday, Sunday, and stopped on Monday. Once the 

data was collected the instruments were stopped and the data was downloaded using the 

HHPC-6 Utility software. A total of 418 air samples were collected during the 

experiment period. 

Results 

 A simple linear regression analysis was conducted for each count size which were 

labeled, x1…x6, where x1 is the smallest particulate size range and x6 is the largest 

particulate size range using R software. After the experiment was completed, it was 

discovered that the test DAPC and the reference DAPC were not labeled. In the 

experiment design drawings only the numbers 1 and 2 were recorded, but a serial number 

which uniquely identifies each instrument was not recorded. For simplicity purposes, the 

instrument data was labeled as I1 for instrument 1 and I2 for instrument 2. Although the 

lack of tracking the DAPCs created a labeling drawback because we no longer knew 

which was the test or reference DAPC; for the purpose of the analysis the results could 

still be obtained since the regression analysis output would still show if one DAPC 

significantly predicts the other regardless of order. Additionally, the analysis would also 

show the explained variability of the test DAPC for reference DAPC or vice versa.  
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 There was no pre-set α level. The regressions were used to test for any level of 

significance. I1 significantly predicted I2 particulate counts for all of the particulate sizes, 

table 1, with p-values < .05, however this was not the statistic of interest. We used the 

regression analysis to obtain R
2
 values. I1 explained a significant proportion of the 

variance of I2 for particle groups x1 through x3, see Adjusted R
2
 values in table 1.  

Normally, a R
2
=0.90 or better would indicate good agreement between the devices. 

However, in accordance with ASTM (2003) a R
2
=0.85 shows that this is within the 

expected variance and it can be concluded that the instruments are the same for x1. In this 

study x1 R
2
=0.9087, therefore the instruments had good agreement. For x2 R

2
=0.7437, 

this acceptable in accordance with ASTM (2003) which states that for particle sizes x2 to 

x6 a R
2
=0.80-0.70 is the expected agreement between instruments for these size ranges. 

Therefore, x2 with a R
2
=0.7109 was within the acceptable limit to consider the 

instrument reading to be equivalent.  

In accordance with ASTM (2003) an instrument with a R
2
=0.60 or less is 

considered to be different. Although, x4, x5 and x6 did not have significant R
2
 values, it 

cannot be confirmed that the instruments did not have good agreement. This is because 

the number of particles obtained in each sampling period were all <1000 particles for all 

sizes. According to the ASTM (2003), small sample counts will result in wide differences 

95% of the time. For x4 the highest particle count obtained in a sample of air was 60, for 

x5 the largest sample particle count was 5, and for x6, the largest particle count obtained 

in a sampling period was 1. These small air samples did not provide the data needed to 

make a conclusion. Without a method to pump a unified controlled air sample to get the 

air readings needed, this data could not be obtained. However, it was concluded that I1 
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significantly predicted I2, for x1, x2, and x3 and it was determined that this was enough 

information to reject the null hypothesis that more than one instrument is needed per area.  

 To check for non-linear relationship between the independent variables, fitted line 

plots for each regression was evaluated, figure 6. The linearity between the instruments 

begins to degrade as the particulate size increases. This was also observed by the 

Adjusted R
2 

values, as the proportion of explained variability of I2 by I1 progressively 

decreased as particulate size increased. 

3.1.2 Experiment 2: Calibration Study 

Additional Analyses 

The assumption that more than one DAPC per area was rejected since I1 

generally predicted the particulate count for I2. When the pilot study was conducted, the 

calibration due dates were approximately two months away. This spiked interest in the 

amount of drift that occurs among instruments during their calibration periods. The 

manufacturer recommends one year maximum between calibrations. However, since 

calibration and maintenance can be costly, it was desirable to potentially extend the 

calibration period beyond a year. 

 The experiment was repeated for the instruments the day after calibration 

occurred. Although it was the intent to repeat the study during the Friday start, Monday 

end time frame, unexpected delays in stopping the experiment occurred. The instruments 

have a “rotating buffer,” meaning that once the 500 sample buffer is full, the instrument 

continues to run, but when a new sample is made, the first record stored in the memory 

buffer is deleted and the new entry is added to the end of the memory buffer. Therefore, 

this data set took place Saturday night (9:22 PM) until Tuesday morning (8:32 AM). A 
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total of 499 air samples were collected however, the data were affected by the personnel 

traffic in the laboratory where the experiment was conducted. The largest particulate size, 

x had wide variation between instruments. The high variation in large particles was most 

likely because of personnel presence; making it difficult for the DAPCs to collect a 

homogenous sample without a controlled air chamber.   

Additionally, the same problem with low particle counts obtained during the 

sampling period was encountered. All of the groups obtained particle counts that were 

<1000. For  x1 the maximum particle sample collected during a sampling period was 

943, for x2 the max=134, x3 max=89, x4 max=50, x5 max=4 and for x6 the max =2. 

Therefore, the R
2
 values were affected by the small sampling periods and wide variation 

was expected.  

The simple linear regressions were repeated for the six particulate sizes given by 

I1 and I2 after calibration. After calibration I1 explained a significant proportion of the 

variance in I2 only for x1 and x2, table 2. However, the Adjusted R
2
 increased for 

particulate sizes x1, x2, x4, and x5 showing greater agreement. The Adjusted R
2
 slightly 

decreased in x3 but considering the low particle count obtained during sampling, it was 

considered to still explain a significant proportion of the variance between the 

instruments. The R
2
 values for x3, x4, and x5 were not considered to demonstrate good 

agreement between the devices since they all had R
2
 values <0.70. However, considering 

their low particle counts during the sampling periods, the increase in R
2
 values was 

considered to be notable, and it was concluded that instrument agreement improves 

substantially after calibration. The variance explained by I1 for I2 was not significant in 

x6; clearly having close to nonexistent air samples affected the relationship. 
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 To check for a non-linear relationship between the independent variables, fitted 

line plots for each regression were evaluated, figure 7. The linearity between the 

instruments did not degrade as rapidly as the particulate sizes increased after calibration, 

unlike the first experiment. The general trend however did follow, so as particle size 

increases the instruments variation begins to broaden and lose linearity. This was also 

observed by the Adjusted R
2 

values decreasing as particle size increases. 

From this study, we could not truly validate the need for only one monitor per 

room however, it was concluded that the data that was collected was sufficient to make 

the decision. From the study, we did get an idea of the measurement error involved in 

these devices and without a budget to do further validation testing these results were 

considered acceptable. However, it concluded that annual calibration was necessary in 

order to reduce instrument drift and decrease sample variability. The calibration period 

could not be extended. In fact, as found by Peacock et al. (1986) discussed in Appendix A, 

the most consistent data is obtained when using a 6 month calibration period. However, 

since the data is needed for general trending purposes, a strict level of precision would 

only result in unnecessary calibration costs.  

3.2 Implementing Multivariate Control Charts  

  Control charts identify occurrences of special causes of variation that come from 

outside the usual process (Johnson, J.A. & Wichern, D.W., 2007). Johnson and Wichern 

(2007), suggest that control charts make the variation visible and allow one to distinguish 

common from special causes of variation. A major objective of statistical process control 

is to quickly detect the occurrence of special cause variation so that an investigation of 
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the process and corrective action may be conducted prior to manufacturing 

nonconforming units.  

Typical control charts are usually Univariate control charts, where data is plotted 

in time order and horizontal lines, called control limits indicate the amount of variation 

due to common causes (Johnson & Wichern, 2007). Although, the univariate control 

chart is very useful, there are six particulate sizes we are trying to see. Therefore, six 

univariate charts would be needed to oversee the data. Additionally, the airborne data 

uploaded from the HHPC-6 may be carrying one or more important characteristic that 

would be difficult to analyze from six univariate charts. Furthermore, the particulates of 

each size are highly correlated. High correlations among variables can make it impossible 

to asses the overall error rate that is implied by a large number of univariate charts 

(Johnson & Wichern, 2007).  

3.2.1 T
2
-Chart 

The implementation of the multivariate T
2
-chart control chart would be 

economically the right thing to do for continuous monitoring. A T
2
-chart can be applied 

to a large number of characteristics and the points are displayed in time order making the 

patterns and trends visible (Johnson & Wichern, 2007). The multivariate control 

procedure in this case is used for multivariate observations x1,x2,…,xn. We assume that 

X1,X2,…,Xn  are independently distributed as a multivariate normal with Np(μ,Σ).  

To set control set control limits, we approximate that )()( 1
XXSXX jj  has a 

chi-square distribution, (Johnson & Wichern, 2007). 

For the jth point, we calculate the 
2

jT -statistic 
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)()( 12
xxSxx jjjT  

We then plot the T
2
-values on the time axis. The lower control limit is zero and typically 

the upper control limit  

UCL= )05(.2

p  or, sometimes, )01(.2

p . 

There is no centerline in the T
2
-chart. As an example of constructing the T

2
-chart 

that can be used to implement statistical process control into the ANNEX production 

floor the six particulate sizes can be used as the variables. The six variables are defined 

as,  

X1 = number of particles of size 0.5-0.7µ,  

X2 = number of particles of size 0.7-1µ,  

X3 = number of particles of size 1-2µ,  

X4 = number of particles of size 2-5µ,  

X5 = number of particles of size 5-10µ,  

X6= number of particles of size >10µ,  

where µ= microns. The trial baseline data for X was obtained using the collection 

period from May 31, 2008 to June 13, 2008 for all of the areas. This trial baseline was 

selected because this was the trial baseline for conditioning which is the content of 

Chapter 4. While the control chart is not discussed in Chapter 4, the control charting was 

used to make a decision to conduct the study in Conditioning and the trial baseline was 

selected because during that two week period there were no notable product failures. 

Additionally, it seemed to be a good trial baseline for room A. 

 A function was written in MATLAB to create the multivariate T
2
-chart. The 

particulate data is naturally skewed right as seen in, figure 8. The T
2
-chart is based on the 
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chi-square distribution which is only valid if 61 ,..., XX have a normal distribution. 

Therefore the log(Xi+0.01) was used to transform the data. The 0.01 was added to all of 

the values prior to taking the log because the particulate samples obtained can equal zero.  

 

The following limits were placed on the chart in figure 9 

UCL = )997(.2

6 = 19.80 

2σ = )95(.2

6 = 12.59 

σ = )67(.2

6  = 6.90 

The T
2
-plot can then be used to analyze incoming data points as they are obtained, 

as an example of how the T
2
-chart is analyzed, room A of the ANNEX will be examined 

for the trends that can be seen using multivariate control charting. The period of June 19, 

2009 to July 6, 2009, was used in order to go over various notable events detected by the 

control chart. For example figure 9, displays room A in control. The x-axis is currently 

the observation number, since the actual label is a time and date. To keep the charts neat, 

the time and date was not used as a label. Therefore the title gives the time periods being 

viewed.  

The ANNEX is not a clean room, and although it contains some rooms that have 

airborne particle contamination control, room A does not. Therefore, the rooms in the 

ANNEX can be affected by the outdoor activities that occur around the building. The 

following discussion is of a paving event that resulted in alarms with a notable pattern, 

figure 10. On June 22 9:54AM, (tab X:13 in figure), paving events began, although the 

start application of lying the asphalt did not alarm, the alarm occurred at 12:54PM (tab 

X:15) which is when the second application of the asphalt occurred. This repeated on 
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June 23 at the exact same times (tabs X:36 & X:39). On June 24
th

 however, the giant 

spike (tab X:57) was a false alarm. This point alarmed because the particles were notably 

lower than expected therefore they were very different from the data resulting a high T
2
-

score. However, the following (tab X:60) marks 9:54AM. Then no alarm occurred at the 

expected 12:54PM, but shortly after a high point was seen at 1:54PM (tab X:64). 

Although it did not alarm, it had a higher score than observations not occurring during the 

paving activities. We see the control chart goes back into control each time the paving 

ceases and the peaks repeated on June 25
th

 which marked the final day of paving with 

two peaks at 9:54AM and 12:54PM (tabs X:84 & X:87).  

In figure 11, we see room A go out of control again. This time the event that 

caused the chart to spike occurred indoors. Prior to discussing those peaks, we can note 

that room A was in control after the paving ceased, until June 28
th

 at 12:54AM (tab 

X:50), which can be neglected since it was a false alarm due to particulate counts being 

lower than normal. Then on June 29
th

 (tab X82), we have another alarm however the 

cause was unknown. The notable events occurred on July 1
st
 and 2

nd
 during an electrical 

audit. At 9:54AM and 10:54AM (tabs X:130 & X:131), the auditors were examining 

electrical equipment in room A, this involved a process which included opening panels of 

equipment which had not been open in several years and releasing dust particles. In 

addition, there were more people than normal generating particles in room A during this 

time. We see the particles drop which it is reasonable this was due to their lunch break 

and start back up again at the 12:54PM (tab X:135) reading. This same event was 

repeated on July 2
nd

, except the first spike occurred at 8:54AM. Some tabs were excluded 

for July 2
nd

 to keep the chart looking neat. Once the electrical audit ceased the room went 
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back into control. There was one more alarm on July 3
rd

 3:54PM (tab X:185), however, 

this was another false alarm due to lower particles than normal.  

Finally, in figure 12, we see things return back to normal, however, there is one 

notable event that occurs that creates quite the spike. On July 4
th

 at 9:54PM (tab 24), we 

see that room A went out of control. This event was caused by the firework particles 

entering the building through the ventilation system. A hump that did not alarm after the 

firework peak is seen, and this is most likely residual firework particles. Then the control 

chart for room A returns back to normal. The T
2
-chart control chart is a very effective 

method for identifying trends for rooms in the ANNEX. The only false alarm generated 

by the T
2
-chart, is when particles are very low and therefore their score differ 

significantly from the mean, giving these times high T
2
-scores. However, with 

examination of the raw data, it is quickly known that there is no actual concern. 
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Figure 3, Chamber 
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Figure 4, Hose Barb Fitting  
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Figure 5, Experiment Apparatus/Set-Up 

 

*Note: The HHPC-6‟s were lying flat in order to allow for an even sample to enter each 

DAPC.  
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Figure 6, Pilot Study Fitted Line 
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Figure 7, Repeat of Experiment 1: Fitted Linear Plots After Calibration 
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Figure 8, Particulate Data Skedness 
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Figure 9, T2-Chart of Area A in Control  
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Figure 10, Area A: Out of Control due to Paving Events 
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Figure 11, Area A, Out of Control due to Electrical Audit 
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Figure 12, Area A in Control except for July 4
th

 Firework Alarm 
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Table 1, Regression Results for Pilot Study Experiment  

Coefficients: Estimate Std. Errort-value Pr(>|t|) Adj. R-squaredF-statistic p-value

Intercept 28.3076 4.2867 6.604 1.23e-10 ***

x1I1 1.01086 0.01569 64.423 < 2e-16 ***

Total 49.15 0.9087 4150 < 2.2e-16 

Intercept 4.8375 1.28133 3.775 0.000183 ***

x2I1 1.16294 0.03342 34.802 < 2e-16 ***

Total 14.47 0.7437 1211 < 2.2e-16

Intercept -0.2431 0.94696 -0.257 0.798

x3I1 1.21866 0.03804 32.04 <2e-16 ***

Total 9.503 0.7109 1027 < 2.2e-16 

Intercept 4.38706 0.45285 9.688 <2e-16 ***

x4I1 0.78872 0.04148 19.014 <2e-16 ***

Total 4.747 0.4637 361.5 < 2.2e-16 

Intercept 0.16336 0.02624 6.226 1.17e-09 ***

x5I1 0.47885 0.06278 7.627 1.65e-13 ***

Total 0.5242 0.1206 58.18 1.65E-13

Intercept 0.01687 0.01064 1.585 0.1137

x6I1 0.31647 0.12561 2.519 0.0121 *

Total 0.2168 0.01266 6.348 0.01213

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

Resgression Results lm(formula = xiI2~xiI1) where xi=(x1…x6) for particulate sizes  
Degrees of freedom: t(416), F(1,416)
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Table 2, Regression Result for Experiment After Calibration 

Coefficients: Estimate Std. Errort-value Pr(>|t|) Adj. R-squaredF-statistic p-value

Intercept 6.13753 1.4597 4.205 3.1e-05 ***

x1I1 0.7495 0.00527 142.175 < 2e-16 ***

Total 18.01 0.9759 2.02E+04 < 2.2e-16

Intercept 2.6458 0.90824 2.913 0.00374 ** 

x2I1 0.88518 0.02173 40.74 < 2e-16 ***

Total 9.326 0.7687 1660 < 2.2e-16

Intercept 6.1074 0.57371 10.64 <2e-16 ***

x3I1 0.77692 0.02649 29.32 <2e-16 ***

Total 6.515 0.6325 859.9 < 2.2e-16 

Intercept 2.3305 0.22675 10.28 <2e-16 ***

x4I1 0.83809 0.02877 29.13 <2e-16 ***

Total 3.632 0.6295 848.8 < 2.2e-16 

Intercept 0.02389 0.01435 1.664 0.0967 .

x5I1 0.72893 0.03757 19.403 <2e-16 ***

Total 0.3162 0.4294 376.5 < 2.2e-16 

Intercept 0.0146 0.00801 1.824 0.0687 .

x6I1 0.09975 0.05967 1.672 0.0952 .

Total 0.178 0.00358 2.795 0.0952

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

Resgression Results lm(formula = xiI2~xiI1) where xi=(x1…x6) for particulate sizes  

Degrees of freedom: t(498), F(1,498)
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Chapter IV 

External HVBs during neutron tube Conditioning 

The main problem considered in this chapter is high voltage breakdowns that had been 

occurring during neutron tube conditioning. The task was to link the production data to 

particulate data. However, internal high voltage breakdowns (IHVBs) and external high 

voltage breakdowns (EXHVBs) do not occur equally. Even though some IHVBs were 

expected to occur, EXHVBs, were considered an anomaly. This is because it was 

postulated that an otherwise flawless tube is scrapped due to external contamination of 

some kind.  

EXHVBs were brought to my attention by an operator from Test (i.e., 

Conditioning) in August 2008 who had observed a notable increase in the occurrence of 

EXHVBs. Prior to retiring, a particulate SME, placed two airborne particulate monitors 

in the Test area. After examining the data logged by the particulate monitors in Test it 

was found that the particulate monitors had been in place since February 2008. They had 

been placed there by the SME , when an influx of EXHVBs occurred during the heavy 

snow season that winter. However, the data collected from Test had many periods of 

missing data. It appeared as though data was only collected sporadically. This is most 

likely because the problem with EXHVBs was not consistently severe. Although 

EXHVBs did not result in consistent losses in Test like IHVBs losses, a pilot study in 

Test using the occurrence of EXHVBs could reveal much information about the ANNEX 

that we currently did not understand.  

This investigation is based on the assumption that there is no difference between 

IHVBs and EXHVBs other than the point of initiation. Since there is hypothetically no 
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difference, then the Test area could serve as a model of what happens when airborne 

particulates increase in the external environment. This would be analogous to what 

happens when the parts of the tube are exposed during production to particulates 

internally, but only looking at one part (i.e. the exterior of the tube). If a relationship 

arises from this model then it would be reasonable to say particulates increase the 

likelihood of EXHVBs, then it can be deduced that particulates also increase the 

likelihood of IHVBs that lead to product losses. However, showing that particulates 

increase the likelihood of IHVBs would be much more difficult to model, since there are 

hundreds of piece parts that go into building the tube, leaving hundreds of chances for the 

exposure to occur. Therefore, one can assume that the findings in Test could be applied to 

what is going on in the ANNEX. 

Generally, HVBs are caused by a particulate placed in a location which attracts 

current. The particulates could have entered the tube prior to being sealed hence why 

conditioning is used to “clean up” tubes and why some IHVBs are “expected” since a 

particulate attracting a current would cause the contaminant to be blown away. EXHVBs 

were not expected since it was assumed that once the tube has been vacuum sealed 

particulates are no longer of concern. In Test the tube is placed into flourinert, a critical 

chemical used in the testing system, and particulates should no longer be attached to the 

tube, but would now be in the fluid. The idea that particulates were in the flourinert lead 

to the belief that the flourinert was potentially the cause for EXHVBs. The tester itself 

had also been considered to be the problem since it exceeded its expected lifespan and it 

over classifies the occurrence of EXHVBs. That is the sensor for “light” and “sound” 

discussed briefly in chapter 2 is overly sensitive. Despite this issue, it appropriately 
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indicates EXHVBs when they actually occur in the product. In general, even though the 

EXHVB indicator is overly sensitive the tester preforms its job effectively enough to 

provide accurate test results.  

To best simplify the study, it was assumed that everything else in the system 

including the tester were not the problem, and the only variables accounted for in the 

model would be the six particulate sizes recorded by the air monitor and the response 

variable would be EXHVBs.  

4.1 Study using Historical Data 

With the little affluence that EXHVBs had on the overall number of product 

scraps, historical data would have to be used in addition to the data collected at the start 

of the pilot study. The airborne data starting from February 2008 would mark the start of 

the retroactive study. From there, the non-conforming report (NCR) data would be 

retrieved for the Conditioning process and the NCRs caused by EXHVBs would be 

matched to its particulate data. However, we also wanted to show that reducing 

particulates would decrease the probability of EXHVBs. Therefore, in addition to simply 

collecting the airborne data and matching it to the NCRs for past and future tubes, an 

experiment would be embedded within the data collection. 

 The purpose of the experiment is to determine if it is necessary and 

recommendable to increase the level of air purification and air handling systems in the 

testing area up to clean room standards. The data collected will also help determine if 

clean room standards should be used in the drawings and design of the potential new test 

area. Furthermore, it would help determine if clean room standards in Test would reduce 

or eliminate the occurrence of EXHVBs. 



 41 

The experiment would consist of several phases in order to use a step-wise 

approach toward improvements. The multi-phase study would allow us to ascertain the 

level of cleanliness needed and prevent over-spending on unnecessary clean room 

standards. The initial phase would include using two to four HEPA Air Purifiers and Air 

Ionizer products manufactured for residential use. However, there was a slight funding 

limitation, the Test area is over 2000 square feet and the budget for this study would only 

allow the purchase of 4 units which were only 99% HEPA-type and covered 80-110 sqft. 

It was determined that the small units would suffice if they were placed strategically in 

the area of where the testers were located, figure 13. This way a potential clean niche 

would be created. Additionally it was determined that the Test area usually has low 

traffic and may be cleaner in air quality then a typical residential household allowing the 

air purifiers to be used at maximum capability. 

Data for Phase I would be collected for a period of 6 months. At the end of the 6 

month period an analysis would be conducted to determine if the air purifiers had an 

effect both statistically on the air quality and operationally in decreasing the EXHVBs. A 

statistical significance on air quality is expected, however, a decrease in EXHVBs is not. 

This is because I am assuming that a greater level of intervention is needed beyond the 

residential air purifiers.  At this point Phase II will be proposed. In Phase II, clean room 

type ceiling tiles would be used and/or a mobile clean room would be created, figure 14. 

The red area represents where the clean room tiles would be placed if it is too costly to 

replace the ceiling tiles for the entire room. The purple outline represents where the 

curtain would be placed. The air purifier would model the affects of having a HEPA 
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filtered air supply. This model set up is not intended to be permanent, but is meant to be 

used in determining the level of cleanliness required for Test.  

To best meet the conditions of Phase II, all of the ceiling tiles would be replaced, 

and then it would be determined if additional clean requirements were needed. If it was 

found that EXHVBs were still present then Phase III would be initiated. The clean room 

curtains to create a mobile clean room will be installed.  Frocks, gloves, shoe covers and 

hair covers would be used in the curtained areas. However, Phases II/III could potentially 

be proposed together by using the curtains to create a tented area over the testers in order 

to simulate clean room ceiling tiles. 

4.1.1 Experiment Design-Phase I  

Method 

Participants 

The two test operators would continue their work as usual, however they were 

asked to ensure that the air purifiers and ionizing mechanism remained “on.” They were 

also asked to inform me if any malfunctions with the air purifiers occurred. A quality 

assurance employee was involved in assisting in obtaining the Conditioning NCR data 

and the process engineer for Test assisted in ensuring that the NCR data in model used 

actually pertained to the EXHVB data.  

Materials 

Four Honeywell Model 16200 99% HEPA air purifiers were used. This model 

was selected because each system has a 330 sqft max cleaning capability and 

accomplishes two air cleaning cycles per hour. The Model 16200 has a 4-stage air 

filtration system including a washable pre-filter which traps large dust particles. A HEPA 
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Type filter traps 99% of all allergens and dust down to the 0.3 micron in size. The odor-

lock carbon filter removes over 4000 chemical, odors, and cigarette smoke. Finally, the 

ionizer is a device that provides additional air filtration by creating ions that help remove 

particles from the air.  

Additionally, two Met One HHPC-6‟s were also used. The HHPC-6‟s were set to 

collect a one minute sample (0.1 cubic ft) automatically every 59 minutes. The count 

mode was set to “Totalize” which is the particle count as it accumulates during the 

sample period and the count data set to “Differential” which includes particles that are 

larger than or equal to the particle size selected by smaller than the next greatest particle 

size. The number of samples was set to “INF,” which allows for 500 samples to be 

collected on the rotating buffer.  

Design 

The main goal of collecting the airborne particulate data and EXHVB events is to 

determine if particulates increase the likelihood of defects.  Time independent plots for 

each particulate size level by proportion of failures will be used as the first indicator to 

determine if there is an obvious trend that shows breakdowns increase as particulates 

increase. A logistic regression will be conducted to determine if particulate levels matter. 

Where in the model, failure means an NCR included EXHVB and it was scrapped, 
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and  level predictoron on j observatithe i value ofX thth

ij ,  

It is likely that since the particulate levels are highly related that a problem with 

multicollinearity between the different particulate sizes will be encountered. In order to 

remediate this potential problem principle component regression will be used.  

The principle components are derived from conducting a principle component 

analysis (PCA). A PCA is concerned with explaining the variance-covariance structure of 

a set of variables through a few linear combinations of these variables (Johnson & 

Wichern, 2007, p430). An analysis of PCs often reveals relationships that were not 

previously suspected and thereby allows interpretation that would not ordinarily result 

(Johnson & Wichern, 2007, p430). This is why PCA is useful with highly correlated 

variables. When variables are highly correlated, it is difficult to determine the importance 

that each variable may reveal and most regression models will become flawed, possibly 

revealing incorrect information. Since PCs are linear combinations of the variables 

explained variance-covariance, the characteristic that led to the all of the variables being 

correlated can be represented in a PC(s). Algebraically, PCs are particular linear 

combination of the p random variables X1, X2,…Xp. Geometrically, these linear 

combinations represent the selection of a new coordinate system obtained by rotating the 

original system with  X1, X2,…Xp  as the coordinate axes(Johnson & Wichern, 2007, 

p430). 

This way, the other characteristics of the variables that were masked by the highly 

correlated data may be represented in the remaining PCs. Therefore, the p variables, and 

the original data set, consisting of n measurements on p variables, is reduced to a data set 
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consisting of n measurements on k principle components (Johnson & Wichern, 2007, 

p430). The coefficients of the PCs can be used as inputs to a regression.  

For Phase I of the study the main goal is to show that small, perhaps low-cost 

improvements are sufficient in making a major impact in decreasing or potentially 

eliminating EXHVBs. A two-sample t-test will be conducted to determine if the 

residential air purifiers had an effect on airborne particulate contamination. From this, the 

level of intervention can be determined. If no difference is found in airborne particulate 

levels then Phase II will be proposed. If a significant difference in airborne particulate 

contamination is found, it must be determined if this decrease in particulates had an 

impact on the occurrence of EXHVBs. This will be done using the logistic regression 

modeling methods previously discussed. A separate model will be created where 
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This will show the proportion of breakdowns before the air purifiers were put into 

place, then after.  

Procedure 

The four Honeywell air purifier were set to “ON” at the highest setting, and the 

air ionizer was also turned on. The air purifiers were placed as set in figure 13. The 

particulate data would be manually downloaded every 21 days in order to prevent data 

loss, for the upcoming tubes to be tested. 
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Other than manually downloading the data, the multi-phase study would require 

little human interaction. However, creating a data set from the historical data required 

tedious data cleaning. The NCR and actual test date data were found in two different 

databases, in different formats. Additionally, the NCR data was not available 

immediately after a tube was NCR‟d so it was data that was difficult to obtain. Because 

of the delay in obtaining the NCR results, the study would have to be considered a “retro-

active” study. Once a tube was NCR‟d we used the NCR data to find when the tube had 

been tested. Each tube is typically tested in a lot of eight, so the tubes tested in the lot 

were also included in the data set as non-NCR tubes. The exact time could not be 

obtained for tubes that were exposed to the air in the Test room, so the average 

particulate count for the day would be used. Since the goal is to look specifically for 

NCRs pertaining to EXHVBs and it‟s a condition that the tester has a tendency to over 

specify EXHVBs, the test process engineer verified that the data qualified as accounting 

for actual NCRs due to EXHVBs and not false indications. This data would be collected 

until the completion of Phase I in March 2009. 

4.1.2 Experiment Results 

During the winter shutdown, the four air purifiers had to be moved because they 

were plugged into electrical outlets located on the testers, and the testers were going to be 

powered down for the shut down. The 4 units as well as the HHPC-6‟s were moved on 

top of 4 nearby cabinets. Upon return from the winter shutdown, an operator noted a 

clicking/snapping sound. Upon investigation, they discovered that the clicking was a 

result of a cyclical sparking that was coming from the air purifiers. When the ionizer was 

set to “ON” mode, a charge was building on the cabinets causing a static dispersion. It 
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was believed that this problem was not seen before because they were sitting on the 

testers and the testers are grounded.  The multi-phase experiment was cancelled and the 4 

units were returned to the manufacturer as defective.  

The six particulate levels were each categorized into ten groups ranked by the 

particulate count. This grouping was used just to make six plots that display the 

proportion of failures i.e. EXHVBs, per particulate level as the number of particulates in 

that level increases, see figures 15-18. 95% Confidence Intervals were added to the plots 

and represented by the “-“marks in the plots using R.  

From figure 15, it appears that EXHVBs occur at a fairly constant level regardless 

of the increase in particulates of sizes 0.5-0.7μ. Most likely, there is no effect as 

particulate count increase or decrease for this size. In figure 16, almost appears to have an 

even distribution of proportion of failures across the different particulate counts. No real 

relationship between particulates of size 0.7-1μ increasing and proportion of failures 

appears to be present. In figures 17 & 18, the proportion of failures by rank appears to 

only be random scatter. In figure 17, it almost appears as if more EXHVBs occur at lower 

particulate count rates of sizes 1-2μ. In figure 19, an apparent relationship between 

proportion of failures and increase in particulates of sizes 5-10μ is present. Similary, in 

figure 20, the relationship also appears to be present in particulates >10μ.  

A logistic regression model would be flawed without PCA because of the 

multicollinearity. The multicollinearity is visible in figure 21. Clearly, groups 1 through 4 

are correlated, and it appears that groups 5 and 6 are also correlated.  This problem was 

going to be resolved using PCA therefore further modeling was conducted. 
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4.2 Results and Models 

Additional data was collected to complete the historical data analysis. The 

particulate and tube conditioning data ranged from February 18, 2008 to February 6, 

2009. There were a total of 1,020 commercial use tubes tested during this period. 

However, due to missing particulate data only 742 were included (N=742). There were 

57 EXHVB events which resulted in NCRs. However, 28 of the 57 EXHVB events were 

scrapped, labeled as response variable B1.  The analysis was conducted using R. 

The PCA was conducted using the Correlation Matrix by using a standardized 

version of the data set. The standardized values were used to eliminate problems with 

magnitudes of the data counts obtained. Using the princomp command on the 

standardized values in R we can enter “cor=False.”  The PC loadings are then obtained 

and can be multiplied by the standardized values. This is useful because when new 

observations are obtained they can be scaled by the obtained means and standard 

deviations‟ multiplied by the loadings, then fed into the resulting regression model to 

make predictions.  
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Typically, in PCA only the first few components are used where a Scree plot, 

figure 4.11, can show the variance explained by each component. Once the line is 

horizontal or flat then only those components are selected. However, as seen in figure 22, 

most of the variance seems to be explained by component 1 (Comp.1) and Comp.2, but 

the plot line does not appear to level out. Therefore, it was determined that the Scree plot 

would not be the best variable selection method. Additionally, little is understood about 

the particulate data and perhaps another component containing less of the explained 

variance may include the necessary information to predict EXHVBs. For this reason a 

stepwise selection method was used.   

The first Logistic Regression model using the PC variables and B1=(EXHVB 

Scrap), table 3, shows that Comp.1, Comp.3, and Comp.4 are significant at α=0.10 set as 

the cut-off. However, Comp.6 has a p=0.1249, perhaps if the non-significant components 

are removed and Comp.6 is held in it will be significant. The logistic regression was 

repeated, table 4, however, Comp.6 was not significant at α=0.10 cut-off and was also 

removed. The final model (Model 1), table 5, includes Comp.1, Comp.3 and Comp.4 and 

was significant at α=0.10. Model 1, was used to determine the probability of an EXHVB 

that will result in a scrapped tube. 

To validate the logistic model predictive qualities the leave-one-out cross-

validation (LOOCV) method and the area under the receiver operation characteristic 

(ROC) curve were used. The LOOCV method was used to avoid an overly optimistic 

area under the curve (AUC) for the ROC, since we re-fit the logistic regression model 

each time we remove a point to get a better measure of the entire variability involved in 

the prediction process.   
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The ROC x-axis is labeled as false positive rate (FPR) which is the percentage of 

tubes the model incorrectly predicts to have an EXHVB resulting in a scrap and is 

equivalent to (1-specificity). The ROC y-axis measures the true positive rate (TPR) 

which is the percentage of tubes the model correctly predicts an EXHVB resulting in a 

scrap will occur and is equivalent to sensitivity. The sensitivity defines how sensitive the 

model is to the outcome of interest, in this case EXHVBs that result in a scrap. On the 

other hand the FPR, or (1-specificity), is defined as, how well the model can specify or 

distinguish between a true positive (TP) and a false positive (FP). In this case the model 

will either correctly or incorrectly predict that an EXHVB that results in a scrap will 

occur.  

The TPR and FPR thresholds range from (0, 1). We select the thresholds using the 

obtained )Pr( failure values from the PCA logistic regression LOOCV where )Pr( failure  

is the probability that an EXHVB will occur given the particulate levels.  In order to 

determine what level to set the cut-off threshold we find when the ROC Curve is furthest 

from the diagonal line, and closest to the upper left corner of the graph.  

  The ROC curve, figure 23, for Model 1 was obtained. The AUC=0.563, meaning 

that overall it can distinguish a true positive (TP) from a false (FP) 56.3% of the time, 

which is slightly better then the line of discrimination which is the diagonal line from the 

left bottom corner to the right top corner. In order to decrease the probability of a FP, the 

specificity can be increased. However, when this is done, there is a reduction in the 

ability to identify a TP and a failure may go through. For this reason the thresholds can be 

varied, depending on the trade-offs that the product can take. 



 51 

In our case, it is better to incorrectly classify a tube as a FP, than allow a TP to go 

through. In the figure 23, it can be observed that the model could account for 

approximately 90% of the TPR, if we considered decreasing the specificity and allowed 

FPR to be approximately 60%. To achieve 90% detection of TPs we would set the 

threshold at 032.0)Pr( failure . Therefore, we would only test 

when 032.0)Pr( failure . The model with a 90.0TPR would produce the outcomes in 

table 6. From the classification table, we can calculate: 

Overall Percentage of Tubes Classified Correctly by the Model 

%6.53
742

37225

Total

TNTP
 

The False Positive Rate  

%89.47
714

342

)( TNFP

FP
 

The False Negative Rate 

%107.0
28

3

)( TPFN

FN
 

Sensitivity 

%21.89
28

25

)( FNTP

TP
 

Specificity  

%1.52
714

372

)( TNFP

TN
 

Model 1 does very well at identifying EXHVBs that result in scraps and it can be 

used to indicate when it is best to test tubes. Even though it over-classifies the occurrence 

of EXHVBs, the correct detection of 90% of all failures ensures that on days that testing 
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was delayed until airborne particle conditions improve are actually preventing losses. 

Over the 1 year period that this data was collected a total of 87 test days were included in 

the model. Although, only 87 days were included in the model during that one year 

period testing only occurred on 123 days. This is because testing occurs on a queue so we 

only test if product is available to test. The EXHVBs that resulted in scraps occurred in 

22 of the 87 days testing occurred. The model correctly identified 19 of those days, 

meaning that if we were willing to test only on the days the model allowed we would be 

able to test 64% of the 87 days and detect 90% of all failures. There is no penalty (i.e. 

product loss) in not testing; the only penalty to not testing when tubes are in the queue 

would be the inconvenience of scheduled testing. Since we only test 123 days in a year 

there is a lot of flexibility in scheduling testing. These are quite remarkable results. 
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Figure 13, Phase I Experiment Layout 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54 

 

Figure 14, Phase II Experiment Layout 
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Figure 15, .5-.7μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 16, .7-1μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 17, 1-2μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 18, 2-5μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 19, 5-10μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 20, >10μ Particulate Rank vs. Proportion of EXHVBs 
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Figure 21, Scatterplot Matrix of Predictors 
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Figure 22, Screeplot 
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Figure 23, ROC Curve for Model 1 

 
*Note: The scale for this graph is coarse and was generated using 500 iterations of 

potential cut-off points.  
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Table 3, PCA Logistic Regression Step 1 

Call: 

glm(formula = B1 ~ Comp.1 + Comp.2 + Comp.3 + Comp.4 + Comp.5 +  

    Comp.6, family = binomial("logit"), data = reg.data) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.4978  -0.3202  -0.2803  -0.1638   2.8154   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept) -3.66482    0.31219 -11.739   <2e-16 *** 

Comp.1       0.44472    0.22013   2.020   0.0434 *   

Comp.2       0.06191    0.17261   0.359   0.7198     

Comp.3       1.11818    0.59339   1.884   0.0595 .   

Comp.4      -1.21085    0.51401  -2.356   0.0185 *   

Comp.5      -1.13890    1.51467  -0.752   0.4521     

Comp.6      -8.44880    5.50550  -1.535   0.1249     

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 238.45  on 741  degrees of freedom 

Residual deviance: 224.25  on 735  degrees of freedom 

AIC: 238.25 

 

Number of Fisher Scoring iterations: 8 
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Table 4, PCA Logistic Regression Step 2 

glm(formula = B1 ~ Comp.1 + Comp.3 + Comp.4 + Comp.6, family = binomial("logit"),  

    data = reg.data) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.5004  -0.3140  -0.2718  -0.1675   2.7446   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -3.6132     0.2890 -12.501   <2e-16 *** 

Comp.1        0.4229     0.1967   2.150   0.0316 *   

Comp.3        1.0129     0.5330   1.901   0.0574 .   

Comp.4       -1.1182     0.4931  -2.268   0.0234 *   

Comp.6       -6.4429     4.8463  -1.329   0.1837     

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 238.45  on 741  degrees of freedom 

Residual deviance: 224.95  on 737  degrees of freedom 

AIC: 234.95 

 

Number of Fisher Scoring iterations: 7 
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Table 5, PCA Logistic Regression Step 3 Final 

Call: 

glm(formula = B1 ~ Comp.1 + Comp.3 + Comp.4, family = binomial("logit"),  

    data = reg.data) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-0.4310  -0.3317  -0.2757  -0.1905   2.7827   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -3.5736     0.2818 -12.680   <2e-16 *** 

Comp.1        0.4266     0.2027   2.104   0.0354 *   

Comp.3        0.9924     0.5355   1.853   0.0638 .   

Comp.4       -1.0830     0.4940  -2.192   0.0283 *   

--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 238.45  on 741  degrees of freedom 

Residual deviance: 226.77  on 738  degrees of freedom 

AIC: 234.77 

 

Number of Fisher Scoring iterations: 7 
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Table 6, PCA Logistic Regression Model 1 Classification Table 

 

 

Classification Table

EXHVB Not EXHVB Total

EXHVB 25 37 62

Predicted Not EXHVB 3 677 680

Total 28 714 742

                 Actual
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Chapter V 

Internal High Voltage Breakdowns 

 

Although we now had a model to illustrate the problem with external HVBs, the lack of 

understanding on what and where the problem of internal HVBs was originating still 

existed. By analyzing the historical data, a better understanding of the production process 

was now in place. We needed a way to track the particulates in the ANNEX on all of the 

unserialized parts as they were built up to a tube. However, with the hundreds of pieces 

used to manufacture the final product, this was going to be extremely difficult. With 

planning and assistance from some core operators, an observational study was designed.  

5.1 Experiment Design for Investigation of IHVBs 

Method 

Participants 

The participant demographics were not collected for confidentiality purposes. 

Additionally, the study will be ignoring the operator factor and will only be considering 

the airborne particulate data the parts in the study are exposed too. Operators from the 

ANNEX participated in this study. In figure 24, a lay out of the ANNEX and other 

production floor areas is available to help understand where production takes place. 

Additionally, three operators from the welding process (room W), two from vacuum 

sealing (room X), two from final marking (room M), and one operator from conditioning 

(room T) participated in the study.  The study was running under a limitation that the 

operators are in a trades union which protects them from having to conduct work not 
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already clearly outlined in their job descriptions. Therefore, forced participation was 

prohibited. They were informed that work on these tracked observational units was to be 

conducted as they process any normal product, adhering to their normal work 

instructions.  

Parts 

A total of nine jobs of three part types were selected to be tracked. The parts are 

manufactured by jobs that lead to the following parts: Frame, Insulator, and Screen. 

Basically, the pieces that go into building the parts could not necessarily be tracked, but 

we could track the particle exposure as the parts were being put together. These parts 

would later result in two other parts: the final frame and the final header. These two 

pieces would then be welded in a class 1000 clean room (room W) not located in the 

ANNEX, and at this point it is considered a tube job, which will be constantly referred to 

in this study as a “lot.” The tube job contains 8 tubes. However, the three jobs that lead to 

the final lot may contain additional parts to build more tubes, but this information was 

neglected due to administrative limitations of the study, and only the lots of 8 were 

considered. The nine jobs resulted in 3 lots of tubes. That is 24 total tubes were tracked 

during the study.  

Only allowing a total of 3 lots to be part of the study was a limitation set by 

materials availability. Therefore, the jobs were not selected randomly. The manufacturing 

piece parts become available to release to start a new job, once the “Super Market” 

supply is close to depleted.  
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Materials 

To protect the integrity of the product, the specific materials used in production 

are not listed. The key tool for this study was the 14 HHPC-6 DAPCs. The HHPC-6‟s 

were set to collect a one minute sample (0.1 cubic ft) automatically every 29 minutes. 

The count mode was set to “Totalize” which is the particle count as it accumulates during 

the sample period and the count data set to “Differential” which includes particles that are 

larger than or equal to the particle size selected by smaller than the next greatest particle 

size. The number of samples was set to “INF,” which allows for 500 samples to be 

collected on the rotating buffer. Forms were designed for this study, see figure 25. 

Notable items that were useful in this study, however, already part of the production 

process included totes, ORACLE, and special clean environment cabinets. 

Design 

Frame, Insulator and Screen were selected as the observational study parts 

because this ensured that we collected data from all areas of the ANNEX, see figure 24. 

The parts were built either uniformly in parallel or in series, where some parts entered all 

locations while others did not. These three parts not only enter most or all locations at 

any given point in the build but they also go through every process that takes place in the 

ANNEX when observed cumulatively. In this way we know we have the best coverage 

that can be obtained by an observational study. 

Unlike, in the EXHVB study, the entire purpose of recording what time and date 

the parts are exposed to location air is to quantify the effect of the total time exposed. 

With the air sampling taking place every 29 minutes the airborne conditions are available 

on that time grid. However, the exact time the parts are exposed may not necessarily 
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occur during the exact time the reading was collected. Therefore, a method to 

approximate air particulate exposure was developed. Additionally, the exposure may take 

place between time intervals for instance 08:15 and 10:20, while the DAPC may have 

readings for the top of the hour (i.e. 08:00, 09:00,…) so this had to be accounted for. 

 An algorithm was created to calculate the unit Particulate Minute (PM), so that 

we could quantify the level of airborne exposure a part is subjected to. This method of 

multiplying the airborne particulate read at a certain time, by the time parts are exposed 

to came from Don Lifke, who worked for EMCORE Corporation in the past and said this 

was standard practice there (personal communication, 2009).  This idea appeared to be 

ideal for the purpose of determining which area/location has the greatest affect on the 

piece parts during production in the ANNEX toward HVBs. The general calculation goes 

as follows for air sampling times ],[),...( 1 batt m then  

mtmtt PtbPttPatPM )(...)()(
10 121  

Where 
it

P  the particle count at a time (t) given by the interval [a,b]. In order to get the 

time something was exposed to 
it

P we multiply it by the difference, which is equal to the 

total time exposed. In order to repeat this for the data collected, a function was written 

using MATLAB. This function allowed any time interval to be valid by taking into 

consideration the possible cases in the data. 

The rooms in the ANNEX and the other areas the parts travel through are the 

covariates and they are measured by the HHPC-6 DAPCs. However, each room consists 

of 6 covariates because the HHPC-6 reports the six sizes, which are labeled as 1=(0.5-

0.7μ), 2=(0.7-1μ), 3= (1-2μ), 4= (2-5μ), 5= (5-10μ), and 6= (>10μ). If we were to 

consider all of the 14 rooms six particulate levels we would have 84 covariates. However, 
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a variable selection method cannot be used to reduce the number of variables in the 

Poisson Regression. This is because of the study limitation of 3 lots, which essentially, 

resulted in 3 design points with 8 replicates. That is the covariates (particle counts) are 

the same for all 8 tubes in each lot. 

The Poisson distribution can be used for outcomes that result in count 

data, ),...2,1,0( NYi , with mean i , where a large count or frequency being a rare event. 

In the Poisson regression model the probability of observing iY is as follows: 

!
)Pr(

i

Y

i
Y

e
Y

ii

 , ni ,...,1  

where the logarithm of the mean λ is the linked linear function of the explanatory 

variables such that: 

kikiii XXX ...)log( 22110  

where, 11,..., pXX  are a set of predictor variables. 

The Poisson is a reasonable model for this data because the tubes go through a 

total of 32 tests during conditioning, where combinations of static and dynamic tests are 

conducted. Each test marks for an opportunity for an HVB to occur. The response 

variable is given by sum of HVBs, (i.e. the number of failures). Where, “0”, indicates 

zero failures. However, a tube will never have 32 failed conditioning tests. This is 

because the tester is designed to stop if a tube has >5 HVBs. The tester considers this rule 

in regards to a single type of test (static or dynamic). Hypothetically, 11 would be the 

maximum amount of HVBs seen, although rare, more HVBs in one tube can occur to due 

tester anomalies. Although, the tester will not stop testing a tube until there are >5 
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breakdowns in a single type of test, operationally, a tube is scrapped when >5 HVBs 

occur whether the tester stopped or not.  

There is a case where if a tube fails the first three tests, the tester automatically 

stops and considers this tube a failure. This is notable, because a tube that fails 3 tests in 

general (i.e. has 3 HVBs), is different from a tube that fails the first 3 tests, since 3 

general HVBs would be considered acceptable, while the second case would not. If we 

simply used the sum of the HVBs (i.e. total number of failed tests), these two cases 

would both be labeled “3” and they are not the same. Therefore, it was determined that a 

label for the response variable would be needed in order to consider these different 

situations. A scoring system was developed by using this equation so the response 

variable is:  

 Passed). TestsNumber  - Tests ofNumber  (TotalY  

In this way, if a tube fails 3 tests, but passes the rest, then it would receive a score of  

329)-(32Y  

While a tube that fails the first 3 static tests would receive a score of 28, because in this 

case it only passed its first 4 dynamic tests. There are many other cases not discussed 

where simply giving the response a total count of HVBs would result in misrepresenting 

the data.  

This model will not rely on the outcome scrap or non-scrap as in Ch 4, but instead 

only using the breakdown data. With this model we would be able to calculate 

)0(YP or )5(YP  etc. given the PM data for each area. This model could be 

beneficial in that if the PM data can predict the number of breakdowns, then we will be 

able to determine which areas potentially contribute to the occurrence of HVBs in the 
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tubes. However, this is an exploratory analysis, and these preliminary indications may not 

be definite.  

Procedure 

The three jobs were selected to form lot 1 as they became available. Using 

ORACLE the controller placed hold points in the jobs selected so that they could not be 

moved to their next process without notifying the controller when work was completed. 

This was done in order to ensure that the new job was to be matched to the other 

remaining two jobs. Once all three jobs to build the lot were released the controller 

placed holds, as an additional check point so that the operator could not move a job to the 

next process unless the other jobs that were matching it were also ready to be moved to 

the next process.  

 Once the jobs were selected forms were attached to the lid of the tote the job 

parts were placed into.  The forms were designed to follow the parts through their 

processes so that the operator would only be required to fill in a blank.   

An operator was designated as the lead for this study and was to know where the 

three jobs would be located and to re-brief the operators prior to beginning work on the 

study parts. After being briefed about what to do the operator would complete that 

process. Once the parts were ready for welding the parts were bagged, and the totes were 

picked up by the operators from weld. The lid is then removed and the parts were placed 

into a nitrogen cabinet until the parts were going to be welded together.  After the parts 

became a tube, the hold points were no longer required and the operators were able to just 

note when they moved the tubes out of the nitrogen cabinets to then complete a vacuum 

sealed tube. Once the tubes were vacuum sealed they were placed in a different kind of 
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tote made to hold the tubes. The tubes were then moved to the room M where the “dirty 

processes” described in Ch 2 take place, and placed into plastic vials designed to hold the 

tubes individually.  

Finally, they were moved to Conditioning where they were tested. The operator in 

test was asked to note when the tubes were exposed, and once placed in the tester, to note 

the results of the tests the tubes go through. The results were verified using the data 

provided by the tester. Although this does not complete the tube manufacturing the study 

concludes at “condition” since this is the point when the product yields are affected. This 

process was repeated 3 times for a total of 3 lots and 24 tubes.  

5.2 IHVB Experiment Results 

Results  

The eight tubes per lot were replicates from a design point. There were not 

enough degrees of freedom to fit a model with the 84 covariates or to use model selection 

methods. Therefore, these are preliminary results mainly exploratory to attempt to get a 

handle on what covariates can affect the tube. These are not definite results; they may 

give some indication of what is going on. Enough data was rendered from rooms A, E, G, 

J, M and T to be included in the study. In Appendix D some details on the constraints 

which eliminated the other rooms from the study are discussed. It was decided that 36 

Poisson regressions would be fit individually, to look at one factor main effects at a time 

as an exploratory analysis. Although this would not present definitive evidence, the 

analysis might be able to narrow down the areas that are most likely to have an influence 

for a HVB to occur.  
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Since different parts of the tube visited the same rooms at different points in the 

build sequence, it was determined the cumulative impact of each room would be used to 

see which room and particulate size is most influential on HVB rate. Therefore the sum 

of the PM for each piece part per room included in the data set was used as the variable in 

the Poisson regressions for each particulate size. 

A plot of the performance of each tube in lots 1, 2 and 3 by Number of 

breakdowns, can be seen in figure 26. Lots 1 and 2 performed similarly in terms of 

breakdowns, while lot 3 had the least amount of breakdowns occur per tube. A histogram 

of the breakdown data for all of the lots was made to show the distribution of the data, 

figure 27. By the histogram of the breakdown data we can see that the Poisson 

distribution assumption fits. 

The Poisson regressions for the exploratory analysis of all the rooms included in 

this study were conducted using R. Since the PM unit was extremely large the original 

PM data had to be multiplied by 6101 in order to complete the analysis. This was done 

for all of the covariates in this study. Therefore the coefficients are based on the 

transformed PM units. For room A, the Poisson regressions show that all particulate sizes 

of the PM were significant at p< 0.10, see table 7. The results show that as the PM for 

each particulate size in room A increases, then the probability of an HVB increases. 

These preliminary results show that room A appears to contribute to the HVB problem.  

The Poisson regressions for the exploratory analysis of room E were conducted. 

All of the all particulate sizes of the PM were significant at p<0.001, see table 8. 

However, all of the coefficients were negative in this room. Therefore, the results show 

that as the PM for each particulate size increases, the probability of a HVB decreases. 
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This result was contradicting to what was expected especially in room E, particulate 

levels seem to always be out of control and it was believed to definitely be a culprit room. 

However, the work on the piece parts to the tube is conducted under a clean air flow lab 

bench. At the completion of each build in room E, the parts are sealed into plastic bags 

and placed in a nitrogen cabinet. Therefore, it was determined that increasing particulate 

levels in room E did not necessarily decrease the probability of a HVB. Instead, it was 

reasonable to believe that the methodology used to protect the product from particulate 

contamination was sufficient, and room E did not contribute to the HVB problem, 

positively or negatively; at least based on these preliminary results. 

The Poisson regressions for the exploratory analysis of room G were conducted. 

Some of the PM particulate sizes were significant see table 9. Since this is an exploratory 

analysis used to determine a potential influence, G1 can be considered a contributing 

factor with a p=0.105. G2 had a low a non-significant p-value as well; however, it is 

small enough to show that there may be a relationship. G3 was significant a p<0.10, but 

G4 was not significant. G6 was significant with a p<0.10. The Poisson regressions show 

that as the PM levels in this room increase then the probability of a HVB increases. The 

results for room G most likely have confounding issues, since all of the particulates are 

related. Unfortunately, because only the main effects of each variable can only be 

analyzed individually it is difficult to remediate the multicollinearity in this model. It may 

be reasonable to assume that room G PM levels contribute to the occurrence of HVBs in 

the tube. However, because of the nature of this exploratory analysis the effects from 

room G may be due to chance alone. 
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The Poisson regressions for the exploratory analysis of room J were conducted. 

All of the PM particulate sizes were significant except for the largest PM, J6, see table 

10. The J1…J4 variables had positive coefficients showing that as the PM increased, then 

the probability of a HVB increased. However, for J5 and J6 the coefficients were 

negative. After a careful analysis of the data, it was clear that this happened because of 

the change in the HHPC-6 settings, discussed in Appendix D. Room J had low airborne 

particle levels and HHPC-6 was reading zeros for J5 and J6 during the time that Lot 1 

and Lot 2 were worked on in the production sequence. However, for Lot 3, the HHPC-6 

had readings greater than zero. Therefore, it appeared that airborne conditions worsened 

for Lot 3 but there were less HVBs. When in reality the conditions most likely did not 

worsen. Previously, due to the small and short sampling period the HHPC-6 was not 

detecting these particles.  

The response variable for room M and T were slightly different than for the other 

Poisson regressions for the exploratory analysis of the other rooms. This is because in 

rooms M and T the tube is vacuum sealed and the interior is no longer exposed or 

considered vulnerable to internal contamination. For these rooms, only EXHVBs were 

counted. The raw count or the sum of total number of EXHVBs for each observation was 

used as the response variable.  The Poisson regressions for room M were not significant, 

except in the case of M5, see table 11. No real explanation could be resolved onto why 

this was the case. M5 being significant may have been a chance occurrence. Perhaps, 

more data needs to be collected before it is determined that room M is a contributing 

factor to increased probability of EXHVBs. However, because of the nature of this 

exploratory analysis, this result may be negligible.  
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For room T the Poisson regressions were significant for all of the PM levels with 

p<.001, table 11. The coefficients were all positive showing that as the PM increases 

then the probability of an EXHVB increases. Based on the results in Ch4 and this study, 

room T has continued to have an effect on EXHVBs, even though this analysis is 

considered purely exploratory, this result will most likely not change with further studies.  

5.3 Conclusion 

Due to the results obtained in this study it was determined that an automated 

airborne particulate monitoring system would be installed in the ANNEX. The system is 

a unit similar to the HHPC-6. However, it is a permanent wall mounted fixture, rather 

than a hand-held unit. This system is server based and the data downloads will occur 

automatically, removing any of the human factors involved in the data acquisition, which 

were a major limitation in this study, as discussed in Appendix D. Additionally, the data 

will be available for review in as close to real time as currently possible and has software 

and a network fully supported by the manufacturer, eliminating the difficulties seen with 

HHPC-6 even after network communications were developed, (not discussed in this 

thesis).  

This decision was made because the tube production management and 

engineering teams felt that this study needed to be repeated and continued, but some of 

the challenges of the study (i.e. data acquisition) needed to be eliminated. Once the new 

airborne monitoring system is obtained, this study will be repeated as part of the “routine-

work” for a period of at least 6-months. This decision was made by management in order 

to meet union requirements that operators are not obligated to conduct work not already 

outlined in their standard procedure. Therefore this study will be standard procedure for 
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the data collection period. In a 6-month period at least a total of 125 Lots will be included 

and therefore, there will be approximately 1000 observations to fit the model on. This 

will allow for a better fit that will take into account confounding issues, and allow for the 

analysis of interaction effect.  This study was beneficial by showing that the ANNEX had 

an effect on production yields, even though this analysis was purely exploratory. 

Therefore, the tube production team was able to procure the funds to obtain an automated 

particle monitoring system in order to fully understand the problem, to improve and 

reduce tube loss; thereby improving product yields.  
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Figure 24, Production Floor Layout and Areas 
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Figure 25, Example of ANNEX study Form Used 
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Figure 26, Lot Performance: Tube by Number of Breakdowns 
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Figure 27, Histogram of Breadown Data for All Lots 
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Table 7, Poisson Regression Results for Room A 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) 1.2526 0.1437 8.716 <2e-16 *** 189.64 22 186.84 21 237.82

A1 1.0417 0.6127 1.7 0.0891 .  

(Intercept)   1.2321 0.1496 8.238 <2e-16 *** 189.64 22 186.6 21 237.58

A2 4.4552 2.5151 1.771 0.0765 .  

(Intercept)   1.2263 0.1572 7.803 6.06e-15 *** 189.64 22 187.01 21 237.98

A3 4.7385 2.8741 1.649 0.0992 .  

(Intercept)   1.2274 0.1487 8.253 <2e-16 *** 189.64 22 186.34 21 237.32

A 4 4.9606 2.6853 1.847 0.0647 .  

(Intercept)    1.207 0.148 8.154 3.52e-16 *** 189.64 22 185.34 21 236.32

A5 38.414 18.209 2.11 0.0349 *  

(Intercept)   1.1796 0.1485 7.946 1.93e-15 *** 189.64 22 183.97 21 234.95

A6 128.2843 53.0126 2.42 0.0155 *  

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Ai, family = poisson) where Ai=(A1…A6) PM levels 
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Table 8, Poisson Regression Results for Room E 

 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) 2.3196 0.2394 9.691 < 2e-16 *** 189.64 22 172.71 21 223.69

E1 -1.6804 0.4417 -3.804 0.000142 ***

(Intercept)   2.7896 0.3502 7.966 1.64e-15 *** 189.64 22 171.6 21 222.58

E2 -6.7351 1.7529 -3.842 0.000122 ***

(Intercept)   2.838 0.3615 7.85 4.15e-15 *** 189.64 22 170.98 21 221.96

E3 -6.623 1.7242 -3.841 0.000122 ***

(Intercept)   2.6688 0.3207 8.322 < 2e-16 *** 189.64 22 171.37 21 222.35

E4 -10.4059 2.715 -3.833 0.000127 ***

(Intercept)    1.8162 0.1382 13.139 < 2e-16 *** 189.64 22 175.42 21 226.4

E5 -211.5141 58.5001 -3.616 0.000300 ***

(Intercept)   1.7394 0.1198 14.516 < 2e-16 *** 189.64 22 171.27 21 222.25

E6 -503.6521 131.33 -3.835 0.000126 ***

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Ei, family = poisson) where i=(1…6) PM levels 
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Table 9, Poisson Regression Results for Room G 

 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) 1.1929 0.1746 6.834 8.28e-12 *** 189.64 22 187.09 21 238.07

G1 26.3545 16.2411 1.623 0.105

(Intercept)   1.1436 0.2268 5.043 4.59e-07 *** 189.64 22 187.85 21 238.83

G2 0.7136 0.5265 1.355 0.175

(Intercept)   1.2173 0.1556 7.821 5.22e-15 *** 189.64 22 186.6 21 237.57

G3 0.3173 0.1789 1.774 0.0761 .  

(Intercept)   1.2853 0.1563 8.222 <2e-16 *** 189.64 22 188.46 21 239.44

G4 0.319 0.291 1.096 0.273

(Intercept)    1.2907 0.1409 9.159 <2e-16 *** 189.64 22 187.96 21 238.94

G5 2.4787 1.8884 1.313 0.189

(Intercept)   1.2705 0.1325 9.592 <2e-16 *** 189.64 22 186.26 21 237.24

G6 6.0699 3.248 1.869 0.0616 .  

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Gi, family = poisson) where i=(1…6) PM levels 
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Table 10, Poisson Regression Results for Room J 

 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) 1.0813 0.1674 6.459 1.05e-10 *** 189.64 22 181.97 21 232.95

J1 26.5555 9.5345 2.785 0.00535 ** 

(Intercept)   0.07219 0.38984 0.185 0.853081 189.64 22 173.06 21 224.04

J2 412.45816 108.9108 3.787 0.000152 ***

(Intercept)   1.2136 0.1461 8.304 <2e-16 *** 189.64 22 185.34 21 236.31

J3 63.3332 30.201 2.097 0.036 *  

(Intercept)   1.2308 0.1469 8.378 <2e-16 *** 189.64 22 186.23 21 237.21

J4 202.7038 108.6541 1.866 0.0621 .  

(Intercept)    1.674 0.1118 14.973 < 2e-16 *** 189.64 22 170.8 21 221.78

J5 -2422.523 629.7919 -3.847 0.000120 ***

(Intercept)   1.534 0.172 8.915 <2e-16 *** 189.64 22 188.87 21 239.85

J6 -692.478 782.13 -0.885 0.376

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Ji, family = poisson) where i=(1…6) PM levels 
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Table 11, Poisson Regression Results for Room M 

 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) -0.7724 0.6249 -1.236 0.216 60.527 22 59.947 21 77.606

M1 0.6596 0.8833 0.747 0.455

(Intercept)   -0.4842 0.5049 -0.959 0.338 60.527 22 60.447 21 78.106

M2 0.7817 2.7693 0.282 0.778

(Intercept)   -0.4188 0.4538 -0.923 0.356 60.527 22 60.505 21 78.164

M3 0.4134 2.7657 0.149 0.881

(Intercept)   -0.5212 0.4529 -1.151 0.25 60.527 22 60.336 21 77.995

M4 1.1923 2.7407 0.435 0.664

(Intercept)    -1.5734 0.5519 -2.851 0.004363 ** 60.527 22 47.195 21 64.854

M5 10.1889 3.0813 3.307 0.000944 ***

(Intercept)   -1.094 0.6283 -1.741 0.0816 . 60.527 22 58.239 21 75.898

M6 61.3714 44.0748 1.392 0.1638

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Mi, family = poisson) where i=(1…6) PM levels 
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Table 12, Poisson Regression Results for Room T 

 

Coefficients:

Estimate 

Std. Error z value Pr(>|z|)    

Null 

deviance: df

Residual 

deviance: df AIC: 

(Intercept) -1.4229 0.5096 -2.792 0.005237 ** 60.527 22 47.074 21 64.733

T1 0.6448 0.1934 3.334 0.000857 ***

(Intercept)   -1.4112 0.5065 -2.786 0.005336 ** 60.527 22 47.071 21 64.73

T2 2.49 0.7468 3.334 0.000855 ***

(Intercept)   -1.4079 0.5056 -2.784 0.005364 ** 60.527 22 47.07 21 64.73

T3 2.9934 0.8978 3.334 0.000855 ***

(Intercept)   -1.4262 0.5105 -2.794 0.005210 ** 60.527 22 47.075 21 64.734

T4 11.0716 3.3214 3.333 0.000858 ***

(Intercept)    -1.6905 0.5851 -2.889 0.003862 ** 60.527 22 47.254 21 64.913

T5 480.8347 145.9878 3.294 0.000989 ***

(Intercept)   -1.6917 0.5862 -2.886 0.00391 ** 60.527 22 47.288 21 64.947

T6 1057.6654 321.8617 3.286 0.00102 **

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1

(Dispersion parameter for poisson family taken to be 1)

Number of Fisher Scoring iterations: 6

Poisson Regression Results glm(formula = BD ~ Ti, family = poisson) where i=(1…6) PM levels 
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Appendices 

 

Appendix A: Particulate Metrology Literature 

Peacock, S.L., Accomazzo, M.A, and Grant D.C. (1986) developed a precise 

calibration technique to generate count calibration data for light-scattering instruments. 

Peacock et al, (1986) describe the function of optical particle counters as measuring the 

light scattered by individual particles passing through a small sensing volume. The photo 

detector then collects the scattered light and converts it into an electrical pulse which is 

processed by counter electronics. The amplitude of the pulse generated depends on 

particle size with larger pulses indicative of larger particles. The electrical pulses are 

counted and measured by the electronics on a circuit board or threshold circuitry, a 

microprocessor, and communications circuitry. The microprocessor then displays the 

count on the front panel as total particulate count in specified size ranges (Henderson, 

p.2, 1999).   

 Peacock, et al. (1986) measured the performance of the particle counters in terms 

of particle count efficiency, defined as the ratio of indicated concentration to actual 

concentration. Efficiency is a function of concentration and particle size assuming a 

constant flow rate. As particle concentration increases, particle coincidence and 

electronic circuit saturation effects affect efficiency (Peacock, et al. 1986). 

 Particle coincidence is defined as the simultaneous presence of more then one 

particle within the discrete airborne particle counter (DAPC) optically defined sensing 

zone at any time (ASTM, 2003).  A combined signal from several particles may be 

reported as arising from a single larger particle by the instrument. These instruments all 
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have a particle concentration limit. If the particle concentration in the DAPC becomes 

excessive, then the probability of more than one particle being present in the sensing 

volume at any time may become significant. In that situation, several small particles 

simultaneously present in the volume will be reported as larger and fewer particles than 

those actually present in the [air sample] being measured (ASTM, 2003).   

Particle counters were meant to be placed in low level airborne contamination 

areas. Otherwise the probability of coincidence increases and the output the DAPC is 

given with less precision. ASTM (2003) recommends relying on the manufacturer‟s 

specifications when it comes to the DAPC capabilities. In order to maintain instrument 

capability recalibration should be part of the maintenance plan.  The particle counters for 

this research will need to be used in a non-clean environment, and the high counts that 

affect a DAPC function present a problem. Examination of the DAPC calibration is 

required to ensure best practices in the study. 

Standard practice for the calibration of a DAPC uses near-mono-disperse sphere 

particles as approved by ASTM International (2003). Mono-dispersed particles are 

Polystyrene latex (PSL) particles that are qualified and used by National Institute of 

Standards and Technology (NIST) suitable metrology laboratories. During a routine field 

calibration the inlet flow rate, zero count level and particle sizing are checked and tuned 

if necessary. PSL particles allow the resolution and counting accuracy to be defined for 

each size threshold. If repairs or modifications are needed then they are sent to a full 

metrology facility for complete calibrations.   

In theory, DAPCs functionality is affected by the air it samples. 
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Appendix B: Particulate Studies Literature 

 

At the Laser Interferometer Gravitational Wave Observatory (LIGO), the 

hardware is extremely sensitive to optical scattering by particle contamination 

(Henderson, 1999). In order to reduce particulate levels Met One model 227 DAPCs were 

placed in 11 rooms in order to observe the trends. The monitors provided readings in 

particles greater then 0.3 microns. The Met One 227 monitors were set on automatic 

mode on a cycle of one minute sample and a 29 minute holding period. Since the 

monitors have one cubic foot per minute pump, the data points were multiplied by ten to 

give particles per cubic foot. Henderson (1999) then added the integer one to generate 

semi-log plots.  

The major trend they noticed was that the particles would rise during working 

hours and falls at night, during weekends and holidays (Henderson, 1999). No tests were 

conducted to investigate why this was the case but the data found was consistent with the 

idea that airborne particles are brought in by people, fibers from clothes, dust on items etc 

(Henderson, p5, 1999). The other possibility discussed in Henderson (1999) was that 

perhaps the particles in the area were initially at rest on surfaces and that air currents 

created by movement sent the particles into the air. Henderson (1999) discovered that one 

of their rooms was constantly over 10,000 particles greater than 0.3 microns per cubic 

foot. They thought perhaps one of the problems was that there was only one fresh air 

supply and no return air supply. When Henderson (1999) discovered the extreme 

particulate levels in that area, the room was vacuumed with a High Efficiency Particle 

Arrestor (HEPA) vacuum and caps and frocks in addition to the previously required shoe 

covers became required clothing. The particle levels dropped to between 5,000 and 1,000 
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particles greater than 0.3 microns after these improvements were made (Henderson, 

1999). The Met One Model 227 was useful and reliable in the case of the LIGO clean 

facility and provided the necessary data to make improvements.  

The second study uses DAPCs in the extreme case of an outdoor example. This 

study reveals that DAPCs can be of practical use to measure particulates in non-clean 

room environments. In a study on outdoor tobacco smoke (OTS) five different real-time 

particle sensing instruments were used to pinpoint and understand transient elevations in 

OTS pollution (Klepeis, N.E, Ott, W.R., & Switzer, P., 2007).  Klepies et al (2007) found 

that airborne particle concentrations are common practice for use in indicating the 

presence of second hand smoke (SHS). Therefore, they felt it applicable to OTS studies 

since airborne particles comprise a significant portion of sidestream and mainstream mass 

emissions from burning cigarettes and indoor particle concentrations associated with SHS 

are substantial (Klepeis et al., 2007). Additionally, the size range for SHS particles are 

0.02-2 microns and this fine particulate matter can be measured using portable 

continuous monitors (Klepeis et al., 2007).  

 Klepeis et al., (2007) simultaneously used multiple monitors of the same type and 

different types in order to achieve a high level of confidence in measured OTS. They 

conducted 14 experiments indoors during the testing phase. Klepeis et al., (2007) found 

good consistency for intra-instrument and inter-instrument comparisons, with the bulk of 

errors <10-20%. They conducted 10 outdoor experiments and were able to observe the 

difference between indoor and outdoor smoke behavior. They found that OTS disappears 

almost instantly when the tobacco sources are extinguished, while indoor levels persist at 

high levels and with slow decay for hours until doors are opened to ventilate the house. 
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Most importantly Klepeis et al., (2007) found that real-time particle instruments, 

especially those based on light scattering, are useful in characterizing OTS levels. 

Additionally the different particle detection instruments used provided consistent 

findings. 
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Appendix C: HVB in Vacuum Systems Literature 

In SF6 gas vacuum system high voltage breakdown studies, it was found that dust 

and conduction particles were a serious limitation for practical applications (Maller, V.N. 

& Naidu, M.S., 1981). The insulation strength of compressed gases can be greatly 

reduced by the presence of contamination in the form of conducting particles, (Maller, 

V.N. & Naidu, M.S., 1981, pg.46).  Along with dust and conducting particles, metallic 

particles present in SF6 gas when voltage is applied electrostatic forces cause the particles 

to levitate perpendicular to the electrode surfaces resulting in reduced insulation strength 

of the design (Maller, V.N. & Naidu, M.S., 1981). Maller & Naidu (1981), recognized 

that the presence of these particles was inevitable and therefore other methods must be 

developed in order to control these particles.  

Under certain conditions, particles have been observed to become wedged or 

welded onto the cathode and then emit charged particles until eventually a spark destroys 

them or until they are otherwise removed (Maller, V.N. & Naidu, M.S., 1981, pg.49). 

When breakdowns occur, the initiation point of the breakdown is often destroyed, 

(Mehrhoff, 1981). Brainard and Reidel (1976), observed nothing at the initiation site of a 

HVB in a neutron tube except the substrate, the flaw or contaminant was blown or 

evaporated away.  Conditioning decreases the probability of breakdowns in subsequent 

test pulses as found in Mehrhoff (1981), however, it also reduces the ability to detect and 

identify culprit particles.  

There were a couple of cases when K and Si were found in high concentrations at 

the initiation site by Brainard and Reidel (1976).These particles were believed to be a 

form of mica which is a dielectric, (Brainard, J.P & Reidel, A.A., 1976). Dielectric [i.e. 
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insulator] particles charge to breakdown fields during ion bombardment, creating enough 

plasma upon discharge to initiate a full inter-electrode breakdown (Brainard, J.P & 

Reidel, A.A., 1976). The particle size is what determines the energy available for the 

plasma generation and it was hypothesized that there is a limiting particle size at which 

breakdowns are not initiated. In a simulation study conducted by Brainard and Reidel 

(1976) an aqueous sodium chloride solution was evaporated on a target and created 

crystallites of NaCl between 10 to 50 microns which adhered to the target. It was found 

that the larger particles produced an inter-electrode breakdown every time during ion 

bombardment. The smallest particles occasionally caused a breakdown. The small 

particles were most likely at the limit of the energy required to initiate a complete inter-

electrode breakdown, since the particle capacitance is proportional to the particle volume, 

(Brainard, J.P. & Reidal, A.A., 1976).   
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Appendix D: Data Limitations for Chapter 5 

During the experiment there were several events that occurred in which resulted 

in lost airborne particulate data. The first event occurred when the individual responsible 

for downloading the data informed me that due to unforeseen demands they forgot to 

download the data, and uploaded the data two days after the scheduled due date. After 

this information was received the HHPC-6 was set back to 59 minute count time 

intervals, in order to conduct the in situ data downloads. However, during the lapse in 

time the data for rooms was lost. In the case of room C, D, and K the data lost resulted in 

an inability to include the rooms in the study.  

Additionally, it was discovered that the operators did not fully understand what 

was meant when they were asked to note what time the parts were “exposed” to room air, 

this resulted in complete data loss for room B and H. As a result of this event more 

detailed briefings and examples of what they were to do in the data collection were 

provided. Furthermore, the HHPC-6 in room K malfunctioned and had to be shipped out 

for repairs, which resulted in a missing monitor for a one month period. The HHPC-6 in 

room X was moved to room K. It was determined that the HHPC-6 from room W would 

be moved with the study lots. However, there were overlaps in the production sequences 

so great in rooms W and X and the HHPC-6 could only be in one location at a time that 

W and X particulate data was missing to the extent that they could not be included in the 

study. These events all occurred during the data collection for Lot 1, and the effect of 

these events was not seen until the study was completed. Additionally, 1 tube from Lot 1 

was scrapped prior to Conditioning. Therefore, lot 1 only contained 7 tubes. 
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During Lot 2 and Lot 3 build of the study, all of the HHPC-6‟s were due for 

calibration. Pre-planning for this event was conducted in order to prevent any loss of 

airborne particulate data. However, during a discussion with the DAPC service engineer, 

I was informed that the most accurate way to collect data with the HHPC-6 is by setting 

the monitor for collection of 1 cubic foot of air. This air sample would be collected 

during a ten minute period and would give the best estimate of what was really in the air 

rather than collecting a 1 minute air sample and multiplying the result by 10. Although, I 

was aware that this would add some variability to the data between the particulate counts 

for lot 1 and portions of lot 2, I assumed that this would result in less variability within 

the particulate data since this would achieve increased accuracy. The main difference 

noted at the end of the study was that with the increased accuracy, certain rooms during 

the original settings were showing zero counts for particulate sizes of 5μ or greater. 

However, with the 10 minute sampling period these particle sizes were no longer zero. 

Room I was eliminated from the study because the airborne particulate counts 

were always zero even with increased accuracy of the HHPC-6. With counts always 

being zero in room I, there was clearly no particulate effect from that room. This study 

showed that the ANNEX airborne particulate levels in rooms A, G, and J were 

contributing factors in the increasing probability of HVBs. However, rooms B, C, D, H 

and K were not analyzed due to missing data and this data needs to be collected in order 

to determine the true effect that the ANNEX has on the occurrence of HVBs. 

Additionally, this study all though significant, is only an exploratory analysis and not to 

be used to base final decisions on. This study may only point towards what is causing the 

problems.  
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Appendix E: List of Abbreviations 

ANNEX: Not an abbreviation, just the name for the piece part and assemblies neutron 

tube production floor  

ASTM: originally known as American Society for Testing and Materials now known as 

ASTM-International 

AUC: Area under the curve 

DAPC: discrete airborne particulate counter 

EXHVB: External high voltage breakdown 

FPR: false positive rate 

HEPA: high efficiency particulate absorbing/arresting 

HHPC-6: Handheld particulate counter 

HVB: High voltage breakdown 

IHVB: Internal high voltage breakdown 

LOOCV: leave-one-out cross-validation 

NCR: non-conforming report, also a name for a failed tube 

NG: neutron generator 

PCA: principle component analysis 

PC(s): principle component(s) 

PM: particulate minute, unit developed for Ch5 

ROC: receiver operating characteristic 

SME: subject matter expert 

SNL: Sanida National Laboratories 

TPR: true positive rate 
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