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Abstract

Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statis-

tics. In this dissertation, under the framework provided by Berger and Bernardo

[1992], I derive the reference priors for several models which include: Analysis of

Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categori-

cal variable under common ordering constraints, the conditionally autoregressive

(CAR) models and the simultaneous autoregressive (SAR) models with a spatial

autoregression parameter ρ considered. The performances of reference priors for

ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to

Jeffreys’ prior and Least Squares Estimation (LSE). The priors are then illustrated

in a Bayesian model of the “Risk of Type 2 Diabetes in New Mexico” data, where

the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and

different smoking levels is investigated. In both simulation studies and real data set
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modeling, the reference priors that incorporate internal order information show good

performances and can be used as default priors. The reference priors for the CAR

and SAR models are also illustrated in the “1999 SAT State Average Verbal Scores”

data with a comparison to a Uniform prior distribution. Due to the complexity of

the reference priors for both CAR and SAR models, only a portion (12 states in the

Midwest) of the original data set is considered. The reference priors can give a dif-

ferent marginal posterior distribution compared to a Uniform prior, which provides

an alternative for prior specifications for areal data in Spatial statistics.

KEY WORDS: Bayesian Models, Non-informative priors, Markov chain Monte

Carlo.
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Chapter 1

Introduction

The primary topic of this dissertation considers order-constrained reference priors.

Classical statistics treats parameters as fixed and relies on maximizing the likelihood

function to make parameter estimation, while Bayesian statistics introduces a prior

distribution for the parameters and commonly approximates the posterior distribu-

tion by some stochastic simulation algorithms. It may be difficult for a data analyst

to specify an appropriate subjective prior for Bayesian analysis, either because suf-

ficient knowledge is unavailable or difficult to incorporate into a prior distribution.

However, researchers can still conduct Bayesian analysis using priors that limit sub-

jective knowledge. These priors are known as non-informative, default or objective

priors. Among non-informative priors, the reference prior of Bernardo [1979] stands

out since: (1) It maximizes the limiting expected Kullback-Leibler (KL) divergence

between posterior and prior densities with respect to the marginal distribution of

the data. (2) Although ”not well understood” in Berger [2006], the reference prior

approach seems to guard successfully from posterior impropriety that may occur

when adopting other improper non-informative prior distributions. (3) In the sin-

gle parameter case the reference prior often defaults to Jeffreys’ prior [Kass and

Wasserman, 1996]. (4) Yang [1995] showed that for the most important types of
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Chapter 1. Introduction

reparameterizations, the reference prior is invariant.

This dissertation proceeds as follows. In this chapter Bayesian statistics are re-

viewed, with a focus on noninformative prior distributions. In Chapters 2 and 3, the

reference priors for population means and analysis of covariance (ANCOVA) models

under common ordering constraints are derived. Their effectiveness is evaluated via

Markov chain Monte Carlo (MCMC) methods and simulation studies while com-

paring it to Jeffreys’ prior and Least Squares Estimation (LSE). Furthermore, the

proposed prior for the ANCOVA model with an increasing internal ordering of the

categorical variable of interest is applied in a collaboration with Dr. Mark Burge

from the University of New Mexico (UNM) Health Sciences Center, where the rela-

tionship between type 2 diabetes risk (through HbA1c), smoking levels (categorical)

and other variables is modeled by these reference priors. In Chapter 4, the reference

priors for the spatial conditionally autoregressive (CAR) models and the simulta-

neous autoregressive (SAR) models with considering the auto-regression parameter

are derived. A state level data set related to the 1999 SAT college entrance exam

scores is considered. The analysis includes comparisons with a Uniform prior and

Maximum Likelihood Estimation (MLE).

1.1 Bayesian Statistics

Bayesian statistics revolves around Bayes Theorem

p(θθθ|x) =
f(x|θθθ)π(θθθ)

m(x)

∝ f(x|θθθ)π(θθθ), (1.1)

which can be traced back to Bayes [1763] and Laplace [1774]. The fundamental idea

for Bayesian inference is that we have observed data X, with an assumed probability

2



Chapter 1. Introduction

distribution f(x|θθθ), where θθθ are the unobserved parameters following a prior distri-

bution π(θθθ). Relying on Bayes Theorem, we calculate and summarize the posterior

distribution, p(θθθ|x), the conditional distribution of the unobserved parameters given

the observed data, which updates prior beliefs with the observed data.

To employ Bayesian methodology, one must specify a prior distribution and a

likelihood function. It may not be hard to specify a likelihood in many problems

due to the long-time developments of likelihood inference. However, challenges arise

when it comes to selection of an appropriate prior distribution. A researcher’s actual

beliefs on the unobserved parameters should be incorporated and default options

are also needed when subjective knowledge regarding the parameters is unavailable.

This has evolved into two major schools of thought about specifying the prior distri-

butions, “subjective” and “objective” approaches. In this dissertation, I will focus

on objective priors.

1.1.1 Objective Priors

The main goal in the study of objective priors is to find a prior distribution that

does not favor any particular parameter value and thus, Bayesian inference can be

impacted minimally by the selection of the prior. This means that the observed data

will dominate the posterior distribution for a given likelihood function. Without

actual knowledge or information for the unknown parameters, researchers can use

objective priors as default options. Common objective priors include the Uniform

prior, Jeffreys’ prior and the reference prior as in Ghosh [2011]. Other less common

ones are maximum entropy priors as in Jaynes [1982], the probability matching priors

as in Tibshirani [1989], the maximum chi-squared distance priors as in Clarke and

Sun [1997] and many others.

3



Chapter 1. Introduction

Uniform and Jeffreys’ Prior. The use of Uniform priors can be traced back

to Bayes and Laplace. For a Binomial likelihood, Bayes [1763] assumed that the

probability of success was uniformly distributed on the interval (0, 1), while Laplace

[1774] assumed that the mean θθθ of a normal likelihood was proportional to one. In

this case, π(θθθ) ∝ 1, is not a proper distribution, which means the integral of the

prior distribution over the parameter space does not equal one. Objective Bayesian

analysis allows the use of an improper prior distribution if the corresponding posterior

distribution is proper, which is axiomatically permissible under finite additivity as

in Sun and Berger [2006].

A Uniform prior seems adequate since it does not favor any particular value in

the parameter space. However, criticism has arisen to Uniform priors since these

priors are not invariant to transformations of the parameters. For example, assume

that π(µ) ∝ 1 and that τ = exp(µ). The implied prior for τ is

π(τ) = π(µ = log(τ))×
∣∣∣∣ ddτ log(τ)

∣∣∣∣ =
1

τ
. (1.2)

Note that the prior for τ is no longer uniform, which turns to be an awkward situation

if uniformity is decided to reflect ignorance of any parameter.

This concern was first raised by Jeffreys [1961], among others. Later he proposed

a prior distribution based on the determinant of the Fisher information matrix. That

is,

πJ(θθθ) ∝
√

det(I(θθθ)), (1.3)

where I(θθθ) denotes the Fisher information matrix. πJ(θθθ) is known as Jeffreys’ prior

which can be shown to be invariant to one-to-one transformations of θθθ. However,

Jeffreys’ prior is often improper and gives no guarantee to produce a proper posterior

distribution. At the same time, Jeffreys’ prior does not work well in multi-parameter
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Chapter 1. Introduction

problems, which includes marginalization paradoxes as in Stone and Dawid [1972]

and strong inconsistency as in Stein [1959] and Stone [1976]. In addition, Jeffreys

suggested to find the Jeffreys’ prior for each individual parameter independently

and use the product of the individual priors as a prior for all parameters. This

is a common approach for finding objective priors, where modification of a general

approach is introduced to make the prior work well for a specific situation. Regardless

of these issues, Jeffreys’ prior is very popular and widely used as a default/objective

prior in many situations.

Reference Prior. The reference prior approach of Bernardo [1979], further refined

in Berger and Bernardo [1992] and Berger et al. [2009], is a popular choice for objec-

tive priors in many situations. The idea is good in that the prior is the function that

maximizes the expected KL divergence between the posterior and the prior densities

with regard to the marginal distribution of the data. This makes the data have the

maximum effect on the posterior estimates. Let us consider an inference scenario

where we have data X with a distribution p(x|θθθ). The KL divergence between the

posterior and prior is

KL(p(θθθ|x), π(θθθ)) =

∫
p(θθθ|x) log

p(θθθ|x)

π(θθθ)
dθθθ (1.4)

and the expected KL divergence over the marginal distribution of the data is

IKL(Θ, x) = E

[∫
p(θθθ|x) log

p(θθθ|x)

π(θθθ)
dθθθ

]
=

∫
p(x)

∫
p(θθθ|x) log

p(θθθ|x)

π(θθθ)
dθθθdx

=

∫ ∫
p(θθθ, x) log

p(θθθ|x)

π(θθθ)
dθθθdx. (1.5)

Now the reference prior, π∗(θθθ), is the one that maximizes this mutual information.
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Chapter 1. Introduction

This means

π∗(θθθ) = argmax
π(θθθ)

IKL(Θ, x). (1.6)

This idea seems straightforward, however, direct maximization is often not ana-

lytically tractable because the prior is part of the posterior. Furthermore, it is quite

common to find that the prior that maximizes the expected KL is discrete, which is

not adequate if the parameter space is continuous. Instead Bernardo [1979] suggests

to maximize

E[KL]t = EZt

[∫
p(θθθ|x) log

p(θθθ|x)

π(θθθ)
dθθθ

]
=

∫
p(zt)

∫
p(θθθ|zt) log

p(θθθ|zt)
π(θθθ)

dθθθdzt, (1.7)

where Zt = {X1, X2, . . . , Xt} are t conditionally independent replicates of the

original experiment and p(zt|θθθ) =
∏t

i=1 p(xi|θθθ). Berger and Bernardo [1992] point

out that for Equation 1.7, when t → ∞, Zt will have all information about θθθ. In

addition E[KL]∞ = limt→∞E[KL]t could be interpreted as the missing information

about the parameters θθθ relative to the prior π(θθθ). Hence π(θθθ) is a noninformative

prior because it maximizes the missing information. These approaches still have

several problems. First, E[KL]∞ is often infinite. The fix is to find a πt(θθθ) at some t

from maximizing E[KL]t and then use limt→∞ πt(θθθ) to determine the final reference

prior. Secondly, if the parameter space, Θ, is non-compact, E[KL]t is often infinite.

The recommendation then is to define a sequence of compact subsets, Θl, such that

liml→∞Θl = Θ. A sequence of reference priors πl(θθθ) is then found and the final

reference prior is calculated by taking the limit, i.e., π(θθθ) = liml→∞ π
l(θθθ).

If the model is regular, which means p(zt|θθθ) satisfies the conditions for asymp-

totic normality, Berger and Bernardo [1992] show that the procedure of deriving

reference priors can be done in an explicit way. First, let us separate the elements of

6



Chapter 1. Introduction

θθθ into m groups and order them as θθθ = (θθθ(1), θθθ(2), . . . , θθθ(m)). The specific grouping

and ordering usually depend on the relative inferential importance. Suppose that

group j includes mj elements, that is, θθθ(j) = (θj1 , θj2 , . . . , θjmj ) and define θθθ(1:j)

= (θθθ(1), θθθ(2), . . . , θθθ(j)). We first calculate the Fisher information matrix I(θθθ) with

I(θθθ)i,j = E
[
(∂ log f(x|θθθ)

∂θθθi
)(∂ log f(x|θθθ)

∂θθθj
)
]

and then find the inverse of the Fisher informa-

tion matrix,

S(θθθ) = (I(θθθ))−1

=


A11 At21 . . . Atm1

A21 A22 . . . Atm2

...
... . . .

...

Am1 Am2 . . . Amm

 , (1.8)

where Aij is an mi ×mj matrix. Now let us define Nj =
∑j

i=1mi, Sj be the upper

left Nj × Nj corner of S(θθθ), Hj = S−1
j and hj be the lower right mj × mj corner

of Hj. If the determinant of hj(θθθ), |hj(θθθ)|, depends only on θθθ(1:j), for j = 1, . . . ,m,

calculation of this m-group reference prior can be vastly simplified and gives,

π(θθθ) ∝
Πm
j=1|hj(θ)|1/2

Πm
j=1

∫
Θj |Θ(1:(j−1))

|hj(θ)|1/2dθ(j)

IΘ(θ). (1.9)

Here Θj|Θ(1:(j−1)) is the parameter space for group j given previous groups. For

a single parameter case, the reference prior defaults to Jeffreys’ prior under regu-

larity condition as in Kass and Wasserman [1996]. For the multi-parameter case,

the reference prior usually does not have a unique form, since the algorithm by

Berger and Bernardo [1992] includes grouping and ordering parameters by inferen-

tial importance. This causes the concern that one may get different reference prior

distributions for different groupings and orderings. The common way to handle this

is to try several intuitive groupings or orderings and then conduct a sensitivity study

7



Chapter 1. Introduction

based on different resulting reference priors. Further development in reference priors

can be seen in Sun and Berger [1998], Ghosal [1999] and Berger and Sun [2008].

In the following chapters of this dissertation I will rely on this algorithm to derive

reference priors for order-constrained models and CAR/SAR models.

1.1.2 Bayesian Model Selection and Diagnostics

There exist various techniques used for Bayesian model selection and diagnostics,

which include Bayes factors, predictive P-values and the Deviance Information Cri-

terion (DIC). Generally the Bayes factors and DIC are used for model selection and

predictive P-values are used for detecting lack-of-fit, although there is an overlap be-

tween these two goals. In this dissertation, I compare the DICs of Bayesian models

under different priors because Bayes factors are undefined when the prior distribution

is improper (which is the case for most of our models).

DIC. The Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC), described by Akaike [1974] and Schwarz [1978] respectively, are widely used

in classical model selection. They usually include a model fit term and a penalty

term for model complexity. However, they ignore the prior distribution and their ap-

plications in Bayesian goodness-of-fit are limited. The DIC, a Bayesian alternative

to AIC/BIC and proposed by Spiegelhalter et al. [2002], is used by many practition-

ers, although difficulties with DIC have been noted as in Celeux et al. [2006] and

Plummer [2008]. For a likelihood f(x|θθθ), the deviance can be defined as

D(θθθ) = −2 log(f(x|θθθ)) + 2 log[m(x)], (1.10)

where the logarithm of the marginal likelihood, log[m(x)], is a constant that cancels

out in the calculation. The posterior expectation of the deviance is D̄ = Eθθθ|x[D(θθθ)],

8



Chapter 1. Introduction

which has been suggested as a measure of how well the model fits the data. The

smaller it is, the better the fit. Since more complex models (for example, model with

larger effective number of parameters) fit the data better and hence give smaller D̄,

a measure of model complexity, pD, is also needed to penalize D̄. This measure is,

pD = Eθθθ|x[D(θθθ)]−D(Eθθθ|x[θθθ])

= D̄ −D(θ̄̄θ̄θ), (1.11)

which is actually the posterior mean deviance minus the deviance evaluated at the

posterior mean of the parameters. The DIC is then defined as

DIC = D̄ + pD. (1.12)

Generally, models with smaller DIC are better supported by the data. DIC can

be directly calculated from the posterior samples generated by MCMC methods.

To compute DIC, simply calculate D̄ from the average of D(θθθ), over the posterior

samples of θθθ and D(θ̄θθ) as the value of D evaluated at the posterior mean of θθθ.

Claeskens and Hjort [2008] show that the DIC is equivalent to the natural model-

robust version of the AIC for large samples.

1.2 Computation

The approximation of posterior distributions in modern Bayesian statistics heavily

relies on stochastic simulation algorithms, among which MCMC is the most popular

one. This is a powerful tool that I use throughout this thesis in my studies about

reference priors. On the other hand, the Expectation-Maximization (EM) algorithm,

or one of its variants, the Expectation Conditional Maximization (ECM) algorithm,

can be used to find the maximum a posteriori probability (MAP) estimator. The

MAP estimator is also known as the posterior mode.

9



Chapter 1. Introduction

1.2.1 Markov Chain Monte Carlo

Suppose that we have observed data, X, with a likelihood f(x|θθθ) and a prior dis-

tribution π(θθθ). MCMC methods attempt to construct a stationary Markov chain

where its stationary distribution is approximately the posterior distribution p(θθθ|x).

This means that once the chain is stable, each MCMC iteration becomes an approxi-

mate realization from the posterior distribution and Bayesian inference can be easily

drawn by summarizing these iterations through histograms, box plots, sample means

and quantiles, which implicitly uses the strong law of large numbers. Although these

realizations are not independent samples from the posterior distribution, ergodic

theorems described in Karlin and Taylor [1975] and Tierney [1994] guarantee its

convergence. The most popular MCMC methods include Gibbs Sampling and the

Metropolis-Hastings algorithm.

Gibbs Sampling. This method was first proposed by Geman and Geman [1984]

and takes advantage of the conditional conjugacy structure that many Bayesian

models have. To employ Gibbs sampling, the initial values of the parameters, θθθ(1),

are arbitrarily set at the beginning of the algorithm. At the t-th iteration, each

element of θθθ(t) = (θ
(t)
1 , θ

(t)
2 , . . . , θ

(t)
k ) is updated by drawing from the full conditional

distributions in sequence and substitution,

θ
(t)
1 ∼ π(θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
k , X),

θ
(t)
2 ∼ π(θ2|θ(t)

1 , θ
(t−1)
3 , . . . , θ

(t−1)
k , X),

θ
(t)
3 ∼ π(θ3|θ(t)

1 , θ
(t)
2 , θ

(t−1)
4 , . . . , θ

(t−1)
k , X),

...

θ
(t)
k ∼ π(θ1|θ(t)

1 , θ
(t)
2 , . . . , θ

(t)
k−1, X).

As t approaches to ∞, the Markov chain reaches equilibrium and each θθθ(t) is

10



Chapter 1. Introduction

approximately a draw from the posterior distribution. In practice, the convergence

is commonly monitored by trace plots or history of the sampled parameter values.

Theoretically, the Gibbs sampler is not sensitive to the choice of initial values, how-

ever, crude estimates (least squares) can be adopted as initial values to achieve fast

convergence. When the posterior distribution is multimodal, the Gibbs sampler may

be trapped at one of the modes. This is a problem that may be solved by blocking

the parameters or considering alternative algorithms such as slice sampling as in Neal

[2003].

Metropolis-Hastings. Although the Gibbs sampling is very general, the algo-

rithm relies on the availability to sample from the full conditional of the target

distribution. If full conditionals are not available, a powerful alternative is the

Metropolis-Hastings algorithm by Hastings [1970], which is a general version of the

Metropolis algorithm by Metropolis et al. [1953]. Similar to the Gibbs sampling, the

Metropolis-Hastings algorithm needs to be initialized at a point θθθ(1). For an inference

scenario where we have a likelihood function f(x|θθθ), the updating at iteration t relies

on a proposal distribution q(·|θθθ(t−1)). At iteration t, θθθ∗ is sampled from q(·|θθθ(t−1))

and accepted with probability α = min{1, r} where

r =
f(x|θθθ∗)π(θθθ∗)q(θθθ(t−1)|θθθ∗)

f(x|θθθ(t−1))π(θθθ(t−1))q(θθθ∗|θθθ(t−1))
(1.13)

and π(θθθ) is the prior. If the proposal distribution is symmetric, q(θθθ(t−1)|θθθ∗) =

q(θθθ∗|θθθ(t−1)), the right side of Equation 1.13 can be simplified and the algorithm be-

comes the Metropolis algorithm. This algorithm can be iterated until the Markov

chain attains stationary status, which is usually monitored by trace plots. Con-

vergence diagnostics, such as the Gelman and Rubin [1992] diagnostic, can also be

calculated for detecting convergence of the algorithm.

In theory, the algorithm converges regardless the choice of the reasonable proposal

11



Chapter 1. Introduction

density q. However, in practice some proposals may converge faster or slower. In

this dissertation, independent normal (or truncated) proposals are mainly adopted

with variances specified to produce good mixing of the MCMC. Studies about the

acceptance rates of the Metropolis-Hastings by Roberts et al. [1997] showed the

optimal rate is around 30% under certain conditions, but this result varies with the

dimension of the model parameters θθθ. Typically researchers target for a 40-60%

acceptance rate as in Gelman et al. [2013].

More advanced techniques for Bayesian computation are also available, such as

hybrid Monte Carlo by Duane et al. [1987], slice sampling by Neal [2003], simulated

tempering by Geyer and Thompson [1993] and reversible jump MCMC by Green

[1995] among others.

1.2.2 Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm was introduced in Dempster et al.

[1977] and has since become a very popular tool for calculating Maximum Likelihood

Estimators (MLE) and posterior modes. Suppose that for some probability distri-

bution with parameter θθθ, there is data X which is incomplete. If the complete data

Z = (X, Y) where Y is the missing data, then the likelihood function can be written

as

p(z|θθθ) = p(x, y|θθθ)

= p(y|x,θθθ)× p(x|θθθ). (1.14)

Y may be either actual missing data or random variables used to facilitate easy

computation. The EM algorithm allows one to find the MLE of p(x|θθθ) by working

with p(z|θθθ). It involves two steps. First, in the E-step, one finds the expected

value of the log likelihood, log[p(z|θθθ)]. The expectation is taken with regard to the

12



Chapter 1. Introduction

conditional distribution of Y given the observed data X and the current parameter

estimates θθθ(t). That is:

Q(θθθ,θθθ(t)) = Ep(y|x,θθθ(t)) [log p(x, y|θθθ)] , (1.15)

where p(y|x,θθθ(t)) is the conditional density of Y give the actual data X and θθθ(t).

Next, in the M-step, Q(θθθ,θθθ(t)) is maximized, which gives a new estimate of θθθ, θθθ(t+1).

That is

θθθ(t+1) = argmax
θθθ

Q(θθθ,θθθ(t)). (1.16)

These two steps are repeated until convergence and then an MLE solution is

obtained. The algorithm is guaranteed to converge to a local maximum of the like-

lihood function as in Wu [1983], Redner and Walker [1984], Jordan and Xu [1996]

and Xu and Jordan [1996].

Under the Bayesian framework, MAP estimator can be found at the mode of

the marginal posterior distribution. Similar to finding the MLE, the EM algorithm

can help to find the MAP without the need to explicitly manipulate the marginal

posterior p(θθθ|x). If the likelihood in Equation 1.15 is replaced by the posterior

distribution, then

R(θθθ,θθθ(t)) = Ep(y|x,θθθ(t)) [log p(x, y|θθθ)] + log π(θθθ), (1.17)

where π(θθθ) is the prior distribution. Applying the EM algorithm with R(θθθ,θθθ(t)) can

give the MAP estimate.

The EM algorithm is typically applied under two situations. The first one is

when the data indeed has missing values. The second one occurs when there are

no missing values, however, direct optimization of the likelihood function/marginal

13



Chapter 1. Introduction

posterior distribution is not easy but this process can be simplified by introducing

missing or latent variables. In this dissertation we utilize the latter of the two

approaches.

Marschner [2010] described an extension of the EM algorithm, in which the ob-

served data is treated as a summation of some latent/unobserved variables. He did

not find the expectation of the log likelihood directly. Instead, he found the expecta-

tions of the latent variables and substituted these expectations into the log likelihood

corresponding to the unobserved variables. These expectations are taken with regard

to the conditional distribution of the unobserved variables given the observed data

and the current parameter estimates. In Chapter 3, I will follow this extension to

find MAP estimates.

14



Chapter 2

Reference Priors for Means with

Common Order Restrictions

The prior distribution plays a central role in Bayesian analysis and statisticians spend

a considerable amount of time looking for a prior that suits their needs (subjective,

objective, or other). In data analyses, a common situation is that the analyst has

some known a priori information about the parameters. For example, in many

applications inequality constraints among population means θi, i = 1, 2, . . . , k, may

be adopted. Some common order restrictions of interest are,

Simple order: θ1 < θ2 < . . . < θk (increasing or decreasing).

Simple tree order: θ1 < θi, i = 2, . . . , k (no constraint among θ′is).

Umbrella order(with peak at i): θ1 < θ2 < . . . < θi > θi+1 > . . . > θk.

One example, explored by Morrissette and McDermott [2013], concerns patient

outcomes and drug dosages. It may be known that the effect of the placebo is

lower than any effects corresponding to dosage amounts of a drug (simple tree or-

der). Another reasonable assumption is that higher dosages correspond to a larger
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Chapter 2. Reference Priors for Means with Common Order Restrictions

effect (simple order). Obviously, incorporating this additional information into a

prior distribution is extremely attractive as it can produce better inference for the

parameters, especially when the sample size is small and the variability of the data

is large.

When presented with this information, the statistician must somehow incorporate

it into a functional form for a prior. One option is to select a subjective prior and

simply add the ordering restrictions. However, unless care is taken in the subjective

prior elicitation, the resulting prior may be much more influential than originally

envisioned. A similar problem can occur when the constraints are naively applied to

a standard non-informative prior.

In this work, I utilize the reference prior framework of Berger and Bernardo [1992]

to construct reference priors conditional on these common order restrictions. The

derivation of the reference priors involves the typical sequential maximization of the

Kullback-Leibler divergence between the posterior and the prior, which utilizes an

iterative algorithm and requires model parameters to be grouped and ordered by

inferential importance. A reference prior is then derived for the given likelihood

function, conditional on the specified grouping and ordering. Sonksen and Peruggia

[2012] constructed prior distributions on the occurrence rates for count data which

accommodate a monotonic relationship between the rates and a single covariate. In

Sonksen and Peruggia [2014], this idea was extended to multiple covariates. Following

a similar path, I developed the reference priors for models with different ordered

group means.

The rest of this chapter is organized as follows: In Section 1, an example of the

reference prior with increasing normal means is described. In Section 2, the general

expressions for means under common ordering constraints are derived and discussed.

In Section 3, the performance of the reference priors is evaluated in simulation studies,

with comparison to Jeffreys’ prior and Least Squares Estimation (LSE).
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Chapter 2. Reference Priors for Means with Common Order Restrictions

2.1 Reference Prior Derivation: A Simple Exam-

ple

In this section, I will show how to derive a reference prior in detail with a pre-

determined grouping and ordering. Suppose Xij
ind∼ N(µi, 1), i = 1, 2, 3, j = 1, . . . , n

and µ1 < µ2 < µ3. We define θθθ = {µ1, µ2, µ3}, with θθθ ∈ ΘIncr = {θθθ: −∞ < µ1 <

µ2 < µ3 < ∞}. Since ΘIncr is noncompact, from Chapter 1 we know it is useful

to define a compact subset Θl = {θθθ: −l < µ1 < µ2 < µ3 < l}. The log-likelihood

function is

log[L(θθθ)] =
3∑
i=1

n∑
j=1

[
−1

2
(Xij − µi)2

]
+ c. (2.1)

The diagonal elements of the Fisher information matrix, I(θθθ), are

Ikk(θθθ) = −Eθθθ
(

∂2

∂µk2
log[L(θθθ)]

)
= n.

The non-diagonal elements of I(θ) are

Ikl(θθθ) = −Eθθθ
(

∂2

∂µk∂µl
log[L(θθθ)]

)
= 0.

So,

I(θθθ) =


n 0 0

0 n 0

0 0 n

 . (2.2)
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I will show that with different ordering and grouping for the parameters, one can

end up with different reference priors. If the parameters are grouped into 2 groups

and ordered as θθθ = (θθθ(1), θθθ(2)) = ({µ1, µ3}, {µ2}), then as defined in Chapter 1,

S(θθθ) = [I(θθθ)]−1

=


1/n 0 0

0 1/n 0

0 0 1/n

 . (2.3)

h1(θθθ) =

n 0

0 n

 and h2(θθθ) = n.

The condition that |hj(θθθ)| depends only on θθθ(1:j) is not violated here, for j = 1, 2.

So we have

πl(θ) =
Π2
j=1|hj(θ)|1/2

Π2
j=1

∫
Θl∩[Θj |Θ(1:(j−1))]

|hj(θ)|1/2dθ(j)

IΘl(θ). (2.4)

For j=1,

Θl ∩ [Θj|Θ(1:(j−1))] = {(µ1, µ3) : −l < µ1 < l and µ1 < µ3 < l}.

For j=2,

Θl ∩ [Θj|Θ(1:(j−1))] = {µ2 : µ1 < µ2 < µ3}.

So,

πl(θθθ) =
n∫ l

µ1

∫ l
−l ndµ1dµ3

n1/2∫ µ3
µ1
n1/2dµ2

=
1

2l(l − µ1)

1

(µ3 − µ1)
.
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Finally,

πref(θθθ) = lim
l→∞

πl(θθθ)

πl(θθθ∗)

∝ 1

(µ3 − µ1)
× IΘIncr(θ), (2.5)

where θθθ∗ is any fixed point in Θ with positive density for all πl, which is a constant

with regard to θθθ. On the other hand, if the parameters are grouped into 3 groups

and ordered as θθθ = (θθθ(1), θθθ(2), θθθ(3)) = ({µ1}, {µ2}, {µ3}), then h1(θθθ) = h1(θθθ) =

h1(θθθ) = n. Similarly,

πl(θθθ) =
n1/2∫ l

−l n
1/2dµ1

n1/2∫ l
µ1
n1/2dµ2

n1/2∫ l
µ2
n1/2dµ3

=
1

(2l)

1

(l − µ1)

1

(l − µ2)

and

πref(θθθ) = lim
l→∞

πl(θθθ)

πl(θθθ∗)

∝ IΘIncr(θ). (2.6)

It is clear that with different ordering and grouping for the parameters, one can

end up with different reference priors. Suggestions for common grouping and ordering

can be found in Berger and Bernardo [1992] and Sonksen and Peruggia [2012] among

others.
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2.2 Reference Prior Derivation: General Formula

for Different Constraints

As described in Section 2.1, given the likelihood function, reference priors for more

than one parameter can be derived under different grouping and ordering, where

the grouping and ordering are closely related to the inferential importance for each

parameter. This usually means that there is no uniquely defined expression for

reference priors. Under the common order restrictions, I derive closed-form general

expressions of the reference priors under the normal likelihood functions, which have

not been seen in any literature. With these reference priors, the resulting models are

a compromise between using the subjective information and letting the data drive

the inferences.

Let us assume Xij
ind∼ N(θi, 1), with i = 1, 2, . . . , k and j = 1, . . . , n. Let θθθ =

{θ1, θ2, . . . , θk} with θθθ ∈ Θ and the θ’s follow a certain order. Setting the variance

equal to 1 does not lose generality for this problem. Since Θ is noncompact, a compact

subset Θl is needed, where l is any real number that denotes the boundary of the

compact subset. As described in Section 1.1.1 in Chapter 1, the elements of θθθ are

first partitioned into m groups and ordered by relative inferential importance, which

gives θθθ = (θθθ(1), θθθ(2), . . . , θθθ(m)). Suppose that group j contains mj elements, that

is, θθθ(j) = (θj1 , θj2 , . . . , θjmj ). Actually, the user is totally in control of the specific

ordering and grouping, which may have a noticeable influence on the resulting prior

distribution.

Paralleling the grouping and ordering that we have above, if we follow the same

definition of hj(θθθ) as in Chapter 1, the Fisher information matrix for this Gaussian

likelihood can be written as

I(θ) = diag[h1(θ), h2(θ), . . . , hm(θ)].
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For this specific example, hj(θθθ) = diag[n, n, . . . , n]mj×mj . Let us define θθθ(1:j) =

(θθθ(1), θθθ(2), . . . , θθθ(j)). Because our model is regular and the determinant of hj(θθθ),

|hj(θθθ)| = nmj , we can use the simplified expression for the reference prior that is

given in Lemma 1 of Berger and Bernardo [1992] and obtain

πl(θ) =
Πm
j=1|hj(θ)|1/2

Πm
j=1

∫
Θl∩[Θj |Θ(1:(j−1))]

|hj(θ)|1/2dθ(j)

IΘl(θ), (2.7)

where [Θj|Θ(1:(j−1))] is the parameter space of θθθ(j) given θθθ(1:(j−1)).

To derive a general expression for the reference prior, we need to determine the

integrals in the denominator of Equation 2.7. We define θθθ(1:j), k to be the kth ele-

ment of the vector θθθ(1:j). The term |hj(θ)|1/2 can be canceled out from Equation

2.7 because it is only a function of n. Under regularity conditions, if the Fisher

information matrix of the model satisfies Lemma 1 in Berger and Bernardo [1992],

careful calculation can prove the following innovative theorems:

Theorem 1. For a simple order, θ1 < θ2 < . . . < θk,

πl(θ) ∝ 1

Πm
j=2(γj − ηj)mj

IΘl(θ)

with

γj+1 =

 min
k
{θ(1:j), k : θ(1:j), k > max[θ(j+1)]} , if max[θ(1:j)] > max[θ(j+1)]

l , if max[θ(1:j)] < max[θ(j+1)]

and

ηj+1 =

 max
k
{θ(1:j), k : θ(1:j), k < min[θ(j+1)]} , if min[θ(1:j)] < min[θ(j+1)]

−l , if min[θ(1:j)] > min[θ(j+1)].

Theorem 2. For a simple tree order, θ1 < θi, i = 2, . . . , k,

π(θ) ∝ I(θ1<θi).
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Theorem 3. For an umbrella order, θ1 < θ2 < . . . < θi > θi+1 > . . . > θk,

parameters in group j can be separately treated as (1) with increasing order and (2)

with decreasing order, then,

πl(θ) ∝ 1

Πm
j=2(γj1 − ηj1)mj1(γj2 − ηj2)mj2

IΘl(θ).

γj1, ηj1, γj2 and ηj2 can be determined by the definitions in Theorem 1 with

mj1 +mj2 = mj. The final reference priors in the true parameter space in Theorems

1 and 3 can be obtained by making l→∞.

These three theorems are generalizations of the results in Sonksen and Peruggia

[2012]. They provide the general expressions that can be used to determine the

reference priors of any grouping and ordering. These innovative results turn to be

important contributions of this dissertation. In fact, these results can be generalized

to other likelihood with the same kernels, such as Poisson and Binomial, etc. as long

as the regularity conditions are satisfied. In addition, if the variance σ2 is introduced

in the model, it can be grouped by itself and considered as the first grouping. Then

the theorems derived above can be adopted without any adjustment.

2.3 Simulation Study with Specific Orderings and

Groupings

In this section, I will apply reference priors to a balanced one-way analysis of variance

(ANOVA) model with a simple order, which is

yyy = Xβββ + εεε, εεε∼N(000, σ2I),
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where

yyy =


y1

y2

...

yn

 , X =



1 0 0 . . . 0 0
...

...
... . . .

...
...

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
... . . .

...
...

...
...

... . . .
...

...

0 0 0 . . . 0 1


n×k

, βββ =


µ1

µ2

...

µk



and µ1 < µ2 < . . . < µk and k ≥ 3.

To derive the reference priors for this model, the user has to specify the order-

ing and grouping of the parameters, which may have a considerable impact on the

resulting prior distribution and further inference. Berger and Bernardo [1992] sug-

gest to completely separate the parameters with groups of one element each. On

the other hand, Sonksen and Peruggia [2012] follow the Nicholls and Jones [2001]

approach and suggest that the primary attention should be given to the extreme

parameters, i.e., µ1 and µk. Based on the general expression derived in Theorem 1,

I consider these two ways of grouping and ordering and label them as π(θθθ)uni and

π(θθθ)u1k, respectively. The resulting prior distributions are listed in Table 2.1.

Table 2.1: Reference priors for one-way ANOVA model with a simple
order

Label Parameter Grouping and Ordering Reference Prior
π(θθθ)uni ({σ2}, {µ1}, . . . , {µk}) 1

σ2 × IΘ(θ)
π(θθθ)u1k ({σ2}, {µ1, µk}, {µ2, . . . , µk−1}) 1

σ2 × 1

(µk−µ1)k−2 × IΘ(θ)

Note: θθθ = {βββ, σ2} = {µ1, . . . , µk, σ
2}. Θ = {(βββ, σ2) : −∞ < µ1 <

. . . < µk < +∞ and 0 < σ2 < +∞}.

23



Chapter 2. Reference Priors for Means with Common Order Restrictions

2.3.1 Estimation of the Models

In the following simulation studies, different n, k and σ values are considered for

the ANOVA model. The parameters can be estimated by Least Squares Estimation

(LSE), or by posterior means/medians under Jeffreys’ prior, or the reference priors

π(θθθ)uni and π(θθθ)u1k. LSEs can be calculated from closed-form solutions with β̂ββ =

(X ′X)−1X ′yyy and σ̂2 = SSE
n−k , where SSE = yyy′(I −M)yyy and M = X(X ′X)−1X ′ as in

Christensen [2011].

The Jeffreys’ prior for this model is π(θθθ)J ∝ 1
σ2 without any order restriction.

With this prior

p(βββ, σ2|yyy) ∝ p(yyy|βββ, σ2)× π(θθθ)J

=

(
1√

2πσ2

)n
× exp

[
−(yyy −Xβββ)′(yyy −Xβββ)

2σ2

]
× 1

σ2

=

(
1√

2πσ2

)n
× exp

[
−(Xβββ −Myyy)′(Xβββ −Myyy)

2σ2

]
× exp

[
−(yyy −Myyy)′(yyy −Myyy)

2σ2

]
× 1

σ2

∝
(

1

σ2

)k/2
× exp

[
−(βββ − β̂ββ)′X ′X(βββ − β̂ββ)

2σ2

]

× exp

[
−(yyy −Myyy)′(yyy −Myyy)

2σ2

]
×
(

1

σ2

)n−k
2

+1

= N
(
β̂ββ, σ2(X ′X)−1

)
× IG

(
n− k

2
,
SSE

2

)
= p(βββ|σ2, yyy)× p(σ2|yyy). (2.8)

This implies that with π(θθθ)J ∝ 1
σ2 the marginal posterior of σ2 has an exact form,

which is an inverse gamma distribution, IG
(
n−k

2
, SSE

2

)
. The posterior mean for

σ2 can be calculated from this inverse gamma distribution, which is yyy′(I−M)yyy
n−k−2

. The

conditional distribution of βββ is a normal distribution with mean β̂ββ and variance

σ2(X ′X)−1. Further derivation can show the marginal posterior of βββ is a multivariate

24



Chapter 2. Reference Priors for Means with Common Order Restrictions

t distribution, where

p(βββ|yyy) =

∫ ∞
0

p(βββ, σ2|yyy)dσ2

∝
∫ ∞

0

(
1

σ2

)n
2

+1

× exp

[
−(βββ − β̂ββ)′X ′X(βββ − β̂ββ) + SSE

2σ2

]
dσ2

∝
Γ
(
n
2

)(
(βββ−β̂ββ)′X′X(βββ−β̂ββ)+SSE

2

)n/2
∝

Γ
(
n−k+k

2

)[
1 + 1

n−k ×
(βββ−β̂ββ)′X′X(βββ−β̂ββ)

SSE/(n−k)

](n−k+k)/2
. (2.9)

Each individual parameter of βββ follows a non-central univariate t distribution, so

βββi − β̂ββi√
SSE
n−k (X ′X)−1

ii

∼ tn−k, (2.10)

where tn−k represents a central t distribution with n − k degrees of freedom. With

these exact marginal posterior distributions, Gibbs sampling is not computationally

necessary (unless for calculating DIC). This implies the posterior means and credible

intervals can be easily obtained from the t and inverse gamma distributions. It is

worth pointing out that Jeffreys’ prior and LSE do not agree when estimating σ2

although they do match at β̂ββ. For Jeffreys’ prior the estimator of σ2 is σ̂2 = SSE
n−k−2

,

while the LSE for σ2 corresponds to a Bayesian estimate with a prior of the form

π(θθθ) ∝ ( 1
σ2 )2. This implies the estimates of σ2 from Jeffreys’ prior are systematically

larger than the ones from LSE.

For our reference priors, since there is no easy way to derive the full conditionals

for βββ under these two priors, I will rely on the Metropolis-Hastings algorithm and

utilize independent truncated normal proposals centered at the previous iteration

with a variance adjustment to achieve good acceptance rates and stable Markov

chains. At the t-th iteration, the parameter µ∗1 is sampled from a truncated normal
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density

TN
(
µ

(t−1)
1 , ξ

)
∝ 1√

2πξ
exp

[
− 1

2ξ
(µ∗1 − µ

(t−1)
1 )

]
I{−∞, µ(t−1)

2 }(µ
∗
1) (2.11)

and the parameter µ∗k is sampled from a truncated normal density

TN
(
µ

(t−1)
k , ξ

)
∝ 1√

2πξ
exp

[
− 1

2ξ
(µ∗k − µ

(t−1)
k )

]
I{µ(t−1)

k−1 ,∞}(µ
∗
k). (2.12)

µ∗1 and µ∗k are accepted as µ
(t)
1 and µ

(t)
k with a probability of α = min{1, r} where r

is calculated by

r =
f(yyy|βββ∗, σ(t−1)2

)× π(θθθ∗)× TN
(
θθθ(t−1)|θθθ(∗), ξ

)
f(yyy|βββ(t−1), σ(t−1)2

)× π(θθθ(t−1))× TN (θθθ(∗)|θθθ(t−1), ξ)
. (2.13)

µ2, µ3, . . . , µ(k−1) can be sampled and updated respectively by similar procedures.

Notice that once a µi has been updated, it will be adopted as the new truncation

limit for the next adjacent µ(i+1). For σ2, the full condition distribution can be

derived as follows,

f(σ2|βββ,yyy) ∝ f(yyy|βββ, σ2)× π(θθθ)

∝
(

1

σ2

)n
2

× exp

[
−(yyy −Xβββ)′(yyy −Xβββ)

2σ2

]
× 1

σ2
, (2.14)

which is an inverse gamma distribution, IG
(
n
2
, (y−Xβββ)′(y−Xβββ)

2

)
. It can be updated

by a Gibbs sampling step after βββ is updated.

2.3.2 Simulation Studies

The total number of simulated studies is 1000. Each study is analyzed by obtaining

11000 MCMC iterations and the first 1000 iterations are treated as burn-in. With an

acceptance rate around 0.4, the posterior medians are used as the Bayesian estimates.
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Figure 2.1: Point estimation of βββ by different methods: n = 8, σ = 1, βββ =
(0, 5, 10, 15)′.

For each study, the 95% credible or confidence intervals are determined and the

true parameter values are checked to see if covered by the 95% intervals for each

method. The empirical coverages of the intervals are then computed based on these

1000 simulations. The root mean square error (RMSE) for each parameter between

estimates and real parameter value is also calculated. The average DIC from simula-

tions is determined for each prior as an important tool for Bayesian model comparison

and selection. The detailed settings and results are shown in the following figures

and later discussed in detail.

Figure 2.1 shows the box plots of the µ estimates from 1000 simulations with n =

8, βββ = (0, 5, 10, 15)′ and σ = 1. Under balanced design, there are two observations

in each group. For this setting, the estimates from LSE and the Bayesian models
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Figure 2.2: Point estimation of σ2 by different methods: n = 8, σ = 1, βββ =
(0, 5, 10, 15)′.

are similar based on the box plots. The box plots of estimates for σ2 are shown

in Figure 2.2. For this parameter, it appears that the LSE gives the best result,

while the results from Bayesian methods seem to have heavy tails regardless the

choice of the priors. Jeffreys’ prior is the worst and the two reference priors show

a similar pattern. The results are not surprising in that Least Squares Estimation

always performs well in an ANOVA model with equal variance and balanced design.

Although our reference priors can take advantage of incorporating the internal order

of the parameters, this effect may be ignorable as there are only four µ’s in this

model. The reference priors do give better estimations than Jeffreys’ prior, however,

it is worse when comparing with LSE.

Hence I decide to increase the number of parameters in the model. With more
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parameters considered, the ordering information may become very important to the

model fitting and the reference priors with this information may be able to show

overwhelming dominance compared to Jeffreys’ prior and LSE. I set k = 10 with βββ

= (0, 1, 6, 7, 12, 13, 18, 19, 24, 25)′ and σ = 1 or 5. Both balanced and unbalanced

design are considered with the same sample size n = 40.

Figure 2.3: Point estimation of selected parameters by different methods: n = 40, σ
= 1 and k = 10 with balanced design.

Figure 2.3 shows the simulation results with σ = 1 under balanced design. With

the number of µ’s increased to 10, the estimates from reference priors are more

concentrated around the true values and show less variability, which is true for every

µ in the figure. In addition, the reference priors perform at least as good as the LSE

and Jeffreys’ prior in estimating σ2 as shown in the box plot. In order to clearly

show the better performance of the reference priors in estimating the parameters,
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Figure 2.4: RMSE comparison of different methods: n = 40, σ = 1 and k = 10 with
balanced design.

I calculate the Root Mean Square Error (RMSE) between the estimates and true

parameter values as shown in Figure 2.4. Smaller RMSE implies better estimation.

It is clear from the figure that the reference priors consistently give smaller RMSE

when estimating µ’s, while the four methods provide similar RMSE for σ2. This

is an inspiring result as it confirms that when the number of parameters is large,

incorporating the internal ordering information is important and helpful for model

fitting. When the design is unbalanced or σ is increased to 5, a similar conclusion is

drawn.

To further investigate the performance of the reference priors, I increase k to

20 with βββ = (0, 1, 6, 7, 12, 13, 18, 19, 24, 25, 30, 31, 36, 37, 42, 43, 48, 49, 54,

55)′ and σ = 1 or 5. The sample size n is set to be 80 and both balanced and
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unbalanced design are considered. A similar conclusion can be drawn, where the

reference priors consistently give better estimates for the µ’s in term of providing

smaller RMSE and less variability. At the same time, they performs at least as well

as LSE or even better when estimating σ2. The figures are not shown here but they

are similar as Figures 2.3 and 2.4. It is obvious that in this one way ANOVA model,

when the number of parameters is large, the internal ordering information becomes

important. Incorporating this ordering information into a prior distribution is helpful

in model fitting and hence the reference priors can give good estimates with smaller

uncertainty and RMSEs for all parameters.

Figure 2.5: Empirical coverage of 95% CI under different settings and methods.

At the end, all the simulation results from 8 different settings are summarized

in Figures 2.5-2.7 for k = 10 or 20, σ = 1, 5 and n = 40, 80. Figure 2.5 shows the
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empirical coverages of 95% confidence or credible intervals. All these coverages look

close to 0.95 except when σ = 5, the coverage of π(θθθ)uni is relatively low especially

for unbalanced design. This is in accordance with the fact that when the variance is

large, the estimates from π(θθθ)uni are somewhat off the true values for µ1 and µk.

Figure 2.6: RMSE comparisons of µ1, µk and σ2 under different settings and methods.

Figure 2.6 shows the RMSEs of µ1, µk and σ2 under different settings. The

reference prior π(θθθ)u1k always gives the smallest RMSE when estimating σ2, although

the RMSEs from these four methods are actually close. When estimating µ1 and µk,

the reference prior π(θθθ)u1k tends to give the smallest RMSE under all settings. The

reference prior π(θθθ)uni also gives pretty small RMSEs when σ = 1, however, this is

not obvious when σ = 5.

Figure 2.7 shows simulation averages for DIC under the three Bayesian priors.
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Figure 2.7: Average DIC comparisons of three Bayesian methods.

The calculation of DIC follows the method introduced in Chapter 1, where D̄ is

calculated from the average of D(θθθ), over the samples of θθθ and D(θ̄θθ) is calculated

as the value of D evaluated at the average of the samples of θθθ. Then the DIC can

be determined. The resulting values are close and the reference prior π(θθθ)u1k always

gives the smallest average DIC value while Jeffreys’ prior seems the worst.

Based on all our simulation results, we can conclude the reference priors that

consider the internal order information are good choices when dealing with isotonic

models, especially when the number of parameters is large. Under this situation the

internal ordering information is important and the reference priors that incorporates

this information stand out and work really well when looking for default priors.
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Chapter 3

Constrained Reference Priors for

Analysis of Covariance Model

Our reference priors presented in Chapter 2 can be easily extended to more com-

plex models. For example, researchers can be conducting a regression analysis with

several predictors and know that one of their categorical variables has a common or-

dering relationship with the response. Their inferences may be enhanced by formally

incorporating this information. This model can be expressed as

yyy = X1µµµ+X2γγγ +X3βββ + εεε, εεε∼N(000, σ2I), (3.1)

where yyy = (y1, y2, . . . , yn)′ and X1 = (xxx11, . . . ,xxx1k) is an n× k matrix of indicator

variables designating the k levels of the grouping variable of interest. This means

that the entry is 1 in xxx1i if the observation belongs to group i, 0 otherwise and so

forth. X2 represents the n × r design matrix for the collection of r continuous and

categorical covariates that do not interact with the grouping variable of interest. The

final t continuous or categorical covariates that interact with the grouping variable of

interest can be represented by an n×t matrix Z. Then X3 = (xxx11×Z, . . . ,xxx1k×Z),

34



Chapter 3. Constrained Reference Priors for Analysis of Covariance Model

where the j-th column of xxx1i × Z is the Hadamard product of the indicator vector

xxx1i with the jth column of Z, for i = 1, . . . , k. µµµ may follow one of the three order

restrictions presented in Chapter 2, while there is no restriction for βββ and γγγ.

The model defined in Equation 3.1 can be expressed in a vector notation as

yyy = Xααα + εεε, (3.2)

where X = (X1, X2, X3) is an n × (k + r + kt) matrix, ααα = (µµµ′, γγγ′, βββ′)′ is

(k + r + kt)× 1 vector and εεε ∼ N(000, σ2In).

When the predictors in this model contains both categorical and quantitative

variables, the model is known as an Analysis of Covariance (ANCOVA) model. The

rest of this chapter is organized as follows: Section 3.1 shows the derivation for the

general expression of the reference priors in ANCOVA models with a simple order

restriction. Section 3.2 provides the results from simulation studies under different

priors. Finally, in Section 3.3, a real data set application is considered for inference

via LSE and Bayesian approaches.

3.1 Reference Prior Derivation: General Formula

for an Increasing Constraint

For the model of Equation 3.2, we assume there is an increasing constraint (simple

order) with regard to the parameter µµµ, which is µ1 < µ2 < . . . < µk. There are no

restrictions imposed for βββ and γγγ.

Since the reference priors depend on different groupings and orderings, I will

derive the general formula for the increasing constraint on µµµ. Based on the model
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described by Equation 3.2, its log-likelihood function is

l(ααα, σ2) = −n
2

log(2π)− n

2
log σ2 − (yyy −Xααα)′(yyy −Xααα)

2σ2
. (3.3)

To derive the Fisher information matrix, I first find the partial derivatives of the log-

likelihood with respect to the model parameters and then find the expected values

of these second derivatives. Therefore

∂l(ααα, σ2)

∂ααα
=

1

σ2
X ′(yyy −Xααα),

∂2l(ααα, σ2)

∂ααα2
= − 1

σ2
X ′X ⇒ −E

[
∂2l(ααα, σ2)

∂ααα2

]
=

1

σ2
X ′X,

∂2l(ααα, σ2)

∂ααα∂σ2
= − 1

σ4
X ′(yyy −Xααα)⇒ −E

[
∂2l(ααα, σ2)

∂ααα∂σ2

]
= 0,

∂2l(ααα, σ2)

∂σ22 =
n

2σ4
− (yyy −Xααα)′(yyy −Xααα)

σ6
⇒ −E

[
∂2l(ααα, σ2)

∂σ22

]
=

n

2σ4
.

So the Fisher information matrix is

I(ααα, σ2) =

 n
2σ4 000

000 X′X
σ2

 . (3.4)

The regularity conditions for asymptotic normality are still satisfied by this

model. Note the Fisher information matrix does not depend on any elements of

ααα. If the parameters, θθθ = {ααα, σ2}, are grouped into m groups and ordered as: ({σ2},

. . .), then |hj(θθθ)| depends only on θθθ(1:j), for j = 1, . . . ,m. This means we can use

the simplified expression that was given in Berger and Bernardo [1992] again for the

reference prior as in Chapter 2, which is

πl(θ) =
Πm
j=1|hj(θ)|1/2

Πm
j=1

∫
Θl∩[Θj |Θ(1:(j−1))]

|hj(θ)|1/2dθ(j)

IΘl(θ), (3.5)
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where hj(θθθ) and Θl follow the similar definitions as those introduced in Chapter 2.

Obviously |h1(θθθ)| = n
2σ4 and other |hj(θθθ)| terms can be canceled out from the

numerator and denominator in Equation 3.5, because they are constants with regard

to the integrals as the Fisher information matrix does not depend on ααα. Since there is

no restriction for βββ and γγγ, the integrals related to these two parameters are functions

of the boundary l for the compact subset, Θl. They will be dropped when taking

limit in Equation 3.7. The integrals related to µµµ only depend on the grouping and

ordering of µµµ and the general expression for this kernel will be exactly the same as

the one derived in Chapter 2, so

πl(θθθ) =

√
n

2σ4∫ l
1/l

√
n

2σ4dσ2
× 1

Πm
j=2

∫
Θl∩[Θj |Θ(1:(j−1))]

dθ(j)

× IΘl(θ)

∝ 1

σ2
× 1

Π
mµ
j=2(γj − ηj)mj

× IΘl(θ), (3.6)

where γj and ηj follow similar definitions as in Theorem 1. The actual reference

priors can be found by

πref(θ) = lim
l→∞

πl(θ)

πl(θ∗)
, (3.7)

where θθθ∗ is any fixed point in Θ with positive density for πl(θθθ), which is a constant

with regard to θθθ.

3.2 Simulation Study with Specific Orderings and

Groupings

In this section we consider a simulation study to get a better understanding of the

properties of the posterior distribution under different reference priors for the pro-

posed ANCOVA model. With the general expression, Equation 3.6, a specific prior
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can be obtained under a given grouping and ordering of the parameters. Following

the same rational as in Chapter 2, I consider two ways of grouping and ordering,

which are shown in the following table along with the resulting reference priors.

With these two ways of grouping and ordering, the resulting prior distributions have

Table 3.1: Reference priors for ANCOVA model with a simple order

Label Parameter Grouping and Ordering Reference Prior
π(θθθ)uni ({σ2}, {µ1}, . . . , {µk}, {γγγ, βββ}) 1

σ2 × IΘ(θ)
π(θθθ)u1k ({σ2}, {µ1, µk}, {µ2, . . . , µk−1}, {γγγ, βββ}) 1

σ2 × 1

(µk−µ1)k−2 × IΘ(θ)

Note: θθθ = {µµµ, γγγ, βββ, σ2}. Θ is the whole parameter space with µ1 < µ2 <
. . . < µk.

a similar form to the priors for the ANOVA model of Chapter 2.

In my simulation study, I consider a categorical variable with a simple order and a

continuous covariate which interacts with this categorical variable. The γγγ parameters

are ignored since they typically are not the focus of inference. The parameters can

be estimated by Least Squares Estimation (LSE), or by posterior means/medians

under different priors or by MAP estimates.

Least Squares Estimators can be calculated directly by α̂αα = (X ′X)−1X ′yyy and

σ̂2 = SSE
n−p with SSE = yyy′(I −M)yyy and M = X(X ′X)−1X ′ as in Christensen [2011].

The Jeffreys’ prior for this model is π(θθθ)J ∝ 1
σ2 without any order restriction. As

shown in Chapter 2, with this prior, the joint posterior, p(ααα, σ2|yyy), can be expressed

as the product of p(ααα|σ2, yyy) and p(σ2|yyy), where ααα = (µµµ′, γγγ′, βββ′)′. Further deriva-

tion can show that the marginal posterior of σ2 is an inverse gamma distribution,

IG
(
n−p

2
, yyy
′(I−M)yyy

2

)
. The marginal posterior of ααα is a multivariate t distribution.

Each individual parameter αααi follows a non-central univariate t distribution, so

αααi − α̂ααi√
SSE
n−p (X ′X)−1

ii

∼ tn−p, (3.8)
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where tn−p represents a central t-distribution with n − p degrees of freedom. The

posterior means and credible intervals can be easily obtained from the t and inverse

gamma distributions.

Another alternative is to utilize the EM algorithm to find the MAP estimates

as discussed in Chapter 1. For this model, it is convenient to define two latent

independent variables, yyy1 and yyy2, such that yyy = yyy1 + yyy2 with yyy1 ∼ N (X1µµµ, σ
2I/2)

and yyy2 ∼ N (X3βββ, σ
2I/2). It is obvious that yyy|yyy1, θθθ ∼ N (yyy1 +X3βββ, σ

2I/2) and

yyy|yyy2, θθθ ∼ N (yyy2 +X1µµµ, σ
2I/2). From Bayes theorem,

f(yyy1|yyy,θθθ) ∝ f(yyy1, yyy|θθθ)

∝ f(yyy|yyy1, θθθ)× f(yyy1|θθθ)

∝ exp

[
−(yyy1 +X3βββ − yyy)′(yyy1 +X3βββ − yyy)

σ2

]
× exp

[
−(yyy1 −X1µµµ)′(yyy1 −X1µµµ)

σ2

]
, (3.9)

which clearly is a N
(
yyy+X1µµµ−X3βββ

2
, σ

2

4
I
)

distribution. Similarly we have yyy2|yyy,θθθ ∼

N
(
yyy−X1µµµ+X3βββ

2
, σ

2

4
I
)

. As in Marschner [2010], in the E-step, I calculate the expected

values for these two latent variables at the (t + 1)-th iteration with regard to the

estimates of the parameters at the t-th iteration. These expected values are

ŷyy1
(t+1) = E(yyy1|yyy, θ̂θθ

(t)
)

=
yyy +X1µ̂µµ

(t) −X3β̂ββ
(t)

2
(3.10)

and

ŷyy2
(t+1) = E(yyy2|yyy, θ̂θθ

(t)
)

=
yyy −X1µ̂µµ

(t) +X3β̂ββ
(t)

2
. (3.11)
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The log posterior distribution for this model can be expressed as

log f(θθθ|yyy1, yyy2) ∝ log f(yyy1, yyy2|θθθ) + log π(θθθ)

∝ −2n log σ − 1

σ2
[(yyy1 −X1µµµ)′(yyy1 −X1µµµ) + (yyy2 −X3βββ)′(yyy2 −X3βββ)]

+ log π(θθθ). (3.12)

If π(θθθ) = π(θθθ)uni, then log π(θθθ) is a constant and can be dropped from Equation

3.12. The maximizer for this log posterior has a solution close to the MLE. In

addition, µµµ has to follow the simple ordering restriction, which can be controlled

along the iterations of the EM algorithm. On the other hand, if π(θθθ)u1k is used, the

prior part cannot be dropped from the log posterior because it is not a constant.

When estimating µµµ, only the estimation for µ1 and µk will be affected by this change

because the other µ’s are not part of the prior. Hence, here I focus on the estimation

of µ1 and µk under the prior π(θθθ)u1k. For the following M-step, the expectations

from Equations 3.10 and 3.11 are substituted into the log posterior distribution of

Equation 3.12 to give

log f(θθθ|yyy1, yyy2) ∝ log f(yyy1, yyy2|θθθ) + log π(θθθ)

= −2n log σ − 1

σ2
(ŷyy

(t+1)
1 −X1µµµ)′(ŷyy

(t+1)
1 −X1µµµ)

− 1

σ2
(ŷyy

(t+1)
2 −X3βββ)′(ŷyy

(t+1)
2 −X3βββ)− (k − 2) log(µk − µ1)− 2 log σ.

(3.13)

Maximizing this expression gives the new estimates of the parameters at t+ 1. The

maximization process include taking partial derivative for each parameter and then

making the derivative equal to zero. It should be pointed out when dealing with

µ1 and µk, there are no close form solutions. Instead one remedy could invoke the

ECM to find the conditional MAP estimate for µ1 given µk = µ̂
(t)
k and then find the

conditional MAP estimate for µk given µ1 = µ̂
(t+1)
k .
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Compared to MCMC methods, the EM algorithm converges really fast. On the

other hand, it does not produce standard errors for parameters automatically and

requires extra work to obtain these. I did not compute standard errors for the EM

estimates for this work. However, a parametric bootstrap could be easily employed

to obtain these in the case of the ANCOVA model.

For a full Bayesian analysis with our reference priors, since there is no easy way

to derive the full conditionals for µµµ, I rely on the Metropolis-Hastings algorithm and

adopt independent truncated normal proposals centered at the previous iteration

with a variance selected through trial and error to achieve good acceptance rate and

a stable Markov chain. Similar to Chapter 2, at the t-th iteration, µ∗i is sampled from

a truncated normal density TN(µ
(t−1)
i , ξi) and accepted as µ

(t)
i with a probability of

α = min{1, ri} where ri can be calculated by

ri =
f(yyy|µµµ∗,βββ(t−1), σ(t−1)2

)× π(θθθ∗)× TN(θθθ(t−1)|θθθ(∗), ξ)

f(yyy|µµµ(t−1),βββ(t−1), σ(t−1)2
)× π(θθθ(t−1))× TN(θθθ(∗)|θθθ(t−1), ξ)

. (3.14)

The truncation limits are set to be between the two adjacent µ′s from last iteration

to make sure the resulting µi follow the simple order. Once µi has been updated,

it will be adopted as the new truncation limit for the adjacent µ(i+1). All other

parameters can be updated via direct sampling of full conditionals, which are shown

in Appendix A.

For the simulation studies, k = 10, 20 and σ =1, 5 with n = 60 or 120 are

considered. The detailed settings are similar to the studies in Chapter 2 in that

both balanced and unbalanced designs (with respect to the categorical variable) are

considered. The total number of simulated studies for each setting is 1000. Each

study is analyzed by obtaining 11000 MCMC iterations and the first 1000 iterations

are treated as burn-in. With an acceptance rate at around 0.4, the posterior medians

under different priors are calculated as the Bayesian estimates.
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At each study, the 95% credible or confidence intervals are determined and the

true parameter values are checked to see if covered by the 95% intervals for each

method. The empirical coverages of the intervals are then computed based on these

1000 simulations. The root mean square error (RMSE) for each parameter between

estimates and real parameter value is also calculated. The average DIC for each prior

is determined as an important tool for Bayesian model comparison and selection. The

detailed results are listed in Figures 3.1-3.3.

Figure 3.1: Empirical coverage of 95% CI under different settings and methods.

As discussed previously, µµµ, βββ and σ2 are estimated and compared with the true

values. Since there is no order restriction for βββ, the four methods could give similar

estimations for this parameter(s), which is confirmed by my simulation studies. Also,

the simulation studies show that the performances for each method are reasonably
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similar to what I have presented in Chapter 2 except the DIC comparisons.

Figure 3.1 shows the empirical coverages of 95% confidence or credible intervals.

All these coverages look close to 0.95 except when σ = 5, the coverage of π(θθθ)uni is

relatively low especially for unbalanced design. This is in accordance with the fact

that when the variance is large, the estimates from π(θθθ)uni are somewhat off the true

values for µ1 and µk.

Figure 3.2: RMSE comparisons of µ1, µk and σ2 under different settings and methods.

Figure 3.2 shows the RMSEs of µ1, µk and σ2 under different settings. The

reference prior π(θθθ)u1k always gives the smallest RMSE when estimating σ2, although

the RMSEs from these four methods are actually close. When estimating µ1 and µk,

the reference prior π(θθθ)u1k tends to give the smallest RMSE under all settings. The

reference prior π(θθθ)uni also gives pretty small RMSEs when σ = 1, however, this is
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not obvious when σ = 5.

Figure 3.3: Average DIC comparisons of three Bayesian methods.

Figure 3.3 shows simulation averages for DIC under the three Bayesian priors.

The reference priors always give small average DIC values while Jeffreys’ prior seems

the worst. This difference is obvious at σ =1, especially when k = 20.

Based on all our simulation results, we can conclude the reference priors that

consider the internal order information are good choices when dealing with isotonic

models, especially when the number of parameters is large. Under this situation the

internal ordering information is important and the reference priors that incorporates

this information stand out and work really well when looking for default priors. Based

on all our simulation results, we can conclude the reference priors that consider the

internal order information are good choices when dealing with this model, especially
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when the number of parameters is large. Under this situation the internal ordering

information is important. It seems a reference prior incorporating the internal order

information is a good choice in a sense of giving good estimates around the true

values with smaller uncertainty and RMSE, which makes it a possible default prior

in ANCOVA model.

3.3 Application of Reference Priors: Smoking and

Type 2 Diabetes

3.3.1 Introduction

Smoking tends to induce high risk of having type 2 diabetes [Xie et al., 2009]. At

the same time, people with diabetes who smoke are more likely than nonsmokers to

have trouble with insulin dosing. However, this relationship sometimes is masked by

the variability in observational data. That is, smoking may show a non-significant

effect, which will certainly hamper the interpretation of the model. In this section,

I assume internal order information and that there is a simple order for the mean

responses of smoking levels. I construct an ANCOVA model for a real data set to

investigate the relationship of type 2 diabetes and smoking along with several other

covariates. I adopt the reference priors derived in previous sections and perform an

analysis under a Bayesian framework. For comparisons, I also consider Jeffreys’ prior

and LSE approaches.

3.3.2 Risk of Type 2 Diabetes in New Mexico

Diabetes is a major public health problem in the state of New Mexico. It is one of

the ten leading causes of death in the state. During the last 15 years, the number
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of persons having diabetes has increased dramatically, which now affects the health

of about 10 percent of the adult population in New Mexico as in Centers for Dis-

ease Control and Prevention [2012]. Furthermore, this also can place a tremendous

financial burden on the state. The total cost of diabetes in New Mexico has already

exceeded $ 1.25 billion per year as described by Juvenile Diabetes Research Foun-

dation. Deep studies in diabetes are needed to benefit the whole state economically

and medically. In 2013 Dr. Mark Burge at UNM Health Science Center started a

study with regard to type 2 diabetes. In this study, 218 adults in New Mexico at

risk for type 2 diabetes were screened to determine their glucose homeostasis status.

Hemoglobin A1c (HbA1c), a common variable used to measure diabetes status, was

measured for each patient along with other predictors. Generally, a person with

HbA1c ≤ 5.4% can be recognized as normal or with no diabetes. A person with

HbA1c ≥ 6.5% can be diagnosed as a diabetic. Patients with a HbA1c in between

are recognized as pre-diabetic. Other relevant information like the participant’s high-

density lipoprotein (HDL), body mass index (BMI) and age were also collected along

with the participant’s smoking levels, which were originally recorded as “number of

cigarettes per day” and “how many years as a smoker?”. The variable “Pack years”,

defined as the number of packs (20 cigarettes) times the number of years spent smok-

ing, is a common measure of smoking intensity. I used three classifications for smoker

status: High-level smokers (more than 10 pack-years), Low-level smokers (between 0

and 10 pack years) and non-smokers (0 pack years), or H, L, N. The whole data set

was first cleaned to remove the entries with missing responses, which gave 207 re-

maining data entries. Covariate selection was done by classical regression and LDL,

BMI and ages of the participants seem important in a sense that the p-values of their

coefficients are less than 0.05. After centering these variables, I added the smoking

effect, which contains three levels: High, Low and None.
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3.3.3 Model Setup and Analysis

Figure 3.4 shows the scatter plots and box plot of HbA1c against each of the predic-

tors. A data point shows different than others because the participant had a really

Figure 3.4: Plots of HbA1c vs covariates

low HbA1c value. An internal order of smoking levels corresponding to HbA1c may

exist, however, this relationship is not clear due to the variability of the data. With

this data, I consider an ANCOVA model with HbA1c as the response variable and

other variables as predictors or independent variables. The fitted model by LSE is
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shown below:

ˆHbA1c = 5.6295 + 0.005688× I(smoking level = ”L”)

−0.01524× I(smoking level = ”H”)

+0.001736× LDL+ 0.01009×BMI + 0.01321× age. (3.15)

Interaction among predictors are not considered. A simple regression analysis shows

that the smoking effect is not significant and LDL, BMI and age are all positively

associated with the response. Variance Inflation Factors (VIF) checks show no indi-

cation of multicollinearity. The summary of the regression model is shown in Table

3.2.

Table 3.2: Summary of regression model

Estimate Std. Error P value
smoking level = ”N” 5.6295 0.0298 0
smoking level = ”L” 5.6352 0.0717 0
smoking level = ”H” 5.6143 0.0428 0

LDL 1.7359E-3 8.428E-4 0.0407
BMI 1.0090E-2 3.2329E-3 0.0021
age 1.3215E-2 1.7694E-3 0

Note: Although the effects from three smoking levels
are significant, they are not significantly different from
one another.

On the other hand, a Bayesian analysis with a prior distribution that considers a

simple order for the smoking effects can be performed, where heavier smokers induce

higher risk of type 2 diabetes. It is a natural thing to adopt the two reference priors,

π(θθθ)uni and π(θθθ)u1k derived and discussed in previous sections. Fitted models can

be compared with Jeffreys’ prior π(θθθ)J ∝ 1
σ2 and LSE. Figures 3.5 and 3.6 show

the marginal posterior distributions of the parameters under the different priors.

Posterior distributions from two reference priors show similar patterns, which is not
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surprising since the sample size is fairly large. The results from Jeffreys’ prior are

close to LSE, where the estimates for the three smoking levels tend to be mixed

up. Compared with the reference priors, the marginal posterior from Jeffreys’ prior

seems to have heavier tail when estimating the mean responses for different smoking

levels, while they behave similarly when estimating other parameters.

Figure 3.5: Marginal posterior distributions for different smoking levels under three
priors

The MCMC results based on different priors is summarized in Table 3.3. Al-

though Jeffreys’ prior gives similar results as classical regression, its DIC is the

largest. The one with the reference prior π(θθθ)u1k gives the smallest DIC, which turns

to be the evidence of better fitting and less complexity of the model. If we consider

the differences between different smoking levels, the reference priors incorporating

the simple order show there is a significant difference between high level smokers and
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Figure 3.6: Marginal posterior distributions for LDL, BMI, age and σ2 under three
priors

non-smokers, while the results from Jeffreys’ prior cannot show this relationship. Our

conclusion is that once the internal ordering information is incorporated, it seems

there is a progress for the model fitting. HbA1c seems positively associated with

LDL, BMI and age and considering the order of smoking levels along with response

seems more reasonable.
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Table 3.3: MCMC results of Bayesian analysis with three priors
Estimate 95% credible interval DIC

Jeffreys

smoking level = ”N” 5.6302 (5.5735, 5.6916)

1542.362

smoking level = ”L” 5.6359 (5.5524, 5.7175)
smoking level = ”H” 5.6175 (5.4732, 5.7706)

LDL 1.7527E-3 (1.2256E-4, 3.4259E-3)
BMI 1.0058E-2 (3.7499E-3, 1.6283E-2)
age 1.3122E-2 (9.8467E-3, 1.6479E-2)
σ2 0.1066 (0.0881, 0.1284)

π(θθθ)uni

smoking level = ”N” 5.6084 (5.5560, 5.6605)

1531.634

smoking level = ”L” 5.6434 (5.5838, 5.7100)
smoking level = ”H” 5.6917 (5.6190, 5.7874)

LDL 1.8337E-3 (1.6109E-4, 3.4335E-3)
BMI 9.4074E-3 (3.2307E-3, 1.6214E-2)
age 1.2430E-2 (9.0153E-3, 1.5759E-2)
σ2 0.1066 (0.0887, 0.1303)

π(θθθ)u1k

smoking level = ”N” 5.6088 (5.5570, 5.6575)

1513.375

smoking level = ”L” 5.6449 (5.5875, 5.7076)
smoking level = ”H” 5.6924 (5.6192, 5.7854)

LDL 1.8225E-3 (7.9451E-5, 3.5334E-3)
BMI 9.2048E-3 (2.6986E-3, 1.5427E-2)
age 1.2385E-2 (8.7402E-3, 1.5909E-2)
σ2 0.1073 (0.0881, 0.1300)
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Reference Priors for Spatial CAR

and SAR Models

Bayesian spatial models have been growing in popularity due to advances in compu-

tation and the presence of many spatial data sets. However, the number of default

prior options is still very small for spatial modeling when the spatial autoregression

parameter, ρ, is considered. Researchers tend to adopt the intrinsic conditionally

autoregressive (CAR) model and simultaneous autoregressive (SAR) model specifi-

cation, where the spatial effect is introduced as a random effect in the second stage

of a hierarchical setting. On the other hand, although the introduction of ρ can

guarantee the propriety of the likelihood function, it complicates the model, which

makes it difficult in exploring priors. There is an urgent need for default priors under

these models. Under the framework provided by Berger and Bernardo [1992], the

reference priors for CAR and SAR models are worth deriving and studying for model

fitting.

This chapter is organized as follows: Section 4.1 gives a brief introduction to

spatial statistics with different data types. Section 4.2 talks about the spatial CAR
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and SAR models for areal data sets. In Section 4.3, the derivation of the reference

priors for these two models are discussed in detail. And finally, in Section 4.4, the

reference priors are applied to a Bayesian analysis for the state level 1999 SAT scores

in the United States, with comparison to a Uniform prior.

4.1 Spatial Statistics and Its Data Types

When statisticians deal with quantitative study of phenomena referenced in space,

the regular independence assumption of observations is not valid, since the attributes

of location i may have influence on the attributes of location j. Hence spatial statis-

tics can be interpreted as a class of methods that consider the spatial correlation

among observations. Spatial correlations are very common when analyzing data in

epidemiology, criminology, agriculture, econometrics and geography, etc.

Spatial data sets are generally classified into three types: point-reference data,

areal data and point pattern data. For point-reference data, the response, yyy(s), is

a random vector or scalar at a location s while s varies continuously over a fixed

subset of an r dimensional space, D. For areal data, the location information, D,

is partitioned into a finite number of areal parts (either regular or irregular) with

well-defined boundaries. For the point pattern data, D is random and yyy(s) simply

shows the occurrence of the event of interest at some s ∈ D.

It is natural that for different types of data sets, people consider different models.

For example, for point-reference data, the distances between locations are used to de-

scribe the strength of spatial association. General speaking, the longer the distance,

the smaller or weaker the spatial association. The variance-covariance structure of

the model can then be modeled by a function of the Matérn family. For areal data,

a similar idea can be adopted. That is, for each region the response can be assumed

to have been observed at the centroid location and distances among centroids are
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used to develop the spatial variance-covariance structure of the data. However, this

approach for areal data is problematic since it is not possible for the observations to

occur continuously in space.

Another way to model areal data in spatial statistics considers a neighborhood or

a contiguity structure based on the shape of the lattice where the data is observed.

Figure 4.1 shows the ways of defining contiguity: Rook’s case, Bishop’s case and

Queen’s case. This figure is originally drawn by Sawada [2009].

Figure 4.1: Three ways of defining contiguity for areal data.

Rook contiguity only uses common boundaries and Bishop uses only common

vertexes, while Queen’s case considers both to determine the neighbors. Once this

contiguity structure is defined, the neighboring information can be stored into a

symmetric proximity matrix W with entries wij, such that wij=1 if two regions are

neighbors, wij=0 otherwise. Models resembling autoregressive models in time series

are considered. Two very popular models that incorporate this discrete neighboring

information are, as mentioned before, CAR and SAR models, which were originally

introduced by Besag [1974] and Whittle [1954], respectively.
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4.2 Introduction to CAR and SAR Models

In this section I will formally define the CAR and SAR models, with a spatial auto-

correlation ρ being introduced. If ρ is considered, direct modeling of the data with

CAR and SAR models is possible.

4.2.1 CAR Model

Given a vector φφφ = (φ1, φ2, . . . , φn)′ as a Gaussian process from a lattice D, the

zero-centered CAR specification is given by a full conditional distribution

φi|φj, j 6= i ∼ N

(∑
j

bijφj, τ
2
i

)
, for i = 1, . . . , n. (4.1)

where bij denotes the weight from neighbor j. By Brook’s Lemma as in Banerjee

et al. [2014] we obtain the joint distribution

p(φ1, φ2, . . . , φn) ∝ exp

{
−1

2
φφφTD−1

τ2 (I −B)φφφ

}
. (4.2)

Here B = {bij}n×n with bii = 0 and Dτ2 is a diagonal matrix with Dii = τ 2
i . Since

D−1
τ2 (I − B) is the inverse of the variance-covariance matrix, the requirement that

D−1
τ2 (I −B) be symmetric yields

bij
τ 2
i

=
bji
τ 2
j

, for all i, j. (4.3)

Recall the definition of the proximity matrix W in last section. Suppose we set

bij = wij/wi+ and τ 2
i = τ 2/wi+, where wi+ =

∑
j wij is the sum of row i,

then Equation 4.3 is satisfied. The way of setting B and Dτ2 here is actually called

weighted (heterogeneous) CAR (WCAR) model. Others include homogeneous CAR

(HCAR) model and autocorrelation CAR (ACAR) model. A good review of different
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ways of setting CAR models can be found in Cressie and Kapat [2008]. If we define

Dw to be diagonal with entries wi+, Equation 4.1 becomes

φi|φj, j 6= i ∼ N

(∑
j

wijφj/wi+, τ
2/wi+

)
, for i = 1, . . . , n. (4.4)

and Equation 4.2 is

p(φ1, φ2, . . . , φn) ∝ exp

{
− 1

2τ 2
φφφT (Dw −W )φφφ

}
. (4.5)

If the variance-covariance matrix for the distribution in Equation 4.5 is denoted

by
∑

φφφ, it can be shown that
∑−1

φφφ ×111 = 1
τ2

(Dw −W )× 111 = 000, i.e.,
∑−1

φφφ is singular

and Equation 4.5 does not give a proper distribution. A suggested approach to

have a proper model is to introduce a parameter ρ and redefine
∑−1

φφφ = D−1
τ2 (I −

ρB) = 1
τ2

(Dw − ρW ) as in Banerjee et al. [2014], where ρ is known as the “spatial

autoregression parameter”.
∑

φφφ can be nonsingular if ρ is carefully chosen. Banerjee

et al. [2014] show that this is guaranteed if ρ ∈ (λ−1
(1), λ

−1
(n)), where λ(1) < λ(2) < . . . <

λ(n) are the ordered eigenvalues of D
−1/2
w WD

−1/2
w .

The ideas presented in this section can be easily extended to a Gaussian process

of the form

yi|yj, j 6= i, τ 2
i ∼ N

(
µi +

∑
j

bij(yj − µj), τ 2
i

)
, for i = 1, . . . , n. (4.6)

By adding linear regressors, the model can be re-written with a likelihood function

of the form

f(yyy|βββ, τ 2, ρ) ∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)TV −1(yyy −Xβββ)

}
, (4.7)

where yyy = (y1, y2, . . . , yn)′ and V =
∑

yyy = τ 2[Dw − ρW ]−1.
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4.2.2 SAR Model

The definition of the SAR model is similar to the CAR process and can be followed

by Equation 4.6, where we may rewrite the model for observation yi as,

yi = µi +
∑
j

bij(yj − µj) + εi. (4.8)

In matrix notation, we have

yyy = µµµ+B(yyy − µµµ) + εεε, (4.9)

where yyy = (y1, y2, . . . , yn)′, µµµ = (µ1, µ2, . . . , µn)′ and εεε = (ε1, ε2, . . . , εn)′. Equiva-

lently,

(I −B)(yyy − µµµ) = εεε. (4.10)

This expression implies that a probability distribution for εεε can induce a distribution

for yyy. The model is called simultaneous because generally the error terms εi’s are

correlated with yyy. Now let’s assume εεε∼N(000, ΛΛΛ) with ΛΛΛ a diagonal matrix. The

distribution for yyy is then

yyy ∼ N
(
µµµ, (In −B)−1ΛΛΛ((In −B)−1)′′′

)
. (4.11)

There may be different choices for the ΛΛΛ and B matrices. Wall [2004] suggests to

set ΛΛΛ = σ2D−1
w where Dw and B follow the same definition as in the CAR model. In

order for Equation 4.11 be proper distribution, an extra parameter(spatial autocor-

relation) ρ is also introduced to the model. With the addition of linear regressors,

the model can be re-written with a likelihood of the form

f(yyy|βββ, σ2, ρ) ∝ [det(V )]−1/2 exp

{
− 1

2σ2
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)

}
,

(4.12)
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where V =
∑

yyy = σ2(In − ρB)−1D−1
w ((In − ρB)−1)′′′.

4.3 Derivation of the Reference Priors for CAR

and SAR Models

It is always easy to adopt a Uniform prior on ρ as a non-informative choice. This

can be seen in Bell and Broemeling [2000], Hepple [1995a] and Hepple [1995b], where

π(ρ) ∝ 1(λ−1
(1)
, λ−1

(n)
)(ρ) is used as a prior. Besag and Kooperberg [1995] point out that

for datasets with a strong correlation between neighboring observations, this rela-

tionship is hard to be reproduced in CAR models unless the spatial autocorrelation

is quite close to the boundaries, either λ−1
(1) or λ−1

(n). Since Uniform prior assigns equal

probability in the whole parameter space, this common behavior is simply ignored by

the prior. De Oliveira [2012] and De Oliveira and Song [2008] derived the indepen-

dence Jeffreys’ prior for CAR and SAR models respectively, where large prior mass

is assigned to parameter values close to their boundaries. Ren and Sun [2014] also

studied some objective priors including reference priors with nugget effects. How-

ever, these studies are limited to easy setting like HCAR models. The derivation of

the reference priors for heterogeneous CAR and SAR models can be done similarly

under the framework provided by Berger and Bernardo [1992]. Based on Equation

4.7, we can derive the Fisher information matrix for the CAR model, which is

I(ρ, τ 2,βββ) =



tr[WVWV ]

2τ 4

tr[WV ]

2τ 4
0

tr[WV ]

2τ 4

1

2τ 4
0

0 0 1
τ2
X ′(Dw − ρW )X

 .

Suppose θθθ = {ρ, τ 2,βββ}. If the parameters are grouped and ordered as {ρ}, {τ 2},

{βββ}, then the reference prior is

58



Chapter 4. Reference Priors for Spatial CAR and SAR Models

Theorem 4.

π(θθθ)car ∝
∣∣∣∣tr[WVWV ]

τ 4
− tr[WV ]tr[WV ]

τ 4

∣∣∣∣1/2 × 1

τ 2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ), (4.13)

where W is proximity matrix and V is the variance-covariance matrix in the CAR

model that contains the parameter ρ. The detailed derivation steps for Theorem 4

are shown in Appendix B.

In the SAR model, suppose θθθ = {ρ, σ2,βββ}. If parameters are grouped and ordered

as {ρ}, {σ2}, {βββ}, then a similar procedure can be adopted to derive the reference

prior for this model as shown in Appendix C, which gives the reference prior

Theorem 5.

π(θθθ)sar ∝ |h1|1/2 ×
1

σ2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ) (4.14)

with h1 = 1
σ2 tr [B′DwBV ] − 1

2σ2 tr
[
2B′DwBV − AV AV

σ2

]
− 1

2σ4 tr [AV ] tr [AV ] and

A = −[(In − ρB)′DwB +B′Dw(In − ρB)].

It should be pointed out that the reference priors for both CAR and SAR models

require calculation of the trace from n× n matrices. Eventually the resulting priors

are high order polynomials with a high dimensional proximity matrix. It could be

a problem to find the exact form of the prior distribution when handling areal data

with a large number of regions. However, it may be simplified to numerically evaluate

the prior density for some specific ρ values. This is the main requirement needed

for posterior inference with the Metropolis-Hastings algorithm. On the other hand,

for the derivation of the reference priors in the CAR and SAR models, the spatial

autoregression parameter, ρ, is always grouped and ordered in the first position,

because this is the main parameter of interest for this study. Also, this grouping and

ordering guarantees that the simplified expression for deriving the reference prior in

Lemma 1 of Berger and Bernardo [1992] can be used.
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4.4 Analysis of the 1999 SAT State Average Ver-

bal Scores

In this section, a state level summary data set related to the 1999 SAT college en-

trance exam is considered. The data set contains the state average verbal SAT scores

along with the percentage of eligible students taking the exam in the corresponding

state for all US 48 contiguous states. A choropleth map of the data is presented in

Figure 4.2. The black dots represent centroids of each state. A spatial pattern

Figure 4.2: Choropleth map of 48 contiguous state average SAT verbal scores for
1999

may be existing since the states in the Midwest seem to have higher average SAT
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Figure 4.3: Plot of first order spatial lag vs state average SAT verbal scores

scores than those from the East or West portions of the U.S., although the scores

from Texas and Indiana seem unusually low compared to their neighbors. The stan-

dard statistics used to measure spatial association for areal data are Moran’s I and

Geary’s C as in Ripley [1981]. The Moran’s I can be calculated by

I =
n
∑

i

∑
j wij(Yi − Ȳ )(Yj − Ȳ )

(
∑

i 6=j)
∑

i(Yi − Ȳ )2
. (4.15)

Under the null model where the Yi are iid, Moran’s I is asymptotically normally

distributed with mean − 1
n−1

as in Sen [1976]. For this data, Moran’s I gives 0.6055

with a p-value almost 0, which confirms there is a strong positive spatial association.

Figure 4.3 shows this association graphically by presenting the scatter plot of the first

order spatial lag against the state average SAT verbal scores, where the first order
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spatial lag for each state is calculated by averaging the scores from its neighbors.

Figure 4.4: Scatter plot of state average 1999 SAT verbal scores vs percentage of
eligible students taking the exam

Further analysis shows there is a strong negative association between the average

SAT verbal scores and the percentages of eligible students taking the exam, as shown

in Figure 4.4. Wall [2004] suggests to remove the trend of the data by using the

following model:

Z(Ai) = β0 + β1X(Ai) + β2(X(Ai))
2 + µ(Ai), (4.16)

where Z(Ai) represents the average SAT verbal score in state Ai, X(Ai) represents

the percentage of eligible students taking the exam at state Ai and µ(Ai) is the error

term with zero mean and a Normal distribution for i = 1, . . . , 48.
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If we define µµµ = (µ(A1), µ(A2), . . . , µ(A48))′, then there are several ways to

model the covariance structure for µµµ. A naive way is to assume µµµ ∼ N(000, σ2I48),

then the spatial associations are ignored and the data is modeled as iid observations

with polynomial regression. As described at the beginning of this chapter, another

possibility is to consider areal data as point-reference data by relying on the centroids

of the 48 states. Then an isotropic variogram structure for the µµµ can be considered

where the centroids are used to define distances between states as mentioned in

Wall [2004]. A Matérn covariance function can be adopted to describe the variance-

covariance change along distances and the covariance could also contain a nugget

effect.

Figure 4.5: Top: Histogram of the 1st neighbor correlations (left) and stratified
correlations from SAR model; Bottom: Comparison of SAR and CAR results

A more reasonable strategy is to adopt a SAR or CAR model which properly
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take into account the spatial structure of the data. For these two models, Maximum

Likelihood Estimation (MLE) can be obtained easily with the R package “spdep”.

Figure 4.5 shows some results based on MLE of the CAR and SAR models for the

state average 1999 SAT verbal scores. The top left shows a histogram of all the

first order neighbor correlations from the SAR model. Here first order neighbors

are defined by neighboring states that share common boundaries. Notice that the

largest correlation is around 0.6975. This corresponds to the correlation between

New Hampshire and Maine, where Maine is the only state having just one neighbor

(i.e., New Hampshire). The smallest correlation happens between Tennessee and

Missouri, which is about 0.0476. These two states are the two states with largest

number of neighbors (i.e., eight). The graph on top right also shows a general trend

between the magnitude of correlations and the number of first order neighbors.

The bottom graphs provide a comparison between SAR and CAR models. The

predicted values for µµµ have a correlation around 0.92 and are scattered around the

identity line. The correlations from two models are linearly related but the correla-

tions from the CAR model are lower than for the SAR model.

The relation between ρ and the implied spatial correlation from the model was

also studied as in Wall [2004]. It is easy to find that for this model ρ ∈ (λ−1
(1), λ

−1
(n)) =

(−1.3924, 1). She notes the first order neighbor correlations increase as a function

of ρ when ρ > 0, while this relation seems quite different when ρ < 0.

In terms of Bayesian analysis, due to the complexity of the reference priors for

both CAR and SAR models, it is hard to find the analytical forms of the reference

priors for all 48 states. Therefore, I just analyze the data for the 12 states in the

Midwest instead as shown in Figure 4.6 via reference priors.

This portion of the data set still keeps similar properties as the full data, such as

positive spatial associations with the first order spatial lag and a negative trend with
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Figure 4.6: Choropleth map of state average SAT verbal scores in Midwest 12 states
for 1999

regard to the percentage of eligible students taking the exam for these states. For

this portion of the data, I use the percentage of eligible students taking the exam as

a regressor to model the trend. The model is fitted as

Z(Ai) = β0 + β1X(Ai) + µ(Ai), (4.17)

where Z(Ai), X(Ai) and µ(Ai) are defined as before. The variance-covariance struc-

ture of µµµ can be modeled by either the CAR or SAR settings. The priors derived in

Theorems 4 and 5 for these two models are considered for posterior inference. In par-

ticular, the Metropolis-Hastings algorithm is adopted for the spatial autoregression

parameter ρ. At the t-th iteration, a proposed value ρ∗ is sampled from a truncated

normal density TN(ρ(t−1), ξ) ∝ 1√
2πξ

exp[− 1
2ξ

(ρ∗ − ρ(t−1))]I(λ−1
(1)
, λ−1

(n)
)(ρ
∗), where λ−1

(1)

65



Chapter 4. Reference Priors for Spatial CAR and SAR Models

= -1.5335 and λ−1
(n)=1 for this portion of the data set. This ρ∗ is accepted as ρ(t) with

a probability of α = min{1, r} where r is calculated by

r =
f(yyy|βββ, σ2, ρ∗)× π(ρ∗)× TN(ρ(t−1)|ρ∗, ξ)

f(yyy|βββ, σ2, ρ(t−1))× π(ρ(t−1))× TN(ρ∗|ρ(t−1), ξ)
. (4.18)

ξ can be adjusted to get an acceptance rate of 0.4. The other parameters can be

Figure 4.7: Prior densities on ρ of the two reference priors (area below each curve is
not standardized).

updated by Gibbs sampling steps because it is easy to obtain their full conditional

distributions. The full conditional distributions for these parameters in the CAR

and SAR models are shown in Appendix B and C respectively. As a comparison, I

also include the Bayesian analysis with a Uniform prior for ρ. The prior densities

on ρ corresponding to the reference priors are shown in Figure 4.7. For our data
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example, the marginal posterior distributions of all model parameters are shown in

Figures 4.8 and 4.9.

Figure 4.8: Marginal posterior distributions from CAR model for the Midwest SAT
data.

For both CAR and SAR models, the reference priors give similar results as the

Uniform prior when estimating βββ, σ2 or τ 2. However, the marginal posterior distri-

butions for ρ show different patterns. In Figure 4.8, both posteriors have a mode

close to 1. The posterior from the reference prior seems more peaked while the one

from a Uniform prior seems flat. Similar comparisons can be noticed in Figure 4.9,

except that there is a small spike at -0.6 for the reference prior. Table 4.1 gives the

posterior means of the parameters for different priors and methods. It can be seen

that after removing the trend, none of the analyses gives a significant estimate of ρ.

A similar conclusion can be drawn by fitting the model with “spdep” in R.
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Figure 4.9: Marginal posterior distributions from SAR model for the Midwest SAT
data.

Our data example shows that with a small number of areal units, reference pri-

ors can give a different marginal posterior compared to a Uniform prior under the

CAR/SAR modeling framework.
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Table 4.1: Summaries of the marginal posterior distributions
Estimate 95% HPD interval DIC Model

Uniform prior

ρ 0.2680 (-0.9445, 0.9991)

71.6

CAR

τ 2 377.4 (109.0, 784.4)
β0 590.8 (575.4, 605.1)
β1 -1.607 (-2.147,-1.073)

reference prior

ρ 0.6158 (-0.9302, 0.9998)

71.8
τ 2 340.9 (95.7, 705.7)
β0 588.9 (524.7, 657.8)
β1 -1.501 (-2.069,-1.013)

Uniform prior

ρ 0.4588 (-0.4228, 0.9928)

101.2

SAR

σ2 354.1 (97.0, 728.4)
β0 589.3 (542.2, 635.8)
β1 -1.474 (-2.060,-0.945)

reference prior

ρ 0.3339 (-0.5879, 0.8696)

100.1
σ2 363.1 (101.6, 750.6)
β0 589.7 (572.2, 604.0)
β1 -1.524 (-2.110,-0.993)
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Discussion and Future Work

5.1 Discussion

Choosing an appropriate prior distribution is always important when fitting Bayesian

models. In multi-parameter problem, people tend to rely on using Uniform priors.

The reference prior of Bernardo [1979] and Berger and Bernardo [1992] is an alterna-

tive to the Uniform prior which considers the divergence (or distance) between the

posterior and the prior distributions. This divergence is interpreted as the missing

information about the parameters θθθ relative to the prior π(θθθ). Prior distributions

derived following this definition are naturally incorporating the principle that the

data should dominate the posterior distribution. In addition to these theoretical

properties, in practice reference priors have been shown to be useful default priors

when little outside information is available. The largest obstacle for the wide adap-

tation of reference priors is that they can be difficult to calculate. The focus of this

thesis is to derive the reference priors for several new settings.

In this dissertation, I adopt the reference prior framework and utilize the se-

quential maximization of the Kullback-Leibler divergence between the prior and the
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posterior by Berger and Bernardo [1992]. In Chapters 2 and 3, I focus on deriving ref-

erence priors in Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA)

models with a categorical variable under common ordering constraints. This idea

is a natural extension of Sonksen and Peruggia [2012], where a Poisson likelihood

with ordered rate parameters is considered in a lung cancer data. I extended their

results to many more likelihoods (focusing on the ANOVA/ANCOVA in particular)

and different ordering constraints. Under different settings, the performances of ref-

erence priors in ANOVA/ANCOVA models can be evaluated by simulation studies,

with comparisons to other methods, such as Jeffreys’ priors and LSE. Part of the

results from simulation studies shows the advantage of incorporating ordering infor-

mation into the prior distribution. All common ordering constraints are considered

and general expressions of the reference priors are derived. The priors for the simple

order are then illustrated in a Bayesian model of the “Risk of Type 2 Diabetes in

New Mexico” data, where the relationship between the type 2 diabetes risk (through

Hemoglobin A1c) and different smoking levels is investigated. In both simulation

studies and real data set modeling, the reference priors that incorporate internal

order information show good performances and can be used as default priors.

In the second part of this dissertation (Chapter 4) I focus on deriving the reference

priors for conditionally autoregressive (CAR) models and simultaneous autoregres-

sive (SAR) models with a spatial autoregression parameter ρ. When handling these

two models in Bayesian statistics, a common choice of a prior for ρ is to use a Uni-

form prior. Since ρ is bounded between λ−1
(1) and λ−1

(n), the resulting prior on ρ may

be related to these two eigen values. The reference priors for the CAR and SAR

models are illustrated in the “1999 SAT State Average Verbal Scores” data with a

comparison to Uniform prior. In the process of calculating these reference priors, one

has to deal with the traces of the proximity matrix and variance-covariance matrix.

A practical problem arises when these matrices are large or non-sparse as the com-

putation time can quickly increase. Due to the complexity of the reference priors for
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both CAR and SAR models, I only consider a portion (12 states in the Midwest) of

the original data. However, it should be not hard to evaluate the prior density for

a specific ρ value and that is all we need for proceeding Metropolis-Hastings algo-

rithm, which basically means that analyzing the 48 states on the whole map is not

impossible. The reference priors can give a different marginal posterior distribution

compared with Uniform prior, which provides another choice when facing areal data

in spatial statistics.

In both of the major topics of this thesis I have come to two conclusions: first,

constrained parameter spaces are a useful way to incorporate subjective information

and to enforce regularity conditions. Second, the reference prior framework provides

a way to build a prior taking the constraints into account. While finding the reference

prior can be challenging, I have shown there is value in these models.

5.2 Future Work

After graduation, I plan to continue my research on reference priors and spatial

statistics. I will describe several problems that I intend to study as follows.

Ordering constraints are popular among different likelihoods and incorporating

this information into the prior distribution is attractive and helpful for inference.

Sonksen and Peruggia [2012] and Sonksen and Peruggia [2014] talk about the sim-

ple order for several discrete likelihoods with an emphasis on Poisson. It may be

worth digging further to find general expressions of the priors that could work for all

common distributions.

The idea adopted in this dissertation can be easily extended to order-constrained

variance-covariance structures. For example, if the data presents heteroscedastic-

ity and common ordering constraints exist for the variances, it would be interesting
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to derive and evaluate the reference priors that fit this situation. A related, and

important problem, is how to test the existence of these constraints. Because the pa-

rameter space is non-compact and the priors could be improper, a testing procedure

not based on Bayes factors will have to be developed.

Spatial statistics draw many people’s interests and the importance of considering

spatial association has been realized by researchers from different fields. After gradu-

ation, I will finish analyzing the whole U.S. 1999 state average SAT data set with the

reference priors derived in this dissertation. Furthermore, I may move to other exam-

ples where CAR/SAR priors are used hierarchically. Recently, lots of attention has

been paid on non-Gaussian spatial models, such as spatial or spatial-temporal model

on extreme value data, for example, extreme weather events including droughts,

downpours, heat waves, atmospheric rivers, tropical cyclones, and hurricanes. In

these models, prediction should be emphasized since these events may severely af-

fect human’s daily life. Under the Bayesian framework, I would like to develop new

methodology to model this type of data. As providing a universal prior for a given

likelihood is always something that should be achieved at the beginning, I will start

with a focus on the prior studies.
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Appendix A

Derivation of the Full Conditional

Distributions for the ANCOVA

Model

From Chapter 3 we know the ANCOVA model for the simulation studies is

yyy = Xααα + εεε = X1µµµ+X3βββ + εεε, εεε∼N(000, σ2I). (A.1)

For the convenience of derivation, we can assume there are m observations in each

group. In matrix form we can write

y11

y12

...

y1m

y21

...

ykm


n×1

=



µ1 +X11β1

µ1 +X12β1

...

µ1 +X1mβ1

µ2 +X21β2

...

µk +Xkmβk


n×1

+



ε11

ε12

...

ε1m

ε21

...

εkm


n×1

.

75



Appendix A. Derivation of the Full Conditional Distributions for the ANCOVAModel

This tells us the likelihood function for this model can be written as

f(yyy|µµµ,βββ, σ2) =

(
1√

2πσ2

)n
× exp

[
− 1

2σ2

k∑
i=1

m∑
j=1

(yij − µi −Xijβi)
2

]
. (A.2)

From the discussion in Chapter 3 we know the prior distribution, π(θθθ), does not

contain βββ, so

f(βi|µµµ, β1, . . . , βk, σ
2, yyy) ∝ f(yyy|µµµ,βββ, σ2)× π(θθθ)

∝ exp

[
− 1

2σ2

m∑
j=1

(yij − µi −Xijβi)
2

]

∝ exp

[
− 1

2σ2

(
β2
i

m∑
j=1

(Xij)
2 − 2βi

m∑
j=1

[Xij(yij − µi)]

)]

∝ exp

−∑m
j=1(Xij)

2

2σ2

(
βi −

∑m
j=1[Xij(yij − µi)]∑m

j=1(Xij)2

)2


= N

(∑m
j=1[Xij(yij − µi)]∑m

j=1(Xij)2
,

σ2∑m
j=1(Xij)2

)
. (A.3)

Similarly,

f(σ2|µµµ,βββ,yyy) ∝ f(yyy|µµµ,βββ, σ2)× π(θθθ)

∝
(

1√
2πσ2

)n
× exp

{
− 1

2σ2
(yyy −Xααα)′(yyy −Xααα)

}
× 1

σ2

∝ exp

{
−(yyy −Xααα)′(yyy −Xααα)

2σ2

}
×
(

1

σ2

)n
2

+1

= IG

(
n

2
,
(yyy −Xααα)′(yyy −Xααα)

2

)
. (A.4)

76



Appendix B

Derivation of the Reference Prior

for the CAR Model

B.1 Derivation of the Reference Prior

From Chapter 4 we know that the likelihood function for CAR model with linear

regressors is

f(yyy|βββ, τ 2, ρ) ∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
, (B.1)

where V =
∑

yyy = τ 2[Dw − ρW ]−1.

l = log f(yyy|βββ, τ 2, ρ)

= C − 1

2
log[det(V )]− 1

2

{
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
. (B.2)

∂l

∂β
=

1

τ 2
X ′(Dw − ρW )(yyy −Xβββ).
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∂2l

∂β2
= − 1

τ 2
X ′(Dw − ρW )X ⇒ −E

[
∂2l

∂β2

]
=

1

τ 2
X ′(Dw − ρW )X. (B.3)

∂2l

∂β∂τ 2
= − 1

τ 4
X ′(Dw − ρW )(yyy −Xβββ)⇒ −E

[
∂2l

∂β∂τ 2

]
= 0. (B.4)

∂2l

∂β∂ρ
= − 1

τ 2
X ′W (yyy −Xβββ)⇒ −E

[
∂2l

∂β∂ρ

]
= 0. (B.5)

∂l

∂τ 2
= −1

2
× 1

det(V )
× ∂det(V )

∂τ 2
+

1

2
(yyy −Xβββ)′

1

τ 4
(Dw − ρW )(yyy −Xβββ)

= − 1

2det(V )
× det(V )× tr

[
V −1 × ∂V

∂τ 2

]
+

1

2τ 4
(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ)

= −1

2
tr

[
1

τ 2
(Dw − ρW )(Dw − ρW )−1

]
+

1

2τ 4
(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ)

= − 1

2τ 2
+

1

2τ 4
(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ).

∂2l

∂(τ 2)2
=

1

2τ 4
− 1

τ 6
(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ).

−E
[

∂2l

∂(τ 2)2

]
= − 1

2τ 4
+

1

τ 6
E[(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ)]

= − 1

2τ 4
+

1

τ 6
tr[(Dw − ρW )V ]

=
1

2τ 4
. (B.6)

∂2l

∂τ 2ρ
= − 1

2τ 4
(yyy −Xβββ)′W (yyy −Xβββ).

−E
[
∂2l

∂τ 2ρ

]
=

1

2τ 4
E[(yyy −Xβββ)′W (yyy −Xβββ)]

=
1

2τ 4
tr[WV ]. (B.7)
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∂l

∂ρ
= −1

2
× 1

det(V )
× ∂det(V )

∂ρ
+

1

2
(yyy −Xβββ)′

1

τ 2
W (yyy −Xβββ)

= − 1

2det(V )
× det(V )× tr

[
V −1 × ∂V

∂ρ

]
+

1

2τ 2
(yyy −Xβββ)′W (yyy −Xβββ)

= −1

2
tr

[
V −1 × (−V )× ∂V −1

∂ρ
× V

]
+

1

2τ 2
(yyy −Xβββ)′W (yyy −Xβββ)

= − 1

2τ 2
tr[WV ] +

1

2τ 2
(yyy −Xβββ)′W (yyy −Xβββ).

∂2l

∂ρ2
= − 1

2τ 2
tr

[
W × ∂V

ρ

]
= − 1

2τ 2
tr

[
W × (−V )× ∂V −1

ρ
× V

]
= − 1

2τ 4
tr[WVWV ].

−E
[
∂2l

∂ρ2

]
=

1

2τ 4
tr[WVWV ]. (B.8)

Based on B.3, B.4, B.5, B.6, B.7 and B.8 we have the Fisher information matrix,

which is

I(ρ, τ 2,βββ) =


tr[WVWV ]

2τ 4

tr[WV ]

2τ 4
0

tr[WV ]

2τ 4

1

2τ 4
0

0 0
1

τ 2
X ′(Dw − ρW )X

 .

Let’s group our parameters as {ρ}, {τ 2}, {βββ}, then

S(ρ, τ 2,βββ) = [I(ρ, τ 2,βββ)]−1

=



1
2τ4

1
2τ4

tr[WVWV ]
2τ4

−
(
tr[WV ]

2τ4

)2

− 1
2τ4
tr[WV ]

1
2τ4

tr[WVWV ]
2τ4

−
(
tr[WV ]

2τ4

)2 0

− 1
2τ4
tr[WV ]

1
2τ4

tr[WVWV ]
2τ4

−
(
tr[WV ]

2τ4

)2

1
2τ4
tr[WVWV ]

1
2τ4

tr[WVWV ]
2τ4

−
(
tr[WV ]

2τ4

)2 0

0 0 τ 2

X ′(Dw − ρW )X


.
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Suppose θθθ = {ρ, τ 2,βββ} ∈ Θ, then

h1(θθθ) =
tr[WVWV ]

2τ 4
− tr[WV ]tr[WV ]

2τ 4
. (B.9)

h2(θθθ) =
1

2τ 4
. (B.10)

h3(θθθ) =
1

τ 2
X ′(Dw − ρW )X. (B.11)

|hj(θθθ)| depends only on θθθ(1:j), for j = 1, 2, 3. We need to define a compact subset Θl.

Now, for j=1,

Θl ∩ [Θj|Θ(1:(j−1))] = {ρ : λ−1
(1) < ρ < λ−1

(n)}.

For j=2,

Θl ∩ [Θj|Θ(1:(j−1))] = {τ 2 : l−1 < τ 2 < l}.

For j=3,

Θl ∩ [Θj|Θ(1:(j−1))] = {βββ : βββ ∈ βββl}.

πl(θθθ) =
m∏
i=1

|hi(θθθ)|1/2∫
Θl∩[Θj |Θ(1:(j−1))]

|hi(θθθ)|1/2dθθθ(i)

IΘl(θθθ)

=
|h1|1/2∫ λ−1

(n)

λ−1
(1)

|h1|1/2dρ
× 1/τ 2∫ l

l−1 1/τ 2dτ 2
× 1∫

βl
1dβββ

=
|h1|1/2∫ λ−1

(n)

λ−1
(1)

|h1|1/2dρ
× 1/τ 2

2 log l
× f(l).
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Finally,

π(θθθ) = lim
l→∞

πl1(θθθ)

πl1(θθθ∗)

∝
∣∣∣∣tr[WVWV ]

τ 4
− tr[WV ]tr[WV ]

τ 4

∣∣∣∣1/2 × 1

τ 2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ). (B.12)

B.2 The Posterior and Full Conditional Distribu-

tions

p(βββ, τ 2, ρ|yyy) ∝ f(yyy|βββ, τ 2, ρ)× π(βββ, τ 2, ρ)

∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
×
∣∣∣∣tr[WVWV ]

τ 4
− tr[WV ]tr[WV ]

τ 4

∣∣∣∣1/2 × 1

τ 2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ).

(B.13)

Hence,

p(βββ|τ 2, ρ, yyy) ∝ exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
= exp

{
−1

2
(βββ − (X ′V −1X)−1X ′V −1yyy)′X ′V −1X(βββ − (X ′V −1X)−1X ′V −1yyy)

}
∼ MVN

(
(X ′V −1X)−1X ′V −1yyy, (X ′V −1X)−1

)
. (B.14)

p(τ 2|βββ, ρ,yyy) ∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
× 1

τ 2

=
{

(τ 2)ndet[(Dw − ρW )−1]
}− 1

2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
× 1

τ 2

∝ (τ 2)−
n
2
−1 × exp

{
−(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ)

2τ 2

}
∼ IG

(
n

2
,
(yyy −Xβββ)′(Dw − ρW )(yyy −Xβββ)

2

)
. (B.15)
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As I mentioned in Chapter 4, the reference prior on ρ in the CAR model is a high

order polynomial. There is no easy way to derive the full conditional distribution

for parameter ρ, which is also the reason why the Metropolis-Hastings algorithm is

used for this parameter.
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Derivation of the Reference Prior

for the SAR Model

C.1 Derivation of the Reference Prior

From Chapter 4 we know that the likelihood function for SAR model with linear

regressors is

f(yyy|βββ, σ2, ρ) ∝ [det(V )]−1/2 exp

{
− 1

2σ2
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)

}
,

(C.1)

where V =
∑

yyy = σ2(In − ρB)−1D−1
w ((In − ρB)−1)′′′.

First, it is useful to define

A =
∂[(In − ρB)′Dw(In − ρB)]

∂ρ

= −[(In − ρB)′DwB +B′Dw(In − ρB)].
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So,

∂A

∂ρ
= 2B′DwB

l = log f(yyy|βββ, σ2, ρ)

= c− 1

2
log[det(V )]− 1

2

{
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
. (C.2)

∂l

∂β
=

1

σ2
X′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ).

∂2l

∂β2
= − 1

σ2
X′′′(In − ρB)′′′Dw(In − ρB)X.

−E
[
∂2l

∂β2

]
=

1

σ2
X′′′(In − ρB)′′′Dw(In − ρB)X. (C.3)

∂2l

∂β∂σ2
= − 1

σ4
X′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ).

−E
[

∂2l

∂β∂σ2

]
= 0. (C.4)

∂2l

∂β∂ρ
=

1

σ2
X′′′A(yyy −Xβββ).

−E
[
∂2l

∂β∂ρ

]
= 0. (C.5)
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∂l

∂σ2
= −1

2
× 1

det(V )
× ∂det(V )

∂σ2
+

1

2σ4
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)

= − 1

2det(V )
× det(V )× tr

[
V −1 × ∂V

∂τ 2

]
+

1

2σ4
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)

= −1

2
tr

[
1

σ2
(In − ρB)′′′Dw(In − ρB)(In − ρB)−1D−1

w ((In − ρB)−1)′′′
]

+
1

2σ4
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)

= − 1

2σ2
+

1

2σ4
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ).

∂2l

∂(σ2)2
=

1

2σ4
− 1

σ6
(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ).

−E
[

∂2l

∂(σ2)2

]
= − 1

2σ4
+

1

σ6
E[(yyy −Xβββ)′′′(In − ρB)′′′Dw(In − ρB)(yyy −Xβββ)]

= − 1

2σ4
+

1

σ6
tr[(In − ρB)′′′Dw(In − ρB)V ]

=
1

2σ4
. (C.6)

∂2l

∂σ2ρ
=

1

2σ4
(yyy −Xβββ)′′′A(yyy −Xβββ).

−E
[
∂2l

∂σ2ρ

]
= − 1

2σ4
E[(yyy −Xβββ)′′′A(yyy −Xβββ)]

= − 1

2σ4
tr[AV ]. (C.7)
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∂l

∂ρ
= −1

2
× 1

det(V )
× ∂det(V )

∂ρ
− 1

2σ2
(yyy −Xβββ)′′′A(yyy −Xβββ)

= − 1

2det(V )
× det(V )× tr

[
V −1 × ∂V

∂ρ

]
− 1

2σ2
(yyy −Xβββ)′′′A(yyy −Xβββ)

= −1

2
tr

[
V −1 × (−V )× ∂V −1

∂ρ
× V

]
− 1

2σ2
(yyy −Xβββ)′′′A(yyy −Xβββ)

=
1

2σ2
tr[AV ]− 1

2σ2
(yyy −Xβββ)′′′A(yyy −Xβββ).

∂2l

∂ρ2
=

1

2σ2
tr

[
(2B′DwB)V + A

∂V

ρ

]
− 1

2σ2
(yyy −Xβββ)′′′(2B′DwB)(yyy −Xβββ)

=
1

2σ2
tr

[
2B′DwBV + A(−V )× ∂V −1

ρ
× V

]
− 1

σ2
(yyy −Xβββ)′′′B′DwB(yyy −Xβββ)

=
1

2σ2
tr

[
2B′DwBV −

AV AV

σ2

]
− 1

σ2
(yyy −Xβββ)′′′B′DwB(yyy −Xβββ).

−E
[
∂2l

∂ρ2

]
= − 1

2σ2
tr

[
2B′DwBV −

AV AV

σ2

]
+

1

σ2
tr [B′DwBV ] . (C.8)

Based on C.3, C.4, C.5, C.6, C.7 and C.8 we have the information matrix, which is:

I(ρ, σ2,βββ) =


C.8 C.7 0

C.7 C.6 0

0 0 C.3

 .

Let’s group our parameters as {ρ}, {τ 2}, {βββ}, then

S(ρ, τ 2,βββ) = [I(ρ, τ 2,βββ)]−1

=



.
C.6

C.6× C.8− C.7× C.7
−C.7

C.6× C.8− C.7× C.7
0

−C.7
C.6× C.8− C.7× C.7

C.8

C.6× C.8− C.7× C.7
0

0 0 1

C.3
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Suppose θθθ = {ρ, σ2,βββ} ∈ Θ, then

h1(θθθ) =
C.6× C.8− C.7× C.7

C.6

=
1

σ2
tr [B′DwBV ]− 1

2σ2
tr

[
2B′DwBV −

AV AV

σ2

]
− 1

2σ4
tr[AV ]tr[AV ].

(C.9)

h2(θθθ) = C.6

=
1

2τ 4
. (C.10)

h3(θθθ) = C.3

=
1

σ2
X′′′(In − ρB)′′′Dw(In − ρB)X. (C.11)

|hj(θθθ)| depends only on θθθ(1:j), for j = 1, 2, 3. We need to define a compact subset Θl.

Now, for j=1,

Θl ∩ [Θj|Θ(1:(j−1))] = {ρ : λ−1
(1) < ρ < λ−1

(n)}.

For j=2,

Θl ∩ [Θj|Θ(1:(j−1))]. = {σ2 : l−1 < τ 2 < l}

For j=3,

Θl ∩ [Θj|Θ(1:(j−1))] = {βββ : βββ ∈ βββl}.
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πl(θθθ) =
m∏
i=1

|hi(θθθ)|1/2∫
Θl∩[Θj |Θ(1:(j−1))]

|hi(θθθ)|1/2dθθθ(i)

IΘl(θθθ)

=
|h1|1/2∫ λ−1

(n)

λ−1
(1)

|h1|1/2dρ
× 1/τ 2∫ l

l−1 1/τ 2dτ 2
× 1∫

βl
1dβββ

=
|h1|1/2∫ λ−1

(n)

λ−1
(1)

|h1|1/2dρ
× 1/τ 2

2 log l
× f(l).

Finally,

π(θθθ) = lim
l→∞

πl1(θθθ)

πl1(θθθ∗)

∝ |h1|1/2 ×
1

σ2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ). (C.12)

C.2 The Posterior and Full Conditional Distribu-

tions

p(βββ, σ2, ρ|yyy) ∝ f(yyy|βββ, σ2, ρ)× π(βββ, σ2, ρ)

∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
×|h1|1/2 ×

1

σ2
× 1(λ−1

(1)
, λ−1

(n)
)(ρ). (C.13)

Hence,

p(βββ|σ2, ρ, yyy) ∝ exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
= exp

{
−1

2
(βββ − (X ′V −1X)−1X ′V −1yyy)′X ′V −1X(βββ − (X ′V −1X)−1X ′V −1yyy)

}
∼ MVN

(
(X ′V −1X)−1X ′V −1yyy, (X ′V −1X)−1

)
. (C.14)
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p(σ2|βββ, ρ,yyy) ∝ [det(V )]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
× 1

σ2

∝ [(σ2)n]−
1
2 × exp

{
−1

2
(yyy −Xβββ)′V −1(yyy −Xβββ)

}
= (σ2)−

n
2
−1 × exp

{
−(yyy −Xβββ)′(In − ρB)′Dw(In − ρB)(yyy −Xβββ)

2σ2

}
∼ IG

(
n

2
,
(yyy −Xβββ)′(In − ρB)′Dw(In − ρB)(yyy −Xβββ)

2

)
. (C.15)

Similar as the CAR model, the reference prior on ρ in the SAR model is also a high

order polynomial. There is no easy way to derive the full conditional distribution for

parameter ρ and that is the reason why the Metropolis-Hastings algorithm is used

for this parameter.
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