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ABSTRACT 
 

A program has been developed that portrays the fractal modeling of 

lightning, which subsequently calculates the fields from a fractal antenna.  

Nodal currents are weighted with branch length.  The Hausdorff dimension 

for various growth parameters η, agree with those in the literature.  Electric 

fields in the far zone have been calculated by weighting the branch 

currents with an overall damped sinusoidal current.   The current waveform 

for each element is evaluated at retarded times based upon the speed the 

discharge propagates along the fractal.  At scale lengths of 100 m an 

interference pattern becomes noticeable.  We have investigated the slope 

of the power spectrum for spider lightning.  For f < fthreshold the slope is 

between -1.6 to -2.6 with a standard deviation of ~ 2 .  In the case of 

channel lightning this slope would be -2 .  For f > fthreshold the average slope 

varies between -3.4 and -3.5.  In the case of channel lightning this slope 

would be -4 .  The lesser slope is attributed to more interference between 

radiating elements in this model.   For f>fthreshold the slope appears to be 

independent of the growth parameter  .  Observations show for inter-cloud 

lightning the threshold frequency is 50 kHz, with zero slope for f<fThresold 

and -1.6 slope for f> fThresold. 

 

12/2010 
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Nomenclature 
 
A  a constant 
α  decay constant 
β  velocity divided by speed of light 
c  speed of light   

2   Laplacian operator 
E  electric field 

radE


  electric field in the radiation zone 

γ  rise time constant 
H  horizontal component   
H(t)  Heavyside step function 
i  index along the abscissa 
I, I0,, I1  a current 
J  current density 
i  √-1 (were appropriate) 
j  index along the ordinate 
k  free space wave vector 

nL̂   orientation of the nth element 

L  independent scale length 
η  an exponent to the electric field, used to vary the probability 
N  number of points 

n


  unit normal from the observation point to the source 
n  density of points 
nf  number of oscillations in decay time 1/α 

   collision frequency 

P


  electric dipole moment perpendicular to normal of observation 

p(i,j)  probability at point i, j 

   potential at a point 

),( ji    potential of ith, jth coordinate along the grounded structure 

),( '' ji   potential of ith, jth coordinate of ungrounded neighbor 

ns   path along the nth element of fractal 

nr   vector to the nth element 

r  radius 
t  time 

   a retarded time 




  vector direction in the azimuthal direction 

0   susceptibility of free space 

V  vertical component 
v  velocity of propagation 

ion   ion production rate 

ω  an angular frequency 



ix 
 

x


  observation point 
x,y,z  coordinate in space   
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1. Introduction 
1.1. What is a Sprite 

High altitude sprites were detected more than 100 years ago (Kerr 1994).  

Sprites are transient luminous events which appear in clean air above a 

thunderstorm following intense lightning (Pasko, Inan and Bell 2001).   Upper 

extremities of sprites appear as an amorphous diffuse glow, while lower portions 

exhibit a complex streamer structure.   They have been described as having a 

branching tree pattern, with highly localized filamentary structures (Pasko, Inan 

and Bell 1998).  Propagating downward they reach speeds up to 107 m/s, and 

are often described as jellyfish optical flashes.  Dimensions in altitude span 50-90 

km, with internal dimension 5-30km.  Bright red colors are in its ‘head’ 66-74 km, 

with strong blue emissions originating at their streamer tips. 

Sprites are almost always associated with positive Cloud to Ground (CG) 

lightning (Pasko et al. 1997).  Positive lightning strokes have the largest current 

associated with them (Uman 1987).  

Sprites are comprised of three regions:  1) The ‘hair’, for altitudes greater than 

85 km. This region is characterized by collective multiplication of electrons, and 

diffuse terminations of branches on the lower ionosphere.  Here can be seen the 

evolution of the discharge tree into hot spots (Pasko et al. 2002), 2) The ‘head’ is 

located at altitudes 75-85 km.  This region is characterized by strong attachment 

of ambient electrons before Electrical Breakdown (EB),  3) The lower region, 

streamers, are at altitudes below 75 km.  Here there is strong attachment and 

individual electron avalanches.  Tendrils of decreasing intensity extend down to 

cloud tops. 

1.2. Lightning Phenomenology   

Lightning is measured in terms of kA (Uman 1987).   Well over half of all 

lightning is Inter-Cloud (IC).   Of the remainder, 90% is -Cloud to Ground (-CG).   

In –CG there is a downward negative charged leader.  Only in 10% of the 

remainder, +CG, is a positive charged leader. 
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Negative CG lightning could bring to earth a total charge of up to 10C.  A total 

discharge is called a flash, it occurs in about 0.5 s.  A flash is made up of several 

components.  Three-to four current pulses are called a stroke.  Each stroke lasts 

about a millisecond.  The time between strokes typically lasts 10 ms.  They 

appear to flicker because the eye can just resolve individual pulses in a stroke.   

A stepped leader process is believed to be initiated by breakdown within the 

cloud.  It continues down to earth, where it attaches itself to the earth.  Then a 

return stroke follows, positive up from the ground through the previously ionized 

channel.  This travels approximately one-third the speed of light and typically 

carries 30 kA.  Currents fall to one-half their value in 50 µs.   The return stroke 

heats the leader channel to 30,000 °K.  This in turn generates a high pressure 

shock wave.  Additional charge may flow from the cloud top through a dart 

leader.  

There are two theories on the build up of a cloud dipole charge.  The first is a 

precipitation theory, while the second is a convection theory.  In the precipitation 

theory falling particles interact with lighter particles carried in an updraft.   An 

interaction process charges the heavier particles negative.  These particles are at 

an approximate -5 °C temperature.  Lighter particles are charged positive.  

Gravity and updrafts separates them to form opposite charges in a dipole.    

Negative charge resides at the bottom, while positive charge resides at the cloud 

top.  Particles may also charge by induction.  In the convection process charges 

accumulate near the earth’s surface or across regions of varying air and cloud 

conductivity. 

1.3. Three Schools of Thought 

EB associated with sprites starts in the atmosphere above thunderstorms 

where the local fields exceed the breakdown field (Pasko et al. 1998)  There are 

three schools of thought.  The first is quasi-static model based upon 

thundercloud electromagnetic fields (QE).  The second is heating by lightning 

induced electromagnetic pulses (Taranenko, Inan and Bell 1993a).  The third is 

run away electron avalanches driven by the QE fields.   In the QE model (Pasko 

et al. 1997) fields are set up as a result of storing and moving 200C in 1ms.  



3 
 

There is an associated conduction current EJ   .  The heating mechanism 

proceeds as follows.  Increasing in altitude the electron mobility increases, 

whereby conductivity increases. The induced currents from electric fields 

increase.  These currents cause increased heating of ambient electrons, which in 

turn modifies the conductivity.   The field penetration and relaxation are all solved 

in a self-consistent manner.  

The EMP model is a low frequency model of electrical breakdown (Milikh, 

Papadopoulos and Chang 1995, Taranenko, Inan and Bell 1993b).  In the first 

reference an upward propagating electromagnetic pulse is generated by a 

horizontal lightning strike.  In the second reference an upward RF pulse is 

launched with a waveform of duration 100 µs.  The second reference cites the 

critical parameter as the quiver energy (see Appendix 1) for pulses longer than 

the reciprocal of the electron-neutral collision frequency.  It is the electron kinetic 

energy of this charged particle in an oscillating electric field.  For the quiver 

energy less than 0.1 eV the electron energy results in optical emission.  For 

greater values breakdown occurs. 

In the run away electron avalanche model electrons rapidly pick up speed in 

an electric field.  The mean free path at 100 km is approximately 1 meter 

(Taranenko et al. 1993a).  Hence an E field of 20 V/m would produce 20 eV.  

These are ionization energies.  Collisions with other particles create even more 

particles. 

      In comparison, Bell states that the EMP model (Taranenko et al. 1993a) 

gives red emissions in the first positive band of N2 at a peak of 80-95 km, while 

red sprites are observed at 66-74 km (Bell, Pasko and Inan 1995).  The QE 

model (Pasko et al. 1997) has been criticized as having the presence of 

unrealistic charges (Valdivia, Milikh and Papadopoulos 1998).  Cheng (Cheng et 

al. 2007) relates lightning with observations of D region perturbations.  The same 

stroke produced an Elve, which are known to be EMP related.  His conclusion 

was the particular lightning analyzed has an EMP effect.  
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1.4. Model of Red Sprite 

Stanford University has a model of a red sprite (Pasko, Inan and Bell 2000).  

Breakdown voltage is when the ionization rate for ions is approximately equal to 

attachment rate for electrons.  Raiser states that the limit for positive breakdown 

streamer voltage is less than that for negative voltage (Raiser 1997). This is 

because electron avalanches once started near an anode enter a region of only 

higher field gradient.  In this model positive charge is removed by a positive CG 

lightning strike (positive charge being placed at the ground).  Positive streamers 

go up while negative streamers go down.   In this fashion different breakdown 

criteria are stored in the model.  The mean free path increases at higher altitude 

where it is easier to break down.  Let 

kE  be the positive critical field for 

breakdown.  Similarly let 

kE be the negative critical field for breakdown.  

Quantities 

kE  and 

kE  scale with altitude.  Their model works as follows.  Growth 

of a single discharge tree is initiated by a single electron avalanche.   The 

potential of this point is fixed.  The discharge pattern is propagated by adding 

links.  Only one link is added at any time step.  Fields are calculated on the entire 

grid after each step.  Each link has a probability proportional to the difference of 

its field less the critical breakdown field.  Based upon probabilities a new random 

choice is made and a new step realized.   The result is that the model 

qualitatively gives some realistic looking ‘jellyfish’ sprites.  Quantitatively, the 

lowest stopping altitude agrees well with the stopping altitude for positive 

streamers.  

There is also a 3-D model.  Slightly higher fields as calculated, since the 

corona is modeled as true channels (Pasko et al. 2001). 

1.5. Valdivia Paper and Model 

We shall be largely following Valdivia’s paper (Valdivia et al. 1998) and 

include some salient features.  They developed a model that did away with 

unrealisticly large charges in the QE model.  Another draw back of the QE model 

is the fields smoothly dissipate at ionospheric heights, failing to account for the 

spatial structure of red sprites.  Valdivia’s model takes into account the 
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calculation of transient fields.  They find that the model leads to more natural 

observations of red sprite structure, and significantly reducing the required 

threshold charge.  This model includes the structuring of emission.  Here fields 

interact and energize ambient electrons, generating non Maxwellian distribution 

functions.  The collision of energetic electrons with neutral particles results in 

observed emissions. 

In the Valdivia model (Valdivia et al. 1998) a fractal antenna generates a 

spatially non-uniform radiation pattern.  We can define a fractal antenna if we run 

currents through a fractal pattern.  These gain patterns can reduce the lightning 

energy compared to that of a dipole.  The antenna has a non-uniform distribution 

of radiation elements, which contribute to the radiated power.  The strength and 

orientation of individual elements is represented by a vector.  There is a phase 

that relates to the spatial distribution of elements.  For random phase the gain 

scales as the number of elements.  For perfect coherent phase the gain scales 

as the number of elements squared.  Partial coherence lies in between these two 

limits.  The spatial distribution depends upon a fractal dimension.  Valdivia et al. 

first considers the case of channel lightning.  Channel lightning resides in a single 

channel and zig zags back and forth in 2D.  The tortuous model increases the 

number of radiating elements compared to that of a dipole.  The line elements 

will add constructively at certain points and destructively at other points.  Valdivia 

et al. found a clear increase in the array factor, up to ten fold, which contributes 

to the gain of the antenna.   Mathematically the gain above that of a single dipole 

had an additive term containing a multiple of increased path length and a 

differential in time that the pulse takes to propagate along the fractal.  

Next Valdivia develops a model of inter-cloud lightning model with multiple 

branches.  Following Niemeyer (Niemeyer, Pietronero and Wiesmann 1984) this 

model naturally leads to a fractal pattern.  The fractal dimension can be easily 

parameterized by a parameter η.  They generate a fractal tree pattern where the 

higher the value of η the less probability there is to branch.  The probability of not 

changing direction goes as the electric field raised to the power η.  Next they run 

currents along the dendritic arms. The fields propagate to the D region where 
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they generate a highly non-Maxwellian distribution, which increases the number 

of electrons-neutral collisions.  The electron energization is computed with the 

help of a Folker-Plank Equation.  The kinematic treatment will provide the 

collision frequency as function of the height and the electric field.  The ambient 

collision frequency is found by numerically solving the Folker-Plank equation.  

They found for a quiver energy between 0.02 and  0.1 eV, optical emissions 

exist, and for values over 0.1 eV, break down occurs.  Next they looked at 

excitation of N2(1P) states of diatomic nitrogen and the resultant optical 

emissions.  Valdivia computes 100 kR of radiation for a current of 200 kA.  He 

states these are reasonable values.  He finds spatial distributions over 100 km in 

the horizontal dimension as observed at a height of 90 km.  He then shows for 

different values of η=1, 2,    and fixing the light output at 100 kR other spatial 

distributions exist in the horizontal dimension x.  Fixing the current at 100 kA he 

shows the most light output for the fractal dimension D=1.25 . 

1.6. Why The Valdivia Model? 

Horizontal discharges with dimension 100 km have been observed with +CG 

(Valdivia et al. 1998).  Red sprites seem to be uniquely correlated with +CG.  For 

fields to get projected upward discharges in a horizontal plane are the optimal 

configuration.  This model tries to account for the dendritic fine structure by 

structuring emissions to highly inhomogeneous field projected into the lower 

ionosphere.  Other models such as run away electrons are not as well 

documented. 

1.7. Fractal Statistics 

Why a fractal model?  Mandelbrot states that lightning does not travel in a 

straight line (Mandelbrot 1982).  In a fractal the degree of irregularity is identical 

at all scales.  The fractal trees of the Peano curve are good 1st order models of 

river sheds, botanical trees and human vascular systems.  Niemeyer analyzed a 

discharge pattern and found the fractal dimension D=1.75 (Niemeyer et al. 1984).  

Stochastic models look the same as a discharge.  The model naturally leads to a 

fractal structure.  Vecchi states, ”the radiated field is a fractal in itself (Vecchi, 

Labate and Canavero 1994).”  For channel lightning, ”the radiated field appears 
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to have the same dimension as the channel.”  Lightning is considered a collective 

phenomenon, where the important aspect of its behavior has little to do with the 

exact microscopic details (Gou et al. 2009).  An example of fractal modeling 

would be modeling of a shore line with a Koch curve.  As one resolves down 1/3 

in size the perimeter increases to 4/3 its previous value.  This is analogous to 

measuring the shore line with progressively smaller and smaller a ruler.  The 

answer diverges! 

The number of points or length of curve is expressed by DrN  , where D the 

fractal dimension need not be an integer.  The density of points is given by the 

relation 1)(  Drrn .  Fractal dimensions only hold on a scale larger than the 

average length between nodes. 

Valdivia states the gain of a fractal antenna (Valdivia et al. 1998).  There is an 

incoherent term NG  , where N is the number of elements.  There is also a 

coherent term 2NG  . Vecchi also provides a threshold time for a single-

channel-model of lightning(Vecchi et al. 1994).  Let L be the scale length of the 

model, and v the velocity of propagation.  The time constant   is defined as 

v

L
 .  For

2

1
freqencies  the power spectrum 

2

1

f
 , and the channel 

behaviors as a tortuous channel.  For 
2

1
freqencies the power spectrum 

4

1

f
 , 

and the channel behaves as a straight line.   The same time constant also 

appears in the frequency domain.  The time lag between successive arrivals is 

proportional to L, the scale length.  For small L we expect the field time waveform 

to be smooth.  For large L we expect to see some fractal characteristics in the 

radiated fields.  

1.8.  Ionization 

Because of the Maxwellian tail there are particles reduced in number, but still 

moving with speeds greater than the average energy.  Hence, it is not necessary 

that the average energy exceed the ionization energy for ionization.  The 

presence of an electric field creates a highly non-Maxwellian distribution function.   

There is an increased number of electron-neutral collisions.  This may be 
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calculated with the help of a Folker-Plank code (Tsang et al. 1991)(Appendix 1).  

Electrical breakdown occurs when the ion production rate is approximately equal 

to the attachment rate.    Ionization produces electrons, while attachment takes 

away electrons.  This last equation is expressed as OOeO  

2 .  The ions 

are viewed as too stationary to conduct.  The electron production rate equals the 

ionization rate minus the attachment rate.  Ionization rates are given by 

(Papadopoulos et al. 1993).  They are a function of the effective collision 

frequency + the characteristic field.   In turn the characteristic field is a function of 

the neutral density, the effective collision frequency, and the frequency of field 

excitation.  The attachment rate is given by Gurevich for high energy electrons in 

the ‘tail’.(Gurevich 1977).  Here the Boltzman equation is solved for the electron 

distribution function f(r,v), where v is velocity.  The dissociative attachment 

equation is solved in terms of the electron distribution function, electron velocity, 

a relevant cross section, and collision rates for N2, and O2.  An increase in the 

electron concentration from the heating of electrons can lead to a decrease in the 

dissociate recombination coefficient.  Ionization rates and attachment rates can 

be approximated by their steady state values (Taranenko et al. 1993a).   

1.9. What We Don’t Know About Sprites 

As already mentioned there are three schools of thought :  1) the quasi static,  

2) the EMP model , and 3) run away electrons.  Streamer corona could be as 

small as 10 m requiring cm resolution.  With sprites dimensions as large as 70 

km this discretization would create large computational difficulties on a grid.   On 

a macroscopic scale the physics of streamer corona should not change below a 

certain level of discretization.  This needs to be proved.  In terms of sprite 

morphology we don’t understand their fine structure, or their clustering.  

Proponents of the QE model state that very little is known about the actual 

altitude of positive charge removal by sprite producing CG.  

1.10. Radio Frequency Perturbations in the D Region 

Total ion production rate is the rate of ion production less the number of 

attachment.  ionionization
ionization N
dt

dN
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dt

dN

dt

dN

dt

xdNe attachmentionization 
)(

. 

Assuming relatively long times for relaxation (0.5 s) this equation may be 

integrated directly with respect to time to find the total number of ions. 

dt
dt

dN
N e

e   

The plasma frequency squared is related to the total number of ions 

m

eNe
p

0

2
2


 

.

 

The index of refraction is related to the frequency of a signal propagating through 

the medium as (Jackson 1975) 

2

2

2 1


 p
n   If the last argument is small a Taylor expansion would yield 

2

2

2
1



 p
n  .  

For photons in a vacuum 1,0  nf p
 

1.11. Outline of Thesis 

Out of all these possible topics we now focus on the fractal modeling of spider 

lightning.  We shall calculate some fractal statistics and then the radiated fields 

from a fractal antenna.  Section 2 deals with the idea of a fractal.  In section 3 

properties of a fractal are presented.  In section 4 the method to generate a 

fractal is introduced.   Section 5 refers to sample output.  Section 6 offers some 

plotted output.   Section 7 calculates the radiated fields.  Section 8 looks at the 

slope of the power spectrum.  Section 9 mentions future work.  Section 10 

provides a conclusion. 

2. Idea of a Fractal 
 

As explained in the introduction with a fractal the degree of irregularity is 

identical at all scales.   In this section we elaborate on the idea of a fractal.   
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A fractal is a pattern that when subdivided, each part has the same statistical 

character.  Fractals have been used in modeling structures of eroded coast lines 

and snow flake patterns.  There is an idea of randomness in a fractal pattern.  In 

addition lightning possesses a Faraday cage effect.  Streamers bound areas of 

no discharge.  This is analogous to conductors sheltering an area that becomes 

a field free region.  Below is a discharge pattern on a glass plate. 

 

Figure 1.  Electrical discharge pattern on a glass plate. 

 

Examples of a fractal are 1) a snow flake pattern, 2) a tree divided itself into 

branches, 3) a leak pattern sub-divides itself into veins.   It’s as if nature had a 

random number generator.  Every so often when it replicates itself, nature 

produces a branch. 

3. Properties of a Fractal 
 

Discussed in the introduction was the idea that fractals have dimension D that 

is not necessarily an integer.  The number of points DrN  , and the density of 

points  1)(  Drrn .  Also mentioned was a Koch curve, which when magnified 

three times in size the perimeter increases to 4/3 its previous value.  See figure 

2.  
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Figure 2.  Koch Curve.  As you resolve down 3x in power the perimeter 
increases to 4/3 its value. 

In this section we elaborate on some properties of fractals.  

 

Mathematically the Mandelbrot set can be defined as a bound set where 

czz nn 

2

1  

This series is not convergent for c=1, but is bound for c=i, i=√-1. Mathematically 

this means that for c=1 zn+1 has no bound, while for c=i zn+1 the set is bounded.   

Applying the iteration repeatedly, the modulus of zn never exceeds a certain 

number, however large n gets.  When computed and graphed on the complex 

plane, as shown in figure 3, the Mandelbrot Set is seen to have an elaborate 

boundary which does not simplify at any given magnification. This qualifies the 

boundary as a fractal. 

 

Figure 3.  Image generated using a Mandelbrot set. 

http://en.wikipedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg
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Another property of a fractal is when you measure the perimeter with a 

smaller and smaller ruler, the answer diverges.  As you resolve down smaller 

and smaller more variability is revealed, (refer to figure 4).  The answer is 

totally dependant upon the size of the ruler used.  As the size of ruler 

approaches zero the length tends to infinity.  In a mathematical world we can 

infinitely subdivide.  Of course in a quantum world we would eventually hit the 

uncertainty principal and any further subdivision would become meaningless. 

 
 

Figure 4.  Measuring the shore line with smaller and smaller ruler the 
answer diverges. 

4. Method 
4.1. Stochastic Model 
 

In this section, we follow Valdivia et al (1998) and construct a stochastic 

model of spider lightning.  Field points are chosen at random but each time the 
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potential solution is recalculated.   Hence the field points are laid down in a self-

consistent manner. 

 

As a starting point take a circle whose potential is set equal to unity on the 

outer radius.  Inside the circle the center point is grounded.  Laplace’s equation

02    is solved. 

Laplace’s equation comes about from the diffusion equation
t

D






2  .  This is 

a second order Differential Equation (DE).  There are two boundary conditions

.0,0 





t


  The time independent solution is desired, therefore 02   .  

Proceed by expanding the potential φ in a power series about x. 

 

 
 
The code development is done in program R.  See Appendix 2 for code sample.  

Now randomly add points to the grounded structure.  This is analogous to the 

fact that if streamers move to a nearby point then this point is effectively at the 

same potential as the point before. 

To each of these points stochastically weight the probabilities with the electric 

field E.  Say one area has an electric field of a certain value and another area 

has an electric field of twice this value.    Then on a scale of zero to one the area 

of twice the electric fields get the probability of 0.67 .   See figure 5 below. 
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Figure 5.  Probabilities weighted with electric field. 

 
 

Figure 6.  Points are added at random to the grounded structure. 

 

The probability to find the next point from among the grounded neighbors 

proceeds as follows.  Let us say in the diagram above the black grounded points 

have the i, j, coordinates and white neighbors have i’,j’ coordinates (see figure 

6).  Since the electric field at a grounded point is proportional to the potential of 

the neighbor we arrive at the following equation.. 

0 

.67 

1 
Area E 

Area 

twice E 
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This is direct weighting with the electric field.   A more general equation is 

 EPE 
 

where P is the probability. 

Different cases arise for various values of the growth parameter η. 

η =0 corresponds to cancer growth. 

η =1 probabilities are linear weighted with potential.  This has a Hausdorff 

dimension D = 1.75  .  

η =2 corresponds to a more spindly growth pattern. 

 

Plots are now presented for the growth parameter n=0, 0.5,1, 2 in figure 7 

through figure 10. 



16 
 

 

 

Figure 7.  5000 points plotted where the growth parameter η=0.  This 
corresponds to cancer growth. 
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Figure 8.  5000 points plotted where the growth parameter η=0.5 .  
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Figure 9.  5000 points plotted growth parameter η=1.0 . The probabilities 
are linear weighted with potential and Hausdorff dimension = 1.75 .  
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Figure 10.  1985 points plotted where the growth parameter η=2.  A more 
spindly pattern emerges. 

 

The length of branches or the number of points is cumulatively distributed 

according to  

D

L

r
ArN 








)(  

Where: N= number of points inside a given radius r 

  A= some constant close to unity. 
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  L= independent length scale 

In a statistical analysis take the log of both sides of the above equation 

rDCrN ln)ln())(ln(  , where C is some constant. 

We notice quite a linear slope when we graph the regions between 20% and 

60%.  We shall choose this region to avoid end effects and where the slope is 

most linear.  We do a least square fit between these points to determine the 

coefficient D. 

First we see that our assumptions of fractal statistics is valid.  Results: 

The results are shown below in figure 11 using a 5000 point model.  There is 

excellent agreement with the published-simulation numbers for Hausdorff 

dimension.   Recall the Hausdorff dimension controls the number of points inside 

a circle of radius r, where the exponent is not necessarily an integer.  In the 

literature the point for n=2 had no error bars.  This point has been omitted in the 

plot. 
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Figure 11.  Hausdorff dimension vs. growth factor η. 

 
4.2. Currents and fields 

Next for the fractal pattern generated we will assume the following current I(t) 

as per Valdivia et al.  See figure 12 below. 
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Figure 12.  Current distribution assumed throughout the fractal.  

  ))()cos(1()( 0 tHteeItI tt   

      (2)
 

Where: H(t) = Heavyside step function. 

  α=decay constant,  α=103 s-1. 

  γ=rise time, γ=2x105 s-1. 

  I0=100kA. 

  ω=2παnf 

  nf =number of oscillations in the decay timescale 1/α=10  10kHz. 

The initial strength of the current pulse gets divided as the discharge 

branches.  The total charge Q≈ I0/α, I0=100kA, Q=100C.  The damping constant α 

is constant with observations that show a time constant or decay of the order of a 

millisecond.    

In the next couple of paragraphs we derive the fields for a fractal antenna.  

We then show the fields have the same dimension and form as Valdivia 

equations with a substitution for β the speed at which the discharge propagates 

along the fractal. 

 

0.0002 0.0004 0.0006 0.0008 0.0010
time s

50 000

100 000

150 000

Current kA
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Consider a standard E&M radiation equation.  Using the dispersed current 

throughout the branches of the fractal we get the far fields.  From (Jackson 1975) 

the first term only, the electric field in the radiation zone is 

 

.
)/(

2rc

crtP
Erad


 




      (3) (Gaussian) 

 
The dipole moment P can be calculated by the following equation for sinusoidal 

variations (see Appendix 3) 

 )(3 xJxdPi


 . 

Where:  k = the free space wave vector 

  radE


= electric field in the radiation zone 

  c = speed of light 

  P


 = perpendicular component of the electric dipole moment P


 

  )(xJ


= the current density on the wire 

  t= time 

  r=distance to the source 

  t-r/c = the retarded time 

  i=√-1. 

we have used :  2

2
2

c
k


  

    Pnpn


 

   
 P2
 

   n


= unit normal from the observation point to the source 

Consider the current along a differential element in unit direction z
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Assume a basic dependence everywhere:  
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     (4) ( Gaussian) 

The mks equivalent with a variation 
)( kxtie 

is (Ramo and Winnery 1953) 
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4       (4) ( mks)  
The sign is flipped because of his sign reversal in the wave equation 

dependence.  Also in his equation a sine θ term has been evaluated at π/2 since 

the observation point is at right angles to the element of wire.  The exponential 

dependence eikr is the same as saying the source is evaluated at the retarded 

time. 

See Appendix 4 how to convert Gaussian to mks units.     

From the equation for P with sinusoidal variation: 

zIdlP


    

z
dt

dI
dlP
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crtdI
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       (5) (Gaussian) 

  
Valdivia’s [3] far-field equation for the electric field is 
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     (6) (Gaussian)  

Where: In=fraction of current in branch 

  I(τ)=Eq. 2 

  nn rxd



 

  nnnnn rxrxd


 /)(ˆ  

  x


=observation point 

  nr


= vector to the nth element 

  nL̂ = orientation of the nth element 

  c=speed of light 
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c

v
  ≈.025 

  sn=path along the nth element of fractal 
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The following is not a proof but we can show in the limit of small β Valdivia’s 

equation for the envelope waveform has the same form and dimension as is what 

was previously derived for our sinusoidal waveform. 
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and Ln along unit vector in the z direction
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      (7) ( Gaussian) 
For the derivative evaluated at a point instead of two limits and for small β this 

is the same form as Eq (5).   

Once fields are calculated one could place them into the Folker-Plank equation 

or an ionization equation to see the effect of spider lightning on communications.  

Now that we have the fields in terms of currents, the next step is to weight the 

branch currents.  We expect the largest current to flow the longest in terms of 

time and path distance.  This can be qualitatively seen in figure 1 where the 

strongest line patterns of discharge propagate the longest distance on the glass 
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plate.  Weight the branch currents with length as in the figure 13 below.  The 

current leaving each branch is assumed proportional to the path lengths.   

 
 
 
 
 
 
 
 
 
 
 

 Figure 13.  Weighting fractal branches with path length. 

We have implemented the following algorithm to find the current flowing into 

that node.  Keep the longest branch length and trace the length back one node 

before.  Repeat this process until the origin is reached.  We give an example.  

Say the path length of a top branch is six units and the path length of a bottom 

branch is four units.  Keeping the longest path length (six units) we trace back 

five more units until we hit another branch point where a branch of length 10 

units merges in.   The sum of the branch lengths at the second  junction is 21 

units.  Then the current flowing into the first top branch of the second junction 

would be (11/21) of whatever flows into the second junction. Similarly the current 

flowing into the top branch of the first node would be the product of (11/21) (2/3) 

times any other factors for the accumulated current flowing into the second 

branch.   

While this is quite easily stated it took a lot of time and effort to implement into 

the computer code.   See figure 14 below for the block diagram of code.  A 

sample output is found in Appendix 5.  A complete description of the code is 

found in Appendix 6. 
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Figure 14.  Flow chart of code. 
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5. Sample Output 
 

Sample output is listed in Appendix 4.  The current is written to a non 

orthogonal coordinate system.  Hence if the current goes from point I, j to i+1, j, 

the current is listed at point i+1/2, j.  The fraction of current is listed next to each 

point for currents in that branch.  It has a unique index for later constructing 

electric fields.  Also listed is the path length along the fractal to that element, and 

the orientation of the element along x or y axis. 

After the coordinates and currents the start and stop points of the vectors are 

listed again with the currents and path length. 

6. Plotted Output 
 

The fraction of current in the output was checked by hand for eight cases of 

10 points, and then three cases of 25 points.  From here on we rely upon 

graphically checking the fractal pattern.  In the following three patterns, figs. 15-

17, the line weight represents the fraction of current in each branch.  It can be 

seen that the black lines are like arteries carrying the current out to smaller sub-

sections of the fractal.  Each plot has 1000 points. 
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Figure 15.  Fractal 1, 1000 points. Graphical validation of current weighted 

with path length.  
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Figure 16.  Fractal 2, 1000 points. Graphical validation of current weighted 
with path length.  
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Figure 17.  Fractal 3, 1000 points. Graphical validation of current weighted 
with path length.  
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7. Radiated Fields 
 

Valdivia does not analyze the behavior of the radiated fields.  In this section 

we calculate the fields from the fractal antenna, and show that the radiative fields 

obey a power law decay with increasing frequency.  

7.1.  Gain of Fractal Antenna 

Valdivia (Valdivia et al. 1998) states the gain of a fractal antenna as 
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Where An = strength and orientation of the field generated by individual elements. 
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If the distribution of phase is random 0 ie , G=N.  If the phase is perfectly 

coherent G=N
2. 

7.2. Vecchi’s Time Constant for Channel Lightning. 

Let L be the scale length of the model, and v the velocity of propagation.  The 

time constant   is defined as 
v

L
 .  For

2

1
freq  the power spectrum 

2

1

f
 , 

and the channel behaviors as a tortuous channel.  For 
2

1
freq the power 

spectrum 
4

1

f
 , and the channel behaves as a straight line.   This is because 

high frequencies correspond to short evaluation times and in Vecchi’s formulation 

certain terms can be ignored in the field evaluation.  In general he says it obeys a 

simple power law and decays as 
f

1
 .  The spectral exponent β is found to vary 

from β = 4 for a Euclidian curve (D=1) to a space filling curve (D=2).  This 

dependence can be explained with the increase in high frequency components 

generated by increased irregularity of the evaluation times for large values of the 

fractal dimension D.  This reduced the slope of the power spectrum. 
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The same time constant also appears in the frequency domain.  The time lag 

between successive arrivals is proportional to L, the scale length.  For small L we 

expect the field time waveform to be smooth.  For large L we expect to see some 

fractal characteristics in the radiated fields.   

7.3.  Methodology 

Fields in the far zone are now calculated by Eq. 6.  All the necessary 

quantities are listed under the equation.  A step counter in the software measures 

the distance from the origin to the center point of a fractal element.  In the 

formula a dot product appears 

 nn dL ˆˆ 
 Where  nL̂

 

is the unit vector orientation of the nth element and  nd̂
 is the unit vector 
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 has the orientation either along the x or y 

direction.  Then the dot product  
 nn dL ˆˆ

22 zr
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if nL  is along the positive x 

axis and  
22 zr

y




 if nL  is along the positive y axis.  

7.4. Results 

Each element of the fractal is treated as a radiating segment, but the times 

that the overall current distribution are evaluated are delayed by the speed at 

which the lightning propagates along the fractal β=.025 .  The propagation speed 

during a cloud-to-cloud return stroke can reach speeds of about β≈0.1 to 0.5 

(Uman 1987), while the propagating speed of inter-cloud discharges is at least an 

order of magnitude lower, β=0.01-0.05 .  The number chosen is mid-range in 
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value.    First a 10-element fractal was generated and the fields examined 90 km 

away.  The field strength was similar to that of a single radiating element at full 

current.  From this we gather that the individual elements were not acting 

coherently.  This is due to their different orientation, and phasing. 

Next the fields were calculated for a 1000 element fractal.  As more elements 

are added or the scale increased the radiated field goes up.  We also expect 

more interference between radiating elements.   This is indeed the case.  In figs. 

18-20 the scale length of a fractal element is stepped from 1m, 10 m, and 100 m.  

In each case the same ‘random’ pattern used was that of figure 17, only the grid 

size changed.  Notice that as the grid size increases the power in the signal 

increases as well as Fourier components above 10 KHz.   This is displayed in 

either the vertical or horizontal polarization.   Recall the source had a modulated 

component at 10 kHz.   For a scale factor of 1 m the fractal antenna behaves as 

a normal antenna.  Fourier components above 10 kHz fall off as some 

exponential.  For scale factor of 10 m some fractal noise begins to appear above 

10 kHz.  For a scale factor of 100 m, figure 20, the radiated fields begin to exhibit 

some fractal characteristics.  There is an initial spike in the vertical and horizontal 

field component for the typical case with scale lengths of 1 m.  The fields go as 

the derivative of the currents, the currents turn on as a Heavy side step function, 

hence in taking the derivative of the current there is a delta function.  The spike 

goes away in time and also is not present for scale lengths of 10 and 100 m.   

Observing the time domain waveform near the end the signal becomes smoother 

in time as the discharge travels to the end of the fractal.   

We found areas of the FFT where the curve exhibited smooth or non-fractal 

behavior (1 & 10 m scale length above or near 10 kHz).  Vecchi states for the 

fractal noise there is an asymptotic region (for large frequencies).   We note for 

the frequency below this is an upper bound of only one region.   Vecchi’s 

threshold frequency with scale=100 m and β=0.025 yields τ=1.33*10-6 s or fthreshold 

= 37.5 kHz.  For channel lightning and frequencies less than this threshold 

frequency the radiated power falls off approximately 20 dB/decade if the power 

goes as one over the frequency squared (see proof below).   
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Proof that if power α 1/f2 the power falls off at -20 dB per decade 
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a)                                                      b)  

 
c) 

 
 

 

 

 Figure 18.  Magnitude of electric field, vertical and horizontal components, 
with Fourier transform.  At grid = 1 m it acts just as an antenna where 

frequencies taper off smoothly above 10 kHz. 
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a)                                                       b) 

 
c) 

 
 
Figure 19.  Magnitude of electric field, vertical and horizontal components, 
with Fourier transform.  At grid = 10 m some fractal noise begins to appear 

above 10 kHz. 
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a)                                              b) 

 
c) 

 
 

Figure 20.  Magnitude of electric field, vertical and horizontal components, 
with Fourier transform.  At grid = 100 m substantial fractal noise becomes 

apparent above 10 kHz. 
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8. Slope of the Power Spectrum 
In this section we present slopes of the power spectrum for a grid scale of 

100 m.  We examine the noise in the spectrum above 1.67 * 10 kHz.  We 

purposely stay away from 10 kHz because this is the modulation frequency 

imposed upon the current.  This region is divided into two regimes.  One regime 

is f < fthreshold and another is f > fthresold.   Vecchi’s threshold frequency is 

2

1
thresholdf  where   is the time to cross a fractal element.  Quantity 

c

m




100
  

where β=0.025, and c is the speed of light . The graphs presented in the next two 

figures are typical but the author found quite a lot of variation in the slope f < 

fthreshold, even among case to case, with the same  .  The plotting program had 

some difficulty plotting the right set of points in the log format, but could plot them 

without error on a linear plot.  We use a least square fit to eliminate subjectivity.   

The slopes are averaged over 50 runs each and presented below.  Quantity EV 

is the vertical- electric-far-field component and EH is the horizontal-electric-far-

field component. 
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Figure 21.  Slope of the EV power spectrum f < fthreshold slope=2.5 and f > 
fthreshold slope=3.5 .  Triangle at bottom abscissa is where fthreshold is. 
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Figure 22.  Slope of the EH power spectrum f < fthreshold slope=2.4 and f > 
fthreshold slope =3.6 .  Triangle at bottom abscissa is where fthreshold is.  
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Figure 23.  Average slope of EV f < fthreshold and f > fthreshold (n=50).  Error 
bars denote standard deviation over 50 runs each.  
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Figure 24.  Average slope of EH f < fthreshold and f > fthreshold (n=50).  Error 
bars denote standard deviation over 50 runs each. 

 
 

Vecchi states for channel lightning the slope for f < fthreshold should be -2.  We 

observe an average slope in the range of -1.6 to -2.6 with a standard deviation of 

around 2 . Again for channel lightning the slope for f > fthreshold should be -4.   We 

observe an average slope in the range of -3.4 to -3.5 with a standard deviation 

equal to or less than 0.25 for different values of  (Figure 23-24).  Please refer to 

the individual graphs for standard deviations specific to a certain value of  .  The 
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values are reasonable.  Clearly this model is more complex than channel 

lightning for it has radial arms spreading in the x, y plane. 

There doesn’t seem to be much information for f < fthreshold.  This data has 

quite a large standard deviation.  However for f > fthreshold the values appear to be 

independent of  .  The values recorded here -3.4 to -3.5 are less than -4 for 

channel lightning because there is more interference between radiating elements 

in this fractal model than the case of channel lightning. 

From observation, for vertical return stokes in the frequencies considered 

here, the power spectrum goes as 1/f2 (Shumpert, Honnell and Lott August 

1982).  For horizontal inter-cloud lightning (Marney and Shanmugam 1971) 

the noise spectrum is flat from 10 kHz to 50 kHz, and then dropped off with a 

slope of -1.6 for higher frequencies.  This is because considerable energy 

comes from cloud-to cloud at higher frequencies.  These events are harder to 

correlate because they are obscured by clouds.  In the spider lightning model 

the slopes need roughly a value of 2 subtracted from them to match 

experiment.  The threshold frequency with a grid scale of 100 m seems to be 

correct, 37 kHz vs. 50 kHz. 

9. Future Work 
For f < fthreshold the values exhibit quite a large standard deviation (~2).   The 

error of the mean, 
n

Error


 , where   is the standard deviation.  In order to get 

the error down to 0.1 from a standard deviation of 2 one would have to sample 

400 cases each.  One could set up a large sequence of runs on a pair of dual 

processor computers and check the results a month later to better find the 

functional dependence of this slope on  .  

10. Conclusion 
 

A program has been developed that performs the fractal modeling of 

lightning, and then calculates the radiated fields for this fractal antenna.   The 

branch currents are proportional to the length of branch from the node in 
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question.  Current into that node is calculated by taking the longest branch 

and tracing back one node before…and so forth, all the way until the origin is 

reached.   For different growth parameter   the Hausdorff dimension agrees 

with those in the literature.  Finally electric fields in the far zone have been 

calculated by weighting the branch currents with an overall damped 

sinusoidal current.   The current waveform for each element is evaluated at 

retarded times and this also takes into account the speed at which the 

lightning propagates along the fractal.  The electric field seems to be 

proportional to the number of elements, which means the elements are 

operating incoherently.   With increasing grid size an interference pattern 

becomes more evident.  As the grid size increases the power in the signal 

increases in the Fourier components above 10 kHz (the modulation 

frequency), in both polarizations.   Finally for a scale factor of 100 m, the 

signal exhibits some fractal characteristics.  We have investigated the slope 

of the power spectrum for spider lightning.  For f < fthreshold the slope is 

between -1.6 to -2.6 with a standard deviation of ~ 2 .  In the case of channel 

lightning this slope would be -2 .  For f>fthreshold the average slope varies 

between -3.4 and -3.5.  In the case of channel lightning this slope would be -

4.  The lesser slope is attributed to more interference between radiating 

elements in this model.   For f > fthreshold the slope appears to be independent 

of the growth parameter  .  Observations show for inter-cloud lightning the 

threshold frequency is 50 kHz, with zero slope for f<fThresold and  -1.6 slope for 

f> fThresold.  The slopes for this model of spider lightning needs roughly 2 

subtracted from them to match experimental results.   
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Appendix 1 

Folker-Plank Equation. 
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is the quiver energy KE of electron oscillating field 

)(v is the electron neutral effective collision frequency 

L is the operator which describes the effect of inelastic collisions 

0 is the angle between the electric and magnetic field 

v =velocity of electron 
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Appendix 2 

Code Sample Used to Solve the Laplacian. 

The program R works with objects.   

xp<-seq(-Nx/2,Nx/2,length=Nx) 

yp<-seq(-Ny/2,Ny/2,length=Nx) 

xmat <- xp%o%rep(1,Ny) 

ymat <- rep(1,Nx)%o%yp  

radmat <- sqrt(xmat^2+ymat^2) 

hit <- radmat<=.5 Nx  

radp1 <- sqrt((xmat-1)^2 + ymat^2) 

hitxp1 <- radp1<=.5 Nx          

radm1 <- sqrt((xmat+1)^2 + ymat^2) 

hitxm1 <- radm1<=.5 Nx  

radp1 <- sqrt(xmat^2+(ymat-1)^2) 

hityp1 <- radp1<=.5 Nx  

radm1 <- sqrt(xmat^2+(ymat+1)^2) 

hitym1 <- radm1<=.5 Nx  

laplace<-function(theta,val,fixed) 

{   

 for(iter in seq(1,itermax,1))  

theta[hit] <- (theta[hitxp1]+theta[hitxm1]+theta[hityp1]+theta[hitym1])/4           

   

  return(theta) 

 } 

The boundary for the circle is described as follows.  From a column vector of all x 

values along a line there is formed an outer product to get the x values of all 

points in a square array.  A similar operation is done for y vertices along a line.  

Then the radius of all points from the origin in the square array computed.  A 

logical matrix, hit, is computed where True values are assigned for all points less 

than a certain radius.  To calculate )( xx   points the x values are shifted by 
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one grid point and a new logical matrix hitxp1 constructed.  Similarly for )( xx   

points and similarly shifted y values matrices are constructed which enter into the 

Laplacian.  The field variable theta[hit] is solved for in a single line in the routine 

Laplace. 
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Appendix 3 

Identity PixJd



3  

Start From JxJxJx jjj
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Applying the divergence theorem 0)(3   daJxJxxd
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 the dipole moment, therefore 
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Appendix 4 

How to Convert Gaussian to mks 
After (Jackson 1975): 
 

v
A

I

vJ









 

where J is the current density and v the velocity and I the current.  Along a thin 
wire:  vI  , λ charge per unit length.   

 Making the proper mks substitutions for charge density and velocity.  Symbols 
for time and length remain unchanged. 
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Into Eq. 4 Gaussian     
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  (sinusoidal variation)    (4 mks)  

Which is equation 4, mks, where we have dropped the mks subscripts from the 
right hand side 
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Appendix 5 
Sample Output 

 
igrid[[ 1 ]][[1]]= 21 21.5 fraction of current= 0.625 path length= 1 orientation 
(nx,ny)= 0 1  
igrid[[ 2 ]][[1]]= 21.5 21 fraction of current= 0.125 path length= 1 orientation 
(nx,ny)= 1 0  
igrid[[ 3 ]][[1]]= 21 20.5 fraction of current= 0.25 path length= 1 orientation 
(nx,ny)= 0 -1  
igrid[[ 4 ]][[1]]= 20.5 20 fraction of current= 0.25 path length= 2 orientation 
(nx,ny)= -1 0  
igrid[[ 5 ]][[1]]= 21 22.5 fraction of current= 0.5 path length= 2 orientation (nx,ny)= 
0 1  
igrid[[ 6 ]][[1]]= 20.5 22 fraction of current= 0.125 path length= 2 orientation 
(nx,ny)= -1 0  
igrid[[ 7 ]][[1]]= 21 23.5 fraction of current= 0.125 path length= 3 orientation 
(nx,ny)= 0 1  
igrid[[ 8 ]][[1]]= 20.5 23 fraction of current= 0.375 path length= 3 orientation 
(nx,ny)= -1 0  
igrid[[ 9 ]][[1]]= 19.5 23 fraction of current= 0.375 path length= 4 orientation 
(nx,ny)= -1 0  
igrid[[ 10 ]][[1]]= 19 23.5 fraction of current= 0.375 path length= 5 orientation 
(nx,ny)= 0  
 
21 21 21 22 0.625 1  
21 21 22 21 0.125 1  
21 21 21 20 0.25 1  
21 20 20 20 0.25 2  
21 22 21 23 0.5 2  
21 22 20 22 0.125 2  
21 23 21 24 0.125 3  
21 23 20 23 0.375 3  
20 23 19 23 0.375 4  
19 23 19 24 0.375 5            
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Appendix 6 
How the Program Works and Summary of Subroutines 

Laplace: 
 Solves Laplaces equation for all points r<=Nx/2, where r is the radius of grid 

points to the center and Nx is the number of x points on a grid.  For r>Nx/2 
the potential φ is set equal to unity. 

Adjacentpts: 
 This constructs a logical matrix (True, False) of neighbors. 
Probabilities: 
 Computes the numerator of Eq. 1 for all neighbors. 
Normalprob: 
 Computes the denominator of Eq. 1 for all neighbors. 
Chance: 

Picks a random number from 0 to 1.  Probabilities of each point are 

weighted with 


EP  .  Picks a new neighbor to be added to the structure 

of grounded points. 
Find end points: 

Catenates vectors in situ as they are added.  A vector starts at the 
beginning point of the grounded structure and ends at an end point of a 
newly added neighbor.  Chains vectors onto existing branches.  If not starts 
a new branch.   Last chained vector of a branch contains the end point.  
These are used in the subroutine Traceback to find the branch currents. 

Map: 
Lists the I, j neighbors of any point (not used).  Lists the NESW logical 
variables for currents into a node, where N is the north point, etc.  Lists the 
sum of logical variables into a node.  Lists the NESW path lengths into a 
node.  Contains a logical variable if the node is resolved.  A node is 
resolved if the code can sum the path lengths into a node and the number of 
path lengths summed equals the number of currents into a node.  If the 
node is not resolved it ‘sits’ out.  Has a logical variable for an end point.  
Has logical variables NSEW for currents emanating from a node.  Two or 
more of these constitute a node. 

Traceback: 
Given an I, j of an end point or node traces back the branch until it reaches 
another node or the center point.  A node is defined if more than one current 
emanates from the branch.  This routine sums the branch length.  Labels 
each branch sequentially by the assigned number of end points. 

Resolved: 
A node is resolved if the code can sum the paths of branches into a node 
and the number of paths summed equals the number of currents emanating 
from the node.  Labels resolved nodes sequentially. 

Nodebranch: 
Determines the branches emanating from a node.  A counter steps one grid 
point for each direction stepped.  Calls subroutine Traceforward.  Writes a 
current to a non-orthogonal grid.   Current file has a unique index for a 
current written at every path. 
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How the Program Works 

Every time Traceback is called the program collects resolved nodes.  Labels 
them sequentially, level=1, resolved nodes =1-3.  Node(1) = I1, j1, node(2)=i2, j2, 
node(3)=i3, j3.  Level =2, node(4)=i4, j4, node(5)= i5, j5.  When no new nodes are 
accumulated it has reached the origin.  Then it runs through the level of nodes in 
reverse order.  Each node in the sequence is traced forward.  Subroutine 
Nodebranch call trace subroutine Forward.  Both write current files.  They stop 
when another node or end point is reached. 
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