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Abstract

Since its introduction in the early 90’s, the idea of using importance sampling (IS) with

Markov chain Monte Carlo (MCMC) has found many applications. This paper examines

problems associated with its application to repeated evaluation of related posterior dis-

tributions with a particular focus on Bayesian model validation. We demonstrate that,

in certain applications, the curse of dimensionality can be reduced by a simple modifi-

cation of IS. In addition to providing new theoretical insight into the behaviour of the

IS approximation in a wide class of models, our result facilitates the implementation of

computationally intensive Bayesian model checks. We illustrate the simplicity, compu-

tational savings and potential inferential advantages of the proposed approach through

two substantive case studies, notably computation of Bayesian p-values for linear regres-

sion models and simulation-based model checking. Supplementary materials including

appendices and the R code for Section 3.1.2 are available online.
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1 Introduction

Bayesian model assessment typically requires the evaluation of multiple posterior distri-

butions. As the posterior distribution for all but the simplest of models needs to be eval-

uated using Markov chain Monte Carlo (MCMC) or another computationally intensive

technique, a complete model assessment can be computationally prohibitive. However, if

the ratio of two posteriors can be computed quickly relative to an iteration of the MCMC

algorithm, then one possibility to speed up computations is to use importance sampling

(IS) with MCMC, as only a single MCMC run is needed to evaluate multiple posterior

distributions. This idea has been used by a number of researchers for prior sensitivity

analysis (Besag et al., 1995; Nur et al., 2009) and for leave-one-out cross-validation and

case deletion diagnostics (Peruggia , 1997; Gerlach et al., 1999; Stern and Cressie, 2000;

Epifani et al., 2008). We note that Peruggia (1997) and Epifani et al. (2008) have inves-

tigated quite precisely IS estimators for case deletion in some generalized linear models.

They provide conditions to obtain finite moments for the IS weights, which is important

for understanding the behavior of the IS approximation.

Despite these and numerous other successful applications of IS with MCMC, hereafter

called MCMC-IS, there remain some issues which need further investigation. One case of

particular interest is where it is necessary to evaluate multiple posterior distributions for

which the prior is fixed but the datasets forming the posterior distributions are related

but substantially different. This situation arises in evaluating certain Bayesian p-values

such as those discussed in Dey et al. (1998); Bayarri and Berger (2000); Robins et al.

(2000); Bayarri and Castellanos (2007); Fraser and Rousseau (2008) and in simulation

studies evaluating the performance of a Bayesian estimator Gadja et al. (2010). In this

situation, it is not clear that the original posterior distribution will provide an adequate
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importance function.

In this paper, we propose using MCMC-IS when the posterior distribution is altered

by a substantial change to the dataset. In Section 2, we study the asymptotic behavior of

the IS weights, where the asymptotic is in terms of the sample size of the data. Although

such an asymptotic analysis does not provide as precise a picture as in Peruggia (1997)

or in Epifani et al. (2008), it has the advantage of being applicable to a wider class of

models. Moreover, our asymptotic analysis highlights the detrimental influence of the di-

mension of the parameter space on the variance of the IS weights, a phenomenon generally

referred to as the curse of dimensionality. This analysis provides theoretical support for

using a simple location transformation (or link function) which successfully stabilises the

importance weights even in moderate dimensions. Although such transformations were

previously proposed by MacEachern and Peruggia (2000), their examples concerned only

small changes to the posterior (case deletion in linear and nonlinear regression models).

It was not clear that the approach would work for large changes. A further novelty of

our work is the use of iterated IS to determine the location transformation. This can

be particularly advantageous for models, such as generalized linear mixed effects models,

where maximum likelihood estimation requires specialized techniques. Our results are

then applied in Section 3 to two Bayesian model validation problems: (i) computation

of Bayesian p-values for linear regression models, (ii) simulation-based model checking

for a hierarchical logistic regression model. The paper concludes with some discussion of

the advantages and disadvantages of the proposed methodology as well as possible future

applications.
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2 General approach and properties of the algorithm

2.1 Importance sampling approximation

Let p(θ|y) denote the posterior distribution for some sampling model p(y|θ) and prior

density p(θ) over parameter set Θ. Let p(θ|y′) ∝ p(y′|θ)p(θ) denote a second poste-

rior density on Θ, where y′ is a new dataset whose distribution is related to y. For

any integrable function h, let I(h,y) =
∫

Θ
h(θ)p(θ|y)dθ. From the usual IS approach

I(h,y′) = I(hp(·|y′)/p(·|y),y) if the support of p(θ|y′) is included in the support of

p(θ|y), which we assume hereafter. Let (θt)
T
t=1 be a Markov chain with stationary distri-

bution p(θ|y). Typically, p(θ|y) is only known up to a normalizing constant so that the

IS approximation, based on the Markov chain (θt)
T
t=1, is

ÎT (h,y′) =

∑T
t=1 h(θt)w(θt)∑T

t=1 w(θt)
, where w(θ) =

p(y′|θ)
p(y|θ)

. (1)

It is well known that if (θt) is ergodic and if
∫

Θ
|h(θ)|p(θ|y′)dθ < +∞, then ÎT (h,y′)

converges almost surely to I(h,y′) as T →∞ (Smith and Roberts , 1993). More precise

results on the accuracy of the resulting estimates depend heavily on the behavior of the

Markov chain and we refer to Nur et al. (2009) for a discussion on conditions implying a

central limit theorem on
√
T
(
ÎT (h,y′)− I(h,y′)

)
.

An important issue in IS concerns the variability of the weights w(θ) since it deter-

mines the rate of convergence of ÎT (h,y′). It is well known that the variability of the

weights increases exponentially with the dimension of Θ. This fact is made more precise

in the following subsection.
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2.2 Variability of the weights

For most models, both p(θ|y) and p(θ|y′) converge to a dirac mass at some θ0 ∈ Θ as

the amount of data increases. Despite this, it is not obvious that p(θ|y) will be a useful

importance function for p(θ|y′) even in the large data setting. This is because the two

distributions may have very little overlap for any finite amount of data. To address this

question, we examine the distribution of the normalized importance weights

w̃(θ) =
w(θ)

E(w(θ|y))
=
p(θ|y′)
p(θ|y)

, where E(w(θ)|y) =

∫
Θ

w(θ)dp(θ|y),

as the amount of data increases. The necessary modifications to extend the following

results to self-normalized weights are given in the appendix.

We consider situations in which the posterior distribution p(θ|y) and p(θ|y′) can be

approximated by Gaussian distributions centered at θ̂y, θ̂y
′

and with asymptotic covari-

ance matrices J(y)−1 and J(y′)−1. Although not strictly necessary, we assume that the

size of both datasets y and y′ is n. This assumption is satisfied for the examples in

Section 3 such as the computation of Bayesian p-values as defined in Bayarri and Berger

(2000) and Fraser and Rousseau (2008). Assume also that J(y) = nI0(1 + oP (1)) and

J(y′) = nI0(1 + oP (1)), where I0 is a fixed positive definite matrix. Situations where the

Gaussian approximation hold are quite common. For example, the Gaussian approxima-

tion holds for finite dimensional settings (Θ ⊂ Rr, r ≥ 1) where the data are independent

realisations from a regular model (Kass et al., 1989) with y and y′ having very similar

distributions. However, independence and regularity are not necessary conditions, see

for instance Philippe and Rousseau (2003) for dependent data and Ghosal and Samanta

(1997) for non regular models. Using the Gaussian approximation of the posterior we
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have,

w̃(θ) = exp

{
−(θ̂y

′ − θ̂y)tJ(y′)(θ̂y
′ − θ̂y)

2

}
exp

{
−(θ − θ̂y)tJ(y′)(θ̂y − θ̂y′

)
}

× exp

{
−(θ − θ̂y)t (J(y′)− J(y)) (θ − θ̂y)

2

}
(1 + oP (1)) (2)

= exp

{
−n(θ̂y

′ − θ̂y)tI0(θ̂y
′ − θ̂y)

2
− n(θ − θ̂y)tI0(θ̂y − θ̂y′

)

}
(1 + oP (1)) (3)

Note that (3) holds even when y and y′ are not independent since it was derived from

marginal Laplace approximations of p(θ|y) and p(θ|y′). Note also that the results remain

valid if we only assume that y′ has dimension n′ with n′/n = 1 + o(1).

A useful summary of the distribution of the normalized weights is its variance. Under

additional conditions on the integrability of w(θ)2 which are given in the Appendix, we

may express the asymptotic variance as

var (w̃(θ) | y,y′) = exp
{
n(θ̂y

′ − θ̂y)tI0(θ̂y
′ − θ̂y) + oP (1)

}
− 1. (4)

The stability of the weights can thus be predicted using the statistic

∆(y,y′) = (θ̂y
′ − θ̂y)tJ(y′)(θ̂y

′ − θ̂y′
).

The centers θ̂y and θ̂y
′

can be the posterior means, maximum likelihood estimates or

maximum a posteriori estimates, depending on the ease of computation. To understand

better the possible impact of the dimension r of Θ, assume that each sample y and y′

comprises independently and identically distributed observations from a regular model. If

y and y′ are mutually independent, then asymptotic normality of the maximum likelihood

estimator implies that ∆(y,y′)
d→ 2χ2

r, where r is the dimension of θ. This implies

that the variance of the weights is asymptotically (in n) exponentially increasing in the

dimension r of the parameter space. This situation is the least favorable as far as the

variability of the weights is concerned. However, in the application to Bayesian p-values
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as defined in Section 3, y and y′ are not independent. In that case, conditional on

(θ̂y
′

l = θ̂yl , l = 1, . . . , s < r), y and y′ are two independent and identically distributed

vectors. This leads to ∆(y,y′)
d→ 2χ2

r−s (Gouriéroux and Monfort, 1996) and the variance

of the weights remains exponentially increasing with r − s.

Relation (3) suggests that a simple transformation may significantly stabilize the

weights, at least when the size of the data is large compared to the dimension of the

parameter. The idea of transforming the values (θt)
T
t=1 before computing the importance

weights using an importance link function has been proposed in MacEachern and Peruggia

(2000), but the above calculations imply that a very simple transformation is often quite

effective. For all t set

θ′t = θt + θ̂y
′ − θ̂y, (5)

with modified weights given by

w′(θt) =
p(θ′t)p(y

′|θ′t)
p(θt)p(y|θt)

, w̃′(θt) =
w′(θt)

E[w′(θ)|y]
.

Again applying the Laplace approximation as in equation (3), we see w̃′(θ)
p→ 1. Further-

more, under the conditions given in the Appendix, we obtain that var(w̃′(θ)|y′) = oP (1).

In equation (5) we have assumed that Θ = Rr. If Θ ⊂ Rr, then the recentering will need

to be applied after Θ has been mapped to all of Rr. For example, if Θ = [0,∞) then the

recentering (5) is applied after taking a log transformation.

It is of interest to note that the naive MCMC-IS approach suffers from the curse of

dimensionality even when the size of the data is much larger than the dimension and that

the simple linear transform (5) stabilizes the weights, whatever the dimension, provided

it is much smaller than the number of observations.

To apply transformation (5), one needs to be able to compute the centering points θ̂y
′

and θ̂y. Often the maximum likelihood estimate and the maximum a posteriori estimate
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are not available in tractable analytic forms and so the centering procedure becomes

difficult to implement. Furthermore, the posterior mean will be a better center point for

some posterior distributions such as a Gaussian posterior distribution. We thus propose

an iterative algorithm to compute the posterior mean centered MCMC-IS.

• (1) Sample (θt)
T
t=1 from the posterior distribution p(θ|y) using MCMC and compute

w(θt), θ̃yT =
1

T

T∑
t=1

θt, and θ̃y
′

T =

∑T
t=1 θtw(θt)∑T
t=1 w(θt)

• (2) Set θ′t = θt + θ̃y
′

T − θ̃
y
T and compute the modified importance weights w′(θt).

• (3) Update the estimate of the posterior mean by

θ̃y
′

T =

∑T
t=1 θ

′
tw
′(θt)∑T

t=1w
′(θt)

and return to step (2) if the estimate of the posterior mean has not yet stabilized.

Based on the simulations in section 3, two iterations of the algorithm are often sufficient

in order to stabilize the posterior mean estimate.

We could also consider more complicated importance link functions, such as the

location-scale transformation of θt suggested by (2),

θ′t = J(y′)1/2J(y)−1/2(θt − θ̂y) + θ̂y
′
.

However, as shown with equation (3), the scale factor does not play as crucial a role

as the location transformation, at least when the number of observations is much larger

than the dimension. Note also that, although the re-centering is motivated by asymptotic

normality of the posterior, it is a more robust approach than a simple IS approximation

based on a Gaussian proposal, which would require strong tail conditions to be efficient.

In our framework, the re-centering can be quite efficient even though the tails of the

target distribution are much heavier than Gaussian tails.
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3 Applications

In this section we apply the MCMC-IS algorithms described in the previous section to

three different Bayesian model validation settings; the computation of Bayesian p-values

for hypothesis testing on parameters, a simulation-based approach to checking proper

priors in a hierarchical mode. In the first subsection, Bayesian p-values are used to test

the significance of certain coefficients in a Gaussian linear regression model. Examples

are given using both a standard noninformative prior and the Bayesian lasso prior. The

second subsection concerns detecting incompatibility between the hierarchical priors of a

logistic regression model and the data using simulation-based model checking.

Although the models studied in this section are relatively simple, they are often used

in applications. Furthermore, despite the simplicity of these models, the application of

certain Bayesian model validation techniques, such as those considered here, remains

computationally challenging due to the need to evaluate hundreds or even thousands

of posterior distributions. The results obtained here suggest that recentered MCMC-IS

could be used for Bayesian model validation of models for which performing hundreds of

MCMC runs is not possible.

3.1 Parametric regression and computations of Bayesian p-values

Consider the normal linear model

y ∼ β0 + β1x1 + · · ·+ βpxip + ε,

where the ε ∼ N(0, σ2In) and In is the (n×n) identity matrix. Let θ = (β0, . . . , βp, σ
2) so

that r = p+2. We are interested in the problem of determining if the subset of covariates

(xs, . . . ,xp), with s ≤ p has any effect on the response variable y. This is equivalent to
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the hypothesis test

H0 : βs = · · · = βp = 0 against H1 : βi 6= 0 for at least one i ∈ {s, . . . , p}. (6)

Let ψ = (β0, . . . , βs−1, σ
2) ∈ Ψ be the parameter under H0 and let yo be the observed

data. One approach to this problem is to consider a p-value defined by Pr (t(y) > t(yo)),

where t(yo) is the (Bayesian) test statistic. The choice of probability measure under H0

leads to different types of p-values such as prior/posterior predictive p-values and plug-in

p-values (Bayarri and Berger, 2000; Robins et al., 2000). Here we follow Robert and

Rousseau (2002) and Fraser and Rousseau (2008) and take the probability measure to be

m(y | ψ̂yo) =

∫
p(y | ψ̂y = ψ̂yo , ψ)p(ψ | ψ̂yo)dψ, (7)

where p(ψ | ψ̂yo) is the distribution of ψ conditional on the maximum likelihood estimate

(MLE) ψ̂yo under H0 and p(y | ψ̂y = ψ̂yo , ψ) is the distribution under H0 of a new

sample y conditional on the MLE from this sample being equal to the MLE from the

observed data. This leads to the conditional predictive p-value. In the Gaussian case, the

conditional distribution of y given ψ̂y does not depend on ψ. One can then show that

m(y | ψ̂yo) has the uniform distribution on an ellipsoid.

3.1.1 Standard non-informative prior

For illustration we set r = 1 in the hypotheses (6) and take the test statistic to be the

posterior expectation of
∑p

i=1 β
2
i . Adopting the standard non-informative prior π(θ) ∝

1/σ2, the test statistic can be expressed as

t(y) = E

(
p∑
i=1

β2
i | y, X

)
=

p∑
i=1

β̂i(y)2 +

∑n
i=1(yi − ŷi)2

n− p− 2
tr
[
(X tX)−1

]
, (8)

where β̂i(y) is the ordinary least squares estimate of βi and ŷi is the i-th element of Xβ̂(y)

and X is the matrix of covariates whose i-th row corresponds to the i-th individual. Thus,
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an accurate approximation to the p-value can be obtained from M−1
∑M

i=1 1l(t(yi) >

t(yo)), where yi are independent realisations from (7) and the test statistic is evaluated

from (8). We will refer to p-values obtained in this way as ‘exact’.

In the simulations that follow we compare the accuracy of p-values obtained using five

different approximations to the test statistic (8). The approximations are:

[1 ] MCMC: For each realization yi from (7), the test statistic is evaluated by first

generating a sample from the resulting posterior distribution using Gibbs sampling

and then computing the average of
∑p

i=1 β
2
i .

[2 ] MCMC-IS: MCMC is used to generate a sample from the posterior distribution

p(θ|y1) and compute t(y1). For i ≥ 2, t(yi) is computed by MCMC-IS as described

in Section 2.

[3 ] MLE centered MCMC-IS: MCMC is used to generate a sample from the posterior

distribution p(θ|y1) and compute t(y1). For i ≥ 2, t(yi) is computed by MCMC-IS

with the centering transformation

β′t = βt + β̂yi − β̂y1 , log(σ′t) = log(σt) + log(σ̂yi)− log(σ̂y1).

[4 ] Posterior mean centered MCMC-IS: Similar to [3], except the MLE is replaced by

the posterior mean which is estimated by IS.

[5 ] Iterated posterior mean centered MCMC-IS: Similar to [4], except that the pos-

terior mean is obtained by 2 iterations of the algorithm given in Section 2.2.

To illustrate the effect of dimension and how the recentering diminishes this effect, we

consider three cases: the first has one covariate under H1, the second has 9 covariates

under H1 and the third has 24 covariates under H1. In the simulation study, samples

11



of n = 250 observations are generated under H0 : (β0 = 1, σ2 = 1) 250 times. For

each p-value, M = 1000 samples are generated from (7) on which the test statistics are

computed. We simulate from the posterior distributions of θ using a standard Gibbs

sampling algorithm which is run for 105 iterations with a 1% burn-in. The results are

displayed in Figures 1– 3.

Figures 1–3 show that MLE centered MCMC-IS performs almost as well as MCMC

in approximating the p-values. It also shows that simple MCMC-IS displays considerable

variability in small dimensions and in moderate dimensions the results are too biased to

be of use. It is intersting that posterior mean centered MCMC-IS performs relatively

well with p = 1, but its performance deteriorates appreciably as p increases to 9 and with

p = 24 the results are very biased. Iterated posterior mean centered MCMC-IS displays

the same type of behaviour however the rate at which its performance deteriorates is much

slower. It is probable that the performance of iterated posterior mean centered MCMC-

IS could be improved by further iteration. One suprising result from the simulations is

that the performance of MCMC and MLE centered MCMC-IS appears to improve as the

dimension increases from p = 1 to p = 9 and no deterioration is observed for p = 24.

Our explanation for this is that in these cases the test statistic is small relative to the

sampling error in approximating the test statistic. When the dimension increases, the

test statistic typically increases which results in an improvement of the relative error.

3.1.2 The Bayesian lasso

The Bayesian lasso is a linear regression model where the coefficients β1, . . . , βp are given

(conditionally) independent, mean zero, Laplace prior distributions. This results in con-

siderably greater shrinkage of the regression coefficients compared with the standard
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Figure 1: Scatter plots of ‘Exact’ p-values against approximated p-values where H1 in-

cludes one covariate.
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Figure 2: Scatter plots of ‘Exact’ p-values against approximated p-values where H1 in-

cludes nine covariates.
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Figure 3: Scatter plots of ‘Exact’ p-values against approximated p-values where H1 in-

cludes twenty four covariates.

Gaussian prior. Following Park and Casella (2008), we take the prior for the regression

model to be

p(β0, . . . , βp|σ2λ2) =

p∏
j=1

λ

2σ
exp (−λ|βj|/σ)

p(σ2, λ2) =
1

σ2
× δr

Γ(r)
(λ2)r−1 exp

(
−δλ2

)
, (r = 1, δ = 1.78).

Note that β0 has the improper, uniform prior on R. Park and Casella (2008) proposed

a Gibbs sampler based on the scale mixture of normals representation of the Laplace

distribution. An alternative Gibbs sampler is presented in Hans (2009). In their analysis

of the Diabetes dataset (Efron et al., 2004) where p = 10 and n = 442, Park and Casella

(2008) showed that the 95% credible intervals for a number of the regression coefficients

contain zero (variables age, tc,ldl, hdl, tch and glu). We illustrate the computation of the

Bayesian p-value for the hypothesis test that regression coefficients of these five variables
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are simultaneously zero.

As the posterior distribution of the Bayesian lasso is not Gaussian, we cannot com-

pute the test statistics exactly. Instead we need to use MCMC, MCMC- IS or one of

the variants of MCMC-IS considered in the previous section. MCMC-IS and its vari-

ants offer considerable computational savings, since sampling from the full conditional

of (β1, . . . , βp) requires solution of a p-dimensional linear system (for the mean of the

multivariate normal) and inverting a p× p matrix (for the covariance matrix of the mul-

tivariate normal). To approximate the p-values 1000 test statistics were generated. In

the MCMC, a chain length of 105 was used with a burn-in of 1%.

The results displayed in Figure 4 indicate that centering is necessary and that iterated

posterior mean centering gives superior results. The estimated p-values in this example

were 0.048 (MCMC), 0.091 (MCMC-IS), 0.047 (Posterior mean centered MCMC-IS) and

0.045 (Iterated posterior mean centered MCMC-IS). Although the p-value from Posterior

mean centered MCMC-IS is slightly more accurate in this instance, from Figure 4 we

believe that this is due to random variation and that iterated posterior mean centered

MCMC-IS should be preferred.
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Figure 4: Scatter plots of MCMC test statistics against approximated test statistics com-

puted using MCMC-IS and its variants. The test statistic for the data is approximately

11.94.
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3.2 Simulation-based model checking

Dey et al. (1998) proposed a computationally intensive method for checking the suitability

of proper priors used in a hierarchical model. Bayarri and Castellanos (2007) concluded

that the approach works well in detecting incompatibility between the model and data

when proper priors are used. A summary of the steps involved in the method is given

below:

1. For r = 1, . . . , R repeat

(a) Simulate y(r) from the prior predictive distribution, that is, simulate θ(r) ∼

p(θ) then simulate y(r) ∼ p(y|θ(r)).

(b) For discrepancy measure of interest d(y, θ), compute the vector of quantiles

q(r) = (q
(r)
0.05, q

(r)
0.25, q

(r)
0.5, q

(r)
0.75, q

(r)
0.95) where q

(r)
α denotes the α quantile of the pos-

terior distribution p(d(y(r), θ)|y(r)).

2. Compute the vector q̄ of averages over r and for the original data y(0) compute q(0).

3. Compute the R + 1 Euclidean distances between q(r) and q̄.

4. Perform a one-sided, upper tail Monte Carlo test comparing the distance between

q(0) and q̄ with the distances between q(r) and q̄, r = 1, . . . , R.

In this subsection, we study the performance of the MCMC-IS methods described in

subsection 2.2 in estimating the quantiles of the posterior distributions p(d(y(r), θ)|y(r))

described in Step 1.

The MCMC-IS methods are applied to simulation-based model checking for the heart

transplant dataset and model from section 5 of Dey et al. (1998). This dataset contains

the number of patients developing problems leading to short term organ rejection and
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the total number of transplant patients at 10 centers and grouped into 5 age groups. The

number of patients developing problems at center i and in age group j, denoted yij is

modelled as yij ∼ B(pij, nij) where

log

(
pij

1− pij

)
= αi + βixj,

with ages xj have been centered and scaled. The prior on (αi, βi) is given by

αi ∼ N(µα, τ
2
α), βi ∼ (µβ, τ

2
β),

µα ∼ N(−0.9, (0.2)2), µβ ∼ N(0.17, (0.05)2),

τ−2
α ∼ Gamma(2.16, 0.0464), τ−2

β ∼ Gamma(2.006944, 0.002517361).

We use two sets of discrepancy measure;

dij1 = yij −
nij exp(αi + βixj)

1 + exp(αi + βixj)
, and dij2|1 = yij −

nij exp(µα + µβxj)

1 + exp(µα + µβxj)
.

For this simulation study we took R = 250; the length of the MCMC chains was 104

and a 10% burn-in was used in each case. For each r = 2, . . . , R, we estimate q(r) for

each of the dij1 and dij2|1, i = 1, . . . , 10, j = 1, . . . , 5, using MCMC, MCMC-IS, posterior

mean centered MCMC-IS and iterated posterior mean centered MCMC-IS with 2 and 5

iterations. The accuracy of the results from the MCMC-IS methods is quantified using the

empirical correlation coefficients between these estimates and the estimates obtained from

MCMC. This yields a sample of R − 1 correlation coefficients for each of the MCMC-IS

methods. Summaries of these samples are given in Table 3.2.

As in the previous examples, centering the samples using the posterior mean before

applying IS results in a considerable improvement in accuracy compared to direct applica-

tion of IS. Using iterated posterior mean centering MCMC-IS yields further improvement

over posterior mean centered MCMC-IS. Although more accurate estimates are obtained
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Method Min. 1st Qu. Median Mean 3rd Qu. Max.

MCMC-IS 0.8054 0.9760 0.9887 0.9820 0.9953 0.9997

Posterior mean centered

MCMC-IS

0.8432 0.9933 0.9981 0.9937 0.9996 1.0000

Posterior mean centered

MCMC-IS (2 iterations)

0.8843 0.9985 0.9996 0.9976 0.9999 1.0000

Posterior mean centered

MCMC-IS (5 iterations)

0.9727 0.9993 0.9997 0.9994 0.9999 1.0000

Table 1: Summary statistics of correlation coefficients between the estimates obtained

from MCMC-IS methods with estimates obtained by MCMC.

by further iteration of the procedure, the subsequent improvements are not as large. Also,

the gains in accuracy need to be balanced against the amount of additional computation

required.

4 Summary and Conclusion

Importance sampling has previously been shown to be useful in situations requiring the

computation of expectations or decisions with respect to multiple posterior distributions.

In this paper we have focused on the properties of IS when applied to Bayesian model

validation techniques.

In this paper, we make two important contributions to the literature. Firstly, we

provide an examination of the IS weights in a setting that is relevant to Bayesian model

validation techniques. Secondly, we demonstrate that, in this setting, recentering can

stabilize the IS weights for moderatly complex models. The required recentering can be
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estimated easily and accurately using iterated IS. These contributions are demonstrated

in two Bayesian model validation settings: calculation of Bayesian p-values for linear

regression models and checking of priors for a hierarchical logistic regression model.

We note that the full gains that can be anticipated from the proposed approach are

not realized in the examples used in this paper, since for comparative purposes we needed

to select situations in which MCMC could also be used. However, the results are still

compelling. The greatest computational gain will be achieved in situations where an it-

eration of the MCMC algorithms is computationally expensive relative to the evaluation

of the likeihood and prior. In the Bayesian lasso example, the Gibbs sampling algorithm

involved simulation of a p-dimensional multivariate normal random variable which re-

quires O(p3) operations whereas the most expensive part of evaluating the likelihood is

the solution of a p-dimensional linear system which requires O(p2) operations. Although

these examples concerned model checking, the same ideas can be used when checking

for the validity of a Bayesian methodology through a simulation study, as considered in

Gadja et al. (2010).

Our hope is that the theory and applications presented here will convince the reader

that computationally intensive model validation techniques can be made feasible using

recentered IS.

5 Supplemental Materials.

The supplemental materials are contained in single archive, they are composed of the

following two items

Appendix In this Appendix, we give the proof and conditions for (4) (Section 1.1)

together with modifications to the arguments presented in Section 2.2 to apply to
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self-normalized importance weights.

R code for the Lasso example In this supplementary material with provide the R

code used to perform the Lasso example presented in Section 3.1.2.
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