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ABSTRACT

A star with a mass larger than 8− 10 solar masses can end its life in a supernova ex-

plosion and possibly form a neutron star. In this dissertation, I study two important

aspects of the physics of supernovae and neutron stars.

In the first part, I consider neutrino flavor oscillations in supernovae. Neutrino

flavor oscillations in the presence of ambient neutrinos is nonlinear in nature which

leads to interesting phenomenology that has not been well understood. This phe-

nomenon in the supernova context has been studied in the so-called neutrino Bulb

model which is a restricted, stationary supernova model and which possesses the

(spatial) spherical symmetry about the center of the supernova and the (directional)

axial symmetry around the radial direction.

By studying the problem of the neutrino oscillations in a two dimensional toy

model, the so-called neutrino Line model, I show that the spatial symmetries can be

broken spontaneously in a dense neutrino gas. Using a time-dependent version of
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the neutrino Bulb model, I also show that the stationarity of a neutrino gas can be

broken spontaneously as well.

In the second part, I compute the thermal conductivity of the neutron star crust.

I use the quantum Monte Carlo (QMC) technique to calculate the static structure

function S(q) of a one-component ion lattice and use it to compute the thermal con-

ductivity κ of high-density solid matter expected in the neutron star crust. By mak-

ing detailed comparisons with the results obtained using one-phonon approximation

(OPA), and the multi-phonon harmonic approximation, we assess the temperature

regime where S(q) from QMC can be used directly to calculate κ. We also com-

pare the QMC results to those obtained using the classical Monte Carlo technique

to quantitatively assess the magnitude of the quantum corrections. We show that

the quantum effects become relevant at temperature T . 0.3 ΩP, where ΩP is the

ion plasma frequency. At T ' 0.1 ΩP the quantum effects suppress κ by about 30%.

The comparison with the results of the OPA indicates that dynamical information

beyond the static structure is needed when T . 0.1 ΩP.
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Chapter 1

Introduction

Supernovae and neutron stars are among the most interesting phenomena in the

universe. Due to their extreme physical conditions, the understanding of supernovae

and neutron stars involves many branches of physics such as nuclear physics, particle

physics, general relativity, condensed matter physics and so on. This makes the

physics of supernovae and neutron stars a vitrine of physics in which a large number

of, if not all, categories of physics are displayed.

The study of supernovae and neutron stars enables us to probe the physics of

matter at extreme densities and temperatures. Since studying the matter under such

extreme conditions is very difficult (if not impossible) in the laboratory, supernovae

and neutron stars can be considered as laboratories for physics in extreme conditions.

1.1 Stellar evolution

Astrophysicists have been trying to understand the lifes of stars for many years. The

main energy source of a star’s luminosity is the nuclear fusion. Stars are born in

giant molecular clouds consisted mostly of hydrogen. They first burn hydrogen to
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Chapter 1. Introduction

helium1 and then, depending on their masses, they continue to burn lighter elements

into heavier elements (see, e.g., (Kippenhahn et al. 1990)).

For stars with masses larger that approximately 8 − 10 solar masses, they can

go through all the stages of nuclear fusion until the core is composed of iron group

nuclei. Since the iron is the most tightly bound nucleus, the fusion stops at this

point. The star is supported against the gravity by the thermal pressure while it

is still loosing thermal energy due to radiation. When the fusion does not provide

sufficient heat to support the weight of the stellar envelope, the gravitational pull can

be balanced by the pressure of degenerate electron gas in the core. In this case, the

core is stable only if its mass is smaller than a critical mass called the Chandrasekhar

mass (Chandrasekhar 1934). If the mass of the core becomes larger than this critical

mass, the stellar core becomes unstable and begins to collapse under its own gravity.

The collapse proceeds until the inner core reaches densities of order of nuclear

density, the pressure of the degenerate nonrelativistic gas of nuclei halts the collapse,

causes bounce of the core and generates a shock wave. The final result is a supernova

explosion that can outshine the rest of the galaxy and can eject a few solar masses

of stellar materials with a kinetic energy of about 1051 erg within a few seconds.

During the collapse, a huge amount of gravitational binding energy (of about 1053

erg) is released. Approximately 99% of this energy is in the form of neutrinos of all

flavors. The rest of the energy goes into the kinetic energy of the ejecta (∼ 1%) and

the electromagnetic radiation (∼ 0.01%) (Raffelt 1996).

1If the giant molecular cloud is not massive enough, its core will not become sufficiently
hot to burn hydrogen and it will become a brown dwarf (Kippenhahn et al. 1990).
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Chapter 1. Introduction

1.2 Supernova neutrinos

Neutrinos are subatomic particles that participate only in the weak and gravitational

interactions. These particles come in three flavors νe, νµ and ντ and with very small

masses. As we will see in Chapter 3, since the weak-interaction and mass (propaga-

tion) eigenstates of the neutrino are not the same, neutrinos can oscillate from one

flavor into another during propagation.

The physics of the oscillations of supernova neutrinos is not well understood.

Studying the evolution of these neutrinos is very important in different aspects of

supernova physics.

The primordial element abundances froze out when the universe consisted of

about 75% H and 25% He by mass with a very small fraction of heavier elements.

As we mentioned in the previous section, stars can produce heavier elements up to

iron through nuclear fusion that occurs inside their cores. The elements heavier than

iron must be produced somewhere else. It is thought that elements with A > 70

are mostly produced through the slow and fast neutron capture processes, also know

as the s- and r-processes. Core-collapse supernovae are one of the most popular

candidate sites in the universe for r-process nucleosynthesis.

Understanding neutrino flavor evolution is important to r-process nucleosynthesis.

The reason is that the neutrino flavor transformation can substantially modify the

r-process by changing the neutron-to-proton ratio. In particular, the oscillations

between νe(ν̄e) and νµ,τ (ν̄µ,τ ) can modify the νe and ν̄e energy spectra which in turn

can change the neutron-to-proton ratio through the processes

νe + n→ p+ e− ,

ν̄e + p→ n+ e+ .
(1.1)

Understanding neutrino flavor evolution can also be important to the supernova

3



Chapter 1. Introduction

dynamics. As we will see in the next chapter, one of the most popular explosion

mechanism is the delayed explosion. In this mechanism, the shock is first stalled and

then revived by absorbing a small fraction of the energy of the neutrinos released in

the supernova explosion. A possible swap of the energy spectra of the neutrinos of

different flavors can change the absorption of the neutrino energy by the shock wave

and, as a result, it can affect the dynamics of the explosion.

Finally, if we can observe a galactic supernova, we may be able to measure the

supernova neutrino energy spectra. By comparing the theoretical predictions with

the observations, we can obtain valuable information of the physics of supernovae.

1.3 Neutron star cooling

For a range of values of initial masses and metalicities of the progenitor star, a

supernova explosion can lead to the formation of a neutron star. The idea of the

existence of neutron stars was first proposed by Baade and Zwicky (1934) almost a

year after the discovery of the neutron by Chadwick (1932). However, the first obser-

vational evidence only came almost 30 years later when the first pulsar was observed

by Anthony Hewish and Jocelyn Bell in 1967 (Hewish et al. 1968). We now know

that pulsars are highly magnetized rotating neutron stars that emit electromagnetic

radiation along their magnetic axes.

Neutron stars are formed with extremely high internal temperatures (of about

T ≥ 1011K) and cool down in a few hundred thousands of years. The evolution

of the thermal content of a neutron star is directly related to the properties of the

very dense matter inside it. Studying the evolution of the surface temperature of the

neutron star can provide us with the valuable information of its interior, structure and

composition. In particular, we can obtain the information about the temperature-

sensitive properties of the neutron star interior such as transport coefficients, the

4



Chapter 1. Introduction

superfluidity of the matter inside the neutron star core, the crust structure and

composition, and so on.

1.4 Outline of the dissertation

In this dissertation I study two important aspects of the physics of supernovae and

neutron stars. In the first part of this dissertation, I examine the neutrino flavor

oscillations in supernovae and in the second part, I discuss briefly the topic of the

neutron star cooling.

The main goal in the first part of this dissertation is to investigate the stability

of the spatial and time symmetries in a dense neutrino gas. In Chapters 2 and 3, I

review briefly the physics of supernovae and neutrino oscillations. In Chapters 4 and

5, I show that the time and spatial symmetries can be broken spontaneously in a

dense neutrino gas due to neutrino oscillations. This means that even if the neutrino

gas is initially equipped with spatial and time symmetries, a very small asymmetric

perturbation in space (time) can lead to the breaking of the spatial (time) symmetry

during the evolution of neutrinos.

In the second part of this dissertation, I consider the problem of the neutron star

cooling. The main focus will be on the thermal conductivity of the neutron star crust.

I investigate the importance of the quantum effects in the crust thermal conductivity

by using classical and quantum Monte Carlo techniques and a semi-analytical cal-

culation called the one-phonon approximation. We show that the quantum effects

become important at temperature T ≤ 0.3 ΩP and the lattice dynamical information

(information of the lattice variation in time) is needed when T ≤ 0.1 ΩP. Here ΩP is

the plasma frequency which is an energy scale in the plasma related to the density,

mass and charge of the ions.

5



Chapter 1. Introduction

Throughout this dissertation we adopt the natural physical units with ~ = c =

kB = 1.
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Chapter 2

Supernova Explosion

A massive star with a mass larger than 8 − 10 M� can undergo a supernova explo-

sion in the last stage of its life. During a supernova explosion, a huge amount of

(gravitational binding) energy (of about 3× 1053 erg) is released. The vast majority

of this energy is released in the form of neutrinos of all flavors.

In this chapter, we will study the physics of supernova explosion with an emphasis

on supernova neutrinos. We will review briefly the different types of supernovae and

the explosion mechanisms behind them. We will also discuss the physics of supernova

neutrinos and their energy spectra.

2.1 Types of supernova

Due to their large luminosities, supernovae were noticed very early by ancient civiliza-

tions. Chinese astronomers were the first to record a supernova explosion and there

are notes showing that the first recorded supernova explosion is SN 185 occurred in

185 AD. There are records of several other supernovae observed by Chinese, middle

eastern and European astronomers.

7



Chapter 2. Supernova Explosion

Figure 2.1: The classification scheme of supernovae. Figure adapted from (Giunti
and Kim 2007).

The first modern classification of supernovae was proposed by American as-

tronomers Rudolph Minkowski and Fritz Zwicky in 1941 (Da Silva 1993). Supernovae

can be classified according to their spectroscopic properties (see Fig. 2.1). Based on

the presence or absence of the hydrogen line in the spectrum, one can put a super-

nova in one of the two general categories. In the first category, called SN I, the

hydrogen line is absent. This class itself is divided into several subclasses based on

whether there exist Si or He lines in the spectra. On the other hand, if the H lines

exist, the supernova belongs to the second category called SN II. Again this class

can be divided into different subclasses based on other spectroscopic properties.

It turns out that the classification of supernovae based on their spectroscopic

characteristics does not completely reflect the physics behind them. Supernovae can

be classified in two general categories according to the mechanisms of their explosions.

8



Chapter 2. Supernova Explosion

The first category contains SN Ia which is conjectured to be the result of the

explosion of a carbon-oxygen white dwarf that has a close companion star. White

dwarfs are stellar remnants that are supported by the pressure of the degenerate gas of

electrons. It can be shown that for such a configuration there exists a maximum mass,

the so-called Chandrasekhar mass, above which the star is not stable (Chandrasekhar

1934). When the mass of the white dwarf exceeds the Chandrasekhar mass through

accretion from the companion star, the degenerate electron gas can not balance the

pull of gravity anymore. Even a very small fraction of excessive mass will trigger the

collapse of the white dwarf. The collapse increases the pressure and the temperature

which triggers the fusion of carbon and oxygen to heavier nuclei and leads to the

release of a huge amount of energy. The amount of energy released is enough to

explode the star and create an expanding nebula. The explosion of SN Ia blows the

star completely apart and does not leave a central compact object.

The second class contains SN II, Ib, Ic that are thought to be generated by an

explosion due to the core-collapse of the progenitor star. In the next section, we will

discuss briefly the physics of the core-collapse supernovae.

2.2 Core-collapse supernovae

As mentioned above, SN II, SN Ib and SN Ic are produced by the core-collapse of

massive stars. If the mass of the star is larger than ∼ 10M�, the core of the star

can become sufficiently hot to go through all the stages of the nuclear fusion until

Fe group nuclei become the dominant type of nuclei in the stellar core. As Fe is the

most tightly bound nucleus, the fusion ceases after this stage. For the stars with

masses smaller than 10M�, the core does not become hot enough to go through all

the stages of the nuclear fusion. In particular, the cores of stars with masses in the

range 8− 10 M� consist mostly of O, Ne and Mg.

9



Chapter 2. Supernova Explosion

Figure 2.2: Remnants of massive single stars as a function of initial metallicity
(y-axis; qualitatively) and initial mass (x-axis). The green curve determines the
boundaries of the regions in which the star maintains and loses its H envelope. The
white region is the region of pair-instability supernovae that leave no remnant. Figure
adapted from (Heger et al. 2003) and reproduced by permission of the AAS.

At the end of the life of a massive star and just before the core-collapse, the

stellar core has a mass of about 1.5 M�, a temperature of about 0.69 MeV, a central

density of about 1010 g cm−3 and a radius of about a few thousand kilometers. This

configuration is supported against the pull of gravity by the pressure of the degenerate

electron gas inside the core. Although the pressure is dominated by the degenerate

electron gas, the contribution from the thermal pressure can not be neglected. When

the collapse starts, the slightly higher temperature caused by the contraction of the

10



Chapter 2. Supernova Explosion

core leads to the photodissociation of Fe

γ +56Fe→ 13α + 4n . (2.1)

This process consumes about 124 MeV of the thermal energy (per Fe nucleus) and

therefore the thermal pressure is reduced even more rapidly. Beside this, free elec-

trons will combine with nuclei in the inverse-beta-decay processes

e+ p→ n+ νe ,

e+N(Z,A)→ N(Z − 1, A) + νe ,
(2.2)

which results in the reduction of the electron number density. Through these pro-

cesses, both of the degenerate and thermal pressures diminish after the onset of the

collapse and the collapse proceeds even faster.

During the collapse, the photon opacity inside the core is so large that neutrinos

are essentially the only particles that can carry the energy out of the collapsing core.

The total amount of the released energy is simply equal to the gravitational binding

energy of the newly born central object (if any)

Eb '
3

5

GM2

R
= 1.60× 1053 erg

(
M

M�

)2(
10 km

R

)
. (2.3)

The total energy is equipartitioned among all the flavors of neutrinos and antineu-

trinos. This means that the total energy released in each type of neutrino is approx-

imately Eb/6.

2.3 Phases of core-collapse supernovae

At the onset of the collapse, the neutrinos produced in the inverse-beta decay pro-

cesses (Eq. (2.2)) can leave the core freely since the density inside the core is not

sufficiently large to hinder their propagation. However, after a few miliseconds the
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Chapter 2. Supernova Explosion

core density becomes large enough (ρ ' 3× 1011 g cm−3) to trap the neutrinos. This

results in the formation of the neutrino sphere within which the neutrino mean free

path λ is smaller than the radius of the neutrino sphere Rν . This is the capture phase

in a core-collapse supernova.

During the collapse, the core can be divided into two parts. The inner core

collapses with a subsonic velocity. As a consequence, it can efficiently communicate

within itself and collapses homologously. The subsonic velocity v inside the inner

core is proportional to radius r:

v

r
= 400− 700 s−1 . (2.4)

In contrast, the outer core collapses almost freely with supersonic velocity.

After about a few hundred miliseconds, the matter inside the inner core reaches

the nuclear density ρ ' 1014 g cm−3. At this point, the pressure of the degenerate

gas of nonrelativistic nuclei halts and rebounds the collapse. The rebounce results in

the formation of an outward propagating shock wave at the edge of the inner core.

This phenomenon is called the core bounce.

The initial velocity of the shock is very large with a value of about 100 km ms−1.

But as the shock travels through the infalling matter, it loses a large part of its energy

through the processes discussed in the previous section (Eqs. (2.1) and (2.2)). As a

consequence, a large number of electron neutrinos are produced at this stage. These

neutrinos initially pile up behind the shock wave since the matter density is very

large and the shock wave is well inside the neutrino sphere. However, a few tens of

miliseconds after the bounce, the shock wave reaches the region with densities of order

1011 g cm−3. At this point the matter becomes transparent to neutrinos and they can

propagate freely. As a result, in a short interval of time (a few miliseconds), a large

number of neutrinos are released. This is the neutronization burst, electron neutrino

burst or breakout pulse. The neutrino luminosity is very large in the neutralization

12
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burst Lν ∼ 6 × 1051 erg s−1. The burst lasts for a few miliseconds during which a

total energy of a few 1051 erg is released.

The energy of the shock is finally exhausted, and it stalls at a radius of about

200− 300 km. During the time when the shock stalls, the matter outside the shock

keeps falling through it. This phase is the accretion phase which lasts for about a

few hundred milliseconds. During the accretion phase, the matter behind the shock

is heated by the accretion and produces neutrinos and antineutrinos of all flavors.

Almost a quarter of the binding energy is released during this phase.

If there does not exist a mechanism to revive the shock, the explosion will cease

at this point. It has been suggested that the thermal neutrinos coming from the

deeper regions of the core could revive the shock in a mechanism called the delayed

explosion (Burrows et al. 1995). The mechanism is based on the absorption of a

fraction of the energy of neutrinos by the matter just below the shock. Most of the

energy is deposited by electron neutrinos and electron antineutrinos since they can

be absorbed by free nucleons just below the shock

νe + n→ p+ e− ,

ν̄e + p→ n+ e+ .
(2.5)

It has been shown that the convection plays an essential role in the delayed

supernova scenario. It can transport the hotter matter from innermost regions to

the region just below the shock. For this reason many of one dimensional supernova

simulations that do not include convection do not produce a successful supernova

explosion.

What could be left behind a supernova explosion is the proto-neutron star which

settles down in a few seconds and can form a neutron star or a black hole. After the

accretion phase, the proto-neutron star continues to emit thermal neutrinos and anti-

neutrinos of all flavors for a few seconds. This phase is called the Kelvin-Helmholtz

13



Chapter 2. Supernova Explosion

Figure 2.3: Schematic representation of the evolution stages of a core collapse
supernova. The onset of the collapse is displayed in the top left panel and the last
stage of explosion is displayed on bottom right. Figure adapted from (Janka et al.
2012).
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cooling phase or simply the cooling phase. In Fig. 2.3, different stages of the supernova

explosion are shown schematically.

2.4 Neutrino energy spectra

In the very hot core, neutrinos are produced through the following reactions:

• pair annihilation

e− + e+ → ν̄ + ν . (2.6)

• electron(positron)-nucleon bremsstrahlung

e± +N → e± +N + ν + ν̄ . (2.7)

• nucleon-nucleon bremsstrahlung

N +N → N +N + ν + ν̄ . (2.8)

• plasmon decay

γ → ν + ν̄ . (2.9)

• photoannihilation

γ + e± → e± + ν + ν̄ . (2.10)

• e+ capture processes

n+ e+ → ν̄e + p . (2.11)
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These neutrinos are initially trapped inside the neutrino sphere due to neutral-current

weak scattering by large nuclei such scattering processes are very effective since the

scattering amplitudes of individual nucleons inside a large nucleus add up coherently.

The cross section of the neutrino scattering on a large nucleus is proportional to the

neutrino energy squared

σ ≈ G2
FE

2
ν . (2.12)

From this equation, one observes that the neutrino sphere is a function of the neutrino

energy and not a well-defined single surface.

One should note that the scattering on large nuclei does not change the neutrino

energy by large amounts. In fact, the energies of the neutrinos are set inside the

energy sphere where the neutrino energy was last modified due to processes such as

scattering on electrons, pair production and charged-current absorption. This surface

resides inside the neutrino sphere. To find the neutrino spectra on the surface of the

neutrino sphere, one needs to track the neutrino evolution between the energy sphere

and the neutrino sphere.

Since neutrinos are not in thermal equilibrium in the region between the neutrino

sphere and the energy sphere, one does not expect a perfect blackbody spectrum for

neutrinos on the surface of the neutrino sphere. Instead, the neutrino spectra are

pinched in the sense that both of the high- and low-energy ends are suppressed in

comparison with a perfect Fermi-Dirac spectrum (Keil et al. 2003).

One can fit the energy distribution fν(E) obtained from the Monte Carlo integra-

tion of the Boltzmann equation by an empirical formula (Keil et al. 2003). There are

two widely used empirical formulae for neutrino energy distribution on the surface

of neutrino sphere. The first one is the Fermi-Dirac like energy distribution

fν(E) ∝ E2
ν

eEν/Tν−ην + 1
, (2.13)
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where the degeneracy parameter η has a typical value of 1− 3 and in general can be

different for different flavors. The other widely used empirical formula is

fν(E) ∝
(
Eν
〈Eν〉

)β
e−(1+β)Eν/〈Eν〉 , (2.14)

where β is the pinching parameter that depends on the flavor under consideration

and 〈Eν〉 is the average energy of neurtino. The typical values of β are found to be

in the range of 2− 5 (Keil et al. 2003).

17



Chapter 3

Physics of Neutrino Oscillations

Neutrino flavor transformation is a quantum mechanical phenomenon in which neu-

trinos of different flavors transform into each other during propagation. The possi-

bility of neutrino flavor transformation or neutrino oscillations was first proposed by

Pontecorve in 1957 1 (Pontecorvo 1957; 1958).

Neutrino flavor transformation was first confirmed in late 1990s by the Super-

Kamiokande Observatory (Fukuda et al. 1998) and the Sudbury Neutrino Observa-

tory (Cleveland et al. 1998) in the solar neutrino experiments. This discovery led

to the 2015 physics Nobel prize for Dr. Takaaki Kajita from the Super-Kamiokande

Observatory and Dr. Arthur McDonald from the Sudbury Neutrino Observatory.

3.1 Neutrino mixing

Neutrino flavor transformation implies that neutrinos are massive particles. Neutri-

nos are produced and detected in the weak interaction (flavor) states. However, the

1The phenomenon proposed by Pontecorve was the oscillation between the neutrino and
antineutrino analogous to K0 − K̄0 oscillations.
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propagation (mass) states of the neutrino, the eigenstates of the propagation Hamil-

tonian, are not the same as the weak interaction states. As a consequence, neutrinos

can undergo flavor transformation while they propagate.

The weak interaction staes, |να〉 (α = e, µ, τ), and the mass eigenstates of the

neutrino, |νk〉 (k = 1, 2, 3), are related by the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix

|να〉 =
3∑

k=1

U∗αk|νk〉 , (3.1)

where U is a 3× 3 unitary matrix (Giunti and Kim 2007).

The PMNS matrix can be parametrized in terms of four parameters: three mixing

angles θ12, θ23 and θ13 and one phase δ 2. The phase δ is nonzero only if there exists a

violation of combined charge and parity symmetry or CP violation (see next section).

With these parameters, the PMNS matrix can be written as

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(3.2)

where cij ≡ cos θij and sij ≡ sin θij. The neutrino mass-squared differences, ∆m2
kj =

m2
k − m2

j , and the mixing angles can be measured in various neutrino oscillation

experiments. The best fit values of the mass-squared differences are (Olive et al.

2 This is true only if neutrinos are Dirac particles. In the case of Majorana neutrinos,
there are two additional phases. The Majorana phases do not affect neutrino oscillations.
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Figure 3.1: Schematic representation of the different mass hierarchies. Reprinted
from Prog. Part. Nucl. Phys., 83, X. Qian & P. Vogel, Neutrino mass hierarchy, 1
Copyright 2015, with permission from Elsevier (Ref. (Qian and Vogel 2015)).

2014)

∆m2
21 '7.6× 10−5eV2 ,

|∆m2
13| ' |∆m2

23| '2.4× 10−3eV2 ,
(3.3)

and for the sin 2θij’s are

sin2 2θ12 = 0.846± 0.021 ,

sin2 2θ23 = 0.999+0.001
−0.018 normal hierarchy

1.000+0.000
−0.017 inverted hierarchy ,

sin2 2θ13 = 0.085± 0.005 ,

(3.4)

where m3 > m2 > m1 for the normal hierarchy, and m2 > m1 > m3 for the inverted

hierarchy (see Fig. 3.1).
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The resulting PMNS matrix is

U =


0.82± 0.01 0.54± 0.02 0.15± 0.03

0.35± 0.06 0.70± 0.06 0.62± 0.06

0.44± 0.06 0.45± 0.06 0.77± 0.06

 . (3.5)

3.2 Neutrino oscillations in vacuum

3.2.1 Three-flavor senario

Since the mass eigenstates |νk〉 are the eigenstates of the propagation Hamiltonian

in vacuum, their evolution in time and space can be written as

|νk(~x, t)〉 = e−iEkt+i~pk·~x |νk〉 ,

where Ek and ~pk are the energy and momentum of the kth mass eigenstate. Using

Eq. (3.1), one finds the evolved flavor states to be

|να(~x, t)〉 =
∑
k

U∗αke
−iEkt+i~pk·~x |νk〉 . (3.6)

Now we can write |νk〉 in terms of |να〉 and obtain

|να(~x, t)〉 =
∑
k,β

U∗αke
−iEkt+i~pk·~x Uβk|νβ〉 . (3.7)

Therefore να → νβ transition amplitude can be written as

Aνα→νβ = 〈νβ|να(~x, t)〉 =
∑
k

U∗αke
−iEkt+i~pk·~x Uβk . (3.8)

Assuming that the different mass eigenstates have the same momentum and that

the neutrinos are traveling with the speed of light to a good approximation, the

transition probability is

Pνα→νβ(L) = |Aνα→νβ(L)|2 =
∑
k,j

U∗αk UβkU
∗
βj Uαje

−i(Ek−Ej)L (3.9)
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after traveling a distance of L ' t. In the case of ultrarelativistic neutrinos, the

energy of the neutrino can be written as

Ek =
√
p2
k +m2

k ' pk +
m2
k

2Ek
. (3.10)

Substituting this result in Eq. (3.9), we get

Pνα→νβ(L) = 〈νβ|να(~x, t)〉 =
∑
k,j

U∗αk UβkU
∗
βj Uαj exp

[
− i

∆m2
kj

2E
L

]
. (3.11)

One can immediately observe that the oscillation wavelengths are

λkj =
4πE

|∆m2
kj|

. (3.12)

Eq. (3.11) tells us that the experiments based on vacuum neutrino oscillations

are sensitive only to the absolute values of mass-squared differences. Since there are

three neutrino masses, there exist two independent mass-squared differences. The

solar neutrino mass-squared difference ∆m2
� ' ∆m2

12 ' 7.6× 10−5 eV2 is measured

by the solar and reactor neutrino experiments. For solar neutrinos, it is known that

m2
2 > m2

1 due to the presence of the matter effect (see the next section). The other

mass-squared difference is measured in the atmospheric and long-baseline neutrino

experiments and has a value ∆m2
atm ' |∆m2

13| ' |∆m2
23| ' 2.4 × 10−3 eV2. For the

atmospheric neutrinos, the sign of the mass-squared difference is not known, and

therefore there exist two hierarchies as discussed in the previous section.

3.2.2 Antineutrinos and CPT transformation

The PMNS matrix for the antineutrino is related to the one for the neutrino by

noting that the neutrino becomes the antineutrino under the combined charge (C)

and parity (P) transformation. In fact a P transformation takes a left-handed state

to a right-handed one, and a C transformation makes particle its antiparticle. By
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Figure 3.2: Scheme of the CPT, CP, and T transformations. Figure adapted from
(Giunti and Kim 2007).

applying the CP transformation to the both sides of Eq. (3.1), we get (Peskin and

Schroeder 1995)

CP |να〉 = |ν̄α〉 = CP

(∑
k

U∗αk|νk〉
)

=
∑
k

Uαk|ν̄k〉 . (3.13)

Therefore all the equations we found for neutrinos in the previous section can be used

for antineutrinos by replacing U with U∗. It should be noted that the CP violation

occurs if there is a channel in which the transition probabilities are different for

neutrinos and antineutrinos

Pνα→νβ 6= Pν̄α→ν̄β . (3.14)

This occurs if δCP 6= 0.

Since the CP transformation changes the neutrino to the antineutrino and the

T transformation switches initial and final states (see Fig. 3.2), the CPT symmetry

implies that

Pνα→νβ = Pν̄β→ν̄α . (3.15)
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3.2.3 Two-flavor scenario

For many cases, we can simplify the problem of neutrino oscillations into an effec-

tive two-flavor scenario. The physical justification behind this can be understood by

noting that the the mass-squared differences differ by more than an order of magni-

tude ( |∆m2
31| ' 30 × ∆m2

21), and most of the neutrino oscillation experiments are

sensitive to only one of the mass-squared differences. In this case, it can be shown

that the problem of neutrino oscillations in the three-flavor scenario reduces to an

effective two-flavor scenario with an effective mixing angle which is a function of the

parameters in the three-flavor scenario (Giunti and Kim 2007).

In the two-flavor mixing scenario, there is only one mixing angle and the trans-

formation matrix can be written as

U =

 cos θ sin θ

− sin θ cos θ

 , (3.16)

where θ is the effective vacuum mixing angle with a value in the range 0 ≤ θ ≤ π/4.

The flavor transition probability να → νβ can be easily obtained from an equation

similar to Eq. (3.11)

Pνα→νβ(L) = sin2 2θ sin2

[
∆m2 L

4E

]
= sin2 2θ sin2

[
1.27

(
∆m2

1 eV2

)(
L

1 m

)(
1 MeV

E

)]
,

(3.17)

where the mass squared difference is defined to be ∆m2 = m2
2−m2

1. For the survival

probability we have

Pνα→να(L) = 1− Pνα→νβ(L) = 1− sin2 2θ sin2

(
∆m2 L

4E

)
. (3.18)

One should note that since U = U∗ in the two-flavor scenario, there is no CP

violation. This tells us that there is no difference between the transition or survival

probabilities of the neutrino and the antineutrino in the two flavor scenario.
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From Eq. (3.17) one immediately notes that the oscillatory behavior can be ob-

served only when

∆m2 L

4E
∼ 1 . (3.19)

In the case that ∆m2 L/4E � 1 there is no significant flavor conversion, and when

∆m2 L/4E � 1, the oscillation gets washed out by averaging the Eq. (3.17):

〈Pνα→νβ(L)〉 =
1

2
sin2 2θ . (3.20)

3.3 Neutrino oscillations in matter

In this section, we study the neutrino evolution in matter in the two-flavor scenario.

When neutrinos travel in matter, they experience a potential due to the coherent

forward elastic scattering with the electrons, protons, neutrons and other particles

in the medium. This leads to an additional term in the Hamiltonian that can make

the problem of neutrino oscillations in matter very rich.

3.3.1 The matter potential

Neutrinos can interact through both charged-current and neutral-current weak in-

teractions. The charged current interaction exists only for electron neutrinos and

antineutrinos if we assume that there is no τ or µ in the medium (which is a valid

assumption in most of the problems of interest) and that the energy of the neutrino

is not enough to produce τ or µ. The charged current potential can be written as

(Giunti and Kim 2007)

VCC =
√

2GFne , (3.21)
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where ne is the electron number density. On the other hand, the neutral-current

potential is felt equally by neutrinos of all flavors (Giunti and Kim 2007)

VNC = −1

2

√
2GFnn , (3.22)

where nn is the neutron number density. Here it has been assumed that the medium

consists of electrons, protons and neutrons and ne = np so that the neutral-current

contribution from electrons and protons cancel each other. It should be noted that

since VNC is the same for all flavors, it contributes only to a common phase of the

neutrino and does not affect neutrino oscillations.

The evolution of neutrino flavor is governed by the Schrödinger equation

i
d

dt
Ψ = HeffΨ . (3.23)

Here

Ψ =

ψνe
ψνx

 (3.24)

is the neutrino wave function where ψνe and ψνx are the amplitudes of the neutrino

in the electron and muon/tau flavor states, respectively, and

Heff =
1

2

−ω cos 2θ + VCC ω sin 2θ

ω sin 2θ ω cos 2θ − VCC

 (3.25)

is the effective Hamiltonian where

ω =
∆m2

2E
(3.26)

is the vacuum oscillation frequency.

3.3.2 The MSW effect

The new term in the Hamiltonian due to the presence of matter can lead to a very

interesting phenomenon called the Mikheyev-Smirnov-Wolfenstein (MSW) effect. In
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this phenomenon, significant neutrino flavor conversion can occur in the neutrino

gas.

It is convenient to define the new set of parameters

ωM =
√

(ω cos 2θ − VCC)2 + (ω sin 2θ)2 , (3.27)

and

tan 2θM =
tan 2θ

1− VCC

ω cos 2θ

. (3.28)

Using this new parametrization, the effective Hamiltonian in matter can be written

as

Heff =
1

2

−ωM cos 2θM ωM sin 2θM

ωM sin 2θM ωM cos 2θM

 . (3.29)

Obviously, ωM and θM can be interpreted as the effective oscillation frequency and

effective mixing angle of the neutrino in matter, respectively. One can define the

neutrino wave function in the matter basis

Φ = U−1
M Ψ =

cos θM − sin θM

sin θM cos θM

Ψ . (3.30)

In the matter basis, the Hamiltonian is diagonalized

HM = U−1
M HeffUM =

1

2

−ωM 0

0 ωM

 . (3.31)

By observing Eqs. (3.29) and (3.28) one can see that there can be a resonance

in which there can be significant flavor conversion when the mixing is maximum

(2θM = π/2). The electron density at the resonance is

nres
e =

ω cos 2θ√
2GF

. (3.32)
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Figure 3.3: Effective mixing angle ϑM (a) and the effective squared-masses m2
M1,

m2
M2 (b) in matter as functions of the electron number density ne divided by the

Avogadro number NA. Here it is assumed that m1 = 0, ∆m2 = 7 × 10−6 eV2,
sin2 2θ = 10−3 and E = 1 MeV. NR

e is the electron density at resonance. Figure
adapted from (Giunti and Kim 2007).

In the matter basis, the Equation of Motion (EoM) becomes

i
d

dt
Φ =

1

2

 −ωM −2idθM/dx

2idθM/dx ωM

Φ . (3.33)

If the off-diagonal term in Eq. (3.33) is always small in comparison with the diagonal

term, there is no significant mixing in the matter basis and the evolution is adiabatic.

One can define the adiabaticity parameter

γ =
ωM

2|dθM/dx|
(3.34)

which determines the degree of the adiabaticity of the neutrino evolution. If γ � 1,

the neutrino evolution is adiabatic and the transition between the two eigenstates in

the matter basis is negligible.

To develop a better understanding of the MSW effect, let us consider the case in

which an electron neutrino is produced in a region with a very large matter density.

Eq. (3.28) implies that at large matter densities θM ' π/2 and νe ' νM
2 , where νM

2

is the heavier mass state in the matter basis. If the matter density changes slowly,
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the neutrino remains in νM
2 in the matter basis during the propagation. However,

at detection where the matter density is almost zero, Eq. (3.28) implies that that

νM
2 ' νx (for θ � 1). This means that the electron neutrino has almost completely

transformed into a µ/τ neutrino (see Fig. 3.3). This resonant behavior can explain

the disappearance of a fraction of the electron neutrinos coming from the sun, which

is known as the solar neutrino problem (Haxton 1995).

3.4 Collective neutrino oscillations in supernovae

In previous sections, we studied neutrino oscillations in vacuum and matter. In

this section we consider neutrino oscillations in a dense neutrino gas in which the

neutrino-neutrino interaction becomes significant. The presence of the neutrino-

neutrino interaction makes the problem of neutrino oscillations in a dense neutrino

gas highly coupled and nonlinear. Examples of such a medium can be found in

supernovae, neutron star mergers and the early universe. Our main goal in this

section is to study neutrino oscillations in supernovae.

In this section, as in the previous sections, we assume the two flavor scenario.

This is justified by noting that νµ and ντ are maximally-mixed in vacuum (θ23 ' π/4)

and they experience similar weak interactions in supernovae. Moreover, one should

note that since ∆m2
� and ∆m2

atm are separated by about two orders of magnitude,

the oscillation phenomena are expected to be well separated for the two mass scales.

Despite these justifications, since the problem is nonlinear, there is no guarantee that

there will be no nontrivial effect from the three-flavor phenomenology. In particular,

it has been argued that the results in the three-flavor scenario could be qualitatively

different from the ones in the two-flavor scenario (Friedland 2010).
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3.4.1 Hamiltonian in a dense neutrino gas

In a dense neutrino gas, there is a new term in the Hamiltonian due to the presence

of the neutrino-neutrino interaction which is given by Qian and Fuller (1995)

Hνν =
√

2GF

∑
α

[ ∫
dnνα(p′)ρνα(p′)(1−v′·v)−

∫
dnν̄α(p′)ρ∗ν̄α(p′)(1−v′·v)

]
. (3.35)

Here p is the neutrino momentum, v is the unit vector that determines the direction

of the neutrino velocity, subscript να(ν̄α) denotes the neutrino (antineutrino) initially

produced in flavor α, dn is the differential neutrino number density, and ρ is the

reduced density matrix

ρ =
1

2

|ψνe |2 − |ψνx|2 2ψνeψ
∗
νx

2ψ∗νeψνx −|ψνe|2 + |ψνx|2

 , (3.36)

for neutrinos and

ρ =
1

2

|ψν̄e |2 − |ψν̄x |2 2ψν̄eψ
∗
ν̄x

2ψ∗ν̄eψν̄x −|ψν̄e|2 + |ψν̄x|2

 , (3.37)

for antineutrinos.

One should note that Hνν is quiet different from the vacuum and matter Hamil-

tonian because in the sense that it couples neutrinos and antineutrinos with different

energies and momenta. This means that one needs to track the evolution of all neu-

trinos and antineutrinos simultaneously. In addition, Hνν depends on the neutrino

wave function itself which makes the problem nonlinear and difficult to solve.

The total Hamiltonian in a dense neutrino gas is given by

Heff = Hνν +
1

2

−ω cos 2θ + VCC ω sin 2θ

ω sin 2θ ω cos 2θ − VCC

 , (3.38)

for neutrinos, where VCC =
√

2GFne is the matter potential, and

ω =
∆m2

2E
. (3.39)
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is the vacuum neutrino oscillation frequency.

For antineutrinos one needs to make the replacements VCC → −VCC and Hνν →

−H∗νν . Moreover, the change of the neutrino mass hierarchy is obtained by taking

∆m2 → −∆m2.

3.4.2 Neutrino Bulb model

To study neutrino oscillations in supernovae, one has to solve a set of highly nonlinear

and correlated differential equations

i
d

dx
Ψνα(p) = HeffΨνα(p) (3.40)

with Heff defined in Eq. (3.35).

The most general problem that needs to be solved is a seven diminutional problem,

one dimension for time, three dimensions for space and three dimensions for the

neutrino momentum. The complexity of the problem compels one to make some

simplifications so that it can be solved more easily. To make the problem more

tractable, a simplified model, the so-called neutrino Bulb model, has been extensively

used in the field (Duan et al. 2006c; 2010). In this model, it is assumed that neutrinos

are emitted isotropically and homogeneously from the surface of the spherical proto-

neutron star. Furthermore, it is assumed that outside the proto-neutron star, the

physical conditions depend only on the distance from the center of the proto-neutron

star. In order to maintain the spherical symmetry, one also needs to assume the axial

symmetry around the radial direction. This means that different neutrino beams with

the same emission angle ϑ0 (see Fig. 3.4) evolve identically. Finally, it is assumed

that the neutrino emission and the physical conditions in the bulb model are time-

independent. As illustrated in Fig. 3.4, different neutrino beams can be labeled by

their emission angles ϑ0.
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Figure 3.4: A schematic representation of the neutrino Bulb model. Here, the solid
line is an arbitrary neutrino beam, ϑ is the angle between its propagation direction
and the radial direction, and ϑ0 is its emission angle on the surface of the proto-
neutron star. Reprinted figure with permission from H. Duan et al, Phys. Rev.
D 74, 105014, 2006 (Ref. (Duan et al. 2006c)). Copyright 2006 by the American
Physical Society.

In the neutrino Bulb model, the emission angle ϑ0 on the surface of the proto-

neutron star and the angle ϑ between the radial and the beam directions at the

radius r is related by the following identity:

sinϑ =
Rν

r
sinϑ0 , (3.41)

where Rν is the radius of the neutrino sphere. One should note that the angle ϑ0 is

an intrinsic property of the neutrino beam.

In the neutrino Bulb model, the neutrino-neutrino interaction term in Eq. (3.35)

can be written as (Duan et al. 2006c)

Hνν =

√
2GF

2πR2
ν

∑
α

∫
d(cosϑ′)dE ′(1− cosϑ cosϑ′)

×
[
Lνα
〈Eνα〉

fνα(E ′)ρνα(E ′, ϑ′)−
Lν̄α
〈Eν̄α〉

fν̄α(E ′)ρ∗ν̄α(E ′, ϑ′)

]
.

(3.42)

Here Lνα , 〈Eνα〉 and fνα are the luminosity, the average energy and the energy
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distribution function of the neutrino with flavor α on the surface of the proto-neutron

star. The neutrino energy distribution function is normalized to one so that∫ ∞
0

dE ′fν(E
′) = 1 . (3.43)

A realistic form of fν(E) can extracted from the supernova simulations. Two of

the most popular forms of f(E) are discussed in Section 2.5 and can be found in

Eqs. (2.13) (the Fermi-Dirac distribution) and (2.14) (the power-law distribution).

In what follows, we review the results obtained in Refs. (Duan et al. 2006a;c) where

the Fermi-Dirac distribution function is used with Tνe = 2.76 MeV, Tν̄e = 4.01 MeV,

Tνµ = Tν̄µ = Tντ = Tν̄τ = 6.26 MeV and Lν = 1051 erg/s for all flavors. In addition,

the baryon density is assumed to be

nb = 4.2× 1030cm−3 gs

(
MNS

1.4 M�

)3 (
100

S

)4 (
10 km

r

)
+ nb0 exp

(
− r −Rν

hNS

)
.

(3.44)

Here the total statistical weight of the relativistic particles, gs, is taken to be 11/2,

the entropy per baryon of the matter above the proto-neutron star, S, is assumed to

be constant with the value of 140, the baryon density just above the proto-neutron

star is nb0 = 1.63 × 1036 cm−3, and the scale height is hNS = 0.18 km. One should

note that, although the second term in the baryon density in Eq. (3.44) dominates

near the proto-neutron star, it diminishes exponentially and becomes negligible at

larger radii. The electron density ne = Yenb can be obtained from the baryon density

if the electron fraction Ye is known.

3.4.3 Simulation of neutrino oscillations in the Bulb model

One can solve Eq. (3.40) numerically with the effective Hamiltonian given by Eq. (3.38).

This means that one has to solve a large number of coupled nonlinear Schrödinger
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equations simultaneously. Even for the Bulb model which is extremely simplified by

the assumptions of the stationariness, and the spherical and axial symmetries, one

has to solve O(106) coupled nonlinear differential equations simultaneously.

Some of the results obtained in such simulations are presented in Figs. 3.5, 3.6

and 3.7. Fig. 3.5 shows the energy-averaged survival probabilities for νe and ν̄e in

the normal and inverted hierarchies, respectively. The dotted line gives the average

survival probabilities in the single-angle scenario in which it is assumed that the

neutrino beams with different emission angles evolve exactly as the one propagating

in the radial direction. The solid and dashed lines are for neutrino beams with

emission angles ϑ0 = 0, π/2, respectively, in a multi-angle simulation. The results in

Fig. 3.5 can not be simply explained only by the MSW mechanism. If the MSW was

the only mechanism at work, one would expect the flavor conversion to ocuure only

for the neutrinos (antineutrinos) if the neutrino mass hierarchy is normal (inverted).

Fig. 3.6 shows that the neutrino and antineutrino energy spectra in the normal

and inverted hierarchies before and after the neutrino flavor conversion. As one can

see, there are spectral swaps/splits in panels (a) and (c) where νe and νx almost

swap their spectra in certain energy ranges. In Fig. 3.7, we show the neutrino and

antineutrino survival probabilities in the normal and inverted hierarchies. We see

that the energy spectra of νe and νx with energy below (above) E ' 9 MeV are

almost completely swapped in the normal (inverted) hierarchy. The vertical fringes

(the energy dependent features) are the results of the MSW flavor transformation

which is energy dependent. The horizontal fringes (the angle-dependent features) are

the result of the kinematic decoherence (Esteban-Pretel et al. 2007) originates from

the fact that different neutrino beams travel different distances (from the surface of

the proto-neutron star to the point at radius r).
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Figure 3.5: Energy-averaged survival probabilities for νe (left panels) and ν̄e (right
panels) in the normal (upper panels) and inverted (lower panels) hierarchies. The
solid (black) and dashed (red) lines are for neutrino beams with emission angles
ϑ0 = 0 and π/2, respectively, in a multi-angle simulation. The dotted line (blue)
is the energy-averaged survival probability in a single-angle simulation. Reprinted
figure with permission from H. Duan et al, Phys. Rev. Lett. 97, 241101, 2006 (Ref.
(Duan et al. 2006a)). Copyright 2006 by the American Physical Society.

3.4.4 Neutrino flavor isospin

As discussed earlier, the results in Figs. 3.6 and 3.7 can not be simply explained

by the MSW mechanism. In this section, we will try to develop an understanding

of the spectral swaps/splits by studying the problem of neutrino oscillations in the

neutrino flavor isospin (NFIS) picture, and we will see that spectral swaps/splits are

the natural result of collective neutrino oscillations in the neutrino gas.

In the NFIS picture, the wave function can be represented by the NFIS vector
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Figure 3.6: The energy spectra for νe (left panels) and ν̄e (right panels) in the normal
(upper panels) and inverted (lower panels) hierarchies. The dotted and dot-dashed
lines are the energy spectra of the neutrino (antineutrino) in electron and muon/tau
flavors at r = Rν , respectively. The solid and dashed lines are the corresponding
energy spectra at r = 250 km. Reprinted figure with permission from H. Duan et al,
Phys. Rev. D 74, 105014, 2006 (Ref. (Duan et al. 2006c)). Copyright 2006 by the
American Physical Society.

which is defined by

sν ≡ Ψ†ν
σ

2
Ψν =

1

2


2 Re(ψ∗νeψνx)

2 Im(ψ∗νeψνx)

|ψνe|2 − |ψνx|2

 (3.45)
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Figure 3.7: The survival probabilities as functions of the neutrino energy and
emission angle ϑ0 for νe (left panels) and ν̄e (right panels) in the normal (upper
panels) and inverted (lower panels) hierarchies. Reprinted figure with permission
from H. Duan et al, Phys. Rev. Lett. 97, 241101, 2006 (Ref. (Duan et al. 2006a)).
Copyright 2006 by the American Physical Society.

for the neutrino and

sν̄ ≡ (σ2Ψν̄)
†σ

2
(σ2Ψν̄) = −1

2


2 Re(ψν̄eψ

∗
ν̄x)

2 Im(ψν̄eψ
∗
ν̄x)

|ψν̄e|2 − |ψν̄x|2

 (3.46)

for the antineutrino. Here

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (3.47)
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are the Pauli matrices. Then the EoM can be written as

dsi
dt

= si ×Heff , (3.48)

where the effective Hamiltonian vector is given by

Heff = ωiHvac + He − 2
√

2GF

∑
j

njsj . (3.49)

In this equation, He = −
√

2GFnee3 is the contribution due to the presence of the

electron density with e3 being a unit vector, and Hvac is the vacuum field defined by

Hvac = −e1 sin 2θ + e3 cos 2θ , (3.50)

where θ is the vacuum mixing angle. Here we use the convention in which θ < π/4 for

the normal hierarchy and θ > π/4 for the inverted hierarchy. The vacuum neutrino

oscillation frequency is given by

ωi = ±|∆m
2

2Ei
| , (3.51)

where the + (−) sign is for the neutrino (antineutrino).

It has been shown that the spectral swaps/splits are the common feature of both

multi-angle and single-angle simulations (Duan et al. 2006c). Here, we focus on the

neutrino oscillations in the single-angle model. The spectral swaps/splits observed

in Figs. 3.6 and 3.7 can be explained by assuming that the NFIS vectors undergo a

regular precession around the vacuum field Hvac with a common frequency ωpr (Duan

et al. 2006c)

dsi
dt

= si × ωprHvac . (3.52)

In the absence of matter, this equation combined with Eq. (3.48) results in

si ×
[
(ωi − ωpr)Hvac + S

]
= 0 , (3.53)
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where S ≡ −2
√

2GF

∑
i nisi. This equation implies that during the regular preces-

sion, si is either aligned or antialigned with the effective field Fi defined by

Fi =
[
(ωi − ωpr)Hvac + S

]
. (3.54)

If the neutrino number density varies very slowly, a NFIS vector initially aligned (an-

tialinged) with Fi, will always remain aligned (antialigned) with it. At large neutrino

number densities, S is the dominant term. Thus in the case that α = nν̄e/nνe < 1,

electron neutrinos (antineutrinos) NFIS vectors are antialigned (aligned) with Fi.

During an adiabatic evolution and when neutrino number density is approximately

zero, neutrinos (antineutrinos) NFIS vectors must be antialigned (aligned) with

Fi = (ωi − ωpr)Hvac. This implies that the neutrinos with energies below and above

δm2/2ωpr behave differently in the adiabatic evolution. In particular, neutrinos with

energy below (above) δm2/2ωpr are found to be antialigned (aligned) with Hvac. In

the case that the mixing angle is very small, i.e. θ ' 0 for the normal hierarchy

and θ ' π/2 for the inverted hierarchy, Hvac ' e3 (Hvac ' −e3) for the normal (in-

verted) hierarchy. Therefore, the neutrinos with energies below (above) δm2/2ωpr in

the normal (inverted) are completely converted to νx neutrinos. On the other hand,

neutrinos with energy above (below) δm2/2ωpr in the normal (inverted) hierarchy

experience almost no conversion.

In Fig. 3.8, we show the energy-averaged 〈s⊥〉 and 〈sz〉 (the component along e3)

obtained from numerical simulations in the single-angle model as well as the regular

precession and the MSW-like solutions 3.

3The MSW-like solution is the solution in which it is assumed that a neutrino initially in
the light (heavy) mass eigenstate will stay in the same instantaneous mass eigenstate, and
a NFIS initially aligned (anti-aligned) with its effective field will stay aligned (anti-aligned)
with the effective field.
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Figure 3.8: 〈s⊥〉 (left panels) and 〈sz〉 (right panels) in normal (upper panels) and
inverted (lower panels) hierarchies. The solid (black) line is the regular precession
solution, the thick (blue) dashed line shows the MSW-like solution and the thin (red)
dashed line shows the results obtained from numerical simulations. Reprinted figure
with permission from H. Duan et al, Phys. Rev. D 76, 085013, 2007 (Ref. (Duan
et al. 2007)). Copyright 2007 by the American Physical Society.
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Chapter 4

Flavor Instabilities in the Neutrino

Line Model

As discussed in the previous chapter, in order to make the problem of neutrino

oscillations in supernovae more tractable, one has to make several simplifications. In

particular, a simplified one-dimensional supernova model called the neutrino Bulb

model has been widely used in the literature to study neutrino flavor evolution in

supernovae (Duan et al. 2006c; 2010). Through the numerical simulations performed

in the Bulb model, it was discovered that there were collective modes of neutrino

oscillations in the dense neutrino gas above the proto-neutron star and that the

neutrino flavor evolution can be dramatically different for the normal and inverted

hierarchies inside supernovae (Duan et al. 2006b;c).

There are several effects that are not taken into account in the Bulb model, al-

though they can modify neutrino oscillations significantly. For example, it was shown

that the back-scattering of the neutrinos from the nucleons in the supernova enve-

lope can lead to a significant modification of the neutrino potential which was not

included in the original Bulb model (Cherry et al. 2012). It was also shown that the
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axial symmetry around the radial direction in the Bulb model can be broken spon-

taneously during collective neutrino oscillations (Raffelt et al. 2013, Mirizzi 2013).

Some very recent work has shown that the spatial symmetries in the low-dimensional

models such as the spherical symmetry in the Bulb model can be broken in multi-

dimensional models (Mangano et al. 2014, Duan and Shalgar 2015, Mirizzi et al.

2015, Mirizzi 2015, Chakraborty et al. 2016).

In this chapter we study the breaking of the spatial symmetry in a dense neutrino

gas. For this purpose, we use the neutrino Line model which has two spatial dimen-

sions. The study of this model can provide us with useful insights into the qualitative

differences between the phenomenologies of collective neutrino oscillations in models

of one and multiple spatial dimensions.

This study is a generalization of the work done for the two-beam Line model (see

(Duan and Shalgar 2015)) where only two neutrino beams are emitted from each

neutrino source point on the line.

4.1 The neutrino Line model

4.1.1 Equations of motion

In the stationary, two-dimensional (neutrino) Line model neutrinos and antineutrinos

are emitted from the x-axis or the “neutrino Line” and propagate in the x-z plane

(see Fig. 4.1). We assume that the neutrinos and antineutrinos are of single energy

E and the same normalized angular distribution g(ϑ) such that the number fluxes

of the neutrino and antineutrino within angle range [ϑ, ϑ + dϑ] are nνg(ϑ)dϑ and

nν̄g(ϑ)dϑ, respectively, where ϑ is the emission angle of the neutrino beam, and nν

and nν̄ are the (constant) total number densities of the neutrino and antineutrino,

respectively. The flavor quantum states of the neutrino and antineutrino of emission
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x

ϑ′ϑ

z

ϑ,ϑ′ ∈ [−ϑmax,ϑmax]

Figure 4.1: A schematic diagram of the two-dimensional (neutrino) Line model. Each
point on the x-axis or the “neutrino Line” emits neutrino beams with emission angles
ϑ within the range [−ϑmax, ϑmax]. Reprinted figure with permission from S. Abbar
et al, Phys. Rev. D 92, 065019, 2015 (Ref. (Abbar et al. 2015b)). Copyright 2015
by the American Physical Society.

angle ϑ and at position (x, z) are given by density matrices ρϑ(x, z) and ρ̄ϑ(x, z),

respectively (Sigl and Raffelt 1993). We use the normalization condition

trρ = trρ̄ = 1 (4.1)

such that the diagonal elements of a density matrix give the probabilities for the

neutrino or antineutrino to be in the corresponding weak-interaction states. With

these conventions the self-interaction potential (see Eq. (3.35)) for ρϑ(x, z) in the

Line model can be written as

Hνν,ϑ(x, z) = µ

∫
[ρϑ′(x, z)− αρ̄ϑ′(x, z)] [1− cos(ϑ− ϑ′)]g(ϑ′) dϑ′, (4.2)

where µ =
√

2GFnν and α = nν̄/nν . In the Line model the strength of the neu-

trino self-interaction µ is constant. In realistic astrophysical environments such as

core-collapse supernovae, however, µ can decrease with increasing distance from the

neutrino source.

In the absence of collision, the flavor evolution of the neutrino obeys the Liouville

equation (Sigl and Raffelt 1993, Strack and Burrows 2005, Cardall 2008)

∂tρ+ v ·∇ρ = −i[Hvac +Hmat +Hνν , ρ], (4.3)
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where v is the velocity of the neutrino, ρ(t,x,p) is the (Wigner-transformed) flavor

density matrices of the neutrino which depends on time t, position x and neutrino

momentum p, Hvac is the standard vacuum Hamiltonian, and Hmat and Hνν are

the matter and neutrino potentials (see Eq. 3.25), respectively. Here we assume the

mixing between two active neutrino flavors νe and νx with a small vacuum mixing

angle θ � 1. Therefore,

Hω = Hvac +Hmat ≈
(λ− ηω)

2

1 0

0 −1

 =
(λ− ηω)

2
σ3, (4.4)

where λ = VCC =
√

2GFne with ne being the net electron number density, η is a

parameter which takes a value of +1 (−1) for the normal (inverted) neutrino mass

hierarchy or NH (IH). For the stationary line model, Eq. (4.3) can be written in a

more explicit form:

i(cosϑ∂z + sinϑ∂x)ρϑ =
(λ− ηω)

2
[σ3, ρϑ]

+ µ

∫
[1− cos(ϑ− ϑ′)] [ρϑ′ − αρ̄ϑ′ , ρϑ] g(ϑ′) dϑ′. (4.5)

The EoM for ρ̄ϑ is the same as Eq. (4.5) except with replacement ω → −ω.

Following Duan and Shalgar (2015), we impose a periodic boundary condition

along the x-axis such that ρϑ(x+L, z) = ρϑ(x, z) and ρ̄ϑ(x+L, z) = ρ̄ϑ(x, z), where

L is the basic period. It is convenient to recast the x-dependence of the neutrino

density matrix in terms of Fourier moments:

ρm,ϑ(z) =
1

L

∫ L

0

e−ikmxρϑ(x, z)dx, ρ̄m,ϑ(z) =
1

L

∫ L

0

e−ikmxρ̄ϑ(x, z)dx, (4.6)

where km = 2πm/L. It is straightforward to derive the EoM in the moment basis
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which are

i cosϑ∂zρm,ϑ = km sinϑρm,ϑ +
(λ− ηω)

2
[σ3, ρm,ϑ]

+ µ
∑
m′

∫
[ρm′,ϑ′ − αρ̄m′,ϑ′ , ρm−m′,ϑ] [1− cos(ϑ− ϑ′)]g(ϑ′) dϑ′,

(4.7a)

i cosϑ∂zρ̄m,ϑ = km sinϑρ̄m,ϑ +
(λ+ ηω)

2
[σ3, ρ̄m,ϑ]

+ µ
∑
m′

∫
[ρm′,ϑ′ − αρ̄m′,ϑ′ , ρ̄m−m′,ϑ] [1− cos(ϑ− ϑ′)]g(ϑ′) dϑ′.

(4.7b)

4.1.2 Collective modes in the linear regime

We assume that the neutrinos and antineutrinos are emitted from the line source in

the electron flavor only. In the regime where neutrino oscillations are insignificant,

the neutrino density matrices have the form

ρϑ(x, z) ≈

 1 εϑ

ε∗ϑ 0

 , ρ̄ϑ(x, z) ≈

 1 ε̄ϑ

ε̄∗ϑ 0

 . (4.8)

When there is a flavor instability, the off-diagonal elements of the density matrices

grow exponentially, which can result in collective neutrino oscillations. In this section

we apply the method of flavor stability analysis to the multi-angle Line model which

was first developed by Banerjee et al. (2011).

In the moment basis we have

ρm,ϑ(z) ≈

 δ0,m εm,ϑ

ε∗−m,ϑ 0

 , ρ̄m,ϑ(z) ≈

 δ0,m ε̄m,ϑ

ε̄∗−m,ϑ 0

 (4.9)
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Keeping only the terms up to O(ε) in Eq. (4.7) we obtain

i cosϑ∂zεm,ϑ =[km sinϑ+ λ− ωη + (1− α)µ̃ϑ]εm,ϑ

− µ
∫

[1− cos(ϑ− ϑ′)](εm,ϑ′ − αε̄m,ϑ′)g(ϑ′)dϑ′, (4.10a)

i cosϑ∂z ε̄m,ϑ =[km sinϑ+ λ+ ωη + (1− α)µ̃ϑ]ε̄m,ϑ

− µ
∫

[1− cos(ϑ− ϑ′)](εm,ϑ′ − αε̄m,ϑ′)g(ϑ′)dϑ′, (4.10b)

where

µ̃ϑ = µ

∫
[1− cos(ϑ− ϑ′)]g(ϑ′) dϑ′ (4.11)

is the effective strength of neutrino self-interaction for the neutrino beam with emis-

sion angle ϑ. As in the two-beam model, the flavor evolution of the neutrino fluxes

in different moments is decoupled in the linear regime, although the evolution of the

neutrino moments with different emission angles ϑ are still coupled.

Assuming that the mth neutrino moment oscillates with collective oscillation

frequency Ωm, we can write

εm,ϑ(z) = Qm,ϑe
−iΩmz, ε̄m,ϑ(z) = Q̄m,ϑe

−iΩmz, (4.12)

where Qm,ϑ and Q̄m,ϑ are z-independent. Applying this ansatz to Eq. (4.10) we

obtain

Dm(ω, ϑ)Qm,ϑ = (am − cm cosϑ− sm sinϑ)µ, (4.13a)

Dm(−ω, ϑ)Q̄m,ϑ = (am − cm cosϑ− sm sinϑ)µ (4.13b)

or

Qm,ϑ =
(am − cm cosϑ− sm sinϑ)µ

Dm(ω, ϑ)
, (4.14a)

Q̄m,ϑ =
(am − cm cosϑ− sm sinϑ)µ

Dm(−ω, ϑ)
, (4.14b)
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where

Dm(±ω, ϑ) = −Ω cosϑ+ km sinϑ+ λ∓ ωη + (1− α)µ̃ϑ, (4.15)

and

am =

∫
(Qm,ϑ′ − αQ̄m,ϑ′)g(ϑ′)dϑ′, (4.16a)

cm =

∫
(Qm,ϑ′ − αQ̄m,ϑ′) cosϑ′g(ϑ′)dϑ′, (4.16b)

sm =

∫
(Qm,ϑ′ − αQ̄m,ϑ′) sinϑ′g(ϑ′)dϑ′. (4.16c)

Substituting Eq. (4.14) in Eq. (4.16) we obtain a characteristic equation for (am, cm, sm):


Im[1]− 1 −Im[cosϑ] −Im[sinϑ]

Im[cosϑ] −Im[cos2 ϑ]− 1 −Im[cosϑ sinϑ]

Im[sinϑ] −Im[cosϑ sinϑ] −Im[sin2 ϑ]− 1



am

cm

sm

 = 0, (4.17)

where

Im[f(ϑ)] =

∫
f(ϑ)g(ϑ)

[
µ

Dm(ω, ϑ)
− αµ

Dm(−ω, ϑ)

]
dϑ (4.18)

for arbitrary function f(ϑ). Eq. (4.17) holds only when

det

∣∣∣∣∣∣∣∣∣
Im[1]− 1 −Im[cosϑ] −Im[sinϑ]

Im[cosϑ] −Im[cos2 ϑ]− 1 −Im[cosϑ sinϑ]

Im[sinϑ] −Im[cosϑ sinϑ] −Im[sin2 ϑ]− 1

∣∣∣∣∣∣∣∣∣ = 0. (4.19)

For given m, λ and µ one can find a set of Ω
(i)
m (λ, µ) (i = 1, 2, . . .) which satisfy

Eq. (4.19) and which are the frequencies of the corresponding normal modes of col-

lective neutrino oscillations. When

κ(i)
m = Im(Ω(i)

m ) (4.20)
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is positive, the corresponding normal mode is unstable and its amplitude grows

exponentially. If there exist multiple unstable modes, the mode with the largest

exponential growth rate,

κmax
m = max(κ(i)

m ), (4.21)

will eventually dominate.

4.2 Results in the linear regime

4.2.1 Numerical results

We develop a computer code to solve Eq. (4.7) numerically. In this code the con-

tinuous range of ϑ is represented by N discrete angle bins with central value ϑi

(i = 1, . . . , N) and equal interval ∆ϑ. For an arbitrary function f(ϑ) one has∫
f(ϑ)dϑ −→ ∆ϑ

N∑
i=1

f(ϑi). (4.22)

In our study we focus on the neutrino oscillations in the linear regime and the

cases with a simple angular distribution which has isotropic neutrino fluxes within

the range [−ϑmax, ϑmax], i.e.

g(ϑ) =

 1
2
ϑ−1

max if ϑ ∈ [−ϑmax, ϑmax],

0 otherwise.
(4.23)

We choose to present our results with the following parameters

ϑmax = π/6, α = 0.8 and L = 40πω−1. (4.24)

Because the evolution of different neutrino moments is decoupled in the linear regime,

it is sufficient to include only the 0th and mth moments in studying the evolution
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Figure 4.2: The evolution of |εm,ϑ|, the amplitudes of the off-diagonal elements of the
neutrino moment matrices ρm,ϑ(z), in terms of propagation distance z for the inverted
(left) and normal (right) neutrino mass hierarchies. The thick curves represent the
numerical solution to Eq. (4.7) with the 0th and 1000th moments only. The thin solid
lines represent the exponential growth functions ∼ exp(κmax

m z) predicted by the linear
stability analysis. In these calculations we used the parameters listed in Eq. (4.24),
and we took the matter potential λ = 0 and neutrino potential µ/ω = 1500 (left)
and 3000 (right) which is measured in the vacuum neutrino oscillation frequency ω.
Reprinted figure with permission from S. Abbar et al, Phys. Rev. D 92, 065019,
2015 (Ref. (Abbar et al. 2015b)). Copyright 2015 by the American Physical Society.

of the mth moment in this regime. [The 0th moment is needed because it has large

diagonal elements even in the linear regime. See Eq. (4.9).]

In Fig. 4.2 we show the numerical solutions to Eq. (4.7) in two calculations with

all but the 0th and 1000th moments being zero. In both calculations, |εm,ϑ|, the

amplitudes of the off-diagonal elements of ρm,ϑ, grow exponentially which is under-

stood as flavor instabilities. As a comparison we plot in Fig. 4.2 the exponential

growth functions ∼ exp(κmax
m z) predicted by the flavor stability analysis, and they

agree with the numerical results very well. As a further confirmation, we have com-

pared the shapes of |Qm,ϑ| and |Q̄m,ϑ| obtained from the flavor stability analysis (the

dotted and dashed curves in Fig. 4.3) with those of |εm,ϑ| and |ε̄m,ϑ| in numerical

calculations (not shown), and they also have good agreement. However, to achieve

numerical convergence a large number of angle bins may be needed for the following
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Figure 4.3: The amplitudes of the unstable modes of the mth neutrino moments
(in arbitrary scale) as functions of neutrino emission angle ϑ which have the largest
exponential growth rates in the linear regime at given neutrino number densities
(indicated by µ =

√
2GFnν which is measured in the vacuum neutrino oscillation

frequency ω). The top and bottom panels are for the inverted and normal neutrino
mass hierarchies, respectively. In these calculations we used the parameters listed in
Eq. (4.24), and we took the matter potential λ = 0. Reprinted figure with permission
from S. Abbar et al, Phys. Rev. D 92, 065019, 2015 (Ref. (Abbar et al. 2015b)).
Copyright 2015 by the American Physical Society.

reason.

As pointed out by Sarikas et al. (2012), there can exist many spurious flavor

instabilities in the numerical implementation using the discrete (angle-bin) scheme.
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This can be seen from the discretized version of Eq. (4.10):

i cosϑi∂zεm,ϑi = [km sinϑi + λ− ωη + (1− α)µ̃ϑi ]εm,ϑi

− µ∆ϑ
∑
j

[1− cos(ϑi − ϑj)](εm,ϑj − αε̄m,ϑj)g(ϑj), (4.25a)

i cosϑi∂z ε̄m,ϑi = [km sinϑi + λ+ ωη + (1− α)µ̃ϑi ]ε̄m,ϑi

− µ∆ϑ
∑
j

[1− cos(ϑi − ϑj)](εm,ϑj − αε̄m,ϑj)g(ϑj), (4.25b)

or

i∂zεm = Λm · εm, (4.26)

where εm = (εm,ϑ1 , ε̄m,ϑ1 , εm,ϑ2 , ε̄m,ϑ2 , . . . , εm,ϑN , ε̄m,ϑN )T is a 2N -dimensional vec-

tor, and Λm is a 2N × 2N real matrix. Matrix Λm has 2N eigenvalues Ω
(i)
m (i =

1, 2, . . . , 2N) each of which corresponds to the collective oscillation frequency of a

collective mode in the discrete scheme. Many of these collective modes can be un-

stable, i.e. with κ
(i)
m = Im(Ω

(i)
m ) > 0. Only a few of the unstable modes correspond

to the physical instabilities in the continuum limit (of the ϑ distribution), and the

rest of them are “spurious” or the artifact of the numerical implementation.

In Fig. 4.4 we plot the exponential growth rates κ
(i)
m of all the unstable collective

modes both in the discrete scheme and in the continuum limit for the 0th and 5000th

moments, respectively. This figure shows that spurious instabilities (in the discrete

scheme) can dominate the physical instabilities (in the continuum limit) on small

distance scales and/or large neutrino number densities (i.e. large |m| and/or µ).

In some extreme cases, e.g., the bottom middle panel of Fig. 4.4 where η = +1,

m = 5000 and N = 100, none of the collective modes in the discrete scheme matches

the ones in the continuum limit. This is likely due to the fact that Qm,ϑ and Q̄m,ϑ

become sharply peaked functions of ϑ at large |m| and/or µ, which requires many

angle bins to resolve (see Fig. 4.3). Indeed, the comparison between the middle and

right panels of Fig. 4.4 shows that the spurious instabilities are more suppressed

when more angle bins are employed.
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Figure 4.4: The exponential growth rates κ
(i)
m of the unstable collective modes of the

mth neutrino moment as functions of neutrino self-interaction strength µ =
√

2GFnν
in the discrete angle-bin scheme with N angle bins (as labeled and shown as the
dotted curves) and in the continuum limit of angular distribution (solid curves), re-
spectively. Both κ and µ are measured in the vacuum neutrino oscillation frequency
ω. The top and bottom panels are for the inverted and normal neutrino mass hierar-
chies, respectively. In these calculations we used the parameters listed in Eq. (4.24),
and we took the matter potential λ = 0. Reprinted figure with permission from S.
Abbar et al, Phys. Rev. D 92, 065019, 2015 (Ref. (Abbar et al. 2015b)). Copyright
2015 by the American Physical Society.

4.2.2 Flavor instabilities and matter effect

We have solved the flavor instabilities of the multi-angle Line model using the

angular distribution in Eq. (4.23) and the parameters listed in Eq. (4.24). The

results for the neutrino gas in the absence of matter are shown in the upper panels

of Fig. 4.5. From this figure one can see that, unlike the two-beam Line model

(Duan and Shalgar 2015), the flavor instabilities in the multi-angle model depend on

the neutrino mass hierarchy, and collective oscillations can begin at larger neutrino
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Figure 4.5: Maximum exponential growth rate κmax
m (λ, µ) (indicated by the color

scale) of the collective neutrino oscillation modes in the multi-angle Line model as a
function of moment index m and the neutrino self-coupling strength µ =

√
2GFnν .

Both κ and µ are measured in the vacuum neutrino oscillation frequency ω. The
left and right panels are for the inverted and normal neutrino mass hierarchies,
respectively, and the top and bottom panels are for λ =

√
2GFne = 0 and 200ω,

respectively. In these calculations we assume isotropic neutrino fluxes within angular
range ϑ ∈ [−π/6, π/6], and we used the parameters listed in Eq. (4.24). Reprinted
figure with permission from S. Abbar et al, Phys. Rev. D 92, 065019, 2015 (Ref.
(Abbar et al. 2015b)). Copyright 2015 by the American Physical Society.
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density in NH than in IH. One also sees that both µmax
m and µmin

m , the maximum and

minimum µ values where the mth modes are unstable, seem to increase linearly with

|m|. In contrast, both µmax
m and µmin

m increase linearly with
√
|m| in the two-beam

model.1 This implies that, for sufficiently large |m|, flavor instabilities can develop at

even larger neutrino densities in the multi-angle model than in the two-beam model.

Unlike in the two-beam model, the presence of matter can affect collective oscilla-

tions in the multi-angle model because the neutrinos propagate in different directions

can travel through different distances between two lines that are parallel to the neu-

trino line. In the lower panels of Fig. 4.5 we show the flavor instabilities in the

multi-angle Line model with λ = 200ω. Similar to the situation in the spherical neu-

trino Bulb model for supernova (Banerjee et al. 2011, Esteban-Pretel et al. 2008),

both µmax
m and µmin

m of the homogeneous mode (i.e. with m = 0) shift to larger values

in the presence of a large matter density in both NH and IH. However, µmin
m of inho-

mogeneous modes actually shifts to smaller values for both NH and IH when |m| is

sufficiently large.

4.3 Discussion

Although the Line model does not represent any real physical environment, the

study of this toy model can provide insights into the important differences between

the models of one spatial dimension (e.g. the neutrino Bulb model for supernova)

and multi-dimension models.

An important goal of our study is to check if the inhomogeneous collective modes

are suppressed in the multi-angle environment because of the high neutrino densities

1The neutrino self-coupling strength µ defined by Duan and Shalgar (2015) has taken
into account the geometric factor 1 − cos(ϑ − ϑ′) and is equivalent to µ̃ϑ in this chapter.
For the angular distribution in Eq. (4.23) µ̃0 = (1− sinϑmax/ϑmax)µ ≈ 0.045µ.
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which is known to exist in the Bulb model (Duan and Friedland 2011, Esteban-

Pretel et al. 2008). Somewhat surprisingly, our work suggests that, in the absence

of ordinary matter, inhomogeneous collective modes on small scales are not only

not suppressed in the multi-angle environment, but can become unstable at larger

neutrino densities than in the two-beam model.

We also examined whether the presence of a large matter density can suppress

collective oscillations in the two-dimensional Line model as in the one-dimensional

Bulb model (Esteban-Pretel et al. 2008). Our study shows that the presence of

ambient matter does suppress inhomogeneous oscillation modes on large distance

scales in the Line model as it occurs to the homogeneous modes in the Bulb model.

However, it appears that the inhomogeneous modes on very small scales can occur at

smaller neutrino number densities with ambient matter than without. In addition,

the flavor unstable region of the certain inhomogeneous modes can extend to the

regime of lower neutrino densities than that for the homogeneous mode.

We have shown that, as in the Bulb model, there exist spurious oscillations in

the numerical implementation of the multi-angle Line model if the discrete angle-bin

scheme is employed. The problem of spurious oscillations appears to be more severe

at higher neutrino densities and on smaller distance scales. Although this problem

can be mitigated by using more angle bins, it does add complications to the already

challenging task of computing collective neutrino oscillations near astrophysical neu-

trino sources such as core-collapse supernovae and black-hole accretion disks. It is

probably helpful to develop the multipole expansion method similar to that for the

Bulb model (Duan and Shalgar 2014).

Our study in this chapter has focused on the neutrino flavor instabilities in the

linear regime. However, not every flavor instability in the linear regime can result

in significant neutrino flavor transformation. For example, in the realistic supernova

environment, the neutrino density decreases as neutrinos travel away from the center
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of the supernova which results in the shift of the instability region. It is, therefore,

possible that a collective oscillation mode does not grow all the way to the nonlinear

regime during the finite distance interval where it is unstable. We have considered

the mixing of two neutrino flavors only, which can be quite different from the neutrino

flavor transformation of three flavors (Friedland 2010). Ultimately, the phenomenon

of collective neutrino oscillations has to be studied in realistic, multi-dimensional

models for compact objects such as core-collapse supernovae and black-hole accretion

disks before one can fully understand the impact of neutrino oscillations to these

extreme environments.
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Chapter 5

Neutrino Flavor Instabilities in

Time-Dependent Bulb Model

One of the essential assumptions behind the neutrino Bulb model is that it is an

stationary model. In the Bulb model, it is assumed that one can impose the time

translation symmetry because the timescale of neutrino oscillations is much shorter

than those in the neutrino emission or dynamic evolution in supernovae. However,

as discussed in the previous chapter, it turns out that very small deviations from the

initial symmetric conditions can be amplified by the symmetry-breaking oscillation

modes in a dense neutrino gas.

It is natural to wonder if collective neutrino oscillations can also break the time-

translation symmetry spontaneously in supernovae (Raffelt et al. 2013). If they do,

then a time-independent supernova model may not accurately describe the neutrino

oscillation phenomenon in supernovae even though the typical timescale of the vari-

ation in the neutrino emission is much longer than that of neutrino oscillations. In

this chapter we analyze the neutrino flavor stability in a time-dependent supernova

model which should provide some interesting insights to this question.
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Figure 5.1: The geometric picture of the time-dependent (neutrino) Bulb model for
the supernova. Two neutrinos emitted from the neutrino sphere of radius R with
emission angles ϑR and ϑ′R and at time t− l/c and t− l′/c meet each other at radius r
and time t, where l and l′ are the distances by which the two neutrinos have traveled
from the neutrino sphere to their meeting point, respectively. Figure adapted from
(Abbar and Duan 2015).

5.1 Time-dependent neutrino Bulb model

We will focus on the potential differences between the results obtained from the

time-dependent and stationary supernova models. Therefore, we will employ the

time-dependent Bulb model which has the same spatial spherical symmetry and the

directional axial symmetry as in the conventional Bulb model. Unlike the conven-

tional stationary Bulb model, however, we will not assume that the emission and

flavor evolution of the neutrinos are time-independent (see Fig. 5.1). For simplicity,

we will consider the mixing between two active flavors, the e and x flavors, with the

latter being the linear superposition of the µ and τ flavors. We also assume a small

vacuum mixing angle θ � 1.

We define reduced neutrino density matrix

ρ(t; r;ω, u) ∝

 ρ if ω > 0,

ρ̄ if ω < 0
(5.1)
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where ρ̄ is the antineutrino density matrix. One has the normalization condition

trρ = 1, (5.2)

where u = sin2 ϑR with ϑR being the emission angle of the neutrino on the neutrino

sphere (see Fig. 5.1), and r is the radial distance from the center of the supernova.

In the time-dependent Bulb model, the EoM for the (reduced) density matrix (see

Eq. (4.3)) ρ can be written as

i(∂t + vu∂r)ρ = [Hvac +Hmat +Hνν , ρ], (5.3)

where

vu(r) =

√
1−

(
R

r

)2

u (5.4)

is the radial velocity of the neutrino.

In this chapter we assume that the number flux Fνα/ν̄α(E, ϑR) of the neutrino or

antineutrino in flavor α (α = e, x) is time independent (Mirizzi and Serpico 2012).

We define the distribution function of the neutrino emission to be

g(ω, u) ∝
∣∣∣∣dEdω

∣∣∣∣×
 (Fνe + Fνx) if ω > 0,

−(Fν̄e + Fν̄x) if ω < 0
(5.5)

with normalization conditions∫ ∞
0

dω

∫ 1

0

du

2
g(ω, u) = 1, (5.6a)∫ 0

−∞
dω

∫ 1

0

du

2
g(ω, u) = −N

tot
ν̄

N tot
ν

, (5.6b)

where

N tot
ν =

∫ ∞
0

dE

∫ 1

0

du

2
(Fνe + Fνx), (5.7a)

N tot
ν̄ =

∫ ∞
0

dE

∫ 1

0

du

2
(Fν̄e + Fν̄x) (5.7b)
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are the total number luminosities of the neutrino and antineutrino (i.e. the number

of neutrinos or antineutrinos emitted by the whole neutrino sphere per unit time), re-

spectively. The opposite signs of g(ω, u) for the neutrino and antineutrino in Eq. (5.5)

take into account their different contributions to the neutrino potential in Eq. (4.3).

In the Bulb model the neutrino potential can be written as (see Eq. (3.35))

Hνν(t; r;u) =

√
2GFN

tot
ν

4πr2

∫ ∞
−∞

dω′
∫ 1

0

du′

vu′
(1− vuvu′)

× g(ω′, u′) ρ(t; r;ω′, u′). (5.8)

Because collective neutrino oscillations usually occur in the regime R/r � 1 in the

Bulb model, we will take the large-radius approximation (Esteban-Pretel et al. 2008)

vu(r) ≈ 1−
(
R

r

)2
u

2
. (5.9)

In this approximation,

Hνν(t; r;u) ≈ µ

∫ (
u+ u′

2

)
g′ρ′ dΓ′, (5.10)

where all the primed quantities are functions of u′ and ω′, e.g., ρ′ = ρ(t;ω′, u′; r),

µ(r) =

√
2GFN

tot
ν

4πR2

(
R

r

)4

(5.11)

is the strength of the neutrino potential at radius r, and∫
dΓ′ ≡

∫ ∞
−∞

dω′
∫ 1

0

du′. (5.12)

5.2 Linear regime

In the regime where no significant flavor transformation has occurred, the linear

flavor-stability analysis is applicable (Banerjee et al. 2011). In this regime the neu-

trino density matrices take the form

ρ(t; r;ω, u) ≈ ρee + ρxx
2

1 0

0 1

+
ρee − ρxx

2

 1 ε

ε∗ −1

 , (5.13)
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where ρee(ω, u) and ρxx(ω, u) are the probabilities for the neutrino (or antineutrino)

to be in the e and x flavors, respectively, and |ε(t; r;ω, u)| � 1. Here in the spirit

of flavor-stability analysis we have assumed that ρee and ρxx are approximately con-

stant. At the onset of collective neutrino oscillations ε grow exponentially. If ε has

strong time dependence, the time translation symmetry is broken spontaneously by

collective neutrino oscillations.

Keeping only the terms up to O(ε) in Eq. (5.3) we obtain

i(∂t + vu∂r) ε ≈ (−ηω + λ+ C) ε

− µ

2

∫
(u+ u′)(ρ′ee − ρ′xx)g′ ε′ dΓ′, (5.14)

where

C(u, µ) =
µ

2

∫
(u+ u′)(ρ′ee − ρ′xx)g′ dΓ′. (5.15)

Defining

ε$(r;ω, u) =

∫ ∞
−∞

ε(t; r;ω, u) ei$t dt (5.16)

we can rewrite Eq. (5.14) in frequency space as

i∂rε$ ≈

{
−ηω + (λ−$)

[
1 +

(
R

r

)2
u

2

]
+ C

}
ε$

− µ

2

∫
(u+ u′)(ρ′ee − ρ′xx)g′ ε′$ dΓ′. (5.17)

We note that frequency $ in the above equations represents the temporal vari-

ation of the neutrino flavor quantum state at given radius r, and it shall not be

confused with the vacuum oscillation frequency ω which is determined by the energy

of the neutrino.

We also note that the starting point of collective oscillations is determined by the

comparison of the dispersion in each term of the neutrino propagation Hamiltonian
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in Eq. (4.3) with the overall strength of the neutrino potential. The spreads in

the vacuum Hamiltonian Hvac and the neutrino potential Hνν are dominated by

variations in vacuum oscillation frequency ω and trajectory parameter u, respectively.

Therefore, we have taken vu ≈ 1 for these terms in Eq. (5.17) as in (Esteban-Pretel

et al. 2008). For the matter potential Hmat, however, the lowest order term of

v−1
u Hmat in the large-radius expansion is the same for all neutrinos and does not

suppress collective oscillations (Duan et al. 2006d). In Eq. (5.17) we have included

its next-order term which can suppress collective oscillations if a very large matter

potential is present (Esteban-Pretel et al. 2008).

Eq. (5.17) is the same as that for neutrino oscillations in the stationary Bulb

model except with replacement λ → λ − $. The flavor-stability analysis of this

model is very similar to the stability analysis that we did in the previous chapter

and has been carried out in details by Banerjee et al. (2011) which we shall not

repeat here. The essence of this analysis is to find out all the collective oscillation

solutions to Eq. (5.17) which are of the form

ε$ = Q$ e
−iΩ$r, (5.18)

where Q$(ω, u) is independent of r, and Ω$(λ, µ) is the collective oscillation fre-

quency. If

κ$ = Im(Ω$) (5.19)

is positive, there exists a flavor instability, and ε$ will grow exponentially in terms

of r which can lead to significant flavor transformation. If there exist multiple un-

stable modes, the unstable mode with the largest exponential growth rate κmax will

eventually dominate.
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Figure 5.2: The maximum exponential growth rates κmax of a few Fourier modes
with various frequencies $ (as labeled) as functions of the strength of the neutrino
potential µ in the neutrino Bulb model. The left panel uses a single-energy spectrum
(Mirizzi 2015), and the right panel a continuous spectrum (Duan and Friedland 2011,
Banerjee et al. 2011). The peaks of κmax

$=0(µ) correspond to distances 107 km (left)
and 149 km (right) from the center of the supernova. The matter density is assumed
to be not large enough to suppress collective neutrino oscillations. Figure adapted
from (Abbar and Duan 2015).

5.3 Results and discussion

We analyzed the flavor instabilities in the time-dependent Bulb model with two sets

of neutrino spectra. In the first case we assume the same single-energy spectrum as

by Mirizzi (2015). In this case, all neutrinos and antineutrinos have the same vacuum

oscillation frequency ω0 = 0.68 km−1 and the number fluxes are Nνe = 1.25×1056 s−1,

Nν̄e = 8.32×1055 s−1 and Nνx/ν̄x = 5.20×1055 s−1. In the second case we assume the

same Fermi-Dirac spectra as in Refs. (Duan and Friedland 2011, Banerjee et al. 2011)

which have degeneracy parameters ηνe = 3.9, ην̄e = 2.3 and ηνx/ν̄x = 2.1, average

energies 〈Eνe〉 = 9.4 MeV, 〈Eν̄e〉 = 13.0 MeV, 〈Eνx/ν̄x〉 = 15.8 MeV, and luminosities

Lνe = 4.1× 1051 erg s−1, Lν̄e = 4.3× 1051 erg s−1, Lνx/ν̄x = 7.9× 1051 erg s−1. In both

cases we assume a neutrino sphere of radius R = 10 km and mass-squared difference

∆m2 = −2.4× 10−3 eV2, i.e. with an inverted neutrino mass hierarchy.
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In Fig. 7.4 we plot κmax for a few frequency modes as functions of neutrino

potential strength µ [see Eq. (5.11)] assuming that the matter density is not large

enough to suppress collective oscillations (i.e. v−1λ ≈ λ is valid). In both cases both

the instability region and κmax are about the same for the frequency modes with

|$| . 100 km−1. This is not a coincidence. Compared to the stationary model, the

time-dependent model has a new term in Eq. (5.17)

$

vu
≈ $ +

(
R

r

)2
u$

2
. (5.20)

The first term in the above equation changes only the real part of the collective

oscillation frequency Ω$ and has no impact on the flavor stability. The second term

depends on the neutrino trajectory and has a spread ∆$ ∼ (R/r)2|$|. It becomes

important only when

∆$ & ω0, (5.21)

where ω0 ∼ 1 km−1 is the typical vacuum oscillation frequency (and also the spread

of ω) of supernova neutrinos with the atmospheric mass-squared difference. In both

cases collective neutrino oscillations occur at r ∼ 10R which implies that the stability

condition of the frequency modes with |$| . 100 km−1 are about the same.

The above arguments can be generalized to the scenarios where collective oscilla-

tions occur close to the neutrino sphere (but not too close so that r−R� R) because

of, e.g., spatial inhomogeneous oscillation modes (Duan and Shalgar 2015, Mirizzi

et al. 2015, Chakraborty et al. 2016, Abbar et al. 2015b) or different angular distri-

butions for neutrino fluxes in different flavors (Mirizzi 2013, Sawyer 2016). In these

scenarios the spread in v−1
u $ is of the same order as $ itself, and the frequency modes

with |$| . 1 km−1 ≈ (3µs)−1 should have the same stability condition. These argu-

ments also apply in the presence of a large matter density because the comparison

between ∆$ and ω0 is not affected by the presence of the matter potential.

We note that there exists a causality constraint in the time-dependent Bulb
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model. Suppose that there is a temporary change in the neutrino fluxes on one

side of the neutrino sphere which lasts for a time interval ∆t. Because it takes at

least ∆t′ ∼ R for this change to propagate throughout the proto-neutron star, the

assumption of the spherical symmetry implies that the inequality ∆t & R must hold.

Therefore, only the oscillation modes of frequencies

$ . R−1 ∼ (10 km)−1 ≈ (30µs)−1 (5.22)

are allowed in the spherical Bulb model. From the above discussion we conclude

that there should be no significant difference between the flavor stability conditions

in the time-dependent and stationary Bulb models. For more general time-dependent

supernova models, collective neutrino oscillations should occur at approximately the

same radius as in the corresponding stationary models unless there exist very rapid

variations in local physical conditions on the timescales of a few microseconds or

shorter.

Meanwhile, the fact that the frequency modes with |$| . 1−100ω0 all have sim-

ilar instability regions also implies that the time-translation symmetry can indeed

be broken spontaneously by collective neutrino oscillations in the Bulb model, and

that neutrino oscillations can have a strong time dependence once collective oscil-

lations begin. As a result, there may exist qualitative differences between neutrino

oscillations in time-dependent and stationary supernova models.
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Neutron Stars

Neutron was discovered in 1932 (Chadwick 1932). A year after this discovery, Baade

and Zwicky pointed out the possibility of neutron stars while they were studying the

supernova explosion (Baade and Zwicky 1934). They came up with the idea that

the energy released in a supernova explosion is essentially the gravitational binding

energy of a very compact object which is made up of neutrons. The first calcula-

tion of the structure of neutron stars was carried out in 1939 by Oppenheimer and

Volkoff (Oppenheimer and Volkoff 1939) in which they studied the hydrodynamical

stability of a spherical compact object in general relativity. However, since there was

no observation confirming their existence, the idea of neutron stars did not attract

much attention for almost 30 years after Baade and Zwicky proposal.

In 1967, Hewish and Bell detected a radio signal with a pulsing period of 1.337

seconds (Hewish et al. 1968). Soon it was realized that pulsars are rotating neutron

stars with very large magnetic fields. Pulsar signal comes from the strong electro-

magnetic radiation which is emitted along the magnetic axis of the neutron star and

beams toward the earth once in every rotation. It was after this discovery that the

idea of the neutron star became popular. Today, almost 2000 pulsars are known.
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In this chapter, we briefly review the physics of neutron stars. Throughout this

chapter, we adopt the physical units with ~ = c = G = 1.

6.1 Mass and radius of the neutron star

A simple study of the structure of neutron stars in general relativity can be done by

considering the Einstein equation in the spherical symmetry. The resulting equations

were first studied by Tolman, Oppenheimer and Volkoff (Oppenheimer and Volkoff

1939) (TOV equations) and can be written as

dm

dr
= 4πr2ρ , (6.1a)

dP

dr
= −ρm

r2

(
1 +

P

ρ

)(
1 +

4πPr3

m

)(
1− 2m

r

)−1

, (6.1b)

dΦ

dr
= −1

ρ

dP

dr

(
1 +

P

ρ

)−1

. (6.1c)

Here r is the radial distance in spherical coordinate, Φ is the gravitational potential,

P is the pressure, ρ is the energy density, and m(r) is the gravitational mass of the

matter inside the sphere of radius r. In the cold matter when the temperature is

negligible, P and ρ are related through an equation of state (EOS) of the from

P = P (ρ) . (6.2)

The total mass of the neutron star is given by

M =

∫ R

0

4πr2ρdr . (6.3)

It is important to note that M includes the contribution from all the sources of energy

and is not just the rest mass of the star. The Newtonian limit can be achieved if

P � ρ and m� r1.

1This condition implies that the star’s radius is much larger than the schwarzschild
radius, rs = 2M .
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Eq. (6.1) has been solved for a configuration composed of a pure, non-interacting

neutron gas by Oppenheimer and Volkoff. They found the maximum mass for this

configuration to be Mmax ' 0.7M�. In their calculations, the maximum-mass neu-

tron star has the radius R ' 9.6 km and the central density ρc ' 5× 1015 g cm−3.

A more reasonable EOS results from a gas consisting of a mixture of electrons,

protons and neutrons in equilibrium. In this case, the neutrons are present only

when the density is larger than about 1.2× 107 g cm−3. This is because, for smaller

densities, any existing neutron can decay through the beta-decay process

n→ e+ p+ ν̄e . (6.4)

For higher densities, the fermi energy of electron is sufficient to produce a neutron

in the process

e+ p→ n+ ν̄e . (6.5)

The resulted EOS is very similar to the one of the pure neutron gas. The maximum

mass was found to be Mmax ' 0.72 M� with R ' 8.8 km and ρc ' 5.8×1015 g cm−3.

For more realistic EOS’es, the maximum mass of the neutron star depends on the

EOS at supra-nuclear densities which is subject to significant uncertainties (Lattimer

and Prakash 2016). However, one can still put some constraints on the maximum

mass of the neutron star without knowing the details of the EOS at very large

densities. As was pointed out by Rhoades Jr and Ruffini (1974) (see also (Koranda

et al. 1997)) one can use two very general and physical conditions to limit the mass

of neutron stars.

The first condition is the condition of the microscopic stability in which the

pressure must increase monotonically with ρ, i.e.

dP

dρ
≥ 0 . (6.6)
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This condition implies the stability of the matter. If it is violated, the neutron star

will collapse.

The other general condition that can be used to limit the maximum mass of the

neutron star is the causality which implies

dP

dρ
= c2

s ≤ 1 . (6.7)

This condition states that the velocity of sound in the medium must be smaller than

(or equal to) the speed of light.

Having these conditions in mind, one can find the stiffest EOS at supra-nuclear

densities that maximizes the mass of the neutron star. A simple choice used by

Rhoades Jr and Ruffini (1974) is

P = P0 + (ρ− ρ0) at ρ ≥ ρ0, (6.8)

where ρ0 is a density (with the value of about nuclear density) above which there

exists large uncertainty for the equation of state and P0 is the corresponding pressure.

Rhoades and Ruffini used ρ0 = 4.6 × 1014 g cm−3 in their calculations. Using the

EOS in Eq. (6.8) at supra-nuclear densities, the maximum mass was found to be

Mmax '
(

ρ0

4.6× 1014 g cm−3

)−1/2

3.2M� . (6.9)

It should be noted that the reason for the existence of a maximum mass is different

in Newtonian physics and general relativity. In Newtonian physics, there exists a

maximum mass only when the EOS is too soft (e.g., the EOS of relativistic particles).

In particular, for the EOS of non-relativistic particles there is no limit on the mass

of the star. On the other hand, In general relativity the existence of the maximum

mass comes from the nonlinearity of the TOV equations and there is a maximum

mass even for very stiff EOS’es.
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For a given EOS, Eq. (6.1) can be solved for a given central density ρc as the initial

condition. Then one can find the mass-radius curve which is different for different

EOS’es (see Fig. 6.1). To develop some insight into the nature of the solutions of the

structure equations, let us consider Eq. (6.1) in the Newtonian limit:

dm

dr
= 4πr2ρ ,

dP

dr
= −ρm

r2
,

dΦ

dr
=
m

r2
.

(6.10)

Assuming a polytropic EOS of the form

P = Kργ , (6.11)

one can find the mass of the star as a function of its radius in the Newtonian limit

to be (Kippenhahn et al. 1990)

M = ξR(4−3γ)/(2−γ) , (6.12)

where ξ is a constant that depends on γ. For the low mass neutron stars where the

densities are relatively low, the neutron star is supported mostly by the pressure of

the degenerate relativistic electron gas. In this case γ ' 4/3, and one finds

M = constant . (6.13)

In other words, the mass of a low mass neutron star almost remains constant with

respect to the radius. For high mass neutron stars, however, it is expected that

a significant part of the pressure is due to the matter at densities larger than the

nuclear saturation density ns ' 0.16 fm−3. At these densities, almost all theories for

dense matter suggest that γ ' 2 (Lattimer and Prakash 2016). For this value of γ,

one finds that

R = constant . (6.14)
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Figure 6.1: Mass-radius curves for a verity of popular equations of state. The
bright green region at the top left is excluded by causality. The dark green region
at the bottom is excluded by the most rapidly spinning pulsar. Black curves come
from different equations of state for hadronic matter and the green curves are from
equations of state of quark matter. R∞ is defined as R∞ = R

√
1− 2β where β =

GM/R. Reprinted from Phys. Rep., 621, J. M. Lattimer & M. Prakash,The equation
of state of hot, dense matter and neutron stars, 127 Copyright 2016, with permission
from Elsevier (Ref. (Lattimer and Prakash 2016)).

The interior of a neutron star can be divided into five important regions (Lat-

timer and Prakash 2016) (see also Figs. 6.2 and 6.3). The outermost region is the

atmosphere which is only ∼ 1 cm thick. In spite of its small thickness, this region is

very important since it controls the observed energy spectra of the radiation from the
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Chapter 6. Neutron Stars

Figure 6.2: Schematic representation of the structure of a neutron star. Figure
adapted from Page and Reddy (2006).

neutron star. The next layer is the envelope which controls the effective temperature

of the neutron star. Below the envelope is the crust which is a region composed of

nuclei in a Coulomb lattice. This region itself can be divided into two parts: the

outer crust which is a lattice composed of nuclei with Z ' 56 and the inner crust

with ρ in the range 4× 1011 g cm−3− 1014 g cm−3. The nuclei in the inner crust are

more massive and neutron rich. Due to the competition between the Coulomb and

surface energies, nuclei are likely deformed in the inner crust. At higher densities,

this deformation leads to the formation of the so-called pasta-phase. Moreover, in

72



Chapter 6. Neutron Stars

Figure 6.3: Schematic picture of the composition of the neutron star along the
density axis. Figure adapted from (Chamel and Haensel 2008).

the inner crust there exist free neutrons which have dripped out of the nuclei. At the

boundary of the inner crust and the core, the density is approximately 1014 g cm−3,

and the inhomogenous phase of the nuclei is replaced by a homogenous phase of the

nucleons in the outer core. The innermost region is the inner core with a composi-

tion that is mostly unknown. There are a number of candidate phases for the matter

inside the inner core, from a phase which is mostly composed of nucleons to a phase

of deconfined quarks.

6.2 Cooling of the neutron star

Neutron stars are born with very high internal temperatures (T & 1011 K). Its

surface temperature decreases to a few 106 K after a few hundreds of years and

remains in the vicinity of this value for a few hundred thousands of years. For these

temperatures, i.e. T ' 0.1− 1 KeV we expect a thermal radiation in the x-ray band.
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The cooling history of a neutron star is very sensitive to the physics of its interior.

Therefore by studying the thermal evolution of the neutron star and comparing the

theoretical predictions with observations, we can develop our understanding of the

high-density matter inside the neutron star. In this section we discuss briefly the

equations that govern the thermal evolution of a neutron star.

Since the structure of the neutron star can affect its thermal evolution, the equa-

tions that govern the thermal evolution of the neutron star is coupled to its structure

equations. The physics of the thermal structure of the neutron star can be described

by six ordinary differential equations (see, e.g., (Gudmundsson et al. 1983)). The

first three equations are the structure equations in Eq. (6.1). The heat transport

equation is given by

d (TeΦ)

dr
= − 3κρ

16σT 3

Ld

4πr2
eΦeΛ , (6.15)

where σ is the Stefan-Boltzmann constant, Ld is the luminosity due to thermal

conduction and radiation, κ is the total opacity of the stellar mater, eΦ is the redshift

factor, and

eΛ =

(
1− 2m

r

)−1/2

. (6.16)

is the relativistic length correction factor. The next equation is the equation that

governs the neutrino luminosity Lν :

d (Lνe
2Φ)

dr
= ενe

2Φ4πr2eΛ , (6.17)

where εν is the neutrino emissivity per unit volume. At T . 109 K, one can ignore

the transport of neutrinos inside the neutron star because the neutrino mean free

path is larger than the radius of the neurton star (Shapiro and Teukolsky 2008). If

there is no source of internal heating, the energy conservation gives

d (Le2Φ)

dr
= −cv

dT

dt
4πr2eΛ , (6.18)

74



Chapter 6. Neutron Stars

where L is the total luminosity L = Ld +Lν , cv is the specific heat per unit volume,

and t is the time measured by an observer at r =∞.

In the Newtonian limit, the equations of the thermal evolution can be written as

dLd

dr
+ εν = −cv

dT

dt
4πr2 (6.19)

and

dT

dr
= − 3κρ

16σT 3

Ld

4πr2
. (6.20)

From these equations, one can find the characteristic time-scale of the neutron star

cooling

τth ≈
CVl

2

κ
, (6.21)

where l is the length-scale of temperature variations, and CV is the total heat capacity

of the entire neutron star.

Since the thermal conductivity is very large at large matter densities, the interior

of the neutron star is almost isothermal except for a very narrow region near the

surface where there is a very large temperature gradient. To find a relation between

the surface and interior temperatures of a neutron star, Gudmundsson et al. (1983)

devided the neutron star into two regions. The inner region has a larger density (ρ ≥

1010 g cm−3) and includes the core (and a part of the crust). The outer region has a

smaller density (ρ ≤ 1010 g cm−3) and includes the atmosphere, the envelope and a

part of the outer crust. In their calculations it was assumed that (see (Richardson

et al. 1982)) for a neutron star more than a few tens of years old, the temperature

in the outer region has fallen below 109 K so that this region is in a quasi-stationary

state. This means that the right-hand side of Eq. (6.18) becomes zero and

Le2Φ ' constant (6.22)
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within the outer region. It was shown that the terms of order P/ρ can be ignored

in this region with an accuracy better than 0.1% and that the eΦ and eΛ terms

are constant in the outer region with an accuracy better than 0.5%. With these

simplifications for the matter in the outer region, Gudmundsson et al. (1983) came

up with a simple equation that governs the variation of the temperature for the outer

region

dT

dP
=

3

16

κ

T 3

T 4
s

gs

, (6.23)

where

gs =
M

R2
eΛs (6.24)

is the surface gravity of the neutron star, and subscript “s” signifies the values at

the surface of the neutron star. This equation determines the thermal structure of

the outer region and can be solved for the interior temperature of the neutron star

with the given surface temperature.

To obtain some insight into the neutron star cooling time scales, we will ignore the

thermal structure inside the neutron star, and we will assume that the neutron star

is isothermal to a very good approximation. In the Newtonian limit, The thermal

evolution of the neutron star is governed by

dU

dt
= CV

dT

dt
= −(Lν + Lγ) , (6.25)

where Lν and Lγ are total neutrino and photon luminosities, respectively. If the

neutron star can be approximated as a blackbody, its total photon luminosity is

related to the effective surface temperature by

Lγ = 4πR2σT 4
s . (6.26)

To a very good approximation, one can assume that the thermal energy of the neutron

star resides almost entirely in the degenerate fermion gas. The heat capacity of a
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fermion gas with N particles at temperature T is given by (Shapiro and Teukolsky

2008)

CV ' π2 (1 + x2)1/2

x2

NT

m
, (6.27)

where m is the mass of the particle, and x = pF/m with pF being the Fermi momen-

tum of the particle. With this expression for Cv, one can find the neutron star cooling

time scale if the neutrino cooling process is known. For example, if the neutrino pair

Bremsstrahlung is the dominant cooling process, one has (Shapiro and Teukolsky

2008)

Lν ' 5× 1039 erg s−1

(
Mcrust

M�

) (
T

109 K

)6

, (6.28)

and the neutrino pair Bremsstrahlung cooling time scale is

τc ' 2 yr

(
Mcrust

M�

)(
ρ

2.8× 1014 g cm−3

)−2/3(
T

109 K

)−4

, (6.29)

where ρ is the average density of the neutron star. Depending on the cooling mech-

anism, the cooling time scale ranges from a few seconds to several years.
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Thermal Conductivity of the

Neutron Star Crust

In the previous chapter, we mentioned that the observations of the cooling of neu-

tron stars can provide us with valuable information of the physics of the neutron

stars interior. In particular, observations of transient phenomena in accreting neu-

trons stars including magnetars (Eichler and Cheng 1989, Rutledge et al. 2002) have

motivated recent attempts to model the thermal evolution of the neutron star crust

(see (Shternin et al. 2007, Brown and Cumming 2009, Page and Reddy 2012; 2013)).

These studies have shown that the thermal conductivity of the crust plays a very

important role in shaping the temporal structure of the x-ray emission from these

systems. In this chapter we will study the thermal conductivity of the outer crust

of the neutron star where the typical densities are in the range of 108 − 1011 g cm−3

and temperatures are expected to be in the range of 107 − 109 K.
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7.1 Thermal conductivity of the outer crust

In the simplest scenario the outer crust at given density is composed of cold catalyzed

matter of a single ion species. The mass number A and charge Z of the ions are

density dependent and are determined by minimizing the total energy of the system.

The ground state of such matter is a strongly correlated one component plasma

(OCP) with bare nuclei immersed in a degenerate and weakly coupled electron gas.

The characteristic energy of the electron is set by its Fermi momentum

pF = (3π2ne)
1/3

' (25 fm)−1

(
Z

30

)1/3(
A

80

)−1/3

ρ
1/3
10 , (7.1)

where ne is the number density of electrons, and ρ10 is the mass density in units of

1010 g cm−3. For the densities of interest in the outer crust, which are typically in

the range of 108 − 1011 g cm−3, pF is much larger than electron mass me, and it is

a good approximation to treat electrons as ultra-relativistic. In contrast, ions are

heavy and correlated. One characteristic energy is set by the ion plasma frequency

ΩP =

(
4πZ2e2nI

M

)1/2

≈ (2.9× 108 K)

(
Z

30

)(
A

80

)−1

ρ
1/2
10 , (7.2)

where nI = ne/Z is the ion density, M ≈ Amp is the mass of the ion with mp being

the proton mass, and e2 ≈ 1/137 is the fine structure constant in natural units.

The typical Coulomb energy is of order Z2e2/a, where

a =

(
4πnI

3

)−1/3

≈ (147 fm)

(
A

80

)1/3

ρ
−1/3
10 (7.3)

is the inter-ion distance. The temperature T provides a measure of the “extractable”

kinetic energy or the thermal energy of the ions. The ratio between the Coulomb en-

ergy and the thermal energy of the ions is a measure of the importance of interactions
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in the plasma and defines the dimensionless Coulomb parameter

Γ =
Z2e2

aT
. (7.4)

In a weakly coupled plasma Γ � 1, and Coulomb interaction can be studied with

the perturbation theory. Numerical simulations of the OCP have shown that ions

crystallize into a solid state when Γ > Γm ≈ 175 (Slattery et al. 1980; 1982, Jones

and Ceperley 1996). The melting temperature of the solid

Tm =
Z2e2

aΓm

≈ 2.0 ΩP

(
Z

30

)(
A

80

)2/3

ρ
−1/6
10 (7.5)

can be correspondingly defined. We note that the electron screening modifies the

Coulomb potential generated by the ion at large distances. The modified potential

is

V (r) =
Ze

r
e−r kTF , (7.6)

where

kTF =

(
4πe2∂ne

∂µe

)1/2
pF�me−−−−→

√
4e2

π
pF ≈ (1.7a)−1

(
Z

30

)1/3

(7.7)

is the Thomas-Fermi (screening) momentum, and µe =
√
m2
e + p2

F is the electron

Fermi energy. Because kTFa < 1 for the densities of interest, screening will not

greatly alter the nearest neighbor ion-ion interaction, and the Coulomb parameter

of the OCP without screening continues to provide a reasonable measure of the

strength of interactions and the melting temperature. In this chapter we have chosen

to present results at fiducial densities 1010 and 1011 g cm−3, labelled as LD and HD,

respectively. The chemical compositions in these two cases are chosen according to

(Page and Reddy 2012) for catalyzed matter in the outer crust. We list the physical

conditions of the two cases in Table 7.1.

The information about inter-particle correlations and their time evolution is con-

tained in the dynamic structure function and is given by (see, e.g., (Ashcroft and
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Name Lattice ρ Ion a ΩP Tm p−1
F k−1

TF k−1
D

LD BCC 1010 84
34Se 149 0.32 0.75 24 249 62

HD BCC 1011 80
28Ni 68 0.87 1.11 12 121 28

Table 7.1: Key parameters for cold catalyzed matter in neutron star crust at two
fiducial densities. The compositions are chosen according to (Page and Reddy 2012).
Here a, p−1

F , k−1
TF and k−1

D are all in units of fm and ΩP and Tm are in 109 K.

Mermin 1976))

S(ω,q) =
1

N

N∑
i,j=1

e−iq·(Ri−Rj)

∫
dt

2π
eiωt 〈eiq·uj(0) e−iq·ui(t)〉T , (7.8)

where N is the total number of ions in the crystal, Ri is the equilibrium position of

the ion on the i’th site, ui(t) is the displacement of this ion at time t, and 〈· · · 〉T
denotes the thermal average.

Since electrons are relativistic, weakly coupled and very degenerate, they domi-

nate the thermal conductivity of the neutron star crust. The electron thermal con-

ductivity κ is mainly limited by electron-ion scattering and can be written as

κ =
π2Tne
3εFνκ

, (7.9)

where εF ≈ pF is the electron Fermi energy, and the effective collision rate is (Flowers

and Itoh 1976)

νκ =
2

3

εF

Z(2π)3

∫ 2pF

0

dq q3|v(q)|2S ′κ(q) . (7.10)

In the above expression

|v(q)|2 = e2|V (q)|2
(

1− q2

4p2
F

)
(7.11)

is the square of the scattering matrix element for electron-ion interaction with mo-

mentum exchange q, and the screened Coulomb potential generated by the ion in

momentum space is

V (q) =
4πZe

ε(q) q2
, (7.12)
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where

ε(q) = 1 +
k2

TF

q2
(7.13)

is the static dielectric function in the Thomas-Fermi approximation. The effects due

to ion-ion correlations on electron scattering are included in Eq. (7.10) through

S ′κ(q) =

∫ ∞
−∞

dω 〈S ′(ω,q)〉q̂wκ(ω/T, q), (7.14)

where S ′(ω,q) is the inelastic part of the dynamic structure function, 〈· · ·〉q̂ is the

average over the direction of unit vector q̂ = q/q, and

wκ(z = ω/T, q) =
z

ez − 1

[
1 +

z2

π2

(
3p2

F

q2
− 1

2

)]
. (7.15)

We note that the elastic Bragg scattering does not contribute to the conductivity

because it has been accounted for in the ground state which leads to the electronic

band structure.

Because the response at high frequency |ω| � ΩP cannot involve collective motion

of the ions, we expect that most of the strength of the dynamic response will reside

at energies that are comparable to ΩP. Therefore, when T & ΩP it is a good approx-

imation to retain only the leading terms of wκ(z, q) in z = ω/T in the integrand in

Eq. (7.14), and the static approximation S ′κ(q) ≈ S ′(q) is valid, where

S ′(q) =

∫ ∞
−∞

dω 〈S ′(ω,q)〉q̂, (7.16)

is the inelastic part of the static structure function. At very low temperature T �

ΩP, however, the exponential factor 1/(e−ω/T − 1) in wκ(z, q) dominates. In this

limit the static approximation breaks down, and S ′κ(q)� S ′(q). Between these two

temperature limits two competing factors in wκ(z, q) dominate in different ranges

of q. For large-angle scattering (with large q values) the exponential factor still

dominates, and S ′κ(q) < S ′(q). But for small-angle scattering (with small q values)

the factor p2
F/q

2 can dominate, and S ′κ(q) > S ′(q).
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7.2 Phonon spectrum and dynamical response

At low temperature the characteristic distance scale for ion motion in lattice is

λI =

(
1

2MΩP

)1/2

≈ (3.2 fm)

(
Z

30

)−1/2

ρ
−1/4
10 , (7.17)

which is much shorter than the inter-ion distance a. Under these conditions the

restoring force on the ion is quadratic in the displacement ui(t), and the detailed

phonon spectrum can be calculated by using the dynamic matrix (see, e.g., (Carr

1961, Ashcroft and Mermin 1976))

D(k) = 2
N∑
i=1

sin2

(
k ·Ri

2

)[
∂2V (x)

∂x∂xT

]
x=Ri

. (7.18)

The phonon frequencies ωs(k) (s = 1, 2, 3) are obtained by solving the eigenvalue

equation Mω2
s(k)− D(k) = 0, and the corresponding normalized eigenvectors ês(k)

are the phonon polarization vectors. In the long wavelength limit, phonons have a

linear dispersion relation

ωs(k) = cs(k̂)k +O(k2), (7.19)

where cs(k̂) is the sound speed of the phonon mode in propagation direction k̂ = k/k.

Generally speaking, polarization vectors ês(k̂) are neither parallel nor perpendicu-

lar to k̂. However, for ka . 1, two of the phonon modes in a cubic lattice are

approximately transverse, and the third mode is approximately longitudinal.

In Fig. 7.1 we show the phonon dispersion relations and polarization of a body

centered cubic (BCC) lattice which are calculated from the dynamic matrix. The

lower frequency modes in the left-panel of Fig. 7.1 correspond to the modes that

are mostly transverse with ês · k̂ ≈ 0, and the higher frequency modes are mostly

longitudinal with |ês · k̂| ≈ 1.

Despite the relatively large spread of velocities associated with the transverse

modes it is often useful to represent them by an “average velocity” denoted as ct.
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Figure 7.1: The dispersion relations of the phonon modes of the Coulomb lattice. Left
panel: The phonon frequencies ω as functions of wave number k. The dashed and
solid curves are for the transverse and longitudinal modes described by Eqs. (7.20)
and (7.22), respectively. The shaded region gives the range of the eigenvalues of the
dynamic matrix in Eq. (7.18). Right panel: The shaded region gives the range of
|ês · k̂| for the eigenvectors ês(k) of the dynamic matrix. The results in both panels
are computed for the LD matter. Reprinted figure with permission from S. Abbar
et al, Phys. Rev. C 92, 045809, 2015 (Ref. (Abbar et al. 2015a)). Copyright 2015
by the American Physical Society.

This is typically defined by taking the limit of k → 0 in which case

ct =
αΩP

kD

≈ 0.0031
( α

0.4

)( Z
30

)(
A

80

)−2/3

ρ
1/6
10 , (7.20)

where α ≈ 0.39 according to (Chabrier et al. 1992), and

kD = (6π2nI)
1/3 ≈ (0.41a)−1 (7.21)

is the Debye wave number. An approximate relation for the longitudinal mode is

given by

ω2
l (k) =

Ω2
P

ε(k)
≈ Ω2

P

1 + (kTF/k)2
. (7.22)

At low temperature it is useful to write the dynamic structure function as a sum

of the contributions from n-phonon processes (n = 0, 1, . . .):

S(ω,q) = S(0)(ω,q) + S(1)(ω,q) + · · · . (7.23)
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The elastic or Bragg scattering is the 0-phonon contribution and is given by

S(0)(ω,q) = e−2W (q)δ(ω)N
∑
K

δq,K, (7.24)

where K is a reciprocal lattice vector, and

e−2W (q) = exp
(
−〈[q · u(0)]2〉T

)
(7.25)

is the Debye-Waller factor which accounts for the suppression of coherent scattering

by thermal and quantum fluctuations of the ions. As mentioned earlier, the 0-phonon

contribution does not affect electron scattering. At low temperature electron-ion

scattering is dominated by the 1-phonon contribution

S(1)(ω,q) =
e−2W

2M

∑
s,K

∫
d3k

[q · ês(k)]2

ωs(k)
δ3(K + k− q)

×
[
δ(ω − ωs(k))

eωs(k)/T − 1
+
δ(ω + ωs(k))

1− e−ωs(k)/T

] (7.26)

where the phonon momentum k is restricted to the first Brillouin zone (Flowers

and Itoh 1976, Ashcroft and Mermin 1976). In this case, S ′κ(q) in Eq. (7.10) can be

replaced by

SOPA
κ (q) =

∫ ∞
−∞

dω 〈S(1)(ω,q)〉q̂wκ(ω/T, q). (7.27)

Note that large-angle scattering involves a finite |K| � |k| where the crystal

absorbs a large component of the momentum. This is well-known as the Umklapp

process in solid state physics (Ashcroft and Mermin 1976). Flowers and Itoh (1976)

realized that these processes dominate over normal processes (with K = 0) in the

neutron star context for typical temperatures of interest because pF � kD. However,

transitions with small k and finite K can be suppressed by the effects of the electronic

band structure which we shall now briefly discuss.

Although it is generally a good approximation to assume that electrons are free,

on patches of the electron Fermi surface which intersect with the Brillouin zone
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boundaries, the effect of the periodic background ion potential is large. It distorts

the Fermi surface and creates a band gap in the electron spectrum at the Fermi

surface which is given by

∆ε(pF) ' 4e2

3π

e−W (pF) F (pF)

ε(pF)
pF (7.28)

where F (pF) is the charge form factor of the nucleus (Pethick and Thorsson 1997).

This gap can suppress the Umklapp processes when

T . TU ' ct ∆ε(pF), (7.29)

(Ziman 1960, Raikh and Yakovlev 1982, Chugunov 2012). From Eq. (7.29) we can

deduce that TU < 10−2ΩP. In what follows we restrict our analysis to the regime

where T is in the range 10−2 − 1 ΩP and where the effects due to the band gap in

the electron spectrum can be safely neglected (Chugunov 2012).

To determine the temperature regimes where the static approximation S ′κ(q) ≈

S ′(q) is valid, one can compute the static structure function S ′(q) in one-phonon

approximation (OPA):

SOPA(q) =

∫ ∞
−∞

dω 〈S(1)(ω,q)〉q̂. (7.30)

In Fig. 7.2 we show SOPA
κ (q) and SOPA(q) of the LD matter at three different temper-

atures, T/ΩP = 0.03, 0.1 and 0.3, respectively. The right panel of this figure shows

that, even at T = 0.3 ΩP, S ′κ(q) = S ′(q) is already a good approximation. The left

panel of Fig. 7.2 shows that, at low temperature T = 0.03 ΩP, the exponential factor

1/(eω/T − 1) in Eq. (7.15) dominates, and S ′κ(q) � S ′(q) in most of the range of q.

The middle panel of Fig. 7.2 with T = 0.1 ΩP illustrates the competition between

two factors in the expression of wκ at moderate temperatures, which are discussed

earlier following Eq. (7.16) in Section 7.1. For large-angle scattering with qa & 5

the exponential factor still dominates, and S ′κ(q) < S ′(q). For small-angle scattering
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Figure 7.2: The one-phonon approximation results of S ′κ(q) (thick solid curves) and
S ′(q) (thick dashed curves) for the LD matter at the three temperatures as labelled.
The results of S ′κ(q) obtained using the fitting formula by Potekhin et al. (1999),
which is based on the harmonic approximation for the one-component Coulomb
plasma and which includes multi-phonon contributions, are also shown (as dot-
dashed curves) for comparison. Reprinted figure with permission from S. Abbar
et al, Phys. Rev. C 92, 045809, 2015 (Ref. (Abbar et al. 2015a)). Copyright 2015
by the American Physical Society.

with qa . 5, however, the factor p2
F/q

2 dominates, and S ′κ(q) > S ′(q). We note that

at low temperature S ′κ(q) has a peak at q → 0 because

wκ(ω/T � 1, qa� 1) ≈ 1 +
3

π2

(pF

T

)2
(
ω

q

)2

,

and the second term in this expression always dominates under the typical conditions

in the neutron star crust.

For comparison we also show in Fig. 7.2 the results of S ′κ(q) obtained using the

fitting formula by Potekhin et al. (1999) which is based on the harmonic approx-

imation for the one-component Coulomb plasma and which includes multi-phonon

contributions.
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7.3 Static structure function and Monte Carlo sim-

ulations

The neutron star crust spans the regimes where purely classical simulations are suffi-

cient and where quantum effects start to play a significant role. We can use classical

and Quantum Monte Carlo simulations (CMC and QMC) to address these condi-

tions. The QMC simulations have the classical simulations as a specific limit. Both

the CMC and QMC calculations can easily address the static structure function S(q).

They can also be used to compute further information about the energy dependence

of the response as well as other observables.

In CMC the kinetic and potential energies are independent variables. Hence the

positions of the particles can be sampled independently of their momentum. One can

use a simple version of the Metropolis Monte Carlo method to sample the positions

of the nuclei in periodic boundary conditions at fixed density and temperature. The

simulations use N & 1000 particles, initially at predetermined lattice sites in a

periodic cubic box with length L = (N/nI)
1/3. Proposed particle moves {xi} → {x′i}

have equal transition probabilities as their reverses:

T ({xi} → {x′i}) = T ({x′i} → {xi}), (7.31)

and they are accepted with probabilities

P ({xi} → {x′i}) =

 e−∆E/Tσ if ∆E ≥ 0,

1 otherwise.
(7.32)

For CMC Tσ = T , and the energy change is the same as the change in total potential

energy:

∆E = Epot({x′i})− Epot({xi}), (7.33)
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where

Epot({xi}) =
∑
i<j

V (|xi − xj|). (7.34)

In Eq. (7.34) the sums over i and j run over the particles in the simulation volume

plus their periodic images. Typically plus or minus one image in each direction (i.e.

27 periodic boxes in total) is sufficient in these simulations because of the screening

of the ion-ion potential. Standard Ewald summation is also possible but would be

slower. Detailed balance ensures that the Markov chain constructed with the method

described above will converge eventually to sample particle positions proportional to

the partition function.

Quantum fluctuations become important when T/ΩP . 1. For such scenarios

one can use path integral QMC simulations (see, e.g., (Ceperley 1995)). The single

position for each particle in the classical simulation becomes a path in path integral

simulations with periodic boundary conditions in imaginary time. Boson or fermion

path integrals would require exchanges in the imaginary time boundary conditions

with the appropriate statistics, e.g. −1 for odd permutations of fermions. Because

the characteristic distance λI of the ion motion in the lattice is much shorter than

the inter-ion distance a, quantum statistics (the boson or fermion nature of nuclei)

is not important, and we can consider the particles as distinguishable.

In (path integral) QMC simulations the imaginary time or inverse temperature

β = 1/T is split into Nβ slices. Each slice is a classical N -particle system described

above but with effective temperature

Tσ = (∆τ)−1 =

(
β

Nβ

)−1

. (7.35)

For QMC each imaginary-time slice involves a high-temperature expansion of the

propagator exp(−H∆τ). For a large enough number of slices Nβ the results are

independent of the number of slices. Typically of order 10 slices are required in the

present calculations.
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As in CMC, the Markov chain is again constructed by moving the particles ac-

cording to the acceptance probability defined in Eq. (7.32). For QMC the energy

change includes the changes in both kinetic and potential energies:

∆E = [Epot({x′i,σ}) + Ekin({x′i,σ})]

− [Epot({xi,σ}) + Ekin({xi,σ})], (7.36)

where

Ekin({xi,σ}) =
N∑
i=1

Nβ∑
σ=1

(xi,σ+1 − xi,σ)2

2M(∆τ)2
, (7.37)

Epot({xi, σ}) =

Nβ∑
σ=1

∑
i<j

V (|xi,σ − xj,σ|) (7.38)

with xi,Nβ+1 = xi,1. Clearly, a CMC simulation can be considered as a special case

of QMC simulation with Nβ = 1.

The static structure function is then obtained from the points sampled after

convergence. In Monte Carlo simulations

S(q) =
1

NNβ

〈
Nβ∑
σ=1

N∑
i,j=1

eiq·(xi,σ−xj,σ)

〉
q̂,T

, (7.39)

which includes both the one-phonon and multi-phonon contributions. Because of the

periodic condition,

q =
2π

L
(nxx̂ + nyŷ + nzẑ) (7.40)

take discrete values, where nx(y,z) are integers. To obtain the inelastic part of the

static structure function S ′(q) we simply remove the points that correspond to the

Bragg peaks in the BCC lattice. Other detailed structures predicted by QMC and

CMC, i.e. the smaller peaks and troughs away from the Bragg peaks (see Fig. 7.3),

are finite-size artifacts whose amplitude decreases with increasing particle number

in the simulation. However, the integrated strength over any reasonable interval
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Figure 7.3: The inelastic part of static structure function S ′(q) of the LD matter
at the two temperatures as labelled. The results are obtained using the one-phonon
approximation (thick dashed curves), and quantum and classical Monte Carlo sim-
ulations (solid and dotted curves), respectively. Reprinted figure with permission
from S. Abbar et al, Phys. Rev. C 92, 045809, 2015 (Ref. (Abbar et al. 2015a)).
Copyright 2015 by the American Physical Society.

in q is physically relevant and is insensitive to finite-size effects after the numerical

convergence has been achieved.

At high temperature T & ΩP all phonon modes are excited and SCMC(q) and

SQMC(q), which are S ′(q) obtained using CMC and QMC simulations, respectively,

should agree. But at low temperature T � ΩP quantum fluctuations become promi-

nent, and SQMC(q) > SCMC(q). In Fig. 7.3 we compare SCMC(q) and SQMC(q) for

the LD matter at two different temperatures, T/ΩP = 0.1 and 0.56, respectively.

Indeed, SQMC(q) is clearly larger than SCMC(q) at T = 0.1 ΩP, but it is somewhat

surprising that SCMC(q) and SQMC(q) agree very well even at temperature as low as

T = 0.56 ΩP.

For comparison we also show SOPA(q) in Fig. 7.3. This figure shows that SQMC(q)

and SOPA(q) agree with each other at low T and/or small q, although there exist

rapid oscillations in Monte Carlo results because of the finite size of the system. At

high T and/or large q multi-phonon contributions are signfiant, and the one-phonon
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approximation breaks down.

Note that in Eq. (7.39) only the equal-time correlator has been evaluated. By

including an offset in the imaginary times between the evaluations of positions of

particles i and j,

S(s∆τ, q) =
1

NNβ

〈
Nβ∑
σ=1

N∑
i,j=1

eiq·(xi,σ−xj,σ+s)

〉
q̂,T

, (7.41)

one can obtain information of the energy dependence of the response (Ceperley 1995).

It is also possible to calculate the properties of MCP in both the classical and quan-

tum regimes. This would require simulations significantly larger than the OCP stud-

ied here, to ensure that the periodic boundary conditions do not impact the results.

Simulations of this magnitude should be readily achievable on modern parallel com-

puters.

7.4 Discussion

We have calculated the thermal conductivity of OCP for the LD and HD ambient

conditions outlined in Table 7.1 for the temperatures of interest to neutron star

phenomenology. To this end we use the various approximate methods outlined in

previous sections to calculate S ′κ(q), which is the kernel function for computing effec-

tive electron collision rate νκ in Eq. (7.10). We then calculated κ for the catalyzed

neutron star matter with densities 1010 g cm−3 (LD) and 1011 g cm−3 (HD), respec-

tively. The results are shown in Fig. 7.4 where the thermal conductivity is obtained

by replacing S ′κ(q) with SOPA
κ (q) (thick solid curves), SOPA(q) (thick dashed curves),

SOPA
κ (q) with simple phonon dispersion relations [see Eqs. (7.20) and (7.22)] (thin

solid curves), the fitting formula of S ′κ(q) based on the harmonic approximation

(Potekhin et al. 1999) (thin dot-dashed curves), SQMC(q) (filled circles) and SCMC(q)

(filled squares), respectively.
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Figure 7.4: Thermal conductivity of the LD (left panel) and HD matter (right panel)
in units of 1018 erg cm−1s−1K−1 and as a function of temperature. The results are
obtained by replacing S ′κ(q) in Eq. (7.10) with SOPA

κ (q) (thick solid curves), SOPA(q)
(thick dashed curves), SOPA

κ (q) with approximate phonon dispersion relations [see
Eqs. (7.20) and (7.22)] (thin solid curves), fitting formula of S ′κ(q) for one-component
Coulomb plasma based on the harmonic approximation (Potekhin et al. 1999) (thin
dot-dashed curves), SQMC(q) (filled circles) and SCMC(q) (filled squares), respectively.
Reprinted figure with permission from S. Abbar et al, Phys. Rev. C 92, 045809, 2015
(Ref. (Abbar et al. 2015a)). Copyright 2015 by the American Physical Society.

A careful comparison of the results obtained using different approximations for

the function S ′κ(q) provides the following useful insights:

1. It is adequate to set S ′κ(q) = S ′(q) in calculating κ at temperature as low

as T ≈ 0.1 ΩP. A comparison between the thick dashed curves obtained

using SOPA(q) and the thick solid curves obtained using SOPA
κ (q) supports this

conclusion. The validity of this approximation is expected and well known for

T & ΩP. One can see that S ′κ(q) ≈ S ′(q) even at T = 0.3 ΩP (see Fig. 7.2).

Further, for 0.1 . T/ΩP . 0.3, this approximate method can still be used to

compute κ even though S ′κ(q) and S ′(q) differ. This is because there are two

competing factors in wκ(ω/T, q) which are discussed earlier following Eq. (7.30)

in Section 7.1.

93

http://journals.aps.org/prc/abstract/10.1103/PhysRevC.92.045809


Chapter 7. Thermal Conductivity of the Neutron Star Crust

2. Multi-phonon effects become relevant for Γ/Γm . 4 in our simulations. At

higher Γ or lower temperature the one-phonon approximation is adequate for

OCP but is sensitive to the phonon dispersion relation. This is evident when

we compare the thick solid curves, the thin solid curves and thin dot-dashed

curves, which are obtained using the exact phonon dispersion relations from

the dynamical matrix, the approximate phonon dispersion relations, and the

harmonic approximation method with multi-phonon contributions (Potekhin

et al. 1999), respectively.

3. The comparison between the results obtained using CMC and QMC simula-

tions, shown by the filled squares and circles, respectively, indicates that quan-

tum effects in thermal conductivity are significant when T . 0.3 ΩP where

classical calculations systematically underestimate S ′(q). At T ≈ 0.1 ΩP CMC

results overestimate κ by about 30%.

4. The fitting formula for S ′κ(q) which is based on the harmonic approxima-

tion (Potekhin et al. 1999) (dot-dashed curves) works quite well for the one-

component Coulomb lattice in the whole temperature range which we have

studied. This can be seen when we compare them with the thick solid curves

at T . 0.3 ΩP and filled circles/squares at T & 0.3 ΩP which are obtained using

the one-phonon approximation and Monte Carlo simulations, respectively. At

the highest temperature where Γ ≈ Γm the results obtained using the harmonic

approximation include multi-phonon excitations and agree well with the QMC

results. This indicates that anharmonic effects are small even in this regime.

At the lowest temperatures, although the S ′κ(q) obtained from the fitting for-

mula based on the harmonic approximation differs from that obtained in the

OPA (see Fig. 7.2), the predictions for the thermal conductivity agree well as

already discussed in (Potekhin et al. 1999).

Some of the trends emerging from these comparisons could have been be ex-
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pected qualitatively. As previously alluded to, this systematic quantitative compar-

isons between QMC results and those obtained using the standard electron-phonon

treatment provide a basis to asses the viability of using QMC calculations of S(q) at

low temperature for complex multi-component systems. In the standard treatment,

multi-component systems are modeled as a regular lattice plus uncorrelated impu-

rities, and electron scattering is assumed to arise due to incoherent contributions

from electron-phonon and electron-impurity scattering. This treatment fails when

the spatial distribution of the minority species is correlated, and QMC is a viable

technique to calculate the role of these correlations in strongly coupled plasmas with

Γ� 1 in the regime when T < ΩP.

One observes that S(q) obtained from QMC is adequate to calculate κ for T &

0.1 ΩP, and CMC may be adequate to compute thermal conductivity of OCP at

T & 0.3 ΩP. For lower temperatures, more detailed information about the energy

dependence of the response is needed and we have briefly commented on how we can

accesses this in the discussion following Eq. (7.41).
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Summary and Outlook

In this dissertation, I have studied two important aspects of the physics of supernovae

and neutron stars. In the first part, I show that the spatial and time symmetries

can be broken spontaneously in a dense neutrino gas. I show that neutrino flavor

oscillations can occur on very small length scales if the neutrino density is sufficiently

large. In the presence of matter, our results suggest that the matter suppresses flavor

conversions at smaller neutrino number densities. It does so by pushing neutrino

flavor instabilities to larger neutrino number densities.

I also show that the stationarity of a neutrino gas can be broken due to the

presence of neutrino-neutrino interaction. Our results suggest that the onset radii

of significant flavor conversion are similar for time-dependent and time-independent

neutrino gases unless there exist extremely rapid initial perturbations in the neu-

trino gases. When the flavor conversion occurs, however, we do expect qualitatively

different behaviors in the two scenarios.

In our studies we have focused on the neutrino flavor instabilities in the linear

regime. However, it is important to check if these instabilities develop into full

oscillations in the nonlinear regime in a time-dependent and inhomogenous neutrino
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gas. It is expected that this could be a very chaleging problem. When the symmetries

of the neutrino gas are broken, one needs to solve neutrino oscillations in models with

larger dimensions. Our results also suggest that the problem of spurious oscillations

could be more severe in an inhomogenous neutrino gas.

In our research, we have used a simple matter profile which is a slowly1 varying

function of radius. The question yet to be answered is whether a fast varying matter

profile such as what one expects in the turbulence can affect the instabilities of the

homogenous and inhomogenous modes. It is possible that the turbulence in the

direction perpendicular to the direction of the neutrino propagation can affect the

instabilities in the inhomogenous mode.

In the second part of the dissertation I study the thermal conductivity of the

outer crust of the neutron star as a function of temperature at low temperatures

(T . ΩP). We show that the quantum effects become important when T . 0.3 ΩP.

At T ' 0.1 ΩP the quantum effects suppress κ by about 30%. We also show that

the dynamical information become necessary when T . 0.1 ΩP.

In our calculations, we have modeled the neutron star crust as a one-component

plasma. However, as discussed in Chapter 7 a more realistic calculation must include

a configuration consisting of multiple ion species. The calculations with the multi-

component plasma can be chalenging from the computational point of view. We have

also ignored the effects of the large magnetic fields that can exist on the surface of

the neutron star.

In the future, we will remove some of these limitations in our current study and

we will investigate the new effects that may arise in the more realistic models.

1The variation of the matter density should be sufficiently slow in comparison with
flavor variations in the neutrino gas.
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