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Abstract

Microfabricated segmented surface ion traps are one viable avenue to scalable quan-

tum information processing. At Sandia National Laboratories we design, fabricate,

and characterize such traps. Our unique fabrication capabilities allow us to design

traps that facilitate tasks beyond quantum information processing. The design and

performance of a trap with a target capability of storing hundreds of equally spaced

ions on a ring is described. Such a device could aid experimental studies of phenom-

ena as diverse as Hawking radiation, quantum phase transitions, and the Aharonov

- Bohm effect. The fabricated device is demonstrated to hold a ∼ 400 ion circular

crystal, with 9 µm average spacing between ions. The task is accomplished by first

characterizing undesired electric fields in the trapping volume and then designing and

applying an electric field that substantially reduces the undesired fields. In addition,

experimental efforts are described to reduce the motional heating rates in a surface
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trap by low energy in situ argon plasma treatment that reduces the amount of surface

contaminants. The experiment explores the premise that carbonaceous compounds

present on the surface contribute to the anomalous heating of secular motion modes

in surface traps. This is a research area of fundamental interest to the ion trapping

community, as heating adversely affects coherence and thus gate fidelity. The de-

vice used provides high optical laser access, substantially reducing scatter from the

surface, and thus charging that may lead to excess micromotion. Heating rates for

different axial mode frequencies are compared before and after plasma treatment.

The presence of a carbon source near the plasma prevents making a conclusion on

the observed absence of change in heating rates.
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Chapter 1

Introduction

The field of quantum computation and simulation has been rapidly developing since

the late 20-th century, in part due to the realization that a quantum–mechanical

system of even a few tens of constituents is not practically calculable with classical

computer technology [1, 2]. In addition, some mathematical problems of practi-

cal importance would benefit tremendously from a quantum computer. The most

important of these is Shor’s algorithm [3] for fast prime factorization, since the dif-

ficulty of factorizing large composite numbers with classical computers is nowadays

the basis of the most widely used encryption schemes. Another applicable example

of speedup with a quantum computer is Grover’s unsorted database search algorithm

[4]. Finally, although of little practical interest currently, there are problems that

are designed to be difficult for classical computers but easy for quantum computers,

such as the Deutsch–Jozsa problem [5].

One of the physical systems available for carrying out quantum computation is

that of ensembles of trapped atomic ions. The idea, contributed in 1995 by Ignacio

Cirac and Peter Zoller [6], along with its prompt partial experimental realization

by Chris Monroe and David Wineland [7], is often considered to be the “birth” of

experimental quantum computation, a field experiencing tremendous growth ever
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since. The appeal of the trapped ion system is today evident in light of what be-

came part of the DiVincenzo criteria [8] in 2000. Qubits can be encoded in parts of

quadrupole (optical), Zeeman (rf), or hyperfine (microwave) energy levels in individ-

ual ions. These well defined qubits can be initialized by optical pumping techniques

with fidelities exceeding 0.999 [9, 10] and high fidelity readout is routinely carried

out with electron shelving techniques [11, 10]. Coherence times of systems well ex-

ceeding those needed for quantum computation have been demonstrated [12, 13, 10].

Microfabricated segmented surface ion trapping devices [14] can be used to store and

manipulate large numbers of individually addressable ions forming quantum regis-

ters in complex architectures [15]. Such architectures mitigate the difficulties arising

from the motional mode structure of a single large ion chain by allowing splitting,

shuttling, and recombination of chains. In microfabricated devices, single qubit gates

have been demonstrated with fidelity of 0.999999 [10], sequences of gates with low

error have been demonstrated [16], and recently, a two qubit entangling gate has

been demonstrated with a fidelity exceeding 0.97 [17].

These and further advances in the field require a formidable engineering effort.

Sandia National Laboratories (SNL), with its MESA fabrication facility, has emerged

as a leader in the art and science of microfabricated segmented surface ion trap

development. This work details my contribution to two experiments conducted at

SNL. Chapter 2 is a concise summary of the fundamentals of ion trapping and cooling

from a theoretical perspective, and also contains a description of the methods behind

essential tools for trap characterization. The application of ion trapping theory

to microfabricated surface traps, with emphasis on elements that are common to

the two experiments to be detailed later, is the focus of Chapter 3. Chapters 4

and 5 describe respectively the design and experiments with the ring trap, a device

targeting the assembly of a long crystal of equidistant ions, with possible applications

outside the scope of QIP. Chapter 6 details an experiment exploring the conjecture

that adsorbates contribute to the electric field noise above surface electrodes – a
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phenomenon with direct implications for QIP. The possibility of reducing the noise

by treating the trapping device surface with low energy argon ion plasma is examined.

Throughout this work, an effort has been made to distinguish between the phys-

ical implementation (the device) and the physical phenomena (the trap) allowing

constraining ions. The distinction is motivated by the ever - growing amount of

features on devices that, in principle, provide the same trap. However, the term

“trap” has been traditionally used to indicate both, with meaning depending on the

context, as is occasionally the case in this work.
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Chapter 2

Ion Trapping Theory

Ion trapping is a research field that has been growing for more than 60 years, and its

principles have been exhaustively detailed from different viewpoints. In this chapter,

central results are stated with minimal elaboration, and interpretation of historical

facts is given to build a perspective. The selected topics reflect only what is relevant

in the scope of the experiments detailed later. Pertinent ion trapping fundamentals

are outlined in the last part of Sec. 2.1, and relevant ion cooling concepts are discussed

in Sec. 2.2. Sections 2.3 and 2.4 address undesirable phenomena in ion trapping.

2.1 Ion Traping Devices

Even when disregarding the large body of work written on mass spectroscopy, the

originally intended and main field of application for ion traps until the 1990s, the

ever - increasing amount of literature on ion trapping is a testament to its potential

to advance physics. Further narrowing the focus to Paul traps, with QIP in mind

[18, 19, 20, 21, 22, 23, 1, 24, 25], allows the differentiation of the remainder of the

section in a way emphasizing the evolution of ion trapping devices with the potential

for practical QIP.
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2.1.1 The Hyperbolic Paul Trap

The device proposed by Wolfgang Paul in 1953 [26] and demonstrated in 1954 (orig-

inally described in the hard to access references of [27]) is sometimes referred to as

the hyperbolic Paul trap. The device consists of an annulus with a hyperbolic inner

cross-section, symmetric about an axis, and hyperbolic endcaps along the axis. An

rf voltage is applied to the endcaps and annulus, creating an rf null in the device

centroid. In addition to its historical significance, this device offers the advantage

that it can be solved analytically and can thus offer insight and means of verification

for newer mathematical approaches. The potential minimum generated by this type

of device is a point, such that only one ion can be at the rf null. Because of Coulomb

repulsion, multiple ions are pushed away from the rf null, and are thus subject to

excess micromotion (Sec. 2.3.2) and the associated Doppler shifts (relevant for fre-

quency standard applications and cooling). In the scope of QIP, where thousands of

ions may be needed for a useful calculation, the practicality of a single point trapping

device and its many demonstrated variants is limited.

2.1.2 The Linear rf 3D Trap

Although linear rf device designs [28, 29, 30, 31, 32] are considered by some to be

an obvious development [33] of the hyperbolic Paul trap, they were only proposed

nearly four decades later, in 1989, by Prestage [28]. The prototypical device has four

electrodes, symmetric about a central axis, which is the locus of the rf null, created

by applying rf voltage to a pair of non-neighboring electrodes, while the other pair is

grounded. Static potentials applied to endcaps ensure that ions do not escape along

the axis. Since the rf null is now a line, multiple ions can be trapped in a string.

The ions in such a chain do not experience excess micromotion in an ideal device.

Variants of this device deform the rods into hyperbolic electrodes and blades, and
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segment the electrodes to allow selective application of potentials along the rf null. A

time-evolving potential can be used to move ions (e.g. ion chain shuttling, splitting,

and recombination), and a static potential can be used to counter electric field im-

perfections that push the ions away from the rf null. There are also some successful

implementations of junctions, allowing reordering of ion chains, in 3D structures. In

addition, there are several working implementations of ring structures based on the

four rod trap. Presently, linear 3D devices are still prevalent in experiments studying

atomic physics, quantum mechanics, QIP, and quantum networking concepts [7, 34,

35, 9, 12, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], because of their large trap depth and

low heating rates. The rigorous mathematical description of the device (that can be

found in, for example, [33, 21, 22, 23, 24, 25]) is not unlike that given by Paul [26]

in 1953.

In the scope of practical QIP, however, 3D devices are a dead end. One reason

for this is that they are notoriously difficult to put together. With that comes a lack

of repeatability, meaning that it is unlikely that any two devices of identical build

will exhibit comparable performance or have comparable parameters. Finally, with

the current available technology, 3D devices are hardly scalable in any of the senses

discussed in Sec. 3.1, putting a limit on any application beyond a proof of concept.

Segmented multi-layer traps, as the one proposed by Madsen [46] in 2004, and the

first microfabricated device, demonstrated by Stick [47] in 2006 can be thought of as

hybrid precursors to the next class of devices.

2.1.3 Surface rf Traps

The latest class of devices, microfabricated segmented surface ion trapping devices,

were proposed by Chiaverini [48] in 2005 and in 2006 Siedelin [14] demonstrated

them successfully. Surface devices offer a number of advantages (Sec. 3.1) over tra-

ditional bulk traps, such as freedom of design, superior optical access on the surface
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side, and a full hemisphere available for ion imaging. These devices usually have

segmented electrodes, as do some linear 3D traps, and often feature junctions. The

fields produced by surface devices are often not analytically tractable, and despite

some recent advances in that direction (described in Chapter 4), the prevalent way

of assessing device parameters is numerical estimation with BEM/FEM models. A

critical result that warrants parameter extraction is the concept of a pseudopotential,

introduced to the ion-trapping community in 1967 by Dehmelt, but generally derived

in the 1950s by a number of theorists [49]. The central idea of the result is that, in

an inhomogeneous rf electric field of sufficiently high frequency, a charged particle in

the vicinity of the rf null experiences a weak time-averaged net force towards the rf

null. This conservative force is proportional to the gradient of the pseudopotential

ψ(x) =
q

4mΩ2
E2(x), (2.1)

where q is the particle charge, m is the particle mass, Ω/2π is the rf drive frequency,

and E2 is the electric field magnitude at location x.

Assuming small amplitude harmonic motion about the rf null in the pseudopo-

tential [23],

ψi =
m

2q
ω2
i x

2
i (2.2)

and a 1/r electric field magnitude dependence

E ∝ x−1, (2.3)

the secular motion frequencies ωi are found[20, 46] to be

ωi =
q

m

1

2Ω

√
∂2iE

2(x). (2.4)

The stability parameter, defined for a hyperbolic trap as

qs =
ωi

Ω
, (2.5)

is a figure of merit for the stability of ion trajectories in a trap. A stable orbit is

characterized by qs � 1, in which case an ion starting its motion near the rf null

with sufficiently low initial kinetic energy stays in the trap.
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2.2 Ion Cooling

Once trapped, ions experience heating due to the incoherent acquisition of energy

from fluctuating electric fields. Ultimately, heating leads to ion loss as the kinetic

energy of the ion becomes comparable to the trap depth. To mitigate heating, ions

are laser cooled [50] (an elegant modern treatment can be found in [51]). While a

number of cooling schemes exist, the focus here is on the two used in this work.

In Fourier space, the spectrum for an irradiated ion with excited |e〉 and ground

|g〉 atomic states separated by ω, consists of the laser carrier frequency ωL ∼ ω and

sidebands spaced by linear combinations of the secular frequencies for ion motion

with a component along the radiation k vector. Let the frequency of one such linear

combination be ωr, the linewidth of the transition be γ, and the linewidth of the

laser be γL.

2.2.1 Cooling to the Doppler Limit

For a relatively broad transition, the condition γ � ωr means that multiple ion –

light interaction events are likely to occur during a single cycle of secular motion.

Assuming γL � γ, red detuned incident light is preferentially absorbed because of

the Doppler shift for ion motion in the direction −k, only if the ion is in |g〉. Upon

an absorption event, the ion recoils along k. Because of the short lifetime of |e〉, light

is spontaneously emitted in a random direction, and the ion recoils in a direction

opposite to the emission. In a secular motion cycle, many such events occur, and

on average, the momentum gained from random emission (heating) balances the

momentum lost to directed absorption (cooling). The steady state temperature in

this regime is the Doppler temperature [52]

TD =
~γ
2kB

. (2.6)
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At TD, the average amount of motional quanta nD in a given motional mode can be

estimated [53, 54, 51] as

nD =
1

2

γ

ω r
, (2.7)

and the size rD of the wave packet of an ion of mass m can be estimated as

TDkB =
1

2
~γ = mω2

rr
2
D

⇒ rD =

√
~γ
mω2

r

. (2.8)

The process described above, originally called sideband cooling [50, 55, 56], has been

termed Doppler cooling over the last years, and it leaves the ion in the Lamb-Dicke

regime as the ion wavepacket size is much smaller than the wavelength of the incident

light [51]. The size r0 of the wave packet of an ion in the motional ground state can

be estimated as

1

2
~ωr = mω2

rr
2
0

⇒ r0 =

√
~

2mωr

, (2.9)

a factor of
√

2γ/ωr smaller than rD.

2.2.2 Cooling to the Motional Ground State

An ion in the Lamb-Dicke regime can be cooled below TD with resolved sideband

cooling [57, 58, 53, 54, 51, 32, 59, 60], given that ωr � γ & ωr � γL. In that case,

the full spectrum of sidebands is resolved. In this limit, the state of an ion can be

represented as the tensor product of its two-level system state and a number state

with eigenvalue corresponding to the amount of motional quanta. If the laser is tuned

to the q-th red sideband so that ωL = ω − qωr, q ∈ {1, 2, 3 . . . }, after a π pulse, an

ion in |g〉 ⊗ |n〉 is excited to |e〉 ⊗ |n−q〉. Since the ion is in the Lamb-Dicke regime,
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subsequent spontaneous emission will be predominantly at ω, leaving the ion in |g〉

⊗ |n − q〉. Repeating the excitation / emission process multiple times eventually

leaves the ion close to |g〉 ⊗ |0〉, the motional ground state. The theoretical limit for

the average number of quanta in the thermal state resulting from this scheme is [23,

51]

n̄min = (γ/ωr)
2. (2.10)

Ion temperature in the thermal state can be inferred from the ratio Rq of the red

q-th sideband to the blue q-th sideband population [59]

n̄ =
R

1/q
q

1−R1/q
q

, (2.11)

and maximum sensitivity is reached for q ∼ n̄. Experimental data relying on this

approach is shown in Chapter 6 and Appendix E.3.

2.3 Detrimental Effects on Trapped Ions

Multiple conditions can affect stable trapping. The focus here is on two that are

inherent to ion trapping and occur regardless of the atomic structure of the species

being trapped.

2.3.1 Background collisions

Ion traps are typically operated at low pressures (Sec. 3.2) to increase ion lifetime.

While controlled numbers of collisions with a background gas are beneficial for ion

lifetime when an ion cloud and a lighter buffer gas are considered [61, 62], collisions

are disadvantageous in experiments relying on selectively manipulating individual

ions, such as the ones in this work. A background gas atom or molecule at lab
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temperature will have a kinetic energy on the order of

3

2
kBT ≈ 38 meV (2.12)

which is comparable to the trap depth expected from surface traps. Even if the

energy an ion acquires from a collision is alone not sufficient for the ion to escape, a

collision could change the phase of the ion motion and thus cause ion loss.

Another reason collisions are detrimental is that, even if they do not cause ion

loss, they are likely to alter the quantum state of the trapped ion [63, 64], artificially

reducing meta-stable state lifetimes, coherence times, and thus leading to loss of

information. It becomes then relevant to know what is a collision rate that could be

expected. Such a rate is estimated in [65] (Eq, 2.6) to be

γ =
pq

kBT

√
πP

2ε0µ
(2.13)

where p is the system pressure, P is the polarizability of the buffer gas, and µ is the

reduced mass of a gas molecule – trapped ion pair. For a buffer gas of H2 and Yb+

ions at 10−11 Torr, one collision per hour is expected. For the lighter 40Ca+ ions

used in this work, the estimate drops to one collision per two hours under the same

conditions.

2.3.2 Excess Micromotion

A rigorous approach to analyzing the motion of an ion experiencing an external field

E in a linear Paul trap yields the approximate solution to its equation of motion [66]

(Eq. 15 reduced to one radial dimension)

r(t) ≈ (r0 + r1 cos(ωrt+ φ))
(

1 +
qs
2

cos(Ωt)
)

(2.14)

where r1 is the secular motion amplitude, φ is a phase depending on the initial condi-

tions, and qs is the stability parameter relevant for that derivation. The unavoidable
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motion at Ω ± ωr is termed micromotion, with amplitude qsr1/2 inherent to the

solution. The component of amplitude

qsr0/2 ≈
qsqE · r̂
2mω2

r

(2.15)

describes excess micromotion [66] at Ω due to the external field.

While micromotion is in general reduced as secular motion is reduced by cooling,

excess micromotion is unaffected by the cooling process and becomes a significant

contributor to ion temperature. Excess micromotion can also be caused by a phase

shift in the signal delivered to rf electrodes or by rf pickup in control electrodes.

Means of detecting excess micromotion are given in the next section.

2.4 Stray Field Detection

Stray electric fields – fields that are not present by design – may severely hurt the

performance of a device. Particulate contamination, device imperfections, and charge

accumulation in dielectrics near the device can all be sources of stray fields. Any

discrepancy between a trapping device and the model used to calculate needed po-

tentials to keep an ion at the null will also manifest itself as a stray field. Unless

stated otherwise, in this section, it will be assumed that such a discrepancy does not

exist. Stray fields are best analyzed in the context of ideal linear traps, although the

methods developed can be used with any geometry. A stray field with component

normal to a linear trap axis pushes the ions off the rf null, causing excess micromo-

tion, and thus inhibiting cooling. If the field acts in the axial direction, it modifies

the axial potential, which may be important when working with ion chains or when

shuttling ions.
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2.4.1 Radial Stray Fields

A number of techniques used in this work, all relying on excess micromotion detec-

tion, were drawn from the standard arsenal for field detection at the position of the

ion in the radial directions. In all methods below, a quantitative statement about

the undesired electric field magnitude and direction is made from a modeled field

estimate.

Detecting changes in the ion position [66] is a technique relying on the balance

between the static potential provided by control electrodes and the rf pseudopoten-

tial. Scaling the rf voltage does not change the balance at the rf null, so an ion

residing at the null does not change its average position. The ion position change is

inferred from ion imaging or from cooling laser position changes. Electric fields are

adjusted so that rf voltage scaling does not move the ion.

Another common technique is the use of the line shape of a broad transition [66]

as a gauge. When scanning (for example) the red detuned cooling transition laser

frequency, excess micromotion enhances the fluorescence at the sidebands determined

by the rf drive frequency, yielding bumps in the otherwise Lorentzian profile. The

transition is also broadened. Electric fields are adjusted so that the bumps are

eliminated and the linewidth is narrowest.

When the motional spectrum is resolvable, as is the case with a narrow transition

[66], the ratio of the first sideband population and the carrier population is a mini-

mum if there is no excess micromotion. Since the carrier population does not vary

appreciably for a small undesirable field, a good approximation is the minimization

of the sideband population as a function of the applied corrective fields.

One of the most popular techniques is the fluorescence rate cross - correlation

[66] with the phase of the rf drive. For an ion experiencing excess micromotion, the

first order Doppler shift modulates the fluorescence rate at Ω, as is evident from a
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histogram of the number of fluorescence photons arriving at a given time during an

rf cycle. Electric fields are adjusted so that the correlation is minimized.

The last technique used is the detection of parametric resonance [34, 67]. In the

presence of excess micromotion, secular motion amplitude is increased by parametric

resonance as the rf pseudopotential is modulated. The amplitude increase manifests

as a fluorescence feature (a dip for close detuned light, and a peak for far detuned

light). Fields are adjusted to minimize the feature. This is also one method to

determine the radial secular frequencies.

2.4.2 Axial Stray Field

The technique used for axial field detection relies on imaging a single trapped ion.

Assuming a stray field that lacks curvature at the ion location (relative to the extent

over which the ion is expected to move), the axial component of the field is assessed

by scaling the control voltages and measuring the shift of the ion position (Fig. 2.1).

The axial secular frequency ωa of the ion is related to the axial potential Ua via [23]
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(a) Scaling the harmonic potential for an
ion in the absence of a stray field does
not displace the ion.
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(b) Scaling the harmonic potential for an
ion in the presence of a stray field dis-
places the ion.

Figure 2.1: Axial field detection principle. In each plot, the two curves represent the
axial potential for a different scaling of the control voltages that yield the harmonic
axial trap.
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ω2
a =

√
2kqUa

m
, (2.16)

where k is a geometric factor, and so scaling Ua by a factor α means that

ω2
a ∝ α. (2.17)

In the presence of a constant stray field ET , the axial potential can be also written

as

φa =
m

2q
ω2
aa

2 − ETa, (2.18)

At equilibrium, ∂aφa = 0 and the displacement a is a function of ET , but also of α

ET =
m

q
ω2
aa

⇒ a =
q

m

ET

ω2
a

⇒ a ∝ q

m

ET

α
. (2.19)

Hence, although the nominal position of the ion is not known, measuring a for

different values of α, along with a single measurement of ωa for a particular α, allows

calculating ET . This calculation is the basis for the results presented in Chapter 5.

2.5 Summary

Being a powerful tool for studies in many fields, rf ion trapping devices have evolved

for over sixty years. Yet, since the devices rely on the same principles, a common

mathematical description can be used to gain insight into device operation. In par-

ticular, the concept of pseudopotential allows estimating the parameters of devices

that have no analytically tractable description, as is the case with many surface de-

vices. When trapped, ions are laser cooled to prevent them from acquiring sufficient

energy to escape the trap. Initially, ions are Doppler cooled, ideally to the Doppler
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temperature TD. At that time, resolved sideband cooling may be employed to cool

an ion close to its motional ground state. Undesired electric fields in the trap may

inhibit cooling. Such stray fields may be detected by different means and eliminated

at the ion location by adjusting the trapping potential. Background collisions affect

ion retention and trap operation. The collision rate is reduced by maintaining UHV.
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Chapter 3

Ion Trapping With

Microfabricated Paul Traps

There are often multiple means of overcoming a given experimental obstacle. It

remains a challenge, however, to choose the solution that best fits experimental,

budget, and workforce requirements or constraints. The purpose of this chapter is

to lay out a set of established experimental solutions common to the experiments

described in Chapter 5 and Chapter 6.

An experiment involving ion trapping, in general, starts with the design of a trap-

ping device, perhaps with a specific task in mind, followed by the device fabrication

(Sec. 3.1). Next, the device is put in an Ultra High Vacuum (UHV) vessel and UHV

pressure is attained (Sec. 3.2). A trapping volume is generated by the device when

rf (Sec. 3.3) and (usually) control (Sec. 3.4) voltages are applied to the respective

device electrodes. Ions are produced in the trapping volume (Sec. 3.5) and the ions

are Doppler cooled while being detected (Sec. 3.6). Finally, an experiment beyond

trapping is attempted. The discussion of the control software developed to facilitate

experiments is deferred to Appendix D.
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3.1 Devices Microfabricated at Sandia National

Laboratories

The potential of microfabrication for trapping ions was recognized and demonstrated

thoroughly in the last decade[48, 14, 47, 68, 69, 70, 71, 72, 73, 20]. Microfabricated

devices have become increasingly useful for QIP experiments [74, 17], particularly as

the design process for surface segmented electrode ion trapping devices evolved with

technology growth. Over only ten years, the objective for microfabricated traps has

grown from designing a contraption that is capable of trapping ions to designing a

device for a tailored purpose beyond trapping and with expectations of performance

competitive with that of bulk traps. Two such tailored devices are detailed in Sec. 5.1

and Sec. 6.3. Fabrication details on SNL devices can be found in [69, 75, 76]. Here,

selected desirable features that are not necessarily obvious are emphasized.

• Surface segmented electrode ion trapping devices allow shuttling, formation,

and dismantling of ion chains, and may employ junctions that allow reorder-

ing the chain. Such features may be essential for implementing scalable QIP

algorithms.

• Because photolitographic microfabrication is so well studied in the semicon-

ductor industry, the fabrication techniques produce highly repeatable results.

Devices fabricated with a given procedure perform quite similarly, making the

knowledge of using a given device model transferable to multiple locations,

even in different labs.

• Exquisite electric field control (Sec. 5.5) is achievable by providing suitable

voltages to the control electrodes.

• Multiple metal layer devices offer unprecedented freedom in design. Because

signals are routed below the surface, virtually any conceivable planar design
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(e.g., one that is topologically advantageous for a task) can be implemented

(Fig. 3.1).

Figure 3.1: Multiple metal layers allow unprecedented freedom in layout design.
Some examples of devices which have been fabricated at SNL are shown.

• Devices are scalable through modularity. When effort has been spent on un-

derstanding how, for example, a junction and a linear section work, these can

be combined to yield a much more complex structure (Fig. 3.2). While know-

ing that the smaller blocks perform well is not a substitute for a full scale

simulation of the device, the likelihood of designing a successful device is high.

• The dimensions of a well performing device can be easily scaled if miniaturiza-

tion is beneficial.

• Microfabricated devices can be augmented for improved [77] or scalable [78]

light collection.
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Figure 3.2: Devices are scalable through being modular. A slot and a Y-junction are
parts of a much larger hexagonal design.

• Control electrode pickup filtering and shunting can be implemented on die with

trench capacitors (Fig. 3.3) and meandering resistors.

(a) Trench capacitor cross-section. (b) Schematic of a trench capacitor.

Figure 3.3: Capacitance to ground of 1 nF with 20 V breakdown voltage is standard
in the current generation devices.

• Loading holes and slots allow the atomic source to never be in the surface line-

of-sight (back-loading), vastly reducing device surface contamination and the

probability of shorting electrodes.
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• The characteristic “overhang” (Fig. 3.4) feature found in many SNL devices

allows different metals to be sputtered on the device surface without the pos-

sibility of electrode shorting, thus paving the way to using ions for material

science studies (Sec. 6).

Figure 3.4: Cross-section on four metal layer trapping device.

• Low profile wirebonds (Fig. 3.5) reduce scatter for optical access in the plane

of the device surface and improve optical access.

• Each device is electrically tested to ensure none of the electrodes are discon-

nected or shorted and thus the device is fully functional.

Given that a number of features in the list above were developed within the duration

of this work, it is likely that the list of desirable features will continue to grow.
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Figure 3.5: Low profile wirebonds reduce scatter.

3.2 Ultra High Vacuum

Attaining and maintaining Ultra High Vacuum (UHV) is one of the less forgiving

aspects of ion trapping. The need for UHV is best seen from the importance of

collisions of background gas with the trapped ion. Background collisions (Sec. 2.3.1)

impart momentum that may lead to ion loss through different mechanisms, or destroy

the coherence of the motional ionic state and thus destroy encoded information. Ion

loss is further exacerbated because surface traps tend to have low trap depths (as

low as 10 meV, as compared to 10 eV in 3D traps). A pressure of 10−11 Torr at

room temperature reduces the estimated collision rate to about one per hundred

minutes, which is adequate for a number of ion manipulation tasks. To attain that

pressure, materials that will be in the vacuum vessel must be carefully chosen (e.g.

device, wiring, and insulation makeup). The vessel design must provide adequate

optical (via viewports) and electrical (via feedthroughs) access to the device inside.

Electrical filtering in vacuum (Sec. 3.4.3), as close to the device as possible, and in

addition to on-chip filtering, is often desirable. This is achieved with UHV compatible

components that present unique handling challenges. An atomic oven (Sec. 3.5.1) in

the vacuum vessel delivers the neutral species to the trapping volume.

Once a vessel is assembled, a manifold of monitors/getters (a Bayard - Alpert



Chapter 3. Ion Trapping With Microfabricated Paul Traps 23

type gauge, a titanium sublimation pump, an ion pump, and sometimes, a non-

evaporative getter) is added to the assembly, and a device is installed. A bakeout of

the complete assembly is needed to attain UHV. Elevated temperature contributes

to the kinetic energy of molecules in the vessel, making it less likely for molecules to

stick to surfaces. While molecular motion is random throughout most of the bakeout,

molecules that find their way to the turbomolecular pump, temporarily attached to

the vessel during bakeout, are removed from the vessel. Those molecules that find a

getter are retained, with very high binding energy. The net effect is “pumping out”

undesired species and a reduction of the system pressure.

When aiming for UHV, following a rigid set of procedures developed by the

ion trapping/particle accelerator/atomic physics communities and the semiconductor

industry is a precursor to success. Attention to detail when assembling the UHV

vessel is assumed, as vessel assembly and bakeouts take weeks, and contamination

is often irreversible. It is desirable that a vacuum vessel that is not in active use

be kept under vacuum – this facilitates outgassing (usually H2 and CO) from the

bulk of the vessel walls and prevents build-up of mono-layers of atmospheric contents

(e.g. H2O, N2, O2) on the vacuum side of the vessel walls. To reduce the probability

for contamination, it is desirable that all work on the UHV side of the vessel is

performed in a clean room, and the vessel is never vented outside a clean room.

None of the experimental vessels in this work were assembled entirely in a clean

room environment, and the consequences of that are detailed with the corresponding

experiments.

The Con-Flat (CF) system is the de-facto standard for building UHV manifolds.

CF components are typically made of 304 or 316L austenitic steel and are equipped

with flanges with a sharp, polished edge (knife-edge). A seal between any two com-

ponents is realized by compressing an ultra-high purity, oxygen-free copper gasket

between the knife-edges of the components. All common components (elbows, nip-

ples, reducers, etc.) are prepared for use acoording to the procedure outlined in
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Appendix E.1. The procedure is modified as needed for sensitive (e.g. coated view-

ports) and custom components.

One custom-designed vessel component used in both experiments here is the bot-

tom 6” CF flange (Fig. 3.6). A relevant caveat in UHV design is that the design

must be checked for virtual leaks – constrained pockets of matter that will outgas

substantially over a long period. The flange is designed to support and register the

in-vacuum filter board and ZIF socket structure (Sec. 3.4.3) via four posts, regis-

ter the atomic oven (Sec. 3.5.1), and provide electrical connectivity to the device

control electrodes. For the latter task, a 100 pin Micro-D connector is chosen for

its high density1. The flange assembly is designed so that the trapping device is in

the centroid of the experimental chamber2 to within a few mm. Another custom

component is the 6” re-entrant viewport designed for the short working distance of

the ion imaging optics (Sec. 3.6). Nominally, the viewport should be about 1 cm

away from the trapping device, however, measuring a number of viewports yielded

differences of up to a few mm in depth and some tilting. While such discrepancies

are perhaps due to the brazing procedure used for glass-to-metal contact and can

not be avoided, it is important that explicit measurements are made for tight fits (as

in the experiments here) before components are used and thus damaged.

When assembling the components, it is imperative to ensure that the gasket is

clean and well seated and the flanges are parallel before applying any pressure to

the gasket, as uneven gasket compression may result in a leak. Knife edges must

also be inspected as any damage (Fig. E.1) or contamination (e.g. a dust particle,

a copper strand), may result in a leak. Once bolts are hand-tight, any rotation of

the components must be avoided as knife edges may cut strands of copper from the

gasket, resulting in contamination or a leak. To avoid undesired gasket deformation,

tightening all bolts consecutively in 30-45 degree increments works well, although

1Flange machined and TIG welded at SRI Hermetics.
26” spherical octagon from Kimball Physics
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Figure 3.6: Custom 6” CF bottom flange with attached support posts, vacuum side.
The 100 pin Micro-D connector is on the left, the cut-outs are for standard 1.33”
flanges (for the atomic oven in the center, and a spare) on air side.

other schemes for bolt tightening exist. It is desirable to use a torque wrench to

gauge bolt tightness – it is possible to tear or strip an over-torqued bolt, which in

turn may not be repairable and require rebuilding of a substantial part of the manifold

(e.g. tearing a bolt into a spherical octagon). To avoid micro-fusion between the

clean surfaces of metal alloys of comparable composition (e.g. washers, nuts, and

flanges), the most cost-effective solution that avoids using grease (because of its very

high potential for contamination) is to use silver-plated stainless steel bolts. All bolts

and nuts are checked for seamless threading and replaced as needed. All hardware

that enters a clean room is adequately cleaned in advance. Additional details on the

experimental vessels construction are given in Sec. 5.2 and Sec. 6.4.
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Once an assembly is put together, it is put in a bakeout oven and attached to

a pumping manifold outside the oven (Fig. 3.7). The bakeout oven is a convection

(a) Bakeout oven. (b) Pumping manifold.

Figure 3.7: UHV bakeout station. Labels (explanation in text): 1 – RGA, 2 – oven,
3 – gauge, 4 – alternative pumping path, 5 – ion pump with valve, 6 – TMP with
valve.

oven with about 1 m3 working volume. The stock oven electronics are augmented

with a programmable proportional - integral - differential (PID) controller and solid

state relays, allowing for controlled ramping of temperature. The oven is equipped

with two openings on opposing side walls, one for instrumentation cables and one for

the bellows between the vacuum vessel and the external pumping manifold. The air

circulation inside the oven ensures reasonably uniform heating of the entire vessel.

To ensure good temperature control, care must be taken that the air flow around

bellows and cables between the oven and environment is minimized, and the PID loop

is then tuned with a suitable thermal load inside the oven. The external pumping
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manifold comprises a residual gas analyzer3 (RGA), a wide range vacuum gauge4,

butterfly and angle valves, a turbomolecular pumping station with a diaphragm

roughing pump5, and an ion pump6. The manifold provides an alternative path for

initial pump-down and venting through a choke. The orifice on the choke limits the

flow at high pressure so that laminar and turbulent flows are reduced, decreasing the

probability of moving particle contaminants inside the chamber.

Many components in the experimental vessel assemblies have thermal gradient

limits and/or thermal limits/budgets. In this work, the thermal limit of 205 ◦C is set

by the melting point (∼ 217 ◦C) of the solder used in crafting the in-vacuum filter

board (Sec. 3.4.3). The conservative choice is warranted by the expected change in

plasticity of the solder. The thermal gradient limit in this work is set by the viewports

∼ 30 ◦C/h, with a conservative choice of ∼ 12 ◦C/h. The thermal budget for each

experiment is found in the relevant section. The bakeout procedure is outlined

in Appendix E.2. Other relevant UHV details are given in Sec. 3.5.1, Sec. 3.4.3,

Sec. 5.2, and Sec. 6.4. A comprehensive treatment of how a vacuum system functions

can be found in [79]. Also, UHV equipment manufacturers’ websites are becoming

increasingly useful in vacuum science education by providing relevant information at

a glance.

3.3 rf Voltage Generation and Delivery

Ion traps are typically driven by low noise sources at tens of MHz, with hundreds of

volts needed at the device rf electrodes, which have a capacitive load that may be as

high as a few tens of pF. Currently, there are no solid state solutions that combine

all the desired properties at room temperature, particularly high Q filtering, for a

3Stanford Research Systems.
4MKS Instruments.
5Pfeiffer Vacuum.
6Varian.
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direct voltage source that can be simply attached to the chamber feedthrough. The

challenge is often circumvented with the following scheme (Fig. 3.8): a signal is

DDS C1

A C2

in

out

cpl
in

in

cpl
out

out

cpl

Figure 3.8: rf delivery schematic. A DDSa signal is connected through a cou-
plerb(C1) to 1 W amplifierc(A). The amplified signal passes through a bi-directional
couplerd(C2) and is delivered to the helical resonator. The purpose of C1 is to allow
mixing for parametric excitation (Sec. 2.4.1). The purpose of C2 is monitoring the
forward and reflected signals.

aNovatech Model 408A 100MHz DDS Signal Generator.
bMini-Circuits ZDC-20-3 Directional Coupler
cMini-Circuits ZHL-3A-S Amplifier
dMini-Circuits ZFBDC20-62HP-S+ Bi-Directional Coupler

generated with a direct digital synthesis signal generator (DDS), then amplified to a

few Watts with a low noise solid state amplifier, and fed into a resonator that provides

voltage step-up while acting as high quality factor filter. Finally, the resonator is

mounted on the chamber rf feedthrough, as close as possible to the device. Half wave

resonators provide exceptional filtering, but are bulky at the desired frequencies (a

50 MHz resonator would require accommodating a 3 meter half-wave). Because of

their smaller size, quarter wave helical resonators[80, 81, 82, 83, 84, 85] (Fig. 3.9)

are a staple in many ion trapping labs and are also used in all experiments described

here. A helical resonator is carefully designed for some desired operating parameters

and then built and tested. In the design stage, attention is paid to the intended load

as it will be a major factor in the resulting resonance frequency. As an example, a

resonator designed to resonate at 150 MHz unloaded can in theory resonate at 49
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Figure 3.9: Typical implementations of quarter wave helical resonators at SNL.

MHz and 39 MHz for 18 pF and 30 pF load, respectively.

At SNL, we build resonator shields from standard plumbing copper pipes and

fittings, and resonator helical coils and antennae from solid copper wire; thus the cost

of a resonator is dominated by labor expenses. In the example of a relatively recent

build shown on figures 3.10 and 3.11, the shield is made of a tubular section and two

Figure 3.10: Helical resonator details, side view. The antenna (cap on the right) and
endcap (on the left) slide onto the shield around the helix (middle).

caps. One cap is drilled and a BNC connector is attached, ensuring the connector

ground is in good contact with the cap. A few turns of copper wire are soldered

to the BNC connector. This comprises the antenna to which the amplified rf signal

is fed. The details of the antenna do not seem to affect the resonator performance

much, provided that the antenna does not touch the helical coil while it can slide
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Figure 3.11: Helical resonator details along the axis. The helix is supported by the
shield via Teflon slabs (top). A shield extension and ground wire are soldered to
the endcap (bottom left). The antenna is equipped with a BNC connector (bottom
right).

into the helix as the cap is moved. The helix itself is soldered inside the tubular

section of the shield. The helix is made of thick copper wire without coating of

prescribed thickness, wound around a tube of prescribed diameter, with a prescribed

pitch and number of turns. The free end of the helix is terminated with a barrel

connector, to be connected to the rf-live terminal of the chamber feedthrough. Three

supports (from machined Teflon or printed thermal plastic) are used to enhance the

mechanical stability of the coil. While in theory the presence of supports with high

loss tangent should impede resonator performance, the experimental evidence of that

is anecdotal (in one instance, a few percent increase in the resonant frequency and

quality factor was observed when the supports were removed). The shield is closed

with an endcap: a drilled cap, to which a shield extension and a wire with a barrel are

soldered. The wire is connected to the chamber feedthrough rf-ground terminal. The

shield extension is complemented with another tube section (not shown) that can
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slide inside or outside the extension and is used to connect the shield to the chamber

(which is at ground potential) after the feedthrough connections are made and the

complete resonator is secured (Fig. 3.12). Provisions are made in case it is necessary

Figure 3.12: This resonator’s terminals are connected to the chamber and the shield
extension is slid over to provide good shielding and contact to the chamber. The
whole assembly is secured to a machined V-groove, which sits on a large Peltier
element with a thermistor nearby. The Peltier element is heat-sinked to a machined
block secured to an optical breadboard, in turn secured to the table.

to thermally stabilize the resonator to meet performance goals. Findings are that

thermal stabilization of the amplifier yields more performance stability improvement

than resonator or DDS thermal stabilization.

In the ion trapping community, a lot of effort has gone into replacing “craft”

with “science” when building a resonator, and yet not all failures are predictable or

well understood. Commonsense rules for working with copper seem to help with the

build: to make soldering easier, oxide free surfaces are desirable, and leaded solder

works better (because of its lower melting point and better wetting property), in

particular in view of the high thermal mass of the components to be soldered. Since

heating copper increases the oxidation rate, another treatment may be needed to

remove the oxide layer after soldering as some experiences suggest the oxide layer

inside the shielded volume decreases resonator performance. This conjecture is not
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explored in the experiments here.

A complete resonator is usually studied after attaching the load. Using a net-

work analyzer7 with a bi-directional coupler or the trap driving setup (Fig. 3.8),

the resonator is tuned by sliding the antenna along the helix (using the cap), un-

til back-reflection is minimized (Fig. 3.13). At that time, resonance frequency and

(a) Using a network analyzer.
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(b) Using the rf driving setup.

Figure 3.13: Helical resonator tuning. Using the driving setup has the advantages
that impedance matching may be improved (by changing cables and looking for
frequency matching in the transmission peak and the reflection dip), and that mea-
surements may be made at relevant input powers (so that the amplifier response is
accounted for), but has the disadvantage that even a coarse frequency scan takes
minutes because of instrument response latency. “Walking” the parameter space
spanned by the cap position and rf drive frequency until the minimum is found and
then taking a full frequency scan seems to work best.

quality factor are determined. Although the quality factor may be used to estimate

the resonator step-up and thus the voltage on the trap electrodes, the estimate can

be easily off and must be calibrated by comparing measured secular frequencies to

the model (Chapter 5, Chapter 6), which may defeat the purpose of the estimate.

Hence, the quality factor is best regarded solely as a measure of the filtering capacity

of the resonator. An abrupt change in the loaded resonator response usually indicates

that irreversible trap damage occurred. Yet, care should be taken when interpreting

7HP E5100B
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loaded resonator response (Fig. 3.14), as trap damage may be impossible to detect.

(a) Response with well behaving device. (b) Response with rf-shorted device.

Figure 3.14: The resonator in (a) is attached to a device with well performing rf
electrodes, and the circuit exhibits a resonance at ∼ 54 MHz (the first dip on the
left). The resonator (newly designed for very high frequency, expected near the sharp
dip in the middle) in (b) is attached to a device that turned out to have developed
1.3 Ω rf lead short to ground. When the resonator was initially unloaded, the picture
was not much different (several MHz shift up), hence, the erroneous interpretation
over a prolonged period was that the device had somewhat lower capacitance than
estimated (as it was known not to be shorted before attaching the resonator).

3.4 Control Electrode Voltages

Control electrode voltages are applied to modify the trapping potential, particularly

to provide confinement in the axial direction. It may be desirable to modify the po-

tential for other reasons, for example for offsetting undesired electric fields, principal

axes tilting, ion shuttling, and anharmonic trap generation. In the setup used to

drive the experiments here, voltages are generated by digital to analog converters

(DAC) (Sec. 3.4.1). Because achieving experimental goals may be impeded by rf

pickup that will manifest itself as trapping potential modulation, a great deal of ef-

fort goes into minimizing pickup. Some researchers use five stage active and passive

filtering, and others have gone as far as putting their voltage generation solution in
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vacuum, under the trapping device. Here we use active and passive filtering outside

vacuum (Sec. 3.4.2) and passive filtering and rf shunting in vacuum (Sec. 3.4.3).

3.4.1 Generation

While several (similar) implementations of voltage generation systems were used,

only the most recent is described in detail. The National Instruments-based system

is a NI PXI-1045 chassis equipped with twelve NI PXI-6733 high speed analog output

cards (8 channels each), a NI PXI-6281 multi-function card, a NI PXI-6653 timing

module, and a NI PXI-PCI8360 remote control card. The high speed analog output

cards generate the (up to) 96 control voltages used, and are capable of outputting 750

kilosamples per second when all channels are updated simultaneously. The multi-

function card was used for photon counting and digital output until an FPGA based

solution (Appendix D.4) took over these functions. The timing module provides the

capability to synchronize all cards, although the need for that did not arise during

the course of the experiments here and is, therefore, not implemented in software

(Sec. D.2). The remote control module transfer the chassis control from embedded

NI modules to external PCs that can be easily upgraded as computing needs increase.

3.4.2 Filtering Outside the Experimental Chamber

The high speed analog output cards are equipped with a standard 68 pin SCSI

connector. To eliminate the need to route 12 cables, the cards are instead plugged

into a distribution box that re-routes the signals into three custom cable assemblies.

These assemblies carry the voltages to a custom active8 filter box, intended to be in

proximity to the experimental chamber, that also re-distributes signals into two 68

pin SCSI connectors. Two NI-SH68-68-EPM SCSI connector cables take the signals

8Implemented with AD8221ARZ Precision Instrumentation Amplifiers from Analog De-
vices.
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to a filter box attached directly to the chamber 100 pin Micro-D connector. The

current implementation of the box features 5-pole low pass filters with a 3.6 kHz

cutoff. The filter box allows measuring the signal at the 100 pin Micro-D connector,

and there is no intentional resistive path from channels to ground. A side benefit

of this design that has been useful is that it allows the control voltage source to be

replaced (e.g. by a battery pack) while ions are still trapped by virtue of holding the

charge in the board capacitors.

3.4.3 Filtering and Package Support in Vacuum

The next filtering stage is carried out in vacuum. The idea stems from the success-

ful fabrication of printed circuit board (PCB) ion traps [86, 87] and some research

identifying UHV (non-) compatible materials that was carried out at the University

of California at Berkeley. Over a number of discussions with Hartmut Häffner in

2009/2010, it became clear that it would be nice to have a UHV compatible solution

for filtering control electrode channels as close to the trapping device as possible.

That solution would also address the issue of brittleness of ceramic pin grid arrays

(CPGA) used for packaging surface trapping devices (Sec. 3.1): at the time, in vac-

uum sockets were often custom solutions equipped with a number of pin receptacles9

that relied on a snug fit of each pin to ensure electrical contact. In aggregate, consid-

erable force was needed for a multi-pin package to be inserted or removed. Even for

a skilled operator, the change of device was a challenge, as a slight force imbalance

could result in package breakage likely to ruin the device. Because of their thermal

and outgassing properties, CPGAs were and are still the preferred choice for device

packaging. A solution for a similar problem in the electronics industry is the Zero

Insertion Force (ZIF) socket, and that idea was adopted. The final formulation of

the problem was to find a UHV compatible solution involving a ZIF socket and a

filter board that minimizes local outgassing. RGA cracking patterns analysis was

9e.g. Precision Machined Pin Receptacles from Mill-Max
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used to study the spectra of candidate materials, including at elevated temperatures

and over long periods of time.

The substrate used is Rogers 4350 B. Only two side cladding was considered as

the adhesives used in producing multi-layer boards were not studied. A board was

designed with 94 low pass filter channels on one side, with through vias to a ground

plane on the other side. Control electrode ground and rf ground are common on the

PCB and not connected to the chamber (that connection is implemented via the rf

resonator connection outside vacuum). In addition to its electrical shielding function,

the ground plane is exposed to the trapping device, thus reducing outgassing and

the amount of exposed dielectric from the substrate. All soldering was done on the

bottom side of the board to minimize the amount of solder exposed to the trap. The

area of the board is minimized to reduce the amount of material in vacuum while

leaving room for trace routing. The board (60 mil substrate thickness, 1.5 oz/ft2

copper cladding) was produced with standard etching, no silk screening and no solder

mask, and finished with Electroless Nickel / Electroless Palladium / Immersion Gold

(ENEPIG, final composition 3-6 µm Ni, 76-200 nm Pd, and 25-50 nm Au). After

cleaning, trace amounts of mass/charge ratio 81 and 82 were observed with an RGA,

possibly HBr from the etching process, and the unpopulated board (Fig. 3.15) was

deemed fit for UHV.

The custom ZIF socket10 bulk plastic is polyether ether ketone (PEEK), bakeable

to 250 ◦C, and the beryllium copper contacts are gold plated over nickel, with an op-

erational temperature rating of 150 ◦C. This lower temperature limit was overlooked

until recently and may explain the reduced socket performance after a number of

bakeouts at 200 ◦C. The socket was disassembled for UHV grade cleaning and then

reassembled (Fig. 3.16) before soldering.

The 94 board channels are populated (Fig. 3.17) with 0603 surface mount capac-

10Designed and fabricated for SNL by Tactic Electronics, part number 100-4680-001A.
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Figure 3.15: In vacuum filter board and ZIF socket before assembly. The component
side of the board is shown, to face the bottom flange once populated. On the bottom
of the ZIF socket, the supporting slabs for installing onto the bottom flange posts
(Fig. 3.6) are shown attached.

itors11 and resistors12 that did not outgas when studied after UHV-grade cleaning.

The solder used has composition Sn96.5Ag3.0Cu0.5 (SAC), melting at ∼ 217 ◦C, and

Kester 275 no clean core. The thinnest wire with the highest amount of flux should

11C1608X8R1H473K080AA from TDK, X8R, 50 V, 10%
12CRCW060333R0FKEAHP from Vishay-Dale, 0.25 W, 1%

Figure 3.16: ZIF socket re-assembly after cleaning. The cam shaft, screws, pins, and
PEEK body parts are processed as regular UHV parts.
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Figure 3.17: The side of the center cut-out is about 1.5 cm. The brown elements
are the capacitors, and the black elements are the resistors. Common ground is
implemented with through vias to the ground plane on the other side of the board.

be preferred. The ZIF socket was soldered to the ground plane side of the popu-

lated board in an open position, followed by the in-vacuum PEEK 100 pin Micro-D

connector13 with polyimide14 insulated wires (Fig. 3.18), with due attention paid to

which wire goes where. Two wires are soldered directly to the ZIF socket pins cor-

Figure 3.18: Soldering the connector to a populated filter board with ZIF socket.

responding to rf electrodes on the package. All soldering was done with virtual leak

13SRIMD204-100-1 from SRI Hermetics
14Kapton from DuPont
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reduction in mind, although the design can be improved in that regard. All joints

were made and inspected with an optical microscope, and using a dedicated clean

soldering iron tip. It should be noted that trace amounts of lead in a SAC joint lead

to joint brittleness and premature failure. Because of its low vapor pressure, lead is

avoided in UHV.

The soldered board was cleaned again to remove any contamination accumulated

during the build, and mounted on the bottom flange posts. Kapton coated wires were

organized to ensure optical access is preserved. To verify proper operation, a blank

package was installed in the ZIF socket (Fig. 3.19), and each filter component and

Figure 3.19: In-vacuum filter board testing. Connections were verified between pads
(golden stripes near cutout) on the blank package (brown square with cutout on top
of ZIF socket).

channel was tested: capacitance from each package pad to ground was measured,
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and resistance from each pad to the corresponding Micro-D connector pin on the

air side of the flange was measured. The cleaning/testing cycle was repeated when

repairs were needed. The point of cleaning before testing is that it is unlikely that

components and solder joints will experience mechanical disturbance greater than

the ultrasonic bath, hence if they survive cleaning, they are likely to survive slow

thermal cycling and years of use.

A relevant UHV performance issue is the degradation of the wire insulation (Kap-

ton) over time, producing a number of easy to charge and displace small flakes that

may find their way on the device. Furthermore, degraded ZIF socket performance

(relatively difficult package insertion/removal) was noted after thermal cycling. The

latter was attributed tentatively to the board design concept: the package is sup-

ported by the ZIF socket, in turn supported by horizontal slabs underneath, in turn

supported by poles on the bottom CF flange; the board is not referenced to the

assembly and is supported solely by the 100 solder joints on the ZIF socket. The

speculation was that, despite the large difference between the solder melting point

(217 ◦C) and the bakeout temperature (less then 205 ◦C), increased solder plasticity

and stress due to the combined push of the 100 Kapton coated wires (the wires are

very springy, making them relatively hard to work with) somehow tilted the pins,

thus reducing performance. In view of the overlooked temperature limit (150 ◦C) of

the ZIF socket pins, however, it is far more likely that pin elasticity was lost during

thermal cycling and pins became more malleable, thus hurting socket performance.

As a final stage of filtering, most recent devices have a 1 nF capacitor (Sec. 3.1)

per control electrode on die, facilitating shunting of rf pickup by the electrodes.

Details for each device used are given in the corresponding section.
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3.5 Ion Production

In the experiments described, the scheme used for ion production is photoionization

– a process in which one or more electrons from the outermost shell of a neutral

atom are detached by irradiation with suitable light. Neutral calcium atoms are

effused by the atomic oven (Sec. 3.5.1) under the trapping device and directed at

a loading hole/slot in the device. Photoionizing light (Sec. 3.5.3) is focused above

the device surface, at a location in which the expected neutral atom flux penetrates

the expected trapping volume of the device – the ion loading zone. Atoms that pass

through the loading zone may be stripped of an electron and thus ionized.

3.5.1 The Atomic Ovens

A fair amount of downtime in the second experiment described here was due to issues

related to the source of neutral atoms – the atomic oven. Alignment and thermal

issues are universal to generating all neutral species, and in addition, there may be

challenges because of the chemical reactivity of the species, as is the case with calcium

and barium. High purity metallic calcium with natural isotope abundance (∼ 97%

40Ca [88]) is available as a mix of powder and pellets in inert atmosphere. Because of

the large surface area and small volume of the mixture, once exposed to air, calcium

reacts vigorously with water and oxidizes rapidly (Fig. 3.20). A rule of thumb is that

calcium that has been exposed to atmosphere for two continuous hours has oxidized

to the extent of being unusable for the purpose of making an atomic oven compatible

with the goal of ion trapping. Multiple exposures to air totaling many hours seem

to not impede neutral atom effusion, provided that between exposures, calcium is

sufficiently heated in high vacuum to break the oxide layer.

With that in mind, a good oven should be relatively easy to make, align, test,

and repair quickly. The solution used here (Fig. 3.21) utilizes pre-made components
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Figure 3.20: Calcium oxidation. The can on the left hand side has been stored
opened in a dry box that turned out to not provide enough oxygen displacement,
hence almost all calcium inside has oxidized (CaO is off-white in appearance). The
can on the right hand side is freshly opened (less than 5 minutes exposure to air),
but oxidation is already seen from the color of the finest particles.

exclusively. An electrical feedthrough on a 1.33” CF flange 15, capable of sustaining

several amperes of current, is used as a base. The base comes with a threaded hole

on the vacuum side. A thread with a venting slot is cut on one side of a 2” C-size

steel rod 16 and the rod is screwed to the base. Clamps16 (and possibly shorter rods)

are used to attach a 1” C-size alumina tube16 that will contain the neutral atom

source. In advance, one end of the tube is closed with cement17, and is threaded into

a snug filament made of W wire18 (7 mil diameter wire is used). Alumina spacers and

tubes 16 are threaded on the tube and wire for electrical and thermal insulation, as

needed. Beryllium - copper, gold coated pins19 are attached to the vacuum side of the

base. Spot-welding20 is used to connect the filament to the pins. Because of the vastly

different conductivity of the Au plating and W wire and the sub-optimal (cylindrical)

shape for clamping together, direct spot-welding is not preferred. Instead, a small

15Accu-Glass Products.
16 eV Parts from Kimball Physics.
17Sauereisen Electrotemp Ceramic, http://www.sisweb.com/part/SCC8 .
18http://www.sisweb.com/products.htm?q=W95 .
19Mill-Max, Digi-Key part ID ED90091-ND.
20Tool of choice is Miyachi 125 ADP power supply.
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(a) Atomic oven with an extra joint for
precise barrel alignment. The spread-
limiting tube on top is not in place yet.

(b) Atomic oven for two species, Yb and
Ca, after ∼ 3 years of use. Spread-
limiting tubes on top are in place.

Figure 3.21: Modular atomic ovens.

strip of 1 mil thick tantalum foil21 is used as an intermediate conductor. Two to

three dual, short, alternating polarity, ∼ 8 W·s pulses with 150 ms squeeze and 50

ms hold work well. Weld quality is verified by pulling on the filament and measuring

resistance on the air side of the feedthrough. Finally, the alumina barrel(s) is(are)

filled with the desired species and a spread-limiting B-size alumina tube16 is cemented

on top. All work is done with UHV cleanliness in mind. The oven assembly is either

cured in a dry box or installed in a vacuum vessel for immediate evacuation.

Once the oven assembly is installed in a vessel, it may be desirable to adjust the

21ESPI Metals Knc1744.
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alignment of the barrel(s), check that there is sufficient atomic flux, and verify that

this flux is not likely to short nearby conductors (Fig. 3.22). One way to do that is

(a) The metallic film (gray in appear-
ance) around the bottom and left sides
of the cutout shorts board channels, ef-
fectively shorting trap electrodes. The
film in this image is tantalum. The in-
advertent source was ∼ 2 cm below the
board.

(b) The lighter hue around the cutout is
CaO in air. In vacuum that was calcium
with the potential to short board chan-
nels. The board color is due to view-
port failure causing air exposure during
a bakeout. The oven top was a few mm
below the board.

Figure 3.22: Electrode shorting due to oven firing. Shown are the bottoms of a
in-vacuum filter boards (Sec. 3.4.3).

to put a glass slide in place of the trapping device (Fig. 3.23) and fire the oven. As

current is passed through the tungsten filament, Ohmic heating from the filament

is transferred to the alumina tube and then to the metal pellets inside. The initial

heating of the oven after exposure to air (degassing) must happen slowly enough to

allow slow thermal expansion of whatever is in the barrel, otherwise bulk matter is

ejected and the devices are contaminated, damaging them or even rendering them
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Figure 3.23: Calcium oven aligned. A microscope glass slide is covering the cut-out
of the ZIF socket. The oven barrel (the same construction shown in Fig. 3.21a but
equipped with spread-limiting tube), viewed form the top, is positioned as desired.
Once sublimated, Ca deposits on the slide and a thin metallic film can be seen at a
facilitating angle. The spot was not captured with the camera despite some effort.

inoperable (Fig. 3.24, Fig. 3.25).

Figure 3.24: Calcium contamination of a device. One of two devices destroyed by a
current surge due to a flaky connection in the oven current supply cable. Photoion-
ization light is scattered off the surface while the device is imaged. The distance
between the vertical lines (gaps between electrodes) is about 70 µm. The particles
appear larger than their actual size due to excessive scatter and being out of focus.

During degassing, a conservative approach was lately adopted that likely prolongs

the life of the oven filament and ensures robust testing. Current is increased, in a

manner that keeps the system pressure below 10−5 Torr, until metallic calcium film
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Figure 3.25: Energy Dispersive Spectroscopy (EDS) analysis shows the composition
of the chunk shown on the SEM image.

is seen on the glass slide. The process takes a few hours. If sufficient amount

of calcium was deposited on the glass slide, it may be possible to see traces of

compounds after the chamber is vented(Fig. 3.26). It may be necessary to iterate

venting/pumpdown/degassing until alignment is satisfactory, and it should be noted

that the device die is an additional ∼ 4 mm above the glass slide. Once aligned, an

oven may be removed for storage or a device installed. Depending on the spot size

and location, oven removal may invalidate the alignment as the 1.33” CF flanges can

only be registered within a few hundred µm. Once a device is installed and the oven

degassed, the oven current does not need to be ramped up and the pressure increase

due to oven firing is not detrimental to experimentation. Sufficient neutral atom flux

is generated at about 10 W of power delivered to the filament. Less common means

of delivering atomic calcium (laser ablation, pre-made sources covered with indium,

and multiple stage sublimation) exist.
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Figure 3.26: Evaporated calcium on a microscope slide. Calcium readily reacts with
water, oxygen and nitrogen from the atmosphere, making it challenging to observe
the thin film deposited when an oven is fired. The inset shows the calcium spot
magnified.

3.5.2 Relevant atomic structure of 40Ca and 40Ca+

Calcium is an alkaline earth metal with [Ar]4 s2 electron structure. One way to singly

ionize 40Ca (Fig. 3.27) is to excite the atom from the ground 4s1 S0 to the 4p1 P1 state

390 nm
or less

423 nm

continuum

4s1S0

4p1P1

Figure 3.27: Neutral 40Ca relevant structure.
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with 423 nm light , then use any light with wavelength shorter than 390 nm to detach

an electron. The resulting 40Ca+ ion (Fig. 3.28) is Doppler cooled (Sec. 2.2.1) at the

4p2P3/2

4p2P1/2

4s2S1/2

3d2D5/2

3d2D3/2

m=1/2
m=-1/2

m=1/2
m=-1/2

m=-1/2
m=-3/2

m=3/2
m=1/2

m=-1/2
m=-3/2

m=3/2
m=1/2

m=-1/2
m=-3/2

m=3/2
m=1/2

m=-5/2

m=5/2

866 nm

854 nm

729 nm

397 nm

Figure 3.28: Singly ionized 40Ca relevant structure with Zeeman splitting.

strongest dipole transition, 4s2 S1/2 ←→4p2 P1/2, at 397 nm. There is, however, 6%

probability [89] of decay, 4p2 P1/2  3d2 D3/2, which is a meta-stable state with a

lifetime τ = 1.2 s [90], therefore 866 nm light is used to pump out of the 3d2 D3/2

and into the 4p2 P1/2 state.

A magnetic field of ∼ 3 − 4 Gauss at the position of the ion is used to access

the Zeeman levels. The field is generated by a coil of ∼ 6” diameter wound around

the re-entrant viewport or the bottom flange, and two pairs of coils of about 3”
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diameter provide orthogonal fields in the plane of the bottom flange. Homogeneity is

inferred by observing that, once the field and light polarization are tuned to enforce

the chosen selection rules, no undesired transitions occur for ions over the extent (∼

5 mm) of the trapping volume. It was noted that the heat generated by running

current in the coils is seen as pressure increase in the experimental chamber. For a

given desired field H ∝ IN , this is remedied by increasing the number of turns N in

the coil and reducing the current I:

N → αN & H = const.⇒ R→ αR & I → I

α
⇒ P → I2R/α,

where α is the scaling factor, R is the coil resistance and P is the power dissipated

by the coil. For the experiment here, the bulk of the field was generated with ∼ 1 A

in ∼ 200 turns of the 6” coil (expected best homogeneity for the target location).

Resolving the degeneracy allows for more efficient Doppler cooling as the super-

position of the 4s2 S1/2 and 3d2 D3/2, a dark state, can be avoided with a suitable

polarization of the 397 nm light [91, 92]. An ion at TD will have about nD phonons

(Eq. 2.7). For further cooling to the motional ground state (Sec. 2.2.2), the Zeeman

structure of the quadrupole transition 4s2 S1/2 ←→3d2 D5/2 is exploited. Selection

rules are enforced by suitable choice of the 729 nm light polarization e and direction

k, and the direction of the magnetic field H. After [93, 32], the condition k× e×H

is chosen to enforce ∆mj = ±2.

3.5.3 Photoionization Light

Multiple schemes for calcium photoionization have been demonstrated [94, 95, 96,

97]. The method used here (Sec. 3.5.2) is close to the one found in [98]. Photoion-

ization light sources and their distribution for calcium changed several times over

the course of the experiments. For 423 nm light generation, initially an 846 nm

diode output was doubled by an external periodically poled crystal. The setup re-

quired a lot of attention and, over about a year, due to crystal aging, deteriorated
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to outputting ∼ 3 µW (at the chamber), a factor of 40 from the initially measured

∼ 120 µW after coupling losses. While loading ions was still possible, sharing the

light between experiments yielded sub-optimal results. The next installment utilized

a direct diode laser in the Littrow configuration, mounted in an available in-house

designed diode head. This ECDL provided plenty of optical power, however, since

the mechanical and thermal stability of the head were not intended for a blue diode,

wavelength tuning was a challenge. It was then decided to invest in a research grade

system22 which is currently in use. While this has been is the easiest system to

use, the inherent difficulties associated with blue diodes are still present, notably

the narrow mode-hop-free range and the extreme sensitivity to grating angle. The

light is coupled at the head to a custom fiber beamsplitter, with a low power branch

fed into an optical switch for locking (Sec. D.1), and a high power branch to deliver

the bulk of the power to an experimental optical table, where it is distributed with

fiber beamsplitters. A persistent problem with high intensity blue light is fiber tip

damage, requiring periodic fiber tip polishing. Typically, 200 to 400 µW reach the

experimental chamber.

For the second stage of the photoionization process, 375 nm or 369 nm light have

been used in the past. Currently, a 375 nm source23 is set up. Since the exact

wavelength is of no consequence, it is not monitored or controlled, and the only

relevant issue is fiber tip damage, mitigated with mechanical shutters in the beam

path before coupling into fibers. Typically, 200 to 400 µW reach the experimental

chamber.

22DL pro head with SC 110, DCC 110, and DTC 110 controllers from Toptica.
23Obis from Coherent.
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3.6 Ion Cooling, Detection, and Imaging

The main components in the imaging stack used for both experiments are an objective

with about 0.29 effective NA, a CCD camera24, and a PMT25, one of the latter two

selectable with a mirror. The CCD camera is used to image device features and ions

and for position based measurements, and the PMT is used for all fluorescence based

measurements.

3.6.1 Doppler Cooling and Detection

Light from 40Ca+ fluorescence is detected, imaged, and cooled on the 397 nm 4s2 S1/2

 4p2 P1/2 transition. In the presence of a magnetic field, unpolarized 866 nm repump

light is tuned a few MHz blue of resonance, and red detuned 397 nm Doppler light

polarization is adjusted to avoid dark states [92] and optimize count rate. 866 nm

light power is kept above saturation, and for most operations, Doppler power is kept

at or well below saturation to reduce broadening. The 866 nm light is software

locked (Appendix D.1), while the 397 nm light is locked to an atomic reference via a

transfer cavity (Appendix A). The 397 nm light frequency and power are modulated

with an AOM in a double-pass configuration. When switching the beam on and

off, attenuation of 105 dB is achieved by adding a second AOM in a single pass

configuration. At the chamber, the linear polarization is adjusted with a waveplate

for maximum fluorescence.

3.6.2 Sideband Cooling

Resolved sideband cooling on the 4s2 S1/2 ←→3d2 D5/2 transition is used to cool

the ion close to the motional ground state. The specific algorithms used are given

24Andor Luca R.
25Hamamatsu H10682-210.
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in Appendix E.3, while the principles are outlined here. Assuming an ion cooled

to TD and ∆mj = ±2 as in Sec. 3.5.2, the first step in the process is preparing

the ion in the 4s2 S1/2(mj = −1/2) state. To that end, the ion is first cooled to

TD and prepared in the 4s2 S1/2 state by turning the Doppler light off. Next, a π

pulse26 for the 4s2 S1/2(mj = +1/2)  3d2 D5/2(mj = −3/2) transition is applied.

If the ion was not in the 4s2 S1/2(mj = −1/2) state already, the ion is excited to

the 3d2 D5/2(mj = −3/2) state. This is a long lived state, so unpolarized 854 nm

light is used to pump out of the 3d2 D5/2(mj = −3/2) state and into the 4p2 P3/2

state. The favorable branching ratios and the presence of the unpolarized 854 nm

and 866 nm light ensure a quick decay to the 4s2 S1/2 state. Since neither of the

transitions in this step is selective, there is a probability that the ion ends up in the

4s2 S1/2(mj = +1/2) state, in which case the part of the cycle starting with the π

pulse has to be repeated. Since a measurement is never performed, repeating the loop

6-8 times prepares the ion in the 4s2 S1/2(mj = −1/2) state with high probability.

This agrees with the observations and calculation in [32]. The transitions involved

in the process are chosen because they form a closed loop with high probability.

Once the ion is in the 4s2 S1/2(mj = −1/2) state, a closed (with high probability)

transition loop is available for resolved sideband cooling. First, a π pulse27 for the

4s2 S1/2(mj = −1/2)  3d2 D5/2(mj = −5/2) transition red motional sideband is

applied. Next, unpolarized 854 nm light is used to pump out of the long lived state

and to prevent spontaneous decay to the other 3d2 D5/2 allowed levels. Combined

with the favorable branching ratio, the ion ends up, after spontaneous decay, in

4s2 S1/2(mj = −1/2) with high probability, and with a reduced n̄, since the ion is

in the Lamb - Dicke regime. As the ion cools down, the π pulse length increases

as the population in the sideband decreases. Providing for that in the experimental

loop allows for optimization in terms of the number of steps needed and the lowest

26In Rabi flop context, not π-polarized.
27As there is no true Rabi flop on a sideband of a thermal state, the minimum time

needed to invert the population.
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temperature attainable. Repeating an optimized loop 35-40 times cools the ion close

to its motional ground state.

The 729nm light setup is outlined in Appendix B. At the chamber, the polariza-

tion is cleaned with a polarizing beam splitter, creating a potential for amplitude

modulation. A feedback loop to remedy that is in the works.

3.7 Summary

Microfabricated surface devices offer an avenue to implementing complex scalable

structures suitable for QIP applications and beyond, however, their use requires ad-

ditional consideration when designing and assembling the supporting apparatus. The

shallow traps and small dimensions with a large area exposed to the ion constrain the

usable UHV pressure range and reduce the tolerance to particulate contamination.

The multitude of control electrodes puts unique demands on control voltage filtering

inside and outside of the vacuum vessel. Helical resonators offer a good compromise

between filtering and size as a means to generate adequate rf voltage for trapping,

and computer controlled DAC cards are used for control voltage generation. The

ionic species (40Ca+) in the experiments here are produced by photoionization of

neutral atoms effused by a resistively heated oven in the trapping volume. The

trapped ions are Doppler cooled and imaged, and can be cooled close to their mo-

tional ground state by exploiting the Zeeman splitting of their energy levels in a

controlled magnetic field.
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Chapter 4

Ring Trap Design

This chapter details the design of a device tailored for retaining an equidistant chain

of hundreds of ions. The four metal level technology (Sec. 3.1) available at design

time made the concept of islanded electrodes feasible, and the ring trap is one of

the first devices to utilize such islanded electrodes. After putting the device in per-

spective (Sec. 4.1), the decisions that lead to the fabricated design (Sec. 4.2) are

motivated, and then the remaining design stages that naturally arose with experi-

ence are detailed: meshing (Sec. 4.4), field calculation (Sec. 4.3), field manipulation

(Sec. 4.5), and design optimization (Sec. 4.6).

4.1 Purpose

Ion traps that can hold a ring of ions are not a novelty. Interest in the availability

of such a device was seen in proposals and experiments from diverse fields. These

include simulations and studies of Ising models with long chains [99], Hawking radi-

ation [100], ion chain dynamics and quantum phase transitions [101, 102, 103, 104,

105], topological defects for QIP [106, 107], time crystals [108], and the Aharonov

- Bohm effect [35]. A growing area of research, multipole traps have been demon-
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strated [109], and theoretically studied [110, 111, 112, 113] for different applications.

For quadrupole traps, ring geometries succeed the so-called race track traps [114]

and have been used to study electron capture [115], storage of protons and ions [116,

117, 118, 119, 120, 121], advances in mass spectroscopy [122, 123, 124], and phase

transitions [125, 118, 119, 120, 121]. Furthermore, ring traps have been proposed for

frequency standard applications [126], antiproton confinement [127] (demonstrated

Mg+ trapping but no antiprotons), and isotope separation [128]. The rings in all

those experiments and proposals relied on successful implementation of a traditional

four rod structure (Sec. 2.1.2) and were therefore relatively large (40 cm ring diam-

eter in [128]). Successful devices that yielded experimental results did not provide

means for electric field control in the tangential direction (along the trap “axis”),

and trapped ion locations and crystal structure were determined by pseudopotential

features and mutual Coulomb repulsion, preventing the formation of an equidistant

chain.

The purpose of the device described here is similarly to trap a ring of ions, but

achieve that in a microfabricated segmented surface trapping device. Even if such a

structure exhibits perfect azimuthal symmetry, the symmetry of the resulting pseu-

dopotential will be broken by the presence of stray electric fields (e.g. due to charged

particles nearby) and the trapped chain manifests those fields as spacing irregulari-

ties. To reduce the effect of stray fields, control electrodes along the circumference

are used to generate a corrective field.

4.2 Layout

The first step in designing a device is determining a geometry that will serve the

purpose (Sec. 4.1) of the device, while being technologically feasible (Sec. 3.1). The

hyperbolic Paul trap (Sec. 2.1.1) can trap multiple particles, but with limited us-

ability. Since the rf null is a point, particles away from the rf null experience excess
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micromotion, and there are no means to control the positions of individual ions.

Unlike hyperbolic Paul traps, linear traps (Sec. 2.1.2) provide means for holding ion

chains. This is achieved by confinement that is strong in directions transverse to the

trap axis as compared to the confinement along the axis. The resulting rf null is a line

along the trap axis. In such a regime, trapped ions typically see a harmonic poten-

tial (to lowest order) in the axial direction. This harmonic potential, in conjunction

with Coulomb repulsion between ions, results in variations in the density of the ion

chain [129] – ion spacing increases with distance from the chain mid-point. Linear

segmented ion trap designs [30, 31, 32, 69, 73, 130] add the capability to approach

the unequal spacing issue by replacing the harmonic potential with a quartic one

[131] (anharmonic traps). The latter approach has been used (in conjunction with

reduction of stray fields, c.f. Sections 2.4, 5.5) to demonstrate less than 5% spacing

variation in the middle 8 ions of a 10 ion chain [73]. This result has been improved

upon to include 20 ions below the 5% variation mark [132]. Scaling the anharmonic

approach to larger chains, however, remains a challenge.

If one imagines bending a linear surface trap in the plane of the surface, one

arrives at a ring-shaped trap geometry. Such a layout overcomes chain density issues

related to both axial potential shape and Coulomb repulsion by virtue of symmetry.

Since the trap axis closes on itself, assuming azimuthal symmetry, a harmonic trap

neither occurs nor is needed to confine the ions to the trapping volume. In the

absence of external fields, however, that would mean that an ion could be anywhere

in that volume. With the forethought that external fields always exist, we trade

azimuthal symmetry for cutting out and segmenting otherwise grounded inner and

outer (radially, with respect to the central control electrode) annuli. Those segmented

inner/outer electrodes are used to confine and manipulate ions and chains (Sec. 5.4)

and to correct for undesired fields (Sec. 5.5). We thus arrive at the geometry depicted

in Fig. 4.1.

In deciding on the trapping radius, we wanted to store about 400 ions separated
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Figure 4.1: Ring trap layout.

by 10 µm, requiring a 4000 µm trapping circumference. Hence the required radius

would be 4000 µm/(2× π) ≈ 637 µm. We choose the radius to be 625 µm.

The widths of the rf and control annuli are chosen so that the simulated ion

height (Sec. 4.5) is about 80 µm. The widths can be optimized (Sec. 4.6) to achieve

the desired trap parameters. The widths in the fabricated device are given in Fig

4.2.

The loading hole size is chosen to be the smallest technologically achievable at

the time of design, 10 µm diameter. The width of the gaps between electrodes is
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A i 1A i 1

Figure 4.2: Ring trap dimensions, in microns.

also dictated by fabrication limits at the time to be 7 µm. There are several reasons

to aim to have the smallest possible interruption in the top metal layer. Although

largely remedied by SNL fabrication processes (Sec. 3.1), a factor that encourages

gap size reduction is the amount of dielectric that is potentially exposed to the ion

[133]. In addition, any interruption of the surface creates potential “bumps” that

may be difficult, if not impossible to deal with both in the design (Sec. 4.3) and in the

operation (Sec. 5.4) the trap. Finally, gaps on the surface take space - if they have

no purpose other than separating electrodes, they should be reduced. At some point

of this reduction, the possibility of arcing in vacuum because of potential difference

between electrodes becomes relevant. This is not a concern with the voltages and

gaps involved here.
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In deciding on the number of segmented electrodes, the following was taken into

account. Assuming the ion height is not much larger than the electrode extent,

and that unlimited number of electrodes are available in a given area, the larger the

number of electrodes, the smaller their size, hence the higher the curvature of the field

they could produce at the ion height. That determines the smallest undesired feature

of the potential that could be addressed and must be balanced with the contradicting

requirement that a uniform field (due to a single electrode) may be desired. In an

attempt to make simulating the electric field (Sec. 4.3) easier, each quadrant had

the same layout. However, it turned out that exploiting symmetry when simulating

was not necessarily a good idea, but at the time this was realized, the overall layout

had been agreed upon. Pairing the control electrodes in the radial directions allowed

balancing a stray radial field with two electrodes. The chip package (Sec. 3.1) had

96 available channels for control electrodes. That allowed up to 12 electrode pairs

per quadrant. The central control electrode was not to be grounded, which reduced

the available channels to 95. Thus, the number of electrode pairs was reduced to

11 per quadrant. The final tally is: 88 control electrodes grouped in 44 inner/outer,

radially aligned electrode pairs, plus a control electrode running under the trapping

volume are all used for static potential shaping, and a pair of rf electrodes is used

for generating a quadrupole pseudopotential above the surface.

The design decided upon was drawn with SolidWorks1 and passed to SNL MESA

Fabrication Facilities staff for further processing and fabrication (upon finalizing the

design). A model was exported for the next step, mesh generation (Sec. 4.4).

4.3 Field Calculation

While in the design process the field calculation takes place after meshing (Sec. 4.4),

it is necessary to outline how electric fields are simulated in order to explain why mesh

1from Dassault Systèmes SolidWorks Corp.
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generation is needed. There are quite a few ways to to solve the electrostatic problem

of finding the electric field in some volume due to a charge configuration. Analytic

solutions for special charge configurations (e.g. a sphere, an infinite line of charge,

an infinite plane) can be derived or found in many texts covering electrostatics (e.g.

[134]), however, solving the problem for arbitrary shaped and placed electrodes is not

trivial. For electrode configurations in a plane, as in surface traps, limited analytic

methods were developed and recently described in the context of ion traps [135, 136,

137, 138, 139]. Although these methods can handle gaps [139] in the conducting

surface, field estimates may not be great. At present, numerical methods are still

preferred for field estimation.

A brief description of the many available methods for electromagnetic field cal-

culation, with references, can be found in [140]. As a side note, it seems the research

and implementation of such methods intensified with the increased accessibility of

computing power. This is relevant because in some methods the number of calcu-

lations increases as the square of the number of elements involved. An in-depth

discussion of selected field solving methods commonly used in the ion trapping com-

munity can be found in [141], with GPL - licensed boundary element method (BEM)

solver code and examples available at [142]. The field calculations in this work are

also done with a BEM solver, using the commercial software package CPO 2. The

CPO version available was limited to handling 6000 mesh elements.

As an outline of how BEM works, we consider the electrostatic [134] case of a

charged conductor in equilibrium, in which all charge occupies the surface and the

charge density increases with surface curvature. In BEM, the surface that is a field

source is broken into adjacent triangles (Sec. 4.4). Each triangle is given uniform

charge density, which is a function of the voltage on the surface, the triangle size and

possibly of the surface curvature. The field/potential at a point of interest in space

due to the charged surface is calculated as the superposition of the fields/potentials

2http://simion.com/cpo/

http://simion.com/cpo/
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due to each triangle. Usually, the field is calculated on a regular grid spanning some

volume of interest.

In the case here, a typical grid around the trapping volume has dimension 101×

101×71 (in R, T, Z, respectively (Fig. 5.1)) nodes and the physical spacing between

neighboring nodes along a given dimension is 2 µm. In the course of experimentation,

it was found that using algorithms to exploit layout symmetry resulted in additional

undesired features in the calculated field. Because of that, a mesh of a sizable part of

the device was used for simulation (∼ 1.5 mm radius from the device center, the full

die being about 1 cm × 1 cm), at the expense of mesh resolution. A separate grid

was populated for a voltage of 1 V on each of the 89 control electrodes as well as the

rf electrode pair. The resulting 90 grids are manipulated to calculate pseudopotential

and trap parameters. Since field calculation is fairly resource-intensive, in the last

few iterations of mesh generation and field calculation, the process of calculating

fields with CPO was completely automated using Sikuli Script3 – an outstanding

open-source tool for handling repetitive tasks. Field calculation is repeated for each

change of geometry or mesh.

4.4 Mesh Generation

The boundary element method (BEM) solver that is used to simulate electric fields

(Sec. 4.3) given some electrode geometry requires that the conductor surface is broken

into primitives, in this case triangles. The process is referred to as mesh generation.

It turns out that the strategy used to arrive at the size distribution and number of

mesh elements has consequences for the model quality, a figure of merit being the

measured device parameters with a trapped ion.

To gain some insight into the matter, for a fixed geometry, the field was cal-

3http://www.sikuli.org/

http://www.sikuli.org/
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culated for a number of different meshes (selected examples in Fig. 4.3), and then

manipulated to extract trap parameters (tabulated in Table 4.1).

(a) Mesh trap 44 3 – adaptive element
size, loading hole, 3747 triangles.

(b) Mesh trap 44 nh 10 – adaptive size,
no loading hole, 4018 triangles.

(c) Mesh trap 44 .05 – fixed element size,
no loading hole, 5742 triangles.

(d) Mesh used before July 2013, no load-
ing hole, 4535 triangles.

Figure 4.3: Examples of generated meshes.

What became evident from this effort is that a variance of 20 % in relevant trap
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mesh id R (µm) Z (µm) ωR (MHz) ωZ (MHz) ωT (kHz) N type
trap 44 3 623.4 82.49 3.032 3.083 6.3i 3747 a
trap 44 4 623.9 83.22 3.038 3.021 18 2639 a
trap 44 5 622.7 83.23 2.992 2.915 48 1895 a
trap 44 6 624.1 83.15 2.954 2.944 2.2i 1571 a
trap 44 7 624.1 83.17 2.870 2.938 38 1409 a

trap 44 nh 10 624.5 82.24 3.061 3.123 4.0 4018 n
trap 44 .1 621.1 78.50 3.421 3.468 21 1646 c
trap 44 .05 624.1 82.49 3.217 2.994 86 5742 c

trap 44 final 624.2 82.11 3.106 3.124 0.34 4535 n
irregular 624.4 81.92 3.081 3.065 0.079 3998 n

Table 4.1: Mesh effects on trap parameters: R – trapping radius; Z – trapping
height; ωR, ωZ , ωT – secular frequencies in R, Z, and T , respectively; N – number
of mesh elements; type a – adaptive size strategy for mesh elements (small triangles
near edges); type c – constant size of mesh elements, loading hole not present; type n
– adaptive mesh size, loading hole not present. For a given trap geometry, different
meshing strategy and parameters yield different calculated trap parameter values.
The differences for radial secular frequencies (ωR, ωZ) projections can be ∼ 20 %
of the value per direction, which suggests some convergence that is still tolerable.
The differences in the projected tangential secular frequency (ωT ) show (i is the
imaginary unit) that the modeling scheme is not a good predictor for behavior in
this direction in the absence of a confining potential. Parameters are calculated for
a Ba+ ion, with 300 V amplitude and 40 MHz rf drive frequency.

parameter values can be attributed to meshing, and that calculating effects due to

certain features of the geometry (the curved rf electrodes, the gaps between control

electrodes, and loading hole) is not possible.

After the device was fabricated and thoroughly tested over a couple of years, a

new look at the model was warranted by the need to better predict fields in order

to achieve an equidistant chain. A new mesh incorporating feedback was generated

(Fig. 4.4). The main difference between this mesh and previous attempts is that the

size of the triangles is a function of their proximity to the point of interest around

which the field/potential grid is populated. Trapping solutions obtained with the

mesh kept the ion closer to the rf null, and the measured tangential frequency for a

given trapping solution agreed better with the model prediction.
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Figure 4.4: Ring trap mesh currently in use. Device loading hole is not modeled.
The field is simulated around a point of interest, about 80 µm above the 625 µm
radius intersecting the x axis. The mesh element size increases with distance from
the point of interest, with 3998 triangles total. This mesh, generated in July 2013,
produced parameters closest to those measured in the fabricated device (Sec. 5).
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From the start, the meshing capabilities of CPO were avoided in favor of The

CUBIT Geometry and Mesh Generation Toolkit 4 – a suite developed in part at SNL.

Initially, device geometry was imported into CUBIT for meshing, but it became

evident that re-generating the geometry in CUBIT was easier and evaded certain

problems in vertex-matching. Moreover, recent versions of CUBIT benefit from full

Python integration, making it possible to procedurally control the mesh size. The

mesh generated with CUBIT was parsed in a suitable form for field calculation with

CPO.

4.5 Field Manipulation

The generated fields and potentials (Sec. 4.3) resulting from a given mesh and layout

are manipulated to extract trap parameters with Mathematica5, along the lines of

(Sec. 2.1). First, data files are imported and parsed. The quantity

p =
V 2q2

4mΩ2

(the ponderomotive constant) is calculated, where V is the rf drive amplitude, q

is the elementary charge, m is the ion mass, and Ω/2π is the rf drive frequency.

The rf field magnitude E2 is calculated on the simulation grid, that is, the field

due to applying 1 V to the rf electrodes that was calculated on the grid is dotted

onto itself. The magnitude is interpolated for points that are not on the grid. The

field magnitude is weighted by the ponderomotive constant and elementary charge

to yield the pseudopotential (in eV) for an ion at location x (Fig. 4.5),

U(x) = E2p

q
.

Since pseudopotential minima locations depend heavily on meshing, the volume is

sampled and fits are run to extract an expected trapping radius R and height Z.

4https://cubit.sandia.gov/
5from Wolfram



Chapter 4. Ring Trap Design 66

Figure 4.5: The modeled pseudopotential cross-section for the ring trap. R is mea-
sured from the ring center, and Z is measured from the surface.

Using the principle of superposition, on the simulation grid, the potential due to

applying 1 V to each control electrode is weighted by the applied voltage and added

to the pseudopotential. The control electrode potential is interpolated for points not

on the grid. This is the total potential at the ion location. The applied voltages are

typically chosen so that the sum of the field generated by the control electrodes has

specific values at points of interest in the trapping volume. For example, weights can

be chosen to create a harmonic trap in the tangential direction without affecting the

orthogonal directions. Another example would be the generation of a homogeneous

field for stray field correction. Trap depth is estimated as the potential difference

between the local minimum and maximum of the total potential along the escape

path of the ion in the simulated volume. This can be either done rigorously by

explicitly finding the path, or roughly by assuming the path is normal to the surface.
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The results for each technique are close for this design. Secular frequencies for motion

in direction i are estimated for select minimum locations xm from the field curvature

as

ωi|xm =

√
q

m
∂2i U(x)|xm .

For the tangential direction, the directional derivative is replaced by a derivative

evaluated along the location of the averaged trapping minimum curve, as opposed to

along a tangential line. For select minimum locations xm, the principal axes rotation

angle θ (for axes normal to the tangent) is calculated as the angle of an eigenvector

(a, b) of the Hessian matrix H of the total-potential

θ|xm = tan−1 b

a
|xm & H|xm =

 ∂2ZU(x) ∂Z∂RU(x)

∂R∂ZU(x) ∂2RU(x)

 |xm .

Secular frequencies ω1, ω2 along the principal axes are calculated from the curvature

along the axes. The stability parameter is estimated as

qs = 2
√

2
max(ω1, ω2)

Ω
.

The amount of degeneracy is estimated as

|ω1 − ω2|
max(ω1, ω2)

.

Although the calculations themselves are not conceptually difficult, the amount of

data being manipulated (a few gigabytes in memory for the grid described in Sec. 4.3

and 89 control electrodes + rf) presented problems for the software that inevitably

manifested as stability issues. While most of the calculations performed are suffi-

ciently well implemented in open source packages, a suitable 3-D interpolator was

not found at the time of development. The existence of Mathematica’s interpolation

object is the core reason for using it for the analysis.
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d (µm) r (µm) R (µm) Z (µm) ωR (MHz) ωZ (MHz) ωT (kHz) U (meV)
60 60 624.0 58.72 7.345 7.428 18 378
80 72 624.0 74.06 4.471 4.484 1.5 212
80 60 624.1 70.25 4.660 4.680 3.4 208
80 48 624.2 66.26 4.779 4.801 4.0 191
80 36 624.3 62.02 4.764 4.794 12 163
100 60 624.2 81.56 3.134 3.153 4.4 123

Table 4.2: Ring trap geometry optimization. d – central control electrode width; r
– rf electrode width; R – trapping radius; Z – trapping height; ωR, ωZ , ωT – secular
frequencies in R, Z, and T , respectively; U – trap depth. The target parameter here
is Z ∼ 80µm.

4.6 Model Optimization

To optimize the trap electrode geometry for a given target parameter, the geometry

is first re-generated with changes, then a new mesh is generated, fields are calculated

from the mesh, and finally the device parameters are calculated. This resource-

intensive procedure was not carried out beyond finding a suitable geometry for the

target ion height (Table 4.2) and observing trends, because of the lack of automation

options at the time of initial design.

Another optimization study explored the effect of the proximity of the top metal

level rf lead on trap parameters. It was thus determined (Fig. 4.6) that the rf lead

does not perturb the pseudopotential if it is brought up to surface at 1.5 mm away

from the trap center. If it is closer, a significant defect is introduced in the sym-

metry of the ring’s pseudopotential. As of the time of the latest mesh generation

(July 2013), the process could be completely automated by parametrizing the geom-

etry generation in CUBIT , using Sikuli to control the field generation, then using

Mathematica to calculate parameters, all of that wrapped in a Python script.
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Figure 4.6: Effect of rf lead proximity on top level metal on trap parameters. R –
trapping radius; Z – trapping height; ωR, ωZ , ωT – secular frequencies in R, Z, and T ,
respectively; U – trap depth. The horizontal axis is the radial distance x (µm) of the
top layer rf feeding electrode from the trap center. Results are obtained by adding
the field generated for 1.5 mm (in R) by 0.1 mm (in T ) electrode surrounded by
ground to the field of rf electrodes simulated on a quarter wedge. Meshing artifacts
may add up to 20% error to this estimate.
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4.7 Summary and Outlook

The process of designing a microfabricated device permits a well-structured approach.

First, a surface geometry with desired features is identified. In the case described

here, because of symmetry, a ring is chosen to store a large number of ions under

identical conditions. Such a device could enable experimental research in diverse

fields beyond QIP. Technological limitations and available features were factored in

at the time of design. The electric field expected from the layout is estimated with

BEM after meshing the surface, and trap parameters are calculated from the field,

based on the pseudopotential concept. The choice of mesh has a large impact on the

field estimate, as is evident from the variance in the estimated trap parameters. The

process of choosing a layout, meshing, field calculation, and parameter estimation is

iterated to optimize the layout geometry.

An interesting study for future work would be to relate mesh generation to mea-

sured device parameters. To that end, mesh size can be procedurally controlled,

and parameters recalculated, to find the best agreement between model and mea-

surements. In terms of design development, it should be noted that the electrode

configuration is not a unique one satisfying the symmetry requirements above. For

example, the inner or outer annulus of control electrode segments can be offset by

half an electrode width, or control electrodes can be laid out on only the inner or

outer annulus, or a different number of electrodes can be laid out in the inner/outer

annuli while obeying the symmetry requirements. It is possible to also hide the load-

ing hole from the top metal layer by putting it, for example, inside an additional slot

splitting the central control electrode, and thus eliminating the expected bump in

tangential direction. It would be also interesting to look at a scaled down or smaller

device, as the larger electrode density would enable finer field corrections, and direct

comparison in electric field noise in scaled devices can be made for devices fabricated

on one die.
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Chapter 5

Ring Trap Experiments

Experiments with the ring trap described in Chapter 4 are outlined in [76]. The

goal of this chapter is to provide additional details on experiments conducted with

these devices. The trap layout makes it natural to work in the frame of a trapped ion

(Fig. 5.1). In such a frame, the tangential (T ) direction (positive counter-clockwise)

is the analogue of the axial direction for a linear trap, the radial (R) direction points

outward from the circle center, and Z is the direction perpendicular to the trap plane.

The specifics in Fig. 5.1 refer to the device used to build the equidistant chain.

5.1 Fabricated Devices

Three devices were studied at SNL at different times. The first device used (Sec. 5.3)

was one of the first fabricated with the four metal levels technology. The surface was

not sputtered with gold, and the device had an initially floating electrode that was

connected on the surface to the center ground disk via a wirebond. The second device

used did not have electrode connectivity problems at the time of installation. The

surface was sputtered with gold, and the remainder of the chapter describes efforts

with this device (Fig. 5.2). Several devices identical to this one did not work well in
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Figure 5.1: Ring trap nomenclature. Of the 89 available control electrodes, 86 per-
formed as expected (black labels and dashed arcs), while e22, e67, and e89 (red
labels) appeared to be shorted to ground at the time of experiment. The trapping
volume is above the central control electrode, e89, and is designated by the green
dashed arcs. The irregularities at the loading hole and the diametrally opposite
location result from reduced control over the ion motion at these locations. The
trapping sites at an intersection of the trapping radius and a radial line bisecting
gaps between two outer control electrodes are labeled “gXX” and termed ”gap“ sites,
with the loading hole at g00. Trapping sites at inner - outer electrode bisectors are
labeled “eXX” and termed ”electrode“ sites. An R−T −Z reference frame is shown
at g25.
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(a) The packaged device. (b) The device proper.

(c) The loading hole vicinity. (d) A particle near the loading hole.

Figure 5.2: SEM Images of the ring trap. The images in a), b), and c) are taken at
an angle, hence the elliptical appearance. Each image has a scale near the bottom.
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an effort elsewhere [143]. The last device studied had half of the surface coated with

gold and was used in the plasma treatment effort (Sec. 6) and will be covered there.

In Fig. 5.2a, a gold-sputtered device is shown at the center of a 1 cm × 1 cm die,

placed on a spacer. Low profile wirebonds can be seen from the edge of the die to the

CPGA pads (the light strands near the image edge). The rounded lighter tint square

encompassing the device proper is the gold-sputtered area. The rest of the top metal

level is aluminum. On the left hand side, the top level rf feed can be seen. The

rf electrodes are connected to each other on a lower level metal at four symmetric

points, in an effort to reduce possible phase offset between the inner and outer rf

ring. The loading hole is on the diametrally opposite side from the rf lead. Fig. 5.2b

depicts the device proper, laid out per the specifications in Sec. 4.2. Fig. 5.2c is an

enlarged view of the section around the 10 µm loading hole. The latter is shown

magnified in Fig. 5.2d, along with what is possibly a large particle (1-2 µm extent)

on the surface (in the red circle).

5.2 Experimental Setup

The UHV vessel used for most of the experiments described below is depicted in

Fig. 5.3. The experimental chamber (Fig. 5.4) contains the packaged device, inserted

into a ZIF socket, supported by two slabs, and mounted on four posts which are

supported by the bottom flange. The ZIF socket is soldered into the filter board,

and the control lines are connected through in-vacuum cable to the bottom flange

feedthrough. The device is in the centroid of the chamber, about 7 mm below a

reentrant viewport. The viewport is equipped with a stainless steel mesh (∼ 88%

transmission) screen (Fig. 5.5) electrically connected to the chamber, for the purpose

of screening the device from accumulated charge on the viewport.

The experimental chamber design provides for through optical access along 3 axes
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Figure 5.3: Ring trap experimental chamber cartoon. The dashed line separates the
experimental chamber from the getters manifold.

(Fig. 5.6). A magnetic field (Sec. 3.6) is used to improve Doppler cooling efficiency

and allow resolved sideband cooling. Most ion trapping experiments don’t require

working with more than few ions at a time. Moreover, these ions are often localized

over an area of at most a hundred microns square. In contrast, this experiment

required cooling hundreds of ions on a 625 µm radius ring simultaneously and imaging

them while minimizing scatter, which places unique requirements on the experiment.

The profile of the beam used for the job is shown in Fig. 5.7. The imaging stack and

the measurement Doppler beam (spherical lens, ∼ 35µm waist diameter) are mounted

on motors to enable motion and imaging automation on the ring (Appendix D.3).
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Figure 5.4: Ring trap experiment chamber detail.

5.3 Preliminary Studies

Several major results came out from the initial study with the aluminum surface

device. Most of all, ions were trapped in the device, proving that both the design

Figure 5.5: Installed device with the screening mesh on the re-entrant viewport.
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Figure 5.6: Ring trap experiment laser setup. The net magnetic field at the ion is in
direction normal to the page. The device loading hole would be at 12 o’clock.

procedure and the fabrication procedure were sound. The device trapped ions over

a wide range of rf power / control voltage scale settings, exhibiting a large stability

space. The device provided a comparison point in terms of parameters for subsequent

identical devices. In view of the shorted electrode, a control solution was developed

allowing routine shuttling of an ion around the circumference more than 10 000 times

without ion loss. The solution relied on interpolation between solutions at symmetry

Figure 5.7: Doppler beam profile for cooling the ring of ions. The beam size at the
waist is on the order of 100 µm by 3000 µm.
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points (g and e sites) and was customized to exclude the shorted electrode for sites

nearby.

Despite a considerable effort focusing on relaxing the potentials, only short-lived

2-3 ion chains were assembled with the device, before it was retired in favor of the

gold sputtered device. Shortly after the new device was deemed operational, a ∼

50 ion chain was demonstrated (Fig. 5.8) by shuttling ions from the loading hole

Figure 5.8: The first long chain demonstrated. The chain was formed at the location
diametrally opposite the loading hole.

to the diametrally opposite site and relaxing a potential well formed with control

electrodes there. At that time, it became clear that the infrastructure had to be

upgraded to address the needs of the experiment. This primarily included writing an

experimental control platform (Sec. D) to allow synchronized ion shuttling, cooling,

and imaging, along with locking lasers and controlling instrumentation.

Several changes were made as part of this upgrade. First, the rf resonator reso-

nance frequency was increased to ∼ 53 MHz by putting a small capacitor in series

between the device and resonator. Next, a variation on the loading strategy above

was attempted. The strategy (Fig. 5.9) relied on shuttling ions to multiple relaxed

wells(pockets) which resulted in a number of long chains around the ring. Relaxing

the wells, however, led to ion bunching in two location, instead of an equidistant

chain.

After months of infrastructure development, the behavior of the system was quite

comparable (Fig. 5.10). However, the tools permitting a systematic approach were

now in place and tested in a different experiment (Sec. C). One of the first uses of
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(a) Potential pockets on. (b) Potential pockets off.

Figure 5.9: Multiple long chains in potential pockets. A red ”x“ designates an elec-
trode on which a positive voltage is applied, forming a number of potential pockets.

Figure 5.10: Chain in the ring trap before correction. The segment shown corre-
sponds to what is at 12 o’clock inFig. 5.9b. The gap in the chain is due to the
loading hole potential bump.
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the fine control the system offered was to explore the effect of the expected potential

bump at the loading hole (Fig. 5.11). This undesired effect was not quantified, be-

(a) Tangential potential tightened. (b) Tangential potential relaxed.

Figure 5.11: Clear evidence of loading hole potential bump. The bright dots are the
ions, and the circle is unfocused scatter from the loading hole. The ion chain is split
when the tangential potential is dominated by the loading hole bump.

cause the fields near the loading hole were not entirely predictable or reproducible.

One possible explanation is that nearby particulate contaminants (Fig. 5.12a) were

being charged (via photoelectron emission or through the strong gradients) by the

near UV photo-ionization light. Counter-intuitively, small particles may be diffi-

cult to catch with SEM imaging (Fig. 5.12b), unless their location is approximately

known, due to low contrast. Finally, it is possible that surface scatter is due to inher-

ent surface roughness that sometimes occurs during fabrication. Surface roughness

may not be easy to distinguish from a particle. Other means to explore the surface

for contamination are white light interferometry and Energy Dispersive Spectroscopy

(EDS).

Yet another observation came from subsequent attempts to shuttle an ion chain

around the device. It was established that, depending on the number of ions in the
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(a) Using scattered light. (b) Using SEM imaging.

Figure 5.12: Locating particulate contaminants on the surface. Scattering light off
the device surface reveals a large number of particles but at that point it is too late
to remove them. The SEM image was taken from the ring trap (after removal from
the chamber), at a location with high scatter.

chain and the potentials used, it may not be possible to shuttle all of the ions past the

location diametrally opposite the loading hole. Upon further study, three electrodes

were measured to be shorted to ground (Fig. 5.1). This was not consistent with the

observed propensity of ions to congregate there, but meant that the fields in the

vicinity were not controllable. The set of usable sites was thus limited (assuming

only g sites should participate) to locations g00− g19 and g25− g43. While it was

initially believed that the device was faulty, a subsequent (post-experiment) check

showed the device was fully functional. Another working hypothesis was that the in

vacuum filter board (Fig. 3.22b) was coated with 40Ca from the oven, thus shorting

channels. However, that was not checked until after a number of prolonged exposures

to air that would have allowed complete oxidation of the metal, thus eliminating

the short and the opportunity for verification. Moreover, it was accidentally found

that along the long chain of connections between a control electrode and its voltage

source (Sec. 3.4), connector pins were damaged at an unknown time, resulting in
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intermittent connections. In short, the reason for the lack of access to those electrodes

at the time of experiment is still undetermined.

Finally, the setup was used as a testbed for resolved sideband cooling of 40Ca+,

and motional heating rates were measured for the first time at SNL with this tech-

nique. A heating rate of 0.95(20) quanta/ms was measured for the tangential mode

at ωT ≈ 2π × 0.9 MHz.

5.4 Stray Field Measurement

With operational experimental control allowing hours of uninterrupted work, it was

possible to systematically characterize stray fields over the extent of the device.

From here on, unless otherwise explained, referring to an ion at some location means

that the ion was loaded at the loading hole and then shuttled to the site of interest

where it was cooled and imaged or detected with the PMT. The first step in the

procedure most often employed to achieve that is to park the detection optics and

the measurement Doppler beam at the site of interest and turn on the atomic oven.

Next, in order to minimize avoidable UV exposure, PI light at the loading hole site

is only unblocked after some pre-determined time needed to achieve a sufficient flux

of 40Ca. Upon PI light exposure, a shuttling cycle between the loading hole site and

the target site is started. Finally, upon detecting or imaging an ion, the shuttling

cycle is stopped, the oven is turned off, and the PI light is blocked.

It was decided that measurements would be taken at symmetry points only (g and

e sites). The rationale behind that is the reasonable expectation for a small spread in

the absence of undesired fields. Because of the inaccessible electrodes and the desire

to achieve a ∼ 1 MHz tangential frequency within the 20 V pp range of the generat-

ing DACs (also commensurate with the breakdown voltage expectations), a control

solution comprised of four inner and outer electrode pairs was used. The solution
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tilted the principal axes by about 15 degrees, allowing adequate Doppler cooling of

all modes at most locations. Given the locations of the problematic electrodes, a

contiguous arc (Fig. 5.1) of 39 gap sites (out of 44) was available for study.

Radial fields (Fig. 5.13) are assessed at g sites on the arc with the following se-
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Figure 5.13: Radial fields for the measurement locations.

quence. First, a parametric resonance scan (Sec. 2.4.1) with a single ion at a given site

is obtained, followed by a cross-correlation scan (Sec. 2.4.1). Next, pre-determined

control voltages are applied that, according to simulation, create a uniform field of

known magnitude that pushes an ion along the R or Z direction at the site. The

preceding steps are applied until the parametric resonance and cross-correlation fea-

tures are minimized. Minimization is confirmed by ensuring the features grow upon

increasing the field in the given direction. The fields that minimizes the features are

(within the simulation and experimental error) the negative of the stray field at the

site.

To asses tangential fields (Sec. 2.4.2) at the g sites, one measurement of the
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Figure 5.14: Secular frequencies around the ring. Note the features at the diametrally
opposite location to the loading hole. It is likely that the ions were not exactly at
the nominal g location. The radial directions frequencies are at about 1.2 MHz for
the rf power used.

tangential secular frequency per site is needed. One way to capture all three secular

frequencies (Fig. 5.14) is the use of a ”tickle“ voltage. The method relies on the

anharmonicity of the true potential (i.e. a Duffing oscillator [144] model for the

axial direction), which is manifested in a fluorescence change observable when the

potential is modulated at the secular frequency. In practice, an rf voltage (the tickle

voltage) is applied to a nearby electrode, chosen so that the field has components

along all three axes at the ion location, and the frequency is scanned. In addition to

the fluorescence features, characteristic smearing of the ion can be observed in the

respective direction, when the tickle frequency matches the secular frequency.

The other component of tangential field (Sec. 2.4.2) measurement is the displace-

ment of the ion (Fig. 5.15) upon scaling the potential. To that end, for an ion at

a given location, an image of the ion is taken for each different voltage scale. Since

there is no reference feature other than the ion, it is imperative that the imaging
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Figure 5.15: Tangential displacement extraction. Four potential scales are used in
this example, from 1× to 4×, with a step of 1×.

system does not move for the duration of the experiment. From the images, relative

locations for the ions are extracted and converted to the respective R−T frame, and

T displacement is inferred. The displacement is used with the secular frequency to

calculate the tangential field ET (Fig. 5.16a).

In the hope that a pattern may emerge corresponding to a long range field, the

fields measured in the R−T frame are converted to a local X−Y frame (Fig. 5.16b),

yet no patern was revealed. Given the amount of effort needed to collect the data,

a relevant question is how fast do the fields change. Fig. 5.17a shows the tangential

fields at time t and 5 days later, and Fig. 5.17b shows the change in tangential fields

from time t to a month later. Another important feature of the field is its smoothness.

This can be seen in Fig. 5.17a: the data depicted with squares is twice as dense as

the initial data (circles), because the field was assessed at e sites in addition to g

sites. The field is reasonably smooth, as the changes of sign may be interpreted as

the site being on one side or another of a charged particle (or some other field source

nearby). An ion moving towards a charge would see the field appear in a different
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(a) Measured stray fields in the R− T frame.
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(b) Measured stray fields in the local X − Y frame.

Figure 5.16: Measured stray fields in the plane of the device. Changing the reference
frame did not offer new insight.
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(a) Two tangential field measurements separated by five days. The
data depicted by squares were taken five days after the data depicted
by circles. The data depicted by squares were taken at g and e sites
to assess stray field smoothness.
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(b) Tangential field change over a month.

Figure 5.17: Tangential field change over time. Details are in the text.
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direction than one moving away from the charge.

5.5 Stray Field Correction

With the focus on achieving an equidistant chain, a sound strategy would be to try

to reduce the fields in the tangential directions. For that purpose, one electrode was

assigned to correcting for each measurement location. Electrodes e69 to e88 and e45

to e63 (39 total) were selected for the correction. The field that a single electrode

produces, as modeled, extends over the trap to all measurement locations. Hence,

the effect of all participating electrodes was taken into account at all measurement

locations. Because of the symmetry, the field from all electrodes was calculated for

only one location, the one with the densest mesh, and rotations were applied to

simulate fields at the rest of the locations. Therefore, the problem was reduced to

finding weights on the participating (correcting) electrodes, so that the total pro-

duced field negated (according to simulation) the measured field. This is captured

in the expression:

−


E1

...

E39

 =


e11 . . . e391
...

. . .
...

e139 . . . e3939



α1

...

α39

 , (5.1)

where Ei is the measured tangential field at location i, eji is the simulated tangential

field at location i due to one volt applied to electrode j, and αj is the weight, or actual

voltage applied to electrode j. Before the focus shifts to the main result of the study

(Sec. 5.6), a digression is warranted to answer the question: what happens between

the g sites? As was shown in Fig. 5.17a, the tangential field was well behaved at

locations that would not be used in the correction calculation. There is no guarantee,

however, that the correction would not change that in an undesirable manner. To

check for that, the displacement upon scaling (which is proportional to the field)

was measured and corrected for at four g sites by inferring the field, and was only
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(a) Before the correction is applied.

(b) After the correction is applied.

Figure 5.18: Displacement upon scaling at intermediate locations. The correction
applied is calculated from the displacements (upon control electrode voltage scal-
ing) at indices 700, 720, 740, and 760 only, but the corrective effect is seen at the
intermediate sites, at indices 710, 730, and 750.
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Figure 5.19: Scaling the corrective field in the ring trap. Each red line delineates
an image taken with a 5% increase of the corrective voltage, from top to bottom.
There are only 2 ions in the region without a correction applied, while the region
(corresponding to an angle of about 45 degrees, an octant) is fully populated as the
correction is fully applied.



Chapter 5. Ring Trap Experiments 91

measured at the intermediate three e sites, before and after the correction at the g

sites was applied. The results (Fig. 5.18) show that the fields are smooth enough

so that the correction effect extended between the correction sites, thus justifying

the initial assumption of homogeneous stray fields. Fig. 5.19 further supports this

conjecture.

5.6 The Equidistant Chain

Applying the correction to the contiguous region of locations g00−g19 and g25−g43

allows filling the ring with ions (Fig. 5.20). The magnification in the imaging system

balances the contradicting requirements of high resolution and a large field of view,

and can capture almost a quarter of the ring. To image the whole chain without losing

resolution, images are taken along the ion chain at 45 degree rotational increments,

starting at g00. Because there is no feature that can be used as a reference at

the focus distance for imaging ions, once the camera has been moved, the exact

knowledge of the number of ions is lost. This lack of reference is the reason for

manually composing the image on Fig. 5.20 from overlapping images taken in each

octant. From continuous imaging of an octant, It was observed that an ion was lost

every few minutes, and the ring was still populated after hours of cooling the long

chain. In fact, at the time of experiment, device performance was tuned well enough

to allow more than 7 hours of cooled life-time for single 40Ca+ ions. Some interesting

features were not quantified but are worth mentioning. The first of them is loading

dynamics. Although the potential is sufficiently smooth to allow imaging the long

chain, it seemed that Coulomb repulsion played a large role in the final potential,

which should be expected. This is supported by the observation that ions were loaded

in separate wells around the circumference and then spilled over, as their aggregation

modified the well. Loading the full ring took about 5 minutes. Another expected yet

interesting feature was the formation of complex 3-D crystals in the location opposite
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Figure 5.20: The ring trap filled with ions. The red dots designate the original image
boundaries. The numbers are octant labels. LH designates the loading hole gap, and
UW designates the unwanted well that attracted ions.
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the loading hole, depending on the rf drive voltage and the ion density. By varying

the focus, a helical structure was observed on several occasions. Finally, the spots

which were populated with ions last seemed to correlate with known nearby particles

on the surface, suggesting the particles may be a stray field source.

To quantify the effect of the correction, tangential fields were measured again,

with a single ion, after applying the correction (Fig. 5.21). Indeed, the field was
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Figure 5.21: Tangential field for the measurement locations before and after correc-
tion.

reduced at the measurement locations.

Another metric used to quantify the correction was the distance between ion

pairs. For that purpose, ion positions were extracted from the images of octants
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5,6, and 7, and distances were calculated(Fig. 5.22). The average distance between
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Figure 5.22: Ion separation after applying the correction. The error bars are based
on the uncertainty of the total magnification, but the positions are not corrected for
aberrations at the edge of the collection optic. This image accounts for the overlap
of the original images.

neighboring ions, as seen from the picture, is about 9 µm. The reason to be hesitant

with statistics in this case is the imaging system. The imaging stack was never fully

characterized, so none of the images is corrected for aberrations. The reason that

only three octants are used is that all ions could be resolved in only these octants,

without image processing. From the resolved images, it is estimated that there are

about 400 ions in the chain. It is quite possible that a better estimate can be made

by counting the ions on Fig. 5.20, especially when magnified.
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Besides aberrations, there are other factors that possibly contribute to the per-

ceived smearing of ions. The first of them is the different focus distance at different

points along the ring, resulting from the trap plane not being parallel to neither the

imaging stack translation plane nor the camera. Another possibility is that the ions’

motion was excited at these locations and the chain did not crystalize, due to some

unintended feature of the device or the surface contaminants. Such motion would be

consistent with rf pickup from electrodes. Yet another option is inadequate cooling.

It is possible that the Doppler beam was ever so slightly misaligned at the time of

taking the image, and the chain was not cooled well locally. For a flat beam parallel

to the surface and passing above the ring center, a rotation of 1 degree would move

the beam by 11 µm at 625 µm radius. Along the same lines, an aligned flat beam

could only work for ions in a plane. Without an accurate method to assess the ion

height, the constant ion height is only an assumption.

5.7 Summary and Outlook

The route to engineering an electric field, subject to geometric constraints and avail-

able degrees of freedom but otherwise arbitrary, in a segmented surface device is

exemplified by assembling a long ion chain in the ring trap. Approximately 400 ion

chain with ∼ 9 µm ion to ion distance is demonstrated after measuring the stray

electric field at multiple locations and calculating a field correcting the tangential

component of the stray field at the measurement locations. For that purpose, high

level of automation is implemented in the experimental setup and control, allowing

taking the necessary measurements over several hours.

A future experiment could improve the results by employing different strategies

for measuring and applying a corrective field, and using all available degrees of free-

dom. One such strategy could be based on assigning more electrodes to regions with

larger field curvature. Some combination of correcting the radial fields and the tan-
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gential fields could also be explored. An obvious improvement in the design of a new

device would be the removal of the loading hole from the top metal level, as outlined

previously (Sec. 4).

The results from the experiment can also motivate the simulation of a new device

and its performance near stray field sources, with the aim of finding a geometry that

optimizes the generation of an arbitrary field for a fixed number of available control

electrodes. Given that experimental imperfections are not necessarily avoidable (e.g.

dust particles have been found in the clean room), such a simulation could be a gauge

for the feasibility of designing a new ring trap for some of the experiments that mo-

tivated the initial effort. While imaging imperfections prevent stricter interpretation

of the ion spacing results, it is unlikely that the current device, as designed and as

performing, will come close to the requirements laid out in some of the motivating

proposals. In particular, a successful device would have to be capable of maintaining

a crystal in which the secular frequencies for ions (with temperatures on the order of

µK) could be resolved within a few Hz [103] – a regime that is out of reach, even for

a small chain. At the same time, by virtue of the device geometry alone, the device

could still be useful in an experiment as the one studying the Aharonov - Bohm effect

[35].
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Chapter 6

Treating Surface Traps with Argon

Plasma

This chapter details the implementation of the plasma treatment effort, with empha-

sis on its ion trapping aspect. Details on the plasma generation and characterization

aspects can be found in [145]. A brief discussion of anomalous heating (Sec. 6.1)

will motivate the need for this experiment. The experiment premise (Sec. 6.2) will

be followed by a motivation of the choice of the device predominantly used for the

experiment (Sec. 6.3). Next, the experimental apparatus is discussed (Sec. 6.4),

followed by a discussion of capacitive plasma discharge (Sec. 6.5). Next, details on

implementing inductive plasma discharge (Sec. 6.6) are presented. The procedure for

measuring heating rates is deferred to (Sec. E.3). Heating rate results are discussed

for pre-treatment (Sec. 6.7) and post-treatment (Sec. 6.8) measurements. As this is

an active investigation, future work is outlined (Sec. 6.9).
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6.1 Anomalous Heating

Trapped ions experience heating - the acquisition of energy by means of electric field

noise coupling to the ion’s motion. For coupling to occur, the electric field noise

must exhibit components at the secular frequencies of the motion. While heating is

inevitably observed, little is known about the mechanism through which the electric

field noise is generated. A number of competing models have been developed in the

efforts to tackle the issue, yet none of them conclusive. Anomalous heating [146,

147, 71], as the phenomenon is termed, is particularly relevant to microfabricated

surface ion traps. The reason for that is that heating increases dramatically as the

ion approaches the surface, putting a limit on device miniaturization. Two models

that pertain to this study are those of adatom diffusion and adatom dipoles. These

models predict different dependence of the noise density S in terms of mode frequency

ω, ion-to-surface distance, and trap temperature. Of these parameters, the only one

that can be explored with this experiment is the frequency, as the secular motion

frequency may be varied by changing the rf and control voltages. By measuring

S ∝ ω̇̄n for different mode frequencies, a specific model can be validated.

6.2 Study Premise

The results of several experiments focusing on surface contamination removal imply

that the source of anomalous heating is surface adsorbates. Laser ablation [148] was

successfully used for heating rate reduction, at the expense of peeled off electrodes

and removed gold from the surface. Argon ion beam bombardment with 500 eV

to 2000 eV beam energy [149] and 300 eV beam energy was also shown to reduce

the heating rates of the respective devices. The energies involved, however, are well

above the sputtering threshold (an atom sputtered for every ion) of 25 eV for gold

(the surface metal in allthree studies). A recent experiment [150], very much along
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the lines of this work, also demonstrated successful heating rate reduction, but the

plasma energy was not calibrated and it is therefore not known how likely it is that

sputtering occurred.

The goal of the study is to explore whether the removal of carbonaceous contam-

inants from the surface of a surface electrode ion trap with an in situ Ar plasma

treatment that does not cause structural (via sputtering) surface changes has an

impact on the device heating rate. The associated work [145], demonstrates that, in-

deed, the presence of carbon is virtually eliminated from gold and aluminum surface

after calibrated, low energy (∼ 20 eV) Ar plasma treatment, and that no detectable

sputtering occurred on a device with a gold/aluminum interface. Furthermore, oxy-

gen is also removed from the gold surfaces but not from the aluminum surface, as is

expected given the large Al−O binding energy. The question of whether the removal

of these compounds alone is sufficient to reduce the heating rate remains open.

6.3 HOA2 Device Details

The first device used in this effort was a ring trap, discussed in Sec. 6.5. Sub-

ssequently, we decided to attempt trapping in a newly designed and fabricated

(Fig. 6.1b) High Optical Access, Rev. 2 (HOA2) device for several reasons. First, a

ring trap offers the advantage that, for a fixed laser direction, a different proportion

of the laser k vector will be along the ion motional modes depending on the ion’s

position along the circumference. However, a heating rate study should be performed

at multiple points with a consistent laser direction relative to the motional modes.

This is the case with a linear device, such as the HOA2, which has several large linear

regions. Next, the ring trap is a true surface device - all electrodes are in one plane,

and the ion is always above the device metal. The HOA2, on the other hand, has

most of the slotted region electrodes on the third metal level, with short segments at

the slot ends that are on the top level. The HOA2 device also has regions with top
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(a) The packaged HOA2 device. (b) A SEM image of the HOA2 device.

Figure 6.1: The HOA2 device used for most of the experiments.

metal electrodes, providing three distinct regions to explore in terms of ion proxim-

ity to metal. A single ion was successfully shuttled multiple times through all three

regions. As the device name suggests, the HOA2 provides excellent optical access, as

compared to most other surface device designs. Thus, the exposure of surface con-

taminants to laser light, which can produce stray electric fields, is reduced [151] and

cooling is not inhibited by excess micromotion. The improvement in optical access

transverse to the slot is achieved (Fig. 6.2) by virtue of the characteristic “bow-tie”

shape of the die, wirebonded to an interposer (providing signal routing and equipped

with 1 nF trench capacitors) with low profile wirebonds congregated at the ends of

the “bow-tie”. The interposer is wired to the package with low profile wirebonds as

well. For a comparable rf drive, the HOA2 device generates a trap with a potential

depth about an order of magnitude higher than that of the ring trap. Without mi-

cromotion elimination, a cooled ion lifetime exceeding 8 hours was observed (40Ca+),

and dark times exceeding 1 minute were measured.
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Figure 6.2: Achieving high optical access with a microfabricated device.

6.4 Chamber Modifications and Setup

Initially, the ring trap chamber described in Sec. 5.2 was used. During the course

of the experiment, however, the chamber design evolved as issues were tackled. In

what follows, the current state will be described unless otherwise noted. In exterior

view (Fig. 6.3), the chamber was functionally redesigned to allow gating off the

getters manifold with an all metal bakeable gate valve1 while flowing argon for plasma

generation from a 1.33” all metal bakeable angle valve2 added to the bottom flange

(not shown on the picture) to the pump-out valve shown. A two-part optics support

assembly was also added to the experimental chamber.

Inside the chamber (Fig. 6.4), the functional changes included replacing the

screening mesh with a solid metal plate with a cutout for imaging, insulated from the

rest of the conductors in the chamber and electrically connected for plasma biasing to

1Series 48 2.75“ valve from VAT.
29515014 from Agilent.



Chapter 6. Treating Surface Traps with Argon Plasma 102

optics support
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all metal
gate valve

experiment
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Figure 6.3: Functional changes to the chamber. A path for flowing argon is provided
by adding an inlet valve at the bottom of the chamber (not shown) and pumping
out through the valve shown. A gate valve is added to avoid saturating the getters
with argon with minimal penalty on system conductance.

the 100 pin Micro-D connector on the bottom flange. The only physical components

that survived all changes were the in vacuum 100 pin Micro-D connector and cables

and the ZIF socket support slabs. Everything else (oven, filter board, ZIF socket)

was changed due to component failures. The supports were trimmed to account for

the height added by the interposer on the HOA2 package.

The use of the two-part optics support assembly shown in Fig. 6.3 and Fig. 6.4 is

also seen in Fig. 6.5. The round part of the support, not seen in this picture but in

the other two, is put on top of the reentrant viewport and baked with the chamber.

The rectangular part, seen in all three images, is attached to the round part before

or after a bake, thus registering anything attached to it to the chamber. In this case,

the imaging stack and the 423 nm PI light are registered. The importance of this

is that, once imaged, a device image is displaced by at most a few hundred microns
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Figure 6.4: Functional changes inside the chamber. The screening mesh is eliminated
in favor of an insulated screening plate in order to apply a bias voltage.

(due to the loose fit of screws in the plane of the device) when the rectangular plate

is reinstalled, saving hours, and sometimes days of effort to image the trap after a

bakeout. Similarly, 423 nm light (that could be used for imaging the trap) is at

most a few hundred microns from its nominal position in the plane of the device.

So, minimal adjustments in the direction normal to the device plane (camera focus

and 423 nm light height) is all it takes to image a device. In addition, 40Ca can be

imaged before a bakeout to confirm the atomic oven is operational. In aggregate,

this small contraption adds a lot of value when devices are often changed. Sadly, it

was only conceived and used at the end of this research.

The next change (Fig. 6.6) from the ring trap setup is the addition of a gas

manifold for introducing Ar into the experimental vessel and a pumping station to

pump it out from the pump-out valve. The rationale behind using a two port system

is that although the flow is limited by an orifice, it helps avoiding the formation of
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Figure 6.5: The imaging stack (1) and the 423 nm PI light launcher (2) are registered
to the chamber through the optics support assembly.

Ar pockets in the vessel. Details of the manifold itself are in [145].

Finally, the optical setup (Fig. 6.7) is changed to benefit from the long linear

segment of the HOA2 device. The device is installed so that its slot, in which most

of the measurements are taken, is along the direction of the 866 nm, 854 nm, 375 nm,

and 423 nm beams. Thus, only the Doppler and 729 nm beams need to be moved

when the trapping location is changed. In addition given that the principal axis is

tilted from the direction normal to the page, all three motional modes of an ion can

be cooled.

6.5 Capacitive Plasma Discharge

The first device used in this experiment was a ring trap (Fig. 6.8). Initially, surface

treatment was performed with a capacitive plasma discharge [152]. For that pur-
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Figure 6.6: The gas manifold. Ar is introduced into the chamber (2) from the gas
manifold (1), and is pumped out from the pump-out port with the pumping station
(3).

pose, the device package had to be modified to allow rf delivery - a labor intensive

procedure, which later became one reason to discard this approach. Another reason

that capacitive discharge plasma did not work well was the difficulty in localizing the

plasma. Even when the plasma was eventually localized, it was difficult to control

the plasma location - the plasma surrounded the device without covering it. Finally,

the operating energies were not well controlled, leading to severe package damage in

some cases.

On the ion trapping side, this device is of interest because half of the device was

gold-sputtered in anticipation of enabling comparison of ion behavior over the two

metals (sputtered gold and native aluminum). This was the first device at SNL to
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729 nm

Figure 6.7: Laser setup, optimized for loading at multiple locations.

(a) The first device with multiple metals
on the top metal layer.

(b) An SMA connector is attached to the
package.

Figure 6.8: The ring trap device used for the capacitive discharge effort.
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feature multiple metals exposed to the ion, and a point of investigation was whether

the metal interface could be traversed despite the difference in work functions. While

traversing the interface worked well, the primary goal of having the device in vac-

uum – cooling an ion motional mode to its ground state, and subsequently measuring

the heating rate, failed. The reason for that was that the device was severely con-

taminated with macroscopic particles, and quite possibly, Doppler cooling left the

ion at a temperature far above TD and preventing sideband cooling. An estimate

using the sidebands envelope [153] method suggested that at best, n̄ ∼ 40. Eventu-

ally, non-localized capacitive discharge was initiated, after which trap performance

deteriorated further.

6.6 Inductive Plasma Discharge

Inductive plasma discharge [154, 152] is used in the remainder of the effort. Induc-

tive discharge is characterized with better control and localization, and with lower

plasma energies. Inductive plasma can be generated without any modification to the

package or chamber. A coil is brought into the recess of the reentrant viewport after

the imaging stack is removed, and the screen inside vacuum serves as ground. The re-

sulting plasma sheet density is highest between the viewport and the screen, but can

be controlled by biasing the device surface. While learning about inductive plasma

parameters, we also learned that the chamber parts could not handle the energies

involved. In particular, during plasma discharge, the current in the mesh was suffi-

cient at times to heat and deform the mesh considerably (Fig. 6.9). Although this

happened with a relatively high plasma rf drive that was not anticipated to be used

for surface treatment, it meant that repeatability of results would be compromised

by the flexibility of the mesh. Hence, a solid stainless steel screen was designed,

with rigidity and optical access in mind. Not much was known about the screening

efficiency of the plate at chamber assembly time, yet it seems to perform at least as
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Figure 6.9: Mesh screen damage during plasma generation. Argon plasma is seen as
the cloud with a purple/pink hue. The red/orange bulge is a heated and deformed
mesh screen similar to the one covering the viewport in Fig. 5.5.

well as the mesh. The screen plate is electrically insulated from the remainder of the

vacuum vessel with four ceramic standoffs, and is wired to the bottom flange Micro-

D connector. Inductive plasma parameter space was thoroughly investigated in a

(a) Non-localized plasma. (b) Localized plasma.

Figure 6.10: Inductive discharge plasma in a test chamber. The non-localized plasma
shown is an example of a mild case of lost localization. In some instances the plasma
occupied most of the chamber available volume.

test chamber and in the experimental chamber to ensure that localization (Fig. 6.10)

is well understood. The plasma energy was calibrated with a retarding field ana-

lyzer [145], and it is estimated that the energy used for the successful removal of
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contaminants from the surface was ∼ 20 eV [145].

6.7 Heating Rates Before Treatment
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Figure 6.11: Heating rates before Ar plasma treatment.

Following the procedure in Appendix E.3, heating rates at various locations and

under varying conditions were measured before treatment. Fig. 6.11 depicts the

results of a representative subset of the measurements in the middle of the slot of

the HOA2 device. Data points labeled “DAC” pertain to measurements after stray

fields were minimized, in which control voltages were supplied by the NI DAC cards.

Since only the axial mode temperature is measured, stray field minimization was
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not performed for the set labeled “DAC NC”. This set also explores the functional

dependence of the heating rate with mode frequency, yielding

˙̄n ∝ ω−1.6(1) (6.1)

⇒ S ∝ ω−0.6. (6.2)

To check if the measurements were influenced by DAC noise, a battery pack was

used to provide voltages (label “BP”). Measurements taken at other trapping sites

exhibited comparable consistency.

6.8 Heating Rates After Treatment

After a satisfactory amount of heating rate data was collected over a range of condi-

tions, the point of no return was reached by initiating an inductive plasma discharge

(Fig. 6.12). The plasma parameters used were 0.25 Torr argon pressure, with 4 Watt

Figure 6.12: Localized plasma in the experimental chamber.

of plasma rf power at 72 MHz, over 300 seconds. This set of parameters was known

to remove carbon from a gold surface (as was the case with the device in the cham-

ber) below the detection level immediately after treatment[145]. After that, once the
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pressure was near ∼ 10−10 Torr, heating rates were measured again (Fig. 6.13, label

“after treatment”). Surprisingly, there was no sizable change in the heating rates,
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Figure 6.13: Heating rates after Ar plasma treatment.

so, on the suspicion that carbon re-deposition occurred over the 300 seconds of expo-

sure, a second treatment with shorter exposure was applied. The parameters for the

treatment were 0.5 Torr argon pressure, with 4 Watt of plasma rf at 72 MHz, over 60

seconds – another set known to eliminate carbon immediately after treatment[145].

Heating rates were measured again (Fig. 6.13, label “after second treatment”), and

again there was no sizable change in the measurement result.

This observation permits several interpretations. The first of them is that we did

not reach the technical noise limit in the experiment. The change incurred by the
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treatment was below that limit, however, that is unlikely to be the case, given the

results of measurement with a battery pack. Another possibility is that the amount

of carbon deposited is larger than anticipated and we did not apply treatment that

is aggressive enough to detect a difference. Indeed, during bakeout, CO2 and H2 are

outgassed from stainless steel, and it is likely that outgassing from the unusually

high amount of polymers in the chamber (PCB, ZIF socket, etc.) would dwarf the

contribution from steel. A third option is that carbon was initially removed, however,

it was re-deposited with time. While this was shown [145] to be a true statement, it

is unlikely to be the explanation at the relevant time scale. Finally, it is possible that

carbon was removed, however reordering of the surface (via sputtering) is needed in

order to reduce the electric field noise.

Incidentally, a sample was explored that was attached with a piece of carbon

tape to a sample holder. for that sample, an unusually high amount of carbon was

found after treatment. At the same time, it turned out that the device die was

attached with a conductive epoxy with a high carbon content, and that epoxy was

exposed to plasma. It was then decided to change the die attachment process, so

that no carbon compounds are in the vicinity of the device, and the chamber was

vented. Over the course of two months afterwards, two devices in which the die was

attached with solder were installed and promptly destroyed by what turned out to

be erupting 40Ca pellets from the oven. After spending some time on studying the

phenomenon, the reason for the oven behavior was accidentally traced to a cold joint

in a cable that is used once every few months under normal circumstances. A third

device (Fig. 6.14), prepared in the same manner as the previous two, is currently in

the chamber. About one third of the slotted region of the device is sputtered with

platinum, another third is sputtered with cold, and one third is native aluminum.

The device was demonstrated to trap, and a pre-plasma treatment heating rate study

is pending.
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Figure 6.14: Third HOA2 device with three top metals, currently in the chamber.
The different hue is due to a different metal on the surface. From left to right:
platinum, aluminum, and gold.

6.9 Summary and outlook

The premise that adsorbates on metal surfaces contribute to anomalous heating -

the coupling of trapped ions to the unexplained ambient electric field noise is ex-

amined. Based on the observation that low energy plasma removes carbonaceous

compounds from a gold coated surface, a heating rate measurement over a range of

mode frequencies was taken in a gold coated device, before and after plasma treat-

ment. Before treatment, the relation between electric field noise density and mode

frequency did not agree with the models for field noise due to impurities adsorbtion.

After treatment, no change in heating rates was observed. So far the experimental

results do not justify a conclusion on whether surface treatment with low energy

argon plasma has any effect the electric field noise at the ion location, as a source of

carbon was found in proximity of the plasma.

A new device, packaged with a carbon-free technique, is currently in the experi-

mental chamber. In addition to providing insight on the current results, the device

may permit the unique measurement of electric field noise above three different met-

als under exactly the same vacuum conditions. Furthermore, in the light of the
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recently demonstrated reduction of heating rates above a Nb surface [150], it is not

unlikely that a similar observation takes place, with the right plasma conditions,

perhaps with energy above the sputtering threshold. Finally, the study may be com-

bined with an ex situ argon beam cleaning preparation before the in situ treatment,

in order to include the effects of reordering of the surface.
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Chapter 7

Summary and Outlook

The focus of the work described here has been on overcoming engineering challenges

pertaining to ion trapping with microfabricated surface ion traps. The first task at

hand was the design of a circularly symmetric device – a unique topology with the

potential to enable experiments not accessible with linear devices. In approaching the

task, a design process was formulated, and limitations of the process were explored.

The design process was improved upon after experiments with the fabticated device

allowed progress towards reconciling the model with the physical device. The initial

studies of the device - one of the first employing a four metal layer process, helped

to set a perspective on what are reasonable expectations for devices fabricated with

the process, both in terms of device performance and of fabrication yields.

The successful demonstration of the device was followed by a period of building

infrastructure that would enable non-trivial experiments with the device. An atomic

reference was built for the purpose of locking Ca+ and Yb+ Doppler cooling light

to the reference. A transfer cavity was built and locked to the reference, and Ca+

Doppler light was locked to the cavity. Software programs were written to allow

locking of the remaining lasers to the atomic reference through a high resolution

wavemeter. The venture into writing code expanded to writing a complete exper-
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imental control system. The system was the core tool in obtaining the results for

an experiment demonstrating the scalability of fabricated devices [78] (not detailed

here).

With the infrastructure in place, the systematic approach to mapping and reduc-

ing the electric fields in the ring trap allowed the formation of a long and regular ion

crystal, thus proving the method used to be a viable way to engineer an arbitrary

electric field in an ion trapping device. The studies with the device led to design and

fabrication feedback applicable to future development.

The next experiment discussed explored the potential for reducing electric field

noise by means of ‘ ‘in situ” argon plasma treatment. Progress in this effort demanded

improving a number of procedures and taking a critical look at failure modes of both

devices and the supporting infrastructure. For example, targeted studies of quarter

wave helical resonators, atomic ovens, and device burnout limits were carried out.

In aggregate, these studies contributed a lot to the “what not to do” list. On the

bright side, this experiment led to the successful demonstration of two variants of

a previously untested device, including the shuttling of an ion over three different

metals, and shuttling of an ion through electrodes with different height. While details

in the experiment at this time prevent any conclusion on electric field noise reduction,

a new device is ready to be explored, keeping the potential for contribution to the

larger ion trapping community open.



117

Appendices



118

Appendix A

Transfer Cavity Lock

The purpose of the transfer cavity scheme is to allow tight locking of light for which

there is no suitable direct reference, to an available reference. In this case, light

used for Doppler cooling of Ca (794 nm before doubling) and Yb (740 nm before

doubling) is locked to a Rb reference at 780 nm. As with nearly all components

of the experimental setup, the transfer cavity lock evolved substantially over time.

Notably, the in-house built 780 nm source was succeeded by a research grade system1,

and the lock was re-implemented to allow locking of 740 nm light in addition to 794

nm. Only the latest version will be discussed.

The transfer cavity is made of a 1” thick drilled Invar rod, two spherical mirrors

with a radius of curvature of 7.5 cm, and a piezoelectric stack, for a cavity length of

10 cm. The free spectral range is 1.5 GHz, and the measured finesse is at least 160,

yielding a spectral width of 10 MHz.

The 780 nm source schematic is given in Fig. A.1. An important feature of this

implementation is that it makes available unmodulated light for other experiments,

as follows. Light from the ECDL (D) is followed by an optical isolator (OI) to prevent

1DL pro head with SC 110, DCC 110, and DTC 110 controllers from Toptica.
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Figure A.1: 780 nm source schematic.

unwanted feedback. A λ/2 waveplate (HWP) controls the branching at the polarizing

beamsplitter (PBS). The branch that is used for saturated absorption spectroscopy

(SAS) continues with a HWP, followed by an electro-optic modulator (EOM)2, used

for frequency dithering. Another HWP and PBS split the light into the SAS branch:

a λ/4 waveplate (QWP) (adjusted to pass light to the detector (Det)), followed by

a telescope (T) to enlarge the beam, followed by a natural abundance Rb cell (Rb),

and by a back-reflecting mirror (M); the other branch is split again by a HWP and a

PBS to provide a reference to the wavemeter and to the transfer cavity through the

fiber couplers (FC). The signal from the detector is mixed with the local oscillator

dithering the light to extract an error signal in a Pound-Drever-Hall (PDH) scheme3.

220 MHz resonant, from New Focus.
3Implemented with a mixer, a bias T, and a splitter, all from MiniCircuits.
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The unmodulated light before the EOM is passed through an anamorphic prism pair

(APP), an OI, a polarizer (Pol), and a HWP to a FC, to be used in a different

experiment. The light is locked to the D2 line F=3/F=4 crossover of 85Rb as it

yields a large and steep error signal.

The light from the 780 nm source is mixed with the EOM modulated light at

794 nm 4 and 740 nm into the transfer cavity with the help of a beamsplitter and

a dichroic mirror. The cavity transmission is monitored. The back-reflection of the

cavity is incident on a grating to separate the three colors, each of which is directed

to a fast photodetector. The 780 nm light detector is used to extract an error signal

to lock the cavity to the 780 nm light, and the other two colors are used to lock the

respective ECDLs. The same PDH scheme is used for all three locks.

4∼ GHz level fine control shift is provided by a voltage controlled oscillator from Mini-
Circuits. An offset is implemented with EOMs from EOSPACE Inc.
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Appendix B

729 nm Light Lock

The 729 nm light source (Fig. B.1) is an ECDL locked to an Ultra Low Expansion

(ULE) cavity, in a scheme along the lines of [155, 156]. The light from an ECDL

D

HWP

PBS EOM AOM CPBS

Det

QWP

DetTA

Figure B.1: Functional schematic for the 729 nm source.

(D) is split with a λ/2 waveplate (HWP) and a polarizing beamsplitter (PBS) into

a branch for locking and another for experimentation. The experimentation branch

seeds a tapered amplifier (TA), the output of which is passed through an acousto-

optic modulator (AOM) in a double-pass configuration for amplitude and frequency

control before delivery to the chamber. The locking branch passes through an electro-

optic modulator (EOM) for light dithering (thus avoiding modulation on experiment
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light), then through an AOM for tuning. A PBS and a λ/4 waveplate (QWP) al-

low routing of the back-reflected light from the vertical ULE cavity to the detector

(Det). Another detector (comprised of a fast photodiode and a CCD camera) is used

to monitor the transmitted light. The back-reflected signal is amplified and demod-

ulated with a phase mixer at the local oscillator frequency of the EOM to extract a

Pound-Drever-Hall error signal. The error signal is fed into a PID regulator1.

The ULE cavity and the ECDL are installed in an anti-vibration compartment ca-

pable of thermal stabilization. The latter function, however, is not implemented. To

estimate the resulting drift (Fig. B.2), The 4s2 S1/2(mj = +1/2) ←→3d2 D5/2(mj =

−3/2) and 4s2 S1/2(mj = −1/2) ←→3d2 D5/2(mj = −5/2) transitions are scanned

consecutively over a few hours. The drift that can be attributed to magnetic field

change (6(3) Hz/min) is inferred from looking at the time evolution of the difference

between the two frequencies, and the drift that can be attributed to cavity ther-

malization (∼ 30(3) Hz/min) is inferred from the change of either frequency. This

is the reason for the calibration routine described in Sec. E.3. Another important

observation in this data is that the population amplitude in each manifold varies

substantially with time (∼ 20%), which is consistent with changing Rabi time, in

turn suggesting the intensity of light on the ion changes. A feedback loop is in the

works to try and address that.

Despite the drift above, after a recent tune-up, the system stays locked for weeks

under normal lab conditions. The locked laser linewidth is estimated at ∼10 kHz.

1FALC 110 from Toptica.
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Figure B.2: 729 nm ULE cavity drift. The drift in the difference between frequencies
(delta drift) can be attributed to magnetic field changes, while the drifts in the
frequencies (Qubit peak and SP peak) are an indication of the ULE cavity drift.
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Appendix C

Light Collection With Diffractive

Optic Elements

The Diffractive Optic Elements (DOE) integration experiment [78] is an experiment

relying on the experimental control software described here (Appendix D). With

this experiment we demonstrate the potential of surface ion trapping devices for

scalability as DOEs are successfully integrated under a device. The full text is

included.
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We demonstrate and characterize a scalable optical subsystem for detecting ion qubit states in a surface
electrode ion trap. An array of lithographically fabricated diffractive lenses located below the plane of the
trap images ions at multiple locations, relaying the collected light out of the vacuum chamber through
multimode fibers. The lenses are designed with solid angle collection efficiencies of 3.58%; with all losses
included, a detection efficiency of 0.388% is measured. We measure a minimal effect of the dielectric
optical substrate on the temporal variation of stray electric fields and the motional heating rate of the ion.
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In recent years, there have been multiple efforts to
maximize the efficiency of fluorescence collection from
single ions [1–3].Higher efficiencies lead to higher detection
fidelities, shorter detection times, and increased rates of
photon-mediated remote ion entanglement [4,5]. In this
paper, we focus on another aspect of fluorescence collection,
the ability to scale the optical system to simultaneously
image multiple ions. Single optics with large fields of view
can image multiple ions but sacrifice collection efficiency
and are not arbitrarily scalable.Multiple optics each imaging
separate locations are scalable if their individual lateral
dimensions are comparable to the size of a single trapping
well (the exact requirement depends on the specific archi-
tecture). In the case of microfabricated surface traps [6], this
scalability requires the lateral dimensions of single optics to
be smaller than≈1 mm.Tosimultaneouslymeet this require-
ment and still retain a high numerical aperture (NA), the lens
must be commensurately close to the ion (< 1 mm). This
proximity is generally undesirable due to the physical
constraints imposed on the trap electrodes, the reduction
of vertical optical access, and issues due to stray charge
buildup [7]. Here we describe a system combining ion traps
and scalablemicrofabricated lenses,measure their collection
performance, and show that proximity has a manageable
impact by measuring the stray electric fields and motional
heating rates at different positions in the trap.
Most experiments use multielement refractive lenses

outside of the vacuum chamber for imaging ions. These
lenses are normally 10–30 mm away from the ion, sub-
tendingonlya small fractionof the4π solid angle (SA).Some
recent experimental setups explored moving the optic inside
the vacuum chamber, including a custom in-vacuum lens
(4%SA subtended) [1], a sphericalmirror surrounding a trap
(10%SA subtended, 0.43%end-to-end detection efficiency)
[2], and a microfabricated Fresnel optic with a 5-mm

diameter and 3-mm working distance (12% SA subtended,
4.2% effective collection efficiency) [3]. Each of these
methodsmaximizes light collection for single ions inmacro-
scale traps. Other recent experiments focused on demon-
strating the size scalability of the collection optics, such as a
fiber integrated with a surface electrode trap (2.1% SA
subtended) [8] and a micromirror fabricated as part of a
surface trap (collection enhancement factor of 1.9 over the
free space imaging system) [9]. Herewe demonstrate a fiber-
coupled array of microfabricated diffractive optic elements
(DOEs)with lenses that are slightly smaller than the trapping
well size (165-μm focal distance to the ion, 250-μm perio-
dicity), a proof-of-principle experiment combining scalable
light collection with integrated microlenses.
The surface electrode ion trap (Fig. 1) used here is

operated with a 250-V peak amplitude rf signal at a
frequency of 35 MHz. Loading 40Caþ is achieved by using
a natural calcium source which delivered atoms through the
back side of the trap (to prevent the electrodes from being
coated) along with lasers for photoionization. After com-
pensation, the resulting secular frequencies of the ion are
[1.1, 5.4, 6.2] MHz. More details on the trap fabrication,
characterization, and operation can be found in Ref. [10].
The mechanical integration of the collection optic with a
surface ion trap is described in detail in Ref. [11].
The array of five lenses is located 165 μm below the ion,

with each 140-μm square lens separated by a 110-μm
gold ground plane from its neighboring lens, as shown in
Fig. 1(a). Each lens is aligned to a multimode fiber with a
ceramic ferrule, fixing the lens array’s optical axis to the
optical axis of the fiber [Fig. 1(b)]. The fiber is connected to
a UHV feedthrough for delivering the coupled light outside
of the chamber.
UV light in proximity to exposed dielectric surfaces can

lead to charge buildup, which is dissipated slowly relative
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to the experiment time. Oxides or contaminants on the trap
electrodes can also become charged and generate electric
fields at the ion, leading to excess micromotion, which
negatively impacts Doppler cooling, light collection, and
the motional heating rate of the ion [12–14]. Although the
ion is in a direct line of sight with the DOEs, it is
significantly shielded by the surrounding electrodes and
the grounded gold coating in the space between each DOE,
as shown in Fig. 1. Considering this interplay between the
different system components, we characterize three proper-
ties of the combined trap-optic system: the difference in
stray electric fields above and away from the exposed
dielectric of the DOE, the motional heating rate difference
above and away from the DOE, and the light collection
properties of the DOE.
Excess micromotion occurs when the ion is not posi-

tioned at the rf null, due to out-of-phase rf signals on
different electrodes, an imperfect static trapping solution,
or a stray electric field. The first issue can be practically
eliminated by capacitively shunting the static control
electrodes [10], while the latter two can be eliminated
with a static offset applied to the electrodes, provided the
stray field does not change on a fast time scale [15]. The
stray electric fields are eliminated at multiple locations
by employing an adaptive algorithm with iterative
measurements of the micromotion along the two transverse
axes [15–17]. Combining these techniques allows us to

compensate stray fields down to several V/m. After this
procedure, the applied voltage solution is compared to
boundary element simulations of the trap to estimate the
stray field in both the y and z directions.
Figure 2 shows measured stray fields in the y and z

directions (radial to the rf confining potential) using an
automated compensation procedure, compared at locations
away from and above the DOEs. Stray field measurements
are taken at a coarse spacing of 77 μm over a total range of
�500 μm from the center of the x axis of the trap, along
with higher-resolution measurements at a 5-μm spacing
between optics B and C (Fig. 1).
Figure 2(a) shows a steady increase in the applied field

needed to position the ion at the rf null in both the y and z
directions, corresponding to the ion’s position relative to
the DOEs. This increase is primarily due to a modification
of the trapping potential by the DOE assembly, as com-
pared to above the open slot at −300 μm. When measured
above the slot, the stray field Ez is the same order of

300 250 70

100
60

20

rf

dc

(b)

(a)

DOE

GND

*A B C

110250
y

x
z

-500 5000

SLOT
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FIG. 1. (a) Plan view of the trap and optics with all dimensions
shown in microns [10]. Green squares are the DOEs, gold squares
are the gold ground planes between each DOE, and the white
region is a slot in the trap for loading ions from the back. The
electrode labeled with an * is used to shift the ion in the y
direction. (b) Assembly drawing (exploded view) of the optics
integrated with the trap chip [11].

FIG. 2. (a) Stray field measurements of Ez (blue) and Ey (red).
The measurement error is 13 V/m in Ez and 3 V/m in Ey.
(b) Secular frequency data taken along the z axis of the trap after
performing the compensation procedure. (blue) Axial frequency
measurements have errors below 1 kHz, and (red) radial
frequency measurements have errors less than 10 kHz. Coarse
data are taken at 77-μm steps (blue circles and red diamonds);
higher-resolution data (blue squares and red stars) are taken a
month later between the center of two DOEs at a step size of
5 μm. The background color of the figure corresponds to the
different regions of the trap: (white) the loading slot, (gold)
ground plane, and (green) DOE. All lines are to guide the eye.
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magnitude as Ey, but, as the ion moves above the DOE
assembly, Ez dramatically increases. At positions 0, 250,
and 500 μm, there are local maxima in Ez of 1500, 2000,
and 2200 V/m, which correspond to trapping positions
directly above the center of optics A, B, and C, respectively.
The local maximum at the position −220 μm corresponds
to the edge of the optics mount where the gold ground plane
was accidently chipped off during assembly, exposing the
dielectric. The local minimum in Ez of 1300 V/m at 350 μm
corresponds to storing the ion directly above the gold-
coated ground plane between B and C. The secular
frequencies show a similar trend due to the stray field.
The axial frequency has a local maximum and local
minimum corresponding to positions above the DOE and
ground plane, respectively. Figure 2(b) also shows the
radial frequencies at each location; their fractional change
is less significant than that of the axial frequencies and does
not exhibit the same spatial modulation. The increase in
radial frequency shown on the high-resolution data is
ascribed to changes in the helical resonator over the month
in which data were taken.
To determine the impact of the DOEs on the temporal

stability of the stray electric field, the automated compen-
sation procedure is continuously performed over several
hours at locations away from (−385 μm) and above
DOE-C (500 μm). Excluding the 15 min following loading,
Ey and Ez change less than 2.5 V/m over the following 5 h
(below the measurement resolution), while the secular
frequencies change less than 1 and 10 kHz in the axial
and radial directions, respectively. The loading process
results in additional stray fields of ΔEz ≈�25 V=m and
ΔEy ≈�15 V=m at both locations. Over 5 h, the axial and
radial frequencies change less than 2 and 50 kHz, respec-
tively, including the effects of loading. This result would be
compatible with high-fidelity two-qubit gates using axial
modes of motion (δf=f < 0.2%). The greater variability in
the radial frequency is ascribed to drift in the resonance
frequency of the rf resonator.
Awell-known issue with ion traps is the motional heating

due to electric field fluctuations on the electrodes [12]. This
issue is particularly problematic in traps that confine ions
close to trap electrodes (80 μm in the current work). The
experiments described here employ the Doppler recooling
technique [18] to measure and compare heating rates in the
slotted region of the trap and above DOE-C. One set of
measurements is taken by using National Instruments
voltage sources and yields similar rates above the slot
and optic (32 and 42 quanta/ms, respectively). A meas-
urement with a battery voltage supply in the slotted region
yields a heating rate of 11 quanta/ms (this method does not
allow shuttling an ion to other locations). While these
measurements show that the heating rate is comparable
near the optic, it should be noted that the overall heating
rate of the trap must be reduced to be compatible with high-
fidelity two-qubit gates.

The detection efficiency (DE) of each optical system is
determined by using a single-photon counting technique
[1,2] in which a single photon is emitted with very high
probability per experimental sequence. This technique is
advantageous, because it does not require calibrating all of
the relevant experimental conditions (intensity and detun-
ings of lasers, magnetic field, motional state of ion, etc.)
and fitting the calcium atomic spectra to an eight-level
optical Bloch equation. The DE values reported in this
paper include all system losses, from the solid angle
collection to the quantum efficiency of the photomultiplier
tube (PMT). The ion is cooled for 2 μs with both lasers, 397
and 866 nm [Fig. 3(a)]. Then it is exposed to a 397-nm
laser for 1.5 μs to optically pump to the D3=2 state
(lifetime ¼ 1 s). A 1.5-μs delay is inserted to ensure the
previous laser is fully extinguished. Then the 866-nm laser
is turned on to pump to the P1=2 state, which decays and
generates a single 397-nm photon [Fig. 3(b)]. This
sequence is repeated 106 times for statistics.
Figure 3(c) is a schematic of both the Standard Imaging

(SI) system and the DOE collection setup, along with the
transmittance of each optical component. Our standard
imaging system includes a grounded mesh to mitigate
charge buildup on the reentrant view port. The imaging
optic is a UV objective with NA ¼ 0.29 (effective solid
angle collection of 1.9%); when combining the view port
and optic, the effective solid angle collection is 1.34%.
Additional but small losses occur at a UV-coated mirror
and filter. Finally, a PMT (Hamamastu H10682-210) is
used for photon counting. Considering all these losses, a
DE of 0.34% is expected, matching the measured value
of DESI ¼ 0.341ð6Þ%.
In designing the DOE lens system, the most important

metrics are the solid angle collection efficiency and
diffraction efficiency. The solid angle collection efficiency
of the lens system reported here is calculated to be 3.58%

FIG. 3. (a) Caþ energy diagram showing the relevant laser
transitions. (b) Single-photon generation pulse sequence.
(c) Schematic of the standard imaging system and DOE collec-
tion system (not to scale). All percentages correspond to the
transmittance or reflectivity at 397 nm. The product of each stage
results in a total DE of a trapped fluorescing Caþ ion.
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(this value accounts for the square shape of the lens). Two
on-axis lenses are used to image each location in the linear
array, as described in Ref. [11]. A standard knife-edge test
is used to measure the diffraction efficiency, i.e., the
fraction of light transmitted by the lens system into the
desired transmitted �1st order. The range of diffraction
efficiencies of 15 fabricated and measured two-lens
elements (in series) is 44%–49%, while the integrated lens
has an efficiency of 45% and a measured focal distance of
168 μm. The collected light is coupled to a multimode
optical fiber (Polymicro’s FVP100110125) in which 4%
loss is expected at the input and output facets and 2%
absorptive loss occurs in the fiber. By using the same PMT
as above, a DEDOE of 0.55% is predicted.
Figure 4(a) is an image of the ion after stray electric fields

are canceled, along with 397-nm light backilluminating
the DOE through the multimode fiber. It shows that the
compensated ion is not at the focus of the DOE but is
translated in the y direction by almost 20 μm. This con-
clusion is confirmed after removing the trap from the
vacuum chamber and measuring an 18ð2Þ-μm translation,
which likely occurred during the bake of the chamber. The
height of the focus is in situ measured to be at the height of
the ion. The backillumination size is larger than the focal
spot size of the lens due to the core size of the multimode
fiber. For more details on the preinstallation alignment
procedure, see Ref. [11].
Additional voltage is applied to the dc control electrodes

to shift the ion towards the optic by ≈7 μm, as shown in
Fig. 4(b). This voltage induced a significant amount of

micromotion, but the single-photon counting method is
relatively (though not completely) insensitive to micro-
motion. To quantify the effect, the DESI is remeasured to be
0.315% corresponding to a drop of 7.6% in the signal
compared to the compensated DESI. Shifting the ion
towards the center of the optic increases DEDOE to 0.236
(5)%, compared to 0.023(2)% when compensated. This
result is still significantly lower than the theoretical value of
0.51% (which includes the fractional reduction due to
micromotion).
It is possible to improve DEDOE further by applying an

additional rf voltage to one of the center dc electrodes
(indicated in Fig. 1 with an *). By reducing the rf amplitude
(Vrf ¼ 80 V) and applying a phase-locked signal to a
center electrode, the rf null shifts toward the center of the
DOE. Figure 4(c) shows the shift while applying 10Vrf of
phase-locked rf, resulting in an ion displacement of 8 μm
and a DEDOE of 0.241(5)%. Figure 4(d) shows the ion
displaced by 10–12 μmwhen both rf and dc fields are used.
In this case, DEDOE ¼ 0.388ð6Þ%, less than the expected
DE of 0.51% due to the remaining imperfect overlap of the
ion with the DOE focus.
In conclusion, we demonstrate an integrated array of

DOEs with a surface electrode ion trap, coupling fluores-
cence from a trapped Caþ ion into a multimode fiber under
ultrahigh vacuum conditions and successfully transmitting
the light out of the vacuum chamber to a PMT. Stray electric
fields are compensated over the optic and remain stable over
the course of weeks, and the DOE does not noticeably affect
the motional heating rate of the ion. Using a single-photon
counting technique,wemeasured an overall DE for theDOE
of 0.388%. These optics could be arrayed in a scalable
fashion and would allow for detection times < 200 μs of
Caþwith infidelities< 10−4 [19].We show in this paper that
their presence does not create stray field drifts that would
preclude high-fidelity two-qubit gates and that the heating
rate is not noticeably worse near the optic.
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Appendix D

Experiment Control Software

It is difficult to emphasize enough the need for a comprehensive experimental control

package, designed with ion trapping and quantum optics in mind. The sequences of

actions that take place for most ion manipulation tasks are time sensitive, and can

consist of millions of conditional events. The experimental control package enabling

the ring trap (Chapter 5) and Diffractive Optics (Appendix C) experiments featured:

• control over instruments: optical and rf power meters, oscilloscopes, function

generators, power supplies, and a direct digital synthesizer (DDS);

• control voltage generation (Appendix D.2) via an NI chassis and cards (Sec. 3.4);

• control over rf voltage amplitude and frequency (through DDS or function

generator control);

• photon counting through the NI cards (Sec. 3.4);

• turning on and off the PI light and atomic oven through the NI cards (Sec. 3.4);

• ion imaging (Sec. 3.6) via controlling the motors on the Doppler beam and

imaging stack, and through camera control (Appendix D.3);
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• laser locking (Appendix D.1);

• data collection and data analysis;

• procedural (programmatic) and interactive (GUI-based) control allowing a high

level of abstraction and automation.

The paradigm followed when developing the code emphasized procedural automation.

“Drivers” (in fact custom Python wrappers for libraries) handled details in instru-

ment or equipment communication. The drivers were used by higher level modules

that provided specific functionality (e.g. scan a parameter in one instrument while

reading out another, deliver a sequence of control voltages, move the camera, etc.).

These higher level modules were used in algorithms to implement an experiment

(e.g. load an ion, move it to some location, minimize micromotion there, get an-

other ion if the ion gets lost during the measurements, etc.). Since this procedural

approach is not always desirable, the modules were equipped with graphical use in-

terfaces (GUIs) for interactive control. Finally, the GUIs could be lumped (without

the need for extensive programming experience) to provide a tailored experimental

control application, allowing automation from the GUI. The code, some highlights of

which are below, was written from scratch exclusively in Python and PyQt to specif-

ically address rapid development and transparency. The code replaced a proprietary

solution (proprietary source) that could not be upgraded with the needed features.

Some of the functionality in the list above and much more is currently handled

by a field programmable gate array(FPGA) – Python – PyQt hybrid package (Ap-

pendix D.4) under development by Peter Maunz. In this work, the hybrid package

was used for secular frequency and heating rate measurements in the ring trap ex-

periment and was the main tool used for the plasma treatment experiment.
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D.1 Laser Locks

The function of the code, written mostly in C++ (with Qt), was to lock a number

of lasers to an atomic reference. To do anything beyond trapping ions, light fre-

quencies must be well known and controlled. For that purpose, a high resolution

wavemeter1 was locked to an available rubidium atomic reference (Sec. A). An opti-

cal switch that takes multiple wavelengths, one per switch channel, stepped through

the channels and provided the wavemeter input. For each channel, a software feed-

back loop was implemented. In the loop, a corrective voltage, to be applied to the

laser diode grating piezo, was calculated from the difference between the target and

measured frequencies. The voltage was output by a multi-channel DAC card in the

computer that run the wavemeter software and lock loops. The refresh rate of the

loop (implemented as a P-I loop) depended on the number of channels followed and

the illumination / optical power per channel. The net result of this locking scheme

was that light entering the multiple switch channels was referenced to the atomic

reference through the wavemeter. The instantaneous deviation from the absolute

target frequency for light fed into the optical switch could be as good as a few MHz,

making the lock useful to control light for which an excursion of a few MHz is not

an issue (repumpers, PI light).

D.2 Control Voltages

The low level control over voltage generation (Sec. 3.4) was implemented with Python

wrappers around manufacturer provided libraries (NI DAQ). The code

• provided mapping from physical channels to labels meaningful for the user (e.g.

“electrode e01”);

1HighFinesse/Ångstrom WSU 10.
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• allowed real time scaling of voltages (e.g. to modify the axial potential while

imaging an ion);

• provided for real time application of arbitrary voltages without the need for

preparation (e.g. to check electrode connectivity by applying a voltage to the

electrode while imaging an ion);

• provided for real time scaling of pre-defined named sets (e.g. to increase the

electric field in a given direction without the need to handle the electrodes

individually).

• provided control over sequences of voltage applications (e.g. for ion shuttling

or axial field measurements);

• was synchronized with cooling/imaging (Appendix D.3) to make the motion

on a ring intuitive and convenient for a user (e.g. move an ion to a location

using the shortest path);

• allowed procedural control over all of the above for algorithm implementation,

making it an essential tool.

D.3 Cooling and Imaging

As with voltage control, low level control was implemented with Python wrappers.

The code

• controlled image acquisition from a CCD camera2;

• controlled the location of the objective of the imaging stack (Appendix 3.6);

• controlled the path of the measurement Doppler beam;

2Andor Luca R.



Appendix D. Experiment Control Software 134

• the above was synchronized with voltage control to allow, for example, ion

shuttling while efficiently cooling and imaging without user interaction.

Layout features of the trap were used to calibrate the motors and imaging system.

D.4 Successor

The control system developed by Peter Maunz followed a different paradigm, favoring

user interaction over automation. An essential hardware difference is the inclusion

of an FPGA3 controlling a number of two channel DDS boards, thus eliminating the

need to control all but specialized instruments (e.g. power supplies, power meters).

The FPGA control is wrapped in PyQt, along with a meta-language to implement

FPGA algorithms, data visualization and analysis tools, external instrument control

and acquisition interface, voltage control interface, and lately, automation interface.

While development continues, even in its current state the package is a superior and

indispensable tool for ion trapping/atomic physics experiments.

D.5 Cost Estimate

Plenty of code, mostly in C++, Python, and Mathematica language, was generated

in order to make much of this work possible, amounting to perhaps a calendar year

of research time. The final versions of the code exceed the printed volume of this

dissertation several times. To quantify the coding effort and put it in perspective,

an excerpt from a report with a time and cost estimate follows, based on Source

Lines of Code (SLOC) and widely accepted business models, for the Python por-

tion of the code used for control of the ring trap (Chapter 5) and Diffractive Optics

3Opal Kelly XEM6010.
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(Appendix C) experiments. The report, generated using David A. Wheeler’s ’SLOC-

Count’[157], excludes the currently used software (Appendix D.4) that is exclusively

the effort of Peter Maunz, or any code related to device modeling.

...

Computing results.

SLOC Directory SLOC-by-Language (Sorted)

5832 ex_control python=5832

5447 not_active python=5447

3254 top_dir python=3254

218 gui_elements python=218

Totals grouped by language (dominant language first):

python: 14751 (100.00%)

Total Physical Source Lines of Code (SLOC) = 14,751

Development Effort Estimate, Person-Years (Person-Months) = 3.38 (40.50)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.85 (10.20)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 3.97

Total Estimated Cost to Develop = $ 455,936
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(average salary = $56,286/year, overhead = 2.40).

...
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Appendix E

Procedures and Algorithms

This research resulted in and adhered to a number of procedures that increased

repeatability and allowed easier troubleshooting. The procedures below were taken

out of the main text body to improve readability.

E.1 Preparation of UHV Components

When common new manifold components1 are acquired, unless specified by the man-

ufacturer to be UHV – rate clean, they are prepared for use as follows:

1. Visual inspection for irregularities and any damage to the knife-edge. A scratch

along the knife edge or a notch (Fig. E.1) decreases the likelihood of a good

seal.

2. (Optional) Ultrasonic cleaning in detergent solution to break and release any

gross particulate contaminants.

3. Ultrasonic/megasonic cleaning in high purity acetone to break oils.

1Obtainable from Varian, Lesker, MDC, Accu-Glass.
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Figure E.1: Knife-edge damage on a custom ordered, unused CF component.

4. Ultrasonic/megasonic cleaning in high purity alcohol to break acetone residue.

Optionally this step can be subdivided into cleaning with a heavy alcohol (e.g.

isopropyl) followed by cleaning with a lighter alcohol (e.g. methyl).

5. Drying, preferably in a controlled environment. A dust particle that finds its

way into the chamber is a source of outgassing and can be moved by turbulent

currents in the initial stage of pumping onto the trapping device, rendering it

inoperable.

6. Visual inspection immediately preceding assembly.

7. (Optional) Bakeout while being pumped on or in air or in an H2 atmosphere.

E.2 Bakeout of UHV Vessels

The pumpdown/bakeout procedure that was developed is the following:

1. Once the vessel is in the oven, verify that the ion gauge, titanium sublimation

pump, and atomic oven filaments are intact by measuring the resistance across
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nominally connected pins (∼ 1 Ω). Filaments become brittle with use and

may break during chamber transportation. Verify that the ion pump is not

shorted by measuring resistance between terminals > 500 MΩ (or whatever

is the instrument limit). Collected residue inside the pump may be dislodged

during transportation, possibly shorting elements. Connect bakeable cables to

the ion gauge and ion pump.

2. Verify that the trapping device is likely intact by measuring rf – ground re-

sistance2 > 500 MΩ and capacitance3 ∼ 15 pF, depending on the specific

device.

3. Verify that all bolts on joints are tightened.

4. If a “particle-free” [158] pump-down is needed, verify that the pumping path

through the limiting orifice is chosen.

5. Start TMP.

6. When in molecular flow regime (expected below 0.1 Torr in this setup), change

the pumping path to bypass the limiting orifice, thus increasing the pumping

speed.

7. When pressure is below 10−5 Torr, degas the atomic oven by running current

through the filament (Sec. 3.5.1). Degassing trades slow outgassing for rela-

tively short burst of pressure increase, and heat and particulate contamination

generation. The resulting outgassed material is pumped out over the bake

period, rather than occurring at the end and contaminating a low pressure

chamber.

8. When the pressure is below 10−5 Torr, degas the TSP filaments. This increases

the pressure substantially at first.

2Fluke 289 multimeter.
3GwIntek LCR 819 Meter.
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9. When the pressure is below 10−6 Torr, use an RGA with the electron multi-

plier on and He2 to test the chamber for leaks. He2 gas is not present in the

atmosphere as it is too light, hence it should not be in the chamber. Because

the molecule is also very small and permeable, leaks are found when He2 is

detected by observing an increase in the partial pressure when spraying minute

amounts of gas into joints, feedthroughs, and viewports. If leaks are found, it is

sometimes possible to repair them without venting the vessel to atmosphere. A

vacuum – tight chamber is considered one in which He2 is not detected above

the background/instrument noise level, at about 10−13 to 10−12 Torr partial

pressure. Running the RGA filaments increases the pressure slightly.

10. (Optional.) When the pressure is below 10−7 Torr, the ion gauge is degassed.

This increases the pressure temporarily.

11. Ramp up to the target bakeout temperature. A rule of thumb is that the final

pressure falls an order of magnitude for each 100 K of bakeout temperature

increase. Again, this is limited by the materials in the assembly. For bakeouts

above the Curie temperature of the ion pump magnets, they must be removed to

avoid demagnetization. An absolute limit for torqued CF flanges is considered

∼ 450 ◦C, beyond which the austenitic steel properties change and knife edge

damage results.

12. At target temperature, once pumping speed becomes insignificant (e.g. <

10 % decrease in ion pump current or gauge readings per day) or some pre-

determined fraction of the thermal budget is reached, the bakeable valve on

the vessel separating it from the external pumping manifold should be closed

hand tight. The vessel ion pump and ion gauge are then turned on.

13. Once the pumping speed becomes insignificant or the thermal budget is reached,

the oven temperature is ramped down.

14. When the vessel is at ambient temperature, the bakeable valve is torqued
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closed. External pumps (e.g. TMP) are stopped. If there is an increase in

the vessel pressure, the valve torque is increased.

15. Once readings equilibrate and there is no pressure increase in the vessel, the

ion gauge is turned off to cool before transporting the chamber to the optical

table.

E.3 Heating Rate Measurement Procedure

The heating rate measurement procedure relies on the processes described in Sec. 3.6

and Sec. 3.5.2. All measurements are made on the axial motional mode. The specific

top level algorithm used is:

1. The frequency of the light on the 4s2 S1/2 ←→ 4p2 P1/2 transition is scanned

at saturation power. The frequency and linewidth at resonance are obtained

from a fit.

2. The previous step is repeated with optical power well below saturation.

3. A parametric resonance scan is performed and fit to extract one radial fre-

quency - a means to assess an undesired change in rf coupling strength.

4. The frequency of the light on the 4s2 S1/2(mj = +1/2) ←→ 3d2 D5/2(mj =

−3/2) transition is scanned and fit to determine the resonance frequency.

5. The Rabi time of the 4s2 S1/2(mj = +1/2)←→ 3d2 D5/2(mj = −3/2) transition

is determined. The frequency and Rabi time are used to prepare the ion in the

4s2 S1/2(mj = −1/2) state via spin polarization (Sec. 3.6.2).

6. The frequency of the light on the 4s2 S1/2(mj = −1/2) ←→ 3d2 D5/2(mj =

−5/2) first blue sideband is scanned and fit to determine resonance.
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7. The time to incur a population inversion in the 4s2 S1/2(mj = −1/2) ←→

3d2 D5/2(mj = −5/2) first blue sideband is estimated.

8. The frequency of the light on the 4s2 S1/2(mj = −1/2) ←→ 3d2 D5/2(mj =

−5/2) first red sideband is scanned and fit to determine resonance frequency.

9. The time to incur a population inversion in the 4s2 S1/2(mj = −1/2) ←→

3d2 D5/2(mj = −5/2) first red sideband is estimated.

10. The time to incur a population inversion in the 4s2 S1/2(mj = −1/2) ←→

3d2 D5/2(mj = −5/2) first blue sideband, after sideband cooling close to the

ground state, is estimated. This is the analysis time used for measuring the

populations in the first sidebands.

11. The frequency of the light on the 4s2 S1/2(mj = +1/2) ←→ 3d2 D5/2(mj =

−3/2) transition is scanned and fit to determine resonance.

12. The frequency of the light on the 4s2 S1/2(mj = −1/2) ←→ 3d2 D5/2(mj =

−5/2) first red and blue sidebands is scanned and fit to determine the popula-

tions in the sidebands. The populations ratio is used to determine n̄ (Sec. 2.2.2).

13. The last two steps are repeated with different embedded delays in the last

step between cooling to the ground state and measuring the population in the

sidebands, and the resulting (delay time, n̄) pairs are fit to extract ˙̄n.

The first 10 calibration steps determine the running parameters without the need

to measure the axial secular frequency via rf excitation. 200 to 400 experiments are

used per data point, depending on what makes sense for the parameter that needs

to be extracted (e.g., the statistical frequency error does not substantially decrease

with doubling the number of experiments, however, the experimental time needed

doubles, so measurements become susceptible to effects that may not be linear in

time and may artificially broaden the features, and as an end result, information
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Figure E.2: Heating rate calculation. The reason the plot is atypical is that the error
bars in fact follow the theoretical model, and the data points are indeed close to the
line. Typical data are more scattered.
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about the frequency is lost). To account for the drift in the 729 nm light cavity

(Appendix B), step 11 is inserted before each population measurement in step 12.

The results of a non-typical but instructive run of the outlined algorithm are shown

in Fig. E.2. Before addressing the details of the algorithms in selected steps, there

is the question of what model is used to fit the data in step 12, and what error to

assign each data point. In the literature, in some instances Lorentzians or Gaussians

are used to extract the population in a sideband – both of which are models that do

not represent the data. The approach taken here reflects a different model:

A(x) = a

R sin2

(
t

2

√
R2 + (2π(x− p))2

)
R2 + (2π(x− p))2

+ b, (E.1)

where b is an offset, a is the amplitude, t is the analysis time, p is the sideband

frequency, and R is the “Rabi rate” of the sideband transition. The error in each data

point is estimated from the distribution of the values of all (e.g. 400) experiments

via a Wilson score interval calculation with continuity correction, after which the

error is propagated with calculus of variations rules. Sadly, there is also the question

of what software is being used to handle the calculations. Different (but usually

within error) results were obtained from manipulating the data with two commercial

packages, as well as with open source software. The results quoted here are obtained

with the following:

Python 2.7.3 (default, Aug 9 2012, 17:23:57)

[GCC 4.7.1 20120720 (Red Hat 4.7.1-5)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy

>>> numpy.version.version

’1.7.1’

All steps scanning a 4s2 S1/2 ←→3d2 D5/2 transition are based on the following

sub-algorithm, executed for each of the experiments in a data point.
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1. Turn on far red detuned 397 nm light at saturation power along with the

repumper beams.

2. Check that an ion is trapped by verifying that fluorescence threshold within a

pre-determined time window is met. If not, repeat until a prescribed limit is

reached and stop.

3. If an ion is present, reduce the 397 nm light power well below saturation and

change the detuning to ∼ −γ/2.

4. Wait long enough to leave the ion at TD.

5. Prepare the ion in the 4s2 S1/2(mj = −1/2) state.

6. Cool the ion to the motional ground state.

7. Insert a delay. All light is off.

8. Apply the analysis pulse. Only the 729 nm light is on.

9. Detect the state by verifying that the fluorescence threshold within a time

window is met. 397 nm light is at saturation power and the repumper beams

are on. If the ion is not in the 4s2 S1/2 state, a fluorescence threshold within a

time window will not be met.

The sub-sub-algorithms in steps 5 and 6 are explained in Sec. 3.6.2.
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