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ABSTRACT 

 

This thesis explores two topics. The first is shotgun DNA mapping (SDM). 

Ability to map polymerases and nucleosomes on chromatin is important for un-

derstanding the impact of chromatin remodeling on key cellular processes. Cur-

rent methods have produced a wealth of information that demonstrates this im-

portance, but key information is elusive in these methods. We are pursuing a 

new single-molecule chromatin mapping method based on unzipping native 

chromatin molecules with optical tweezers. The first step we are taking towards 

this ability is SDM. This is the ability to identify the genomic location of a random 

DNA fragment based on its naked DNA unzipping forces compared with simu-

lated unzipping forces of a published genome. We show that ~32 separate expe-

rimental unzipping curves for pBR322 were correctly matched to their simulated 

unzipping curves hidden in a background of the ~2700 sequences neighboring 

XhoI sites in the S. cerevisiae (yeast) genome. We describe this method and 

characterize its robustness as well as discuss future applications. 

The second topic is a discrete state model for kinesin-1’s processivity. Kine-

sin-1 is a homodimeric molecular motor protein that uses ATP and a hand-over-

hand motion to transport cargo along microtubules. Minimal kinetic models are 
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often developed to both explain kinesin’s hand-over-hand forward-stepping be-

havior and to infer important kinetic rate constants from experimental data. These 

minimal models are often limited to a handful of two-headed states on a core 

cycle. However, it is not always clear how to evolve these core-cycle models to 

explain more complex behavior. We have developed a kinetic model without a 

pre-defined core cycle. Our model includes 80 two-headed states and permits 

transitions between any two states that differ by a single catalytic or binding 

event. We constrain the rate constants as much as possible by published rates 

and mechanical strain in the kinesin neck linkers and their docking state. We 

present a model for neck-linker modulation of head and nucleotide binding and 

unbinding rates. We show that our model reproduces generally-accepted expe-

rimental results. The core cycles that emerge are slightly different than those 

seen in previous experiments. We also explore how processivity and speed 

change with neck linker length. 
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Introduction 

The majority of this dissertation is devoted to using statistical mechanics and 

kinetics to study two distinct problems. The first is the development of a novel 

mapping technique which uses a statistical mechanical model to predict the 

forces it takes to break double stranded DNA bonds. The second is the applica-

tion of a discrete state model to probe how a motor protein, kinesin, can walk. 

The core of that model uses statistical mechanics to calculate rate constants. 

This dissertation is divided into four research-orientated chapters. All of these 

chapters except Chapter 4 is a reprint of a previously or soon-to-be-published 

work. 

Chapter 1 describes in detail the process of Shotgun DNA Mapping (SDM). 

SDM is a term we coined that refers to the possible ability to identify short DNA 

strands by comparing its unzipping force curves to simulated force curves. DNA 

in eukaryotes exists in the form of chromatin. In this structure DNA is tightly 

packed and wrapped around histones to form a nucleosome (Kornberg 1977). 

The nucleosomes act as barriers and as a regulation mechanism during DNA 

replication, gene transcription, and DNA repair (Workman and Kingston 1998; 

Khorasanizadeh 2004). Nucleosome remodeling is the process of moving or 

completely removing the nucleosome. Chromatin Immunoprecipitation (ChIP) is a 

tool currently used to study this process (Sudarsanam 2000; Martens 2003). 

While ChIP has provided great insight, improvement in the spatial and temporal 

resolution is necessary to further study nucleosome remodeling. Utilizing a sin-

gle-molecule technique such as SDM will provide these needed improvements. 
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Using an optical tweezer, it has been shown that nucleosomes, RNA polyme-

rases, and other proteins attached to the double stranded DNA (dsDNA) can be 

located with high spatial resolution (Hall et al. 2009; Shundrovsky et al. 2006). 

This is achieved by unzipping the DNA usually with an optical tweezer (OT) and 

“popping off” any bound proteins. This causes a spike in the force required to un-

zip the DNA. After all proteins have been removed, the experimenter can de-

creases the force applied by the OT, allowing the unzipped single stranded DNA 

(ssDNA) to rezip into dsDNA. Unzipping the DNA again will give the unzipping 

curves of the now naked DNA. Since the curve is sequence dependent, it can be 

compared to a library of unzipping curves simulated by the software explained in 

Chapter 1 to map the locations of the bound proteins onto the genome. 

The bulk of the work discussed herein focuses on the study of kinesin-1 

(called kinesin for simplicity). Kinesin is a motor protein found in neurons. Studies 

have shown kinesin is essential for proper neural activities (Gindhart 2006). In 

humans neurons can be up to a meter in length and can grow even longer in 

larger animals. Molecules necessary for neuronal mechanisms including saltatory 

movement are produced in the soma but are needed in the dendrites or axon. 

Even within the axon molecules are needed in specific locations, for example an 

ankyrin isoform is needed in the nodes of Ranvier and synaptic proteins are re-

quired in the axon terminal (De Vos et al. 2008; Kordeli et al. 1990). Over small 

distances diffusion can theoretically account for molecular transportation. How-

ever if the neuron relied solely on diffusion for transportation of its vital mole-

cules, it could take approximately 1010 seconds to reach their destinations. 
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Neurons (and many other cells types) have motor proteins to actively trans-

port important molecules by using a scaffolding system of polymers including mi-

crotubules. Motor protein transportation in neurons can be classified as retro-

grade or anterograde. Retrograde transport means cargo is being brought to the 

soma. Anterograde transport means the molecule is being taken away from the 

soma. In neurons, transport can also be classically categorized as fast or slow 

axonal transport, defined by a large measured difference in the speed of different 

molecules being transported. It is now known that the slower speed is due to long 

pauses rather than different molecular motors transporting the cargo (Roy et al. 

2000; L Wang et al. 2000). Since our focus here is on motors rather than cargo, it 

is apt to elucidate the directionality classification system since it separates the 

process largely according to motor type. Dynein is chiefly responsible for retro-

grade transport while kinesin has a predominant role in the anterograde transport 

of molecules (Hirokawa and Takemura 2005; Hirokawa 1998; Hirokawa et al. 

1991; Goldstein and Yang 2000; Schnapp and Reese 1989). 

 
Figure 1.1. Schematic representation of kinesin. This illustration is color coded for easier identification. Examin-

ing this illustration from top to bottom, we see the cargo symbolized by a large red circle binds to the two teal tails. In 
reddish orange is the stalk. The neck linker, colored brown, connects the two heads that are colored yellow. The mi-
crotubule is comprised of alternating alpha (magenta) and beta (green) tubulin dimers. The kinesin heads bind to the 

to the beta tubulin. 

Kinesin, seen in Figure 1.1, is comprised of two heads (seen in yellow) which 

anchor the protein to the microtubule, a neck linker connecting the two heads 

(brown), a stalk (reddish orange) and tails (teal). The cargo (red circle) binds with 
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the tail through protein-protein interactions and with some help from a population 

of regulatory proteins. Kinesin transports molecules by “walking” along a micro-

tubule. A microtubule is a polymer consisting of consecutive beta and alpha tubu-

lin dimers (seen in Figure 1.1 as green and magenta respectively). These poly-

mers act as tracks to guide kinesin’s stepping process. The kinesin heads can 

bind to the beta tubulin and through a series of stochastic transitions including 

the hydrolysis of ATP, the back kinesin head will unbind from the beta tubulin. It 

then steps in front of the other head and binds to the next beta tubulin in front of 

the other head. The cycle then starts again but with the other head detaching 

from the microtubule. It is important to note that, even though kinesin is said to 

walk and it has heads despite this personification kinesin is not a sentient being. 

Walking can only occur by cycling through a series of states where it is more 

probable for the kinesin to step forward instead of backwards or detaching. This 

process is the basis of the research described in Chapter 2. 

Defects in this active transport mechanism can lead to many diseases. Model 

systems such as Drosophila (Sophophora (O’Grady 2010; O’Grady and Markow 

2009)) melanogaster  or Caenorhabditis elegans are used to study mutations in 

kinesin to better understand some neurodegenerative diseases (Goldstein and 

Yang 2000; Morfini et al. 2009; Muqit and Feany 2002; Wu and Luo 2005; Hurd 

and Saxton 1996). For example it has been shown that a kinesin mutation impair-

ing kinesin function in Drosophila, leads to neuronal swelling in the axons with 

accumulations of transported vesicles, synaptic membranes and mitochondria 

which kinesin typically transports. This defect resulted in loss of muscle control 
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function and larval lethality (Hurd and Saxton 1996). Similar swelling has been 

seen in many neurodegenerative diseases for example amyotrophic lateral scle-

rosis (ALS or Lou Gehrig’s Disease) and Alzheimer’s Disease (Coleman 2005; 

De Vos et al. 2008; Stokin et al. 2005). It is not clear what is exactly disturbing 

axonal transport in some of these cases. Factors which may inhibit axonal trans-

port include disrupting the microtubule, inhibiting the binding of cargo, mutations 

in the motor protein, or loss of mitochondrial function and decreasing ATP con-

centration. Hereditary Spastic Paraplegia Type 10 (HSP(SPG10)) is an example 

of a disease caused by a mutation in kinesin heavy chain genes, resulting in the 

inhibition of microtubule-bound ATPase activity  

Our lab has two ways to study kinesin. Chapter 2 describes the use of a sto-

chastic model of kinesin’s stepping process using discrete states. This chapter 

also describes analysis of the model using a state machine and Markov Chain 

theory. We also study kinesin’s velocity through a gliding motility assay, one of 

the first assays used to study kinesin (Vale, Reese, and Sheetz 1985). In this as-

say kinesin is affixed to a cover slide with the motor domains away from the cov-

er glass while microtubules are allowed to move on their heads (Figure 1.2). Vi-

sualization using a microscope, allows the microtubule movement to be viewed, 

as shown in the false colored image in Figure 1.3.  

 
Figure 1.2. Schematic illustration of gliding motility assay. The kinesin is attached to the cover glass with its 

heads are exposed to the solution. This immobilizes the kinesin but still allows it to walk along microtubules. When 
this happens the microtubule is seen as moving. 
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Figure 1.3. False colored image from a gliding motility assay. The microtubules are false colored green in this 

image. This assay was performed by Andy Maloney (Maloney, Herskowitz, and Koch 2011). 

To study the velocity of kinesin microtubules in each experiment need to be 

tracked. We have created custom software to track microtubules and then using 

the polymer’s trajectory and time between frames we calculate the microtubule’s 

speed. We created software that can mimic the images seen in a gliding motility 

assay to test the effectiveness of our tracking software. This image simulation 

software and the tracking software are explained in Chapters 3 and 4 respective-

ly. 

This dissertation is divided into two parts. Chapter 1 describes SDM and 

Chapters 2-4 describe the kinesin work.  
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Proof of Principle for Shotgun DNA Mapping by Unzipping 

Lawrence J. Herskowitz, Anthony L. Salvagno, R. Andy Maloney, Linh N. Le 
and Steven J. Koch 

Introduction  

Chromatin remodeling affects the ability of other proteins to access the DNA 

and has a profound impact on fundamental processes such as DNA repair and 

gene transcription by RNA polymerase. Understanding of these dynamic re-

modeling processes requires the ability to characterize with high spatial and tem-

poral resolution the changes to chromatin inside living cells. Techniques such as 

chromatin Immunoprecipitation (ChIP), ChIP-chip, and other existing techniques 

have provided a wealth of important information, but have drawbacks in terms of 

sensitivity to small changes in protein occupancy, spatial resolution, and ensem-

ble averaging. Certain information can only be obtained via single-molecule (SM) 

analysis, such as seeing direct correlations between polymerases and nucleo-

somes on individual fibers or differentiating between some proposed models of 

chromatin remodeling (Boeger, Griesenbeck, and Kornberg 2008). 

To obtain this type of information, we are developing a single-molecule me-

thod for mapping polymerases and nucleosomes on chromatin based on optical 

tweezers unzipping of native chromatin molecules. It has been shown that SM 

DNA unzipping can map the positions of mononucleosomes assembled in vitro 

based on a repeatable nucleosome unzipping force profile (Shundrovsky et al. 

2006). We expect RNA Polymerase II (Pol II) complexes to also have a repeata-

ble unzipping force profile, but distinguishable from nucleosomes and perhaps 

also indicating the sense / antisense orientation of the Pol II. The Pol II data is 

not yet available, but if it is as expected, then we anticipate that SM unzipping of 
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native chromatin fragments (extracted from living cells) will provide high-

resolution mapping of nucleosomes and Pol II molecules (along with orientation) 

on individual chromatin fibers. 

 
Figure 2.2. Overview of proposed method for shotgun DNA and chromatin mapping. We have re-

cently achieved proof-of-principle results important for the “Global Genome Location,” part of the process 
(lower right). 

We may be able to obtain important information from high-resolution SM 

mapping on individual fragments, even if their specific location in the genome 

were unknown. For example, the electron microscopy analysis of chromatin and 

RNA transcripts has demonstrated the utility of SM information even when the 

identity of the genes was unknown (Sikes, Beyer, and Osheim 2002). However, it 

would be much more powerful and thus desirable to obtain high-resolution SM 

information about specific genes or other sites in the genome of interest. For ex-

ample, site-specific SM analysis may provide crucial insight into the issues of 

promoter-proximal Pol II pausing and antisense transcription which have recently 

been shown to be very important (Margaritis and Holstege 2008; He et al. 2008; 

Core, Waterfall, and Lis 2008; Muse et al. 2007; Zeitlinger et al. 2007; Buratowski 

2008; Core and Lis 2008). Thus, we are pursuing methods for site-specific SM 

analysis of chromatin. The first way we have tried to do this is by engineering 

unique restriction sites into the yeast genome (I-SceI) at a specific site. This has 

Figure 7.  Overview of proposed method for shotgun DNA and chromatin 
mapping.  We have recently achieved proof-of-principle results important 
for the “Global Genome Location,” part of the process ( lower right).
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proven difficult, and has the disadvantage of requiring genetic engineering of all 

mutant strains and cell types that will be analyzed. Thus, we are now pursuing a 

second way of achieving site-specificity which is to unzip random chromatin 

fragments in a high-throughput fashion, and then figuring out from which specific 

site of the genome it came. We call this shotgun chromatin mapping (SCM) and it 

based on a method for indentifying the genomic location of naked DNA frag-

ments (see Fig. 2.1). 

It has been shown that the unzipping forces for a known sequence of DNA 

can be accurately predicted by statistical mechanical models (Koch et al. 2002; 

Bockelmann et al. 2002). Furthermore, at this time many genomes have been 

published and the number is rapidly increasing. These two facts together led us 

to believe that the naked DNA experimental unzipping forces would allow us to 

identify the genomic location of random DNA fragments. We call this process 

shotgun DNA mapping (SDM). The basic procedure is to compare an unknown 

fragment's force data to a library of known possible fragments’ simulated un-

zipped force data. The fragment possibilities can be limited, for example, by di-

gestion with a site-specific restriction endonuclease. In a successful method, the 

experimental data will reliably match up the best with the simulation of its true 

sequence. The identify of a DNA fragment could be easily identified manually 

(“by eye”) from among a handful of possibilities, but it remains to be shown 

whether the simulations can be accurate enough for automated identification a 

fragment from the background of thousands of fragments expected from site-

specific digestion of genomic DNA. 
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In this paper, we show that SDM is possible. Specifically, we demonstrate 

that the modeling of the pBR322 unzipping forces is sufficiently accurate so that 

experimental data are successfully matched to the pBR322 sequence hidden in a 

background of the ~2700 XhoI fragments from the yeast genome. We explain our 

methods, show where to obtain our software and data, and discuss further poten-

tial improvements which indicate it will also be successful with much larger frag-

ment libraries. We feel this technique will be a key enabler of our goal of shotgun 

chromatin mapping. Furthermore, we envision other high impact applications, for 

example single-molecule structural genome mapping (Kidd et al. 2008) and new 

assays for screening protein binding sites by shotgun DNA mapping in the pres-

ence of purified proteins. 

Methods  

All computations below were carried out using a Dell duoCore running Win-

dows XP. Code was written in LabVIEW 7.1  

Experimental Single-Molecule Unzipping Data 

We obtained force (F) versus unzipping index (j) for 32 data sets of unzipping 

pBR322 from the published data of Koch et al. (Koch et al. 2002). Data were ob-

tained and analyzed with optical tweezers and unzipping constructs as de-

scribed. The format of these data sets is tab delimited text files, with the “Force 

(pN)” and “index (j)” columns used by us. The 32 raw data sets are available on 

http://kochlab.org . We used particular data sets which seem to have significant 

viscous drag due to high stretching rate. 
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Data were smoothed according to a sliding boxcar smoothing algorithm we 

implemented in LabVIEW. We used a 30 point window with equal weighting to 

each point in the window, and a window step size of j=1. Smoothed data sets 

were stored in text files of the same format as the simulated data (below) and will 

be available on http://kochlab.org or upon request. 

Extraction of Yeast Genome XhoI Sites 

We obtained the yeast genome (S. Cerevisiae) from yeastgenome.org. We 

downloaded a text file for each chromosome of the yeast genome. We wrote a 

LabVIEW application to do the following: 

 Read in a sequence text file 

 Eliminate white space and non-DNA base information 

 Search for XhoI recognition sites (CTCGAG) 

 For each recognition site two fragments were formed, 2000 base pairs be-

fore the site and 2000 base pairs after. These were stored as text files se-

quence only with a naming convention Chromosome Number/Recognition 

Site Index, Downstream or Upstream. These files will be available on 

http://kochlab.org. Upstream fragments are reversed so as to begin with 

the XhoI recognition site. 

 Additionally the pBR322 sequence used in Koch 2002 was manually add-

ed to the sequence library with a code name to blind it from the data ana-

lyzers.  

o The pBR322 fragment used for the experimental work was created 

from EarI digestion of the plasmid.  
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Creation of Simulation Library for Yeast XhoI Sites 

Methods for simulating unzipping of the above fragments was as in previous 

work by Bockelmann et al. with slight modifications (Bockelmann et al. 2002). 

Our Hamiltonian was: 

 total DNA FJCE E E  (2.1) 

where EDNA accounts for the energy of the base pairing, and EFJC is the mechani-

cal energy of the stretched ssDNA. This is simplified from the work of Bockel-

mann et al. (Bockelmann et al. 2002) by not including the optical tweezer energy. 

Further we ignored elastic energy from the dsDNA anchoring fragment used in 

the unzipping experiments (Koch et al. 2002). EDNA for a given j is the sum of Ei 

where Ei is (1.3 kBT for A-T or 2.9 kBT for G-C). Values for Ei were obtained from 

Bockelmann et al. (Bockelmann et al. 2002). EFJC for a given j and l is 

 
0

( ') '

F

FJCE xF x F dF

.

 (2.2) 

x(F) is the extensible FJC (MD Wang et al. 1997). We used FJC values from 

Koch 2002 (Koch et al. 2002). The integral was computed numerically. The F for 

a given x was found using Newton’s Method.  

We wrote an algorithm in LabVIEW to calculate expectation values for F, j, 

and the variance of each for a given DNA sequence and end to end length, l. The 

expectation values were calculated by simple sums over all possible j values 

(from 1 to the length of the sequence). Simulated F versus j curves were then 

generated by embedding this algorithm in a loop that stepped over varying val-

ues for l.  An automated process loaded each sequence and produced F versus j 

curves for all yeast XhoI fragments in the library. For this work, the expectation 
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values were calculated in steps of 1 nm from 1 nm to 2200 nm and sums over j 

from 1 to 2000. Simulation results were stored in text files, one file for each XhoI 

fragment and will be available from http://kochlab.org. 

Matching Algorithms 

We devised an algorithm that can produce a quantitative measure of the simi-

larity between two force versus j curves. We call this measure the match score 

(m), and it is derived from the standard deviation of the two curves in a given in-

terval. To compute m we used this formula: 

 
0 exp 2

2
( )

B

N
sim

i i

i

k T N
m

C
F F

 (2.3) 

where Fexp and Fsim are the experimental and simulated unzipping forces re-

spectively (as a function of j), kB is the Boltzman constant, T is temperature, and 

C0 is the single-stranded DNA contour length per nucleotide.  

We wrote a LabVIEW application to calculate the match scores for each ex-

perimental data sets against the entire simulation library. These results were 

stored in a LabVIEW array with each row being one experimental data set. For all 

match scores in this paper we summed from j = 1200 to j = 1700 in steps of 1. 

Choice of this window size and location is discussed below and was assisted by 

a repeatedly running this matching algorithm for various window sizes and loca-

tions. 

Robustness Analysis 

We created a histogram of all incorrect match scores (noise). Then the histo-

gram was fit to a Gaussian using OriginPro (OriginLab Corporation, Northhamp-
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ton, MA). A second histogram for all correct match scores was created, and also 

fit to a Guassian using the same algorithm. An estimate of the robustness was 

produced by comparing the difference of the means of signal to noise relative to 

the standard deviation of the noise.  

Results 

Experimental Single-Molecule Unzipping Data 

We smoothed 32 data sets for unzipping of an EarI fragment of pBR322. Ex-

amination of force versus unzipping index shows a noticeable increase in the un-

zipping force for j> 1000. This is due to a significant increase in the unzipping 

rate above j=1000, because the original purpose of these data sets (Koch 2002) 

was to probe protein occupancy, where an increased unzipping rate is desirable 

and a systematic shift in unzipping force is not an issue (Koch et al. 2002). 

Extraction of Yeast Genome XhoI Sites 

We found ~1350 XhoI sites in the yeast genome, which produced a library of 

~2700 upstream and downstream unzipping fragments. The entire search and 

extraction took only a few minutes on our platform. <10 XhoI sites were within 

2000 bp from the end of the chromosome, producing fragments less than the de-

sired 2000 bp. These fragments produced nonsense match scores, which were 

then discarded. Also, by chance, some XhoI sites were separated by less than 

2000 base pairs, and thus some fragments included XhoI recognition sequences. 

In an actual shotgun DNA mapping experiment, these XhoI sites could produce 

shortened fragments, depending on the level of completion of digestion. We did 
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not account for this effect in this paper. The resulting library (will be available on 

http://kochlab.org) included the hidden pBR322 fragment. 

Creation of Simulation Library for Yeast XhoI Sites 

The force (f) versus unzipping index (j) was simulated for every fragment in 

the sequence library from l = 1 nm to 2200 nm. Simulation of ~2700 files took 

approximately a few days on our computational platform. Examples of these si-

mulated curves can be seen in Fig. 2.2A and Fig. 2.2B. Simulations were stored 

in a library of tab delimited text files. 

 
Figure 2.2 Experimental unzipping data compared with (A) correct and (B) incorrect simulation. 

The green window indicates the region from j=1200 to 1700 where the match scores were computed. The 
greatly increased separation of the two curves in the incorrect match is reflected in the higher match score of 

0.8 versus 0.2 for the correct match. 

Matching Algorithms 

A key feature of the shotgun DNA mapping process is a mechanism for pro-

ducing a quantitative number comparing an experimental data set and an entry in 

the simulation library. We first attempted a cross-correlation algorithm (as in 

Shundrovsky 2006 (Shundrovsky et al. 2006), data not shown), which was unsa-

tisfactory due to the insensitivity of cross-correlation to vertical shifts. That is, the 

cross-correlation score does not change if the simulation forces are scaled by a 

factor of 10, for example. Because the unzipping forces reflect the energy of the 

DNA base pairing, which is directly related to the DNA sequence, absolute un-
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zipping force is an important factor in identifying an unknown fragment. Thus, we 

developed a method based on the standard deviation between the two curves, as 

described in the methods.  

Window Size 

The green box highlights the window over which the match scores were com-

puted (j=1200 to 1700). There were a number of reasons for choosing this win-

dow size and location. For some shotgun DNA mapping applications, it will be 

desirable to have the matching window as close to the initial unzipping sequence 

as possible. However our current implementation of the DNA unzipping simula-

tion does not account for the optical tweezers compliance, or the compliance of 

the 1.1 kilobases of dsDNA that was used to anchor the segment to the cover-

glass. This added compliance is critical in the initial unzipping region, where the 

length of single-stranded DNA is relatively low and thus much stiffer. Thus, we 

are not yet capable of using this region for our attempts. Furthermore, the data 

sets we are using have a discontinuous unzipping rate, switching at j ≈1000 from 

a slow unzipping rate with large data averaging to a fast unzipping rate with no 

data averaging. Thus, our window must lie on either side of this transition. Nei-

ther side is ideal (too much averaging for j<1000 and viscous drag for j>1000), 

which may demonstrate the robustness of our method. We chose j>1000 due be-

cause the large amount of averaging of the raw data during acquisition made the 

j<1000 data too unappealing. 

The ability to use a smaller window size is also desirable for shotgun mapping 

applications. We investigated the results of smaller window sizes and found that 
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smaller windows (for example 100 base pairs wide) produced results that were 

more dependent on the overall location of the window (results from poor to just 

as good as we show here, data not shown). In contrast, the 500 base pair win-

dow was relatively insensitive to location. We chose to use the 500 base pair 

window so that window location would not significantly affect our proof-of-

principle results. 

Shotgun Mapping Results 

Fig. 2.2A and Fig 2.2B show a comparison of the F versus j curves for the 

correct match as well as an incorrect match, respectively. By eye, it can easily be 

seen that there is a larger deviation between the two curves in the Fig 2.2B. This 

is reflected by the increased white space between the curves, and is effectively 

what our matching algorithm quantifies, with a score of zero reflecting a perfect 

match. For this particular data set, the match score was 0.2, and the mismatch 

shown produced a score of 0.8. 

The match scores for this experimental curve against the entire library are 

shown in Fig. 2.3. In order to prevent biasing our initial assessments of our me-

thod, we produced this figure blindly, with the identity of the correct match un-

known to the operator of the shotgun mapping application. We found that one 

match score fell far below the mean of all the match scores (5 sigma away), and 

was significantly lower than even the next best match score. At this point, we un-

blinded the file number of the correct match, the pBR322 simulation and con-

firmed that our algorithm successfully identified the experimental fragment, based 

on the criteria of best match score.  
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Figure 2.3. Compilation of match scores for a single experimental data set. The file number is an 

arbitrary, arising from the order in which the library simulations were loaded. A perfect match would have a 
score of zero, and the correct match can be seen as having the lowest score, very distinguishable from the 

incorrect matches. 

Robustness Analysis 

Fig. 2.3 shows successful shotgun DNA mapping for one of the experimental 

data sets. We repeated this for all 32 data sets and the correct match was the 

best score in every case. We did not find any instance of incorrect assignment for 

the window size and location we chose. (Some window sizes and locations pro-

duced failures.) To better visualize the robustness, we created histograms of all 

the scores for all the matches (N=32) and all the mismatches (N≈2700*32) and fit 

these histograms to Gaussian functions. These data are shown in Fig. 2.4., with 

the correct matches in blue and the mismatches in red. The integrated area of 

overlap between the two Gaussian fits is a small number, another indicator of the 

expected rate of false positives. The only overlap is in the tails of the Gaussians, 

a region where it is likely that the true experiments would significantly differ from 

a normal distribution, so this only provides an estimate of the true error rate. 

The robustness shown in Fig 2.4 is somewhat surprising, given the effect of 

viscous drag on the experimental unzipping forces. We found that the match 

scores relative to the mismatches was not much different for these data sets, 

compared to one data set we obtained without the viscous drag effect (data not 

shown). A possible explanation for this is that the pBR322 sequence has high 
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GC content in the comparison region, and thus a vertical shift of the data merely 

tends to shift both the correct matches AND the mismatches to higher values, 

without increasing the overlap of the two histograms shown in Fig. 2.4.  

 
Figure 2.4. Comparison of 32 match scores to all mismatch scores. Blue histogram represents the 

match scores for the 32 experimental data sets, while red histogram (will) represent all incorrect match 
scores. Solid lines are fits to the normal distribution. Overlap of the two distributions indicates probability of 

false positives. 

These results give us confidence that we will be able to perform SDM of yeast 

genomic DNA. It is in this application that we will use XhoI fragments, unlike in 

this proof-of-principle where we have used existing pBR322 unzipping data. The 

reasoning behind the use of published pBR322 is that the facilities for unzipping 

XhoI-digested yeast DNA is unavailable to us at this time. It is possible that the 

pBR322 sequence has special features that may cause us to overestimate the 

likelihood of success of the SDM method. We fell this is not likely the case for 

two reasons: (1) we do not see anything special in the pBR322 sequence by eye 

and (2) we obtained promising results from other experimental data, namely from 

pCP681 which is an unrelated, highly repetitive plasmid (data not shown). 

Future Improvements 

Based on our results, we expect SDM will work well for 6bp recognition sites 

in a genome the size of yeast. It is not clear how well it will work for shorter rec-

ognition sites or larger genomes, both of which will produce much larger libraries 
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(for example XhoI sites in the human genome). There are many independent 

avenues of optimization which gives us great confidence that this will work for 

these much larger libraries. These opportunities include: data acquisition, data 

processing, improved simulation algorithms and matching algorithms.  

One very promising avenue is to improve the simulation by including the base 

stacking interactions (SantaLucia 1998; Bockelmann et al. 2002) and elastic 

energy of the dsDNA anchor. These known systematic errors in the existing si-

mulation do not currently inhibit the function of the simulation. However, elimina-

tion of these errors will allows us to work with much larger libraries and matching 

windows much closer the initial unzipping point. 

Improving the matching algorithm is another promising and independent ave-

nue for optimization. Currently we have a simple algorithm based on the standard 

deviation between the two curves. There are clear opportunities to explore more 

advanced manipulations of the data in order to improve the signal to noise ratio. 

First, optical tweezers data can have slight length errors due to microsphere size 

variation, drift, or other causes. We can account for this possible shift in our algo-

rithm by allowing for stretching of the data sets. Next, we can develop an inde-

pendent match criteria that when combined with the current criteria dramatically 

increase the signal to noise ratio. This may include Fourier space manipulations 

such as cross-correlation which we found ineffective on its own but may add val-

ue in combination with the current match criteria. 
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Conclusions and Future Work 

SDM looks like a very promising avenue for a new mapping technique. We 

believe it may work with 6 base pair recognition sequences in yeast DNA. We 

also believe this technique can aid in telomeric studies since the repetitious na-

ture of telomeric sequence would be easy to identify using unzipping forces. We 

also may be able to quickly identify alternative spliced DNA sequences that can 

in turn be used to cancer research. Our initial idea of using SDM to study DNA 

replication devices in chromatin is a very exciting possibility. However, we first 

need to show that SDM works experimentally. In this regard we are attempting to 

digest yeast genomic DNA using XhoI. We then will attempt to identify cloned 

sequences from the genome as proof that SDM works. 
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Discrete State Model for Kinesin-1 with Rate Constants Modulated by Neck 
Linker Tension 

Lawrence Herskowitz and Steven Koch 

Introduction 

Kinesin is a family of motor proteins that catalyzes ATP hydrolysis and steps 

along a microtubule via a series of stochastic transitions (Cross et al. 2000; Cop-

pin et al. 1997; Svoboda et al. 1993). Kinesin-1 (herein referred to as simply “ki-

nesin”) is an often-studied member of this family. It has an essential role in ante-

rograde axonal transport (Muresan 2000; Nakata and Hirokawa 2003; Martin, 

Hurd, and Saxton 1999; Goldstein and Philp 1999; Goldstein and Yang 2000; 

Dennis, Howard, and Vogel 1999; Duncan and Goldstein 2006). Kinesin can walk 

about a micron along the microtubule in a second. It does this through a cycle 

that involves hydrolyzing one ATP per step. This stepping cycle has been probed 

extensively through many different experiments and tools including optical traps, 

analysis of chimera from different kinesin family members, Förster resonance 

energy transfer (FRET), and gliding motility assays (Ma and Taylor 1995; Adio et 

al. 2009; Block et al. 2003; Wagenbach, Coy, and Howard 1999; Gilbert et al. 

1995; Rosenfeld et al. 2002; Verbrugge, Lansky, and Peterman 2009). This has 

led to an understanding of the frequent transitions that under normal conditions 

the kinesin steps through in order to travel along the microtubule. Details of the 

ordering of the transitions are still debated. For example, the exact order of ATP 

binding and the mechanical step of kinesin moving forward are argued, and 

these steps are sometimes combined (Guydosh and Block 2006).  
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There are a couple of important characteristics of the kinesin stepping cycle. 

The first is that one ATP is hydrolyzed per step, providing energy for directed 

transport along the microtubule (Wagenbach, Coy, and Howard 1999; Schief and 

Howard 2001). Under normal conditions ATP binds to the head and is hydrolyzed 

into ADP and inorganic phosphate (Pi) which are then released. Another impor-

tant feature is that there is coordination between the two heads. The neck linker 

domains can transmit strain which is modulated by the nucleotide binding states 

of the two heads. This coordination allows for high processivity. Kinesin can walk 

hundreds of steps before detaching from the microtubule.  

The neck linker has been reported to be within a range of 14-15 amino acids 

(aa) long or 5.32-5.7 nm, assuming a contour length of .38 nm per aa (Shastry 

and Hancock 2010; Miyazono et al. 2010; Muthukrishnan et al. 2009; Yildiz et al. 

2008). The neck linker follows the C-terminal of the catalytic core (Hahlen et al. 

2006; Rice, Lin, Safer, CL Hart, Naber, Carragher, Cain, Pechatnikova, Wilson-

Kubalek, Whittaker, Pate, Cooke, Taylor, Milligan, and Vale 1999a). It is believed 

that coordination of the heads is assisted by a nucleotide dependent docking 

mechanism of the neck linker. When ATP or ADP-Pi is bound to the catalytic 

core, the neck linker will become more ordered and bind to the head while ex-

tending towards the plus end of the microtubule. This docking to the head occurs 

when a short amino acid sequence on the head denoted switch I chemically inte-

racts with the Pi (Rice, Lin, Safer, Hart, Naber, Carragher, Cain, Pechatnikova, 

Wilson-Kubalek, Whittaker, Pate, Cooke, Taylor, Milligan, and Vale 1999b; Sha-

stry and Hancock 2010; Sindelar et al. 2002; Vale and Milligan 2000a; Yildiz et 
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al. 2008; Muthukrishnan et al. 2009; Miyazono et al. 2010; Guydosh and Block 

2009). Conversely the neck linker is found in a less ordered or undocked state 

when the head is empty or bound to ADP. Though this docking mechanism has 

been extensively explored it is not known exactly how or if the neck linker coordi-

nates a long processive kinesin motion. 

Many researchers have developed models to explain kinesin’s processivity, 

force generation, and other physical aspects. These models include ratchet 

models (Fan et al. 2008; Z Wang et al. 2007; Astumian and Derényi 1999), elas-

tically coupled Brownian heads (Derényi and Vicsek 1996; Kanada and Sasaki 

2003; Peskin and Oster 1995; Shao and Gao 2006; Thomas et al. 2002), and 

discrete-state stochastic models(Shastry and Hancock 2010; Muthukrishnan et 

al. 2009; Gilbert, Moyer, and Johnson 1998a; Fisher and Kolomeisky 2001; Ko-

lomeisky and Fisher 1999; Liao et al. 2007; Gilbert, Moyer, and Johnson 1998b). 

While these models have produced invaluable insight into kinesin, there are still 

many unanswered questions especially concerning how the neck linker physical-

ly impacts kinesin’s behavior and how the behavior changes under various condi-

tions. 

In this paper we describe a discrete-state model of kinesin, analyzed by sto-

chastic simulation and analytical Markov chain theory. There are two aspects of 

our model that have not been typically included in prior work. First, we do not im-

pose strong restrictions on allowed transitions between states, even if these 

states are considered forbidden or rare. This allows us to analyze rare transi-

tions, in particular those leading to two-headed detachment. On the other hand, 
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our permissive model requires knowledge of many more rate constants beyond 

those on a core cycle. The second feature we include is a physics-based model 

of how the kinesin neck linker strain modulates rate constants. We model the 

neck linker as a worm-like chain (WLC) and use Kramers’ reaction rate theory to 

model force-based modulation of head binding and unbinding rates. We also in-

clude explicit chemical gating based on potential neck linker strain. 

In this paper we describe the numerous rate constants we used in our model 

and our methods for estimating or calculating unknown rate constants. The rate 

constants may serve as a useful review of existing published rate constants for 

kinesin-1. We demonstrate that our model produces results agreeing with many 

published experiments using both Monte Carlo and Markov chain analysis. Final-

ly, we explore how observables such as speed and processivity are affected by 

changing the neck linker length and thus the strain. The software applications 

presented have been written in LabVIEW 7.1 and are available as open-source 

on SourceForge at http://sourceforge.net/projects/herskowkinesin/files/. 

Methods 

Model Description 

As mentioned above, we have created a permissive model that allows for rare 

states and transitions and does not explicitly define a core cycle. The model is 

defined by a vector of possible two-headed states and a matrix of transition rates. 

An individual head can be either bound or unbound to the microtubule and can 

have four nucleotide states (ATP, ADP-Pi, ADP, or no nucleotide). We have li-

mited the nucleotide state to not allow binding of Pi by itself. We do this to reduce 
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complexity of the model and are motivated by the low concentration of Pi in solu-

tion and the lack of discussion of this state in the literature (Arnal and Wade 

1998; Kawaguchi and Ishiwata 2001; Vale and Milligan 2000b). Two-headed 

states can be defined as combinations of one-headed states. When both heads 

are bound, however, an additional property defines relative front/back position of 

the heads. When one or both heads are unbound, there is no front / back proper-

ty.  

This results in 80 unique two-headed states. The transition rate matrix has a 

size of 80 x 80, but with only 6 or seven potentially non-zero entries per row. This 

is because transitions are restricted to one chemical reaction or binding event at 

a time. For example, an ATP head can transition to an ADP-Pi head (hydrolysis) 

or an empty head (ATP release), but cannot transition to an ADP-only head, 

since that would require two simultaneous events: either ATP release followed by 

ADP binding, or hydrolysis followed and Pi release. This results in a sparse ma-

trix with 416 allowed transitions. Of these, there are 148 unique transitions. 

These rate constants are the core of the model. In the following sections, we dis-

cuss our methods for obtaining these rate constants, which includes the litera-

ture, mechanical and chemical gating, and empirical fitting. In supplemental table 

S1 located at 

http://openwetware.org/wiki/User:TheLarry/Notebook/Dissertation_Files#Rate_C

onstant_File we provide a list of all the transition rates we used for the data 

shown in this paper. When available, we provide the published range and when 

necessary our reasons for the value we have used. 
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Use of Published Rate Constants 

The first thing we did was to perform an extensive search of the literature for 

well-accepted published rate constants. Since kinesin is well studied, we were 

able to find rates for many of the transitions (Bustamante et al. 2004; Carter and 

Cross 2005; Carter and Cross 2006; Fan et al. 2008; Farrell et al. 2002; Gilbert, 

Moyer, and Johnson 1998a; Gilbert et al. 1995; Hackney 1996; 1988; Hancock 

and Howard 1999; Hyeon, Klumpp, and Onuchic 2009; Imafuku, Thomas, and 

Tawada 2009; Kaseda, Higuchi, and Hirose 2003; Liu, Todd, and Sadus 2005; 

Ma and Taylor 1997; Rosenfeld et al. 2003; Rosenfeld et al. 2002; Schnitzer, 

Block, and Visscher 2000; Shao and Gao 2006; 2007; Thorn, Ubersax, and Vale 

2000). Of the 148 unique rate constants 64 were taken from literature. This num-

ber does not account for the 8 inorganic phosphate release rates explained in the 

Empirical Fitting section below. 

Hancock et al. hypothesized that rate constants for a singly-bound head are 

similar to those for monomeric kiensin constructs ( Hancock and Howard 1999). 

We used this reasoning for 12 unique transition rates extracted from the literature 

(Fan et al. 2008; Gilbert, Moyer, and Johnson 1998b; Ma and Taylor 1997b; 

Cross 2004). This included the nucleotide-dependent head unbinding rates that 

are used to set the values of k0 in equation 3.2.  

Besides the inorganic phosphate release rates described below, we set the 

rate constants within the published ranges we found. We did not pick the center 

of these ranges, but instead made some adjustments to produce results for run 

length and run time that agreed with predictions. Unfortunately we did not record 

our exact method for doing this during the initial phases of our research, so we 
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cannot describe it completely here. In many cases, we agreed with a specific ref-

erence, and in Table S1 we so designate these rate constants. However, we 

cannot state our specific reasons for choosing the particular reference. 

Neck Linker Modulation of Rate Constants 

Using an extensible WLC model, we can approximate the tension in the neck 

linker in different docking configurations. Calculating this tension allows us to 

modulate the rate for a bound head to detach from the microtubule using the Bell 

equation (Bell 1978). It also allows us to calculate the rate at which an unbound 

head can bind to the next and previous binding sites. These two rate modulation 

methods are explained in the Mechanical Strain Gating section. Finally, we hypo-

thesize that when the tension in the neck linker is great, switch I would not be 

able to bind to the inorganic phosphate, thus the neck linker would not be able to 

dock. This prevents a bound head from entering a docked state which increases 

the nucleotide release rate. This is explained in the Chemical Strain Gating sec-

tion. 

Mechanical Strain Gating 

We model the neck linker as an extensible WLC. The following interpolation 

equation describes the relationship between the force and the extension of a 

WLC (M Wang et al. 1997)  

 
2

0 0 0 0

1 1
(1 )

4 4B

FP x F x F

k T L K L K
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where F is the force in pN, x is the extension length in nm, P=0.8 nm is the per-

sistence length (Miyazono et al. 2010; Z Wang et al. 2007; Hariharan and Han-

cock 2009), kBT=4.1 pN-nm is the thermal energy, K0=1000 pN is the stretch 
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modulus (Cui and Bustamante 2000; Van Leeuwen 2006), and L0 = N*0.38 nm is 

the contour length, dependent on the number of undocked amino acids (N). We 

use N=26 as the number of amino acids in the two fully-undocked neck linkers of 

the dimer, for L0 = 9.88 nm. The 13 amino acid length of a single neck linker is 

within the published range, 12-17 aa (Shastry and Hancock 2010; Miyazono et 

al. 2010; Muthukrishnan et al. 2009; Tomishige, Stuurman, and Vale 2006; Kik-

kawa 2008; Asbury 2005), of neck linker lengths. We use this model, as opposed 

to a hookean approximation because the hypothetical forces encountered from 

the various docking states are well outside of the low-force linear regime. 

When one of the neck linkers goes from an undocked to a docked configura-

tion, two parameters change. First, the number of free amino acids between the 

two kinesin heads changes by the amount of docked amino acids. This number is 

debated; for this work, we use 10 amino acids (Sindelar et al. 2002; Vale et al. 

2000; Case et al. 1997)The second parameter that changes is the position of the 

attachment of the free amino acid chain to the kinesin head. We use a highly-

simplified one-dimensional model for the docking and assume that the attach-

ment position shifts towards the plus end of the microtubule by the number of 

amino acids multiplied by the contour length per amino acid. This effectively as-

sumes that there is enough binding energy to stretch the neck linker to its con-

tour length, a force of about 109 pN for the WLC parameters we use. If both 

heads are bound, neck linker docking or undocking either reduces or increases 

the strain between the two bound heads, depending on whether the change in 
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docking state occurs in the front or rear head. See Figure 3.1 for the strain forces 

in the various docking states.  

The mechanical strain affects our model in two ways. The first is by modulat-

ing the rate constants for head unbinding from the tubulin binding site. Strain in-

creases the unbinding rate exponentially according to the Bell equation (Bell 

1978). 
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where k0 is the unbinding rate with no force applied, l is the distance from the un-

bound equilibrium position to the position at its binding site, and  is the distance 

from the binding site to the transition state.  has been measured experimentally 

to be 2.5-3 nm (Block et al. 2003; Block 2007; Kawaguchi, Uemura, and Ishiwata 

2003) and we use 2.5 nm in this work. We assume that  is the same whether 

force is applied by the neck linker or an external force probe, and that it is con-

stant over the force range. Figure 3.1 shows the unbinding rate increase factors 

for the various docking states. We were able to calculate 32 unique detaching 

rates using equation 3.2. 

The second way neck linker strain affects rate constants is by modulation of 

the rate of head binding to tubulin binding sites. We first made the assumption 

that when the head detaches from the microtubule it does not rebind before 

quickly finding an equilibrium position over the bound head. This rate of reaching 

equilibrium can be estimated from the Smoluchowski equation and the WLC 

forces. It is of the order of 109 s-1 and rapid enough to ignore in our model. Neck 
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linker docking of the heads affects the equilibrium position of the undocked head 

relative to its forward and backward tubulin binding sites, as illustrated in Figure 

3.2. The equilibrium position affects the rate constant for binding to the forward or 

backward binding site. We model this landscape as a WLC potential coupled with 

an absorbing potential, which creates a cusp. The minimum of the energy land-

scape is placed at head equilibrium location. Hanngi, et al. 1990 (Hänggi and 

Borkovec 1990) reports the rate for a particle to escape a cusp shaped barrier. 

 0''( )
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In the previous equation cuspk  is the escape rate to get over the barrier, D is 

the diffusion constant, )('' 0xU  is the second spatial derivative of the energy land-

scape evaluated at the energy minimum, and bE  is the cusp barrier height. In this 

case bE  is the energy of the WLC at the distance to the binding site. The dis-

tance of the cusp from the equilibrium position is equal to the distance to the for-

ward or backward binding site from the equilibrium position. Thus, the magnitude 

of bE  depends strongly on the docking states of the bound and unbound heads. 

It is worth noting that this equation depends strongly on bE  and less on the cur-

vature at the equilibrium position, but does not depend on the energy potential 

after the cusp. In addition to the assumptions already described, we also explicit-

ly assume that there is no reduction in binding rates due to configuration of the 

binding interfaces, for example, rotation of the head relative to the binding site. 

That is, binding to the microtubule is instantaneous once the head diffuses a dis-
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tance equal to the distance from the binding site. Using equation 3.3 we were 

able to calculate 32 unique stepping/binding rates. 

 
Figure 3.1. Docking configurations for the two head bound states and their associated tension, 

neck linker contour length and extension, and head detachment rate enhancement factor. Color cod-

ing indicates nucleotide state of the head: white no nucleotide, red ATP, purple ADP-Pi, blue ADP. There are 
a total of four possible docking configurations for two head bound states. These are seen in the “Unre-

stricted Configuration” column. We modeled the neck linker using an extensible worm-like chain, Equation 
3.1, with a persistence length of 0.8 nm, thermal energy value of 4.1 pN-nm, elastic modulus of 1000 pN/nm, 

and a varying neck linker contour length and extension. After calculating the tension in each unrestricted 
configuration we came to the conclusion that the neck linker could not stably dock in the front head when 
there is a high force pulling backwards as seen in the undocked/docked and docked/undocked configura-
tions. Though not shown in the table the neck linker contour length and extension for undocked/docked is 

6.08 nm and 12.0 nm respectively. For docked/docked the parameters are 2.3 nm and 8.2 nm respectively. 
Thus in our model prohibitive tension causes the front head to be in an undocked state regardless of nucleo-

tide status. The changes this has on the configurations can be seen in the column labeled “Configuration 
used in model”. The first two rows are allowed while the last two rows show prohibited front head docking. 
The resulting tensions from the actual configurations used are shown in the fourth column. Finally the un-

binding rate enhancement factor, r, which is the ratio of the kinesin’s head detachment rate with the tension 
compared to the rate with no force applied (calculated using Equation 3.2) is shown in the last column. 
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Figure 3.2. Forward and backward binding rates for an unbound head for differing two-headed 

docking configurations. When a head detaches from the microtubule it quickly finds an equilibrium posi-

tion over the bound head. This is because the tension in the neck linker is a minimum in the least extended 
position. The four different two-headed docking configurations are shown in the table. Unlike Figure 3.1, all 
docking configurations are allowed, since only one head is bound and there is no neck linker tension. This 
equilibrium position is the minimum of a potential energy landscape determined by the worm-like chain be-
havior of the flexible (undocked) portions of the two neck linkers. To model binding, we placed a cusp at the 
location of the forward and backward binding sites as seen in the “Energy Landscape Diagrams” row. Even 
though each landscape should have two cusps, in most cases the energy becomes exceptionally large and 

effectively prohibits binding in a direction, forward or backwards. The rates for reaching the forward and 
backward binding sites are computed using Equation 3.3 using a diffusion constant of 5.05x10

8
 nm/s

2
, 4.1 

pN-nm thermal energy, and the same parameters for the worm-like chain mentioned above. Eb is the energy 
value from the worm-like chain potential at each binding site. When the contour length is too short or the 

distance to the binding site too large, the rate for reaching a binding site effectively becomes zero. Note by 
putting a cusp at the binding site, we are modeling binding as immediate if the molecule reaches that exten-
sion. This is the simplest model, and we do not account for the need for correct 3-D orientation of the bind-

ing sties or other factors. Color coding and neck linker representation same as in Figure 3.1. 

Chemical Gating 

In addition to head binding and unbinding rates, neck linker docking may also 

affect nucleotide binding stability. ADP binds more weakly to the head than ATP 

or ADP-Pi (Carter and Cross 2006; Cross 2004). This could be due to stabilizing 

interactions between the switch I and the inorganic phosphate (Kikkawa et al. 

2001). 

According to the parameters used above in Figure 3.1, the tension in the neck 

linker when an undocked head is bound behind a bound docked head would be 
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1041 pN, and when both bound heads are docked the tension is increased to 

2631 pN. Such high tensions in the neck linker and consequently on the switch I, 

would likely prohibit the switch from binding to the inorganic phosphate thus the 

neck linker would not be able to dock to the head. Because it is highly unlikely 

that there is enough binding energy to sustain this force we make the assumption 

that these docking configurations are forbidden, and therefore the inorganic 

phosphate cannot bind to switch I. Because of this, binding of ATP is not stabi-

lized and its unbinding rate from the kinesin head is the same as ADP’s unbind-

ing rate. In most cases, our gating of the nucleotide unbinding rate is in contrast 

to much chemical gating literature, where gating modulates the nucleotide bind-

ing rate (Guydosh and Block 2006; Muthukrishnan et al. 2009; Shastry and Han-

cock 2010). In some cases, we use specific published rate constants which may 

imply strong chemical gating of nucleotide binding rates. For example our ATP 

binding rates of 3 Ms-1 when the empty head is in front and 0.3 Ms-1 when the 

empty head is in back (Shao and Gao 2006). 

Empirical Fitting of Inorganic Phosphate Release Rates 

Without changing the rates of inorganic phosphate release well outside of 

published experimental ranges, we were unable to produce results that matched 

expected run time and run length. This same problem was encountered by the 

model of Muthurkrishnan et al. (Muthukrishnan et al. 2009) and Shastry et al. 

(Shastry and Hancock 2010). The literature reports a range of 13 to 100 s-1 (Gil-

bert, Moyer, and Johnson 1998a; Farrell et al. 2002; Shao and Gao 2007; Liu, 

Todd, and Sadus 2005). However, release of inorganic phosphate must occur 
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during every productive hydrolysis cycle, which occurs at a rate of 100 s-1. Shas-

ta et al. point out that this is incongruous with such a low rate of phosphate re-

lease. They empirically adjust their rate to 250 s-1 for the step of bound/ADP-Pi in 

back of a bound/empty head (Shastry and Hancock 2010). We arrived at a simi-

lar conclusion and needed to adjust our rate to 250 s-1 for all of the release rates 

except when ADP-Pi is behind an undocked head. For the cases of an ADP-Pi 

head bound behind a bound ADP or empty head, we used a Pi release rate of 25 

s-1. This is in range of published rate constants but we don’t have a structural 

reason for using the published range for only these particular constants. Howev-

er, we found that if the rate constant for phosphate release behind an ADP head 

were also 250 s-1 it would frequently enter the ADP/ADP state, which leads to a 

reduction of processivity. We use 25 s-1 for phosphate release behind the empty 

head as well, reasoning that the chemical gating should be the same for both 

cases. In the case of Shastry et al. (Shastry and Hancock 2010), they only con-

sider phosphate release from behind a bound empty head. For consistency, we 

kept the inorganic phosphate release at 25 s-1 when in back of an empty head, 

even though it didn’t affect our run time or length. 

Agent-Based Stochastic Simulation 

We used an agent-based implementation of the model for stochastic simula-

tion (Gillespie et al. 2009; Gillespie 1976). Each kinesin head is an agent identic-

al to the other head and handled independently. Each agent is a state machine 

with 8 states—bound or unbound in each of the 4 nucleotide states. We initially 

thought this would reduce the complexity of the simulation, using a state machine 
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with only 8 states instead of 80 if we considered both heads at once. However 

the need to modulate rate constants based on the state of the partner agent re-

quired many nested case structures for each state, and thus we did not realize a 

gain in simplicity. Identical results should be obtained with an 80 state machine, 

but we did not attempt to show this. As an example, Figure 3.3 shows the possi-

ble transitions from a bound/ATP head with an unbound/ADP head. The ATP 

head can unbind from the microtubule, hydrolyze to form ADP-Pi, or release ATP. 

The other head can release ADP, bind behind the ATP head, capture inorganic 

phosphate, or bind in front of the ATP head. The most likely transition is for the 

unbound head to bind in front of the ATP head. The ATP head has a binds rela-

tively strongly to the microtubule so it is unlikely to unbind from the microtubule. 

While hydrolysis is fast and expected in other two headed states, in this case it is 

three orders of magnitude slower than the forward stepping rate. The same is 

true for ATP release from the bound head. ADP is strongly attached to an un-

bound head (Cross 2004). Inorganic phosphate is unlikely to bind to the unbound 

head with its extremely low concentration, and it is unlikely for the unbound head 

to bind to the previous binding site since it has to travel 12.0 nm as opposed to a 

4.4 nm distance to the next site. This makes a huge difference in the rate of for-

ward or backward binding as seen in Figure 3.1. 

We used a Monte Carlo method to determine which path the kinesin will take 

from the current state. A random number, rand, between 0 and 1 is chosen and 

converted to an exponentially distributed time, ti, according to the following equa-

tion, 1 ln( )
ikit rand , where ik  is the rate constant for the ith transition. The sys-
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tem is moved to the state according to the transition with the shortest time (Gil-

lespie 1976). The process is repeated for the new state, with new rate constants. 

If the transition is a head unbinding or binding event, then the stalk position 

moves forward or backward according to neck linker docking configurations.  

For the work reported here, each single run starts with the system in unbound 

ADP with a bound ATP, and ends when both heads are unbound simultaneously. 

The states of the heads, stalk positions, and cumulative time are recorded for 

each transition. Most reported results are the result of an average of 1000 indi-

vidual runs per condition. This application is called Kinetic Monte Carlo.exe 

available at http://sourceforge.net/projects/herskowkinesin/files/. 

 
Figure 3.3. Permissive model transitions from an ATP head bound to the microtubule and an 

ADP head unbound (top, middle). Color coding indicates nucleotide state of the head: white no nucleotide, 

red ATP, purple ADP-Pi, blue ADP. Rates are in units of inverse second and are described in the text. The 
most likely transition is forward binding of the ADP head, due to the docked neck linker (black horizontal 

line) on the ATP head 

Markov Analysis 

Using a kinetic Monte Carlo technique is the simplest way to analyze this 

model, and it allows for measuring the variance of observables. Complementary 

and exact solutions for average run length, most frequented states, most proba-

ble transitions, run time and other observables can be obtained from Discrete 
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Time Markov chain (DTMC) and Continuous Time Markov chain (CTMC) theo-

ries. 

DTMC 

To calculate run length we analyze the DTMC that is embedded in the full 

CTMC. The embedded DTMC is calculated through 
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where iiq  is the transition rate from state i to state j (Stewart 1994). The diagonal 

terms are 0 since the state cannot make a transition from state i to itself. We use 

the DTMC instead of the CTMC because we are only interested in the number of 

steps taken. It is simpler to use DTMC for this purpose since we are not interest-

ed in the time it takes which would require CTMC modeling.  

To compute the average distance the kinesin travels, we first needed to cal-

culate the probability that the system will return to the any state after n steps. 

This probability is expressed by 
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( )n

ijf  is the probability that the first time the system enters state j after starting in 

state i is after n steps. ( )n

ijp  is the i,j element of the embedded DTMC raised to the 

nth power (Stewart 1994). So to calculate the probability that the system will ever 

transition into state j we use equation 3.6. 
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Thus *ii
f  is the probability of starting in state i and ever transitioning to state i*. i* 

is the same state as i but with the opposite head in front. *

( )n

ii
f  is the probability to 

transition to the i* n times (Stewart 1994). We made the assumption that each 

time the system travels from i to i* the kinesin took a step. Thorn et al. reported a 

99.3% chance of finishing a cycle after starting (Thorn, Ubersax, and Vale 2000). 

For the rate constants used in this report, DTMC analysis also showed a 99.3% 

chance of cycle completion. 

DTMC analysis also allows calculation of the most-visited states and the 

most-popular transitions. First the probability matrix needs to be rewritten in ca-

nonical form. If there are b absorbing states (states where both heads are de-

tached) and m transient states then the probability matrix takes the canonical 

form of 

 
0

S R
P  (3.7) 

where S is an m by m matrix, R is an m by b matrix, 0 is an b by m zero matrix, 

and I is an b by b identity matrix. In our model there are 16 absorbing states 

(b=16) and 64 transient states (m=64). The fundamental matrix, N, is calculated 

by  

 
1( )N S  (3.8) 

where the superscript -1 denotes the inverse of ( )S . The elements of the fun-

damental matrix nij is the average number of times the system is in state j if it 
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started in state i. N, and P are used to calculate the most frequented states 

(Grinstead and Snell 1997).  

To calculate the most popular transitions we take nij and multiply it by the 

probability, pjk, to go from state j to state k. This allows us to find the average 

number of times each transitional step is taken. 

Finally, we can use the R matrix to calculate the most probable absorbing 

state (completely detached state).  

 D NR  (3.9) 

where D is a matrix whose elements dij is the probability for a system whose ini-

tial state, i, will be absorbed in state j (Grinstead and Snell 1997). 

CTMC 

To calculate run time we used continuous time Markov chain (CTMC) analy-

sis, since we needed to consider the time spent in each state. We first created 

the infinitesimal generating matrix, Q, out of the transition rates. The off-diagonal 

elements qij are the transition rates from state i to state j. The diagonals qii are 

calculated as 

 ii ij

i j

q q  (3.10) 

and represent the rate of staying in state i. Q was then used to create the diffe-

rential equation: 

 
( )

( )
dP t

P t Q
dt

 (3.11) 

where ( )P t  is a matrix whose elements ( )ijp t  are the probability that starting in 

state i the system is in state j at time t (Stewart 1994).  
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The solution to this differential equation is  

 ( ) (0) QtP t P e  (3.12) 

where (0)P  is the initial state. This can be more simply evaluated using the ei-

genvalues and eigenvectors so that the solution is: 

 
1( ) (0) tP t P Ae A  (3.13) 

where A is an eigenvector, A-1 is its inverse, and  is its eigenvalue matrix. This 

has the advantage of it being simpler to calculate the exponential of a diagona-

lized matrix. 

To calculate the run time, we looked at the probability of finding the system in 

a detached state as a function of time. There are 16 unique detached states; 

however both heads unbound with ADP is by far the most common, detaching by 

this route over 99.96% of the time. Thus it is a good approximation to consider 

only the probability of ending in the two-head unbound ADP state. 

Using DTMC and CTMC analyses to probe other characteristics from this col-

lection of transition rates proved to be increasingly complicated and difficult. The 

simplest and thus more convincing method is to use the stochastic simulation, 

though Markov chain analyses are quicker. However it is important to note that 

analytical Markov chain analyses may be useful for future work, including analy-

sis of variance via maximum caliber methods (Stock, Ghosh, and Dill 2008; 

Ghosh and Dill 2006). All software used to analyze the data is called Markov 

Chain Analysis.exe available at 

http://sourceforge.net/projects/herskowkinesin/files/. 
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Extracting Velocity and KM from the Kinetic Monte Carlo Simulations 

 
Figure 3.4. Example of distance versus time (red trace) for a single stochastic simulation. The li-

near least squares fit is shown as blue line and has a slope of 1187 nm/s. 

To calculate velocity for a given run, we chose to use the best fit slope of the 

position versus time data, using least-squares fitting in LabVIEW 7.1. Seen in 

Figure 3.4 is an example of this best fit line over a single processive run. A group 

of 1000 runs will produce a spread of measured speeds as shown in Figure 3.5. 

We used a kernel density estimation (KDE) method to approximate the underly-

ing probability density function (PDF) for that group of speeds (Silverman 1986). 

The peak of this PDF was used as the resultant speed for that set of conditions. 

For example each data point in Figure 3.8 is produced from the peak of the PDF 

for one hundred individual runs at a given set of conditions. KDE is an alternative 

to histogram methods for estimating PDFs. KDE is performed by summing up a 

kernel function centered at each data point, or mathematically written as 
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where h is a smoothing parameter called the bandwidth, xi are the data 

points, and ix x
K

h
 is the kernel function. We used the standard Gaussian 

kernel: 
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Figure 3.5 shows an example of the PDF produced from the KDE of 1000 

speed measurements. For this work we used a high bandwidth of 200 nm/s be-

cause we are only concerned with finding a single peak as opposed to looking for 

speed changes or pauses. Smaller bandwidths sometimes produced multiple 

peaks which are not desirable for our purposes here. The higher bandwidth pro-

duced a larger spread than was intrinsic to the data, as seen in Figure 3.5. 

 
Figure 3.5. Speed for 1000 individual stochastic simulations (red crosses) and kernel density es-

timation (KDE) for speed probability density function (PDF, black curve). Each individual speed is the 

least squares fit slope of an individual run (see Figure 3.4). For KDE a bandwidth of 200 nm/s was used, in 
order to ensure a single peak in the PDF (see methods). 

To calculate the Michaelis-Menten constant we best fit the speed versus con-

centration data using Igor Pro 5.05A (WaveMetrics Inc., Portland, OR) to 

 max[ ]
([ ])

[ ] M

v ATP
v ATP

ATP K
,

 (3.16) 

and we extract Km, the Michaelis-Menten constant. maxv  is the maximum velocity 

the kinesin reaches at saturating ATP concentrations. Igor Pro 5.05A uses a Le-

venberg-Marquardt algorithm to best fit the curve. 

Extracting Observables from Markov Analysis 

To calculate the expected run time and run length, we used the relation: 
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where x is either the run time or the run length parameter and P(x) is the proba-

bility density function from Markov theory. We evaluated this numerically with a 

dx of 8.2nm or .001 s. 

Software for this Analysis 

We used three different custom programs to produce the data seen in this 

paper. The workings of these programs have been discussed above. The names 

and summaries of their duties are listed below: 

 Kinetic Monte Carlo 

o Allows the user to perform kinetic Monte Carlo simulations with 

prescribed rate constants. 

 Analyze Simulations from Kinetic Monte Carlo Simulations 

o Analyzes a grouping of kinetic Monte Carlo simulations and ex-

tracts (all the following quantities are averaged over the group) run 

time, run length, ATP/step ratio, speed, most probable states, most 

probable transitions, most probable detached states, and view indi-

vidual runs. 

 Markov Chain Analysis 

o Uses Markov Chain theory to analyze prescribed rate constants. 

This software calculates run time, run length, most probable states, 

most probable transitions, most probable dethatched states, and 

creates the transition matrix. 
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These are provided as open sources at 

http://sourceforge.net/projects/herskowkinesin/files/. A tutorial video created by 

CamStudio is also available at this site called Kinesin Model Tutuorial. 

Results 

Reproduction of Widely-Accepted Experimental Results 

Except when stated otherwise, the following parameters were used for all re-

sults reported below: 1000 micromolar ATP concentration, 100 micromolar ADP 

concentration, 0.1 micromolar Pi concentration, 8.2 nm tubulin dimer spacing, 4.1 

pN-nm kBT value. Neck linker properties are described in the methods. All ana-

lyses were started with the same initial state of bound ATP with an unbound ADP 

head. 

As described in the method section, we adjusted some rate constants and 

neck linker properties to match correct run time and run length values. Figure 3.6 

shows the histogram of the run length created from the kinetic Monte Carlo simu-

lation in red with the function predicted by DTMC in black. The average run 

length of 1,298 nm is close to the range of published values of 600 to 1,200 nm ( 

Vale et al. 1996; Thorn, Ubersax, and Vale 2000).  

 
Figure 3.6. Processive run length results. A histogram of run length for the 1000 stochastic simula-

tions is shown in red, while the calculated run length probability from DTMC is shown in black. The expected 
run length from DTMC is 1,298 nm and close to the published range of experimental averages. 
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The run time seen in Figure 3.7 has an average value of 1.31 s which is with-

in the published range 0.75 to 2.89 s (Thorn, Ubersax, and Vale 2000; Ver-

brugge, Lansky, and Peterman 2009). The CTMC curve in black shows a sharp 

increase at 0 time. This is because kinesin cannot detach instantaneously from 

the initial state, but needs to cycle through other states before it can detach. We 

calculated a velocity of 1080 nm/s which is close to the range of the accepted 

experimental speed of 600- ~1,000 nm/s (Hunt, Gittes, and Howard 1994; Guy-

dosh and Block 2009; Shastry and Hancock 2010).  

 
Figure 3.7. Processive run time results. Histogram of run time for 1000 stochastic simulations (red) is 

shown, along with calculated frequency from CTMC (black). The CTMC curve shows a minimum at zero 
time because more than one transition must occur to reach the most likely detached state (ADP bound to 

both heads), given our starting state (ATP head bound to MT, ADP head detached). 

After setting rate constants and neck linker properties, we found that the ATP 

coupling ratio and ATP Michaelis-Menten constant were also in acceptable 

range. From the 1000 runs used in Figures 3.6 and 3.7, we found a ratio of ATP 

consumed to step taken of 1.03, and a ratio close to 1 is generally accepted 

(Schnitzer and Block 1997; Hua et al. 1997). To calculate the Michaelis Menten 

constant, we performed 100 simulations at each ATP concentration from 0 

micromolars to 1,000 micromolar in variable increments. We computed the speed 

for each concentration, producing the Michaelis-Menten curve shown in Figure 
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3.8. The best fit Michaelis-Menten constant, Km, was 37.6 M, within the pub-

lished range of 13-60 M (Schnitzer and Block 1997; Hua et al. 1997; Verbrugge, 

Lechner, Woehlke, et al. 2009; Verbrugge, Lansky, and Peterman 2009).  

 
Figure 3.8. Speed versus ATP concentration from stochastic simulations. Each speed point (red 

curve) is the most likely speed found from kernel density estimation of 100 individual stochastic simulations. 

The blue curve shows the best fit to the Michaelis-Menten relation, with a KM of 37.6 M and a vmax of 1117 

nm/s. This KM is in the range of published experimental measurements. 

Most Probable State for Complete Detachment 

Using DTMC, we found a 99.96% chance of two-head detachment occurring 

with ADP bound to both heads. This result is not surprising since an ADP bound 

head has the weakest attachment to the microtubule (Asenjo, Weinberg, and So-

sa 2006). 

 

Core Cycle 

One of our goals when developing this model was to see which core cycle(s) 

emerged constrained as much as possible by neck linker physics and published 

ranges without removing any possible states. Figure 3.9 shows the core cycles 

we found using the rate constants described here. We only include transitions 

that occur at least 10 times per processive run as computed from DTMC. None of 

the three ATP-turnover cycles seen in Figure 3.9 are the most common cycle de-
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scribed in the literature, which involves an ADP head bound behind an empty, 

followed by ADP head unbinding and ATP binding to the empty bound head. A 

likely reason for this is that we do not inhibit ATP binding to the front head, re-

gardless of docking state of rear head (Guydosh and Block 2006; Muthukrishnan 

et al. 2009; Shastry and Hancock 2010; Guydosh and Block 2009). This allows 

for states seen in the center and right of the figure, ATP-ATP and ADPPi-ATP. In 

our model we did not forbid these states, we only forbid neck linker docking of 

front head in these states as described in methods. The outer cycle in Figure 3.9 

is similar to Shastry 2010 (Shastry and Hancock 2010), which includes allows 

ATP binding to the ADPPi - empty state. However, other differences remain.  

 
Figure 3.9. Most probable transitions resulting from our unconstrained model. For the main rate 

constants we used, we found the most likely transitions show here. Arrows indicate direction of transition. 
We only show transitions that occur at least an average of 10 times per processive run, as calculated by 

DTMC. Three core cycles can be seen in the picture, all proceeding clockwise. None of these are the cycle 
most commonly described in the literature, though we can recover that cycle by constraining the ATP bind-

ing to front head (marked by stars) as seen in Figure 3.10 and described in text. The nucleotide binding 
state of the heads are represented by color: white for no nucleotide, red for ATP, purple for ADP-Pi, blue for 

ADP. The neck linker is represented by the black lines, and docking is indicated by a straight horizontal 
segment, while undocked is curved upwards. 

If we include strict front-head gating of ATP binding in our model, we can re-

cover the more popular core cycles. When we reduced front head ATP binding 

drastically we found the core cycle shown in Figure 3.10. The rate constants we 

used for this core cycle can be found along with the open source software at 

http://sourceforge.net/projects/herskowkinesin/files/ called front “head gating rate 
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constants 2.dat”. In order to get run length (514 nm) and run time (.92 s) in the 

correct range we needed to change the inorganic phosphate release in back of a 

bound empty head to 250 s-1. 

 
Figure 3.10. Most likely transitions after addition of front head gating of ATP binding. Only transi-

tions that occur an average of 10 or more times per processive run (as calculated by DTMC) are shown. In 
contrast to Figure 3.9, here the rate constants for binding of ATP to the front head was forbidden if the rear 
head is in the ATP state. This is sometimes referred to as front head gating of ATP binding. In addition to 
reducing these rate constants close to zero, we also increased a rate of phosphate release to produce a 
reasonable run length and time (marked with STAR on figure, see text). Color coding and neck linker repre-
sentation same as in Figure 3.1. 

The core cycle for the low ATP and ADP case follows the same cycle as the front head gating except 
the unbound ADP head more frequently rebinds behind the empty head in the low concentration case. This 
is shown with the red arrow. Only transitions that occur an average of 10 or more times per processive run 

(as calculated by DTMC) are shown. 

We also recovered popular core cycles by lowering the ATP and ADP con-

centrations but otherwise keeping the conditions similar to reported above. We 

lowered the ADP concentration because the processivity was too short with the 

100 micromolar concentration we used for the other calculations and it is difficult 

to report a core cycle when the molecule does not take processive steps. With an 

ATP and ADP concentration of 3 micromolar, we found the core cycle seen in 

Figure 3.10. It is very similar to the case of front-head gating, except the unbound 

ADP head with the bound empty head more frequently rebinds behind the empty 

head (red arrow). 

However, it was not our intention to reproduce the core cycle by modulating 

rate constants, but instead to see which cycles emerged from our rate constant 
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literature search and neck-linker modeling. Our open source software platform 

should allow other researchers to reintroduce this or other types of gating and 

explore the repercussions.  

Changing the Neck Linker Length 

A feature of our software is that it allows for easily investigating the effect of 

neck linker length on observables such as speed and processivity. We investi-

gated these effects as we changed the neck linker length from 24 to 34 amino 

acids (26 amino acids was the standard length used). Figure 3.11A shows the 

processivity and Figure 3.11B shows the resulting speed. We observed a maxi-

mum in speed for the default neck linker length of 26 amino acids. The speed 

decreased by a factor of 2 when the neck linker was lengthened by 8 amino ac-

ids. The processivity steadily increased as the neck linker was lengthened, al-

most doubling with a neck linker change from 32 to 34 amino acids.  

 

 
Figure 3.11. Effect of changing neck linker length on processivity (A) and speed (B). Changing 

the neck linker length changes the tension in the undocked portions of the neck linker. We did not adjust the 
number of amino acids involved in docking. The default neck linker length used throughout this report was 

26 amino acids, with a docking number 10 amino acids. 

In our model, increasing the neck linker length decreases the tension be-

tween the two bound heads. This decreases the rate at which a bound head de-
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taches from the microtubule. On the other hand, it increases the rate the un-

bound head can reach a binding site. This decreases the speed by increasing the 

time of the two-headed states, but increases the processivity by increasing the 

chance of binding when unattached. The increased likelihood of backward steps 

also contributes to a decrease in speed and tempers the increase in forward pro-

cessivity. The sharp decrease in processivity seen in the 24 aa neck linker can 

be attributed to the shorter neck linker increasing the unbinding rates drastically 

while decreasing the stepping rate. This causes the kinesin to spend most of its 

time with only a single head bound, causing a decrease in processivity. Table 3.1 

shows the unbinding factor and stepping rates associated with each neck linker 

length. 

Table 3.1. Effect of changing neck linker length on kinesin head unbinding and 
binding rates. 

Neck 
Linker 
Length 

(aa) 

Contour 
length 
(nm) 

Docked 
contour 
length 
(nm) 

r Unbound Binding Rates (s
-1

) 

Docked 
Undocked 

Undocked 
Undocked 

Docked 
Undocked 

Docked 
Docked 

Undocked 
Undocked 

4.4 nm 8.2 nm 4.4 nm 12 nm 8.2 nm 8.2 nm 

24 9.12 5.3 1.23x10
3
 4.56x10

6
 5.43x10

4
 0 0 0.184 

26 9.88 6.1 109.445 3.51x10
4
 4.90x10

5
 0 0 36.7518 

28 10.6 6.8 35.5 2.58x10
3
 1.28x10

6
 0 0 679.021 

30 11.4 7.6 18.4 544 2.15x10
6
 0 0 4.05x10

3
 

32 12.2 8.4 11.9 196 2.93x10
6
 0 0 1.34x10

4
 

34 12.9 9.1 8.71 95.5 3.59x10
6
 0 0 3.13x10

4
 

We changed the neck linker length from 24 to 34 amino acids (26 amino acids was used for all figures 
created in this paper unless stated otherwise). This table shows the contour length and docked contour 

length used to calculate r (the ratio of kinesin head detachment rate with a force compared to the detach-
ment rate with no force) and the unbound head binding rates. As shown in Figure 3.1, there are only two 

different configurations when both heads are bound (although this assumption may become less valid as the 
neck linker length increases), and the neck linker extension is shown below each of these cases. For the 

unbound head binding rates, there are four different configurations. However, an unbound undocked head 
with a bound docked head has the same rates when traveling forward and backward as an unbound docked 
head with a bound undocked binding backward and forward. For simplicity we combined these into one col-

umn. The distances shown below each configuration is the distance to the closest binding site. Since 
docked/docked and undocked/undocked equilibrium positions are located exactly between two binding sites, 
the head needs to travel 8.2 nm to reach either binding site. r is calculated using Equation 3.2 while the un-
bound binding rates are calculated using Equation 3.3. As the neck linker length increases, the tension be-
tween the two bound heads decreases, thus r decreases as well. This means that the kinesin heads remain 
bound to the microtubule longer. The binding rates increase as the neck linker gets longer since there is now 
less force prohibiting the neck linker from diffusing that distance. However there still remains a bias for for-
ward binding due to the forward bias in the equilibrium position. This causes a longer processivity since it 

decreases the time in the one-head bound state, thus reducing the probability of complete detachment. The 
velocity decreases due to the longer time spent with both heads bound to the microtubule. 
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Since our physics-based model of the neck linker is highly simplified, the 

quantitative results are less important than the qualitative trends. The trends of 

increased processivity and decreased speed with increased neck linker length do 

not agree with Yildiz (Yildiz et al. 2008) or Miyazono (Miyazono et al. 2010) or 

Shastry (Shastry and Hancock 2010). Disagreement with these experiments 

could be explained by a number of differences between our model and experi-

mental conditions. In our model, as the neck linker length is changed, the me-

chanical gating changes dramatically—affecting head binding and unbinding 

rates. However, we do not include any effect of changing neck linker tension on 

chemical gating. The fact that we do not agree with experiment may indicate that 

chemical gating is significantly affected by neck linker length. It is also possible 

that our assumption of one dimensionality could cause these differences espe-

cially as the neck linker gets longer. 

Summary 

We developed an 80-state model for kinesin behavior that can be analyzed by 

stochastic simulation and Markov analysis. Unlike many existing models, we did 

not restrict the model to known core cycles. To do so, a large number of rate 

constants needed to be determined. We were able to set these rate constants by 

literature search and modeling of the neck linker for physical and chemical gat-

ing. To match experimental behavior, only the rate constant for inorganic phos-

phate release needed to be adjusted well outside of the published range. We 

were able to reproduce the expected results for run time, run length, speed, and 

processivity.  
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The advantage of our expanded-state model is that it allows for exploration of 

the behavior as rate constants are adjusted over a wide range, without the need 

to predefine a core cycle that may be changing over this range of parameters. 

We demonstrated an example of this as we explored the behavior as the neck 

linker length was changed. We also saw the core cycle change between high and 

low ATP concentration. The expanded-state model also allowed us to explore the 

most likely means of two-headed detachment. We expect to leverage this feature 

in future studies investigating the potential effects of osmotic stress and water 

isotope on kinesin processivity and speed. Finally, it is easy to limit the model 

and analyze published core cycles by setting the branch rates to zero. 

We have begun work to add the ability to apply an external force to the kine-

sin. However this work remains complicated by the need to adjust many rate 

constants such as head unbinding, head rebinding, and chemical gating. Fur-

thermore, forces add vectorially and depend on the location of force application. 

All of the software used in this report is open source and available via 

http://sourceforge.net/projects/herskowkinesin/files/. A Tutorial video is available 

as well. 
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An open source LabVIEW platform for simulating image series of fluorescent 
microtubules in gliding assays 

Lawrence J. Herskowitz and Steven J. Koch 

Introduction 

Kinesin family proteins are motor proteins that are able to use chemical ener-

gy to translocate on microtubules. They are essential to many cellular processes 

such as cell reproduction and axonal transport (Goldstein and Yang 2000; Vale 

and Fletterick 1997; Wittmann, Hyman, and Desai 2001). A technique that has 

proven very valuable to studying kinesin’s physical properties is the gliding motili-

ty assay (GMA) (Vale, Reese, and Sheetz 1985). In the GMA, the kinesin tail is 

fixed to a slide with the motor domains exposed to the solution. A solution of mi-

crotubule with buffer and ATP are then added to the flow cell. This allows the mi-

crotubules to be propelled by the kinesin motor domains as depicted in Figure 

4.1. Often the microtubules are labeled with dye molecules that allow them to be 

seen through fluorescence microscopy (Greene and Henikoff 2010). GMAs ena-

ble the study of many kinetic properties of wild type and mutant kinesins, such as 

gliding speed, microtubule polarity, and force induction in the kinetic process ( 

Clemmens et al. 2003; Dennis, Howard, and Vogel 1999; Hess et al. 2002a; 

Hess, Howard, and Vogel 2002b). 

 
Figure 4.1. Artistic illustration of gliding motility assay. The kinesin are attached to the cover glass 

so that the motor domains are exposed to the flow cell. When ATP is in the solution, the kinesin will walk 
along the microtubule which then will be propelled forward.  
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To extract information from these experiments, it is often imperative to track 

the moving microtubules through a series of images, obtaining the position 

versus time of the microtubules. However, manual tracking means going through 

hundreds of images and recording the position of the microtubule by hand. This 

is a tedious and exhausting process, though it certainly has proven useful 

(Howard 1996). The data are also potentially more prone to selection bias and 

systematic and random errors than automated tracking. Because of this several 

groups have developed microtubule tracking software (Stuurman 2009; Chisena 

et al. 2007). To test the effectiveness of these tracking programs, many 

laboratories will track a stationary object. This however is not ideal since it does 

not match experimental conditions well. To characterize the systematic and 

random errors in the tracking algorithms, it is best to test them on a moving 

object. One way this can be achieved is by moving a fixed microtubule with a 

piezoelectric stage. However, even in that case it is difficult to completely 

eliminate drift and other effects. A simulated image series can eliminate those 

problems and is often ideal for testing tracking algorithms (Cheezum, Walker, 

and Guilford 2001). For this purpose we developed an application that can 

generate microtubule images that mimic those captured from a typical gliding 

motility assay. A simulated image is shown in Figure 4.2A next to an actual 

gliding motility assay image shown in Figure 4.2B. 
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Figure 4.2. Comparison of simulated image (A) with actual image (B). Image A was created using 

the software written in this paper. Image B is an image of a microtubule from a gliding motility assay. The 
settings used to create this image can be found at http://kochlab.org/files/Simulating%20Images%20Paper 

named imitating andys tube.ini  

The application was written in National Instruments LABVIEW 7.1. The user 

interface can be seen in the Figure 4.3 with user inputs on the left and top and 

outputs on the right and bottom. 

 
Figure 4.3. User interface of the software. This is an image of the front panel of this software. The top 

left corner contains the main user inputs that are described in this paper. To their right are the buttons to 
create a series of images (top left), test this set up to create just one image (second from top on left), below 

that is the option to see just one airy disc from the “Airy Disk Parameters,” after that is the stop button to 
stop the program. The right column of buttons from top to bottom is to save the settings on the screen and 
the load settings. The save button saves the settings as an .ini file in the path to the right named “Project 

Configuration File.” The load button will load the settings from that .ini file. Above “Project Configuration File” 
is the directory location to save the series of images. The two images on this page are the high resolution 
image (left) and the low resolution image with background noise (left). Below that is the histogram of pixels 
inside the ROI drawn on the corresponding image. A video tutorial created with camstudio for this software 

can be found at https://sourceforge.net/project/admin/exploer.php?group_id=312060 

Algorithm Overview 

Figure 4.4 shows a simplified diagram of the overall algorithm. This paper will 

go into detail of how each step of the algorithm works. There is a main while loop 

seen in the diagram (see Reference (Anon 2010) for a LABVIEW video tutorial). 
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In each iteration a frame is constructed and saved. Before the while loop is 

entered, three initialization tasks are completed shown as subVIs I, II, III in the 

figure. (I) First the user must create the trajectory the microtubule will follow in 

the image series that will be created. This is done in the trajectory subVI. (II) Next 

using the settings in the “Physical Parameters” control the program randomly 

sets the locations of the dye molecules along the microtubule length. (III) The 

third task is to create a prototype Airy Disk from the “Airy Disk Parameters.” Each 

one of these subVIs is completed only once for each set of images, prior to 

execution of the while loop that generates each of the individual images. 

In the while loop, first the absolute coordinates of the dye molecules are set in 

the subVI labeled “A” in Figure 4.4. This VI, “Find Coord of Dyes.vi” has inputs of 

the microtubule trajectory, the index of the start of the microtubule, speed, and 

length of the microtubule. SubVI A has three outputs: “Coordinates of Dye 

Locations” (bundle of two double precision numbers), the “Index of Start of 

Microtubule for next frame” (int32) and the “Index of End of Microtubule” (int32). 

The dye location coordinates determine the locations of the centers of the airy 

disks in the simulated images. These are absolute coordinates (relative to the top 

left of the image) instead of the relative coordinates with respect to the 

microtubule end that the “Pick sites at random” subVI outputs. The second 

output, “Index of Start of Microtubule for next frame,” goes into a shift register 

and replaces the previous iteration’s index for the start of the microtubule. The 

distance the microtubule moves between frames is calculated from the speed 

inside of this subVI. This is used to find the index along the trajectory the 
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microtubule will start in the next frame. The index of the end of the microtubule is 

calculated using the length of the microtubule value similar to calculating the 

index for the next starting index. 

After subVI A finishes, it passes parameters to subVI B, “Create high res 

image” including the coordinates of the dye locations, a pointer to an image 

location and the user inputs “Photon Parameters” and “Image Size.” Inside subVI 

B are the probability distribution function and the Monte Carlo algorithm to 

randomly select the photon locations. 

Next is subVI C, “Create low res noisy image,” with the inputs of “Image Size,” 

“Background Noise” and the “High Res Image.” SubVI C resamples the high 

resolution image to create a lower resolution image that matches experimental 

resolution, dictated by the user input. If selected, Gaussian noise is added to the 

background. The output of subVI C is the final image. 

SubVI D saves the image in a directory the user has chosen, and named after 

the frame number which is the iteration number, such as 1.png. When the end of 

the microtubule index has reached the end of the trajectory array, the while loop 

stops. 

This section will be broken up into four segments to provide details of the 

above subVIs: Microtubule Construction, Resampling and Noise Addition, 

Trajectory, and Saving. In each of these segments the necessary user input is 

highlighted as well as a simplified version of the code. 
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Figure 4.4. Simplified diagram of the image series simulation algorithm. See text for a clear de-

scription of the representation of this figure. 

Microtubule Construction 

User Input: 

 
Figure 4.5. Physical Parameters user input. Sets the length of the microtubule, minimum spacing of 

the dye molecules (pixels per site), probability (out of 1) of dye molecules attaching to each location and the 
speed of the microtubule. 

This section will go into detail of how a single image of a microtubule is 

constructed. The coordinates for the dyes need to be randomly selected along 

the length of the microtubule. The user can set the microtubule length via the 

“Length of Microtubule” control. This control is in units of high resolution pixels. 

This algorithm produces two images; a high resolution image and a lower 

resolution image. The final image is the low resolution image. This allows for 

more accurate numerical estimation of the airy disk probability density function 

which is implemented in the Monte Carlo algorithm. The “high res pix per site” 

control dictates how many fluorescent dyes are theoretically possible to be found 
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in each pixel. For a typical fluorescent tubulin preparation (Anon 2010a), the 

molecules are attached to surface lysine residues on the alpha/beta tubulin 

dimer. There is one dimer per 8 nm on a single protofilament. For a 13-

protofilament microtubule, there are thus approximately 1.5 dimers per 

nanometer. There also could be multiple dye molecules on a single dimer, which 

would further reduce the number of high resolution pixels per dye site. This 

control will change depending on the users desired nm/pixel ratio. 

The first two controls thus dictate the microtubule length and the maximum 

number of dyes that can be attached. In the example shown in the figure, there 

can be a maximum of 10,000 dyes. However in practice, fluorescently labeled 

tubulin is mixed with unlabeled tubulin resulting in partially labeled microtubules 

after polymerization. To mimic this, the program uses a Monte Carlo method to 

determine if a given site will be labeled dependent on the fraction of dye control. 

A uniform random number from 0 to 1 is selected for each site. If that random 

number is lower than the user-set labeling fraction, the site is deemed as labeled. 

If not the site is left as unlabeled. This code can be seen in Figure 4.6. There is 

an indicator on the front panel seen to the right of the dynamic adjust control in 

Figure 4.3 which specifies the number of dye molecules on the microtubule. 
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Figure 4.6. Code for determining location of dye molecules. A random number is generated for 

each possible site. If the random number is lower than probability value input into Fraction then the site is 
added to the array of dye centers. 

If the site is selected to be labeled, an airy disk is centered at that location. An 

airy disk represents the fluorescent dye in the image plane since the dye emits 

light that is captured by the circular aperture of the objective (Wolf 1951). 

Mathematically an airy disk is described with the following equation: 
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J kr
I r I

kr
 (4.1) 

where 0I  is the maximum intensity of the airy disk center, 1( )J kr  is the Bessel 

function of the first kind in circular coordinates, r is the radius in high res pixels, 

and k is what we have named the prefactor. It can be calculated by 
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NA is the numerical aperture of the objective, and  is the wavelength in 

nanometers. C is the conversion factor from high resolution pixels to nanometers 

because we represent r in pixels. The first zero for the airy disk can be calculated 

in nanometers using 

 0

0.61
r

NA
 (4.3) 

where r0 is the distance to the first zero (Davidson 2010). 
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Since the microtubule is narrow compared to the airy disk radius, we treat it 

as a one-dimensional object. So each airy disk location is recorded as a distance 

from the end of the microtubule, and these relative distances along the contour 

remain fixed while the microtubule moves or curves during the simulation. 

This method of labeling dyes randomly along the microtubule is supported by 

prior experimental work. A microtubule in a solution with a low concentration of 

fluorescent dyes looks speckled. Waterman-Storer and Salmon studied this 

phenomenon and showed that this is caused by a non-uniform distribution of the 

fluorescent dyes along the microtubule proto-filament in a purely stochastic 

process (Waterman-Storer and Salmon 1998). 

User Input: 

 
Figure 4.7. Airy Disk Parameters. Airy disk is centered at 0,0. Initial x,y controls set the left, top of the 

bounding box. Final x,y controls sedt the right, bottom. Limiting the box size increases computation speed. 
NA sets the numerical aperture value. Wavelength represents the wavelength of the emitted light in nano-
meters, and the final input is the conversion factor that transforms nm to high res pixels. The final three in-

puts are used to calculate the prefactor of the airy disk as seen in equation 4.2. 

Since the airy disk intensity falls quickly, it is not necessary to calculate the 

airy disk over large values. The numerical aperture and wavelength determines 

how quickly the airy disk reaches zero. A higher numerical aperture or shorter 

wavelength means fewer pixels need to be calculated to get an accurate 

representation than a higher numerical aperture and longer wavelength. This is 

illustrated in Figure 4.8. It is obvious that the airy disk in 8A with a radius of 5.67 

high res pixels (522.86 nm) needs fewer pixels than 8B whose radius is 19.84 
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high res pixels (1,830 nm) to approximate the dye molecule. In the user input 

image above, a square of -6 to 6 for both x and y values was chosen. This 

means that a 12 pixels x 12 pixel box centered at the airy disk’s center was used 

for each airy disk in the simulation which has the same radius as Figure 4.8A. 

This is done to ensure a shorter processing time for the software. The radius of 

the airy disk is calculated in both nanometers and high res pixels. This can be 

seen on the front panel in Figure 4.3 below the number of dye molecules 

indicator. 

 
Figure 4.8. Airy disks with differing characteristic sizes. (A) size of 522.86 nm (5.67 high res pixels. 

(B) size of 1830 nm (19.84 high res pixels). A smaller characteristic size requires a smaller bounding box. 

Generating the Total Probability Density Function for Photon Arrival in the Image 
Plane 

User Input: 

 
Figure 4.9. Photon Parameters. “# of random numbers” determines how many virtual photons will ar-

rive in the image. “Intensity per random number” determines how much the pixel value will be incremented 
by one photon. 

After all the coordinates of all airy disks have been determined, the functions 

are added together. This is shown in the equation below. 
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Here TI  is the total intensity of all M airy disks added together. ( )I r  is the 

intensity profile of a single airy disk. Its center is shifted inside the image by shiftr  

TI  is then normalized by numerical integration to produce the probability density 

function (PDF) for photon arrival. Each pixel coordinate now represents the 

probability of a given photon landing there. 

Generating Images Based on PDF for Photon Arrival 

Photon locations are randomly selected using a Monte Carlo method and the 

total photon PDF. To minimize the number of random numbers needed for each 

photon arrival, all values in the two dimensional PDF is flattened into a one-

dimensional cumulative probability array. This is seen in Figure 4.10. Because 

the PDF was normalized, the last element in the cumulative probability array is 1. 

Each element in the cumulative array has a corresponding pixel coordinate. For a 

given random number, the index of the cumulative array element closest to that 

value (without exceeding it) is found by a binary search algorithm. The value of 

pixel corresponding to that element is increased by an amount set by “intensity 

per random number.” This method requires only one random number for each 

photon (Voter 2007). This code is shown in Figure 4.11. 
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Figure 4.10. Code to create cumulative array used in Monte Carlo algorithm for determining pho-

ton location. The normalized intensity of the overlapping airy disks enters this subVI as a 2-d array and is 

flattened into a 1-d array. This newly formed 1-d array is indexed by the loop where each element is added 
together. The “quotient and remainder” VI calculates the corresponding pixel coordinates which are bundled 
together and formed into a 1-d array. Each element in the pixel index array corresponds to an element in the 

cumulative probability array. 

 
Figure 4.11. Code for the simulating photon arrival in high resolution image. The dice generates a 

uniformly distributed random number from 0 to 1 and then the green VI (Anon n d) uses a binary search al-
gorithm to find the highest index in the cumulative array whose value is lower than the random number. This 
index is used to find the corresponding pixel in the Image Array, which is incremented by the amount “Inten-
sity per random number.” This while loop continues until it has reached the number of photons specified by 

the user. 

The user chooses how many random numbers, or photons, used for each 

image. Figure 4.12 represents what an image from this step in the process looks 

like. The image produced is a floating point image to allow for any number of 

photons per pixel. The image is next cast to an 8-bit image, with a maximum 

pixel value of 255. The user is given the option of dynamically adjusting the 

image so that the maximum pixel value in the floating point image set to 255. If 
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the user chooses not to do this, the image can mimic either under- or over-

exposure. The latter case will show saturated pixels. 

 
Figure 4.12. Example of the simulated high-resolution microtubule images. Dye-labeling probabili-

ty of 0.3. 

Resampling and Noise Addition 

User Input: 

 

Figure 4.13. Parameters for Image Size. On the left, the width and height (in pixels) of the high-

resolution images is set. On the right is the low-resolution image. 

After float image is cast into an 8 bit image, the image is then resampled into 

a lower resolution image to match experimental resolution. The user inputs the x 

and y resolution of the higher resolution image in “High Res X Image Size” and 

“High Res Y Image Size.” The user can then control how much the lower 

resolution image will be in “X Resolution” and “Y Resolution.” This resampling 

into a lower resolution image is done to allow for a more precise numerical 

integration to create the probability density function. 
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User Input: 

 

Figure 4.14. Background Noise parameters. The mean and standard deviation (in 8 bit pixel intensity) 

for Gaussian probability distribution are specified. 

Finally, background noise can be added to the image depending on user 

settings. We add background noise to the 8-bit resampled image. The user 

chooses the mean value and standard deviation of the background noise 

Random noise is added to every pixel. The resulting image with its higher 

resolution counterpart can be seen in Figure 4.15.  

 
Figure 4.15. Example of image resampling and background noise addition. (A) High resolution im-

age (500 pixels x 500 pixels) without background noise. (B) Image in (A) after resampling (250 pixels x 250 
pixels) casting to 8-bit and addition of background noise. See text for details of simulation parameters. 

Because there are many parameters it is useful to view test images before 

creating the entire sequence of images. This option is available to the user along 

with the additional ability to see what a single airy disk looks like given the 

current relevant user settings. This allows the user to minimize the box 

surrounding the airy disk and thus speed up subsequent simulations. Pressing 

“Test this set up” produces a microtubule while “see this Airy Disk” shows what a 

single airy disk looks like. The maximum intensity of the airy disk can be 
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controlled with the “I0.” This only works with “See this Airy Disk” since the sum of 

all the airy disks is normalized when constructing the microtubule image. These 

buttons can be seen in Figure 4.3 below the “Let’s Make Some Magic” button. 

Trajectory 

The ultimate goal of this software is to produce a series of images that mimic 

microtubule motion in gliding motility assays. This software contains a subVI that 

allows the user to create a trajectory that the microtubule will follow throughout 

the frames. The trajectory can be composed of four different base trajectories; a 

horizontal line, a vertical line, a sloped line, and a circle. The user can manipulate 

these simpler paths to create elementary or more complicated trajectories as 

seen in the front panel image of this subVI in Figure 4.16. 

 
Figure 4.16. Front panel of trajectory subVI. This VI allows the user to design a trajectory the micro-

tubule will follow. The user can add horizontal lines, vertical lines, circles and sloped line to the trajectory. 
The user can also load previous trajectories and edit them. Trajectories can be saved as files. The current 

trajectory is shown to the user in the graph seen on the right. See text for further explanation. 

The simplest paths are the horizontal and the vertical line. For the horizontal 

line, the user inputs the starting point coordinate (x,y) and the ending x 

coordinate. The vertical line is very similar in that it needs the user to input the 
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starting point coordinate (x,y), but it needs the ending y coordinate instead of x. 

The sloped line needs both the x and y coordinates for the starting and ending 

points. It will output the slope of the line for reference. For a circular arc, the user 

specifies the origin, radius, and angles to start and end the arc. These angles 

can vary from -2  to 2 . 

To make creating more complicated trajectories easier, each one of these 

paths have an option to automatically link to the existing path. For the horizontal 

and vertical line this only means that the starting point is set automatically to be 

the last point of the semi-completed path. For the sloped line, the starting point is 

set just like the horizontal line, but the slope is also set to the slope of the 

incoming path. It won’t set the slope automatically if the incoming slope is 

horizontal or vertical. To best attach a circle to the trajectory, the program can set 

the starting point on the circle so the incoming trajectory has the same slope as 

the tangential line to the circle. This ensures a smooth transition into the circle. 

Since there are two points on the circle with the same slope, the user can choose 

which point to use. 

This trajectory subVI also allows the user to load a trajectory previously made 

and edit that path. The user can also save the completed trajectory as a .dat file 

in a chosen directory. The main program will automatically save the trajectory in 

the same directory as the images. 

Speed 

User Input: 

See Figure 4.5 
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The microtubule will have a fixed speed (see “Updates” section at end of 

manuscript), defined by the user in units of high res pixel/frame. In the case 

shown in Figure 4.5 the user has chosen a speed of 2 high res pixels/frame. The 

amount of resampling will determine the speed in the final, lower resolution 

images. With the settings shown earlier in Figure 4.5, the tracked speed is 1 low 

res pixels/frame.  

In each image frame, the microtubule dye molecules coordinates will be 

moved along the trajectory a distance specified by the speed. Since the airy 

disks are labeled by their distance from the start of the microtubule and not from 

a location on the image, their relative distances remain unchanged despite 

curves along the trajectory. The program calculates the distances between 

adjacent points on the trajectory. Using this array of distances it is able to set the 

front of the microtubule and quickly search for points that are certain distances 

away from the start. The code is shown in Figure 4.17. 

Finally, when satisfied with the settings and trajectory, the user presses the 

“Let’s Make Some Magic” button which can be seen in Figure 4.3 to the right of 

Image Size parameters. The program runs and saves images until it reaches the 

end of the trajectory. Currently the user cannot stop the simulations early. 

Pressing the stop button will stop the entire program but will only be responsive 

after all the images have been created. 
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Figure 4.17. Calculation of dye molecule locations. This code calculates the coordinates of the dye 

locations, the start of the microtubules in the next frame, that point’s index along the trajectory, and the end 
of the microtubule in this frame. The coordinates of the dye locations are calculated by finding a fractional 
index along the trajectory that corresponds to each dye’s distance from the start of the microtubule. This is 
done by mapping the trajectory onto a straight line using the cumulative distance array (top right). The start 
of the microtubule and the index to start the microtubule in the next frame are calculated using the specified 

speed value. The end of the microtubule is found by adding “length of microtubule’ to the start value. The 
program stops creating images when the end of the microtubule reaches the end of the trajectory. 

Saving Images and User Settings 

User Input: 

 
Figure 4.18. Settings and file information. “File Path” specifies the directory in which the images and 

other information will be saved. “save settings” or “Load Settings” will save / load the current settings to / 
from the file specified by “Project Configuration File.” 

This software saves the images in a directory that is specified in “Directory for 

Storing Images.” The images are .pngs and are named after the frame number. 

The parameters used to create the microtubule as well as the trajectory are 

saved. The parameters are saved in an .ini file while the trajectory is saved as a 

.dat file. 

This speed of this software is dependent on the user parameters. For 

example a higher number of photons will slow down the algorithm proportionally. 
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A larger box around the center of the airy disk will also slow down the simulation. 

With the settings shown in this paper, the software creates an image in about 

350 milliseconds on our Intel Core 2 Duo CPU running Windows XP. 

How to Obtain Code and a Video Tutorial 

This code is available from sourceforge at 

https://sourceforge.net/projects/simulatingimage/files/. The VIs used to create 

this program are available for download in the Simulating Images folder. 

LabVIEW and the Vision Development Module are required to view and edit the 

source code. An executable version of this program is also available in 

Executable Folder found in the Simulating Images directory. A $420 “NI Vision 

Development Module Run-Time License” is required to run the executable. 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/207700 

A video tutorial created by CamStudio is also available in the Tutorial Folder 

in the same directory. The .ini file that saved the settings used to create the 

images found in this paper and the trajectory shown above are located in 

Settings for Paper folder inside this directory. 

Prior Attempts 

This report describes our second attempt to create images of microtubules. 

The first attempt followed more closely to the steps taken in the Cheezum paper 

(Cheezum, Walker, and Guilford 2001). We found the stochastic method we 

report here more satisfying as far as mimicking our experimental data. However 

the other process, based on convolutions of a line or rectangle with an airy disk 

worked well. We do not describe those methods here, but out work can be seen 
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in LJH’s open notebook, dates 11/12/2009 

(http://openwetware.org/wiki/User:TheLarry/Notebook/Larrys_Notebook/2009/11/

12) through 11/18/2009 

(http://openwetware.org/wiki/User:TheLarry/Notebook/Larrys_Notebook/2009/11/

18). 

Conclusion 

This software can create a series of images of a microtubule moving along a 

user specified trajectory. This can be used to test tracking software designed for 

gliding motility assays or other microtubule assays. It is possible to adapt this 

software to create images of other polymeric protein structures such as f-actin 

and some cytoskeletal proteins (Danuser and Waterman-Storer 2003; Vallotton 

et al. 2003). However it is not equipped to handle these yet. The code is freely 

are available at SourceForge under an MIT license for reuse and adaptation. 
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Microtubule Tracking Algorithm for Gliding Motility Assays 

Introduction 

Kinesin-1, one of the most studied members of the kinesin family, is a mole-

cular motor found in neurons. There are many different types of experiments de-

signed to probe the inner workings of this motor protein including applying a force 

to the kinesin using an optical tweezer or indirectly measuring the speed of kine-

sin by calculating the speed of microtubule motion in a gliding motility assay 

(GMA). In the GMA assay, the kinesin are attached to the cover slide so their 

catalytic cores are exposed to the solution. Even though the kinesin is immobi-

lized, it still walks along microtubules. This causes the microtubule to move. 

Speed of the kinesin is measured in this assay by tracking the position of the mi-

crotubule and calculating its speed. 

Some research groups calculate the speed of the microtubules by hand. They 

find the pixel location of an end of the microtubule in two different image frames. 

They then calculate the position change between the frames. These studies have 

been highly informative, they are not ideal since this process is time consuming 

and prone to error. To avoid this we have developed software in LabVIEW 7.1 to 

track the microtubules throughout a series of images and calculate their speeds 

automatically. There are two parts to this software. The first is the tracking algo-

rithms designed to extract the path of the microtubules throughout the images. 

The second is the speed calculation algorithm which uses the position data from 

the tracking algorithm along with the elapsed time that is obtained during image 

acquisition. 
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Tracking Algorithm 

The core of this algorithm is a pattern matching subVI developed by LabVIEW 

called IMAQ Match Pattern 2. This subVI searches a given area for matches to a 

template image, using a cross correlation algorithm. It can find the location of the 

template within the larger image with subpixel accuracy and allows for rotation of 

the template. We use a microtubule end as our template. This allows us to track 

both ends of the microtubule independently. The user can select a template from 

three options: cropped from an image of their choosing, a simulated image 

created from the software of the previous chapter, or from alternate software that 

simulates the image. In the previous chapter the microtubule is simulated using a 

Monte Carlo technique for photon arrival, which results in a speckled image. The 

alternate route is to convolute an airy disk with a straight line (Cheezum, Walker, 

and Guilford 2001). After publishing the previous chapter, we finished implement-

ing the convolution method. We most frequently choose a template from the con-

volution, since speckle will vary from microtubule to microtubule and inclusion of 

shot noise in the template only decreases our tracking precision. The differences 

between the two methods can be seen in Figure 5.1. We do not add noise to the 

background of the convoluted image. The template created from Figure 5.1 (top) 

can be seen in Figure 5.2 insert. The pattern matching algorithm has successfully 

found both ends of the microtubule shown encased in red boxes. 
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Figure 5.1. Comparison of simulated microtubule images created from convoluting a line with an 

airy disk (top) and using the speckled method described in the previous chapter (bottom). We found 

that a template from the top image provided the highest tracking precision. 

 
Figure 5.2. An example of the pattern matching algorithm locating both ends of the microtubule 

(shown in red boxes) with the template shown in the insert. The template is matched to both ends of the 

microtubule. The red box shows where the template was placed to best match the image. The red crosses 
show where the algorithm reports the microtubule end. 

After choosing the template the next step is for the user to select which micro-

tubule to track from amongst numbered microtubules in an image of the series. 

An example of these choices can be seen in Figure 5.3. The software picks out 

the microtubules by loading an image from the movie, and thresholding it auto-

matically. It then finds the white objects in the binary image according to size and 

elongation. When the user selects a microtubule in the first image, the software 

finds a rectangle that encloses the microtubule.  
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Figure 5.3. Comparison of the original image (left) with the selection image (right). After the origi-

nal image is converted to a binary image, the algorithm then numbers each microtubule it finds in the image. 
The user selects the number of the microtubule they wish to track. 

This bounding rectangle is used for the first iteration of pattern matching, 

however for all other iterations of this loop the bounding rectangle is calculated 

from the previous image. The largest object in the bounding rectangle is outlined 

and expanded. We choose the largest object since the chances that another un-

wanted microtubule has a larger area inside the bounding box is low. This ex-

panded search area can be seen in Figure 5.4 (left). In Figure 5.4 (right), the 

original object is outlined in bright green, and the two ends of the microtubule 

(red and green dots) and a point on the center of the microtubule (blue dot)are 

shown. We chose to pattern match in this limited search area to enhance the 

tracking speed. In order to limit problems from nearby microtubule ends we 

chose to search an expanded area around the microtubule as opposed to the en-

tire bounding box. We choose to use the outline of the microtubule instead of the 

bounding rectangle since it is less likely another microtubule gets that close to 

the tracked microtubule. Using this strategy we encounter fewer errors when two 

microtubules intersect. The bounding rectangle of the microtubule in the new 

frame is used for the initial search in the next image as the loop repeats. This 

process continues until the last image is processed or the user manually ends it. 
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Figure 5.4. Expanded search area (left) and the microtubule outlined in green with the ends, 

green dot and red dot, and center, blue dot, (right). The microtubule outline (green, right) is expanded to 

give the algorithm the best chance to match the template to the image, and decreases the possibility of 
matching the template with another microtubule. 

Calculating Speed 

Before calculating the speed, the XY position versus time data are smoothed. 

This is necessary because there is tracking noise and the ends of the microtu-

bule are undergoing Brownian motion. The latter effect is dominant, and without 

smoothing these transverse fluctuations would systematically increase the speed 

above the actual longitudinal transport speed. We use a Gaussian weighted slid-

ing window to smooth the x,y data obtained from the tracking algorithm.  

For the images we acquire, there is an accompanying time stamp that is ac-

curate to 10’s of milliseconds and is used in the speed analysis software. The 

software also allows for the user to manually input a fixed time per image. Pixel 

calibration, in nm / pixel, must be entered manually. We calculate the speed by 

finding 
r

s
t

 where s is the speed, r  is calculated by 

2 2

1 1( ) ( )i i i ir x x y y  and t  is the time between frames. This assumes 

that the microtubule traveled in a straight line between frames, so it is important 

for the experimenter to capture images frequently enough for this to be valid. 

The speed is calculated between each pair of smoothed XY data points. 

However, our ultimate goal is to obtain a speed for the microtubule across all im-

age frames. Calculating the mean speed is not sufficient, since the microtubule 
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may pause or change speeds. We decided to instead estimate the probability 

density function (PDF) for the speed and use the maximum in the PDF as the 

speed for that microtubule. We have used a kernel density estimation (KDE) me-

thod to estimate the probability density function (PDF) of the speed. We use a 

Gaussian kernel, which treats each data point as the center of a Gaussian. Each 

of these Gaussians are added together and normalized, creating an estimate of 

the speed PDF. KDE can do a good job of extracting different speeds that the 

microtubule may be traveling. However our current experiments do not look into 

these differing speeds, and we only use the most likely speed. 

Results 

All of the images used to verify the effectiveness of the tracking software were 

created using the software described in the previous chapter. The controls set to 

create the images can be located at 

http://openwetware.org/wiki/User:TheLarry/Notebook/Dissertation_Files#INI_File

sin the simulating images settings.ini file. Unless stated otherwise we set the 

speed of the simulated microtubules to 1 pixel/frame. 

The template used to match the ends of the microtubule in the simulated 

movies was created by convoluting an airy disk of size 2.8 pixels with a line of 

zero thickness. The entire microtubule image that was created by the convolution 

method can be seen in Figure 5.1. The parameters used to make this image can 

also be found at 

http://openwetware.org/wiki/User:TheLarry/Notebook/Dissertation_Files#INI_File

s in the Convolution Settings.ini file.  
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Finally the tracking software’s parameters are also encoded in an .ini file lo-

cated at the same location called Tracking settings.ini. We set the nm/pixel factor 

to 166.7 nm/pixel which is the calibration value we found using a 60x objective on 

our microscope. The sec/frame factor was set to .2 sec/frame which is the aver-

age capture rate we use when running GMAs. Using these factors the simulated 

movies have a microtubule speed of 833.5 nm/s. 

 
Figure 5.5. Trajectory from the simulated images (red trace) and tracked trajectory for the front 

(green trace) and back (blue trace) ends of the microtubule. The simulated images followed a trajectory 

of a diagonal line of slope 1 starting at the top left and ending at the bottom right of the image. 

We initially tested the tracking software on a straight diagonal line with con-

stant velocity. The slope of this line was 1 going from the pixel with (x,y) coordi-

nates (25,25) to (250,250). Figure 5.5 shows the actual path taken by the micro-

tubule in red and the tracked path in green (for the front of the microtubule) and 

blue (back of the microtubule). Clearly the tracking software was able to follow 

the path well. Figure 5.6 shows the KDE of the PDF for the speed data from this 

experiment. Data collected from the back and front of the microtubule is seen in 

blue and red respectively. The PDF has a peak speed of 832.0 nm/s for the front 

head and 832.7 for the back head. Both are very close to the actual speed. We 

then ran this experiment over 10 different image series using the same settings 
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for creating the images and for tracking and recorded a speed of 831.5  0.9 

nm/s (front) and 832.2  3.2 nm/s. 

 
Figure 5.6. KDE of the PDF for the speed data. This KDE shows a single peak for both the front (red) 

and back (blue) of the microtubule. The highest peaks are located at 832.0 nm/s and 832.7 nm/s for the front 
and back respectively. The actual speed of the microtubule was 833.5 nm/s. 

To test the efficacy of the KDE method for extracting most likely speed, we 

dded a pausing event into the simulated movie. We used the same trajectory 

from the previous study, but paused the microtubule for 6 frames at the center of 

its run. Figure 5.7 shows the speed versus time graph. The blue and red curves 

are collected from the back and front of the microtubules respectively. The dip in 

the middle is due to the pausing event. Figure 5.8 shows the KDE produced from 

the data shown in Figure 5.7. There are two peaks; one associated with the mov-

ing speed, and the second from the pausing. The program does not return a val-

ue of 0 nm/s for the smaller peak because the smoothing window is wider than 

the pause duration. The most likely peaks found for the front and back heads re-

spectively were 830.6 nm/s and 829.9 nm/s. The program found a value of 490.7 

nm/s and 488.3 nm/s for front and back speeds of the lower peaks. We ran this 

simulation ten times with the same settings for simulating the images (the micro-

tubule paused for 7 frames) and tracking. The highest peak speed found was 

830.9  0.9 nm/s for the front and 831.0  1.3 nm/s for the back. The paused 
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peaks were 490.8  4.7 and 490.7  7.6 for the front and back respectively. If we 

averaged the speeds instead of using the KDE method we would find a front 

speed of 789.6 and a back speed of 789.8 nm/s. The KDE method is much less 

sensitive to pausing than a simple average, as it is closer to the expected value 

of 833.5 nm/s.  

 
Figure 5.7. Speed data from a tracked microtubule with a pausing event. The microtubule paused 

for 6 frames between 26.6 s and 27.8 s. Before and after the pausing event the software reported a speed of 
approximately 830 nm/s. During the pausing event the lowest speed found was 475.2 nm/s. This was not 

found to be 0 nm/s because the smoothing window was longer than the pausing event and thus incorporated 
non-zero speeds. 

 
Figure 5.8. KDE from the speed data shown in Figure 5.7. This KDE shows the double peaks we 

expect since the microtubule traveled at two distinct speeds. The highest peaks were 830.6 nm/s and 829.9 
nm/s for the front (red) and back (blue) ends of the microtubule respectively. The lower peaks were 490.7 
nm/s and 488.3 nm/s for the front and back respectively. This demonstrates an advantage of the KDE me-

thod since it identify when a microtubule is traveling at different speeds. 

However there does appear to be remaining a small systematic bias towards 

lower speeds on the order of a few nanometers per second, but we have not yet 

attempted to characterize this further. We also have noticed a larger dispersion in 

the back speeds compared to the front; however we have not studied this yet. 

Finally we tested the software by tracking images of microtubules in gliding 

assay experiments run by Andy Maloney. The data shown here is from one of the 
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many experiments he ran studying the effects of surface passivation on kinesin 

velocity. In this experiment he passivated the cover slide with alpha casein. He 

describes the methods for these experiments in his paper (Maloney, Herskowitz, 

and Koch 2011) and at his open notebook page 

http://www.openwetware.org/wiki/User:Andy_Maloney/Kinesin_%26_Microtubule

_Page. Seen in Figure 5.9 are screen shots of this experiment. The microtubule 

is surrounded by its bounding box in green to give it more emphasis in the image 

and is trailed by the trajectory the software found. The front head trajectory is co-

lored dark green while the back head is light green. This particular microtubule 

was found going 819.4nm/s for its front head and 818.1 nm/s for its back head. 

These can be seen as the highest peaks in its PDF seen in Figure 5.10 with the 

speed from the back end colored in blue and the front in red. This microtubule 

also apparently traveled at a lower speed, 724.4 nm/s for the front head and 

700.2 nm/s for the back head. This shows the power of KDE method to discover 

bivariate speeds. While we do not know the true speed in these assays, our im-

age tracking software has proven precise and reliable enough to demonstrate 

differences between assay conditions that produce speed differences on the or-

der of 10 nm/s (Maloney, Herskowitz, and Koch 2011). 
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Figure 5.9. Images of a microtubule being tracked from a gliding motility assay. The microtubule 

being tracked is bounding in a green box. Its trajectory is shown as a dark green line following the front and 
a light green line following the back of the microtubule. 

 
Figure 5.10. KDE found from tracking the microtubule seen in Figure 5.9. Interestingly this KDE 

shows that the microtubule might have travelled at two different speeds. For our current experiments we 
only record the highest peak which was 819.4 nm/s and 818.1 nm/s for the front (red) and back (blue) of the 
microtubule respectively. The lower peaks were located at 724.4 nm/s for the front and 700.2 nm/s for the 

back of the microtubule. 

Conclusion 

This tracking software has already proven essential for the gliding motility as-

says in our lab. However in the future improvements could be made including re-

placing the smoothing element of the analysis with a hidden Markov method that 

explicitly models the noise and the motion. One of the greatest improvements on 

this software which we have implemented and not described here is automation 

of the entire tracking process.  

Once the experimenter captures their images they can tell the software the 

location of the folder and it will automatically segment all the images and track all 



86 
 

microtubules. It does this by finding all objects in the first image. It will then track 

each microtubule one at a time. It stops tracking a microtubule when the microtu-

bule leaves the field of view or it crosses over with another microtubule. Once all 

the microtubules in the first image are tracked, it moves to the second image. 

The software checks to see if there are any new objects by comparing the 

bounding box with all the objects in Frame 2 with microtubules already tracked in 

that frame. If there are any new microtubules, the software will track those as 

long as possible. Using this method we have automated the tracking process. 

The speed analysis has also been automated. 

Combining these two achievements we have turned a process of tracking and 

analyzing the hundreds of microtubules found in a single two minute experiment 

that could take days to finish into one that is done within a couple of hours, re-

quiring only a few minutes of user interaction with the software. This has led to 

our lab having analyzed terabytes of data on microtubule motion in GMA. This is 

important as we can more precisely record speed and variance of speed of the 

microtubules and distinguish more subtle differences in speed that result from 

change in assay conditions. 

We are currently turning this chapter into a paper to be submitted for peer re-

view. 
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Conclusion 

Since each chapter has its own conclusion and future work section it is not 

necessary to reiterate that information here. Important research can grow out of 

the work shown here. Moving past a proof of principle for shotgun DNA mapping 

could have a large impact on cancer studies. I look forward to seeing force added 

to the kinesin model or probing osmotic pressure effects on processivity. The 

tracking software allows terabytes of information to be collected from gliding mo-

tility assays. The ability to collect that amount of information makes future expe-

riments very exciting. This is one of the joys of science is seeing who picks up 

these loose ends and what they make of them. 
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