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Abstract

Charged hadron beams have been investigated for use in radiation therapy of cancer

since the 1940s due to their unique potential to place tightly conformal radiation

doses deep inside tissue. This is achieved by exploiting the phenomenon of the so-

called Bragg peak. In both research and clinical settings, fast and accurate radiation

calculations play a crucial role in charged hadron therapy physics. Unfortunately,

physicists are often faced with the fundamental trade off of speed versus accuracy

in their calculations. This dissertation addresses this trade off by presenting three

computational physics methods for specific and general charged hadron beam therapy

calculations.

In this dissertation the pseudo-Monte Carlo method of track repeating is adapted

for fast calculations of linear energy transfer (LET) and for fast estimation of dose in
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the peripheral regions of the target volume (i.e. secondary dose estimation). Addi-

tionally, the first proof-of-concept framework for carrying out massively distributed

parallel Monte Carlo calculations for radiation therapy using cloud computing is pre-

sented. Performance and accuracy assessments of each calculation method are also

presented.
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Chapter 1

Introduction

The subject of this dissertation sits at the intersection of many different disciplines.

On the one hand this dissertation is primarily about computational physics, but

it is computational physics as applied to “applied particle physics”. On the other

hand this dissertation is about radiation physics and computationally determining

quantities of radiobiological interest. Finally, this dissertation investigates aspects of

high performance computing, internet scale computing, and the economics of medical

physics calculations in a new era of utility-style resource allocation. Ultimately this

dissertation seeks to shed some light on the question, “how can we produce the most

accurate radiation dose calculations for cutting edge radiation therapy on clinical

time scales?”

Cancer is a devastating group of diseases that affects nearly everyone, whether

directly or indirectly. Worldwide, cancers accounted for approximately 13% of all

deaths in 2007 [8]. According to the National Cancer Institute, as of 2010, approx-

imately half of all cancer patients in the United States receive radiation therapy as

part of their treatment [9]. Radiation therapy has proven to be not only one of the

most effective therapies for cancer, but also one of the must significant applications

of physics in impacting people’s lives.
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Over its more than 100 year history, radiation therapy has been one of the most

technologically-driven fields of medicine. Therapeutic radiation technologies have

made rapid improvements in recent decades, largely due to advances in imaging (in

particular CT, MRI, and PET), but fundamentally due to advances in computing.

This has allowed for the characterization, calculation, and delivery of highly confor-

mal distributions of radiation dose to target tissues.

While most radiation therapy is performed with externally applied x-rays in the

MeV range and internally applied gamma rays in the keV-MeV range, charged hadron

beam therapy, or “particle therapy”, is an advanced form of radiation therapy and is

currently the object of intense interest in the medical and physics communities. This

interest stems from the fact that charged particles heavier than electrons deposit

most of their energy at the end of their finite range, forming the so-called “Bragg

peak”. This property allows for the creation of extremely target-conformal dose dis-

tributions. Additionally, some charged particles have higher relative biological effect

(RBE) as compared with photons. Chapter 2 covers the background information on

particle therapy.

One of the crucial components in the complex chain that makes up particle ther-

apy delivery is dose calculation. While the radiation transport physics necessary

for dose calculations is well understood, in implementing dose calculations for clin-

ical scenarios one nearly always faces the fundamental trade-off between speed and

accuracy. Stochastic methods, such as Monte Carlo, can yield extremely accurate

results, but tend to be extremely slow (or conversely resource intensive). Determin-

istic methods, such as dose kernel convolution, can be performed very quickly, but

often have trouble with scenarios such as inhomogeneous media. Naturally, the de-

sire is to have both speed and accuracy in dose calculations, but often one is chosen

over the other. Generally speed is opted for in clinical settings, while accuracy is

chosen in less time-constrained research settings. Chapter 3 covers the background

information on computational methods employed in particle therapy.
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This dissertation centers on fast computational physics methods that try to bridge

the gap between speed and accuracy for certain types of calculations in particle

therapy. Specifically, the pseudo-Monte Carlo method of “track repeating” will be

applied to fast calculation of linear energy transfer (LET) to enable so-called LET

painting techniques (Chapter 4) and secondary dose estimation (Chapter 5), i.e. dose

outside the target area where fluences are very low. Additionally this dissertation

examines the use of the emerging cloud computing paradigm to enable fast Monte

Carlo dose calculations on large scale virtual clusters (Chapter 6).
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Chapter 2

History and background of

radiation therapy

2.1 Introduction

Radiation therapy is the use of ionizing radiation to treat pathological conditions

such as cancer. The goal of radiation therapy is to deliver a lethal dose of radiation

to the diseased tissue, while sparing surrounding healthy tissue as much as possi-

ble from side effects. This goal is realized by understanding the underlying physics

of radiation transport, a requisite for dose calculation and treatment planning, and

the interactions of radiation with tissues, radiobiology. Charged hadron beam ther-

apy, or “particle therapy”, is an advanced form of radiation therapy which exploits

the physics of heavier-than-electron charged particles to produce highly conformal

radiation dose distributions. This section will provide background information on

radiation therapy and charged hadron therapy in particular.

Figure 2.1 shows the ideal radiation dose distribution - the target tissue is covered

with 100% of the “prescription dose”, while the surrounding tissue receives no dose.
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Healthy Tissue

Tumor

100%

0%

Ideal dose distribution
Dose

Figure 2.1: An ideal dose distribution, with no dose outside of the tumor region.

The dose distribution in Figure 2.1 is fundamentally impossible due to the physics

of energy deposition in media. Figure 2.2 depicts realistic dose distributions, with

uniform dose covering the target region, but also (unavoidable) dose spilling into the

surrounding, non-target region. Thus, radiation therapy is fundamentally an issue

of balancing dose to the target against dose to healthy surrounding tissue.

2.2 History of radiation therapy

Radiation therapy was first attempted shortly after the discovery of x-rays by Roent-

gen in 1895 [10]. The first reported radiation therapy treatments were performed in

1896 by Despeignes and Freund, among others, and involved exposing patients to

low energy x-rays [11, 12]. Shortly thereafter important discoveries and advances
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Figure 2.2: Realistic physical dose distributions, with dose spilling outside of the
tumor region. The top figure shows dose due to opposed proton beams, while the
bottom shows dose due to opposed carbon ion beams. Figure used with permission
of Niels Bassler. Similar to figures published in [1]

were made, such as the observation of radio-carcinogenesis (1902), radium implants

(1903), and fractionated treatment (1928), which laid the basis for what was to come

[13]. Over the next century, treatment techniques were greatly refined as the physics

of radiation and radioactivity, as well as radiobiology, were more thoroughly under-
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stood. Currently the most common forms of radiation therapy involve the use of

MeV range x-rays and electrons from accelerators (external beam radiotherapy) and

keV-MeV range gamma rays from implantable sources (brachytherapy).

2.3 History of charged hadron therapy

The use of charged hadron beams, dubbed “particle therapy”, has been of interest

to the medical and physics communities since the 1940’s. Since the early 2000’s a

growing number of clinical particle therapy facilities has been commissioned and in-

terest has increased accordingly. As of 2011, more than 84,000 patients have received

particle therapy worldwide [14].

The idea of charged hadron beam therapy for cancer treatment was first proposed

by Robert R. Wilson in 1946 [15]. Wilson’s idea was based on the well established

property of ionization by heavier-than-electron charged particles called a “Bragg

curve”, wherein the greatest amount of ionization takes place at the end of the

path, the so-called “Bragg peak”. This phenomenon was discovered by William H.

Bragg in 1903 [16]. In contrast, the maximum of the ionization, and thus deposited

dose, from an external photon beam is near the beginning of its path (see Fig. 2.3).

Wilson recognized that the location and shape of the Bragg peak would be potentially

valuable in radiation therapy. Compared with photon beams, charged hadrons offered

the potential for more conformal dose distributions, sparing healthy tissue.

Starting in 1948 the first efforts were made to investigate particle therapy on

animals, with the first humans treated in 1954, both at Lawrence Radiation Labora-

tory in Berkeley, California [17]. Subsequent experiments at Berkeley and Harvard

in the US, Uppsala in Sweden, Dubna and Moscow in the USSR, and other locations

investigated the use of a range of beams. These included protons, deuterons, alpha
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Figure 2.3: A comparison of typical single-field photon and proton depth-dose curves
in liquid water. Proton data generated with Geant4.9.3 and photon data generated
with FLUKA2.

particles, and ions including Li, C, N, O, Ne, and Ar [2].

During much of the early research efforts into charged hadron beam therapy,

the direction of research was largely dictated by the capabilities and limitations of

available accelerators. This meant that some types of experiments had only short

windows of time, as the necessary accelerators were modified for other experiments

(e.g. beam energies increased) or decommissioned [2].

Starting in the early 1970’s, a large scale research effort began to investigate neg-

ative pions for radiation therapy. Near the end of their range, negative pions are

captured by nuclei, producing nuclear fragments in the so-called “star formation”

process. The star formation process was hypothesized to be advantageous for radia-

tion therapy and a number of institutions built or planned pion therapy programs [2].

Ultimately these programs were decommissioned in the early 1990’s after some 1100

2Simulation of 6 MV beam from a Siemens linac by Niels Bassler, who provided this
data.
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1946 - Wilson proposes charged hadron therapy
1948 - First animal experiments (Berkeley)

1954 - First experimental patient (Berkeley)

1990 -  First hospital based proton facility (Loma Linda)

1994 - First heavy ion medical facility (HIMAC - NIRS)

1974 - 1994

Pion therapy investigated

2000's - First commercial proton therapy systems

2009 - First heavy ion gantry system (Heidelberg)

1957 - Proton therapy in Europe (Uppsala)

1961 - Harvard begins proton therapy research (HCL)

1993 - End of Berkeley's 40+ yr investigation of
p, C, Ne, Si, Ar ions

The Beginning

The Present

Figure 2.4: A timeline of events in charged hadron therapy. Sources [2, 3, 4].

patients were treated, but knowledge gained carried over into later clinical particle

therapy efforts [14].
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Another project investigating the use of exotic particles for use in radiation ther-

apy has been the Antiproton Cell Experiment (a.k.a. AD-4/ACE) based at CERN

on the border of Switzerland and France [18]. Antiprotons, being the antimatter

counterparts of protons, behave in a very similar fashion as protons in media, except

when they interact with nuclei and annihilate. The premise of the AD-4/ACE project

is that some of this annihilation energy will deposit locally near the annihilation site,

boosting the tumor dose. Additionally, heavy ion fragments will contribute to greater

radiobiological effects than protons, allowing for lower total dose. Since starting in

2003, this project, lead by University of New Mexico researchers, has established

the dosimetric properties of antiprotons in water and provided early estimates of the

relative biological effectiveness (see Sec. 2.6.2) [19, 20, 21, 22, 23, 24, 25, 26, 1].

The modern era of particle therapy began in 1990 with the commissioning of the

first hospital based proton therapy facility at Loma Linda University, using both a

purpose built accelerator and a gantry allowing the rotation of the beam about the

patient [27]. In 1994 NIRS in Japan commissioned its Heavy Ion Medical Accelerator

facility (HIMAC), the first purpose built accelerator for carbon ions designed for

medical use [28]. As of 2011, there are some thirty facilities in operation worldwide

delivering proton therapy with another fifteen proposed for construction [14]. Also

as of 2011, six facilities are delivering carbon ion therapy with another six planned

[14].

2.4 The physics of radiation therapy

In radiological physics, two types of ionizing radiation are considered: directly ion-

izing particles, such as electrons and protons, and indirectly ionizing particles, such

as photons and neutrons. Directly ionizing particles interact primarily through

Coulomb type interactions, resulting in direct energy transfer [29]. Indirectly ioniz-

ing particles interact through a large number of mechanisms, largely dependent on
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the type and energy of the particle, as well as the composition of the media [29].

Photons, for example, will interact with increasing probability as a function of en-

ergy in the following order of interactions: Rayleigh scattering, photo-electric effect,

Compton scattering, and electron-positron pair production [29]. They also partake

in other interactions, including photo-fission. The interactions of neutrons are more

complex as result of the large range of nuclear reactions. Neutrons have highly vary-

ing interaction cross-sections depending on the medium and incident particle energy.

The interactions include neutron capture, neutron induced fission, elastic scattering,

and inelastic scattering.

A number of quantities are defined by convention in radiological physics. Some

of the most important quantities are defined below.

2.4.1 Fluence and Fluence rate

Fluence is the differential of the expectation value of the quantity of particles passing

through a great circle area of da over an arbitrary time interval.

Φ =
dN

da
(2.1)

Units such as m−2 are used [29]. The fluence rate is then,

φ =
dΦ

dt
=

d

dt

(
dN

da

)
(2.2)

2.4.2 Energy fluence and Energy fluence rate

Energy fluence describes the differential total energy passing through a great circle

area in an arbitrary time interval. If E is the total energy and N(E) is the expectation

value of the number of particles with energy value E, then

Ψ =
dE
da

=

∫ Emax

0
EdN(E)dE

da
=

∫ Emax

0

EΦ(E)dE (2.3)
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with units of joules or MeV [29]. Similarly, energy fluence rate is then,

ψ =
dΨ

dt
=

d

dt

(
E
da

)
(2.4)

2.4.3 Absorbed Dose

The most important quantity considered in radiological physics is the “radiation

dose” deposited in a medium by the incident radiation. The standard quantity is

called “absorbed dose” and defined as the energy deposited per unit mass with the

SI unit of gray (Gy), which is equal to joules per kilogram [29].

D =
dE

dm
(2.5)

An absorbed dose as small as 4 Gy over the entire body can be lethal to humans

[13].

2.4.4 Exposure

While absorbed dose is a clearly defined quantity, it is not always readily measurable.

As such, other quantities, such as “exposure” are measured. Exposure is defined as

X =
dQ

dm
(2.6)

where dQ is the charge liberated in the air of mass dm [29]. Under conditions of

charged particle equilibrium (i.e. an equal number of charged particles are scattered

into as out of the cross-sectional detection area), exposure in air can be directly

related to absorbed dose by the equation

D = X × W̄

e
(2.7)

where W̄ is the mean energy expended in a gas per ion formed and e is the charge

of the electron [29].
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2.4.5 Equivalent dose

Equivalent dose is a quantity defined by the International Commission on Radiologi-

cal Protection (ICRP), among others. It is designed to take into account the differing

biological effects of different radiation types. Equivalent dose is defined as

H =
∑
R

DR × wR(E) (2.8)

where DR is the absorbed dose due to a given radiation type (e.g. gamma rays) and

wR(E) are unitless biological weighting factors for each type of radiation, which may

in turn depend on the energy of the radiation incident on the volume of interest [5].

The standard weighting factors, as defined by ICRP are found in Table 2.1. Equiv-

alent dose is measured in the SI unit sievert (Sv), which is equivalent to joules per

kilogram [29]. As such, Gy and Sv both measure deposited dose, but Sv designates

that radiobiological weighting factors have been taken into account.

Radiation type Weighting factor
Photons 1
Electrons and muons 1
Protons and pions 2
Alpha particles, fission fragments,
heavy ions

20

Neutrons Energy dependent (wr in Eq. 2.9)

Table 2.1: ICRP 103 radiation weighting factors [5].

wR(En) =


2.5 + 18.2e−[ln(En)]2/6 En < 1 MeV

5.0 + 17.0e−[ln(2En)]2/6 1 MeV ≤ En ≤ 50 MeV

2.5 + 3.25e−[ln(0.04En)]2/6 En > 50 MeV

(2.9)
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Figure 2.5: ICRP 103 neutron weighting values as a function of neutron energy (see
Eq. 2.9) [5].

2.4.6 Effective dose

Effective dose is a quantity that attempts to “normalize” differing irradiation geome-

tries that may affect a human, such that the result can be used for risk assessment,

radiation protection, and regulatory purposes. In other words, effective dose at-

tempts to offer a single quantity that allows comparison of exposure to, for example,

a single hand with exposure of the entire body. This is accomplished by adding

organ/tissue weighting factors to the equivalent dose definition. Effective dose is

defined as follows,

E =
∑
T,R

DT,R × wT × wR(E) (2.10)

where DT,R is the dose in a given tissue/organ volume due to a given radiation type,
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R, and wT and wR(E) are the tissue/organ weighting factors and radiation weighting

factors respectively. Effective dose was most recently defined in ICRP 103 [5].

Tissue/organ wT

∑
wT

Red bone marrow, Colon, Lung, Stom-
ach, Breasts, Remainder tissues

0.12 0.72

Gonads 0.08 0.08
Bladder, Liver, Esophagus, Thyroid 0.04 0.16
Skin, Bone surface, Salivary glands,
Brain

0.01 0.04

Total 1.00

Table 2.2: IRCP 103 tissue/organ weighting factors used in Eq. 2.10 [5].

2.5 Physics of particle therapy

The advantages of charged hadron beams for radiation therapy are due to the un-

derlying physics of charged hadrons passing through media and depositing energy.

2.5.1 Stopping power and the Bethe formula

The key feature of ion beams recognized as useful by Wilson was the characteristic

depth-dose curve, or Bragg curve. The Bragg curve was theoretically described by

Bethe [30] in what came to be known as the Bethe (or sometimes Bloch-Bethe)

formula, Eq. 2.11.

dE

dx
=

4π

mec2
· nz

2

β2
·
(

e2

4πε0

)2

·
[
ln

(
2mec

2β2

I · (1− β2)

)
− β2

]
(2.11)
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Figure 2.6: Depth-dose curve of 110 MeV protons in liquid water (simulated with
FLUKA 2008).

E - energy lost to media me - rest mass of the electron

x - distance traveled by the particle n - electron density of media

z - particle charge I - mean excitation potential media

e - charge of the electron β = v/c

where β gives the velocity dependence. The Bethe formula is written in terms of dE
dx

,

a quantity known as “stopping power”. Integrating this results in the depth-dose

curve, as seen in Figure 2.6. The most important feature of the Bethe formula for

radiation therapy applications is the dependence of the energy deposition on β, which

in turn determines the location of the Bragg peak (the maximum dose deposition

point). By controlling the kinetic energy of the beam, the depth of the Bragg peak

can be controlled (see Figure 2.7).
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Figure 2.7: Depth-dose curves of 70 - 99 MeV protons in liquid water (simulated
with FLUKA 2008). This plot shows the energy dependence of the beam stopping
depth.

2.5.2 Range

The mean depth at which a charged particle comes to rest in a medium, or range,

can be estimated by integrating the stopping power, Eq. 2.11, as follows,

RCSDA =

∫ E0

0

(
dE

dx

)−1

dE (2.12)

This is known as the continuous slowing down approximation [29]. Figure 2.8 shows

the CSDA ranges for various ions in liquid water over an energy range relevant to

particle therapy.
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Figure 2.8: CSDA ranges for various ions. Data from the NIST pstar and astar tools
[6].

2.5.3 Spread-out Bragg peak

In his 1946 paper, Wilson posited that by superposing many beams with different

kinetic energies, an extended, uniform dose, or spread-out Bragg peak (SOBP) could

be created to provide tumor coverage (see Figure 2.9). The SOBP concept remains

the cornerstone in particle therapy today.

To construct the SOBP, the mono-energetic Bragg curves are treated as members

of a basis set and added in a weighted sum to achieve the desired curve to within

some tolerances. These weights are usually determined by solving a least squares or

similar problem, such as described by Eq. 2.13.
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Figure 2.9: A proton spread-out Bragg peak with the weighted “pure” Bragg peak
components. Such a dose distribution allows for uniform coverage of an extended
target. Data generated with Geant4.9.3.

min{|X · −→ω −−→y |2} with


X = the matrix of beam doses

−→ω = a vector of weights for the beams

−→y = the desired dose distribution

(2.13)

2.5.4 Bragg peak width

While the Bragg curve has a very localized peak, its width (see Fig. 2.10) increases at

greater depth, corresponding to greater initial energies. This phenomenon is similar

to the SOBP, but is due to inherent multiple scattering and energy straggling effects,

which take on a normal distribution. The Bragg peak width (FWHM) is described

by the following formula [31],
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Peak
Width

Figure 2.10: Bragg peak longitudinal width, 100 MeV proton beam in liquid water.
Data generated with Geant4.9.3.

s(x) =
1√

2πσx
exp−(x−R(E))2

2σ2
x

(2.14)

σx = 0.012×R(E)0.951A−0.5 (2.15)

FWHM = 2
√

2 ln 2σx (2.16)

where s(x) is the distribution of ranges, R(E) is the mean range (see Sec. 2.5.2), and

A is the atomic number of incident particle.

2.5.5 Lateral scattering

The lateral shape of the energy deposition due to a charged hadron beam is described

by Molière scattering theory [32]. Multiple scattering events lead to a Gaussian
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distribution of dose around the beam center, described by Eq.’s 2.17 and 2.18.

f(θ) =
1√

2πσθ
exp

(
− θ2

2σθ

)
(2.17)

σθ =
14.1MeV

βpc
Z

√
d

Lrad

(
1− 1

9
log10

d

Lrad

)
(2.18)

p - particle momentum Lrad - radiation length

d - target thickness β = v/c

θ - angle of scatter

These equations give the dependence of the lateral dose distribution width on particle

momentum and target thickness, which in the case of therapeutic beams can be

interpreted as depth into the target.

2.5.6 Linear energy transfer

Linear energy transfer, or LET, is a specific form of stopping power with particular

relevance to radiobiology. Like standard stopping power (see Sec. 2.5.1), LET is a

measure of energy lost per unit length, but in this case it is the energy transfered to

the immediate vicinity. For photon-electron interactions, restricted LET, L∆, which

does not count energy carried away by secondaries with kinetic energy over a certain

threshold, ∆, is used [29].

L∆ =
dE∆

dx
(2.19)

For heavy particles, unrestricted LET, L∞, which is equal to the collisional stopping

power, is most appropriate [33].
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L∞ =
dE∞
dx

(2.20)

LET is generally weighted either by fluence of the primary particles, “track-averaged

LET” (Eq. 2.21) or weighted by dose, “dose-averaged LET” (Eq. 2.22) [33].

Ltrack(x) =

∫∞
0

Φr(x)L∞(r)dr∫∞
0

Φr(x)dr
(2.21)

Ldose(x) =

∫∞
0

Φr(x)L2
∞(r)dr∫∞

0
Φr(x)L∞(r)dr

(2.22)

where Φr is the particle fluence with residual range r. LET generally has units of

keV/µm.

2.6 Radiation biology and charged hadron ther-

apy

While the physics of particle beams plays a paramount role in designing a suitable

treatment, radiation biology plays an equally important role. The reader is referred

to Hall [13] as a primary reference for radiobiological background.

2.6.1 DNA damage

The primary mechanism of radiation leading to cell death is thought to be sufficient

damage caused to the deoxyribonucleic acid (DNA) contained within the cell’s nu-

cleus. Because of this, much of radiation biology takes place on the length scale of

DNA, which has a width of approximately 2 nm.
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Figure 2.11: The basic structure and components of DNA.

Charged particles are able to cause direct damage to DNA bonds, while photons

indirectly damage DNA, primarily through the creation of free radicals, such as

hydroxyl (OH·), which then attack DNA molecular bonds. The famous “double

helix” ladder-like structure of DNA (Fig. 2.11) is susceptible to single- and double-

strand breaks of the phosphate backbone on which the nucleotide bases are held.

Double-strand breaks are more difficult for the cell to repair than single strand breaks

and are in turn more lethal.

2.6.2 Relative biological effectiveness

On the laboratory bench scale, radiation effects are quantified using the quantity

relative biological effectiveness (RBE). RBE is the relative effect that the same ab-

sorbed dose of one type of radiation has versus the same absorbed dose of a reference
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type of radiation (often Co-60 gamma rays or 250 KV x-rays) [Hall]. Reference radi-

ation is assigned an RBE of 1.0 by definition. The biological effect (or “end point”)

under consideration is arbitrary, but is often cell proliferation. RBE is defined as,

RBE ≡ Dref

Dtest

∣∣∣∣
isoeffect

(2.23)

where Dref is the reference radiation dose and Dtest is the dose of the test radiation

necessary for the same biological effect [13]. Thus a more lethal radiation, requiring

a lower dose, would have an RBE greater than 1.0.

For the purposes of planning radiation therapy, absorbed dose distributions are

weighted by the corresponding RBE values of the distribution. Proton beams have

RBE values that are relatively uniform over the length of the Bragg curve. The

average RBE value of 1.1 is used in treatment planning, as suggested by the ICRU

[34]. Carbon ion beams have RBE that varies over the Bragg curve as a function of

depth, but the specific values depend on several factors and are not well determined

[34].
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Chapter 3

Computational particle therapy

background

3.1 Introduction

The goal of radiation therapy is to deliver the “best” radiation dose distribution

possible to the patient. In order to determine and deliver this “best” distribution,

a number of physical, geometric, and biological parameters must be known and

understood and used in conjunction with physical and radiobiological models. An

indispensable tool in this sequence is that of computational methods.

Computational methods allow for the in silico estimation and optimization of

dose distributions with equal or, at times, even superior accuracy than what can be

practically measured in clinical settings. Because of this, computing is a cornerstone

in the sequence of radiation therapy delivery, and nowhere more so than in charged

particle therapy.

This section will provide background information on some of the fundamental

computational techniques used in particle therapy to calculate quantities of interest.
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AAPM Task Group Report No. 105 [35] is a very well referenced guide to many

techniques, in particular those related to Monte Carlo.

3.2 The Monte Carlo method

The Monte Carlo method was first developed in 1946 by Stanis law Ulam and John

von Neumann for use in neutron shielding calculations at the then Los Alamos Sci-

entific Laboratory [36]. Neutron calculations were not solvable analytically, despite

relatively well characterized parameters, due to the stochastic nature of neutron

interactions with media. The Monte Carlo method was designed to capture this

stochastic nature and yield reliable results even in physically complex scenarios.

3.2.1 Monte Carlo fundamentals

The Monte Carlo method is a statistical computing technique that uses large numbers

of independent, stochastic trials to converge on the solution of a problem [37]. This

technique is particularly useful for complex, many dimensional problems, which are

not adequately described in closed form and are thus intractable by analytical means

[38].

An elementary example of the Monte Carlo method often presented in introduc-

tory courses is that of estimating π [39]. By inscribing a unit circle inside a square,

randomly tossing “darts” into the square, and counting the number that land within

the circle, the value of π can be estimated using the formulas for the area of the

circle, A© = πr2, and the square, A� = l2 = (2r)2 (see Fig. 3.1).

π

4
= I =

∫ 1

0

√
1− x2dx (3.1)
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Figure 3.1: Monte Carlo estimation of π by randomly placing points in a quadrant
of the square and determining the proportion which fall within the inscribed unit
circle.
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Figure 3.2: Asymptotic approach to the “true” value of π as the number of trials
increases.
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In effect this process numerically solves the integral in Eq. 3.1. The accuracy of

the solution is a function of the number of trials performed (see Fig. 3.2).

For a general Monte Carlo calculation, steps taken in the event simulation are

governed by probability distributions. Each trial randomly samples from these gov-

erning distributions to create an event “trajectory”. At the conclusion of all trials,

the total results are aggregated to produce a final answer for the quantity of interest

[38].

Key features of the Monte Carlo method are:

• Final outcome is product of many individual, stochastic trials.

• Inherent parallelizeability due to the independence of each trial (i.e. no cross-

trial interaction).

• Need for random numbers for probability distribution sampling and thus re-

liance on pseudo-random number generators.

• Potential for asymptotic accuracy, given adequate computing resources.

3.2.2 Radiation transport via Monte Carlo

Radiation transport is simulated using the Monte Carlo method by characterizing

individual radiation interactions as probability distribution functions. Each particle

trajectory is the result of many interactions, in which the outcome is determined

by randomly sampling from the appropriate probability distribution function. The

probability distribution functions are built from fundamental physics models and

empirically obtained interaction cross sections [38].

The Monte Carlo method has been widely applied in radiation therapy physics

and is considered the gold standard for dose calculations [40, 41]. Due to Monte
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Carlo’s stochastic nature and its treatment of particle tracks individually, Monte

Carlo is especially adept at dealing with situations of highly heterogeneous media,

which are often encountered in radiation therapy [35]. For radiation therapy re-

lated calculations, several Monte Carlo packages are in use, including: EGSnrc [42],

FLUKA [43, 44, 45], Geant4 [46, 47, 48], MCNP [49], MCNPX [50], Shield-HIT [51],

and Penelope [52].

Solving the Boltzmann equation

Radiation transport via Monte Carlo is a technique to numerically solve the Boltz-

mann radiation transport equation (Eq. 3.2) [38].

φ(r,v) =

∫ [∫
φ(r′,v′)C(v′ → v, r′)dv′ +Q(r′,v)

]
T (r′ → r,v)dr′ (3.2)

φ(r,v) - particle flux density C(v′ → v, r′) - collision kernel

Q(r′,v) - source term T (r′ → r,v) - transport kernel

r - particle location v - particle velocity

More intuitively, radiation Monte Carlo can be thought of as simply simulating the

physics processes of many independent particles and arriving at a mean value for

quantities of interest.

3.3 Monte Carlo performance enhancements and

derivative techniques

While Monte Carlo has the potential to be extremely accurate, it is relatively re-

source intensive and often prohibitively so. Because of this, many methods have
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been developed to improve the performance of Monte Carlo to make it more suit-

able for applications such as clinical dose calculations [35]. These techniques fall into

two broad categories: approximation efficiency improvement techniques and variance

reduction techniques [53].

3.3.1 Metric of simulation efficiency

A common metric for efficiency of Monte Carlo calculations is given by Eq. 3.3

ε =
1

σ2T
(3.3)

where ε is efficiency, σ2 is the estimated variance of the quantity of interest, and T

is the time to simulate the quantity with variance σ2 [35, 54].

3.3.2 Transport cutoffs

Transport cutoffs are approximation techniques designed to discard particles which

meet certain criteria in order to decrease calculation time per trial [35, 53].

Range rejection

Range rejection is a technique in which a particle is discarded if its residual range is

not sufficient to travel beyond the current region into the region of interest or if the

particle has started beyond the region of interest [53].

Energy cuts

Energy transport thresholds, or energy cuts, are generally high-pass criteria, below

which particles are discarded [35]. The residual energy may or may not be deposited
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locally.

3.3.3 The condensed history method

Condensed history methods are approximation techniques used for the transport of

charged particles. Condensed history methods are Monte Carlo techniques which

group together multiple charged particle interactions using multiple scattering the-

ory and stopping power to enhance performance over individual track simulation

[55]. The two major variants, class I and class II condensed history methods, have

been widely used in radiation therapy calculations, in particular for electron-photon

transport [35].

3.3.4 Variance reduction techniques

Variance reduction techniques are methods employed which lower the variance, σ2, of

a quantity of interest while improving the efficiency of the calculation and not biasing

the result [35]. Variance reduction techniques differ from approximation techniques

described above, in that they do not alter the fundamental physics of the simulation.

Several techniques have been used in conjunction with radiation therapy Monte Carlo

calculations with varying frequency. In addition to those described below, others

include simultaneous transport of particle sets, the Sobol random number method,

Woodcock tracing, Macro Monte Carlo [35, 56].

3.3.5 Particle splitting

Particle splitting, most often used in the context of bremsstrahlung splitting, is the

technique of increasing simulation statistics by cloning particles, particularly in low

fluence regions or low yield secondary particles [57]. In order to maintain correct
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Splitting

Figure 3.3: The particle splitting technique.

weighting, such that the final result is not biased toward the cloned particles, the

new particles are “re-weighted” by w0/n, where w0 is the initial weight of the particle

and n is the number of multiples created in the split.

The most basic form of splitting is called uniform splitting, while other forms

have been developed, such as selective brems splitting and directional brems splitting,

which have specific applications in efficient x-ray generation simulation [53].

3.3.6 Russian roulette

Russian roulette is a technique often used in conjunction with particle splitting [57].

Roulette consists of probabilistically terminating particles among a set of similar

particles which are of little interest, whether due to their physical properties or

because they are in a region of little interest. Just as with splitting, surviving
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Roulette

Figure 3.4: The Russian roulette technique.

particles are re-weighted to maintain statistical soundness. In the case of roulette, if

a particle survives with probability P , its new weight will then be w0/P . Roulette

is fundamentally a time saving technique.

3.3.7 Interaction forcing

Interaction forcing is a technique to artificially create interactions of neutral particles,

such as photons and neutrons, which interact only probabilistically, such that the

mean free path (MFP) is described by Eq. 3.4 [56].

P (x) = exp−x/λ (3.4)

where λ is the medium-dependent mean free path. In order to avoid wasting resources

on the transport of particles that leave the region of interest without interacting,
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particles are forced to interact within the region and re-weighted based on their

initial probability of interacting. A distance is chosen, Nλ, which is the number of

MFP’s after which the particle will be forced to interact, based on the length of the

region, Λ, in multiples of MFP’s (Eq. 3.5).

Nλ = − ln
[
1− η(1− exp−Λ)

]
(3.5)

The interacting particle’s weight is then modified to

w′ = w0(1− exp−Λ) (3.6)

where w0 is the particle’s original weight.

3.4 Deterministic methods

A number of deterministic methods have been developed to calculate dose due to

photon, electron, and charged hadron beams. Analytical models have been developed

which have good agreement with experimental data, but have not proven flexible for

treatment planning situations [58]. Another class of algorithms are kernel based

algorithms, such as pencil beam algorithms, which are the current clinical standard

for treatment planning. Pencil beam algorithms generally use dose kernels generated

with Monte Carlo and apply various schemes to convolve and transform the kernels

to estimate the final dose distribution [59, 60]. Kernel based methods tend to fail in

situations with highly heterogeneous media [61]. This shortcoming is often cited as

one of the major motivations for the clinical use of Monte Carlo simulations.
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Chapter 4

Fast LET mapping via track

repeating

4.1 Introduction

There has been recent interest in the idea of simultaneously optimizing particle dose

distributions and linear energy transfer (LET) distributions. As with many radiation-

related quantities, Monte Carlo techniques have been the most accurate for both dose

and LET calculations, but at the cost of timely performance. In this chapter, the use

of the so-called “track repeating” method is described for fast calculation of three

dimensional LET maps. This method proves to be both comparably accurate and

provide improved performance compared with the standard Monte Carlo method.

4.2 LET optimization

Recent work by Bassler, et al [62], Grassberger, et al [63], and Riofŕıo, et al [64], has

examined the benefits and practicality of simultaneously optimizing treatment plans
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with regards to absorbed dose and LET, in so-called “LET painting” techniques. To

achieve the desired level of accuracy in LET calculations, Monte Carlo would be the

preferred calculation method, but would likely lack the performance necessary for

clinical time frames.

4.2.1 Oxygen enhancement effect and LET

The presence of oxygen in the environment of cells being irradiated can have a sig-

nificant impact on radiobiological effect [13]. Hypoxic environments decrease the ef-

fectiveness of sparsely ionizing radiation, such as photons. The ratio of dose required

for the same biological effect in the low oxygen versus normal oxygen environments

is called the “oxygen enhancement ratio” (OER). OER decreases with higher LET

radiation (i.e. high LET radiation is more effective) [13]. This is the basis presented

by Bassler, et al, for LET painting and optimization.

4.2.2 RBE and LET

While proton therapy planning is generally performed assigning a relative biological

effectiveness (RBE) of 1.1 to the entire proton dose volume, proton RBE is known to

vary along the Bragg curve [34]. Although the relationship between LET and RBE

for proton beams is not fully understood, there does exist a monotonic LET-RBE

relationship [65]. This relationship is the basis presented by Grassberger, et al, for

LET painting and optimization.

4.3 Track repeating

Track repeating, or history repeating, is a Monte Carlo-based radiation transport

technique designed to have accuracy on par with full Monte Carlo, but with higher
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performance. Initially used as a technique for electron transport in photon-electron

simulations in radiation therapy physics [66, 67, 56], track repeating has more re-

cently been adapted as a method to perform treatment planning absorbed dose cal-

culations for charged hadron beams [68, 69, 70, 71].

4.3.1 Track repeating fundamentals

The basic idea of track repeating is to pre-calculate radiation “tracks” using full

Monte Carlo for later use. More generally, the motivation is to gain performance by

splitting the radiation transport simulation into two distinct parts:

1. A calculation independent of the particulars of the ultimate calculation of in-

terest.

2. An on-demand calculation, using problem-specific parameters.

This concept is similar to Monte Carlo schemes in which the treatment hardware (e.g.

particle accelerator and beam collimators) is simulated in advance to create phase

space characterizations of the radiation kinematics. This information can then be

generically used for patient specific calculations [72, 73, 74, 41].

The track repeating algorithm

The basic algorithm of track repeating is illustrated in three steps in Figure 4.1.

1. A database of tracks is created using a full-fledged Monte Carlo package.

2. Tracks from the database are overlaid on the scoring grid with the geometry

of interest.

3. The quantity of interest is tallied.
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Figure 4.1: The basic track repeating concept. a) Generate a database of particle
tracks using a full-fledged Monte Carlo package. b) Overlay tracks from database
onto scoring grid. c) Accumulate quantity of interest.
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A typical track will consist of series of “steps”. Each step contains information

about the state of the particle during the step, such as kinetic energy, energy loss,

energy deposited, angle of scatter, step length, and secondaries created [67, 70].

Each step is a summary of the many interactions that have taken place over the step

length. Therein lies the primary performance advantage of track repeating over full

Monte Carlo, as all of the individual interactions that the Monte Carlo carries out

are contained within each step, summarized as simple parameters [67].

Radiation transport is performed by propagating the tracks step-by-step through

a voxelized geometry. The end point of a step is determined from step data (e.g.

step length and scatter angle) and the corresponding system coordinates are deter-

mined. If appropriate, energy lost by the particle is scored in the corresponding

voxel. Secondary particles can be propagated in the same manner by spawning from

the originating step in a primary track.

Various authors have dealt with propagation and energy deposition in media

different from the generation medium by scaling the step length [67, 68, 70]. This

strategy has dealt well with inhomogeneous media, but does not explicitly account

for backscatter at media interfaces.

4.4 The LET track repeating algorithm

Linear energy transfer is the energy deposited by an incident particle to a medium

per unit distance (see Section 2.5.6). For the case of charged hadron LET, the

unrestricted version, L∞, is most appropriate.

L∞ =
dE∞
dx

(4.1)

To estimate LET in the voxel designated by x, the track-averaged and dose-averaged
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LET were calculated using Eq.’s 4.2 and 4.3.

Ltrack(x) =

∑
i Φi(x)L∞,i(x)∑

i Φi(x)
(4.2)

Ldose(x) =

∑
i Φi(x)L2

∞,i(x)∑
i Φi(x)L∞,i(x)

(4.3)

where Φi is the particle fluence.

For an individual track, LET information is tallied by propagating the track inside

the voxelized scoring grid (the phantom), one step at a time. At each step, the energy

deposited, energy deposited divided by step length, and fluence (clearly one for a

single particle) is recorded in the corresponding voxel, or bin. After all tracks have

been propagated, the final LET values are then calculated using Eq.’s 4.2 and 4.3,

where dose is the total energy inside a voxel divided by its mass (see Section 2.4.3).

4.4.1 Track generation with Geant4

The track databases of primary protons were generated with the Geant4.9.3 Monte

Carlo package [46, 47, 48]. Geant4 is a set of C++ language libraries that allow the

users full customization of the simulation, but also provides some reasonable preset

physics “lists”, which set the interaction models used. The following physics lists

were used to generate primary proton tracks:

• G4EmStandardPhysics option3

• G4HadronElasticPhysics

• G4HadronInelasticQBBC

• G4IonBinaryCascadePhysics
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• G4RadioactiveDecayPhysics

which are recommended for benchmarking against experimental proton depth-dose

data.

In track generation each step contained the following information,

• The kinetic energy of the particle at the end of the step.

• The total energy deposited over the course of the step.

• The step length.

• The unit vector describing the direction of the step.

Each track was generated with a maximum step length of 0.1 mm and transport

cut-off (high-pass) values equivalent to 1.0 mm for electrons, positrons, and photons.

The tracks where generated in a 40 cm × 40 cm × 40 cm water volume, with the

origin of the track centered on one face of the cubic volume. Each track was strictly

monoenergetic at the entrance with all tracks having identical initial momenta.

Figures 4.2, 4.3, 4.4, and 4.5 show some of the properties of the tracks generated

with Geant4. Figures 4.2 and 4.3 display the kinetic energy and energy loss per

step of the primary protons respectively. It is apparent that energy loss first occurs

in a nearly linear manner and then increases to a superlinear loss near the end of

the primary range, which is coincident with the Bragg peak. While the majority of

energy loss is due to Coulombic interactions with electrons, some nuclear interactions

occur as well, although for 50 MeV protons, the probability of such interactions is

less than 5% and lower at higher energies [68]. In Figure 4.2 dramatic energy loss by

a few particles can be seen, which is due to inelastic nuclear interactions. These large

energy losses are not reflected in Fig. 4.3, as the energy lost is transfered to secondary

particles and not counted in the unrestricted stopping power of the primary particles.
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Figure 4.2: Kinetic energy versus step number for 200 proton tracks starting at
50 MeV in liquid water. Some tracks have abrupt drops to ≈ 0 MeV due to inelastic
nuclear interactions.

Figure 4.3: Energy loss versus step number for 200 proton tracks starting at 50 MeV
in liquid water.
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Figure 4.4: Step length versus step number for 200 proton tracks starting at 50 MeV
in liquid water.

Figure 4.5: Mean LET versus step number for proton tracks starting at 50 MeV in
liquid water. Only tracks with an equal numbers of steps were used to create the
mean LET value. This value is very similar to LET versus depth, which requires
track propagation.
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Figure 4.4 displays the step length for the steps of 200 proton tracks generated

with a 0.1 mm maximum step length parameter. It is clear from the figure that

the step length does not greatly deviate from the enforced maximum until the ki-

netic energy of the proton has significantly decreased. At this point, the interaction

cross sections have increased and with each subsequent interaction the probability

of another collision further increases.

Figure 4.5 displays the mean unrestricted LET versus step for a set of approx-

imately 225 50 MeV proton tracks. This LET value is very similar to LET versus

depth since protons deviate very little from their initial trajectory. To calculate the

true LET vs depth, the tracks must be propagated as described Sec. 4.3.1.

4.5 Benchmarking and performance

4.5.1 Benchmarks

A first benchmark was performed by comparing LET values for a simple geome-

try calculated with the track repeating algorithm against LET derived from well

established stopping power values.

The track repeating values were calculated with a 50 MeV proton beam with a

symmetric cross sectional Gaussian σ of 2 mm. The beam consisted of 10,000 tracks

repeated 10X into a 40 mm × 81 mm × 81 mm water volume with a voxel size of

0.2 mm × 1.0 mm × 1.0 mm, with 40 mm being the dimension along the beam

axis. The LET-depth curve was then calculated using Eq. 4.2 along the central voxel

column, which should have been subject to charged particle equilibrium.

The benchmark LET-depth curve was generated with data from NIST’s online

pstar tool [6], which uses data that forms the bulk of ICRU Report 49 [75]. The curve

was generated by iteratively looking up the stopping power for the current kinetic
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energy of the proton, then subtracting the corresponding energy for the distance over

an arbitrary step length.

Figure 4.6: Unrestricted LET for 50 MeV protons in liquid water generated with
track repeating and generated from data from NIST’s pstar tool [6].

Figure 4.6 shows a comparison of unrestricted LET of 50 MeV protons generated

with the track repeating algorithm and the benchmark data derived from pstar. The

striking similarity in values is likely due to Geant4 using the same underlying energy

loss models and cross section data and models directly from ICRU 49 in part of the

energy spectrum (2 MeV - 1 keV) [71]1. While this results in a somewhat circular

test, with Geant4 serving as an intermediary “black box”, it demonstrates that the

values are largely preserved by the track repeating process.

A second comparison was of 3D LET distributions produced by full Monte Carlo

with Geant4 and the track repeating algorithm. This comparison again used 50 MeV

proton beams in liquid water. The beam consisted of 400k primary protons in Geant4

and 40k primary protons in track repeating, repeated 10 times. The cross sectional

1NIST provides a detailed description of the models used to generate the stopping power
data on its website [6].
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Gaussian σ of the beam was 5 mm.

0 10 20 30

0 10 20 30

Figure 4.7: Absorbed dose of a 50 MeV proton beam in liquid water calculated with
track repeating and Geant4.

Figures 4.7 and 4.8 show two dimensional cross sections of the dose and track-

averaged LET distributions from 50 MeV protons generated with track repeating

and Geant4. The distributions are substantially similar, especially with regards to

range of the beam. Figure 4.9 shows the central voxel column of the same data,

displaying the variation of the LET with depth. The values from track repeating

match up well with Geant4.
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Figure 4.8: Track-averaged LET of a 50 MeV proton beam in liquid water calculated
with track repeating and Geant4.

4.5.2 Performance

The track repeating algorithm was implemented in both the interpreted Python

language [76] and the compiled C++ language [77, 78]. Track repeating performance

was measured against a full Monte Carlo calculation with Geant4 of track-averaged

LET for a 50 MeV proton beam in liquid water. The beam had a symmetric cross

sectional Gaussian σ of 5 mm. Performance results are summarized in Table 4.1.

Even with the inherent slowness of Python, due to the language’s dynamic typing

and interpreted nature, the LET calculation came out to 4.4 times as fast as the

native Geant4 calculation. The C++ implementation was faster still at 15.2 times
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Figure 4.9: Track-averaged LET versus depth of a 50 MeV proton beam in liquid
water calculated with track repeating and Geant4.

Algorithm Geant4 Python TR C++ TR
Mean time (sec) 207.0 46.6 13.6
Performance ratio 1.0 4.4 15.2

Table 4.1: Performance of LET calculations for 50 MeV proton beams in liquid water.

the calculation speed of Geant4.

4.6 Conclusion and outlook

The track repeating algorithm is designed to break up time intensive Monte Carlo

simulation into two separate parts: a pre-processing, simulation independent part,

where most of the “heavy lifting” is performed by full Monte Carlo, and a second

“on-demand” part running calculation specific parameters. For dose calculations

presented by other authors, this has proven to be both faster than Monte Carlo and

highly accurate.
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For the LET calculation presented here, the accuracy and performance promise of

track repeating seems to have delivered. The fastest speed up over full Monte Carlo

was the C++ version of the track repeating code, with a performance improvement

of ≈ 15× over Geant4. This performance is not as impressive as claims made in

the literature of improvements up to 200-500× [70], but we suspect that further

improvements can be made via code optimizations.

This LET calculation method is a relatively straight forward novel use of the

track repeating algorithm. In the following chapter, Chapter 5, track repeating is

used to estimate peripheral dose due to particle beams. This is a significantly more

complex simulation, for which the LET track repeating algorithm is a stepping-off

point.

The current algorithm is somewhat limited, only calculating LET for primary

particles and not adjusting for heterogeneous media. Using techniques from the next

chapter, LET contributions from secondary particles could be taken into account.

Transport through heterogeneous materials could be implemented using techniques

described in the literature [67, 68, 70].
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Chapter 5

Fast secondary dose estimation via

track repeating

5.1 Introduction

Of known radiation types, charged particle beams have the most desirable radiation

dose distributions. Despite this, some scattered radiation is nonetheless present

outside of the target volume. This peripheral, or secondary dose, is of concern not

only because of the risk of acute effects, such as those which cause tissue death, but

also risks such as radiogenic cancer. Accurately calculating the secondary dose in

regions far from the target volume is a resource intensive task, due to low particle

fluence and the effect of heterogeneities on particle ranges. In this chapter, the

use of the so-called “track repeating” method is described for fast secondary dose

estimation.
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5.2 Secondary dose and second cancer in particle

therapy

As with any medical therapy, side effects are a concern with charged hadron ther-

apy. Compared with external photon therapy, charged hadrons have the potential

for much better tumor dose conformity with lower dose to surrounding tissues. This

brings the promise of using higher tumor doses as well as treating previously un-

treatable sites, such as many pediatric tumors, which were considered too risky due

to potential long-term side effects. Both of these scenarios require careful consid-

eration of potential long term side effects due to low dose exposure outside of the

treatment region, since hadrons are fundamentally different than other therapies.

This low dose exposure is termed secondary or peripheral dose. Secondary dose is of

concern because it can lead to long term effects including radiation induced cancer

and developmental problems in children [79, 13, 80]. Recently, the concern about

secondary dose in hadron therapy was raised by Hall, in particular regarding dose

from secondary neutrons in proton therapy [81]. This has led to a number of stud-

ies looking at the potential secondary dose from charged hadron therapy and x-ray

therapy and attempting to quantify the associated cancer risk [82, 83, 84, 85].

5.2.1 Sources of secondary dose

Dose delivered to the target volume is referred to in this dissertation as primary

dose, while dose that falls outside of the target volume is termed secondary dose.

In charged hadron therapy, secondary dose is ultimately due to interactions of the

incident particle with nuclei of the medium (i.e. tissue) [31]. Protons, for example,

will collide with nuclei, knocking out neutrons, fragmenting nuclei into heavy ions,

and scattering primary protons. Neutrons are especially noteworthy, as they can

penetrate throughout the body. Fragmentation of medium nuclei can also produce
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Figure 5.1: Absorbed dose in the peripheral region from 75 MeV protons in liquid
water (log scale). Data generated with FLUKA.

long ranging gamma rays. Figure 5.1 shows the absorbed dose due to a 75 MeV

proton beam plotted on a log scale. The dose extends beyond the 150 cm range

shown in the figure, although at an even lower fraction of the maximum dose than

what can bee seen in the plot, which is normalized to one in the figure. If the

incident beam is composed of compound nuclei, such as carbon-12, the primary

particles themselves can fragment, leading to the distinctive forward-peaked dose

tail seen in beams heavier than protons [32].
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5.3 Estimating secondary dose

Generally, the published studies related to secondary dose in charged hadron ther-

apy fall into three categories: disease specific estimates and case studies of individ-

ual patients, peripheral field estimates and measurements, and schemes to estimate

patient-specific secondary dose [82, 86, 87, 88, 89, 90, 91, 92]. In the first two cate-

gories, the goals of the studies have been primarily to determine the relative safety of

hadron therapy on the broad level and reassure the community of radiation therapy

practitioners and potential patients. The third category, patient-specific estimate

schemes, aims for more clinical relevance.

In nearly all of the published studies, calculations are typically performed by

simulating a patient treatment using a Monte Carlo transport code such as Geant4

[46, 47, 48] or MCNPX [50] to estimate the secondary dose. This is considered the

best method to produce accurate dose values, particularly after the particles have

traversed media of various densities and potentially produced many secondary par-

ticles. The great drawback of most Monte Carlo implementations is the calculation

time. A treatment region may be taking into consideration a volume as large as

∼30k cm3, whereas the volume included in a secondary dose calculation might be

closer to ∼125k cm3. Thus, in order to produce statistics with acceptably low asso-

ciated errors, runs of several days to weeks of CPU time are common [41, 93]. While

this is acceptable for producing safety related results, these long times do not allow

clinicians to have patient-specific information regarding secondary dose on which to

act.

A previous study by the author investigated estimating secondary dose from

proton, antiproton, and carbon ion beams using an analytical model fit to simulated

data [94]. The advantage of this model was very fast calculation time once the initial

Monte Carlo simulations were performed. The disadvantage was that the model only

gave broad estimates and was unable to take geometric specifics and inhomogeneous
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media into account.

The motivation behind a new track repeating based method of secondary dose

estimation (SDE) is to provide estimates that are accurate while being fast enough

that clinicians could use the information as the basis of treatment decisions. Current

Monte Carlo based schemes, with time scales mentioned above, are not suitable for

use in clinical settings.

5.4 SDE via track repeating

The basic track repeating algorithm is presented in Sec 4.3.1. For SDE the basic algo-

rithm must be extended to take into account the many secondary particles produced,

which then contribute to secondary dose. Additionally other speed up techniques are

applied to reduce run time while maintaining overall accuracy (see Sec 5.5).

The SDE track repeating algorithm is similar to the basic one described in Fig 4.1,

except that each track step contains additional information about secondaries pro-

duced. To propagate a secondary of an arbitrary energy, the algorithm must first

identify the type of particle, then select the appropriate database. Because the sec-

ondary is very unlikely to have the same initial energy as the database tracks, a

sub-section of a database track must be extracted with a maximum energy approxi-

mately equal to the initial energy of the secondary particle. To perform this selection,

a binary search algorithm was implemented, which has a worst case performance of

O(log2 n), where n is the number of steps in the track [95]. The binary search was

modified to have a “fitness” parameter, ∆, such that if the energy found were not

within the fraction ∆ of the sought after energy, the search moved to the next track.

∆ was generally set to 0.1, which seemed to give the best performance (see Fig. 5.2,

which displays run times for 20k primary protons with different ∆ values). When

choosing a sub-section of a track that meets the ∆ criterion, the worst case perfor-
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mance is then O(m log2 n), where n is the number of steps in the track and m is the

number of tracks in the database.

The track selected from the database of secondaries must also be aligned with the

trajectory of the secondary before propagation. This is accomplished using a House-

holder transformation, which efficiently reflects the first step of the new track into

alignment with the secondary’s unit vector while rigidly transforming the remainder

of the track [96]. This process is more efficient than using a similar rotational matrix

procedure to align the secondary tracks.

The SDE algorithm was implemented in the interpreted Python language [76]

using the numerical library NumPy [97].

Figure 5.2: Run times for 20k primary protons using different ∆ values in the binary
search algorithm. ∆ values below 0.08 caused recursion errors, since the algorithm
had to continue to search for steps with energies that met such a strict criterion.
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5.4.1 Databases

For SDE multiple track databases are necessary in addition to the database of pri-

mary particles. For proton SDE, additional databases are needed for electrons,

positrons, neutrons, and photons. Heavy ions produced from nuclear fragmentation

were not transported due to their low ranges (see Sec. 5.5.3).

The track databases were generated with the Geant4.9.3 Monte Carlo package

[46, 47, 48]. Geant4 is a set of C++ language libraries that allow the users full

customization of the simulation, but also provides some reasonable preset physics

“lists”, which set the interaction models used. The following physics lists were used

to generate all track databases:

• G4EmStandardPhysics option3

• G4HadronElasticPhysics

• G4HadronInelasticQBBC

• G4RadioactiveDecayPhysics

which are recommended for benchmarking against experimental proton depth-dose

data.

In track generation, each step contained the following information,

• The kinetic energy of the particle at the end of the step.

• The total energy deposited over the course of the step.

• The step length.

• The unit vector describing the direction of the step.

• A list of secondaries generated in the step, with the following information,
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– The secondary particle type.

– The kinetic energy of secondary.

– The unit vector describing the initial trajectory of the secondary.

Each track was generated with a maximum step length of 0.1 mm and transport cut-

off (high-pass) values equivalent to 10.0 mm for electrons and photons. The tracks

where generated in a 40 cm × 40 cm × 40 cm water volume, with the origin of the

track centered on one face of the cubic volume. Each track was strictly monoenergetic

at the entrance with all tracks having identical initial momenta.

Proton database

Proton databases of several energies were generated as part of the investigation.

The results presented in Sec. 5.6 were calculated with a primary proton database

of 120 MeV protons. The secondary databases were generated based on statistics

derived from a database of 250 MeV protons, which is approximately the maximum

kinetic energy necessary for proton therapy. An unprocessed 120 MeV database of

20k protons was approximately 196 MB stored in an uncompressed flat file format

(≈ 10KB per track).

Electron database

An initial energy of 31 MeV was selected for electrons, as no electrons with higher

kinetic energies were observed to be produced in any subsequent reactions due to

primary protons of 250 MeV. An unprocessed 31 MeV database of 2k electrons was

approximately 26 MB stored in an uncompressed flat file format (≈ 13.3KB per

track).
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Neutron databases

Unlike charged particles, which are constantly losing energy as they pass through

matter, neutral particles interact infrequently. This means that a neutron (above

a few keV) will tend to have a few interactions resulting in major energy losses or

potentially not interact at all (see Fig. 5.3)[29]. Because of this, the binary search

method described above fares poorly for neutrons and photons, when compared with

charged particles. Protons, electrons, and positrons tend to lose energy in a “smooth”

manner, whereas neutrons and photon tend to have large step-downs. Using the

binary search with a single initial energy database can then lead to secondaries that

either do not have correct energies, or very long search times.

Figure 5.3: Kinetic energy versus step number for 215 MeV neutrons in liquid water
phantom of 400 cm sides.

To overcome this issue databases of neutral secondary particles are broken up

into several smaller databases. The initial energies are set such that the energies of

secondaries are well covered based on the energy spectrum of observed secondaries.

This is achieved by taking the frequency plot of secondary kinetic energies and ad-



Chapter 5. Fast secondary dose estimation via track repeating 59

Figure 5.4: Frequency histograms of secondary neutrons produced by 250 MeV pri-
mary protons. The plot on the right has been re-binned, such that each bin has
approximately equal numbers of neutrons.

justing the bin widths so that all bins have equal heights (see Fig. 5.4). The resulting

energies for the ten neutron databases are found in Table 5.1.

Database 1 2 3 4 5 6 7 8 9 10
Energy (MeV) 3 6 12 18 26 38 55 77 122 215
Database size (MB) 11 9.4 7.6 6.7 5.6 4.3 3.6 3.2 2.8 2.5
Storage per track (kB) 10.5 9.6 7.7 6.8 5.6 4.3 3.6 3.2 2.8 2.5

Table 5.1: Energies and storage sizes of neutron track databases (10k particles each).

For energies listed above, there are approximately the same number of neutrons

produced with initial kinetic energies in each range (i.e. there are approximately the

same number with energies between 3-6 MeV as there are between 122-215 MeV).

To select the appropriate track for a given neutron, a binary search is first performed

to select a database, then the standard track search is performed. Each database

contains 10k tracks.
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Photon databases

Similar to neutrons, ten photon databases were generated to enable efficient sec-

ondary track searching. The database energies are listed in Table 5.2. Each database

contains 10k tracks.

Database 1 2 3 4 5 6 7 8 9 10
Energy (MeV) 1.4 2.2 2.4 2.6 3.9 4.2 5.2 6.5 8.3 30.3
Database size (MB) 6.0 5.4 5.3 5.1 4.5 4.3 4.0 3.7 3.4 2.2
Storage per track (kB) 6.1 5.5 5.4 5.2 4.6 4.3 4.1 3.7 3.4 2.2

Table 5.2: Energies and storage sizes of photon track databases (10k particles each).

Positron database

An initial energy of 30 MeV was selected for positrons, as no positrons with higher

kinetic energies were observed to be produced in any subsequent reactions due to

primary protons of 250 MeV. An unprocessed 30 MeV database of 2k positrons was

approximately 26 MB stored in an uncompressed flat file format (≈ 13.2KB per

track).

5.5 Performance improvement techniques

Several techniques were implemented beyond the standard track repeating algorithm

in an attempt to improve the efficiency of the simulation.

5.5.1 Database filtering

One of the primary techniques was database filtering. The databases were filtered to

discard tracks that would not contribute to secondary dose and would thus simply
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add to calculation time without improving the result. This is somewhat analogous

to the range rejection technique mentioned in Sec. 3.3.2. A key difference is that all

filtering is performed in pre-processing, rather than at runtime, further enhancing

performance over range rejection style techniques.

For neutron and photon databases, all tracks that did not interact within the

generation phantom (40 cm × 40 cm × 40 cm) where filtered out. For high energies,

this meant the majority of tracks were discarded.

For primary protons, two filtering schemes were tested. “Filter 1” discarded

all tracks that did not produce any secondary particles. “Filter 2” discarded all

tracks that did not produce either at least one neutron or gamma (i.e. the long

range secondaries). “Filter 0” was used to mean no filter on primaries. A separate

secondary proton database was used that was unfiltered.

5.5.2 Secondary splitting

Because secondary particle production tends to be rare1, splitting was implemented

for neutrons and gammas, which are the particles most likely to generate secondary

dose events in the peripheral regions. See Sec. 3.3.5 for information on splitting.

Each particle was split 10-fold, with a corresponding reduction of weight by 1
10

.

5.5.3 Transport cuts

Beyond the high-pass transport cut corresponding to 10.0 mm for electrons and

photons used in generating the tracks, other cuts were used to reduce simulation time.

The high-pass energy cuts are listed in Table 5.3. When a particle was discarded

due to a cut, its energy was then deposited locally.

1As mentioned in Chp. 4, 50 MeV protons have ≈5% chance of a nuclear interaction, a
probability which only decreases with kinetic energy
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Particle proton neutron electron positron photon
Cut energy (MeV) 5.0 0 0.35 0 0.1
Approx. range (mm) 0.04 - 1.1 - 200

Table 5.3: High-pass transport cut values for track repeating. Range sources [6, 7].

5.6 Benchmarking and performance

Benchmarking was performed by calculating absorbed dose in the peripheral region

due to a 120 MeV proton beam, as calculated by track repeating and Monte Carlo

using Geant4 and FLUKA [43, 44, 45]. A beam with a symmetric cross sectional

Gaussian σ of 5 mm was incident on a water phantom of dimensions 8.1 cm × 8.1 cm

× 40 cm. The scoring grid had voxels of 1 mm3.

20k 120 MeV proton tracks in liquid water, unfiltered. 1000 repetitions.

Figure 5.5: Absorbed dose from 20,000 unfiltered 120 MeV proton tracks repeated
1,000 times. Second plot is log scale.

Figures 5.5, 5.6, and 5.7 show the results of 20k 120 MeV tracks propagated

with track repeating and repeated 1000 times. Figure 5.5 displays the dose of the

primaries without any filtering, whereas Fig. 5.6 displays the dose from a simulation
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20k 120 MeV proton tracks in liquid water, Filter 2. 1000 repetitions.

Figure 5.6: Absorbed dose from 20,000 filtered 120 MeV proton tracks repeated 1,000
times, using Filter 2. Second plot is log scale.

Figure 5.7: Depth-dose curves from 20,000 filtered and unfiltered 120 MeV proton
tracks repeated 1,000 times (log scale).

using Filter 2, which discards primary tracks that do not produce either neutrons or

photons (i.e. long range secondaries). While it is clear that the primary dose with
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Filter 2 is very different than dose from the unfiltered tracks, Fig. 5.7 shows that

dose from Filter 2 and Filter 0 is essentially identical in the peripheral region (in

this case along the beam axis).

Figure 5.8: Depth-dose curves in the peripheral region from 120 MeV protons in
liquid water. Curves generated by FLUKA, Geant4, and track repeating. Colored
bands represent ±σ uncertainty.

Figures 5.8 and 5.9 show absorbed dose in the peripheral region due to 120 MeV

protons calculated with track repeating (Filter 2 ), Geant4 and FLUKA. The sec-

ondary doses of Geant4 and FLUKA both fall within the error band of the track

repeating data. The track repeating data was the result of 20k filtered tracks re-

peated 1000×, while the Geant4 and FLUKA data were there result of 55 million

primaries each. The doses were scaled to assume 20M primary particles.

For the equivalent of 20M primaries the track repeating algorithm with Filter

2 took ≈23.6 hours, Geant4 took ≈88.2 hours, and FLUKA took ≈8.1 hours on

a single core of a 2007 quad-core Intel server processor at 3.16 GHz. Based on a

rough estimate from the performance ratio of the C++ version of the LET track

repeating algorithm to the Python version (≈3.4), a C++ port of the SDE track
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Figure 5.9: Depth-dose curves in the peripheral region from 120 MeV protons in
liquid water. Curves generated by FLUKA, Geant4, and track repeating (log scale).

repeating algorithm is likely to reduce the above time from 23.6 hours to ≈6.5-

7.0 hours, making track repeating ≈1.1 - 1.3× faster than FLUKA without further

optimizations.

5.7 Conclusions and outlook

Estimating the secondary dose from charged hadron beams is a difficult problem

because the volumes of interest are large and the particle fluences are low. Using

Monte Carlo means very long run times for reasonable uncertainty levels. The track

repeating algorithm presented here is an attempt to improve upon those run times

while maintaining the accuracy of Monte Carlo.

The results of this study indicate that track repeating can achieve this goal to a

degree. The accuracy of the dose estimates is reasonable and run times are reduced.

Furthermore, track repeating can also take advantage of parallel processing, which
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is largely the topic of the next chapter (Chap. 6).

The current algorithm is somewhat limited, only calculating SDE due to protons

and not adjusting for heterogeneous media. The basic framework is well suited for

use with other particles, such as carbon ions, antiprotons, or oxygen ions, and SDE

with those should not involve deep changes in the structure. Transport through

heterogeneous materials could be implemented using techniques described in the lit-

erature [67, 68, 70]. Performance of the track repeating algorithm could be improved

using general performance optimization techniques. Besides being implemented in a

relatively slow, interpreted language (Python), the track repeating implementation

was not optimized for algorithmic performance, but instead focused on physics-based

techniques. A C++ implementation of this algorithm is currently underway to in-

crease performance.
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Chapter 6

Distributed radiation therapy

simulations via cloud computing

6.1 Introduction

Dosimetric calculations are a crucial component in the accurate delivery and assess-

ment of radiation therapy. While Monte Carlo techniques are widely seen as the

gold standard of radiation dose calculations, they are only sparingly used clinically,

in favor of faster, less resource intensive algorithms at the cost of dosimetric accu-

racy [98, 35]. The primary barrier to widespread adoption of Monte Carlo techniques

has been the requirement of large computing resources to achieve clinically relevant

run times, particularly in particle therapy applications. These resources, usually in

the form of a computing cluster, require a sizable infrastructure investment as well

as associated utility, maintenance, upgrade, and personnel costs. These costs make

full Monte Carlo methods effectively unfeasible for routine clinical use, though some

modified Monte Carlo methods for photon-electron calculations have made inroads

recently [35]. The emerging cloud computing paradigm will remove this barrier, by

making the necessary resources widely available in an economical way.
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6.1.1 CPU intensive calculations in radiation therapy

As radiation therapy and diagnostic imaging techniques have become more complex,

the associated physics calculations have become more resource intensive. These re-

quirements have been largely met by the exponential increase in processor speed and

RAM size, but sometimes outstrip the pace of computer technology even for con-

ventional, deterministic calculation techniques. For example, TomoTherapy, Inc.’s

TomoHD ships with a 14 node calculation cluster [99].

Non-deterministic algorithms, such as the Monte Carlo method, demand even

greater computing resources than conventional algorithms, but generally offer supe-

rior dose calculation accuracy. This is particularly true for complex, heterogeneous

treatment scenarios and particle therapy treatment planning, but Monte Carlo has

not yet been put into routine clinical use due to long calculation times. For example,

Paganetti et al. have reported times of more than 100 CPU hours to simulate proton

beam treatment plans when using approximately 2 × 107 primary protons per field

[41].

6.1.2 Cloud computing

Cloud computing is a name given to a set of technologies offered as services over

the Internet [100]. Cloud service providers, such as Google Inc., Amazon Inc., and

Microsoft Inc., offer online computing resources (i.e. CPU time, storage, software,

etc.), which are scalable to the user’s need. Pricing is usually based on a pay-as-you-

go model, generally billed in hourly increments, and without set contract periods.

This scheme allows cloud services to offer on-demand computing infrastructure, sized

to fit the user’s momentary needs. Cloud computing has become feasible because

of the economies of scale afforded by the commodification of computer hardware,

extensive availability of high bandwidth networks, and growth of free, open source
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software, including entire operating systems, such as Linux, and virtual machine

software.

For clinical usage the cloud computing paradigm has many potential advantages.

Cloud resources can be scaled to meet patient and physics QA demand as it fluc-

tuates on a daily basis. Typical computing clusters often face “bursty” usage: left

under-utilized much of the day (and night) and over-queued at peak periods. The

cloud paradigm is particularly well suited for one-off calculations, such as machine

commissioning and vault shielding calculations, for which a very large cluster might

be desirable, but expanding to even a small cluster would be prohibitively expensive

for a single run. Additionally, hardware upgrade and maintenance is taken care of

by the provider, rather than by the user.

Monte Carlo calculations are well suited to cloud style distributed computation

by their fundamental nature, as the primary particle histories are completely inde-

pendent of one another, requiring no communication between processes. This means

that calculations, while parallel, need not maintain data or timing synchronization

during execution. Previous investigations of scientific Monte Carlo calculations in a

cloud environment were made in 2007 and 2009 by high energy physicists [101, 102].

The cloud computing model has not been applied to medical physics calculations

until the present research.

An approach similar to cloud computing, called grid computing, has been utilized

previously to perform distributed Monte Carlo calculations for radiation therapy

[103, 104, 105]. Grid computing can be seen in many ways as the forerunner to

cloud computing, having developed many of the distributed computing technologies

and ideas upon which cloud computing is based [100]. The fundamental differences

between the grid and the cloud lie in the virtual machine abstraction of the cloud

and commercial implementation of the cloud infrastructure. The virtualization in

the cloud abstracts away the particulars of the network and hardware architecture,

so that they are transparent to the end user. Due to their commercial nature, cloud
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EC2 Instance Small High CPU XL High RAM Quad-XL
Compute Units∗ 1 20 26

USD/hr 0.085 0.68 2.0
USD/(hr × CU∗) 0.085 0.034 0.0769

Architecture 32-bit 64-bit 64-bit
Memory 1.7GB 7GB 68.4GB
Storage 160GB 1690GB 1690GB

Table 6.1: Amazon EC2 pricing for instances running Linux in US eastern region (as
of April 2010). ∗An EC2 Compute Unit is equivalent to a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor.

providers are likely to have infrastructures that are much larger than that of grid

providers, with just a few Internet companies (including Google, Inc., Yahoo, Inc.,

Amazon, Inc., and Microsoft, Inc.) currently purchasing some 20% of all server

computers [106]. The primary advantage of the cloud over the grid is the ubiquitous

access to the cloud and the significantly lower barriers to entry by users, positioning

the cloud to play a significantly larger role in medical physics computing.

6.2 The McCloud distributed processing frame-

work

6.2.1 Software and infrastructure

To demonstrate the feasibility of performing medical physics calculations using the

cloud computing paradigm, several “typical” physics calculations were performed.

The calculations were carried out on Amazon Web Services (AWS) Elastic Compute

Cloud (EC2) [107, 108]. Several other vendors offer similar cloud services and would

have been appropriate for this research as well. AWS’s EC2 offers several different
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processor-RAM combinations at different hourly rates (see Table 6.1). Each processor

is rated in terms of EC2 Compute Units, which AWS claims is equivalent to a 1.0 -

1.2 GHz 2007 Opteron or 2007 Xeon processor.

...

Figure 6.1: General scheme for calculating dose using the cloud paradigm.

All calculations reported in this chapter were carried out on the default EC2

Small instances with 1.7 GB of RAM, 1 virtual core, 160 GB of local disk storage,

and a 32-bit architecture. Each EC2 instance runs inside a virtual machine on

AWS servers. An operating system with user configured software is loaded using

an Amazon Machine Image (AMI). AMI’s can be chosen from a pre-configured set

provided by AWS, acquired from third parties, or built by the user. From the user

perspective, the boot-up of an instance using a pre-configured machine image is

similar to starting a standard server computer. Once the instance is up and running,

it will have a unique IP address and a domain name, allowing the user to log in.
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A virtual cluster can be built by requesting multiple virtual nodes (instances). The

size of the cluster can be scaled on demand (i.e. virtual nodes can be dynamically

created and destroyed). Files were stored on the running EC2 instances and on the

persistent Amazon Simple Storage Service (S3) to facilitate transfer to and from

the cloud. From a user perspective, the AWS S3 storage service can be viewed as

the counterpart of the underlying network file system (NFS) found in most cluster

computing environments.

A custom distributed processing framework, dubbed McCloud (Monte Carlo in the

Cloud) has been implemented using the Python programming language, the boto

Python library (version 1.9b) to access AWS [109], and the secure shell protocol

(SSH) for network communication. An AMI built from Fedora Linux was used for

this research. Monte Carlo simulations were carried out with the FLUKA Monte

Carlo package (version 2008.3b) [44, 45].

The general data flow of the cloud based calculations is as follows (see Fig. 6.1):

(1) the client computer uploads the calculation parameter (input) file to the online

storage. (2) The client requests N nodes for the calculation. (3) The input file

is distributed to each node, given a unique, random seed, and the Monte Carlo

calculation is carried out. (4) Once the dose calculations are completed, the resulting

dose files are collected and combined into a single output file, which is returned to

the client. The result combination step can occur on a single master node or in

parallel.

6.2.2 Simulations

A variety of proof of concept studies were successfully carried out in the cloud. The

studies included calculating depth-dose curves for 75 and 200 MeV proton pencil

beams, a 10×10 cm2, 100 cm SSD1 Co-60 beam, a 10×10 cm2, 100 cm SSD 10 MeV

1Source-to-surface distance.
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electron beam, and a simple broad-beam 3× 3 cm2, single angle proton plan using a

voxel phantom of heterogeneous tissues based on CT data (the Zubal phantom [110],

see Figure 6.2).

0%

15%

30%

40%

60%

75%

90%

105%

Figure 6.2: A simple broad-beam proton therapy plan calculated on 130 virtual nodes
on AWS’s EC2 cloud service using a voxel based phantom.

6.3 Results

Performance data was generated with depth-dose calculations of 75 and 200 MeV

proton beams. The depth-dose calculations were performed in a 40 × 40 × 40 cm3

water phantom. To determine the dependence of total run time on the number of

virtual nodes, a total of 1.4× 107 primary protons were simulated on between 8 and

200 virtual nodes. The number of primaries was evenly divided between each node.

Each data point (number of nodes) was run 3 - 4 times. The dependence of run time

on cluster size is shown in Figure 6.3. For 75 MeV protons, average runs times to

simulate 1.4 × 107 primaries ranged from 83 min 0 s on 8 nodes to 5 min 36 s on
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200 nodes. For 200 MeV protons, average run times ranged from 222 min 54 s on 8

nodes to 10 min 37 s on 200 nodes.

Reliability statistics of the virtual cluster were also collected during the experi-

ments. On average 1.5% of nodes (i.e. 3 nodes in a 200 node cluster) failed during the

computation. To deal with node failures, a computation is declared successful if the

number of nodes completing its individual computation reaches a certain threshold

(e.g. 95%).

Cluster start-up times were also collected. The cluster initialization time was

found to be relatively independent of the cluster size, and ranged from 3 min 22 s

for an 8 node cluster to 3 min 55 s for a 200 node cluster.

Figure 6.3: Calculation time versus number of virtual nodes for proton depth-dose
curves on AWS’s EC2 cloud service.
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6.4 Discussion

The McCloud distributed processing framework was successfully used to perform

proof-of-concept radiation therapy calculations using a cloud-based, virtual cluster.

The expected, near 1/n speed-up was observed for clusters of n nodes. It should be

noted that a perfect 1/n speed-up will never be achievable for an arbitrarily large

number of nodes due to communication overhead. This fundamental asymptotic

performance limit is described by Amdahl’s Law applied to parallel processing [111].

Ultimately, the impetus behind using the cloud computing model as a computing

cluster is the desire for large scale processing power without an associated large price

tag. Costs associated with the cloud are generally only incurred on a usage basis,

whereas in-house hardware incurs capital and maintenance costs. In order to compare

the costs of the two models, the associated personnel, utility, equipment housing,

insurance, vendor service, and other miscellaneous costs that might be associated

with the in-house model are ignored. While this is unrealistic, it is very difficult to

estimate the average costs of many of these categories (e.g. some departments may

pay rent for their server space, while others need not). This set of assumptions also

puts the in-house cluster in the best-case scenario.

An informal survey of various equipment purchasers within the University of New

Mexico estimated the cost of a computing cluster at approximately 1000 USD per

node plus approximately 200 USD in maintenance costs per year per node. For a 100

node cluster, the approximate cost over the expected 3 year lifetime of the cluster

would be approximately 160,000 USD (or 53k USD per year).

The cost for using a cloud-based cluster is primarily determined by the number of

CPU-hours used. The assumption used in this research was that each patient needs

approximately 100 CPU-hours of cluster time. This assumption was not based on

typical use of clinical Monte Carlo, because the types of calculations possible with an

extremely large cluster are not typically performed in a clinical setting. Calculations
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which might be possible with ubiquitous access to extremely large clusters, such as

treatment planning with iterative Monte Carlo optimization, are the subject of future

research. Assuming that a typical patient throughput for a clinic is 1000 patients

per year, the CPU time necessary would be be approximately 100,000 CPU-hours.

AWS’s current cheapest offering allows for 1 EC2 Compute Unit to be purchased

for 0.034 USD (see Table 6.1). This comes out to approximately 0.10 USD per

3 GHz CPU-hour, with the assumption that 3 GHz is approximately the speed of a

contemporary high end CPU core. Thus the CPU costs come out to approximately

10,000 USD per year. Additional costs are added by storing data in and transferring

data to and from the cloud. A conservative estimate of data transfer and storage

for this application puts these costs at less than 5% of the annual CPU costs. The

resulting total annual cost using the AWS services was thus estimated at less than

10,500 USD. This was less than 20% of the estimated annual in-house cluster cost.

A major concern when transferring or storing personal or patient data on net-

worked hardware is the security and privacy of the data. In many countries this is

specifically regulated by the government. For the type of application investigated

in this research, the technological aspects of securing the data are relatively well

understood [112, 113, 114, 115]. Additionally, compared to full medical record or

medical image storage, radiation treatment planning and similar calculations do not

require as much personally identifiable information to be sent over the network (i.e.

names can be replaced with hash tags). Adoption of cloud-based software for uses

such as PACS and record storage, which would require compliance with the appli-

cable regulations, seems to indicate some level of end user trust in current security

implementations [116, 117].

Another technology that has gained widespread popularity in medical physics

computation in recent years is the so-called GPGPU [118, 119, 120, 121, 122]. The

GPU, which stands for graphics processing unit, is a specialized microprocessor that

offloads and accelerates graphics rendering in a graphics card. The primary advan-
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tage of GPUs is their relatively large number of cores, offering parallel hardware at

low cost. GPGPU, which stands for general propose computing on GPU, is the tech-

nique of using a GPU to perform computation in applications other than graphics

[123]. GPGPU has been successfully demonstrated as a basis for radiation therapy

dose calculations, including electron-photon Monte Carlo [124, 125].

While cloud computing is most often associated with CPU-based computing,

it is in fact a general model. Several researchers and vendors have proposed or

deployed clouds with some mix of CPU and GPU resources to provide the best

possible speed-ups [126, 108]. Where appropriate, GPU clouds could potentially

give medical physicists “the best of both worlds”. Choosing the best distributed

computing architectures and taking advantage of their respective strengths will be a

central question in the future of medical physics computing.

6.5 Conclusion and outlook

The emerging cloud computing paradigm appears to provide very interesting oppor-

tunities for computing in medical physics. We successfully demonstrated a proof-

of-concept distributed calculation framework, which utilizes an on-demand, virtual

computing cluster running on a commercial cloud computing service. The on-demand

nature, ease of access, and pay-as-you-go pricing model yield the promise of provid-

ing clinics and researchers access to unprecedented amounts of computing power for

medical physics calculations in the coming years.

The McCloud framework is currently designed to run with only one specific Monte

Carlo engine, but demonstrates the conceptual basis for powerful distributed calcu-

lations using cloud computing. Future work will include: (1) Studying the perfor-

mance of McCloud in larger clusters to understand the full potential and limitations

of McCloud framework. (2) Investigating security policies to guarantee data in-
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tegrity and patient privacy. (3) Building a web portal for researchers to upload their

Monte Carlo calculations. (4) Extending McCloud to other Monte Carlo engines. (5)

Testing McCloud with other cloud providers, architectures, operating systems, and

performance parameters. (6) Exploring the potential of cloud-based GPU clusters

for medical physics calculations. (7) Investigating the use of cloud computing for

tightly coupled applications such as inverse treatment planning.

Preliminary results of this project were presented at the ICCR XVI conference

in May, 2010 in Amsterdam [127]. Subsequent results were presented at the AAPM

annual meetings in July, 2010 and July, 2011 [128, 129]. Additionally, an early version

of this chapter was posted to arXiv.org with preliminary results in September, 2010

[130]. These results were the first known implementation of cloud-based calculations

for radiation physics, although other authors have subsequently published results

building on our reports.
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Chapter 7

Conclusions

The topic of this dissertation was the development of methods to quickly compute

various quantities of interest pertaining to charged hadron therapy. Three novel

approaches were presented. Two applied the track repeating method to new appli-

cations: calculation of linear energy transfer (LET) distributions and estimation of

secondary dose outside of the target volume. The third novel method was the use

of the emerging cloud computing paradigm as the basis for large-scale, distributed

radiation therapy calculations. This method is applicable to any radiation quantity

of interest. Each of these methods provided the ability to calculate the quantity

under consideration with performance gains relative to the standard methods.

As is typical of most research projects, the research presented here leaves some

questions unanswered and sets direction for further investigations. Several speed

improvement techniques are under consideration for the C++ implementation of the

track repeating algorithm for secondary dose estimation. Chief among those is a new

search technique over the secondary databases. It is hoped that these improvements

will provide performance gains in-line with the general promise of track repeating.

The cloud computing project has a number of potential future directions, including

implementing track repeating in a cloud environment, calculating with GPU clouds,
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and extending the current framework to other Monte Carlo engines. Each of these

possibilities has the potential to enable faster, more accurate calculations for radia-

tion therapy applications.
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