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Abstract

Epidemic processes are common out-of-equilibrium phenomena of broad inter-

disciplinary interest. In this thesis, we show how message-passing approach can be

a helpful tool for simulating epidemic models in disordered medium like networks,

and in particular for estimating the probability that a given node will become infec-

tious at a particular time. The sort of dynamics we consider are stochastic, where

randomness can arise from the stochastic events or from the randomness of network

structures.

As in belief propagation, variables or messages in message-passing approach are

defined on the directed edges of a network. However, unlike belief propagation,

where the posterior distributions are updated according to Bayes’ rule, in message-

passing approach we write di↵erential equations for the messages over time. It takes

correlations between neighboring nodes into account while preventing causal signals

from backtracking to their immediate source, and thus avoids “echo chamber ef-

fects” where a pair of adjacent nodes each amplify the probability that the other is

infectious.
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In our first results, we develop a message-passing approach to threshold models

of behavior popular in sociology. These are models, first proposed by Granovet-

ter, where individuals have to hear about a trend or behavior from some number of

neighbors before adopting it themselves. In thermodynamic limit of large random

networks, we provide an exact analytic scheme while calculating the time dependence

of the probabilities and thus learning about the whole dynamics of bootstrap percola-

tion, which is a simple model known in statistical physics for exhibiting discontinuous

phase transition.

As an application, we apply a similar model to financial networks, studying when

bankruptcies spread due to the sudden devaluation of shared assets in overlapping

portfolios. We predict that although diversification may be good for individual insti-

tutions, it can create dangerous systemic e↵ects, and as a result financial contagion

gets worse with too much diversification. We also predict that financial system

exhibits “robust yet fragile” behavior, with regions of the parameter space where

contagion is rare but catastrophic whenever it occurs.

In further results, we develop a message-passing approach to recurrent state epi-

demics like susceptible-infectious-susceptible and susceptible-infectious-recovered-

susceptible where nodes can return to previously inhabited states and multiple waves

of infection can pass through the population. Given that message-passing has been

applied exclusively to models with one-way state changes like susceptible-infectious

and susceptible-infectious-recovered, we develop message-passing for recurrent epi-

demics based on a new class of di↵erential equations and demonstrate that our ap-

proach is simple and e�ciently approximates results obtained from Monte Carlo

simulation, and that the accuracy of message-passing is often superior to the pair

approximation (which also takes second-order correlations into account).
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Chapter 1

Introduction

But what does it mean, the plague?

- Albert Camus

In this manuscript, we study mathematical approaches for epidemics in networks.

Epidemics, also known as contact processes, are common non-equilibrium phenom-

ena that have gained vigorous attention in recent years because of important inter-

disciplinary applications. Examples include contagion of diseases [1, 2] and social

behaviors [3, 4, 5, 6], cascades of forest fires [7, 8, 9] and banking failures [10, 11],

propagation of marginal probabilities in constraint satisfaction problems [12, 13], the

dynamics of magnetic and glassy systems [14], and so on.

Mathematical models of epidemics are intrinsically non-linear and multiplica-

tive. The classical approach to modeling epidemics, such as the SIR (susceptible-

infectious-recovered) model where each node is Susceptible, Infectious, or Recovered,

assumes that at any given time each individual exists in a single state or “compart-

ment” [1, 2]. To make these models analytically tractable, it is often assumed that

the population is well mixed, so that interaction between any two individuals is

1



Chapter 1. Introduction

Figure 1.1: An example of a complete network with eleven individuals or nodes,
where every node is connected via an edge to every other node.

equally likely as if the epidemics are happening in a complete network as shown in

Fig. 1.1. In physical terms, we assume the model is mean-field (also known as mass-

action mixing). In spite of this simple but unrealistic assumption, mean-field models

capture some essential features of epidemics, such as a threshold above which we

have an endemic phase with a non-zero fraction of infected individuals, and below

which we have outbreaks of size o(n) so that the equilibrium fraction of infected

individuals is zero.

In reality, the mixing of individuals is often sparse and highly structured, with

some pairs of individuals much more likely to interact than others due to location

or demographics [15, 6]. We mean sparse in the sense that the number of neighbors

with which individuals interact is an intensive quantity, i.e. the number of neighbors

is independent of the size of the population. Analogous to low dimensional lattices

in statistical physics, correlations in sparse networks play an important role, making

problems in sparse networks elude solutions derived through a mean-field approxima-

tion that washes out spatial correlations. The specific realization of sparse networks

thus becomes essential to consider [16, 17, 18]. However, the network structure sub-

2



Chapter 1. Introduction

stantially increases a model’s complexity.

One reasonable goal is to compute the one-point marginals, e.g., for each node

i, the probability I
i

(t) that i is infectious at time t. In addition to being of direct

interest, these marginals help us perform tasks such as inferring the originator of an

epidemic, determining an optimal set of nodes to immunize in order to minimize the

final size of an outbreak, or calculating the probability that an entire group of nodes

will remain uninfected after a fixed time [19, 20, 21, 22, 23].

We can always compute these marginals by performing Monte Carlo experiments.

However, since we need to perform many independent trials in order to collect good

statistics, this is computationally expensive on large networks. This problem is

compounded if we need to scan through parameter space, or if we want to explore

many di↵erent initial conditions, vaccination strategies, etc. Therefore, it would be

desirable to compute these marginals using, say, a system of di↵erential equations,

with variables that directly model the probabilities of various events.

The most naive way to do this, as we review below, uses the one-point marginals

themselves as variables. However, this approach completely ignores correlations be-

tween nodes. At the other extreme, to model the system exactly, we would need

to keep track of the entire joint distribution: but if there are n individuals, each of

which can be in one of k states, the result is a coupled system with kn variables.

This exponential scaling quickly renders most models computationally intractable,

even on moderately sized networks.

In between these two extremes, we can approximate the joint distribution by

“moment closure,” assuming that higher-order marginals can be written in terms of

lower-order ones. This gives a hierarchy of increasingly accurate (and computation-

ally expensive) approximations, familiar in physics as cluster expansions. At the first

level of this hierarchy we assume that the nodes are uncorrelated, and approximate

3



Chapter 1. Introduction

two-point marginals such as [I
i

(t)I
j

(t)] (the probability that i and j are both infec-

tious at time t) as I
j

(t)I
j

(t). At the second level, commonly referred to as the pair

approximation, we close the hierarchy at the level of pairs [I
i

(t)I
j

(t)] by assuming

that three-point correlations can be factored in terms of two-point correlations. We

review these methods in Chapter 2.

In this thesis, we study an alternative method, namely Dynamic Message-Passing

(DMP). As in belief propagation [24, 25], here variables or “messages” are defined

on a network’s directed edges: for instance, I
j!i

denotes the probability that j was

infected by one of its neighbors other than i, so that the epidemic might spread

from j to i. However, unlike belief propagation, where the posterior distributions

are updated according to Bayes’ rule, here we write di↵erential equations for the

messages over time.

We will see that the directional nature of the messages prevents causal signals

from backtracking to their immediate source, and thus avoids “echo chamber ef-

fects” where a pair of adjacent nodes each amplify the probability that the other

is infectious. DMP was first applied to disease propagation on networks by Karrer

and Newman (2010) [26], who investigated non-recurrent state epidemiological mod-

els such as the SI (susceptible-infectious), the SIR (susceptible- infectious-recovered)

and the SEIR (susceptible-exposed-infectious-recovered) models.

In this thesis, we make the following contributions:

• To prepare the reader, in Chapter 2, we provide background materials for three

substantive chapters that are to follow.

• In Chapter 3, in collaboration with my adviser Cristopher Moore, we extend

Karrer and Newman (2010) [26] by generalizing DMP to threshold models

where healthy individuals get infected only when a certain number of their

4



Chapter 1. Introduction

neighbors pass infection, a process thought to be important for the propaga-

tion of memes and first proposed by Granovetter, where each individual has to

hear about a trend or behavior from some number of neighbors before adopt-

ing it themselves [27]. In thermodynamic limit of large random networks, we

provide an exact analytic scheme while calculating the time dependence of

the probabilities and thus learning about the whole dynamics of bootstrap

percolation. [Note that bootstrap percolation model is known and studied in

statistical physics for exhibiting discontinuous phase transition.] Our approach

is general enough to incorporate non-Markovian processes and to include het-

erogeneous thresholds, and thus can be applied to explore rich sets of complex

heterogeneous agent-based models.

The work described in this chapter was published in Phys. Rev. E 89, 022805

(2014). [27].

• In Chapter 4, in collaboration with Sam Scarpino and Cristopher Moore, we

extend DMP to a general class of epidemics models including “recurrent”

models such as SIS (susceptible-infectious-susceptible) and SIRS (susceptible-

infectious-recovered-susceptible), where multiple waves of infection can pass

through the population. To date, DMP has been exclusively applied to non-

recurrent models, where individuals cannot return to previously occupied state

[26, 28, 27, 29, 30]. We have developed a new class of di↵erential equations for

these models. Our methods are much faster than direct simulation and are also

far more e�cient and conceptually simpler than the pair approximations (which

take second-order correlations into account) currently used in epidemiology.

The work described in this chapter has been submitted for publication in Phys.

Rev. E.

• In Chapter 5, in collaboration with Fabio Caccioli, Cristopher Moore and J.
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Chapter 1. Introduction

Doyne Farmer, we apply an approach similar to threshold models (Chapter 3)

to financial networks, studying when bankruptcies spread due to the sudden

devaluation of shared assets in overlapping portfolios. Our model estimates

the circumstances under which systemic instabilities are likely to occur as a

function of parameters such as leverage, market crowding, diversification, and

market impact. We predict that although diversification may be good for in-

dividual institutions, it can create dangerous systemic e↵ects, and as a result

financial contagion gets worse with too much diversification; additionally, finan-

cial system exhibits “robust yet fragile” behavior, with regions of the parameter

space where contagion is rare but catastrophic whenever it occurs.

The work described in this chapter was published in J. of Banking & Finance

Volume 46, (2014). [11].

• We conclude in Chapter 6 by summarizing our contributions and discussing

some open questions and potential directions towards future work.
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Chapter 2

Background

If a man’s wit be wandering, let him study the mathematics.

- Francis Bacon

2.1 Epidemics in Networks

For the purpose of illustration, let us consider a simple recurrent state epidemic

model, the susceptible-infectious-susceptible (SIS) model. In this model, each in-

dividual or node is either Infectious (I) or Susceptible (S). Infectious nodes infect

their Susceptible neighbors independently at rate � and recover back independently

to a Susceptible state at rate ⇢. Note that this model becomes a non-recurrent

state model when infectious node do not recover from infection, i.e. the susceptible-

infectious (SI) model if the recovery rate is 0. We denote the probability that that i

is Infectious and Susceptible by I
i

and S
i

respectively. Our goal then is to e�ciently

and accurately compute these probabilities as a function of continuous time t.

The exact system of ordinary di↵erential equations for I
i

, i.e. the master-
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Chapter 2. Background

equation, for SIS model is

dI
i

dt
= -⇢I

i

+ �
X

j2@i

[S
i

I
j

], (2.1)

where @i are neighbors of i, and [S
i

I
j

] is the joint probability that i is Susceptible

and j is Infectious. The first term is the rate at which i independently recovers from

infection, whereas the second term refers to the rate at which if i is Susceptible, it

transition to become Infectious by getting infected from its neighbors.

However, although this system is exact, it is not closed, i.e. the marginal prob-

ability I
i

depends on the two-point marginals [S
i

I
j

], whose time derivatives, as we

review below, depend in turn on three-point marginals, and so on.

2.2 First-order moment closure

In the first-order moment closure method, we assume (approximate) that neighboring

nodes are uncorrelated, i.e.,

[S
i

I
j

] ⇡ S
i

I
i

. (2.2)

Thus the ordinary di↵erential equation system via this first-order moment closure

becomes

dI
i

dt
= -⇢I

i

+ �S
i

X

j2@i

I
j

. (2.3)

In some cases, this can be a reasonable assumption. For instance in a large complete

network, where every pair of nodes is connected by an edge, the state of the system

is essentially driven the fraction of individuals in a given compartmental state and

is equivalent to a fully mixed mean-field model.

But in some instances, we cannot ignore correlations. Consider, for example, a

simple but pathological case of the SI model where there are only two nodes in the
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Chapter 2. Background

Figure 2.1: Two simple, yet illustrative, cases of networks, where the darker node is
initially Infectious.

graph, i and j, with an edge between them as shown in Fig. 2.1. If the transmission

rate is �, and if we assume the nodes are independent (i.e., if we use first-order

moment closure) we obtain the following di↵erential equations,

dI
i

dt
= �S

i

I
j

dI
j

dt
= �S

j

I
i

, (2.4)

where S
i

(t) = 1 - I
i

(t) and similarly for j.

Now suppose that j is initially Infectious with probability �, and that i is initially

Susceptible, i.e., I
j

(0) = � and I
i

(0) = 0. Since in the SI model nodes never recover,

the infection will eventually spread from j to i, but only if i was Infectious in the

first place. Thus the marginals I
i

(t) and I
j

(t) should tend to � as t ! 1.

However, integrating Eq. (2.4) gives a di↵erent result. Once I
i

becomes positive,

dI
j

/dt becomes positive as well, allowing i to infect j with the infection that it

received from j in the first place. As a result, I
j

(t) approaches 1 as t ! 1. Thus the

“echo chamber” between i and j leads to the absurd result that j eventually becomes

Infectious, even though with probability 1 - � there was no initial infection in the

system.
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2.3 Second-order moment closure,

i.e. the pair approximation

One way to account for correlations between neighboring states, such as the echo-

chamber e↵ects we discussed in the previous section, is by tracking the dynamics of

neighboring pairs [S
i

I
j

] as well. The ordinary di↵erential equation for the pair [S
i

I
j

]

in the SIS model is given by

d[S
i

I
j

]

dt
= - (⇢ + �)[S

i

I
j

] + ⇢[I
i

I
j

] + �
X

k2@j\i

[S
i

S
j

I
k

] - �
X

`2@i\j

[I
`

S
i

I
j

]. (2.5)

But as we can see, the derivative of the pair [S
i

I
j

] depends on the three-point

marginals [S
i

S
j

I
k

] and [I
`

S
i

I
j

]. In principle, we could again write the derivative of

these three-point marginals in terms of four-point marginals, and those of four-point

marginals in terms of five-point marginals, and so on for any finite network. But the

number of variables increases exponentially, as a result of which, we need to close this

hierarchical dependence of correlations at some level at the cost of some accuracy.

In the second-order moment closure, also known as the pair approximations, we

factor the triplet distribution [S
i

S
j

I
k

] as

[S
i

S
j

I
k

] ' [S
i

S
j

][S
j

I
k

]

S
j

. (2.6)

Therefore, the system of ordinary di↵erential equations for the SIS model via this

pair approximations becomes
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Chapter 2. Background

d[S
i

I
j

]

dt
= ⇢[I

i

I
j

] - (⇢ + �)[S
i

I
j

] +
�[S

i

S
j

]

S
j

X

k2@j\i

[S
j

I
k

] -
�[S

i

I
j

]

S
i

X

`2@i\j

[S
i

I
`

].

(2.7)

Note that the evolution of [S
i

I
j

] depends on other two-point marginals like [I
i

I
j

]

and [S
i

S
j

]. But, by definition we have

S
i

= [S
i

I
j

] + [S
i

S
j

]

I
i

= [I
i

S
j

] + [I
i

I
j

], (2.8)

which, along with Eq. (2.1), closes the system at the level of pairs.

In the two-node example of Fig. 2.1 (left), of course, the pair approximation is

exact, since it maintains separate variables such as [S
j

I
k

] for each of the joint states

of the two nodes. Now, consider a case with three nodes, as in Fig. 2.1 (right),

where j is the common neighbor of i and k. The pair-approximation assumes that

given j is Susceptible (as in the figure), the pairs [S
i

S
j

] and [S
j

I
k

] are independent.

In non-recurrent models like SI, nodes do not revert back to the Susceptible state

once they transition out of it. So, knowing that j - being the only node between

i and k - is Susceptible is a su�cient condition to block all correlations between i

and k.

However, in a recurrent epidemic model, i and k could be correlated, for instance

if j infected them both and then returned to the Susceptible state. As a result, the

pair approximation is vulnerable to a distance-two echo chamber, where i and k

infect each other through j.
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Chapter 2. Background

Figure 2.2: We define messages on the directed edges of a network to carry causal
information of the flow of contagion, e.g. I

j!i

is the probability that j is Infectious
because it received the infection from a neighbor k other than i. This prevents
e↵ects from immediately backtracking to the node they came from, and avoids “echo
chamber” infections.

2.4 Message-passing approach: a prelude

Well, it seemed to me quite evident that the idea that a particle acts on itself is not a

necessary one. And so I suggested to myself that electrons cannot act on themselves;

they can only act on other electrons.

- Richard Feynman

To prevent echo chamber e↵ects, we consider messages that are defined on the

directed edges of the network. The idea is to prevent infection signals from backtrack-

ing to the node that they immediately came from and thus avoid an echo chamber

of information flow.

This idea of making the flow of information directional in dynamic message-

passing is similar to belief propagation [24, 25], where we use the network structure

to update posterior probabilities of the vertices’ states. However, unlike belief prop-

agation where we update posterior distributions according to Bayes’ rule, the causal

structure of information flow is captured directly by the time evolution of DMP. In

12
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other words, in DMP we write di↵erential equations for the messages over time. This

approach takes correlations between neighboring nodes into account while preventing

causal signals from backtracking to their immediate source, and thus avoids “echo

chamber e↵ects” where a pair of adjacent nodes each amplify the probability that

the other is infectious.

In the next two chapters, we present in detail and in a self-contained way, the

message-passing approach to models of epidemics in networks.
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Chapter 3

Message-passing for non-recurrent

threshold models of epidemics

The work described in this chapter is a result of collaboration with Cristopher Moore

and is published in Phys. Rev. E 89, 022805 (2014) [27]

Mathematical modeling of epidemics has attracted the interest of researchers

from diverse academic disciplines [1, 2, 16, 10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 5,

11, 40, 41]. Epidemics range from outbreaks of infectious disease to the contagion of

social behaviors such as trends, memes, fads, political opinions, rumors, innovations,

financial decisions, and so on. In an early study, Granovetter [3, 4] proposed a

threshold model, where individuals adopt a behavior when they are informed by at

least T of their neighbors.

We consider a stochastic model similar to Granovetter’s with a trend propagating

on a network. At each time, an individual has integer valued awareness of a trend

ranging from 0 to T . Each time an individual is informed by one of its neighbors,

this awareness is incremented until it reaches the threshold T . At that point, that

individual adopts the trend, and starts informing its neighbors about it. We will
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Chapter 3. Message-passing for non-recurrent threshold models of epidemics

0 1 2

3 4 5

Figure 3.1: Schematic illustration of the evolution of contagion in a finite network,
where individuals have threshold T = 2. Adopters are colored red. For simplicity, we
assume adopters inform their neighbors one time step after they become adopters.
In fact we study a stochastic continuous-time version of this model.

assume that the network topology is fixed, but our model of information flow (or

“contagion”) is probabilistic. Each adopter informs each of its neighbors at a rate

r(⌧), where ⌧ is the time elapsed since it became an adopter. Since r(⌧) may depend

on ⌧, the resulting dynamics can be non-Markovian. In an illustrative example, we

show a schematic evolution of the contagion in Figure 3.1, where T = 2.

Given an initial condition, where some individuals have already become adopters,

or have done so with some probability, our goal in this chapter is to calculate the

probability that any given individual i is an adopter (or not an adopter) as a function

of time. More generally, we calculate the probability Pi

a

(t) that i has awareness a

at time t. Then the probability that i is an adopter is Pi

T

.

Calculating the time evolution of the probability Pi

a

(t) is non-trivial as a result

of intrinsic nonlinearities in the dynamics. The heterogeneous network interactions

between individuals make it even harder. One simple way to estimate these proba-

bilities is to put on a computational-frequentist hat, simulate the model many times
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Chapter 3. Message-passing for non-recurrent threshold models of epidemics

independently by a Monte Carlo agent-based method, and measure in what fraction

of these runs each vertex becomes an adopter. Doing this is computationally costly,

however, as we are required to perform many independent runs of the simulation

We thus consider the dynamic message passing algorithm (DMP), where we evolve

the probabilities Pi

a

(t) directly according to certain update equations. Compared to

a Monte Carlo simulation that requires many independent runs, we only need to run

the DMP algorithm once. In the special case where T = 1, DMP was recently for-

mulated by Karrer and Newman [42] to analytically study non-Markovian dynamics

of the Susceptible, Infected, Recovered (SIR) epidemic model of the networks. In an

analogy with the SIR model, we sometimes refer to a vertex as susceptible if it is not

yet an adopter, infected if it is an adopter, and recovered if it is an adopter but the

rate r(⌧) at which it informs its neighbors has dropped to zero.

The underlying idea of dynamic message passing is similar to belief propagation

[24, 25], where we use the network structure to update posterior probabilities of

the vertices’ states. However, unlike belief propagation where we update posterior

distributions according to Bayes’ rule, the causal structure of information flow is

captured directly by the time iteration of DMP. As in belief propagation, the DMP

algorithm assumes that the neighbors of each vertex are conditionally independent

of each other. As a result, like belief propagation, DMP is exact on trees and ap-

proximate on networks with loops, where the conditional independence assumption

cannot capture higher order correlations.

However, as we will see, DMP gives good approximations to the probabilities

even on real networks with many loops. We will show this by implementing it in

a real social network, specifically Zachary’s karate club network [43]. Although the

Zachary’s club network contains many loops, the probabilities computed by DMP

compare well with those from the Monte Carlo simulation. We present this in Section

3.2.
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In the limit of large random networks in the Erdős-Rényi model, or networks with

a given degree distribution, DMP is asymptotically exact because these networks are

locally treelike. In Section 3.3, we use DMP to obtain the exact results for such

random networks in the thermodynamic limit.

3.0.1 Related Work

There are many related studies that consider what fraction of vertices eventually be-

come adopters if each neighbor informs them with probability p. The set of eventual

adopters are the ones who have at least T neighbors who are also adopters. This

is reminiscent of the model commonly studied in statistical physics as k-core (or

bootstrap) percolation. The k-core is the maximal induced subgraph in the network,

such that each vertex has at least k other neighbors in the subgraph.

By deleting each edge with probability 1 - p independently, we can ask whether

the resulting diluted network in the thermodynamic limit contains an extensive k-

core in the ensemble of similarly prepared networks. Interestingly for k > 3, the

emergence of a k-core in random networks is a first-order (discontinuous) phase

transition in the sense that when it first appears it covers a finite fraction of the

network [44]. An early work on k-core percolation was on the Bethe lattice in the

context of magnetic systems [45]. Recently, it has been used in studies of the Ising

model and nucleation [46, 47], analysis of zero temperature jamming transitions

[48], and in a bootstrap percolation model in square lattices and random graphs

[49, 50, 51, 39, 52].

17



Chapter 3. Message-passing for non-recurrent threshold models of epidemics

3.1 Message-passing approach

We now formulate the dynamic message passing (DMP) technique for the threshold

models. We define the message U
i j

(t) as the probability that vertex j has not

informed i about the trend by time t. If we have U
i j

(t) for all neighboring pairs

i, j, we will be able to calculate the marginal probability Pi

a

(t) that i has awareness

a at time t, i.e. that it has been informed by a of its neighbors. We focus on initial

conditions where each vertex is either an adopter or has awareness zero. So given

that i is not an initial adopter,

Pi

a

(t) =
X

⇥✓@i
|⇥|=a

Y

j2⇥

(1 - U
i j

(t))
Y

j2@i\⇥

U
i j

(t). (3.1)

Here, @i is the set of i’s neighbors, and ⇥ ranges over all subsets of @i of size a.

Note the conditional independence assumption in Equation (3.1), where we assume

that the events that j has informed (or not informed) i are independent. That is, we

assume that the probability that i has been informed by a given set of neighbors ⇥

is the product over j 2 ⇥ and j /2 ⇥ of the probability that j has or has not informed

i respectively.

Given that i is not an initial adopter, the probability Pi

S

(t) that the vertex i is

susceptible at time t, i.e. its awareness is less than T at time t, is then

Pi

S

(t) =
T-1X

a=0

Pi

a

(t). (3.2)

Equivalently,

Pi

S

(t) =
X

⇥✓@i
|⇥|<T

Y

j2⇥

(1 - U
i j

(t))
Y

j2@i\⇥

U
i j

(t). (3.3)

We can see that this expression is easy to generalize to the case where each individual

has its own threshold T
i

. For instance, we could set T
i

to some fraction of i’s degree.
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We could also assume a probabilistic threshold T
i

for each i drawn from some distri-

bution P(T
i

) and take an average over the threshold in Equation (3.1). We can also

capture the case where i initially has awareness a
i

by setting T
i

= T - a
i

. However,

for simplicity, we assume that every individual has the same threshold, and everyone

starts with an initial awareness of 0 or T .

Given Pi

S

(t), we note that i is an adopter if it is at the root of a T -ary tree, whose

nodes are mapped onto the vertices of the network, such that 1) the leaves of the

tree are initial adopters, 2) the T children of each tree node are mapped to distinct

vertices, 3) none of the paths from the root to the leaves backtracks; that is, an

edge (u, v) cannot be immediately followed by the edge (v, u), and 4) the trend is

successfully transmitted along each edge of this tree.

To capture the information flow that the message U
i j

(t) represents, we define

P
j\i
S

(t), which is the probability that j would be susceptible at time t if i were absent

from the network. Alternately, this is the probability that j is susceptible at time t

if we ignore the possibility of j being informed of the trend by i. In removing the

vertex i (or ignoring the flow of information to j from i), we bring the information

flow to i based on the information or messages that neighbor j receives from j’s other

neighbors. We thus avoid the “echo-chamber” e↵ect, where i informs j, and j informs

i back, and so on.

In an analogy with the cavity method of statistical physics, we call P
j\i
S

(t) the

cavity probability that j is susceptible given that i is in a noninteracting “cavity

state”. Hence, using Equation (3.3), if j was not an initial adopter, then P
j\i
S

can be

written as

P
j\i
S

(t) =
X

⇥✓@j\i
|⇥|<T

Y

`2⇥

(1 - U
j `

(t))
Y

`2@j\{⇥,i}

U
j `

(t). (3.4)

Note that initially P
j\i
S

(0) = Pj

S

(0), since the initial probability that j is an an adopter
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does not depend on i. Similarly, the cavity rate p
j\i
I

(t) at which j becomes an adopter

at time t, if it was not an adopter initially, is then

p
j\i
I

(t) = -
dP

j\i
S

(t)

dt
. (3.5)

It is convenient to define f(⌧) as the rate at which j first informs i at time t, if

j became an adopter at time t 0 = t - ⌧. In particular, if j informs i at a rate r(⌧),

then f(⌧) = r(⌧)e-
R
⌧

0 d⌧

0
r(⌧ 0) is the rate at which j informs i for the first time at time

t. Note that f(⌧) might not be normalized, since the probability p =
R1
0 d⌧f(⌧) that

j ever informs i may be less than 1. By letting f(⌧) depend arbitrarily on the time

⌧ since j became an adopter, we can handle both Markovian and non-Markovian

models. In particular, if an adopter inform its neighbors at some constant rate �,

we have

f(⌧) = �e-�⌧. (3.6)

If an adopter “recovers” with rate � as in the SIR model, after which it no longer

informs its neighbors about the trend, then f(⌧) becomes

f(⌧) = �e-(�+�)⌧, (3.7)

where e-�⌧ is the probability that an adopter has itself not recovered up to the

elapsed time ⌧. Note in general we can let f(⌧) depend on i and j, giving arbitrary

inhomogeneous rates at which individuals inform each other; we do not pursue this

here.

Although we have defined the messages and shown how they allow us to calcu-

late the probabilities Pi

a

(t), we have not yet shown how to calculate the messages

themselves.

So, let us now calculate the messages U
i j

(t). The rate at which U
i j

(t) de-

creases at time t is the rate at which j informs i for the first time at time t. This
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happens in two ways. If j was an initial adopter, it informs i for the first time at

time t at the rate f(t). Or, if j was initially susceptible, j becomes an adopter at

some time t 0 = t - ⌧, and informs i for the first time at the rate f(t - t 0) at time t.

Integrating this over t 0 up to time t, we see that j will inform i for the first time at

the rate
R
t

0 dt 0f(t - t 0)pj\i
I

(t 0). Combining these two cases with Equation (3.5), the

rate at which the message U
i j

(t) decreases at time t is thus given by

-
dU

i j

(t)

dt
= f(t)[1 - P

j

S

(0)] + P
j

S

(0)

Z
t

0
dt 0f(t - t 0)pj\i

I

(t 0)

= f(t)[1 - P
j

S

(0)] - P
j

S

(0)

Z
t

0
dt 0f(t - t 0)

dP
j\i
S

(t 0)

dt 0
. (3.8)

Integrating by parts gives

dU
i j

(t)

dt
= -f(t) + f(0)Pj

S

(0)Pj\i
S

(t)

+ Pj

S

(0)

Z
t

0

dt 0P
j\i
S

(t 0)
df(t - t 0)

dt
. (3.9)

One may check that the solution of (3.9) is

U
i j

(t) = 1 -

Z
t

0

d⌧f(⌧) + Pj

S

(0)

Z
t

0

d⌧f(⌧)Pj\i
S

(t - ⌧). (3.10)

We can explain this expression, as in [42], as follows. The term 1 -
R
t

0 d⌧f(⌧) is

the probability that the elapsed time ⌧, after which j informs i for the first time, is

greater than the absolute time t, i.e. ⌧ > t. In this case, i is not informed by j,

even if j became an adopter before time t. The second term is the probability that i

would have been informed at time t if j had been an adopter at time t - ⌧, but that

j was not yet an adopter at that time.

Note however that Equation (3.9) is an integro-di↵erential equation, so numer-

ically integrating it can be computationally costly. It is possible to numerically

integrate (3.10), or, for particular functions f(⌧), we can transform (3.9) into an
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Figure 3.2: Comparison (right) with a scatter plot of individuals eventual infection
probability in the Zachary club (left), where threshold T = 2. Horizontal axis is the
eventual infection probability calculated by the DMP, whereas vertical axis is the
result from the Monte Carlo simulation. Each point refers to the eventual infection
probability of one of the individuals in the club. Here, four initially infected individ-
uals are {0, 1, 32, 33}. Simulation is averaged over 105 runs. Transmission rate � =
0.6, and recovery rate � = 0.3. Vertices on the left are colored according to their
eventual infection probability from the DMP.

ordinary di↵erential equation. For example if we plug f(⌧) from (3.7) and integrate

the last term in (3.9) by parts, we obtain

dU
i j

(t)

dt
= -�U

i j

(t) + �(1 - U
i j

(t)) + �Pj

S

(0)Pj\i
S

(t) (3.11)

So, given the initial conditions U
i j

(0) and Pi

S

(0), we numerically integrate this or

(3.9) to compute Pi

a

(t), Pi

S

(t), and Pi

T

(t) using (3.1) and (3.3) respectively.

3.2 Message passing vs Monte Carlo simulation in

real networks

The message passing formulation in Section 3.1 is exact only on trees, since we

assumed that the probabilities Pi

a

(t) are independent. However, typical networks
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Figure 3.3: Same parameters and initial conditions as Fig. 3.2, except that we are
comparing the infection probability at time t = 2.

contain many loops. Thus, the independence assumption of the message passing

approach is an approximation in real networks. Our goal in this section is to see how

accurate DMP is in real networks by comparing it with Monte Carlo simulations of

the actual stochastic process.

Figure 3.4: Same as Fig. 3.2, where we compare individuals probability of eventu-
ally getting infected. Here the initial condition is such that each is infected with
probability 0.2.
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Figure 3.5: We show the eventual infection probability of each individual (horizontal
axis) in the Zachary karate club network at increasing uniform probability (vertical
axis) of getting infected initially. Here, threshold T = 2, transmission rate � = 0.6,
and recovery rate � = 0.3. On the left is the result calculated through the DMP.
Whereas, on the right, we show the result from the Monte Carlo simulations, where
the probabilities are averaged over 105 runs for each initial infection probability.

To compare the results between DMP and Monte Carlo simulations, we show the

infection probability of each individual calculated through both methods in a scatter

plot. In Fig. 3.2, we compare the eventual infection (adoption) probability of each

individual in Zachary’s karate club network. Each point in the scatter plot refers

to the eventual infection probability of an individual in the club. If the DMP were

exact, all points in the figure would lie exactly on the dotted diagonal line.

Here, each individual’s threshold T is set to 2. Four vertices labeled {0, 1, 32, 33}

in Fig. 3.2 (left) are the initially infected individuals. We assume f(⌧) = �e-(�+�)⌧

with a transmission rate � = 0.6 and a recovery rate � = 0.3. We simulate the actual

stochastic process using a continuous-time Monte Carlo method algorithm. Events

are maintained in a priority queue using a heap data structure to sort the events

in the model: specifically, sort the edges (i, j) according to the time at which j will

inform i. The probabilities are then averaged over 105 independent runs.

In Fig. 3.3, using the same parameters and initial conditions as Fig. 3.2, we

compare the infection probability of each individual at a particular finite time t = 2.

We chose this time because this is when the average number of infected individuals
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is at its maximum.

In Fig. 3.4, we again use the same parameters as Fig. 3.2, but with di↵erent

initial conditions. Each individual is initially infected with probability 0.2. There

are now two sources of randomness in the model: the dynamics and the set of

initial adopters. This again forces us to do many independent runs of the Monte

Carlo simulation to estimate the infection probabilities. By setting Pi

S

(0) = 0.8 in

Equation (3.3) however, we can calculate the infection probability with the same

computational cost as before where the initial infectors were fixed. Accordingly in

Fig. 3.5, we show the density plot of the probability that each individual (horizontal

axis) is eventually infected, when each of them is initially infected with increasing

probability (vertical axis).

3.2.1 A note on correlations for threshold models

Checking the scatter plot of the results computed from DMP and Monte Carlo sim-

ulation in Figures 3.2 - 3.4, we first see that the results computed from DMP do not

match perfectly with those from the simulation. As pointed out in [42], where T = 1

the probability estimated by DMP is always an upper bound on the true probability,

since the events that two or more neighbors become infected are positively correlated.

However, for T > 1 the situation is more complicated, and DMP does not nec-

essarily give an upper bound on the infection probability. Indeed, in Figs. 3.2–3.4,

we see several cases when DMP underestimates the infection probability rather than

overestimating it. This includes the vertices labeled {26} in Fig. 3.2, {12, 26, 27, 28}

in Fig. 3.3, and {5, 6, 16} in Fig. 3.4.

To see why this happens, suppose i has two neighbors, j and k. Let P[i] denote

the probability that i becomes infected, and let P[j] and P[k] denote the probabilities
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that j and k inform i respectively. If T = 1, then

P[i] = P[j _ k] = P[j] + P[k] - P[j ^ k].

Let’s assume that DMP computes the right marginals, so that PDMP[j] = P[j] and

PDMP[k] = P[k]. However, DMP ignores correlations, and assumes that these events

are independent. Thus

PDMP[i] = P[j] + P[k] - P[j]P[k].

However, j and k are positively correlated if they have a common neighbor that may

have infected them both, or if they are neighbors of each other. That is,

P[j ^ k] > P[j]P[k].

Then P[i] < PDMP[i], and DMP overestimates P[i]. On the other hand, if T = 2, then

P[i] = P[j ^ k] > P[j]P[k] = PDMP[i],

and DMP underestimates P[i].

Similarly, suppose i has three neighbors, j, k, and `. Again taking T = 2, we have

P[i] = P[j ^ k] + P[j ^ `] + P[k ^ `] - 2P[j ^ k ^ `],

whereas, DMP gives

PDMP[i] = P[j]P[k] + P[j]P[`] + P[k]P[`] - 2P[j]P[k]P[`].

In this case, DMP can either underestimate or overestimate P[i], depending on the

strength of the correlations between its neighbors. For example, if ` is independent

of j and k, then

P[i] = P[j ^ k] + P[j]P[`] + P[k]P[`] - 2P[j ^ k]P[`]

= P[j ^ k](1 - 2P[`]) + (P[j] + P[k])P[`].

If j and k are positively correlated so that P[j ^ k] > P[j]P[k], then DMP underesti-

mates P[i] if P[`] < 1/2 and overestimates it if P[`] > 1/2.

26



Chapter 3. Message-passing for non-recurrent threshold models of epidemics

3.3 Exact solution in networks with arbitrary de-

gree distributions

In this section, we consider the message passing approach in the ensemble of random

networks in the thermodynamic limit. Our goal is to show that DMP can be applied

to large random networks just as well as to a particular finite network.

In random networks, we are interested in the expected behavior of the dynamics

rather than the dynamics in a single realization of the network. So, instead of com-

puting messages for individual vertices, we assume that these messages are drawn

from some probability distribution, and update this distribution based on their av-

erage behavior. We can then compute the distribution of marginals as well.

We consider random networks with a given degree distribution, specifically an

ensemble of networks called the configuration model [53]. Each of n vertices is first

assigned an integer degree from a specified degree distribution, say p
k

. We think of

a vertex with degree k as having k “spokes” or half-edges coming out of it. We then

choose a uniformly random matching of these 2m spokes with each other, where m is

the number of edges in the network. The key fact is then that, in the thermodynamic

limit, i.e. n ! 1, following an edge from any given vertex connects with a vertex

of degree k with probability proportional to kp
k

. Strictly speaking, this model

generates random multigraphs. But, the average size of such graphs is a constant as

n ! 1, as a result of which the density of self-loops and multiple edges vanishes

when n is large.

Now, consider the message U
i j

(t) from Equation (3.10). Recall that this is the

probability that j has not informed i by time t. In the configuration model however,

di↵erent individuals j are connected to i in di↵erent realizations of the network. But,

edges are now statistically identical in the sense that each edge identically connects
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to a vertex based on its degree. So, we consider a single average message U(t).

This average message U(t) then has the following interpretation. It is the average

probability that by following a random edge, the neighbor we reach has not informed

the vertex we came from by time t. This in turn will tell us the probability P
a

(t)

that a randomly chosen vertex has awareness a at time t. However, this probability

depends on the degree of the vertex: specifically, if it has degree k, then

P
a

(k, t) = P
S

(0)

✓
k

a

◆
U(t)k-a(1 - U(t))a. (3.12)

Averaging over p
k

, we get

P
a

(t) = P
S

(0)
1X

k

p
k

✓
k

a

◆
U(t)k-a(1 - U(t))a. (3.13)

It is useful to write this in terms of the generating function G(x) of the degree

distribution and its derivatives:

G(x) =
X

k

p
k

xk, (3.14)

G(a)(x) =
daG(x)

dxa

. (3.15)

Then P
a

(t) can be written as

P
a

(t) = P
S

(0)
(1 - U(t))a

a!
G(a)(U(t)). (3.16)

Thus the probability P
S

(t) that a randomly chosen vertex is susceptible at time t is

P
S

(t) =
T-1X

a=0

P
a

(t). (3.17)

Equivalently,

P
S

(t) = P
S

(0)
T-1X

a=0

(1 - U(t))a

a!
G(a)(U(t)). (3.18)

So, we see that given U(t), computing P
a

(t) and P
S

(t) in the configuration model

reduces to knowing G(a) to some order.
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To capture the information flow that U(t) represents in the configuration model,

we define the cavity probability Q(t) by simplifying Equation (3.4). This is the

probability that a randomly chosen edge leads to a vertex that has not been infected

by time t, if the vertex we came from is assumed to be absent from the network.

Equivalently, Q(t) is the probability that if we follow a random edge from a vertex

i, the vertex j it leads to has been informed by at most T - 1 of its neighbors other

than i. This probability also depends on j’s degree. Namely, if it has degree k + 1,

then

Q(k, t) =
T-1X

a=0

✓
k

a

◆
U(t)k-a(1 - U(t))a, (3.19)

where k is the number of neighbors that j has other than i. As discussed above, a

random edge leads to a vertex with degree k with probability proportional to kp
k

.

Therefore, the probability that j has k neighbors other than i is

q
k

=
(k + 1)p

k+1P
k

kp
k

=
(k + 1)p

k+1

G(1)(1)
. (3.20)

Averaging Q(k, t) over q
k

, we obtain

Q(t) =
X

k

q
k

T-1X

a=0

✓
k

a

◆
U(t)k-a(1 - U(t))a. (3.21)

Similar to Equation (3.18), we can write Q(t) in terms of the generating function as

Q(t) =
1

G(1)(1)

T-1X

a=0

(1 - U(t))a

a!
G(a+1)(U(t)). (3.22)

We now calculate U(t) by simplifying (i.e. averaging) Equation (3.10) for the

configuration model. But, note the right-hand side of (3.10) consists of products

of U(t), and the average of products is not always the product of averages. In the

limit n ! 1 however, the network is locally treelike in the sense that the typical

size of the shortest loops diverges as O(log n). As a result, U(t) is asymptotically
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independent, and the average of products is equal to the product of averages. So,

the self-consistent relation for U(t) becomes

U(t) = 1 -

Z
t

0

d⌧f(⌧) + P
S

(0)

Z
t

0

dt 0f(t - t 0)Q(t 0). (3.23)

To numerically integrate this equation in time, we di↵erentiate it with respect to t,

dU(t)

dt
= -f(t) + P

S

(0)f(0)Q(t)

+ P
S

(0)

Z
t

0

dt 0Q(t 0)
df(t - t 0)

dt
. (3.24)

It is also possible to get this from Equation (3.9). We can further simplify this to an

ordinary di↵erential equation in some cases. For example, if f(⌧) = �e-(�+�)⌧, we

can write it as

dU(t)

dt
= -�U(t) + �(1 - U(t)) + �P

S

(0)Q(t). (3.25)

So, given the initial conditions U(0) = 1, P
S

(0), and G(a)(x), we can calculate

P
S

(t) using Equation (3.18). Similarly, the fraction of infected and recovered vertices

at time t can be calculated. Note that, in general, we can let f(⌧) depend on the

degree of the vertex by following a degree dependent transmission method formulated

by Newman [16]. Similarly, we can allow for the case where the probability P
T

(0) =

1 - P
S

(0) of getting initially infected depends on the degree of the vertex.

In Fig. 3.6 (left), we show the time evolution of the fraction of susceptible (blue),

infected (red), and recovered (green) vertices in the configuration model, where the

degrees are drawn from the Poisson distribution with mean c, or equivalently the

Erdős-Rényi graphs G(n, p = c/n). For Poisson distribution, G(a)(x) are given by

cae-c(1-x). We take c = 9, T = 3, f(⌧) = �e-(�+�)⌧ , where � = 0.8 and � = 0.2,

and the initial fraction of adopters/infecteds is P
T

(0) = 0.1.

Continuous lines in Fig. 3.6 (left) are obtained by numerically integrating Equa-

tion (3.25), whereas dots are from Monte Carlo simulations with 104 vertices aver-
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Figure 3.6: On the left is the dynamics in the Erdős-Rényi graphs G(n, p = c/n)
where individuals have threshold T = 3, average degree c = 9, initial fraction of
adopters/infecteds P

T

(0) = 0.1. The fractions of infected, recovered and susceptible
vertices are red, green, blue respectively. Continuous lines are analytic results calcu-
lated using our DMP approach, by numerically integrating Equation (3.25), whereas
dots are from the Monte Carlo based simulations with 104 vertices averaged over 100
runs. Transmission rate � = 0.8, and recovery rate � = 0.2. On the right is the
time evolution of P

a

(t), where continuous lines are calculated using Equation (3.16).
Root Mean Square deviations in the simulation are provided when they are larger
than the markers.

aged over 100 runs. Similarly, Fig. 3.6 (right) gives the fraction P
a

(t) of vertices

with awareness a, where the continuous lines are obtained by using Equation (3.16).

In Fig. 3.7, we show the fraction P
T

(t) of adopters as a function of time for the

same parameter values as Fig. 3.6, except where T is 1 (green square), 2 (blue circle),

3 (magneta triangle), and 4 (black diamond). Root Mean Square deviations in the

simulation are provided when they are larger than the the markers.

Using the same framework, we can calculate the asymptotic probability u =

U(1) that the infection has not been transmitted along a random edge. This in turn

will tell us the asymptotic probability that a randomly chosen vertex ever becomes

infected.

We can think of the long time behavior as k-core percolation. Either the edge is
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Figure 3.7: Same parameters and initial conditions as Fig. 3.6, except we are com-
puting the fraction P

T

(t) of adopters, i.e. either infected or recovered vertices, as a
function of time when the threshold T is 1 (green square), 2 (blue circle), 3 (magneta
triangle), and 4 (black diamond).

closed in the sense that its other endpoint fails to inform the vertex we came from,

which happens with the probability 1 - p = 1 -
R1
0 f(⌧)d⌧. In this case, it does not

matter if the neighbor gets infected by its other neighbors, since it fails to inform the

vertex we came from. Or, it can be the case that the edge is open (with probability

p), but the vertex we reach is itself not infected eventually by its other neighbors.

This happens when the neighbor we reach by randomly following the edge is informed

by at most T - 1 other neighbors, provided it was not initially infected. Summing

up both cases, we arrive at the following self-consistent relation for u:

u = 1 - p + pP
S

(0)
1X

k

q
k

T-1X

a=0

✓
k

a

◆
uk-a(1 - u)a

= 1 - p +
pP

S

(0)

G(1)(1)

T-1X

a=0

(1 - u)a

a!
G(a+1)(u). (3.26)

Note that we could have written this equally by taking the limit t ! 1 in Equa-

tion (3.23). Similarly, the probability P
S

that a randomly chosen vertex never gets
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infected, i.e. the fraction of susceptible vertices is

P
S

= P
S

(0)
T-1X

a=0

(1 - u)a

a!
G(a)(u). (3.27)

For Erdős-Rényi networks G(n, p = c/n), or equivalently the Poisson distribution

with average degree c, we have the following self-consistent relation for u:

u = 1 - p + pP
S

(0)e-c(1-u)
T-1X

a=0

ca(1 - u)a

a!
. (3.28)

We can also obtain this expression by following [52]. Similarly, P
S

in Erdős-Rényi

networks is

P
S

= P
S

(0)e-c(1-u)
T-1X

a=0

ca(1 - u)a

a!
. (3.29)

Equations (3.26) and (3.27) have a nice interpretation in terms of well-studied

problems in random graphs, including percolation and the emergence of the k-core.

We say that Equation (3.26) is the generating function in P
S

(0) of the size of the

connected component of susceptible vertices by following a random edge in the long

time limit. Similarly, Equation (3.27) is the generating function of the size of the

connected susceptible component of a randomly chosen vertex.
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Chapter 4

Message-passing for recurrent

epidemics

The work described in this chapter is a result of collaboration with Samuel V. Scarpino

and Cristopher Moore is submitted for publication in Phys. Rev. E.

For many epidemic models, such as SI (susceptible-infectious), SIR (susceptible-

infectious-recovered) and SEIR (susceptible-exposed-infectious-recovered), only one-

way state changes can occur. For example, in the SIR model, once an individual

has left the Susceptible class and become Infectious, they cannot return to being

Susceptible; once they become Recovered, they are immune to future infections, and

might as well be Removed. For these non-recurrent models, DMP is known to be be

an e�cient algorithm to estimate I
i

(t), and it is exact on trees [26]; it can also be

applied to threshold models [27, 29, 30] and used for inference [19].

However, for many real-world diseases individuals can return to previously inhab-

ited states. In these recurrent models, such as SIS (susceptible-infectious-susceptible)

, SIRS (susceptible-infectious-recovered-susceptible), and SEIS (susceptible-exposed-

infectious-susceptible), individuals can cycle through the states multiple times, giving

34



Chapter 4. Message-passing for recurrent epidemics

multiple waves of infection traveling through the population. The most obvious ex-

amples of recurrent models are seasonal influenza, where due to the evolution of the

virus individuals are repeatedly infected during their lifetime [70], vaccination where

protective immunity wanes over time [71], and diseases curable by treatment which

does not result in antibody-mediated immunity, such as gonorrhea [76]. In all three

cases, individuals leave the Susceptible class, only to return at some point in the

future (although for influenza, it is worth mentioning that if the evolutionary rate

of the virus is functionally related to the number of susceptible individuals, then the

recovery rate may not be independent from the state of one’s neighbors.) Unfortu-

nately, the DMP approach of [26] cannot be directly extended to recurrent models,

since their equations for messages only track the first time an individual makes the

transition to a given state.

The purpose of this chapter is to develop a novel DMP algorithm for recurrent

models of epidemics on networks, which we call rDMP. We will show that rDMP

gives very good approximations for marginal probabilities on networks, and is often

more accurate than the pair approximation. Moreover, whereas the pair approxima-

tion requires keeping track of mk2 variables, if there are m edges and k states per

node, rDMP requires just 2mk variables. For complex models where k is large—for

instance, for diseases with multiple stages of infection or immunity, or multiple-

disease epidemics where one disease makes individuals more susceptible to another

one—this gives a substantial reduction in the computational e↵ort required. Finally,

the rDMP approach is conceptually simple, making it easy to write down the system

of di↵erential equations for a wide variety of epidemic models.
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4.1 Message-passing and preventing

the echo chamber e↵ect

As shown in Fig. 2.2, the variables of rDMP are messages along directed edges of the

network (in addition to one-point marginals). For instance, I
j!i

is the probability

that j is Infectious because it was infected by one of its other neighbors k. The

intuition behind this is the following, where we take the SIS model as an example.

If i is Susceptible, the rate at which j will infect i is proportional to the probability

I
j

that j is infected. But when computing this rate, we only include the contribution

to I
j

that comes from neighbors other than i. In other words, we deliberately neglect

the event that j receives the infection from i, and immediately passes it back to i,

even if i has become Susceptible in the intervening time.

This choice avoids a kind of “echo chamber” e↵ect, where neighboring nodes

artificially amplify each others’ probability of being Infectious which we discussed in

chapter 2.1.

In other words, consider again the two-node case as shown in Fig. 2.1. Here, with

DMP, we fix the e↵ect of “echo chamber” by replacing I
i

and I
j

with the messages

they send each other,

dI
i

dt
= �S

i

I
j!i

,

dI
j

dt
= �S

j

I
i!j

,

so that i can only infect j if i received the infection from some node other than j.

(Below we give the equations on a general network, including the time derivatives

of the messages.) In this example, there are no other nodes, so if I
j!i

(0) = � and

I
i!j

(0) = 0, then I
j

(t) = � for all t as it should be.

Note that we do not claim that rDMP is exact in this case. In particular, as
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in (2.4), I
i

(t) tends to 1 as t ! 1. This is because, unlike the system of [26], rDMP

assumes that the events that j infects i at di↵erent times are independent.

Preventing backtracking completely may seem like a strong assumption, and in re-

current models it is a priori possible, for instance, for a node to re-infect the neighbor

it was infected by. Despite the well-documented importance of recurrent infections

for diseases including (but certainly not limited to) seasonal influenza [70], Plasmod-

ium malaria [78], and urinary tract infections [77], little is known about the source of

recurrent infections. For certain sexually transmitted diseases such as gonorrhea [76]

and repeated ringworm infections [79], there is evidence that backtracking plays a

significant role; on the other hand, it may be that recurrent infections are caused

by di↵erent strains, each of which is acting essentially without backtracking. Thus

while our non-backtracking assumption is clearly invalid in some cases, we believe it

is a reasonable approach for most recurrent state infections.

4.2 The rDMP equations for the SIS, SIRS, and

SEIS models

In this section, we illustrate the rDMP approach for several recurrent epidemic mod-

els. We start with the simplest one: in the SIS model, each node is either Infectious

(I) or Susceptible (S). Infectious nodes infect their Susceptible neighbors at rate �,

and their infections wane back into the Susceptible state at rate ⇢. We denote the

probability that that node i is Infectious or Susceptible by I
i

and S
i

respectively.

The objective then is to e�ciently and accurately compute these probabilities as a

function of time t.

We define variables or “messages” that live on the directed edges (i, j) of the

network. The directed nature of these messages prevent infection from backtracking
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from an Infectious node back to its infection source, e.g., if node i infects node j,

then we prevent j from re-infecting i. In addition to tracking the one-point marginal

I
j

, we define a message I
j!i

from j to i as the probability that j is in the Infectious

state as a result of being infected from one of its neighbors other than i. Given these

incoming messages, the rate at which I
i

evolves in time is given by

dI
i

dt
= -⇢I

i

+ �S
i

X

j2@i

I
j!i

, (4.1)

where @i denotes the neighbors of i. Similarly, the rate at which I
j!i

evolves in time

is given by

dI
j!i

dt
= -⇢I

j!i

+ �S
j

X

k2@j\i

I
k!j

, (4.2)

where k 2 @j \ i denotes the neighbors of j excluding i.

For the SIRS model, we let ⇢ and � denote the transition rates from Infectious to

Recovered and from Recovered to Susceptible respectively. Then the rDMP system

for the SIRS model is given by

dI
j!i

dt
= -⇢I

j!i

+ �S
j

X

k2@j\i

I
k!j

, (4.3)

which is coupled with the one-point marginals through

dS
i

dt
= �R

i

- �S
i

X

j2@i

I
j!i

dI
i

dt
= -⇢I

i

+ �S
i

X

j2@i

I
j!i

dR
i

dt
= ⇢I

i

- �R
i

. (4.4)

In the SEIS model, upon becoming exposed to an infected neighbor, Susceptible

nodes first go through a latent period called the Exposed state. In this state, indi-

viduals are infected but not yet Infectious. Exposed nodes become Infectious at the
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rate ", and Infectious nodes again wane back to Susceptible at rate ⇢. The rDMP

system for the SEIS model is

dE
j!i

dt
= -"E

j!i

+ �S
j

X

k2@j\i

I
k!j

,

dI
j!i

dt
= -⇢I

j!i

+ "E
j!i

, (4.5)

which is coupled with the one-point marginals as

dS
i

dt
= ⇢I

i

- �S
i

X

j2@i

I
j!i

dI
i

dt
= -⇢I

i

+ "E
i

dE
i

dt
= -"I

i

+ �S
i

X

j2@i

I
j!i

. (4.6)

Note that here we track messages for the Exposed state, in addition to one-point

marginals, since they act as precursors for the Infectious messages. There is no need

to track messages for the Susceptible state, since it does not cause state changes in

its neighbors.

Generalizing these equations to more complex epidemic models with k di↵erent

states, as opposed to three or four, is straightforward. Even in a model where every

state can cause state changes in its neighbors—for instance, where having Susceptible

neighbors speeds up the rate of recovery, or where Exposed nodes can also infect their

neighbors at a lower rate—the total number of variables we need to track in a network

with n nodes and m edges is at most 2mk in addition to the nk one-point marginals.

In contrast, the pair approximation requires mk2 states to keep track of the joint

distribution of every neighboring pair.
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4.3 Experiments in real and synthetic networks

In this section we report on numerical experiments for rDMP for the SIS and SIRS

models on real and synthetic networks. As a performance metric, we use the av-

erage L1 error per node between the marginals computed from rDMP and the true

probabilities computed (up to sampling error) using continuous-time Monte Carlo

simulations. That is,

LrDMP
1 (t) =

1

n

X

i

��IMC
i

(t) - IrDMP
i

(t)
�� , (4.7)

We use this metric to compare the performance of rDMP with the independent-node

approximation and the pair approximation, or equivalently first- and second-order

moment closure [18, 58]. As we will see, for a wide range of parameters, rDMP is

more accurate than either of these approaches, even though it is computationally

easier than the pair approximation.

In Fig. 4.1, we show results for the SIS model on Zachary’s Karate Club [63].

On the left, we show the marginal probability that a particular node is Infectious

as a function of time, estimated by rDMP and by first- and second-order moment

closure, and compared with the true marginals given by Monte Carlo simulation.

On the right, we show the average L1 error for the three methods. Here � = 0.1,

⇢ = 0.05, and the initial condition consists of a single infected node (shown in red in

the inset). The Monte Carlo results were averaged over 105 runs. We see that rDMP

is significantly more accurate than the other two, except at some early times when

the pair approximation marginally outperforms rDMP.

As a further illustration, in Fig. 4.2 we show the steady-state marginal I
i

for each

node i (measured by running the system until t = 50, at which point I
i

(t) is nearly

constant), with the same parameters and initial condition as in Fig. 4.1. We show

the true marginal of each node on the y-axis, and the marginals estimated by rDMP

and the pair approximation on the x-axis. If the estimated marginals were perfectly
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Figure 4.1: Results on the SIS model. On the left, the marginal probability that node
29 in Zachary’s Karate club (see inset on right) is Infectious as a function of time.
We compare the true marginal derived by 105 independent Monte Carlo simulations
with that estimated by rDMP, the independent node approximation, and the pair
approximation. In the inset, we show the fraction f of Infectious nodes as a function
of time. On the right is the L1 error, averaged over all nodes; we see that rDMP is
the most accurate of the three methods. Here the transmission rate is � = 0.1, the
waning rate is ⇢ = 0.05, and vertex 0 (colored red) was initially infected.

accurate, the points would fall on the line y = x. Both methods overestimate the

marginals to some extent, but rDMP is more accurate than the pair approximation

on every node. Thus rDMP makes accurate estimates of the marginals on individual

nodes, as opposed to just the average across the population.

To investigate how rDMP compares with the pair approximation across a broader

range of parameters, in Fig. 4.3 we vary the ratio between waning rate ⇢ and the

transmission rate �. Since we can always rescale time by multiplying � and ⇢ by the

same constant, we do this by holding � = 0.1 as before, and varying ⇢. We then

measure the di↵erence in the L1 error of the two methods, LrDMP
1 - Lpair

1 .

In the blue region, rDMP is more accurate than the pair approximation; in the

red region, it is less so. We see that rDMP is more accurate except at early times

(as in Fig. 4.1) or when ⇢ is small compared to �, i.e., if the model is close to the SI
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Figure 4.2: A scatterplot of the steady-state marginals I
i

for the n = 33 nodes in
Zachary’s Karate Club, with the same parameters as in Fig. 4.1. The vertical axis
is the true marginal computed by Monte Carlo simulations; the horizontal axis is
the estimated marginals from rDMP (black ?) and the pair approximation (blue ⇥).
Both methods overestimate the marginal, but rDMP is closer to the true value (the
line y = x) for every node.

model where Infectious nodes rarely become Susceptible again.

FIG. 4. Comparison with a scatter plot of steady-state infection probability in the Zachary club. Horizontal axis
is the steady-state infection probability calculated by DMP (black-asterisk) or the pair-approximation (blue-cross),
whereas vertical axis is the result from the Monte Carlo simulation. Each point refers to the steady-state infection
probability of one of the individuals in the club. Same parameters as in Fig. 3. Closer a point is to the green dashed
diagonal line, more accurate or closer DMP or the pair-approximation is to the actual Monte Carlo simulation.Same
parameters as in Fig. 3.

FIG. 5. A contour plot of the di�erence D(t, �
� ) between LDMP

1 (t) and Lpair
1 (t) for increasing values of the parameter

�
� , i.e. D(t, �

� ) = LDMP
1 (t) � Lpair

1 (t) in the Zachary’s network. A positive D(t, �
� ) (colored red) means the error

from DMP is worse than that from the pair-approximation, whereas DMP outperforms the pair-approximations in
the blue regions. Same parameters as in Fig. 3, but we sweep through various value of the recovery rate �.

where LDMP
1 is defined in Eq. (9). So if D(t, �

� ) is positive (negative), the error from r -DMP is more (less)
than that from the pair-approximation. In Fig. 5, keeping all the parameters the same as in Fig. 3 except
�, we indeed see that r -DMP is only positive (colored red) at early times when � is relatively low.

In Fig. 6, we compare the performance in a single instance of an Erdős-Rényi graph (inset of the figure)
with 100 nodes and a single initially infectious node. Transmission rate � = 0.2, and recovery rate � = 0.10,
and Monte Carlo results were averaged over 103 runs. We see that r -DMP does the best, except at early
times when pair-approximation marginally outperforms r -DMP.

We also evaluated the performance of all three methods in various other networks like random-regular
graphs, random geometric graphs, scale-free networks, Newman-Watts-Strogatz small world network [cite],
and a social network of dolphins [21]. We find that r -DMP outperforms the first-moment-closure approach

7

Figure 4.3: The di↵erence between LrDMP
1 and Lpair

1 on Zachary’s Karate Club for
various values of the ratio ⇢/�. We rescale time so that � = 0.1 as before. In the blue
region, LrDMP

1 < Lpair
1 and rDMP is more accurate; in the red region, LrDMP

1 > Lpair
1 .

We see that rDMP is more accurate except at early times or when ⇢/� is small.
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FIG. 6. The fraction f of Infectious nodes as a function of time in the SIS model on an Erdős-Rényi graph (inset)
with n = 100 and average degree 3. Here � = 0.4, ⇢ = 0.1, and the initial condition consists of a single Infectious
node (colored red). Monte Carlo results were averaged over 103 independent runs. Except at early times, rDMP
tracks the true trajectory more closely.

FIG. 7. The SIRS model on the Karate Club. On the left, we show the true and estimated marginal probability that
a node 29 is Infectious (main figure) or Recovered (inset) as a function of time. On the right is the average L1 error
for the Infectious and Marginal states. The transmission rate is � = 0.1, and the transition rates from Infectious
to Recovered and from Recovered to Susceptible are ⇢ = 0.05 and � = 0.2 respectively. Node 0 (colored red) was
initially infected. Monte Carlo results were averaged over 105 runs. As for the SIS model, rDMP is significantly more
accurate than the first-order model where nodes are independent, and is more accurate than the pair approximation
except at early times.

of dolphins [29]. Namely, rDMP outperforms the first-order approximation where nodes are independent,
and outperforms the pair approximation across a wide range of parameters and times.

8

Figure 4.4: The fraction f of Infectious nodes as a function of time in the SIS model
on an Erdős-Rényi graph (inset) with n = 100 and average degree 3. Here � = 0.4,
⇢ = 0.1, and the initial condition consists of a single Infectious node (colored red).
Monte Carlo results were averaged over 103 independent runs. Except at early times,
rDMP tracks the true trajectory more closely.

In Fig. 4.4, we simulate the SIS model on an Erdős-Rényi graph with n = 100

and average degree 3, with � = 0.4, ⇢ = 0.1, and a single initially Infectious node.

As with the Karate Club, rDMP does a better job of tracking the true fraction of

Infectious nodes, except at early times when the pair approximation is superior; in

particular, it does a better job of computing the steady-state size of the epidemic.

In Fig. 4.5 we show results for the SIRS model on Zachary’s Karate Club. As in

Fig. 4.1, on the left we show the marginal probability I29 that node 29 is Infectious;

on the right, we show the L1 error for I
i

averaged over the network. In the insets,

we show the marginal probability R29 for the Recovered state and the corresponding

average L1 error. Here the transmission rate is � = 0.1, the waning rate from

Infectious to Recovered is ⇢ = 0.05, and the rate from Recovered to Susceptible is

� = 0.2. The initial condition consisted of a single infected node, and Monte Carlo

results were averaged over 105 runs. As for the SIS model, rDMP is significantly

more accurate than the independent node approximation, and is more accurate than
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Figure 4.5: The SIRS model on the Karate Club. On the left, we show the true
and estimated marginal probability that a node 29 is Infectious (main figure) or
Recovered (inset) as a function of time. On the right is the average L1 error for the
Infectious and Marginal states. The transmission rate is � = 0.1, and the transition
rates from Infectious to Recovered and from Recovered to Susceptible are ⇢ = 0.05
and � = 0.2 respectively. Node 0 (colored red) was initially infected. Monte Carlo
results were averaged over 105 runs. As for the SIS model, rDMP is significantly
more accurate than the first-order model where nodes are independent, and is more
accurate than the pair approximation except at early times.

the pair approximation except at early times.

We found similar results on many other families of networks, including ran-

dom regular graphs, random geometric graphs, scale-free networks, Newman-Watts-

Strogatz small world networks, and a social network of dolphins [59]. Namely, rDMP

outperforms the first-order approximation where nodes are independent, and outper-

forms the pair approximation across a wide range of parameters and times.
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4.4 Linear stability, epidemic thresholds,

and related work

Systems of di↵erential equations for rDMP, such as (4.2), do not appear to have a

closed analytic form due to their nonlinearities. On the other hand, we can compute

quantities such as epidemic thresholds by linearizing around a stationary point, such

as {I⇤
j!i

= 0} where the initial outbreak is small. Given a perturbation ✏
j!i

=

I
j!i

- I⇤
j!i

, the linear stability of the system, i.e., whether or not ✏
j!i

diverges in

time, is governed by the eigenvalues of the Jacobian matrix J of the right hand side

of (4.2) at the stationary point I⇤
i

. The Jacobian for (4.2) at {I⇤
j!i

} is

J(j!i),(k!j

0) = -�
kj

�
ij

0⇢ + �(1 - I⇤
j

)B(j!i),(k!j

0) . (4.8)

where

B(j!i),(k!j

0) = �
jj

0(1 - �
ik

) . (4.9)

This definition of B is another way of saying that the edge k ! j influences edges

j ! i for i 6= k, but does not backtrack to k. This corresponds to our assumption

that infections, for instance, do not bounce from k to j and back again and create

an echo chamber e↵ect. For this reason, B is also known in the literature as the

non-backtracking matrix [65] or the Hashimoto matrix [61].

Now, for a small perturbation ~✏ away from a stationary point {I⇤
j!i

}, the linearized

system of (4.2) becomes

d~✏

dt
= J~✏, (4.10)

If J has any eigenvalues with positive real part, then k~✏(t)k grows exponentially in

time. So, the fixed point {I
j!i

} is stable as long as the leading eigenvalue J1 of J has

negative real part.
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One trivial, but important, stationary point to test is I⇤
j!i

= 0 for all edges. A

small perturbation around ~0 corresponds to a small initial probability that each node

is infected. From (4.8), J becomes

J = �
⇣
B -

⇢

�
1
⌘

, (4.11)

where 1 is the 2m ⇥ 2m identity matrix. So, the leading eigenvalue of J becomes

positive when the largest eigenvalue B1 of B is greater than ⇢/�. In other words, if

R0 =
�

⇢
B1 > 1 , (4.12)

where R0 is the reproductive number, even a small initial probability of infection will

lead to a widespread endemic state, where the infection becomes extensive. If (4.12)

does not hold, a small initial probability of infection will instead decay back to an

infection-less state.

Since B is not symmetric, not all its eigenvalues are real. However, by the Perron-

Frobenius theorem, it’s leading eigenvalue is real; moreover, it is upper bounded by

A1, the leading eigenvalue of the adjacency matrix A. Interestingly, if we examine

the linear stability of the first-order approximation where nodes are independent,

[18], the epidemic threshold for the SIS model is given by

�

⇢
A1 > 1 . (4.13)

Since B1 6 A1, the threshold (4.12) gives a better upper bound for the true epidemic

threshold than we would get from the first-order approximation. A similar threshold

for the SIR model in sparse networks, or equivalently for percolation, using B1 was

recently demonstrated in [66]. (We note that when backtracking is allowed, it has

important consequences for epidemic thresholds on power-law networks [67].)

Whereas the leading eigenvector of B governs the epidemic threshold, the spectral

gap between B’s top two eigenvectors governs how quickly the epidemic converges to

the leading behavior (at least until we leave the linear regime). Qualitatively, this
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Figure 4.6: Same as in Fig. 4.1, but with transmission rate � = 0.1 and waning rate
⇢ = 0.54. A well known upper bound on the epidemic threshold of the SIS model can
be computed from the leading eigenvalue A1 of the adjacency matrix (the Jacobian
matrix of first-moment-closure approach) of a network. In other words, if ⇢

�

< A1, it
is known from the first-moment-method that an infection-free state becomes unstable
and epidemics become widespread and endemic. Here we show the results from SIS
model in Zachary’s Karate Club, where A1 ⇡ 6.7. Even though ⇢

�

= 5.4 < A1 which
is well below the threshold from the first-moment method, the contagion fades away
eventually, which is correctly captured by our DMP approach.

depends on bottlenecks in the network such as those due to community structure,

where an epidemic spreads quickly in one community but then takes a longer time

to cross over into another. Indeed, the second eigenvector of the non-backtracking

matrix B was recently used to detect community structure [65].

Similarly, just as the leading eigenvector of B was recently shown to be a good

measure of importance or “centrality” of a node [69], it may be helpful in identifying

“superspreaders”—nodes where an initial infection will generate the largest outbreak,

and be the most likely to lead to a widespread epidemic.
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Chapter 5

Stability analysis of financial

contagion due to overlapping

portfolios

The work described in this chapter is a result of collaboration with Fabio Caccioli

(first-author), Cristopher Moore, J. Doyne Farmer and is published in Journal of

Banking & Finance Volume 46, (2014).

5.1 Introduction

The 2007–2009 financial crisis highlighted the complex interconnections between fi-

nancial institutions and made it clear that we need a better understanding of how

financial contagion propagates and the circumstances under which it is amplified[80,

10, 81, 82, 83, 84, 85, 86, 87]. Financial contagion comes through di↵erent channels,

including (i) counterparty risk, (ii) roll-over risk, and (iii) common asset holdings,

i.e. overlapping portfolios. Of these the first two have so far received the most atten-
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tion, even though the primary problem is believed by many to have been due to the

third. Our goal in this chapter is to remedy this by gaining a better understanding

of the problem of overlapping portfolios. To do this we develop a method of comput-

ing the stability of financial networks under contagion due to overlapping portfolios.

To understand the factors that determine network stability, we develop and study a

stylized model, and suggest how it can be extended to be more realistic. This model

can be regarded as a multiple asset extension of the single asset model developed in

reference [88]1.

Inter-institutional lending drives the problem of counterparty and roll-over risk.

Counterparty risk occurs when a bankrupt institution is unable to pay its debts and

consequently causes other institutions to fail [89]. Roll-over risk occurs when financial

institutions depend on short term lending for liquidity and their creditors stop lending

because they fail or are under stress, so that they are no longer able to borrow and

consequently fail or become under stress [83]. These have now been extensively

studied and we are rapidly developing better insight into the circumstances where

interbank lending causes problems (see for instance [80, 84, 89]).

Financial contagion due to overlapping portfolios is driven by common asset hold-

ings [84, 90]. In the event that an asset price fluctuation causes an institution to fail,

the resulting “fire sale” of assets by that institution further depresses prices, which in

turn may cause other institutions to fail, causing a spiral of selling and further asset

price decreases. This also induces correlations between di↵erent assets that further

exacerbate the problem [91].

The problem of overlapping portfolios is very general. It occurs even without

inter-institutional lending, and applies to any institutions that manage money. Al-

though this can occur even without leverage2, the use of leverage makes it particularly

1 Reference [88] considered the properties of leveraged single asset portfolios. It was
shown that under deleveraging market impact can cause bankruptcy if leverage is too large.

2 In this chapter we assume that institutions sell assets only when they become
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acute. We are particularly interested in the banking system, where it is not uncom-

mon for investments to be leveraged by a factor of 30 or more, but our analysis applies

equally well to hedge funds or any other financial institutions that make leveraged

investments. For convenience we will use the word bank to refer to institutions in

general, but the reader should bear in mind that our model applies equally well to

any leveraged financial institution.

The problem of overlapping portfolios has previously been considered in references

[80, 84, 92, 93]3. In these papers, however, liquidation e↵ects were considered on top

of counterparty or roll-over risk. Here we are interested in the situation in which

shocks can propagate between di↵erent financial institutions through a pattern of

local portfolio overlaps (e.g. bank i has assets in common with bank j, that has

other assets in common with bank k, etc.). The model is simple: we assume that

banks own a portfolio of assets, that when a bank goes bankrupt due to a loss in the

value of its portfolio it sells its assets, and that this in turn causes these assets to be

devalued according to a simple market impact function relating the size of the sale

to the change in price.

The model we consider is purely mechanistic, i.e. we do not attempt to describe

decision-making processes by banks. The underlying assumption is that, during the

development of a crisis, banks do not have time to deleverage or rebalance their

portfolios before failing. Thus we consider portfolios fixed until default occurs, and

assume that they are fully liquidated when it occurs. We then perform a macro-

prudential stress test by applying localized shocks a↵ecting either a single bank or

a single asset. After the initial shock is applied we test to see whether it causes any

bankrupt, in which case the problem of financial contagion occurs only when leverage
is used. In general asset sales may be triggered by losses that are less severe, for example
if investment funds are forced to liquidate even when they are solvent, as occurred during
the stat-arb meltdown in 2007.

3After completing these results we received reference [94], whose independent results
are complementary to ours.
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bank failures; if so we iterate the process as needed until either there are no more

failures or all banks have failed. The only trades during the course of the dynamics

are fire sales of the assets of insolvent banks.

Our focus in this chapter is therefore in understanding the specific role of market

impact and portfolio overlaps as a contagion mechanism between leveraged financial

institutions. To this end, we consider a network of banks and assets, and we test

how the average level of diversification in bank portfolios, the ratio of the number of

banks to the number of assets (crowding), and the leverage attained by banks impact

the stability of the system with respect to an initial shock a↵ecting a single asset or

bank.

The stability of the system will be measured in terms of the probability of ob-

serving a global cascade of failures, with a smaller probability being associated with

a higher stability. A global cascade of failures, in this context, refers to the failure of

a significant fraction of the banks: that is, a non-zero fraction in the limit of infinite

network size. By mapping our model onto a generalized branching process, we show

analytically that there is a region in parameter space where global cascades of fail-

ures occur. One advantage of this mechanistic approach is that it can in principle be

calibrated against real data and used to perform stress tests on real financial systems.

We find that, as the diversification of the banks’ portfolios increases, the system

undergoes two phase transitions, with a region in between where global cascades

occur. Below the first transition, banks are not interconnected enough for shocks

to propagate in the network. Above the second transition, banks are robust to

devaluations in a few of their assets. In between these two transitions, banks are

both vulnerable to shocks in their asset prices, and interconnected enough for these

shocks to spread. We also find that more leverage increases the overall instability

of the network and that the system exhibits a “robust yet fragile” behavior, with

regions of parameter space where contagion is rare but the whole system is brought
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down whenever it occurs.

The chapter is organized as follows. In the next section we introduce the model.

In Section 5.3 we map the model into a generalized branching process and present the

analytical approach that allows us to identify the region of phase space where global

cascades occur. In Section 5.4 we report results from numerical simulations exploring

how stability of banking systems depends on parameters and network properties.

In section 5 we compare the results of numerical simulations to those of stability

analysis, and we present our conclusions in the last section.

5.2 The model

5.2.1 Banks, assets, and cascades of bankruptcies

We consider a representation of a financial system given in terms of a network of N

banks and M assets. Whenever a bank invests in an asset, we draw a link in the

network connecting that bank to that asset. The resulting network is bipartite (see

Figure 5.1), meaning that there are two groups of nodes (banks and assets) and that

there are links only between these two groups.

The number of assets in the portfolio of bank i, i.e. the number of links of the

corresponding node, is its degree k
i

. The average diversification, i.e. the average

degree of banks in the network, is then

µ
b

=
1

N

NX

i=1

k
i

, (5.1)

where the sum runs over all N banks. Conversely, the number of banks that hold

asset j in their portfolio is its degree `
j

, and the average degree of the assets is

µ
a

=
1

M

MX

j=1

`
j

. (5.2)
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Figure 5.1: Graphical representation of the bipartite network of banks and assets. Banks
are denoted by circles, assets by squares. Links connect banks to the assets they have in
their portfolios. In this example N = 4, M = 3, the average banks’ degree is µ

b

= 1.5 and
the average assets’ degree is µ

a

= 2.

Since each link connects a bank to an asset, the total degree of the banks must equal

the total degree of the assets, so

µ
b

N = µ
a

M . (5.3)

Although a complete description of the network’s topology would require more in-

formation, a rough characterization can be given in terms of two parameters, µ
b

and

n = N/M. The crowding parameter n is a measure of the density of institutions

choosing their investments from the same pool of assets.

Each solvent bank i holds a portfolio {Q
i,1, . . . , Qi,M}. Its value at time t is

At

i

=
MX

j=1

Q
ij

pt

j

,

where Q
ij

is the number of shares of asset j held by bank i and pt

j

the price of asset

j at time t. In our dynamics a bank holds on its portfolio as long as it is solvent, so
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Q
ij

is independent of time. Notice that, given that bank i invests in k
i

assets, only

k
i

of the M portfolio weights Q
ij

will be non-zero for bank i.

Each solvent bank also holds cash C
i

, and we denote by L
i

its total liabilities;

neither of these quantities depend on time. If A0
i

is the initial value of bank i’s

portfolio, its initial equity (or capital) is therefore E0
i

= A0
i

+ C
i

- L
i

. The leverage

of a bank is the ratio between the amount of risky assets on its balance sheet and its

equity. Assuming no risk associated with cash holdings, the initial leverage of bank

i is �
i

= A0
i

/E0
i

.

The condition for bank i to be solvent at time t is

MX

j=1

Q
ij

pt

j

+ C
i

> L
i

. (5.4)

Given that E0
i

= A0
i

+ C
i

- L
i

, the above condition can be expressed as

A0
i

-
MX

j=1

Q
ij

pt

j

6 E0
i

. (5.5)

The left hand side represents the loss with respect to the initial investment. If such

a loss happens to be greater than the initial capital of the bank, the bank is out of

business.

Note that leverage is a necessary condition for banks to fail. A bank investing

only its own capital always satisfies condition (5.5), since its maximal loss is equal

to its equity. We can write (5.5) as a condition on the leverage,

�
i

6
P

M

j=1 Q
ij

pt

j

E0
i

+ 1 . (5.6)

Even in the worst case scenario where pt

j

= 0 for all assets, this condition can be

violated only if �
i

> 1, i.e. if the bank is leveraged.

Whenever a bank does not satisfy the solvency condition (5.5), we assume its

portfolio undergoes a fire sale, i.e. all its assets are immediately liquidated. The fire
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sale causes the price of the assets in the bank’s portfolio to drop. If x
j

is the fraction

of asset j that has been liquidated, the price is updated as

p
j

! p
j

f
j

(x
j

) (5.7)

We are interested in the response of the system to an initial shock. We consider

two kinds of initial shocks:

• Presence of a toxic asset. We select a random asset j and devalue it at time

0.

• Initial failure of a bank. We select a random bank i and cause it to go

bankrupt.

In each case we follow the chain of events caused by the initial shock. The dynamics

we consider is very simple: after shocking the system at time t = 0, at each time

step t = 1, 2, . . . the solvency condition (5.5) is checked for each bank, the portfolios

of newly insolvent (bankrupted) banks are liquidated, and new prices are computed

for each asset. The dynamics stops when no new bankruptcies occur between two

consecutive time steps. This can be expressed with the following algorithm:

1. introduce the initial shock in the system;

2. liquidate the portfolio of insolvent banks;

3. recompute prices of assets;

4. if new banks are insolvent go to step 2, otherwise end.

Note that we don’t allow for new banks to enter the system, so that once a bank has

gone bankrupt it remains in this state for the rest of the process.
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In the limit of large systems, when N, M ! 1 while the parameters µ
b

and

n = N/M remain finite, the initial shock we consider only a↵ects an infinitesimal (of

order O(1/N)) fraction of the banking system. We are interested in understanding

if and when such infinitesimal shocks can trigger global cascades of failures. A global

cascade of failures is defined as a cascade a↵ecting a finite fraction of banks in the

infinite system. In the following we will measure the probability and the average

extent of contagion. We define the probability of contagion as the probability that a

global cascade of failures occurs, and the average extent of contagion as the average

size of a global cascade.

5.3 Stability analysis

In this section we develop a theoretical approach that allows us to compute a bound

on stability, which as we will show is a good estimate, for when cascading bank

failures are likely to occur. We show how this can be applied to understand the

stability of specific banking networks (i.e. a given set of banks and their balance

sheets), and we also show how it can be used to understand how stability depends

on the parameters of the network, such as diversification, crowding, and leverage.

Let us start by discussing what happens if there is an external shock that causes

a particular bank to go bankrupt. Through the combination of leverage and impact,

this failure can trigger the failure of other banks investing in the same assets. If the

parameters of the system amplify shocks, this can generate a cascading failure that

propagates through the system. One of our main points is that, while the likelihood

of the first bank failure depends on the nature of the shocks, whether or not this

propagates depends on whether the financial system is stable, which in turn depends

on parameters such as the leverage, market impact and network structure. We begin

with a general discussion of branching processes. We then discuss how it can be
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applied to understand a given banking network, and make some specific assumptions

that allow us to demonstrate how the stability of the banking system depends on

parameters.

5.3.1 The Galton-Watson process

The scenario of cascading failures for banks closely resembles the branching process

introduced by Galton and Watson to study the survival probability of family names

over generations [95]. This process is formulated in terms of a progenitor that gives

rise to x children, where x is a non-negative integer drawn from a probability dis-

tribution g(x). Each of the children, in turn, independently generates a number of

o↵spring distributed according to g(x), and the same process is repeated at each

generation. The question is whether such a process is doomed to extinction or not,

i.e. if the population drops to zero after a finite number of generations, so that the

total number of descendants is finite. A fundamental result in the theory of branch-

ing processes states that such a process goes extinct with probability one if E[x] < 1,

where E[x] is the expected number of o↵spring per individual.

For our purposes it is essential to consider a generalized Galton-Watson process

with individuals of di↵erent types i 2 1, 2, . . . , q. The key quantities are then,

for each pair of types i, j, the expected number of o↵spring of type i produced by

an individual of type j. We denote these as a q ⇥ q matrix N
ij

. The condition

for extinction is then that the largest eigenvalue ⇠1 of N is smaller than one [96].

Conversely, if this eigenvalue is greater than one, then with positive probability

this process lasts forever, producing an infinite number of o↵spring. We say that

the branching process is subcritical or supercritical if this eigenvalue is less than or

greater than one, respectively.

In the context of our model, we are interested in computing the expected number
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of banks that go bankrupt because of the previous failure of another bank. Consider

for example the case in which a random bank i receives a shock at time t = 0

that causes it to become bankrupt. This bank is equivalent to the progenitor of

the Galton-Watson process, and banks whose bankruptcy is triggered by that of i

are equivalent to its o↵spring. In the language of branching processes, banks failing

at time t correspond to individuals in the t-th generation. We are interested in

understanding when there is a non-zero chance that financial contagion keeps on

spreading over time, which is equivalent to asking whether shocks will be amplified

rather than dying out. If the branching process is supercritical, then this initial shock

results in a global cascade with non-zero probability, a↵ecting a non-zero fraction of

all the banks in the limit of infinite system size.

Note that in our model we have in principle banks with di↵erent properties (de-

gree, leverage, size. . . ) that can be considered as individuals of di↵erent types in the

generalized Galton-Watson process. Thus N
hk

is the expected number of banks of

type h that fail because of the failure of a bank of type k. There is obviously consid-

erable flexibility in how we classify banks into types, which at its most fine-grained

extreme allows the “types” to correspond to individual banks.

It is important to stress at this point that the process here considered is more

complex than the usual generalized Galton-Watson process. In particular, in our

case, the ultimate fate of bank i depends not only on its properties, but also on

those of all the other banks whose portfolio overlaps with i. This happens because

the price drop that follows the fire sale liquidation of an asset depends on the fraction

of total shares of that asset being liquidated, which changes from bank to bank.

A second important di↵erence is that the Galton-Watson process occurs on a

tree, so that individuals of a given generation are independent. For banks the failure

process is not necessarily a tree, but is rather a more general graph which may have

loops. To see this, consider a simple example of three banks i, j, and k with one
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asset in common. Let us suppose that i is robust with respect to the failure of

j by itself, but not with respect to the failure of both j and k together. Now, if

the failure of j is enough to trigger that of k, then i is e↵ectively vulnerable to the

failure of j. Such situations, which occur whenever assets have degree higher than

2, are neglected under the analytical calculation that we perform here. Therefore,

our analytical treatment gives a su�cient but not a necessary condition for global

cascades to occur, and gives only an upper bound on the stability of the banking

system. We will see, however, that it is nonetheless a good approximation, in rough

agreement with the results of numerical simulations.

It is in principle possible to improve this approximation to account for the non-

linearities induced by loops in the branching process by considering multiple time-

step dynamics. This method is commonly used in dynamical system theory: the t-th

iteration of the dynamics converts cycles of length t into fixed points. For instance,

to properly treat triplets one can compute a two-step matrix that counts the average

number of banks of type i whose failure is triggered by the bankruptcy of a bank of

type j within two time steps of the dynamics. Comparing to the example given above,

if an initial shock causes j to fail, k will fail after one iteration, and since both j and k

have now failed, i will fail in the second time step. While our one-step approximation

is already quite accurate, this approach provides a path for systematically improving

the degree of approximation, which deserves further investigation.

5.3.2 Stability of a given system

If we have complete information about the banking system, i.e. if we know the

portfolios Q
ba

of all the banks and, in addition, the market impact function for their

assets, then we can describe the stability of the system through a matrix B, where

B
ij

is the probability that bank i will fail under the failure of bank j. Bank i becomes
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insolvent when bank j fails if and only if the market impact due to the sale of their

overlapping assets causes a loss to bank i that exceeds its equity E
i

. As described

above, we focus for now on the direct e↵ect on bank i of the failure of bank j. Since

we assume that bank j’s entire portfolio {Q
ja

} is liquidated, the new price for asset

a is p
a

(1 - f
a

(Q
ja

)). Using the shorthand Prob(x) to indicate the probability that

condition x is satisfied, the stability matrix B
ij

is defined as

B
ij

= Prob

"
MX

a=1

Q
ia

p
a

(1 - f
a

(Q
ja

)) - E
i

> 0

#

. (5.8)

In order to understand whether a cascade of failures will spread, we compute B
ij

in

the case where the assets shared by banks i and j have not yet been devalued, and still

have their initial prices. That is, we focus on the “boundary” of the cascade, with

failures and devaluations spreading outward through the network through banks and

assets that have not yet been touched by the crisis. In that case, since the dynamics

themselves are deterministic, B
ij

depends only on the initial structure of the banks’

portfolios, and in particular on the network structure. The stability of the banking

system can then be estimated by simply computing the largest eigenvalue ⇠1 of B

and determining whether ⇠1 is greater than or less than one.

Note that, rather than using the simplifying approximation that the market im-

pact function is deterministic, one could more realistically use a stochastic market

impact function as in [88]. Similarly, imperfect knowledge about bank portfolios

and equity can be coped with using probabilities to represent uncertainties in their

values. In either case, we can still bound the stability of the network by computing

B’s largest eigenvalue.

5.3.3 Simplifying assumptions

The approach described above makes it possible to estimate the stability of the

banking system when it is in a particular state, corresponding to a particular config-
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uration of the balance sheets of each bank. One of our main goals here, however, is

to understand more generically how the stability of the banking system depends on

its network properties. To make a high-level characterization it is necessary to think

in terms of ensembles of networks, and to understand how stability varies as prop-

erties of the ensemble are varied. As a first step in this direction we will make some

specific assumptions in order to simplify the problem and gain intuition. While these

assumptions are rather arbitrary, the basic method used here is easily generalized,

as discussed later.

• Network topology: We will consider random networks with Poisson degree

distributions for both banks and assets. Specifically, for each possible bank-

asset pair a link is drawn with probability µ
b

/M. The resulting network is

drawn from the bipartite Erdős-Renyi ensemble of random networks with av-

erage degrees µ
b

and µ
a

= µ
b

N/M for the banks and assets respectively.

• Structure of balance sheets: We will assume all banks have the same

amount of money A0
i

= A0 available for investment, and that each bank uni-

formly splits its investment in the assets that are in its portfolio. The asset

side of bank’s balance sheets will be composed of 80% assets and 20% cash.

For bank i each link thus corresponds to an investment of 0.8A0/k
i

, where k
i

is the number of assets in i’s portfolio. Unless otherwise stated, we assume for

each bank an initial equity E0
i

= E0 corresponding to 4% of its total assets.

This corresponds to all banks having initial leverage � = A0/E0 = 20.

• Market impact function: We will assume that the market impact function

has the form f
j

(xt

j

) = e-↵x

t

j , where xt

j

is the fraction of asset j liquidated up

to time t. The parameter ↵ is chosen such that the price drops by 10% when

10% of the asset is liquidated, i.e. ↵ = 1.0536. All prices are set to p0
j

= 1

at time 0. This choice corresponds to linear market impact for log-prices,

as originally used to describe price dynamics in [97, 98]. It should be noted
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that recent empirical and theoretical evidence indicates that market impact for

large trades is a concave function of the number of traded shares, which under

normal conditions impact is well approximated by a square-root function [99].

By normal conditions we mean that execution is slow enough for the order

book to replenish between successive trades. Under extreme conditions, like

those of a fire sale, market impact is expected to become less concave and even

linear or super-linear [100], which motivates our choice of functional form here.

Altering these assumptions does not change the qualitative behavior of the sys-

tem. In particular, our methods generalize easily to degree distributions other than

Poisson, e.g. power laws, and also to multiple types of banks with di↵erent sizes, port-

folio structures, and amounts of leverage, or multiple types of assets with di↵erent

initial prices and market impact functions.

5.3.4 Explicit calculation of the stability matrix

In order to understand how stability depends on network properties, we lump banks

into equivalence classes according to their degree, equating their degree with their

type in the generalized Galton-Watson process. We define the following notation:

• N
h

is the number of banks of degree h.

• P(h, k|a) is the probability that a given bank of degree h and a given bank of

degree k share a given asset a, i.e., are both connected to a in the network.

• F(h|k, a) is the probability that a bank of degree h fails given that it is con-

nected to a failed bank of degree k through asset a.

Under the assumption that we are in the limit where M ! 1, N ! 1 while µ
b

and n = N/M are finite, the network is sparse, and we can easily compute the
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probability B
ij

by summing over each asset one at a time. If i has degree h and j

has degree k, the probability that the failure of bank j causes bank i to fail can be

written

B
ij

=
X

a

P(h, k|a) F(h|k, a) . (5.9)

Summing over all banks of degree h, the expected number of failures of banks of

degree h caused by the failure of a bank of degree k, is

N
hk

= N
h

MX

a=1

P(h, k|a)F(h|k, a) . (5.10)

This is the matrix defining the branching process, i.e. the expected number of o↵-

spring of type h from an individual of type k.

We can now compute each of the entires of N
hk

in turn. Since the degree distri-

bution of our network ensemble is Poisson, the number of banks of degree h is simply

N
h

= NP
b

(h) where

P
b

(h) =
e-µ

bµh

b

h!
(5.11)

is the probability that a bank has degree h. A given bank of degree h is connected to

a given asset a with degree `
a

with probability h`
a

/(µ
b

N), where µ
b

N is the total

number of edges in the network. The probability that a failed bank of degree k is

also connected to the same asset a is h(k - 1)`
a

(`
a

- 1)/(µ
b

N)2, where the factor

of k - 1 comes from the fact that one of the k edges of the failed bank is already

connected to the asset that caused its failure. This gives

P(h, k|a) =
h`

a

(k - 1)(`
a

- 1)

µ2
b

N
. (5.12)

We now compute the probability F(h|k, a) that a bank i of degree h fails due to

failure of a bank j of degree k given that they share an asset a. The shift in price

when a fraction x
a

of an asset is sold is (1 - f
a

(x
a

)). (Recall that the initial price is
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set to one for convenience). Thus the condition for a bank of degree k to fail because

bank j sells a fraction x
a

of asset a is

A0

k
(1 - f

a

(x
a

)) > E0. (5.13)

If ⌫(a) denotes the set of banks investing in asset a, the fraction of a that is liquidated

when j fails is

x
a

=
A0/kP

m2⌫(a) A0/k
m

=
1/kP

m2⌫(a) 1/k
m

=
1/k

1/h + 1/k +
P

m2⌫ 0(a) 1/k
m

, (5.14)

where ⌫ 0(a) denotes the set of banks, other than i and j, that invest in a and k
m

the degree of bank m.

To compute F(h|k, a) we must add up the probability of failure for each possible

configuration of banks that are compatible with the condition of choosing a specific

pair of banks of degrees h and k that are connected through asset a. If a has

degree `
a

, there are `
a

- 2 remaining banks. Letting i index these banks, we must

average over the possible configurations {m1, . . . , m`

a

-2}. Fortunately the degrees of

the banks are independent. The probability that bank i has degree m
i

is the ratio of

the number of edges for banks of degree m to the total number of edges. Since N
m

=

NP
b

(m), the number of edges for banks of degree m is mN
m

, and the total number

of edges in the network is µ
b

N. Thus each bank has degree m with probability

mN
m

/(µ
b

N) = mP
b

(m)/µ
b

and the probability of any given configuration of bank

degrees is

`

a

-2Y

i=1

m
i

P
b

(m
i

)

µ
b

. (5.15)

Combining equations (13 - 15) and summing over all the possible configurations

{m1, . . . , m`

a

-2} gives
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F(h|k, a) =
1X

m1=1

· · ·
1X

m(`
a

-2)=1

`

a

-2Y

i=1

m
i

P
b

(m
i

)

µ
b

(5.16)

⇥ ⇥

"
A0

h

 

1 - f
a

 
1/k

1/h + 1/k +
P

`

a

-2
i=1 1/m

i

!!

- E0

#

,

(5.17)

where ⇥ is the Heaviside step function, ⇥(x) = 1 if x > 0 and zero otherwise.

After summing over assets equation (5.10) becomes

N
hk

=
e-µ

bµh

b

h!

h(k - 1)

µ2
b

n

X

`

e-µ

aµ`

a

`!
`(` - 1)F(h, k, `), (5.18)

where we have used the fact that the number of assets with given degree ` is MP
a

(`)

and explicitly introduced the Poisson degree distributions of banks and assets.

The form of the matrix N confirms that the independent parameters of the model

are µ
b

, n, � and ↵. We can see in particular that, although leverage has a similar

e↵ect on stability to the market impact constant ↵, the two are not related through

a simple relation that allows us to eliminate one of the two dependencies. However,

if we had used a market impact that was linear in the price, instead of the log-price,

i.e. of the form f
a

(x) = ↵ 0x, then the stability would depend only on the product

↵ 0� and not on the two parameters separately.

For networks in which all the banks have the same degree k we can compute the

largest eigenvalue of N in closed form. In this case the matrix N reduces to the scalar

quantity

N = ⇠1 = (k - 1)µ
b

n
�(l⇤ - 1, µ

b

n)

�(l⇤ - 1)
, (5.19)

where

l⇤ =
1

log
�

�

�-k

� , (5.20)
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�(x) is the gamma function, and �(x, z) is the incomplete Gamma function.

If we make the approximation 1
k

b

! E
⇥
1
k

⇤
we can obtain a closed expression for

N
h,k. However, given that this approximation is uncontrolled, we do not give an ex-

plicit form for the matrix elements, but rather compute them exactly via Montecarlo

methods.

5.4 Dependence on leverage and network proper-

ties

We now explore how the stability of the banking network depends on parameters.

We first show results based on numerical simulations and then compare them to

results based on the stability matrix N.

In numerical simulations N and M are both finite, and global cascades can be

defined as cascades for which the fraction of bankrupted banks exceeds a fixed thresh-

old. For consistency with previous work on counterparty loss [80, 101, 102], we set

this threshold to 5%. The contagion probability is then measured as the fraction

of runs in which a global cascade results from the initial shock. The conditional

average extent of contagion is the fraction of failed banks, averaged only over those

runs where a global cascade occurs.

5.4.1 E↵ect of diversification and crowding

We begin with the case where the initial shock consists of devaluing a random asset.,

and examine the dependence on diversification and crowding. In the left panel of

Figure 5.2, we plot the probability and conditional extent of contagion measured

for a system of N = 104 banks and M = 104 assets as a function of the average
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Figure 5.2: Left panel: contagion probability (blue dots, the solid line is a guide for the
eye) and conditional extent of contagion (red squares) measured from 1000 simulations of
a system with N = M = 104. In each run, the initial shock consists of dropping the price
of a random asset by 35% at the beginning of the simulation. We vary the average degree
of diversification µ

b

= µ
a

. The two vertical dashed lines mark our numerical estimates
for the critical values µ1 and µ2 where phase transitions occur, and show the existence of
a contagion window between these transitions where global cascades occur with non-zero
probability. The system also displays a “robust yet fragile” behavior for µ

b

slightly below
µ2: the probability of a global cascade is small, but when one occurs it a↵ects almost all
the banks. Right panel: contagion probability for systems with N = 104 and M = 5⇥103

(red squares), M = 104 (green diamonds) and M = 2 ⇥ 104 (black stars) as a function of
the average banks’ degree. Solid lines are a guide for the eye. The boundaries µ1, µ2 of the
contagion window depend on the value of the crowding parameter n = N/M: for larger n

both phase transitions are shifted to the left.

banks’ degree µ
b

. Results refer to 1000 runs in which a random asset is initially

devalued by 35%. We observe phase transitions at two critical values µ1, µ2 of µ
b

,

with a contagion window in between where global cascades of failures occur with

non-zero probability. Above and below this window, where µ
b

> µ2 or µ
b

< µ1,

global cascades do not occur.

The existence of a contagion window, and the nonmonotonicity of the contagion

probability as a function of µ
b

, can be understood with the following arguments.

On one hand, for su�ciently low values of µ
b

, stress cannot propagate through the

system because the network is poorly connected; there is not enough overlap between
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the banks’ portfolios to spread the cascade. In particular, for small enough µ
b

the

network of banks and assets consists of small components disconnected from one

another, so even if every bank is extremely vulnerable to collapse, an initial shock

will only a↵ect one of these components. Thus there is a critical µ1 below which the

cascade cannot propagate; the initial shock might a↵ect a few nearby banks, but the

cascade quickly dies out.

On the other hand, if the banks’ portfolios are su�ciently diverse, they are robust

with respect to devaluing any single asset in their portfolio. Moreover, a larger aver-

age bank degree µ
b

also implies a larger average asset degree µ
a

, so each institution

typically holds a smaller fraction of the shares of any given asset. As a consequence,

each bank failure has a relatively small e↵ect on asset prices, and most banks remain

solvent even if some of their assets are devalued. Thus there is a critical µ2 above

which cascades quickly die out even though the network is highly connected.

The left panel of Figure 5.2 also shows that the system displays a “robust yet

fragile” behavior [80] for some values of the parameters. Specifically, if µ
b

is slightly

less than µ2, just inside the upper end of the contagion window, the probability of a

global cascade is very small, tending continuously to zero as µ
b

approaches µ2 from

below. But when a global cascade does occur, it a↵ects almost all the banks: the

conditional extent of the contagion is almost 1.

In the right panel of Figure 5.2 we plot the contagion probability for di↵erent

values of the crowding parameter n = N/M. As n increases, the contagion window

shifts to the left, decreasing both µ1 and µ2.

The shift in µ1 can be understood in terms of the appearance of a giant connected

component in the network. In the ensemble of random networks considered here, the

emergence of the giant component corresponds to the situation where the average

number of banks to which a given bank b is exposed, i.e. the average number of
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banks whose portfolios share at least one asset with b, is one. Equivalently, this is

the average degree of the projected network where two banks are connected if they

share an asset. For this ensemble (essentially the bipartite version of the Erdős-Rényi

model) this degree is µ
a

µ
b

= µ2
b

n, giving µ1 = 1/
p

n.

To explain the shift in the second transition point µ2, we note that the drop in

price of an asset caused by the liquidation of a portfolio is a decreasing function of n.

This is because the average number of banks investing in a given asset is µ
a

= µ
b

n.

If each bank owns a smaller fraction of an asset, the market impact of a fire sale on

that asset is smaller. When n is larger, this e↵ect takes over at a smaller value of

µ
b

.

Note that, as a result, changing the crowding parameter n has di↵erent e↵ects on

the network’s stability depending on the value of µ
b

. If µ
b

is close to µ1, increasing

n while keeping µ
b

fixed increases the instability of the system, moving it into the

contagion window by increasing the connectivity of the network. The opposite is

true if µ
b

is close to µ2, where increasing n moves us outside the contagion window

by making assets and banks more robust. Thus the contagion probability is not a

monotonic function of n.

5.4.2 Dependence on shocks

The above simulations started with an initial shock consisting of devaluing a random

asset. We now consider the case where we begin with the failure of a random bank.

Figure 5.3 shows a comparison between simulations with shocks of these two types.

We observe that the probability of contagion depends on the type of shock, but the

contagion window and the conditional extent of contagion are the same for both types

of shock. The reason is simple: while the initial conditions of these two processes are

di↵erent, their dynamics are the same. Once a cascade has begun, it doesn’t matter
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Figure 5.3: The probability of contagion, and the average conditional extent of contagion,
as a function of µ

b

for the two types of initial shock (failed asset vs. failed bank). Red
squares: contagion probability where a random asset is devalued by 35%. Blue dots:
the contagion probability when a random bank fails. Blue circles and green triangles:
conditional extent of contagion for asset shocks and bank shocks respectively. We see that
while the probability of contagion di↵ers between the two types of shocks, the window
µ1 < µ

b

< µ2 in which they occur with non-zero probability is the same. Moreover, when
a global cascade does occur, its average size is the same for both types of shocks. Results
refer to 1000 simulations of systems with N = M = 104.

what kind of shock began it. Thus the region where the dynamics cause a cascade

to spread rather than die out is the same in both cases, as is the eventual size of a

global cascade if one occurs.

5.4.3 Leverage

We now show what happens for di↵erent values of initial leverage. In the left panel

of Figure 5.4 we plot the contagion probability for di↵erent values of µ
b

as a function

of �. We observe that, for each µ
b

, there is a critical value of � above which global
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Figure 5.4: Left panel: Contagion probability as a function of leverage measured from
1000 simulations of a system with N = 10000 for di↵erent values of µ

b

.The initial shock
considered is the initial failure of a random bank. Contagion probability is a monotonic
function of leverage, and a phase transition separates a regime where no global cascades are
observed from one where they occur with non-zero probability. Right panel: Contagion
probability as a function of the market impact parameter ↵. Increasing market impact has
a similar e↵ect as increasing leverage.

cascades occur with non-zero probability, and below which they do not. This is of

interest for regulatory purposes, since it implies the existence of a critical level of

leverage below which systemic stability is guaranteed. In addition, the critical value

of � increases as µ
b

increases: in other words, increasing diversification allows for a

greater degree of leverage without creating systemic events.

In the right panel of Figure 5.4, we show that a similar behavior occurs as we

change the parameter ↵ that appears in the market impact function while keeping

the leverage fixed. That is, for a given value of µ
b

and �, there is a critical value of ↵

above which contagion occurs. This is not unexpected, since under the assumptions

specified in Section 5.3.3 the solvency condition for bank i can be written as

�
i

6
P

M

j=1 Q
ij

e-↵x

t

j

E0
i

+ 1, (5.21)

where xt

j

is the fraction of shares of asset j liquidated up to time t. When ↵ is larger,
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the market impact of a fire sale is greater, causing a sharper drop in asset prices.

On the other hand, increasing diversification µ
b

increases this critical value of ↵,

showing that diversification allows banks to survive a larger price impact.

Summarizing, we presented in this section results of numerical simulations for

bipartite networks with Poisson degree distributions for both banks and assets. The

probability and the average extent of contagion have been measured for two di↵erent

types of shocks, namely the initial depreciation of a random asset or the initial failure

of a random bank. Our simulations suggest that:

• As a function of the average diversification of banks’ portfolios, represented by

their average degree µ
b

, the system is characterized by two phase transitions

that define a contagion window where global cascades occurs with non-zero

probability.

• Changing the crowding parameter n, i.e. the ratio of the number of banks

to the number of assets available for investment, can increase or decrease the

contagion probability depending on which of these transitions we are close to.

• Although the contagion probability is di↵erent for the two types of initial

shocks, the contagion window within which global cascades occur, and the

average extent of these cascades when they occur, are the same.

• The system displays a “robust yet fragile” behavior, with regions in parameter

space where global cascades are very unlikely, but where almost the entire

system is a↵ected if one occurs.

• For each fixed µ
b

and n, there is a critical value of the leverage � above which

the system becomes unstable. This critical value of � increases with µ
b

.
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5.5 Comparison to predictions from stability anal-

ysis
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Figure 5.5: Contagion probability (green dots, right axis) as computed from numerical
simulations of a system of size N = M = 104. The red solid line (left axis) represent the
largest eigenvalue ⇠1 of the matrix N. The dashed horizontal line is in correspondence
to ⇠1 = 1. If ⇠1 > 1 global cascades are observed in numerical simulations. The theory
underestimates the width of the contagion window, as it only gives a su�cient condition for
global cascades to occur. However, the discrepancy between theory and numerical results
is partly due to finite size e↵ects (see Figure 5.6).

We now compare the numerical results presented in the previous section to those

based on stability analysis. The stability analysis depends on two assumptions that

are not necessarily well-satisfied in the simulation. The first is that M and N are

both infinite (even though their ratio n = N/M is finite), and the second is that the

failure process can be described through a branching process on a tree.

We estimated F(h, k, `) through monte-carlo methods and assumed that the con-

tribution coming from banks with degree higher than 200 is negligible. We then
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Figure 5.6: Simulation results for N = 100 ( blue circles), N = 1000 (red squares),
N = 20000 (green triangles), n = 1. The vertical dashed lines are drawn in correspondence
to the phase transitions predicted by the analytic calculation. As the size of the system
increases the agreement between theory and simulations improves. Finite size e↵ects are
expected given that the theory is valid in the limit {N, M} ! 1.

numerically diagonalized the 200 by 200 matrix N. We discuss in the following the

results obtained in the case where P
a

(`) and P
b

(h) are Poisson distributions.

In Figure 5.5 we plot for n = 1 the largest eigenvalue of N and we compare it with

the contagion probability as computed from numerical simulations. As expected,

when the largest eigenvalue of N is greater than 1 global cascades are observed.

We see from the figure that the analytic calculation underestimates the size of the

contagion window. This is partly due to finite size e↵ects, as observed for instance in

[103]. We plot in Figure 5.6 the contagion probability as measured from numerical

simulations for n = 1 and di↵erent values of N. From the figure we clearly see that

by increasing the size of the system the discrepancy between analytic and numerical

calculations gets smaller, and that the analytic solution, although giving only a

su�cient condition for global cascades to occur, produces a reasonable estimate of

the contagion window when N and M are large.
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Figure 5.7: Left panel: The red region is the region of phase space where global cascades
occur for a system with � = 20 as a function of µ

b

and n. Right panel: the red region is
the region of phase space where global cascades occur for a system with n = 1 as a function
of µ

b

and �. Points refer to the phase transition as measured from the largest eigenvalue
of N. Lines are a guide for the eye.

We finally plot in Figure 5.7 the phase diagram obtained with our analytic ap-

proach. The region within the solid line in the left panel represent the region where

global cascades occur for � = 20. From the figure we can see the features already

observed in numerical simulations. In particular, for fixed n, we clearly see the ex-

istence of two phase transitions that define a window of connectivities where global

cascades occur with non-zero probability. As we change n, the analytic calculation

also predicts the shift in the transition points, that tend to move to higher values of

µ
b

as n is decreased. In the right panel of Figure 5.7, we depict the phase diagram

for n = 1 as a function of leverage � and average diversification µ
b

. As expected,

we see that the contagion window widens as � increases. A three dimensional visual-

ization of the phase diagram is reported in Figure 5.8, where the red region denotes

the unstable region of parameter space. Interestingly, we observe the existence of a

minimum level of leverage (� ' 12) that leads to the occurrence of global cascades

of failure. This feature is of potential interest for regulators, since it is equivalent
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Figure 5.8: 3D visualization of the region of parameter space where global cascades occur
with non-zero probability as predicted with the analytical approach. Global cascades are
observed within the cone-shaped colored region. We note in particular that there is critical
value of leverage below which global cascades do not occur for any values of diversification
and crowding parameter.

to the existence of a maximum level of leverage below which the system is overall

stable.

Another point of potential interest for regulators is the eigenvalue of the matrix

N. In a dynamic setting in which banks operate under no stress circumstances,

one expects ⇠1 to change over time as banks trade to rebalance their portfolios.

By monitoring the time behavior of ⇠1, a regulator would notice if the system is

approaching a dangerous regime as ⇠1 gets closer to 1, and could act to increase the

stability of the system.

76



Chapter 6

Concluding remarks and future

work

In this thesis, we first consider in chapter 3 the dynamic message-passing (DMP)

technique to study a simple threshold model of behavior in networks. In doing so,

we are able capture how each individual’s probability of becoming an adopter evolves

in time in an arbitrary network with far less computational cost than Monte Carlo

simulations. Although DMP is exact only on trees, we observe that it compares

well with simulations even in a real social network where there are many loops.

Interestingly, unlike in the SIR model, or equivalently the case T = 1, there are cases

where DMP can either underestimate or overestimate the probability of infection.

In addition, we apply DMP equations to give analytical results in the thermo-

dynamic limit of large random networks. We provide an exact analytic result for

calculating the time dependence of the probabilities, thereby learning something

about the dynamics of bootstrap percolation.

The message-passing dynamics we consider here can be generalized in many

ways, including letting the transmission probability and the threshold vary arbi-
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trarily across edges and vertices. Because the transmission rate r(⌧) may depend on

the elapsed time ⌧ since an individual became an adopter, our study can be imple-

mented in networks where some non-Markovian assumptions are warranted, as we

pointed out in Section 3.1.

We can include so-called “rumor spreading” models where, rather than setting

r(⌧) = 0 until an individual’s awareness reaches a threshold as we have done here, an

individual starts telling its neighbors about the rumor even if it has only heard about

it once. Such models were recently applied to the di↵usion of microfinance [41]. We

can also let the rate at which an individual receives new information depend on its

own awareness. An interesting case is to consider a unimodal function.

We can also consider a model where j can transmit repeatedly to i, raising i’s

awareness each time. We simply replace each directed edge (j, i) with T multi-edges.

So, each message U
i j

(t) would now be mapped to T identical copies of itself. The

update equations and expressions are the same as above, but now we sum over all

these multi-edges accordingly.

In Section 3.3, we focus on random networks in the configuration model. How-

ever, DMP equations can be easily generalized to many other families of random

graphs, including interdependent networks [40], scale-free networks [54], small-world

networks [33, 32], and bipartite networks [11] to name a few. In some cases this is a

matter of plugging in a di↵erent degree distribution, and allowing for a finite number

of types of vertices. However, for preferential attachment networks the topology is

correlated with the vertices’ ages, so we would have to let the messages U(t) depend

on the age of the vertices sending them.

We can also extend this study to a network that has community structures such

as the stochastic block model. We can then study how trends move through com-

munities, and how the distribution of initial adopters (for instance, whether they are
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concentrated in one community, or are spread across many communities) a↵ects the

eventual fraction of the network that adopts the trend. Community structures can

be driven by socio-economic, ethnic, religious and linguistic separations. So, it would

be useful to gain some perspective on how the structures of communities contribute

to the norms and social preferences that prevail in real populations, and in turn how

di↵erences in these norms drive the division of social networks into communities.

However, DMP has been exclusively applied to non-recurrent models, where the

states of the nodes evolve in one-way or irreversibly. Modern epidemiological studies

often require recurrent models, where nodes can return to their previous inhabited

states multiple times. For example, consider diseases such as influenza where indi-

viduals are infected multiple times throughout their lives, or whooping cough where

vaccine e↵ectiveness wanes over time; in both cases, individuals return to the Sus-

ceptible class.

In chapter 4, we extend DMP to recurrent epidemic models which we call rDMP.

Our rDMP approach defines messages on the directed edges of a network in such

a way as to prevent signals, such as the spread of infection, from backtracking im-

mediately to the node that they came from. By preventing these “echo chamber

e↵ects,” rDMP obtains good estimates of the time-varying marginal probabilities on

a wide variety of networks, estimating both the fraction of infectious individuals in

the entire network, and the probabilities that individual nodes become infected.

Like the pair approximation, rDMP takes correlations between neighboring nodes

into account. However, our experiments show that rDMP is more accurate than

the pair approximation for a wide variety of network structures and parameters.

Moreover, rDMP is computationally less expensive than the pair approximation,

especially for complex epidemic models with a large number of states, using O(mk)

instead of O(mk2) variables for models with k states on networks with m edges.
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Finally, rDMP is conceptually simple, allowing the user to immediately write

down the system of di↵erential equations for a wide variety of epidemic models, such

as those with multiple stages of infection or immunity [72, 73], or those with multiple

interacting diseases [74, 75]. We expect that given its simplicity and accuracy, it will

be an attractive option for future epidemiological studies.

In an applied side of this thesis, we develop a framework for thinking about

the stability properties of banking networks due to overlapping portfolios. This

framework emphasizes that the key property is stability: If the system is stable,

shocks will not propagate; if it is unstable, a shock can be amplified and trigger

cascading bankruptcies. This can be discussed in terms of a branching process that

gives insight into the dynamics of failure. While we call these “banking networks”

for simplicity, the basic ideas are relevant for any leveraged financial institutions.

To understand how the stability of banking networks might depend on parameters

such as diversification, leverage and crowding, we formulate a stylized model of a

financial system in which N banks with average diversification µ
b

invest in a common

pool of M assets. The system can be conveniently described in terms of a bipartite

network, with banks being connected through links to the assets in their portfolios.

Links have a two-fold role in such a network. On one hand, they allow individual

banks to diversify their investment and reduce their exposure to a specific asset. On

the other hand, they are channels for the propagation of financial contagion. We

characterize the response of such system to initial shocks a↵ecting a single asset or

bank.

The relevant parameters for the model are the average diversification µ
b

, the

crowding parameter n = N/M (that measures the proportion of banks to assets),

and the initial leverage �. By means of numerical simulations we show the existence

of phase transitions separating a region in parameter space where global cascades

occur from a region where global cascades never occur. In particular, the double
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role played by links in the bipartite network representing the system is reflected in

a non-monotonic behavior of the contagion probability as a function of µ
b

, where

we observe the existence of two phase transitions at µ
b

= µ1 and µ
b

= µ2 that

define a window of connectivities such that global cascades occur if µ1 6 µ
b

6 µ2.

Changing the crowding parameter n has the e↵ect of shifting the location of the

phase transitions. Finally, our model shows that increasing leverage increases the

overall instability of the system, but that there is a critical level of leverage below

which global cascades do not occur for any value of diversification or crowding.

Using an analytical approach based on generalized branching processes on net-

works, we are able to analytically estimate the region of parameter space where

global cascades occur. This branching process is di↵erent from standard ones in the

fact that the fate of a node depends on its degree and on the degree of all its neigh-

bors. This greatly increases the di�culty of the problem. We are nonetheless able to

solve it by generalizing existing methods. Thus, apart from their specific application

to financial contagion, our methods can be applied to a wide variety of contagion

models, where susceptibility and transmission probabilities depend on node degrees.

The mechanistic model we consider in this chapter can be extended in several di-

rections. First of all, it would be interesting to relax some of the specific assumptions

considered in this chapter (homogeneity of banks’ balance sheets, Poisson degree dis-

tributions, market impact function) in order to understand how di↵erent choices for

the network topology or the statistical properties of balance sheets impact the sta-

bility of the system. Although we do not expect di↵erent results from a qualitative

point of view, it should nonetheless be possible to asses the relative stability of sys-

tems with di↵erent properties, similarly to what has been done for counter-party loss

in [87]. In particular, it would be very useful to empirically characterize real systems

and calibrate the model with real data. This could potentially make it possible to

test the e↵ectiveness of new policies aimed at reducing systemic risk.
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A further direction we plan to pursue in the future is to go beyond the mechanistic

model by considering a more realistic price dynamics and allowing banks to react to

price fluctuations by rebalancing their portfolios. This should allow the system to

develop endogenous crisis similar to the ones observed in [104], and to generate the

systemic instabilities induced by leverage and mark-to-market accounting practices

discussed in [88].
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an epidemic with dynamic message-passing algorithm. Phys. Rev. E 90, 012801
(2014)

[20] F. Altarelli, A. Braunstein, L. Dall’Asta, A. Ingrosso, and R. Zecchina, The
zero-patient problem with noisy observations. J. Stat. Mech P10016 (2014)

[21] F. Altarelli, A. Braunstein, L. Dall’Asta, J.R. Wakeling, and R. Zecchina, Con-
taining epidemic outbreaks by message-passing techniques. Phys. Rev. X 4

021024 (2014)

[22] F. Altarelli, A. Braunstein, L. Dall’Asta, and R. Zecchina, Optimizing spread
dynamics on graphs by message passing. J. Stat. Mech P09011 (2013)

[23] F. Altarelli, A. Braunstein, A. Ramezanpour, and R. Zecchina, Stochastic op-
timization by message passing. J. Stat. Mech P11009 (2011)

[24] J. Pearl, Reverend Bayes on inference engines: a distributed hierarchical ap-
proach, AAAI Proceedings 82, (1982).

[25] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic analysis of the
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tions for models with unidirectional dynamics. Phys. Rev. E 91, 012811 (2015)

[31] S. H. Strogatz, Exploring complex networks. Nature 410, 268–276 (2001).

[32] C. Moore and M. E. J. Newman, Epidemics and percolation in small-world
networks. Phys. Rev. E 61, 5678–5682 (2000).

[33] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

[34] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, The
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