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Coherent Control of Collective Atomic
Spins

by

Trail, Collin M.

Lewis and Clark College, B. A. in Physics

PhD, Physics, University of New Mexico, 2011

Abstract

In this thesis I explore the use of collective spin angular momentum as a platform for

quantum information processing. Such systems have several nice features that make

them excellent choices for such protocols, especially ones where information is also

stored in photonic variables. The longer coherence times of atoms makes it possible

to store information from light in atoms for future use, and it is generally easier to

couple atomic variables than to create nonlinear interactions of light. Above and

beyond the advantages of atomic systems, collective atomic systems have additional

strengths. In the limit of a large number of atoms, the collective variables of atomic

systems have a natural connection to the bosonic algebra of light (known as the

Holstein-Primakoff or HP approximation) where components of the collective spin

angular momentum effectively act as quadratures, making them natural systems for

coupling to light. Also, collectively addressing the atoms allows one to access a large

state space without individual addressing of the atoms.
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A natural first step towards control of these collective variables is generating large

amounts of atomic spin squeezing. In the HP approximation going from rotations to

squeezing corresponds to going from linear to quadratic interactions in the atomic

quadratures; for extremely large squeezing one should see the breakdown of the HP

approximation and the ability to generate arbitrary collective atomic states. I have

sought to improve previous schemes for the spin squeezing of atomic ensembles, such

as the proposal of Takeuchi et. al. based on coherent quantum feedback [39]. In

this scheme a beam of linearly polarized light passes through the atomic ensemble

(prepared in a coherent state), coupling to the atoms through a state-dependent index

of refraction (the Faraday effect). The light is then passed through a wave-plate and

reflected back through the atoms for a second pass. This double-pass scheme leads

to an effective nonlinearity as the atomic fluctuations are mapped onto the light on

the first pass and then back on to the atoms in the second pass. The light acts as

a bus coupling each atom to each of the others. This nonlinear interaction forms a

shearing of the atomic coherent state that results in squeezing.

The light is entangled to the atoms through these interactions, and remains en-

tangled as it escapes the system. This leads to decoherence of the atoms as the light

is lost to the environment, reducing the amount of spin squeezing achieved. The first

step towards improving the double-pass scheme was to add a quantum eraser step

in which the light is disentangled from the squeezed atoms. By first measuring one

quadrature of the light, and then performing a measurement-dependent rotation on

the atomic ensemble, it is possible to decouple the atoms and light so that the loss

of the light does not reduce the atomic squeezing. This results in an improvement

of the rate of atomic spin squeezing.

The nonlinear shearing interaction that remains still falls short of the exponential

squeezing seen in optical parametric amplification. The reason for this can be seen

by decomposing the shearing interaction into squeezing along a given quadrature
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followed by a rotation. The rotation leads to a constantly changing axis along which

the squeezing occurs, and thus the squeezing builds up more slowly. This can be

corrected for by breaking up the light pulse into a sequence of small pulses, and

performing a small phase matching rotation after each pulse. The squeezing then

adds up along a constant direction, rather than along a constantly varying direction.

This results in still further improvement of the rate of atomic spin squeezing.

A complete model includes the effects of photon-atom scattering and other noise

and loss effects on the overall rate of squeezing. Previous derivations of noise due

to photon-atom scattering have started with the unjustified assumptions that the

atomic and photonic decoherence channels were both Gaussian and independent

of correlations between the two subsystems. They then proceed with very general

statistical arguments that rely upon these simplifications. My work begins with

the more fundamental master equation picture in which I find the Linblad jump

operators. I find that in general the photonic and atomic loss channels are not

independent, with the intensity of the light dictating the details of this dependence,

and find the conditions under which the Gaussian approximation holds.

Squeezing and loss is initially treated assuming ensembles of spin-1/2 atoms,

but this work is further extended to higher dimensional subsystems. For a higher

spin case, preparing the atoms in spin coherent states is not optimal. One can

engineer a stronger interaction by preparing the atoms in an atomic “cat state”,

i.e., a superposition of the two stretch states along the direction of propagation of

the light beam. The fluctuations of such a state are more strongly coupled to the

light, resulting in a stronger nonlinearity. This leads to strong correlations between

the atoms, but they are not immediately useful for squeezing; the cat state must be

coherently mapped to a coherent state to achieve atomic spin squeezing. The state

created in this manner is ultimately more squeezed than that achieved with the same

interaction but prepared initially in a coherent state.

ix



Contents

List of Figures xiii

Glossary xv

1 Introduction 1

1.1 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Spin Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Definitions of Spin Squeezing . . . . . . . . . . . . . . . . . . 8

2.1.2 One-axis vs. Two-axis twisting . . . . . . . . . . . . . . . . . 11

2.1.3 Collective Atomic Variables . . . . . . . . . . . . . . . . . . . 12

2.1.4 Spin Squeezing and Entanglement . . . . . . . . . . . . . . . . 14

2.1.5 Previous Experimental Results in Spin Squeezing . . . . . . . 15

2.2 Limit to Continuous Variable QM . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Holstein-Primakoff Approximation . . . . . . . . . . . . . . . 16

x



Contents

2.3 Gaussian States and Symplectic Maps . . . . . . . . . . . . . . . . . . 18

2.4 Light-matter Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Light Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Extreme Squeezing of Spin-1/2 Ensembles 29

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 QND Squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Squeezing Through Coherent Feedback . . . . . . . . . . . . . . . . . 32

3.4 Quantum Eraser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Phase Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Decoherence in Spin-1/2 Ensembles 41

4.1 Photon-Atom Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Derivation of Covariance Matrix Evolution under the Gaussian

and Separable Approximations . . . . . . . . . . . . . . . . . . 43

4.1.2 Master Equation Approach . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Gaussianity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 Interdependence of the atomic and photonic scattering process 50

4.2 Loss/ Imperfect Detection . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Optimal Phase Matching . . . . . . . . . . . . . . . . . . . . . 57

xi



Contents

4.3 Results with noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Simple model for effect of noise on scaling with optical density 59

5 Beyond Spin-1/2 62

5.1 Generalization of Holstein-Primakoff Approximation . . . . . . . . . . 62

5.2 Spin Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 Light Polarized Parallel to Atomic Polarization . . . . . . . . 67

5.2.2 Light Polarized Perpendicular to Atomic Polarization . . . . . 71

5.3 Cat States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusions and Future Direction 81

Appendices 86

A Entanglement and the generation of random states in the quantum

chaotic dynamics of kicked coupled tops 87

B Solutions of Master Equation for Second Order Collective Opera-

tors 100

C NL � NA � 1 Approximations 102

D NL ∼ NA � 1 Approximations 105

References 108

xii



List of Figures

2.1 Uncorrelated and Correlated Spins. . . . . . . . . . . . . . . . . . . 9

2.2 One-axis and Two-axis Twisting. . . . . . . . . . . . . . . . . . . . 12

2.3 Holstein-Primakoff approximation to atomic angular momentum on

Bloch sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Generic Alkali Level Structure. . . . . . . . . . . . . . . . . . . . . 21
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Chapter 1

Introduction

One of the most fundamental challenges of designing a quantum computer, or devices

for quantum information processing more generally, is the preservation of fragile

coherences and entanglement against a noisy environment. To some degree this can

be achieved by using systems which couple only weakly to their environment, however

the tradeoff that this usually entails is that such systems also couple only weakly

to each other. Thus the challenge is either to create strong coupling on demand in

a systems which naturally only couples weakly to its environment, or to shield a

system which naturally couples strongly to everything from unwanted interactions

with its environment.

An alternate approach is to use a hybrid system in which some elements couple

strongly and others weakly. In this thesis we will consider a dilute gas of cold atoms

coupled to laser light pulses. Here the atoms couple strongly to the light, but the gas

is dilute enough that atom-atom interactions are negligible. We can thus generate

strong interactions on demand, and even use multiple passes of the light through

the atomic sample to generate effective atom-atom coupling, without coupling either

subsystem strongly to its environment.
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Chapter 1. Introduction

The atomic and photonic subsystems are complementary to each other, as each is

naturally more useful for different kinds of tasks. Light pulses are excellent carriers of

quantum information over distance, while atomic systems make excellent memories

for storing quantum information over time. The extremely large (NA ≈ 106) atomic

systems considered here are especially useful for applications involving light due to

their mathematical connection with continuous variable quantum mechancs, for as

I will discuss in Chapter 2, in the large atom number limit the collective angular

momentum of an atom cloud maps to the quadratures of a harmonic oscillator under

the Holstein-Primakoff (HP) approximation [27]. This puts both the atoms and

light on the same footing, and makes it possible to map states between the atomic

and photonic subsystems [22]. Furthermore, using the collective spin of an atomic

cloud allows us to access a high dimensional space without requiring us to be able

to individually address the atoms, a significant advantage in scaling these systems

in experiment. For these reasons such systems have been considered as a platform

in a variety of quantum communication protocols.

In this thesis we will focus on control over the collective spin of the atomic

system, using light pulses only as a tool for control rather than as a system to be

controlled in its own right. However, because of the close relationship between light

and collective atomic states in the continuous variable (cv) limit, light can be stored

in atomic ensembles, processed, and re-emitted [4, 18, 11]. Thus, these results also

have implications for the preparation of unusual states of light. We will initially

restrict our attention to spin-1/2 atomic subsystems for simplicity, but these results

will be generalized for higher dimensional atomic systems in Chapter 4.

More specifically this thesis focuses on maximizing spin squeezing as a bench-

mark for quantum control. Atomic spin squeezing is a generalization of the concept

of quadrature squeezing in light to the case of a spin polarized atom (or collective

spin of an ensemble of atoms), where the two components of angular momentum

2



Chapter 1. Introduction

orthogonal to the polarization obey a Heisenberg uncertainty-relation analogous to

the uncertainty-relation between the quadrature operators in light. Just as with pho-

tonic squeezing, we initially consider an atomic “coherent state” whose fluctuations

are split equally between the two quadratures, and we can “squeeze” such a state

by reducing the fluctuations along one direction at the expense of the fluctuations

along the orthogonal direction. One complication, relative to the case of squeezed

light, is that the total spin of the atom sets the minimum product of uncertainties,

unlike the photon quadratures whose minimal uncertainties are independent of the

state. This leads to complexities in defining spin squeezing which will be discussed

further in Chapter 2.

Atomic spin squeezing has generally been motivated by its applications in metrol-

ogy and its connection to entanglement [16]. Metrologically, atomic spin squeezing is

motivated by the Ramsey method used in atomic clock frequency standards [45, 46].

In this scheme a beam of atoms undergoing Rabi oscillation is subjected to two π/2

pulses, separated by a short distance. In the rotating frame the precession during the

period between pulses is entirely due to detuning of the field driving Rabi flopping

from atomic resonance. If the accumulated phase is a multiple of 2π the atoms are

driven to the excited state, while if the accumulated phase is an odd multiple of π

the atoms will be returned to the ground state. By measuring the atomic state for

different periods of free evolution one can determine the detuning from resonance.

The resolution with which this can be done is limited by the rate of oscillation of

the atoms between the excited and ground states as a function of pulse separation,

known as the Ramsey fringes.

The sensitivity of the Ramsey method ultimately depends upon the precision with

which the rotation of the atoms may be determined, which depends both upon the

atoms being strongly spin polarized and also upon them having small fluctuations in

spin along the direction of rotation. The projection noise of a coherent state along
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Chapter 1. Introduction

the directions orthogonal to its polarization interferes with the second condition,

but in a spin-squeezed state, the undesirable fluctuations can be reduced at the

expense of increased fluctuations along a direction irrelevant to the measurement.

The “metrologically-relevant” definition of spin squeezing given in Chapter 2 captures

the improvement of such a state over a coherent state.

Spin squeezing is also deeply connected with entanglement, because the reduc-

tion of fluctuations is due to quantum correlations between the atomic subsystems.

For ensembles of spin-1/2 atoms, spin squeezing is always indicative of entangle-

ment, whereas for higher dimensional atoms the squeezing can be due to either

inter-atomic correlations (entanglement) or intra-atomic correlations (single-atom

squeezing). This complicates the picture but the definition of spin squeezing can be

generalized to serve as a witness of entanglement even in these cases. Spin squeezing

is a particularly convenient witness of entanglement because it depends upon col-

lective properties of the ensemble and thus does not require the measurements to

address atoms individually. Also, only the means and two-body correlations of the

angular momentum are needed to calculate squeezing, removing the need to measure

the higher order correlations.

In addition to these considerations, we are further motivated to consider spin

squeezing here because of its connection to quantum control over spin ensembles. If

we define our control task as the ability to generate arbitrary coherent superpositions,

then we see that the first task is to control the mean values of the angular momen-

tum components which can be achieved through straightforward rotations. The next

simplest task is to control the second moments, or covariances, of the distribution,

which can be achieved through spin squeezing. If we could achieve an arbitrarily

high degree of squeezing we could combine it with rotations to obtain any state of

collective spin, but in practice such a high degree of squeezing is currently unachiev-

able. Under the HP approximation the space is locally flat, and squeezing cannot be
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Chapter 1. Introduction

combined with rotations to generate higher order moments of the spin probability

distribution. Nevertheless the achievable degree of spin squeezing remains an excel-

lent benchmark of our control over the system, and perhaps eventually the results

here can be extended to achieve the breakdown of the HP approximation.

The method for achieving spin squeezing explored in this thesis will be to com-

bine an existing spin squeezing protocol, where light acts as a bus for the atomic

fluctuations to create an effective atom-atom interaction, with the methods of quan-

tum control to achieve better scaling of squeezing with coupling strength. We will

see how, by using methods of coherent control (specifically a quantum eraser and

phase matching), we can change the nature of the squeezing interaction so that we

can achieve a better scaling of the squeezing with interaction strength.

As well as considering how to achieve maximal spin squeezing under optimal

conditions, this thesis will also explore how well such protocols perform when expe-

riencing loss and decoherence. In addition to the relatively simple cases of loss of

light during transmission and imperfect detection during measurement, I also treat

photon-atom scattering as a significant and unavoidable source of noise. Much of

the focus here will be on providing a more rigorous test and justification of some

of the assumptions previously made in derivations of such error models. Two key

assumptions have been that the Gaussianity of the quantum fluctuations of the light

and atoms are preserved under the noise channel, and that the atomic and photonic

scattering processes occur independently. These assumptions are tested by starting

from a more fundamental master equation model and deriving the exact evolution of

the angular momentum moments. I find that the Gaussian approximation is justified

in the regime under consideration, but that the atom and photon scattering processes

are generally not independent. However, in the most relevant parameter regime it is

possible to make a semi-classical approximation, where the decay processes are not

completely independent, but depend only upon the “classical” mean values of the
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Chapter 1. Introduction

atomic and photonic polarizations, while the quantum fluctuations can be ignored.

More generally even this semi-classical approximation does not hold and the details

of the quantum fluctuations must be included to correctly model decay.

The final aim of this thesis will be to extend the results for spin squeezing and

atom-photon scattering from spin-1/2 to higher dimensional systems. For a cloud of

identically prepared spin-1/2 atoms, the only possible pure state is a spin-coherent

state, but for higher dimensional subsystems a much more general class of states is

possible. A key tool in our analysis of spin-1/2 systems is the Holstein-Primakoff ap-

proximation which maps a strongly polarized coherent state to a harmonic oscillator

mode. To deal with the more general class of states I follow [19, 34] in generalizing

the HP picture to this higher dimensional case. This ultimately pays off as we will

see that by preparing the individual atoms initially in states with large projection

noise, we can achieve a much greater degree of squeezing than would be possible

using spin coherent states. I first treat the coherent state case for comparison, and

then extend the earlier results for spin-squeezing and atom-photon scattering to the

more general case.

Some of the spin-1/2 results covered in Chapters Three and Four have been

previously published in [41], with the remainder in preparation for publication. The

results of Chapter Five are also in preparation for publication. Other results not

covered in this thesis but comprising other work conducted in the course of my

dissertation have been published in [42]. This work is contained in Appendix A.

1.1 Overview of Thesis

In Chapter Two I will introduce the key mathematical and physical background

for understanding the later results. This will include an overview of spin squeezing

including the various definitions of the spin squeezing parameter, its connection with
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Chapter 1. Introduction

entanglement, and important previous experiments in atomic spin squeezing: the

Holstein-Primakoff and Gaussian approximations and the nature of the light-matter

interaction in our system.

Chapter Three is the heart of this thesis. I will explain the double-pass spin

squeezing protocol which we will take as our starting point, as well as describing the

quantum non-demolition protocol for contrast. I will then explain how the protocol

is modified by the addition of a quantum eraser and a phase matching step. These

results will all be dealt with in the context of a spin-1/2 atom.

In Chapter Four I will treat decoherence and noise processes. The most funda-

mental source of noise is diffuse photon-atom scattering, resulting in decoherence

due to light being scattered out of the probe mode. Here I will explore the validity

of the commonly made Gaussian and separable approximations, starting from first

principles with a master equation picture. Noise due to loss of light in transmission

and due to imperfect detection will also be treated.

In Chapter Five the results of the previous two chapters will be generalized to

higher dimensional systems. Furthermore, we will find that in higher dimensional

systems, state preparation and post-processing become important stages which allow

us to achieve higher levels of spin squeezing.

In Chapter Six I summarize the results, consider their possible implications, and

point to some future avenues for development of these concepts.
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Chapter 2

Background

2.1 Spin Squeezed States

2.1.1 Definitions of Spin Squeezing

The components of atomic angular momentum, Jx, Jy, and Jz, obey the commutation

relations, [Ji, Jj] = εijkiJk . Thus for any component of angular momentum Jk

the Heisenberg uncertainty relation places a limit on the product of the standard

deviations of the two orthogonal components, ∆Ji∆Jj ≥| 〈Jk〉 | /2. For a coherent

atomic state polarized along Jk, the variances of the two orthogonal components

Ji and Jj take on the minimal values consistent with this relation while preserving

the symmetry between them, ∆2Ji = ∆2Jj = J/2 . However, it is not in general

necessary that the noise be split symmetrically between the two directions, and a class

of atomic spin squeezed states exist in which the variances satisfy the uncertainty

relation, but one variance is reduced at the expense of higher variance in the other.

Suppose we construct our spin-J state out of 2J spin-1/2 subsystems, each po-

larized along Jk. Each individual atom has a variance of 1/4 along the orthogonal

8



Chapter 2. Background

Figure 2.1: When the spin subsystems are all uncorrelated, the variance adds and
we get a coherent state. Entanglement between the spin subsystems can result in
the reduction of the variance along one axis at the expense of increase variance along
another axis.

directions Ji and Jj, and if the atoms are uncorrelated the total variance is just the

sum of the single atom variances, J/2, reproducing the expected variance of a coher-

ent state. However, if we introduce quantum correlation in the form of entanglement

between the spin-1/2 subsystems, we can reduce the noise in one direction at the

expense of the other. (See Fig. 1.1.)

There are a couple of key traits we would like to see in any proposed definition of

the magnitude of atomic spin squeezing. An atomic spin squeezed state should have a

component of angular momentum which is reduced below that of an equally strongly

polarized coherent state, and it should beat the standard quantum limit (SQL) for

atomic coherent states. That is, the reduction in variance should be metrologically

useful, allowing one to better measure other systems (compared to a coherent state)

when the atom is used as a probe.

Inspired by the Heisenberg uncertainty relations for angular momentum, we may

be tempted to take as our definition of the squeezing parameter ζH = ∆2Ji/(
1
2
〈Jk〉)

9



Chapter 2. Background

found by taking the ratio of the variance of the squeezed angular momentum compo-

nent to the minimal variance for a state symmetric around Jk. However, as was found

in [16], this definition leads us to conclude that some states are squeezed that do not

have all the features listed above. According to this proposed squeezing parameter,

coherent states are infinitely squeezed for the appropriate choice of axes i,j, and k.

When the coherent state is polarized along the direction Ji, both the numerator and

denominator in the definition vanish. For states polarized along a direction close

to Ji, the variance decreases more quickly than the mean, giving arbitrarily high

“squeezing”. However, coherent states do not allow metrology beyond the standard

quantum limit (SQL) and they do not have any kind of quantum correlations be-

tween their constituent parts. Thus, we would prefer a definition of spin squeezing

which does not include such states. Kitagawa and Ueda [16] propose the squeezing

parameter

ζS = ∆2Ji/(J/2), (2.1)

found by taking the ratio of the variance along the squeezed axis to the variance

of a coherent state, where Ji is defined to be perpendicular to the direction of net

polarization, and J is the total polarization.

Another motivation for considering spin squeezed atomic states, aside from as

an indicator of quantum correlations, is in metrology. The standard paradigm for

the use of spin squeezed states in measurement is Ramsey interferometry, where we

consider a spin polarized atom cloud being rotated by a degree proportional to the

detuning of an atomic clock from resonance, by an angle φ. The key parameter here

is the phase sensitivity, which for atoms polarized along the k-axis being rotated

around the j-axis into the i-axis direction, and in the small angle limit, takes the

form

∆φ =
∆Ji
∂Ji
∂φ

=
∆Ji

| cosφ〈Jk〉 |
≈ ∆Ji
| 〈Jk〉 |

. (2.2)

10
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We can interpret this equation as meaning that the parameter that must be optimized

is the distinguishability of the rotated state from the unrotated state, which depends

both on the variance along the direction of rotation and upon the total magnitude of

polarization (the“lever arm”) along the direction of initial polarization. This moti-

vated an alternate definition of metrologically relevant squeezing given by Wineland

et. al. in [45],

ζR = ∆φ2/∆φ2
coherent = ζSJ

2/J2
k = ∆2Ji/(

1

2
J2
k ). (2.3)

Rather than only comparing the variance to that of a coherent state, as with ζS, this

definition also includes the effect of the net polarization to that of an unsqueezed

state. This is a more fair counting of the degree of squeezing, at least for metrological

purposes, since if a squeezing protocol results in depolarization relative to a coherent

state, then it is also becoming worse for frequency standards, and the squeezing,

in the sense of Eq. 2.1, must be greater to gain a metrological advantage over a

coherent state.

2.1.2 One-axis vs. Two-axis twisting

Another important concept from [16] is the distinction between one-axis vs. two-

axis counter-twisting interactions (see Fig. 2.2), so-called because the first produces

squeezing through shearing along an axis perpendicular to the polarization of the

state, while the second consists of two shearing interactions along the two perpen-

dicular directions, but with opposite helicities. These are the two most commonly

considered interactions that produce spin squeezing in an atomic spin system. The

first is generated by a Hamiltonian of the form H = κJ2
z , a shearing interaction

which, to first-order (weak squeezing), produces squeezing quadratically with the

shearing strength but saturates short of maximal squeezing. The two-axis counter-

twisting Hamiltonian takes the form H = κ
2i

(J2
+ − J2

−). For weak coupling strength

11
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Figure 2.2: One-axis (a) (H = κJ2
z ) twisting and two-axis (b) (H = κ

2i
(J2

+−J2
−)) are

two of the most commonly considered interactions which produce squeezed states.
Two-axis twisting results in faster squeezing and saturates at a higher maximal
squeezing.

this initially results in an exponential growth of squeezing, and for large coupling

this interaction saturates at a higher maximal squeezing.

2.1.3 Collective Atomic Variables

For a collection of NA atoms, we may define the collective atomic angular momentum

as the sum of the single atom angular momentum operators, Jx =
∑NA

i=1 jx,i, Jy =∑NA
i=1 jy,i, and Jz =

∑NA
i=1 jz,i. These collective operators preserve the form of the

angular momentum commutation relations, [Ji, Jj] = εi,j,kiJk. The spin states of the

particles are symmetric under interchange, and we will assume we do not have the

capability to address particles individually, so we are interested in their collective

properties. Thus the collective operators are the most appropriate variables to work

with.

The symmetric subspace consists of collective atomic pure states whose individual

atomic subsystems’ spin states are symmetric under exchange. This subspace has

12
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a number of properties that will be important to our investigation. For pure states

with spin-1/2 atomic subsystems, the collective state must be a coherent state and

live within the maximum angular momentum subspace J = NA/2, whose dimension

grows linearly with the number of atoms, 2NA + 1. Decoherence will change the size

of the state space in different ways depending upon the symmetries of the interaction

with the environment. If the atoms were packed densely we might see super-radiant

emission, where emission of light is a collective process occurring simultaneously and

identically on each atom [6]. This would keep us in the symmetric subspace, albeit

with a mixed rather than a pure state. A second kind of decoherence would occur

if the atoms were less dense so that they did not emit light super-radiantly but

were still homogenous in their coupling to the environment, so that emission events

occur independently but with equal probability. In this case the density operator is

symmetric under exchange of atoms, but it is a statistical mixture of states which

themselves are not symmetric under exchange of atoms. To put it differently, each

atom is equally likely to decay, but in any particular case some atoms decay and

other don’t. This kinds of decay was considered in [2] where it was shown that such

processes left the state in a “collective” subspace whose elements are mixed states

rather than pure states but which are still symmetric under interchange of particles,

and which grows as ∝ N2
A. Finally, in the case where inhomogenous coupling to the

environment results in different probabilities of decay depending upon the position

of the atom, the atomic system completely loses its symmetry under interchange and

the state space dimension expands to the full tensor product space, growing as 2NA

with the number of atoms. In our system we consider the second case of identical

but independent decoherence on the atoms, and thus a state space dimension on the

order of N2
A.
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2.1.4 Spin Squeezing and Entanglement

Spin squeezing is intimately connected with pairwise entanglement, and has the

advantage of being a function of the first and second moments of the collective spin

operators [43]. This is a helpful property when the atoms in an ensemble cannot

be individually measured, as it makes spin squeezing a very accessible entanglement

witness. The relationship between spin squeezing and entanglement is clearest if we

restrict our attention to spin-1/2 atoms in an ensemble which is symmetric under

the interchange of atoms. In this case we can define the pairwise entanglement as

the concurrence of any two atoms, which is defined as

C = max(0, λ1 − λ2 − λ3 − λ4) (2.4)

where λi are the square roots of the eigenvalues of the two qubit density matrix

ρ′12 = ρ12(σ1y ⊗ σ2y)ρ
∗
12(σ1y ⊗ σ2y). (2.5)

ζS < 1 is a sufficient, but not a necessary condition for non-zero concurrence, and

thus the existence of any squeezing is evidence of entanglement. An alternative

definition of spin squeezing was proposed in [40],

ζE =
NA∆2Ji

J2 −N/2− J2
i

(2.6)

where Ji is chosen to minimize ζE, which placed a stronger bound on concurrence,

with ζE < 1 being a necessary and sufficient condition for non-zero concurrence.

We will also be interested in the case where our collective spin J = jNA system

is composed of NA spin-j > 1/2 atomic systems, where the relationship between

squeezing and entanglement is more subtle. In this case, while ζS = ∆2Ji/(
1
2
J) is

still an indicator of quantum correlations, these correlations may be either inter-

atomic correlations (between different atoms) or intra-atomic correlations (between

constituents of single atoms). If we consider the individual atoms to be our sub-

systems for the sake of calculating entanglement, then we are only interested in the
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former kind of correlations. In this case it is possible to squeeze by a factor of 2j

through intra-atomic squeezing alone, so for 1 > ζ > 1
2j

it is ambiguous whether the

squeezing is due to inter-atomic entanglement or purely single atom squeezing, but

ζ < 1
2j

is unambiguously indicative of entanglement. A very similar case was con-

sidered by Mølmer and Sørensen [37], where it was argued that just as any amount

of squeezing indicated the existence of two-body entanglement, squeezing beyond

certain higher thresholds could certify n-body entanglement.

2.1.5 Previous Experimental Results in Spin Squeezing

In Chapter 3 I will discuss the primary protocol for spin squeezing considered in this

thesis, which uses multiple passes of linearly polarized light through a spin-polarized

ensemble, interacting through the Faraday effect to create an effective nonlinear

squeezing interaction. The method of quantum non-demolition (QND) measurement

for spin squeezing, which creates squeezing through indirect weak measurement of

the squeezed angular momentum, is also presented for contrast. Such a protocol was

considered by Kuzmich [20] and in later experiments by Polzik et. al. in [1, 15, 25],

where they were able to produce 4 dB of squeezing, 2.7 dB of metrologically relevant

squeezing when including the effects of atomic depolarization. Decibels are a unit

of squeezing, such that a squeezing parameter of ζ is equal to −10 log(ζ) dB of

squeezing. The QND protocol is considered, in these experiments and in this thesis,

in the context of cold atoms in free space. Because the optical density (OD) of

the atomic ensemble is the key experimental parameter upon which the squeezing

performance depends, other experimental setups have been considered to maximize

the optical density. The cavity QED experiments considered by Vuletic et. al. in

[23, 35] use multiple passes of each photon through the cavity to increase the effective

atom-photon coupling strength by the finesse factor of the cavity, generating a 5.6

dB improvement in measurement precision over an unsqueezed state.
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An alternative method for generating a squeezing interaction is through inter-

atomic collisions. Such a squeezing Hamiltonian is considered in BEC experiments

[32, 10, 13, 33]. In these experiments, the populations of two atomic modes are

mapped to an angular momentum operator using the Schwinger representation. The

“number” squeezing produced corresponds to a reduction in the variance of the

difference in population between the two modes. In one recent work, using 85Rb

prepared in a one-dimensional lattice, 8.2 dB of squeezing was obtained [13].

Another alternative method for creating atomic spin squeezing is to first squeeze

light, and then to map this squeezing to an atomic mode. One protocol for achieving

this is outlined in [21] and experimentally realized in [14]. A squeezed vacuum and

a pair of probe fields are coupled to a four-level system in such a way that the

measurement of one probe field results in the squeezing of a pseudo-qubit associated

with two of the atomic states. In the limit of perfectly squeezed light, this gives an

atomic squeezing of ζ = 1/2, or ∼ 3 dB.

(For further discussion of spin squeezing see the comprehensive review [26], whose

conventions for squeezing parameter definitions we have followed here.)

2.2 Limit to Continuous Variable QM

2.2.1 Holstein-Primakoff Approximation

In the limit of a high number of atoms, for well-localized states such as coherent

states (for which the standard deviation as an angle on the Bloch sphere goes as
√
J
J
→ 0 for large J) the displacements orthogonal to the polarization (here assumed

to be along the z-axis) map to the quadratures of a bosonic mode (see Fig. 2.3).

The Holstein-Primakoff transformation takes the raising and lowering operators on
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Figure 2.3: Holstein-Primakoff approximation to atomic angular momentum on
Bloch sphere. In the limit that the Bloch sphere is locally flat, the orthogonal
angular momentum components map to the quadratures of an effective harmonic
oscillator mode.

the angular momentum to creation and annihilation operators as follows [27],

J+ =
√

2J

√
1− b†b

2J
b (2.7)

J− =
√

2Jb†
√

1− b†b

2J
(2.8)

Jz = (J − b†b) (2.9)

In the J � 〈b†b〉 limit, we can take the associated Holstein-Primakoff (HP)

approximation,

b =
J+√
2J

(2.10)

b† =
J−√
2J

(2.11)

Jz = J (2.12)

In this limit the fluctuations of angular momentum orthogonal to the polarization

can be rescaled to map them to the quadratures of a harmonic oscillator mode, which
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have the canonical commutation relations,

Jx√
J

=
J+ + J−

2
√
J

=
b+ b†√

2
= XA (2.13)

Jy√
J

=
J+ − J−

2i
√
J

=
b− b†√

2i
= PA (2.14)

[XA, PA] =
iJz
J
≈ i (2.15)

We can think of this as treating the large Jz operator as effectively classical, while

continuing to treat other two components of angular momentum as quantum.

In this picture a spin coherent state polarized along the z-axis maps to the vacuum

of the harmonic oscillator and rotations on the sphere map to displacements in phase

space. Since the lowering operator maps to the creation operator, the different

eigenstates of Jz, | J,mz = J − N〉, map to the Fock states | N〉 in the harmonic

oscillator picture.

2.3 Gaussian States and Symplectic Maps

The coherent and spin squeezed states we have considered are each examples of

states whose quantum fluctuations, in the HP limit, have approximately Gaussian

distributions. This means that all moments of the distribution of angular momentum

components higher than the second order are functions of the first two orders. Thus

such Gaussian states are completely characterized by the means and variances of the

three components of their angular momentum operators.

This is an especially useful property in the context of decoherence, since as the

system loses purity, the density operator goes from living in the symmetric subspace,

which grows linearly with the number of atoms, to the full Hilbert space, which grows

exponentially. If the decoherence preserves the Gaussian character of the state,
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expressing the collective angular momentum in terms of the means and variances

provides a much more compact representation than the full density operator.

In general, evolution under a Hamiltonian, such as rotation, which is first order

in the collective angular momentum operators will preserve this Gaussian character,

but a Hamiltonian containing second order terms, such as twisting, will not. We can

see this by considering the way the moments of the angular momentum distributions

are dynamically coupled. The rate of change of each moment is proportional to its

commutator with the Hamiltonian, which is of equal order to the moment for first

order Hamiltonians and one order higher for second order Hamiltonian.

However, in the Holstein-Primakoff limit, the state does not feel the curvature of

the Bloch sphere, and a second order Hamiltonian will preserve the Gaussian char-

acter. We can see this by considering that under this approximation, a second order

Hamiltonian will not couple the first and second order collective atomic operators to

higher order moments, [H,O(1)] = O(1) and [H,O(2)] = O(2). Such a Hamiltonian

will have the effect of displacing, rotating, or squeezing the state, none of which lead

to non-Gaussian states in a locally flat space.

A compact notation for representing a multivariate Gaussian state is the vector

of the means, d = (XA, PA, XL, PL) for our atomic and photonic states, together with

the covariance matrix, whose entries are given by [8]

Σij = 〈(di − 〈di〉)(dj − 〈dj〉)/2 + (dj − 〈dj〉)(di − 〈di〉)/2〉 (2.16)

In this notation, the requirement that the state satisfy positivity may be written as

Σ + iσ ≥ 0, (2.17)
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where

σ =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 . (2.18)

This restriction is equivalent to the requirement that the atomic and photonic quadra-

ture operators obey the canonical commutation relations, and is the only restriction

upon the form of the covariance matrix– any covariance matrix satisfying this re-

quirement corresponds to a physical state [12, 9, 8]. In this formalism, the initial

conditions of our system are 〈d〉 = (0, 0, 0, 0),

Σ =


1/2 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 1/2

 . (2.19)

Having described the conditions required for a covariance matrix to correspond

to a physical state, it is now useful to consider the conditions that must be placed

upon a unitary map such that it preserves the Gaussian character of an arbitrary

Gaussian input state. In general, the map d′ = Sd will have to preserve the canonical

commutation relations, [XA, PA] = i. This condition will be met when the map

obeys SσST = σ [8]. The class of maps whose action on the matrix σ preserves

its form is known as the symplectic group, and its elements are called symplectic

transformations. The class includes displacements, rotations, and squeezing, but not

more general transformations.

We may also consider the even broader class of non-unitary transformations,

which still must satisfy positivity and thus preserve the commutation relations, Σ +

iσ ≥ 0. For a given map on the means d′ = Md, the most general form of the
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Figure 2.4: Cesium Alkali Level Structure. For a particular application we will
generally consider a specific ground state hyperfine manifold F which our state will
be prepared in. The light will be detuned along either the D1 (J = 1/2) or the
D2 (J = 3/2) line. We work in the low saturation regime, so the excited state can
be adiabatically eliminated, restricting the dynamics to the ground state hyperfine
manifold.

evolution of the covariance matrix is Σ′ = MΣMT +N , where N is injection of noise

back into the system to preserve the commutation relations [8].

2.4 Light-matter Interface

2.4.1 Light Shift

Next we will consider the effects of the interaction between our light pulse and

atomic ensemble. Our light pulse will be quasi-monochromatic and far off-resonance.
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Furthermore, we will stay in the low saturation regime. Under the above conditions

the light-matter interaction will take the form of a coupling between the ground

state magnetic sub-levels and the light field (Fig. 2.4). This is the interaction of a

polarizable particle in an AC electric field, which takes the same form quantumly as

classically,

H = −E(−)
i E

(+)
j αij, (2.20)

where E(+/−) are the positive and negative frequency components of the electric field

and αij is the atomic polarizability tensor at a particular frequency of light, ωL.

The atom has no permanent dipole moment, so the first order perturbation term

vanishes, and we must go to second order perturbation theory to derive the tensor

polarizability operator,

α = −
∑
e

dgedeg
h̄∆eg

(2.21)

where dge = d†eg = PgdPe is the component of the electronic dipole operator con-

necting the excited and ground subspaces with Pe and Pg the projectors on to these

subspaces, while ∆eg = ωL − ωeg is the detuning of the light from resonance. The

major features of the level structure are depicted in Fig. 2.4. The magnitude of

the dipole terms depends upon the oscillator strengths for coupling the ground and

excited states, and was calculated in [5] to take the form of a decomposition into

irreducible tensor components,

H = −α0

[
C(0)E(−) · E(+) + C(1)iE(−) × E(+) · F (2.22)

+C(2)E
(−)
i E

(+)
j

(
1

2
(FiFj + FjFi)−

1

3
F 2δij

)]
(2.23)

where F = I + J , α0 = −( 3λ3

32π3 )( Γ
∆F ′,F

), with λ the wavelength of the excited-

ground transition, Γ the spontaneous emission rate, and ∆F ′,F the detuning from

excited hyperfine manifold F. The C(K) coefficients correspond to the irreducible
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rank-K terms, depending on the details of angular-momentum coupling between the

hyperfine levels and are calculated in [5].

We may represent this interaction more compactly by considering the Stokes’

vector representation of polarization (see Fig. 2.5). In this representation the light

has three components obeying the angular momentum commutation relations. For

the case of light polarized along the x-axis,

S0 =
1

2
(a†xax + a†yay) =

1

2
(a†+a+ + a†−a−) (2.24)

S1 =
1

2
(a†xax − a†yay) =

1

2
(a†+a− + a†−a+) (2.25)

S2 =
1

2
(a†xay + a†yax) = −i1

2
(a†+a− − a†−a+) (2.26)

S3 = −i1
2

(a†xay − a†yax) =
1

2
(a†+a+ − a†−a−) (2.27)

[Si, Sj] = εi,j,kiSk (2.28)

where i,j,k range over 1,2,3. a†+ =
a†x+ia†y√

2
and a†− =

a†x−ia†y√
2

. For the case of light

polarized along the y-axis we will want to use slightly different definitions,

S0 =
1

2
(a†yay + a†xax) =

1

2
(a†+a+ + a†−a−) (2.29)

S1 =
1

2
(a†yay − a†xax) = −1

2
(a†+a− + a†−a+) (2.30)

S2 =
1

2
(a†yax + a†xay) = −i1

2
(a†+a− − a†−a+) (2.31)

S3 = −i1
2

(a†yax − a†xay) = −1

2
(a†+a+ − a†−a−) (2.32)

In the second set of definitions we have swapped x and y, or equivalently swapped

the sign of S1 and S3. As for the collective atom state, the photon state of interest

is the collective pseudo-spin associated with the polarization of NL photons. For a

quasi-monochromatic paraxial laser probe of intensity I, cross sectional area A and

pulse duration τ , NL = IAτ/h̄ωL. For a given number of photons, magnitude of the

Stokes’ vector is S0 = NL/2.
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Figure 2.5: The Poincaré Sphere in a representation of the polarization of a light field.
The directions correspond to Horizantally, V ertically, Diagonally, anti-D̄iagonally,
Right circularly, and Left circularly polarized light.

The three components of the Stokes’ vector correspond to (S1) the difference

between the amounts of horizontally vs. vertically polarized light, (S2) diagonally vs.

anti-diagonally polarized light, and (S3) right-circularly vs. left-circularly polarized

light. On the Poincaré sphere (the Stokes’ vector version of the Bloch sphere, Fig 2.5)

the equator consists of linearly polarized states, while pure right and left circularly

polarized light lie at the poles.

Using the Stokes’ vector notation, it is possible to rewrite the Hamiltonian inter-
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action in the following more compact form

H =
χ0

τ
(A0S0 + A1S1 + A2S2 + A3S3) (2.33)

where τ is the duration of our laser pulse (since our Stokes’ vector components are

proportional to the number of photons in each pulse we must include the duration of

the pulse to keep our Hamiltonian proportional to the intensity), where Ai are the

atomic observables

A0 = 2C(0) − C(2) 3F 2
k − F 2

3
, (2.34)

A1 = C(2)F
2
H − F 2

V

2
, (2.35)

A2 = C(2)FHFV + FV FH
2

, (2.36)

A3 = C(1)Fk, (2.37)

and where k is the direction of propagation of the light and H/V the directions of

horizontal and vertical polarization. χ0 = −4πω/(Ac)α0 = (σ0/A)(Γ/2∆F ′,F ) is the

coupling strength of the atoms to the Stokes’ vector, where σ0 = 3λ2/(2π) is the

resonant cross section for unit oscillator strength and A is the beam area.

The S0 term, which sets the polarization-independent component of the index of

refraction, does not lead to any state dependent coupling between the atoms and

light and can be ignored here. The A1 and A2 birefringence terms couple the field to

irreducible rank-2 tensor components of the atomic spin and thus depend upon the

hyperfine interaction, vanishing for the spin-1/2 case (the absence of nuclear spin),

or in the large detuning case where the hyperfine splitting can be neglected. In this

case the dominant term in the Hamiltonian is the Faraday interaction

H =
χ0

τ
C(1)FkS3. (2.38)

The light feels a spin-dependent index of refraction, rotating Stokes’ vector around

the S3-axis by an amount proportional to the atomic spin polarization along the direc-

tion of propagation, while the atoms feel a polarization dependent light-shift, causing
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precession around the k-axis proportional to the difference between the amount of

right and left-circularly polarized light.

For strongly polarized light we may also take the HP-approximation on the com-

ponents of the Stokes’ vector just as we did with the components of atomic angular

momentum. For polarization along Sk,

XL =
Si√
S0

(2.39)

PL =
Sj√
S0

(2.40)

[XL, PL] =
iSk
S0

≈ i (2.41)

It is illustrative to revisit the Faraday interaction in the HP picture (Fig. 2.6). The

effect of this interaction on the atom and light subsystems is to displace the X-

quadrature of each subsystem by an amount proportional to the P -quadrature of the

other subsystem and to leave the P -quadrature unchanged.

Xout
A = X in

A +
√
ξP in

L , P
out
A = P in

A (2.42)

Xout
L = X in

L +
√
ξP in

A , P
out
L = P in

L (2.43)

where ξ = f
2
NLNAχ

2. This interaction will leave the means equal to zero, so we do

not need to consider them further. However, it will introduce correlations between

the fluctuations, changing the form of our covariance matrix.

2.4.2 Measurement

Using the coupling of polarized light to our atoms, it is possible to indirectly measure

the components of collective atomic angular momentum by measuring the light. For

example, we can use the Faraday interaction with coupling strength χ = C(1)χ0 to

measure the Fz component of the collective atomic operator by first preparing a light
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Figure 2.6: Faraday interaction in Holstein-Primakoff picture. The X-quadrature
of each system is displaced proportionally to the P -quadrature of the other system
while the P -quadratures remain unchanged. The two systems become entangled.

pulse of length τ with S1 polarization, and then passing it through the ensemble.

The light will rotate by an angle proportional to Fz, which in the small angle limit

results in a displacement along S2 with mean 〈Fz〉χNL/2 and variance due to shot

noise NL/4. The minimum resolvable value of Fz is thus ∆Fz,shot = 1/(χ
√
NL). We

can define the measurement strength as the rate of decrease in the variance of Fz,

κ ≡ − d

dt

1

∆2Fz,shot
= χ2NL

τ
=

1

(3f)2

σ0

A
γ. (2.44)

Back-action becomes important when the shot noise measurement falls below the

projection noise of the measured atoms [36]. For atoms in a coherent state polarized

along the x-axis, ∆2Fz = NAf/2, and our back-action parameter is

ξ ≡ ∆2Fz,projection/∆
2Fz,shot =

f

2
NLNAχ

2 =
1

18f
ργτ (2.45)

where ρ is the characteristic resonant optical density ρ = NAσ0/A. The parameter ξ

turns out to be key in the scaling of squeezing protocols as we will see in Chapter 3.

Finally we consider measurement in the context of the covariance matrix picture.

In this picture a measurement is defined by a projector P on a particular component

of the covariance matrix. In this paper we will be considering measurement of a

component of the Stokes’ vector, which will be represented by a unit vector in the
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two-dimensional XL, PL subspace. A “perfect” projective measurement of the light,

limited by the shot noise but not subject to technical noise or imperfect quantum

efficiency, updates the covariance matrix according to the rule [28, 8, 12]

Σ→ Σ− Σ ·P · Σ−1 ·P · ΣT , (2.46)

where the inverse taken is the Moore-Penrose pseudo-inverse, an inverse over the non-

singular subspace of a singular matrix. This formalism naturally includes the ratio

of the projection noise to the shot noise in the back-action on the atoms which we

just saw was a key parameter. This update rule reduces the noise in the measured

component to zero. An imperfect measurement will leave noise in the measured

component, which suggests the form of the update rule in the presence of detection

noise. If the remaining uncertainty in the value of a Stokes’ vector component after

measurement is a fraction δ of the initial shot noise, then the new update rule takes

the form

Σ→ Σ− (1− δ)Σ ·P · Σ−1 ·P · ΣT . (2.47)

We will return to the noisy case in more detail when we treat imperfect measurement

as a source of noise in Chapter 4.
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Chapter 3

Extreme Squeezing of Spin-1/2

Ensembles

3.1 Experimental Setup

In this chapter we describe the major result of the thesis – how to use coherent

control in order to substantially improve the spin squeezing that can be achieved

using the atom-light interface. Here, we will restrict our attention to ensembles of

spin-1/2 atoms. This is a realistic assumption for the case of 171Yb, where the two

spin states correspond to the nuclear spin projections. Though not an alkali, the two

nuclear ground states couple to the field in much the same manner as the electronic

spin does in the alkalis, and our results for the Faraday interaction thus generalize

to this case.

In the geometries we will consider, a linearly polarized pulse of light propagating

along the z-axis passes through a cloud of many (∼ 106) cold atoms polarized along

the x-axis (Fig. 3.1). We will consider both the case where the light is polarized

parallel to the atoms, along the x-axis, and where it is polarized along the perpen-
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Figure 3.1: Double-pass geometry for spin squeezing. The probe beam undergoes
Faraday rotation in the first pass and acts like a fictitious magnetic field during
the second pass. A polarimeter and magnetic feedback controller remove spin-probe
entanglement through quantum erasure, by measuring a complementary polarization
observable and rotating the spin conditioned on the result. Short probe pulses and
a long optical path length L avoid standing wave effects.

dicular (y) direction. The atoms could be cooled in an optical molasses, and then

optically pumped into a spin-coherent state polarized along the x-axis before being

released into free space. We assume here that the density of the atomic cloud is low

enough that atom-atom collisions can be ignored during our experiment. The light

pulse is assumed to be quasi-monochromatic, and highly detuned from the excited

state (∼ 103 linewidths). The light pulse has a finite extent but is treated here as a

plane wave, which captures all the essential physics [31]. We will thus assume that

the light couples identically to all atoms; relaxing this assumption is an important

direction for future work. Finally, we will work in the low saturation parameter

regime so that the results from Chapter 2 on the light-matter interface apply here.
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3.2 QND Squeezing

A standard paradigm for atomic spin squeezing is through the backaction induced

by a quantum non-demolition (QND) measurement. A pulse of linear polarized light

(x-axis) is sent in the z-direction through a cloud of linearly (also x-axis) polarized

atoms. The fluctuations of the atomic spin along the z-axis are thus mapped, through

the Faraday interaction, into the S2 component of the light. The S2 component of

the light is then measured, thereby indirectly measuring the fluctuations of Fz and,

through quantum back-action, squeezing the Fz component of angular momentum

relative to the Fy component. In order for the back-action to result in significant

squeezing, the coupling due to the Faraday interaction must be strong and the vari-

ance of the light probe (shot noise) must be small compared to the size of the atomic

fluctuations being measured (projection noise).

We can calculate the variance of Fz using Bayes rule,

P (Jz = M | S2 = m)P (S2 = m) = P (S2 = m | Jz = M)P (Jz = M). (3.1)

In the limit of a large number of atoms (photons), the coherent states have Gaussian

distributions,

P (Jz = M) =
1√

πNA/2
e

(− 2M2

NA
)
, (3.2)

P (S2 = m) =
1√

πNL/2
e

(− 2m2

NL
)
. (3.3)

If the atomic system is in an eigenstate M of Jz, then the effect of the Faraday

interaction is to rotate the light on the Poincare sphere by a small angle χM . Then

the distribution of the light is still Gaussian, with its mean displaced by χMNL/2

P (S2 = m | Jz = M) =
1√

πNL/2
e

(− 2(m−χMNL/2)
2

NL
)
. (3.4)

Thus the distribution of Jz conditioned upon the measured S2 value is

P (Jz = M | S2 = m) =
1√

πNA/2
e
−M(M−mNAχζ)

ζNA/2 ≈ 1√
πNA/2

e
−M−mχζNA/2)

ζNA/2 (3.5)
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where

ζ =
1

1 + (NA/2)(NL/2)χ2
=

1

1 + ξ
. (3.6)

We see that the new distribution has a mean value of Jz = mχζNA/2, and a variance

of ζNA/2, an improvement of ζ over the unsqueezed state. Additionally, ζ scales as

1/ξ for large ξ. ξ can be expressed as the product of the optical density ρ and the

photon scattering rate γ integrated over a pulse of length τ . Since γτ sets the proba-

bility of decoherence of the system, it is the optical density which must be maximized

to get the highest amount of squeezing before it is overcome by decoherence.

3.3 Squeezing Through Coherent Feedback

Our approach to spin squeezing is based on a protocol first proposed by the Takahashi

group [39]. Takeuchi, et al., considered a beam of linearly polarized (S1) light that

passes through a cloud of polarized (Fx) atoms, then passes through a π/4 wave

plate, and is retroreflected back through the ensemble as shown in Fig. 3.1. On the

return trip it passes through the wave plate and the atom cloud a second time. On

the first pass, the fluctuations in the z-component of the atomic angular momentum

are imprinted onto the diagonal component of the Stokes’ vector, which is translated

into circular polarization (S3) by the two passes through the wave plate. Then on

the second pass, the atoms are displaced by an amount proportional to the circular

polarization of the light, which in turn is proportional to their own fluctuations,

leading to an effective atom-atom interaction resulting in squeezing. The pulses

considered will be short enough that standing wave effects can be ignored, and will

be assumed to couple identically to all atoms on each pass. This process can be

written in terms of the HP quadratures as

UDP = UF e
iπ
2
S1UF ≈ e−i

√
2ξPAP̄Le−iξP

2
A/2ei

π
2
b†b, (3.7)
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Up to an initial overall rotation of the Stokes’ vector about the S1 axis, the effect

of the double-pass (DP) geometry is a nonlinear single-axis twisting of the collective

spin, ∝ F 2
z ∝ P 2

A, which leads to spin squeezing [16].

In addition to squeezing the atoms, UDP correlates the atoms and light through

a
√

2ξPA translation along 45◦ the quadrature X̄L = XL+PL√
2

(generated by the con-

jugate observable P̄L = −XL+PL√
2

). This results in atom-light entanglement, and thus

decoherence of the atomic system as the light escapes.

We can see this result most clearly in the Heisenberg picture, using an input-

output formalism. In this picture we can represent the first pass of the light through

the atoms,

X1
A = X in

A +
√
ξP in

L , P P1
A = P in

A (3.8)

X1
L = X in

L +
√
ξP in

A , P P1
L = P in

L (3.9)

the passage of the light twice through the wave plate,

XWP
A = X1

A, PWP
A = P 1

A (3.10)

XWP
L = −P 1

L, PWP
L = X1

L (3.11)

and the second pass of the light through the atoms,

X2
A = XWP

A +
√
ξPWP

L , P 2
A = P in

A (3.12)

X2
L = XWP

L +
√
ξPWP

A , P 2
L = P in

L (3.13)

Putting these three sets of equations together and recasting the light operators in

terms of the conjugate variables X̄L and P̄L we see again the the light is entangled
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to the atoms as it leaves the system (Fig. 3.2).

Xout
A = X in

A +
√

2ξX̄ in
L + ξP in

A , P out
A = P in

A (3.14)

X̄out
L = −P̄ in

L +
√

2ξP in
A , P̄ out

L = X̄ in
L (3.15)

We can find the amount of squeezing achieved through this interaction by first

considering the input-output relations for an arbitrary pair of atomic quadratures

characterized by an angle θ.

Xθ ≡ XA cos θ + PA sin θ (3.16)

Pθ ≡ PA cos θ −XA sin θ (3.17)

Then the input-output relations for these quadratures are

Xout
θ = XA cos θ + (ξ cos θ + sin θ)PA +

√
2ξX̄L cos θ (3.18)

P out
θ = −XA sin θ + (−ξ sin θ + cos θ)PA −

√
2ξX̄L sin θ (3.19)

from which it follows that the variance along an arbitrary direction θ is

∆2Xθ =
1

2
[1 + (ξ2 + 2ξ) cos2 θ + ξ sin 2θ]. (3.20)

This variance is minimized at tan 2θmin = 2ξ/(2ξ+ξ2)+π/2. Plugging this back into

our expression for the variance we arrive at a squeezing parameter along the optimal

direction given by ζDP (θmin) = 1+(ξ2/2 + ξ)
(

1−
√

1 + 4/(2 + ξ)2
)
⇒ limξ→∞ 2/ξ.

This is a factor of two worse than the QND scheme, due to the decoherence of the

atoms from entanglement to the escaping light. But just as with the QND scheme ξ

and thus ρ set the ultimate achievable squeezing.
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3.4 Quantum Eraser

We can improve the degree of squeezing by modifying this scheme through the tech-

niques of quantum control. The key is to add a “quantum eraser” step as discussed

below [41]. In the Takahashi scheme, the light was still correlated to the atoms as

it left the system, leading to decoherence of the squeezed state when it was lost to

the environment (Fig. 3.2). By measuring the light and applying a conditional ro-

tation to the atomic system we can remove the atom-light correlation with minimal

disturbance to our squeezing (Fig. 3.3).

By measuring the P̄L component of the light, and rotating our system by an

amount proportional to the measured value, we finally achieve perfect one-axis twist-

ing of the atomic component,

Xout
A = X in

A + ξ2P in
A , P out

A = P in
A (3.21)

As before, we can solve for the squeezing parameter by first finding the direction

of optimal squeezing. Defining our quadratures as a function of theta as above, then

new input-output relations are

Xout
θ = XA cos θ + (ξ cos θ + sin θ)PA (3.22)

P out
θ = −XA sin θ + (−ξ sin θ + cos θ)PA (3.23)

from which it follows that the variance along an arbitrary direction θ is

∆2Xθ =
1

2
[1 + ξ2 cos2 θ + ξ sin 2θ]. (3.24)

The minimum variance is then along the direction tan 2θmin = 2/ξ + π/2, with a

squeezing parameter, ζQE(θmin) = 1 + (ξ2/2)
(

1−
√

1 + 4/ξ2
)
⇒ limξ→∞ 1/ξ2. In

contrast to linear scaling of the original DP protocol, the use of the quantum eraser

results in quadratically decreasing spin fluctuations with measurement strength ξ.
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Figure 3.2: Atom-field entanglement. The Holstein-Primakoff approximation to the
Poincaré sphere is depicted for light initially prepared in H-polarization (the origin).
The light’s polarization state is displaced by the atoms during the first pass, rotated
during its passage through the waveplate, and displaced again during its second pass.
The diagonal component thus contains information about the atomic state, resulting
in decoherence when the light is lost.

3.5 Phase Matching

While the quantum eraser improved the scaling of squeezing with OD over the QND

protocol from linear to quadratic, the most dramatic effects are seen through our

ability to perform coherent control. In its ideal form, the quantum eraser turns the

the atom-light interaction into a unitary nonlinear interaction on the collective spin.

In particular, this implements the one-axis twisting Hamiltonian H ∼ F 2
z , resulting

in squeezing along a continuously rotating axis, as we can see by expanding our
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!"#$ !%#$

XA XA
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Figure 3.3: (a) The atomic state suffers decoherence due to loss of light. The final
state is thus a mixture of many squeezed state, each corresponding to a different
value of the unmeasured quadrature.(b) The light can be measured, realizing one
particular highly squeezed element of the statistical mixture. This squeezed state
can be displaced conditioned on the value measured, resulting in a more highly
squeezed state.

Hamiltonian in terms of the HP creation and annihilation operators,

P 2
A = −(b2 + b†2)/2 + b†b+ 1/2. (3.25)

This terms can be broken down into the Bogoliubov transformation b2 + b†2, a rota-

tion b†b which leads to a phase mismatching, and a constant which can be ignored.

This phase mismatch leads to a poorer scaling of the squeezing with ξ because the

constant rotation means the squeezing does not build up along a single axis. We can

dramatically improve the scaling by applying a counter rotation to our system after

each light pulse. As we can see by the Trotter expansion,

UPM = lim
n→∞

(ei
ξ
2n
b†be−i

ξ
2n
P 2
A)n = eiξ(b

2+b†2−1)/4. (3.26)

this results in true exponential squeezing, as this is the HP limit of the two-axis

twisting interaction.
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The data shown at the end of this chapter was created using a computer simula-

tion which tracks the evolution of the covariance matrix of the joint atomic-photonic

system as it undergoes evolution under the Faraday interaction, measurement, and

the quantum eraser and phase matching quantum control operations. In this simu-

lation, I used a finite series of short pulses rather than the limiting case of an infinite

number of infinitesimal pulses considered here. However, the simulations bear out

that for a moderate number of pulses (∼ 20 − 30) we see excellent agreement with

the predicted exponential scaling.

The phase matching step may be clearer if we consider the symplectic transfor-

mation on the covariance matrix. Since our unitary transformation on the state must

preserve commutation relations, it is equivalent to a symplectic transformation on

the covariance matrix,

Σ→ SΣST (3.27)

The symplectic matrix S can be rewritten using the singular-value decomposition,

S = VrDV
T
l (3.28)

whose matrices correspond to a rotation Vl, squeezing D, and a subsequent rotation

Vr. The key to exponential squeezing is that after n rotations the diagonal part gets

exponentiated,

D → Dn. (3.29)

This can be achieved by the addition of a counter-rotation,

S ′ → RS (3.30)

where

R = VlV
T
r (3.31)
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(a) (b) (c) (d)

Figure 3.4: Phase Matching. The squeezing operation can be broken down into an
initial rotation (a), squeezing (b), and a final rotation (c). The mismatch between
the initial and final rotations means that the squeezing does not build up along a
constant axis. The addition of a phase-matching rotation (d) corrects this.

The consequence is that we always get squeezing along the same quadrature, and

thus

S ′n = (VlDV
T
l )n = VlD

nV T
l . (3.32)

(Fig. 3.4). Thus the phase-matched transformation, UPM , is a pure squeezing

unitary map with complex squeezing strength r̃ = −iξ/2. Spin fluctuations are

squeezed along the −45◦ quadrature at a rate that shrinks them exponentially, giv-

ing ζPM = e−ξ. If achievable, such exponential scaling will greatly enhance our ability

to generate massive entanglement and perform nontrivial collective spin control.

3.6 Results

The ideal (decoherence free) scaling of squeezing with ξ for the various protocols is

shown in (Fig. 3.5). We can clearly see in this figure the three laws for scaling with

pulse length. Linear scaling for the QND and original double-pass scheme (orange

and blue curves), quadratic scaling from the addition of the quantum eraser (green
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Figure 3.5: Squeezing in dB vs. coupling strength ξ in the absence of decoherence.
Orange corresponds to the QND protocol, blue to the original double-pass protocol,
green to the double-pass with quantum eraser, and red to the double-pass with
quantum eraser and phase matching.

curve) and exponential scaling for quantum eraser and phase matching (red curve).

In this ideal case we could achieve better and better squeezing simply by making the

pulses longer, but in actuality the existence of decoherence means there will be an

optimal stopping time where the noise catches up with the squeezing, as we will see

in the next chapter.
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Decoherence in Spin-1/2

Ensembles

4.1 Photon-Atom Scattering

In addition to the coherent dynamics arising from the collective scattering of pho-

tons into the forward direction, and leading to the Faraday interaction, we also

want to consider the incoherent (noncollective) part of the dynamics resulting from

diffuse photon scattering into other modes. The fundamental time scale in the prob-

lem is the rate of photon scattering per atom per photon. Integrated over the

duration of the interaction, the characteristic interaction strength per scatterer is

γτ ≡ (σ0/A)(Γ2/4∆2). Given this, there are three scales we must consider: the total

probability of photon scattering per atom, η = NLγτ , the total probability of spin

scattering per photon, ε = NAγτ , and the probability for collective scattering into

the probe mode, ξ ∝ ρη, where ρ = NAσ0/A is the “optical density”. The latter sets

the scale for coherent dynamics and the rate of squeezing, while ε and η set the scale

for decoherence.
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To maximize the amount of squeezing before the atoms decohere we must obtain

the highest possible optical density, which will be the primary experimental challenge.

But to maximize the amount of squeezing before the light is lost, we can increase

the detuning by some large factor, and increase the duration of the laser pulse by

the square of that factor, thereby holding the scattering rate per atom, and thus the

squeezing rate, constant. This gives us a lower rate of scattering of light without

decreasing the squeezing rate, and thus an overall improvement. We will therefore

want to consider the case where there are far more photons than atoms, NL � NA.

In some previous treatments [7], it was assumed that the Faraday interaction

coupling strength, rather than the optical density, was the fundamental physical

constraint. Optimizing while holding χ constant we instead find that the number of

atoms and number of photons should be roughly equal for an ideal ratio of squeezing

to decoherence rates. While in principle we could optimize either parameter, in

practice ρ cannot be increased above some maximum value. Nevertheless we include

the NA ∼ NL case for completeness, as well as to contrast the results to show how the

details of the noise model depend upon the relative size of the atomic and photonic

subsystems.

Previous treatments of photon-atom scattering have made a couple of simplify-

ing assumptions which have never been fully justified. The first is that the process

necessarily preserves the initially Gaussian character of the distributions of atomic

and photonic angular momentum fluctuations. This is a useful assumption to make

because of the way in which local decoherence takes us out of the symmetric sub-

space, as discussed previously. The density operator of the scattered system is still

symmetric under interchange of individual atoms, but is now a statistical mixture of

states which themselves are not symmetric. This greatly increases the state space

that we must consider, making an exact calculation of the evolution of the density

matrix impossible. The assumption of Gaussianity allows us to restrict our atten-
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tion to the first and second order collective operators, and use the far more compact

notation of the covariance matrix formalism. However, this is an assumption which

needs more theoretical grounding than has been previously given.

The second simplifying assumption is that of the independence of the atomic de-

coherence on photonic quantum fluctuations and vice versa. This further simplifies

calculations if valid, but its not clear that atom-photon entanglement can be ignored

in the derivation of the atom-photon scattering, in consideration of the fundamental

role it plays in the coherent dynamics. This assumption turns out to be unjustified in

the most general case, as we will see. It is worth pointing out the distinction between

an assumption of complete independence, and a semi-classical approximation where

the mean values of the field operators are considered when deriving the atomic scat-

tering processes, and the mean values of the atomic operators are considered when

finding the photon scattering events. In the former case neither strong “classical”

polarization nor the “quantum” fluctuations can lead to cross-subsystem influences,

while in the latter case the interplay between the fluctuations is ignored but the

polarization direction of the light can influence the rate of decay of the atoms.

4.1.1 Derivation of Covariance Matrix Evolution under the

Gaussian and Separable Approximations

Before testing these assumptions, I will first illustrate their use in simplifying the

derivation of a noise model, as was done previously in [27, 17]. The first assumption

is that the evolution acts as a Gaussian map on the variables of interest. Since they

initially have Gaussian distributions this implies they will stay Gaussian, and thus

under this approximation the task of finding the evolution of the angular momentum

distributions is reduced to the problem of finding how the means and covariances

evolve. Furthermore, since the means of our quantum operators are all zero, they
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remain zero under scattering and we need only derive the expression for the evolution

of the covariance matrix.

The second approximation is that of separability, that the atoms and light decay

independently of the other’s quantum fluctuations. We will thus assume that the

probabilities ε and η completely characterize the decay model. Then the update rule

for the vector of mean values is d′ = Md, where for η, ε� 1,

M =


1− η 0 0 0

0 1− η 0 0

0 0 1− ε 0

0 0 0 1− ε

 (4.1)

The diagonal form of the update matrix M is imposed by the separable approxima-

tion.

This then entails that the update rule for the covariance matrix take the form

Σ′ = MΣMT +N (4.2)

where N is found by solving the positivity constraints (Eq. 2.17) for the minimal

injected noise to satisfy the commutation relations, and to first order in η, ε take the

form

N =


η 0 0 0

0 η 0 0

0 0 ε/2 0

0 0 0 ε/2

 (4.3)

Because light is lost during a scattering event, and because the commutator between

XL and PL is proportional to the number of photons NL, the magnitude of the

commutator decreases after each scattering event. This is responsible for the factor

of two difference between the η and ε terms in the N matrix. The loss of light
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introduces less noise than the scattered atoms, which remain part of our system but

in an unknown state.

We can see that the Gaussian approximation was necessary for even casting the

problem in terms of an update rule on the covariance matrix. More generally we

would need to consider higher order moments of the probability distribution, or

calculate the evolution of the full density matrix. The separable approximation was

used in taking the update matrix M to have a diagonal form characterized by two

probabilities derived from an overall scattering rate per atom per photon. More

generally we could consider non-diagonal M matrices where the the off-diagonal

elements represent influence of atomic polarization on the decay rate of the light and

visa-versa. Because these assumptions are built into this model we cannot test them

in this context and must work with a more fundamental model in order to determine

whether these simplifications are well motivated.

4.1.2 Master Equation Approach

We can test the assumptions of the Gaussian model of decoherence, and if correct

provide them with a more rigorous theoretical underpinning, by deriving the evolu-

tion of the collective operators from the more fundamental Linblad master equation

picture. In this picture, each distinguishable photon-scattering process corresponds

to a jump operator, W i
q , which acts on the joint atom-light state to transform it to

the post-scattering state. Since in principle the emitted light can be used to distin-

guish which atom the light is scattered by, the jump operators are indexed both by

the polarization of the emitted light, q, and by the atom, i. The overall magnitude

of the jump operator is proportional to an overall scattering rate per photon per

atom, γ = γτ/τ , times the product of the Clebsch-Gordan (CG) coefficients asso-

ciated with the absorption and emission of a photon of a given polarization. The
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operator component accounts for the creation and annihilation of photons as well as

the redistribution of the atomic state.

The decohering evolution of the state can then be found by plugging these jump

operators into the master equation, which here takes the Linblad form,

d

dt
ρdec =

∑
q,i

γ

2
(2W i

qρW
†,i
q − ρW †,i

q W i
q −W †,i

q W i
qρ). (4.4)

The total evolution, including the Hamiltonian evolution, takes the form

d

dt
ρ = −i[H, ρ] +

d

dt
ρdec. (4.5)

Since we have already treated the Hamiltonian evolution in the previous chapters I

will leave this assumption implicit in the equations and focus on finding the compo-

nent dealing with photon-atom scattering processes.

Because we are primarily concerned with the small number of collective operators

needed to calculate the squeezing, it will be more convenient to work in the Heisen-

berg picture and to consider the expectation values of the collective operators, which

can be found from our master equation

d

dt
〈O〉dec =

∑
i,q

γ

2
〈[W †,i

q , O]W i
q +W †,i

q [O,W i
q ]〉. (4.6)

Formally, this equation generates the evolution of all correlation functions as an

infinite hierarchy.

We can calculate the jump operators from the following expression, representing

the absorption of a laser photon with polarization eL and spontaneous emission of

a scattered photon with polarization eq out of the forward mode. We will suppress

the creation operator associated with scattering into other modes, effectively tracing

over all modes but the forward mode. For a given atom, the relevant jump operator

is [5]

Wq = (e∗q ·D)(eL ·D†), (4.7)
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Figure 4.1: Level structure for (a) J = 1/2→ J = 1/2 and (b) J = 1/2→ J = 3/2
transition, with the squares of the Clebsch-Gordan coefficients coupling the excited
and ground states. Solid black lines represent absorption while dashed line represent
π (red), σ+ (green), and σ− (blue) polarized emitted light.

where

D† =
PedPg

〈eFe || d || gFg〉
= Σqe

∗
q〈Femg + q | Fgmg; 1q〉 | Femg + q〉〈Fgmg | (4.8)

and where the reduced matrix element 〈eFe || d || gFg〉 is independent of q and mg,

and e and g stand in for the remaining quantum numbers of the ground and excited

states.

These terms can be concisely represented by using a diagram showing the coupling

of the atomic levels by each polarization of light (see level diagrams, Figs. 4.1, 4.2).

As we can see from the figure, for detuning from the D1 line the three processes we

must consider are absorption followed by emission of right-circular polarized light,

absorption and emission of light-circular polarized light, and absorption of either

polarization light followed by emission of π-polarized light. The first two processes

leave the atomic state unchanged, while the final processes flips the atomic spin of

the scattered atom. For detuning from the D2 line, the process associated with π-

polarized light remains identical, while emission of circularly polarized light can now

be associated with absorption from either of the two ground state but with different

CG-coefficients.
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For detuning from the D1 line system these jump operators take the form

W i
+ =

2

3
a+ |↓〉〈↓|i=

1

3
a+(Ii − σz,i) (4.9)

W i
− =

2

3
a− |↑〉〈↑|i=

1

3
a−(Ii + σz,i) (4.10)

W i
0 =

√
2

3
(a− |↓〉〈↑|i +a+ |↑〉〈↓|i) (4.11)

corresponding to emission of σ+, σ−, and π polarized light and where i indexes the

atom and I is the identity operator. For detuning from the D2 line they take the

form

W i
+ = a+(

1

3
|↓〉〈↓|i + |↑〉〈↑|i) =

1

3
a+(2Ii + σz,i) (4.12)

W i
− = a−(|↓〉〈↓|i +

1

3
|↑〉〈↑|i) =

1

3
a−(2Ii − σz,i) (4.13)

W i
0 =

√
2

3
(a− |↓〉〈↑|i +a+ |↑〉〈↓|i) (4.14)

We can see from the coefficients of these operators that we will want to consider

detuning from the D1 line. The decoherence of the atomic variables is identical in

both cases since the only difference is a sign change and a component proportional

to the identity on the atom, but the overall rate of scattering of light is greater in the

D2 case since the additional terms still scatter light out of the forward mode. Said

another way, both the D1 and D2 lines give rise to the same vector component of

the light shift but the scalar component is twice for D2 compared to D1. The scalar

component does not affect the atomic state, but does affect the diffuse scattering of

photons.

We can plug the jump operators into this equation to find the evolution of the

collective operators and thus to test the assumptions mentioned in the previous

section as well as determine the reduction in total squeezing due to scattering events.
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4.1.3 Gaussianity

We now address the question of the validity of the Gaussian approximation. In an

early paper on the jump operator formalism [24], Lindblad gives the conditions on the

jump operators required for a Gaussian map. The double-commutator [[Wk, Oi], Oj]

must vanish for all jump operators and all pairs of operators Oi/Oj whose Gaussian

character we wish to preserve. For the jump operators and collective operators under

consideration, we can see that this condition is not met. For example

[[W−
+ , S3], S3] = [

1

2
W i

+, S3] =
1

4
W i

+. (4.15)

This may initially appear to contradict the well-known result that decay of the

quadratures due to a jump operator proportional to the annihilation operator pre-

serves the Gaussian character of a coherent state. However, the spin-coherent states

we are considering here are coherent states living on the Poincaré sphere in the HP

limit, not coherent states of the physical x and y photon polarized modes ax/a
†
x and

ay/a
†
y. The quadratures corresponding to the Stokes’ vector components under the

HP approximation are actually second order in the physical quadratures. By anal-

ogy, a coherent state has a Gaussian distribution in its quadratures but a Poissonian

number distribution. Our map can preserve the Gaussian character of the physical

quadratures but introduce higher order moments to the distributions of the Stokes’

vector components.

Using the master equation, we can bound the rate of the deviation from Gaus-

sianity. We also see in [24] that the deviation from gaussianity for the 4th moment

goes as [[Wk, Oi], Oj]
†[[Wk, Oi], Oj], which for our example is just 1

9
a†+a+ |↓〉i〈↓|i .

This means that the size of the deviation from Gaussianity is proportional to the

number of scattering events, which is consistent with a Poissonian distribution. This

is unsurprising given that the physical origin of the decoherence is the scattering of

light by atoms, a series of independent events occurring at a known rate. It is well
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known that for a large number of events, a Poissonian distribution converges to a

Gaussian distribution [38], for the deviation of the nth moment is proportional to

the number of events, λ, while the magnitude of the moments goes as λn/2. Thus the

skewness goes as λ−1/2, the kurtosis goes as λ−1, and the deviation from Gaussian

statistics becomes vanishingly small in the large number of scattering events limit.

Thus although not strictly correct, treating our system as Gaussian is an excellent

approximation for the parameter range we are considering. In the next section we

will see that as we take the limit of large NL the terms responsible for deviation from

Gaussian statistics vanish, in agreement with these results.

4.1.4 Interdependence of the atomic and photonic scattering

process

For our geometry, the master equation dictates the following exact equations of

motion for the expectation values of the collective operators,

d

dt
〈S0〉 = 〈−2

3
γS0

NA

2
+

2

3
γS3Fz︸ ︷︷ ︸〉 (4.16)

d

dt
〈S1〉 = 〈−2

3
γS1

NA

2
〉 (4.17)

d

dt
〈S2〉 = 〈−2

3
γS2

NA

2
〉 (4.18)

d

dt
〈S3〉 = 〈−2

3
γS3

NA

2
+

2

3
γS0Fz︸ ︷︷ ︸〉 (4.19)

d

dt
〈Fx〉 = 〈−2

3
γS0Fx −

2

9
γS1Fx − γ

2

9
S2Fy〉 (4.20)

d

dt
〈Fy〉 = 〈−2

3
γS0Fy −

2

9
γS2Fx + γ

2

9
S1Fy〉 (4.21)

d

dt
〈Fz〉 = 〈−4

9
γS0Fz +

4

9
γS3

NA

2︸ ︷︷ ︸〉 (4.22)
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These were derived using the definition of the Stokes’ vector for light polarized along

the x-axis. The solutions for light polarized along the y-axis are identical up to a

sign in S1 and S3 . We can see that in addition to the expected exponential decay

of the mean values seen in previous treatments, there are cross terms whereby the

atomic variables influence the decay of the light and visa-versa. The terms have

two physical origins. The first arises from optical pumping as circularity in the light

polarization is transferred to magnetization of the atoms and vice versa. This results

in the underbraced terms. The second effect is the faster decay of the component of

atomic polarization along the same direction as the light polarization. The likelihood

that the atoms absorb the light does not change, so the rate of decay of the Stokes’

vector components stays the same, but the relative likelihood that the atoms will

be scattered back into their original ground state versus the opposite one depends

upon the polarization of the light. This effect results in the underscored terms.

As a consequence of this second effect, the choice of linear polarization of the light

will result in either a faster decay along the atomic polarization axis, Fx, or of the

quantum mode Fy. Which of these two forms of decay is preferable depends upon the

particulars of the system parameters and other sources of decay. As a rule of thumb,

it seems that when the system decays quickly and little squeezing is achievable, the

decay of the magnitude of the net polarization, Fx, is more important, while for high

degrees of squeezing due to slower decay, decay in the PA quadrature through decay

of Fy is more important. The terms arising from these two effects have not been seen

in previous treatments of photon-atom scattering, which implicitly assumed a kind

of independence between the atomic and photonic decay processes. This points to

the importance of deriving the noise model from first principles.

We can similarly solve for the evolution of the correlation functions appearing

in our covariance matrix. The exact equations of motion are given in Appendix B.

I will not give the full expressions for all of the covariance matrix elements here,

because in their unapproximated forms there is no compact expression for them,
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but instead will consider a single element, the rate of change of F 2
z . We can track

the modifications to this equations as we apply the various approximations as an

example of how they are used. (The expression here is given under the assumption

that the light is polarized along the x-axis, the S3 term must have its sign flipped

for the case where the light is instead polarized along the y-axis).

d

dt
〈F 2

z 〉 = 〈−8

9
γS0(F 2

z −
NA

4
) +

8

9
γS3Fz(

NA

2
− 1/2)〉 (4.23)

The first step in simplifying this expression is to rewrite it in terms of the HP

variables.

d

dt
〈P 2

A〉 = 〈−4

9
γNL(P 2

A − 1/2) +
4

9
γ
√
NL/NAPLPA(NA − 1)〉 (4.24)

This is a more convenient form because the HP quadratures are all of the same

magnitude for the initial state, with a vanishing mean and variance of 1/2, so it will

be clear from their coefficients which are the large and small terms. Which of these

terms we keep depends upon the relative size of NL, NA, and 1. For the case NA � 1

and NL � 1 but no assumptions about their relative magnitude we can simplify the

expression slightly, to

d

dt
〈P 2

A〉 = 〈−4

9
γNL(P 2

A − 1/2) +
4

9
γ
√
NLNAPLPA〉. (4.25)

These assumptions are already sufficient that, in general, the elements leading to

non-Gaussian evolution can be dropped from our expressions. However, they are

insufficient for separability between the light and atom decay processes as can be seen

from how the PLPA term feeds into the evolution for P 2
A in our example. In order to

eliminate these cross terms we need additional assumptions about the relative size of

NA and NL- here we will assume that NL � NA. Then it follows that NL �
√
NLNA,

and we can drop the second term, leading to

d

dt
〈P 2

A〉 = 〈−4

9
γNL(P 2

A − 1/2)〉. (4.26)
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This assumption is not enough to result in complete separability– the relative

mean initial polarization of the light and atoms affects their decay rates. However,

NL � NA is enough to allow a semi-classical approximation, where only the operators

with non-vanishing means influence the decay rates. In this case we no longer see

interplay between the atomic and photonic quantum fluctuations, and the M matrix

giving the evolution of the covariance matrix becomes diagonal. Alternately, if we

were to make the semi-classical approximation first, we would see the cross-terms

between light and atom fluctuations vanish, but the individual decay rates of the

atomic and photonic subsystems would be the correct ones. However, this would

give the false result that both the atomic and photonic subsystems could decay at

an appreciable rate without the cross-terms being significant. The cross-terms only

disappear when one subsystem is so much larger than the other that its decay eclipses

the effects of cross-terms on the secondary system’s decay. The full set of equations

for these two cases, NL � NA � 1 and NL ∼ NA � 1, are given in Appendices C

and D.

As before, once we have assumed that the number of atoms and photons are

both large and thus we have a Gaussian map, the most compact way to express such

a map is as a matrix M acting on the covariance matrix and a second matrix N

representing the noise which must be injected into the system to preserve positivity

and the commutation relations,

d′ = Md, (4.27)

Σ′ = MΣMT +N. (4.28)

We can derive these matrices by solving the master equation and taking the large
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number approximations as above. Doing so we arrive at the following:

M =


1− γ(1/3∓ 1/9)NL 0 0 0

0 1− γ2/9NL 0 0

0 0 1 0

0 0 0 1

 (4.29)

N =


γ(1/3∓ 1/9)NL 0 0 0

0 γ2/9NL 0 0

0 0 0 0

0 0 0 0

 (4.30)

where the −(+) terms are for the case of polarization along the x(y) axis. In the

derivation of these matrices we have assumed NL � NA and have thus arrived at a

diagonal form for M and N . In contrast to the case we considered initially, where

both the separable and Gaussian approximation were assumed, the rates of decay

of the two quadratures are not always equal and depend upon the choice of initial

polarization direction of the light.

Additionally we must track the decay of the “classical variables” which are ini-

tially highly occupied, Fx and S1. S1 decays at a rate independent of its polarization

relative to the atoms, as given previously,

d

dt
〈S1〉 = 〈−2

3
γS1

NA

2
〉. (4.31)

Fx on the other hand decays at a rate dependent upon the relative polarization of

the light. For light polarized along the x-axis,

d

dt
〈Fx〉 = 〈−8

9
γS0Fx〉 (4.32)

while for light polarized along the y-axis,

d

dt
〈Fx〉 = 〈−4

9
γS0Fx〉 (4.33)
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We can now reconsider the validity of the separability approximation (assumption

of statistical independence of the photon and atom scattering processes). We see that

for the first case we consider, NL � NA, the choice of light polarization direction

along the x-axis or y-axis determines the rate of decay of the atomic variables. How-

ever, any influence between the atomic and photonic quadrature operators vanishes

in this case, and after choosing the appropriate noise model for the chosen orien-

tation, the decay processes remain independent. This can be seen in the diagonal

form of M matrix. On the other hand, when NL ∼ NA, these cross-terms remain

significant. We cannot treat the decay rates completely independently in either case,

but in the first case at least a semi-classical approximation is justified.

4.2 Loss/ Imperfect Detection

There are two other significant sources of noise: loss of light during transmission

through the optical system and imperfect measurement. The effect of loss of light

depends on which of three time frames it occurs during – before the first pass,

between the two passes, and after the second pass through the atomic cloud. Our

pulses are short enough that we can treat loss due to atom-photon scattering as

occurring half before the pulse and half after, and can be ignored completely in the

regime NA � NL ≡ η � ε, and where we are sufficiently off-resonance that both

rates are small compared to the rate of squeezing. Loss before the first pass can

be compensated for by using longer pulses, without harm to the atomic system, and

thus can be ignored. Loss between the two passes results in decoherence and a weaker

interaction on the second pass. Loss after the second pass results in decoherence but

does not effect the coupling strength. We include each set of loss events separately

in our simulation.
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When loss of light occurs, our covariance matrix evolves according to

Σ→MtransΣM
T
trans +Ntrans (4.34)

where

Mtrans =


1 0 0 0

0 1 0 0

0 0 1− δ 0

0 0 0 1− δ

 (4.35)

and

Ntrans =


0 0 0 0

0 0 0 0

0 0 δ/2 0

0 0 0 δ/2

 (4.36)

and δ is the fraction of light lost in transmission. Here the Mtrans matrix represents

the decrease in the covariances due to loss of light and Ntrans represents the noise

which must be added to the system to preserve the commutation relations of the

collective photonic variables.

Imperfect measurement can be broken down into imperfect quantum efficiency

(undetected photons) and technical noise (noise in the measured value). These two

sources of error have a common effect, they result in a noisy final value for the

measured parameter. By modeling imperfect quantum efficiency as photon loss im-

mediately before detection, we find that the two types of imperfect measurement are

cummulative in the following sense.

ν = ν0 + δ/(1− δ) (4.37)

where ν0 is the technical noise as a faction of shot noise, δ is the fraction of unde-

tected photons, and ν is an overall measurement quality factor which is 0 for perfect
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measurement and approaches infinity for an arbitrarily bad measurement. Further-

more, loss of light after the second pass is indistinguishable from imperfect quantum

efficiency in its effect on the system, so this process can also be lumped in with ν.

To generalize our measurement update rule to imperfect measurement, we use a

modified update rule where the projection of the covariance matrix is rescaled by the

detector efficiency,

Σ→ Σ− 1

1 + ν
Σ ·P · Σ−1 ·P · ΣT . (4.38)

For the case of ν0 = 0 we can see that our measurement update rule is identical to

the previously derived one in Eq. 2.47. This is just a modification of the previously

derived rule to include additional sources of noise.

4.2.1 Optimal Phase Matching

The injection of noise into our system due to photon-atom scattering means that

our previous analytical treatment of phase matching in terms of symplectic matrices

(Eq. 3.27-3.32) must be modified. Since we are mapping Gaussian states to Gaussian

states, the evolution can still be modeled as rotations and squeezing, but with the

addition of overall growth of the phase space volume. This means that the product

of the eigenvalues of the diagonal matrix D in the singular value decomposition is no

longer 1, but now grows as noise is injected into the system. If all noise processes were

isotropic the optimal angle of rotation would remain the same. However, the noise

injected into the system due to imperfect measurement is non-isotropic. Essentially,

it amounts to imperfectly executing the quantum eraser step, so the atoms suffer

a random unknown displacement along the XA quadratures. As a consequence,

the optimal rotation for phase-matching is now state dependent (Fig. 4.3). The

state-dependent nature of the transformation prevents us from offering an analytic
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XA

PA

Figure 4.2: State dependent rotation due to anisotropic noise injection. Imperfectly
measured light results in increased noise in only one of the two atomic quadratures,
resulting in a change of the orientation of the squeezing. The size of this angle
depends upon the current degree and orientation of squeezing.

expression for the phase-matched evolution under conditions of an imperfect quantum

eraser.

But phase matching can still improve squeezing in the noisy case. This is achieved

by numerically optimizing the phase-matching rotation at every step, which results

in exponential squeezing to a floor set by the magnitude of injected noise, whereupon

the scaling shifts over to a slower rate. In the computer simulations, the angle of

rotation was included as a variable during the phase-matching stage. At the end

of each pass, a search was performed to find the choice of angle which gave the

greatest degree of squeezing. This adaptive phase matching gradually shifts from

the exponential phase matching technique to the linear double-pass scaling as the

noise grows.
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4.3 Results with noise

Fig. 4.3 shows the scaling of the total squeezing with with η, including the effects

of atom-photon scattering, ignoring other effects. Our system parameters for these

results are ρ = 300, NA = 106, NL = 3×108, and ∆ = 103 in units of linewidth. These

values will be used throughout all simulations unless explicitly stated otherwise. In

Fig. 4.4a the effects of loss in transmission and imperfect detection are included,

for the case of quantum eraser and the adaptive phase matching. The four curves

correspond to the cases of no noise beyond photon-atom scattering, and 2/6/20%

loss during each pass and 1/3/10% inefficiency at the detector, respectively.

4.3.1 Simple model for effect of noise on scaling with optical

density

While I have shown the ideal scalings of the squeezing parameter, the ultimate scaling

with optical density depends on the trade-offs between coherent evolution and deco-

herence. We can better understand how decoherence affects the scaling of the squeez-

ing with optical density ρ by considering a simple model where optical pumping adds

spin noise proportional to the number of photons scattered. Then the total squeezing

is ζ = ζideal + cη where ζideal is the squeezing in the absence of scattering, and the

constant c gives the noise per scattered photon. The scattering rate thus determines

the time at which further optical pumping will degrade the squeezing faster than our

scheme improves it, and since this is the optimal stopping point it determines how

the minimum value of ζ scales with ρ. For the three protocols we have considered,

the squeezing variances in the absence of decoherence are ζQND = 2/ξ, ζQE = 1/ξ2,

and ζPM = e−ξ. Substituting ξ ∼ ρη and adding noise gives us ζQND = 2/(ρη) + cη,

ζQE = 1/(ρη)2 + cη, and ζPM = e−ρη + cη, which in turn we can differentiate to find

the conditions for extremal squeezing, −2/(ρη2) + c = 0, −2/(ρ2η3) + c = 0, and
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Figure 4.3: Squeezing in dB vs. pulse length expressed as a fraction of atoms scat-
tered. The effects of atom-photon scattering are included but other noise sources
such as transmission loss and imperfect detection are ignored. Orange corresponds
to the QND protocol, blue to the original double-pass protocol, green to the double-
pass with quantum eraser, and red to the double-pass with quantum eraser and phase
matching.

−ρe−ρη + c = 0. Solving for the optimal time η as a function of ρ, ηminQND =
√

2/(ρc),

ηminQE = 3
√

2/(ρ2c), and ηminPM = − ln (c/ρ)/ρ. Substituting these back into our initial

expressions for ζ we finally arrive, up to an overall constant which is a function of c,

at the peak squeezing which scales as

ζminQND = ρ−1/2, (4.39)

ζminQE = ρ−2/3, (4.40)

and

ζminPM = (a+ b log(ρ))/ρ, (4.41)
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1 /! (dB)

!

Figure 4.4: (a) Squeezing versus fraction of atoms undergoing scattering for four
different levels of light loss/ detector imperfection- black (0/0), blue (2%/1%), green
(6%/3%), and red (20%/10%). )(b) Squeezing versus optical density, data with
log-log fit (red line).

respectively. Thus the combination of the quantum eraser and phase matching

change both the achievable squeezing for a given optical density and noise model, as

well as how it scales with improvements in optical density.

To further quantify the effectiveness of the phase matching protocol, I numerically

calculate the peak squeezing at the optimal value of η as a function of ρ, using the

full photon-atom scattering model. This relationship is plotted in Fig. 4.4b, and fit

to the simple formula above in the limit of large ρ. In the absence of other technical

noise, the fit of the phase-matched protocol gives a maximum squeezing that scales

as ζminPM = (12.4 + 0.81 log(ρ))/ρ, yielding ∼ 13 dB of squeezing at a unit-oscillator

ρ = 300.
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Beyond Spin-1/2

5.1 Generalization of Holstein-Primakoff Approx-

imation

When using ensembles of atomic spins of higher dimension than spin-1/2, we have

a much richer structure in Hilbert space in which to control the system and create

nonclassical states. Through a combination of single atom control [3, 30, 29] and the

collective control discussed in this dissertation, we will be able to strongly enhance

the effective coupling strength for a given optical density. The goal of this chapter

is to generalize our protocol to ensembles of larger spins including both coherent

control and decoherence. We will continue to restrict our attention to collections of

atoms that are initially prepared in identical and uncorrelated states. For spin-1/2,

all single atom pure states are coherent states, but for higher dimensional systems

they will not always be, which will result in collective states that are not coherent

states either, and will in general be in a superposition of different values of total

angular momentum F . This complicates the description of the system beyond the

usual model of a collective spin.
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Since we have a large number of identically prepared atoms it would be useful

to linearize the fluctuations around the mean just as we did in the spin-1/2 case

using the Holstein-Primakoff approximation. For non-coherent states we won’t have

the simple physical picture of a local region of the Bloch sphere mapped to a plane,

with local displacements mapping to the bosonic mode quadratures. But we can

extend the idea of mapping the fluctuations around a fiducial state to quadratures

in harmonic oscillator modes. This idea was first discussed in [19] and [34]; here we

will present this previous work and extend it to applications in spin-squeezing and

photon-atom scattering in our double-pass protocol.

Consider a fiducial single-atom state | ψ〉, such that our collective state is initially

| ψ〉⊗NA . For a d-dimensional Hilbert space, we may choose an orthonormal basis

such that the d− 1 states orthogonal to | ψ〉 are labeled | φi〉 where i ranges from 1

to d− 1. Then we may define quadrature operators

XA,i =
∑
j

| ψ〉〈φi |j + | φi〉〈ψ |j√
2NA

(5.1)

PA,i =
∑
j

−i | ψ〉〈φi |j +i | φi〉〈ψ |j√
2NA

(5.2)

where j labels the jth atom. The commutation relations are then

[XA,i, PA,i] =
∑
j

i
| ψ〉〈ψ |j − | φi〉〈φi |j

NA

(5.3)

and for
∑

j | ψ〉〈ψ |j≈ NA we recover the canonical commutation relations

[XA,i, PA,i] = i (5.4)

We can think of this representation of the collective state as being made up of

d− 1 pseudo-qubits, where the fiducial state is the “spin-up” of each qubit, and the

other state of our basis defines the “spin-down”. We can then define our collective

operators in terms of these d − 1 pseudo-qubits, each of which maps to a harmonic
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oscillator mode under the usual HP transformation. Thus we essentially have d− 1

harmonic oscillators with 2d− 2 quadrature operators for any d-dimensional system

and fiducial state. Coupling between the d − 1 non-fiducial states and transfer of

population out of the fiducial state are both small effects when
∑

j | ψ〉〈ψ |j≈ NA

and can be treated as noise on the harmonic oscillator modes.

For example, consider fiducial state | fx = f〉, a spin-coherent state polarized

along the x-axis for a spin-f system. We can consider the harmonic oscillator mode

associated with | fx = f − 1〉,

XA =
∑
i

| f〉〈f − 1 |i + | f − 1〉〈f |i√
2NA

(5.5)

PA =
∑
i

−i | f〉〈f − 1 |i +i | f − 1〉〈f |i√
2NA

(5.6)

[XA, PA] =
∑
i

i
| f〉〈f |i − | f − 1〉〈f − 1 |i

NA

(5.7)

For
∑

i | f〉i〈f |i≈ NA , we can truncate the angular momentum operators so

that they are proportional to the harmonic oscillator modes Fx
fNA
≈ 1, Fy√

fNA
≈ XA,

Fy√
fNA
≈ PA. These are exactly the usual definitions of the quadratures under the

HP approximation, which are reproduced in our generalized picture by choosing a

coherent state as our fiducial state and considering this particular mode. But for

the spin d > 2 case, we can now also consider the quadratures associated with the

coupling of our fiducial state to the other d − 2 orthogonal states, and furthermore

we can consider cases where the fiducial state is not a coherent state.

One nice feature of this representation is that identical unitary transformations

on each individual atom is equivalent to a relabeling of the fiducial state and the

harmonic oscillator modes without changing the collective squeezing of the individual

modes, which depends upon the collective correlations of the ensemble. For example,

a unitary matrix U which acts identically on each atom taking the old basis to the
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new primed basis

U | ψ〉j =| ψ′〉j, (5.8)

U | φi〉j =| φ′i〉j

also maps the generalized HP operators to a new set of operators

UXA,iU
† = X ′A,i =

∑
j

| ψ′〉〈φ′i |j + | φ′i〉〈ψ′ |j√
2NA

, (5.9)

UPA,iU
† = P ′A,i =

∑
j

−i | ψ′〉〈φ′i |j +i | φ′i〉〈ψ′ |j√
2NA

. (5.10)

Harmonic oscillators which are squeezed in the original representation will also be

squeezed in the new representation. This will come in handy as a tool for extend-

ing our results in higher dimensional systems as we can create entanglement that

manifests as “squeezing” in a particular harmonic oscillator mode, but not the one

which corresponds to “angular momentum” squeezing; i.e. squeezing of fluctuations

around a spin coherent state. These correlations can then be mapped to angular

momentum squeezing through identical single-atom control applied to every member

of the ensemble.

5.2 Spin Coherent States

Our first task in extending the double-pass protocol to a higher dimensional system

will be to consider the simplest case, spin coherent fiducial states with f > 1/2. We

consider the case NL � NA � 1 so that the Gaussian and semi-classical approxima-

tions are both well justified. We prepare our state in a single ground state hyperfine

manifold, F = I ± 1/2, choosing our fiducial state to be the spin coherent state

oriented along the x-axis, | fx = f〉. For this choice of fiducial state, squeezing of

the orthogonal angular momentum components Fy or Fz corresponds to squeezing
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of the harmonic oscillator mode coupling the fiducial state to | fx = f − 1〉. We can

see this by considering that the action of Fy and Fz on the fiducial state is to couple

to | fx = f − 1〉.

Our protocol proceeds exactly as before, except that now the Faraday rotation

angle χ = χ0/(3f) is weaker by a factor of 2f [5]. The Faraday interaction is entirely

due to the coupling of the light to the electron’s angular momentum, so in the

spin f case, the additional nuclear spin contributes to the total size of the angular

momentum, but not to the amount of rotation. Thus the effective angle is a factor

of 2f weaker, and since the total coupling strength ξ goes as χ2 we lose a factor of

4f 2 when we generalize from the spin-1/2 case. However, as we saw in the previous

section, we also pick up an additional factor of
√

2f relative to the spin-1/2 case in

the transformation from the angular momentum variables to the harmonic oscillator

quadratures. Thus the ultimate scaling goes as 1/(2f) compared to the spin-1/2

case.

Even more significant differences arise when we add photon-atom scattering into

the model. Several new processes arise which must be considered. Firstly, population

may be pumped between the f = i + 1/2 and f = i − 1/2 ground state manifolds.

Because the splitting between these manifolds is large compared to the detuning, only

the manifold in which we prepare the population is sufficiently close to resonance,

and the population pumped into the other manifold may be neglected. However the

loss still serves to decohere the atomic system, transforming the covariance matrix

just as light lost in transmission through the optics, but here acting on the atomic

quadratures.

Secondly, we must consider not only spin flips between the initial state, | fx = f〉,
and the state whose correlations with the initial state are responsible for squeezing,

| fx = f − 1〉, but also pumping of population into | fx = f − 2〉. (For brevity, states

will hereafter be labeled by their angular momentum along the x-axis, | i〉 =| fx = i〉).
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We can reduce this additional noise by pumping population out of the | f − 2〉 state

after each pass, while the phase matching and quantum eraser rotations are being

applied. This can be done be applying a magnetic field along the quantization axis

to put some bias on the magnetic sublevels (in practice a bias is necessary anyway in

order to keep the initially polarized state stable under weak magnetic fluctuations)

and then using microwaves to drive the population out of the populated ground

states manifold into the other manifold. Then jumps from | f − 1〉 to | f − 2〉 can be

treated as second form of loss, which creates less noise than transfer of population

to the | f − 2〉 state. These processes and their rates are depicted in Fig. 5.1.

5.2.1 Light Polarized Parallel to Atomic Polarization

As in the spin-1/2 case, the jump operators can be derived by considering the distin-

guishable processes which may occur and the CG-coefficients associated with them.

The relevant factors are summarized in Fig. 5.2. Here and throughout this chapter

we will consider the case of Cesium, with i = 7/2, and restrict our attention to states

prepared in the f = 3 ground manifold. For light polarized along the direction of

atomic polarization, detuned from the D1 line, the projection of the jump operators

into the subspace of interest is

W i
0 =

1

3
| 3〉〈3 |i

√
NL +

1

3
| 2〉〈2 |i

√
NL (5.11)

W i
+ = − 1

48
| 2〉〈3 |i

√
NL (5.12)

W i
− = − 1

48
| 3〉〈2 |i

√
NL (5.13)

Since we in the NL � NA regime, we can use the semi-classical approximation by

taking the expectation value of the photonic operators, which is responsible for the

factor of NL.
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Figure 5.1: Atomic loss for f = 3, Parallel Atomic-Photonic Polarization. Population
in the f = 3, fx = 1 state is pumped out of the f = 3 manifold using microwaves,
while population in f = 3, fx = 2 and f = 3, fx = 3 are scattered into the f = 4
manifold and lost. Photon absorption events are shown with solid lines and emission
events with dashed lines. Dotted lines represent loss rates from the f = 3 manifold,
with the number giving the total probability of loss from these states.

In addition to the jumps within the subspace of interest we are must also treat

the loss to the f = 4 ground manifold and the | 1〉 state of the f = 3 manifold.

These effects could be included as terms in the jump operators but here it is more

convenient to calculate the rates and include these effects by hand as additional terms

in the differential equations for the decay of the collective operators. As summarized

in Fig. 5.1d, the probability of population loss per pulse are 29η/144 for the state

| fx = 3〉, η/6 for the state | fx = 2〉, and 5η/144 for the additional effective loss

from | fx = 2〉 to | fx = 1〉.
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Figure 5.2: Jump operators for f = 3, Parallel Atomic-Photonic Polarization. The
first three diagrams show the CG-coefficients coupling the excited and ground states
for (a) π (b) σ+ and (c) σ− polarized emitted light. Photon absorption events are
shown with solid lines and emission events with dashed lines.

Plugging our jump operators into the master equation for the atomic quadratures,

and adding in the effect of loss out of the two-dimensional | 3〉, | 2〉 subspace we arrive

at the following expressions,

d

dt
〈XA〉 = 〈

(
− 11

288
− 29

144

(
1

2

)
− 1

6

(
1

2

))
γNLXA〉 = 〈−2

9
γNLXA〉 (5.14)

d

dt
〈PA〉 = 〈

(
− 11

288
− 29

144

(
1

2

)
− 1

6

(
1

2

))
γNLXA〉 = 〈−2

9
γNLXA〉 (5.15)

Recasting these expressions in the language of the covariance matrix, we arrive
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at the following update matrices,

M =


1− 2

9
η 0 0 0

0 1− 2
9
η 0 0

0 0 1 0

0 0 0 1

 (5.16)

and

N =


25
192
η 0 0 0

0 25
192
η 0 0

0 0 0 0

0 0 0 0

 (5.17)

The matrix N has been modified to include the effects of loss from the subspace of

interest, resulting in decay of the commutator between XA and PA. Thus, just as

with loss of light, loss of atoms contributes to the N matrix at half the rate of loss

of spin flips.

We must also track the amount of population in the | fx = 3〉 and | fx = 2〉
levels in order to calculate the mean polarization for use in calculating the spin

squeezing. The optical pumping between, and decay out of, these states is most

easily represented as the action of a matrix on a population vector,

p = (
∑
i

〈| fx = 3〉〈fx = 3 |i〉, 〈| fx = 2〉〈fx = 2 |i〉) (5.18)

and p′ = Qp. Since our population all starts in the | fx = 3〉 state, initially p =

(NA, 0). In this notation the flow of population may be compactly represented as

Q =

 1− 2
9
η 1

48
η

1
48
η 1− 2

9
η

 (5.19)

The decay of the Stokes’ vector component S1 during the interaction is negligible for

NL � NA.
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Figure 5.3: Squeezing versus fraction of atoms undergoing scattering for four different
levels of light loss / detector imperfection- red (0/0), green (2%/1%), blue (6%/3%),
and orange (20%/10%), for coherent state in f = 3 ground state, parallel atom-field
polarization case.

In Fig. 5.3 we show squeezing as a function of η for the spin-3 case, including

the effects of photon-atom scattering. We can see that the peak squeezing is very

comparable to that achieved in the spin-1/2 case, peaking around 13 dB, despite the

fact that the Faraday rotation angle has been reduced by a factor of 2f . Though the

interaction strength is weaker in this case, the squeezing achieved is similar because

the scattering model is far less punishing. Atoms which are scattered into the f = 4

hyperfine manifold or the fx = 1 state can be treated as loss, which is less harmful

to the squeezing than spin flips on the qubit of interest.

5.2.2 Light Polarized Perpendicular to Atomic Polarization

For completeness, as in the spin-1/2 ensemble, we consider the case in which the

light is polarized perpendicular to the initially prepared atomic spin coherent state.
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Figure 5.4: Jump operators for f = 3, Perpendicular Atomic-Photonic Polarization.
The first three diagrams show the CG-coefficients coupling the excited and ground
states for (a) π (b) σ+ and (c) σ− polarized emitted light. (d) represents the flow
of atoms out of the subspace of interest. Photon absorption events are shown with
solid lines and emission events with dashed lines. Dotted lines represent loss rates
from the f = 3 manifold, with the number giving the total probability of loss from
these states.

The jump operators and associated CG-coefficients are different for this case, as

summarized in Fig. 5.4. From these we may calculate the jump operators

W i
0 =

1

96
| 3〉〈2 |i

√
NL +

1

96
| 2〉〈3 |i

√
NL (5.20)

W i
+ = − 7

24
| 3〉〈3 |i

√
NL −

1

4
| 2〉〈2 |i

√
NL (5.21)

W i
− = − 1

24
| 3〉〈3 |i

√
NL −

1

12
| 2〉〈2 |i

√
NL (5.22)

The probability of population loss per pulse are 43η/288 for the state | fx = 3〉, η/6
for the state | fx = 2〉, and 5η/288 for the additional effective loss from | fx = 2〉 to

| fx = 1〉.

Plugging our jump operators into the master equation for the atomic quadratures,

and using these modified rates for loss out of the | 3〉, | 2〉 subspace we arrive at the
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following expressions,

d

dt
〈XA〉 = 〈

(
− 7

576
− 43

288

(
1

2

)
− 1

6

(
1

2

))
γNLXA〉 = 〈− 49

288
γNLXA〉 (5.23)

d

dt
〈PA〉 = 〈

(
− 19

576
− 43

288

(
1

2

)
− 1

6

(
1

2

))
γNLXA = − 55

288
γNLXA〉 (5.24)

Recasting these in the language covariances matrices and including the differing

effects of spin-flip and spin-loss in the calculation of the N matrix, we arrive at

M =


1− 49

288
η 0 0 0

0 1− 55
288
η 0 0

0 0 1 0

0 0 0 1

 (5.25)

and

N =


35
384
η 0 0 0

0 43
384
η 0 0

0 0 0 0

0 0 0 0

 (5.26)

Again we track the population of the | fx = 3〉 and | fx = 2〉 levels for use in

calculating the mean polarization through the action of a matrix

Q =

 1− 23
144
η 1

96
η

1
96
η 1− 7

36
η

 (5.27)

on the population vector. And as before the decay of S1 during the interaction is

negligible for NL � NA.

In Fig. 5.5 we show squeezing as a function of η for the spin-3 case, including

the effects of photon-atom scattering. As with the case of parallel light polarization,

we see a high degree of squeezing despite the weaker interaction strength, in fact

performing slightly better due to the particulars of the coupling strengths. As before,
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Figure 5.5: Squeezing versus fraction of atoms undergoing scattering for four different
levels of light loss/ detector imperfection- red (0/0), green (2%/1%), blue (6%/3%),
and orange (20%/10%), for coherent state in F = 3 ground state, perpendicular
atom-field polarization case.

loss of atoms to due to scattering between the hyperfine levels and out of the qubit

of interest replace spin flips on the qubit, resulting in high squeezing despite the

weakened interaction strength.

5.3 Cat States

We can achieve better performance by taking full advantage of the higher dimen-

sional state space during state preparation. Using the single atom state preparation

techniques described in [3, 30, 29], we can prepare the ensemble in an arbitrary sep-

arable state | ψ〉⊗NA . In the derivation of the form of the Hamiltonian H ∝ F 2
z

we only made approximations on the photonic component of the interaction, so the

action on the atomic component remains independent of the choice of initial state.

74



Chapter 5. Beyond Spin-1/2

We can thus optimize our choice of fiducial state | ψ〉 and the choice of generalized

HP mode to maximize the strength of the squeezing interaction.

The squeezing in the protocols we’ve considered has scaled with the projection

noise, since greater atomic fluctuations mean greater back-action due to the coupling

to the light. Thus we might guess that a state with a high variance in Fz would be

the best choice. The initial state is pure state which maximizes the variance in Fz,

the “cat state”

| Cat〉 =
| fz = f〉+ | fz = −f〉√

2
. (5.28)

One way to see that this must be the optimal state for squeezing is to consider that

we will increase the amount of squeezing by choosing our fiducial state and mode

so that the ratio of Fz to PA is maximized. If we choose our fiducial state to be an

eigenstate of Fz it will not couple to any HP mode. The | fz = f〉 and | fz = −f〉
states have the eigenvalues with the largest magnitudes, so a superposition of these

states will be strongly coupled to an orthogonal superposition by Fz.

We can calculate the exact magnitude of the improvement in the generalized HP

mode picture. We choose the cat state to be our fiducial state, meaning we are

considering the case where our initial preparation is | Cat〉⊗NA . To find the mode

our interaction squeezes, we first observe that the action of the operator Fz on the

cat state is to couple it to an orthogonal superposition state we call the “Dog” state

| Dog〉 =
| fz = f〉− | fz = −f〉√

2
. (5.29)

This is the state which, along with our fiducial state, defines our “quasi-qubit”. Our

F 2
z interaction will result in squeezing of the mode associated with these two states,

whose quadratures are

XA =
∑
j

| Cat〉〈Dog |j + | Dog〉〈Cat |j√
2NA

(5.30)
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PA =
∑
j

−i | Cat〉〈Dog |j +i | Cat〉〈Dog |j√
2NA

(5.31)

Re-expressing Fz in terms of these quadratures we find XA ≈ Fz√
2NAf

, a factor of
√

2f

greater than the mode associated with the coherent state. Since ξ ∝ χ2 this results

in an overall factor of 2f in the squeezing relative to the coherent state case. Thus

if we prepare our system as an ensemble of cat states initially, the rate of squeezing

in the absence of noise is independent of the dimension of the atomic subsystems,

in contrast to the coherent state case where the squeezing rate scales inversely with

spin f .

At this stage the squeezing we have generated is not squeezing of the collective

angular momentum operators, but rather of the variances associated with the modes

XA and PA. However, we can correct this with post-processing of the system, once

more by applying single atom control identically to each atom. If we apply a map

taking | Cat〉 →| f〉 and | Dog〉 →| f − 1〉, this map preserves the squeezing while

transferring it from the cat-dog mode to the mode coupling fiducial state | f〉 to

| f − 1〉 whose quadratures are proportional to Fy and Fz. The remainder of the

unitary map on the orthogonal complement is arbitrary since we assume negligible

population in states outside of the span of {| Cat〉, | Dog〉}. Thus the squeezing of

the cat-dog mode becomes traditional spin squeezing under this transformation.

Generally highly nonclassical states like the | Cat〉 state are fragile to decoher-

ence, because any scattering process which reveals information about whether the

state was | f〉 or | −f〉 will rapidly kill off the coherence between those two states.

But what is really critical for squeezing is the coherence between | Cat〉 and | Dog〉,
which means that revealing information about the phase between | f〉 and | −f〉 is

what really hurts us. This information is much better shielded from the environment.

Furthermore, in contrast to the spin-1/2 system, it is not possible for a single scat-

tering event to drive us directly from | f〉 to | −f〉 or visa versa. Instead, population

is transferred to the | f −1〉 and | −(f −1)〉 states which can then be pumped out of
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the system, just as in the coherent state case. Such a process results in significantly

less noise because the scattered atoms can be removed from the system rather than

hopping back and forth between the two states of interest. Perhaps for these two

reasons, the noise model for the higher spin case turns out to be significantly less

punishing than the spin-1/2 case.

For the cat-state case it is convenient to choose our quantization axis along z

rather than x as before. The jump operators and associated CG-coefficients are

summarized in Fig. 5.6. Although we are ultimately interested in the evolution

of the cat state and its moments, we will continue to use the eigenbasis of Fz as

the physical processes responsible for decoherence are slightly clearer in this picture.

Keeping the atoms polarized along x, detuning from the D1 line, and truncating

them to the cat-dog subspace (or equivalently the | f〉, | −f〉 subspace), the jump

operators in our new basis are

W i
0 = 0 (5.32)

W i
+ =

7

12
√

2
| 3〉〈3 |i

√
NL +

1

12
√

2
| −3〉〈−3 |i

√
NL (5.33)

W i
− =

1

12
√

2
| 3〉〈3 |i

√
NL +

7

12
√

2
| −3〉〈−3 |i

√
NL (5.34)

In terms of the cat and dog states these jump operators can be expressed as

W i
0 = 0 (5.35)

W i
+ =

√
NL

3
√

2
(| Cat〉〈Cat |i + | Dog〉〈Dog |i)+

√
NL

4
√

2
(| Cat〉〈Dog |i + | Dog〉〈Cat |i)

(5.36)

W i
− =

√
NL

3
√

2
(| Cat〉〈Cat |i + | Dog〉〈Dog |i)−

√
NL

4
√

2
(| Cat〉〈Dog |i + | Dog〉〈Cat |i)

(5.37)
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Figure 5.6: Jump operators for f = 3, cat State. The first three diagrams show
the CG-coefficients coupling the excited and ground states for (a) Σ+ and (b) Σ−
polarized emitted light. (c) represents the flow of atoms out of the subspace of
interest. Photon absorption events are shown with solid lines and emission events
with dashed lines. Dotted lines represent loss rates from the f = 3 manifold, with
the number giving the total probability of loss from these states.

Because the atoms are never scattered directly between | f〉 and | −f〉 we can ignore

the direction of the polarization of the light (x-axis vs y-axis). The direction of the

light polarization does affect the states outside the subspace of interest into which

population is driven, but because it does not effect the total rate at which population

leaves this subspace, and because we treat pumping out of this subspace as loss, the

details of which states are populated are irrelevant to calculating the squeezing.

As before we must consider pumping out of the | Cat〉 and | Dog〉 states, into

the f = 4 ground manifold with a probability per pulse of 43η/288, and into the

| fz = 2〉 and | fz = −2〉 states with a probability η/96. This population will also be

removed from the f = 3 manifold between pulses and can be considered as a second

loss process. Putting this all together we arrive at the following differential equations

for the decay of the atomic harmonic oscillator quadratures,

d

dt
〈XA〉 = 〈

(
− 43

288
− 1

96

)
γNLXA〉 = 〈− 23

144
γNLXA〉 (5.38)
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d

dt
〈PA〉 = 〈

(
−1

8
− 43

288
− 1

96

)
γNLXA〉 = 〈− 41

144
γNLXA〉 (5.39)

Our M and N matrices are thus ultimately

M =


1− 23

144
η 0 0 0

0 1− 41
144
η 0 0

0 0 1 0

0 0 0 1

 (5.40)

N =


23
288
η 0 0 0

0 59
288
η 0 0

0 0 0 0

0 0 0 0

 (5.41)

We must also track the amount of population in the | Cat〉 and | Dog〉 levels.

Again we can represent them with a vector of the populations being acted on by a

matrix, p = (NA, 0),

Q =

 1− 2
9
η 1

16
η

1
16
η 1− 2

9
η

 (5.42)

The decay of S1 during the interaction is again negligible. The ultimate results for

spin squeezing as a function of number of pulses are summarized in Fig. 5.7. In this

case we significantly outperform the spin-1/2 case, in the absence of transmission loss

and imperfect measurement achieving over 18 dB of squeezing, in contrast to ∼13 dB

of squeezing for the spin-1/2 case. The noise model is less punishing than the spin-

1/2 case for all the reasons previously discussed, but because the cat state couples

just as strong as the spin-1/2 coherent state, this actually results in a substantially

higher squeezing.
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Figure 5.7: Squeezing versus fraction of atoms undergoing scattering for four different
levels of light loss/ detector imperfection- red (0/0), green (2%/1%), blue (6%/3%),
and orange (20%/10%), for coherent state in f = 3 ground state, cat state case.
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Chapter 6

Conclusions and Future Direction

The key results of this dissertation research are the development of new methods for

improving the double-pass spin squeezing protocol, the derivation of a noise model

from the master equation picture, and the extension of these results beyond spin-1/2

systems. The improvements to the double-pass scheme stem from two additional

stages, the quantum eraser and phase matchings steps. In the quantum eraser stage,

light which is entangled to the squeezed atoms is measured upon its escape after

the second pass, and the atomic system is subject to feedback conditional upon the

measured result. This disentangles the atoms from the light without decoherence,

improving the atomic squeezing. The squeezing is further improved by means of a

phase matching step where small rotations of the system are interwoven with the

spin squeezing interactions, resulting in the conversion of the effective interaction

from a one-axis to a two-axis twisting interaction. The rotations “phase match” the

direction of squeezing so that it builds up exponentially over time. The addition

of these two new stages changes the scaling law of the squeezing with interaction

strength, resulting in dramatically more squeezing.

The noise model used in this work is derived from the master equation picture,
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putting it on more fundamental footing then previous approaches. This was used to

test some of the key assumptions built into previous models, such as the assump-

tion that Gaussianity is preserved under decay, and that the atomic and photonic

scattering processes could be considered independently. The first assumption was

found to be justified in the regimes of interest, but the second assumption in general

does not hold. Typically, the decay rates of the atoms and photons are not isotropic

and depend upon the relative orientations of the two subsystems. However, in many

cases of interest a semi-classical approximation applies, where only the non-vanishing

means of the atomic spin and field must be considered in modeling noise, as opposed

to the quantum fluctuations which more generally would have to be included.

Finally these results were extended to the higher spin case using a generalized

Holstein-Primakoff approximation. As well as a straightforward extension of the

previous results to higher spins, I also explored the use of state preparation and

unitary control for enhancing the achievable squeezing. I found that although the

effective squeezing interaction strength is weakened for higher dimensional systems,

preparing the system in a “cat state” instead of a coherent state, along with the ap-

propriate post interaction transformation, cancels this diminishment in interaction

strength. Furthermore, in higher dimensional systems many “spin-flip” noise events

are replaced by “spin-loss” events, which are less damaging to the achievable squeez-

ing. Thus spin squeezing in higher dimensional systems may potentially significantly

outperform spin-1/2 realizations.

Beyond the direct application to experiments in squeezing cold atomic clouds,

the results of this work have some important generalizations to broader work in spin

squeezing. Foremost among these are the techniques of the quantum eraser and phase

matching, which should be applicable to many spin squeezing experiments. The key

technical requirement is that the system can be rotated between short squeezing in-

teractions. This technique leads to large gains in squeezing in the realization under
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consideration and is thus promising as a technique for other instantiations. A second

result with broader applications is the exploration of the Gaussian and separability

approximations through the use of the master equation formalism. Previous spin

squeezing protocols whose noise models rely upon the assumption of separability

should be reexamined in light of the finding that it does not hold universally. Fur-

thermore, the techniques developed here for deriving the noise model from the more

fundamental master equation picture can be used in other systems to better model

decoherence. Finally the generalization of these results to higher dimensional sys-

tems opens the doors for further use of single-atom control for improving squeezing

performance. While I believe the cat state is the optimal initial state for this inter-

action, the question of what the optimal post-processing is remains open, and the

initial state should be tailored to the interaction, so it is possible that other states

will be optimal for other spin squeezing protocols.

The first future direction that I’d like to explore is the aforementioned question of

optimal post-collective interaction state mapping. In this dissertation the cat state is

mapped back to a coherent state to transform the inter-atomic correlations into spin

squeezing. However, further improvements should be possible through subsequent

single atom spin squeezing. It was found in [19] that collective squeezing followed

by the application of single-atom squeezing through a one-axis twisting Hamiltonian

underperformed relative to the sum of the individual squeezing strengths, suggesting

that the two techniques interfered with each other to some degree. I conjecture that

it is possible to avoid this interference through the use of more general single-atom

unitary maps. It should be possible to map the fiducial state directly to a spin

squeezed state and to solve for the optimal mode to map the collective correlations

to, which should result in total squeezing which is the sum of the collective and

single-atom squeezing, in the HP limit.

Another important generalization to this work will be to include the effects of
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tensor interactions and imperfect mode matching. In this dissertation I have assumed

that the hyperfine splitting between the excited states is negligible, so that the

coupling between the light and atomic spins arose solely from the vector term in the

light shift. In practice the energy splitting will lead to significant deviations from the

results given here, since no matter how far we are detuned, the scattering rate and

tensor light shift scale the same way with ∆. Thus, after sufficient time the tensor

terms will always become important. The noise model should be straightforward

to generalize by including the more complex dependence upon the detuning in the

coefficients of the jump operators. The potentially more difficult theoretical challenge

will be the inclusion of the additional Hamiltonian terms arising from the hyperfine

splitting, which in general depend upon tensor rather than vector components of

the atomic angular momentum operators. These terms may act as additional noise

sources, or may require more radical modifications of the protocol such as modifying

the initial preparation of the atomic ensemble.

In this dissertation I have also largely avoided the issue of mode matching of the

light to the atoms. Imperfections may arise from fluctuations in the strength of the

coupling of the atoms to the field, with spatial dependence of the coupling on atomic

position or temporal dependence of the coupling from pass to pass both serving as

potential sources of error. This issue was treated in [31] but should be explored in

more depth for this particular system.

Another avenue to explore is the possibility of porting this protocol over to other

high optical density systems, perhaps systems where the squeezing is sufficient to see

a break down of the HP approximation, and consequently non-Gaussian states. The

optical nano-fibers considered in [44] achieve high OD through very strong coupling

of the atoms to the fiber modes by trapping the atoms at the surface of the fibers in

tapered regions. A further advantage of such systems is that high OD can be achieved

with a relatively small number of atoms. Since the HP approximation holds in the
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high number of atoms limit, a smaller number of atoms means a breakdown of the

HP approximation for a smaller squeezing strength.

A typical strategy when dealing with spin squeezing in high dimensional systems

has been to consider an embedded pseudo-qubit which is squeezed. The major finding

of this work has been that we do not need to restrict ourselves to considering a single

pair of states throughout a protocol, and that through the use of unitary design

we can guide the system through both an interaction stage where the two-body

coupling is maximized, and then through a post-processing stage where the two-

body correlations are converted into a useful form. I hope this work will lead others

to consider the broader range of possibilities offered by higher dimensional systems,

and not constrain their focus to the most straightforward single embeddings.
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Entanglement and the generation of random states in the quantum chaotic dynamics of kicked
coupled tops
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We study the dynamical generation of entanglement as a signature of chaos in a system of periodically
kicked coupled tops, where chaos and entanglement arise from the same physical mechanism. The long-time-
averaged entanglement as a function of the position of an initially localized wave packet very closely correlates
with the classical phase space surface of section—it is nearly uniform in the chaotic sea, and reproduces the
detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state
conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions,
quantized versions take localized coherent states to pseudorandom states in Hilbert space. Such random states
are highly entangled, with an average value near that of the maximally entangled state. For a map with global
chaos, we derive that value based on analytic results for the entropy of random states. For a mixed phase space,
we use the Percival conjecture to identify a “chaotic subspace” of the Hilbert space. The typical entanglement,
averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time-averaged
entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is that of
a random complex vector, even though the system is time-reversal invariant, and the Floquet operator is a
member of the circular orthogonal ensemble.

DOI: 10.1103/PhysRevE.78.046211 PACS number�s�: 05.45.Mt, 03.65.Ud, 03.67.�a

I. INTRODUCTION

The connections between complexity, nonlinear dynam-
ics, ergodicity, and entropy production have long been at the
heart of the foundations of statistical physics. A central goal
of “quantum chaos” has been to extend this foundation to the
quantum world. Classic works on the subject including level
statistics �1�, properties of Wigner functions �2�, and quan-
tum scars in ergodic phase spaces �3� have tended to focus
on the properties of wave mechanics, e.g., the dynamics of
single-particle billards �4� �also seen in the properties of clas-
sical waves, e.g., microwave cavities �5��. More recently, the
tensor product structure of quantum mechanics, essential for
understanding systems with multiple degrees of freedom, has
come to the fore. In that context, one is naturally led to
consider how the dynamical generation of entanglement be-
tween quantum subsystems is connected with the chaotic dy-
namics of coupled classical degrees of freedom. Such studies
address fundamental issues of complexity in quantum sys-
tems and are potentially applicable in quantum information
processing, where entanglement is considered to be an essen-
tial resource.

The connection between chaos in the classical description
of Hamiltonian dynamics and entanglement in the quantum
description has been the subject of extensive study over the
last decade. The original motivation of Zurek and Paz was to
address the quantum-to-classical transition �6�. By conjectur-
ing that chaotic systems decohere exponentially fast through
their entanglement with the environment, they hoped to re-
solve a paradox in which a macroscopic system would ex-
hibit the effects of quantum coherence on a time scale loga-
rithmic in �.

Work quickly following this turned to studies of the cou-
pling of just two degrees of freedom, rather than system-
environment coupling, as entanglement is most easily quan-
tified for bipartite systems �7�. In most cases, workers have
considered systems described by a total Hamiltonian of the
form

Htotal�t� = H1�t� + H2�t� + Hint�t� , �1�

where H1�t� and H2�t� can exhibit chaos in the classical de-
scription of the dynamics and Hint�t� couples the two degrees
of freedom. The best-studied example has been two coupled
kicked tops �a standard paradigm of quantum chaos �8��.
Two separate questions have been addressed: �i� How does
the rate of dynamical generation of entanglement correlate
with the chaos in the subsystems 1 and 2? �ii� How does the
entanglement content of the state, either in the eigenstates, or
in the state that is dynamically generated in quasisteady
state, correlate with this chaos? Miller and Sarkar �9� were
the first to study question �i� for this system, and through
numerical studies, correlated the rate of generation of en-
tanglement with the Lyapunov exponents associated with the
mean positions of quantum wave packets localized in a
mixed phase space �weak chaos�. This behavior was not
found to be universal �10–13�, but depended strongly on the
degree of the chaos within subsystems when compared to the
size of coupling between them. In a seeming paradox, for
strong chaos within the tops, the rate of entanglement gen-
eration decreased with increasing coupling strength, asymp-
toting to a constant value. Moreover, in a systematic study of
the entangling power of the coupled kicked top system �14�,
Demkowicz-Dobrzaski and Kus found additional anomalies,
including a regime in which each top was described by
highly regular dynamics, but exhibited the highest rate of*ctrail@unm.edu
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generation of entanglement when compared with conditions
where each top is highly chaotic.

In relation to question �ii�, Bandyopadhyay and Lakshmi-
narayan �10,15� explored the amount of entanglement that is
associated with coupled kicked tops, with particular empha-
sis on the entanglement of the Floquet eigenstates �16�. The
entanglement of these eigenstates saturated to a value below
the maximum possible value in a way that depended only on
the Hilbert space dimension, not the chaoticity parameter.
The same was true of the dynamically generated entangle-
ment. �The relationship between the entanglement in the
eigenstates and the dynamically generated entanglement is
subtle �14�; we will return to this point later�. This work gave
the first indication that the entanglement generated by the
coupled tops was statistical in nature, and related to the
theory of random states in Hilbert space. Using random ma-
trix theory �8,17� they were able to determine the statistics of
the Schmidt coefficients of a random bipartite pure state, and
thus were able to predict the saturation value of the entangle-
ment for the Floquet eigenstates. An extended analysis of the
statistical properties of the Schmidt vectors of random states
was carried out by Znidaric �18�. In other related work, dy-
namical generation of entanglement by chaotic maps and its
relation to random matrices was also explored by Gorin and
Seligman �19� as a way of modeling decoherence, by Scott
and Caves �20� and Abreu and Vallejos �21� as a way of
comparing different quantizations of the baker’s map, and by
Viola and co-workers �22� as a means of quantifying com-
plexity in quantum systems and its relationship to general-
ized entanglement.

In another approach to question �ii�, Ghose and Sanders
have shown that there are signatures of chaos in the entangle-
ment dynamically generated by a single kicked top when the
large angular momentum is thought of as a collection of
symmetrically coupled qubits �23,24�. They showed strong
correlation between the classical Poincaré surface of section
for a mixed phase space, and a contour plot of the dynami-
cally generated entanglement as a function of the initial po-
sition of a localized coherent state. Using the Floquet spec-
trum, they also explained the initial rise time and power
spectrum in the entanglement history.

While many of the elements connecting chaos and en-
tanglement have been explored with a variety of successful
numerical and analytic predictions, in some cases the key
relations have been obscured. In particular, in studies of sys-
tems of the form in Eq. �1�, entanglement is correlated with
the chaos in the individual subsystems. But entanglement
arises from coupling between subsystems and is a global
property of the state. Likewise, chaos can also arise through
the coupling of degrees of freedom when the overall dynam-
ics are not integrable. For this reason, we believe the key
relations are best understood by correlating entanglement
with chaos in the joint system �i.e., chaos in Htotal�, rather
than chaos in the subsystems that one would see in the ab-
sence of coupling. To do so, it is most natural to consider
systems in which chaos and entanglement arise from the
same mechanism—the physical coupling between sub-
systems. Moreover, by considering a total system that is cha-
otic only when the two parts are coupled, we focus on a
classical phase space that describes the global system rather

than a subsystem, and there is no ambiguity about the nature
of the joint dynamics. For this case, the distinction between
weak and strong coupling cannot be made independently of
weak and strong chaos, thereby sharpening our focus on the
key relationships.

To address these issues, we consider a model system of
kicked coupled tops, rather then coupled kicked tops, de-
scribed in detail in Sec. II. This system is motivated by its
connection to possible experimental realizations, and our
ability to easily visualize the classical phase space and to
analyze the Floquet map. We use this system as a forum to
explore question �ii� above—how is chaos in the classical
dynamics of the joint system correlated with the long-time-
averaged dynamically generated entanglement?

The basic thesis of this paper is as follows. Chaos can
arise in classical dynamics when there is insufficient symme-
try �integrals of motion� for a given number of degrees of
freedom. In the quantum analog, insufficient symmetry leads
to the random matrix conjecture—systems with global clas-
sical chaos have eigenvectors and eigenvalues that are statis-
tically predicted by ensembles of random matrices �8,25�.
Moreover, where classical chaos leads to ergodic dynamics
and the generation of “random� coarse-grained distributions
on phase space, for times short compared to the Heisenberg
time, but long compared to transient behavior, the quantum
chaotic map generates a state with many properties that are
statistically predicted by a random state in Hilbert space,
picked according to an appropriate Haar measure �20�. The
dynamically generated entanglement is then that of a random
state �by this measure� in the relevant Hilbert state. These
predictions can be extended to mixed phase spaces with
regular islands immersed in a chaotic sea. With the help of
Percival’s conjecture �26�, which divides eigenstates into
chaotic and regular classes, we can find the entanglement of
a random state in a chaotic subspace and thus predict en-
tanglement generation in a mixed phase space for chaotic
initial conditions. Whereas in the globally chaotic case we
can derive analytic results, for the mixed phase spaces we are
relegated to numerical predictions, which nonetheless verify
the connection between entanglement generation in chaotic
dynamics and the creation of pseudorandom states in Hilbert
space.

The remainder of this paper is organized as follows. In
Sec. II we introduce our model of kicked coupled tops,
studying the classical and quantum features. Section III, the
heart of the paper, studies the entanglement in our system.
We perform numerical calculations of the entanglement of
the system’s eigenstates, the long-time-averaged entangle-
ment generated by the Floquet map, and its relationship to
the classical phase space. We then explain these results in
terms of the properties of random states in Hilbert space.
Reviewing the essential ideas, we derive analytical expres-
sions for the typical entanglement of a random state when we
are restricted to a subspace of the full tensor product space.
This is of relevance here given the symmetries of the system.
We also pay particular attention to the subtle distinctions
between the eigenstates of random matrices and the random
states generated from initially localized wave packets. In do-
ing so we clarify previous works and make accurate predic-
tions, especially for global chaos, but also extended to a
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more general mixed phase space scenario. Our results are
discussed and summarized in Sec. IV.

II. KICKED COUPLED TOPS

A. Quantum and classical descriptions

We consider a bipartite system composed of two spins I
and J, isotropically coupled in a Heisenberg interaction, and
subject to periodic kicks that act only on spin J. Choosing
the direction of the kicks to be about the z axis, the system
evolves according to the Hamiltonian

H = AI · J + �
n=−�

�

��t − n��BJz. �2�

Here A gives the strength of the isotropic coupling and B the
strength of the kicking, and � is the kicking period. Such a
Hamiltonian describes the hyperfine interaction between
nuclear spin I and total electron angular momentum J, with a
magnetic field that has negligible effect on the nucleus.
While this realization cannot reach deep into the semiclassi-
cal regime, for large atoms, with heavy nuclei and a large
number of electrons in the valence shell, one can explore
nontrival mesoscopic regimes. The true semiclassical limit
can potentially be attained in an atom-photon system where I
is the collective spin of an atomic ensemble coupled to the
Stokes vector J of a quantized electromagnetic field �27�. We
will not consider here the feasibility of experimental realiza-
tions, instead focusing on the foundational theory.

Choosing the external field to act in � kicks allows us to
express the Floquet map �transformation after one period� in
a simple form of sequential rotations,

U� = e−i�I·Je−i�Jz � e−i�F2/2e−i�Jz, �3�

where � and � are related to A and B in terms of the kicking
period, �, etc. In the second form, we have expressed the
rotation in terms of the total angular momentum F=I+J and
neglected irrelevant overall phases. We can thus interpret the
dynamics as alternating a rotation of J about a space-fixed z
axis by angle �, followed by a precession of I and J about F
by an angle ��F�, as shown in Fig. 1. Such a simple trans-
formation nonetheless leads to complex dynamics, including
chaos in the classical limit as discussed below. From the
quantum perspective, since the two rotations do not com-
mute, there are insufficient symmetries to specify Floquet

eigenstates by a complete set of commuting operators; the
system is not integrable. Note, however, that the system is
invariant under an overall rotation around the z axis, so Fz is
a conserved quantity �F2 is not conserved�.

We treat the classical limit of quantum mechanical spin in
the familiar way �8�. Each of our spins has three components
but a fixed magnitude, and thus their orientations can be
specified by two variables. The z component of a spin and
the angle �, denoting its orientation in the x-y plane, are
canonically conjugate, and thus each spin constitutes one ca-
nonical degree of freedom. The classical dynamical map has
the same physical action as described above in the quantum
context—rotation of J by angle � followed by precession of
I and J about F by angle ��F�. Here, the rotations are imple-
mented by 3	3 SO�3� matrices. The two spins plus time-
dependent Hamiltonian imply a five-dimensional phase
space. Since Fz is conserved, the dynamics is restricted to a
four-dimensional hypersurface. As there are no additional
constraints, the dynamics are not integrable and can exhibit
chaos. Note that Eq. �2� is of the form of Eq. �1�, with H2
=0, but where chaos is seen only in the coupled dynamics,
not the dynamics of H1 alone.

To visualize the dynamics, we rewrite our system in terms
of a new set of variables �Fz , �̄��I+�J� and ��Fz� Iz
−Jz ,����I−�J�,

Jz =
Fz − �Fz

2
, �4a�

I · J = IzJz + IJ�sin �I sin �J + cos �I cos �J�

= �Fz + �Fz

2
	�Fz − �Fz

2
	 + IJ cos���� . �4b�

Because Fz is a conserved quantity, �̄ does not appear in our
Hamiltonian. It is a cyclic coordinate, and thus we can ignore
it without losing any information about the further evolution
of the remaining variables. Neither do we require �̄ to deter-
mine the Lyapunov exponent of a chaotic system. Thus, we
need only consider the two difference variables ��Fz ,���
and time, taking us from a four- to a three-dimensional hy-
persurface. This allows us to visualize our system using a
Poincaré surface of section as a stroboscopic plot. We restrict
our attention here to Fz=0 as this also leads to the largest
subspace in the associated quantum problem. The reduction
of our system to essentially one degree of freedom is not
generic, but simplifies the analysis without sacrificing our
ability to study the essential relations between chaos and
entanglement.

The classical equations of motion depend on the ratio
�I� / �J�. We focus here on equal spin magnitudes and fix Fz
=0. Thus, without loss of generality, since the SO�3� rotation
matrices of classical dynamics are independent of spin mag-
nitude, we take the spin vectors to be unit vectors. The basic
structure of the phase space can be understood as follows.
When the coupling is removed, our system has fixed points
at the northern and southern “poles.” As the chaoticity pa-
rameter is turned up, chaos first forms around the unstable
north pole while regular behavior persists around the stable

B

I

J
F=I+J

� F

�

FIG. 1. �Color online� Dynamics of the kicked coupled tops
viewed as an alternating sequence of rotations. The two spins I and
J precess around the total angular momentum F by an angle ��F�,
and the spin J is kicked around the space-fixed z axis by �.
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south pole. Further fixed points appear in the usual manner
as bifurcations occur with increase of the chaoticity param-
eter. Figure 2 shows three different regimes of classical dy-
namics. With the parameters �=1 /2, �=
 /2 �Fig. 2�a�� the
dynamics are highly regular, with negligible stochastic mo-
tion. When �=3 /2, �=
 /2 �Fig. 2�b�� we see a mixed space
with chaotic and regular regions of comparable size. The
parameters �=6, �=
 /2 �Fig. 2�c��, give a completely cha-
otic phase space.

We want to choose our quantum Hamiltonian so that we
will recover our classical dynamics in the large-spin limit.
We would like to be able to vary the size of our spins, but we
will keep the pair equal to each other in magnitude, I=J.
Since the SU�2� rotation matrices depend on the spin mag-
nitude, we must scale the Floquet operator. By substituting
�→ �̃=� /J we obtain the same Heisenberg equations of mo-
tion as the classical equations for equal magnitude spins.

B. Quantum chaology

In order to understand the dynamical generation of en-
tanglement, we need to establish some basic understanding
of the eigenstates of the system and their relationship to the
classical dynamics. As our system is time periodic, the states

of interest are the eigenstates of the Floquet operator, Eq. �3�.
It is useful to consider both the coupled and uncoupled rep-
resentations of angular momentum connected by the usual
Clebsch-Gordan expansion,

�F,MF
 = �
mI,mJ

�F,MF�I,mI;J,mJ
�I,mI
�J,mJ
 . �5�

Conservation of Fz implies that the operator is block diago-
nal for all states defined by quantum number MF. The largest
block, MF=0, has dimension 2J+1 as F varies from 0 to 2J.
Using the uncoupled representation, denoting the product
state by the single quantum number mJ=−mI, the matrix

�mJ��U��mJ
 = �
F

e−i���F�F+1�/2J�+�mJ�F,0�I,− mJ�;J,mJ�
�F,0�I,

− mJ;J,mJ
 �6�

can then be diagonalized to yield the Floquet eigenstates and
eigenphases,

�k
 = �
mJ

cmJ

�k��I,− mJ
�J,mJ
, U��k
 = ei�k�k
 . �7�

A central result of quantum chaos is the connection with
the theory of random matrices �8�. In the limit of large Hil-
bert space dimensions �small ��, for parameters such that the
classical description of the dynamics shows global chaos, the
eigenstates and eigenvalues of the quantum dynamics have
the statistical properties of an ensemble of random matrices.
The appropriate ensemble depends on the properties of the
quantum system under time-reversal �8�. We thus seek to
determine whether there exists an antiunitary �time-reversal�
operator T that has the following action on the Floquet op-
erator:

TU�T
−1 = U�

† = ei�Jzei�̃I·J. �8�

Analogously to the case of the single kicked top, we consider
the generalized time-reversal operation,

T = ei�JzK , �9�

where K is complex conjugation in the uncoupled product
representation. Since both Iy and Jy change sign under con-
jugation, while the x and z components do not,

KJzK = Jz, KI · JK = I · J . �10�

It then follows that

TU�T
−1 = �ei�JzK��e−i�̃I·Je−i�Jz��Ke−i�Jz�

= ei�Jz�ei�̃I·Jei�Jz�e−i�Jz = ei�Jzei�̃I·J = U�
†, �11�

so the dynamics are time-reversal invariant. Moreover, T2

=1, so there is no Kramers degeneracy. Given these facts, for
parameters in which the classical dynamics are globally cha-
otic, we expect the Floquet operator to have the statistical
properties of a random matrix chosen from the circular or-
thogonal ensemble.

To further correlate the Floquet eigenstates with the clas-
sical phase space in the case of regular and mixed dynamics,
it is useful to employ a Husimi representation. A spin-
coherent state has a minimum quantum uncertainty and is

(a)

(b)

(c)

��

��

��

��

��

��

0

0

0

2�

2�

2�

�

�

�

0

0

0

��

��

��

FIG. 2. Poincaré surface of section for the coupled kicked tops,
with Fz=0. �a� Regular phase motion, �=1 /2, �=
 /2; �b� mixed
phase space, �=3 /2, �=
 /2; �c� global chaos, �=6, �=
 /2.
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specified by polar orientation angles � and � on the sphere.
In terms of the standard basis, a spin coherent state for a
single spin is �28�

��
 = �
m

�J−m

�1 + ���2�J� �2J�!
�J − m�!�J + m�!

�J,m
 , �12�

where �=tan�� /2�ei�. For our system, because the sub-
spaces in which the eigenstates exist are not described by an
irreducible representation of angular momentum, there are
no such minimum uncertainty states for the difference
angles. Nonetheless, we obtain a useful set of states by pro-
jecting the product of spin coherent states associated with the
two subsystems onto the subspace with a fixed value of Fz
�here Fz=0�. The result of the projection is

P̂0��I
��J
 = �
m
��I

�J
	m �2J�!

�J − m�!�J + m�!
�m
I�− m
J.

�13�

Classically, in projecting onto the surface of section with
Fz=0, we take �I+�J=
. Fixing this value in the quantum
state one finds

�I

�J
= ei��I−�S�� 1 + sin��I − �S

2
	

1 − sin��I − �S

2
	� . �14�

The projected coherent state thus depends only on the differ-
ence of the angle variables, and allows us to consider local-
ized quantum states correlated with the classical phase space
of interest. After normalizing, we arrive at an overcomplete

basis of states for the FZ=0 subspace, parametrized by ��
and ��. The Husimi distribution of a state �
 in this space,

Q���,��� � ����,���
�2, �15�

then provides a visualization in phase space.
In order to explore the semiclassical limit, we choose I

=J=150, corresponding to a �d=301�-dimensional Hilbert
space in the Fz=0 subspace, or an “effective �” of �eff
=1 /301. Figure 3 shows the Husimi plots of a few of the
eigenstates for � /J=3 /2, �=
 /2, for which the classical
phase space is mixed �Fig. 2�b��. These plots exhibit the
features expected according to Percival’s conjecture. The
states roughly divide into regular and irregular sets, with
regular eigenstates concentrated on invariant tori around
stable fixed points, resembling harmonic oscillator eigen-
states, and irregular “chaotic” states randomly distributed
within the chaotic sea.

Though Percival’s conjecture is largely borne out in nu-
merical analyses, it is not strictly true �especially in the
finite-� limit�, nor is there a strict procedure for filtering the
regular from chaotic eigenstates except for very special sys-
tems �29�. We can, nonetheless, create an approximate filter.
A useful measure for distinguishing states is the Shannon
entropy of the Husimi distribution �30�,

SQ = −� d� Q���,���ln Q���,��� , �16�

where d� is the measure on the phase space of difference
angles on the sphere. To calculate this entropy, we coarse-
grain the phase space so that the integral is transformed to a
sum. We expect the states delocalized in the chaotic sea to
have large entropy by this measure, while those states well
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FIG. 3. Husimi distributions of Floquet eigenstates associated with the parameters of a mixed phase space �Fig. 2�b��. �a�–�c� Regular
eigenstates around different fixed points. �d�–�f� Chaotic eigenstates, delocalized in the chaotic sea.
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localized around fixed points have low entropy. This leaves
some ambiguous situations, since highly excited states on
regular tori also have high Husimi entropy. To improve the
filter, we follow a procedure suggested by Korsch and co-
workers �31�, which correlated the properties of the eigen-
states to the classical phase space in order to distinguish the
regular and irregular states for a nonlinear rotor. In Fig. 4 we
plot the values of SQ and �Jz
. The latter quantity correlates
to the mean value of �� in the semiclassical limit. We see
four distinct features in this plot. Two lines of states with
near constant �Jz
 but increasing SQ, boxed in Figs. 4�a� and
4�b�, correspond to the series of states localized around fixed
points with increasing excitation �Figs. 3�a� and 3�b��. The
line of states with near constant SQ and increasing values of
�Jz
, boxed in Fig. 4�c�, correspond to the series of states
localized around the stable south pole �Fig. 3�c��. Finally, the
cluster of states with high values of both SQ and �Jz
, boxed
in Fig. 4�d�, correspond to the states delocalized in the cha-
otic sea that are concentrated near the original unstable fixed
point at the north pole of the regular dynamics. There is no
clean division between this cluster and states clearly local-
ized on invariant tori. A qualitative examination, denoted in
Fig. 4, nonetheless gives us an indication of the chaotic sub-
space for these mixed dynamics. Such an identification is
useful for giving quantitative prediction of the dynamically
generated entanglement, as we discuss in the next section.

III. ENTANGLEMENT

A. Calculating entanglement

We consider only pure states of the bipartite system. En-
tanglement is then uniquely determined by the coefficients in
the Schmidt decomposition of the joint state of the system,

��
IJ = �
i

��i�ui
I�vi
J, �17�

where �i are the eigenvalues of the reduced density matrix of
either subsystem, and the Schmidt basis vectors ��ui
I , �vi
J

are their corresponding eigenvectors. The entanglement E is
the Shannon entropy of the Schmidt coefficients,

E = − �
i

�i ln��i� . �18�

Determination of the Schmidt decomposition is typically a
nontrivial task, requiring partial trace and diagonalization of
the reduced density operator. The Schmidt basis will gener-
ally depend on the state ��
IJ. For the system at hand, we
have a unique situation—within a subspace with a fixed
value of Fz, the uncoupled basis of angular momentum is the
Schmidt basis, independent of the state, as seen, e.g., in Eq.
�7�. Thus, for states within such subspaces, the entanglement
is easily calculated as the Shannon entropy of the probability
distribution of the state when expanded in the standard prod-
uct basis. This not only simplifies calculations, but connects
entanglement with the entropy of random states with respect
to a fixed basis �32�.

Throughout this section, we consider the Fz=0 subspace,
and take I=J=150, corresponding to a Hilbert space of di-
mension d=301. The maximum possible entanglement in
this case is Emax=ln d�5.71.

B. Numerical solutions

The entanglement of the Floquet eigenstates is easily cal-
culated based on the discussion above. Since the eigenstates
reside in a subspace with fixed Fz, the uncoupled represen-
tation of angular momentum is the Schmidt basis, and the
entanglement between spins in a given eigenstate �k
 is the
Shannon entropy of the probability distribution of the expan-
sion �mJ

�k�= �cmJ

�k��2 from Eq. �7�. Figure 5 shows a list plot of
this entanglement for a mixed phase space �as shown in Fig.
2�b�� and a completely chaotic space �as shown in Fig. 2�c��.
In the latter case, the entanglement values are clustered
around the value expected from random matrix theory, dis-
cussed below.

Our main interest is to study the dynamically generated
entanglement and its correlation with the classical phase
space. We wish to associate quantum states with our classical
initial conditions. The “most classical” state of a quantum
system is a coherent state, so it would be natural to associate
a point in our four-dimensional classical phase space with a
product of spin coherent states. These states, however, have
support on several subspaces with different values of Fz, and
thus correspond to a distribution of classical surfaces of sec-
tions. To avoid this complication, we project our coherent
states into the MF=0 subspace, and then renormalize them,
as described in Eq. �13�. This gives us a pure state, which
though no longer separable, typically has a low entanglement
and is localized around a point in the classical phase space in
the relevant difference angles.

The time-evolved state after n applications of the Floquet
operator to the projected coherent state is

�n���,���
 = U�
n���,��
 = �

k

ake
−in�k�k
 , �19�

expanded in the Floquet eigenstates, where ak= �k ��� ,��
 is
the initial spectral decomposition. The Schmidt coefficients

FIG. 4. Scatter plot of �Jz
 vs Husmi entropy SQ, for the Floquet
eigenstates associated with the mixed phase space �Fig. 2�b��.
Boxed regions �a�, �b�, and �c� correspond to regular states centered
around fixed points. States in region �d� are considered “chaotic
eigenstates.”
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are the expansion of this state in the angular momentum
product basis �the Schmidt basis� giving

�mJ

�n� = ��
k

ake
−in�kcmJ

�k��2
. �20�

according to Eqs. �7� and �20�. The Shannon entropy of these
coefficients gives the dynamically evolved entanglement.
Figure 6 shows this quantum evolution for parameters such
that the classical evolution is described by a mixed phase
space. For a coherent state initial condition chosen in the
middle of a regular island ��0
= �I , I
�J ,−J
= ���=−
 ,��
=0
�, the entanglement rises slowly and oscillates between
high and low values. For an initial condition in the chaotic
sea ��0
= ���=
 /2,��=
 /3
�, the entanglement rapidly
rises and saturates to a near constant value, with small fluc-
tuations about the quasisteady state.

In order to better explore how the entanglement evolution
saturates to a particular value, we average over many time
steps to find a long-time average of entanglement. We drop
the first 300 steps in order to remove transient effects and
ensure that the dynamics settle into a quasisteady state, and
then average over times steps 300–320. Figure 7 shows these
data represented as a contour plot. By looking at a plot of
this average, we can see how it correlates with initial condi-
tions, a procedure initially carried out for the kicked top
Hamiltonian by Wang et al. �24�. Figure 8 shows remarkably
strong correlation between structures in the classical mixed
phase space and the long-time entanglement average plot.
Chaotic initial conditions generally go to a higher average
value than regular initial conditions, with the smallest values
of entanglement generation near the classical fixed points.
Additionally, all initial conditions in the chaotic sea saturate
to nearly the same average entanglement.

For parameters corresponding to global chaos, we can see
that the surface plot is very flat �see Fig. 7�b��, with all initial
conditions converging to nearly the same long-time entangle-
ment average. For the parameters at hand, averaging over all
initial conditions, the dynamically generated entanglement is

Ēdynam=5.28, as compared to the value Ēeigens=4.97 found
for the average entanglement of the eigenstates of the Flo-
quet map. For the mixed phase space, the value of long-time
entanglement is flat for initial conditions that correlate with

the classical chaotic sea. To find the entanglement character-
istic of the chaotic initial conditions, we take a grid of co-
herent states across the phase space. Each point in the grid is
determined as “regular” or “chaotic” by the local Lyapunov
exponent of the classical dynamics. For those states with
positive Lyapunov exponent we evolve according to the Flo-
quet operator and calculate the long-time entanglement aver-
age, as described above. Weighting these values according to
the measure on phase space gives us an average entangle-

ment of Ēdynam=5.08 in the chaotic sea, significantly lower
than that for the globally chaotic phase space. Below, we
interpret these results with statistics of random states in Hil-
bert space and their connection to quantum chaos.

C. Entanglement and random states in Hilbert space

The numerical studies in Sec. III B reveal some empirical
facts. When the Floquet map corresponds to a fully chaotic
phase space, the entanglement of the eigenstates are all
nearly equal, with an average value independent of the cou-
pling strength and below the maximum possible entangle-
ment for the bipartite system. Moreover, the dynamically
generated entanglement when starting from a projected co-
herent state localized in a chaotic sea saturates to a nearly
constant value after a few applications of the Floquet map. In
a mixed phase space, the amount of entanglement increases
as the size of the chaotic sea increases. For a completely
chaotic space, the value no longer changes with coupling
strength. This saturation value is different from the entangle-
ment seen in the eigenstates. These facts leads us to conclude
that the value of entanglement generation for chaotic maps is
statistical in nature, as emphasized by Bandyopadhyay and
Lakshminarayan �10,15�, and Scott and Caves �20�. The pre-
dicted values follow from the theory of random matrices and
random states in Hilbert space, which we briefly review.

The random matrix conjecture of quantum chaos states
that when the Floquet map �in a periodically driven system�
classically generates global chaos, the quantum operators
have many of the statistical properties of a random matrix
drawn from an appropriate ensemble depending on funda-
mental symmetries �8�. Systems with time-reversal symme-
try �and no Kramers degeneracy�, have Floquet maps with

(b)

1

2

3
E

4

5

Index

0
0 100 200 300

(a)

1

2

3E

4

5

Index

0
0 100 200 300

FIG. 5. �Color online� Entanglement of the Floquet eigenstates. Maps corresponding to �a� mixed phase space, �=3 /2, �=
 /2, and �b�
global chaos, �=6, �=
 /2. The solid line gives the value expected from random matrix theory, Eq. �25�.
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many of the statistical properties of random matrices chosen
from the circular orthogonal ensemble �COE�—the set of
symmetric unitary matrices with a probability distribution
defined by the orthogonally invariant Haar measure �33�.
Without time-reversal symmetry, the Floquet maps have
many of the statistical properties of random matrices chosen
from the circular unitary ensemble �CUE�—the set of general
unitary matrices with a probability distribution defined by
the unitarily invariant Haar measure �33�. When expressed in
the basis of their eigenvectors, both such matrices have the
form U=�k exp i�k�k
�k�, where the phases are randomly
distributed from 0 to 2
 with a uniform probability distribu-
tion. In the case of the COE, the eigenvectors are invariant
with respect to an antiunitary operator T; for the CUE the
eigenvectors have no time-reversal invariance.

We seek to predict the entanglement of state vectors based
on statistical arguments. We can do this by averaging over an
appropriate distribution of random states in Hilbert space
�32�. To construct the probability measure for sampling ran-
dom states, we employ a parameterization equivalent to the
Hurwitz parameterization of random unitaries �34�. Such a

measure can be constructed by connecting the vector space
with a manifold upon which there is a known geometric
measure. A normalized state in a d-dimensional complex Hil-
bert space can be visualized as a point on the surface of a
hypersphere in a 2d-dimensional real space, where for each
of the d basis vectors in Hilbert space we assign a pair of
orthogonal directions that project out the real and imaginary
parts of the state’s probability amplitude. The surface area of
a differential patch on a hypersphere is then the probability
measure for picking uniformly distributed random states. The
coordinates of a state, parametrized by angles on the hyper-
sphere, and the corresponding measure over the space are

c1,r = cos �1, �21a�

c1,i = sin �1 cos �2, �21b�

cn,r = sin �1 ¯ sin �2n−2 cos �2n−1, �21c�

cn,i = sin �1 ¯ sin �2n−1 cos �2n, �21d�

cd,r = sin �1 ¯ sin �2d−2 cos �2d−1, �21e�

cd,i = sin �1 ¯ sin �2d−1, �21f�

d� = Nsin2d−2 �1 sin2d−3 �2 ¯ 	 sin �2d−2d�1d�2 ¯ d�2d−1,

�21g�

where cn,r and cn,i are the real and imaginary expansion co-
efficients in the nth basis state, d� is the surface element, and
N is a normalization constant. The angles all range in �0,
�
except for the last angle which varies from �0,2
�. This
defines the measure for random vectors over the field of
complex numbers.

For random states in a real vector space, the probability
measure is the area element on a d dimensional hypersphere,
with each direction corresponding to a basis vector. In this
case the coordinates of the state and measure over the space
are

c1,r = cos �1, �22a�

cn,r = sin �1 ¯ sin��n−1�cos��n� , �22b�
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FIG. 6. �Color online� Dynamically generated entanglement as a
function of the number of applications of the Floquet map. �a�
Mixed phase space ��=3 /2, �=
 /2�, regular initial condition
�0
= �I , I
�J ,−J
. �b� Mixed phase space ��=3 /2, �=
 /2�, regular
initial condition �0
= ���=
 /10,��=53
 /30
. �c� Mixed phase
space ��=3 /2, �=
 /2�, chaotic initial condition �0
= �I ,−I
�J ,J
.
�d� Globally chaotic phase space ��=6, �=
 /2�, chaotic initial
condition �0
= ���=
 /2,��=
 /3
. The solid line gives the value
expected from random states in the Hilbert space, Eq. �28�.
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FIG. 7. �Color online� Long-time-average entanglement as a
function of mean coordinate of the initial projected coherent state.
�a� Mixed phase space, �=3 /2, �=
 /2; �b� globally chaotic phase
space, �=6, �=
 /2.
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FIG. 8. Side-by-side comparison, showing dynamically gener-
ated entanglement as superb signature of classical chaos in a mixed
phase space ��=3 /2, �=
 /2�. �a� Classical phase space, Poincaré
section. �b� Long-time-average entanglement as a function of mean
coordinate of the initial projected coherent state.
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cd,r = sin �1 ¯ sin��d−1� , �22c�

d� = Nsind−2 �1 sind−3 �2 ¯ 	 sin �d−2d�1d�2 ¯ d�2d−1.

�22d�

This defines the measure for random vectors over the field of
real numbers.

With these measures in hand, we can calculate expected
values of entanglement of random states in an appropriate
ensemble and compare them to the numerically predicted
results. For large d-dimensional spaces, the variance scales
as 1 /�d �32�, so when the states in question are well de-
scribed by the statistics above, we anticipate the expectation
value to give good predictive power. A well known example
is the entanglement of a “typical state” picked at random
from a d1 � d2 tensor product Hilbert space, with no other
restrictions of symmetry. The Haar measure average of the
entanglement over the whole space gives �20,35,36�

Ēd1�d2
= �

k=d1+1

d1d2 1

k
−

d1 − 1

2d2
, d2 � d1. �23�

For large dimensions, Ēd1�d2
� ln d1−d1 / �2d2�, which is

close to the maximum possible value of entanglement, but
saturates slightly below. Typical pure states in an uncon-
strained bipartite Hilbert space are highly entangled �36�. For
the case at hand, symmetries constrain the accessible Hilbert
space. We thus turn to study the typical entanglement ex-
pected under these conditions.

1. Typical entanglement in a subspace

Our system has an additional symmetry, its rotational in-
variance around the z axis. This restricts our system so that
eigenstates and dynamics take place in subspaces with fixed
values of Fz. Calculation of entanglement within a subspace
is generally a nontrivial task as there is no simple expression
for the entanglement in terms of variables that we can aver-
age over the Haar measure �37�. In our case, there is a happy
accident—the uncoupled basis of angular momentum,
�J ,mJ
 � �I ,MF−mJ
, is also the Schmidt basis for all states
in the subspace. This implies that we can take the fixed
Schmidt vectors as the directions that define the space on a
hypersphere, and thereby employ the same parametrization
of the Haar measures as in Eqs. �21� and �22�, where now d
is the dimension of the subspace. Note that this would not in
general be possible for an arbitrary subspace because the
entanglement is not a simple function of the expansion coef-
ficients in a fixed basis. The key question we must address is
whether, with respect to the Schmidt basis, the state vector is
random over the field of real or complex numbers, since the
statistical properties of these two vector spaces differ, as dis-
cussed by Wootters �32�. Once that question is answered, one
can predict the entanglement based on the expected entropy
in the Schmidt basis.

For a state in a fixed Fz subspace, expanded in the un-
coupled basis, ��
=�cmJ

�mJ
�−mJ
, the entanglement is

E = − �
mJ

�cmJ
�2 ln��cmJ

�2� . �24�

Note that the Schmidt basis is T invariant according to the
time-reversal operator Eq. �9�. Thus, any other vector that is
T invariant will have real expansion coefficients cmJ

. If the
vector is random with respect to this basis, then these real
coefficients are distributed on the hypersphere according to
Eq. �22�. The contribution of each term in the expression for
the entanglement given above should be equal, so we can
shortcut by integrating only the first term, and multiplying by
the number of terms, d. We normalize by an integral over the
measure for that variable. The result for T-invariant vectors
is

ĒR = d
− ��cos �1�2 ln��cos �1�2�sind−2 �1d�1

� sind−2 �1d�1
= Hd/2 + ln 4 − 2,

�25�

where

HD = 1 + 1/2 + 1/3 + ¯ + 1/D �26�

is the harmonic series.
When the state is not T invariant, its expansion coeffi-

cients in the Schmidt basis will be complex. For random
complex states states, it is useful to first simplify our param-
etrization by specifying the magnitudes of the expansion co-
efficients in terms of the angles on the hypersphere, rather
than the real and imaginary parts of the expansion coeffi-
cients. Our new parameterization and the associated surface
element are as follows:

�c1� = cos �1 �27a�

�cm� = sin �1 ¯ sin �m−1 cos �m �27b�

�cd� = sin �1 ¯ sin �d−1 �27c�

d� = N sin2d−3 �1 sin2d−5 �2 ¯

	 sin �d−1 cos �1 ¯ cos �d−1d�1d�2 ¯ d�2d−1,

�27d�

where �m now ranges in �0,
 /2�. Since the entanglement for
a state in the subspace depends only on the the magnitudes
��cm�, Eq. �24� can be expressed in terms of this parameter-
ization of the manifold. Performing the average, the typical
entanglement for a complex state, restricted to a Fz subspace,
is

ĒC = d
− ��cos �1�2 ln��cos �1�2�sin2d−3 �1 cos �1d�1

� sin2d−3 �1 cos �1d�1
= Hd − 1.

�28�

These averages hold regardless of dimension of the space,
though the variance of the distribution rapidly narrows as d
increases.

In the limit of large-dimensional spaces, we recover the
results of Wootters �32� and Zyczkowski �38� for the entropy
of a random state in a real or complex vector space,
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ĒR → ln d − 2 + ln 2 + � , �29a�

ĒC → ln d − 1 + � , �29b�

where ��0.577 is Euler’s constant. Whereas these expres-
sions give the entanglement of our state in the Fz subspace,
in general the entropy of a random state with respect to a
fixed basis is not equal to its entanglement. For example, for
the full tensor product space, for large-dimensional Hilbert

spaces with d1=d2, Ēd1�d2
→ ln d1−1 /2, which differs from

the Wooters-Zyczkowski entropy, Eq. �29�, taking d=d1
2.

As an aside, we can repeat our calculations for the linear
entropy, an entanglement monotone. The linear entropy is
determined by the purity of the reduced density operator of
one subsystem,

SL��� = 1 − Tr��red
2 � = 1 − �

m

�m
2 = 1 − �

m

�cm�4 �30�

where �m= �cm�2 are the Schmidt coefficients for a state in the
subspace. We repeat our integrals over the appropriate mani-
folds and find

S̄L,R = 1 −
3

d + 2
, S̄L,C = 1 −

2

d + 1
, �31�

the same results found by Brown and Viola by different
methods �39�.

2. Typical entanglement prediction for the kicked coupled tops

With the results of Sec. III C 1 in hand, we can compare
the predictions of the typical entanglement of random states
to the entanglement found numerically in Sec. III B. Since
the system is time reversal invariant without Kramers degen-
eracy as shown in Sec. II B, under the random matrix con-
jecture of quantum chaos, we expect the eigenstates of the
Floquet operator for globally chaotic classical dynamics to
be random real states �40�. The eigenstates are restricted to a
subspace with fixed value of Fz, so Eq. �25� applies. We
consider the Fz=0 subspace with dimension d=2J+1. For

spin J=150, one finds ĒR=4.98, in excellent agreement with
the mean entanglement of the eigenstates for the globally

chaotic case, Ēeigens=4.97.
Next we consider the dynamically generated entangle-

ment, starting from a spin-coherent product state projected
into the Fz=0 subpace. The key conjecture, seen numerically
in prior studies, is that chaotic maps acting on a fiducial state
generate states with the statistics of random states in Hilbert
space, chosen according to the appropriate ensemble. How-
ever, contrary to prior claims �15�, though the Floquet opera-
tor is a member of the COE, the dynamically generated state
is not a random real vector in the Schmidt basis. To see this,
first note that since the Floquet operator is a member of the
COE, we know the eigenstates are time-reversal invariant,
T�k
= �k
. However, according to Eq. �9�, time reversal acting
on the dynamically evolved state gives

T�n���,���
 = �
k

a
k
*e+in�k�k
 � �n���,���
 . �32�

Thus, the dynamically evolved state is not an eigenstate of
the time-reversal operator. This is true even when the initial
state itself is a time-reversal eigenstate �e.g., the coherent
state at the pole�, in which case T�n
= �−n
.

To further put a point of this, consider the state expanded
in the Schmidt basis. Simplifying our notation, let �m

= �I ,mI=m
�J ,mJ=−m
 be a Schmidt vector. After n applica-
tions of the Floquet operator, �n
=�mcm

�n��m
. In the trans-
formation from the initial to the final vector in this basis,
cm

�n�=�m�Mm,m�
�n� cm�

�0�, the matrix Mm,m�
�n� =�ke

in�k�m �k
�k �m�
 is
not an orthogonal matrix. It is a random unitary matrix with
complex entries with respect to the basis of interest—the
Schmidt basis. The vector cm

�n� is thus a random vector in
complex vector space.

Given the observations above, and we expect the dynami-
cally generated entanglement to be predicted by the statistics
of random complex vectors. This is indeed borne out in the
numerics. For the globally chaotic map, we evolve and av-
erage to find the quasisteady state value, as discussed in Sec.
III B. The long-time entanglement average is almost inde-
pendent of the initial coherent state, projected in the Fz=0

subspace. For these initial condition Eq. �28� predicts ĒC
=5.28, in good agreement with the long-time average value
of 5.28.

In the case of a mixed phase space, we saw that the long-
time entanglement average was almost constant for initial
states localized in the chaotic sea. Clearly, this value of en-
tanglement is a statistical property of Hilbert space. Just as
the quantum dynamics lead to a random state in the entire
Fz=0 subspace when the classical dynamics are globally
chaotic, for a classically mixed phase space, based on Per-
cival’s conjecture, the quantum dynamics generate a random
state in the chaotic subspace. The structure of the chaotic sea
cannot be described by a simple symmetry, so we cannot
determine the entanglement of a typical state analytically.
However, we can filter the eigenstates to determine which
are in the chaotic subspace, as discussed in Sec. II B, and
sample randomly from a unitarily invariant measure over this
subspace in order to find the typical entanglement value. In
this case there is no simple expression for the entanglement
as a function of the states, so we cannot analytically take the
average over the appropriate measure as before. Instead, we
generate a large number of random states in the chaotic sub-
space, and find their entanglements. We do this by picking
the real and imaginary parts of the expansion coefficients
with respect to the chaotic eigenstates according to a Gauss-
ian distribution. After normalizing, the entanglement is cal-
culated for this state, and the process is repeated 100 times.
The results are averaged to find an estimate of the average
entanglement of a random state in the chaotic sea. We find
that the average entanglement of a random state in the cha-
otic subspace picked according to the measure for complex
random vectors is 5.13, in good agreement with the numeri-

cally determined value of Ēdynam=5.08 found in Sec. III B.
Part of this discrepancy is likely due to the greater degree of
variation of entanglement across the chaotic sea in the mixed
phase space compared to the relatively flat completely cha-
otic phase space. In addition our filter for determining the
members of the chaotic subspace was somewhat crude with
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an ambiguous “gray zone.” We would expect this to improve
deeper in the semiclassical regime, where Percival’s conjec-
ture applies better.

IV. DISCUSSION AND SUMMARY

Classical chaotic dynamics lead to ergodic mixing in
phase space. Quantum analogs of ergodicity have long been
considered, including ergodicty of eigenfunctions �41�,
“spectral chaos� �42�, and increase in entropy associated with
the wave function when expanded in a fixed �nonstationary-
state� basis �43�. Recent numerical studies indicate that quan-
tum dynamics generated by nonintegrable Hamiltonians gen-
erate pseudorandom states in a Hilbert space �20,44�. In that
sense, quantum chaotic dynamics are the classical analogs of
ergodic mixing in quasisteady state, for times sufficiently
long compared to the transient behavior, but short compared
to the Heisenberg time or the time when correlations in the
pseudo-random matrix appear �45�. Such a result is not new,
having its roots in the random matrix theory conjecture of
quantum chaos �25�—the typical Hamiltonian of a noninte-
grable system has the statistical properties of random matri-
ces of an ensemble picked according to the symmetries of
the system under time reversal. The classic works on the
subject, however, focus on the properties of the stationary
states and spectra—Berry’s “quantum chaology” �46�.

The dynamical generation of random quantum states has
implications for the dynamical generation of entanglement. It
is well known that for large-dimensional bipartite Hilbert
spaces, a random state is highly entangled with almost the
maximum entanglement allowed by the dimension �36�. As
the large dimensional limit is equivalent to the �→0 semi-
classical limit, and to the degree that the quantum analogs of
chaotic Hamiltonians generate random states, one expects
near maximal dynamical generation of entanglement in
quantum chaos, to a value that is predicted by the statistics at
hand. This is not to say that regular dynamics �quantum ana-
logs of integrable motion� cannot lead to highly entangled
states. Indeed, such behavior is seen, and has been previ-
ously noted in �14�. Regular dynamics, however, show oscil-
latory behavior, including in the generation of entanglement.
Chaotic dynamics, by contrast, lead to quasisteady-state be-
havior, and typically lead to higher values of time-averaged
entanglement than regular motion. Taken together, these
facts imply that the long-time-average entanglement in a bi-
partite system should be a strong signature of classical chaos,
closely associated with ergodicity in the two dynamical de-
scriptions.

Since entanglement is a global property of the total sys-
tem, it is critical to study the chaos in the joint system dy-
namics rather than chaos in the separate degrees of freedom.
It is the joint-system dynamics that mixes the two sub-
systems and leads to random states of the bipartite system
with statistically predictable entanglement. This perspective
helps us to understand some previous results, which though
predicted analytically and/or numerically, appear to be para-
doxical or raise questions about the connection between
chaos and the dynamical generation of entanglement. For
example, the results of �13� show that in the case of coupled

kicked tops, when the individual subsystems are strongly
chaotic but weakly coupled, the rate of generation of en-
tanglement decreases with increased chaoticity. This can be
understood by the fact that in this regime the chaotic mixing
between subsystems is suppressed due to the increasing mis-
match between the time scale governing individual top dy-
namics and the time scale governing coupling between them.
Indeed, Tanaka et al. �13� explained this in terms of rapid
“dynamical averaging” that washes out the correlations that
determine the rate of entanglement generation.

In another example mentioned in the Introduction,
Demkowicz-Dobrzaski and Kus noted that in a highly regu-
lar regime of kicked tops �k=0.01 chaoticity parameter in the
standard notation�, the rate of entanglement generation was
anomalously large. This result, however, is understood by
noting that in addition to weak nonlinearity k for individual
tops, the coupling between tops was weak and equal to the
nonlinear strength, �=0.01. In that case, all time scales in Eq.
�1� are of the same order, and given the lack of integrability
of the total Hamiltonian Htotal, we expect the global dynam-
ics to be highly chaotic. Indeed, the fact the entanglement
saturated to the same value seen for chaotic tops without
oscillation indicates that we reach the entanglement level of
a random state in the joint Hilbert space. Our central conclu-
sion is thus that chaos in the subsystem is not a strong indi-
cator of the dynamical generation of entanglement, but rather
chaos in the joint dynamics of the coupled degrees of free-
dom. The amount of entanglement generated in quasisteady
state is statistically predicted by the typical entanglement of
a random state in the chaotic sea.

We have studied the relationship between entanglement
and chaos for a system of isotropically coupled tops in which
one of the tops receives a periodic kick around a fixed axis.
Here the chaos and entanglement arise from the same cou-
pling mechanism removing any ambiguity between chaos in
the subsystem vs. chaos in the joint-system dynamics. The
results reported here give further evidence of the fact that
chaotic systems take quantum initial conditions to pseudo-
random quantum states, and that the high long-time entangle-
ment average of states undergoing quantum chaotic dynam-
ics is just that of a typical state in the Hilbert space. We see
the confirmation of this picture in the excellent agreement
between the properties of ensembles of quantum states and
the numerical results for the eigenvector statistics and long-
time entanglement average for the completely chaotic sys-
tem. This approach was also found to be highly flexible,
applying to subspaces and mixed phase spaces.
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Appendix B

Solutions of Master Equation for

Second Order Collective Operators

The following equations give the rates of change of the second order collective atomic

and photonic operators due to photon-atom scattering. The definitions of the Stokes’

operators given here are for case of light polarized along the x-axis, the signs of the

S1 and S3 components must be flipped for the y-axis polarization case.

d

dt
〈S2

2〉 = 〈−γ4/3(S2
2 − S0/4)J0 + γ1/3S3Jz〉 (B.1)

d

dt
〈S2

3〉 = 〈−γ4/3(S2
3 − S0/4)J0 + γ4/3S3(S0 − 1/2)Jz〉 (B.2)

d

dt
〈(S2S3 + S3S2)/2〉 =

〈−γ4/3(S2S3 + S3S2)/2J0 + γ2/3S2(S0 − 1/2)Jz〉 (B.3)
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Appendix B. Solutions of Master Equation for Second Order Collective Operators

d

dt
〈J2

y 〉 = 〈−γ4/3S0(J2
y − J0/2)

+γ4/9S1(J2
y − J0/2)− γ4/9S2(JxJy + JyJx)/2〉 (B.4)

d

dt
〈J2

z 〉 = 〈−γ8/9S0(J2
z − J0/2) + γ8/9S3Jz(J0 − 1/2)〉 (B.5)

d

dt
〈(JyJz + JzJy)/2〉 = 〈−γ10/9S0(JyJz + JzJy)/2

+γ2/9S1(JyJz + JzJy)/2− γ2/9S2(JxJz + JzJx)/2

+γ4/9S3Jy(J0 − 1/2)〉 (B.6)

d

dt
〈JyS2〉 = 〈−γ2/3S2JyJ0 − γ2/3S2(S0 − 1/2)Jy

+γ2/9(S1S2 + S2S1)/2Jy − γ2/9(S2
2 − S0/2)Jx

−γ1/3S1Jx〉 (B.7)

d

dt
〈JyS3〉 = 〈−γ2/3S3(S0 − 1/2)Jy − γ2/3S3JyJ0

+γ2/3S0(JyJz + JzJy)/2 + γ2/9(S1S3 + S3S1)/2Jy

−γ2/9(S2S3 + S3S2)/2Jx〉 (B.8)

d

dt
〈JzS2〉 = 〈−γ2/3S2JzJ0 − γ4/9S2(S0 − 1/2)Jz

+γ4/9(S2S3 + S3S2)/2J0〉 (B.9)

d

dt
〈JzS3〉 = 〈−γ2/3S3JzJ0 + γ2/3S0J

2
z

−γ4/9S3(S0 − 1/2)Jz + γ4/9(S2
3 − S0/2)J0〉 (B.10)
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Appendix C

NL� NA� 1 Approximations

Here we expand upon the results of the previous section by first transforming to the

HP mode variables, where relevant, and then taking the NL � NA � 1 approxima-

tion. Where two signs are given, the upper sign is for the case of light polarization

along the x-axis and the lower sign is for the case of polarization along the y-axis.

d

dt
〈S0〉 =

d

dt
〈S1〉 = 0 (C.1)

d

dt
〈XL〉 = 0 (C.2)

d

dt
〈PL〉 = 0 (C.3)

d

dt
〈Jx〉 = 〈−γ(1/3± 1/9)NLJx〉 (C.4)

d

dt
〈XA〉 = 〈−γ(1/3∓ 1/9)NLXA〉 (C.5)

d

dt
〈PA〉 = 〈−γ2/9NLPA〉 (C.6)
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d

dt
〈X2

L〉 = 0 (C.7)

d

dt
〈P 2

L〉 = 0 (C.8)

d

dt
〈(XLPL + PLXL)/2〉 = 0 (C.9)

d

dt
〈X2

A〉 = 〈−γ(2/3∓ 2/9)NL(X2
A − 1/2)〉 (C.10)

d

dt
〈P 2

A〉 = 〈−γ4/9NL(P 2
A − 1/2)〉 (C.11)

d

dt
〈(XAPA + PAXA)/2〉 = 〈−γ(5/9∓ 1/9)NL(XAPA + PAXA)/2〉 (C.12)

d

dt
〈XAXL〉 = 〈−γ(1/3∓ 1/9)XAXLNL〉 (C.13)

d

dt
〈XAPL〉 = 〈−γ(1/3∓ 1/9)XAPLNL〉 (C.14)

d

dt
〈PAXL〉 = 〈−γ2/9NLPAXL〉 (C.15)

d

dt
〈PAPL〉 = 〈−γ2/9NLPAPL〉 (C.16)

The information in these equations can be condensed into a N and M matrix

describing the evolution of the covariance matrix.

M =


−γ(1/3∓ 1/9)NL 0 0 0

0 −γ2/9NL 0 0

0 0 1 0

0 0 0 1

 (C.17)
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and

N =


γ(1/3∓ 1/9)NL 0 0 0

0 γ2/9NL 0 0

0 0 0 0

0 0 0 0

 (C.18)
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Appendix D

NL ∼ NA� 1 Approximations

As in Appendix B, here we transform to the HP variables and drop lower order terms.

But in this case we only assume NL ∼ NA � 1 and not NL � NA. Consequently,

terms due to the atom-light correlations of order
√
NLNA which vanish in the NL �

NA case remain here.

d

dt
〈S0〉 =

d

dt
〈S1〉 = 〈−γ1/6NLNA〉 (D.1)

d

dt
〈XL〉 = 〈−γ1/3XLNA〉 (D.2)

d

dt
〈PL〉 = 〈−γ1/3PLNA ± γ1/3

√
NLNAPA〉 (D.3)

d

dt
〈Jx〉 = 〈−γ(1/3± 1/9)NLJx〉 (D.4)

d

dt
〈XA〉 = 〈−γ(1/3∓ 1/9)NLXA − γ2/9

√
NL/NAXLJx〉 (D.5)

d

dt
〈PA〉 = 〈−γ2/9NLPA ± γ2/9

√
NANLPL〉 (D.6)
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d

dt
〈X2

L〉 = 〈−γ2/3(X2
L − 1/4)NA〉 (D.7)

d

dt
〈P 2

L〉 = 〈−γ2/3(P 2
L − 1/4)NA ± γ2/3

√
NANLPAPL〉 (D.8)

d

dt
〈(XLPL + PLXL)/2〉 = 〈−γ2/3(XLPL + PLXL)/2NA

±γ1/3
√
NANLXLPA〉 (D.9)

d

dt
〈X2

A〉 = 〈−γ(2/3∓ 2/9)NL(X2
A − 1/2)

−γ4/9
√
NL/NAXLXAJx〉 (D.10)

d

dt
〈P 2

A〉 = 〈−γ4/9NL(P 2
A − 1/2)± γ4/9

√
NANLPLPA〉 (D.11)

d

dt
〈(XAPA + PAXA)/2〉 =

〈−γ(5/9∓ 1/9)NL(XAPA + PAXA)/2± γ2/9
√
NANLPLXA

−γ2/9
√
NL/NAXLPAJx〉 (D.12)

d

dt
〈XAXL〉 = 〈−γ1/3XAXLNA

−γ(1/3∓ 1/9)XAXLNL − γ2/9
√
NL/NAX

2
LJx

+γ(1/18∓ 1/6)
√
NL/NAJx〉 (D.13)
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d

dt
〈XAPL〉 = 〈−γ(1/3∓ 1/9)XAPLNL

−γ1/3XAPLNA ± γ1/3
√
NANL(XAPA + PAXA)/2

−γ2/9
√
NL/NA(XLPL + PLXL)/2Jx〉 (D.14)

d

dt
〈PAXL〉 = 〈−γ1/3NAPAXL − γ2/9NLPAXL

±γ2/9
√
NANL(XLPL + PLXL)/2〉 (D.15)

d

dt
〈PAPL〉 = 〈−γ1/3NAPAPL ± γ1/3

√
NANLP

2
A

−γ2/9NLPAPL ± γ2/9(P 2
L − 1/2)

√
NANL〉 (D.16)

In this regime the M and N matrix describing the evolution of the covariance

matrix are given by

M =


−γ(1/3∓ 1/9)NL 0 −γ2/9

√
NL/NAJx 0

0 −γ2/9NL 0 ±γ2/9
√
NANL

0 0 −γ1/3NA 0

0 ±γ1/3
√
NLNA 0 −γ1/3NA


(D.17)

and

N =


γ(1/3∓ 1/9)NL 0 −γ2/9

√
NL/NAJx 0

0 −γ2/9NL 0 ±γ1/9
√
NANL

γ(1/18∓ 1/6)
√
NL/NAJx 0 γ1/6NA 0

0 ±γ1/9
√
NANL 0 γ1/6NA


(D.18)
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