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Abstract

This dissertation explores the dynamics and distribution of immunoglobulin E recep-

tors (FcεRI) on mast cells by drawing on the techniques of experimental and theoretical

physics. The motivation for these investigations is provided by a considerable interest in

the transmembrane signaling mechanisms of immunoreceptors, especially when triggered

with membrane-bound ligands.

Experimental investigations quantify the spatiotemporal dynamics of the redistribution

of FcεRI due to membrane-bound monovalent ligands, using total internal reflection fluo-

rescence microscopy and single-particle tracking. When mast cells contact such substrates,

receptor clusters form at cell-substrate contact points. The initial rate of accumulation of

receptors into these contact points or cell protrusions is consistent with diffusion-limited

trapping. Over longer timescales (>10 s), individual clusters move with both diffusive

and directed motion components and eventually coalesce to form a large central receptor

patch surrounded by a receptor cluster depletion zone. Detailed analysis of single-particle
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trajectories show that receptors maintain their diffusivity when confined within receptor

clusters, and increase their diffusivity (above that of monomeric unliganded FcεRI) in

central patches.

To study the kinetics of central patch formation, a new coalescence theory described

by a melding process, which is not instantaneous, was developed. In these theoretical

investigations, the difficult problem of moving boundaries is encountered. To handle the

complexity, which stems from boundary growth due to particle melding, the study is di-

vided into three parts. The first is about stationary trapping problems investigated by the

standard defect technique, and the second is about a validity study of an adiabatic approx-

imation for moving boundaries. In the last part of this dissertation, a new coalescence

theory is developed, which is based on a completely self-consistent approach. Here, the

time dependence of the moving boundary is not prescribed but obtained through feedback.

Comparison of experiment and theory shows that observed biological cluster coalescence

is delayed at early times and occurs at a faster rate at later times than predicted by a simple

theory. The incompatibility at early times is addressed by a generalization of the theory to

incorporate a time-dependent melding process by a memory concept, which quantitatively

explains the observed delay.
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Chapter 1

Introduction

1.1 Opening remarks

This dissertation illustrates the interplay between experimental and theoretical physics in

the investigation of dynamics and distribution of immunoglobolin E receptors in mast

cells. The presented research project utilizes an intense dialog between experiment and

theory to learn more about the system under investigation. The dissertation is divided con-

ceptually into two parts. The first consists of experimental investigations to observe the

phenomenon, presented in chapters 2, 3, 4, and 5. The second part explores our experi-

mental observations of receptor cluster coalescence at the most fundamental level. Chapter

6 makes the clear crossover from experimental to the theoretical part of the dissertation,

which consists of chapters 7, 8, and 9. It is in this part, specifically chapter 9, where

we compare our mathematical coalescence model directly to experimental data. Based

on this comparison, experimental observations suggest a generalization of our theory, as

well as further experiments, which will continue the symbiotic relationship of these two

disciplines in the field of mast cell signaling.

There are ten chapters including an appendix in this dissertation, whose contents are

1



Chapter 1. Introduction

briefly summarized in section 1.3. The necessary biological background for the disser-

tation is given in section 1.2. In chapters devoted to our theoretical investigations, each

individual chapter will open with its own introduction, discussing essential background in

the presented subject.

1.2 Introduction to the biological system under investiga-

tion

Cells in a multicellular organism must be ready to respond to a variety of extracellular

signals [1]. They need to interpret and translate these signals correctly and if they fail

to do so diseases such as cancer can occur. Extracellular signals include ligands on the

surface of cells, parasites, or allergens that can bind to cell surface receptors in the target

cell membrane. Such transmembrane signaling through receptor-ligand interaction plays

important roles in cancer and in immune responses, including allergic responses. Our

interest is immune signaling by mast cells.

Mast cell are part of the immune system. They originate from the bone marrow and

circulate in an immature form until they settle in tissue throughout the body, including

the skin and mucosal surfaces, where they mature. In tissue they can cause allergic re-

sponses as well as protect our body from parasitic infection. Mast cells have high affinity

Fc receptors (FcεRI) specific for immunoglobulin E (IgE) and granules which store chem-

ical mediators of inflammation. Typically, a mast cell secretes its mediators after FcεRI

receptors loaded with IgE are crossliked. Crosslinking occurs when multivalent ligand

binds to two or more IgE-receptor complexes [2]. Figure 1.1 depicts a cartoon of mast cell

stimulation by multivalent antigen. After one antigen binds to two or more IgE-receptor

complexes, receptors are aggregated and their cytoplasmic tails, which extend into the

cell’s cytoplasm, initiate a signaling cascade thorough phosphorylation [3, 4]. The signal-

2



Chapter 1. Introduction

ing cascade results in a degranulation event i.e. release of histamine, serotonin, and other

mediators of inflammation [4].

Figure 1.1: Multivalent ligand (green) crosslinks IgE-receptor complexes which initiates a

downstream signaling cascade that result in degranulation, the extracellular release of the

mediators.

Remarkably, not only multivalent ligand but also monovalent ligand, when incorpo-

rated into a supported fluid bilayer, can cause degranulation events. This ability of mono-

valent fluid membrane-bound ligands to stimulate mast cells was first recognized by Weis

et al. [5]. Using a monovalent (dinitrophenyl, DNP) lipid, they showed that modest con-

centrations of this lipid in supported lipid monolayers led to IgE receptor aggregation in

microclusters and subsequent (though weak) mast cell degranulation. Weis and collab-

orators suggested that laterally mobile haptens aggregated IgE receptors by trapping re-

ceptors at points of close contact between the rough cell surface and the lipid monolayer.

In spite of a lack of quantitative confirmation, this hypothesis has become the accepted

paradigm [3, 6, 7, 8]. Similar large-scale receptor clustering due to monovalent ligands

in fluid membranes was observed a decade later in other immune cells, namely in T cells

and B cells [9, 10]. In these experimental systems when liganded bilayers specific for IgE

also contain adhesion molecules, a concentric pattern of clustered immunoreceptors sur-

rounded by a ring of adhesion complexes was formed. The receptor pattern is called the

immunological synapse (IS); it also forms at the interface between an ligand-presenting

3



Chapter 1. Introduction

(antigen-presenting) cell and a lymphocyte [11]. A ligand presenting cell is, for example,

a dendritic cell or B cell, and lymphocytes are T cells, B cells, and natural killer cells [2].

This synapse is thought to play a critical role in immune cell signaling between contacting

cells [12].

Figure 1.2: Total internal reflection fluorescence microscope image of mast cell loaded

with fluorescent IgE-receptor complexes settling onto a fluid lipid POPC bilayer with 5

mol% DNP lipid under gravity. Large scale reorganization of fluorescent receptors into a

synaptic like structure occurs within 6 min. Scale bar represents 5 µm.

It is interesting that a similar structure in the absence of adhesion molecules was re-

cently observed in mast cells by us [13, 14]. Figure 1.2 depicts how a mast cell loaded

with fluorescent IgE-receptor complexes settling under gravity onto a liganded fluid lipid

bilayer forms a structure reminiscent of an immunological synapse, called the mast cell

synapse [13]. The possible biological role of a mast cell synapse is as yet unclear, but

the ability of the mast cell to respond to mobile, monovalent haptens may be important in

interactions with parasites or with other immune cells [15]. It is noteworthy that mast cells

may also act as antigen presenting cells [16] and form a classical immunological synapse

with T helper cells [17].

1.3 Overview of the dissertation

The first chapter of this dissertation outlines applied experimental methods and materials.

Most of the applied experimental techniques are well established in the field of experi-

mental biophysics, such as total internal reflection fluorescence microscopy to selectively
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image the cell-substrate interface [18], and single-particle tracking, which is used to obtain

motion trajectories of biological molecules [19]. Besides these experimental techniques,

we also implement a micropipette manipulation technique [20] to precisely control the

contact of a cell with the substrate, which we believe to be a novel application. At the end

of chapter 2, a thresholding algorithm is presented, which was specifically developed to

determine the position and size of individual receptor clusters and patches.

In section 1.2, we mentioned that receptor clusters form on ligand presenting surfaces.

A possible mechanism for the formation of receptor clusters was put forward by Weis et

al. [5]. They suggested that free IgE-receptor complexes diffuse to cell-substrate contact

points, where receptors eventually aggregate to from clusters. The main objective of chap-

ter 3 is to test this hypothesis quantitatively for the first time. With our experimental tools

in place and the utilization of image correlation spectroscopy [21] as well as a finite el-

ement diffusion model in MATLAB, we show that the mechanism of receptor clustering

due to ligand presenting surfaces is trapping at cell protrusions. The remainder of chapter

3 analyzes the distribution and dynamics of receptor clusters, showing that at late times

receptor clusters eventually coalesce to form a large central receptor patch. Understanding

the underlying kinetics of this coalescence process is the main focus of our theoretical

investigations.

According to previous experiments performed by our collaborators, individual recep-

tors in the large central patch are mobile [13]. However, nothing is known about the mo-

bility of receptors in initial receptor clusters. Therefore, the principal aim of the work pre-

sented in chapter 4 is to quantify the mobility of of IgE-FcεRI within initial cell-substrate

contact points (receptor clusters), and in the larger central patches, in order to address the

role of IgE-FcεRI mobility in RBL cell activation and more fully characterize the diffu-

sional behavior of this receptor. During these investigations, Monte Carlo simulations have

proven to be very useful to estimate bias and statistical error in estimated diffusivities.

In chapter 5, we are interested in analyzing the formation of a receptor cluster deple-
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tion zone, which appears around the large central receptor patch. A quantitative signature

of this depletion zone is a dip in the rotationally averaged intensity autocorrelation func-

tion of a RBL cell TIRF image. Therefore, we developed a mathematical model for the

correlation function of such images, which also shed some new light onto the exact inten-

sity correlation function of a random distribution of large proteins labeled with a known

distribution of fluorophore, which we further discussed in appendix A. It is important to

note that the mathematical model presented in chapter 5 was based purely on geometric

considerations. Hence, such a model only gives limited insight into the dynamics of re-

ceptor cluster coalescence. This limitation is one motivation pushing us to develop a more

fundamental coalescence theory.

At this point of the thesis, we will have finished reporting our experimental investiga-

tions and make the transition to our theoretical work. This transition is bridged by chapter

6, which discusses the importance of developing a new theory of coalescence. This theory

is developed in three parts and fundamentally based on the standard defect technique de-

veloped by Kenkre and collaborators [22, 23, 24, 25, 26, 27, 28, 29] for exciton transport

and sensitized luminescence.

The first part is presented in chapter 7 and focuses on reaction-diffusion problems in d-

dimensions; specifically, stationary trapping problems with a non-infinite constant capture

rate. Our investigations of this subject naturally start with the formalism of the defect

technique [23]. We utilize a continuous prescription of this formalism in our studies to

solve many different problems, ranging from particle trapping in a harmonic potential in

one-dimension to problems involving permeable, partially absorbing trapping boundaries

in higher dimensions. This extensive investigation lead to a library of exact solutions;

some can be found in literature, but others are completely new.

Stationary trapping problems are very useful in modeling various phenomena such as

photosynthesis [30], molecular crystals [24] and other related systems [31]. However,

the difficult yet important problem of moving traps or boundaries in this area remains
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unsolved. We are faced with this problem in our investigations of a theory of receptor

cluster coalescence in mast cells. Therefore, the second part in developing our coalescence

theory is based on a validity study of an adiabatic approximation for moving boundaries

with assigned time dependence. This analysis is presented in chapter 8 and consists of

inserting the time dependence of the moving boundary into the static problem, which we

know how to solve exactly.

In chapter 9, we present the final part of our theory of receptor cluster coalescence.

This theory is based on a self-consistent approach in which the moving boundary time

dependence is not prescribed but obtained through feedback. This problem cannot be

solved exactly necessitating an approximation. After performing a detailed validity study,

which includes extensive Monte Carlo simulations, of this approximation in one- and two-

dimensions, we finally compared our theory to experiments. The results of this compar-

ison to the simple form of the theory with constantmelding probability does not explain

experimentally observed cluster coalescence kinetics. At early times, the model does not

describe the observed coalescence delay and at later times, it predicts slower kinetics as

observed in the biological system. The former compatible problem is resolved by em-

ploying a generalization of our theory for time-dependent coalescence. The latter will

be addressed in further work. Finally, to understand the underlying origin of these phe-

nomena in more detail, future experiments are proposed, emphasizing the importance of a

continued dialog between experimental and theoretical physics.

A brief conclusion of our results is given in chapter 10, which ends with a personal

note of the author.

Finally, a dissertation appendix can be found in chapter 11. The first section of this

appendix outlines an image correlation spectroscopy algorithm for large fluorescence pro-

teins. In this analysis, we study excluded area effects for tightly packed particle dis-

tributions. In such distributions, the covered area fraction is high enough that parti-

cle positions cannot obey Poisson statistic. Since traditional image correlation spec-
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troscopy [21], which is typically used to estimate protein densities from microscope im-

ages [32, 33, 34, 35, 36, 37] assumes underlying Poisson statistics, there is a need to

computed the correct form of the intensity correlation. Even though, we chose to dis-

cuss this subject in the appendix, it is important to note that the presented contribution

is an important generalization of this subject. The remaining sections of the appendix

include a useful list of common Laplace transforms in reaction-diffusion systems, the

Gaver-Stehfest Laplace inversion algorithm with implemented MATLAB code, the Crank-

Nicolson method to numerically solve a parabolic partial differential equation, as well as

a detailed calculation to validate a general prescription for the single stationary imperfect

trap problem in one-dimension.

For completeness, we note that several parts of this dissertation have previously been

published, as listed in table 1.1.
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Chapter Publication

Chapters 2 and 3

Amanda Carroll-Portillo, Kathrin Spendier, Janet Pfeiffer,

Gary Griffiths, Haitao Li, Keith A. Lidke, Janet M.Oliver,

Diane S. Lidke, James L. Thomas, Bridget S. Wilson and

Jerilyn A. Timlin, Formation of a Mast Cell Synapse: FcεRI

membrane dynamics upon binding mobile or immobilized

ligands on surfaces, J. Immunol. 184, 1328−1338 (2010) [13]

Chapters 2 and 3

Kathrin Spendier, Amanda Carroll-Portillo, Keith A. Lidke,

Bridget S. Wilson, Jerilyn A. Timlin and James L. Thomas

Distribution and dynamics of Rat Basophilic Leukemia

Immunoglobulin E receptors (FcεRI) on planar ligand-

presenting surfaces, Biophys. J. 99, 388−397 (2010) [14]

Chapters 2 and 4

Kathrin Spendier, Keith A. Lidke, Diane S. Lidke and

James L. Thomas, Single particle tracking of immunoglobulin

E receptors (FcεRI)in micron-sized clusters and receptor

patches, FEBS Lett. 586, 416421 (2012) [38]

Chapter 5

Kathrin Spendier and James L. Thomas, Image correlation

spectroscopy of randomly distributed disks, J. Biol. Phys. 37,

and Appendix A 477−492 (2011) [39]

Table 1.1: List of publications and the corresponding parts of this dissertation.
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Chapter 2

Experimental methods and materials

2.1 Introduction

This chapter outlines experimental materials and methods used in this dissertation. In

section 2.2, the experimental model system of a mast cell in contact with different ligand-

presenting surfaces is introduced. These surfaces presented chemically crosslinked immo-

bile multivalent ligand (section 2.4), immobile monovalent ligand or mobile monovalent

ligand in a supported lipid bilayer (see section 2.5). In order to observe the dynamics and

distribution of FcεRI receptors, the cells were loaded with fluorescently-labeled IgE as

outlined in section 2.3. The fluorescent marker was illuminated with laser light and its

fluorescence collected with appropriate filters. Since the goal was to investigate recep-

tor dynamics due to a ligand presenting surface, background fluorescence from regions

above the cell-substrate contact zone was eliminated by using a total internal reflection

microscope (TIRF), see section 2.6. In this contact zone RBL cells spread out while new

receptor clusters form over time. This makes a quantitative analysis of the kinetics of re-

ceptor redistribution very complex. Therefore, to precisely define the initial contact time,

a micropipette cell manipulation technique was used to bring individual cells into contact
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with substrates, see section 2.8. This technique proved to be very useful despite the low

success rate due to the difficulty of manipulating single RBL cells with a micropipette.

With the ability to control the contact time within 50 ms, individual receptors and receptor

clusters were tracked as a function of time using a single-particle tracking (SPT) algorithm

outlined in section 2.9. Due to the complexity of receptor cluster motion including clus-

ter redistribution, and cluster-cluster melding as well as image time series of more than

200 individual images, it was useful to develop an imaging thresholding algorithm, which

extracts the sizes and positions of individual receptor clusters and patches. Such a thresh-

olding method is outlined in section 2.10. In section 2.11, we briefly outlined a RBL cell

degranulation protocol to quantitatively measure mast cell activation.

Parts of this chapter have been published previously in the materials and method sec-

tions of Refs. [13, 14, 38]

2.2 Experimental model system

To investigate immune signaling by mast cells, the rat basophilic leukemia 2H3 (RBL) cell

line is typically used as a model [40, 41, 42]. In the experimental model system RBL cells

were primed with fluorescent anti-DNP IgE and then allowed to settle under gravity, or

pipette-pressed (see section 2.8) onto different ligand-presenting and control surfaces in a

TIRF microscope (see section 2.6). Figure 2.1 depicts a RBL cell pipetted-pressed onto

two different ligand-containing surfaces. Immobilized multivalent ligand (DNP-BSA) was

presented on a chemically crosslinked surface (Fig. 2.1A) and monovalent ligand was

incorporated into a fluid (mobile ligand) or gel phase (immobile ligand) lipid bilayer (Fig.

2.1B).
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Figure 2.1: Illustration of the experimental model system in which a RBL cell primed with

fluorescent anti-DNP IgE is pipette-manipulated onto different ligand-presenting surfaces.

(A) Multivalent DNP-BSA chemically crosslinked to glass surface. (B) Monovalent ligand

incorporated in solid or fluid supported lipid bilayer.

2.3 Cells

RBL cells were maintained in Minimal Essential Medium (MEM) (Invitrogen) with 10%

Fetal Calf Serum. Anti-DNP IgE was obtained from collaborators [43] and purified as

described in [44]. Fluorescent IgE conjugates were created using Alexa488 (Invitrogen),

Dy-520XL (Dyomics GmbH), or Atto647 (ATTO-TEC GmbH).

For experiments presented in chapter 3, cells were IgE primed by incubation with

0.5 µg/mL of fluorescent IgE (Alexa488 or Dy-520XL) overnight. At the day of the ex-

periment cells were removed to suspension and the cell culture media was exchanged with

MEM supplemented with 10% Fetal Bovine Serum, 1% Penicillin-Streptomycin, and 1%

L-glutamine, which will be referred to as media in the remainder of this dissertation. Then

0.5 mL aliquots (∼50 000 cells per aliquot) of primed cells were stored in 1 mL tubes at

37◦C in a humidified chamber with 5% CO2 until later use.

For experiments presented in chapter 4, cells were fluorescent IgE primed by first

incubating with 35 or 50 pM Atto647-IgE anti-DNP in media for 10 min at 37◦C and then

washed 5 times with 2 mL media obtaining a final aliquot of 2 mL. Next 5 µl of Alexa488-
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IgE anti-DNP at a concentration of 0.7 g/mL was added and incubated for 10 min at 37◦C.

The primed cells with both fluorescent markers were then washed 4 times with 2 mL media

and divided into 0.5 mL aliquots (∼50 000 cells per aliquot) stored in 1 mL tubes at 37◦C

in a humidified chamber with 5% CO2 until later use.

2.4 Chemically crosslinked surface preparation

Chemically crosslinked surfaces were prepared on glass slides, which were cleaned prior

to use from organic residues with a mixture of sulfuric acid and hydrogen peroxide, also

known as piranha solution. To prepare crosslinked surfaces, Dinitrophenyl-conjugated

bovine serum albumin (DNP-BSA at 1 µg/mL; Invitrogen) was crosslinked to poly-L-

lysine coated coverslips with two homobifunctional crosslinkers; Ethylene glycol bis (suc-

cinimidylsuccinate) (EGS; Fisher) or glutaraldehyde (Glut; Sigma). Reactions were

quenched with 100 mM glycine in phosphate buffer saline and prepared coverslips were

stored in buffer until use for up to one day.

2.5 Supported lipid bilayers

Supported lipid bilayers [13] were made by spontaneous liposome fusion [45]. Lipids

(Avanti) were dissolved in chloroform, dried under N2 then placed under vacuum for 1 hr.

The lipid film was then suspended in PBS + 2 mM Mg2+ to 1.3 mM and sonicated for

5 min using a probe sonicator. Laterally mobile bilayers were formed from 1-palmitoyl-

2-oleoyl-sn-glycero-3-phosphocholine (POPC) and N-dinitrophenyl-aminocaproyl phos-

phatidylethanolamine (DNP-Cap PE), and immobile bilayers were formed using 1,2 -

dipalmitoyl- sn-lycero-3-phosphocholine (DPPC). Bilayers were formed on piranha

cleaned cover glass in 15 min on a slide warmer at 37◦C (POPC) or in 8 min in an oven

at 55◦C (DPPC). Each bilayer coated coverslip was kept immersed during transfer to the
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imaging chamber. Prior to adding cells to the bilayer, the chamber was flushed with 500

µl of media.

2.5.1 Bilayer mobility

Diffusion of lipids in the supported lipid bilayer was confirmed by SPT, see section 2.9.

Trajectories over 15 s or 25 s of individual fluorescent IgE molecules bound to DNP-lipid

(DNP-Cap PE) incorporated into the bilayer where analyzed in MATLAB. The calculated

two-dimensional mean-squared displacement (MSD) from extracted particle positions was

linear and fitted to a line to extract the diffusion coefficient (see section 2.9). The diffusion

coefficient for IgE bound to DNP-Cap PE was 1.0±0.2 µm2/s and 0.5±0.3 µm2/s for

bilayers incorporating the lipid at 5 mol% and 25 mol%, respectively. Here the error is

the standard error of the mean. Figure 2.2 depicts typical fluorescent IgE trajectories for a

fluid lipid bilayer with 5 mol% (Fig. 2.2A) and 25 mol% (Fig. 2.2B) DNP-Cap PE.

Figure 2.2: Characterization of lipid mobility in bilayer. (A) and (B) show trajectories of

fluorescent IgE bound to a fluid lipid bilayer with 5 mol% and 25 mol% DNP-Cap PE,

respectively. Arrows indicate staring point and initial direction of each track. Taken from

Ref. [13]. Scale bar represents 5 µm.
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Figure 2.3: Membrane integrity before (left column) and after (right column) microma-

nipulation. Taken from Ref. [14]. Scale bars represents 5 µm.

2.5.2 Bilayer defects

To show that no apparent bilayer defects were caused by micro-manipulation, a fluores-

cent lipid N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-1, 2-

dihexadecanoyl-sn-glycero-3-phospho-ethanolamine, triethylammonium salt (BODIPY -

DHPE; Invitrogen, Carlsbad, CA) at 1 mol% was incorporated in addition to 25 mol%

DNP-Cap PE. The bilayer integrity was observed before and after one cell was pipette-

pressed onto the substrate. Figure 2.3 shows illumination profile corrected TIRF im-

ages which were focused on the substrate surface. A micrograph of an out-of-focus mi-

cropipette is depicted in the left panel of Fig. 2.3A and the corresponding TIRF image of

a uniform fluorescent bilayer is shown in the right panel. There are no apparent defects in

the bilayer before micromanipulation. The left panel of Fig. 2.3B shows a micrograph of

an in-focus micropipette in contact with a bilayer and in the right panel the corresponding

TIRF image of the fluorescent bilayer after a hole was purposely scratched into the bi-
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layer to produce a bilayer defect. We note that the field of view was not changed between

Fig. 2.3A and Fig. 2.3B and both TIRF images used the same brightness scaling. Fig-

ure 2.3C depicts a micrograph of an out-of-focus micropipette with anti-DNP-IgE loaded

RBL cell caught out of suspension (left panel) and TIRF image of uniform fluorescent

bilayer (right panel) before micromanipulation. Figure 2.3D depicts the same cell as in

Fig. 2.3C pipette-pressed onto the fluorescent bilayer. We note that after initial contact

with the fluorescent bilayer no apparent bilayer defects were observed (left panel). TIRF

images in Fig. 2.3C and Fig. 2.3D use the same brightness scaling. The field of view was

not changed between the two images. It is noteworthy that the slight overall decrease in

fluorescence from Fig. 2.3C to Fig. 2.3D is due to photobleaching.

2.6 Fluorescence microscopy

To image receptor dynamics on a ligand presenting surface, the background fluorescence

from fluorescent receptors away from the contact region has to be eliminated. This back-

ground fluorescence is typically eliminated by employing TIRF microscopy [18]. A crude

cartoon of a TIRF microscope is shown in Fig. 2.4A. In TIRF microscopy, the excitation

laser beam is totally internally reflected at the glass-water interface and only an evanescent

wave traveling parallel to the interface will penetrate into the sample. The intensity of the

wave, a perpendicular distance z from the interface, is given as [18, 46]

I(z) = I(0)exp [−z/d], (2.1)

where I(0) is the intensity at the interface and d is the characteristic exponential penetra-

tion depth defined as

d =
λ

4π
√

n2
1 sin(θ)2 −n2

2

. (2.2)

Here the penetration depth depends on the incident illumination wavelength λ, the angle

of incidence θ, and the refractive indices of the media at the interface: n1 = 1.515 is the
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index for glass and n2 = 1.333 the index for the aqueous media solution. The penetration

depth is independent of the incident light polarization direction and decreases as the re-

flection angle grows larger. The evanescent wave decays rapidly as shown in Fig. 2.4B and

selectively excites the sample within a distance of about 200 nm from the surface. Since

the mast cell is about 5 microns in radius and the lipid bilayer is tens of nanometers thick,

background fluorescence can be successfully eliminated with this technique.

Figure 2.4: (A) Cartoon of TIRF microscope provided courtesy of Keith A. Lidke. The

excitation laser beam is shown in blue and the fluorescence emission is shown in green.

Dichroic mirrors and interference filters are used to separate the two wavelengths. (B)

Exponential decay of a 488 nm evanescent field at a glass water interface for θ = 68◦. The

computed penetration depth from Eq.(2.2) was d = 88 nm

Objective-based TIRF microscopy was performed on an Olympus IX 71 (Olympus

America Inc.) inverted microscope with a 60× or 150× 1.45 N.A. oil immersed objective

using a 472 nm (CrystaLaser), 488 nm (Coherent Inc.) or 635 nm (Coherent Inc.) laser. A

1.6× microscope tube lens was also used for the 60× objective. Interference filters were

used to block excitation. Images were collected with an EMCCD (iXon 887 or iXon + 897;

Andor Technologies Inc.). The camera was cooled to −70◦C (iXon + 897) or −100◦C

(iXon 887) and its gain was set to 100 (iXon 887) or 200 (iXon + 897). Sample temper-

atures were maintained at 37◦C for POPC and the chemically crosslinked surface, and at

32◦C for DPPC surfaces, with an objective heater. Images were collected and processed

with in-house software implemented in MATLAB (The MathWorks) in conjunction with
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DIPImage [47] an image processing library. In some experiments two spectrally distin-

guishable fluorescent dyes were used. In this case two-color TIRF images were collected

on the EMCCD and spectrally separated by an image splitter.

2.7 EMCCD camera calibration

To correct the rotationally averaged correlation function (see section 3.2.1) for noise con-

tributions, the EMCCD must be calibrated. To calculate the read noise and gain of a

EMCCD camera, a image time series of at least 10 images must be made of a sample,

which is constant in time but spatially varying. An appropriate calibration image, which

samples all possible intensities, is obtained from out-of-focus fluorescent beads.

The signal S collected in an image pixel is given as

S = g I +Nread, (2.3)

where g is the camera gain in analog-digital-units (ADU) per photon, I is the number of

photons detected, and Nread is the read noise. Accordingly, the signal or noise variance in

each pixel is written as

δS2 = 〈S2〉−〈S〉2, (2.4)

where 〈〉 represents the pixel intensity average over the collected image time series. Since

the average of the read noise is zero, 〈Nread〉 = 0, Eq.(2.4) reduces to

δS2 = g2δI2 +N2
read. (2.5)

Next, we make use of the fact that the detected number of photons in each pixel follows

Poisson statistics, δI2 = 〈I〉 and that the average signal obtained from Eq.(2.3) is

〈S〉 = g 〈I〉, (2.6)
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to obtain the final expression for the signal variance

δS2 = g〈S〉+N2
read. (2.7)

According to this simple expression, the functional form of pixel variance versus average

pixel intensity (corrected for dark counts) is linear, where the slope represents the gain

(ADU per photons) and the offset the read noise contribution (ADU2), which is equivalent

to the read noise variance.

It is worth noting that a EMCCD has other noise contributions besides read noise

and Poisson noise. These noise contributions are due to the dark current and spurious

noise, which are at least one order of magnitude smaller than typical read noise contribu-

tions [48]. Therefore, only Poisson and read noise contributions were accounted for in this

dissertation.

2.8 Cell micromanipulation

To make quantitatively useful measurements of receptor dynamics and aggregation, the

time of contact must be precisely determined. Previous observations of RBL-surface lig-

and interactions were done by allowing RBL cells to settle under gravity onto ligand-

presenting surfaces [49, 13]. As a consequence, the contact area between the cell and

the surface is gradually increasing (as the cell spreads out), while simultaneously IgE re-

ceptors are redistributing into clusters. This makes a quantitative analysis of the receptor

aggregation behavior at early times exceedingly complex, as both new membrane area and

new receptors are continually being added to the interface, see top row in Fig. 2.5. To

precisely fix the time of first cell contact with a substrate, as shown in Fig. 2.5 (d and e),

we implemented a micropipette manipulation technique. Micropipette manipulation has

been extensively used to measure the physical properties of biomembranes [20, 50], and

their interactions with cells [51, 52, 53]. Other techniques have been employed to control
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Figure 2.5: Top row: fluorescent images of under gravity settling cells onto a fluid bilayer

with 25 mol% DNP-Cap PE. Bottom (d,e): fluorescent images of pipette-pressed cells

onto a fluid bilayer with 25 mol% DNP-Cap PE. (f) depicts a RBL cell held with a glass

pipette in suspension. Scale bar corresponds to 5µm.

cell-surface contact. For example, a film-thinning technique [54] allows control of the

initial contact time and area, but offers no control of the position of the cell in the field of

view, which is problematic for our TIRF microscopy. Optical tweezers [55] apply small

forces and thus give an uncertainty in the time at which full cell contact is achieved of

∼2 seconds, which is 40-fold less precise than we obtain using pipette manipulation [14].

The single-cell micromanipulator used a glass micropipette. Micropipettes were pulled

from soda lime glass tubes (No. 564 MicroHaematocrit-tubes, Carolina Biological Sup-

ply) on a DMZ-Universal Puller (Zeitz), using a four-step program to achieve approxi-

mately 2 µm tip diameters. A pipette was then mounted onto Eppendorf’s InjectMan NI2

(Eppendorf) and connected to a 30 mL plastic syringe. The micropipette was placed at the

center of the camera’s field of view, approximately one micron above the substrate. This

position was stored in the micromanipulator. After a cell was captured in suspension, the

position was recalled to automatically place the cell in contact with the substrate. EMCCD

images were captured before cell contact and the final contact area was established within
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50 ms, clearly defining an initial time point. In some instances, cells ruptured on contact;

these were discarded.

2.9 Single-particle tracking

Single-particle tracking is a computer-enhanced video microscopy tool used to track the

motion of biological molecules [19]. In SPT, the particle’s trajectory is obtained from

position coordinates (x,y) over a series of time steps. In this dissertation, particle trajecto-

ries of single fluorescent IgE-FcεRI receptor complexes, or an ensemble of them forming

a micron-sized cluster, were obtained by using ImageJs (NIH) SpotTracker plug-in [56]

(chapter 3) or a SPT algorithm implemented in MATLAB (chapter 4). The MATLAB al-

gorithm was developed by Keith A. Lidke and collaborators and published in Ref. [57].

To identify the nature of motion of the tracked particle, the mean-squared displacement,
〈
r2(∆t)

〉
, was calculated, which is a measure of the average (denoted by brackets) dis-

tance a molecule travels and calculated for each time difference ∆t in the track record. It

is worth noting that the MSD is typically calculated in two different ways [58]: the aver-

age over independent overlapping segments or the average over all segments. Both ways

to compute the MSD were used in this dissertation. After computing the MSD, a plot of

square-displacements as a function of time has the ability to resolve different modes of

particle motion [19]. The MSD signature for two-dimensional free, unconfined diffusion

is linear

〈
r2(∆t)

〉
= o f f set +4D∆t (2.8)

whereas for directed motion the MSD plot exhibits an upward curvature

〈
r2(∆t)

〉
= o f f set +4D∆t + v2∆t2, (2.9)

where v is the drift velocity of the particle. Another two-dimensional mode of particle

motion, which was observed in experiments presented in chapter 3, is confined diffusion.
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In confined diffusion the MSD graph has a downward curvature and approaches a finite

value, which corresponds to the square of the average size of the confinement zone,
〈
r2
C

〉

〈
r2(∆t)

〉
= o f f set +

〈
r2
C

〉[
1−Aexp(−4BD∆t/

〈
r2
C

〉]
. (2.10)

Here constants A and B are determined by the confinement zone geometry. In Eqs. (2.8),

(2.9), and (2.10), o f f set represents the sum of the static and dynamic localization or

measurement error variance [59]. Specifically, static errors arise from the uncertainty in

determining the position of the particle due to experimental noise, and dynamic errors are

due to particle diffusion within the integration time of each frame, leading to spot blurring.

2.10 Image thresholding

To estimate the size of receptor clusters and patches from RBL cell TIRF images, a global

and adaptive thresholding methods were combined. The first method, known as Ridler

and Calvard’s method [60], uses a single global threshold to partition the intensity his-

togram into two regions. The second method, known as Niblack’s algorithm [61], calcu-

lates a threshold surface by shifting a rectangular window across the image. This is a local

thresholding method based on the calculation of the local mean and standard variation.

Ridler and Calvard’s method defines an image intensity histogram as the sum of two

distributions, namely the background b(z) and foreground f (z) distribution, where z is the

grey value. After defining B and F as the prior probabilities for the foreground and back-

ground, respectively, where B + F = 1, the histogram (or more precisely the probability

density function) can be modeled as a two-component distribution

p(z) = F f (z)+Bb(z). (2.11)

For this histogram, assuming that both distributions have the same variance, an optimal

threshold Topt that is equidistant from the average intensity of pixels below and above it is
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given by

F f (z) = Bb(z) (2.12)

at z = T . To compute Topt , the two distributions are assumed to be Gaussian and the above

expression becomes

F√
2πσ2

F

e
−

(T−µF )2

2σ2
F =

B√
2πσ2

B

e
−

(T−µB)2

2σ2
B , (2.13)

where µ is the mean of the distribution. After assuming that the two standard deviations

are equal σB = σF = σ, the above expression can be solved for T

T =
µF +µB

2
+

σ2

µB −µF

ln
F

B
. (2.14)

Finally, we assume that B = F , yielding to the Ridler-Calvard’s expression for bimodal

images

T =
µF +µB

2
, (2.15)

where µF and µB are unknowns and must be determined by an iterative method based on

an initial threshold Tinit . To obtain the optimal threshold Topt , the initial value for Tinit is

set to the mean of the image. Then, the image is segmented into two classes of pixels; one,

whose grey values are smaller than Tinit , representing the background and the other, whose

grey values are larger, representing the foreground. For each of these regions average pixel

intensities µB, µF are calculated and a new threshold is computed according to Eq.(2.15).

This iteration is repeated until ∆T < 0.001, resulting in the optimal global threshold. For

typical cell images Topt is reached within 10 iterations. Figure 2.6B shows a thresholded

RBL cell TIRF image after applying the Ridler-Calvard’s method. When the thresholded

image is compared to the actual raw image depicted in Figure 2.6A, it is evident that the

global thresholding method successfully separates the background fluorescent receptors.

However, it fails to resolve individual receptor clusters. This result is expected, since pixel
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Figure 2.6: Thresholded RBL cell TIRF images obtained after applying different algo-

rithms. (A): RBL cell TIRF image in contact for ∼10 s with a 25 mol% fluid bilayer, (B):

thresholded image (A) after applying the Ridler-Calvard’s (R-C) method, (C): thresholded

image (A) after applying the Niblack’s (N) method, and (D): final thresholded image after

combining (B) and (C) with a logical and command.

intensities of RBL cell TIRF images do not follow a bimodal distribution, which is an

underlying assumption in the Ridler-Calvard’s algorithm.

To increase the sensitivity for individual receptor clusters, it is apparent that more than

a single threshold is needed. A simple adaptive thresholding method is the Niblack’s algo-

rithm, which is a local thresholding method. It calculates a threshold surface by shifting a

rectangular window of n pixels in width across the image. The threshold for each window

is computed by the following formula

T = µ+ kσ, (2.16)

where k is an adjustable weight, µ is the mean and σ the variance of the pixel intensities in

the window. The size n of the window should be small enough to preserve the signature

of the receptor clusters, but at the same time large enough to detect larger patches and

reduce noise. To select an appropriate window size, local maxima inside a mask obtained

from the Ridler-Calvard’s method were determined. The minimum distance between these

maxima multiplied by a constant was used to estimate the window width. Figure 2.6C

shows the corresponding thresholded RBL cell TIRF image in Figure 2.6A after applying

the Niblack’s method with a window width of n = 4 and weight k = −0.05. It is apparent
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that the implemented local thresholding algorithm introduces a noisy image especially in

regions outside the contact area. The noise is due to the fact that a threshold is created

in these areas. Therefore, using the Niblack’s method alone to threshold receptor clusters

will not be useful.

To overcome the limitations of both techniques, the two thresholded images shown in

Figs. 2.6B and 2.6C are combined by a logical and command, resulting in Fig. 2.6D. From

a direct comparison to the actual TIRF image shown in Fig. 2.6A, it is apparent that this

combination of a global and adaptive thresholding method is able to resolve individual

receptor clusters as well as eliminate background noise. It is important to note that the

combination of these two methods works very well at early times of cell-substrate contact,

when individual receptor clusters have not formed larger patches. However, at later times,

when bigger receptor patches have formed and co-exist with smaller receptor patches, this

method encounters its limitations. This shortcoming is based on the difference in ideal

window size to resolve smaller receptor clusters and bigger patches. The window size to

resolve clusters is smaller than the window size to resolve large patches. If the window

size is too large, clusters which are blurred together cannot be resolved. On the other hand,

if the window size is too small, bigger receptor patches might get holes or break up into

smaller patches. Therefore, a intermediate widow size was selected.

Finally, to estimate the size and position of receptor clusters and patches, thresholded

images were analyzed with the DIPImage measure function [47]. Outlines of the cell-

substrate contact zone to compute the cell center of mass were determined via a DIPimage

thresholding function that uses Isodata algorithm [60].
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2.11 Degranulation assay

Secretory response of a RBL cell in contact with a ligand-presenting surface was quantified

by a degranulation assay [62]. This assay was performed on different surfaces as well as

at different time points. To determine the strength of mast cell degranulation, the amount

of β-hexosaminidase, a secreted mast cell enzyme was measured. In these experiments,

2 × 105 suspension cells were primed for 24 h with 1 mg/mL non-fluorescent anti-DNP

IgE, then washed and resuspended in a Hank’s buffer (see Ref. [63] for buffer compo-

sition). Primed cells were permitted to settle onto triplicate wells of 24-well plates pre-

coated with mobile ligands, immobile ligands, or a chemically crosslinked surface and

incubated for 30 min or less at 37◦C for mobile bilayers as well as chemically crosslinked

surfaces and at 32◦C for immobile bilayers. Supernatants were then collected for degran-

ulation assays. Degranulation data in this dissertation are presented as percent of total

β-hexosaminidase content released into the medium over the incubation time period.
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Chapter 3

Distribution and Dynamics of IgE

Receptors on Ligand Presenting

Surfaces

3.1 Introduction

In this chapter, we investigate IgE receptor dynamics and distribution after pipette-

pressing mast cells on different ligand presenting surfaces. As discussed in detail in the in-

troductory section 1.2, monovalent ligand, when incorporated into a fluid bilayer, leads to

IgE-receptor aggregation in micron-sized clusters. Weis at al. [5] hypothesized that later-

ally mobile haptens aggregate IgE receptors by trapping receptors at points of close contact

between the rough cell surface and the lipid monolayer. Although diffusion-mediated trap-

ping is perhaps the simplest explanation of IgE receptor aggregation on fluid membranes,

other hypotheses are tenable. For example, it has been proposed that some immunore-

ceptor signaling occurs through force transduction [64, 65]. If such signaling occurs with

the IgE receptor, then aggregation could be a consequence. Given the recent interest in
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such novel signaling mechanisms, it is appropriate to revisit the behavior of RBL cells on

fluid membranes, with the goal of determining quantitatively whether that behavior can

be explained by simple trapping, or whether the spatiotemporal dynamics of aggregate

formation require as yet unidentified additional signals or processes.

Using pipette manipulation to precisely fix the time of first contact with the surface,

the early time evolution of the fluorescence heterogeneities can be studied. On bare glass

surfaces, the heterogeneities did not change significantly in brightness or size after ini-

tial contact for the first few seconds. On all ligand-coated surfaces, however, the het-

erogeneities brighten substantially in the first few seconds. In section 3.2.1, we discuss

image correlation spectroscopy (ICS), which was used to measure the characteristic sizes

of fluorescence heterogeneities. Since the observed heterogeneities were larger than the

microscope point spread function, the rotationally averaged correlation peak was explicitly

corrected for shot noise and camera read noise. It is worth noting that direct noise removal

has been previously applied to number and brightness analysis by Gratton and collabo-

rators [66] but not to ICS. Heterogeneities were seen on all cells, even on cells contacted

with ligand-free surfaces. Moreover, the sizes of such heterogeneities were quite similar on

ligand-bearing and ligand-free surfaces, suggesting the heterogeneities (initially) are sim-

ply points of close contact between the cell and the substrate, where the TIRF illumination

is brightest, see section 3.2.2. In section 3.3 we show that these points of close contact

are randomly distributed in the cell-substrate contact area. On ligand-bearing surfaces,

the heterogeneities brighten over time, which we interpret as accumulation of receptors

by binding to ligands at the points of close contact. It is worth noting that we use the

term aggregation when the ligands are multivalent, and the more generic term clustering

when ligands are monovalent. A finite element diffusion model outlined in section 3.2.3 fit

the dynamics of cluster brightening well, and gave a diffusion coefficient consistent with

reported IgE receptor mobility. These results quantitatively support a diffusion trapping

model for the initial clustering of receptors. In section 3.4, we use single-particle tracking

to investigate receptor cluster dynamics in detail. If the ligand is immobile, the spatial
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scale and positions of the clusters do not change over time. With mobile ligands clusters

do move and at longer times (∼2 minutes) they coalesce into a large central patch reminis-

cent of the IS formed by T cells [11]. This large scale reorganization and localization of

signaling molecules has been more fully characterized elsewhere [13]. At the end of the

present chapter, section 3.5, we present degranulation data, which shows that monovalnet

ligands are capable of stimulating mast cell. It is worth noting that this level is significantly

lower than mast cell activation due to multivalent ligand.

Parts of this chapter have been published previously in Refs. [13, 14].

3.2 Receptor trapping at cell protrusions

When RBL cells loaded with fluorescent IgE were either pipette-pressed or allowed to

settle onto surfaces [13], an initial heterogeneous fluorescence distribution was always ob-

served, even on bare glass as shown in Fig. 3.1A. The exponential decay of the evanescent

field can result in heterogeneous fluorescence intensity even on membranes with uniform

receptor distributions, if the membrane itself has regions that are more closely apposed

to the substrate. On the length scale of optical microscopy, IgE-loaded FcεRI are uni-

Figure 3.1: TIRF microscope images of mast cells loaded with fluorescent IgE-receptor

complexes in initial contact (less than 1 min) with (A) bare glass, (B) a fluid lipid bilayer

with 10 mol% DNP-Cap PE, and (C) crosslinked (EGS) DNP-BSA treated cover glass.

Scale bar represents 5 µm.
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Figure 3.2: Two-color TIRF images of FcεRI receptors (green) and a soluble buffer marker

(red). TIRF images were taken about 5 s after initial contact of a pipette-pressed cells with

(A) crosslinked (EGS) DNP-BSA, (B) crosslinked (Glut) DNP-BSA, (C) POPC with 0

mol% DNP-Cap PE, and (D) bare glass. Taken from Ref. [14]. Scale bar represent 5 µm.

formly distributed on the RBL surface, when not bound to antigens. Thus, we interpret

the heterogeneities on bare glass surfaces as points of close contact between the cell and

the surface. This interpretation is supported by previous studies using scanning electron

microscopy [67] and transmission electron microscopy in cross section [68].

Additional support for the hypothesis that receptor clustering initially occurs at close

contacts was obtained by adding a water soluble fluorescent dye (20 nM Alexa Fluor 647-

R-phycoerythrin streptavidin, Invitrogen) to the buffer [57] resulting in a two color TIRF

image. Figure 3.2 shows that at early time points, the receptor clusters (green) are found

only where the soluble dye (red) is excluded. Furthermore, every contact zone (as indi-

cated by dark regions in the red channel) contains clustered receptors. As a consequence,

there are no dark regions in the composite image: all close contacts appear green, owing

to the presence of fluorescent IgE. Qualitatively, there are no apparent differences in the

size or distribution of the heterogeneities formed immediately after contact, regardless of

the nature of the contacted surface, Fig. 3.1 and Fig. 3.2.
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3.2.1 Image correlation spectroscopy with explicit noise removal

To characterize the heterogeneous distribution, the rotationally averaged image correlation

function was computed; the width of this distribution is a measure of the spatial scale of

heterogeneities (convolved with the point spread function of the optical system). The two

dimensional spatial autocorrelation function, g(ε,κ) of an image i(x,y) is:

g(ε,κ) =
〈i(x,y)i(x+ ε,y+κ)〉

〈i(x,y)〉2
−1, (3.1)

where the angular brackets denote spatial averaging over the image, and ε and κ are spatial

lag variables [21, 32, 69]. In systems without orientational order, all the information in the

correlation function is contained in its rotational average, g(r) with r =
√

ε2 +κ2, which

we employ here. The peak of the autocorrelation at g(0) (the intensity variance) includes a

significant contribution from spatially uncorrelated camera read noise and shot noise; the

contribution from these noise sources can be directly measured and then subtracted from

the autocorrelation [70, 66]. Since signal is and noise in are uncorrelated [69],

〈
δi2
〉

=
〈
δi2s
〉
+
〈
δi2n
〉

(3.2)

where δi = i−〈i〉. Then

g(0) =

〈
δi2
〉

〈i〉2
(3.3)

and

gs(0) =

〈
δi2s
〉

〈is〉
2

=

〈
δi2
〉

〈i〉2
−

〈
δi2n
〉

〈i〉2
(3.4)

using the fact that mean of the noise is zero so that 〈i〉 = 〈is〉+ 〈in〉 = 〈is〉. This also leads

immediately to

δi2n = (in −〈in〉)
2 = i2n (3.5)

so that

gs(0) = g(0)−

〈
i2n
〉

〈i〉2
. (3.6)
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Noise variance for the EMCCD camera was measured by repeated imaging of a stationary

test sample containing the full range of intensities. The single-pixel noise variance was

then computed over the time series of images and plotted as a function of single-pixel

mean intensity. This calibration line was then used to estimate i2n for each pixel in the cell

images; pixel averaging gave
〈
i2n
〉
. Further information on camera noise calibration can be

found in section 2.7 and in Ref. [71].

ICS was performed to determine the sizes of fluorescence heterogeneities on single

cells pipette-pressed against ligand-bearing or ligand-free surfaces. The rotationally av-

eraged correlation function depicted in Fig. 3.3 shows explicit noise removal from the

variance g(0) and the resultant halfwidth at half-maximum. Inset Fig. 3.3A is a TIRF

image of a pipette-pressed RBL cell on a mobile bilayer with 1 mol% DNP-Cap PE and

Fig. 3.3B depicts the same image masked with mean of cell interior, as was done in the

analyses to eliminate the cell-size artifact from the autocorrelation.

Figure 3.3: Rotationally averaged correlation function of a typical RBL cell (shown in A)

loaded with fluorescent IgE pipette-pressed on a mobile bilayer with 1 mol% DNP-Cap

PE. The correlation function shows explicit noise removal from the variance g(0) and the

resultant halfwidth at half-maximum. Taken from Ref. [14]. Scale bar represent 5 µm.
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3.2.2 Spatial scale of initial heterogeneities

Qualitatively, there are no apparent differences in the size or distribution of the hetero-

geneities formed immediately after contact, regardless of the nature of the contacted sur-

face, Fig. 3.1 and Fig. 3.2. Quantitatively, the spatial scale of the heterogeneities, as as-

sessed by the fullwidth at half-maximum (FWHM) of the correlation function, showed no

statistically significant differences between surfaces, Fig. 3.4. The average size of hetero-

geneities on all surfaces (30 cells, 3 on each surface) is 1.2 ± 0.2 (SD) µm. Measured

fluorescent heterogeneities are significantly larger than the FWHM of 0.34 µm computed

for the theoretical microscope point spread function (Fig. 3.4, vertical black line) and

0.63 µm for measured 100 nm fluorescent beads (Fig. 3.4, vertical grey line). All ana-

lyzed data was obtained within 5 s of initial contact, during which time no coalescence

of clusters was observed. The qualitative and quantitative similarities between hetero-

Figure 3.4: Average size of FcεRI receptor fluorescence heterogeneities on different sur-

faces, measured by the fullwidth at half-maximum (FWHM) of the rotationally averaged

intensity autocorrelation. The vertical solid grey line shows the measured size of 100

nm fluorescent beads and the vertical black line is the size of the theoretical point spread

function with effective NA = 1.33 and a wavelength of 550 nm. Taken from Ref. [14].
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geneities observed on different surfaces, including surfaces that display no ligands for

IgE, strongly support the contention that clusters of IgE receptors observed on contacting

ligand-presenting surfaces are formed by diffusion-mediated trapping at points of close

contact between the cell and the surface.

3.2.3 Finite-element diffusion model

On bare glass surfaces, the heterogeneities did not change significantly in brightness or

size after initial contact for the first few seconds (data not shown). On all ligand-coated

surfaces, however, the heterogeneities brightened substantially in the first few seconds.

Hence, to further test the hypothesis that receptor clustering occurs at cell protrusions,

we fit the rapidly increasing fluorescence in clusters to a simple finite-element diffusion

model in MATLAB. The initial, brighter heterogeneities were treated as diffusion traps.

The initial receptor distribution was taken to be uniform at t=0, then evolved in time via

diffusion, with receptors in traps removed from the diffusing pool at each time step. Traps

were taken as the actual cluster locations, determined by low-pass spatial filtering of cell

images (removing the 10 lowest frequency components) and thresholding at 5% of the

maximum intensity. As receptor clusters are dim at the very earliest time points, the trap

mask generated at 0.5 s was used for earlier times as well. This method produced station-

ary receptor cluster traps for immobile bilayers and slowly moving cluster traps on mobile

bilayers. In modeling diffusional trapping, periodic boundary conditions were used on

a square lattice with an area equal to the total cell surface area. For the times modeled

(0-3 s), the boundary conditions are irrelevant, as the total pool of receptors is not signif-

icantly depleted. Accumulation in the traps was then fit to the measured fluorescence in-

crease with two adjustable parameters: the diffusion coefficient and the total fluorescence

(Fig. 3.5). Insets in Fig. 3.5 depict analyzed cell on DPPC bilayer (Fig. 3.5A) and evolved

free receptor concentration after 0.16 s (Fig. 3.5B) and 1 s (Fig. 3.5C). Only data from

the first three seconds of accumulation (brightening) was analyzed, since photobleaching
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causes significant dimming at long times. Very good fits were found for both immobile

and mobile ligands. From measurements on three cells, the mean receptor diffusion co-

efficient was 0.30 ± 0.08 (SD) µm2/s (immobile ligands) and 0.24 ± 0.07 (SD) µm2/s

(mobile ligands), consistent with reported IgE receptor diffusivity [72, 73]. To test the

sensitivity of the fit diffusion coefficient to the trap sizes, the intensity threshold was in-

creased from 5 % to 10 % and the data was re-fit; this gave the same diffusion coefficients,

within experimental uncertainty.

3.3 Receptor cluster distribution

In the previous section of this chapter, we have shown that clusters from due to IgE-

receptor trapping at cell protrusions. On mobile bilayers these clusters will eventually

Figure 3.5: Mean receptor cluster intensity is used as a measure of number of receptors

trapped in cell protrusions by immobile (DPPC) or mobile (POPC) ligands. The data

(points and triangles) was fit to a numerical two-dimensional diffusion trapping model

(solid line). (A) analyzed cell on DPPC bilayer and evolved free receptor concentration

after (B) 0.16 s and (C) 1 s. Taken from Ref. [14]. Scale bar represents 5 µm.
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move to form a large central receptor patch [13]. Before we analyze cluster motion, cluster

distribution was studied in this section. At early times, the distribution of heterogeneities

(clusters) on immobile substrates appeared random. To quantify this observation, two

tests were performed. First, the radial distribution of clusters was examined and second,

nearest-neighbor distance distributions for receptor clusters were measured.

3.3.1 Radial distribution

The radial distribution of clusters was examined by histogram analysis of cluster distances

from the center of the contact area (Fig. 3.6). The number of clusters at a radial distance (r)

was proportional to r, as expected for a uniform density of randomly positioned clusters.

This radially uniform distribution was found on all immobile two-dimensional substrates,

and on mobile substrates at early time points after cell contact. Thus, at early times, clus-

ters are no more likely to be found in the center of the contact zone than in the periphery.

Therefore, it is likely that points of close contact are formed by cell protrusions (such

Figure 3.6: The number of clusters at a radial distance r is proportional to the distance

from the center of a cell as expected for a uniform density of randomly positioned clusters.

Taken from Ref. [14].
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as microvilli) that are randomly distributed on the cell surface before the cell is brought

into contact with the planar substrate. Similar, apparently random distributions of receptor

clusters have been observed in RBL cells [13] and in T cells [7] that are allowed to settle

by gravity onto ligand-bearing membrane substrates.

3.3.2 Receptor cluster nearest-neighbor distribution

A further test of cluster randomness was performed by studying the nearest-neighbor dis-

tances of receptor clusters. For randomly placed disks of diameter h, the nearest-neighbor

distance distribution is given by Torquato et al. [74]:

P(r) = 2πrρe−πρr2

,r > h, (3.7)

where P(r) is the probability of a disk having a nearest neighbor at a distance between r

and r+dr, and ρ is the number density of disks. As not all clusters had the same diameter,

Eq. 3.7 was weighted by the fraction of disks with each diameter h:

P(r) =
Z

P′(h)2πrρe−ρπ(r2−h2)H(r−h)dh, (3.8)

where H is the Heaviside step function. Hence, identical randomly positioned disks give a

Gaussian distribution (Eq.(3.7)), but with a sharp cutoff for distances less than the disk di-

ameter. The width of the Gaussian is determined solely by the density of clusters, ρ. As the

actual clusters have a range of sizes, we plotted the random disk model, weighted with the

measured distribution of cluster diameters P′(h) given in Eq.(3.8)). Using the measured

cluster density ρ and the total number of receptor clusters, the theoretical nearest-neighbor

distribution (solid lines in Fig. 3.7) then has zero free parameters. As depicted in Fig. 3.7A,

this theoretical distribution fits the measured distribution on immobile bilayers extremely

well, supporting the contention that clusters are randomly distributed. On mobile bilayers

(Fig. 3.7B), clusters are slightly closer together than predicted for a perfect random distri-

bution at the measured density. This result may indicate that, even at early times, there is
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Figure 3.7: Distributions of cluster diameters and nearest-neighbor distances on immobile

(A) and mobile (B) ligand substrates. The area of each bar is the fraction of clusters with

nearest-neighbor distances (grey bars) or diameters (white bars) in the x-range of the bar.

The solid lines are the nearest-neighbor distances expected from a random spot model.

Taken from Ref. [14].

some change in the cluster distribution on mobile ligands that may be a precursor to later

coalescence. In Fiq. 3.7 cluster density ρ = 1.139 clusters per square micron on DPPC

(255 clusters on 3 cells), and ρ = 1.145 clusters per square micron on POPC (296 clusters

on 3 cells).

3.4 Receptor cluster dynamics

As mentioned previously, receptor dynamics differed depending on the mobility of the lig-

and. On immobile ligand substrates, the clusters brightened but did not move appreciably

over the observation time of > 1 min. On mobile ligand substrates, clusters of receptors

on pipette-pressed cells (and on gravity-settled cells) moved and coalesced to form a large

central patch of receptors within two minutes, while small isolated clusters remained at

the periphery of the contact zone. Similar receptor patching has been observed in T cells

and has been termed a synapse. The similarity in receptor organization has led to the des-
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ignation of this large patch as a mast cell synapse [13]. In the current section, we studied

this receptor cluster motion in more detail.

3.4.1 Receptor cluster transport

Prior to the onset of big patch formation approximately 2 minutes after contact, the recep-

tor clusters do not grow measurably in size, nor do they coalesce. Thus, individual receptor

clusters may be tracked to phenomenologically characterize their motion, in order to com-

pare the dynamics with other immunoreceptor clusters. MSD plots for 20 individual clus-

ters were obtained from extracted coordinates. All plots had upward curvature; such MSD

curves can be best fit with a combination of diffusion and drift velocity. A typical MSD

plot is shown in Fig. 3.8B. The TIRF image in Fig. 3.8A shows the root mean-squared

diffusional spread (parabolas) and drift velocity (arrows) of six receptor trajectories dur-

Figure 3.8: (B)Raw and drift-subtracted mean-squared displacement for cluster track indi-

cated with + in (A). Shaded area represents the standard error of the mean from multiple

measurements. (A) Tracked receptor clusters after ∼55 s of initial contact of POPC bi-

layer with 25 mol% DNP-Cap PE lipid. Parabolas (yellow) show the root mean-squared

diffusional spread of the cluster. Arrows (green) are proportional to the drift velocity and

show how far each cluster would drift in 66 s. Scale bar represents 5 µm. Taken from

Ref. [14].
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ing 55 s of initial contact. The cluster drift velocity was 37 ± 5 (mean ± SE.) nm/s. In

contrast, TCR clusters have slightly slower velocities when initially formed, but faster ve-

locities during synapse formation [75]. We also investigated whether IgE-FcεRI receptor

clusters undergo centripetal motion. A histogram of receptor cluster hop directions over

a 10 s interval, relative to the direction of the geometric cell center, is shown in Fig. 3.9

in a polar plot. The same number of correlated (251) and anticorrelated (248) hops was

observed, within statistical variation. Thus, there was no statistical significant centripetal

motion of the clusters. In contrast, TCR clusters have strong centripetal velocities dur-

ing synapse formation [75]. The computed mean diffusion coefficient of clusters was

5.1 ± 0.7 × 10−3 (mean ± SE.) µm2/s, which is comparable to that of TCR clusters when

their centripetal motion is inhibited by pharmacological or physical mechanisms [7]. In

our previous studies [13], we observed that at late times of cell-substrate contact the actin

cytoskeleton depolymerizes (decomposes into smaller compounds) at the central region

Figure 3.9: Histogram in polar coordinates of IgE-FcεRI receptor cluster hop direction

over a 10 s interval, relative to the direction of the geometric cell center, which is repre-

sented by the arrow. The data suggests that there are the same number of correlated (251)

and anticorrelated (248) hops, within statistical variation.
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Figure 3.10: Mean cluster hop for one second time intervals as a function of (A) time and

(B) distance form the center of the cell-substrate contact area. Line in (A) represents the

best fit to a constant. Error bars represent standard error of the mean.

of the contact area. This change in the actin cytoskeleton might affect the motion of the

receptor clusters. Therefore, we investigated whether cluster motion depends on time of

contact or the radial distance from the center of the cell-substrate contact zone. For this

investigation, the mean cluster hop size over a 1 s interval was analyzed for more than

60 individual trajectories obtained from 3 RBL cells in contact with a POPC bilayer with

25 mol% DNP-lipid. Figure 3.10A depicts the functional form of the mean cluster hop size

over time. The data suggests that cluster motion does not vary over time. The mean cluster

hop length obtained from a best fit to a constant was approximately 74 nm. However, the

data showed a correlation between hop size and distance from the cell center. Figure 3.10B

suggests that, on average, clusters that are farther from the center move more rapidly. It is

worth noting that a similar trend has been observed previously in T cells [75].

Lastly, we investigated the size dependence of cluster motion. According to the

SaffmanDelbrück formula [76] the diffusion constant decreases with increasing radius of

the diffusing entity. Figure 3.11 compares the mean cluster hop length of 136 individual

trajectories to cluster size (open circles). Here, cluster size was determined as follows.

For each trajectory, a cluster image of ∼ 9× 9 pixel2 was obtained. Pixel values were
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summed along the x and y coordinate and fit to a one-dimensional Gaussian in each direc-

tion. The cluster diameter σ was obtained from the square root of the sum of the squares

of σx and σy, where σx and σy represent the Gaussian variance times
√

2 obtained from the

fit. From Fig 3.11 it is apparent that there is no significant dependence of hop length on

cluster size (open circles). To compare this finding to theoretical predictions, we used the

following equation given by Petrov and Schwille [77] to estimate the diffusion coefficient

for a cylindrical object of radius similar to our experimentally determined cluster size

D(/ε) =
kBT

4π/η
×
[
ln(1//ε)− γ+4/ε/π− (/ε2/2)ln(2//ε)

]

×
[
1− (/ε3/π)ln(2//ε)+ c1/ε

b1/(1+ c2/ε
b2)
]
. (3.9)

In Eq.(3.9), the reduced radius is /ε = σ(µ1+µ2)
2/η

, where /η = 7×10−5 Pa s m is the effective

membrane surface viscosity, µ1 = µ2 = 2×10−3 Pa s are viscosities of the media surround-

ing the membrane, γ = 0.577215 is the Euler constant, kB = 1.3806504×10−23 Pa m3 is

the Boltzmann constant, and T = 310 K. c1, b1, c2, and b2 are constants given as 0.73761,

Figure 3.11: Experimental mean cluster hop size as a function of cluster diameter (open

circles) compared to a theoretical hop size predicted from Eq.(3.10) (grey line). The cluster

diameter was obtained from a Gaussian fit in the x and y coordinate of individual cluster

image. Error bars represent standard error of them mean.
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2.74819, 0.52119, and 0.61465, respectively. After computing the theoretical predicted

hop size from

∆/r =
√

4D(/ε)∆t, (3.10)

where ∆t = 1 s, the functional form of Eq.(3.10) (grey line) was compared to our exper-

imental data (open circles) in Fig 3.11. We see that the theoretical predicted decrease in

hop length due to increasing cluster size is very small. Therefore, experimental data as

well as theoretical predictions, suggest that the hop length does not significantly depend

on cluster size for our experimental parameters. It is worth noting that the effective surface

viscosity in Eq.(3.9) was two orders of magnitude larger than the surface viscosity mea-

sured in red blood cells [78]. However, the chosen smaller value of /η produces a line with

a comparable slope as expected from a surface viscosity appropriate for red blood cells.

3.4.2 Temporal Image Correlation Spectroscopy

Receptor clusters on ligand-bearing membranes undergo active (directed) transport. In-

terestingly, cells on ligand-free surfaces also exhibit fluorescence fluctuations in TIRF

imaging. These fluctuations are much too large in intensity and in spatial extent to be

caused by stochastic receptor density fluctuations. They most likely reflect fluctuations in

the proximity of various regions of the cell surface to the substrate. To further explore the

possible relationship between cell fluctuations on unliganded surfaces and cluster motion

on ligand-containing membranes, the temporal autocorrelation was computed. Temporal

image correlation spectroscopy (TICS) was adapted from Kolin et al. [36] to extract IgE

receptor cluster dynamics. The normalized intensity fluctuation temporal autocorrelation

function of an image series as a function of time lag τ is:

g′(τ) =
〈i(x,y, t)i(x,y, t + τ)〉

〈i〉2
−1, (3.11)

where the angular brackets denote spatial and temporal averaging. To characterize the

mode of transport of IgE receptors, the normalized temporal correlation function was fit to
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a flow + diffusion model for a single population of particles [36] (fit parameters in bold):

g′(τ) =
τd

τd + τ
e−(τ/τf)

2

+offset. (3.12)

The fit diffusion time τd was used to compute the diffusion constant D = h2/4τd and

the flow time τ f was used to calculate the flow speed v = h/τf [36] where h is the typ-

ical cluster diameter (measured from the spatial correlation function). The decay of the

temporal autocorrelation function depends on the persistence of the intensity variations

between images in a time-series [36]. Figure 3.12 depicts the temporal autocorrelation

of fluorescence images from six different cells (three on 0 mol% DNP-Cap PE and three

on 25 mol% DNP-Cap PE bilayer). For intervals of a few seconds or less, the kinetics

of both cluster motion and cell membrane fluctuations are similar (although one cell on

ligand-free membranes was somewhat slower, as shown). For longer time intervals, the

autocorrelation on ligand-free membranes showed greater persistence; this may be caused

by the fact that bright patches on cells on ligand-free membranes are somewhat larger

than receptor clusters, and they grow in time as the cells spread. (Fig. 3.12, images). The

similarities in the kinetics of cell membrane fluctuations and cluster motions suggest that

similar biological mechanisms may be responsible for both. It is possible that as the clus-

ters initially formed at contact zones move, the contact zones themselves move, via (for

example) cytoskeletal dynamics. In this context, it is interesting that motion of microvilli

over the cell surface has been reported in A6 toad kidney epithelium cells, using scanning

ion conductance microscopy [79].

The temporal autocorrelation on ligand-bearing membranes was also checked for con-

sistency with the results from individually tracked clusters. A diffusion + flow model was

fit to the autocorrelation, Eq.(3.12). A very good fit was obtained (Fig. 3.12, solid lines)

and the extracted mean diffusion coefficient and flow speed were 7.4 ± 1.2 10−3 (SD)

µm2/s and 30 ± 7 (SD) nm/s respectively, consistent with numbers obtained from IgE

receptor tracks in section 3.4.1.
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Figure 3.12: Temporal autocorrelation functions of three cell images on mobile bilayers

with 25 mol% DNP-Cap PE (filled circles, cell in Fig. 3.8) and 0 mol% DNP-Cap PE

(open circles). Data obtained from 25 mol% bilayers was fit to the flow + diffusion model

(solid lines), Eq.(3.12). Images depict cell regions analyzed here for POPC bilayer with 0

mol% DNP-Cap PE (top row, A in plot) and with 25 mol% DNP-Cap PE (bottom row, B

in plot) at 0 s, 2 s, and 10 s. Taken from Ref. [14]. Scale bar represents 1 µm.

3.5 Mast cell signaling

As previously mentioned in section 1.2, Weis et al. [5] showed three decades ago that

monovalent ligand in fluid membranes can cause weak mast cell degranulation. In this

section, we study the mast cell secretory response due to mobile monovalent ligand, im-

mobile monvalent as well as immobile multivalent ligand in more detail.

3.5.1 Mast cell signaling due to different ligand-presenting surfaces

In the first experiment, degranulation assays (see section 2.11) were performed to charac-

terize β-hexosaminidase release from cells engaged for 30 min at 37◦C by mobile mono-

valent and immobilized multivalent ligand. Results depicted in table 3.1 are expressed

as a percent of total β-hexosaminidase content in mast cell granules. Interaction of IgE-

receptor complex with immobile multivalent ligand (DNP-BSA) resulted in degranulation

levels equivalent to that attained by stimulating cells in solution with DNP-BSA [13].
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Degranulation was also significant after settling of IgE primed mast cells onto mobile

monovalent 5, 10, or 25 mol% DNP-lipid bilayers. This result confirmed, as previously

observed by Weis et al. [5], that the mobile monovalent ligand, which is not capable of

receptor crosslinking, leads to mast cell activation. To confirm that observed IgE receptor

clustering on immobile liganded bilayers with 25 mol% DNP-Cap PE can cause also sig-

naling, a similar degranulation assay was conducted. To ensure immobility of the bilayer,

the assay was conducted at 32◦C. Consistent with results presented in table 3.1 for mobile

bilayers with 25 mol% DNP-lipid, the mean percentage of β-hexosaminidase release from

two independent experiments with immobile bilayers was 7.3 ± 2.5 (SD) %; small but still

significantly higher than the spontaneous release of 0.5 ± 0.4 (SD) %. This result suggests

that most of the signaling occurs in the small receptor clusters.

Surface % Release

Bare Glass 1.5 ± 0.5

0 mol% mobile DNP bilayer 1.4 ± 0.2

1 mol% mobile DNP bilayer 2.2 ± 0.4

5 mol% mobile DNP bilayer 2.8 ± 0.3∗

10 mol% mobile DNP bilayer 6.4 ± 0.4∗

25 mol% mobile DNP bilayer 10 ± 1∗

Glutaraldehye treated glass 0.4 ± 1.5

Glutaraldehye + DNP-BSA 30 ± 1

EGS treated glass 1.4 ± 2.2

EGS + DNP-BSA 38 ± 8

Table 3.1: Percent β-hexosaminidase release from cells settled onto glass, mobile ligand,

or immobile chemically crosslinked ligand. Asterisks indicate results that are significantly

higher than spontaneous release (bare glass). Errors represent standard deviation from

multiple measurements.
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Figure 3.13: Time-dependent measurement of percent β-hexosaminidase released from

gravity settling RBL cells on mobile bilayers with 25 mol% DNP-Cap PE. Insets depict

TIRF images of typical gravity settling cells after ∼2 min and ∼15 min of initial contact.

Error bars depict the standard deviation from multiple measurements.

3.5.2 Time-dependent mast cell signaling due to ligand-bearing fluid

bilayer

At the beginning of this chapter we have shown that receptors aggregate through diffusion-

limited trapping at cellular protrusions. On mobile bilayers these aggregates, called clus-

ters, move to form a big central patch. An interesting question which remains to be an-

swered, is when mast cell signaling occurs. Does signaling occur in the initially formed

clusters or later in the large patch? To answer this question, we measured dose and time-

dependent release of β-hexosaminidase of gravity settling mast cells on fluid bilayers.

Figure 3.13 depicts a histogram of the β-hexosaminidase release after 2 min, 10 min,

15 min, and 30 min mast cell incubation on mobile bilayers with 25 mol% DNP-Cap PE.

The release from gravity settling RBL cells after 2 min settling time is significantly higher

than spontaneous release (bare glass) and does not significantly increase up to 30 min.

Hence, the results suggests that low level signaling on fluid membranes occurs within ∼ 1

minute before receptor clusters coalesce to form larger central patches.
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It is worth noting that Aaron et al. [80] have previously conducted a single cell degran-

ulation assay. In this experiment RBL cells where transfected with fluorescent Fas ligand, a

secretory components in the lysosomes, to visualize RBL cell degranulation. Their results

indicated that the majority of mast cell signaling is occurs within 40 s of initial contact,

which is consistent with our results presented in Fig. 3.13.

3.6 Concluding Remarks

In this chapter, we present the first quantitative evidence that anti-DNP IgE-FcεRI com-

plexes form microclusters at RBL cell protrusions through diffusion mediated trapping at

initial contact with monovalent ligands in supported lipid bilayers [14]. To quantitatively

measure early IgE receptor dynamics, the time of cell-surface contact was fixed by mi-

cropipette cell manipulation, with an onset precision of ±50 ms. At early time points, the

typical size of the fluorescence heterogeneities was the same for all surfaces, regardless of

the presence or absence of ligand, or the ligand mobility, see section 3.2.2. On ligand-free

surfaces, these heterogeneities most likely reflect the variation in the separation between

the cell and the substrate, as the exponential decay in the TIRF field will cause close con-

tacts to appear brighter. The hypothesis that receptor clusters develop at close contacts

was supported by simultaneous TIRF imaging of a water-soluble fluorescent marker dye

in section 3.2.

We have shown that the cluster brightness increases substantially in the first few sec-

onds of initial contact with monovalent ligands incorporated in either mobile or immobile

supported lipid bilayers, and this increase is well modeled by diffusional trapping, see

section 3.2.3. The initial cluster locations appeared to be random, as quantified by both

a radial density analysis and a near-neighbor distance analysis. At later times (>10 s),

liganded IgE receptor clusters on mobile surfaces, which mimics a parasitic membrane or

the membrane of another immune cell contacting the mast cell [15], undergo a combina-
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tion of directed and diffusive motion, indicating involvement of active cellular processes.

The data further suggested that cluster motion does not change significantly over time.

However, receptor clusters farther from the cell center were observed to move faster then

clusters closer to the cell center. Moreover, cluster motion was not dependent on cluster

size, as expected from theoretical predications for experimental parameters, see section

3.4.

A question, which remains to be investigated in the near future, is whether receptor

clusters remain associated with or restricted to cellular protrusions. During mast cell ac-

tivation with multivalent ligand, RBL cells are known to change their cell morphology.

During activation, the cell membrane undergoes a microvillous (unstimulated) to lamellar

or ruffled (stimulated) membrane transition as depicted in Fig. 3.14. As we have discussed

in the present chapter, mast cells are also activated (albeit weakly) when in contact with

Figure 3.14: Scanning electron microscope micrograph of RBL-2H3 mast cell in resting,

unstimulated state (left panel) and 10 min after stimulation with multivalent antigen (right

panel). Taken from Ref. [81]. Bar represents 10 µm.

fluid lipid bilayers containing monovalent ligands. Therefore, activation with monovalent

ligands may result in a similar change of cell morphology as observed during multivalent

activation. It remains to be investigated how cell membrane shape transformation affects

the coalesce of receptors in this model system. Although the clusters form at protrusions

(Fig. 3.15A), they may persist even after the cell becomes smooth (Fig. 3.15B); if so, the
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mechanism which holds them together would have to be identified. Another unanswered

question is where the ruffles depicted in Fig. 3.14 (right panel) are with respect to the

central patch.

Figure 3.15: Illustration of membrane shape and receptor aggregation: (A) receptors ag-

gregate at close contact points, (B) receptor clusters are maintained in a smooth surface.
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Chapter 4

Single-particle Tracking of IgE

Receptors in Clusters and Patches

4.1 Introduction

In chapter 3, we showed that receptor clusters on ligand-presenting fluid bilayers originate

from cell surface protrusions that form the initial contact points with the substrate. Re-

ceptor accumulation at these contact points was shown to be kinetically consistent with

diffusion limited trapping. Moreover, the cell membrane was far from the substrate except

at receptor clusters, as shown by a dye exclusion study. After initial IgE-FcεRI cluster for-

mation, small clusters diffused slowly and coalesced to form a big central patch, in which

IgE-FcεRI were qualitatively observed to be laterally mobile [13]. The ability of monova-

lent ligands presented on fluid membranes to stimulate RBL cells speaks to a longstanding

debate on the relationship between IgE-FcεRI mobility and signaling. Recently, it has

been demonstrated that small multivalent antigen induced IgE-FcεRI clusters can induce

signaling while retaining mobility [82]. The aim of this chapter is to quantify the mobility

of of IgE-FcεRI within initial cell-substrate contact points (receptor clusters) and receptor
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patches in detail, in order to address the role of IgE-FcεRI mobility in RBL cell activation.

Because receptor clusters are typically smaller than a micron, methods such as pho-

tobleaching recovery [83] or far-field fluorescence correlation spectroscopy [84] are ill-

suited for measuring receptor diffusion. Instead, we have turned to single-particle tracking,

using the fluorescent dye Atto647, which yielded receptor trajectories with ca. 50 nm lo-

calization precision, see section 4.3. To ensure that tracked receptors were in clusters, the

majority of the receptor complexes were labeled with Alexa488; both dyes were imaged

using a two-color TIRF microscope. Analysis of single-particle trajectories in sections

4.5 and 4.6 showed that receptors maintain their diffusivity even when confined within

receptor clusters, and increase their diffusivity (above that of monomeric unliganded IgE-

FcεRI) in synaptic patches. In order to ensure absence of significant bias in fit parameters,

and to determine the extent of statistical variation in diffusivity, Monte Carlo simulations

of diffusion tracks were made as outlined in section 4.4. The simulations showed that bio-

logical variation in diffusivity exceeds the statistical variation. Therefore, results presented

in the present chapter show the diversity in receptor mobility in mast cells, and provide

further evidence that receptor immobilization is not a prerequisite for signaling since mast

cell signaling occurs on these mobile monovalent ligand substrates [5, 13], also see section

3.5.

Parts of this chapter have been published previously in Ref. [38].

4.2 Details of experiment

To investigate whether individual IgE-FcεRI complexes are laterally mobile within recep-

tor clusters and synaptic patches, a two-color fluorescence experiment was performed. In

this experiment single IgE-FcεRI were distinguished from receptor clusters and synaptic

patches by labeling IgE with two spectrally distinguishable fluorescent markers at two dif-
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ferent concentrations; a higher concentration to determine the location and spatial extent

of receptor clusters and patches (Alexa488, green fluorescent) and a lower concentration

to identify single IgE-receptor complexes (Atto647, red fluorescent).

Fluorescent IgE loaded RBL cells were allowed to settle under gravity on fluid lipid

bilayers with 12 mol% DNP-CAP PE and simultaneously excited with a blue and red laser

beam. TIRF microscopy was used to image fluorescent structures within 200 nm of the

cell-substrate interface as outlined in section 2.6. Microscope time series of

50 s (1000 frames) were collected after ∼30 s and ∼4 min of initial cell-substrate con-

tact. Receptor motion in clusters and synaptic patches was investigated at early and late

time points, respectively. In this two-color TIRF experiment, the images were collected

in two channels. The red channel recorded the lower concentration Atto647-IgE in the

single-particle regime. Images in the green channel (Alexa488) recorded the fluorescent

label at higher concentration to outline the spatial extent of receptor clusters and synaptic

patches. To overlay these two channels, a dilute sample of 0.1 µm diameter fluorescent

microspheres (yellow/green FluoSpheres, Molecular Probes Inc.) emitting spectral com-

ponents detectable in both channels was imaged. The images of these microspheres were

used to align the two channels. After spatially overlaying the two spectrally separated time

series, the majority of IgE-FcεRI were observed to be mobile within clusters and synaptic

patches. Figure 4.1 depicts a two-color overlay at early time, Fig. 4.1A, and at late time,

Fig. 4.1B. Here the green label outlines receptor clusters and bigger patches whereas the

red label depicts single IgE-FcεRI receptor complexes.

4.3 Analysis of mean-squared displacement plot

Single-particle trajectories of fluorescent receptor clusters and IgE-FcεRI receptor com-

plexes were obtained by using a single-particle tracking algorithm implemented in MAT-

LAB as previously described in section 2.9. IgE-FcεRI were tracked only if they were
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Figure 4.1: Two-color TIRF images with a labeling ration of 20:1 of green fluorescent dye

(Alexa488) to red fluorescent dye (Atto467). Images depict gravity settling mast cell on

a POPC fluid bilayer with 12 mol% DNP-lipid after (A) ∼ 30 s and (B) ∼4 min. Single

particle tracking was performed on red fluorescent IgE-receptor complexes. Taken from

Ref. [38]. Bar represents 5 µm.

located within a receptor cluster or a synaptic patch as determined from the two-color

image overlay. The particles were tracked for at least 65 time steps of 50 ms each. The

average track length was ∼100 time steps. The MSD was calculated from all n available

displacements of a given duration n∆t in the track record [85, 58, 86]. To characterize

the motion, the MSD plot was computed up to ∆t < 1/4 of the total number of acquired

time frames [58, 87]. In MSD plots computed in this chapter, all points were equally

weighted, which has been shown to give unbiased parameters if all available displace-

ments are used [58, 86].

The MSD graph for IgE-FcεRI inside receptor clusters and in the central patch showed

a downward curvature (see Fig. 4.3C (circles) and 4.3F) and asymptotically approached

a finite value, which is a signature for confined diffusion. As the exact shape of the con-

finement (if it is not too eccentric) has a negligible effect on the form of the MSD [19]

(see Eq.(2.9)), we fit to a circular confinement zone. The exact solution [88] contains an

infinite sum of exponentials, but the second term is two orders of magnitude smaller than
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the first and each subsequent term at least another order of magnitude smaller. Hence, a

good approximation is obtained from the first exponential only

MSD(∆t) = 4σ+R2[1−0.99exp(−1.842D∆t/R2)]. (4.1)

Fitting parameter D is the diffusion coefficient, R is the confinement zone radius, and σ

represents the uncertainty (variance) in particle localization. It is worth noting that the

Laplace transform of the exact solution, which includes an infinite sum of exponential

terms, can be computed precisely and is given as [89]

M̃SD(ε) =
4D

ε2

[
1−

1
√

ετ

I1(
√

ετ)

I′1(
√

ετ)

]
. (4.2)

Here ε is the Laplace variable, τ = R2/D is a diffusion time, and I1(z) is the first mod-

ified Bessel function of the second kind, where the prime represents the first derivative

with respect to
√

ετ. To ensure that the approximation given in Eq.(4.1) is appropriate, we

numerically Laplace inverted Eq.4.2 by applying the Gaver-Stehfest inversion algorithm

outlined in appendix C and compared it to the approximation. As expected, the func-

tional form of Eq.(4.1) was in excellent agreement with the exact numerically inverted

solution. The sum of the static and dynamic localization (measurement) uncertainty is

represented by σ in Eq.(4.1). This value was determined by fitting a straight line through

time lags 2∆t, 3∆t, and 4∆t. The offset determined by this method avoids using the part

of the MSD plot between times 0 and 2∆t which is known to be complicated and times

longer than 4∆t after which the confinement effects were apparent [90]. The average lo-

calization uncertainty for IgE-FcεRI diffusing inside clusters and synaptic patches was

σ = 47±18 nm and σ = 30±38 nm, respectively, where the error represents one standard

deviation.

Cluster diffusion was also estimated from MSD plots of the cluster center, as deter-

mined from a two-dimensional Gaussian fit to intensity. The MSD graph of receptor

cluster trajectories was linear as depicted in Fig. 4.3C (squares) and fit to Eq.(2.8) with

o f f set = 4σ to estimate cluster diffusivity. The average localization uncertainty for clus-

ters was σ = 32±13 nm.
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4.4 Monte Carlo calculations

To determine statistical uncertainties and possible biases in fitting for diffusivity, model

diffusion tracks were constructed using a random-step-length continuum algorithm, and

the tracks were analyzed with same procedure employed for cell data as outlined in sec-

tion 4.3. A point particle was initially placed at a random position within a circular domain

of radius R. At each time step, the particle was moved a displacement γ
√

2Dt in x and y,

where t is the time step, D the diffusion coefficient, and γ is a normally distributed pseu-

dorandom number with zero mean and unit standard deviation. When a particle attempted

to cross the boundary, its trajectory was reflected by the boundary resulting in confined

diffusion. To simulate simple diffusion we applied the same algorithm in the absence of

a reflecting boundary. The final simulated real particle trajectory (without localization un-

certainty) contained 100 position measurements. To obtain an experimentally observed

particle trajectory a dynamic and static localization uncertainty must be added. As men-

tioned above, static errors arise from the uncertainty in determining the position of the

particle due to experimental noise. Dynamic errors are due to particle diffusion within the

integration time of each frame, leading to intensity blurring. Both sources of error have

a Gaussian distribution and can be combined into one parameter γσ which was added to

each x and y coordinate of the trajectory.

Monte Carlo simulations were performed in MATLAB and the simulation was repeated

50,000 times for each initial Monte Carlo diffusion coefficient D and corral radius R. D f it

and R f it obtained from the fits to the MSD plots were nearly lognormally distributed,

deviating only at the tails from the phenomenological distribution as depicted in Fig. 4.2.

A lognormal distribution in diffusivity given as

f
(
D f it

)
=

1

D f itη
√

2π
exp

[
−
(
lnD f it −µ

)2

2η2

]
, (4.3)

where µ and η are fitting parameters, has been reported for unconfined diffusion [58, 91].

Accordingly, we characterized the distribution by the (exponential of the) mean log dif-
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Figure 4.2: Distribution of D f it (A) and R f it (B) obtained from 50,000 Monte Carlo sim-

ulated trajectories. The MSD in (A), computed for each trajectory, was fit to a circular

confinement zone given in Eq.(4.1). The initial Monte Carlo diffusion coefficient and cor-

ral radius were D = 4.1×10−2µm2/s and R = 206 nm, respectively. The simulation input

parameter for static and dynamic localization uncertainty was σ = 47 nm. The solid line

represents a fit to a lognormal distribution given in Eq.(4.3). Taken from Ref. [38].

fusivity 〈D0〉ln and corral radius 〈R0〉ln, and the corresponding standard deviations, ex-

pressed as multiplicative factors. In the remainder of this chapter, we will drop the sub-

script and use the averaging brackets to denote the logarithmic mean, and ×/ to indicate

the uncertainty factor. Note that many studies of diffusion on cells report uncertainties as

the standard error or the mean (or log mean), which is much smaller than the spread in the

distribution of measurements.

4.5 IgE-FcεRI receptors diffuse within clusters

and patches

In a recent study [13] our group showed that individual IgE-FcεRI were mobile within a

synaptic patch by a fluorescent bleaching and recovery experiment. However, the collected

experimental data did not allow us to estimate a receptor diffusion coefficient. To make
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quantitative useful measurements of receptor motion within clusters and synaptic patches

the method of single-particle tracking [19, 57, 59] was applied.

Figure 4.3B and 4.3E depict a typical IgE-FcεRI trajectory (red) imaged at 20 frames/s

within a cluster (green) and a synaptic patch (green), respectively. Corresponding MSD

plots depicted in Fig. 4.3C (circles) and 4.3F showed downward curvature and asymp-

totically approached a finite value, which is a signature for confined diffusion. From the

asymptotic MSD value the estimated cluster and patch radius was
√

0.03µm (160 nm) and
√

0.21µm (460 nm), respectively. This functional form was expected since it is evident

from Fig. 4.3B and 4.3E that receptor trajectories were confined within the cluster and

synaptic patch. The cluster image (Fig. 4.3B, green) was obtained from an intensity sum

over a 4.6 s time series. The cluster moved approximately 140 nm in this time period. The

tracked receptor remained within the patch at all times. The patch image (Fig. 4.3E, green)

was obtained from an intensity sum over a 3.3 s time series.

Qualitatively, the much steeper initial slope of the MSD for the receptor in the patch

(Fig. 4.3F) compared to that for the receptor in the small cluster (Fig. 4.3C, circles) shows

that the former diffuses much faster. To show that receptors are indeed mobile within

clusters and eliminate the possibility that the trajectory shown in Fig. 4.3B (red) describes

the actual cluster motion, the cluster was separately tracked. The MSD plot obtained from

the cluster trajectory is shown in Fig. 4.3C (squares). From the linear fit, we find that

the diffusion of the cluster as a whole is an order of magnitude slower than that of the

individually tracked receptor. In addition, for a fraction of IgE-FcεRI that had very slow

diffusion, we found no directional correlation between receptor hops and cluster hops,

vide infra.
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Figure 4.3: Fluorescent IgE-FcεRI receptor (IgE-FcεRI) complexes undergo confined dif-

fusion in clusters and synaptic patches. (A,D) TIRF microscope image of gravity settling

RBL cell on POPC fluid lipid bilayer with 12 mol% DNP-CAP PE after ∼30 s (A) and

∼4 min (D) of initial contact. Red box highlights cluster or synaptic patch in which a sin-

gle fluorescent IgE-FcεRI complex was tracked at 20 frames/s. Bar represents 5 µm. (B)

Demonstrates that IgE-FcεRI complex trajectory (red) is restricted to the area occupied by

the cluster (green). (C) MSD plots of IgE-FcεRI complex trajectory shown in (B) (circles)

and cluster trajectory (squares). (E) Demonstrates that IgE-FcεRI complex trajectory (red)

is restricted to the area occupied by the synaptic patch (green). (F) MSD plot of IgE-FcεRI

complex trajectory shown in (E). Taken from Ref. [38].

4.6 IgE-FcεRI receptors diffuse faster in patches

For a receptor confined within a cluster, the cluster trajectory was obtained separately.

The MSD was calculated for each trajectory and fit to a simple diffusion (cluster tracks)

or confined diffusion model (IgE-FcεRI tracks) to estimate diffusivity and domain size as

outlined in section 4.3. For receptors diffusing inside clusters, two clearly distinguishable

populations were observed: one diffusing significantly faster than the cluster (Fig. 4.3C)

and the other (∼ 30% of receptor tracks) with a diffusivity comparable to the clusters
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themselves. The second population will be analyzed separately in a later section (sec-

tion 4.8). The average (logarithmic mean) diffusion coefficient of IgE-FcεRI in clusters

of the first population was 〈D〉 = 4.1× 10−2 µm2/s, with a spread of a factor of 2.03.

The IgE-FcεRI diffusivity in clusters is similar to that of the monomeric, uncrosslinked

IgE-FcεRI [57, 73]. The average cluster radius 〈R〉 was 206 nm (×/1.36), which is con-

sistent with the microscopically observable cluster size and measurements presented in

section 3.2.2 [14]. IgE-receptor complexes confined within synaptic patches of apparent

average radius 〈R〉=503 nm (×/1.45) diffused faster than expected, with an average dif-

fusivity of 〈D〉 = 0.17 µm2/s (×/1.7). This diffusion coefficient is significantly faster

than the measured diffusivity of monomeric IgE-FcεRI on resting cells [57] and consis-

tent with the apparent absence of actin cytoskeleton in this region [13]. It is also con-

sistent with diffusion measurement of FcεRI mobility using high speed (750 frames/s)

single particle tracking [92] and FRAP on cells swollen by hypoosmotic stress [40], where

the constraints of the cytoskeleton are removed. Figure 4.4 shows the average diffu-

sion coefficient (solid black line) for IgE-receptor complexes diffusing within synaptic

patches (circles) and clusters (squares). The average diffusivity of clusters (triangles) was

〈D〉 = 3.3 × 10−3 µm2/s (×/2.1), significantly smaller than IgE-FcεRI diffusivity and

within reported observations outlined in section 3.4.1 [14]. Clusters tracked in this exper-

iment did not show evidence of directed motion as we found in section 3.4.1. However,

the tracking time was shorter in the study presented in this chapter, making detection of

directed motion more difficult. For each population, the dashed line above and below the

mean represents one standard deviation in the lognormal distribution. To compare the data

sets statistically, the two-sample Kolomogorov-Smirnov test [93] was implemented. This

test determined that the three experimental data sets presented in Fig. 4.4 were drawn from

three different distributions at the 5×10−4 significance level.

To determine if the variation and uncertainty in diffusivity is consistent with that ex-

pected from statistics, Monte Carlo simulations as outlined in section 4.4 were performed.

The experimentally observed average diffusivity 〈D〉 and corral radius 〈R〉 (if applicable)
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Figure 4.4: Experimental (solid black lines) and Monte Carlo simulated (solid grey

lines) average (logarithmic mean) diffusivity of IgE-FcεRI receptor complexes confined

to synaptic patches (circles) and clusters (squares) as well as average diffusivity of freely

diffusing clusters (triangles). For each population, the dashed line above and below the

average represents one standard deviation in the lognormal distribution. The average dif-

fusion coefficient 〈D〉 and corral radius 〈R〉 obtained from experiments were used as input

parameters for the simulation. Here, the averaging brackets denote the logarithmic mean.

〈D0〉 is the average diffusivity obtained from 50,000 simulations which incorporated dy-

namic and static localization uncertainty estimated from experimental data. Taken from

Ref. [38].

for each population were used as simulation input parameters, as well as the localiza-

tion uncertainty σ. After 50,000 Monte Carlo simulations, the population mean and stan-

dard deviation of 〈D0〉 and 〈R0〉 were calculated. The average diffusivity for receptors

confined within synaptic patches and clusters was 〈D0〉 = 1.6×10−1 µm2/s (×/1.4) and

〈D0〉 = 4.0 × 10−2 µm2/s (×/1.4) with average confinement zone radius of

〈R0〉 = 513 nm (×/1.3) and 〈R0〉 = 204 nm (×/1.17), respectively, in good agreement

with measured values. This demonstrates that the analysis procedure, with overlapping

intervals and equal weighting, does not introduce any substantial bias in parameter esti-

mation, even in confined diffusion. As shown in Fig. 4.2, there is evidence of a very small

residual bias at the tails, which may be caused by the slight deviation of fit diffusivities

from a lognormal distribution.
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Monte Carlo simulation of cluster diffusion gave an average diffusivity of

〈D0〉 = 3.0×10−3 µm2/s (×/1.47), in agreement with the measured value. As discussed

above, it has been previously noted that MSD fitting for unconfined diffusion gives unbi-

ased estimates when overlapping intervals and equal weighting are used [58, 86], so good

agreement was expected. Uncertainty in σ resulted in a systematic error of less than 10%

of the reported values. Figure 4.2 shows results obtained from the simulations, where the

solid grey lines indicate the mean and dashed grey lines one standard deviation above and

below the mean.

The simulations also show that the variation in D observed on cells cannot be explained

on the basis of statistics, as the simulation includes localization uncertainty, finite track

length, exposure time, and equal weight fitting. Thus, there is additional variation of

biological origin.

As discussed in chapter 3, we believe that receptor clusters originate from cell sur-

face protrusions that form the initial contact points with the substrate. The cluster is thus

maintained (while it is maintained, i.e. before coalescence) by the cell morphology. This

allows for the relatively free diffusion of receptors confined within it. Hence this study,

and other recent studies [82] indicate clearly that receptor immobilization is not required

for signaling, as signaling (albeit weak signaling) still occurs with fluid lipid membrane

substrates [5, 13].

4.7 IgE-FcεRI receptors can hop between clusters

Although receptors are generally confined, on rare occasions, a receptor can be observed

to leave one cluster and enter a different cluster. Figure 4.5 depicts a trajectory of such a

cluster-hopping receptor. The color coding indicates the relative brightness of the recep-

tor, with red being dimmest and blue brightest. During transit, the IgE-FcεRI appears to
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be farther from the substrate, as it is dimmer in TIRF. Thus, during transit this receptor is

no longer in close proximity to the supported lipid bilayer; either the IgE must dissociate

from the lipid-bound ligand, or the lipid-bound ligand must be extracted from the mem-

brane. Although cells can easily develop sufficient force to extract phospholipids from

membranes [94], we believe that this event involved ligand dissociation from IgE. Firstly,

spontaneous IgE-DNP dissociation is rather fast, binding time ≈ 100 s [95]. Secondly, the

trajectory of the receptor appears to be diffusive, not directed, as might be expected if the

cell were exerting force on the receptor.

It is noteworthy that the IgE-FcεRI appeared to diffuse more rapidly when in transit

in between clusters, comparable to observed IgE-FcεRI motion in synaptic patches. This

may indicate that the relaxation of diffusional constraints over much of the cell surface is

a precursor to the formation of the larger central patches and patch coalescence.

Figure 4.5: Fluorescent IgE-FcεRI receptor (IgE-FcεRI) trajectory obtained from single-

particle tracking at 20 frames/s. TIRF microscope images were collected ∼30 s after

initial cell-substrate contact. The color coding indicates the relative brightness of the IgE-

FcεRI, with red being dimmest and blue brightest. The IgE-FcεRI is initially confined

in the bottom left cluster (grey) and then transits to the top cluster. During transit the

receptor appears to be no longer in close proximity (dimmer in TIRF) to the supported

lipid bilayer and appears to move more rapidly (larger hops). Taken from Ref. [38]. Scale

bar represents 500 nm.
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4.8 Slowly diffusing receptors are not influenced by re-

ceptor cluster motion

As previously mentioned ∼ 30% of receptors in clusters are no more mobile than the

clusters themselves. This raises the possibility that they are, in fact, immobile within the

cluster, and their motion is simply the collective motion of the cluster. To address this

hypothesis, we looked for correlation between the cluster and the single receptor hop di-

rections. A total of 508 cluster-receptor vector pairs obtained from individual hops (every

50 ms) were analyzed (7 IgE-FcεRI and cluster trajectories). A histogram of receptor hop

directions, relative to the cluster hop direction, is shown in Fig. 4.6 in a polar plot. The

same number of correlated (251) and anticorrelated (258) hops was observed, within statis-

tical variation. Thus, slowly diffusing receptors are not simply moving with the cluster as

a whole. In fact, they do not even appear to be influenced by the cluster motion. This may

indicate that the cytoskeletal elements responsible for maintaining cluster (contact) points

do not move as initially suggested in section 3.4.2, but rather assemble and disassemble so

as to produce contact zone movement.

4.9 Closing Remarks

This chapter presented a study what we believe to be the first quantitative evidence that

anti-DNP IgE-FcεRI receptor complexes undergo relatively free diffusion within

micron-sized receptor clusters [38]. As outlined in chapter 3, these clusters originate

from cell surface protrusions that form initial contact points with a monovalent ligand-

bearing fluid lipid bilayer, which is known to trigger mast cells [5, 13], see section 3.5.

To directly observe IgE-FcεRI receptor motion within these contact points, we applied

two-color TIRF microscopy together with single-particle tracking and MSD analysis as

outlined in section 4.2 and 4.3, respectively. To ensure the absence of bias in the fitting of
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Figure 4.6: Histogram in polar coordinates of IgE-FcεRI hop direction, relative to receptor

cluster hop direction, which is represented by the arrow. Here, receptors were no more

mobile than the clusters themselves. The data suggests that there are the same number

of correlated (251) and anticorrelated (258) hops, within statistical variation. Taken from

Ref. [38].

MSD plots, Monte Carlo simulations of diffusion tracks (with localization uncertainty), as

described in section 4.4, were fit by the same procedure.

The typical diffusion coefficient of liganded receptor in clusters in section 4.6 was

comparable to that of the monomeric, uncrosslinked IgE-FcεRI receptor on free cell sur-

faces [57]. Although about 30% of the receptors did diffuse slowly, their motion was

uncorrelated with that of the micron-sized clusters in which they were located as outlined

in section 4.8. In the synaptic patches that result from coalescence of clusters, receptors

diffused much faster (sections 4.5 and 4.6), consistent with the apparent absence of actin

cytoskeleton in the synaptic region [13]. Hence RBL cell synaptic patches may prove to

be a useful model system to study protein diffusion in the absence of cytoskeletal interac-

tions. On rare occasions, as shown in section 4.7, a receptor was observed to leave one
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cluster and enter a different cluster; the loss of confinement appears to be caused by IgE

dissociation from its ligand. In between clusters, receptors showed very rapid diffusion

(even before the central synaptic patches have formed), suggesting that the loss of diffu-

sional constraints is actually a precursor to the formation of the large synaptic patch. In

conclusion, our results suggest at least three diverse states of receptor mobility in mast

cells, and provide further evidence that receptor immobilization is not a prerequisite for

signaling.

Lastly, we want to note that through our investigations, we have made a direct connec-

tion to a relatively new field in cell membrane biology, namely the subject of membrane

curvature generation and sensing [96]. In cell membranes, surface energy was considered

historically a passive, geometric feature of biological membranes due to the small curva-

ture of the cell as a whole [96]. However, when the membrane curvature radius is close to

the membrane thickness, the membrane curvature is quite large. Curvature of a normally

flat bilayer expands the lipid heads on the outer leaflet and compresses them on the inner;

since molecular compression is more limited, the overall effect is an area increase, giving

a higher surface energy. This increase in surface energy may affect protein motion. One

mechanism which may cause this motion is based on the principles of hydrostatics. Fig-

ure 4.7 shows how a curved interface, e.g. oil-water interface, can cause particle migration

based on the principle of capillarity [97]. A particle embedded in an interface creates a

local deformation which can interact with the host surface energy gradient. To minimize

surface area, an anisotropic particle must orient itself properly and move along its host in-

terface to minimize the difference between the curvature of its deformation field and that

of the host. If there are multiple particles embedded in a host interface, their individual

deformation fields will interact as well. Since we have studied diffusion limited trapping

of receptors at cellular protrusions in chapter 3 and we have observed individual receptors

to leave on cell-substrate contact point and enter a different one in the present chapter,

see section 4.7, an investigation of the effect of membrane curvature gradients on FcεRI

transport would be a natural and important extension of our studies.
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Figure 4.7: Illustration of anisotropic particles, e.g. cylinders, moving on a curved inter-

face. The particles rotate and move on the host interface to minimize the overall curvature.
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Chapter 5

The Formation of a Receptor Cluster

Depletion Zone

5.1 Introduction

In chapter 3, experimental investigations showed that receptor clusters are initially ran-

domly distributed over the cell-substrate contact area. These clusters move over the cell

surface with a combination of diffusive and directed transport. At late time, clusters coa-

lesce to form a large central receptor patch. This formation of a large central patch seemed

to be accompanied by the formation of a receptor cluster depletion zone. In the present

chapter, we developed a simple mathematical model for the rotationally averaged correla-

tion function of such a depletion zone.

In section 5.2, we present experimental data which qualitatively shows that a receptor

cluster depletion zone forms around the central receptor patch. The corresponding rota-

tionally averaged image correlation function (c.f.) shows the development of a dip, which

we believe to be a quantitative signature of the formation of a receptor cluster depletion

zone. The goal of the present chapter is to develop a mathematical model for such a c.f.
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and fit this model to individual c.f.s of RBL cell TIRF images in a time series to extract

essential parameters such as depletion zone and central patch radius. Plotting these pa-

rameters over time should give us some new insight into the dynamics of depletion zone

formation as well as central patch growth.

To develop a mathematical depletion zone model, which is based on the contribution of

two c.f., seven important model parameters are selected in section 5.2.1. The first contri-

bution is the intensity c.f. of non-overlapping disks with a top-hat intensity profile. Section

5.3 outlines an approximate but highly accurate semianalytical algorithm to compute this

correlation function. It is worth noting that the algorithm for non-overlapping disks can

be extended to estimating particle number and size from the intensity autocorrelation of a

typical microscope image of fluorescent disk-like particles as outlined in appendix A. In

section 5.4, the c.f. of a depletion zone, which is the second contribution, is derived from

geometrical considerations. In section 5.5, we show that a simple superposition of these

two contributions fit the c.f. of a computer generated receptor cluster depletion zone very

well.

Finally, the model was applied to radial averaged c.f.s obtained from the image auto-

correlation of thresholded RBL cell TIRF images in section 5.6. This direct comparison

showed that the presented mathematical model cannot describe our experimental data. The

main short coming of our model is accounted to the asymmetric shape of receptor clusters

and patches, which can lead to the disappearance of the dip in the rotationally averaged

correlation function.

Parts of this chapter have been published previously in Ref. [39].
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5.2 Receptor cluster depletion zone

The formation of the big central receptor patch due to a fluid ligand presenting bilayer

is shown in Fig. 5.1. At early time points, clusters are small and nearly homogeneously

distributed. Over time, clusters become larger due to cluster coalescence, eventually re-

sulting in the emergence of a central patch. The appearance of a receptor cluster depletion

zone becomes apparent after ∼ 1 min after initial cell-substrate contact. Quantitatively,

the formation of the depletion zone and the large central patch, can be characterized by the

rotationally averaged c.f., which has been previously used to determine receptor cluster

size in section 3.2.2. Figure 5.1 depicts the spatial c.f. for a RBL cell TIRF image shown

in the inset. The depicted rotationally averaged c.f. was corrected for noise contributions

and obtained from TIRF images masked with mean of cell interior, as was done previously

to estimate receptor cluster size, see section 3.2.1. Figure 5.1 depicts an apparent dip in the

c.f., which we believe to be a signature of a receptor cluster depletion zone, even though

Figure 5.1: Rotationally averaged correlation function of RBL cell pipette-pressed onto

a POPC bilayer with 25 mole % DNP-Cap PE after 80 s of initial cell-substrate contact.

Inset shows corresponding TIRF image. It is apparent from the correlation function that

there is a receptor depletion zone around the big receptor patches, which manifests itself

in a dip in the correlation function. Bar represents 5 µm.
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Figure 5.2: Frequency distribution of the radial distance of the center of the biggest patch

from the center of the contact zone (grey bars) compared to the distribution expected for a

random patch distribution within the contact zone (white bars).

the dip is not very pronounced.

As mentioned above, the position of the big receptor patch seems to be in the center of

the cell-substrate contact zone. This observation was confirmed by computing the radial

distance of the geometric center of the largest receptor patch to the center of the cell-

substrate contact area. Figure 5.2 depicts a frequency plot of the radial distance of the

largest patch from the cell center, normalized by the cell radius, for 33 individual cells

(grey bars). Each cell was in contact with a monovalent ligand bearing fluid lipid bilayer

for at least 2 min. The data suggests that the largest receptor patch forms closer to the

center of the contact zone than predicted from a random patch distribution in the contact

zone, Fig. 5.2 (white bars).

It is worth noting the appearance of the largest receptor patch in the center of the cell-

substrate contact area, raises an interesting question ”how does the cell know where its

middle is?” This question remains to be investigated in the near future.
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5.2.1 Proposed depletion zone model

In order to develop a mathematical model for the rotationally averaged correlation function

of RBL cell TIRF images as depicted in Fig. 5.1, we first select essential model parameters.

Our experimental observations suggested that important model parameters are the size,

intensity, and number density of clusters as well as the central patch and depletion zone

radius. To reduce this list of parameters, we decided to threshold RBL cell TIRF images

before the computation of the c.f., see section 2.10. Figure 5.3 depicts an illustration of a

typical RBL cell TIRF image, which depicts a receptor cluster depletion zone. There are

a total of seven essential parameters, which include the cluster radius Rc, patch radius Rp,

and depletion zone radius Rd . Due to image thresholding the intensity values of receptors

Is and the central patch Ip can be set to one, whereas the intensity value of the depletion

zone Id is set to zero. Finally, the intensity of the background Ib can be determined exactly,

since it is the average intensity of the cell interior. Including the background intensity in

the model is essential to correct the radial c.f. for cell size artifacts, see section 3.2.1.

A simple mathematical model of the radial c.f. for an intensity distribution depicted in

Figure 5.3: Illustation of receptor cluster depletion zone and selected model parameters.

Here, Rd , Rc, and Rp represent the depletion zone, cluster, and patch radius, respectively

and Id , Ic, and Ip are their corresponding intensity values. Ib is the background intensity

defined as the mean intensity of the cell interior.
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Fig. 5.3 can be constructed from three contributions as follows. The first contribution, is a

radial correlation of a random distribution of clusters with a top-hat intensity profile, which

we will call autocorrelation of randomly distributed non-overlapping disks of identical

radius gc(r). The second contribution is the autocorrelation of a ring gd(r) of outer radius

Rd and inner radius Rp. The ring has uniform intensity, where the intensity inside the ring

for a radius less than Rp is set to zero and the intensity outside the ring, i.e. r > Rd , is a

constant less than one. The third contribution, which is small compared to the other two,

is the crosscorrelation of a cluster with the central patch. For simplicity, we will neglect

this contribution. Therefore, our model will consist of a simple superposition of the first

two contributions.

5.3 Rotational correlation function of randomly

distributed disks

In the present section, we derive an approximate but highly accurate algorithm for the

computation of the intensity c.f. for hard disks in two dimensions. Kruglov [98] (and

elaborated by Li et al. in Ref. [99]) has shown how the density c.f. for a system of ho-

mogeneous spheres can be derived from the pair correlation function, using geometrical

considerations. (The pair correlation function gives the probability of finding an object

with its center at a distance r, given an object at the origin.) For image correlation, the

density corresponds to the image intensity. Following Kruglov, the two-dimensional den-

sity or intensity correlation for a population of disks of identical radius may be written as

gc(~r) =
Z

A

gauto(~r−~r′)[δ(~r′)+ργ(~r′)−ρ]d2~r′, (5.1)

where gauto is the normalized density or intensity autocorrelation for a single disk, δ(r) is

the two-dimensional Dirac delta function, γ(r) is the pair c.f., and ρ is the number density
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of the disks. The integration is performed over the image area A. For an isotropic system,

Eq.(5.1) may be rewritten in a symmetric form by averaging gauto(r) over all possible

relative orientations of the vectors r and r′:

gc(r) = gauto(r)+ρ

∞
Z

0

π
Z

0

gauto

(√
r2 + r′2 −2rr′ cos(θ)

)
[γ(r′)−1]2r′dθdr′. (5.2)

Note that gauto plays a different role outside the integral (where it represents the correlation

of each disk with itself) and inside the integral (where it represents the crosscorrelation

between disks). For uniform (top hat) disk fluorescence, the autocorrelation gauto(r) can

be computed from geometry and is

gauto(r) =





1−
r
√

R2
c−r2/4

πR2
0

− 2
π sin−1

(
r

2R0

)
, 0 ≤ r ≤ 2Rc

0, 2Rc < r

(5.3)

normalized to gauto(0) = 1, where Rc is the disk radius [100]. Equation (5.2) is the normal-

ized per particle rotationally averaged equivalent of Eq.(3.1) and can be applied to systems

without rotational order. The calculation of the intensity correlation function now requires

the substitution of the pair c.f. into Eq.(5.2) and an evaluation of the integral therein.

Guo and Riebel [101] developed an analytic approximation for the pair c.f. for a mono-

layer of monodispersed hard disks using the Ornstein-Zernike (OZ) equation [102, 103]:

h(~r) = c(~r)+ρ

∞
Z

0

h(~r′)c
(∣∣~r−~r′

∣∣)d~r′, (5.4)

where h(r) = γ(r) + 1 is termed the total c.f. for two particles, and c(r) is termed the

direct correlation function. The OZ equation reflects the indirect contributions of three

particle correlations to the total or pair correlation function. The OZ equation is a recursive

equation and can be solved using a closure relation. Guo and Riebel [101] applied the

Percus-Yevick closure relation for a hard-core pair potential to approximate the direct c.f.
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as

c(r;η) = Θ

(
1−

r

2Rc

)(
−

1−qη2

(1−2η+qη2)2

)

×

{
1−a(η)2η+

2a(η)2η

π

[
sin−1

(
r

2Rca(η)

)
−

r

2Rca(η)

√
1−

r2

4R2
ca(η)2

]}
,

(5.5)

where Θ(r) is the Heaviside step function, q = (4π
√

3− 12)/π2, η = ρπR2
c is the area

fraction occupied by the disks and

a(η) = 0.399η4 −1.2511η3 +2.0199η2 −0.399η+2.1.

In Fourier space the Ornstein-Zernike equation given in Eq.(5.4) can be written as

H(k;η) =
C(k;η)

1−ρC(k;η)
, (5.6)

where H(k;η) and C(k;η) are the Bessel transforms of the total c.f. and the direct c.f.,

respectively, i.e.,

C(k;η) = 2π

∞
Z

0

c(k;η)J0(kr)rdk. (5.7)

Here J0() is the zeroth order Bessel function. Combining h(r) = γ(r)+1, Eqns. (5.5) and

(5.6), the pair c.f. is obtained by computing the following inverse Bessel transform

γ(r) = 1+
1

2π

∞
Z

0

C(k;η)

1−ρC(k;η)
J0(kr)kdk. (5.8)

We numerically apply the Guo and Riebel direct c.f., Eq.(5.5) to Eqns. (5.7) and (5.8) to

find the pair c.f.; the pair c.f. is directly substituted into Eq.(5.2) to obtain the normalized

per particle intensity correlation function. The essential features of the pair correlation

function given in Eq.(5.8) are shown in Fig. 5.4, which depicts γ(r) for Rc = 8 pixel and

η = 0.31. As mentioned above, γ(r) is related to the probability of finding the center of
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Figure 5.4: Pair correlation function γ(r) obtained from Eq.(5.8) for Rc = 8 pixel and

η = 0.31.

a disk a given distance from the center of another disk. For r < 2Rc, hard disks cannot

overlap and γ(r) = 0, corresponding to the excluded volume. For large values of r, disks

are uniformly distributed and γ(r) → 1. In between, the region of decaying oscillations,

the pair correlation function shows short-range structure as disks try to fit in the two-

dimensional space without overlapping.

5.3.1 Scaled hard disk correlation function

The number of particles in a given observation volume can be determined if Eq.(5.2) is

scaled appropriately. The scaling constant C can be obtained by computing the peak of

the c.f. gN(0), where the subscript N refers to the properly normalized c.f. of N particles.

Following Eq.(3.1) the peak of the rotationally averaged c.f. gN(0), is given as

gN(0) =
i2NπR2

c\w2

[iNπR2
c\w2]

2
−1 =

w2

NπR2
c

−1 =
1

η
−1, (5.9)

where i describes the intensity of a homogeneous disk, w2 is the observation area, and η

is the area fraction occupied by the disks defined above. Using Eq.(5.9) one can compute

the scaling constant C

C =
gN(0)

gc(0)
=

(
1

η
−1

)
1

gc(0)
, (5.10)
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where g(0), is the peak of the normalized c.f. given in Eq.(3.1). Finally the un-normalized

rotationally averaged c.f. is obtained by multiplying the normalized c.f. g(r), given in

Eq.(3.1) by the scaling constant C

gN(r) =

(
1

η
−1

)
gc(r)

gc(0)
. (5.11)

To verify Eq.(5.11), test images of randomly distributed hard disks with uniform intensity

were created in MATLAB using the DIPimage toolbox. The intensity c.f. of each test

image was calculated by Fourier transform methods and rotationally averaged. Figure 5.5

depicts the simulated rotationally averaged c.f. gN(r), (open circles) for two test images

with Rc = 8 pixel, w = 300 pixel, η = 0.05 (Fig. 5.5A), and η = 0.30 (Fig. 5.5B). Using

these parameters, the theoretical intensity c.f. obtained from Eq.(5.11) (solid line) was

compared to the directly computed c.f. for both test images. The theoretical c.f. fits

the simulated data quite well, validating the developed theory. Small deviations between

simulation and theory may be attributed to the finite size and pixelation of the image, the

analytic approximation of the pair correlation function, and the numerical implementation

of the Bessel transforms.

Figure 5.5: Rotationally averaged spatial correlation function of two simulated distribu-

tions of hard disks with uniform intensity (open circles) compared to the theoretical inten-

sity correlation function given by Eq.(5.11) (solid line) for Rc = 8 pixel, w = 300 pixel,

η = 0.05 (N = 22) in (A) and η = 0.30 (N = 134) in (B). Small insets depict the two

spatially autocorrelated images. Taken from Ref. [39]. Bar represents 32 pixels.
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5.3.2 Comparison to cluster test image

Figure 5.5 showed that the developed algorithm fits a simulated image of randomly dis-

tributed hard disks quite well. Next, we want to apply the algorithm to a test c.f. of

randomly distributed disks of uniform intensity Ic = 1 inside a circle, which outlines the

cell-substrate contact area. The area outside the circle is filled with the mean of the cell

interior, see inset of Fig. 5.6. The radially averaged correlation function of the test image

obtained from Fourier transform methods was fit to

g(r) = A gc(r;Rc,ρ), (5.12)

where the amplitude A, the disk radius Rc, and the number density of disk ρ are free pa-

rameters. Figure 5.6 compares the test correlation function (line) to the best fit of Eq.(5.12)

(open circles). Equation (5.12) fits the test c.f. very well. Both, the best fit disk radius Rc

and cluster density ρ were within 4% of the test image parameters.

Figure 5.6: Rotationally averaged correlation function of test image shown in inset com-

pared to a three parameter fit of Eq.(5.12). Bar represents 60 pixel and the cluster has

uniform intensity Ic = 1.
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5.4 Rotational correlation function of a depletion zone

A model for the radial c.f. of a depletion zone, i.e. a ring of uniform intensity, where

the intensity bounded by the inner radius is set to zero and the intensity outside the outer

radius is a constant (see inset Fig. 5.7), was obtained also from geometrical considerations.

From the investigation of overlapping disks of different intensities, Ip = 1 and Id = 0, we

define the following list of parameters:

g′d1(r) = gauto(r,Rp),

g′d2(r) = πR2
p,

g′d3(r) = 2IbπR2
p,

g′d4(r) = 2Ib

[
πR2

p −gcross (r,Rd,Rp)
]
,

g′d5(r) = I2
b

[
w2 +gauto (r,Rd)−2πR2

d

]
,

g′d6(r) = I2
b

(
r2

max −2πR2
d

)
,

g′d7(r) = I2
b

(
r2

max −πR2
d

)
.

(5.13)

Here, the autocorrelation gauto is given in Eq.(5.3), the crosscorrelation of two disks of

different radius gcross is given in Eq.(A.12), and w2 is the area of the correlated image. De-

pending on the difference of the radius of the depletion zone Rd and the radius of the large

central patch Rp compared to twice the radius of the large patch, the above expressions

can be combined to give the radial c.f. of a depletion zone for two different cases. For

2Rp ≤ Rd −Rp, the geometrical consideration gives

g′d(r) =





g′d3(r)+g′d6(r),r ≥ 2Rd,

g′d3(r)+g′d5(r),(Rd +Rp) ≤ r < 2Rd,

g′d4(r)+g′d5(r),(Rd −Rp) < r < (Rd +Rp) ,

g′d5(r),2Rp ≤ r ≤ (Rd −Rp) ,

g′d1(r)+g′d5(r),0 < r < 2Rp,

g′d2(r)+g′d7(r),r = 0,

(5.14)
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and for Rd −Rp < 2Rd , we obtain

g′d(r) =





g′d3(r)+g′d6(r),r ≥ 2Rd,

g′d3(r)+g′d5(r),(Rd +Rp) ≤ r < 2Rd,

g′d4(r)+g′d5(r),2Rp < r < (Rd +Rp) ,

g′d1(r)+g′d4(r)+g′d5(r),(Rd −Rp) < r < 2Rp,

g′d1(r)+g′d5(r),0 < r ≤ (Rd −Rp) ,

g′d2(r)+g′d7(r),r = 0.

(5.15)

Using the expressions given in Eqs.(5.14) and (5.15), the normalized c.f. of a depletion

zone is written as

gd(r;Rp,Rd) =
g′d(r)

w2〈I〉2
−1 (5.16)

Here, 〈I〉 is the mean image intensity

〈I〉 =
1

w2

[
Ib

(
w2 −πR2

d

)
+πR2

p

]
, (5.17)

as it appears in Eq.(3.1).

Figure 5.7: Rotationally averaged correlation function of test image shown in inset com-

pared to the functional form of Eq.(5.16). Here, Rp = 20, Rd = 40, Ip = 1, Id = 0, and

Ib = R2
p/R2

d were used to generate the test image as well as constants in Eq.(5.16). Bar

represents 40 pixel.
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Figure 5.7 compares the radial c.f. obtained from a test image of a depletion zone to

the functional form obtained from Eq.(5.16). The zero parameter fit (open circles) is in

excellent agreement with the c.f. computed from the image (line). Here, Rp, Rd , Ip = 1,

Id = 0, and Ib = R2
p/R2

d used to generate the image, where the same parameters used to

evaluate Eq.(5.16).

5.5 Image correlation of a receptor cluster depletion zone

As outlined above, our goal is to construct a model that consists of a simple superposition

of the radial c.f. of randomly distributed hard disks given, Eq.(5.12), and the c.f. of a

depletion zone, Eq.(5.16). This superposition is written as

g(r) = A gc(r)+B gd(r). (5.18)

Figure 5.8: Rotationally averaged correlation function of test image of a receptor cluster

depletion zone shown in inset compared to a four parameter fit obtained from Eq.(5.18).

Here, Rp = 1.9 µm, Rc = 0.4 µm, Ip = 1, Id = 0, Ic = 0, and Ib is the mean intensity inside

the cell interior, which can be computed exactly. Parameter estimated obtained from the

fit for ρ and Rd were within 10% of the expected value. Bar represents 5 µm.
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Here, A and B are free parameters, characterizing the strength of each contribution. As

shown in Fig. 5.8, this simple superposition, describes the radial c.f. of a test image of

disks and a depletion zone very well. The test image, depicted as inset in Fig. 5.8, was

generated from parameters obtained from experiment, such as particle density and cluster

radius. Here, the c.f. was fit to Eq.(5.18) with four free parameters: A, B, Rd , and ρ. As

shown in the figure, the model fits test data very well. Moreover, the parameter estimates

for the depletion radius Rd and the density of disk ρ were within 10% of the expected

values.

5.6 Validation of the model by experimental data

We have shown above that our mathematical model fits a test c.f. of a receptor clus-

ter depletion zone quite well. Next, the model was fit to actual experimental data. Fig-

ure 5.9 depicts a rotationally averaged c.f. of a thresholded RBL cell TIRF image collected

∼2 min after cell-substrate contact. The thresholded image was obtained by combining a

global and adaptive thresholding algorithm as outlined in section 2.10 with a window size

Figure 5.9: Rotationally averaged correlation function of thresholded RBL cell pipette-

pressed onto a POPC bilayer with 25 mole % DNP-lipid after 140 s of initial cell-substrate

contact. Inset shows corresponding thresholded TIRF image. Bar represents 5 µm.
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of n = 5 and weight k = 0.05. Looking at the figure’s inset, it is apparent that there is a de-

pletion of receptor clusters around the big central patch. However, the averaged c.f. does

not depict a dip and our simple model of a receptor cluster depletion zone cannot explain

the experimental data. It is important to note that the absence of a dip is observed also

in the c.f. of the corresponding un-thresholded image. Therefore, we believe that the dis-

appearance of the dip is due to the rotational average of asymmetric receptor clusters and

patches. Since our simple depletion zone model was constructed from a single size popu-

lation of circular clusters and a single circular patch, it cannot reproduce the experimental

correlation function.

We sought a different analysis method to confirm and quantify the depletion zone.

Cluster density was computed as a function of distance ∆x = 2 pixel or ∆x = 350 nm

from the central patch as depicted in Fig. 5.10. This quantitative measure was obtained

by utilizing the DIPImage pixel dilation function, where the boundary of the central patch

Figure 5.10: Receptor clusters per cell area as a function of dilated distance ∆x in pixel

(bottom scale) and µm (top scale) from the large central cluster boundary. Inset (A) depicts

a TIRF image of a pipette-pressed RBL cell onto a POPC bilayer with 25 mole % DNP-

Cap PE after 140 s of initial cell-substrate contact. Bar represents 5 µm. (B) depicts

the TIRF image after a combined threshold algorithm based on a global and adaptive

thresholding algorithm. (C) shows individual layers of width ∆x = 2 pixel or 350 nm.
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was dilated in steps of size ∆x as shown in inset C of Fig. 5.10. In each layer of width ∆x,

the number of clusters per cell-substrate contact area was computed, clearly indicating a

receptor cluster depletion zone for ∆x < 5 pixel or ∆x < 900 nm. As expected, outside the

contact area, ∆x > 20 pixel or ∆x > 3.6 µm, cluster density goes to zero.

5.7 Concluding Remarks

In this chapter, we develop a mathematical model of a receptor cluster depletion zone,

which is observed during the central FcεRI receptor patch formation, when mast cells are

in contact with a fluid, monovalent ligand-presenting bilayer. The intensity autocorrelation

of a RBL cell TIRF image depicting an apparent cluster depletion zone as a dip in the c.f.

as shown in section 5.2. Based on this observation, a simple model of this c.f. function

was developed.

The model introduced in section 5.2.1, which we believe to be the simplest possible

one, is initially described by seven parameters, namely the cluster radius, large patch ra-

dius, depletion zone radius, cluster intensity, patch intensity, depletion zone intensity, and

background intensity. In this model the large patch always forms in the cell center as sug-

gested by experimental observations. After applying a thresholding algorithm to RBL cell

TIRF images, this set of free parameters was reduced to four. Moreover, the background

intensity can be computed exactly, which results in only three free parameters in the model.

The theoretical intensity c.f. was derived from geometric considerations and based on a su-

perposition of two individual correlation functions. The first c.f. for randomly distributed

hard disks with a top-hat intensity profile of one was derived in section 5.3 and the second

describing a depletion zone in section 5.4. Both c.f.s were validated by test images. In

section 5.5, these two correlation functions were combined in a superposition, adding two

additional parameters to quantify the amplitude of each contribution, increasing the total

number of free parameters in the final model to five. This superposition was validated with
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a test image, showing that the theoretical c.f. followed the c.f. of a cluster depletion zone

test image quite well. Finally, in section 5.6, a rotationally averaged c.f. of a thresholded

RBL cell TIRF image was computed. From a cluster density analysis it was verified that a

receptor cluster depletion zone was present. However, the corresponding rotationally av-

eraged c.f. did not exhibit a dip and therefore our mathematical model did not explain the

data. We believe that the disappearance of the dip is due to the rotational average of asym-

metric receptor cluster and patches, which were not included in our model. Therefore, a

possible generalized model of a cluster depletion zone may incorporate a distribution of

cluster sizes.

Finally, it is worth noting that a geometric model of the intensity correlation function,

which can be fit to individual intensity autocorrelated RBL cell TIRF images at different

time points, can give only some insight into the dynamics of receptor cluster coalescence.

Moreover, this approach is computationally expensive due to the long list of free parame-

ters. Since our goal is to obtain fundamental understanding of receptor cluster coalescence

kinetics, it is essential to develop a full coalescence model. In the remainder of this dis-

sertation, we will develop such a theory.
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Chapter 6

Structure of our Coalescence Theory

6.1 Introduction

The role of this chapter is to make the crossover from the experimental to the theoreti-

cal part of this thesis. Here starts the dialog between experimental results obtained so far

and the construction of a theory of receptor cluster coalescence. In the first section of the

present chapter, we discuss existing theoretical models on the formation of the immuno-

logical synapse and the kinetics of nucleation. We point out that existing models cannot be

directly applied to experimental observations presented in this dissertation. This pushes us

to develop a new theory of coalescence, which will, naturally, also shed some new light on

the subject of nucleation. The second section of this chapter gives a prescription on how

to construct a coalescence theory. The prescription will be elaborated on in subsequent

chapters discussing individual elements in more detail.

86



Chapter 6. Structure of our Coalescence Theory

6.2 The need to develop a new coalescence theory

Before we present the structure of our coalescence theory we review existing literature of

two different subjects sharing the problem of particle aggregation and discuss how they

motivate us to develop the presented theory of coalescence.

6.2.1 Modeling the immunological synapse

As mentioned earlier in section 1.2, two other immune cells, namely T cells and B cells,

form a big central patch called immunological synapse [12, 9], when in contact with a

ligand presenting bilayer. Since the immunological synapse is thought to play a critical

role in immune cell signaling between contacting cells [12], the kinetics of synapse forma-

tion in T cells [104, 105, 106] and B cells [107, 108, 109] has been modeled extensively.

However, nothing is known about the kinetics of synapse formation in mast cells. There-

fore, investigating the kinetics of mast cell receptor cluster coalescence in detail may be

important in understanding mast cell signaling.

Even though there has been an extensive effort in modeling the synapse formation in

other immune cells, our experimental observations presented in this thesis motivate us to

develop a new coalescence theory. Synapse formation models for B cells and T cells are

based on two different receptor-ligand pairs which have different length scales in the bound

configuration [104, 105, 106, 107, 108, 109]. In our experiments however, we only have

one receptor-ligand pair. Moreover, T cell [75] and B cell receptor [109] clusters undergo

biased diffusion towards the cell center. This directed transport of receptor molecules has

been shown recently to be a possible formation mechanism for the B cell synapse [109].

Since in our experiments the biased motion component of receptor cluster transport had no

preferred radial direction, centripetal motion cannot be an underlying mechanism of the

central receptor patch formation in mast cells. Moreover, we have shown that IgE-receptor
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clusters, which form at cell protrusions, seem to move as an entity to form the big central

patch. Hence, in our coalescence theory we will start with preformed randomly distributed

receptor clusters (see section 3.3) rather than individual receptor-ligand pairs as done for

T cells and B cells. These major differences require that we develop a new coalescence

theory to address mast cell synapse formation kinetics. It is also worth noting that most of

T cell and B cell synapse formation models are based on Monte Carlo simulations [105,

107, 108, 106, 109] or numerical solutions of coupled reaction-diffusion equations [104]

on the basis of a finite difference scheme. This makes the model of receptor coalescence

very complex and hard to implement readily. Hence our goal is to develop a theory of

coalescence simple enough to be understood physically, and implemented explicitly, yet

powerful enough to be applied readily to any dimension and nature of particle motion.

6.2.2 Kinetic theory of nucleation

A field of research which is different from the field explored in this thesis but is con-

cerned with the problem of particle aggregation is the field of nucleation and growth of

thin films [110, 111, 112, 113, 114]. The general concept of nucleation is the creation of

a new phase from a metastable state made out of germs, or embryos, of the new phase.

Germs may be viewed as small, transient clusters of the new phase. Continuous fluctua-

tions in the sizes of these clusters, via the incorporation of additional molecules and the

detachment of others, may result in a germ growing large enough to become stable and

form a nucleus of critical size. Nucleation of a new phase starts when its growth becomes

overwhelmingly more probable than decay. When germs are viewed as isolated clusters

dispersed in the parent phase (requires a greater degree of metastability) one refers to ho-

mogeneous nucleation. Germs that are attached to some pre-existing structure, most likely

a solid surface, increase their likelihood to reach stability and undergo heterogeneous nu-

cleation.
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The kinetic description of nucleation and growth can be divided into three stages [114].

The first stage is called nucleation stage during which a population of clusters of various

sizes, typically nanoscopically small, is created. In this stage, the cluster concentration is

relatively low and the clusters grow and decay by gaining and losing monomers only. The

second stage, in which our own interested lies, is the coalescence stage in which two or

more smaller clusters merge into a bigger cluster. The last stage is called aging stage in

which the newly formed disperse phase occurs either by continuing coalescence between

already formed clusters or by decay of the smaller clusters by loss of monomers which

feed the growth of the larger clusters (Ostwald-ripening).

A kinetic theory of nucleation is presented in a book on nucleation by Kashchiev [114].

He introduces a Master equation of one-component nucleation

dZn (t)

dt
=

M(t)

∑
m=1

[ fmn (t)Zm (t)− fnm (t)Zn (t)]+Kn (t)−Ln (t) , (6.1)

where Zn(t) is the concentration of cluster size n at time t, fnm is the transition frequency

from n - to m -sized clusters, and fmn is the transition frequency from m - to n -sized

clusters. The total number of molecules on the substrate at time t is M(t) and can be set as

a constant if the total number of molecules does not change in time. Moreover, as a result

of mass conservation, Zn(t) and Mn(t) are connected by the relation

M(t)

∑
n=1

nZn(t) = M(t)/V,

where V is the volume of the system. It should be replaced by area of the substrate in the

case of heterogeneous nucleation. In Eq.(6.1), Kn is the rate of cluster appearance and Ln is

the rate of cluster disappearance. Hence Eq.(6.1) is nearly tautological. The concentration

of n-sized clusters is fed by Kn and goes away by Ln and can increase or decrease by

transitioning at certain rates from and to clusters of different size. To solve this equation

set of ordinary differential equations, one needs to know the initial cluster size distribution

and the transition rates. The initial cluster size distribution and size distribution over time
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can be obtained in principle from experiments. The transition rates however, have to be

calculated. The computational difficulty can be severe if these rates are not constant (the

simplest situation) or do not at least have a linear dependence.

Depending on the specifics of the problem, finding the attachment rates fnm and de-

tachment rates fmn of multimers can be very difficult. To simplify the problem, one might

consider ignoring the detachment rate and assuming that only monomers attach at a rate

fn, provided that such a simplification is physically warranted. For the simplest problem

of monomers attaching to a stationary absorber one can solve for fn by following Smolu-

chowski as realized by Ruckenstein and Pulvermacher [110]. For volume-diffusion con-

trolled attachment, Smoluchowski [115, 116] considered that a stationary particle acting

as a perfect absorber with radius R at the origin of a medium of infinite extent in which a

number of noninteracting Brownian point particles are uniformly distributed at time t = 0.

He sought a solution of the three-dimensional diffusion equation for the monomer concen-

tration Z(r, t) with absorbing boundary condition at r = R to determine the rate f at which

diffusing particles coalesce with a stationary particle

f (R, t) = 4πR2D
∂Z(r, t)

∂r
|r=R. (6.2)

Here Eq.(6.2) defines the rate as product of the surface area of the spherical absorbing par-

ticle 4πR2 and the flux of its surrounding particles D
∂Z(r,t)

∂r
. It is clear that Smuluchowski’s

aim was to describe diffusion-limited coalescence. He did not include the time it takes for

the particles to merge when they are in contact (reaction rate). Ruckenstein and Pulver-

macher [110] included this reaction rate in the transition rate by replacing the perfectly

absorbing boundary condition at r = R with a radiative for time t > 0

αZ(r, t) = D
∂Z(r, t)

∂r
, (6.3)

where α is the reaction rate constant for merging. It turns out the expression for the

flux which includes the diffusion as well as merging process is rather involved and that

Ruckenstein and Pulvermacher as well as Kashchiev simplify the expression by looking at
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two limiting cases. The process under consideration is purely reaction controlled (α < D)

or the process is diffusion controlled (α → ∞). In both cases the transition frequency

simplifies and is given by a constant dependent only on α or D, respectively. Hence,

Kashchiev [114] simply multiples Smoluchowski’s reaction rate, Eq.(6.2) by a merging

probability γ

f (R, t) = γ4πR2D
∂Z(r, t)

∂r
|r=R. (6.4)

to account for a non-instantaneous reaction.

This prescription used by Kashchiev involving a mere product of probabilities cannot

be correct in general. Indeed in a series of papers by Kenkre and collaborators [23] the

related general problem of reaction-diffusion which is not merely motion-limited has been

analyzed in the context of exciton transport and sensitized luminescence. For instance,

Ref. [26] shows that the exciton absorption time is the sum of the time it takes to move to

the trap and the time it takes to get captured. Hence the transition rate for this problem is

a sum of probabilities. And Ref. [28] relates the full situation in the context of sensitized

luminescence. While those considerations do not disprove Kashchiev’s prescription, they

certainly motivate the need to re-examine this problem.

Kashchiev’s reaction rate is further unsatisfactory in the nature of ignoring the effect

produced on the diffusion field by the moving boundary of the stationary absorber. This

mechanism makes these kind of problems extremely difficult and hence obtaining exact

results almost impossible. A small collection of moving-boundary problems, which can

be solved exactly, can be found in Refs. [117, 118, 119]. It is noteworthy that it has been

long recognized that the motion of the moving boundary must perturb the diffusion field

and hence several attempts have been made to model this effect [120, 121, 118]. Our

coalescence theory to be described in this dissertation also focuses on this problem.
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6.3 Modeling particle coalescence

In the previous section, we motivated the need to build a new theory of coalescence. Our

theory is constructed as follows.

We first address a simplified problem. We start with a certain amount of material that

is divided into two parts. The first part is made into a disk of uniform density and radius

R(0) placed with its center at the origin. This disk represents the nucleation site of the

central receptor patch observed in our experiments. The initial disk radius is given by

experimental observations outlined in section 3.2.2. The rest of the material of which the

amount is Q(0) is considered to be powdered and sprinkled as point particles throughout

the two-dimensional space outside the disk with a given known distribution. At a later

stage the finite size of these particles will be incorporated. As time proceeds, the point

particles move with any type of motion, e.g. diffusive or biased, until they touch the edge

of the disk. With non-infinite probability (finite capture rate) the particles are absorbed

into the disk. The process of the absorption makes the disk attain a larger radius. In

other words, we make the simplifying assumption that the shape of the disk does not

change as a result of an assumed process which instantaneously distributes the absorbed

material over the entire disk. This is an important ingredient, which sets our coalescence

theory apart from the subject of diffusion-limited aggregation [122, 123], where finger-like

structures develop. The purpose of the rest of the study is then to calculate the evolution

of R(t). For simplicity at this stage of the calculation, the point particles do not absorb

one another, although in the experiments described in the earlier chapters the contrary is

certainly observed.

Clearly our simplified study may be formulated as a trapping problem with a trap

whose location (boundary) changes dynamically. The analysis proceeds by solving the

appropriate trapping problem and obtaining an expression for Q(t) (total survival proba-

bility at time t) the amount of the sprinkled material not yet absorbed into the central disk.
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The standard defect technique [22, 23, 24, 25, 26, 27, 28, 29] is therefore employed with-

out modification. The Q(t) thus computed is actually dependent on both t and the radius

R so it is best expressed as Q(t;R). In a self-consistent way, from Q(t;R) one obtains the

rate dQ(t;R)/dt of particle absorption which is also the rate at which the trap increases

resulting in a new disk radius. It becomes clear that this approach is of feedback type,

iterating until self-consistency is achieved.

Finally, from the above paragraphs the following three steps emerge as basis for our

coalescence theory. Each of these steps is discussed in detail in the next three chapters:

Chapter 7 develops the basis of the theory. It applies the standard defect technique to

solve stationary trapping problems with a non-infinite capture rate in d-dimensions,

and collects some exact solutions.

Chapter 8 presents a validity of an adiabatic approximation for moving boundary prob-

lems. In this approximation, the time-dependence of a moving boundary is explicitly

assigning into the static problem, which we know how to solve exactly by applying

tools from chapter 7.

Chapter 9 discusses the final step in constructing our coalescence theory, in which the

time dependence of the moving boundary is not prescribed but obtained through

a feedback idea. The proposed calculation relates the growing trap radius to the

time-dependent particle survival probability, obtained from the static result, in a

self-consistent way.
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Chapter 7

Repository of Exact Solutions for

Stationary Trapping Problems

7.1 Introduction

In this chapter, we outline the first step in modeling our coalescence theory. It focuses on

the subject of trapping or absorption processes occurring with non-infinite capture rates

in random walks or diffusion processes and is based on the defect technique developed

by Kenkre and collaborators [22, 23, 24, 25, 26, 27, 28, 29] to study exciton motion in

molecular crystals. In these systems, particles annihilate at a finite rate on contact and

one is interested in the time-dependent particle survival probability. Obtaining analytic

expressions for such a survival probability probability forms the basis of our coalescence

theory.

Due to the wide applicability of reaction-diffusion scenarios, this subject has produced

many hundreds of published articles in various fields of research. While attempting to re-

view this enormous body of literature, it became evident that there exist many exact results

for the kinetics of instantaneous absorption [124, 125, 126], whereas a generalization to
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include finite reaction [127, 128, 129] has not received as much attention. This fact might

be responsible for a relatively recent claim by Leyvraz [130] that an exact solution can

only be obtained when assuming instantaneous reaction. A similar statement that a gen-

eralization to include finite reaction makes the problem perhaps impossible to solve, was

made earlier by Zhong and ben-Avraham [128].

Finding these statements in literature was surprising to us, since the Montroll defect

technique [131] for non-infinite trapping problems was developed three decades before

Leyvraz’s statement. Therefore, due to this misconception and our experimentally mo-

tivated interest in higher dimensional non-infinite trapping, we decided to reinvestigate

stationary trapping problems, following the formalism of the defect technique [23]. A

brief review of this method, outlining the derivation of a discrete trapping prescription, is

given in section 7.2. Using this prescription, we were able to derive some new results on

the one-dimensional lattice in section 7.3. After applying the continuum limit to the dis-

crete prescription in section 7.4, the discrete formalism gives a continuous space trapping

prescription also derived independently by Szabo et al. [132]. We use the continuous space

trapping prescription to solve numerous problems in one-, two-, and three-dimensions in

sections 7.5, 7.6, and 7.7, respectively. Some of our results can be found in literature,

but others we believe to be new. Therefore, this chapter serves as a repository of exact

solutions of stationary trapping problems.

After collecting solutions to trapping problems, we address, in the last part of this

chapter, the connection of sink problems to boundary value problems. In section 7.8 we

show that expressions obtained by these two methods are equivalent only if the appropriate

diffusion propagator in the absence of the trapping process is translationally invariant.
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7.2 Brief review of standard defect technique

In this section, we review the standard defect technique. The notation and development

follow the discussion given by Kenkre and collaborators [22, 23, 24, 25, 26, 27, 28, 29]

and used in a number of applications to molecular crystals. In such systems a particle may

occupy a site m in a discrete space of arbitrary dimensions with probability Pm(t) at time

t and move in some way, e.g., with or without translational invariance. A standard Master

equation for Pm(t) is

dPm(t)

dt
= motion terms−Cd

′

∑
r

δm,rPm(t), (7.1)

where the motion terms are linear in probabilities, Cd is the d-dimensional reaction rate,

and sites r denote the reaction locations at which the particle disappears. Here δm,r repre-

sents the Kronecker delta function and the prime denotes a sum over all reaction locations

at which one produces trapping or coalescence or similar effects. If the particles hops

via nearest neighbor rates F in one-dimension the motion terms could be of the form

F(Pm+1 +Pm−1 −2Pm).

The Master equation given in Eq.(7.1) can be transformed into Laplace domain

P̃m(ε) = η̃m(ε)−Cd

′

∑
r

Ψ̃m,r(ε)P̃r(ε), (7.2)

where tilde denote Laplace transforms and ε the Laplace variable. Ψ is the probability

propagator of the homogeneous part of Eq.(7.1) and η is the homogeneous solution in the

absence of the trap i.e. Cd = 0. The interest in the standard defect technique is to calculate

the total survival probability Q(t) = ∑m Pm(t). To obtain this quantity one notes that the

sum over all m over both η̃m and Ψ̃m,r gives 1/ε since the probability sum over all sites of

the homogeneous solution is always one in the domain. Therefore, in Laplace domain the

survival probability is given as

Q̃(ε) =
1

ε

[
1−Cd

′

∑
r

P̃r(ε)

]
. (7.3)
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Instead of the total survival probability one can also compute the rate of disappearance,

which is in time domain minus the total probability at the trapping sites

dQ(t)

dt
= −Cd

′

∑
r

Pr(t). (7.4)

This expression can be also obtained form Eq.(7.1) by summing over m. The total prob-

ability at the starting site given in Eq.(7.3) has to be calculated in the presence of the

trapping sites. Let us define its counterpart in the absence of the trapping sites i.e. Cd = 0

and the same initial conditions

( ′

∑
r

Pr(t)

)

0

and rewrite Eq.(7.4) as

dQ(t)

dt
= −

Z t

0
dt ′M (t − t ′)

( ′

∑
r

Pr(t)

)

0

. (7.5)

The important quantity in Eq.(7.5) is the memory M (t). In the limit of small Cd it is

simply Cdδ(t) so that we have a simplified form of Eq.(7.4) with

(
′

∑
r

Pr(t)

)

0

in place of

′

∑
r

Pr(t). This is the capture-limited case. In the opposite limit of small motion (large Cd)

the memory turns out to be more complicated and determined by motion parameters. That

is the motion-limited case.

In order to understand these last statements accurately, we substitute m = s where s is

the trap site into Eq.(7.2) and sum over trap locations s

′

∑
s

P̃s(ε) =
′

∑
s

η̃s(ε)−Cd

′

∑
s

′

∑
r

Ψ̃s,rP̃r(ε). (7.6)

The quantity

νr =
′

∑
s

Ψs,r (7.7)

is the sum of the probability propagators from one trap site r to all trap sites s. While this

expression actually does depend on the site r, that dependence will disappear in highly
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symmetrical situations or in an averaging sense. We are now going to assume that the r-

dependence has been removed either exactly or in an averaging sense. One can for instance

calculate an average over all trap sites r of νr and call it ν (independent of r). After such

an assumption/approximation we can write the actual
′

∑
r

P̃r in terms of the homogeneous

counterpart

(
′

∑
r

P̃r

)

0

, which is precisely
′

∑
r

η̃r

′

∑
r

P̃r(ε) =

′

∑
r

η̃r

1+Cd ν̃(ε)
. (7.8)

At once we get the above mentioned Eq.(7.5) where the memory is precisely given by

M̃ (ε) =
1

1/Cd + ν̃(ε)
. (7.9)

We see here that generally the memory is of a form compatible with the concept of a sum

of the capture time and a motion time. This result is in contradiction to Kashchiev’s form

of the reaction rate, which involves a mere product of probabilities, see section 6.2.2 for

details. Much discussion has occurred in the exciton field in molecular crystals about the

consequence of the from of Eq.(7.9) [23, 29]. In the motion limit, Cd is large enough

relative to the motion term and 1/Cd can be neglected to give M̃ (ε) = 1/ν̃(ε) whereas in

the capture limit M̃ (ε) = Cd .

Finally, a general prescription for the total survival probability in Laplace domain and

discrete space is therefore

Q̃(ε) =
1

ε


1−

′

∑
r

η̃r

1/Cd + ν̃(ε)


 . (7.10)

The key quantity to calculate is the ν-function, which is the (ensemble average of) the sum

of propagators of the homogeneous system (in absence of traps) from one trap location to

all others. The idea of the ν-function was first put forward by Kenkre [27] where it was

also calculated for periodic one-dimensional array of trapping sites with nearest-neighbor
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motion rates F . It was used in luminescence calculations for molecular crystals [28] for

arbitrary kind of motion and different placements of trap sites and in other contexts such

as of cellular membranes [31].

7.3 A single stationary trap on a lattice

In this section we solve for Q(t) of a particle initially placed at site a on a one-dimensional

lattice and a single trap at the origin by applying the prescription given in Eq.(7.10). In

this case, there is only a single trap and the prescription becomes

Q̃(ε) =
1

ε

[
1−

η̃a

1/C + ν̃(ε)

]
, (7.11)

where ηa = Ψa,0 and ν = Ψ0,0, the homogeneous solution starting at site a in the absence

of the trap and the self-propagator, respectively. The discrete space self-propagator for this

problem is well known [27] and given as

Ψm(t) = Im(2Ft)exp(−2Ft), (7.12)

where Im is the modified Bessel function of the first kind. Next, the Laplace transform of

both propagators can be obtained from a table of Laplace transforms [133]

ν̃(ε) = 1√
(ε+2F)2−4F2

,

η̃a(ε) = (2F)a

√
(ε2+2F)

2
(2F)2

[
ε+2F+

√
(ε2+2F)

2
−(2F)2

]a .

After using the following substitution coshζ = 1+ ε/(2F) [27], Eq.(7.11) becomes

Q̃(ε) =
1

ε

[
1−

exp(−ζa)

2F sinhζ/C +1

]
, (7.13)

where sinhζ =
√

4Fε+ ε2/(2F). Equation (7.13) is the exact solution in Laplace domain

and can be inverted for the case of perfect absorption (C = ∞), see section 7.3.1. For

imperfect absorption however,an analytic solution in time domain cannot be obtained (see

section 7.3.2). However, a numerical Laplace inversion, as outlined in Appendix C, can

be applied to obtain the functional form in time domain.
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7.3.1 Perfect absorption

For instantaneous reaction C → ∞ and Eq.(7.13) becomes

Q̃(ε) =
1

ε

[
1− e−ζa

]
. (7.14)

To invert this expression the exponential term is rewritten using coshζ = 1 + ε
2F

and

sinhζ =
√

4Fε+ε2

2F
as

e−ζa =
(2F)a

(
2F + ε+

√
4Fε+ ε2

)a =
pa

[
s+
√

s2 − p2
]a ,

where s = ε+2F , p = 2F to obtain

Q̃(s) =
1

s− p
−

√
s+ p

√
s− p

pa

√
s2 − p2

[
s+
√

s2 − p2
]a . (7.15)

This expression can be Laplace inverted, represented by L−1
ε , by applying the convolution

theorem

L−1
ε {g(ε) f (ε)} =

t
Z

0

g(t − τ) f (t)dτ,

to the second term on the right-hand side of Eq.(7.15) to give

Q(t) = 1− e−ptIa (pt)− pe−pt

t
Z

0

[I0 (pt − pτ)+ I1 (pt − pτ)]Ia (pτ)dτ (7.16)

Equation (7.16) was obtained by Laplace transforming
√

s+ p/
√

s− p and

pa

√
s2 − p2

[
s+
√

s2 − p2
]a

(see Appendix B), noting that s = ε + 2F introduces a shift, which corresponds to a mul-

tiplication of an exponential decay. The integral in Eq.(7.16) can be expressed in terms

of an infinite sum of Bessel functions of the first kind, Jm, by using the identity [134]

Iν (x) = i−νJν (ix) with [135]

Z
Z

0

Jµ (η)Jν (Z−η)dη = 2
∞

∑
k=0

(−1)k
Jµ+ν+2k+1 (Z),
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to obtain

Q(t) = 1− i−a exp(−pt)Ja (ipt)

−exp(−pt)

[
2

ia+1

∞

∑
k=0

(−1)k
J1+a+2k (ipt)+

2

ia+2

∞

∑
k=0

(−1)k
J2+a+2k (ipt)

]
.

(7.17)

or

Q(t) = 1− e−pt

[
Ia (pt)−2

∞

∑
k=0

(−1)k [I1+a+2k (pt)+ I2+a+2k (pt)]

]
(7.18)

by using [134] Jν (x) = iνIν (−ix), where p = 2F . A similar expression of 1−Q(t) was

derived by Spouge [136].

However, as we will show below, Eq.(7.17) can be rewritten in terms of a finite sum of

Bessel functions resulting in a new expression for the perfect absorber case. To obtain this

expression, one has to use the following properties [134]

cosx = J0 (x)+2
∞

∑
n=1

(−1)n
J2n (x),

sinx = 2
∞

∑
n=0

(−1)n
J2n+1 (x),

with cos(i2Ft)− isin(i2Ft) = exp(2Ft). After some algebra one obtains for a random

walker initially placed at site a = 1,2,3 and a = 4

Q(t) = e−2FtI0 (2Ft)+ e−2Ft





I1 (2Ft) ,a = 1

2I1 (2Ft)+ I2 (2Ft) ,a = 2

2I1 (2Ft)+2I2 (2Ft)+ I3 (2Ft) ,a = 3

2I1 (2Ft)+2I2 (2Ft)+2I3 (2Ft)+ I4 (2Ft) ,a = 4

(7.19)

Looking at the expressions given in Eq.(7.19) shows that a pattern emerges and that

Eq.(7.19) can be recast in the form of a finite sum of modified Bessel functions of the
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first kind

Q(t) = e−2Ft

(
I0 (2Ft)− Ia (2Ft)+2

a

∑
n=1

In (2Ft)

)
. (7.20)

Equation (7.20) is a new expression and was validated by comparing its functional form

to the numerical Laplace transform of Eq.(7.14). The numerical inversion algorithm is

outlined in Appendix C. For the special case of a particle initially starting at lattice site

a = 1, our expression reduces to

Q(t) = e−2Ft [I0 (2Ft)+ I1 (2Ft)] , (7.21)

and agrees with [136].

7.3.2 Imperfect absorption

Above we obtained an expression for the total survival probability in the case of perfect

absorption. A more interesting and general case describes finite reaction. However, it will

become clear form the next few paragraphs that this simple extension makes this problem

difficult to solve.

At the beginning of this section we have derived an exact solution for finite trapping in

Laplace domain, see Eq.(7.11). The rate of disappearance dQ/dt is given by the inverse

Laplace transform of

−
dQ(t)

dt
= L−1

ε

{
exp(−ζa)

1+ 2F
C

sinh(ζ)

}
, (7.22)

where sinhζ =
√

4Fε+ ε2/(2F). Here and in the remainder of the dissertation L−1
ε {}

denotes the inverse Laplace transform. This expression can be rewritten in the following

product form

−
dQ(t)

dt
= L−1

ε

{(
C

C +
√

u2 − p2

)[
u−
√

u2 − p2

p

]a}
, (7.23)
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where u = ε+2F and p = 2F . After using the convolution theorem together with the ap-

propriate inverse Laplace transforms (see Appendix B) and applying the shifting theorem

one obtains an analytic expression involving definite integrals in time domain

−
dQ(t)

dt
= Cae−2Ft

t
Z

0

(
1

t − τ

)
Ia [2F (t − τ)]e−Cτdτ

+2FCae−2Ft

t
Z

0



(

1

t − τ

)
Ia [2F (t − τ)]

τ
Z

0

e−C
√

τ2−w2
I1 (w)dw


dτ.

(7.24)

From the above result it is evident that the seemingly simple inclusion of a finite re-

action rate makes the problem more difficult and an exact analytic solution seems not

possible. Even though Eq.(7.24) can be evaluated numerically, it would be useful to ob-

tain an analytic expression. However, an analytic expression can be obtained only in the

limiting case of a high probability of reaction. In this case ζ as well as the reaction rate C

are large and following exponential approximation [137]

1

1+ 2F
C

sinh(ζ)
→ e−2Fζ/C

can be applied to Eq.(7.22) yielding

−
dQ(t)

dt
= L−1

ε

{
e−ζ(ε+2F/C)

}
. (7.25)

This expression can be rewritten as

−
dQ(t)

dt
= L−1

ε





p(a+2F/C)

[
u+
√

u2 − p2
](a+2F/C)





(7.26)

and Laplace inverted exactly (see Appendix B) resulting in

−
dQ(t)

dt
=

(a+2F/C)

t
e−2FtI(a+2F/C) (2Ft) . (7.27)
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7.4 Obtaining a continuous prescription

In this section, we display the continuum limit of the above discrete formalism. If we start

on a one-dimensional discrete lattice with a single stationary trap at site r and a particle

hopping via nearest neighbor rates F between lattice sites, the starting equation, given in

Eq.(7.1), would have the explicit form

dPm

dt
= F (Pm+1 +Pm−1 −2Pm)−δm,rCPm, (7.28)

where δm,r the Kronecker delta function and C is the capture rate. The continuum pre-

scription is obtained by dividing Eq.(7.28) by the lattice constant a

d

dt

(
Pm

a

)
= Fa2

(
Pm+1−Pm

a
+ Pm−1−Pm

a

)

a2
−aC

δm,r

a

Pm

a
, (7.29)

and applying the limit [25, 31]

lim
a→0

(ma) = x,

lim
a→0

(a) = dx,

lim
a→0

(
Fa2
)

= D,

lim
a→0

(
Pm

a

)
= P(x, t) ,

lim
a→0

(aC) = C ,

lim
a→0

(
δm,r

a

)
= δ(x− xr) ,

to obtain

∂P(x, t)

∂t
= D

∂2P(x, t)

∂x2
−Cδ(x− xr)P(x, t) . (7.30)

Here x represents the one-dimensional space coordinate, D the particle diffusion constant,

C the capture rate in units m/s, and δ(x− xr) a Dirac delta function. Equation (7.30) is

the one-dimensional diffusion equation with the addition of a trapping term. This result

is expected when one applies the continuum limit directly to the discrete space Master
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equation [138, 139, 140]. It should be noticed that the simultaneous limit F → ∞, C → ∞,

where F tends as 1/a2 and C as 1/a, is essential to make the continuum prescription viable.

This has been discussed by Kenkre and collaborators elsewhere [25, 31]. Following this

procedure, we can divide also

P̃m = η̃m − Ψ̃mr
η̃r

1/C + Ψ̃rr

(7.31)

by the lattice constant a and take a → 0 to obtain

P̃(x,ε) = η̃(x,ε)− Ψ̃(x,ε)
η̃(xr,ε)

1/C + Ψ̃(0,ε)
. (7.32)

Similarly, we have

P̃(xr,ε) = C
η̃(xr,ε)

1+C Ψ̃(0,ε)
. (7.33)

Next we calculate the rate of disappearance of dQ(t)/dt from Eq.(7.30) by integrating

over half-space

dQ

dt
=

Z ∞

xr

∂P

∂t
dx =

Z ∞

xr

[
D2 ∂2P

∂x2
−Cδ(x− xr)P(x, t)

]
dx (7.34)

and since

Z

δ(x− xr)P(x, t)dx = P(xr, t)

we obtain in the Laplace domain

dQ̃(ε)

dt
= CP̃(xr,ε) =

η̃(xr,ε)

1/C + Ψ̃(0,ε)
,

which leads to a continuous prescription

Q̃(ε) =
1

ε


1−

′

∑
r

η̃(xr,x)

1/Cd +
′

∑
r

Π̃(xr,xr)


 . (7.35)

Here Π̃(xr,xr) is the self-propagator and its sum ∑′
r thus corresponds to the ν-function.

η̃(xr,x) is the homogeneous solution at the trap site in the absence of the trap,
′

∑
r

represents
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the sum over all trap sites, and Cd is the d-dimensional capture rate. Both of these propa-

gators are obtained from the homogeneous solution to the diffusion equation. Therefore,

as expected from the discrete formalism, the continuum prescription in Laplace domain

given in Eq.(7.35), independently derived by Szabo et al. [132] by a different method,

expresses the Green’s function describing the reaction in terms of the Green’s function

for diffusion in the absence of the reaction. Note that the diffusion propagator, which is

used to obtain the self-propagator as well as the homogeneous solution, need not be the

free-space Green’s function. For example, for diffusion in a potential the propagator must

be appropriate for diffusion in the presence of a potential.

7.5 Repository of solutions in one-dimension

In this section the continuous prescription given in Eq.(7.35) is applied to one-dimensional

trapping problems with a single stationary trap of non-infinite capture rate.

7.5.1 Localized initial condition

Thus far we have solved simple trapping problems on a discrete lattice. In the remainder of

this chapter we will solve several problems related to continuous diffusion. The simplest

is the problem of a diffusing particle in one-dimension, where the particle is initially a

distance x0 away from a trap located at the origin. This problem can be solved by applying

the prescription given in Eq.(7.35). To evaluate the prescription, we first use the one-

dimensional free-space diffusion propagator

P(x,x0; t) =
1

√
4πDt

exp

[
−

(x− x0)
2

4Dt

]
(7.36)

to obtain the self-propagator

Π(0,0) =
1

√
4πDt

(7.37)
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and the homogeneous solution at the trap site

η(0,x0) =
1

√
4πDt

exp

[
−

x2
0

4Dt

]
(7.38)

in time domain. Then we insert the Laplace transform of these propagators (see Appendix

B) into the prescription to obtain

Q̃(ε) =
1

ε

[
1−

exp
(
−
√

ετ
)

1+ξ
√

ετ

]
, (7.39)

where τ = x2
0/D is the diffusion time and ξ = 2D/(Cx0) describes the reaction process.

This expression for finite reaction can be inverted exactly (see Appendix B) with the prop-

erty f (t/τ) → τg̃(ετ)

Q(t) = er f

(
1

2

√
τ

t

)
+ e

1
ξ
+ 1

ξ2 (
t
τ)er f c

(
1

2

√
τ

t
+

1

ξ

√
t

τ

)
(7.40)

and reduces for an instantaneous absorber (C → ∞) to

Q(t) = er f

(
1

2

√
τ

t

)
. (7.41)

Both, the perfect absorption result given in Eq.(7.41) [141, 136, 142, 143, 144] as well

as the finite reaction, Eq.(7.41) [141, 138, 145, 143] are well known. Moreover, it is

trivial to compute the perfect absorber result from the method of images (calculation is

omitted here) without employing the Laplace transform. The purpose of this calculation

was to show that the prescription can be applied successfully to obtain know results. In

the remainder it will become evident that this prescription is very powerful.

7.5.2 The principle of superposition

In the previous subsection we obtained an exact solution for a point initial condition. Since

the problem is linear, the superposition principle can be applied to obtain a solution for any

107



Chapter 7. Repository of Exact Solutions for Stationary Trapping Problems

initial distribution of point particles. In the special case of perfect absorption the principle

of superposition states that

Q(t) =

∞
Z

0

ρ(x0)er f

(
x0

√
4Dt

)
dx0, (7.42)

where ρ(x0) is the initial distribution of point particles.

To demonstrate the application of the above equation we first compute the survival

probability for an initial random distribution. In this case ρ(x0) is of Poisson form

ρ(x0) = cexp(−cx0), where c is an arbitrary constant. Substituting ρ(x0) into Eq.(7.42)

one obtains

Q(t) = exp(c2Dt)er f c
(

c
√

Dt
)

, (7.43)

which has been calculated by Torney and McConnel [146] and later by Sancho et al. [126]

by different methods. Another initial distribution is the Rayleigh distribution, also known

as a biased Gaussian, ρ(x0) = x0 exp
(
−x2

0/(2σ2)
)
/σ2, where σ describes the width of the

distribution. Substituting this distribution into Eq.(7.42) and after evaluating the integral,

the following simple expression is obtained

Q(t) =
σ

√
2Dt +σ2

. (7.44)

This result was reported by Doering and ben-Avraham [124].

7.5.3 General prescription for any initial distributions

The principle of superposition is obviously not restricted to perfect absorption and also ap-

plies to imperfect finite reaction. However, multiplying the expression given in Eq.(7.40)

by an initial distribution and integrating the product over the position x0 becomes alge-

braically tedious. To simplify this calculation, we apply here the superposition principle
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in Laplace domain

Q̃(ε) =

∞
Z

0

ρ(x0)Q̃(ε,x0)dx0, (7.45)

where Q̃(ε,x0) is given in Eq.(7.39). For example, one can obtain an exact expression for

an initial random distribution, ρ(x0) = cexp(−cx0), in Laplace domain

Q̃(ε) =
1

ε
−

γ

γε
(√

γε+1
)2

, (7.46)

where γ = 4D/C 2. This expression can be inverted exactly (see Appendix B) with

f (t/τ) → τ f̃ (ετ) to give

Q(t) =

(
1−

2t

γ

)
exp(t/γ)er f c

(√
t

γ

)
−

2
√

π

√
t

γ
, (7.47)

which is, to our knowledge, a new expression. Even though this method is useful, we are

always left to Laplace invert an expression and might not obtain an exact analytic solution

in time domain. It is true that one always can apply a numerical inversion algorithm

(see Appendix C) to obtain the exact solution. However, it would be useful to have a

prescription, which does not require the computation of any Laplace transforms. As we

will show in the remainder of this subsection, it is indeed possible to derive such a formula.

To derive a general prescription as outlined in unpublished work by Kenkre [22], we

start with Q̃(ε,x0) given in Eq.(7.39)

Q̃(ε,x0) =
1

ε

[
1−

e−
√

ε
D x0

√
4εD
C +1

]
.

As mentioned previously, the problem is linear and Q̃ can be integrate over any initial

distribution, ρ(x0), obtaining

Q̃(ε) =
1

ε
−

1

ε

(
1

1+
√

4Dε/C

) ∞
Z

0

ρ(x0)e−x0

√
ε
D dx0. (7.48)
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Looking at the above equation we notice that the integral expression is the Laplace trans-

form of ρ(x0) with ε →
√

ε/D. Hence if ρ(x0) Laplace transforms to ρ̃(ε), Eq.(7.48)

becomes

Q̃(ε) =
1

ε
−

1

ε

(
1

1+
√

4Dε/C

)
ρ̃(ε) , (7.49)

or equivalently since Q(t = 0) = 1 and Q̃(ε)ε−1 = dQ̃(ε)/(dt) we may write

dQ̃(ε)

dt
= −

(
1

1+
√

4Dε/C

)
ρ̃(ε) . (7.50)

Now we are left with inverting Eq.(7.50).

First we consider that ρ̃(ε)[1/ε+ p] is the Laplace transform of

h(x) =

x
Z

0

ρ(x− xo)exp(−px0)dx0, (7.51)

where p = C/(2D). The Laplace transform of h(t) is then

h̃(ε) = ρ̃(ε)

(
1

ε+ p

)
,

and since we are interested in a transform involving
√

ε/D we can make use of the fol-

lowing identity [133]

h̃
(√

ε
)
→

1

2
√

π
t−3/2

∞
Z

0

ue−
u2

4t h(u)du

with f (t/τ) → τ f̃ (ετ) to invert

h̃

(√
ε

D

)
→

D

2
√

π
(Dt)−3/2

∞
Z

0

xe−
x2

4Dt h(x)dx.

Next, Eq.(7.50) is written as

dQ̃(ε)

dt
= −p

(
1

ε+ p

)
ρ̃(ε) , (7.52)
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with ε →
√

ε/D and a wonderfully simple general prescription for any distribution ρ(x0)

is obtained

dQ(t)

dt
= −

C

4
√

π
(Dt)−3/2

∞
Z

0

xe−
x2

4Dt h(x)dx, (7.53)

where

h(x) =

x
Z

0

ρ(x− x0)e−px0dx0 (7.54)

and p = C/(2D).

Equation (7.53) [22] is a useful formula since one does not need to compute any

Laplace transforms. Moreover, we notice that there is a physical meaning for the func-

tion h(x), which can be written also as

h(x) = exp(−px)

x
Z

0

ρ(y)epydy.

From this expression we see that h(x) describes all the material, which is initially present

weighted by an exponential. If we put h(x) into Eq.(7.53) and ignore the one-dimensional

free-space diffusion propagator, the integral simply describes the mean distance from the

trap. By multiplying the integrand by the one-dimensional propagator we indicate that the

particles move diffusively. It remains to be investigated how this prescription changes if

the nature of motion is directed or ballistic. Maybe the only parameter, which changes in

the prescription is the propagator. Finally, the prescription presented above was evaluated

by computing Q(t) for a localized initial condition as outlined in the Appendix D.

7.5.4 Trapping in a harmonic potential

In this section we study the problem of a particle diffusing in a harmonic potential centered

at the origin in one-dimension. A single sink is located at the bottom of the potential. We
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are interested in the total particle survival probability when the reaction rate at the origin

occurs at a finite rate. Similar situations arise in a number of diverse biological systems.

Examples are when animal feel a driving force pointing towards their nest [147] and gen-

erally in the context of home ranges [148]. To solve the problem of a particle moving in a

harmonic potential, we make use of the general prescription given in Eq.(7.35).

To apply the prescription we fist need to obtain the diffusion propagator in the presence

of a potential, which is given by the Fokker-Planck equation

∂P(x, t)

∂t
=

∂

∂x

[
dU(x)

dx
P(x, t)+D

∂P(x, t)

∂x

]
(7.55)

with a quadratic potential of the form U(x) = γx2/2 and a localized initial condition,

P(x,0) = δ(x − x0). One way to solve this equation is by substituting

P(x, t) = exp[−γx2/(4D)]Ψ(x, t) into Eq.(7.55) resulting in an expression involving sums

of Hermite polynomials, which can be simplified to obtain [149]

P(x,x0, t) =
1

√
4πDω

e−
[x−x0 exp(−γt)]2

4Dω , (7.56)

where ω = (1−exp[−2γt])/(2γ). This propagator is very useful and another derivation of

this result can be found in Ref. [150].

After obtaining the diffusion propagator for this problem we are left computing two

Laplace transforms. First, we compute the Laplace transform of the self-propagator by

setting x = x0 = 0 in Eq. (7.56)

η(t) =

√
γ

2πD

1√
exp(2γt)−1

(7.57)

and Laplace transforming this expression using Ref. [133], where

(1− e−t)
ν

(1− ce−t)µ → B(ε,ν+1) 2F1(µ,ε;ε+ν+1;c).

Here B(a,b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function and 2F1(a,b;c,1) = Γ(c)Γ(c−a−b)

Γ(c−a)Γ(c−b) is a special

value of the hypergeometric function also known as Gauss’s hypergeometric function.
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Both expressions are given in terms of the Gamma function Γ(x). After evaluating the

above expressions with ν = 0, µ = 1/2, and using f (2γt)→ 1/(2γ)g̃(ε/a) with Γ(z+1) =

zΓ(z), we obtain in Laplace domain

η̃(ε) =

√
γ

ε
√

2D

Γ
(

ε
2γ +1

)

Γ
(

ε
2γ + 1

2

) . (7.58)

Next the Laplace transform of the homogeneous solution at the trap site x = 0 in the

absence of the trap is computed. This propagator is given in time domain by setting x = 0

in Eq. (7.56)

Π(t) =

√
γ

2πD

exp(γt)√
exp(2γt)−1

exp

[
−

γx2
0/(2D)

exp(2γt)−1

]
. (7.59)

To obtain the Laplace transform of this expression, Ref. [133] is used to transform

(
et −1

)ν−1
e
− a

exp(t)−1 → a
ν−1

2 e
a
2 Γ(ε−ν+1) Wν−1

2 −ε, ν
2
(a).

Here Wa,b(z) = e−z/2zb+1/2U(−a + b + 1/2,2b + 1,z) is known as Whittaker W-function

defined by the confluent hypergeometric function of the second kind

U(a,b,z) = z−a
2F0(a,1+a−b;−z−1) together with

exp(γt) f (2γt) → 1/(2γ)g̃[ε/(2γ)−0.5]

to obtain

Π̃(ε) =

√
1

8πγD

(
x2

0γ

2D

)−1/4

e
x2
0

γ

4D Γ

(
ε

2γ

)
W1

4−
ε
2γ ,

1
4

(
x2

0γ

2D

)
. (7.60)

After computing η̃(ε) and Π̃(ε) and substituting Eqs.(7.58) and (7.60) into the pre-

scription given in Eq.(7.35) one obtains an exact expression for the total survival probabil-

ity in Laplace domain

Q̃(ε) =
1

ε
−

1
2γ
√

π

( γτ
2

)−1/4
e

γτ
4 W− 1

4 , 1
4

( γτ
2

)
Γ
(

ε
2γ

)

ε
√

τ
ξ
√

2γ
+

Γ
(

ε
2γ +1

)

Γ
(

ε
2γ +

1
2

)
, (7.61)
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where τ = x2
0/D is the motion time and ξ = 2D

Cx0
describes the capture process. As far as

we know this expression is a new expression and cannot be inverted directly. However, for

instantaneous reaction Eq.(7.61) one can obtain an exact expression.

Perfect absorption

For perfect absorption C → ∞ and Eq. (7.61) may be written as

Q̃(ε) =
1

ε
−

A−1/4e
A
2

2γ
√

π

Γ(ε′ +1/4)Γ(ε′ +3/4)

Γ(ε′ +5/4)
W−ε′, 1

4
(A), (7.62)

where ε′ = 1/4− ε/(2γ) and A = x2
0γ/(2D). This expression can be inverted exactly after

using a table of Laplace transforms [133]

Γ(ε+1/2+ν)Γ(ε+1/2−ν)

Γ(ε′ +1−µ)
W (−ε,ν,a)→

(
eaµ/2 − etµ

)
e

[
−a/2

exp(t)−1

]

Wµ,ν

(
a

exp(t)−1

)
,

where ν = 1/4, µ = −1/4 and a = A together with g̃[ε/(2γ)−1/4] → 2γexp(γt/2) f (2γt).

After some rearranging one one obtains in time domain the following expression

Q(t) = 1−
A−1/4

√
π

(
e2γt −1

)1/4
e

−A
2[exp(2γt)−1] W− 1

4 , 1
4

(
A

exp(2γt)−1

)
. (7.63)

At first Eq.(7.63) looks very complicated. However, the complementary error function can

be defined in terms of the Whittaker W-function as follows. Abramowitz and Stegun [151]

define the Whittaker W-function in terms of the Whittaker M-function Mκ,µ(z)

Wκ,µ(z) =
Γ(−2µ

Γ(1/2−µ−κ)
Mκ,µ(z)+

Γ(2µ

Γ(1/2+µ−κ)
Mκ,−µ(z) (7.64)

and with κ = −1/4 and µ = 1/4

W− 1
4 , 1

4
(z) = −2M− 1

4 , 1
4
(z)+

√
πM− 1

4 ,− 1
4
(z). (7.65)

Now using the definition of the Whittaker M-function given in Ref. [151] in terms of the

Kummer confluent hypergeometric function M(a,b,z),

Mκ,µ(z) = e−z/2z1/2+µ M(1/2+µ−κ,1+2µ,z) (7.66)
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one can write

W− 1
4 , 1

4
(z) = z1/4e−z/2[

√
πM(1/2,1/2,z)−2

√
zM(1,3/2,z)]. (7.67)

Since M(1/2,1/2,z) = exp(z) and M(1,3/2,z) is related to er f (z) as given in [151]

er f (z) =
2
√

z
√

π
e−z M(1,3/2,z), (7.68)

and the Whittaker W-function used here can be defined in terms of the complementary

error function

W− 1
4 , 1

4
(z) =

√
πz1/4ez/2er f c(z). (7.69)

Now we can substitute Eq.(7.69) into Eq.(7.63) with z = A/[exp(2γt)− 1] where A =

x2
0γ/(2D) and write

Q(t/τ) = er f

( √
γτ

√
2[exp(2γt)−1]

)
. (7.70)

Equation (7.70) is an exact expression for the total survival probability of a particle, which

is instantaneously absorbed at the origin while diffusing in a harmonic potential centered

at the origin. It turns out that this expression can be also obtained from the method of

images as outlined by Bagchi, Fleming and Oxtoby [152] and Kenkre [22].

Imperfect absorption: long time limit

As mentioned above the expression for finite absorption in Laplace domain, Eq.(7.61),

cannot be inverted exactly. However in the long time limit as t → ∞ or ε → 0, Eq.(7.61)

can be written as

Q̃(ε) =
1

ε
−

1
2γ

(
x2

0γ
2D

)−1/4

e
x2
0

γ

4D W− 1
4 , 1

4

(
x2

0γ
2D

)[
2γ
ε −Eγ

]

√
2Dπε

C1d
√

γ +1
, (7.71)
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where Eγ = 0.5772... is the Euler’s constant. Since it is straight forward to invert

1/(aε2 + ε) and 1/(aε+1) we obtain in time domain for imperfect absorption in the long

time limit

Q(t/τ) = 1−
(γτ

2

)−1/4

e
γτ
4 W− 1

4 , 1
4

(γτ

2

)[
1− e

√
2γ
πτ

t
ξ

(
1+

ξ
√

2πγτ

)]
. (7.72)

Here γ describes the strength of the potential. To our knowledge this expression is new.

Other initial distributions

Since the exact solution is known for a point initial condition, one can solve the prob-

lem for any initial condition by applying the principle of superposition. For example, in

the perfect absorption case, the exact solution for a localized initial condition is given in

Eq.(7.70) and for any other initial distribution ρ(x0) the principle of superposition says

Q(t) =
Z ∞

0
ρ(x0)er f

(√
γ

2D

x0√
exp(2γt)−1

)
dx0. (7.73)

For an initial random distribution ρ(x0) = c0 exp(−c0x0) the above expression becomes

Q(t) = e
c2
0

D[exp(2γt)−1]

2γ er f c

(
c0

√
D[exp(2γt)−1]

2γ

)
. (7.74)

For an initial Rayleigh distribution ρ(x0) = x0 exp[−x2
0/(2Dσ2)]/σ2, another exact expres-

sion can be obtained

Q(t) =

√
γσ2

γσ2 +De2γt −D
. (7.75)

Both results are new expressions as far as we know.

7.6 Repository of solutions in two-dimensions

The stationary trapping prescription given in Eq.(7.35) can also be applied to higher di-

mensions where a trap in one-dimension becomes an absorbing surface in higher dimen-
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sions [132]. The second term in the denominator of Eq.(7.35) is the ensemble average of

the sum of propagators of the homogeneous system (in absence of traps) from one trap

location to all others. If the system is two-dimensional, the absorber (trap) sites are the

points forming the circumference of a circle (disk) and the motion obeys a diffusion equa-

tion. The circle has radius R. Let us take the circle to have the origin as the center and

therefore any two points on the circumference to be labeled by polar coordinates R and

two values of θ. The two-dimensional propagators are simply products of Gaussian one-

dimensional propagators (isotropy assumed) and therefore independent of θ. So we will

take one of the angles to be 0 and the cartesian coordinates of the two points are therefore

Rcosθ, Rsinθ and R, 0 respectively. Thus Π(t) is proportional to the integral [22]

Π(t) = constant

2π
Z

0

exp[−R2[(1−cosθ)2+sin2 θ]
4Dt

]

4πDt
dθ. (7.76)

The integral is evaluated in terms of the I0 Bessel function of argument R2/2Dt. In one-

dimension there would be no integral and the denominator would have a square root of

t. We will show in one of the following subsections that the Laplace transform of Π(t)

given above is known precisely and one can obtain exact expressions for two-dimensional

trapping problems. In the remainder of this section we will solve trapping problems for

open and closed trapping surfaces in two-dimensions.

7.6.1 Two-dimensional free-space propagator

To apply the trapping prescription to problems describing simple diffusion in

two-dimensions, we need to compute the two-dimensional free-space propagator. The

Green’s function in two-dimensions is simply the product of two one-dimensional Green’s

function in the x and y direction. In polar coordinates the expression is then

G
(
~r,~r′; t

)
=

1

4πDt
e−

|~r−~r′|2

4Dt (7.77)
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where |~r−~r′|2 = (x− x′)2 + (y− y′)2
. For rotationally symmetric initial condition,

P(~r,0) = δ(r−R0)/(2πr), the rotationally symmetric solution is

P(~r, t) =

2π
Z

0

∞
Z

0

G
(
~r,~r′; t

)
P(~r,0)r′dr′dθ′

=
1

8π2Dt

2π
Z

0

∞
Z

0

e−
r2+r′2−2rr′ cos(θ′)

4Dt δ
(
r′−R0

)
dr′dθ′. (7.78)

Carrying out the integration over r′,

P(r, t) =
1

8π2Dt
e−

r2+R2
0

4Dt

2π
Z

0

e
2rR0 cos(θ′)

4Dt dθ′ (7.79)

and realizing that the left integral is the I0 Bessel function

2πI0 (z) =

2π
Z

0

ezcosθdθ

we get the following two-dimensional free-space diffusion propagator

P(r,R0; t) =
1

4πDt
e−

r2+R2
0

4Dt I0

(
rR0

2Dt

)
. (7.80)

This propagator is well known [141] and is the two-dimensional counterpart in polar co-

ordinates of Eq.(7.36).

7.6.2 Circular trap

In this subsection we solve for the total survival probability of a stationary circular trap

and an initial circular symmetric distribution of diffusing non-interacting point particles at

R0. The circular trap is centered at the origin and has a radius R, where R < R0. Using the

two-dimensional free-space propagator in Eq.(7.80) the self-propagator in time domain is

given as

Π(R,R) =
1

4πDt
e−

R2

2Dt I0

(
R2

2Dt

)
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and the homogeneous solution at the trap site is

Π(R,R0) =
1

4πDt
e−

R2+R2
0

4Dt I0

(
RR0

2Dt

)
.

Both expressions can be Laplace transformed (see Appendix B) and substituted into the

prescription, Eq.(7.35) to give

Q̃(ε) =
1

ε


1−

1
2πD

K0

(√
ε
γ0

)
I0

(√
ε
ε0

)

1
C + 1

2πD
K0

(√
ε
ε0

)
I0

(√
ε
ε0

)


 , (7.81)

where ε0 = D/R2 and γ0 = D/(R2
0). For perfect absorption C → ∞ in Eq.(7.81) and one

obtains

Q̃(ε) =
1

ε


1−

K0

(√
ε
γ0

)

K0

(√
ε
ε0

)


 . (7.82)

Here I0 and K0 are the zero order modified Bessel functions of the first and second kind,

respectively. Both expression for imperfect and perfect absorption cannot be inverted ex-

actly and hence one can only obtain exact expressions for long and short times. However,

it is trivial to compute the numerical Laplace transform by implementing the algorithm

outlined in Appendix C. The expression for finite reaction in Eq.(7.81) appears to be new.

The perfect-absorption limit Eq.(7.82) of our general result can be found, however, in the

book on heat conduction by Carslaw and Jaeger [141].

Let us now obtain limiting expressions for long and short times. For short time, t → 0,

ε → ∞ and the zero-order modified Bessel functions of the first and second kind can be

approximated as follows [151]

K0 (z) ∼

√
π

2z
e−z

I0 (z) ∼

√
1

2πz
ez

K0 (z) I0 (z) ∼
1

2z
.
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Then, for the case of finite reaction,

Q̃(ε) =
1

ε

[
1−

√
R

R0

e−
√

ετ2d

ξ2d

√
ετ2d +1

]
, (7.83)

where τ2d = (R0 − R)2/D is the two-dimensional motion parameter and

ξ2d = 4πDR/[C (R0 −R)] describes the two-dimensional capture process. Equation (7.83)

can be inverted exactly (see Appendix B) giving

Q(t) = 1−

√
R

R0

[
er f c

(
1

2

√
τ2d

t

)
− e

1
ξ2d

+ 1

ξ2
2d

t
τ2d er f c

(
1

2

√
τ2d

t
+

1

ξ2d

√
t

τ2d

)]
. (7.84)

This result is very similar to the one-dimensional result for a point trap and initial delta

function condition given in Eq.(7.40). As far as we know, the result for finite absorption

and short time given in Eq. (7.84) is a new result. It is straightforward to obtain a short

time approximation for perfect absorption:

Q(t) = 1−

√
R

R0
er f c

(
1

2

√
τ2d

t

)
. (7.85)

This result has been derived by Taitelbaim [153].

To obtain expressions for the long time limit one can follow Ritchie and Sakakura [154]

and Taitelbaim [153] to obtain for imperfect absorption [153]

Q(t) = 2

[
ln

(
R0

R

)
+

2πD

C

]
1

ln
(

4Dt
R2

)
+ 4πD

C −2γ
(7.86)

and for instantaneous reaction [154]

Q(t) = 2ln

(
R0

R

)
1

ln
(

4Dt
R2

)
−2γ

. (7.87)

7.6.3 Infinite line trap

In this section Q(t) is obtained for an infinite line of traps along the y-axis from −∞ to

∞ through x = 0 and initial point particles placed on an infinite line from −∞ < y < ∞
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through x = x0. This problem can be solved by using the expression for a trapping ring of

radius R and an initial radially symmetric distribution of point particles given in Eq.(7.81)

by replacing R0 with at R0 = R+ x0

Q̃(ε) =
1

ε


1−

1
2πD

K0

(
[R+ x0]

√
ε
D

)
I0

(
R

√
ε
D

)

1
C2d

+ 1
2πD

K0

(
R

√
ε
D

)
I0

(
R

√
ε
D

)


 . (7.88)

As R → ∞, the arguments of both K0(z) and I0(z) tend to infinity

I0

(
R

√
ε

D

)
K0

(
R

√
ε

D

)
≃

√
D

2R
√

ε
,

I0

(
R

√
ε

D

)
K0

(
(R+ x0)

√
ε

D

)
≃

√
D

2R
(
1+ x0

R

)√
ε

e−x0

√
ε
D .

Substituting these expressions into Eq.(7.88) with C2d = 2πRC1d , and taking the limit as

R → ∞, we obtain

Q(t/τ) = er f

(
1

2

√
τ

t

)
+ e

1
ξ
+ 1

ξ2 (
t
τ)er f c

(
1

2

√
τ

t
+

1

ξ

√
t

τ

)
, (7.89)

where τ = x2
0/D and ξ = 2D/(C1dx0). As one might expect, this result is identical to

the expression obtained for a single trap at the origin and an initial particle placed at

x = x0, Eq.(7.40). Ben-Naim et al. [145] have previously pointed out that the infinite

one-dimensional trapping system with an imperfect trap is equivalent to a semiinfinite

one-dimensional diffusion system. This equivalence has been used by Park et al. [155] to

explain results in a photobleaching experiment resulting from an infinite line trap.

A second way of solving this problem is by utilizing the trapping prescription. In this

case we start with the two-dimensional cartesian Gaussian propagator

P(x,x0,y,y0; t) =
1

4πDt
e−

(x−x0)2+(y−y0)2

4Dt . (7.90)

Since the infinite trapping line is along the y-axis through x = 0 = x0 the propagator be-

comes

P(y,y0; t) =
1

4πDt
e−

(y−y0)2

4Dt . (7.91)
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After obtaining the diffusion propagator for this system, the self-propagator, which is the

sum over all propagators from one trap site at point (0,y′ = 0) to all other trap sites (0,y)

from −∞ < y < ∞, is given as

Π(t) =
1

4πDt

Z ∞

−∞
e−

y2

4Dt dy =
1

√
4πDt

. (7.92)

Similarly, the homogeneous solution is the sum of all propagators from point (x0,0) to

point (0,y) from −∞ < y < ∞

η(t) =
1

4πDt
e−

x2
0

4Dt

Z ∞

−∞
e−

y2

4Dt dy =
1

√
4πDt

e−
x2
0

4Dt . (7.93)

The Laplace transforms of these two expressions are known (see Appendix B) and can be

substituted into the trapping prescription to arrive at Eq.(7.89).

7.6.4 Finite line trap: open trapping surface

Thus far we have restricted our discussion to closed trapping surfaces. In this section we

investigated the possibility of applying the trapping prescription to open trapping surfaces

like a finite trap segment. Here, a line segment of traps through x = 0 from −l ≤ y ≤ l is

considered. The self-propagator is computed from Eq.(7.90) by integrating y and y0 from

−l to l and dividing by 2l for appropriate normalization

Π(t) =
1

4πDt

Z l

−l

Z l

−l
e−

(y−y′)2

4Dt dy′dy =
1

√
4πDt

er f

(
l

√
Dt

)
−

1

πl
e−

l2

2Dt sinh

(
l2

2Dt

)
. (7.94)

We see that if we take l → ∞ we obtain the same self-propagator as for an infinite line of

traps. The first term in the above expression cannot be transformed exactly. However, for

the second term the exact Laplace transform can be found in Ref.[133] and one obtains

Π̃(ε) =
1

√
4πD

Z ∞

0
e−εter f

(
l

√
Dt

)
dt
√

t
−

1

2πlε
+

1

π
√

εD
K1

(
2l

√
ε

D

)
, (7.95)

where K1(z) is the first order modified Bessel function of the second kind. If the particles

are initially placed on a line from −l to l through x = x0 to the right of the trapping line,
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we can use Eq. (7.90) to compute the homogeneous solution at the trap site

η(t) =
1

2l

1

4πDt
e−

x2
0

4Dt

Z l

−l

Z l

−l
e−

(y−y′)2

4Dt dydy′

=
1

√
4πDt

e−
x2
0

4Dt er f

(
l

√
Dt

)
−

1

πl
e−

2l2+x2
0

4Dt sinh

(
l2

2Dt

)
.

After Laplace transforming the above expression the propagator becomes

η̃(ε) =
1

√
4πD

Z ∞

0
e−εte−

x2
0

4Dt er f

(
l

√
Dt

)
dt
√

t

−
1

πl
√

ε


 x0

2
√

D
K1

(
x0

√
ε

D

)
−

√
4l2 + x2

0

4D
K1



√

(4l2 + x2
0)ε

D




 . (7.96)

Substituting Eqs.(7.95) and (7.96) into Eq.(7.35) we obtain the following expression in

Laplace domain

Q̃(ε) =
1

ε


1−

R ∞
0 e−εte−

τ
4t er f

(
1
2

√
χ
t

)
dt√

t
− 4√

πχε

[√
τ

2
K1

(√
τε
)
− 1

2

√
τ+χK1

(√
(τ+χ)ε

)]

√
πτξ+

R ∞
0 e−εter f

(
1
2

√
χ
t

)
dt√

t
− 2

ε
√

πχ + 2√
επ

K1

(√
εχ
)


 .

(7.97)

Here χ = 4l2/D and τ = x2
0/D are motion parameters and ξ = 2D/(Cx0) describes the

capture process as usual. Looking at Eq.(7.97) it becomes obvious that solutions for open

trapping surfaces become more complex due to missing symmetry in the problem. How-

ever, we reiterate that, as long as we obtain an expression in Laplace domain, it is possible

to invert the solution numerically. Finally, we note that Eq.(7.97) is a new expression.

7.7 Repository of solutions in three-dimensions

In this section we will solve stationary trapping problems in three-dimensions.
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7.7.1 Three-dimensional free-space propagator

To apply the trapping prescription to three-dimensional problems described by simple dif-

fusion, we need to compute the three-dimensional free-space propagator. The Green’s

function in three dimensions is a product of three one-dimensional Gaussian propagators

and written in spherical polar coordinates as

G(~r,~r0; t) =
1

(4πDt)3/2
e−

|~r−~r0|
2

4Dt (7.98)

where |~r−~r0|
2 = (x− x0)

2 +(y− y0)
2 +(z− z0)

2
. For a spherically symmetric initial con-

dition, P(~r,0) = δ(r−R0)/(4πr2), the spherically symmetric solution is

P(~r, t) =

π
Z

0

2π
Z

0

∞
Z

0

G
(
~r,~r′; t

)
P(~r,0)r′

2
sinθdr′dθdφ

=
1

2(4πDt)3/2

π
Z

0

∞
Z

0

e−
r2+r′

2
−2rr′ cosθ
4Dt δ

(
r′−R0

)
dr′ sinθdθ. (7.99)

Carrying out the integration over r′ and substituting u = cosθ, we obtain

P(r,R0; t) =
1

8πrR0

√
πDt

(
e−

(r−R0)
2

4Dt − e−
(r+R0)

2

4Dt

)
. (7.100)

This useful expression can be found in Ref. [141].

7.7.2 Spherical trap: passive diffusion in biology

In this subsection the trapping problem of a spherical trapping shell and an initial spheri-

cal distribution of point particles is investigated. This problems seems to have important

biological applications in the process of passive diffusion. In this process small molecules

may diffuse across a phospholipid bilayer. For example, in the process of photosynthe-

sis, oxygen molecules may be absorbed by oxygen-evolving complexes embedded in the

124



Chapter 7. Repository of Exact Solutions for Stationary Trapping Problems

thylakoid membrane [156] while undergoing passive diffusion through the membrane. In

such a system one might be interested in the total amount of unbound oxygen, which is a

measure of energy production in this process.

To solve this problem, we follow our previous methodology. First, the self-propagator

for a trap of radius R located at the origin is obtained from the free-space propagator given

in Eq.(7.100)

Π(R,R) =
1

8πR2
√

πDt

(
1− e−

R2

Dt

)
. (7.101)

Second, the homogeneous solution at the spherical trap sites for an initial spherical distri-

bution of point particles at R0 > R is given as

η(R,R0) =
1

8πRR0

√
πDt

(
e−

(R0−R)2

4Dt − e−
(R0+R)2

4Dt

)
. (7.102)

Both expressions can be Laplace transformed exactly (see Appendix B) and the particle

survival probability in Laplace domain for finite reaction is

Q̃(ε) =
1

ε


1−

1

4πRR0

√
Dε

e
−
√

ε
γ0 sinh

√
ε
ε0

1
C + 1

4πR2
√

Dε
e
−
√

ε
ε0 sinh

√
ε
ε0

,


 , (7.103)

where ε0 = D/R2 and γ0 = D/R2
0. This expression is a new expression and cannot be in-

verted directly as far as we know. For instantaneous reaction, C → ∞, Eq.(7.103) becomes

Q̃(ε) =
1

ε

(
1−

R

R0
e
−
√

ε
(√

1
γ0
−
√

1
ε0

))
. (7.104)

This expression can be inverted exactly (see Appendix B) giving in time domain

Q(t) = 1−
R

R0
er f c

(
R0 −R
√

4Dt

)
. (7.105)

Equation (7.105) is given by Carslaw and Jaeger [141] and has been rederived by

Rice [157].
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To obtain an asymptotic approximation for finite reaction, we use the property that any

function f̃ (ε) in Laplace domain can be expressed as a complex valued function where

ε is replaced with z = r exp(iθ) [158]. Here, we are interested in finding the following

singularities, z0, of f̃ (z) when f̃ (z) goes to zero or infinity: poles of order m, essential

singularities, branch points, and branch cuts. To obtain an asymptotic approximation f̃ (ε)

is expanded around z0 in a Laurent series, where z0 is the right most singularity [158]

f̃ (z) =
∞

∑
ν=0

cν (z− z0)
λν, (7.106)

According to Doetsch [158], the asymptotic approximation of f (t) is then given as

f (t) ≈ exp(z0t)
∞

∑
ν=0

cν

Γ(−λν)
t−λν−1. (7.107)

This expression is zero if λν takes one of the values 0,1,2, .... To obtain more terms in

the expansion, this method can be applied to the next singularity, which is to the left of

the first singularity, and add the two results. Following this methodology, Eq.(7.103) has

a branch cut at (−∞,0] and the Laurent expansion around ε = 0 gives the following long

time limit

Q(t) ∼ 1−
RC

R0 (4πDR+C )
+

1
√

t

(
RC

√
D(4πDR+C )

−
C 2R

√
D(4πD+C )2

)
, (7.108)

which is a new expression. In the limit of infinite time, t → ∞, Eq.(7.108) reduces to a

known expression given by Rice [157]

Q(t) = 1−
RC

R0(4πDR+C )
.

For perfect absorption the asymptotic expression given in Eq.(7.108) becomes

Q(t) = 1−R/R0,

which has been given by Rice [157]. Therefore, for finite and instantaneous reaction in

three-dimensions, the survival probability will never reach zero. This result is expected

since, in three-dimensions, the probability of a diffusing particle reaching any point (in-

cluding the starting point) as time approaches infinity is less than one.
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7.7.3 Infinite sheet of traps

Similarly, one can obtain also an expression for an infinite sheet in three-dimensions. The

obtained expression should be equivalent to the result obtained for a single trap and point

particle initial condition in one-dimension. We again start with the solution for a spherical

trap given in Eq.(7.103) and replace R0 = R+R0 to obtain

Q̃(ε) =
1

ε


1−

1

4πR2(1+
R0
R )

√
Dε

e−(R+R0)
√

ε
D sinh

(
R

√
ε
D

)

1
C3d

+ 1

4πR2
√

Dε
e−R

√
ε
D sinh

(
R

√
ε
D

)


 . (7.109)

Since sinhz = 1/2[exp(z)−exp(−z)] and C3d = 4πR2C1d we can rewrite the above expres-

sion as

Q̃(ε) =
1

ε


1−

1/2

4πR2(1+
R0
R )

√
Dε

e−R0

√
ε
D

1
4πR2C1d

+ 1/2

4πR2
√

Dε


 . (7.110)

In the limit as R → ∞ it is trivial to show that Eq.(7.110) becomes the one-dimensional

result given in Eq.(7.39) after Laplace inversion.

Applying the trapping prescription

This problem can be solved also by applying the trapping prescription. Here we start with

the three-dimensional cartesian Gaussian propagator from point (x0,y0,z0) to point (x,y,z)

P(x,x0,y,y0,z,z;t) =
1

(4πDt)3/2
e−

(x−x0)2+(y−y0)2+(z−z0)2

4Dt . (7.111)

Using this propagator for an infinite sheet of traps, which extends from minus infinity to

infinity in the y and z direction through x = 0, the self-propagator is given as

Π(t) =
1

(4πDt)3/2

Z ∞

−∞
e−

z2
0

4Dt dz0

Z ∞

−∞
e−

y2
0

4Dt dy0 =
1

√
4πDt

. (7.112)
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Similarly, the homogeneous solution at the trap sites for an initial distribution of particles

on a sheet extending from minus infinity to infinity in the y and z direction through x = x0

can be computed

Π(t) =
1

(4πDt)3/2
e−

x2
0

4Dt

Z ∞

−∞
e−

z2
0

4Dt dz0

Z ∞

−∞
e−

y2
0

4Dt dy0 =
1

√
4πDt

e−
x2
0

4Dt . (7.113)

We have encountered both these propagators (Eq.(7.112) and Eq.(7.113)) earlier in section

7.5 when we solved a trapping problem for a stationary trap and a point initial condition in

one-dimension. The survival probability of an infinite sheet of traps and an initial distribu-

tion of particles also along an infinite sheet in three-dimensions is thus given in Eq. (7.40).

7.7.4 Trapping ring in three-dimensions

The last problem, we investigate in three-dimensions, is diffusion-limited reaction in pres-

ence of a trapping ring of radius R centered at the origin in the x,y plane (z = 0 or φ = π/2)

and an initial point particle at (0,0,z) above the ring on the z-axis. We first compute the

self-propagator from Eq.(7.111)

Π(t) =
1

2π(4πDt)3/2
e−

R2

2Dt

Z 2π

0
e

R2

2Dt cos(θ)dθ =
1

2π(4πDt)3/2
e−

R2

2Dt I0

(
R2

2Dt

)
. (7.114)

To Laplace transform the above expression, we use a table of Laplace transforms [133].

First we transform

1

t
√

t
e−

b
t I0

(
b

t

)
→

∞
Z

ε

du

√
π

u

[
I0

(√
8bu
)
−L0

(√
8bu
)]

,

where Lα(z) is the Struve function and b = R2/2D. After evaluating the following two

integrals

∞
Z

ε

du

√
π

u
I0

(√
8bu
)

= −2
√

πε 1F2

(
1

2
;1,

3

2
;2bε

)
,

∞
Z

ε

du

√
π

u
L0

(√
8bu
)

=
2γ+ ln(32b)

√
b

−
8ε
√

b
√

2π
2F3

(
1,1;1,

3

2
,
3

2
,2;2bε

)
,
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where pFq is the generalized hypergeometric function and γ is Euler’s constant, we obtain

in Laplace domain

Π̃(ε) =
1

(4πD)3/2


 4Rε
√

πD
2F3

(
1,1;1,

3

2
,
3

2
,2;

R2ε

D

)
−

√
2D
(

2γ+ ln
(

16R2

D

))

R




−
1

(4πD)3/2

[
2
√

πε 1F2

(
1

2
;1,

3

2
;
R2ε

D

)]
. (7.115)

Next we compute the homogeneous solution given an initial point particle at (0,0,z) above

the ring on the z-axis. The homogeneous solution at the trap site is given as

Π(t) =
1

(4πDt)3/2
e−

R2+z2

4Dt (7.116)

and the Laplace transform of this expression is [133]

η̃(ε) =
1

4πD
√

R2 + z2
e−
√

(R2+z2)ε
D . (7.117)

Now substituting Eqs. (7.115) and (7.117) into the trapping prescription, Eq. (7.35), we

obtain a new expression for the survival probability in Laplace domain

Q̃(ε) =
1

ε
−

e−
√

(R2+z2)ε/D

ε4πD
√

R2 + z2

×

{
1

C
+

1

(4πD)3/2

[
4Rε
√

πD
2F3 (A)−

√
2D

R

[
2γ+ ln

(
16R2

D

)]
−2

√
πε 1F2 (B)

]}−1

,

(7.118)

where pFq is the generalized hypergeometric function, A = 1,1;1, 3
2
, 3

2
,2; R2ε

D
,

B = 1
2
;1, 3

2
; R2ε

D
, and γ = 0.57721... is Euler’s constant. This expression cannot be inverted

directly and must be evaluated through numerical methods.
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7.8 Equivalence to theory of conduction of heat in solids

In the last section of this chapter, the equivalence of solutions obtained from sink terms

and boundary conditions in reaction-diffusion equations is investigated. Many results,

which were obtained by applying the trapping prescription, have been previously obtained

by solving diffusion problems in the presence of boundary conditions. However, this

equivalence only applies to translationally invariant systems.

7.8.1 Equivalence to constant-density initial condition

in one-dimension

Most of the results derived from the trapping prescription presented in this chapter are

equivalent to expressions obtained by solving the diffusion equation with a constant-

density initial conditions and radiative or perfectly absorbing boundary condition. A col-

lection of these results can be found in the book by Carslaw and Jaeger [141]. Due to the

wide applicability of reaction-diffusion problems to the subject of trapping and absorption

a large literature has developed [142, 143, 153, 157, 159, 160, 161], rederiving and using

results collected in Ref. [141].

To outline this equivalence we investigate the problem of a particle diffusing in one-

dimension in the presence of a stationary trap located at the origin. The absorption process

at the trap site occurs at a finite rate. The equivalent problem solved in Ref. [141] is the

one-dimensional diffusion equation

∂c

∂t
= D

∂2c

∂x2
(7.119)

with constant-density initial condition c(x,0) = c0 and radiative boundary condition at

x = 0

∂c

∂x

∣∣∣∣
x=0

= hc(x, t)|x=0 . (7.120)
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Here c(x, t) is the one-dimensional concentration profile and h is the reaction rate at the

boundary. The solution for x ≥ 0 is

c(x, t)

c0
= er f

(
x

√
4Dt

)
+ ehx+h2Dter f c

(
x

√
4Dt

+h
√

Dt

)
. (7.121)

When we compare this expression to the expression obtained for the survival probability

due to a point initial condition given in Eq.(7.40)

Q(x0, t) = er f

(
x0

√
4Dt

)
+ e

C1dx0
2D +

C2
1d

4D ter f c

(
x0

√
4Dt

+
C1d

2

√
t

D

)
,

we notice that these two expressions are equivalent if h = C1d/(2D), where C1d is the

one-dimensional capture rate at the trap site in units of m/s. The equivalence of the two

problems for simple diffusion and a single boundary has been pointed out by Rodriguez et

al. [138].

7.8.2 Requirement on diffusion propagator for equivalence

To investigate why this equivalence occurs we look at the evolution of the probability

density function. In general, the one-dimensional diffusion propagator in the presence of

the trap is Π(x,x′; t) and the probability to find a reactant at position x at time t is

c(x, t) =
Z

Π(x,x; t)c(x′,0)dx′, (7.122)

where c(x′,0) is the initial reactant distribution. To compare the result obtained from the

trapping prescription to the expression obtained by Carslaw and Jaeger [141], we focus

on two different initial conditions. For a point initial condition c(x′,0) = δ(x′− x0) and

for a uniform initial condition c(x′,0) = c0. Substituting the point initial condition into

Eq.(7.122) and integrating over x′ we get

c(x, t) = Π(x,x0; t) . (7.123)
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Since we are interested in the total reactant survival proability we integrate this expression

over all space

Q(t) =
Z

c(x, t)dx (7.124)

and obtain for a point initial condition

Q(t) =
Z

Π(x,x0; t)dx. (7.125)

Next, we substitute the uniform initial condition into Eq.(7.122) obtaining

c(x, t)

c0
=

Z

Π
(
x,x′; t

)
dx′. (7.126)

Comparing Eqs.(7.124) and (7.126), we notice that these two expressions are only equiv-

alent if Π(x,x′; t) = Π(x′,x; t). This condition is only true for translationally invariant

systems, as pointed out by Redner [143].

To investigate this condition we compare the two quantities

Q(t,x0) =
Z

Π(x,x0)dx

c(x, t)

c0
=

Z

Π
(
x,x′
)

dx′

in more detail. Under which condition are they equivalent? To answer this, we start

very generally by investigating these two quantities on a discrete lattice. On a lattice, the

particle may occupy site m at a given probability Pm =∼−Cδm,rPm. If the particle jumps

from site l to site m without translational invariance we may write in Laplace domain

P̃m,l = η̃m,l −CΠ̃0
m,rP̃r,l.

Here the trap is located at site r and Π0
a,b is the propagator in the absence of the trap. Since

we can obtain P̃r,l from this expression, we obtain as a result an explicit expression of the

propagator, which includes trapping

Π̃m,l = Π̃0
m,l −

Π̃0
r,lΠ̃

0
m,r

1/C + Π̃0
r,r

. (7.127)
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The expression in Eq.(7.127) is very useful. It tells us precisely how to calculate the

propagator in the presence of traps if you know the propagator in the absence of the traps.

At this point we calculate Q̃(ε), the number of surviving particles in Laplace domain for

an initial point particle, which is obtained by summing Eq.(7.127) over lattice sites m

Q̃(ε, l) = ∑
m

Π̃m,l =
1

ε

[
1−

Π̃0
r,l

1/C + Π̃0
r,r

]
. (7.128)

Next we compute the equivalent quantity for a uniform initial distribution by summing

Eq.(7.127) over lattice sites l

c̃(ε,m)

c0
= ∑

l

Π̃m,l = ∑
l

Π̃0
m,l−

(
∑
l

Π̃0
r,l

)
Π̃0

m,r

1/C + Π̃0
r,r

. (7.129)

If we define ∑
l

Π̃0
m,l = ξ̃m and ∑

l

Π̃0
r,l = ξ̃r we can write

c̃(ε,m)

c0
= ξ̃m −

ξ̃rΠ̃
0
m,r

1/C + Π̃0
r,r

. (7.130)

Since the probability sum over all sites of the homogeneous solution is always one we

have ξ̃m = ξ̃r = 1/ε and hence obtain

c̃(ε,m)

c0
=

1

ε

[
1−

Π̃0
m,r

1/C + Π̃0
r,r

]
. (7.131)

Equations (7.128) and (7.131) are equivalent for m = l if

Π̃0
l,r = Π̃0

r,l.

Therefore, to have equivalence between these two approaches, translational invariance in

the absence of a capture process is required. It is worth noting that a similar statement has

been made by Szabo, Lamm, and Weis [132]. They showed that the trapping prescription

can solve two problems. The first problem is described by sink terms and a point initial

condition. As we have shown in this chapter, this problem can be solved by substituting

the Laplace transform of the appropriate Green’s function G̃ f (x|x0) in the absence of the
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reaction into the prescription. The second problem solved by the same prescription, is the

boundary value problem. If the Green’s function, which satisfies a purely reflecting bound-

ary condition at the absorbing boundary

G̃r(x|x0) = G̃ f (x|x0) + G̃ f (x| − x0), is used, then the prescription gives the solution to

the radiative boundary value problem. Hence, only when the Green’s function is transla-

tionally invariant, G̃ f (x|x0) = G̃ f (x|− x0) the two solutions become equivalent.

In the case of simple diffusion in one-dimension it is obvious that the free-space propa-

gator or Green’s function is translationally invariant. This is the reason for the equivalence

of the solution for a point and uniform initial condition as outlined in section 7.8.1. To

understand how such an equivalence may not be valid, consider a particle moving in a

quadratic potential, U(x) = γ x2/2 (see section 7.5.4). The diffusion propagator is now

given by (see Eq.(7.56))

P(x,x0, t) =
1

√
4πDω

e−
[x−x0 exp(−γt)]2

4Dω ,

where ω = (1− exp[−2γt])/(2γ). This propagator is not translationally invariant

P(x,x0, t) 6= P(x0,x, t).

7.8.3 Relationship between reaction and capture rate

In this subsection the relationship between the reaction rate h due to radiative boundary

conditions and the d-dimensional capture rate Cd for systems exhibiting invariant motion

is investigated. From the diffusion equation one can compute the flux (number of particles

per second crossing unit area), J, of the diffusing species J = D∂c/∂r. The total number

of particles crossing the surface area per second is the particle current I given as

I (r) = Area∗ J = Area∗D
∂c

∂r

∣∣∣∣
r

. (7.132)
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The current I can be related to the radiative boundary condition ∂c
∂r

∣∣∣
r
= h c(r)|r via the

reaction rate h as follows

I (r) = Area∗D
∂c

∂r

∣∣∣∣
r

= Area∗Dh c(r)|r . (7.133)

Hence, Area ∗Dh is the rate at which particles get trapped, which is equivalent to the

trapping rate Cd giving the following relation

Cd = Area∗Dh. (7.134)

Here Area corresponds to the surface area of the trap. Now in one-dimensions we have

C1d = 2Dh, in two-dimensions with a trap of radius R, C2d = 2πRDh, and in three-

dimension with a spherical trap of radius R, C3d = 4πR2Dh.

7.9 Permeable versus impermeable trapping boundaries

In a previous section 7.8.2 we have shown that a diffusion-reaction problem described

by sink terms with a point initial condition give equivalent results as a similar problem

described by radiation boundary condition with an initial continuous distribution if the

motion is translationally invariant. However, even for translationally invariant motion

there is a subtle difference between these two approaches. In principle, any boundary value

problem may be solved by obtaining the appropriate Green’s function of the diffusion

equation and applying the Green’s theorem. Here, the Green’s function must satisfy either

homogeneous Dirichlet or Neumann conditions.

However, there might be diffusion problems where it is not possible to provide the

correct Green’s function. Moreover, this method requires that reaction processes can be

described adequately by boundary conditions. But there is no reason why the reaction pro-

cess should be required to satisfy a boundary condition. As pointed out by Wilemski [163],

the boundary condition may, and perhaps should, be considered only a consequence of a
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particular choice of sink terms. Thus far, we have encountered multiple example where

appropriate sink terms provide a better description of the reaction than do boundary condi-

tions. In section 7.6.4, we discussed a problem of an open capturing region, which cannot

be described by appropriate boundary conditions. In such systems, the boundary value

approach cannot be used to solve the problem adequately. Another restriction is obvious

from the following negative statement that surfaces when utilizing boundary conditions:

”If the reactant is not absorbed it has to be reflected”. This means that the requirement of

satisfying boundary conditions does not allow one to describe permeable trapping bound-

aries. In section 7.7.2, we solved a reaction-diffusion model describing passive diffusion

across biological membranes. To describe such systems, it is a requirement that the trap-

ping boundary is permeable.

Finally, an alert reader might have noticed that some expressions obtained for Q(t) and

Q̃(ε) for permeable trapping boundaries are equivalent to expressions obtained from the

boundary value counterpart describing impermeable walls. The goal of the present section

is to investigate this point in more detail for translationally invariant systems in two- and

three-dimensions.

7.9.1 Permeable membrane in two-dimensions

In section 7.6.2 we investigated the problem of a stationary circular trap and an initial

circular symmetric distribution of diffusing non-interacting point particles at radius R0.

The circular trap of radius R is centered at the origin, where R < R0. This systems was

properly described by a translationally invariant diffusion propagator given in Eq.(7.80).

Hence according to our previous arguments, the solution to the differential equation obey-

ing radiative boundary conditions at r = R and an initial continuous distribution should

be equivalent to the expression of Q(t) obtained from the trapping prescription. This

statement is true for an instantaneous absorption process at the boundary, since in both
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approaches instantaneous absorption describes an impermeable boundary. However, for

finite absorption these two expressions are not equivalent. In this case Q(t) is the solution

obtained for a permeable trapping surface.

To investigate this observation, we directly compare the two expressions Q̃(ε) and

c̃(ε)/c0. The exact expression for the particle survival probability in Laplace domain is

given in Eq.(7.81)

Q̃(R0ε) =
1

ε


1−

1
2πD

K0

(
R0

√
ε
D

)
I0

(
R

√
ε
D

)

1
C2d

+ 1
2πD

K0

(
R

√
ε
D

)
I0

(
R

√
ε
D
.
)


 ,

where I0(z) and K0(z) are the zero order modified Bessel function of the first and second

kind, respectively. The equivalent problem of a spherical boundary satisfying radiative

boundary conditions and an initial continuous distribution has been solved by Carslaw and

Jaeger [141] as well as by Taitelbaum [153]. The expression in Laplace domain is

c̃(r,ε)

c0
=

1

ε


1−

hK0

(
r

√
ε
D

)

√
ε
D

K1

(
R

√
ε
D

)
+hK0

(
R

√
ε
D

)


 , (7.135)

where h is the reaction rate and K1(z) is the first order modified Bessel function of the

second kind. We notice that in the limit of perfect absorption, C2d → ∞ and h → ∞, both

expressions are equivalent for r = R0. To investigate whether these two expressions are

equivalent imperfect absorber as well, Eq.(7.135) is rewritten as

c̃(r,ε)

c0
=

1

ε


1−

1
2πD

K0

(
r

√
ε
D

)
I0

(
R

√
ε
D

)

1
2πDh

√
ε
D

K1

(
R

√
ε
D

)
I0

(
R

√
ε
D

)
+ 1

2πD
K0

(
R

√
ε
D

)
I0

(
R

√
ε
D

)


 .

(7.136)

Comparing Eqs.(7.81) and (7.136), we notice that they are equivalent for r = R0 if

1

2πDh

√
ε

D
K1

(
R

√
ε

D

)
I0

(
R

√
ε

D

)
→

1

C2d

.
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It turns out that this expression holds for ε → 0 or equivalently in the long time limit.

Using Ref. [151] it can be shown that for z → 0

Iν(z)K(ν+1)(z) → 1/z.

Hence in the limit of ε → 0 the expression in the denominator of Eq.(7.136) becomes

1

2πDh

√
ε

D
K1

(
R

√
ε

D

)
I0

(
R

√
ε

D

)
=

1

2πRDh
. (7.137)

Now, we need to relate the reaction rate h to the two dimensional capture rate C2d . A

relation is derived in section 7.8.3, which gives C2d = 2πRDh. This shows that the two

expressions given in Eqs.(7.81) and (7.136) are equivalent in the long time limit for R0 = r.

7.9.2 Permeable membrane in three-dimensions

It can also be shown that in the long time limit the two expressions for the

three-dimensional case (see section 7.7.2) and a trapping spherical shell, are equivalent.

For a spherical boundary of radius R centered at the origin and satisfying radiative bound-

ary conditions, Carslaw and Jaeger [141] give the exact solution in time domain for an

initial continuous particle distribution

c(r, t)

c0
= 1−

hR2

r(Rh+1)
er f c

(
r−R
√

4Dt

)

+
hR2

r (Rh+1)
e(h+ 1

R)(r−R)+(h+ 1
R)

2
Dter f c

[
r−R
√

4Dt
+

(
h+

1

R

)
√

Dt

]
.

(7.138)

To compare this expression to Q̃(ε) given in Eq.(7.103)

Q̃(R0,ε) =
1

ε


1−

1

4πRR0

√
Dε

e−R0

√
ε
D sinh

(
R

√
ε
D

)

1
C3d

+ 1

4πR2
√

Dε
e−R

√
ε
D sinh

(
R

√
ε
D

)


 ,
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Eq.(7.138) is Laplace transformed (see Appendix B) to give after some re-arranging

c̃(r,ε)

c0
=

1

ε
−

1

4πRε3/2
√

D

×




1
r
e−r

√
ε
D sinh

(
R

√
ε
D

)

1
Rh

(√
ε
D

+ 1
R

)
e−R

√
ε
D sinh

(
R

√
ε
D

)
+ 1

R
e−R

√
ε
D sinh

(
R

√
ε
D

)


 .

(7.139)

Comparing Eqs.(7.103) and (7.139) we see that they are equivalent for perfect absorption,

h → ∞ and C3d → ∞. This equivalence is expected since for instantaneous reaction at the

boundary as well as trap sites, the spherical boundary is impermeable. The two results are

also the same if the first term in the denominator of Eq.(7.139) goes to 1/C3d . To obtain

this equivalence in the long time limit we look at the following expression as z → 0

lim
z→0

[(
1+

1

z

)
exp(−z)sinhz

]
= 1,

which results for ε → 0 in

1

4πR2Dh

(
1+

1

R

√
D

ε

)
e−R

√
ε
D sinh

(
R

√
ε

D

)
→

1

4πR2Dh
.

Since C3d = 4πR2Dh (see section 7.8.3) Eqs.(7.103) and (7.139) are equivalent in the long

time limit for R0 = r.

7.9.3 Importance of transient effect

As outlined above in two-dimensions for a finite reaction, the solution for the particle

survival probability for a radially distributed point particle initial condition at R0 and a

circular trapping ring at R < R0 is equivalent to the expression obtained by imposing a

radiative boundary condition at R and a continuous initial condition in the long time limit.

We have pointed out that this result is due to the resulting permeable and impermeable
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Figure 7.1: Survival probability obtained via a numerical Laplace inversion from Eq.(7.81)

(line) describing a permeable circular trapping ring of radius R with an initial distribution

of point particles at R0 > R and Eq.(7.136) (open circles) describing a radiative bound-

ary condition at r = R (impermeable boundary) and a continuous initial condition. Both

solutions describe a two-dimensional reaction-diffusion system. In the long time limit,

t/τ > R2/R2
0, and r = R0 the two functional forms become equivalent. This transient ef-

fect is related to the time, ttrans = R2/D, it takes a particle to diffuse inside the circular

trapping region of radius R. Here τ = R2
0/D = r2/D, D/C2d = 1 and h = C2d/(2πRD).

trapping boundaries, respectively. The same observation is applicable for an equivalent

three-dimensional system with a spherical trapping boundary. Figure 7.1 compares the

two expression, Q(R0, t) and c(r, t)/c0 with r = R0, for the two-dimensional system given

in Eq.(7.81) (line) and Eq.(7.136) (open circles), respectively. It is apparent from the

Fig 7.1 that Q(R0, t) decays slower than c(r, t)/c0 until approximately t/τ = R2/R2
0 with

τ = R2
0/D = r2/D, after which these two expressions become equivalent. This observation

suggests that at short time, the transient time ttrans = R2/D it takes a particle to diffuse

around inside the trap, the particle has less opportunities to get captured if the trapping

boundary is permeable.
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7.10 Concluding Remarks

This chapter serves as a repository [162] of some exact solutions for reaction-diffusion

systems in d-dimensions. The discussion focuses on static traps with non-infinite cap-

ture rate centered at the origin and point initial conditions. We have applied existing

formalisms [23, 132] to derive several results in this chapter. Some of them we have found

in earlier literature, after we derived them. To the best of our knowledge, equations (7.20),

(7.47), (7.61), (7.72), (7.74), (7.75), (7.81), (7.84), (7.97), (7.103), (7.108), and (7.118)

are new.

By investigating reaction-diffusion problems described by sink terms and point ini-

tial conditions, a natural connection to boundary value problems is made. It is known

that for translationally invariant particle motion in one-dimension, the expression obtained

from the trapping prescription is equivalent to the solution obtained from a diffusion equa-

tion [138, 143]. To obtain equivalency, the diffusion equation must satisfy proper radiative

boundary conditions subject to a continuous initial condition. In section 7.8, we show

that the equivalence holds only if the motion propagator is translationally invariant in the

absence of the reaction. However, as pointed out earlier [163], there are many reaction-

diffusion systems which cannot be described by boundary value problems. It has been

suggested in that work that the boundary condition used to solve boundary value prob-

lems may, and perhaps should, be considered only a consequence of a particular choice

of sink terms. For example, as discussed at the beginning of section 7.9, the kinetics of

particle motion in the presence of an open trapping surface cannot be described properly

by a boundary value problem. Moreover, its application is limited to impermeable absorb-

ing boundaries, since an unsuccessful reaction always results in particle reflection away

from the boundary. Therefore, to model permeable absorbing membranes, the sink term

approach must be used. The difference between these two approaches becomes evident for

translationally invariant particle motion in higher dimensions, specifically in the presence

of a static trapping ring or sphere. The resulting expressions are only equivalent when the
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reaction occurs instantaneously. This should not be surprising, since both models describe

an impermeable perfectly absorbing boundary. For finite reaction, the two expressions are

not identical, since the boundary described by partially absorbing sink terms is permeable.

In this system the particle can move around inside the trapping ring or sphere. For long

time, after the particle probed the entire trapping volume, the two approaches give equiv-

alent results. This investigation is outlined in section 7.9 and our findings are believed to

be new contributions in the field of reaction-diffusion systems.
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Chapter 8

Validity of an Adiabatic Approximation

in a Reaction-Diffusion System

8.1 Introduction

By constructing a theory of receptor cluster coalescence, which is formulated as a trapping

problem with a trap whose location (boundary) changes dynamically, we have encoun-

tered naturally the problem of moving boundaries. In the present chapter, we focus on

moving boundary problems in reaction-diffusion systems. We present a simple analysis

of the validity of an adiabatic approximation for moving boundaries with assigned time

dependence. A succinct description of this adiabatic approximation is that it consistent of

inserting the time dependence of the moving boundary into the static problem, which we

know how to solve exactly, see chapter 7. Results obtained from the validity study of this

approximation, presented in this chapter, are used in chapter 9, where we construct a sim-

plified theory for the more general systems in which the traps or boundaries move/grow

due to particle aggregation.

In the following sections, we will focus on systems of two or three particles. The mo-
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tion of the particles can be probabilistic and/or deterministic. In these systems, a particle

diffuses in the presence of a single or two traps/boundaries, which move with an explicitly

assigned time dependence. Throughout the present chapter, traps and boundaries, as used

in our terminology, are distinguished as follows. When a particle reaches a trap it is ab-

sorbed at a finite rate with the ability to pass through a trap without being absorbed. On the

other hand, a particle in contact with a boundary is absorbed instantaneously and cannot

penetrate the boundary. In sections 8.2 and 8.3, we analyze the validity of an adiabatic

approximation in systems of one moving particle in the presence of a moving trap. For

systems of of two linearly moving boundaries with a single particle placed between them,

the stationary boundary problem, which is used to construct an adiabatic approximation,

is solved in section 8.4. In section 8.5, we outline how for certain systems one can exactly

solve for the particle survival probability in the presence of two moving traps by introduc-

ing a boundary fixing transformation. For example, the problem of two boundaries moving

with the same time dependence can be solved exactly and hence be used to validate our

adiabatic approximation (see section 8.6). In sections 8.6 and 8.8, systems of receding and

oscillating boundaries will be discussed.

It is worth noting that many problems arising in science and engineering such as

heat flow, molecular diffusion, and flame propagation involve a domain whose boundary

changes its shape and size in time. These problems are described by a differential equation,

which has to satisfy certain conditions on the boundary and are typically called boundary-

value problems, referred to in certain circles as Stefan problems, see Refs. [117, 119]. In

boundary-value problems, the boundary of the domain is not known and has to be assigned

as part of the solution. One differentiates between two types of problems: Free-boundary

problems describing stationary boundaries for which a steady-state solution exists and

time-dependent moving-boundary problems in which the position of the boundary has to

be described as a function of time and space. Due to the general applicability of moving

boundary problems, our analysis presented in this section will, naturally, also give some

new insight on these subjects.
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8.2 A single diffusing trap

First, we study the validity of an adiabatic approximation for the simplest system of a

particle and a trap moving in one-dimension. The trap and the particle, initially a distance

x0 apart, diffuse with a diffusion constant Dθ and Dp, respectively, and annihilate each

other on contact. This annihilation process may occur at a finite rate. For instantaneous

annihilation, this problem was solved for the survival probability Q by Kenkre [24] on

a discrete lattice in Laplace domain and in continuum by Spouge [136] giving the time-

dependent survival probability Q as

Q
( t

τ

)
= er f

(
1

2

√
τ

t (α+1)

)
, (8.1)

where τ = x2
0/Dp is the motion time of the particle and α = Dθ/Dp is the ratio of the two

diffusion constants. When α = 0, we recover the well known result for a single stationary

trap and a particle diffusing with Dp [141]

Q
( t

τ

)
= er f

(
1

2

√
τ

t

)
. (8.2)

This result is expected since Eq.(8.1) is analogous to the survival probability for a fixed

trap, Eq.(8.2), but replacing Dp by Dp + Dθ. In a similar fashion, one can construct an

adiabatic approximation for Eq.(8.1) by inserting the time dependence of the trap directly

into x0 in the stationary solution, Eq.(8.2). Hence, for a diffusing trap x0 → x0±
√

2Dθt to

account for a trap diffusion to the left and right. In this case an adiabatic approximation

may be written as the arithmetic average of two expressions

Qadia
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)
=

1

2
er f

(
1

2

√
τ

t
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√
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2

)
+

1

2
er f

(
1

2

√
τ

t
−

√
α

2

)
. (8.3)

As expected for a stationary trap, α = 0, Eq.(8.3) reduces to Eq.(8.2). Figure 8.1 compares

the exact solution, Eq.(8.1), represented by the solid line to the adiabatic approximation,

Eq.(8.3), depicted by open triangles for α = 0, α = 1, and α = 10. When α increases the

trap diffuses faster than the particle and the adiabatic approximation deviates significantly

from the exact solution. In the long time limit, both expressions go to zero.
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Figure 8.1: Trap and particle both move randomly and annihilate instantaneously on con-

tact. Exact solution Eq.(8.1) (line) is compared to our adiabatic approximation Eq.(8.3)

(open triangles) for α = 0, α = 1, and α = 10.

Next, we investigate the validity of our approximation for the case of finite annihila-

tion. For a stationary trap located at the origin and a diffusing particle initially at x0 the

solution is well known [141, 138, 143] and the survival probability is given as

Q
( t

τ

)
= er f

(
1

2

√
τ

t

)
+ e

1
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+ 1
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t
τ er f c
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√
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τ

)
. (8.4)

Here, ξ =
2Dp

Cx0
describes the capture process and C is the annihilation rate. In the limit of

instantaneous annihilation C →∞ or ξ→ 0, Eq.(8.4) becomes the perfect absorption result,

Eq.(8.2). To obtain the solution for a system in which both the trap and the particle move,

we replace Dp with Dp + Dθ, which is equivalent to a transformation into the particle’s

reference frame to obtain

Q
( t
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)
= er f
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+ e
1
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1

ξ

√
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)
. (8.5)

As expected for α = 0, the above expression reduces to the stationary trap result(see
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Figure 8.2: Trap and particle both move randomly and annihilate at a finite rate on contact.

Exact solution Eq.(8.5) (solid line) is compared to our adiabatic approximation Eq.(8.6)

(open triangles) for α = 0, α = 1, and α = 10 with ξ = 0.1.

Eq.(8.2)). To construct an adiabatic approximation for Eq.(8.5), x0 in τ is replaced by

x0 ±
√

2Dθt in Eq.(8.4) and the arithmetic average of the two expressions is computed
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√
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. (8.6)

For a stationary trap, α = 0, Eq.(8.5) and the adiabatic approximation Eq.(8.6) are equiva-

lent. Figure 8.2 compares the exact solution in Eq.(8.5) (line) to the adiabatic approxima-

tion in Eq.(8.6) (open triangles) for ξ = 0.1 and three different values of: α = 0, α = 1, and

α = 10. Similarly, to perfect absorption, the approximation deviates with increasing α and

seems to get worse when annihilation occurs at a probability less than one i.e. increasing

ξ (compare Fig. 8.1 to Fig. 8.2).
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8.3 A linearly moving trap

Another, more complex system, for which the exact solution is known, is the system in

which both the trap and particle undergo biased diffusion. In this section we will consider

a specific case in which a trap moving at constant speed vθ drifts towards a diffusing par-

ticle. The trap and the particle are initially a distance x0 apart and the annihilation process

is taken to occur instantaneously. The problem can be solved by transforming to the ref-

erence frame of the particle in which the trap is performing a biased diffusion towards the

particle. The more general problem, in which both undergo biased diffusion, was solved

independently by Szabo et al. [132] and Sanchez [164]. The survival probability Q for the

case discussed here reduces from Sanchez’s result

Q
( t

τ

)
= 1−

1

2
er f c

(
1

2

√
τ

t
−

1

β

√
t

τ

)
−

1

2
e2/βer f c

(
1

2

√
τ

t
+

1

β

√
t

τ

)
. (8.7)

It is worth mentioning that the same result is obtained by applying the general trapping

prescription outlined in chapter 7. Here, it is convenient to define a new dimensionless

parameter β =
2Dp

vθx0
which describes the drift process. As expected for zero drift or β → ∞,

Eq.(8.7) reduces to the stationary trap result Eq.(8.2). Also, in the long time limit, this

expression goes to zero as is expected for perfect absorption. Following the procedure

outlined above we can construct an adiabatic approximation for a trap drifting towards a

diffusing particle by replacing x0 in τ with x0 − vθt in the stationary trap result Eq.(8.2)

Qadia

( t

τ

)
= er f

(
1

2

√
τ

t
−

1

β

√
t

τ

)
. (8.8)

Inspecting Eq.(8.8), we see that Q becomes negative for x0 < vθt and hence the approx-

imation becomes unphysical. In Fig. 8.3 the exact solution Eq.(8.7) for perfect annihila-

tion (solid line) is compared to its adiabatic approximation Eq.(8.8) (open triangles) for

two values of β = 8 and β = 50. The comparison suggests that the adiabatic approxi-

mation works well for a slowly moving trap (large β) and becomes unphysical (negative)

for x0 < vt or τ < 2t/β. We note that in our experiments, the boundary of the central
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receptor patch moves at an estimated speed of vx = 0.003 µm/s in the first 70 s of cell-

substrate contact. This boundary speed together with a cluster diffusivity D ∼ 0.01 µm2/s

and x0 = 350 nm (estimated initial distance between clusters) gives β = 20, suggesting

that the adiabatic approximation can be applied to experiments. Finally, In the limit when

β → ∞ or equivalently v → 0, the approximation in Eq.(8.8) becomes Eq.(8.2). Krapivsky

Figure 8.3: The particle moves randomly and the trap is biased towards the particle. When

the particle and the trap meet they annihilate instantaneously. Exact solution given in

Eq.(8.7) (solid line) compared to adiabatic approximation in Eq.(8.8) (open triangles) for

β = 8 and β = 50. The approximation given in Eq.(8.8) becomes negative and unphysical

when x0 < vtt.

and Redner [165] analyzed the validity of another adiabatic approximation for the case of

a trap receding at a constant speed from a diffusing particle. The trap time dependence

was directly inserted into the probability density function P(x, t) of the stationary result.

The approximations was obtained by inserting the new Pnew(x, t) into the diffusion equa-

tion and solving for the total survival probability Q(t), which is obtained by integrating

Pnew(x, t) over x.

Next, we consider the same system with finite annihilation for which the exact solution
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is given as [164]
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. (8.9)

The expression for the total survival probability Q given in Eq.(8.9) starts at 1 and goes to

a positive constant
ξ/β

ξ/β−1
. This limit is expected since for finite absorption the particle can

pass through the trap which is then moving away from the particle and hence might never

be absorbed. Hence, to construct an adiabatic approximation, we must include the fact

that the trap first moves towards the diffusing particle and if they don’t annihilate, the trap

moves away from the particle. To approximate this process, x0 in τ is replaced by x0 ± vtt

in the stationary result Eq.(8.4) and the arithmetic average of the two expressions gives an

Figure 8.4: The particle moves randomly and the trap is biased towards the particle with

finite annihilation. Exact solution given in Eq.(8.9) (solid line) compared to the adiabatic

approximation in Eq.(8.10) (open triangles) for β = 8 with ξ = 4 or ξ = 0.5 and β = 8 with

ξ = 0.5.
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approximated survival probability
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For long time, the approximation given in Eq.(8.10) goes to zero and hence deviates from

the exact solution in Eq.(8.9), which approaches a constant except for β → ∞ (v → 0) or

ξ → 0 (C → ∞), when it approaches zero as expected. Figure 8.4 compares the adiabatic

approximation given in Eq.(8.10) (open triangles) to the exact solution in Eq.(8.9) (solid

line) for three different sets of parameters: β = 8 with ξ = 4 or ξ = 0.5, and β = 2 with

ξ = 0.5. When Fig. 8.3 is compared to Fig. 8.4 for β = 8 it is apparent that the approxi-

mation becomes better at early time when annihilation is not instantaneous.

8.4 Two stationary traps

Thus far, we have considered systems of two moving particles annihilating at a given

probability on contact. In the remaining sections, we consider systems of three particles,

where one particle is initially placed between two moving boundaries. Both, the particle

and boundaries, can undergo probabilistic and/or deterministic motion. For the case of

three particles performing probabilistic motion, the exact solution for instantaneous anni-

hilation was worked out by Fisher and Gelfand [166]. In the remaining sections of this

chapter, we analyze the validity of an adiabatic approximation for deterministic boundary

motion by comparison to exact analytical or numerical solutions. Since exact solutions for

three particle systems are only known for perfect absorption, the remaining chapter will

focus on instantaneous annihilation.
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In order to construct an adiabatic approximation for a system of two moving bound-

aries and a diffusing particles, the stationary trap result must be obtained. To compute

the survival probability of a diffusing particle initially placed at x0 between two stationary

traps we use the general prescription given in chapter 7. In Laplace domain Q, is given in

Eq.(7.35) as

Q̃(ε) =
1

ε

[
1−

∑
′

r η̃r (ε)
1

Cd
+∑

′

s Π̃s,r (ε)

]
(8.11)

where, C is the d-dimensional capture rate, ∑
′

r represents the sum over all trap sites, η̃r is

the homogeneous solution at trap site in the absence of the trap, and Π̃s,r it the propagator

from trap site r to trap site s in absence of the trap. Due to symmetry in the stationary trap

problem, the propagator from trap site −L to L is identical to the propagator from trap site

L to −L. Hence, for two traps at x = −L and x = L, the prescription gives

Q̃(ε) =
1

ε

[
1−

η̃−L + η̃L

1
C1d

+ Π̃0 + Π̃−L−L

]
, (8.12)

where η̃ and Π̃ are obtained from the one-dimensional free space diffusion propagator

P(x,x0; t) =
1

√
4πDt

e−
(x−x0)2

4Dt

e.g. η−L = P(−L,x0; t), Π0 = P(0,0; t), Π−L−L = P(−L,−L; t), to give
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Although, we arrived at this expression independently, we discovered that Eq.(8.13) was

derived by Abramson and Wio [167] (note typo in Eq.(6) of [167]). For a finite absorption

process, Eq.(8.13) cannot be inverted exactly. However, for perfect absorption C1d → ∞

and Q becomes for −L < x0 < L

Q̃(ε) =
1

ε
−

cosh
(

x0

√
ε
D

)

εcosh
(

L

√
ε
D

) . (8.14)
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Using a table of Laplace transforms [133], the expression for Q can be inverted to give
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where θ2(ν|x) is the theta function defined as

θ2 (ν|x) =
1

√
πx

∞
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(−1)ne−
1
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(8.16)

yielding
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Equation (8.17) is a new expression, which we have not found in the literature. Surely, the

stationary two boundary problem can also be solved by a superposition method of images,

where one uses an infinite set of images (of the traps) to satisfy the boundary conditions. In

our expression (8.17), this superposition of multiple images is reflected by the summation

above. Also, the appearance of the theta function above is expected since that function is

a solution to the diffusion equation for periodic boundary conditions and an initial Dirac

delta function [168, 169]. Therefore it is intriguing that the derivation of the MSD by

Kenkre et al. [31] (see Eq.(19) in [31]) is also a theta elliptic function for infinite stationary

barriers through which there is a finite particle transmission. It remains to be investigated,

how the survival probability Q is connected to the MSD and what the physical meaning of

the appearance of the elliptic function is, given that it appears naturally in Ref. [31].

8.5 Two moving boundaries: boundary fixing transfor-

mation

The problem of two moving boundaries with an explicitly assigned time dependence can

be transformed into a fixed boundary problem for diffusion occurring between two bound-

aries at x = S(t) and x = R(t) representing the left and right boundary, respectively. Here,
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when a diffusing particle reaches one of the boundaries it is absorbed instantaneously. The

problem can be described by the standard one-dimensional diffusion equation, which is

solved for the probability density P(x, t)

∂P

∂t
= D

∂2P

∂x2
(8.18)

with dR/dt = R′ and dS/dt = S′. The boundary conditions are P[S(t), t] = 0 and

P[R(t), t] = 0 with initial conditions P(x,0) = δ(x−x0), R(0), and S(0). To solve Eq.(8.18)

for P(x, t), the moving boundary problem is transformed to a fixed boundary problem by

introducing a time-dependent scaling factor [119]

z =
x−S(t)

R(t)−S(t)
. (8.19)

This transformation fixes the boundaries at z = 0 and z = 1 for all times. Rewriting P(x, t)

as U [z(x, t), t] and introducing a new variable θ, Eq.(8.18) becomes

∂U

∂θ
= D

∂2U

∂z2
− f (z,θ)

∂U

∂z
, (8.20)

where dθ = dt/[R(t)−S(t)]2 and f (z,θ) = [R(t)−S(t)][R′ + z(R′−S′)]. Equation (8.20)

is in the form of a convection-diffusion equation, where D is the diffusion coefficient and

f (z,θ) the drift coefficient. To solve the moving two boundary problem with an explicitly

assigned time dependence via the stationary trap prescription given in Eq.(8.11), one has

to calculate the free space propagator satisfying Eq.(8.20). However, since the drift coeffi-

cient is dependent on time, θ, and space ,z, there is no general solution holding for all drift

and diffusion propagators. However, for small times θs Risken [150] derived an approxi-

mate expression for the free space propagator satisfying the Fokker-Planck equation with

time and space dependent drift and diffusion coefficients. Following Risken, the general

short time free space propagator for Eq.(8.20) is

U(z,z0,θs) =
1

√
4πDθs

exp

{
−

[z− z0 − f (z0,θs)θs]
2

4Dθs

}
. (8.21)

For drift and diffusion coefficients independent of z and θ, Eq.(8.21) is valid for all times.

An exact expression for the free space propagator can be obtained for a system of two
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boundaries with identical assigned time dependence. For such systems R′ = S′ and f (z,θ)

is independent of z. In this case, it is straight forward to obtain the exact free space propa-

gator. First, Eq.(8.20) is Fourier transformed to give

∂Û (q,θ)

∂θ
= −

[
Dq2 + iq f (θ)

]
Û (q,θ) , (8.22)

where the f̂ represents the Fourier transform and q is the Fourier transform variable.

R′ = S′ also implies that R(t)−S(t) is a constant and hence θ = t/[R(t)−S(t)]2. Solving

the partial differential equation with the initial condition Û (q,θ = 0) = exp(−iqz0) we

obtain

Û (q,θ) = e−Dq2θ−iq[z0+
R

f (θ)dθ]. (8.23)

Inverse Fourier transforming the above expression gives a general free space diffusion

propagator for two boundaries undergoing the same motion

U(z,z0;θ) =
1

√
4πDθ

exp

{
−

[z− z0 −
R

f (θ)dθ]2

4Dθ

}
. (8.24)

8.6 Two linearly shifting boundaries

The moving boundary problem of two boundaries initially at x = −L0 and x = L0 and an

explicitly assigned boundary time dependence of R(t) = L0 + vt and S(t) = −L0 + vt can

be solved exactly, since f (z,θ) = 2L0v is independent of z. For this system, the free space

propagator given in Eq.(8.24) becomes

U(z,z0; t) =
L0

√
πDt

e−
[L0(z−z0)−vt/2]2

Dt (8.25)

and the survival probability Q for a diffusing particle initially placed at x0 is computed by

applying the trapping prescription given in Eq.(8.11). Looking at the free space propagator

for this problem we see that U(−L,L; t) 6= U(L,−L; t) and hence it is not easy to evaluate

∑
′

r η̃r (ε) and ∑
′

s Π̃s,r (ε) by inspection. To obtain the correct superposition of propagators

155



Chapter 8. Validity of an Adiabatic Approximation in a Reaction-Diffusion System

in Eq.(8.11), we start with a lattice master equation [24, 26, 28] given in Eq.(7.1) and

consider the case with two defective sites at site r and s

dPm

dt
= FmnPn −FnmPm −C1dPm (δm,r +δm,s) , (8.26)

where C1d is the capture rate at trap site s and r. The solution to this problem in Laplace

domain is

P̃m(ε) = η̃m −C1dΨ̃m−rP̃r −C1dΨ̃m−sP̃s. (8.27)

In order to find the explicit solution, we must solve the equation for m = r and m = s to

find P̃r and P̃s:

P̃r =
η̃r −C1dΨ̃r−sP̃s

1+C1dΨ̃0

P̃s =
η̃s −C1dΨ̃s−rP̃r

1+C1dΨ̃0

(8.28)

Next we sum over all lattice sites to obtain the survival probability

Q̃(ε) =
1

ε

[
1−C1d

(
P̃r + P̃s

)]
(8.29)

and substituting in P̃r + P̃s to obtain
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We see that this formalism allows analysis for arbitrary capture rate C1d . However, it is not

possible to Laplace invert this expression exactly. Because exact solutions are known for

perfect absorption only, we focus on instantaneous annihilation where C1d → ∞ for which

Q̃(ε) =
1

ε


1−

η̃r

(
Ψ̃0 − Ψ̃s−r

)
+ η̃s
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
 . (8.31)
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Here Ψ0 is the self propagator, Ψs−r is the propagator from trap site r to s and ηs is the ho-

mogeneous solution at the trap site s in the absence of the trap. Needless to say, the above

expression in the Laplace domain holds in discrete as well as continuous space [167] as

shown in chapter 7. Next we need to compute all propagators in Eq.(8.31). After perform-

ing the fixed boundary transformation the boundaries are at z = 0 and z = 1 representing

trap site s and r, respectively. The Laplace transform of Eq.(8.25) after the use of the

shifting theorem exp[−b2t] f (t) → g̃(ε+b2), is known to be [133]

1
√

t
e−

(a−bt)2

t → e2ab

√
π

ε+b2
e
−2a

√
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.

This gives the following Laplace transforms for each propagator
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4D ,

Ψ̃s−r (z = 0,z0 = 1) = e−
vL0
D e

−
2L0√

D

√
ε− v2

4D ,

Ψ̃0 = 1,

with z0 = (x0/L0 +1)/2, tilde representing the Laplace transform, and ε the Laplace vari-

able. Substituting the above expressions into Eq.(8.31), after some algebra leads to the

survival probability being given as

Q̃(ε) =
1

ε
−

1

ε
e
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x0
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1+ x0
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τbε+ 1

ν2

] . (8.32)

Here, τb = L2
0/D is a new motion time (compare to τ = x2

0/D) and ν = 2D/(vL0) is a di-

mensionless parameter describing the motion of the two walls (compare to β = 2D/(vx0)).
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8.6.1 Survival probability in the time domain for particle starting at

midpoint

Our next exercise is to Laplace invert Eq.(8.32) for the case in which the particle starts in

the middle of the two boundaries i.e. x0 = 0. For this case, Eq.(8.32) becomes

Q̃(ε) =
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ε


1−

cosh
(

1
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)
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)


 . (8.33)

Equation (8.33) can be inverted exactly by first using the inverse transform [133]

1

cosh
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a
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[
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( ν

2
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)]

together with the shifting and integral theorem to invert 1/cosh
(

a
√

ε+b2
)

/ε (see Ap-

pendix B). Note that for moving boundaries one encounters the θ1 function, whereas for

stationary traps the θ2 function appeared in the Laplace transform. After these operations,

the survival probability in time domain is given as
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(8.34)

To our knowledge Eq.(8.34) is a new expression.

8.6.2 Comparison to stationary and single moving boundary

In section 8.4, we solved the problem of a single diffusing particle between two stationary

boundaries. For x0 = 0 the survival probability in Eq.(8.17) becomes

Q

(
t
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)
=

∞

∑
n=−∞

(−1)n

{
er f
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]}
. (8.35)
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The above expression must be equal to the Eq.(8.34) as ν → ∞
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. (8.36)

Eqs.(8.35) and (8.36) are equivalent when compared numerically. It is also instructive to

compare the solution for two moving boundaries drifting in the same direction to the so-

lution of a single boundary moving either away or towards the particle. The exact solution

for a single moving trap with finite absorption is given by Sanchez [164]. In the case

of a single boundary moving towards a diffusion particle initially a distance L0 from the

boundary Sanchez’s expression reduces to

Q
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√
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τb
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, (8.37)

where the upper signs and the lower signs describe a boundary moving away and towards

the diffusing particle, respectively. Comparing Eq.(8.34) to Eq.(8.37) we see that the

expression for two moving traps is an infinite sum containing the single trap solution.

Similarly, to the stationary solution, the infinite sum in Eq.(8.34) is expected to satisfy the

boundary condition for an infinite number of images.

8.6.3 Comparison to numerical solution

In this section, we compare the numerically Laplace inverted analytic solution of the sur-

vival probability given in Eq.(8.33) to a numerical solution of the transformed diffusion

equation, Eq.(8.20), for various parameters. Ideally, we would compare the analytic ex-

pression in the time domain but due to numerical errors, which are inevitably introduced

by evaluating Eq.(8.34), we chose to compare its numerical Laplace transform by applying

the Gaver-Stehfest method outlined in Appendix C. For S(t) =−L0 +vt and R(t) = L0 +vt,

Eq.(8.20) becomes

∂U

∂t
=

D

4L2
0

∂2U

∂z2
−

v

2L0

∂U

∂z
. (8.38)
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Figure 8.5: Survival probability of a diffusing particle initially placed between two per-

fectly absorbing moving boundaries. The boundaries move linearly in the same direction.

As the speed of the boundary increases (i.e. ν decreases), the particle gets trapped faster.

To solve Eq.(8.38) numerically for U [z(x, t), t], one can implement a finite difference al-

gorithm such as the Crank-Nicolson algorithm [170]. After solving for U [z(x, t), t] with the

boundary conditions U(z = 0, t) = 0, U(z = 1, t) = 0 and initial condition

U(z0,0) = δ(z− z0) the survival probability Q(t) is obtained by integrating U [z(x, t), t]

over z from 0 to 1. Here, we implemented the Crank-Nicolson algorithm as outlined in

Appendix E in MATLAB. Figure 8.5 compares the numerical solution (solid line) to the

numerically inverted expression given in Eq.(8.33) (open triangles) for ν = 1, ν = 0.5,

and ν = ∞. The analytic solution is in excellent agreement with the numerical solution

validating the presented methodology. For ν = ∞, the stationary boundary case, Fig. 8.5

also depicts the analytic solution given in Eq.(8.36) (open circles, red). As the speed of

the boundaries increases (i.e. ν decreases), the survival probability decays faster than the

stationary trap result. This is expected since one of the moving boundaries will eventually
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catch up to the diffusing particle.

8.6.4 Adiabatic Approximation

In sections 8.2 and 8.3, we analyzed the validity of an adiabatic approximation for two

particle systems by inserting the implicit boundary time dependence into the stationary

result. For three particle systems, one can construct an adiabatic approximation in a similar

fashion. For two boundaries moving in the same direction the assigned time dependence

for the left boundary is S(t) = −L0 + vt and for the right boundary R(t) = L0 + vt. Hence,

for the left boundary L in the stationary solution goes to L → L0 − vt and for the right

boundary, L → L0 + vt. To satisfy both conditions, an adiabatic solution by an arithmetic

average of two expressions is constructed: one by replacing L → L0 − vt and the other by

in replacing L → L0 + vt in Eq.(8.35)
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(8.39)

Figure 8.6 compares the adiabatic approximation Eq.(8.39) (open circles) to the nu-

merical Laplace inverted exact solution given in Eq.(8.33) (solid line) for ν = ∞ (black)

and ν = 0.5 (red). The adiabatic approximation is only valid for short time. For inter-

mediate time the survival probability obtained from the approximation increases before it

decays to zero (see red open circles in Fig. 8.6). This is due to the arithmetic average of the

two expressions and indicates that the approximation becomes unphysical since the total

survival probability must decrease monotonically to zero for all time.
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Figure 8.6: Survival probability of a diffusing particle initially placed between two per-

fectly absorbing boundaries moving in the same direction. An adiabatic approximation

Eq.(8.39) (open circles) only holds for short time. Solid line represents the exact solution

obtained from numerically Laplace inverting Eq.(8.33) for ν = ∞ (black) and ν = 0.5 (red).

8.7 Two linearly receding boundaries

For two perfectly absorbing receding boundaries with assigned time dependence

R(t) = −L0 − vt and S(t) = L0 + vt an approximation for the survival probability Q(t)

is given by Krapivsky and Redner [143]. An exact solution for the probability density

P(x,x0; t) in d-dimensions is given by Bray and Smith [171]. Bray and Smith followed

Krapivsky and Redner [143], constructing their solution from the fixed boundary prob-

lem. They use the probability density expression for the stationary problem and replace

L → L(t) and t/L2 →
R

dt ′/L(t ′)2, multiply this new expression by an unknown func-

tion dependent on space and time and solve for the unknown function by substituting

the expression back into the diffusion equation. Since Bray and Smith [171] only report

Q(t → ∞), the survival probability Q(t) was computed by integrating the d-dimensional
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probability density distribution P(x,x0, t) given in Eq.(23) from Ref. [171] over the entire

space

Q(t) =

√
L0 + vt

L0
e

vx2
0

4DL0

∞

∑
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[
(2n−1)πx0
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4D dx. (8.40)

For simplicity, the diffusing particle starts at the midpoint of the linearly expanding bound-

aries, x0 = 0. Using the stationary result given in Eq.(8.35) an adiabatic approximation to

the exact solution can be obtained by replacing L → L0 + vt in the fixed boundary result
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Figure 8.7: Diffusing particle initially placed at the midpoint of two linearly receding traps.

Exact solution Eq.(8.42) (line) compared to adiabatic approximation Eq.(8.41) (open tri-

angles) for ν = 1 ,ν = 5, and ν = ∞.
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which is compared to the exact solution for x0 = 0
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Figure 8.7 compares the adiabatic approximation in Eq.(8.41) (open triangles) to the exact

solution Eq.(8.42) (solid line) for ν = 1 ,ν = 5, and ν = ∞, indicating that the approxima-

tion only holds for slowly receding boundaries and short times. For long times the approx-

imation for the survival probability Q always reaches, one which is unphysical since Q is

expected to decrease monotonically reaching zero or a constant.

8.8 Two oscillating boundaries

In this section, we discuss the connection of linearly moving boundaries to oscillating

boundaries. For a system of two perfectly absorbing oscillating boundaries, one can study

two cases. In the first case, the two boundaries oscillate in-phase and in the second, they

oscillate out-of-phase. We will study these two cases separately.

8.8.1 In-phase oscillation

When the two boundaries oscillate in-phase one may assign the time dependence as

S(t) = L0 +Asin(wt) and R(t) =−L0 +Asin(wt), where w is the oscillation frequency and

A is the amplitude of the oscillation. Here the two boundaries have identical time depen-

dence leading to S′(t) = R′(t) and the free space propagator is obtained from Eq.(8.24)

U(z,z0; t) =
L0

√
πDt

e−
[L0(z−z0)−Asin(wt)/2]2

Dt . (8.43)

To solve the problem of a diffusion particle between two in-phase oscillating perfectly ab-

sorbing boundaries, the Laplace transform of Eq.(8.43) is inserted into Eq.(8.31), which is
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evaluated at trap sites s = 0 and r = 1. Since Eq.(8.43) cannot be inverted exactly, the nu-

merical Laplace transform of the free space propagator must be computed. It is worth not-

ing that the numerical inverse Laplace transform algorithm i.e. the Gaver-Stehfest method

used in this thesis cannot be applied to oscillatory functions as discussed in the Appendix

C. Since it is not the objective to implement a more accurate numerical Laplace inverse

transform algorithm, we will not show that this solution is exact, when compared to a

numerical solution. The numerical solution is computed after substituting the assigned

boundary time dependences into Eq.(8.20) and apply the Crank-Nicolson algorithm as

outlined in Appendix E

∂U

∂t
=

D

4L2
0

∂2U

∂z2
−

Awcos(wt)

2L0

∂U

∂z
. (8.44)

with boundary conditions U(z = 0, t) = 0, U(z = 1, t) = 0 and initial condition

U(z0,0) = δ(z− z0). The survival probability is obtained by integrating the numerical

solution of U(z, t) from z = 0 to z = 1. Looking at Eq.(8.43), we see that in the limit

of small oscillation frequency sin(wt) → wt the expression is equivalent to the propaga-

tor given in Eq.(8.25) with boundary speed v → Aw. Therefore, as expected, for small

oscillation frequencies the solution for two moving boundaries in the same direction is

an approximation to the in-phase oscillating boundary problem. Figure 8.8 compares the

numerical solution of Eq.(8.44) (solid line) to the numerical inverse Laplace transform of

Eq.(8.33) (open triangles) for wτb = 10 (red) and wτb = 3 (black) with A/L0 = 0.8 for a

particle initially at x0 = 0. For comparison Fig. 8.8 also depicts the stationary solution

(open circles). The survival probability for in-phase boundary oscillation decays faster

than the stationary result but slower as Q for moving boundaries. The moving boundary

solution is a good approximation for t/τb < pi/(4wτb), which corresponds to an 8th of

the oscillation period. For the red family of curves, one 8th of the period is t/τb = 0.5.

As expected, for larger t/τb the moving boundary solution starts to deviate form the exact

solution.

Following our previous methodology, another approximation is obtained by construct-
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Figure 8.8: Survival probability of a diffusing particle initially placed midway between

two oscillating boundaries (solid line). The boundaries oscillate in-phase. The exact solu-

tion (solid line) is compared to the solution of two boundaries moving in the same direc-

tion (open triangles). The moving boundary approximation is valid in the limit of small

oscillation frequency.

ing an arithmetic average of the stationary result given in Eq.(8.35) by replacing L0 with

L0 ±Asin(wt). However, when this approximation is compared to the numerical solution

it undergoes significant oscillations which makes the solution unphysical. Since the lin-

early moving boundary approximation for the chosen parameter used in Fig. 8.8 performed

better than our adiabatic approximation, the adiabatic approximation is not depicted in

Fig. 8.8. This observation also applies to the next section 8.8.2, where out-of-phase bound-

ary oscillations are studied.
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Figure 8.9: Survival probability of a diffusing particle initially placed midway between

two oscillating boundaries (solid line). The boundaries oscillate out-of-phase. The exact

solution (solid line) is compared to the solution of two receding boundaries (open trian-

gles). The moving boundary approximation is only valid for t/τb less than an 8th of the

oscillation period. For larger values of t/τb the approximation deviates significantly from

the exact solution.

8.8.2 Out-of-phase oscillation

The second oscillating boundary case is out-of-phase oscillation. Here the boundary time

dependence is assigned as S(t) = L0 +Asin(wt) and R(t) = −L0−Asin(wt) and Eq.(8.20)

becomes

∂U

∂t
=

D

4(L0 +Asin(wt))2

∂2U

∂z2
−

Awcos(wt)(2z−1)

2L0 +2Asin(wt)

∂U

∂z
. (8.45)

Since for out-of-phase oscillations R′ 6= S′, the free space propagator for Eq.(8.20) cannot

be obtained easily, we are not able to apply our trapping prescription to solve for Q(t).

However, for small oscillation frequencies sin(wt)→ wt, cos(wt)→ 1, the problem of two

out-of-phase oscillating boundaries can be approximated by the solution for an expanding
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cage in which the two receding boundaries have speed v = Aw. Figure 8.9 compares the

exact numerical solution of Eq.(8.45) (solid line) to the analytic approximation obtained

from the receding boundary problem given in Eq.(8.42) (open triangles) for wτb = 4 (red)

and wτb = 0.2 (black) with A/L0 = 0.8 for x0 = 0. The receding boundary solution holds

up to t/τb = pi/(4wτb), an 8th of the oscillation period. In comparison to the in-phase

oscillation problem, the approximation for out-of-phase oscillation starts to deviate signif-

icantly for wτb > 2, whereas the in-phase oscillation approximation is still a reasonable

good approximation for this parameter range.

8.9 Concluding remarks

In this chapter, we analyzed an adiabatic approximation for the particle survival probability

in moving trap/boundary problems. In the systems under investigation, the traps/boundaries

move with an explicitly assigned time dependence in a deterministic or probabilistic fash-

ion. The approximation is constructed by inserting the trap/boundary time dependence

into the stationary solution of the particle survival probability. We know how to solve

the latter exactly for sink terms represented by a sum of Delta functions [24, 28, 132].

The construction of an adiabatic approximation is an idea previously used by Krapivsky

and Redner [165] followed by Bray and Smith [171]. In these previous approaches the

trap/boundary time dependence was directly inserted into the probability density func-

tion P(x, t) of the stationary result. The approximation was obtained by inserting the new

Pnew(x, t) into the diffusion equation and solving for the total survival probability Q(t).

Our approach is different, since we directly inserted the trap/boundary time dependence

into the stationary expression for Q(t). We focused on two- and three-particle systems

with a single or two moving traps/boundaries, respectively, and collected known solutions

for moving traps/boundaries as well as derived new expressions given in equations (8.32)

and (8.34).
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In section 8.2 we analyzed the simplest case of a diffusing particle and a trap. The

exact solution is easily obtained by transforming the problem into the reference frame

of the particle and replacing the particle’s diffusion constant in the stationary result with

the sum of the trap’s and particle’s diffusion constants. In such two particle systems, the

adiabatic approximation holds well for finite and perfect absorption if the particle and the

trap diffuse with a similar diffusion constant. However, when the trap diffuses faster the

approximation starts to deviate significantly from the exact solution. For a less simple

system of a biased trap moving towards a diffusing particle (section 8.3), the adiabatic

approximation only holds for short time and depends on the trapping rate and trap speed.

In the long time limit, the approximation yields negative results for perfect absorption

and goes to zero for imperfect absorptions. Both results are unphysical since for perfect

absorption the survival probability must reach zero and for imperfect absorption a constant.

This result indicates the significant limitations of the adiabatic approximation.

Before we analyzed the validity of our adiabatic approximation for two moving bound-

aries we derived an exact solution for two stationary traps by applying the trapping pre-

scription presented in chapter 7. The final expression for finite absorption in Laplace

domain was reported by Abramson and Wio [167] and after inverting this expression for

perfect absorption, a new expression given in Eq.(8.17) containing a theta elliptic func-

tion was obtained. The appearance of the theta elliptic function is noteworthy since a

theta function also appears in the derivation of the mean square displacement by Kenkre

et al. [31] (see Eq.(19) in [31]). It remains to be investigated how the survival probability

Q is connected to the MSD.

The first problem of two moving boundaries we studied, is a system of two boundaries

moving at the same speed in the same direction. Since no exact solution is known for

this problem, we outlined a boundary fixing method in section 8.5 through which we were

able to derive an exact solution, section 8.6. In sections 8.6.4 and 8.7, we analyzed the

validity of our adiabatic approximation for two linearly moving boundary problems. As
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expected, the adiabatic approximation is only valid for short time and becomes unphysi-

cal for intermediate time when the survival probability obtained from the approximation

starts to increase. In the last section 8.8, oscillating boundaries were discussed. Here our

adiabatic approximation was only valid for very small oscillations frequencies due to the

appearance of significant oscillations in the functional form of the survival probability.

However a more accurate approximation, especially for in-phase boundary oscillations,

can be obtained by approximating these systems with two linearly moving boundaries.

In conclusion, the detailed analysis presented in this chapter shows that an adiabatic

approximation constructed form the stationary result is in general only valid for small

times. However, the approximation also performed well for systems where the trap moves

slowly especially for deterministic trap motion. The latter result is very useful for the

construction of our coalescence theory, predicting that our theory performs well for a

slowly moving central patch boundary, which is observed in experiment.
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Chapter 9

A Mathematical Model for Receptor

Cluster Coalescence

9.1 Introduction

In the present chapter, we develop a coalescence theory and apply it directly to our exper-

imental studies of receptor cluster coalescence. This analysis represents the final step in

this dissertation, a result of the interplay between experiment and theory. Modeling the

kinetics of receptor cluster coalescence in mast cells is important for understanding the

mast cells role in cell-cell communication. It is important to note that the present chapter

does not bring the investigation of mast cell surface receptor dynamics and distribution to

a close; rather, it reiterates the importance of an intense dialog between experimental and

theoretical studies to understand more fully the nature of mast cell activation.

The previous two chapters have established a springboard for our coalescence theory.

In chapter 7, we collected tools to solve stationary trapping problems. In chapter 8, we

investigated the validity of an adiabatic approximation for moving boundary problems by

assigning the boundary time dependence explicitly into the stationary trap expression. In
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the present chapter, we apply these analyses and develop a receptor cluster coalescence

model. As outlined in section 6.3 in essential detail, our coalescence theory is based on a

simplified feedback approach. The simplification is that we consider a distribution of non-

interacting point particles and a stationary trap at the origin. The trap at the origin grows

due to particle absorption and represents the large central receptor patch, which grows

due to receptor cluster coalescence in our experiments. Other self-consistent methods

for the study of three-dimensional diffusion-controlled particle growth may be found in

Refs. [121, 118]. Our own development incorporates a time dependent melding process.

The present chapter is organized as follows. In section 9.2, we present our self-

consistent coalescence prescription whose implementation necessitates an approximation.

Section 9.3 outlines the approximation. It is based on the insertion of the time dependent

trap radius in the stationary trap solution. The approximation yields an algebraic equation,

which can be approached analytically by applying an iterative method. In sections 9.5

and 9.6, our coalescence theory for point particles is directly compared to Monte Carlo

simulations, showing that the approximation describes the growth of a simulated trap radii

well, even for finite-sized particles (see section 9.5.5). After thus developing an analytic

approximation for particle coalescence in two-dimensions, we apply our theory to actual

experiments in section 9.7.2. Comparison of experiment and theory shows that the ob-

served feature of an initial delay and a subsequent larger rate in cluster coalescence are not

compatible with the simplified assumption of a constant capture rate. We address this com-

patibility problem by generalizing our coalescence theory for a time-dependent melding

process. The methodology we use, employs a memory formalism for the capture process

itself. Initial discussions of this generalization are presented in section 9.8, which show

that the observed delay can be explained by the memory concept. At least quantitatively,

we have thus solved the compatibility problem.
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9.2 Coalescence feedback approach

In this section, we introduce our coalescence theory on the basis of a a self-consistent

approach. We first study the problem in one-dimension. The simplest model describes

a single stationary trap at the origin and an initial distribution of non-interacting point

particles. These particles move and eventually meet the trap, where they get absorbed

with a finite probability. Our coalescence theory is based on the following argument. If

we know the rate h(t) at which particles disappear, i.e. get absorbed by the trap,

dQ(R, t)

dt
= h(R, t) , (9.1)

we also know the rate at which the trap increases

dR(t)

dt
= −A h(R, t) . (9.2)

Here A is a constant determined by R(0) and R(∞). The idea is to start with an initial trap

radius R(0) and particle distribution. Then, dQ/dt is computed for the first time step and

used in Eq.(9.2) to compute the increase in the trap radius. This result is then fed back into

Eq.(9.1) to compute dQ/dt for the next time step. Hence, the presented argument produces

a self-consistent theory, in a form ready to compare to experiments and simulations. Since

in experiments, as well as simulations, the initial and final trap radius are known, A can be

calculated by integrating Eqs.(9.1) and (9.2) and setting t = ∞ obtaining

A =
R(∞)−R(0)

Q(0)−Q(∞)
.

It is worth noting that the initial particle survival probability Q(0) is always one where

as its limiting value Q(∞) approaches zero for only in certain problems. After combining

Eqs.(9.1) and (9.2), and inserting the expression for A, we obtain the following exact

expression in one-dimension

R(t) = R(0)+

[
R(∞)−R(0)

1−Q(∞)

]
[1−Q(t)] . (9.3)
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A similar expression in d-dimensions is written as

R(t)d = R(0)d +

[
R(∞)d −R(0)d

1−Q(∞)

]
[1−Q(t)] . (9.4)

In the following section, our goal is to solve Eq.(9.4) exactly. If we cannot do it exactly,

we are looking for an analytic approximation.

9.3 Development of an analytic approximation

In our proposed calculation with the feedback idea, there are two equations relating R(t)

and Q(t). One of them is Eq.(9.3). The other is an expression that expresses the result of

the defect technique calculations in an explicit dependence of Q. For example, as com-

puted in section 7.5, for a perfectly absorbing stationary trap at the origin in one-dimension

with the point particles all placed at a distance x0 from the origin, the survival probability

is an error function depending on t, and x0. In the discussion of a growing trap, it is appro-

priate to replace x0 with x0 −R(t) to include the time dependence of the effective distance

to the trap in the problem.

To validate the proposed calculation, we invent a model of a model that we can solve

exactly. In this problem, Q and R are related as follows. Instead of the involved actual

interrelationship of Q(t) and R(t), we assume

dQ(t)

dt
+R(t)Q(t) = 0. (9.5)

Our goal is to find the solution for the radius evolution obtained by an exact analysis that

solves Eq.(9.3) together with Eq.(9.5) and compare it to the approximate analysis we have

suggested above.

In the exact analysis, instantaneous particle absorption at the trap boundary is consid-

ered, rewriting Eq.(9.3) as

R(∞)−R(t)

R(∞)−R(0)
=

Q(t)

Q(0)
. (9.6)
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Using Eq.(9.6) in Eq.(9.5) allows the elimination of Q, yielding an ordinary differential

equation for the radius

dR(t)

dt
= R(∞)R(t)−R2(t). (9.7)

The solution to this differential equation can be written down exactly

R(t) =
R(∞)

1+
(

R(∞)
R(0) −1

)
e−R(∞)t

, (9.8)

and after rearranging terms, the expression becomes

R(∞)−R(t)

R(∞)−R(0)
=

R(t)

R(0)
e−R(∞)t . (9.9)

On the other hand, in the approximate analysis we have suggested above, the radius R

in Eq.(9.5) is held constant, giving the following survival probability

Q(t) = Q(0)e−R(t)t . (9.10)

This expression is now substituted into Eq.(9.6), yielding an algebraic equation

R(∞)−R(t)

R(∞)−R(0)
= e−R(t)t . (9.11)

This approximate solution involves the product of t and the instantaneous value R(t) in

the exponent and is given as a Newton-like nonlinear algebraic equation that may be

solved numerically. Both, the exact and approximate solution for the radius evolution

of the invented model decay exponentially. Figure 9.1 compares the exact solution given

in Eq.(9.9) (black line) to the approximate solution given in Eq.(9.11) (grey line). For

short and long times the approximation holds well. However, for intermediate times, the

approximation deviates significantly from the exact solution.

The relation of the approximation given in Eq.(9.11) to the exact analysis presented by

Eq.(9.9) becomes clear immediately after casting the exact solution in a similar form to

the approximate one

R(∞)−R(t)

R(∞)−R(0)
= exp

(
−

Z t

0
R(s)ds

)
. (9.12)
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A direct t-differentiation shows the equivalence of Eq.(9.12) to Eq.(9.9) since the former

satisfies Eq.(9.5). Thus the exact solution for the invented model can be obtained by

replacing tR(t) in the approximate exponential of Eq.(9.11) by the integral of R(s) from

s = 0 to s = t. Equation (9.11) differs from Eq.(9.12) in that the former multiplies R(t)

and t, whereas the latter integrates R(t) with respect to t.

We now notice that Eq.(9.11) has the form

R(t) = f (R(t),R(∞),R(0)) , (9.13)

which suggests that we develop an iterative approximation to evaluate R(t). We may either

take R(t) = R(0) or R(t) = R(∞) as our starting point for the iteration. In the first case we

obtain as the first order

R1st f rom R(0) (t) = R(∞)− [R(∞)−R(0)]exp [−R(0)t] . (9.14)

The second order approximation replaces R(t) with R1st f rom R(0)(t)

R2nd f rom R(0) (t) = R(∞)− [R(∞)−R(0)]exp
[
−
(

R(∞)− [R(∞)−R(0)]e−R(0)t
)

t
]
,

(9.15)

and the third order approximation replaces R(t) with R2nd f rom R(0)(t) on the right-hand

side of Eq.(9.11). This scheme can be repeated to obtain higher order approximations.

Figure 9.1A compares the first few analytic approximations iterated from R(0) (circles)

to the numerically solved algebraic approximation given in Eq.(9.11) (grey line) as well

as the exact solution to the invented model, Eq.(9.9) (black line). Similarly, the second

scheme, iterating away from R(t) = R(∞), yields to the following first order approximation

R1st f rom R(∞) (t) = R(∞)− [R(∞)−R(0)]exp [−R(∞)t] . (9.16)

Higher order approximations can be obtained in the same way as outlined above. Fig-

ure 9.1B compares the first few analytic approximations (circles) iterated from R(∞) to
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Figure 9.1: Iterative approximation scheme (circles) of the algebraic approximation of

Eq.(9.9) (black line) given in Eq.(9.11) (grey line), iterating away from (A) R(0) and (B)

R(∞).

the algebraic approximation given in Eq.(9.11) (grey line) as well as the exact solution to

the invented model, Eq.(9.9) (black line). According to Fig. 9.1, iterating away from R(∞)

approaches Eq.(9.11) faster than iterating from R(0), suggesting that the former should be

used as approximation scheme. Hence, in the remainder of the present chapter, we iterate

away from R(∞) and drop ” f rom R(∞)” from the subscript. We emphasize that the itera-

tive procedure we use is indeed an approximation and that it incidentally results in faster

coalescence kinetics.

9.3.1 Approximation applied to perfect absorption in one-dimension

For the special case of our invented problem (model of a model), we were able to solve

Eq.(9.3) exactly. This does not apply to our real coalescence problem. However, if the

instantaneous radius is treated as a constant in the expression for the survival probability,

we have shown that an approximate algebraic equation can be obtained. This algebraic

equation can be solved exactly through numerical methods or approximated through an

iterative method. In the current section, the performance of an iterative method for a per-

fectly absorbing stationary trap in one-dimension is investigated. To apply the feedback
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idea, x0 in the exact expression of the survival probability given in Eq.7.41 must be re-

placed by x0 −R(t)

Q(t) = er f

(
x0 −R(t)
√

4Dt

)
.

This substitution reflects that the distance between the diffusing particle and the trap pe-

riphery is changing over time. To obtain an approximate solution in form of an algebraic

equation, Q(t) is substituted into Eq.(9.6) yielding

R(t) = R(∞)− [R(∞)−R(0)]er f

(
x0 −R(t)
√

4Dt

)
. (9.17)

The above expression can be solved exactly for R(t) by numerical methods or approxi-

mated by an iterative method. Following the iteration technique away from R(∞), the first

order approximation is written as

R(t)1st = R(∞)− [R(∞)−R(0)]er f

(
x0 −R(∞)
√

4Dt

)
. (9.18)

and the second order approximation yields

R(t)2nd = R(∞)− [R(∞)−R(0)]er f




x0 −
(

R(∞)− [R(∞)−R(0)]er f
(

x0−R(∞)
√

4Dt

))

√
4Dt


 .

(9.19)

Figure 9.2 compares the first two iterations (circles) to the numerical solution of Eq.(9.17)

(solid line). The results suggest that the second order approximation is a very good ap-

proximation to the algebraic equation, which was developed by assuming a constant (in-

stantaneous) radius in the expression of the survival probability. Surprisingly, the iterative

approximation scheme seems to work better for the real problem involving error functions

than for the invented problem, in which Q(t) decayed exponentially.
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9.4 Feedback idea in Laplace domain

Results from the feedback validity study suggest that our proposed methodology could be

applied readily to problems for which the exact solution of the stationary trapping problem

is known. However, in higher dimensions, specifically for our two-dimensional receptor

cluster coalescence problem, exact expressions can be obtained only in Laplace domain,

see section 7.6. Even though, a numerical inversion scheme to obtain the exact functional

form in time domain can be applied, it would be useful to have a coalescence theory appli-

cable in Laplace domain. In the present section, the feedback idea and iteration scheme is

applied directly in Laplace domain. Such an analytic expressions can be compared readily

to Laplace transformed experimental data. For example, a functional description of experi-

mental data in the time domain allows us to compute its corresponding Laplace transform,

which can be compared directly to the approximate theoretical solution in Laplace do-

main. To our knowledge this approach of addressing data with a time-dependent theory

was used for the first time in extensive examination of sensitized luminescence observa-

tions in molecular crystals by Kenkre and collaborators [23, 29]. Our search has uncovered

Figure 9.2: Approximation of the increase in trap radius R due to particle absorption,

where particles undergo random motion. Numerical solution of Eq.(9.17) (solid line) com-

pared to its first order (black circles) and second order (grey circles) approximation. Here

/τ = [x0 −R(0)]2/D and R(∞)/R(0) = 4.
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only one other later instance [172].

The Laplace transform of Eq.(9.4), treating the radius as a constant in the expression

for the survival probability Q, is written as

L
{

R(t)d
}

=
R(0)d

ε
+

[
R(∞)d −R(0)d

1−Q(∞)

][
1

ε
− Q̃(ε)

]
. (9.20)

Here L{ f (t)} represents the Laplace transform of f (t) and the subscript d stands for d-

dimensions. To apply this expression, one would first Laplace transform R(t)d , e.g. that

obtained from experiments, and then compare the functional form to the right-hand side

of the expression, where R(t) is replaced with εR̃(ε) in Q̃(ε).

9.4.1 Perfect absorption in one-dimension

For perfect absorption in one-dimension, Eq.(9.20) becomes

R̃(ε) =
R(0)

ε
+[R(∞)−R(0)]

[
1

ε
− Q̃(ε)

]
. (9.21)

In Laplace domain the expression for Q̃(ε), holding R(t) constant, is given as

Q̃(ε) =
1

ε

{
1− e[x0−R(t)]

√
ε
D

}
. (9.22)

Substituting Eq.(9.22) into Eq.(9.21) and replacing R(t) with εR̃(ε) in Q̃(ε), we obtain the

following algebraic equation

R̃(ε) =
R(0)

ε
+

[R(∞)−R(0)]

ε
e−[x0−εR̃(ε)]

√
ε
D . (9.23)

Figure 9.3 compares the numerical solution of Eq.(9.17) (black line) to the numerical

Laplace inverted solution of Eq.(9.23) (grey line), indicating that the two expressions are

very close, deviating only slightly at intermediate times. Therefore, a coalescence theory

in Laplace domain, which was obtained through an approximation scheme, might be useful

to compare experiments in two- and three-dimensions to theoretical predictions.
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Figure 9.3: Feedback idea applied in Laplace domain. Approximation of the increase in

trap radius R due to particle absorption, where particles undergo random motion. Numeri-

cal solution of Eq.(9.17) (black line) compared to numerically Laplace inverted Eq.(9.23)

(grey line), which is approximated by its first order (black circles) and second order (grey

circles). Here /τ = [x0 −R(0)]2/D = and R(∞)/R(0) = 4.

Following our procedure in time domain, we can also obtain an approximate analytic

solution to Eq.(9.23) by an iterative method. The first and second order approximation to

Eq.(9.23) iterated away from R(∞) are

R̃(ε)1st =
R(0)

ε
+

[R(∞)−R(0)]

ε
e−[x0−R(∞)]

√
ε
D . (9.24)

and

R̃(ε)2nd =
R(0)

ε
+

[R(∞)−R(0)]

ε

×exp

{
−

[
x0 − ε

(
R(0)

ε
+

[R(∞)−R(0)]

ε
e−[x0−R(∞)]

√
ε
D

)]√
ε

D

}
,

(9.25)

respectively. Figure 9.3 indicates that the first two orders (circles) of the numerically

Laplace inverted iterations are sufficient to obtain a useful analytic approximation to the

Laplace inverted solution of Eq.(9.23) (grey line).
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9.4.2 Model of a model in Laplace Domain

Finally, to validate our iterative feedback approach in Laplace domain, we re-investigate

our invented model. For constant radius, the survival probability in time domain is given

in Eq.(9.10). It is trivial to Laplace transform this expression to obtain Q̃(ε) = 1/[ε+R(t)]

and substitute the expression into Eq.(9.21). After replacing R(t) with εR̃(ε), we obtain

the following equation

R̃(ε) =
R(∞)

ε
−

R(∞)−R(0)

ε+ εR̃(ε)
. (9.26)

which can be solved exactly for R̃(ε)

R̃(ε) =
R(∞)

2ε
−

1

2
±

√
R(∞)2 −2ε[R(∞)−2R(0)]+ ε2

2ε
.

This expression gives two solutions for R̃(ε). After evaluating the long time limit of R(t),

which must be R(∞),

lim[εR̃(ε)]
ε→0

=
R(∞)

2
±

R(∞)

2
,

Figure 9.4: Feedback idea applied to the invented model. The exact solution given in

Eq.(9.9) (solid line) is compared to two expressions obtained from the feedback method:

one, applied in time domain (Eq.(9.11), open triangle) and the other, applied in Laplace

domain (numerically inverted Eq.(9.27), open circles).
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it is clear that the solution for R̃(ε) with the negative sign in front of the square root is

unphysical. Therefore, the approximate expression for R(t) in Laplace domain for our

invented model is

R̃(ε) =
R(∞)

2ε
−

1

2
+

√
R(∞)2 −2ε[R(∞)−2R(0)]+ ε2

2ε
. (9.27)

This expression cannot be Laplace inverted exactly. Figure 9.4 compares the exact solution

of our invented model given in Eq.(9.9) (solid line) to the numerically Laplace inverted

Eq.(9.27) (open circles) as well as the numerical solution of Eq.(9.11) (open triangles),

which is the solution for the feedback approach applied in time domain. It is apparent

from the comparison that our feedback approach in Laplace domain significantly devi-

ates from the exact solution. Moreover, this analysis of our invented model suggests that

the feedback approach applied in time domain performs better than the method applied

in Laplace domain. We have arrived at a similar conclusion in section 9.4.1, where the

feedback method was applied to the simplest one-dimensional trapping problem.

9.5 Coalescence theory compared to Monte Carlo

Calculations in one-dimension

Thus far the validity study of our coalescence theory suggests that the outlined approach

works quite well. However, the iterative approximation scheme must be compared to an

exact solution to decide whether this approach is useful. Since we do not know the exact

solution for the increase in trap radius in our coalescence problem, we performed Monte

Carlo calculations. In the present section, lattice random walk simulations of coalescence

problems in one-dimension are compared directly to our iterative approximation scheme

outlined above. In simulations, a single stationary trap of known initial radius grows due

to the absorption of N = 1000 non-interacting point particles initially placed at a distance

x0/x0 away from the trap. Each particle has the same diameter of a/(100 x0), where a is the
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lattice constant. Each simulation consisted of 120000 time steps. Final simulation curves

were obtained from an average of 10 individual Monte Carlo simulations. This averaging

procedure produces an ensemble average, which can be directly compared to our analytic

expressions. It is worth noting that an average over 10 runs seemed to be sufficient, since

the result did not appear to change significantly, when 100 runs were averaged. Analytic

expressions and simulations were employed in MATLAB and the lattice random walk was

implemented following Refs. [138] and [164].

9.5.1 Perfect absorption and random particle transport

Simulations were carried out on a one-dimensional lattice. N = 1000 noninteracting point

particles initially placed at x0, hop to their left or right lattice site with a probability of

F∆t = 1/2. Here ∆t is the time between steps, and n∆t is the time at which the nth step

occurs. The diffusion coefficient D in continuum is connected to the discrete simulation

as follows (see section 7.4)

D = lim
∆x→0,F→∞

(∆x)2
F = lim

∆x→0

(∆x)2

∆t

1

2
.

In all Monte Carlo simulations, the ration
(∆x)2

∆t
was fixed to 1 length2/time, which resulted

in a diffusivity of magnitude 0.5. To make meaningful comparisons between analytic

expressions and simulation results, the following unitless parameters were defined: τ =

x2
0/D describing a motion time and /R(t/τ) = R(t/τ)/x0 representing the normalized trap

radius.

Using these two parameters, Eq.(9.17) becomes

/R
( t

τ

)
= /R(∞)−

[
/R(∞)− /R(0)

]
er f

(
1

2

√
τ

t

[
1− /R

( t

τ

)])
. (9.28)

This expression can be solved numerically for /R
(

t
τ

)
. Moreover, following our iterative
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procedure, the first two order approximations of Eq.(9.28) are

/R1st

( t

τ

)
= /R(∞)−

[
/R(∞)− /R(0)

]
er f

(
1

2

√
τ

t

[
1− /R(∞)

])
(9.29)

and

/R2nd

( t

τ

)
= /R(∞)−

[
/R(∞)− /R(0)

]

×er f

{
1

2

√
τ

t

[
1−

(
/R(∞)−

[
/R(∞)− /R(0)

]
er f

(
1

2

√
τ

t

[
1− /R(∞)

]))]}
,

(9.30)

respectively.

Figure 9.5 compares the time dependence of the growing trap radius of Monte Carlo

simulations (red line) to our coalescence model in one-dimensions (black line and open

Figure 9.5: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

Monte Carlo simulations (red line) and coalescence theory (black line and open circles)

due to instantaneous particle absorption at trap boundary-particle contact. Point particles

were non-interacting and performed a random walk. The numerical solution to the al-

gebraic Eq.(9.28) (black line) and its analytic first order approximation, Eq.(9.29) (open

circles) are in very good agreement with simulations. Error bars represent the standard

deviation obtained from 10 individual simulations.

185



Chapter 9. A Mathematical Model for Receptor Cluster Coalescence

circles). From the figure, it is apparent that the numerical solution to Eq.(9.28) (black line)

as well as the first order approximation given in Eq.(9.29) (open circles) fit the simulation

(black line) very well. This excellent agreement might be surprising. However, from our

previous validity study of an adiabatic approximation for moving boundary problems, in

which the time dependence of the moving boundary is explicitly inserted into the static

solution (see chapter 8), we know that for slowly moving boundaries, our coalescence

theory is expected to work well.

9.5.2 Perfect absorption and biased particle transport

Next, the approximate coalescence theory is compared to simulations for biased diffu-

sion. In these simulations, a probability describing particle bias towards the trap was

added to the algorithm. To compute this probability,the problem is analyzed on a discrete

lattice. If a random walk is biased to the left, then the hopping rates around a lattice

site m can be illustrated as in Fig. 9.6. From Fig. 9.6, we see that the leftward shift is

(F + f )− (F − f ) = 2 f and hence the velocity towards the trap is 2 f per ∆t. In continuum

the velocity is then given as

v = lim
∆x→0, f→∞

2 f ∆x, (9.31)

where f remains to be determined. Using Fig.1, the probability to jump to the left is given

as q = (F + f )∆t. Since F∆t = 1/2, f = (q−1/2)/∆t and

v = lim
∆x→0,∆t→0

(2q−1)
∆x

∆t
, (9.32)

where q is the jump probability to the left, which is a simulation input parameter. A similar

expression is given in Ref. [164] for a jump probability to the right with bias to the right.

When q = 1/2 and v = 0, the unbiased case (see above) is recovered. As expected, when

q = 1/4 and v is negative for a walker moving away from the trap, the jump probability

to the right 1− q is greater than 1/2. From the above equation q is easily obtained, if
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Figure 9.6: Illustration of different hopping rates for a biased random walk on a lattice

(biased to the left). F and f are both positive numbers representing the magnitude of the

hopping rate in the direction of the corresponding arrow. Here, the trap is located to the

left.

v is known. After defining the following unitless parameter ν = 2D
vx0

, describing the drift

process, the jump probability to the left is given as

q =
1

2

(
∆x

νx0
+1

)
, (9.33)

where
(∆x)2

∆t
= 1 and D = 1/2 from section 9.5.1.

To construct our coalescence theory for biased diffusion, the exact expression for Q

given in Eq.(8.37) is used

Q
( t

τ

)
= 1−

1

2
e−

2
ν er f c

(
1

2

√
τ

t
−

1

ν

√
t

τ

)
−

1

2
er f c

(
1

2

√
τ

t
+

1

ν

√
t

τ

)
.

Replacing x0 with x0 −R(t) and using the unitless trap radius /R( t
τ), the above expression

becomes

Q
( t

τ

)
= 1−

1

2
e−

2
ν [1−/R( t

τ)]er f c

(
1

2

√
τ

t

[
1− /R

( t

τ

)]
−

1

ν

√
t

τ

)

−
1

2
er f c

(
1

2

√
τ

t

[
1− /R

( t

τ

)]
+

1

ν

√
t

τ

)
, (9.34)

which goes to Q(∞) = 1− e−
2
ν [1−/R(∞)] for large time. Substituting the above expression

with Q(∞) and Q(0) = 1 into Eq.(9.3), the trap radius as a function of time can be approx-
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imated by the following algebraic equation

/R
( t

τ

)
=/R(0)+

[
/R(∞)− /R(0)

2e−
2[1−/R(∞)]

ν

]
e
−2[1−/R( t

τ )]
ν er f c

(
1

2

√
τ

t

[
1− /R

( t

τ

)]
−

1

ν

√
t

τ

)

+

[
/R(∞)− /R(0)

2e
−2[1−/R(∞)]

ν

]
er f c

(
1

2

√
τ

t

[
1− /R

( t

τ

)]
+

1

ν

√
t

τ

)
.

(9.35)

Equation (9.35) can be solved numerically and a first order adiabatic approximation is

/R1st

( t

τ

)
=/R(0)+

[
/R(∞)− /R(0)

2e
−2[1−/R(∞)]

ν

]
e
−2[1−/R(∞)]

ν er f c

(
1

2

√
τ

t

[
1− /R(∞)

]
−

1

ν

√
t

τ

)

+

[
/R(∞)− /R(0)

2e
−2[1−/R(∞)]

ν

]
er f c

(
1

2

√
τ

t

[
1− /R(∞)

]
+

1

ν

√
t

τ

)
.

(9.36)

Figure 9.7 compares the time dependence of the growing trap radius obtained from

Monte Carlo simulations (red line) to our coalescence model (black line and open circles)

Figure 9.7: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

Monte Carlo simulations (red line) and coalescence theory (black line and open circles)

due to instantaneous particle absorption at trap-particle contact. Point particles were non-

interacting and performed a biased random walk towards the trap. The numerical solution

to the algebraic Eq.(9.35) (black line) and its analytic first order approximation, Eq.(9.36)

(open circles) are in good agreement with simulations. Here, ν = 0.5, 2, 60, represent-

ing a jump probability of q = 0.52, 0.505, 0.5002, respectively. Error bars represent the

standard deviation obtained from 10 individual simulations.
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for biased particle transport in one-dimensions. The depicted curves represent ν = 0.5, 2,

and 60, corresponding to jump probabilities of q = 0.52, 0.505, and 0.5002, respectively.

Since the bias of the particle towards the trap is small, i.e. the jump probability is close to

0.5, the approximation is expected to perform well as predicted by our validity study for

moving boundaries. Indeed, the numerical solution to Eq.(9.35) (black line) as well as the

first order approximation given in Eq.(9.36) (open circles) fit the simulation (black line)

very well.

9.5.3 Imperfect absorption and random particle transport

In this section, our coalescence theory is validated for imperfect trapping. Here, the trap-

ping probability is obtained by equating the product of absorption time ∆tabs = 1
C

and the

probability of absorption Pabs to the product of hopping time ∆th = 1
2F

and the probability

of reflection 1−Pabs

1

2F
(1−Pabs) =

1

C
Pabs, (9.37)

which yields

Pabs =
C

2F +C
=

C∆x

2D+C∆x
. (9.38)

The above expression for the absorption probability is also given in Ref. [138]. Here,

lim
∆x→0

(
F∆x2

)
= D is the diffusion coefficient and lim

∆x→0
(∆xC) = C is the continuum capture

rate. When C → 0, then Pabs = 0, which corresponds to no absorption. When C → ∞ then

Pabs = 1 reduces to the expected probability for perfect trapping case. Simulations were

performed on a lattice and particles jumped to their neighboring sites according to a rate

F = 0.5/∆t. When a particle reached a trapping site at time t1, it had the probability Pabs

to be absorbed at time t2 = t1 + ∆t, resulting in a larger trap at t2. In case the particles is

not absorbed, it gets reflected back to the site to the right of the trap at time t2.
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For an imperfect absorber at the origin and point particles initially placed at x0, the

exact expression for the total survival probability is given in Eq.(7.40)

Q
( t

τ

)
= er f

(
1

2

√
τ

t

)
+ e

1
ξ
+ 1

ξ2
t
τ er f c

(
1

2

√
τ

t
+

1

ξ

√
t

τ

)
,

where τ = x2
0/D is the motion parameter and ξ = 2D/(Cx0) describes the trapping process.

To approximate the increase of trap radius due to particle absorption, x0 is replaced with

x0 −R(t) and the unitless trap radius /R( t
τ) is used, giving

Q
( t

τ

)
=er f

[
1

2

√
τ

t

(
1− /R

( t

τ

))]

+ e
1
ξ(1−/R( t

τ))+
1

ξ2
t
τ er f c

[
1

2

√
τ

t

(
1− /R

( t

τ

))
+

1

ξ

√
t

τ

]
.

(9.39)

Figure 9.8: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

Monte Carlo simulations (red line) and coalescence theory (black line and open cir-

cles) due to finite particle absorption at trap-particle contact. Point particles were non-

interacting and performed a random random walk towards the trap. Here, ξ = 0, 0.1,

1, and 10 represents an absorption probability of Pabs = 1, 0.31, 0.043, and 0.0045, re-

spectively. The numerical solution to the algebraic Eq.(9.40) (black line) and its analytic

first order approximation, Eq.(9.41) (open circles) are in very good agreement with sim-

ulations. The solid grey curve represents the numerical solution to Eq.(9.28), describing

perfect absorption. Error bars represent the standard deviation obtained from 10 individual

simulations.
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Substituting this expression into Eq.(9.3) yields to an algebraic equation for increase in

trap radius due to imperfect absorption and random particle transport in one-dimension
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(9.40)

This expression can be solved numerically as well as approximated by the following first

order expression
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(9.41)

Figure 9.8 compares the time dependence of the growing trap radius obtained from

Monte Carlo simulations (red line) to our coalescence model (black line and open cir-

cles). The curves depict ξ = 0, 0.1, 1, and 10, corresponding to absorption probabilities of

Pabs = 1, 0.31, 0.043, and 0.0045, respectively. The numerical solution to Eq.(9.35) (black

line) as well as the first order approximation given in Eq.(9.41) (open circles) fit the simu-

lation (black line) very well.

9.5.4 Imperfect absorption and biased particle transport

To simulated imperfect absorption and biased diffusion, the expression for the jump prob-

ability to the left (towards the trap) given in Eq.(9.33) is used. Here, the particles drift

towards the trap and the hopping rate to the right changes from F to F − f as depicted

in Fig. 9.6, resulting in a new hopping time ∆th = 1−q
F− f

to the right. According to section

9.5.2, f = (q− 1/2)/∆t and F = 0.5/∆t, and following section 9.5.3, the hopping time

away from the trap ∆th multiplied by the probability of reflection 1−Pabs must equal the
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absorption time ∆tabs = 1/C multiplied by the probability of absorption

1−q

F − f
(1−Pabs) =

1

C
Pabs. (9.42)

From this expression it is straight forward to compute the absorption probability at trap-

particle contact

Pabs =
1(

F− f

(1−q)C

)
+1

, (9.43)

where C is defined via the continuum capture rate lim
∆x→0

(∆xC) = C . To verify this expres-

sion, we look at a few limiting cases. For perfect absorption, C → ∞ and Pabs becomes 1

as expected. Similarly, if particles get never absorbed on trap contact, C → 0 and Pabs = 0.

Finally, when there is no motion bias towards the trap, i.e. f = 0 and q = 1/2, the absorp-

tion probability reduces to Pabs = C
2F+C

, which was derived previously in section 9.5.3, see

Eq.(9.38).

To construct our coalescence theory, we used the expression of Q(t) given by

Sanchez [164], which we have re-derived independently by applying the stationary trap

prescription

Q
( t

τ

)
=1−

1

2

(
1

1−ξ/ν

)
er f c

(
1

2

√
τ

t
+

1

ν

√
t

τ

)

−
1

2

(
1

1+ξ/ν

)
e
−2
ν er f c

(
1

2

√
τ

t
−

1

ν

√
t

τ

)

+

(
1

1− (ξ/ν)2

)
e
−1
ν + 1

ξ
+ t

τ

(
1

ξ2 −
1

ν2

)

er f c

(
1

2

√
τ

t
+

1

ξ

√
t

τ

)
.

(9.44)

Replacing x0 → x0−R(t) and defining our unitless trap radius /R( t
τ) = R( t

τ)/x0, the survival
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probability becomes
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which goes to

Q(∞) = 1−

(
1

1+ξ/ν

)
e
−2
ν [1−/R(∞)].

Substituting this expression with Eq.(9.45) into Eq.(9.3), the following algebraic equa-

tion, approximating the grows of the trap due to imperfect absorption and biased particle

diffusion, is obtained
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Equation (9.46) can be solved numerically for /R
(
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)
and its first order analytic approxima-

tion is
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Figure 9.9: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

Monte Carlo simulations (red line) and coalescence theory (black line and open cir-

cles) due to finite particle absorption at trap-particle contact. Point particles were non-

interacting and performed a biased diffusion towards the trap. Here, ν = 0.4, 3, and 60

with ξ = 0.5 in (A) and ξ = 1.5 in (B). The numerical solution to the algebraic Eq.(9.46)

(black line) and its analytic first order approximation, Eq.(9.47) (open circles) approxi-

mated the simulation better for small ξ (high absorption probability) and large ν (small

bias towards trap) as expected. Error bars represent the standard deviation obtained from

10 individual simulations.

Figure 9.9 compares the time dependence of the growing trap radius obtained from

Monte Carlo simulations (red line) to our coalescence model (black line and open circles)

for biased particle transport and imperfect absorption in one-dimension. The figure depicts

curves for ν = 0.4, 3, and 60 with ξ = 0.5 in (A) and ξ = 1.5 in (B). The numerical solution

to Eq.(9.46) (black line) as well as the first order approximation given in Eq.(9.47) (open

circles) fit the simulation (black line) very well for large ν (small motion bias towards trap)

and small ξ (high absorption probability). For small ν and large ξ, our coalescence theory

is expected to deviate significantly from the exact solution, as predicted from our previous

validity study of an adiabatic approximation for moving boundary problems.
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9.5.5 Validation of theory for finite sized particles

Thus far, we have compared our coalescence theory to simulations of non-interacting point

particles, i.e. the size of each particle was chosen to be about 100 times smaller than the

lattice constant. In this section, our theory is compared to simulations of finite-sized par-

ticles, which perform biased diffusion towards an imperfect trap. Here, the particle size is

taken to be 5 times the lattice constant and 6 non-interacting particles are initially placed

100 lattice sites away from the origin, where a finite-sized trap is located. Each simulation

performs 40000 hops. Figure 9.10 compares the result obtained from 10 simulations to the

first order approximation given in Eq.(9.47) (open triangles) and the fifth order approxi-

mation (open circles). According to the presented data, even for finite-sized particles, our

approximate theory seems to predict the functional form of the trap radius well since large

error bars obtained from the Monte Carlo simulations makes and interpretation difficult.

Figure 9.10: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

Monte Carlo simulations (line) compared to a first and fifth order approximation depicted

as open triangles and circles, respectively. Here particle had a finite size and performed

biased hops towards the trap. At particle-trap contact the particles were absorbed at a finite

rate, with ν = 0.4 and 60 with ξ = 0.5 in (A) and ξ = 1.5 in (B). Error bars represent the

standard deviation obtained from 10 individual simulations.
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9.6 Coalescence theory compared to Monte Carlo Calcu-

lations in two-dimensions

In section 9.5, our one-dimensional approximate coalescence theory was directly com-

pared to exact solutions obtained from Monte Carlo simulations. For random particle

transport, finite reaction, and weakly biased particle motion towards the growing trap,

our developed theory approximated simulated particle growth well. This agreement was

expected from our validity study of an adiabatic approximation for moving boundary prob-

lems. In the present section, we perform a validity study for two-dimensional problems.

According to a an earlier validity study in Laplace domain, see section 9.4.1, we expect

our two-dimensional approximation to deviate more from the exact solution than the one-

dimensional approximation applied directly in time domain.

In the present section, Monte Carlo simulations were performed in the continuum,

rather than on a two-dimensional lattice. In two-dimensions, a continuous diffusion sim-

ulation is less computationally expensive than its discrete lattice counterpart. It is worth

noting that in the limit of long times, these two approaches are equivalent when the step

size or hop length is small and the result is averaged over many individual trajectories.

For investigations presented in the present chapter, these requirements are fulfilled, since

we are interested in an assemble average over many particles. We have directly compared

these two approaches for a trap growth due to perfect absorption and random particle trans-

port in one-dimensions. For parameters of interest, these two approaches were in excellent

agreement (data not shown). Therefore, in the present section, a random-step-length algo-

rithm as outlined in section 4.4 was implemented. In Monte Carlo calculations, a stationary

trap of radius R(0) was placed at the origin and an initial radial symmetric homogeneous

distribution of 10000 non-interacting diffusing point particles were placed at r0 in sections

9.6.1 and 9.7.1. On trap-particle contact, a particle was either absorbed instantaneously

in section 9.6.1 or at a finite rate in section 9.7.1. After successful trap-particle melding,
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the trap radius grew from R(t) to

√
R(t)2 +R2

0, where R0/r0 = 1×10−3 is the radius of a

single point particle. This assumes an isotropic melding of particles with the central disk.

The hop length ∆xy of a particle in the x and y directions was set to ∆xy/r0 = 1.7×10−2.

Each Monte Carlo simulation was iterated over 100000 time steps.

9.6.1 Perfect absorption and localized initial condition

To validate the coalescence theory we have developed in two dimensions, we investigate

the problem of a stationary perfectly absorbing trap of radius R(0) at the origin and an

initial radial distribution of non-interacting point particles at r0. An approximate expres-

sion for the increase in trap radius due to particle absorption is given in Eq.(9.4), which

becomes in two-dimensions

R(t)2 = R(0)2 +

[
R(∞)2 −R(0)2

1−Q(∞)

]
[1−Q(t)] . (9.48)

As mentioned earlier, in two-dimensions, an exact expression for the survival probability

Q is only available in Laplace domain , see Eq.(7.82)
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1

ε
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√
ε
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]
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]



 .

Treating the trap radius in this expression as a constant and substituting the Laplace trans-

form of Q̃ into Eq.(9.48) gives our approximate unitless expression for the time depen-

dence of the trap radius

/R(t/τ)2 = /R(0)2 +[/R(∞)2 − /R(0)2]L−1
ε
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Here, r0 was replaced with r0 − εR̃(ε), τ = r2
0/D, /R(t/τ) = R(t/τ)/r0, and for a circular

perfect absorbing trap Q(∞) = 0. A first order approximation of Eq.(9.49), following the

iterative procedure outlined in section 9.4.1, can be written as

/R1st (t/τ)2 = /R(0)2 +[/R(∞)2 − /R(0)2]L−1
ε

{
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[
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√
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εK0
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ετ
]
}

. (9.50)
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Figure 9.11: Radial symmetric functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞)
obtained from Monte Carlo simulations (black line) compared to a first order approxima-

tion of our coalescence theory (grey line), given in Eq.(9.50). Diffusing point particles

merged instantaneously with the trap on contact. Error bars represent the standard devia-

tion obtained from 10 individual simulations.

In this expression, the Laplace transform of the Bessel functions must be evaluated nu-

merically, e.g. by applying a numerical inversion algorithm as outlined in appendix C.

Figure 9.11 compares the first order approximation given in Eq.(9.50) (grey line) to

the result obtained from Monte Carlo simulations (solid line), which was obtained from an

average over 10 individual simulations. The approximate analytical expression deviates

from Monte Carlo results at early times t/τ < 10. This deviation was expected, since the

feedback idea applied in Laplace domain deviates more from the exact solution as the feed-

back idea applied in time domain, see section 9.4.1. Nevertheless, our two-dimensional

approximate coalescence theory describes the exact solution well. It is important to note

that the functional form of the Monte Carlo simulation is dependent on the number of

initial point particles. The time at which the black line crosses the grey line in Fig. 9.11

depends on the number of inital particles. If the number is less than 10000, the crossing

will occur at later time. If the number is more than 10000, the crossing occurs at earlier
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time. However, at long times both curves will meet again and approach the value 1 in the

limit.

Comparison in Laplace domain

As mentioned above, Eq.(9.49) can also be evaluated in Laplace domain

Lε

{
/R(t/τ)2

}
=

/R(0)2

ε
+[/R(∞)2 − /R(0)2]
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εK0
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ετ
]



 , (9.51)

and compared directly to the Laplace transformed functional form of R(t)2 obtained from

simulations. Looking at Eq.(9.51), we see that the left-hand side becomes

Lε

{
/R(t/τ)2

}
=

1

2π i

Z c+i∞

c−i∞
/̃R(u)/̃R(ε−u)du,

where c is a line parallel to the imaginary axis and to the right of all singularities of the

integrand. Substituting this expression into Eq.(9.51) leads to a complex algebraic-like

equation in Laplace domain, which is not to useful. Therefore, we will use expression in

the form of a first order approximations, e.g. Eq.(9.50), to compare experimental results

to our coalescence theory.

9.6.2 Perfect absorption and random initial condition

Thus far, we have focused on localized initial conditions. In this section, the performance

of our coalescence theory is validated for an initial random distribution of point particles.

This initial distribution is significant, since receptor clusters were observed to follow such

a distribution in experiments. In our experiments, we observed that the number of clusters

found at a radial distance r from the center of the cell-substrate contact area is proportional

to r. This functional dependence as depicted in Fig. 3.6 indicates that the clusters are

randomly distributed within the contact area. Since the radius of the contact area r′0 can be
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estimated from experiments, the new survival probability can be written as a superposition

(see section 7.5.2) by integrating Q over the normalized initial point-particle distribution

Q̃(ε) =
2

r2
0 −R(0)2

Z r0

R(0)
Q̃(ε; r) r dr. (9.52)

Note that the lower limit of the integration is R(0). After integrating Q̃(ε) over the ini-

tial pasrticle distribution, replacing r0 → r0 −R(∞) and substituting this expression into

Eq.(9.50), the approximate time dependence of the radius squared for a random initial

distribution of particles can be written as
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 .

(9.53)

Here, /r = r/r′0 and the dimensionless parameters are defined as τ = (r′0)
2/D,

ξ2d = DR(0)/[C2d r′0], and /R(t) = R(t)/r′0. Moreover, the integral in Eq.(9.53) can be

Figure 9.12: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) for an initial

random distribution obtained from Monte Carlo simulations (black line with error bars)

compared to a first order approximation of our coalescence theory (grey line), given in

Eq.(9.53). Diffusing point particles merged instantaneously with the trap on contact. Er-

ror bars represent the standard deviation obtained from 10 individual simulations. For

comparison the first order approximation for a radial localized initial condition given in

Eq.(9.50) is shown as black solid line.
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evaluated exactly

Z 1−/R(∞)
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/rK0
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√
ετ

. (9.54)

Figure 9.12 compares the first order approximation given in Eq.(9.53) (grey line) to

the result obtained from Monte Carlo simulations (black line with error bars), which was

obtained from an average over 10 individual simulations. The approximate analytical

expression for an initial random distribution follows the exact solution well. As expected,

the radius increases faster for a random initial distribution of point particles compared to

a localized initial condition (black line).

Finite-sized particles

In section 9.5.5, results obtained from a one-dimensional Monte Carlo simulation for

finite-sized non-interacting particles were compared to our theory, indicating that our an-

alytic approximation describes the simulated data quite well. In the present section, a

similar validity study is performed in two-dimensions for instantaneous melding. Here,

the particle radius is taken to be twice the hopping length ∆xy and 5 particles are randomly

distributed within a circle of radius 58 times ∆xy centered at the origin, where a finite sized

trap is located. Each simulation was iterated 100000 times and the result was averaged

over 20 runs. Figure 9.13 compares the Monte Carlo result (black error bars) to the first

order approximation given in Eq.(9.53) (grey line). According to the depicted data, our

approximate theory predicts faster coalescence kinetics as obtained from simulations. This

result is expected, since Eq.(9.53) is a first order approximation iterated away from R(∞).
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Figure 9.13: Functional form of trap radius /R(t/τ)//R(∞) = R(t/τ)/R(∞) obtained from

two-dimensional Monte Carlo simulations (black error bars) compared to the first order

approximation given in Eq.(9.53) (grey line). Here particles had a finite size and performed

random motion. At particle-trap contact the particles were absorbed instantaneously. Error

bars represent the standard deviation obtained from 20 individual simulations.

9.7 Comparison of theory to experiments

In our experiments, we observed receptor clusters coalescence, which resulted in the for-

mation of a large central receptor patch. Since in our experimental system, the central

receptor patch boundary was impermeable, and only grows after a successful receptor-

patch melding event, expressions for Q in higher dimensions derived from the trapping

prescription is not useful, since these expressions describe permeable membranes. There-

fore, expressions for impermeable membranes and finite reaction rate must be used. For-

tunately, such expressions are available readily from our previous investigations of the

equivalence between the stationary trapping theory and the theory of conduction in heat

and solids, see section 7.9.1.
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9.7.1 Radiative trap boundary

An expression for the total survival probability, satisfying radiative boundary conditions,

can be obtained from Eq.(7.136)

c̃(r,ε)
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This expression in Laplace domain, describes the radial symmetric concentration profile

c(t) for radiative boundary conditions at radius R(0) and an initial continuous distribu-

tion c0. To obtain an equivalent expression for Q, the reaction rate h is replaced by

C2d/[2πDR(0)], see section 7.8.3, yielding
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. (9.55)

Here, r was replaced with r0, since this expression holds for a radially symmetric distribu-

tion of initial point particles at r0. It is worth noting that Eq.(9.55) reduces to Eq.(9.4) in

the perfect absorption limit, i.e. C2d → ∞, as expected. To obtain the first order approxi-

mation for the time dependence of the trap radius, we follow our previous methodology to

obtain

/R1st (t/τ)2 = /R(0)2 +[/R(∞)2 − /R(0)2]

×L−1
ε

{
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√
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√
ετ
]
}

.

(9.56)

Here, dimensionless parameters are defined as τ = r2
0/D and ξ2d = 2πDR(0)/[C2d r0].

To obtain an expression for radiative boundary conditions and an initial random distri-

bution of particles, r0 in Eq.(9.55) is integrated over the initial distribution. After substi-

tuting this expression into Eq.(9.56), a first order approximation of the time dependence of
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the radius squared for a random initial distribution of particles and a radiative trap bound-

ary is written as

/R1st (t/τ)2 = /R(0)2 +

2×L−1
ε

{
/R(0)K1[/R(0)

√
ετ]− [1− /R(∞)]K1[(1− /R(∞))

√
ετ]

ξ2dε2τK1

[
/R(0)

√
ετ
]
+ ε3/2

√
τK0

[
/R(0)

√
ετ
]

}
.

(9.57)

Here, the dimensionless parameters are defined as τ = (r′0)
2/D, ξ2d = 2πDR(0)/[C2d r′0],

and /R(t) = R(t)/r′0.

9.7.2 Experimental growth of central patch

Our experimental analysis of individual receptor trajectories showed that receptor cluster

have both a diffusive and directed motion component. However, further analysis indicated

that the biased motion component of receptor cluster transport had no preferred radial

direction (see section 3.4.1). Therefore, the approximate analytic expression for random

particle transport given in Eq.(9.57) can be directly applied to experimental data.

Experimental data was obtained from TIRF images of fluorescently labeled IgE-FcεRI

complexes in contact with a fluid ligand presenting bilayer with 25 mol% DNP-Cap PE. To

each image in the time series a thresholding algorithm outlined in section 2.10 was applied

to extract the radius of the largest receptor patch at each time point. After computing the

largest receptor patch radius in individual images, the corresponding average at each time

point from four individual cell data sets was computed. It is important to note that indi-

vidual data sets are of different length. Therefore, the standard error of the mean was used

as an estimate for the expected error at each time point. To compare the observed time-

dependent central patch radius directly to our theoretical model, the radius of the largest

receptor cluster was normalized by the maximum radius of the cell-substrate contact area
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r′0 = 7.3 µm. This radius was obtained from the largest estimated cell-substrate contact

zone of each time series. The average diffusion coefficient obtained from over 100 indi-

vidual receptor cluster trajectories in 4 cell data sets was 9.1×10−3 µm2/s, which allows

us to normalize our time series by the motion parameter τ = (r′0)
2/D = 5.9× 103 s. The

initial radius of the central receptor patch was R(0) = 700 nm, estimated from the average

of the first 10 data points. The largest possible central patch radius was R(∞) = 3 µm. This

parameter was estimated from the maximum total area covered by receptors and patches

in each time series and averaging the result. In graphical comparison of experiment and

theory below (see Figs. 9.14 and 9.15), the growing trap radius was normalized by the time

τc in which the initial average distance between two clusters is covered diffusively. This

distance is estimated to be 350 nm giving τc = 14 s.

Figure 9.14 compares the experimental data (black error bars) to the two-dimensional

coalescence theory for randomly distributed particles given in Eq.(9.57). Here, particles

were absorbed at a finite rate on trap contact, for ξ = 0 (instantaneous melding), ξ = 0.1,

Figure 9.14: Experimental data (error bars) compared to two-dimensional coalescence

theory for finite melding probability given in Eq.(9.57) for ξ = 0 (instantaneous melding),

ξ = 0.1, and ξ = 1 (solid grey lines). The experimental data represents the normalized

radius of the biggest receptor patch at each time point averaged over four data sets. The

error bars represent the standard error of the mean.
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and ξ = 1 (solid grey lines). From this direct comparison of theory and experiment, we

conclude the following. First, at early time t/τc < 5, experimentally observed receptor

cluster coalescence in mast cells, when presented to a fluid ligand-bearing membrane,

seems to be delayed. This observation suggests that our coalescence theory for a constant

capture rate, does not explain our experimental data at early time. Second, for longer

times t/τc > 10, it is apparent that cluster coalescence is more rapid than theory predicts.

This observation might be expected, since our coalescence theory models non-interacting

particles, which could effectively decrease the collision frequency. However, other expla-

nations are equally tenable and are further discussed in section 9.9.

9.8 Incorporation of a time-dependent capture rate

Figure 9.14 suggests that the measured radius of the largest receptor patch over time is

of sigmoidal form. This functional form together with qualitative observations that only

at late time points (>1min) every contact of two clusters leads to melding, supports the

contention that receptor cluster coalescence is delayed. Theoretically, we have shown that

if cluster coalescence were not delayed, the absorber radii would increase faster at short

time (see black line for ξ = 0 in Fig. 9.14). The observed delay in coalescence might be

due to actin reorganization [13] and changes in cell membrane morphology (see section

3.6) that are known to occur on mast cell stimulation. Therefore, our coalescence theory

must be generalized to address this observation for times t/τc < 5. This necessitates the

introduction of a new feature in our theory, as we outline below: a time-dependent capture

rate.
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9.8.1 Time-dependent capture rate in form of a memory function

It appears at least qualitatively, that the solution to the delay problem described above may

lie in constructing a coalescence theory in which capture is time-dependent in that the

process happens with a threshold in time. In order to develop such a theory we return to

section 7.2. The natural modification, the replacement of the discrete constant capture rate

C by a time-dependent C(t), is not easy (or to our knowledge even possible) to implement

theoretically. This fact, combined with the prior existence [22] of a formalism developed

for capture via a ”memory function” leads us to rewrite the capture term in the standard

Master equation in the form

dPm(t)

dt
= motion terms−

Z t

0
CM(t − s)δm,rPm(s)ds, (9.58)

where CM is the capture memory in discrete space. In the Markovian limit CM has a short

relaxation time compared to Pm=r and C(t) is obtained simply by integrating CM(t). This

treatment of the capture rate as a memory allows us to proceed with our analysis in Laplace

domain, with no change except the replacement of the constant C by the Laplace transform

C̃M(ε) of the capture memory: thus in continuous space the prescription becomes,

Q̃(ε) =
1

ε


1−

η̃r(ε)
1

C̃M(ε)
+ Ψ̃0(ε)


 . (9.59)

For CM(t) = Cδ(t), i.e. the memory decays infinitely rapidly and C̃M(ε) = C , reducing

Eq.(9.59) to the trapping prescription for constant capture given in Eq.(7.35). Therefore,

Eq.(9.59) is a generalization [22] of the trapping prescription for a time-dependent cap-

ture rate in form of a memory function, obtained by simply replacing C in Eq.(7.35) with

C̃M(ε). This observation can be directly applied to our coalescence theory, which gener-

alizes the model for a time-dependent capture rate. For example, to apply our generalized

coalescence theory to our experiments, the capture rate C2d in the capture parameter ξ of
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Eq.(9.57) is replaced by C̃M(ε) to give

/R1st (t/τ)2 = /R(0)2 +

2×L−1
ε





/R(0)K1[/R(0)
√
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√

ετ]
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]
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√
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[
/R(0)

√
ετ
]





.

(9.60)

9.8.2 Possible functional form of the capture memory

As mentioned above, our experimental observations suggest that at early times of cell-

substrate contact (<1min), receptor clusters do not coalesce on contact. Only at late times

is the merging process more frequent. Accordingly, an appropriate time-dependent capture

rate must be increasing over time. We introduce one candidate for the memory CM(t),

which has this characteristic. This candidate is a exponential capture memory decaying in

time

CM(t) = ae−bt , (9.61)

where a and b are arbitrary constants of units length2/time and 1/time, respectively. This

expression can be Laplace transformed readily

C̃M(ε) =
a

ε+b
, (9.62)

and inserted into Eq.(9.60). Note that this expression has no constant offset, since ex-

perimental observations suggest that receptor cluster coalescence does not occur at early

times. To validate C̃M(ε) given in Eq.(9.62), the Laplace transformed expression

/R1st (t/τ)2 = /R(0)2 +2a

×L−1
ε

{
/R(0)K1[/R(0)

√
ετ]− [1− /R(∞)]K1[(1− /R(∞))

√
ετ]

2πD/R(0)(ε+b)ε2τK1

[
/R(0)

√
ετ
]
+ ε3/2

√
τK0

[
/R(0)

√
ετ
]
}

(9.63)
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is fit up to t/τc = 10 to the experimental data. The fit was performed by minimizing

chi-squared

χ2 =
N

∑
i=1

(
f (xi)−µi

σi

)2

, (9.64)

which typically is used as a metric to determine the goodness of a fit [173]. Here N = 118

is the number of data points in the time series, µi is the observed mean of the data with

a standard deviation σi (we used the standard error of the mean instead), and f (xi) is the

predicted mean obtained from the Laplace inverse of Eq.(9.63).

Figure 9.15A compares the best fit of Eq.(9.63) (red) to experimental data (black error

bars). At early times t/τc < 10, a capture memory of exponential form fits the data very

well, showing that the delay can be explained by a memory for the capture rate. For

t/τc > 10, the theoretical predicted trap radius approaches the result obtained for constant

capture rate and perfect absorption (grey).

Figure 9.15: Weighted fit of Laplace inverted Eq.(9.63) (red) with a = 3.8 length2/time

and b = 7.1× 10−12 /time to experimental data up to t/τc = 10 (black error bars). The

experimental data represents the normalized radius of the biggest receptor patch at each

time point averaged over four data sets. The error bars represent the standard error of the

mean. Grey curve represents our theory for an infinite melding probability ξ = 0 given in

Eq.(9.57).
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9.9 Concluding Remarks

The main goal of this chapter was to gain insight into the unknown kinetics of recep-

tor cluster coalescence in mast cells. This investigation was based on developing a new

coalescence theory [174], which was directly applied to our experimental observations.

Our theoretical model is based on a self-consistent feedback approach, which was intro-

duced in form of a prescription in section 9.2. Due to the complexity of the problem, the

prescription cannot be evaluated exactly. However, we were able to develop an analytic

approximation, whose validity we examined with the help of a highly simplified invented

model for which exact solutions could be obtained. This approximation was based on our

previous analysis of moving boundary problems in chapter 8, where the time dependence

of the boundary was explicitly inserted into the stationary trapping solution. The approxi-

mate iteration scheme was validated by direct comparisons to results obtained from Monte

Carlo simulations in one- and two-dimensions as outlined in sections 9.5 and 9.6, respec-

tively. These validity studies showed that our analytic approximation performed very well

when the trap boundary grew at a rate similar to diffusion-limited particle transport for in-

stantaneous and finite particle-trap reactions. Moreover, direct comparison to simulations

in section 9.5.5 validated our model for finite-sized particle coalescence. As expected

from our studies of moving boundary problems, our coalescence theory did not perform

well for strongly biased particle transport towards the trap, see section 9.5.4. However,

this observation did not affect the applicability of the coalescence theory to actual experi-

ments, since our experimental studies have shown that the directed motion component for

receptor cluster transport has no preferred direction (see section 3.4.1).

Encouraged by the success of our coalescence theory in a Monte Carlo simulation va-

lidity study, the model was compared to experimental observations [175] in section 9.7.2.

The comparison revealed that a coalescence model describing random particle transport

with a constant melding probability cannot fully explain the observed kinetics of receptor

cluster coalescence. At early times, t/τc < 5, the model does not describe the experimen-
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tally observed delay in cluster coalescence. Qualitative experimental evidence suggest

that the observed delay is connected to a time-dependent coalescence probability; at early

times of cell-substrate contact, cluster-cluster contact does not lead to melding, whereas at

later times almost every contact of two clusters leads to coalescence. This time-dependent

change in reaction rate might be due to a biological or kinetic response mechanism, which

is coupled to the observed delay in cluster coalescence, leading to a non-local coalescence

process in time. This argument motivated that we employ a generalization [22] of our coa-

lescence theory with a trapping process characterized by a memory kernel. In section 9.8,

we developed such a model. Comparison of this model to experiment clearly shows that

the biological coalescence delay can be explained by a time-dependent capture rate. The

origin of this delay remains to be investigated through further theoretical and experimental

investigations. For example, an experiment in the near future will investigate the effect of

cytoskeletal polymerization and depolymerization on cluster coalescence by applying an

actindepolymerizing drug such as latrunculin A [176]. The investigation is motivated by

our previous studies [13], which suggested that at late times of cell-substrate contact the

actin cytoskeleton depolymerizes at the central region of the contact area. This change in

the actin cytoskeleton might be a origin for the observed coalescence delay.

Direct comparisons of our theory to experiments have shown also that at longer times,

t/τc > 10, biological coalescence is significantly faster than predicted by the simple form

of the theory we have pesented. We believe that the origin of this enhancement to be due

to the following events. First, our theory considers non-interacting point particles, which

can react only with the central trap. It is highly likely that particle size dependence and

size increase due to aggregation and/or motion leads to the enhancement. The latter con-

tribution might be mitigated by an opposing effect of size-dependent particle diffusivity, in

which larger particles diffuse slower [76, 77]. However, our experimental data suggest that

cluster hop length does not depend significantly on cluster size for receptor clusters rang-

ing from 0.4 to 1 µm in diameter (see Fig. 3.11), suggesting that size-dependent cluster

motion might not be a essential parameter. Another tenable explanation for the observed
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coalescence enhancement, is the existence of an effective, potentially short range, attrac-

tive potential between clusters. Theoretically, this effect may be modeled by an effective

increase in trap size, and an experimental signature may be a change in hop length before

melding events. This list of possible events suggests that our present neglect of changing

particle size could cause the slow coalescence kinetics. Therefore, to improve our coales-

cence model, a clear future direction of the research presented here, is studying effects of

an effective increase in capture rate or particle diffusivity at later times, possibly including

another mechanism, which is not treated in the model described in the dissertation. Our

studies have already shown that the radially uncorrelated biased particle motion that we

have observed suggests an enhancement of the cluster diffusivity by a factor of 2. The

increase in particle size during the process of aggregation, and the consequent decrease

in the interparticle distance needed to be traversed before melding might well make the

enhancement even larger. If we take the resultant such enhancement to be by a factor of 5,

we get a much improved fit of our generalized theory with exponential memory which we

Figure 9.16: 5 fold enhancement in diffusivity with corresponding diffusion time τ′c = 3 s.

Weighted fit of Laplace inverted Eq.(9.63) (red) with a = 6.1 length2/time and b = 2.2×
10−11 /time to experimental data (black error bars). The error bars represent the standard

error of the mean. Grey curve represents our theory for an infinite melding probability

ξ = 0 given in Eq.(9.57).
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show in Fig. 9.16.

In conclusion, our new coalescence model based on a feedback idea advanced our

understanding of previously unknown receptor cluster coalescence in mast cells. Direct

comparisons to experiment clearly outlines further theory-guided experiments. They also

induced us to generalize our theory in the manner shown. Further work is on the way

along these lines. We believe that a successful continuation of these investigations strongly

depends upon a meaningful collaboration between experimental and theoretical investiga-

tions.
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Conclusions

The unifying thread throughout the 10 chapters of this dissertation has been the study of

dynamics and distribution of immunoglobolin E receptors in mast cells, when triggered

by membrane-bound monovalent ligands. This study has been an exceptional example for

the possibility of an intense dialog between experimental (chapters 2−5) and theoretical

(chapters 6−9) physics to learn more about the system under investigation. As result of this

intense dialog, new insight into mast cell function has been gained, further experiments

have been proposed, and generalizations of the theory have been put forward, naturally

continuing the dialog between experiment and theory in the field of mast cell signaling. In

the remainder of this concluding chapter, the main results are summarized briefly.

The motivation for this research project was found in immune signaling by mast cells.

Typically, a mast cell is stimulated by multivalent ligand, which crosslinks two or more

IgE-loaded FcεRI receptors [2]. Therefore, it was interesting to learn that also mono-

valent ligand incorporated into a two-dimensional substrate such as a lipid bilayer can

trigger mast cells [5]. Since monovalent ligand cannot crosslink individual IgE-receptor

complexes, another physical mechanism must result in receptor aggregation. Initial stud-

ies focused on investigating this mechanism. During these investigations, specifically on
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fluid membranes, it was observed that after initial receptor aggregation or receptor clus-

ter formation, receptor clusters moved and eventually coalesced to form a large receptor

patch [13]. To understand the underlying kinetics of the patch formation, a dialog between

experimental and theoretical physics was necessary. From a biological point of view, in-

vestigating this model system is also important to advance the understanding of the mast

cell’s role in cell-cell and cell-parasite communication. (Mast cells in contact with a fluid

ligand-bearing membrane can mimic such systems.)

To investigate the mechanism of initial receptor cluster formation, TIRF microscopy

was implemented together with a single-cell micromanipulation technique. With these ex-

perimental techniques, it was shown for the first time that the mechanism of receptor clus-

ter formation is diffusion mediated receptor trapping at cell-substrate contact points. These

clusters were initially randomly distributed. On fluid ligand-bearing membranes, clusters

moved and eventually coalesced to form a large receptor patch. This central patch formed

predominantly in the center of the contact zone. The underlying mode of cluster trans-

port on fluid membrane substrates, before cluster-cluster coalescence, was determined by

calculating the MSD from cluster trajectories obtained by implementing a single-particle

tracking algorithm. This analysis showed that clusters performed directed diffusion with-

out statistically significant centripetal bias. Single-particle tracking was applied also in

chapter 4 to investigate IgE-receptor mobility within cluster and patches. Results sug-

gested that individual IgE-receptor complexes remain mobile within clusters and patches,

providing further evidence that receptor immobilization is not a prerequisite for signaling.

In the last chapter of presented experimental investigations, chapter 5, it was shown that

at late times (> 2 min) the large central receptor patch is surrounded by a receptor cluster

depletion zone.

The second part of this dissertation developed a new theory of coalescence to model the

kinetics of receptor cluster coalescence in mast cells. The simple model, outlined in chap-

ter 6, is formulated as a stationary trapping problem with a trap whose boundary changes

215



Chapter 10. Conclusions

dynamically due to isotropic cluster melding with a centrally located circular patch at a

finite rate. In this simplified model, clusters were represented by non-interacting point par-

ticles. The purpose of the proposed calculation was to calculate the time evolution of the

central patch or trap radius in three steps. The first step was outlined in chapter 7 and fo-

cused on solving stationary trapping problems by applying the standard defect technique.

Following this technique, a general prescription for the total particle survival probability

for any particle motion and dimension can be obtained. This prescription was applied to

many different stationary trapping problems in continuum, obtaining some new expres-

sions, which were collected in a repository. In the second part of the proposed calculation,

presented in chapter 8, the difficult problem of moving boundaries was investigated. Due

to the complexity of the cluster coalescence problem, the time-dependence of the growing

central patch due to particle melding cannot be solved exactly. Therefore, an adiabatic ap-

proximation, in which the time-dependence of the moving boundary is explicitly inserted

into the stationary trapping problem, was constructed. This approximation was validated

by comparison to exact solutions available in one-dimension. A detailed validity study

showed that the approximation performs well for a slowly moving boundary, which was

observed also in experiments. Chapter 9 outlined the last step in the construction of the

coalescence theory, in which the time-dependent central patch radius was related to the to-

tal cluster survival probability in a self-consistent way. Detailed comparison of theoretical

results to Monte Carlo simulations in one- and two-dimensions showed that the proposed

calculation works well for unbiased cluster transport. Such a model can describe also the

experimentally observed directed cluster diffusion without centripetal bias. Therefore, the

simple theory, describing cluster-patch coalescence at a finite rate, was applied directly

to experiments. This comparison showed that the simple theory cannot describe the ob-

served delay in biological cluster coalescence. A generalization of the simple theory for a

time-dependent coalescence rate quantitatively explained the delay. The existence of such

a delay is supported by experimental observations and may have its origin in the known

rearrangement of the cell cytoskeleton upon mast cell stimulation by fluid ligand-bearing

216



Chapter 10. Conclusions

membranes.

From this work, it has become clear that neither experimental nor theoretical methods

alone can accomplish the goal of advancing fundamental understanding of cell function.

Of course, this observation also applies to other subjects that naturally cross traditional

boundaries between disciplines. In the future, the author wants to continue research at

the border between physics and biology, move on the middle ground between experiment

and theory, and actively promote cross-disciplinary collaborations to expand her scientific

portfolio into new directions.
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Appendices
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Appendix A

Image Correlation Spectroscopy of

Randomly Distributed Disks

Image correlation spectroscopy (ICS), applied to fluorescence microscopy images, has

been widely used to quantify the number densities, aggregation states, and dynamics of

macromolecules in cells and on cell membranes [21, 32, 33, 34, 35, 36, 37, 14]. In this

dissertation ICS has been used to quantify the size of FcεRI receptor cluster on RBL cells

due to different ligand-presenting surfaces, see chapter 3 section 3.2. When the mem-

brane proteins are randomly distributed, ICS may be used to estimate protein densities,

provided the proteins behave as point-like objects. At high protein area fraction, however,

even randomly placed proteins cannot obey Poisson statistics, because of excluded area.

The difficulty can arise if the protein effective area is quite large, or if proteins form large

complexes or aggregate into clusters. In these cases, there is a need to determine the cor-

rect form of the intensity correlation function for hard disks in two dimensions, including

the excluded area effects. Even though the ICS community has been aware of this ef-

fect [34, 35] thus far high particle concentrations have been thought to be unphysical [35]

(even though interparticle interactions and area effects have been extensively studied in the

context of fluorescence correlation spectroscopy (FCS) [177, 178]). However in our inves-
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tigations (outlined in chapter 3) of the distribution of IgE receptor microclusters on RBL

cells, the clusters were found to occupy a large area fraction, necessitating the derivation of

the intensity c.f. for homogeneously distributed hard disks, presented in section 5.3. It is

worth noting that very recently Kurniawan and Rajagopalan [179] extended spatiotempo-

ral ICS to finite-sized particle systems, using a template analysis method. While template

analysis gives a correct particle diffusion coefficient, it does not give mathematical rela-

tionships to compute particle number and size for finite-sized particle systems.

In this part of the appendix, we present an approximate but highly accurate algorithm

for the computation of an image c.f. for disk-like fluorescent objects. To develop this

algorithm, we use the hard disk c.f. for a uniform intensity profile derived in section 5.3

and show that this algorithm can be readily modified to compute exact intensity c.f. for

any probe geometry, interaction potential, and fluorophore distribution.

Parts of this chapter have been published previously in Ref. [39].

A.1 Conventional image correlation spectroscopy

Conventional image correlation spectroscopy was introduced by St-Pierre and

Peterson [21] using the two dimensional intensity autocorrelation function [32], see

Eq.(3.1)

gN(ε,κ) =
〈i(x,y)i(x+ ε,y+κ)〉

〈i(x,y)〉2
−1,

where the angular brackets denote spatial averaging over all pixels in the image i(x,y),

and ε and κ are spatial lag variables. With Poisson-distributed point particles, the inten-

sity variance is proportional to the average number of particles in the diffraction-limited

observation volume, after removal of the photon shot noise and the camera read noise.

Since shot noise and read noise are spatially uncorrelated, they may be excluded by taking

the extrapolated limit of the correlation function at zero spatial lag, rather than using the
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value of gN measured there. For such an ideal system Eq.(3.1) gives the average number

of particles 〈N〉 in the observation volume [32]

lim
ε,κ→0

lim
Poisson

gN(ε,κ) = lim
Poisson

〈
i(x,y)2

〉
−〈i(x,y)〉2

〈i(x,y)〉2
=

1

〈N〉
, (A.1)

where
〈
i(x,y)2

〉
−〈i(x,y)〉2

is the variance. Away from the origin, the shape of the corre-

lation function is determined by the point spread function of the optics. Throughout this

appendix, this method will be referred to as conventional ICS.

Real particles have a finite size, and this will modify both the shape of the correlation

function and its extrapolated intercept at zero lag. In only moderately dense systems the

particle distribution deviates significantly from Poissonian, and the relation between the

estimated variance and the mean will not be as simple as given in Eq.(A.1). Figure A.1

depicts the relation between the occupied area fraction η and the variance for a Poisson dis-

tribution and a distribution of homogenous hard disks, following Mohn and Stavem [180].

The variance for randomly distributed hard disks significantly deviates from a Poisson

distribution for area fractions of 5% or more.

Thus, in dense systems conventional ICS analysis leads to a substantial overestimate

of the mean number of particles in a diffraction-limited observation volume. However in

our investigations outlined in chapter 3 of the distribution of IgE receptor microclusters on

RBL cells, the clusters were found to occupy an area fraction of η ∼ 0.30 necessitating the

derivation of the intensity correlation function (c.f.) for homogeneously distributed hard

disks, presented here. Here the area fraction is given as η = ρπR2
c with ρ = 1.145 clusters

per µm2 for a POPC fluid bilayer with 25 mol% DNP-Cap PE (see section 3.3.2) and an

average cluster radius of Rc = 0.3µm (see section 3.2.2 taking into account that the FWHM

gives an estimate for the typical diameter of a receptor cluster).
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Figure A.1: Relationship between variance and occupied area fraction η for a Poisson

distribution and a distribution of homogeneous hard disks, following the free area model

by Mohn and Stavem [180] with a division side width of b = 320 arb. unit and disk radius

r = 2 arb. unit. For high densities of disks the actual variance is less than what is predicted

from the free area model [180]. Taken from Ref. [39].

A.2 Hard disk image correlation spectroscopy

In this section, we derive the c.f. of an image of randomly distributed disks with uniform

intensity obtained from a light microscope image in the presence of diffraction. A flu-

orescence microscope image is mathematically obtained by the convolution of the point

spread function (PSF) with the source distribution, which is the hard disk correlation func-

tion derived in section 5.3. In this case, the c.f. cannot be readily normalized as described

in Eq.(5.11), owing to the potential overlap of the images of the individual disks. We

have therefore chosen to leave the normalization C of the image autocorrelation as a free

(fitting) parameter; the disk size and number density are separate parameters, which will

modify the autocorrelation via the direct c.f., Eq.(5.5).

We approximate the PSF with a Gaussian function [181]. In polar coordinates

PSF(r) = e
− r2

2σ2 , (A.2)
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neglecting normalization. Using the Fourier transform correlation and convolution theo-

rems, it is straightforward to show that the autocorrelation of a convolution of two func-

tions (real or complex) is the convolution of the autocorrelations of each function sepa-

rately. Thus

gPSF(r) = C′gc(r)⋆ [PSF(r)⊗PSF(r)] , (A.3)

where ⋆ represents convolution, ⊗ correlation, and gc(r) is given in Eq.(5.2). The auto-

correlation of the Gaussian PSF given in Eq.(A.2) is

PSF(r)⊗PSF(r) = e
− r2

4σ2 (A.4)

and the convolution in polar coordinates in Eq.(A.3) can be written as

gPSF(r) = C′

∞
Z

0

2π
Z

0

gc(r
′′)exp−

[
r2 +(r′′)2 −2rr′′ cos(θ−θ′)

]

4σ2
dθ′r′′dr′′. (A.5)

In Eq.(A.5), θ can be set to zero due to rotational symmetry and the integral over θ can be

evaluated, giving the hard disk ICS equation

gPSF(r) = C′

∞
Z

0

gc(r
′′)e

−
[r2+(r′′)2]

4σ2 I0

(
rr′′

2σ2

)
r′′dr′′, (A.6)

where I0() is the zeroth order modified Bessel function. C is a scaling constant, which can

be estimated by fitting Eq.(A.6) to the rotationally averaged intensity c.f. of the microscope

image after deleting the gPSF(0) datum (which includes uncorrelated camera shot and read

noise). In general, to determine the number and radius of disk particles, the fit is made

using three parameters C, Rc, and N. The width of the Gaussian, σ, can be estimated from

images of fluorescent beads that are much smaller than the microscope resolution limit, by

fitting the radially averaged intensity c.f. of the bead image to Eq.(A.4).
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A.3 Simulations of typical microscope images

Simulations were used to verify the developed algorithm and compare it to the conven-

tional ICS analysis under different conditions. Test images of randomly distributed non-

overlapping disks with a top-hat intensity profile were created in MATLAB using the DIP-

image toolbox. Each disk, independent of its radius, and point-like particle had a con-

stant integrated intensity of 10000 ADU. All microscope image simulations had an image

size of 640 × 640 pixels. The images were convolved with the Gaussian function given

in Eq.(A.2) with σ = 6 pixel before adding Poisson noise (biult in DIPimage function).

The magnitudes of the parameters were chosen to simulate an image with a pixel size of

∼ 20 nm and a typical Gaussian PSF width of σ ∼ 130 nm. The intensity c.f. of each

microscope test image was calculated by Fourier transform methods and rotationally av-

eraged.

A.4 Accuracy of conventional image correlation

spectroscopy

The purpose of this section is to explore the magnitude of error caused by the application

of conventional ICS analysis to finite-sized particle systems, and to compare the conven-

tional methodology to our more accurate algorithm for computing the intensity correlation

function for distributions of disk-like particles. Such disk-like systems could include small

receptor clusters, or protein complexes in which each subunit is fluorescently labelled. We

also show how to modify the formulae to describe large proteins with a single label in the

following section. The conventional ICS analysis assumes point-like particles and approx-

imates the intensity c.f. by a Gaussian function reflecting the point spread function of the
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microscope optics. Following this ICS methodology [32] the rotationally averaged c.f. is

gICS(r) = gICS(0)e
− r2

4σ2
ICS , (A.7)

where gICS(0) and σICS are fitting parameters and the average number of particles NICS in

the diffraction limited observation volume can be estimated by evaluating

NICS =
imagearea

gICS(0)π4σ2
ICS

. (A.8)

In Eqs. (A.7) and (A.8) the subscript refers to parameters estimated by the conventional

method. In order to compare conventional ICS analysis to the developed hard disk ICS,

microscope test images were simulated for randomly distributed disks of different radii Rc

and area fractions η as outlined in section A.3. To estimate the average number of particles

as well as their size, resulting rotationally averaged intensity c.f.s were fit to conventional

ICS given in Eq.(A.7) and hard disk ICS given in Eq.(A.6). All fits were implemented in

MATLAB; the zero spatial lag gN(0) datum, which includes uncorrelated shot noise, was

discarded.

A.4.1 Sensitivity to detect disk size

Figure A.2A compares the ratio of the Gaussian width obtained from conventional ICS,

σICS, to the actual width σ for different particle radii Rc and three area fractions; η = 0.01

(open circles), η = 0.10 (filled squares), and η = 0.40 (open triangles). In conventional

ICS, data that yield a Gaussian width σICS within 30% of the true value are typically

accepted as a good fit to Eq.(A.7) [32, 33]. This 30% criterion is represented by the

shaded area in Fig. A.2A. According to Fig. A.2A, for area fractions of less than 1%

(η = 0.01), conventional ICS successfully detects disks with a radius larger than 1.5 σ, or

200 nm when imaged with a typical high numerical aperture objective. In other words,

disks of this size give intensity c.f.s that are clearly distinguishable from point particles,

by the 30% criterion. However, for higher densities with area fractions larger than 40%
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Figure A.2: In (A) ratio of σICS obtained form conventional image correlation spec-

troscopy analysis, Eq.(A.7) fitted within a 4 σ radius, to true σ for different disk radii Rc

and three area fractions η. Error bars represent the standard deviation of ten simulations

and the shaded area represents σICS within 30%. Small insets depict typical simulated

microscope images for disks of 0.66 σ in diameter for η = 0.01 (N = 326), η = 0.10

(N = 3259) and η = 0.40 (N = 13038). Data points are offset for visualization purpose.

In (B) rotationally averaged c.f. of image in inset for 204 disks of radius Rc = 2.67σ and

η = 0.40. Hard disk ICS, Eq.(A.6) fitted within a 14 σ radius with fixed σ (black line) and

conventional ICS (grey line). Taken from Ref. [39]. Bar represents 6 σ.

(η = 0.40) this criterion cannot distinguish between point-like particles and disk-like par-

ticles of radius up to 3.0 σ or 400 nm. The deterioration in distinguishability is not sur-

prising, as at these concentrations the images of individual particles begin to overlap sig-

nificantly, owing to diffraction. In contrast, hard disk ICS can estimate any disk radius

independent of area fraction. Figure A.2B shows a typical radially averaged intensity

c.f. of a simulated microscope image (inset in Fig. A.2B) with disks of 2.67 σ in ra-

dius covering 40% of the image area (open circles). The new algorithm fits the c.f. well

(black line) giving a disk radius of Rc = 2.74σ, which is within 3% of the true value. For

comparison, Fig. A.2B also depicts the fit to conventional ICS (grey line) which gives

σICS = 1.1σ. Even though σICS satisfies the 30% criterion, the Gaussian approximation

completely misses the oscillatory decay of the rotational averaged c.f., emphasizing the

need to determine the correct form of the c.f. by the algorithm presented here.
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A.4.2 Sensitivity to estimate disk number

As discussed in the introduction it is well known that conventional ICS overestimates the

average number of disks for moderate area fractions. Figure A.3A depicts the ratio of

the number NFIT obtained from conventional ICS (filled circles) and hard disk ICS (open

diamonds) to the simulated number N for different area fractions η with constant disk

radius Rc = 0.33σ. Even at a small disk size (∼40 nm) conventional ICS significantly

overestimates the real number of disks for area fractions of 5% or more. For area fractions

of 40% or more NICS can be larger by more than an order of magnitude. In contrast hard

disk ICS accurately estimates the average number for all area fractions as shown in Fig.

A.3A (open diamonds) verifying the accuracy of the developed algorithm. For disk radii

significantly smaller than the laser beam radius, both conventional ICS and hard disk ICS

fit the spatial correlation function very well. Figure A.3B depicts typical fits to the intensity

Figure A.3: In (A) ratio of the number NFIT obtained from conventional image correlation

spectroscopy(filled circles, Eq.(A.7)) and hard disk ICS (open diamonds, Eq.(A.6)) to the

simulated number N for different area fractions η with constant disk radius Rc = 0.33σ.

Error bars represent the standard deviation of ten simulations for conventional ICS and

three simulations for hard disk ICS. Data points are offset for visualization purpose. (B)

Autocorrelation function of a simulated image with disk size Rc = 0.33σ and η = 0.40

(N = 13038) compared to conventional ICS (grey line) and hard disk ICS (black line).

Taken from Ref. [39].
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c.f. of a simulated microscope image with disks of radius Rc = 0.33σ covering an area

fraction of 40%. Both conventional ICS (grey line) and hard disk ICS (black line) fit the

intensity c.f. (open circles) very well. However the estimated number from conventional

ICS overestimates the true value by an order of magnitude (Fig. A.3A) whereas hard disk

ICS gives an estimate within 20%.

A.5 Image correlation spectroscopy of large fluorescent

proteins

A.5.1 Single fluorophore at center

The algorithm in Eq.(5.2) with the approximate hard disk pair c.f. γ(r) can be applied to

other isotropic systems, such as large proteins labeled with single fluorophore at the center.

For a disk with a point-like label at its center, the autocorrelation equals the normalized

two dimensional delta function gauto(r) = δ(r)/r. Thus, the intensity c.f. convolved with

the (autocorrelated) microscope PSF for a protein of radius Rc labeled with a single fluo-

rophore at the center is

gPSF(r) = C′



e

− r2

4σ2 +ρ

∞
Z

0

e
−

(r−r′)2,

4σ2 [γ(r′)−1]2r′dr′



 , (A.9)

with γ(r) computed as above, using area fraction η = ρπR2
c . Equation (A.9) can be used

to estimate the radius as well as the number of proteins in the observation volume. Figure

A.4 shows a fit of Eq.(A.9) (solid line) to the intensity c.f. of a simulated image (open

circles) of proteins 1.3 σ in diameter covering an area fraction of 30%. The new algo-

rithm estimates the true number of 2200 as well as protein size within 5%. In contrast

conventional ICS (fit not shown) overestimates the true value by a factor of five.
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Figure A.4: Rotationally averaged intensity correlation function of a simulated micro-

scope image (inset with σ = 6 pixel) of 2200 proteins 1.3 σ in diameter labeled with a

single fluorophore at the center (open circles) compared to the theoretical intensity corre-

lation function given by Eq.(A.9) (solid line) for w = 600 pixel and η = 0.30. Taken from

Ref. [39]. Bar represents 6 σ.

A.5.2 Fluorophores forming a radially symmetric ring

Another geometry for which the hard disk pair correlation function can be applied is a

random distribution of hard rings. Such a geometry might be appropriate to describe, for

example, certain multisubunit channels or receptors in which each subunit is labeled. From

geometry ,one can derive the normalized autocorrelation for a ring gauto,ring of inner radius

R1 and outer radius R2 as follows.

First, the autocorrelation function can be derived from geometrical considerations and
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for 2R1 ≤ (R2 −R1) the c.f. can be written as

gauto,ring(r;R1,R2)

= 1

(R2
2−R2

1)





R2
2 −R2

1, r = 0

R2
2gauto(r;R2)−R2

1gauto(r;R1)−2R2
1 [1−gauto(r;R1)] , 0 < r < 2R1

R2
2gauto(r;R2)−2R2

1, 2R1 ≤ r ≤ (R2 −R1)

R2
2gauto(r;R2)−2R2

1gcross(r), (R2 −R1) < r < (R2 +R1)

R2
2gauto(r;R2), (R2 +R1) ≤ r < 2R2

0, otherwise

(A.10)

and for (R2 −R1) ≤ 2R2 one obtains

gauto,ring(r;R1,R2)

= 1

(R2
2−R2

1)





R2
2 −R2

1,r = 0

R2
2gauto(r;R2)−R2

1gauto(r;R1)−2R2
1 [1−gauto(r;R1)] ,

0 < r ≤ (R2 −R1)

R2
2gauto(r;R2)−R2

1gauto(r;R1)−2R2
1 [gcross(r)−gauto(r;R1)] ,

(R2 −R1) < r < 2R1

R2
2gauto(r;R2)−2R2

1gcross(r), 2R1 ≤ r < (R2 +R1)

R2
2gauto(r;R2), (R2 +R1) ≤ r < 2R2

0, otherwise

(A.11)

In Eqns. (A.10) or (A.10) gauto is given in Eq.(5.3) and from geometry the normalized

intensity crosscorrelation function gcross of two disks of radius R1 and R2 (R1 6= R2) is

gcross(r) =





1, 0 ≤ r ≤ (R2 −R1)
θR2

2

πR2
1

+ φ
π − z(r;R1,R2), (R2 −R1) < r < (R2 +R1)

0, otherwise

(A.12)

230



Appendix A. Image Correlation Spectroscopy of Randomly Distributed Disks

with

z(r;R1,R2) =





hr

πR2
1

, φ < 90

R2
2

πR2
1

cos(θ)sin(θ), φ = 90

R2
2

πR2
1

cos(θ)sin(θ)−
h
√

R2
1−h2

πR2
1

, otherwise

(A.13)

where h = R2 sin(θ) = R1 sin(φ), θ = cos−1
(

R2
2+r2−R2

1
2R2r

)
, and φ = cos−1

(
R2

1+r2−R2
2

2R1r

)
. Equa-

tions (A.10) or (A.11) can be substituted into Eq.(5.2) instead of the normalized intensity

c.f. of a disk, Eq.(5.3), to obtain the rotationally averaged c.f. of randomly distributed

hard rings with a uniform intensity profile, gring(r), where the area fraction is defined as

η = ρπR2
2 in Eq.(5.5). To estimate the number of rings in a given observation volume one

has to compute the appropriate scaling constant. Following Eq.(3.1) the scaling constant

is given as

Cring =

[
x2

Nπ(R2
2 −R2

1)
−1

]
1

gring(0;R1,R2)
(A.14)

and the un-normalized rotationally averaged intensity c.f. for hard rings can be computed

by evaluating

gN,ring(r) =

[
x2

Nπ(R2
2 −R2

1)
−1

]
gring(r;R1,R2)

gring(0;R1,R2)
. (A.15)

Equation (A.15) was verified by simulating a test image (inset in Fig. A.5A) of rings with

inner radius R1 = 5 pixel and outer radius R2 = 10 pixel, w = 600 pixel, η = 0.30. These

parameters were used to compute the theoretical intensity c.f. for hard rings. Figure A.5A

shows that the theoretical c.f. (solid line) fits the simulated data (open circles) quite well

verifying that the presented algorithm can also be applied to distributions of hard rings as

expected. Following the presented algorithm one can obtain an expression for hard ring

ICS by convolving Eq.(A.10) or Eq.(A.11) with the autocorrelation of the Gaussian PSF:

gPSF(r) = C′

∞
Z

0

gring(r
′′)e

−
[r2+(r′′)2]

4σ2 I0

(
rr′′

2σ2

)
r′′dr′′. (A.16)
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Figure A.5: (A) Rotationally averaged spatial correlation function of a simulated distri-

bution (inset) of 350 homogeneous hard rings (open circles) compared to the theoretical

intensity correlation function given by Eq.(A.15) (solid line) for R1 = 5 pixel, R2 = 10

pixel, w = 600 pixel, and η = 0.30. Bar represents 36 pixel. (B) Best fit of Eq.(A.15)

(solid line) to the intensity c.f. (open circles) of a simulated microscope image (inset).

Simulation parameters are the same as in (A) with σ = 6 pixel. Taken from Ref. [39]. Bar

represents 6 σ.

C′ is a scaling constant which can be estimated by fitting Eq.(A.16) to the rotationally

averaged intensity c.f. of a microscope image after deleting the gPSF(0) datum. Figure

A.5B shows the best fit (solid line) to the intensity c.f. (open circles) of a simulated

microscope image (inset). Hard ring ICS fits the intensity c.f. of the blurred image very

well even though one cannot distinguish between disks or rings by eye. Hard ring ICS

estimates the true number of rings within 5%. The estimate of the inner radius R1 is

0.78 σ and of the outer radius R2 is 1.66 σ. Both values are within 10%.

A.5.3 Single fluorophore placed off-center

In this section, we outline a procedure suitable for large proteins, each with a single,

off-center label at the same distance from the protein center. In this case, the different

roles for gauto in Eq.(5.2) must be explicitly considered. The term outside the integral

is the pure autocorrelation, which is a delta function for a point label, gauto(r) = δ(r)/r.
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The term inside the integral is an effective crosscorrelation, which is to be averaged over

all orientations. The orientationally averaged crosscorrelation of two off-center labels is

the same as the crosscorrelation of two infinitesimally thin annular rings, which can be

calculated exactly, giving a simple form.

The c.f. for two infinitely narrow rings each of radius R is obtained by writing each

ring as a delta function and calculating the overlap integral. With one ring centered at the

origin and the other at r, the correlation is

gauto,δ−ring(r) =

∞
Z

0

2π
Z

0

1

4π2(r′)2
δ(r′−R)δ(r′− [r2 +R2 +2rRcosθ′]1/2)r′dr′dθ′, (A.17)

where the prefactors are normalizations for the delta functions, and the law of cosines was

used. (θ′ is the angle between the point of interest in the plane and the line between ring

centers.) The integral over r′ is carried out by applying the first delta; to compute the

integral over θ′, the second delta is treated as a function of θ′. Then

δ( f (θ′)) = ∑
θ′0

δ(θ−θ′0)

| f ′(θ′0)|
, (A.18)

where the summation is taken over the zeroes of f , where θ = θ′0. When the rings overlap,

there will be two zeroes of f , corresponding to the two points of overlap and Eq.(A.18)

becomes

gauto,δ−ring(r) =





1
2π2R

1
r sinθ′0

,0 < r < 2R

0, otherwise
(A.19)

From geometry, sin(θ′0) = [1− r2/(4R2)]1/2, completing the derivation.

We note, however, that the accuracy of the model depends on having a sufficiently large

population that all relative angular orientations of the proteins occur with approximately

equal frequency; no such requirement exists for rotationally symmetric rings or disks.

Therefore, extracting parameters such as the protein diameter and label location for singly-

labelled proteins from ICS is likely to be experimentally demanding.
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A.5.4 General formalism

Following the steps outlined here, one can derive the analytical intensity c.f. for any

probe geometry, interaction potential, and fluorophore distribution from Eq.(5.1). For

example, for any given interaction potential V (r) the Ornstein-Zernike equation, Eq.(5.4),

is solved by applying the following closure relation which relates h(r) and c(r) to the pair

correlation function [103, 182]

γ(r) = e
−

V (r)
kBT eh(r)−c(r)+b(r), (A.20)

where kB is the Boltzmanns constant, T the temperature, and b(r) the bridge function

(which is typically neglected). To obtain the intensity c.f. of hard disks, b(r) is set to zero

and the Percus-Yevick approximation (which expands the second exponential to linear

order) and a hard-core potential were applied. For a review on different closure relations

and potential models the reader is referred to Li et al. [103] and references therein.

Throughout this work, we have assumed that all particles are identical and that the dis-

tribution of fluorescent sources within a particle is known. In the case of identical particles,

that distribution may sometimes be determined from external knowledge: for example, a

large protein may be engineered with a single, genetically encoded fluorophore at a posi-

tion known from crystal structure. In the case of an annular protein complex, it may be

known that every subunit is labeled. (In the case of protein complexes or clusters, we note

that the random absence of labels from some subunits will not affect the form of the im-

age autocorrelation, merely its amplitude.) If the label distribution is unknown, it may be

possible to determine it from control experiments on dilute proteins, using deconvolution

algorithms as outlined in Refs. [183] and [184] and references therein.

Lastly, it is important to recognize that, although (random) variations in labeling do not

affect the validity of the results, variations in the underlying structural elements would. To

allow for such variation, one must use a modified pair correlation function that appropro-

priately weights the different species.
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A.6 Concluding Remarks

The analytical intensity correlation function for hard disks was first derived in section 5.3,

using geometric considerations and the pair correlation function, as determined via the

Ornstein-Zernike equation. Though not simply expressible, the correlation function, con-

volved with the microscope PSF autocorrelation, is readily implementable in computer-

based fitting algorithms. It extends the conventional ICS analysis, which assumes point-

like particles, to disk-like particles of uniform fluorescence intensity. We call this analysis

hard disk ICS. The hard disk pair correlation function is readily applied to describe ICS

of large proteins, with labels on center, and hard rings. We have simulated microscope

images and compared the new semianalytical algorithm to the conventional method under

different conditions. The results show that for large area fractions conventional ICS fails to

detect disks significantly smaller than the laser beam radius. Moreover, conventional ICS

significantly overestimates the average number of disks for area fractions of 5% or more

which is equivalent to a density of 10 large proteins (i.e. 80 nm in diameter) per µm2. In

contrast hard disk ICS accurately estimates the number and size of disks in an image for

any area fraction and should therefore be applied to distributions of disk-like objects and

high particle densities in which excluded area effects occur.
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Common Laplace transforms in

reaction-diffusion systems

In this appendix, we list common Laplace transforms, which are used to solve reaction-

diffusion systems, in table B.1. Most of these transforms are directly taken from

Ref. [133]. Moreover, some of the Laplace transforms used in this dissertation were ob-

tained by applying the well known shifting theorem

exp[−b2t] f (t) → g̃(ε+b2) and

1

ε
g̃(ε) →

t
Z

0

f (u)du.

Here, and in the dissertation, g̃ denotes the Laplace transform and ε the Laplace variable.

Table B.1: Common Laplace transforms to solve reaction-diffusion systems.

f (t) g̃(ε)

Im(2Ft)exp(−2Ft) (2F)m/
[
(ε2 +2F)2 − (2F)2

]−1/2

×
(2F)m

[
ε+2F+

√
(ε2+2F)

2
−(2F)2

]m

Continued on next page
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Table B.1 – continued from previous page

f (t) g̃(ε)

I0 (at)+ I1 (at) 1
a

[√
ε+a√
ε−a

−1
]

p [I0 (pt)+ I1 (pt)]+δ(t)
√

ε+p
√

ε−p

Ia (pt) pa

√
ε2−p2

[
ε+
√

ε2−p2
]a

e−Ct + p
t

R

0

e−C
√

t2−w2
I1 (w)dw 1

C+
√

ε2−p2

a
t
Ia (pt)

[
ε−
√

ε2−p2

p

]a

1/
√

t
√

π/ε

1/
√

te−a/t
√

π/εe−2
√

aε

er f
( √

b

2
√

t

)
1
ε

[
1− e−

√
bε
]

er f
(

a√
t

)
− e2ab+b2ter f c

(
a√
t
+b

√
t
)

e−2a
√

ε

ε(1+
√

ε/b)

1+
(
2a2t −1

)
ea2ter f c

(
a
√

t
)
− 2a√

π

√
t a2

ε(
√

ε+a)
2

(1−e−t)
ν

(1−ce−t)µ B(ε,ν+1) 2F1(µ,ε;ε+ν+1;c)
√

γ
2πD

1√
exp(2γt)−1

√
γ

ε
√

2D

Γ
(

ε
2γ +1

)

Γ
(

ε
2γ +

1
2

)

(et −1)ν−1
e
− a

exp(t)−1 a
ν−1

2 e
a
2 Γ(ε−ν+1) Wν−1

2 −ε, ν
2
(a)

√
γ

2πD

exp(γt)√
exp(2γt)−1

exp
[
−

γx2
0/(2D)

exp(2γt)−1

] √
1

8πγD

(
x2

0γ
2D

)−1/4

e
x2
0

γ

4D Γ
(

ε
2γ

)

×W1
4−

ε
2γ ,

1
4

(
x2

0γ
2D

)

(
eaµ/2 − etµ

)
e

[
−a/2

exp(t)−1

]

Wµ,ν

(
a

exp(t)−1

)
Γ(ε+1/2+ν)Γ(ε+1/2−ν)

Γ(ε′+1−µ) W (−ε,ν,a)

er f
( √

A
exp(2γt)−1

)
1
ε −A−1/4 exp(A/2)/

[
2γ
√

π
]

×
Γ(ε′+1/4)Γ

(
1− ε

2γ

)

Γ
(

1.5− ε
2γ

) W ε
2γ−

1
4 , 1

4
(A)

1− exp[−t/a] 1/(aε2 + ε)

exp(−t/a)/a 1/(aε+1)

Continued on next page

237



Appendix B. Common Laplace transforms in reaction-diffusion systems

Table B.1 – continued from previous page

f (t) g̃(ε)

1
4πDt

e−ε0/(2t)I0 [ε0/(2t)] 1
2πD

K0

(√
ε
ε0

)
I0

(√
ε
ε0

)

1
4πDt

e−(ε0+γ0)/(4t)I0 [ε0γ0/(2Dt)] 1
2πD

K0

(√
ε
γ0

)
I0

(√
ε
ε0

)

er f c
(

a√
t

)
− e2ab+b2ter f c

(
a√
t
+b

√
t
)

bexp(−2a
√

ε)/
[
ε
(
b+

√
ε
)]

exp(−a/t)sinh(a/t) 1/(2ε)−
√

2a/ε K1(
√

8aε)

exp(−a/t)sinh(b/t), a > b
√

(a−b)/ε K1[2
√

(a−b)ε]

−
√

(a+b)/ε K1[2
√

(a+b)ε]

1/t3/2 exp(−b/t)I0 (b/t)
∞
R

ε
du
√

π
u

[
I0

(√
8bu
)
−L0

(√
8bu
)]

1/t3/2 exp(−a/t)
√

π/a exp(−2
√

aε)

δ(t −a) e−aε

tν Γ(ν+1)
εν+1

e−a/t 2
√

a
ε K1[2

√
aε]

1/
√

t exp(−a/t)
√

π/ε exp(−2
√

aε)

− a

2t3/2
√

π

n=∞

∑
n=−∞

(−1)n(2n−1)exp
[
−a2

2t
(2n−1)2

]
1/
[
cosh

(
a
√

ε
)]

−1
2

n=∞

∑
n=−∞

(−1)ne−ab(2n−1) 1/
[
εcosh

(
a
√

ε+b2
)]

×
[
e2ab(2n−1)er f c

(
a(2n−1)

2
√

t
+b

√
t
)

+ er f c
(

a(2n−1)

2
√

t
−b

√
t
)]

1−
n=∞

∑
n=−∞

(−1)n
{

er f
[

a(2n+1)+ν

2
√

t

]
− er f

[
an√

t

]}
cosh

(
ν
√

ε
)
/
[
εcosh

(
a
√

ε
)]

Here Eγ = 0.5772... is the Euler’s constant and further function definitions can be found

in table B.2.
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Table B.2: Function definitions for table B.1.

Formula Function name

Iν(x) =
∞

∑
n=0

(x/2)ν+2n/ [n!Γ(ν+n+1)] Modified Bessel function

2/
√

π
x

R

0

exp(−u2)du Error function

2/
√

π
∞
R

x

exp(−u2)du Complementary error function

Γ(x) Gamma function

B(a,b) = Γ(a)Γ(b)/Γ(a+b) Beta function

2F1(a,b;c,1) = Γ(c)Γ(c−a−b)/ [Γ(c−a)Γ(c−b)] Gauss’s hypergeometric function

U(a,b,z) = z−a
2F0(a,1+a−b; ;−z−1) Confluent hypergeometric function

Wa,b(z) = exp(−z/2)zb+1/2U(−a+b+1/2,2b+1,z) Whittaker W-function

Lν(z) = exp[−(ν+1)πi/2]
∞

∑
n=0

(−1)n

Γ(n+3/2)Γ(ν+n+3/2) Struve function

×
[

z
2

exp(πi/2)
]ν+2n+1
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Appendix C

Numerical Laplace transform

C.1 Introduction

In this part of the appendix, we discuss numerical Laplace transform algorithms.

The main idea behind the Laplace transformation is that we can solve an equation

(or system of equations) containing differential and integral terms by transforming the

equation in time (t) domain into Laplace (ε) domain. For example, Laplace transforms

are used to turn an initial value problem into an algebraic problem which is easier to

solve. After the problem is solved in Laplace domain one finds the inverse transform of

the solution and hence solved the initial value problem. The Laplace transform of f (t) is

f̃ (ε) =

∞
Z

0

e−εt f (t)dt, (C.1)

where ε is a complex variable known as the Laplace variable. The inverse integral is

defined as the Bromwich contour integral (ε → γ+ i∞)

f (t) =
1

2πi

γ+i∞
Z

γ−i∞

eεt f̃ (ε)dε, (C.2)
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Appendix C. Numerical Laplace transform

where γ is chosen so the all singular points of f̃ (ε) lie to the left of the line R e(ε) = γ in

the complex ε-plane. In simple cases, the inverse transform can be found via analytical

methods or with the help of tables. One can also compute the Laplace transform by evalua-

tion of the complex integral of inverse transformation. Unfortunately, it is not always easy

to find the inverts. One possible reason is that the inverse is not a named function or can

not be represented by a simple formula. Moreover, if the Laplace transform is computable

or measurable on the real and positive axis only the problem is ill-posed. Two time domain

functions which differ at a single point in time for example will have the same transform.

This case is very complicated simply because of absence of the exact inversion formula.

In these cases a numerical method must be used. There are several numerical algorithms

in literature and each individual method has its own applications and is suitable for a par-

ticular type of function [185]. The numerical inversion of f (t) depends on the sensitivity

of the inversion procedure. Algorithmic and finite precision errors (i.e. increasing round

off error for large numbers) can lead to exponential divergence of numerical solutions i.e.

Eq.(C.2) includes a potentially increasing large exponent eεt . In the this section we will

briefly introduce the Fourier Series expansion and the Gaver-Stehfest method as well as

show for which functions the Gaver-Stehfest can be applied.

C.2 Fourier Series Expansion

This method is based on the Bromwich contour inversion integral, which can be expressed

as the integral of a real valued function of a real variable by choosing a specific contour.

One first converts the inversion integral into the Fourier transform and then approximates

the transform by a Fourier series (use trapezoidal rule) with a specific discretization error.

As outlined in Ref. [186] the method utilizes the standard Bromwich contour ε → γ + iω
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(choose a specific contour) to rewrite the Laplace transform integral given in Eq.(C.2) as

f (t) =
eγt

2π

∞
Z

∞

eiωt f̃ (γ+ iω)dω, (C.3)

which is in the form of a Fourier transform. We can even go further and rewrite eiωt in

Eq.(C.3) to obtain

f (t) =
eγt

2π

∞
Z

∞

[cos(ωt)+ isin(ωt)] f̃ (γ+ iω)dω. (C.4)

This equation can then be rewritten in real and imaginary parts

f (t) =
eγt

2π

∞
Z

∞

[
R e
{

f̃ (γ+ iω)
}

cos(ωt)− I m
{

f̃ (γ+ iω)
}

sin(ωt)
]
dω. (C.5)

With the assumption that f (t) is non-negative, f (−t) = 0 for t > 0, and R e( f̃ ) is even and

I m( f̃ ) is odd we are only interested in the real part and we may write

f (t) =
2eγt

π

∞
Z

0

Re
{

f̃ (γ+ iω)
}

cos(ωt)dω. (C.6)

Equation (C.6) can now be approximated by the trapezoidal rule

b
Z

a

f (x)dx ≈
b−a

n

(
f (a)+ f (b)

2

)
+

n−1

∑
k=1

f

(
a+ k

b−a

n

)

with a step size h = (b−a)/n:

f (t) ≈
heγt

π
Re
{

f̃ (γ+ iω)
}

+
2heγt

π

∞

∑
k=1

Re
{

f̃ (γ+ ikh)
}

cos(kht) , (C.7)

and can be further simplified if h = π/(2t) and γ = A/(2t) and written as a nearly alternat-

ing series

f (t) ≈
eA/2

2t
Re

{
f̃

(
A

2t

)}
+

eA/2

t

∞

∑
k=1

(−1)k
Re

{
f̃

(
A+2kπi

2t

)}
. (C.8)

Equation (C.8) can now be computed numerically by summing over a finite number of k. A

and k are parameters which must be optimized for increasing accuracy. This method turns

out to be very accurate. The disadvantage of this method is that it is difficult to implement

and requires a large computation time [187] (i.e. sum over many terms).
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C.3 Gaver-Stehfest Method

Another method requires sampling of the Laplace space function f̃ (ε) only on the real line

and is discussed in detail in Refs. [188, 189]. Similarly to the Fourier Method, Eq.(C.2)

has to be transformed by defining a new complex variable z = εt rewriting Eq.(C.2) as:

f (t) =
1

2πit

Z

C′

f̃
(z

t

)
ezdz, (C.9)

where C′ is the same contour as in Eq.(C.2). Next exp(z) is approximated by a rational

function

ez ≈
n

∑
k=0

ωk

αk − z
,

where ωk and αk are complex numbers and called weights and nodes respectively. Using

this approximation and applying the Cauchy integral formula one obtains

f (t) ≈
1

t

n

∑
k=0

ωk f̃
(αk

t

)
. (C.10)

Equation (C.10) approximates the inverse Laplace transform by a linear combination of

transform values. The nodes and weights are complex numbers typically depend upon n.

Since the weights are initially left unspecified it is typically called a framework rather than

algorithm. Hence, Eq.(C.10) is referred to as Unified Framework for Numerical Laplace

Inversion [188] since many different algorithms can be put into this framework including

the Fourier method for which the nodes are complex values, Eq.(C.8) [188].

The Gaver-Stehfest method considers the case in which f (t) is real-valued and the

weights and nodes are real which leads to very accurate result for functions of type

exp(−αt). Stehfest’s algorithm is based on a probabilistic derivation [189] and approxi-

mates the time domain solution using the following equation [185, 189]

f (t) ≈
ln(2)

t

2M

∑
k=1

ωk f̃

(
k ln(2)

t

)
, (C.11)
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with the weights

ωk = (−1)M+k
min(k,M)

∑
j=⌊(k+1)/2⌋

jM+1

M!


 M

j




 2 j

j




 j

k− j


 (C.12)

where ⌊x⌋ being the greatest integer or less than or equal to x. Equation (C.11) with

weights computed from the above equation is implemented in MATLAB using double

precision, which restricts M to be less than 7. Hence, the Gaver-Stehfest method only

evaluates the function at real and positive values of the Laplace variable ε and sums a

total of fourteen (2M) terms. This method is easy to implement and very accurate for

functions of type exp(−αt) as shown in Fig. C.1A. Since the functional form of the particle

survival probability Q is of this type, e.g. Q goes as er f (1/
√

t) in Fig. C.1B, we chose the

Gaver-Stehfest inversion algorithm for numerical Laplace inversions implemented in this

dissertation. For functions with oscillatory behavior in time domain, the Gaver-Stehfest

algorithm fails and only for short time one obtains a good approximation, Fig. C.1C. The

implemented MATLAB code of the Gaver-Stehfest algorithm is given in section C.3.1.

Figure C.1: Numerical Laplace inversion (open circles) compared to exact analytic so-

lution (solid line) for (A) f (t) = exp(−αt), f̃ (ε) = 1/(ε + 1), (B) f (t) = er f (1/
√

4t),

f̃ (ε) = [1− exp(−
√

ε)]/ε, and (C) f (t) = sin(t), f̃ (ε) = 1/(ε2 +1).
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C.3.1 MATLAB code

% Approximate numerical Laplace inversion based on the Gaver-Stehfest algorithm [188]

% implementing Eqs.(C.11) and (C.12).

%%%% Begin of MATLAB code

close all

clear all

time = linspace(0.01,10,100);

%%%% input function for numerical inversion, where s=ε

% lapfunc = @(s) 1./(s+1);

% lapfunc = @(s) (1-exp(-sqrt(s)))./s;

lapfunc = @(s) 1./(s.∧2+1);

%%%% input analytical function in time domain, only for comparison (if known)

% func = @(t) exp(-t);

% func = @(t) erf(1./sqrt(4*t));

func= @(t) sin(t);

%%%% Compute weights and nodes

M = 7;

k = linspace(1,2∗M,2∗M);

for i = 1:2∗M

Xi(i) = xi(i,M); %Eq.(C.12)

end

for n=1:length(time) %Eq (C.11)

invlap(n) = log(2)/time(n)∗sum(Xi.∗lapfunc(k∗log(2)/time(n)));

end

%%%% plot

plot(time,invlap,’ko’,’LineWidth’,1)

hold on
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plot(time,func(time),’r’,’LineWidth’,2)

hold off

xlabel(’t’,’FontSize’,20)

ylabel(’f(t)’,’FontSize’,20)

legend(’numerical’,’analytical’)

%%%% sub-function to compute weights, Eq.(C.12

function [su] = xi(k,M)

j = floor((k+1)/2);

uplim = min([k,M]);

j = linspace(j,uplim,uplim-j+1);

n = 1;

for m=min(j):max(j)

arg(n) = log(j(n)∧(M+1)/factorial(M)) + log(nchoosek(M,j(n)))

+ log(nchoosek(2∗j(n),j(n))) + log(nchoosek(j(n),k-j(n))); n = n+1;

end

su = (-1)∧(M+k)∗sum(exp(arg));
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Validation of general prescription for

any initial distribution

In this part of the appendix we validate the general prescription for dQ/dt in

one-dimensions obtained in chapter 7 section 7.5.3. This prescription allows us to calcu-

late the particle survival probability for any initial distribution of non-interacting particles

which diffuse in the presence of a single stationary trap at the origin. In the remainder of

this appendix, we evaluate the following prescription

dQ(t)

dt
= −

C

4
√

π
(Dt)−3/2

∞
Z

0

xe−
x2

4Dt h(x)dx, (D.1)

given

h(x) =

x
Z

0

ρ(x− x0)e−px0dx0, (D.2)

where ρ(x0) is the initial distribution, which is taken to be a localized initial condition.
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D.1 Initial point particle

In this section, the above general prescription is used to compute Q(t) for an initial local-

ized distribution, ρ(x0) = δ(x0 − x1). We start with the expression

h(t) =

x
Z

0

ρ
(
x− x′

)
e−px′dx′ (D.3)

and substitute y = x− x′ to write

h(x) = e−px

x
Z

0

ρ(y)epydy. (D.4)

Now if we set ρ(y) = δ(y− x1) and compute h(x) we obtain for x1 = x0

h(x) = e−pxepx0Θ(x− x0) , (D.5)

where Θ is the Heaviside step function. Substituting Eq.(D.5) into Eq.(D.1), we are left to

evaluate

dQ(t)

dt
= −

C

4
√

π
(Dt)−3/2

exp(px0)

∞
Z

x0

xe−
x2

4Dt e−pxdx. (D.6)

D.1.1 Details of calculation

Since the evaluation of Eq.(D.6) was rather tedious, the goal in this subsection is to outline

the main steps in the calculation.

To evaluate Eq.(D.6), the integral property
∞
R

x0

=
∞
R

0

−
x0
R

0

was used. From Ref. [135] we

know that

∞
Z

0

xe−µx2−2νxdx =
1

2µ
−

ν

2µ

√
π

µ
e

ν2

µ

[
1− er f

(
ν
√

µ

)]
,
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setting µ = 1/(4Dt) and ν = p/2, we obtain the result to one of the two integrals

∞
Z

0

xe−
x2

4Dt −pxdx = 2Dt −2p
√

π(Dt)3/2
ep2Dt

[
1− er f

(
p
√

Dt
)]

. (D.7)

The second integral was obtained by integration by parts

b
Z

a

u
dv

dx
dx = uv|ba −

b
Z

a

du

dx
vdx,

where u = x and dv/(dx) = exp(−x2/(4Dt)− px. v(x) is obtained from Ref. [135], where

Z

e
− x2

4β
−γx

dx =
√

πβeβγ2

er f

(
γ
√

β+
u

2
√

β

)

and sfter setting β = Dt and γ = p,

x0
Z

0

e−
x2

4Dt −pxxdx = x0

√
π(Dt)1/2

ep2Dter f

(
x0

2
√

Dt
+ p

√
Dt

)

−
√

π(Dt)1/2
ep2Dt

x0
Z

0

er f

(
x0

2
√

Dt
+ p

√
Dt

)
dx. (D.8)

Since
R

er f (z)dz = z er f (z)+ 1√
π

exp(−z2), the above expression becomes

x0
Z

0

er f

(
x0

2
√

Dt
+ p

√
Dt

)
dx =

√
4Dt

[(
x0

2
√

Dt
+ p

√
Dt

)
er f

(
x0

2
√

Dt
+ p

√
Dt

)]

− 2(Dt)1/2

[
−1
√

π
e−

x2
0

4Dt −p2Dt−x0 p + p
√

Dter f
(

p
√

Dt
)

+
1
√

π
e−p2Dt

]
. (D.9)

Now, if Eq.(D.9) is substituted into Eq.(D.8) and subtracted from Eq.(D.7), many terms

cancel and we were able to evaluate

∞
Z

x0

xe−
x2

4Dt −pxdx =

∞
Z

0

xe−
x2

4Dt −pxdx−

x0
Z

0

xe−
x2

4Dt −pxdx,
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as

∞
Z

x0

xe−
x2

4Dt −pxdx = 2Dte−
x2
0

4Dt −px0 −2p
√

π(Dt)3/2
ep2Dter f c

(
x0

2
√

Dt
+ p

√
Dt

)
. (D.10)

Next, substituting the above expressions into Eq.(D.6) gives

dQ

dt
=

1

ξ2τ
e

1
ξ
+ 1

ξ2
t
τ er f c

( √
τ

2
√

t
+

1

ξ

√
t

τ

)
−

1
√

πξ
√

τt
e−

τ
4t , (D.11)

where τ = x2
0/D is a motion time and ξ = 2D/(Cx0) describes the capture process.

D.2 Comparison to the rate of disappearance

After obtaining an expression for the rate of disappearance by applying a general pre-

scription, we are left to validate the result. We have previously calculated the survival

probability for imperfect absorption given in Eq.(7.40)

Q(t) = er f

(
1

2

√
τ

t

)
+ e

1
ξ
+ 1

ξ2 (
t
τ)er f c

(
1

2

√
τ

t
+

1

ξ

√
t

τ

)

from which we can directly obtain dQ/(dt). Since d
dz

er f (z) = 2/
√

πexp(−z2), we can

write

d

dt
er f

( √
τ

2
√

t

)
=

√
τ

2
√

πt3/2
e−

τ
4t ,

as well as

d

dt
er f

( √
τ

2
√

t
+

1

ξ

√
t

τ

)
=

2
√

π
e
−
(

1
ξ
+ 1

ξ2
t
τ + τ

4t

)(
1

2ξ
√

τt
−

√
τ

4t3/2

)
.

Next using d/(dz)er f c(z) = −d/(dz)er f (z) we obtain

d

dt
er f c

( √
τ

2
√

t
+

1

ξ

√
t

τ

)
=

2
√

π
e
−
(

1
ξ
+ 1

ξ2
t
τ + τ

4t

)( √
τ

4t3/2
−

1

2ξ
√

τt

)
.
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and after substituting all the above terms, the rate of change of the particle survival proba-

bility is given as

dQ

dt
=

1

ξ2τ
e

1
ξ
+ 1

ξ2
t
τ er f c

( √
τ

2
√

t
+

1

ξ

√
t

τ

)
−

1
√

πξ
√

τt
e−

τ
4t , (D.12)

which is the same expression as Eq.(D.11) obtained through our prescription. This con-

cludes the validation.
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The Crank-Nicolson method

As outlined in chapter 8, specifically section 8.5, the problem of two moving boundaries

described by a diffusion equation can be solved by applying a boundary fixing transfor-

mation. For two boundaries with explicitly assigned time dependence at x = S(t) and

x = R(t), Eq.(8.20) can be written as

∂U

∂t
=

D

[R(t)−S(t)]2
∂2U

∂z2
+

∂z

∂t

∂U

∂z
, (E.1)

where

z =
x−S(t)

R(t)−S(t)
. (E.2)

is a time dependent scaling factor [119]. This transformation fixes the boundaries at z = 0

and z = 1 for all times with boundary conditions U(z = 0, t) = 0, U(z = 1, t) = 0 and

initial condition U(z0,0) = δ(z − z0) where 0 < z0 < 1. We solved for U [z(x, t), t] by

implementing the Crank-Nicolson algorithm [170] in MATLAB. The survival probability

Q(t) is obtained by integrating U [z(x, t), t] over z from 0 to 1.

The Crank-Nicolson algorithm is based on a central difference scheme in space, and

the trapezoidal rule in time, giving second-order convergence in time

∂u

∂t
= F

(
u,x, t,

∂u

∂x
,
∂2u

∂x2

)
(E.3)
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letting u = u(i∆x,k∆t). This method is an implicit method: to get the next value of u

in time, a system of algebraic equations must be solved. Hence, advancing in time in-

volves the solution of a system of nonlinear algebraic equations. For linear diffusion, the

algebraic problem is tridiagonal and may be efficiently solved with the tridiagonal matrix

algorithm, which gives a fast direct solution. Following Crank-Nicolson we can write each

differential term in Eq.(E.1) as

∂U

∂t
=

uk+1
i −uk

i

∆t
,

∂U

∂z
=

uk+1
i+1 −uk+1

i−1

4∆z
+

uk
i+1 −uk

i−1

4∆z
,

∂2U

∂z2
=

uk+1
i+1 −2uk+1

i +uk+1
i−1

2∆z2
+

uk
i+1 −2uk

i +uk
i−1

2∆z2
,

(E.4)

with time and space dependent constants

a(z, t) =
∂z

∂t
,

b(z, t) =
D

[R(t)−S(t)]2
. (E.5)

The constants have to be discretized for each term step i.e. for k∆t terms, a(z, t)→ a(zi, tk)

and for (k + 1)∆t terms, a(z, t) → a(zi, tk+1). Substituting the above expressions into

Eq.(E.1) one obtains

uk+1
i −uk

i

∆t
= b(zi, tk+1)

uk+1
i+1 −2uk+1

i +uk+1
i−1

2∆z2
+b(zi, tk)

uk
i+1 −2uk

i +uk
i−1

2∆z2

+ a(zi, tk+1)
uk+1

i+1 −uk+1
i−1

4∆z
+a(zi, tk)

uk
i+1 −uk

i−1

4∆z
. (E.6)
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After defining the following parameters

α1 =
a(zi, tk+1)∆t

4∆z
,

α2 =
a(zi, tk)∆t

4∆z
,

β1 =
b(zi, tk+1)∆t

2∆z2
,

β2 =
b(zi, tk)∆t

2∆z2
, (E.7)

and collecting all k terms on the left-hand side and all k + 1 terms on the right-hand side

of Eq.(E.6) one obtains

uk+1
i (1+2β1)−uk+1

i+1 (β1 +α1)−uk+1
i−1 (β1 −α1) = uk

i (1−2β2)+uk
i+1 (β2 +α2)

+ uk
i−1 (β2 −α2) . (E.8)

To implement the Crank-Nicolson algorithm numerically a matrix A describing the left-

hand side and a matrix B representing the right-hand side of Eq.(E.8) are defined resulting

in

A(i,k +1)T k+1 = B(i,k)T k. (E.9)

Once the boundary conditions are added to these matrices, Eq.(E.8) can be solved numer-

ically for the unknown quantity T k+1

T k+1 = A(i,k +1)−1B(i,k)T k. (E.10)

Since inverting a matrix is computationally expensive, the Gauss elimination method was

used and the algorithm was implemented in MATLAB. To test the accuracy of the Crank-

Nicolson algorithm, the numerical algorithm was compared to the linearly receding bound-

ary problem with a diffusing particle starting at x0 = 0 for which the exact solution is

known, Eq(8.42). For this specific problem the time dependent boundary motion is given
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Figure E.1: Comparison of numerical solution obtained by applying the Crank-Nicolson

method (solid line) to exact solution of two linearly receding boundaries given in Eq.(8.42)

(open circles). The numerical solution is in excellent agreement with the exact result

validating the implemented algorithm.

as S(t) =−L0−vt and R(t) = L0 +vt for the left and right boundary, respectively. Inserting

the boundary time dependence into the scaling factor defined in Eq.(E.2) gives

z =
x+L0 + vt

2L0 +2vt
(E.11)

yielding in Eq.(E.5) to

a(z, t) =
(2vz− v)

2(L0 + vt)
,

b(z, t) =
D

4(L0 + vt)2
. (E.12)

The outlined Crank-Nicolson method was implemented in MATLAB and compared to

the exact solution, Eq(8.42), for various parameters. As shown in Fig. (E.1) the numerical
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solution (solid line) is in excellent agreement with the functional form of the exact solution

given in Eq.(8.42) (open circles) validating the implemented algorithm.
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