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Abstract

This thesis is the report of a study of several different problems in statistical physics. The

first two are about random walks in a disordered lattice, withapplications to a biological

system, the third is about reaction-diffusion systems, particularly the phenomena of front

propagation and pattern formation, and the last is about a special kind of evolving complex

networks, the addition-deletion network. The motivation for the first of the two random

walk investigations is provided by the diffusion of molecules in cell membranes. A math-

ematical model is constructed in order to predict moleculardiffusion phenomena relating

to the so-called compartmentalized view of the cell membrane. The theoretical results are

compared with experimental observations available in the literature. The second random

walk part in the thesis contains contributions to the analysis of transport in disordered sys-

tems via effective medium theory. Calculation of time-dependent transport quantities are

presented along with discussion of effects of finite system size, significance of long-range

memory functions, and consequences of correlated disorder. The investigation of reaction-

diffusion systems that deals with front propagation is concerned with providing a method

viii



of studying transient dynamics in such systems whereas the study of pattern formation fo-

cuses on determining necessary conditions for such patterns to arise in situations wherein

sub- and super-diffusion are present in addition to simple diffusion. In the network study,

results are reported on cluster size distribution in addition-deletion networks, on the basis

of both numerical and analytic investigations.
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Much learning does not teach understanding.

Heraclitus of Ephesus

Chapter 1

Introduction

1.1 Opening remarks

This thesis is on problems both in fundamental aspects, and applications of statistical

physics. At a conceptual level, it is mainly divided into twoparts. The first that consists of

Chapters 2 and 3 is about transport in disordered lattices with applications to biology and

the second that is formed by Chapter 4 is on some properties ofreaction-diffusion systems,

that are described by diffusion equations with nonlinear interaction terms. The lastchapter

is about an investigation in network theory, which has established a place for itself in the

statistical physics literature during the last decade or so.

It is worthwhile to note that the two main parts of this thesisare ondisordered and

nonlinear systems. As opposed to ordered and linear problems, relatively less tools are

available to study disordered and nonlinear problems. Whenwe study systems that are

described by linear equations, we have access to a whole lot of tools including integral

transformations that make life easy. In addition to this, itis possible to use the principle of

superposition in solving linear equations and take full advantage of the Green’s function

formalism to make progress. When we consider systems that evolve according to nonlinear
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equations, superposition principle does not hold and we cannot use a large number of

tools available for solving linear equations. The situation is similar in disordered systems.

Solving a problem that involves an ordered structure can usually be conveniently done

by taking advantage of the symmetries in the problem. Integral transforms such as the

Fourier transform are very useful in doing these. However, when the structure in the

system is disordered, it is usually not possible to find any symmetry that would allow us

to proceed in this way. Therefore, exploring systems with nonlinearities or disorder and

finding generally applicable results can be cumbersome. Nevertheless, nonlinear terms

and disordered structures lead to behavior that is enormously richer than that observed in

linear systems, making them more interesting to study.

There are four chapters in this thesis whose contents are briefly summarized in the next

section. The necessary background regarding the subjects discussed in the thesis is given

in the first section of each chapter individually, rather than here in the introduction.

1.2 Overview of the thesis

The first Chapter of this thesis is about a problem that is of interest to both physics and

biology. It is about constructing a mathematical model for molecular motion in cell mem-

branes, based on a relatively recent perception of the cell membranes [1]. Motivated by

the results of high resolution single molecule tracking experiments, Kusumi and collabo-

rators [1] proposed two new models for the plasma membrane that can account for some

phenomena that the Fluid Mosaic Model [2] cannot. Accordingto these new models, there

is a mesh-like structure beneath the surface of the plasma membrane which can directly

or indirectly interfere with, and hinder the diffusion of molecules that diffuse in the mem-

brane. Based on these new ideas, we constructed a mathematical model that can predict

time dependent transport quantities such as the diffusion coefficient and the mean square

displacement. To our knowledge, there were two other mathematical models in the liter-
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ature that are similar to ours in the spirit [3, 4], which we mention in passing in Chapter

2. The model we propose differs from one of its earlier counterparts in the way that it

provides explicit and simple expressions for the exact diffusion coefficient and the mean

square displacement. We compare the predictions of the model against the results of some

single molecule tracking experiments and find good agreement between them. We then

generalize the model to account for the effects of disordered structures that are always

present in real cell membranes. We believe that this generalization which considers the

disordered nature of the system we are interested in is an important one, which was not

done previously in an explicit way.

The mathematical model that we present in Chapter 2 is also relevant in some physics

problems. In fact, the calculation we present in inspired byan unpublished work of Kenkre

on the transport of excitons in molecular crystals [5]. Therefore, the calculations that we

present there also apply for many solid state physics problems involving exciton transport.

Earlier we mentioned that this thesis makes contributions to statistical physics both

fundamentally and in an applied way. Chapter 3 is where we present the contributions to

the theoretical development of statistical mechanics. Thetopic we are interested in Chapter

3 is effective medium theory of transport in disordered lattices, and its extensions. Effec-

tive medium theory, or effective medium approximation, has been used in many different

contexts [6, 7, 8, 9, 10] in physics, ranging from the calculation of the effective resistivity

of a random resistor network [11] to random walks in disordered lattices [12, 13, 14, 10]

to obtain approximate expressions for ensemble averaged quantities. Most of the previous

work in this subject is limited to studying the long-time values of the observables of inter-

est. In our analysis, one of the main goals is to extend and verify the applicability of the

effective medium theory in predicting the quantities of interest for all times, as suggested

by Kenkre [15] in the context of stress distribution in granular materials. We do this by

treating the problem of random walk in a one dimensional (1-D) lattice whose sites are

connected to each other with transfer rates that are random variables with our extended
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use of the effective medium theory. In addition to discussing the calculation of time de-

pendent observables, we also explore the effects of correlated random transfer rates, finite

system size, and a few more, as given in [16]. It is also worth mentioning that we include

a clear prescription of how to use the effective medium theory, by starting from the basic

principles.

In Chapter 4, we are interested in two different aspects of reaction-diffusion systems.

Reaction-diffusion systems have been extensively studies, mainly due to their applicabil-

ity to a large number of problems in physics, chemistry, biology, and other research areas.

They provide a convenient framework for studying systems inwhich the constituents are

entities that flow in real or in some phase space, and interactwith one another and them-

selves. A few early, but remarkable, works on reaction-diffusion systems are due to Fisher

[17] on the spread on advantageous genes in a population along with Kolmogorov, Petro-

vskii, and Piskunov [18], Turing on pattern formation in biological systems explained in

his seminal article titled “The chemical basis of morphogenesis” [19], and Belousov [20]

and Zhabotinskii [21] on a class of chemical reactions with many reacting species that can

show oscillatory behavior, now termed “Belousov-Zhabotinskii” reactions.

Although reaction-diffusion systems are very useful in modeling various phenomena,

the equations they involve are rarely exactly solvable for the time evolution of the quan-

tities in the system. In the first part of Chapter 4, we report results on a study that is

interested in the transient behavior in some reaction diffusion systems and thus, is an at-

tempt at understanding the time evolution in a reaction-diffusion system. After stating the

exact solutions of the reaction-diffusion equations considered for long times, we discuss

our way of analyzing the problem. The method we use in trying to discover the properties

of the transients in the system relies on our knowledge of these exact solutions. Concep-

tually, our analysis consists of comparing the numerical solution of the problem with the

exact solution can calculate the difference between them at all times. In this way, we hope

to gain same insight into how the system relaxes to its asymptotic solution.

4



Chapter 1. Introduction

In the second part of Chapter 4, we concentrate on a quite different problem: pat-

tern formation in reaction-diffusion systems. The work we present there is inspired by

the relatively recent work of Fuentes, Kuperman, and Kenkre[22] on pattern formation

in a particular reaction-diffusion system with spatially non-local interactions. Pattern for-

mation in reaction-diffusion systems has been extensively studied. Most of these studies

consider the formation of patterns in reaction-diffusion systems involving multiple react-

ing species. Our study differs from them in this respect, as it involves only one species

that interact with itself, and diffuse in a bounded space with periodic boundary conditions.

As early as in the work of Turing [19], it was shown that the rate of diffusion plays an

important role in determining the properties of the patterns produced. An interesting ques-

tion to ask is: how does the characteristic properties of transport, like its being diffusive,

sub- or super-diffusive, effect the formation of patterns? Motivated by this question, we

use a generalized reaction-diffusion equation, much like a generalized master equation [5]

with a memory function, to be able to consider types of transport other that diffusion. We

proceed by generalizing the approach of Fuentes et al. [22],and exploring the conditions

for pattern formation as a function of transport properties.

The last chapter is about a special kind of evolving networks, the addition-deletion

network [23, 24, 25, 26, 27]. For over 10 years, the study of complex networks has also

been considered a topic of statistical physics, and many advancements has been made [28,

29, 30, 31]. Most of the early findings concerning the properties of complex networks are

due to mathematicians. The branch of mathematics that is interested in studying network

structure is called graph theory. Perhaps the first written work on the theory of graphs

is known as the Königsberg problem, and was studied by the Swiss mathematician Euler

[32]. One of the most remarkable advances in the theory of graphs is due to the Hungarian

mathematicians Erdős and Rényi [33], who started a probabilistic study of graphs. Today

Erdős and Rényi are considered as the founders of the random graph theory. The addition-

deletion network that we are interested in studying in this thesis is also a form of random

graph. It is constructed by starting with a single network element, and subsequently adding
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or removing network elements in a random fashion. Because weare removing elements

in addition to adding them, the network will be partitioned into disconnected components.

And it is the size distribution of these components that we are interested in calculating in

Chapter 5.

The last chapter is reserved for a brief statement of the results obtained in this thesis,

and for some final thoughts of the author.
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Chapter 2

A mathematical model for molecular

motion in cell membranes

2.1 Introduction

The cell membrane plays essential roles in the life of all organisms. The most fundamental

of these is isolating the organelles, which constitute the basic machinery of life, from the

noisy environment. Besides this crucial function, a few of the other important processes

that it takes part in are: cell shaping and movement [34], cell division [35], transduction

of signals that are vital for the organism at many levels [36], and selective transportation

of molecules in and out of the cell [37]. Some of these tasks are performed by membrane

molecules, such as proteins, that diffuse in the membrane. Therefore, investigating the mo-

tion of membrane molecules in detail is important in understanding how cell membranes

function. In this chapter, we will present transport calculations for molecular diffusion in

cell membranes inspired by new membrane models proposed by Kusumi and collaborators

[1] and an earlier theoretical treatment of diffusion in the presence of permeable barriers

given by Powles and others [3]. Most of the results we presentin this chapter of this thesis
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are published in two articles by Kenkre, Giuggioli and Kalay[38] and Kalay, Parris, and

Kenkre [39].

Before discussing our calculations, we will briefly summarize how cell membrane

models evolved. Several models were proposed starting in the early 20th century. In 1925,

Gorter and Grendel [40] suggested that a bilayer of lipids can form a membrane that is

similar to the ones found in live cells. Phospholipids, which are one of the most common

types of lipids in the membrane, can spontaneously come together and form a bilayer

under most circumstances. In an aqueous medium, hydrophobic parts of the phospholipids

point inside the bilayer whereas their hydrophilic parts point out into the surroundings.

This model does not make any reference to proteins that are now known to exist in the

membrane. Later in 1935, Davson and Danielli [41] used the lipid bilayer as their starting

point and incorporated membrane proteins into the picture.In their description, membrane

proteins are attached to the hydrophilic parts of the lipid molecules, which are on the outer

surfaces of the bilayer. But later it has become apparent that proteins can also be found

in the membrane as its integral components. Finally in 1972,Singer and Nicholson [2]

came up with the famous fluid mosaic model of the cell membrane. According to the fluid

mosaic model, proteins are inserted into the lipid bilayer and can be found throughout the

membrane and not just on its outer surfaces. Therefore, the collection of lipid molecules

are thought to form a two dimensional (2-D) fluid in which membrane proteins move

around and take part in numerous membrane functions.

The fluid mosaic model can account for many phenomena associated with the mem-

brane. However, starting in 1980’s, results of single molecule tracking experiments with

very high temporal resolution gave rise to new puzzles. It was found that molecules diffuse

5 to 50 times slower in live cell membranes than in artificially reconstituted membranes

[42, 43, 44, 45, 46, 47, 48, 1] (see Table 2.1). In addition to this, an even more surprising

result was that larger molecules diffuse at much slower rates than one would expect them

to in a 2-D fluid [49]. Saffman and Delbrück showed that the translational diffusion coeffi-
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Figure 2.1: A schematic illustration of the evolution of membrane models. First Gorter
and Grendel’s lipid bilayer, then Davson and Danielli modelwith peripheral proteins, and
then the Fluid Mosaic model with integral proteins due to Singer and Nicholson. The Fluid
Mosaic model accounts for many phenomena, but our description of the membrane is still
evolving. Images are from: http://www1.umn.edu/ships/9-2/membrane.htm

cient of a cylindrical object with radiusr, diffusing in a bilayer with its axis perpendicular

to the surface is given by [50]

D =
kBT
4πµh

(
ln
µh
µ′r
− γ

)
, (2.1)

whereh is the thickness of the bilayer which is also equal to the length of the cylindrical

object, γ is Euler’s constant,kBT is the thermal energy,µ and µ′ are the viscosity of

the bilayer and the environment respectively. One of the most important implications of

this relation is thatD drops off with the radius of the diffusant in a very slow fashion.

Experimentally it was found that larger molecules diffuse at rates that are significantly

lower than what Eq. (2.1) gives [49, 1]. These observations indicate that it may not

be correct to consider the membrane molecules as objects that diffuse in a viscous and
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homogeneous fluid.

Cell type or Effective diffusion coefficient
[
µm2

]

Probe-Protein artificial membrane lipid & reference
Fl-AchR DMPC 2.4±0.8 [51]
Rh-AchR Rat Myotube 0.016±0.003 [52]
Fl-Thy-1 DOPC:SM, 1:1 ratio 0.58±0.04 [53]

Gold-Thy-1 C3H 10T1/2 0.081±0.007 [54]

Table 2.1: Diffusion coefficients of some membrane proteins as measured in live cell
membranes and in artificial membranes. Excerpt from Table 1 of ref. [1]. DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine) and SM (sphingomyelin) are lipids used in the
artifical membranes and C3H 10T1/2 (mouse embryo fibroblast) and Rat Myotube are
the live cell types. Fl- and Rho-AchR are fluorescein and tetramethylrhodamine labeled
bungarotoxin bound to acetylcholine receptor, respectively and Fl- and gold- Thy-1 corre-
spond to Thy-1 labelled with fluorescein-isothiocyanate and colloidal gold particles.

By conducting single molecule tracking experiments with very high time resolution,

such as on the scale of 25µs, Kusumi and collaborators observed [1] that at very short

times, the diffusion coefficient of membrane proteins and lipids in live cell membranesis

very close to what it would be, were they diffusing in an artificial lipid membrane. How-

ever, long-time diffusion coefficients are found to be significantly lower than those for

short-times. It is impossible to observe this effect without the use of high speed imaging

techniques as the frame length at usual video speeds (∼ 33ms) is already long enough

for the diffusion coefficient to reach its final value. To explain the slowdown effects ob-

served in the motion of molecules in the membrane, two new models, namely “Membrane

Skeleton Fence Model” and “Anchored-Protein Picket Model”have been proposed by the

Kusumi lab [55, 1]. According to the Membrane Skeleton Fencemodel, motion of large

membrane molecules like proteins are hampered because of the interaction between their

cytoplasmic parts and the surface of the cytoskeleton, which lies just below the lipid bi-

layer and is basically a meshwork of actin filaments. See Fig.2.2 for a schematic illustra-

tion. Therefore, the membrane proteins that interact with the actin meshwork effectively
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Figure 2.2: The Membrane Skeleton-Fence model.

move in a compartmentalized space, where the compartment sizes range from 30 to 240

nm [1, 55, 56]. The observed temporary confinement of these proteins strongly supports

this model (see the review [1], and references therein). What is even more interesting is

that lipids, which do not have any cytoplasmic part, and thuscannot interact with the mem-

brane skeleton, are also observed to be temporarily confinedlike proteins, in domains of

similar size [57]. In the Anchored Protein-Picket model, itis argued that some of the mem-

brane proteins are attached to the membrane skeleton eithertemporarily or permanently so

that they present themselves as immobile obstacles to diffusing lipids and other molecules

in the cell membrane, as illustrated in Fig. 2.3. In this case, strength of the confinement

effect on lipids would be proportional to the fraction of the compartment boundaries that

are covered with immobile proteins1.

1Unfortunately, it is not possible to measure directly what fraction of the boundaries are oc-
cupied by proteins. However, one can do simulations of lipidmotion for various values of this
fraction and find its value for which the results fit experimental findings the best [57].
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Figure 2.3: The Anchored Protein-Picket model.

Many different experiments [1] provide further evidence for the existence of compart-

ments. Here, we will mention a couple of these in passing. Experiments in which a latex

bead in the plasma membrane dragged by the use of optical tweezers showed that this in-

duces a drift in the motion of nearby molecules [45]. This supports the hypothesis that a

mesh-like structure exists below the cell surface. Another, more direct, evidence for the

existence of the membrane skeleton is provided by the electron microscope images of the

cytoplasmic part of the cell surface [58]. In these images, it is possible to see the network

of actin filaments forming the compartment boundaries.

The rest of this chapter is mainly divided into two parts. Thefirst part consists of

Sections 2.2-2.6 and is about the fundamentals of our calculations, expressed for ordered

systems. The second part is given in Sec. 2.7, and it is concerned with generalizing our

results for the first part to include disorder. In Sec. 2.2, wepresent the details of our

12
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mathematical model concerning the random walk problem in discrete space. In Sec. 2.3,

we take the continuum limit of our results to be able to make contact with experimentally

observable quantities. Sections 2.4 and 2.5 are about describing how to convert the ex-

pressions we obtained in the previous sections to functionsof time using explicit Laplace

inversions, partly analytical and partly numerical, and then using them to compare our

theory with published experimental observations. Before moving on to Sec. 2.7 in which

a generalization of our calculations is given, some practical results are presented in Sec.

2.6. Final remarks are made in Sec. 2.8 that mark the end of this chapter.

The three main research contributions of this thesis chapter are: obtaining exact for-

mulas concerning transport quantities for a random walk in the presence of permeable

barriers as functions of time, using explicit Laplace inversion schemes, part analytical and

part numerical, showing that the predictions based on theseformulas agree well with ex-

perimental results, and generalizing the calculations to be able to account for the presence

of imperfections in the system.

2.2 Our mathematical model

In this section we introduce the mathematical model for molecular diffusion in plasma

membranes, presented by Kenkre, Giuggioli, and Kalay in ref. [38]. Based on the

Membrane-Skeleton Fence model, we think of the membrane as a2-D space which is

partitioned into domains of the same size with permeable barriers. Obviously, this is an

idealization of the live cell membranes which would naturally have varying compartment

sizes and barrier strengths. Later in this chapter, we will explore the effects of disorder in

barrier strengths and locations in detail. In our model, we think of the diffusing molecules

as random walkers moving in the partitioned space we described above. As the domains

we consider in this idealized picture are squares with equalsize, motion of the random

walker in x andy directions will be independent from each other (provided that the bar-

13
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riers lie parallel to thex andy axes). Therefore, under these assumptions, we only need

to model the motion of the random walker in 1-D. To do this, we will consider a random

walk in a 1-D chain, i.e. in discrete space, with periodically placed barriers, and then take

the continuum limit of the results to obtain experimentallyobservable transport quanti-

ties. This calculation is inspired by the unpublished work of Kenkre on Frenkel exciton

transport [5] in deutered molecular crystals.

To our knowledge, there have been two exactly solvable models for diffusion in the

presence of permeable barriers, presented by Powles, Mallett, Rickayzen, and Evans [3],

and Dudko, Berezhkovskii, and Weiss [4]. We were aware of theresults given by Powles,

but we came to know about the work of Dudko after our article was published. Although

Powles and collaborators give exact results for the probability of finding the random walker

at a certain position and time, their expressions are very complicated and difficult to eval-

uate, even numerically. In addition to this, explicit expressions for the exact mean square

displacement of diffusion coefficient, which are quantities of great relevance in experi-

ments, are not found among their results. Therefore, one of the motivations for our analysis

is obtaining simpler and more useful expressions for experimentally accessible quantities

that can be easily computed.

We start by considering a 1-D chain whose links have the same transfer rateF. Then

we modify the transfer rate of everyH + 1th link, so that it becomesf . If f < F, the links

with transfer ratef will act like barriers to diffusion as the random walker seldom moves

through them. Because everyH + 1th link is a barrier, the chain we construct in this way is

partitioned into compartments that haveH+1 sites each. See Fig. 2.4 for an illustration of

this structure. Obviously, the molecules whose motion we set out to model do not move in

discrete space. The reason we consider random walks in discrete space is that, in solving

this problem, we will take advantage of the tools that are applicable to discrete lattices.

Also, as we will see later, the generalization of this problem to include varying barrier

heights is straightforward in discrete space, through the use of effective medium theory.

14
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f
F

... ...
r+1r

Figure 2.4: Schematic illustration of a piece of the 1-D chain with periodically placed
links of different transfer rate. Transfer rate within a compartment isF whereas the rate of
moving from one compartment to the next isf . HereH = 2, so that there areH + 1 = 3
sites in each compartment. The dotted vertical lines indicate compartment boundaries.

Let Pm(t) be the probability of finding the random walker at themth site of the chain at

time t. Assuming that transitions occur only between neighboringsites,Pm(t) obeys

dPm(t)
dt

= F [Pm+1(t) + Pm−1(t) − 2Pm(t)] ,

if the sitem is not on the boundary of a compartment,

dPr(t)
dt

= f [Pr+1(t) − Pr(t)] + F [Pr−1(t) − Pr(t)] ,

if m is the rightmost site in a compartment, and

dPr+1(t)
dt

= f [Pr(t) − Pr+1(t)] + F [Pr+2(t) − Pr+1(t)] ,

if m is the leftmost site in a compartment as illustrated in Fig. 2.4. As there areH + 1 sites

in one compartment, the indexr takes on the valuesH/2+ (H +1)̀ where` is any integer.

Using Kroneckerδ’s, δi j = 1 for i = j and 0 otherwise, the three equations above can be

put together in a compact form

dPm(t)
dt

− F [Pm+1(t) + Pm−1(t) − 2Pm(t)] = −∆
′∑

r

[Pr+1(t) − Pr(t)]
(
δm,r − δm,r+1

)
,

(2.2)

where∆ = F− f and the primed summation is over barrier locations. Eq. (2.2) is not newly

introduced. Equations of this form have been used to describe the dynamics of excitons in
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molecular crystals [5]. Since Eq. (2.2) is linear inPm(t), it is possible to convert it to an

algebraic equation by an appropriate integral transform. Let ηm(t) be the solution of Eq.

(2.2) for∆ = 0, i.e. when there are no barriers, given by

ηm(t) =
∑

n

ψm−n(t)Pn(0),

whereψm(t) is the probability propagator for a 1-D chain with uniform transfer ratesF.

Taking the Laplace transform of Eq. (2.2), and using the factthatηm(t) is solution of its

homogeneous part, we write

P̃m(ε) = η̃m(ε) − ∆
′∑

r

p̃r(ε)
[
ψ̃m−r(ε) − ψ̃m−r−1(ε)

]
, (2.3)

where p̃r = P̃r+1 (ε) − P̃r (ε). In order to make progress, we can try to obtain a closed

equation iñpr . To do this, we substitutem= s+ 1 andm= s in Eq. (2.3), wheres is a site

to the left of a barrier, to get the following equations

P̃s+1(ε) = η̃s+1(ε) − ∆
′∑

r

p̃r(ε)
[
Ψ̃s−r+1(ε) − Ψ̃s−r(ε)

]
,

P̃s(ε) = η̃s(ε) − ∆
′∑

r

p̃r(ε)
[
Ψ̃s−r(ε) − Ψ̃s−r−1(ε)

]
.

Subtracting̃Ps (ε) from P̃s+1 (ε), we obtain

p̃s(ε) = ζ̃s(ε) − ∆
′∑

r

p̃r(ε)Ψ̃s−r(ε), (2.4)

where we defined

ζ̃s(ε) = η̃s+1(ε) − η̃s(ε),

Ψ̃r(ε) = ψ̃r+1(ε) + ψ̃r−1(ε) − 2ψ̃r(ε).

Note that̃ψm(t)’s obey the Laplace transform of the homogeneous part of Eq.(2.2)

εψ̃m (ε) − ψm(0) = F
[
ψ̃m+1 (ε) + ψ̃m−1 (ε) − 2ψ̃m (ε)

]
,
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so that we can write

Ψ̃r(ε) =
1
F

[
εψ̃r(ε) − δr,0

]
,

where we used the fact thatψm(0) = 1, asψm−n(t) is the probability of finding the random

walker at sitem if it started at siten. Note that solving Eq. (2.4) for̃ps (ε) requires solving

a set ofN simultaneous linear equations, whereN is the number of barriers. If we are

considering a finite system, it may be plausible to solve these equations for̃ps (ε). When

there are infinitely many barriers, as in our case, we need to find an alternative solution.

One way is to sum Eq. (2.4) overs

∑

s

p̃s(ε) =
∑

s

ζ̃s(ε) − ∆
∑

s

µ̃s(ε)p̃s(ε), (2.5)

where

µ̃s(ε) =
′∑

r

Ψ̃s−r(ε),

and calculatẽµs(ε) for specific cases. Note that if̃µs(ε) is independent ofs, then Eq. (2.5)

leads to

∑

s

p̃s(ε) =
1

1+ ∆µ̃ (ε)

∑

s

ζ̃s(ε),

which means that we can replacep̃s(ε) with ζ̃s(ε)/(1 + ∆µ̃ (ε)), under sums overs, if the

summation is over all values ofs. Therefore, the expression for̃Pm (ε) given by Eq. (2.3)

would become a solution after this replacement. It turns outthat when the barriers are

placed periodicallỹµs(ε) is independent ofs, as shown below2. In this case, we need to

evaluate the sum

µ̃s =

′∑

r

Ψ̃s−r =
1
F

′∑

r

(
εψ̃s−r − δs−r,0

)
.

2It is worth mentioning that̃µs(ε) is also independent ofs if the barriers are placed randomly.
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Note thatr = H/2+ (H +1)̀ and` runs over all integers. This means thats− r = (H+1)n,

wheren can be any integer just as` is. Therefore, the summation is equivalent to

µ̃ =
1
F

+∞∑

n=−∞

(
εψ̃(H+1)n − δn,0

)
. (2.6)

The Laplace transform of the propagatorψ̃m(t) is explicitly given by

ψ̃m(ε) =
(2F)|m|

√
ε(ε + 4F)

(
ε + 2F +

√
ε (ε + 4F)

)|m| . (2.7)

If we define coshξ = 1+ ε/2F, then the propagator can be written as

ψ̃m (ε) =
e−ξ|m|

2F sinhξ
. (2.8)

Substituting this in Eq. (2.6), we get

µ̃ =
1
F


ε

2F sinhξ

+∞∑

n=−∞
e−ξ(H+1)|n| − 1

 (2.9)

=
1
F

[
tanh(ξ/2)

tanh(ξ (H + 1) /2)
− 1

]
. (2.10)

Now we can use Eq. (2.3) to express the solution forP̃m (ε) in terms of the initial conditions

(hidden iñηr(ε)), the propagators of̃ψm (ε), and thẽµ function as

P̃m(ε) = η̃m(ε) −
(

∆

1+ ∆µ̃(ε)

) ′∑

r

[̃
ηr+1(ε) − η̃r(ε)

] [
ψ̃m−r(ε) − ψ̃m−r−1(ε)

]
. (2.11)

If the random walker initially occupies thepth site of the chain, i.e.Pn(0) = δn,p, we have

η̃m (ε) = ψ̃m−p (ε) .

Note that choosing such an initial condition does not cause aloss in generality as we

can express any initial condition as a superposition ofδn,p’s in this linear problem. As

all compartments are equivalent, we will take the initiallyoccupied site to be within the

middle compartment that contains the 0th site. Therefore,p ∈ [−H/2,H/2].
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The transport quantities that we are interested in calculating are the time-dependent

mean square displacement (MSD), and diffusion coefficient. The dimensionless mean

square displacement for a random walker that starts at thepth site is defined as

MSDp(t) =
〈
(m− p)2

〉
=

∑

m

(m− p)2Pm(t).

Using this definition and the result given in Eq. (2.11), we can express the Laplace trans-

form of the MSD as

M̃SDp(ε) =
∑

m

(m− p)2ψ̃m−p(ε) − ∆
′∑

r

p̃r(ε)
∑

m

(m− p)2
[
ψ̃m−r(ε) − ψ̃m−r−1(ε)

]
,

(2.12)

where
∑

r

p̃r(ε) =
1

1+ ∆µ̃ (ε)

∑

r

[
ψ̃r−p(ε) − ψ̃r+1−p(ε)

]
.

The first term in the right hand side of Eq. (2.12) is simply theMSD in the absence of

barriers. We will denote it bỹMSD
0
p (ε). Note that we can express the square (m− p)2

as (m− p)2 = m2 − 2p (m− p) − p2 =, which proves useful in showing the following

results. From Eq. (2.7), it is clear that the first moment of the propagators is zero, as

ψ̃m (ε) = ψ̃−m (ε). Using this result together with
∑

m ψ̃m (ε) = 1/ε, we can show that
∑

m

(m− p)2
[
ψ̃m−r(ε) − ψ̃m−r−1(ε)

]
= −2r − 2p+ 1

ε
.

Therefore, the Laplace transform of the MSD becomes

M̃SDp(ε) = M̃SD
0
p(ε) −

1
ε

(
∆

1+ ∆µ̃(ε)

) ′∑

r

(2r − 2p+ 1)
[
ψ̃r−p(ε) − ψ̃r+1−p(ε)

]
.

It is well known that in the absence of barriers, MSD0
p(t) = 2Ft so thatM̃SD

0
p(ε) = 2F/ε2.

Note that MSD0
p(t) is the second integral of the function 2Fδ(t). Therefore, we can express

MSDp(t) as the second integral of 2Fφp(t), whereφp(t) = δ(t)−gp(t) andgp(t) is a function

whose Laplace transform is

g̃p (ε) =
∆

F
ε

1+ ∆µ̃

′∑

r

(
r − p+

1
2

) (
ψ̃r−p − ψ̃r+1−p

)
. (2.13)
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The summations involved in this equation can be evaluated byusing Eq. (2.8), to give

′∑

r

(
ψ̃r−p − ψ̃r+1−p

)
=

sinh(ξ/2)
F sinh(ξ)

sinh(ξp)
sinh(ξ(H + 1)/2)

,

′∑

r

r
(
ψ̃r−p − ψ̃r+1−p

)
=

H + 1
2F sinhξ

sinh(ξ/2) cosh
(
ξ(H+1−2p)

2

)

sinh2
(
ξ(H+1)

2

) .

Substituting these in Eq. (2.13) and going through some tedious but simple algebra, the

functiong̃p (ε) can be put in the following form

g̃p(ε) =
∆

F
1

P(ε) + (ε/2F + 2 f /F) Q(ε)

×
[
(H + 1)

P(ε) + (ε/2F) Q(ε)
P(ε) + (2+ ε/2F) Q(ε)

cosh(ξp) − 2psinh(ξp) tanh(ξ/2)
]
. (2.14)

whereP(ε) = cosh(ξH/2) andQ(ε) = sinh(ξH/2)/ sinhξ. OnceH is fixed, it is straight-

forward to calculatẽgp(ε). In order to give the reader an idea of how the inverse Laplace

transform of̃gp(ε) behaves as a function of time, we will presentgp(t) for a couple ofH

values below. For compartments consisting of 3 sites so thatH = 2, P(ε) = 1 + ε/2F,

Q(ε) = 1 and

g2,0(t) = 3F

[
e−3Ft − f

F
e−

(
1+ f

F

)
Ft

]
,

g2,±1(t) = ∆

(
3F
2

e−3Ft

f − F
− (F2 − F f /2+ f 2)e−(1+2 f

F )Ft

F( f − F)
+
δ(t)
2F

)
,

where the first and second subscripts ofg(t) correspond to the value ofH and initial posi-

tion of the random walker, respectively. When there are 5 sites per compartment,H = 4,

we haveP(ε) = 1+ 2ε/F + ε2/2F2, Q(ε) = 2+ ε/F and

g4,0(t) = 10F


e−

5Ft
2

sinh
(√

5Ft/2
)

√
5

− f
F

e−
(

3
2+

f
F

)
Ft

sinh

(√
5− 4 f

F + 4
(

f
F

)2
Ft/2

)

√
5− 4 f

F + 4
(

f
F

)2


.

(2.15)

For this case, the expressions corresponding to the initialconditions withp = 1, 2 and 3

are lengthy, and thus not displayed here.
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In many experiments, the knowledge about initial conditions is absent, so that it is

appropriate to average over all initial positionsp, within a compartment. The average of

g̃p (ε) over p is defined as

g̃(ε) =
1

H + 1

H/2∑

p=−H/2

g̃p(ε), (2.16)

and is explicitly given by

g̃(ε) =
∆

F (H + 1)
P(ε) + (ε/2F + 2) Q(ε)

P(ε) + (ε/2F + 2 f /F) Q(ε)
. (2.17)

From now on, the absence of the subscriptp in all quantities will imply an average over

initial conditions in the sense of Eq. (2.16).

Before moving on, a few limiting properties ofgp(t) are worth mentioning. If the

starting site is not adjacent to a compartment boundary, at short times the random walker

will diffuse as if there are no barriers, and its MSD will go as 2Ft. This means that

limt→0 gp(t) = limε→∞ εg̃p (ε) must vanish provided that the sitep is not adjacent to a

boundary. As for the long time limit, we would expect limt→∞ gp(t) to vanish, as its in-

tegral, which is related to the diffusion coefficient, must be finite. Lastly, the asymptotic

diffusion coefficient should be independent from the initial conditions, asit is determined

by the structure of the chain, which depends on the values off andF. Using Eq. (2.14)

and limit theorems of the Laplace transform [59], it can be shown thatgp(t) satisfies all of

these asymptotic properties.

If we define the time dependent hopping rate, which is the analogue of the diffusion

coefficient in discrete space, asFp(t) = (1/2)d(MSDp(t))/dt, then transport quantities that

we are interested in are conveniently given as

MSDp(t) = 2F
∫ t

0
ds

∫ s

0
ds′φp(s

′), (2.18)

Fp(t) = 2F
∫ t

0
dsφp(s), (2.19)
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in time domain and

M̃SDp (ε) = 2F
φ̃p (ε)

ε2
,

F̃p (ε) = 2F
φ̃p (ε)

ε
,

in Laplace domain. The functionφ(t) acts like the memory of a generalized master equa-

tion [5] considering the way it is connected with the MSD andF. Using the Laplace

transform ofFp(t), we can easily calculate the hopping rate at asymptotically long times,

which we will call the effective hopping rate, and denote it byFeff. It is well known that

the integral of a functionh(t) from 0 to∞ is related to its Laplace transform through [59]
∫ ∞

0
dsh(s) = lim

ε→0
h̃ (ε) .

Hence the effective hopping rate is given by

Feff = F
∫ ∞

0
dsφp(s) = F lim

ε→0
φ̃p (ε) = f

H + 1
1+ ( f /F) H

. (2.20)

Note thatFeff is independent fromp as expected. Let us take a closer look at Eq. (2.20) and

its marginal values. Iff = F, then all the links in the chain have the same transfer rateF,

and consequentlyFeff = F. If we consider the situation in which the barriers are infinitely

high, so that it is not possible for the random walker to crossthem, f = 0 andFeff vanishes

according to Eq. (2.20). This is what one would expect, as therandom walker is confined

within a compartment, so that its MSD will saturate and the rate at which the MSD changes

should become zero. If the barrier heights are large, but notinfinite so that there is a small

rate for leaving one compartment for another,Feff is predominantly determined by the

ratio (f /F)H. If ( f /F)H is negligible, we haveFeff ≈ f (H + 1). Another interesting case

of a completely different nature isf > F. This means that the random walker’s hopping

rate is enhanced rather than suppressed, periodically throughout the chain. One would

expect that this would cause an increase inFeff, and it indeed does. Forf � F, Eq. (2.20)

becomes

Feff ≈ F (1+ 1/H) .
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Note that the enhancement inFeff due to f being larger thanF is limited to a factor of 3/2,

and decreases withH.

In order to verify these results, we compare the MSD given by exact calculations to that

found by Monte Carlo simulations forH = 4. In this case it is straightforward to calculate

gp(t), see Eq. (2.15) forg4,0(t), for p = 0,±1,±2 and obtain MSDp(t). The Monte Carlo

simulation of the random walk is performed similarly as in [60], where a random walk on

a network structure is considered. Initially, we place the random walker at one of the sites

in the middle compartment. At each subsequent step of the simulation, which corresponds

to an increment∆t in time, the random walker moves between neighboring sites.The

probability it will take a step either to the left or right is given by hi∆t, wherehi is a

transfer rate between sites and the subscripti indicates direction. This implies that with

probability 1− (hleft + hright)∆t, the random walker will not move during that step. The

increment∆t should be chosen to be a small enough number such that the probabilities

hi∆t and 1− (hleft + hright)∆t are between 0 and 1. In order to obtain the MSDp(t), we

calculate the value of (m− p)2 for 20000 trajectories, each generated in the way described

above. The comparison between exact calculations and simulation results are shown in

Fig. 2.5 for different initial conditions.

2.3 The continuum limit

Our aim is to predict the time dependence of transport quantities like the MSD of

molecules diffusing in the cell membrane. The results that are shown so far capture the

effects of compartments on diffusion, but they apply for entities that move in discrete

space. Therefore, we somehow need to find the counterparts ofthose results that are

valid in continuous space. In this section we will show how toachieve this by taking the

appropriate limits of the results obtained earlier.
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Figure 2.5: Comparison of exact results with Monte Carlo simulations for the mean square
displacement of the random walker. Parameters aref = 0.01, F = 2 H = 4. Solid curves
show the result of the simulations, averaged over 20000 trajectories, whereas the dashed
curves are analytical results. The agreement between the two is almost perfect. The inset
shows the behavior at short times.

Let a be the spacing between two adjacent sites in the chain, as shown in Fig. 2.6. Then

the size of a compartment can be expressed asa(H + 1). Note that if the number of sites

goes to infinity while their spacinga goes to zero, the discrete chain of sites can be thought

as a continuous 1-D space. In continuum, we will denote the size of a compartment byL,

lim
H→∞
a→0

a(H + 1) = L. (2.21)

Naturally, the initial condition will be given by

lim
a→0

pa= x0. (2.22)

Next, we will show howf andF change in the continuum limit. Without the presence of

barriers, the diffusion equation in 1-D is

∂P(x, t)
∂t

= D
∂2P(x, t)

∂x2
,

whereD is the diffusion coefficient with dimensions
[
length

]2 [time]−1, andP(x, t) is the

probabilitydensity. By discretizing the second derivative with respect tox, the diffusion
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Figure 2.6: An illustration of the discrete chain and the continuum with periodically placed
barriers (shown by vertical dotted lines in discrete space and solid lines in continuum). In
discrete space, each site is separated from its neighbor by adistancea. In taking the
continuum limit, we takea→ 0, and the number of sites in a compartment to∞, such that
(H + 1)a→ L becomes the compartment size.

equation can also be written as

∂P(xm, t)
∂t

= D lim
a→0

P(xm+1, t) + P(xm−1, t) − 2P(xm, t)
a2

, (2.23)

where we also multiplied both sides bya to convert the probability densityP(x, t), to

the probabilityP(x, t) = aP(x, t). Note the similarity between Eq. (2.23) and the left

hand side of Eq. (2.2). Hence, one of the steps in taking the continuum limit of Eq. (2.2)

involves multiplying and dividing the second term on the left hand side witha2, and letting

a→ 0. This implies that the diffusion coefficient is related to the transfer rate (or hopping

rate)F by

lim
a→0

Fa2 = D. (2.24)

Now that we know the limiting properties ofF andH asa→ 0, we can use Eq. (2.20) to

find out what happens tof in the continuum limit. As lima→0 Fa2 = D, Feffa2 given by Eq.

(2.20) should become the effective diffusion coefficient, Deff . As a result, ifFeffa2 stays
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finite whena→ 0, Eqs. (2.20, 2.21, 2.24) imply thatf should satisfy,

lim
a→0

f a = D,

whereD is a quantity with dimensions
[
length

]
[time]−1, and is proportional to the per-

meability of barriers, as we will see later. Consequently, the analogue of Eq. (2.20) in

continuum is

Deff =
D

1+ D
DL

, (2.25)

that is the asymptotic value ofD(t). This expression is equivalent to that obtained by

Powles and collaborators [3], withD/D being the permeability of each barrier, denoted

byP.

Having established the basics of taking the continuum limit, we now will give the

expressions for the functiong in continuous space. Multiplying and dividing the terms in

Eqs. (2.14) and (2.17) by powers ofa, letting a → 0 and using the limits in Eqs. (2.21,

2.22, 2.24, 2.25), we obtain

g̃c
x0

(s) =
s2

scoshs+ Deff
D−Deff

sinhs

[
cothscosh

(
2x0

L
s

)
− 2x0

L
sinh

(
2x0

L
s

)]
, (2.26)

and

g̃c(s) =
sinhs

scoshs+ Deff
D−Deff

sinhs
, (2.27)

whereg̃c
x0

(s) andg̃c(s) are the continuum limits of̃gp (ε) and its average over initial con-

ditions, g̃ (ε). In order to simplify the notation, we defined the quantitys = (L/2)
√
ε/D,

which is proportional to the Laplace variableε. We are now in a position to give expres-

sions for the MSD andD in terms of theg’s. The MSD in continuum is defined as

MSDx0(t) =
〈
(x− x0)

2
〉
=

∫ ∞

−∞
dx(x− x0)

2
P(x, t).
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The MSD andD are related to the memoryφc
x0

(t) = δ(t) − gc
x0

(t) by

MSDx0(t) = 2D
∫ t

0
ds

∫ s

0
ds′φc

x0
(s′), (2.28)

Dx0(t) = 2D
∫ t

0
dsφc

x0
(s), (2.29)

in time domain and

M̃SDx0 (ε) = 2D
φ̃c

x0
(ε)

ε2
, (2.30)

D̃x0 (ε) = 2D
φ̃c

x0
(ε)

ε
, (2.31)

in Laplace domain. From now on, we will drop the superscriptc, as we concentrate on

comparing the predictions with experiments, in which only the continuum limit of the

expressions is relevant.

2.4 Inverting the Laplace transforms

To this point, all expressions for the MSD andD were given in the Laplace domain, in

terms of the Laplace transform ofφ(t). In order to be able to compare these results with

experimental data, one needs to take their inverse Laplace transforms to express them

as functions of time. In this section, our aim is to describe how to obtain the transport

quantities in time domain by showing the details of taking the inverse Laplace transform

M̃SDx0 (ε), given by Eq. (2.30).

We would like to calculate

L−1
{
M̃SDx0(ε)

}
= MSDx0(t),

whereL−1 denotes the inverse Laplace transformation operator and represents the

Bromwich contour integral

L−1
{
f̃ (ε)

}
= f (t) =

1
2πi

∫ γ+i∞

γ−i∞
dεeεt f̃ (ε) , (2.32)
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andγ is a real number larger than the real parts of all singularities of f̃ (ε). Therefore, we

are interested in evaluating

MSDx0(t) = 2Dt − 2D
∮

C
dε

g̃x0 (ε)

ε2
eεt, (2.33)

where
∮

C
represents a contour integral withC being any deformation of the contour defined

in Eq. (2.32) that encloses all singularities ofg̃ (ε). See, for instance, ref. [61] on the

freedom in choosing the contour in the Bromwich integral. Note that in Eq. (2.33),̃gx0

is taken as a function ofε, but as Eq. (2.26) shows, it can more conveniently be written

as a function ofs = (L/2)
√
ε/D. Therefore, it is convenient to change the integration

variable fromε to s. Furthermore, we will use the following notation in order tosimplify

the expressions

γ = Deff/ (D − Deff) , (2.34)

α = 2x0/L, (2.35)

τ = 4Dt/L2. (2.36)

After changing the integration variable and doing some algebra, Eq. (2.33) becomes

MSDx0(τ) =
L2

2
(τ − (σ1(τ) − γσ2(τ) − ασ3(τ))) ,

where

σ1(τ) =
1

2πi

∮

C
ds

cosh(αs)es2τ

s2 sinhs
,

σ2(τ) =
1

2πi

∮

C
ds

cosh(αs)es2τ

s2 (scoshs+ γ sinhs)
,

σ3(τ) =
1

2πi

∮

C
ds

sinh(αs)es2τ

s(scoshs+ γ sinhs)
. (2.37)

Therefore,σ1, σ2, σ3 will be equal to the sum of the residues of the integrands in Eqs.
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(2.37). Let

w1(s, τ) =
cosh(αs)es2τ

s2 sinhs
,

w2(s, τ) =
cosh(αs)es2τ

s2(scoshs+ γ sinhs)
,

w3(s, τ) =
sinh(αs)es2τ

s(scoshs+ γ sinhs).

Then,

MSDx0(τ) =
L2

2

(
τ −

(∑

sn

Res{w1, sn} − γ
∑

sn

Res{w2, sn} − α
∑

sn

Res{w3, sn}
))
,

where sn’s are the poles ofw1, w2, and w3. For w2 and w3, sn’s are the solutions of

−s = γ tanhs, and forw1, they satisfy sinhs = 0. At s = 0, w1 andw2 have poles of

order 3 andw3 has a pole of order 2. The residues atsn = 0 for each case are

Res{w1, 0} = τ + α2/2− 1/6,

Res{w2, 0} = (6τ(γ + 1)+ 3α2(γ + 1)− (γ + 3))/(6(γ + 1)2),

Res{w3, 0} = α/(γ + 1).

Note that each of the functionsw1, w2 andw3 possess infinitely many poles in addition to

the pole ats=0. By expanding sinhs andscoshs+ γ sinhs in Taylor series, we see that

all other poles are simple poles, as the first derivative of these expressions do not vanish at

s= sn. By solving sinhs= 0, it is found that the nonzero poles ofw1 are located ats=imπ

wherem = ±1,±2,±3.... For w2 andw3, exact locations of the poles cannot be found

because it is not possible to find the roots of the transcendental equationscoshs+ γ sinhs
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analytically. Therefore,

σ1(τ) = τ + α
2/2− 1/6+

∑

sn

lim
s→sn

cosh(αs)es2τ

s2 coshs
, (2.38)

σ2(τ) =
6τ(γ + 1)+ 3α2(γ + 1)− (γ + 3)

6(γ + 1)2

+
∑

sn

lim
s→sn

cosh(αs)es2τ

s2(ssinhs+ (1+ γ) coshs)
, (2.39)

σ3(τ) =
α

(γ + 1)
+

∑

sn

lim
s→sn

sinh(αs)es2τ

s(ssinhs+ (1+ γ) coshs)
, (2.40)

wheresn , 0 in the summations. Because the roots of sinh(s) = 0 can be found analyti-

cally,σ1(τ) can also be expressed as

σ1(τ) =
∞∑

m=−∞,
m,0

(−1)m+1cos(αmπ)e−m2π2τ

m2π2
, (2.41)

which is related to the integral of elliptic theta functionsintegrated overτ.

In order to evaluateσ2(τ) andσ3(τ), we need to find the rootssn numerically with

high precision, and perform the sums in Eqs. (2.39) and (2.40). In doing this, we use the

bisection method to find the first few thousands of the roots ofσ2(τ) with an accuracy of

10−13. The sums involved in Eqs. (2.39) and (2.40) converge quickly, assn’s in the term

es2τ are purely imaginary numbers. Furthermore, lims→sn cosh(αs) and lims→sn sinh(αs) lie

in [−1, 1] and the magnitude of lims→sn((1+γ) coshs+ ssinhs) tends to∞ with increasing

Im(sn). Therefore, unlessτ ≈ 0, summing over just a few terms provides one with results

that are significantly precise.

Using the procedure we described above, one can find expressions for many other time

dependent transport quantities. A collection of results isgiven in Sec. 2.6 of this chapter.

In Fig. 2.7 we show behavior of the dimensionless quantitiesMSD/L2 andD/D(0) as

a function ofτ, where the latter is defined as

D(t)
D
=

1
2D

d
dt

MSD(t) =
2
L2

d
dτ

MSD(τ). (2.42)
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Figure 2.7: The mean square displacement (left) and the diffusion coefficient (right) as
a function of dimensionless timeτ, normalized byL2 andD, respectively. Each of the
plotted quantities are obtained by averaging over all initial conditions. The solid, dashed,
and dash-dotted curves in both plots correspond toDeff/D being equal to 0.001, 0.01, and
0.1.

The quantities plotted in Fig. 2.7 are averaged over initialconditions. In order to

demonstrate the effect of initial conditions, we show that half the derivative of the MSDp

in discrete space, which is the time dependent transfer rategiven by Eq. (2.19), as a

function of time in Fig. 2.8. We chose to display the results for the discrete case because

of a couple of reasons. Firstly, as the number of sites in a compartment is finite in this case,

we can cover all possible initial states of the system. Secondly, we observed no qualitative

difference between considering discrete space and continuum. The results shown in Fig.

2.8 pertain to a chain with 11 sites per compartment. Becauseof the symmetry in the

problem, initial conditions that are merely the mirror images of each other will produce

the same results. Therefore, there are 6 different values ofp that we need to consider:

p = 0,±1,±2,±3,±4, and±5. Among these cases, Fig. 2.8 showsp = 0, starting at the

center of the compartment,p = ±4 and±5, starting at the site that is 1 site away from the

boundary and next to the boundary, respectively. Additionally, we also display the result

for averaging over allp within a compartment. Note that except when averaged over the

initial conditions, the behavior ofd(MSD)/dt is non-monotonic. In order to understand

31



Chapter 2. A mathematical model for molecular motion in cellmembranes

the significance of these features, let us first remember how the time dependent transfer

rate,F(t), is defined.F(t) is given by

F(t) =
∑

m

(m− p)2dPm

dt
, (2.43)

wherePm(t) obeys the master equation

dPm

dt
= Fleft (Pm−1 − Pm) + Fright (Pm+1 − Pm) .

Here,Fleft, Fright are the transfer rates of the links to the left and right of thesitem, respec-

tively. At very short times only thepth site is occupied so that the only contribution to the

F(t) is made by the nonzero terms

dPp+1

dt

∣∣∣∣∣
t=0
= Fleft,

dPp−1

dt

∣∣∣∣∣
t=0
= Fright,

where we usedPn(0) = δp,0. Note thatdPp/dt is also nonzero, but it is weighed by (m−p)2

which vanishes. According to these equations, we have

F(0) = Fleft + Fright. (2.44)

If p is not next to a compartment boundary, thenFleft = Fright = F, so thatF(0) = 2F.

However, if p is on the boundary, thenFleft andFright will have different values with their

sum being (F + f )/2. Therefore, if the random walker is initially placed at theboundary

of a compartment, it will diffuse with the rate (F + f ) which is less thanF. Fig. 2.8 clearly

shows this behavior. Having explained the relation betweentheF(0) and the initial condi-

tions, we now focus on the other features ofF(t). Note that when the random walker starts

at the center of the compartment,F(t) goes below its asymptotic valueFeff for some time

and then rises to reachFeff. This effect can easily be understood by taking another look at

Eq. (2.43). As we have seen above, the value ofdPm/dt is lower whenm is a site adjacent

to a compartment boundary compared to what it is whenm is away from the boundaries.

Therefore, as the probability of occupation of the sites adjacent to the boundaries increases,
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we expect the value ofF(t) to decrease. As time goes by, the random walker will cross

the boundary and step into an unexplored compartment. This has two consequences: the

probability of occupation of the sites that are adjacent to the boundary will decrease while

the probability of occupation of the sites that are away fromthe boundary will increase.

As a result, after reaching a minimum,F(t) will start increasing until the probability of

finding the random walker around the next barrier becomes significant. As the probabil-

ity distribution broadens, this effect will be repeatedly observed with rapidly diminishing

magnitude, asF(t) reaches its asymptotic valueFeff. The non-monotonic behavior ofF(t)

for all other initial conditions can also be explained in these terms.

10
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10
0

10
2

          

Time (in units of 1/F )

F
(t

)

 

 
p = 0
p = ±4
p = ±5
Avg

Feff

F

F+f
2

Figure 2.8: Time dependent transfer rateF(t), which can be thought as the analogue of
D(t) in discrete space, for different values of the initial condition parameterp. In this case
H = 10 so that there are 11 sites in each compartment, andf /F = 0.01. p = 0,±4, and
±5 correspond to the random walker starting at the center of the compartment, 1 site away
from the compartment boundary and next to the boundary, respectively. The dash-dotted
line showsF(t) obtained by averaging over all initial placementsp. Note that unless one
averages over all initial conditions,F(t) evolves non-monotonically while it reaches its
asymptotic valueFeff.

As a final remark, we will briefly discuss putting̃MSDx0(s) in an alternative form.
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Writing out Eq. (2.30) by expanding̃φc
x0

(ε), we get

M̃SDx0(s) =
L4

8D

(
1
s4
− 1

s3 coshs
Ω(s; x0, L)

)

+
L4

8D
Deff

D − Deff

1
s3

tanhs(
coshs+ Deff

D−Deff
sinhs

)Ω(s; x0, L), (2.45)

where

Ω(s; x0, L) = cothscosh

(
2x0

L
s

)
− 2x0

L
sinh

(
2x0

L
s

)
.

Note that whenDeff = 0 so that the random walker is completely confined, the secondterm

in Eq. (2.45) vanishes. It is interesting to note that the MSDin the presence of permeable

barriers can be written as a sum of the MSD for complete confinement and an additional

term. This is reminiscent of a perturbation expansion whichis commonly used in tackling

many problems in physics. See ref. [38] for an extended discussion. The inverse Laplace

transform of the first term in Eq. (2.45) can be taken analytically, to give

MSDDeff=0
x0

(t) =
L2

2


1
3
− 32

∞∑

n=0

e−
π2
4 (2n+1)2

(
4D
L2 t

)

π4(2n+ 1)4

 ,

by using methods similar to those described in detail above.

2.5 Comparison with experiment

In this section, we put the theoretical results obtained so far to use, by showing how they

compare against observations of molecules in cell membranes. We consider two different

sets of experimentally found MSD versus time data, obtainedby using single molecule

tracking technique. One of them is shown in Fig. 4b (left) of Suzuki and others [62],

and pertains to the motion of a membrane protein. The other data set is about the motion

of phospholipids that are much smaller than proteins, obtained by Fujiwara and others

and is displayed in Fig. 2b of ref. [57]. Both of the experimental results given in these
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references are obtained by single molecule tracking techniques where the molecule of

interest is tagged with a colloidal gold particle so that it can be seen. The time resolution

in these experiments is 25µs, which is high enough to capture the short time behavior of

the diffusion coefficient when the molecules are diffusing freely in a compartment. Note

that in this context, by short times we meant less than the expected value ofL2/2D,

which is the characteristic time scale in this problem. In order to compare our results with

experimental findings, we digitized plots of MSD versus timepublished in the articles

mentioned above.

In each of the following cases, we first extract thex andy components of the MSD from

experimental data. Then we separately fit them to the theoretical expression for MSD(t),

given by Eq. (2.62) in Sec. 2.6. The parameters we use in the fitare as follows.D:

the diffusion coefficient without the presence of compartments, or equivalently, the short

time diffusion coefficient, Deff: asymptotic value of the diffusion coefficient which also

is the diffusion coefficient one would find if the observations are carried out with alow

time resolution, and finallyL: the compartment size. Our specific aim is to find out how

experimental data compares with the theoretical predictions for typical values ofL.

In ref. [62], the authors observed the diffusion of a gold-tagged G-protein coupled

µ-opioid receptor in the plasma membrane of normal rat kidneycells. It was found that

the motion of this complex is not simply Brownian, as itsD(t) is varies greatly over the

duration of the observation. After performing the fit in the way we described above, we

find that that the linear compartment sizeL should lie between 250 nm and 470 nm. This

range of values forL is compatible with the distribution of compartment sizes given in

Fig. 4d of ref. [62] and with other general results in the literature [1]. We would like to

emphasize that the data set that was available us to use was for a single trajectory rather

than an ensemble average over many. Therefore, it is difficult to either be accurate in the

prediction ofL, or give statistics about the error involved.

The second set of data we considered consists of the MSD as a function of time of a
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phospholipid molecule (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), again as a sin-

gle trajectory, and is given in ref. [57]. In this case we plotthe theoretical prediction for

the MSD against thex andy components of the experimental data. The extreme values of

the diffusion coefficient,D andDeff are found by performing a linear fit to the slope of the

experimental data at appropriate time intervals. The results are turned out to be the same

as those given in ref. [57] without much surprise, and can be found in the caption of Fig.

2.9. In Fig. 2.9 experimental data and three theoretical curves each corresponding to a dif-

ferent value ofL, are plotted. The theoretical results correspond to Eq. (2.62) which is the

MSD as a function of time, averaged over all initial conditions. We found that the agree-

ment between theory and experiment is remarkably good forL ≈ 230, which is the value

of the average compartment size deduced in ref. [57]. For significantly smaller or larger

compartment sizes, the theoretical predictions substantially deviate from the experimental

results, as shown in Fig. 2.9.

Since the data correspond to a single trajectory, it can contain information about the

initial position of the molecule relative to the compartment boundaries. Motivated by this,

MSDx0(t) as given by Eq. (2.52) is plotted with the same experimentaldata in Fig. 2.10,

for different values ofx0. The value ofL is taken to be 230 nm, andD andDeff is kept the

same.

2.6 A summary of useful results

In this section we present a collection of additional expressions for various transport quan-

tities, as functions of time. All of the results presented inthis section are derived by going

through the procedure for inverting the Laplace transform of g̃x0 (ε), as described in full

detail in Sec. 2.4.
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Figure 2.9: Theoretical predictions for different values of the compartment sizeL versus
experimental results concerning the diffusion of phospholipids, reported in ref. [57]. This
plot emphasizes that the agreement between theory and experiment is best whenL is close
to the value deduced in ref. [57], which isL = 230 nm. Therefore, the theoretical pre-
diction makes sense, even when it is compared to a single trajectory. Circles and triangles
correspond tox andy components of the experimentally obtained MSD versus time data.
The parameter values used to plot the theoretical curves areL = 23 nm (dotted),L = 230
nm (solid),L = 2300 nm (dashed), withD=4.6 µm2s−1 andDeff=1.2 µm2s−1 the same for
all cases. Note that except whenL = 230 nm, theory and experiment do not agree.

2.6.1 Expressions for MSD andD

MSDx0(τ) =
L2

2

(
c1 + c2τ +

∞∑

m=−∞,
m,0

(−1)m
cos(απm)e−π

2τm2

π2m2

+
∑

n

lim
s→sn

es2τ cosh(αs)
s2 cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)


)

(2.46)

where

c1 =
1

γ + 1

(
1
6
+
α2

2
− γ

3(γ + 1)

)
=

(
1− Deff

D

) (1
6
+
α2

2
− 1

3
Deff

D

)

c2 =
γ

γ + 1
=

Deff

D
, (2.47)
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Figure 2.10: Comparison of theoretical predictions given by Eq. (2.52) with experimental
data in ref. [57], for various initial conditionsx0. For the solid lines representing the
theory, the initial position is:x0=0, L/8, L/4, 3L/8 and 7L/16, from top to bottom. Again,
the circles and triangles correspond to experimental data.Parameter values are the same
as those in Fig. 2.9 except that here,L has the fixed value 230 nm.

γ, τ, andα are defined by Eq. (2.36), andsn represents the solutions ofs = −γ tanh(s)

other thans= 0. For convenience, we make the following definition:

Ω1(Deff/D) =
∑

n

lim
s→sn

es2τ cosh(αs)
s2 cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)

 (2.48)

WhenDeff = D, sn = inπ, n = ±1,±2,±3... and

Ω1(1) =
∞∑

m=−∞,
m,0

(−1)m
cos(απm)e−π

2m2τ

π2m2
(2.49)

so that the MSD becomes

MSDDeff=D
x0

(τ) =
L2

2
τ, (2.50)

as expected. In complete confinement,Deff = 0, sn = i(2n + 1)π/2, n = 0,±1,±2,±3...

and we have

Ω1(0) = 4α/π2
∞∑

m=−∞
(−1)m+1sin((2m+ 1)απ/2)e−π

2(2m+1)2/4τ

(2m+ 1)2
, (2.51)
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giving,

MSDDeff=0
x0

(τ) =
L2

2

(
1+ 3α2

6
+

∞∑

m=−∞,
m,0

(−1)m
cos(απm)e−π

2τm2

π2m2

+ α

∞∑

m=−∞

(−1)m+1 sin
(
(2m+ 1)απ2

)
e−(2m+1)2 π

2
4 τ

(2m+ 1)2π
2

4

)
. (2.52)

Similarly, we can write expressions for the dimensionless diffusion coefficient

Dx0(τ)

D
=

2
L2

d
dτ

MSDx0(τ). (2.53)

For arbitraryDeff/D we have

Dx0(τ)

D
= c2 −

∞∑

m=−∞,
m,0

(−1)m cos(απm)e−π
2τm2

+
∑

n

lim
s→sn

es2τcosh(αs)
cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)

 , (2.54)

The first sum in the expression above can be expressed in termsof Jacobi Theta Functions:
∞∑

m=−∞,
m,0

(−1)m cos(απm)e−π
2τm2
= ϑ4

(
απ

2

∣∣∣∣∣iπτ
)
− 1 (2.55)

whereϑ4(u|τ′) is the Theta function of the fourth kind as given in Eq. (8.180.1) of ref.

[63], so that we can write

Dx0(τ)

D
=

(Deff

D
+ 1

)
− ϑ4

(
απ

2

∣∣∣∣∣iπτ
)
+

∑

n

lim
s→sn

es2τcosh(αs)
cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)

 .

(2.56)

Let us define

Ω2(Deff/D) =
∑

n

lim
s→sn

es2τcosh(αs)
cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)

 (2.57)

For Deff = D, sn = inπ, n = ±1,±2,±3... andΩ2(1) = ϑ4

(
απ
2

∣∣∣∣∣iπτ
)
− 1 so that:

(
Dx0(τ)

D

)

Deff=D

= 1. (2.58)
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For Deff = 0, sn = i(2n + 1)π/2, n = 0,±1,±2,±3... andΩ2(0) = αϑ1

(
απ
2

∣∣∣∣∣iπτ
)

where

ϑ1(u|τ′) is the Theta function of the first kind as given in Eq. (8.180.2) of ref. [63].

Therefore, we have
(
Dx0(τ)

D

)

Deff=0

= 1− ϑ4

(
απ

2

∣∣∣∣∣iπτ
)
+ αϑ1

(
απ

2

∣∣∣∣∣iπτ
)
. (2.59)

2.6.2 Quantities that are averaged over initial conditions

In this section we consider the MSDx0(τ) and Dx0(τ) that are averaged over all initial

conditions such that

MSD(τ) =
1
2

∫ 1

−1
dαMSDx0(τ), (2.60)

and

D(τ)
D
=

1
2

∫ 1

−1
dα

Dx0(τ)

D
. (2.61)

Therefore, we have

MSD(τ) =
L2

2

(
c′1 + c2τ +

∑

n

lim
s→sn

es2τ

s3


s+

(
Deff

D−Deff
− 1

)
tanh(s)

D
D−Deff

+ stanh(s)


)
, (2.62)

wherec′1 =
1
3

(
1− Deff

D

)2
. ForDeff = 0,

MSDDeff=0
x0

(t) =
L2

2


1
3
− 32

∞∑

n=0

e−
π2
4 (2n+1)2

(
4D
L2 t

)

π4(2n+ 1)4

 , (2.63)

Similarly, for D(τ)/D

D(τ)
D
=

Deff

D
+

∑

n

lim
s→sn

es2τ

s


s+

(
Deff

D−Deff
− 1

)
tanh(s)

D
D−Deff

+ stanh(s)

 (2.64)

and whenDeff = 0

(
D(τ)

D

)

Deff=0

=

∞∑

m=−∞

e−(2m+1)2 π
2
4 τ

(2m+1)2π2

4

. (2.65)
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2.6.3 Expression for the memory

As we stated in several occasions, the MSD andD can also be expressed as integrals of a

memory functionφ(t).

MSD(t) = 2D
∫ t

0
ds

∫ s

0
ds′φ(s′)

φ(t) =
d
dt

(
D(t)
D

)
. (2.66)

Using the expressions we gave above, the memory can be written as

φ(τ) = − d
dτ

[
ϑ4

(
απ

2

∣∣∣∣∣iπτ
)]
+

∑

n

lim
s→sn

s2es2τcosh(αs)
cosh(s)


Deff

D−Deff
+ αstanh(αs)

D
D−Deff

+ stanh(s)

 (2.67)

2.7 Effects of disorder

The mathematical model we presented so far describes an ideal membrane in which all

compartment boundaries have the same properties and the compartment size is uniform.

In naturally occurring membranes, barrier heights associated with each boundary and com-

partment sizes tend to vary, as shown by the electron microscopy images of the cell sur-

face obtained by Morone and others [58]. Hence, we think it isimportant to extend our

mathematical model to take into account the effects of disorder in barrier heights and com-

partment sizes.

In this section, we present a generalization of our model by employing an effective

medium theory. Most of the discussions and results presented here have also been pub-

lished in the work of Kalay, Parris, and Kenkre [39]. Effective medium theories (or effec-

tive medium approximations) have been successfully used tocalculate ensemble averaged

quantities in many disordered systems. For a review on this subject and an extensive list of

references see Chapter 3 of this thesis. Here we will state the results that are obtained by

using an effective medium theory without much detail, as an extensive discussion is given

in Chapter 3.

41



Chapter 2. A mathematical model for molecular motion in cellmembranes

... ...

...

... ...

a)

b)

...
c)

Figure 2.11: Illustration of different types of disorder we would like to incorporate in our
mathematical model presented in the previous section. Casea, b, and c correspond to
disorder in barrier heights, in barrier locations and both in barrier height and locations.

First, we will consider the situation in which the compartment sizes are uniform, but

the barrier heights are taken to be random variables. We willgeneralize the model first

in the discrete space, and then take the continuum limit in exactly the same way as in the

previous sections. In this case, the analogue of Eq. (2.2) is

dPm

dt
= F [Pm+1 + Pm−1 − 2Pm] −

′∑

r

(F − fr) [Pr+1 − Pr ]
(
δm,r − δm,r+1

)
, (2.68)

where fr stands for the transfer rate of the barrier to the right of ther th site. We suppose

that fr ’s are independently distributed random variables, each drawn from a probability

distributionρ( f ). In principle Eq. (2.68) can be solved for a particular realization of

the fr ’s by means of diagonalizing matrices. However, this is a cumbersome task that is

impractical, especially for large systems. Our aim is to calculate transport quantities that

are averaged over the disorder, which we will do with the helpof an effective medium

approximation.

In our context, the essence of the effective medium theory is transforming a Master

equation with disordered transfer rates to a generalized master equation with translation-
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ally invariant transfer rates. Therefore, the disorder in space is effectively replaced by

nonlocal time evolution that is characterized by the memoryof the generalized master

equation. In Eq. (2.68), the only transfer rates that are random variables are those that

connect the sites around each barrier. Hence, making the effective medium approximation

will correspond to modifying Eq. (2.68) around each barrier, which results in

dPm(t)
dt

= F [Pm+1(t) + Pm−1(t) − 2Pm(t)]

−
∫ t

0
dt′

[
Fδ(t − t′) − F (t − t′)

] ′∑

r

[
Pr+1(t

′) − Pr(t
′)
]
(δm,r − δm,r+1), (2.69)

whereF (t) is the memory of this generalized master equation around each barrier. We

then proceed to solve forF (t), or its relevant limiting values, using our knowledge of the

disorder characterized byρ( f ). The Laplace transform of the probability propagator for

Eq. (2.69) is given by

χ̃m,n = ψ̃m−n −
F − F̃

1+ (F − F̃ )̃µ

′∑

r

(ψ̃r−n+1 − ψ̃r−n)(ψ̃m−r − ψ̃m−r−1), (2.70)

which is simply Eq. (2.11) withPm(0) = δn,0 and f → F̃ . In order to findF̃ , we will

impose a self consistency condition, whose details are explained in Chapter 3. Suppose

that we replace the link between the sitess ands+ 1, wheres is a site to the left of one

of the barriers, by one with transfer ratef . Then the propagator for this modified chain

becomes

χ̃m,n +
( f − F̃ )

1+ ( f − F̃ )̃β
(χ̃m,s− χ̃m,s+1)(χ̃s+1,n − χ̃s,n), (2.71)

where

β̃ = −χ̃s+1,s + χ̃s+1,s+1 + χ̃s,s− χ̃s,s+1.

As f is supposed to be distributed according toρ( f ), if we average Eq. (2.71) over all

values of f weighted byρ( f ), it should reduce to the propagator given in Eq. (2.70)

regardless of the values ofm ands. That is to say,
∫

d fρ( f )
f − F̃

1+ ( f − F̃ )̃β
= 0. (2.72)
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This is what we referred to as the self consistency condition. Solving Eq. (2.72) for̃F can

be cumbersome in general. However, we will be interested in solving for the integral ofF
over all times, for which the expressions simplify substantially.

Note that the integral ofF from 0 to∞ will be the effective transfer rate of a barrier,

defined by

feff =
∫ ∞

0
dsF (s) = F̃ (0).

This can be seen from Eq. (2.19) withF (t) being the memoryφ(t). This means that, if we

are interested in the value of observables at asymptotically large times, each barrier will

act like it has the effective transfer ratefeff. The quantityF̃ (0) can be easily calculated

from Eq. (2.72),

1
feff
=

1

F̃ (0)
=

∫
d f
ρ( f )

f
,

where we used

lim
ε→0

β̃ (ε) =
1

F̃ (0)
.

Substitutingfeff for f in Eq. (2.20), we get the effective hopping rate as a function of the

distributionρ( f )

Feff =

H+1
H

1
F +

1
H

∫
d f ρ( f )

f

. (2.73)

Eq. (2.73) is the main result of this section as it provides uswith a relation between the

effective transfer rate and the properties of the disorder. In continuum, Eq. (2.73) becomes

the effective diffusion coefficient,

lim
a→0

Feffa
2 = Deff =

D

1+ D
L

∫
dD f

ρ(D f )
D f

, (2.74)

D f = lim
a→0

f a, (2.75)

where we used Eqs. (2.21) and (2.24). In the next subsection,we will give results corre-

sponding to a few different choices forρ( f ).
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2.7.1 Results for specific cases

We will begin with considering one of simplest choices forρ( f ) which is the sum of two

δ-distributions

ρ( f ) = αδ( f − f1) + (1− α)δ( f − f2). (2.76)

Substituting this in Eq. (2.73), we get

Feff =
H + 1

H
F +

(1−α) f1+α f2
f1 f2

.

Note that if eitherf1 or f2 is zero,Feff vanishes. This makes sense, because when there is

a possibility of having impenetrable barriers, the random walker will be confined and its

diffusion coefficient will eventually vanish.

In this simple case, it is possible to solve for the memoryF̃ (ε) for all values ofε,

exactly. For a generalρ( f ), Eq. (2.72) can be put in the following form

1
Γ
=

∫
d f

ρ( f )

f + (Γ − F̃ )
, (2.77)

where

Γ = − (1+ µ̃F) − F̃ µ̃
ζ + θ((1+ µ̃F) − F̃ µ̃)

,

and

θ =
coth(ξ/2)− 1

F
− ζ,

ζ =
1
µ̃F2

(1− 2 coth(ξ/2)+ coth2(ξ/2) cothξ(H + 1)).

In arriving Eq. (2.77), we made use of the following expression for β̃ in terms of the

propagators̃ψ0 andψ̃1

β̃ = 2(ψ̃1 − ψ̃0) −
f − F̃

F2(1+ ( f − F̃ )̃µ)

1− 2εψ̃0 + ε
2
′∑

r

ψ̃2
s−r

 ,
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where

′∑

r

ψ̃2
s−r =

cothξ(H + 1)

4F2 sinh2 ξ
.

Settingρ( f ) in Eq. (2.77) equal to the sum of twoδ-distributions as given in Eq. (2.76)

and doing some algebra, we obtain a cubic equation forF̃

F̃ 3 + bF̃ 2 + cF̃ + d = 0, (2.78)

where

b = −( f1 + f2 − 1/θ) − η/θµ̃,

c = f1 f2 − [µ̃( f2 + α( f1 − f2)) + (1+ µ̃F) − η( f1 + f2)]/θµ̃,

d = [η f1 f2 − ( f2 + α( f1 − f2))(1+ µ̃F)]/θµ̃,

η = ζ + θ(1+ µ̃F).

Using the well known cubic formula, Eq. (2.78) can be solved for F̃ as a function ofε.

The physically relevant solution is displayed in Fig. 2.12 for a particular choice off1, f2,

H, andα given in the figure caption. Note that̃F has the following limiting properties

lim
ε→0
F̃ = f1 f2

(1− α) f1 + α f2
, (2.79)

lim
ε→∞
F̃ = α f1 + (1− α) f2. (2.80)

In the rest of this subsection, we will consider three different distributionsρ( f ), or

ρ(D f ) in continuum, and calculate the corresponding effective diffusion coefficient. The

first of these distributions is what we will call a uniform distribution, which is equal to a

constant in an interval [l, u] and zero elsewhere, the second is a Rayleigh distribution,and

the last is a Rice distribution. For each of these cases, we will present the results in the

continuum limit, as we are interested in quantities that pertain to molecules diffusing in

continuum.
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0 2 4 6 8 10

1

1.15

ε/F

F̃
(ε

)/
F̃

(0
)

Figure 2.12: The memory functioñF (ε), which satisfies Eq. (2.78), normalized to its
initial value as a function ofε. Hereε is taken to be a real although it is a complex number
by definition. Sometimes the inverse Laplace transform of a function can be taken by
evaluating it only at real values of the Laplace variable. See Chapter 3 for an example.
Theρ( f ) that gives rise to this memory function is a sum ofδ-distributions:ρ( f ) = αδ( f −
f1) + (1 − α)δ( f − f2) where f1 = 0.1F, f2 = 0.2F, α = 0.5, and the compartment size,
H + 1, is equal to 11. The solid horizontal line corresponds to the asymptotic value of
F̃ (ε) /F̃ (0), which is given by the ratio of Eq. (2.80) to Eq. (2.79).

Uniform distribution

In this case,ρ(D f ) is defined by

ρ(D f ) =



1
u−l l < D f < u

0 otherwise

Then, Eq. (2.75) gives

Deff

D
=

[
1+

D ln(u/l)
L(u− l)

]−1

. (2.81)

Note thatD f has the dimensions of [length][time]−1 and if l = u = D/L, thenDeff = D.

47



Chapter 2. A mathematical model for molecular motion in cellmembranes

Rayleigh distribution

The Rayleigh distribution is a biased Gaussian distribution, defined in the following way

ρ(D f ) =
D f e

−D2
f /2σ

2

σ2
,

and its the mean and variance are given byσ
√
π/2,σ2

(
4−π

2

)
respectively. Note thatρ(D f )

vanishes identically atD f = 0. Substituting the Rayleigh distribution in Eq. (2.75), weget

Deff

D
=

[
1+

D
√
π/2

Lσ

]−1

. (2.82)

Rice distribution

Lastly, we will consider a distribution which is referred toas the Rice distribution,

ρ(D f ) =
D f

σ2
e−

(D2
f +v2)

2σ2 I0

(
D f

v
σ2

)
.

The main reasons for choosing this distribution is that unlike the Rayleigh distribution,

the value at which it peaks does not depend on its variance, and it vanishes identically at

D f = 0. It has two parameters,σ andv that determine its mean

σ
√
π/2L1/2

(
−v2/2σ2

)
,

and variance

σ2 + v2 − πσ2/2L2
1/2

(
−v2/2σ2

)
,

where

L1/2(x) = ex/2 [(1 − x)I0(−x/2)− xI1(−x/2)]

is the Laguerre Polynomial of fractional order andIm(x) are modified Bessel Functions of

the first kind. For this caseDeff/D becomes

Deff

D
=

[
1+

D
√
π/2

Lσ
e−v2/4σ2

I0(v
2/4σ2)

]−1

. (2.83)
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In Fig. 2.13, we display plots of Rayleigh and Rice distributions for various parameter

values. Note that although the Rice distribution is asymmetric in D f , it can be made

substantially symmetric by choosing its parameters appropriately.

As pointed out in ref. [39], the effective diffusion constant depends on the ratio ofD

to the product ofL and a value ofD f that depends on the particular distributionρ
(
D f

)
.

0 0.5 1.0 1.5
0

5

10

x

ρ
(x

)

v = 0

σ = 0.1

v = 0.5 v = 1

σ = 0.5
σ = 1

Figure 2.13: Rayleigh(solid) and Rice(dashed) distributions as a function ofx = D f . For
the Rice distribution,σ=0.05 in all cases. All of these distributions satisfy the normaliza-
tion condition

∫ ∞
0

dxρ(x) = 1.

2.7.2 Treatment of a case with disorder in compartment size

So far we gave results for the diffusion coefficient in the presence of equally sized com-

partments with either homogeneous or varying barrier heights. As we stated earlier, one of

our aims is to generalize our mathematical model to include disorder also in compartment

sizes. In this subsection, we describe how to achieve this ina particular way by taking

advantage of the results that are already given.

Treating the compartment sizes, or equivalently the barrier locations, as random vari-

ables turns out to be a little bit more complicated than doingthe same with barrier heights.
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In the previous subsection, we saw that one can choose any probability distributionρ(D f )

for the distribution of barrier heights and easily calculate Deff . An important point that we

did not emphasize in that situation is that the random variables that correspond to barrier

heights were uncorrelated. When one uses an effective medium theory, the random vari-

ables being uncorrelated makes the problem much easier to solve. See the last section of

chapter 3 for a detailed discussion on this. If the compartment size is distributed according

to the probability distributionP(q), then the locations of the barriers will mostly likely be

correlated random variables. Therefore, in this case it is not so simple to obtain a rela-

tion betweenDeff andP(q) because of the difficulties involved in solving the problem with

correlated random variables. Below, we will present a way ofgoing around this difficulty

by choosing the barrier locations to be uncorrelated randomvariables to begin with, and

then calculating the corresponding compartment size distribution P(q). This way we will

be able to use the results we already obtained to treat a particular kind of disorder in com-

partment sizes. The shortcoming of this method is that the form of P(q) obtained in this

way is very restricted.

Consider the following distribution for barrier heights

ρ( f ) = αδ( f − g) + (1− α)δ( f − F). (2.84)

This means that the transfer rate across a barrier is eitherg or F with corresponding prob-

abilitiesα and 1− α. Choosing the distribution of barrier heights in this way corresponds

to starting with a chain that has periodic barriers of the same heightg, as in ref. [38],

and removing each barrier with probability 1− α. Note that a barrier with transfer rateF

acts just like another link within one compartment. Therefore, some of the compartments

are now merged as the barrier between them is removed. The chain obtained in this way

will have compartment sizes that are always in multiples of (H + 1)a, as compartments

of different size will arise as a result of merging events. Herea is the lattice spacing as

before. Our next task is to find the distribution of compartment size, which is a random

variable whose statistics depend on the probabilityα in Eq. (2.84). Below we will show
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how this can be done by using some simple arguments.

We start with consideringN points in a discreet linear space. Each point is assigned

a numbersi which is either 1 or 0. The points in this space will correspond to links

that were barriers in our original problem. A pointi with si = 1 and 0 will represent a

barrier with transfer rateF andg, respectively. Hence points withsi = 1 indicate that the

compartments that thei th barrier was separating is now merged. According to Eq. (2.84),

0’s will occur with probabilityα and 1’s with 1− α. We letσ be the number of elements

in a contiguous sequence of 1’s such that the distance between two consecutive barriers

is given by (σ + 1)(H + 1)a. Note thatσ = 0 corresponds to the distance between two

consecutive barriers taking on its minimum value (H+1)a. In the light of these arguments,

we find

N (σ) = δσ,0
N−1∑

j=1

(1− sj)(1− sj+1)

+(1− δσ,0)
N−σ−1∑

j=1

(1− sj)


σ−1∏

i=0

sj+i+1

 (1− sj+σ+1), (2.85)

whereN (σ) is the number distribution ofσ in a particular realization of the chain, i.e. for

a specific choice of each of thesi ’s. The first and second terms in Eq. (2.85) correspond

to the number of occurrence of compartments of sizes (H + 1)a and (σ + 1)(H + 1)a

respectively. As we takesi ’s to be uncorrelated random variables, we can write:

〈si〉 = 1− α,

where the angular brackets mean an ensemble average over allrealizations ofsi ’s. The

ensemble averaged number distribution is given by

〈N (σ)〉 = (N − σ − 1)α2(1− α)σ, (2.86)

and therefore the probability distribution forσ is equal to the ratio

〈P(σ)〉 = 〈N (σ)〉
∑N−1
σ=0〈N (σ)〉

.
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As we are interested in infinite chains, we take the limitN → ∞ and the probability

distribution forσ becomes

〈PN→∞(σ)〉 = α(1− α)σ. (2.87)

As σ is proportional to the size of a compartment, the ensemble averaged compartment

size distribution is given by

P(q, α) = α(1− α)
q

H+1−1,

whereq = (σ + 1)(H + 1) is the dimensionless compartment size. The mean and variance

of P(σ, α) are

q =
H + 1
α

, (2.88)

(∆q)2 = (q2) − (q)
2
= (H + 1)2

1− α
α2

. (2.89)
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Figure 2.14: The distribution of compartment sizes,P(σ, α), as a function ofσ (left) and
α (right). By definition,σ is an integer, however the curves plotted in the left are for
illustrtive purposes and obtained from Eq. (2.7.2) by treatingσ as a continuous variable.

Fig. 2.14 shows a plots of the compartment size distributionas a function ofσ and

α. Note thatP(σ, α) has a maximum atσ = 0, and decreases exponentially withσ, as

shown on the plot on the left. This is a consequence ofsi ’s being uncorrelated. In order to
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obtain more generalP(σ, α) that peak at a nonvanishing value ofσ, one needs to introduce

correlations between thesi ’s. The plot on the right showsP(σ, α) as a function ofα. The

valuesα = 0 and 1 correspond to no barriers and periodically placed barriers (with period

H + 1), respectively.

Now we are in a position to give an expression forFeff andDeff, for the particular case

of nonuniformity in compartment sizes described above. Substituting Eq. (2.84) in Eq.

(2.73), we obtain

Feff =
q

1/ f + (q− 1)/F
, (2.90)

whereq is defined in Eq. (2.88),f andF are the transfer rate across a barrier and within

a compartment, respectively. Taking the continuum limit ofEq. (2.90) gives the effective

diffusion coefficient

Deff

D
=

[
1+

D
QD f

]−1

, (2.91)

whereQ = qa is the mean compartment size in continuum.

It is possible to extend this result for cases in which both the barrier heights and com-

partment sizes are independently distributed random variables. Consider the distribution

ρ( f ) = (1− α)δ( f − F) + η( f , α), (2.92)

whereη( f , α) is a distribution normalized toα, andη(0, α) = 0. Based on the discussions

above, using the distribution in Eq. (2.92) corresponds to starting with a chain that has

periodically placed barriers, removing a fraction (1−α) of them and sampling the transfer

rates of the rest of them from the distributionη( f , α). It is worthwhile to note that the

statistics of compartment size distribution do not change even if the barrier heights are not

the same, provided that the random variables involved are uncorrelated. Hence,Feff and

its continuum limitDeff are given by

Feff =

H+1
H

1
F

(
H+1−α

H

)
+ 1

H

∫
d f η( f ,α)

f

, (2.93)
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and

Deff

D
=

[
1+

D
L

∫
dD f

η(D f , α)

D f

]−1

. (2.94)

The distributionη(D f , α) is normalized toα, such that
∫ ∞

0
dxη(x, α) = α. This implies

that η(x, 0) = 0 asη is defined to be positive for all values of the independent variable

x. Therefore, whenα = 0, we recover the results for diffusion without the presence of

barriers, such thatFeff = F andDeff = D.

2.7.3 Comparison of theory with numerical solutions

In this subsection, we will compare numerically found values for a transport quantity

against the those we obtained theoretically. The transportquantity we choose is the time

dependent transfer rateF(t) defined in Eq. (2.19), and is the analog of the diffusion coeffi-

cient in discrete space. Comparing the theory and numericalresults in discrete space also

has the advantage of avoiding discretization errors. In obtaining the numerical solutions,

we first solve the Master equation for the chain with disordered barrier heights, Eq. (2.68),

for many realizations of the random variablesfr and calculateF(t) for each case. Then

we average over all of these to obtain the final results. Typically we average over 10000

differentF(t) curves each corresponding to a particular realization of the disorder. The

main plot in Fig. 2.15 shows numerically calculatedF(t)/F as a function oft for three

Rice distributions with parameters (v = 0.1, s = 0.02), (v = 0.2, s = 0.06) and (v = 0.4,

s = 0.02) that are represented by the dashed, solid, and dash-dotted curves respectively.

The horizontal dotted line corresponds to the theoretically predicted value ofFeff, given

by Eq. (2.73), for each case. There is excellent agreement between theory and numerics at

long times. The inset shows the shape of the probability distributionρ( f ) corresponding to

each case, keeping the same linestyle code. We also get similar results for differentρ( f )’s,

but here we only display results for the Rice distribution. The apparent dip inF(t)/F at

intermediate times is due to the particular initial condition chosen in numerically solving
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the Master equation. The initial condition for all of these cases is such that the random

walker occupies the central site in the starting compartment. Therefore, it is natural to

expect this feature inF(t), as explained with detail in Sec. 2.4.

10
0

0.2

1

Ft

F
(t

)/
F 0 0.25 0.5.

0

25

x

ρ(
x
)

Figure 2.15: Comparison of theoretical results obtained byusing the effective medium
theory and the numerical solutions of the Master equation (2.68), for the time-dependent
transfer rateF(t). The barrier heights are sampled from three Rice distributions with pa-
rameters (v = 0.1, s = 0.02), (v = 0.2, s = 0.06) and (v = 0.4, s = 0.02) and the
correspondingF(t)/F versust plots are represented by the dashed, solid, and dash-dotted
curves, respectively. Horizontal lines show the value ofFeff for each case. The agreement
between theoretical predictions and numerical solutions is excellent at sufficiently long
times. The plots in the inset display the behavior ofρ for each curve in the main figure,
using the same linestyle code. For further details, see text.

2.8 Concluding remarks

In this chapter we described our mathematical model for the motion of molecules in cell

membranes also published in refs. [38, 39]. Our model can predict the transport proper-

ties of molecules diffusing in the cell membrane in the presence of compartmentalization

effects due to the membrane skeleton, as explained in the introduction with considerable

detail. In Secs. 2.2-2.6, we presented our results for the ordered case, in which one as-
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sumes that the compartment sizes and barrier heights are uniform. Similar results for this

case are also found in the literature in the works of Powles, Mallett, Rickayzen, and Evans

[3], and Dudko, Berezhkovskii, and Weiss [4]. Our analysis resulted in considerably sim-

ple expressions for the time-dependent transport properties and are summarized in Sec.

2.6. The Laplace transforms of the formulas we obtain for these transport properties are

exact. In order to express them as functions of time, we employ analytical and numerical

methods of taking the inverse Laplace transform, which wereexplained in detail in Sec.

2.4. In Sec. 2.5 we compared the predictions of our theory with experimental data, and

showed that they agree well. An important feature of our analysis is that the effects of the

initial position of the molecule on the diffusion coefficient and mean square displacement

are clearly explained. In the past, the effects of initial conditions were virtually inac-

cessible because of the large experimental errors, but the recent advancements in single

molecule tracking techniques may make it possible for us to observe them.

In the second part, which consists of Sec. 2.7, we described how to generalize our

model to account for the structural disorder in the system. Encouraged by the success of

our simple mathematical model for the ordered case, we generalized it to take into account

the disorder in compartment sizes and barrier heights that is present in live cell membranes.

We used an effective medium approximation to calculate an effective diffusion constant for

diffusion in the presence of barriers, that have variable heights, and placed disorderly in

space. We believe that this achievement is one of the most important contributions of our

work as the previous models that describe diffusion in the presence of permeable barriers

did not consider the effects of disorder explicitly.
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Chapter 3

Contributions to the effective medium

theory of transport in disordered lattices

3.1 Introduction

In this chapter we are interested in investigating the properties of random walk in disor-

dered lattices by using the effective medium theory. Effective medium theories have been

widely used to estimate the values of ensemble averaged quantities in many disordered

systems. Recently Kenkre, Kalay, and Parris [16] have made essential contributions to

this field, and some of their findings are part of this thesis. This chapter gives a back-

ground on the fundamental aspects of the effective medium theory and presents those new

contributions.

Understanding the motion of particles in disordered media is important in the investi-

gation of many natural phenomena. Examples include electron transfer in organic crystals

[64, 65] (also important for understanding photosynthesis), conductivity in metals and

semiconductors [66, 67, 68, 5], motion of molecules in cell membranes [42, 69, 70, 1],

and virtually any problem that involves the consideration of particle motion in a random
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landscape [10].

In discrete space, the most general structure that one can consider is a graph. A graph

consists of a finite number of nodes, or infinitely many nodes,that may be connected to

each other with links in many different ways. Consider a random walker that hops between

connected nodes in a graph. LetFmn denote the rate at which it hops in continuous time

from noden to nodem. In other words,Fmn is the transfer rate associated with the link

connecting those nodes. Then the probability of finding the random walker at themth node

of the graph at timet will obey the Master equation

dPm

dt
=

∑

n

[FnmPn(t) − FnmPm(t)] . (3.1)

For details on the master equation description of random walks, see for instance Bedeaux

et al. [71], Oppenheim et al. [72], Kenkre [5], van Kampen [73], Hughes [10] and refer-

ences therein. Another noteworthy resource is the extensive review on the use of master

equation techniques in the description of energy transfer given by Kenkre [74]. We will

be specifically interested in random walks that take place ina 1-D chain, in which the ran-

dom walker can only hop between nodes that are nearest neighbors. As the graph we are

considering is a 1-D chain, the nodes can be thought as sites in space at which the random

walker can be found. In this respect, we will use the word siteinstead of node from now

on. The transfer ratesFmn are nonzero only forn = m+ 1 or n = m− 1. Furthermore, we

will take them to be symmetric so thatFmn = Fnm which leads to unbiased random walk.

In this case Eq. (3.1) reduces to

dPm

dt
= Fm [Pm−1 − Pm] + Fm+1 [Pm+1 − Pm] , (3.2)

whereFn denotes the transfer rate between sitesn andn−1 so thatFn = Fn,n−1 = Fn−1,n. As

stated in the beginning of this section, we are interested inrandom walks in a disordered

chain. Throughout this section, by a disordered chain we mean that Fn’s are random

variables that are drawn from a probability density functionρ(F1, F2, F3, . . . ) in the general

case and simplyρ(F) if Fn’s are independently distributed. In the literature, the type of
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disorder we are considering here is sometimes referred to asbond disorder, as the links (or

bonds) that connect each site in the chain with its neighbor have nonuniform transfer rates.

Our aim is to predict the evolution of transport quantities,such as the diffusion coefficient,

in a disordered chain where the disorder in transfer rates ischaracterized by the probability

densityρ. This problem has been addressed by many in the past, see for instance Parris

[12, 13, 14]. Although Eq. (3.2) gives the evolution of probabilities in its full detail for

a particular realization of the random variablesFn, it definitely is not possible to solve it

exactly and expressPm’s explicitly. In order to proceed, we would like to write down an

equation for the evolution of ensemble averaged probabilities,Pens
m . One way of defining

Pens
m is to argue that it is equal to the average of all solutionsPm of Eq. (3.2) over all

possible realizations of the random chain. Note that a realization of the random chain with

N sites is characterized byN − 1 values of the transfer rates, sampled from the probability

density functionρ.

The properties of diffusion in a lattice with random transfer rates is extensivelystudied

in the past by using methods other than the effective medium theory. In a 1-D lattice, it is

possible to obtain exact results for the asymptotic value ofthe diffusion coefficient if the

transfer rates at different locations are uncorrelated. Some of these exact results and limit

theorems are given by Alexander et al. [68], Zwanzig [75], and Kawazu and Kesten [76].

In the review by Alexander et al. [68], exact results are compared to the predictions of the

effective medium theory for asymptotic times. Here, we would like to mention a couple

of other works that are related to studying random walk in a disordered lattice by using

Master equations. The first is due to Derrida and Luck [77], and they consider diffusion in

a lattice with random and asymmetric transfer rates using a perturbation theory approach

and obtain expressions for the weak disorder expansion of the velocity, the diffusion co-

efficient, and the conductivity. The second study is by Machta [78], who obtained the

asymptotic diffusion coefficient in the disordered lattice by using a real space renormal-

ization group method. In his investigation, Machta [78] also shows that the presence of

disorder leads to a generalized master equation and calculates some of the properties of
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the memory function associated with it.

Here, we are interested in making an effective medium approximation which consists

of replacing the Master equation (3.2) with a generalized master equation

dPens
m

dt
=

∫ t

0
dsF (t − s)

[
Pens

m+1(s) + Pens
m−1(s) − 2Pens

m (s)
]
. (3.3)

From now on, we will drop the superscript ens ofP’s that appear in effective medium

equations. Note that Eq. (3.3) has two important features. Firstly, it is translationaly

invariant, as the memory functionsF (t) do not depend on position. Secondly, it is nonlocal

in time, which means that the probabilityPm(t) at timet depends on its values at all earlier

times 0< s < t. The details of how one gets from Eq. (3.2) to Eq. (3.3) will begiven

shortly in a broader context.

The effective medium approximation that consists of replacing Eq.(3.2) by Eq. (3.3)

is not new, and was employed as early as in 1935 by Bruggeman [6] in calculating the

dielectric constant of a mixture of dielectrical materials. Since then the theory has been

further developed an applied to many different problems. One of the earlier successful

applications is due to Kirkpatrick [11] who used an effective medium approximation to

calculate the effective conductivity of a random resistor network. Many other significant

contributions were made by Odagaki [7], Lax [8], Haus and Kehr [9], just to name a few.

For an extensive list of earlier references and a brief discussion of the subject see Hughes

[10].

In almost all of these studies, the focus of interest has beenthe asymptotic values of

transport quantities, such as the asymptotic diffusion coefficient which is given by the

integral ofF (t) over allt in Eq. (3.3). Therefore, very little amount of work has been done

about predicting the time dependence of transport quantities by using the effective medium

approximation. Some exceptions to these are the works of Odagaki and Lax [7], Dyre

and Schroder [79], and Haus and Kehr [80, 81, 9] on ac conductivity, Parris [12, 82] on

studying anisotropic disordered systems, and Kenkre [15] on stress distribution in granular
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materials.

As we stated above, the effective medium approximation can be viewed as a procedure

in which one replaces a Master equation with inhomogeneous transfer rates by a gen-

eralized master equation that has space-independent memory functions. This obviously

involves a substantial simplification of the problem, and isappropriate provided that we

are interested in ensemble averaged quantities, especially in their asymptotic values. Dur-

ing the earlier development of the effective medium theory, the significance of considering

a generalized master equation instead of a Master equation had not been stressed. The

early works of Kenkre [5, 83, 84] show that the solutions of generalized master equations

can display a lot more features than those of the Master equation, because of the free-

dom introduced by the memory function. Therefore, generalized master equations have

the potential for modeling a wider range phenomena than Master equations, including, for

example, coherent transport of excitons [5]. As emphasizedin ref. [16], “What is really

necessary in the sense of calculations comes to ... the finding of an explicit and practi-

cal prescription that would allow one to go from informationabout the disorder in the

real system to the memories (or pausing time distribution functions) in the replacement

problem”. One such attempt is in an early work, where Scher and Lax [85]attempted to

give a method to calculate the waiting time distribution, which is a quantity related to the

memory function [83] in Eq. (3.3), using the information in the disorder. In this spirit, our

aim is to use a recipe which gives out the memory functions corresponding to a particular

kind of disorder, characterized by the distributionρ. A clear recipe of this kind is given by

Kenkre [15] in the context of granular materials.

This chapter is organized as follows: In Sec. 3.2 we present one of the well known

ways of showing how the generalized master equation arises.Then, in Sec. 3.3, we give

the prescription that we use in solving for the memory functions in the effective medium

descriptions. The next three sections are devoted to calculating the time dependence of the

memory, finding the memories for some specific distributionsρ( f ), and comparison of the

61



Chapter 3. Contributions to the effective medium theory of transport in disordered lattices

predictions of the effective medium theory with numerical findings, respectively. In Sec.

3.7, we explore the significance of long-range, or higher order, memory functions with

respect to the nearest neighbor memory function, which is followed by a discussion on the

effects of finite system size in Sec. 3.8. In Sec. 3.9, we present results for the cases in

which the disorder is correlated so that links at different locations have transfer rates that

are not independently distributed anymore. Finally, we give some concluding remarks in

Sec. 3.10.

3.2 How does the generalized master equation arise?

The Master equation, describes an evolution in which the current state of the system is

determined entirely by its previous state. The type of processes that lead to this kind of

evolution are classified as Markov processes. In many situations, the state of the system

in the future depends on part of its history and its evolutionwould poorly be described

by a master equation. For instance, if transport in a system is coherent to some degree,

history dependent evolution will arise [5, 83]. In these situations, one may use a general-

ized master equation that would respect thememory effect. At this point, it is important to

understand how generalized master equations emerge, by using only first principles. Gen-

eralized master equations naturally arise while switchingbetween microscopic and macro-

scopic descriptions of a system. The memory appears simply because of concentrating on

the evolutions of a part of the system and ignoring the rest aswe will see shortly. The

generalized master equation comes about naturally based onthe underlying microscopic

dynamics, and only under certain conditions reduces to the master equation. In order to

show how these conclusions are drawn, we will follow Zwanzig[86] and make use of

the projection operator technique that he originated alongwith Nakajima [87]. Projection

operator techniques have been successfully used in many problems in statistical mechan-

ics not only involving the transition from microscopic dynamics to macroscopic dynamics
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which provides an understanding of the origin of irreversibility [88], but also for practical

problems [89, 90, 91]. For a generalization of this technique, see Kenkre [83] and Kenkre

and Knox [84]. Letu be the density of states of a system. Thenu will evolve according to

the Liouville equation,

∂u
∂t
= −iLu = {H, u}

where{·, ·} stand for Poisson brackets andH is the Hamiltonian. This equation governs

the evolution of the microscopic states of the system. The quantum mechanical analog of

the Liouville equation is the Von Neumann equation and is given by

i~
∂u
∂t
= [H, u],

where [·, ·] is the commutator andunow stands for the density matrix of the system. For the

purpose of this discussion, it does not make a difference to consider classical or quantum

mechanical evolution. Here, we consider the quantum mechanical situation for notational

brevity. Suppose that we are only interested in the evolution of a part of the system. Let

us denote this subset of the whole system byu′ and the rest byu′′, so thatu = u′ +u′′. The

projection operators are defined as

Pu = u′,

(1− P) u = u′′.

We can apply the operatorsP and(1− P) to both sides of the Liouville equation and use

u = u′ + u′′ and obtain

∂u′

∂t
= −iPLu′ − iPLu′′,

∂u′′

∂t
= −i (1− P) Lu′′ − i (1− P) Lu′.

We can formally solve foru′′ and substitute it in the differential equation foru′, giving

∂u′

∂t
= −iPLu′ − iPLe−it(1−P)Lu′′(0)−

∫ t

0
dsPLe−i(t−s)(1−P)L (1− P) Lu′(s) (3.4)
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Note that Eq. (3.4) does not depend onu′′ except at its initial value. Ifu′′(0) = 0, then

Eq. (3.4) would be closed inu′ and we can solve for it with whatever method is avail-

able. The conditions under whichu′′(0) = 0 would depend on the nature of the particular

problem. For instance it may correspond to an initial phase randomization in the quantum

mechanical system being considered [92, 93]. If we takeP as an operator that returns

the diagonal part of the matrix that it acts on, the first term in the right hand side of Eq.

(3.4) vanishes asLu′ is an off diagonal matrix. One can easily see this by calculating the

matrix elements ofLu′ = Hu′ − u′H. From now on, we will takeu′′(0) = 0. This also

corresponds to arguing that the subset of the system that we are interested in actually is

the whole system to begin with. Off-diagonal elements can naturally develop in time, but

we will keep looking at the diagonal part only. Then we are left with

∂u′

∂t
= −

∫ t

0
dsK(t − s)u′(s), (3.5)

where

K(t − s) = PLe−i(t−s)(1−P)L (1− P) L,

which is the generalized master equation, as the diagonal elements ofu′ are the prob-

abilities of finding the system in a particular macroscopic state. In order to make fur-

ther progress, we need to make approximations or consider a specific system. Note that

Eq. (3.5) is a system of equations for the probability of finding the system in themth state,

asPm = u′mm. One can put Eq. (3.5) in a gain-loss form so that it takes on the more fa-

miliar look of a generalized master equation. To do this, onecan take the diagonal matrix

elements of both sides of Eq. (3.5)

〈m|∂u′

∂t
|m〉 = dPm

dt
= −

∫ t

0
ds〈m|K(t − s)u′|m〉.

where we use the Dirac notation, and then express the matrix elements〈m|K(t − s)u′|m〉 in

terms of the probabilitiesPn(t).

Now we turn our attention to how the projection technique canbe employed to study

transport in a disordered lattice. The discussion of the standard procedure mainly follows
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that in [9]. Suppose thatA is a matrix of random transition rates. Then the probabilities of

finding the random walker at the lattice sites are given by themaster equation

dP
dt
+ AP= 0, (3.6)

whereP = P(P1,P2,P3, ...). We are not concerned with random walk in a particular

random lattice but in the one that is obtained by ensemble averaging over all possible

realizations of the random transition rates. Suppose that the projection operatorP takes

the ensemble average over transition rates when it acts on the matrixA. We start with Eq.

(3.6) and apply the operatorsP and(1− P) like we did above and obtain

d [PP]
dt

= −PA [PP] + PA
∫ t

0
dse−(1−P)A(t−s) (1− P) A [PP] . (3.7)

In order to get this result, we assumed that we start with aP which is already ensemble

averaged over all of its possible realizations, so that(1− P) P(0) = 0. From now on, we

will put angular brackets around ensemble averaged quantities, e.g.PP = 〈P〉, PA = 〈A〉.
Taking the Laplace transform of Eq. (3.7) and rearranging terms,

εP̃− P(0) = B̃P̃,

B̃(ε) = −〈A〉 + 〈A [ε + (1− P) A]−1 [A− 〈A〉]〉.

Note that the matrix̃B describes a translationaly invariant system unlikeA. Inverting the

Laplace transform, we get

dP
dt
=

∫ t

0
dsB(t − s) P(s). (3.8)

Let

Bmm(t) = −
∑

n

Fnm(t),

Bmn(t) = Fmn(t).

Then we can express Eq. (3.8) as

dPm(t)
dt

=

∫ t

0
ds

∑

n

[Fmn(t − s) Pn(s) − Fnm(t − s) Pm(s)] , (3.9)
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which is a generalized master equation in the more familiar gain-loss form. This shows that

probabilities that are ensemble averaged over different realizations of the disorder obey a

generalized master equation with space-independent memory functions. Therefore, in this

approach, the problem reduces to expressing the memory functionsFmn(s) in terms of the

distribution of random transfer rates.

3.3 The effective medium recipe

Probability of finding the random walker at themth site in the effective medium approxi-

mation is given by

dPm

dt
=

∫ t

0
dsF (t − s) [Pm+1(s) + Pm−1(s) − 2Pm(s)] . (3.10)

The quantityPm(t) should be interpreted as the probability of finding the random walker at

sitem of the ensemble averaged chain, which is translationaly invariant in space. Our aim

is to solve for the memoryF (t) given a transfer rate distributionρ( f ) which characterizes

the disorder in the system. In order to achieve this, we will make use of a self consistency

condition also emplyed by many others ( see ref. [10] and references therein). Suppose

that we replace the memory function between sitesr andr +1 with f δ (t − s). This simply

means placing a link betweenr andr + 1 whose transfer rate isf . With this replacement,

the equation forPm(t) becomes

dPm

dt
=

∫ t

0
dsF (t − s) [Pm+1(s) + Pm−1(s) − 2Pm(s)]

+ δm,r+1

(∫ t

0
dsF (t − s) [Pr+1(s) − Pr(s)] − f (Pr+1(t) − Pr(t))

)

+ δm,r

(∫ t

0
dsF (t − s) [Pr(s) − Pr+1(s)] − f (Pr(t) − Pr+1(t))

)
. (3.11)

Let ηm(t) be the solution of Eq. (3.10). It can explicitly be written as

ηm(t) =
∑

n

ψm−n(t)Pn(0).
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Evidently
∑

nψm−n(t) is the Green’s function for Eq. (3.11). Therefore, its solution can

formally be expressed as

Pm(t) = ηm(t) +

{∫ t

0
ds

∑

n

ψm−n (t − s)

×
[
δn,r+1

( ∫ t

0
dsF (t − s) [Pr+1(s) − Pr(s)] − f (Pr+1(t) − Pr(t))

)

+ δn,r

(∫ t

0
dsF (t − s) [Pr(s) − Pr+1(s)] − f (Pr(t) − Pr+1(t))

) ]}
.

(3.12)

Taking the Laplace transform of Eq. (3.12) and doing algebraic manipulations, we obtain

P̃m (ε) = η̃m (ε) + ∆
η̃r+1 (ε) − η̃r (ε)

1+ 2∆
(
ψ̃1 (ε) − ψ̃0 (ε)

)
(
ψ̃m−r−1 (ε) − ψ̃m−r (ε)

)
, (3.13)

where∆ = F̃ (ε) − f , tildes denote Laplace transformed quantities andε is the Laplace

variable. Here comes the key point in this discussion. The second term in Eq. (3.13)

stems from the fact that we replaced one of the links in the effective medium chain by one

with transfer ratef . Therefore, we introduced a defect into to the otherwise translationaly

invariant chain. If we average both sides of Eq. (3.13) overf using the distributionρ( f ),

then this term should vanish, because this procedure restores the translational invariance

by averaging over all possible values off , and for a translationaly invariant chain we know

thatP̃m (ε) is simply equal tõηm (ε). Therefore, we have

〈P̃m (ε)〉 = 〈̃ηm (ε)〉 +
〈
∆

η̃r+1 (ε) − η̃r (ε)

1+ 2∆
(
ψ̃1 (ε) − ψ̃0 (ε)

)
(
ψ̃m−r−1 (ε) − ψ̃m−r (ε)

)〉
,

P̃m (ε) = η̃m (ε) ,
〈
∆

η̃r+1 (ε) − η̃r (ε)

1+ 2∆
(
ψ̃1 (ε) − ψ̃0 (ε)

)
(
ψ̃m−r−1 (ε) − ψ̃m−r (ε)

)〉
= 0, (3.14)

where

〈·〉 =
∫ ∞

0
d fρ( f ) [·] .
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Note that averaging does not affect P̃m (ε) or η̃m (ε) as they are quantities that pertain to

the ensemble averaged, effective medium chain. The expression given by Eq. (3.14) is

a self consistency condition, as averaging over transfer rates of the links with respect to

ρ( f ) should give rise to the memory functions̃F (ε) in the first place. The self consistency

condition can be further simplified by noting that it should hold for all values ofm andr,

giving
〈

∆

1+ 2∆
(
ψ̃1 (ε) − ψ̃0 (ε)

)
〉
= 0,

or
∫ ∞

0
d fρ( f )

F̃ (ε) − f

1+ 2
(
F̃ (ε) − f

) (
ψ̃1 (ε) − ψ̃0 (ε)

) = 0. (3.15)

Eq. (3.15) can be put [16] in a more compact form by using the fact thatψ̃0 (ε) satisfies

the Laplace transform of the generalized master equation, Eq. (3.10), so that

εψ̃0 (ε) − 1 = F̃ (ε)
(
ψ̃1 (ε) + ψ̃−1 (ε) − 2ψ̃0 (ε)

)
,

where we usedψ0(0) = 1. This enables us to expressψ̃±1 (ε) in terms ofψ̃0 (ε) and leads to
∫ ∞

0
d f

ρ( f )
f + ξ (ε)

=
1

F̃ (ε) + ξ (ε)
, (3.16)

where

ξ (ε) = F̃ (ε)
εψ̃0 (ε)

1− εψ̃0 (ε)
.

Eq. (3.16) is a very important result [16], as it provides us with a way of calculating

F (t) which can then be used to obtain various transport quantities, like the time dependent

diffusion coefficient. In this section, we are interested in quantities thatpertain to an

infinite 1-D chain, for which

ψ̃0 (ε) = 1

/√
ε
(
ε + 4F̃ (ε)

)
,

and

ξ (ε) =
ε

4

(
1+

√
1+ 4F̃ (ε) /ε

)
.
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In the subsequent sections, we explore the time dependence of F (t) by solving Eq. (3.16)

for all ε and taking its inverse Laplace transform. In many situations, carrying out this

procedure is possible only numerically because either doing the integral is cumbersome,

or the equation for̃F (ε) is transcendental. However, it is very easy to get information

about theε → 0 limit. In this limit, εψ̃0 (ε) vanishes and therefore,ξ becomes zero, giving

∫ ∞

0
d f
ρ( f )

f
=

1

F̃ (0)
, (3.17)

or F̃ (0) = 〈1/ f 〉−1. Note thatF̃ (0) is equal to the asymptotic diffusion coefficient as it is

the integral of the memory function from 0 to∞. This well known result is actually an

exact solution in 1-D and was derived in several different ways [68, 94].

In the next section, we will see what we can infer aboutF (t) with the knowledge

we already have, before considering specific distributionsρ( f ) and calculating the corre-

sponding memories.

3.4 Time dependence of the memory

The solutions of the effective medium equation (3.10) need to be consistent with those of

the Master equation (3.2) that are averaged over different realizations of the disorder. They

should give the same results for the derivatives ofPm(t) in the limit t → 0 as argued in ref.

[16]. That is to say

〈
dnPM

m(t)

dtn

∣∣∣∣∣∣
t→0

〉
=

dnPEMT
m (t)

dtn

∣∣∣∣∣∣
t→0

,

wherePM
m(t) andPEMT

m (t) obey the master equation (3.2) and the effective medium equation

(3.10) respectively. Without loss of generality, we can take the initial position of the

random walker to be zero, i.e.Pm(0) = δm,0. As shown in ref. [16], with this choice we
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have
〈

dPM
m (t)
dt

∣∣∣∣∣∣
t→0

〉
= − 〈Fm+ Fm+1〉 = −2〈 f 〉 (3.18)

dPEMT
m (t)
dt

∣∣∣∣∣∣
t→0

=

∫ 0+

0−
dsF (t − s)[Pm+1(s) + Pm−1(s) − 2Pm(s)]. (3.19)

We immediately observe that the right hand side of Eq. (3.19)can be finite only ifF (t)

contains aδ-function centered att = 0. Therefore, we must have

F (t) = αδ (t) + β (t) ,

whereα is a constant andβ(t) is a function of time. Using Eqs. (3.18, 3.19) and̃F (0) =
∫ ∞

0
dsF (s) = 〈1/ f 〉−1 we conclude that [16]

F (t) = 〈 f 〉δ (t) − Q(t),
∫ ∞

0
dsQ(s) = 〈 f 〉 − 1/〈1/ f 〉.

Note that〈 f 〉 − 1/〈1/ f 〉 is always greater than or equal to zero as

〈 f 〉 − 1/〈1/ f 〉 = 〈 f 〉〈 f
−1〉 − 1
〈1/ f 〉 ,

and

〈 f 〉〈 f −1〉 ≥ 〈 f f −1〉 = 1,

where the last the relation is a form of the Cauchy-Schwarz inequality,‖a‖ ‖b‖ ≥ ‖ab‖.
Proceeding in the same manner, and equating the second derivatives give

〈
dPM

m (t)

dt

∣∣∣∣∣∣
t→0

〉
= 4〈 f 2〉 + 2〈 f 〉2 (3.20)

dPEMT
m (t)
dt

∣∣∣∣∣∣
t→0

= 6〈 f 〉2 + 2Q(0), (3.21)

which yields

Q(0) = 2
(
〈 f 2〉 − 〈 f 〉2

)
.
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Therefore, one can keep calculating the higher order derivatives of Q(t) at t = 0 and

approximate it by a Taylor series. A simple approximation toF (t) can be made by substi-

tuting an exponential function forQ(t) with appropriate parameters [16]

Fapx(t) = 〈 f 〉δ(t) − 2
(
〈 f 2〉 − 〈 f 〉2

)
e−t(2(〈 f 2〉−〈 f 〉2))/(〈 f 〉−〈1/ f 〉−1), (3.22)

which satisfies
∫ ∞

0
dsF (s) = 〈1/ f 〉−1. We will compareFapx(t) with its numerically found

counterpart in the following sections.

3.5 Calculating the memory functions for specificρ( f )’s

We consider three different types of transfer rate distributionsρ( f ) characterizing the dis-

order. A summary of the quantities related to each distribution that we will use in the

calculations later in this section is given in Table 3.1. Thefirst one is a sum ofδ-functions

ρ( f ) =
M∑

i=1

αiδ( f − fi),

for which the transition rates take one ofM valuesfi each with a weightαi, with
∑M

i=1 αi =

1. For convenience, we will consider the caseM = 2, so that

ρ( f ) = αδ( f − f1) + (1− α)δ( f − f2). (3.23)

The distributionρ( f ) for this case is shown as the two arrows in Fig. 3.1 and will be

referred to as the “double-delta” distribution from now on.

The second form ofρ( f ) we consider is the gamma distribution given by

ρ( f ) =
γn+1

Γ(n+ 1)
f ne−γ f . (3.24)

A plot of ρ( f ) is shown for the parameter valuesn = 1 andγ = 4 in Fig. 3.1.
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The last particular case we consider is the triangular distribution given by

ρ( f ) =



( f − f0 + fb)/ f 2
b f0 − fb ≤ f ≤ f0,

(− f + f0 + fb)/ f 2
b f0 ≤ f ≤ f0 + fb,

0 elsewhere.

(3.25)

In this case,f can only take values betweenf0− fb and f0+ fb. As for the parameter values:

fb is half the length of the base of the triangle andf0 is the value of the abscissa at which

the distribution peaks, which also is equal to its mean value. The distribution is shown in

Fig. 3.1 for f0 = 0.3 and fb = 0.2.

double-delta Gamma Triangular
〈 f 〉 α f1 + (1− α) f2 n+ 1 /γ f0
〈 f 2〉 α f 2

1 + (1− α) f 2
2 (n+ 1)(n+ 2)

/
γ2 f 2

0 + f 2
b /6

〈1/ f 〉−1 f1 f2
α f2+(1−α) f1

n /γ fb ln−1

((
1+ 2 fb

f0− fb

) (
1− f 2

b

f 2
0

) f0/ fb
)

Table 3.1: Summary of the distribution properties that are used in the calculations.

0 0.5 1
0

2.5

5.

f

ρ
(f

)

 

 

gamma

triangular

Figure 3.1: Illustration of the three different probability distributionsρ( f ) mentioned in the
text. The two arrows show the values off for which the double-delta distribution peaks.
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3.6 Comparison of the effective medium theory and nu-

merical solutions

After obtaining the memory functionF (t) we can calculate various observables that can

be used to compare the predictions of the effective medium theory (EMT) and numerical

results. In order do so, we need to solve Eq. (3.16) forF̃ (ε) given a particular distribution

ρ( f ). A couple of observables that can directly be calculated from the memory function

are the mean square displacement, denoted by MSD(t), and the time dependent diffusion

coefficientD(t). In discrete space they are defined as

MSD(t) = 〈(ma)2〉 =
∑

m

(ma)2Pm(t),

D(t) =
a2

2
d
dt

MSD(t),

wherea is the distance between two lattice sites. The way these quantities are related to

F (t) can be found by summing Eq. (3.10) overmand solving for the MSD(t). This yields,

MSD(t) = 2a2

∫ t

0
ds

∫ s

0
F (u)du, (3.26)

D(t) = a2

∫ t

0
F (s)ds. (3.27)

Note thatlimt→∞D(t) = F̃ (0). In this chapter, we will be using the dimensionless forms of

MSD(t) andD(t). In order to simplify the notation, we are going to drop the factors ofa,

i.e. a = 0 throughout this chapter.

In the rest of this section, first we will be interested in comparing the predictions of

EMT with numerical solutions for different types of disorder characterized by the three

ρ( f )’s mentioned above. In doing this, we consider initial conditions that are of different

nature which give rise to disparate ensemble averaging schemes. Next, we will explore

how good the exponential approximation to the memory, givenby Eq. (3.22), is and when

the EMT does poorly. Finally we will compare the self propagators predicted by the EMT
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to those that are calculated exactly for a specific realization of the random chain. This last

task is important as it provides us with another way of testing the EMT and as the self

propagators are used in calculating many observables in thesystem.

In order to obtain the time dependent diffusion coefficient predicted by the EMT, we

need to solve Eq. (3.16) for̃F (ε), calculate its inverse Laplace transform and substitute the

result in Eq. (3.27)1. To test the validity of the EMT predictions, we calculateD(t)/D(0)

numerically by solving the Master equation (3.2).

In order to solve the Master equation numerically, we take advantage of the fact that

the matrixA in Eq. (3.6) is real and symmetric, and therefore, is diagonalizable and has

real eigenvalues. Let|φλ〉 be the eigenvector ofA corresponding to the eigenvalueλ, then

A |φλ〉 = λ |φλ〉 ,

and|φλ〉’s are normalized such that

〈φλ |φλ′〉 = δλ,λ′ .

Therefore, the solution of Eq. (3.6) can be written as

|P(t)〉 =
∑

λ

e−λt |φλ〉 〈φλ |P(0)〉 ,

where we used

A =
∑

λ

λ |φλ〉 〈φλ| ,

e−At =
∑

λ

e−λt |φλ〉 〈φλ| .

Of course, this is not the only way of numerically solving Eq.(3.6), but it turns out that

this method is very fast as long as the system consists of justa few thousand lattice sites

or less.
1At this point, it is useful to note that dividing the Laplace transform of a function byε corre-

sponds to integrating that function from 0 tot in time.
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As the EMT is concerned with ensemble averaged quantities, we need to make sure

that an ensemble averaging scheme is built into the numerical solution obtained from the

Master equation. In this respect, we will consider two kindsof initial conditions that are

used to solve the master equation numerically. The first one will be referred to as the

“localized” initial condition and it simply means that the random walker initially occupies

one of the sites, for instance the 0th site. In order to calculateD(t)/D(0) from the mas-

ter equation, we will numerically solve it for many different realizations of the disorder

and ensemble average the results. Therefore, the ensemble averaging involved in this pro-

cedure makes sure that the quantity we are calculating pertains to the effective medium

chain so that it can be compared with the predictions of the EMT. The second type of

initial condition we will take up is one that is extended in space, as is given by

Pm(0) =
1

2µ + 1

µ∑

r=−µ
δm,r .

By solving the Master equation with an initial condition of this kind, we eliminate the

need for ensemble averaging over different realizations of the chain because of the follow-

ing reason: as the probability of occupation of the random walker is dispersed over many

different sites right from the beginning, the random walker already samples a wide portion

of the random chain even at small times, which is equivalent to doing an average over

different realizations of the chain. The main point in using spatially extended initial condi-

tions is that in a physical system, we are generally interested in one particular realization

of the disordered structure under consideration. Therefore, ensemble averaging over many

configurations may not be possible or meaningful. However, one can experimentally ar-

range situations in which the initial condition is spread out, which leads to the ensemble

averaging in the way we described above, so that the predictions of the EMT can still be

meaningful.

Let us begin with the consideration of localized initial conditions. Substituting the

double-delta distribution given by Eq. (3.23) in Eq. (3.16)and doing the integral, we get
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a cubic equation for the Laplace transform of the memory

F̃ 3 − 2F̃ 2
(
2η2/ε + f1 + f2

)
+ F̃

(
8η f1 f2/ε +

(
2 f1 f2 + ( f1 + f2)

2 − η2
))

−4 f 2
1 f 2

2 /ε − (2 f1 f2( f1 + f2) − 2η f1 f2) = 0,

where

η = (1− α) f1 + α f2.

We use the cubic formula to solve this equation forF̃ (ε) and then calculateD(t)/D(0)

from it. For the gamma and triangular distributions, the equations we get for̃F (ε) have to

be solved numerically, as they turn out to be transcendentalequations. This can done by

using high precision arithmetics so that the results obtained are of practical value. In each

case, after obtaining̃F (ε) either analytically or numerically, we divide it byε and take its

inverse Laplace transform numerically, which yieldsD(t)

L−1


F̃ (ε)
ε

 =
∫ t

0
dsF (s) = D(t),

whereL−1 denotes the inverse Laplace transformation operator and isdefined as

L−1H̃ (ε) (t) =
1

2πi

∫ γ+i∞

γ−i∞
dεeεtH̃ (ε) ,

whereγ is a positive real number larger than the real parts of all singularities ofH̃ (ε).

The integral on the right hand side is referred to as the Bromwich integral. Undoubtedly

the Laplace transform is a very useful tool in solving lineardifferential and integral equa-

tions by reducing them to algebraic equations. Unfortunately, taking the inverse Laplace

transform of the solution can be a difficult task when it cannot be performed analytically.

Most of the cases of interest, including ours, fall into thiscategory because of the compli-

cations involved in doing the Bromwich integral involved inthe inversion process. There

are various ways of performing the inversion numerically and the nature of each problem

determines which one is the most suitable. Some of the widelyused methods are known
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as the Fourier series [95], Talbot [96], Weeks [97], and Gaver-Stehfest [98, 99] methods.

We chose to use the Gaver-Stehfest method because it only requires the evaluation of the

Laplace transform at real values ofε, and is reliable when the inverse transform does not

oscillate. We know from our numerical experiments that ensemble averaged mean square

displacement, diffusion coefficient and probability distribution function are all monotonic

functions of time. Below is a brief outline of the numerical method used, as explained in

Abate and Whitt [100]. They start with the Bromwich integral

H(t) =
1

2πi

∫ γ+i∞

γ−i∞
dεeεtH̃ (ε) ,

and make the change of variabless= εt, and obtain

1
(2πi) t

∫ t(γ+i∞)

t(γ−i∞)
dsesH̃ (s/t) . (3.28)

The next step is approximating the exponential function by asum of partial fractions [61]

es ≈
n∑

k=0

ωk

αk − s
, (3.29)

whereωk andαk are complex numbers andαk’s are distinct, so that the approximation

of es hasn + 1 simple poles and the approximation gets better asn increases. There are

various ways in which one can chooseαk andωk to approximatees better, and basically

the specific choice determines the name of the Laplace inversion method. Substituting the

approximation Eq. (3.29) into Eq. (3.28) and doing the integration2,

Hn(t) =
1
t

n∑

k=0

ωkH̃ (αk/t) . (3.30)

Eq. (3.30) is annth order approximation to the inverse Laplace transform ofH̃ (ε). It is

quite a general result in this form because of the freedom in the choice of the complex

numbersωk andαk. In the Gaver-Stehfest method,ωk andαk are taken to be real numbers.

Note that this means the Laplace transform will only be evaluated for real values of its

2Which is obviously 2πi times the residue at each simple pole.
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argument. The specific way in which Gaver [98] used to approximateH(t) gives [100]

Hg(t,M) =
ln 2

t

2M∑

k=1

ζkH̃
(
k

ln 2
t

)
,

ζk = (−1)M+k
min(k,M)∑

j=b(k+1)/2c

jM+1

M!

(
M
j

)(
2 j
j

)(
j

k− j

)
,

whereHg(t,M) is the approximation toH(t) andbxc is the greatest integer less than or

equal tox. Observe that the magnitude of the terms in the alternating series can be very

large. Therefore, one needs to do the arithmetic with quite high precision to obtain reliable

results. When the functionH(t) is bounded, it is possible to approximate the accuracy of

Hn(t) and the number of significant digits that should be used to achieve that accuracy

[101]. According to Abate and Whitt [100] the precision required to sum the series, i.e.

the number of significant digits, is 2.2M while the precision of the resulting expression

is 0.90M. Practically speaking, if one uses double precision in the calculations, the value

of M should not be larger than 7. As the probability distributionfunction and diffusion

coefficient are both bounded functions in time, we can use these results to reliably perform

the Laplace inversion numerically.

Following the steps that we described above, we calculateD(t)/D(0) both numerically

and by the EMT for the double-delta, gamma, and triangular distributions. Numerical

results are carried out by calculatingD(t) for over 20000 different realizations of the ran-

dom chain with localized initial conditions and averaging over all of them. Results are

displayed in Fig. 3.2. There is excellent agreement betweennumerical results and the pre-

dictions of EMT for all times. Therefore, it looks like EMT can be used to make accurate

predictions of time dependent transport quantities such asthe diffusion coefficient.

It is natural to expect that for some parameter values, the effective medium approxi-

mation would break down. We will explore this shortly. Before that, let us consider the

situation in which we employ spatially extended initial conditions and do not average over

different realizations of the chain. Suppose that we use an initial condition of following
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Figure 3.2: Normalized time-dependent diffusion coefficient as a function of dimension-
less timeτ = 〈 f 〉 t, for different types of disorder. From top to bottom, solid lines cor-
respond to EMT predictions and open circles represent the numerical solutions forρ( f )
being a double-delta distribution withf1/ f2 = 0.5 andα = 0.5, a triangular distribution
with f0 = 0.3, fb = 0.2, and a gamma distribution withn = 1. The agreement is remarkable
in all of the cases for all times. The numerical solution is found by using a localized initial
condition and averaging over 20000 calculations ofD(t)/D(0) each involving a different
realization of the disorder. Dashed lines on the right show the asymptotic values of the
diffusion coefficient predicted by the EMT, which is equal tõF (0).

form

Pm(0) =
1

2µ + 1

µ∑

r=−µ
δm,r . (3.31)

With these initial conditions, we expect that the numericalsolution of the Master equation

for a particular realization of the disorder agrees with theEMT predictions. The non-zero

width of the initial condition should play the role of ensemble averaging over different

realizations of the chain, as discussed earlier. In order totest this idea, we generate a dis-

ordered chain whose transfer rates are drawn from the double-delta distribution. Always

using the same chain, we calculateD(t)/D(0) by varying the width of the initial condi-

tion, which is 2µ + 1 as seen from Eq. (3.31). Then we calculate the integrated relative

difference,ER, between the EMT predictions forD(t)/D(0) and numerical solutions with

79



Chapter 3. Contributions to the effective medium theory of transport in disordered lattices

different initial condition widths. This quantity is defined by

ER =

∫ ∞

−∞

DEMT (s) − DEX (s)
DEX (s)

ds (3.32)

wheres = ln (〈 f 〉t), andDEMT(t) andDEX(t) are the EMT prediction and exact numer-

ical value of the diffusion coefficient. As Fig. 3.3 shows, numerical results agree with

EMT as the width of the initial condition increases. The mainfigure shows thatER drops

quickly with the initial condition width and the inset showsD(t)/D(0) for two specific

initial conditions withµ = 5 andµ = 50. These plots in the inset demonstrate that the

results obtained for the narrower initial condition (crosses) differs substantially from the

EMT predictions whereas those for the broader initial condition (open circles) agree well

with it.
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Figure 3.3: The main figure shows the behavior ofER as given by Eq. (3.32) which is the
relative difference between EMT predictions and numerical results for spatially extended
initial conditions calculated for a particular realization of the disordered chain. It clearly
shows thatER monotonically decreases with increasing initial condition width. The inset
shows the time evolution ofD(t)/D(0) for a couple of initial conditions, one of which is
narrower (crosses,µ = 5) and the other being broader (open circles,µ = 50), along with
the EMT prediction. The results that correspond to the broader initial condition agree
surprisingly well with the EMT prediction for all times.

Next, we will explore how the exponential approximation to the memory, Eq. (3.22)
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compares with the exactly calculated memory functions and when the effective medium

approximation breaks down. In order to address the first of these issues we need to find

an alternative way of calculating the memory without using Eq. (3.16). Our aim is to

calculate the matrix elementsWmn(t) in

dP
dt
+

∫ t

0
dsW(t − s)P(s) = 0,

whereWmn(t) = −Fmn(t),Wmm(t) =
∑

nFnm(t) andFmn(t)’s are the memory functions we

are looking for. The solution of this equation in the Laplacedomain can be expressed as

P̃ (ε) =
(
ε + W̃ (ε)

)−1
P(0), (3.33)

where
(
ε + W̃ (ε)

)−1
is a translationaly invariant matrix. Meanwhile the masterequation

that describes the evolution of probabilities in a disordered chain is

dP
dt
+ AP= 0,

whereAmn = −Fmn andAmm =
∑

m Fnm andFmn = F|m−n|’s are independently distributed

random variables. Its formal solution in the Laplace domainis

P̃ (ε) = (ε + A)−1 P(0).

If we average both sides of this equation over each possible realization of the disordered

chain, we get

P̃ (ε) = 〈(ε + A)−1〉P(0). (3.34)

Note that〈(ε + A)−1〉 should be a translationaly invariant matrix because ensemble averag-

ing wipes out all inhomogeneities originally present inA. Note that Eqs. (3.33) and (3.34)

should be equivalent as we are arguing that the effective medium equation (3.33) describes

the evolution of probabilities in the ensemble averaged chain. Therefore

〈(ε + A)−1〉 =
(
ε + W̃ (ε)

)−1
,

W̃ (ε) = ε − 〈(ε + A)−1〉−1,

F̃mn(ε) =
[
〈(ε + A)−1〉−1 − ε

]
mn
. (3.35)
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Therefore, what we need to do to get the memory functionsFmn(t) is to perform the average

in Eq. (3.35) for a large number (ideally infinite) of different realizations of the matrix

A, and then doing an inverse Laplace transformation. In Fig. 3.4, we display both the

exponential approximation given by Eq. (3.22) and the exactmemory obtained from Eq.

(3.35) whenρ( f ) is a double-delta distribution. The agreement between them is very good,

but in some cases exponential approximation may lead to erroneous results because of its

simple nature, as we will see shortly. We will also make use ofEq. (3.35) later to calculate

memory functions while investigating non-nearest neighbor memories and effects of finite

system size.
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Figure 3.4: Exponential approximation to the memory function calculated by Eq. (3.22)
(dotted line) and its exact counterpart given by Eq. (3.35) (solid line), as a function of di-
mensionless timef2t. The agreement is good considering the simple nature of the approx-
imation. ρ( f ) which characterizes the disorder in this case is a double-delta distribution
with α = 0.1, and f1/ f2 = 10.

The results we displayed so far show that the agreement between EMT and numerical

calculations is remarkably good. However some discrepancyshould be expected at least

for certain values of the parameters. We find that the difference betweenD(t)/D(0) found

numerically and predicted by the EMT, which from now on will simply be referred to as
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difference, increases with the fraction of links that have very low transfer rates. In order to

study this effect quantitatively, we takeρ( f ) to be a double-delta distribution withα = 0.5,

so that it is equally likely to find either of the ratesf1 and f2. We choose this value ofα

on purpose as it makes the configuration maximally disordered, and we are interested in

the cases for which the effective medium approximation may break down. In Fig. 3.5,

we show the comparison between EMT and numerical results fordecreasing values off1

so that from top to bottom the ratiof1/ f2 takes the values 0.5, 0.1, 0.01. Note that the

EMT predictions deviate from the numerical findings more andmore as one of the rates

gets closer and closer to zero. Therefore, if one of the ratesis equal to zero, the difference

should be maximal. The main graph in Fig 3.6 shows the mean square displacement as a

function of dimensionless time〈 f 〉t when one of the rates is equal to zero with concentra-

tion α = 0.01 and 0.1, again for a double-delta distribution. There aretwo reasons why

we chose the mean square displacement as the observable instead of the diffusion coeffi-

cient. First of all, when the EMT predictions deviate more from the numerical findings,

the magnitude of deviation is larger for the mean square displacement than what it is for

the diffusion coefficient, as the latter is the integral of the former. Secondly,we can ex-

actly calculate the saturation value of the mean square displacement when one of the rates

is zero. Therefore, we can easily compare the exact saturation value of the mean square

displacement with the EMT predictions and the one obtained from the exponential approx-

imation to the EMT memory to further test its applicability.As explained in ref. [16], in

order to obtain the saturation value of the mean square displacement in the exponential

approximation, we substitute Eq. (3.22) in Eq. (3.26) to get

〈m2〉 = 2
〈1/ f 〉 t +

(
〈 f 〉 − 〈1/ f 〉−1

)2

〈 f 2〉 − 〈 f 〉2
(
1− e−t/τ

)
,

τ =
〈 f 〉 − (〈1/ f 〉)−1

2(〈 f 2〉 − 〈 f 〉2) ,

whose long time limit gives the saturation value is

lim
t→∞
〈m2〉 = 〈 f 〉2

〈 f 2〉 − 〈 f 〉2 ,
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where we used the fact that〈1/ f 〉−1 vanishes when one of the rates is zero. It is clearly

seen in the main graph in Fig. 3.6 that the saturation value predicted by the EMT is dif-

ferent from what is found numerically. The inset shows the mean square displacement as

a function of time forα = 0.1 case but on semilogarithmic axes, so that the deviation is

clearly visible. Dotted and solid vertical lines correspond to the prediction of the exponen-

tial approximation to the EMT and the exactly calculated saturation value3, whereas the

solid curve is the EMT prediction. Apparently EMT predictions are not reliable when the

chain has broken bonds. Not surprisingly, the exponential approximation is not accurate

either, as it is an approximation on the EMT.

10
−2

10
0

10
2

0

0.5

1.

D
(t

)/
D

(0
)

Figure 3.5: Normalized diffusion coefficient is plotted as a function of the dimensionless
timeτ = 〈 f 〉 t for the double-delta distribution. Solid lines correspondto EMT predictions
and open circles correspond to numerical results. From top to bottom, the ratiof1/ f2
is equal to 0.5, 0.1, and 0.01 withα = 0.5 being equal for all of them. Note that the
agreement between EMT and numerical results gets slightly worse as the rates become
more and more disparate (when one of the rates gets closer andcloser to zero).

As we mentioned in the introduction of this section, there isone more quantity that

we are interested in calculating: the self propagators. We would like to see how well

EMT predicts the self propagators for the disordered chain as they are involved in the

calculation of many observables relevant to a system. We start with a particular realization

3This is equivalent to calculating the average size of connected clusters of links.
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Figure 3.6: Mean square displacement as a function of dimensionless time, for a double-
delta distribution withf1 = 0, f2 = 0.2 and two different values ofα. Again, solid lines
and open circles correspond to EMT predictions and numerical results, respectively. Ap-
parently, the saturation value of the mean square displacement predicted by the EMT is
different from the numerical results. To emphasize the deviation between them, in the inset
we plot theα = 0.1 by itself on semilogarithmic axes. In addition, the solid horizontal line
correspond to the exact value of the long time limit of the mean square displacement (sat-
uration value) while the dotted horizontal line shows the value of its counterpart obtained
by using the exponential approximation to the EMT memory Eq.(3.22).

of the disordered chain and calculate self propagators at the 2µ + 1 sites around the zeroth

site. Then we average over them to get the quantity

Ψµ =
1

2µ + 1

µ∑

`=−µ
ψ`,`.

As we average over more and more self propagators at different sites, we would expect

Ψµ to approach the self propagator that the EMT predicts for theeffective medium chain.

That is to say,

Ψ∞ = lim
µ→∞

1
2µ + 1

µ∑

`=−µ
ψ`,`, (3.36)

Should be approximated well by the effective medium self propagator. In Fig. 3.7, aver-

aged self propagators calculated numerically for a particular realization of the disordered
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chain is shown forµ = 3 , 9 , 15 , 25 and 401 for a chain with 801 sites. The comparison

between numerically found self propagator, forµ = 401, and the one predicted by the

EMT is shown in Fig. 3.8 by open circles and the solid line respectively. Good agreement

between them confirms the hypothesis that the self propagator given by Eq. (3.36) is ap-

proximated well by the EMT. EMT provides us with the effective transfer rateFeff = F̃ (0)

for the disordered chain4. This means, for long times, we can replace the disordered

chain by one which has uniform transfer ratesFeff. Then it is natural to ask what the dif-

ference is between the time evolution in a chain that has uniform transfer ratesFeff, or

equivalently uniform Markoffian memoryFeffδ(t), and in the effective medium chain with

non-Markoffian memoryF (t). The dashed line in Fig. 3.8 represents the self-propagator

for a chain which has uniform transfer ratesFeff. Therefore, the difference between the

time evolution shown by the dashed and solid lines are due to memory effects, which are

significant at intermediate times.

3.7 Significance of higher order memory functions

We have implicitly assumed that long range memory functionsin the effective medium

equation (3.10) can be neglected and expressed all of our results in terms of the nearest

neighbor memory functionF1(t) (without using the subscript 1). In this section we would

like to verify the validity of this assumption by calculating higher order memory functions

F2(t), F3(t), ... that connect sites that are farther apart. We considera chain of 100 sites

with disordered links whose transfer rates are characterized by a double-delta distribution

with α = 0.5 and f1/ f2 = 0.1. By using Eq. (3.35), we numerically calculate the memory

functionsFn for n = 1, 2, 3, and 4 and display the results in Fig. 3.9. Fig. 3.9(a) shows the

comparison between EMT nearest neighbor memory (open circles), and its numerically

calculated counterpart. We note the excellent agreement between the two, which gets even

4Feff is equivalent to the diffusion coefficient divided bya2 but the value ofa is irrelevant in our
calculations so we may as well take it to be 1.
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Figure 3.7: Average self propagators for a particular realization of the chain as a func-
tion of dimensionless time. Disorder is characterized by a double-delta distribution with
f1/ f2 = 0.1 andα = 0.5. A total of 401 self propagators at the 200 sites to the left and
right of the 0th site are calculated numerically. The dashed line shows the average of all of
the 401 self propagators whereas the solid lines correspondto averaging over 3, 9, 15 and
25 (from top to bottom) of the self propagators around the origin.

better as the size of the ring increases. The first few higher order memory functions are

shown in Fig. 3.9(b), that are calculated numerically. As the scale ofy-axis indicates,

the amplitude of higher order memories are negligible compared toF̃1 (ε), especially for

ε � 1 andε � 1. Therefore, it is reasonable to discard higher order memory functions

and calculate the observables using the nearest neighbor memory functionF̃1 (ε).

3.8 Effects of finite system size

As we have seen previously, EMT correctly predicts the long time diffusion coefficient

for a disordered infinite 1-D chain, which is given bỹF (0). In this section we describe

the results of applying the EMT to a system of finite size, as reported in ref. [16]. We

consider a ring ofN sites with periodic boundary conditions and for simplicity, we choose

the transfer rates from a double-delta distribution withα = 0.5. Laplace transform of the
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Figure 3.8: Self propagators as a function of dimensionlesstime for various cases. Open
circles represent numerically found average of the 401 selfpropagators mentioned in the
caption of Fig. 3.7. Solid line corresponds to the EMT prediction. The dashed line shows
the behavior of the self propagator for a chain has transfer ratesFeff throughout. It is
included to emphasize the effects of having a non-δ memory.

self propagator for a finite ring ofN sites is given by

ψ̃0 (ε) =
1
N

∑

k

1
ε + 2F (ε) (1− cosk)

. (3.37)

In order to find the effective transfer rateFeff = F̃ (0), we need to solve Eq. (3.16) withξ

calculated with the propagator given by Eq. (3.37). Note that limε→0 εψ̃0 (ε) that appears

in ξ is the asymptotic value ofψ0(t), the probability of finding the random walker at the 0th

site at long times, which is simply equal to 1/N. Therefore, Eq. (3.16) becomes

1
Fe f f

=
N

N − 1

∫ ∞

0
d f

ρ( f )

f + Feff( 1
N−1)

.

After evaluating the integral withρ( f ) = αδ( f − f1)+(1−α)δ( f − f2), we obtain an equation

for the effective transfer rate

Feff =
N − 1

N


α

f1 +
Feff
N−1

+
1− α

f2 +
Feff
N−1


−1

,

88



Chapter 3. Contributions to the effective medium theory of transport in disordered lattices

10
−2

10
0

10
2

0.2

0.6

1

F̃
1
(ε

)/
〈f
〉

10
−2

10
0

10
2

0

1

2

3
x 10

−3

ε/〈f〉

F̃
n
(ε

)/
〈f
〉

(b)(a)

Figure 3.9: In (a) the nearest neighbor memory function obtained from EMT (open cir-
cles), and numerically by using Eq. (3.35) (solid line) is shown. Numerical results are
obtained by considering a chain of 100 sites and double-delta distribution withα = 0.5,
and f1/ f2 = 0.1 for the disorder in transfer rates. In (b), higher order memory functions
F̃2 (ε), F̃3 (ε), andF̃4 (ε) for the same chain and disorder type are shown. Note that the
amplitude of higher order memory functions are negligible compared to that of the nearest
neighbor memorỹF1 (ε).

whose solutions are given by

Feff =
j ±

√
j2 + 4(N − 1) f1 f2

2
, (3.38)

where j = f1(1− N + Nα) + f2(1− Nα). When both off1 and f2 are nonzero, one of the

roots of Eq. (3.38) is always negative, therefore we need to discard it and use the positive

root only. On the other hand if one of the rates is zero, sayf1 = 0, then one root is always

zero and the other changes sign when the concentration of broken bonds reachα = 1/N.

A plot of Feff as a function ofα is shown in Fig. 3.10. It is interesting to note that this

plot looks like the diagram of a transcritical bifurcation [102] in which the two solutions

of Eq. (3.38) exchange stability atα = 1/N. As N tends to infinity,Feff can only be zero.

Therefore, for an infinite chain, if the probability of having a broken bond is greater than

zero,Feff vanishes.
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Figure 3.10: Bifurcation of the effective long time transfer rate for a double-delta distri-
bution in a finite system ofN sites. Plotted isFeff as a function of the concentration of
broken bonds (i.e., bonds with the ratef1 = 0), the rate associated with the remaining
fraction 1−α of unbroken bonds being equal tof2. A transcritical bifurcation occurs when
α equals 1/N. For concentrations higher than this value, the effective rate vanishes but
changes linearly with the concentration for lowerα. Solid (dotted) lines denote the stable
(unstable) solution.

Lastly, we would like to compare theε → 0 limit of memory functions calculated ex-

actly and by the EMT for finite rings. For finite rings we can useEq. (3.35) to calculate the

nearest neighbor memory functioñF1 (ε) exactly, as the number of all possible realizations

of the disorder in finite. Theε → 0 limit of F̃1 (ε) calculated in this manner for rings of

sizeN = 2, 3, 4, and 5 are given below,

F̃ ex
1 (0)

=



2 f2
r

r + 1
N=2,

8 f2
r(r + 2)(2r + 1)

(5r + 1)(r + 5)(r + 1)
N=3,

16f2
r(1+ 3r)(3+ r)(r + 1)

124r(1+ r2) + 230r2 + 17(1+ r4)
N=4,

16f2
r(3+ 2r)(2+ 3r)(1+ 4r)(4+ r)

(7+ 3r)(3+ 7r)(r + 1)(7+ 36r + 7r2)
N=5,

(3.39)

where the superscript ex emphasizes that these are exact values, andr is the ratiof1/ f2. We
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calculate the relative difference betweeñF ex
1 (0) and theε → 0 limit of the EMT nearest

neighbor memory,Feff, given by Eq. (3.38) as follows

1
f2


Feff − F̃ ex

1 (0)

F̃ ex
1 (0)

 ,

and plot it in Fig. 3.11 forN = 3, 4, 5. Relative difference decreases with increasing

system size or when the ratiof1/ f2 gets closer to 1. EMT predicts the correct value for

f1/ f2 = 1 as expected.
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Figure 3.11: Relative difference between the nearest neighbor effective rates calculated
from the EMT and an exact numerical procedure as given by Eqs.(3.38) and (3.39),
respectively as a function off1/ f2. The disorder is characterized by a double-delta distri-
bution withα = 0.5.

3.9 Effects of correlations

In this section we go beyond the results obtained by Kenkre, Kalay and Parris [16], and

report new results not published elsewhere.

Suppose that we generate random chains with bonds whose transfer rates are drawn

from a distributionρ(F1, F2, ...FN), which is simply the probability that the bond between
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sites 1 and 2 has transfer rateF1 and the one between sites 2 and 3 hasF2 and so on.

We will focus our interest on infinite chains so,N → ∞. If we perform an ensemble

average over all random chains generated in this fashion, the result will be translationally

invariant and we can describe the system by using the effective medium equation (3.10)

as we discussed earlier. Let̃F (ε) be the Laplace transform of the EMT memory for this

chain. Consider replacing two of the bonds, say the one between sitesq andq+ 1, andr

andr + 1 with bonds that have transfer ratesfq and fr instead of the memorỹF (ε). Then

the generalized master equation

dPm

dt
=

∫ t

0
dsF (t − s) (Pm+1 + Pm−1 − 2Pm) + ∆m (3.40)

where

∆m =
∑

i=q,r

[∫ t

0
dsF (t − s) (Pi+1 − Pi) − fi (Pi+1 − Pi)

] (
δm,i+1 − δm,i

)
. (3.41)

describes non-Markoffian transport in a 1-D chain that is translationally invariant except

for two links between the sitesq andq+ 1 andr andr + 1. The Laplace transform of the

solution of Eq. (3.40) can be written as

P̃m =
∑

n

Pn(0)ψ̃m−n +
∑

n

∆̃nψ̃m−n, (3.42)

whereψ̃l is the propagator for the infinite translationally invariant chain in the Laplace

domain, given by

ψ̃l =
1√

ε
(
ε + 4F̃

)



ε + 2F̃ −
√
ε
(
ε + 4F̃

)

2F̃



|l|

(3.43)

After doing some algebra, the solution of Eq. (3.40) can be written as

P̃m = η̃m+ Ωm, (3.44)
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wherẽηm =
∑

n Pnψ̃m−n, andΩm is

Ωm =
[
Fq

(
ψ̃m−q−1 − ψ̃m−q

) [
Fr φ̃q−rη

r +
(
1− 2Fr

(
ψ̃0 − ψ̃1

))
η̃q

]

+Fr
(
ψ̃m−r−1 − ψ̃m−r

) [
Fqφ̃q−rη

q +
(
1− 2Fq

(
ψ̃0 − ψ̃1

))
η̃r

]]

×
[(

1− 2Fq
(
ψ̃0 − ψ̃1

)) (
1− 2Fr

(
ψ̃0 − ψ̃1

))
− Fr Fqφ̃2

q−r

]−1
, (3.45)

with F i = F̃ − fi, φ̃i = 2ψ̃i − ψ̃i+1 − ψ̃i−1 andη̃i = η̃i+1 − η̃i.

Our aim is to average overfq and fr in a proper way that depends on the correlations

between them to restore the translational invariance and obtain a self-consistency equation

analogous to Eq. (3.14) which was obtained for the case in which disorder is uncorrelated.

To do this, we focus on a chain in which transfer rates can takeonly two values, like in

the double-delta distribution. In this picture, the transfer rates of bonds between different

sites, sayfq and fr , are correlated random variables that take on one of the two valuesf1 or

f2. Correlation between the values offq and fr arise according to the nature of interactions

between the two. We consider a situation in which neighboring bonds with transfer rate

f2 interact with energy−∆ so that they attract or repel each other when∆ > 0 and∆ < 0

respectively. This system can be thought as a 1-D Ising modelin which themth spin is

analogous to themth link in the chain, so thatσm = 1 andσm = −1 correspond to transfer

rates f1 and f2 respectively. As two point correlation functions in the 1-DIsing model is

analytically calculable, we find the joint probability distribution, P( fq, fr), that the bond

between sitesq andq + 1 has transfer ratefq and the bond between sitesr andr + 1 has

transfer ratefr to be

〈(
1− σq

2

) (
1− σr

2

)〉
= P( f q

1 , f r
1) = α2 + α (1− α) x|q−r |, (3.46)

〈(
1− σq

2

) (
1+ σr

2

)〉
= P( f q

1 , f r
2) = P( f q

2 , f r
1) = α (1− α)

(
1− x|q−r |

)
, (3.47)

〈(
1+ σq

2

) (
1+ σr

2

)〉
= P( f q

2 , f r
2) = (1− α)2 + α (1− α) x|q−r |, (3.48)
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where

x =

√
1− 4α(1− α)

(
1− eβ∆

) − 1
√

1− 4α(1− α)
(
1− eβ∆

)
+ 1

,

α is the fraction of bonds that have transfer ratef1, which is equivalent to the probability of

finding a bond with transfer ratef1, andβ = 1/kBT. Note thatα is a quantity proportional

to the external field in the analogous Ising model picture.

Now we are in a position to suggest the proper averaging scheme we mentioned ear-

lier which restores translational invariance. Remember that the Laplace transform of the

probability of finding the random walker at sitem, is given by

P̃m = η̃m+ Ωm. (3.49)

Ensemble averaging over all different realizations of the chain, we get

〈
P̃m

〉
ens
= η̃m + 〈Ωm〉ens. (3.50)

As the ensemble averaging makes the system translationallyinvariant,〈Ωm〉ensmust vanish

so that the
〈
P̃m

〉
ens

’s are identically equal tõηm’s which are the solutions in the absence of

the defective bonds. For the type of bond-bond interactionsconsidered here, the two point

correlation functions are known. Using this knowledge, we propose that the ensemble

averaging〈·〉ens is explicitly given as

〈·〉ens=

N∑

q=0
r=0

∑

fq, fr= f1, f2

P( fq, fr) [·] . (3.51)

The summations in Eq. (3.51) makes sure that correlations between the pairsfq and fr

are going to be washed out, by averaging over all possible configurations, i.e. all possible

( fq, fr) pairs for allq andr, according to the joint probability distributionP( fq, fr).

Therefore, we have

〈Ωm〉ens=

N∑

q=0
r=0

∑

fq, fr= f1, f2

P( fq, fr)Ωm = 0, (3.52)
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for all m. The expressions simplify greatly in the limitε → 0. In this limit we have

lim
ε→0

(
ψ̃m−q−1 − ψ̃m−q

)
= lim

ε→0

(
ψ̃m−r−1 − ψ̃m−r

)
= lim

ε→0

(
ψ̃0 − ψ̃1

)
, (3.53)

lim
ε→0

η̃q = lim
ε→0

η̃r = − 1

F̃ (0)

∑

n

Pn(0), (3.54)

lim
ε→0

φ̃k = 0 for k > 0. (3.55)

Therefore, in the limitε → 0 Eq. (3.52) becomes

∑

fq, fr= f1, f2

N∑

q=0
r=0

P( fq, fr)


F̃ (0)− fq

fq
+
F̃ (0)− fr

fr

 = 0,

which is also equal to

N∑

q=0

∑

fq= f1, f2

P( fq)


F̃ (0)− fq

fq

 +
N∑

r=0

∑

fr= f1, f2

P( fr)


F̃ (0)− fr

fr

 = 0, (3.56)

where

P( fr) =
N∑

q=0

∑

fq= f1, f2

P( fq, fr),

P( fq) =
N∑

r=0

∑

fr= f1, f2

P( fq, fr),

are the marginal probability distributions. Note that

P( f1) = α,

P( f2) = 1− α,

for the marginal probability distributions, regardless ofthe values ofq andr. Therefore,

Eq. (3.56) is equivalent to Eq. (3.17) which we obtained for uncorrelated disorder. There-

fore, this indicates that at long times, diffusion coefficient does not depend on the type

of correlations. In order to test the validity of this, we generate disordered lattices by

simulating the 1-D Ising model with external magnetic field.This way we guarantee that

correlations between links with different transfer rates are such that Eqs. (3.46-3.48) are
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α J = −1 J = 1
0.75 B = 2.1 β = 1.46 B = 0.02 β = 1.48
0.5 B = 0 β = 1.00 B = 0 β = 1.00
0.25 B = −2.1 β = 1.46 B = −0.02 β = 1.48

Table 3.2: Parameters used in the generation of chains with correlated disorder. Similar
links repel or attract each other forJ = −1 andJ = 1, respectively.

satisfied. In order to simulate the Ising model, we start witha chain in which the ratio of

the number of links with transfer ratef1 to those withf2 is approximatelyα/(1 − α) and

use the Metropolis algorithm to minimize the energy of the total system, which is given by

E = −J
′∑

i, j

σiσ j − B
∑

i

σi ,

where the primed sum is over nearest neighbors only andσi = 1 andσi = −1 represent

the two possible values of the transfer rate of thei th link, which are f1 and f2, respectively.

At each step of the simulation, we calculate what would the change in the energy of the

system be if we change the transfer rate of a randomly chosen link from f1 to f2 or from

f2 to f1 depending on its value just before that step of the simulation. If the change lowers

the energy of the system, we modify the transfer rate of the chosen link. However if the

change increases the energy of the system, then we accept it with probabilitye−∆Eβ. This

helps avoid the system from getting stuck in a local minimum in the energy landscape.

Following this procedure, we generate random chains in which similar links either repel

or attract each other. When the interaction between similarlinks is repulsive (J < 0) the

chain ends up having a grained structure and when it is attractive (J > 0), clusters of links

that have the same transfer rate form. An illustration of various random chains generated

in this way are displayed in Fig. (3.12). Typical parameter values used in different cases

are given in the Table 3.2.

In Fig. 3.13, we plotD(t) as a function of dimensionless time for random chains

with different correlation types. From top to bottom each set of 3 curves correspond to
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Figure 3.12: Illustration of various realizations of the random chain with repulsive and
attractive link interactions. Black and gray indicate bonds with different transfer rates. The
cases a,b, and c correspond to repulsive link interactions (J < 0) for various concentrations
of different types of links. For each case, three different realizations of the chain are
displayed. The cases d, e and f display the same information for when the interaction is
attractive (J > 0).

a different value ofα, the concentration off1. In each set, data represented by the thick

solid line, dashed line and thin solid line correspond to attractive, neutral, and repulsive

link-link interactions. Although the behavior ofD(t) for different correlation types is quite

different for intermediate times, its asymptotic value seems todepend only onα. This

outcome supports the statement we made earlier about the asymptotic value ofD(t) being

independent from the correlations in the disorder (see Eq. (3.56)).

Another result we would like to mention in passing is about the asymptotic value of

d〈m〉/dt for different correlation types, within the presence of an externalfield that intro-

duces a bias in transfer rates.d〈m〉/dt is proportional to the mobility of particles which

is a common and important transport property in many systems. Previously, it was found

that [103] for particles that move under the influence of an external field in a random po-
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Figure 3.13: Diffusion coefficient as a function of dimensionless time for various different
correlation types. Disorder is characterized by a double-delta distribution withf1 = 0.4,
f2 = 0.1 andα, the concentration off1, takes the values 0.75, 0.5 and 0.25 from top
to bottom. Thick solid lines and dashed lines correspond to attractive and repulsive link
interactions, respectively, whereas the thin solid line shows the behavior ofD(t) when the
interactions are neural (uncorrelated disorder). The arrowheads on the right represent the
asymptotic value ofD(t) obtained from the EMT. It is seen thatD(t) is not modified by the
different correlation types we consider here.

tential, mobility depends on the spatial correlations present in the random potential. We

numerically calculated〈m〉/dt for different types of correlations when the transfer rates are

uniformly biased to the right by an amount∆ f . Fig. 3.14 shows the results for a couple

of different values of the bias∆ f . Interestingly, asymptotic value of the mobility does not

depend on the correlation type in our system.

3.10 Concluding remarks

Our objective in this chapter is to explore the properties ofrandom walk in disordered lat-

tices in 1-D, by using the effective medium theory. In the past, the effective medium the-

ory was used to calculate the properties of many disordered systems including transport

in disordered lattices, but most of these treatments were restricted to calculating steady
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Figure 3.14: Ensemble averaged velocity as a function of dimensionless time for different
values of the bias∆ f . Disordered transfer rates are sampled from a double-deltadistribu-
tion with f1 = 0.4, f2 = 0.1 andα = 0.25. The dashed, the thick and the thin solid lines
correspond to repulsive, attractive and neutral link interactions. The value of the bias is
∆ = 0.01, and∆ = 0.001 for the plot on the left and the right, respectively. For larger
values of the bias, we observe similar behavior. Here we display results for small values
of ∆ f in order to make sure that the mobility does not saturate (seeref. [103], Fig. 2).

state values of the quantities of interest (see references in the introduction for some ex-

ceptions). Here, we show how one can obtain a prescription that can be used to calculate

time-dependent quantities that pertain to random walk in a disordered lattice, and obtain

expressions for the time-dependent diffusion coefficient and mean square displacement in

1-D. We consider a 1-D chain of sites with nearest neighbor interactions and disordered

transfer rates, and show how to convert the disorder in spaceinto nonlocal evolution in

time. In other words, we show that it is appropriate to replace the Master equation (3.1)

by the generalized master equation (3.3) which has the memory F (t). The prescription of

obtainingF (t) given the characteristic properties of the disorder is contained in Eq. (3.16),

as given in ref. [16]. One of our most important results is that in most of the cases, this

replacement is meaningful not just for asymptotic times, but for all times, provided that we

are interested in quantities that are ensemble averaged over the different realizations of the

disorder. Figs. 3.2 and 3.3 show the comparison between simulations and theoretical find-

ings concerning the diffusion coefficient for all times, and for different initial conditions.
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We also show the cases in which the effective medium theory makes poor predictions in

Figs. 3.5 and 3.6, which corresponds to the cases in which thetransfer rates of some of

the links in the chain vanish.

In this chapter, we also present a few other interesting findings that have not been

previously explored in detail. These are the appearance of long range memories and the

effects of finite system size as discussed in ref. [16], and the effects of correlated disorder.

The disordered system we consider is a chain of sites that areconnected with dis-

ordered transfer rates and the random walker is allowed to hop back and forth between

nearest neighbor sites only. An immediate question that arises is: how long will the range

of the memory functions be, in the generalized master equation (3.3) ? By calculating

memory functions that connect sites that are not necessarily nearest neighbors, we find

that even though the original system only has nearest neighbor interactions, longer range

memory functions naturally develop in the effective medium description. In Fig. 3.9 we

display results corresponding to memory functions with longer range (or of higher order).

However, it should be noted that the amplitude of the longer range memory functions are

much smaller than the nearest neighbor memory function so that in most of the cases they

can be neglected.

For the most part, we are interested in infinite chains, but wealso include results about

the effects of finite system size in our study. When the system size gets smaller and smaller,

the predictions of the effective theory made by using the nearest neighbor memory function

deviate more and more from the numerically found results as shown in Fig. 3.11. One of

the reasons for this growing deviation is the increasing importance of long range memory

functions in small systems. Another interesting behavior that is observed in systems of

finite size is the vanishing of the effective transfer rate at a nonzero concentration of broken

links. In an infinite chain, if the probability of finding a link with zero transfer rate, a

broken link, is nonzero, then the effective transfer rate will vanish. However, for finite

systems, our findings [16] indicate that the effective transfer rate can be nonzero even for
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a nonzero concentration of broken links, as shown in Fig. 3.10.

Lastly, we present some findings on random walks in a 1-D chainwith correlated

disorder in Sec. 3.9. Our results indicate that, interestingly, at asymptotic times, the

diffusion coefficient does not depend on whether the random variables that characterize

the transfer rates of the links are correlated or not. However, for intermediate times, we

see a consistent difference in the diffusion coefficient when the characteristics of the joint

probability of the distribution of transfer rates change.
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Chapter 4

An analysis of transient dynamics and

pattern formation in some

reaction-diffusion systems

4.1 Introduction

Reaction-diffusion systems have been used to model a large number of phenomena, mainly

in physics, chemistry and biology. Many chemical reactionsoccur in a medium in which

reactants diffuse and encounter each other which results in a set of products. The concen-

tration of chemical species in such chemical reactions can naturally be described with the

following set of partial differential differential equations

∂ui

∂t
= Di∇2ui + fi(u1, u2, ..., uN), (4.1)

where∇ is the Laplacian operator in the space that the system occupies,Di is the diffusion

coefficient of thei th species, andfi is a, usually nonlinear, function ofui ’s that describes

how species react with each other. A well known class of chemical reactions that have been
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modeled in this way is the Belusov-Zhabotinskii reaction [20, 21]. The time evolution of

the concentrationsui in these type of systems turns out to be very rich, and can involve

periodic oscillations or may display chaotic behavior [104, 105].

One of the first problems that was studied using reaction-diffusion equation is about

population genetics. In his seminal paper published in 1937[17], Fisher employed an

equation of the following form to describe the spread of advantageous genes in a popula-

tion

∂u
∂t
= D

∂2u
∂x2
+ au(1− u), (4.2)

whereD is a diffusion constant anda is a characteristic rate. This equation was also used

by Kolmogorov, Petrovskii and Piskunov [18] around the sametime, and now it is referred

to as the Fisher-Kolmogorov-Petrovskii-Piskunov(FKPP) equation. For more examples on

the use of reaction-diffusion equations in population dynamics and ecology, see e.g. refs.

[106, 107]. Recent work on those equations particularly directed at animal movement in

the theory of the spread of epidemics such as in the Hantavirus, is due to Kenkre and

collaborators [108, 109, 110, 111, 112, 113].

Another interesting aspect of the reaction-diffusion systems is that they can produce

patterns. In many biological systems, patterns arise in a homogeneous distribution of

matter, for instance during the process of morphogenesis [106]. Therefore, many problems

in developmental biology include reaction-diffusion systems, and can be quantitatively

modeled by using systems of equation such as Eq. (4.1). Patterns can also arise in reaction-

diffusion systems as a result of spatially nonlocal interactions [114, 22, 115].

Some other examples of studies that involve reaction-diffusion systems are: flame

propagation [116, 117], propagation of pulses in nerves [118, 119], aggregation [120], and

deposition [121]. In addition to these, there are many studies whose goals are to generalize

the reaction-diffusion systems so that they display richer phenomena. A couple of studies

in this direction include allowing for convective transport [122, 123], and non-diffusive
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transport [124, 125] in the system.

This chapter is divided into two parts and the first part is about investigating the time

evolution of an initial condition in three reaction-diffusion systems that give rise to front

propagation. The traveling front speeds and shapes can be analytically calculated in the

cases that we consider, providing us with more motivation for choosing them. A great

deal of the results presented in this section are published in the article of Giuggioli, Kalay,

and Kenkre [126] in which the author of this thesis took part.The second part is about

pattern formation in a reaction-diffusion system with spatially non-local interactions. In

this part, we first summarize some results that are already known in the literature for the

FKPP equation and then present new results on the generalization of the problem.

This chapter is organized in the following way. The first parton understanding the tran-

sient behavior in some reaction systems and spans the sections 4.2 through 4.5. The second

part begins in Sec. 4.6 and is concerned with pattern formation in reaction-diffusion sys-

tems with nonlocal interaction terms. In Sec. 4.3, we present the nonlinear reaction terms

associated with the reaction-diffusion systems we are interested in, give the corresponding

traveling front solutions that are obtained analytically,and for a particular case, show how

to solve a reaction-diffusion equation for traveling fronts, for illustrative purposes. In Sec.

4.4 the method we use to study the transient behavior is explained in detail and the results

of our analysis are given. The next section, Sec. 4.5 is concerned with the linear stability

analysis of the traveling fronts we consider and is includedfor the completeness of our

analysis. Sec. 4.6 marks the beginning of the second part of this chapter, and is about a

different sub-topic, viz., pattern formation in a reaction-diffusion system. In this section,

we first examine the formation of patterns in FKPP equation with a spatially nonlocal in-

teraction term and then present a generalization of it by allowing for anomalous diffusion.

In Sec. 4.7, we present the method used in the numerical solution of the reaction-diffusion

equation involved and present our results. This chapter ends with Sec. 4.8 and is reserved

for concluding remarks.
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4.2 A brief introduction to traveling fronts

As the examples we gave in the introduction show, reaction-diffusion systems can display

a wide range of features. In this section we will only be interested in a particular feature of

the reaction-diffusion (R-D) systems, which is giving rise to traveling fronts. A traveling

front is a particular kind of wave that propagates along the medium while preserving its

shape. Front propagation in many R-D systems has been extensively studied and a vast

amount of results have been collected [127, 128, 129]. A couple of problems that attracted

a substantial amount of attention in this field include: finding the relation between initial

conditions and the final front speed and shape [130, 131], andinvestigating the relaxation

behavior in the system while the front speed approaches its asymptotic value [127, 128,

129].
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Figure 4.1: Time evolution in the FKPP equation, given in Eq.(4.2) with D = 1. The
initial condition isu(x, 0) = 0.1 for x = 0 and 0 elsewhere.

In Fig. 4.1, we show the time evolution of an initial condition in the 1-D FKPP equa-

tion, given in Eq. (4.2). Initiallyu(x) = 0.1 for x = 0 and 0 otherwise. After a transient

period, the solution of the FKPP equation takes the form of a traveling front. For the

FKPP equation initial conditions that have compact supportalways lead to the formation

of a traveling front that moves with the speedv = 2
√

D [129]. The relation between
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the initial conditions and the speed of the traveling front it evolves into has been studied

extensively and some references on this subject will be given below.

In this chapter we restrict our attention to R-D systems in 1-D, which are described by

∂u
∂t
= D

∂2u
∂x2
+ a f(u), (4.3)

whereu = u(x, t) is the density of the entity under consideration,D is the diffusion con-

stant,a a growth rate andf (u) the nonlinearity. The nonlinearities that we are interested

vanish atu = 0 andu = 1, such thatu = 0 andu = 1 are steady states.
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Shoulder

Interior

Leading edge, or tail

Figure 4.2: Schematic illustration of a traveling front. Here we label the regions of the
front to which we will refer frequently in the text.

The characteristics and propagation mechanism of the frontdepends on the stability

properties of the states that it connects. The traveling front connects states that are the fixed

points of the R-D equation, i.e. the values ofu for which ∂u/∂t = 0. If the nonlinearity

satisfies the following conditions

f ′(0) > 0, (4.4)

f ′(u) < f ′(0) (4.5)
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for 0 < u ≤ 1, then the characteristics of the traveling front are dominantly determined

by its leading edge [132, 127], whereu ≈ 0. See Fig. 4.2 for the terminology used in

describing different parts of a traveling front. Fronts of this type are commonly called

pulled fronts as the leading edge determines the essential dynamics, and thus pulls the

rest of the front [127, 133, 129]. In this case, it is possibleto calculate the speed of the

front by considering the R-D equation obtained by linearizing f (u) aroundu = 0. The

FKPP equation is one of the equations that give rise to pulledfronts. In this regime, the

speed of the front relaxes to its asymptotic value algebraically [128, 129]. It turns out

that for pulled fronts, the speed of the front can assume manyvalues that are greater than

a minimum speedvmin. The problem of which speed is selected was analyzed by using

the linear marginal stability condition (see Van Saarloos [127] and references therein for

details).

When the nonlinearity does not satisfy the conditions givenby Eqs. (4.4) and (4.5)

such thatf ′(u) is not equal to its maximum value atu = 0, linearizing f (u) aroundu

does not give correct results for the speed of the front. In this case the dynamics of front

propagation is predominantly determined by the interior ofthe front [128, 133, 129], where

f ′(u) attains its maximum value. These types of fronts are calledpushed fronts [134], as

the interior of the front drives it. The speed of the traveling fronts of this kind converges to

its asymptotic value exponentially [128]. The problem of speed selection for this regime

was analyzed by employing the nonlinear marginal stabilitycondition [128].

The nonlinearities we will consider in this chapter all satisfy f ′(0) = 0 and attain a

nonzero maximum value foru > 0. Therefore, the R-D systems we will be interested in

give rise to pushed fronts. As mentioned in ref. [126], nonlinearities of this form have been

used to study flame propagation [116, 117], certain autocatalytic chemical reactions [135]

and calcium deposition in bone formation [21]. In flame propagation, the traveling front

may represent the temperature profile [116] as well as the concentration of the reacting

species [117], in chemical reactions, the order of the autocatalysis [135], and in calcium
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deposition, the crystalline clusters that grow over the bulk of the bone proportionally to

the square of its mass [136]. In population dynamics, diffusion-reaction systems with this

type of nonlinearity can be used to model populations that display the weak Allee effect

[137, 138]. If the growth rate of a population becomes negative for very low population

densities, the system is said to display a strong Allee effect. If the growth rate is vanish-

ingly small but positive for low population densities, the term “weak Allee effect” is used

to describe the situation. The nonlinearities we consider have the propertiesf (0) = 0 and

f ′(0) = 0. Therefore, they can be employed to study populations thatexhibit the weak

Allee effect.

It is only in very rare instances that it is possible to obtainthe analytic solution of

a diffusion-reaction equation with a nonlinear term, as a function of time. Therefore, it

is a difficult task to predict how an initial condition is going to evolve in these systems.

Our aim is to contribute to the understanding of this problemby focusing on a particular

aspect of it. In our study, we consider three R-D equations that can be solved exactly

for the traveling front. If we use the traveling front solution as the initial condition in

these equations, we know that it will not change in time. Instead, we slightly modify the

traveling front solution in a few different ways, use it as the initial condition and observe

a quantity that measures the difference between the evolving solution and the eventual

traveling front solution. We describe this procedure in detail in Sec. 4.4 where we also

give a quantitative as well as a qualitative interpretationof the results.

4.3 The reaction terms and corresponding traveling wave

solutions

We will consider three different nonlinear termsf (u) such thatf ′(0) = 0, and the corre-

sponding traveling wave solutions. Among these, two of thembehave like a quadratic for
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u ≈ 0, whereas the third behaves like a cubic. For demonstrativepurposes, we will show

the details of obtaining the traveling wave speed and shape for the Zel’dovich - Frank-

Kamenetskii (ZF) equation [139]. Then the explicit forms ofthese nonlinearities along

with the traveling wave solutions they lead to will be presented. In Sec. 4.5 of this chapter,

the stability of these traveling fronts will be discussed.

4.3.1 Solution of the ZF equation in a moving frame

The ZF equation is given by [139]

∂u
∂t
=
∂2u
∂x2
− γ(1− u)(µ − u)u, (4.6)

wheret andx are appropriately redefined to eliminate the diffusion coefficientD. Fig. 4.3

shows a plot of the nonlinear term of this equation with a particular choice of parameters

γ andµ. Later on, we will focus on a particular form of this nonlinearity with γ = 1 and

µ = 0. We are interested in solving Eq. (4.6) for traveling fronts. Solutions of this type
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u
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Figure 4.3: The nonlinear reaction term of Eq. (4.6) as a function of u for γ = 1 and
µ = 0.25.

have a fixed shape and move with constant speed. Therefore, ifwe switch to a reference
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frame that moves with the speed of the traveling front, we should see a profile that does

not change in time. To do this, we follow the standard procedures (see for instance refs.

[129, 106]), and define a new variablez= x−vt wherev is the speed of the traveling front.

As a result of this change of variables, the differentials transform in the following way

∂

∂t
=
∂z
∂t

∂

∂z
= −v

∂

∂z
,

∂

∂x
=
∂z
∂x

∂

∂z
=
∂

∂z
,

so that Eq. (4.6) can be rewritten as

d2ũ
dz2
+ v

dũ
dz
− γ(1− ũ)(µ − ũ)ũ = 0 (4.7)

whereũ = ũ(z). For convenience we are going to drop the tildes onu from now on andu

will be taken as a function ofz only, unless otherwise stated. LetJ(u) = −du/dz, then Eq.

(4.7) becomes

dJ
dz
+ vJ+ γ(1− u)(µ − u)u = 0. (4.8)

Note that

dJ
dz
=

dJ
du

du
dz
= −J

dJ
du
.

Using this relation Eq. (4.8) can be expressed as

dJ
du

J + vJ+ γ(1− u)(µ − u)u = 0. (4.9)

Suppose that we are interested in finding the traveling frontsolutions that connect the

stable statesu = 0 andu = 1. As a function ofz, these fronts will look like the curve

illustrated in Fig. 4.4, and they clearly satisfy

lim
z→∞

u = 0,

lim
z→−∞

= 1,

J(u) = −du
dz
, J(0) = J(1) = 0.
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Figure 4.4: Schematic illustration of a traveling front that connects the statesu = 0 and
u = 1.

The properties ofJ(u) leads one to consider the ansatz

J = ζu(1− u),

whereζ ≥ 0 asdu/dz≤ 0. Substituting this ansatz in Eq. (4.9), one obtains

u
(
2ζ2 − γ

)
+ vζ + µγ − ζ2 = 0. (4.10)

In order that Eq. (4.10) is satisfied, the coefficients ofu andu0 = 1 must vanish identically.

Imposing this condition results in the following relations

γ = 2ζ2,

v =

√
γ

2
(1− 2µ) .

Therefore, the speed at which the front moves depends on the parametersγ andµ.

The shape of the front can be found by integratingJ(u)
∫ u(z)

u(0)

du
u(1− u)

= −ζ
∫ z

0
dz.

In order to do the integration, we need to specify the valueu(0). Because we can take any

point z in the moving frame as a reference point,u(0) can be assigned any value in the
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interval (0, 1) without loss of generality. Choosingu(0) = 1/2 and evaluating the integral,

one obtains the front shape

u(z) =
1

1+ e
√

γ

2z
. (4.11)

Note that the shape of the front does not depend on where the unstable fixed pointµ is.

The speed however, depends onµ and is positive forµ < 1/2 and negative forµ > 1/2.

This is the exact and only traveling front solution of the ZF equation which connects the

statesu = 0 andu = 1, as it is known that [127, 128, 132] when the front connects two

stable states, there can only be one solution. An intuitive way of understanding why the

solution must be unique is thinking of the R-D equation as a Newton’s equation of motion

[127, 128, 132]. Replacing the variablez by t, which corresponds to time, in Eq. (4.7)

gives

d2u
dt2
= −v

du
dt
− dV

du
, (4.12)

whereu is treated like the position variable of a particle moving under the influence of the

potentialV(u) whose derivative is

−dV
du
= γ(1− u)(µ − u)u, (4.13)

and subject to a frictional force−vdu/dt, where the speed of the front acts like the friction

coefficient. Fig. 4.5 showsV(u) as a function ofu. Note thatV(u) has a minimum at

u = µ. For illustrative purposesµ = 0.25 in the plot. If the particle starts atu = 0(u = 1),

it will reach the pointu = 1(u = 0) if and only if the friction coefficient v has the right

value. Otherwise, it will undershoot, or go over the destination point. The velocity of

the traveling front, which is equal to the right value of the friction coefficient, is therefore

unique. Note that this is not true for fronts connecting an unstable fixed point to a stable

one, for instance in the FKPP equation.
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Figure 4.5: The potentialV(u) obtained by integrating Eq. (4.13) with respect tou. The
parameter values are:γ = 1, µ = 0.25

4.3.2 The three cases we consider

A particular form of the ZF nonlinearity

The nonlinear term that one obtains by settingb equal to 0 in the ZF equation [139] is

f (u) = u2(1− u). (4.14)

In the rest of this chapter, we will refer to this function as the quadratic nonlinearity,

becausef (u) ≈ u2 for u ≈ 0. Substituting it in Eq. (4.3) and solving the resulting equation

for traveling waves, we get

u(z) =
1

1+ ez
√

a/2D
, (4.15)

wherec =
√

Da/2 is the speed of the front.
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A logarithmic nonlinearity

Another nonlinearity that behaves quadratically aroundu = 0 and has a shape similar to

the previous one is

f (u) = (u+ 1) [2− ln(2)+ ln (u+ 1)] ln2 (u+ 1) [ln(2) − ln (u+ 1)] . (4.16)

Although this expression looks complicated, the R-D equation it leads to can be solved

analytically for traveling fronts [126]. Following the procedure we reviewed earlier, the

traveling front shape and speed can be obtained as

u(z) = −1+ 2
[
1+ ln(4/3)

ln(3/2)2
z
√

a/D
]−1

, (4.17)

c =
√

Da ln(2). (4.18)

In all of the discussions that follow, we will call Eq. (4.16)the logarithmic nonlinearity.

A cubic nonlinearity

The last form off (u) that we are interested in studying differs from the others for smallu,

and behaves like a cubic aroundu = 0. It is expressed as

f (u) = η sin(πu) [1 − cos(πu)] . (4.19)

A nonlinear term of this form has been used in studying the dynamics of the angle between

the electric field and the polarization in ferroelectric chiral smectic liquid crystals [140].

Note that it is periodic inu with period 2. In this study, we are interested in the cases for

whichu ≤ 1. Hence, the periodicity of this nonlinear term does not cause any effects. The

R-D equation that has this nonlinear term can be solved exactly for both the shape and

speed of the traveling front. The results are

u(z) =
2
π

arctan
(
e−z
√
ηπa/D

)
, (4.20)

c =
√
ηπDa. (4.21)
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The main reason we consider the cubic nonlinearity is that while it is qualitatively very

similar to the other two, it behaves quite differently for u ≈ 0. Therefore, studying it

can give us an idea about the effects of growth rate for smallu on transient dynamics.

Motivated by this, the parameterη, which controls the amplitude of the nonlinearity, is

set equal toη = 16/(81
√

3) so that the peaks of the cubic and quadratic nonlinearities

coincide.

In Fig. 4.6, each of these nonlinearities are plotted as function of u with the parameter

values indicated above.
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Figure 4.6: Plots of the logarithmic (solid curve), quadratic(dashed curve), and cu-
bic(dotted curve) nonlinearities given by Eqs. (4.19), (4.14), and (4.19), respectively. For
the cubic nonlinearity the value ofη is chosen to be 16/(81

√
3).

4.4 Our method of studying the transients and the results

As we stated in the introduction of this chapter, our interest lies in studying how slightly

modified traveling front solutions evolve according to the R-D equations we consider, as

they approach the exact front solution. This is what we mean by the transient and we do not

consider the full time evolution in the system starting froman arbitrary initial condition.
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In Fig. 4.2, we labeled the different parts of the front as the shoulder, the interior, and

the tail. In obtaining the modified traveling fronts we wouldlike to use as our initial

condition, we modify either of these three parts of the exacttraveling front solution, or a

combination of them. Our analysis showed that modifying only the shoulder of the exact

front does not result in very interesting behavior. Here, wewill show results for three

different modification types, which are

A) Changing the characteristic length
√

D/a in the exact front solution, which modifies

all three parts.

B) Replacing the interior of the front with a line segment, starting atu = 0 and ending

at a pointu < 0 where the line segment intersects the shoulder of the front.

C) Modifying both the interior and the tail of the front. In this case the interior is a

function that is obtained by changing the characteristic length of the exact solution,

and the tail is replaced by a line segment.

Fig. 4.7 illustrates all three types of modifications to the exact front solution.

In our analysis, for each nonlinearity we first consider an initial conditionu(x, 0) gen-

erated according to one of the cases A,B or C described above and numerically calculate

a quantity that measures an aspect of the difference between the numerical solution and

the exact traveling front. The quantity we chose is the relative excess speed defined as

(v(t) − c)/c, wherec is the speed of the exact front solution andv(t) is the instantaneous

speed of the evolving numerical solution given by

v(t) =
d
dt

∫ ∞

−∞
dxu(x, t), (4.22)

which is the rate of change of area under the curveu(x, t) and a natural definition of the

speed. A similar approach is adopted in other studies also (see for instance ref. [122]).

After calculating the behavior of the excess speed as a time series, we try to explain the
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Figure 4.7: Illustration of the initial conditions employed in Secs. 4.4.1, 4.4.2, and 4.4.3.
In (A), The initial condition is obtained by replacing the characteristic length

√
D/a by√

D/a/ξ in the exact front solutions. Forξ > 1 andξ < 1, the initial conditions formed are
termed shallower and steeper than the exact front, respectively. In (B), the modification
to the exact front consists of replacing a portion of its interior part with a line segment.
The line segments begins atu = 1/2 and ends at a point withu > 1/2 where the line
intersects the shoulder of the front. In (C), we modify both the interior and tail of the exact
front to obtain the initial condition. The interior is made shallower than the exact front
by adjusting the characteristic length as in (A), and the tail is simply replaced by a line
segment starting atu = A and going down tou = 0. We generate initial conditions of this
type by modifyingA while keeping the projection of the line segment on thex-axis at a
constant length.

significance of its features and their dependence on the initial conditions. In the rest of this

chapter, we will simply call (v(t) − c)/c the excess speed.

In solving the reaction-diffusion equations numerically, we use an adaptive Adams-

Bashforth-Moulton multistep integration method. The stepsize we used in discretizing

the space variablex is 0.08 in units of
√

D/a, which is the characteristic length in the R-D
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equations we consider. If the excess speed is is less than or equal to 10−8, we argue that

the numerical solution approached its asymptotic form, which is the exact traveling front

solution.

In the next three subsections, we will present the time dependence of the excess speed

as a function of initial condition parameters for each nonlinearity.

4.4.1 Case A

Suppose that we replace the characteristic length
√

D/a in Eqs. (4.15, 4.17) and (4.20) by
√

D/a/ξ, whereξ is a dimensionless parameter. Forξ > 1, the derivative of this modified

front will vary in a slower fashion compared to the caseξ = 1, which corresponds to the

exact traveling front. In other words, this type of modified fronts are shallower than the

exact front for allx. On the other hand, forξ < 1 the modified front will be steeper than

the exact front. Plots of modified fronts of this kind along with the exact front is given in

Fig. 4.7 (A).

Considering such initial conditions and calculating the excess speed for each nonlin-

earity, we found that the instantaneous speed of the numerical solutions defined by Eq.

(4.22) changes monotonically in time. Moreover, the relaxation to the asymptotic value of

the front speed seems to be exponential in time. The inset in Fig. 4.8 shows the magni-

tude of the excess speed on semilogarithmic axes for different values ofξ, which indicates

that at long times the excess speed decays exponentially. Therefore, one can find an ex-

ponential decay constantτ, which has the dimensions of 1/a, for various values ofξ by

appropriately performing a linear fit to the excess speed versus time plots. The main plot

shows this decay constantτ as a function of the steepness of the modified frontξ. We

immediately note that if the initial conditions are steeperthan the exact front,ξ < 1, then

τ does not depend onξ and varies with the type of nonlinearity. Hence, initial conditions

that are steeper than the exact front relax to the asymptoticspeed in the same way. How-
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ever, this is not true forξ > 1. For initial conditions that are shallower than the exact

front, τ depends onξ as well as the type of nonlinearity. Similar qualitative results on the

relaxation behavior have also been reported by Van Saarloos[128].
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Figure 4.8: Characteristic decay timeτ in units of 1/a, plotted against the steepness of the
initial conditionξ. For ξ > 1, the initial condition is shallower than the exact front, and
for ξ < 1 it is steeper. The magnitude of the excess speed for variousvalues ofξ is plotted
on semilogarithmic axes in the inset. The solid, dashed, dash-dotted and dotted curves
correspond to an initial condition withξ = 1.250, 1.429, 1.539, and 2, respectively.

The characteristic decay timeτ is largest for the cubic nonlinearity and it is followed

by the logarithmic and quadratic nonlinearities. This is not surprising as the time scales in

the dynamics of the system should depend on the strength of the nonlinear term. as seen in

Fig. 4.6, the quadratic nonlinearity is stronger than the logarithmic followed by the cubic

for most values ofu. Furthermore the cubic nonlinearity which gives rise to thelargest

decay times is significantly weaker than the other two aroundu = 0.
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4.4.2 Case B

The transient behavior we saw in Case A was monotonic and not so interesting. Here

we consider a different initial condition that gives rise to a slightly richertime evolution.

Suppose that we modify the interior of the exact front solution so that part of it is replaced

by a line segment. Obviously one can make a modification to theinterior in many different

ways, but it is convenient to consider a line segment as it is simple enough to be described

by a single parameter. The initial conditions we consider inthis subsection are depicted in

Fig. 4.7. The modification consists of replacing the part of the interior by a line segment

starting atu = 1/2 and ending at some valueu > 1/2 at which the line segment and the

exact front intersect. In order to characterize initial conditions of this type, we introduce

the parameterα which is the ratio of the slope of the line segment to the slopeof the exact

front atu = 1/2. We are interested in assumingα values that lie in the interval (0, 1) so

that the initial condition we generate is shallower that theexact solution over its modified

part.

In Case A, we saw that when the initial condition is shallowerthan the exact front for

all x, the excess speed decays monotonically. In this case, the initial condition we consider

is shallower than the exact front only over a finite portion ofthe space. At first one may

expect to observe similar monotonic behavior again, but it turns out that the excess speed

behaves quite differently for the interior-modified initial condition.

Fig. 4.9 shows the time evolution of the excess speed for eachnonlinearity, for a partic-

ular value ofα (Dependence of the features of the excess speed onα will be demonstrated

in Fig. 4.10). Note that the excess speed no longer decays monotonically. A maximum in

the excess speed versus time plot appears because of the following development. Instead

of just reforming and approaching the exact front shape, themodified part of the front

induces the lower part of the interior and the tail to become shallower than the interior

and the tail of the exact front solution. Therefore, for a brief amount of time, the solu-
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tion is shallower than the exact traveling front, and then itrelaxes to the exact front shape

which is steeper. It is well known that shallower fronts travel faster than steeper fronts

[127, 128]. Therefore, it is natural to expect a maximum in the excess speed in the light of

this argument.
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Figure 4.9: The nonmonotonic time evolution of the excess speed for interior modified
initial conditions (see Fig. 4.7). The solid, dashed and dotted curves correspond to results
for the logarithmic, quadratic and cubic nonlinearities, respectively.

In Fig. 4.10 we display results concerning the relation between the parameterα and

the location and magnitude of the maximum. One our our findings is that forα & 0.85

andα . 0.5 the maximum disappears and the time evolution becomes monotonic. The

reason for this in each of these cases is different. Whenα . 0.5, the initial condition is

very shallow so that the diffusion is negligible compared to the effects of the nonlinearity.

Therefore, the modified part of the front grows extremely rapidly and takes a steeper form

while approaching the exact front shape so that its speed continuously decreases. In the

opposite limit, whenα & 0.85, the modification from the exact front shape is slight, so that

it can be regarded as a small perturbation. This small perturbation monotonically decays

and the excess speed does not show a maximum. For intermediate values ofα, we display

the results for the location and magnitude of the maximum of excess speed in Fig. 4.10.
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We defineT1 to be the time it takes for the excess speed to reach a maximum,andH to

be the magnitude of this maximum. The main graph and the insetin Fig. 4.10 show the

behavior ofT1 andH as a function ofα, respectively.
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Figure 4.10: The behavior ofT1, the time it takes for the excess speed to reach a maximum,
as a function of the initial condition parameterα. In the inset, we plot the magnitude of the
same maximum again as a function ofα. The solid, dashed and dotted curves correspond
to results for the logarithmic, quadratic and cubic nonlinearities, respectively.

4.4.3 Case C

The last type of initial conditions we consider is obtained by modifying both the interior

and the tail of the exact front, and gives rise to the richest transient behavior. An illustration

of an initial condition of this kind is provided in Fig. 4.7 (C). The interior is modified such

that it is shallower than the exact front by changing the characteristic length as described

in Sec. 4.4.1. The tail is replaced by a line segment which starts at f (u) = A and goes

down until it reaches zero. In order to generate different initial conditions, we adjust the

parameterA while keeping the projection of the line segment on thex-axis constant. A

common feature of the nonlinearities we consider is that they are very weak aroundu = 0,
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i.e. f (u ≈ 0) ≈ 0. If the initial condition has a substantial part which is nonzero for small

values ofu, we may expect the dynamics to be very slow around that region. Therefore,

some parts of the front will change rapidly and some will not,and this may give rise to

rich transient behavior.

In Fig. 4.11 we show the qualitative behavior of the excess speed as a function of time

for the logarithmic nonlinearity given by Eq. (4.16). The results for other nonlinearities

are essentially very similar and not shown in this figure. Note that now there is a minimum

in addition to a maximum in the excess speed versus time plot.To make things easier, we

include the plots of the numerical solution and the exact front solution at three points in

time, whose significance we are set to understand.

The excess speed decreases as the interior part of the front,which evolves faster than

the tail, becomes less and less steep and approaches the exact front shape as shown in the

center inset in Fig. 4.11. After the minimum is reached, the part of the front where the

interior and the tail meet starts to grow as the top left insetof Fig. 4.11 shows. This growth

induces the whole front to become shallower than the exact front and keeps going until the

maximum point is reached. At the maximum point, the whole profile is shallower than the

exact front as shown in the top right inset of Fig. 4.11. The time evolution after this point

is monotonic and is almost identical to what we had in Case A above.

The main graph in Fig. 4.12 shows the excess speed as a function of time for the

logarithmic nonlinearity for different values of the initial condition parameterA. An im-

mediate question that arises after looking at these plots is: how does the distance between

the extrema depend on the parameterA? The four curves, the solid, the dotted, the dashed

and the dash-dotted, correspond to results for increasingly larger values ofA. At first, as

A increases the time difference between the minimum and maximum also increases. How-

ever, forA greater than a certain value, a significantly larger portionof the shallow profile

grows rapidly because of the shape of the nonlinearityf (u) (see Fig. 4.6). Therefore, the

evolution of the initial condition gets substantially faster asA increases, and reduces the
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Figure 4.11: Excess speed as a function of time for the logarithmic nonlinearity with the
kind of initial condition described in Sec. 4.4.3. The insets show the evolving solution
of the R-D equation (solid curve) and the exact traveling front (dotted curve) at different
times for comparison purposes. The exact traveling front isplotted by coinciding the two
curves atu = 1/2.

time necessary for the profile to become shallow at all pointsin space. The last argument

that we presented provides the reason for why the maximum of the dashed and dash-dotted

curves shift to the left. The inset of the same figure shows thebehavior ofT2, the time dif-

ference between the occurrence of the minimum and the maximum, as a function ofA for

each of the three nonlinearities. Note that the behavior ofT2 is significantly different for

the cubic nonlinearity. This implies that the time differenceT2 depends heavily on the

form of the nonlinearity aroundu = 0.
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Figure 4.12: Excess speed as a function of time for the logarithmic nonlinearity for four
initial conditions of the type mentioned in Sec. 4.4.3. The solid, dotted, dashed and dash-
dotted curves correspond toA = 0.04, 0.06, 0.1 and 0.12, respectively. The inset shows
how the dependence ofT2, the time difference between the minimum and the maximum,
onA for the logarithmic(solid curve), quadratic(dashed curve), and the cubic(dotted curve)
nonlinearities.

4.5 Linear stability of traveling fronts

4.5.1 The method

In this section, we follow the standard procedure [141, 106]to see if the traveling fronts

discussed in this paper are stable against finite perturbations in the moving frame. Consider

the diffusion reaction equation with a nonlinear termf (u):

∂u(x, t)
∂t

=
∂2u(x, t)
∂x2

+ f (u(x, t))

In the moving frame (x, t)→ (z, t) wherez= x− ct, the equation becomes

∂u(z, t)
∂t

∣∣∣∣∣
z
= c

∂u(z, t)
∂z

∣∣∣∣∣
t
+
∂2u(z, t)
∂z2

∣∣∣∣∣∣
t

+ f (u(z, t)) (4.23)
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Suppose thatuc
0(z) is a traveling wave solution of (4.23). Lets introduce a finite perturba-

tion w(z, t) in the moving frame and write

u(z, t) = uc
0(z) + εw(z, t) (4.24)

Substituting (4.24) into (4.23) we get:

ε
∂w
∂t
= c

duc
0

dz
+

d2uc
0

dz2
+ εc

∂w
∂z
+ ε

∂2w
∂z2
+ f (uc

0 + εw) (4.25)

If we make a taylor series expansion off (u) arounduc
0 and just keep the first order terms

in ε we get

∂w
∂t
= c

∂w
∂z
+
∂2w
∂z2
+ f ′(uc

0)w (4.26)

If we assume thatw(z, t) is of the formw(z, t) = η(z)e−λt and substitute this into Eq. (4.26).

The result becomes

−λη = c
dη
dz
+

d2η

dz2
+ f ′(uc

0)η (4.27)

We can get rid of the first derivative in the equation above by making the transformation

η(z) = ξ(z)e−cz/2. Then Eq.(4.27) turns into

−d2ξ

dz2
+

(
c2

4
− f ′(uc

0)

)
ξ = λξ

Now, if we define the operatorHc =
[
− d2/dz2 + c2/4− f ′(uc

0(z))
]
, Eq. (4.27) can be

expressed as

Hcξ = λξ (4.28)

In order that the traveling front solutions are stable, allλ’s should be positive (the case

λ = 0 is special and we will come to that) so that the perturbations w(z, t) decay in time.

This would be the case whenHc is a positive definite operator. Note thatHc is a self adjoint

differential operator [142]. This makes Eq. (4.28) equivalent to the time independent

Schrödinger equation withpotential energy V(z) = c2/4− f ′(uc
0(z)) upto a constant in front
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of the kinetic energy term but this is insignificant for our purposes. Using the analogy with

the Schrödinger equation, we see that the energy eigenvalues,λ, are going to be greater

than zero if the potential energyV(z) is always greater than zero whereξ(z) is non-zero (As

the perturbations that we consider are finite,ξ(z) should vanish outside of some interval

(a, b) onz-axis). If the potential energy has negative values in (a, b) the traveling front may

still be stable but then we need to prove that eigenvalues aregreater than zero by making

a different argument.

4.5.2 Linear stability of the fronts discussed in this chapter

In Fig.4.13 we plotV(z) for each nonlinearity and find that for each case, it takes on

negative values in some interval. So, if the fronts are stable, we should be able to show, by

other means, that the eigenvalues are, in fact, positive . For this purpose, we are going to

follow ref. [143] and find the eigenfunction ofHc that corresponds toλ = 0 and argue that

the corresponding eigenvalue ofHc is the lowest.

Note that translated traveling wave solutions of the formuc
0(z+ ε) will still satisfy (2)

because of the symmetry in the system. If we expanduc
0(z+ ε) aroundz, and keep the first

order term inε, we get

uc
0(z+ ε) ≈ uc

0(z) + ε
duc

0(z)

dz
. (4.29)

If we compare Eq. (4.29) with Eq. (4.24), we will see that whenthe perturbationw(z, t) is

equal toduc
0(z)/dz then the perturbed solutionu(z, t) = uc

0(z) + εw(z, t) is just a translated

traveling front as we showed above. Thus if the perturbationis in this form, then it will not

grow or decay (as all it does is to shift the front alongz) in time as the translated traveling

front is also a solution of Eq. (4.23). We can find the eigenfunction corresponding to

λ = 0, ξ0(z), by settingλ = 0 in w(z, t) = ξ(z)e−cz/2e−λt and equating this toduc
0(z)/dz, as a
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Figure 4.13: Plot ofpotential energy vs z. Solid, dashed and dotted lines correspond to
logarithmic, quadratic and cubic nonlinearities respectively.

neither growing nor decaying perturbation should correspond toλ = 0. This gives

ξ0(z) = ecz/2 duc
0(z)

dz
.

Now we will use another property of the solutions of the Schr¨odinger equation (4.28) to

argue about the other eigenvalues ofHc. Note thatduc
0(z)/dz is always negative for all

nonlinearities we considered as the front shapes are monotonically decreasing functions

of z. This means thatξ0(z) does not have any roots so thewave functioncorresponding to

λ = 0 is nodeless. But it is well known in quantum mechanics that [144] the nodeless wave

function would correspond to the ground state of the system with lowestλ. Therefore, all

λ are greater or equal to zero for all nonlinearities we considered andλ = 0 simply means

a translation ofuc
0(z).
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4.6 Pattern formation in an R-D system with spatially non

-local interactions

As we mentioned in some detail in the introduction of this chapter, R-D systems display a

wide range of phenomena including front propagation, oscillations, and chaotic behavior.

One other interesting feature of these systems is that they can form patterns under certain

circumstances when an instability in the system arises.

Formation of patterns in R-D systems have been extensively studied [145, 106, 146,

147, 148] after the pioneering work of Turing [19], who suggested the use of an R-D

equation to study the formation of patterns in morphogenesis in biology. He showed that

a system of chemical species that inhibit or activate each other and their own production

in a simple way can lead to formation of patterns provided that an instability in the system

arises as a consequence of such interactions.

In this section, we will study some aspects of pattern formation in an R-D system

in which the mechanism that leads to the formation of structures in the system is quite

different from what it is for Turing patterns. Recently it was shown by Fuentes, Kuperman,

and Kenkre [114, 22] that R-D equations with spatially nonlocal interaction terms can lead

to the formation of steady state patterns. The specific R-D equation they considered was

an FKPP equation with a competition term that allows for non-local interactions between

the constituents of the system. In this thesis, we are interested in studying the formation

of patterns in a similar system. However, our special interest is for a transport mechanism

that is not necessarily diffusive. We consider a more general R-D equation than the one

mentioned in refs. [114, 22], by introducing a memory in the diffusion term. By choosing

the memory appropriately, we can have super- or sub-diffusive transport of reactants in

the system. Our main interest lies in investigating the conditions under which patterns can

form as a function of the characteristic property of transport in the system, i.e. diffusive,

super- or sub-diffusive.
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In the next section we will briefly review the findings in ref. [22] about pattern forma-

tion in an FKPP equation with spatially non-local competition term, and then present our

results for the case with memory.

4.6.1 Fisher equation with nonlocal competition term in theMarkof-

fian limit

Fuentes, Kuperman, and Kenkre [114, 22] consider the following form of the FKPP equa-

tion with a modified competition term that allows nonlocal interactions

∂u(x, t)
∂t

= D
∂2u(x, t)
∂x2

+ au(x, t) − bu(x, t)
∫

Ω

dy fσ(x, y)u(y, t), (4.30)

whereΩ is the extent of the system andfσ(x, y) is a function characterizing the influence

of point y on pointx. It is reasonable to think offσ(x, y) as a function ofx − y in many

situations. So we will assumefσ = fσ(x− y) and that it is normalized onΩ such that

∫

Ω

dz fσ(z) = 1. (4.31)

If patterns do form ast → ∞ then the homogeneous solution,u0 = a/b, must be unstable

[149, 147, 146]. Therefore, in order to obtain a condition for the existence of patterns, let

us analyze the stability of the homogeneous solution. The rest of this section is a detailed

review of the discussion in ref. [22] provided as an introduction to our study. Consider

u(x, t) = u0 + ε coskxeϕt, (4.32)

whereε is be taken as a perturbation parameter. Next, we substituteEq. (4.32) in Eq.

(4.30) to see under which conditions the perturbation growsor decays. We get

ϕε coskxeϕt = −Dk2ε coskxeϕt + au0 + aε coskxeϕt

− b
(
u0 + ε coskxeϕt)

∫

Ω

dy fσ(x, y)
(
u0 + ε coskxeϕt) . (4.33)
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Using the properties offσ(x, y), we put Eq. (4.33) in the following form

0 = −ε
(
ϕ + Dk2 + a

∫

Ω

dy fσ(x− y)
cosky
coskx

)
+ O(ε2). (4.34)

Neglecting the term that is second order inε,

ϕ = −Dk2 − a
∫

Ω

dy fσ(x− y)
cosky
coskx

. (4.35)

Let us takeΩ to be the interval [−L/2, L/2] so that the size of the system isL. Then, the

integration variabley takes values from−L/2 toL/2, andz= x−y runs fromz= x+L/2 to

z= x− L/2. As we impose periodic boundary conditions on the system,z can be thought

as a periodic variable, like an angle, with periodL. This observation will be useful if we

express the integral in Eq. (4.35) overz instead ofy. After doing this, we get

ϕ = −Dk2 − a
∫

Ω

dy fσ(x− y)
coskxcoskz+ sinkxsinkz

coskx
, (4.36)

where we used cos(a+b) = cosacosb− sinasinb. Expressing the integrals overzwe get

ϕ = −Dk2 − a

(∫

Ω+

dz fσ(z) coskz+ tankx
∫

Ω+

dz fσ(z) sinkz

)
, (4.37)

whereΩ+ means thatz is increasing along the path of integration inΩ, and explains how

we got rid of the minus sign introduced by the change of integration variable. Integrating

throughoutΩ, Eq. (4.37) becomes

ϕ = −Dk2 − a

(∫ L/2

−L/2
dz fσ(z) coskz+ tankx

∫ L/2

−L/2
dz fσ(z) sinkz

)
. (4.38)

The second integral in Eq. (4.38) vanishes as the integrand is the product of an even and

an odd function and we are left with

ϕ = −Dk2 − aF (k), (4.39)

where

F (k) =
∫ L/2

−L/2
dz fσ(z) coskz,
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is the Fourier cosine transform of the influence function. The perturbation will grow ifϕ

given in Eq. (4.39) is positive and it will decay otherwise. As D, k, anda take positive

values, the perturbation can grow only ifF (k) is negative for at one of thek values and

satisfies

F (k) < −Dk2

a
.

The growth of perturbations is a necessary but not sufficient condition for pattern forma-

tion. If we take the influence function to be

fσ(z) =
1

2σ
(θ (σ − z) θ (σ + z)) ,

whereθ(x) is the Heaviside function

θ(x) =



1 x ≥ 0,

0 x < 0.

With this choice for the influence function, we have

F (k) =
sin(kσ)

kσ
. (4.40)

A plot of the steady state patterns emerging in the R-D systemcharacterized by Eq. (4.30)

and the influence function given in Eq. (4.40) is shown in Fig.4.14. Note thatϕ takes

positive values for two intervals ofk.

4.6.2 Our generalization with memory

The transport in the system governed by Eq. (4.30) is diffusive due to the term with the

second space derivative. In order to allow for different transport types such as super- and

sub-diffusion, we will modify this term by introducing a memory. If transport is coherent

to some degree, then Eq. (4.30) can be replaced by

∂u(x, t)
∂t

= D
∫ t

0
dsφ(t − s)

∂2u(x, s)
∂x2

+ au(x, t) − bu(x, t)
∫

Ω

dy fσ(x, y)u(y, t), (4.41)
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Figure 4.14: On the left, we plot the steady state patterns that appear in the R-D system
described by Eqs. (4.30) and (4.40). On the right, the correspondingF (k) as a function
of k is shown. The value of the dimensionless parameterσ

√
a/D is equal to 20

√
5.

See ref. [5] for a discussion on memory functions, generalized master equations, and

coherent transport. In this case, we will employ a more general form of the perturbation

given in Eq. (4.32), namely

u(x, t) = u0 + εg(t) coskx. (4.42)

substituting Eq. (4.42) in Eq. (4.41) and proceeding in the same way as in Sec. 4.6.1, we

obtain

dg(t)
dt
= −ag(t)F (k) − Dk2

∫ t

0
dsφ(t − s)g(s).

Taking the Laplace transform of the equation above and doingsome algebra, we get

g̃(ε) =
g(0)

ε + Dk2φ̃(ε) + aF (k)
, (4.43)

where tildes denotes Laplace transformed quantities andε is the Laplace variable. Without

loss of generality, we will takeg(0) = 1 from now on. In the Markoffian limit, φ̃(ε) = 1

and we have

ϕ = −Dk2 − aF (k),
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given by Fuentes et al. [22].

In the following sections, we consider different memory functions and their effect on

the stability of the homogeneous solution. The influence function we consider in all of the

cases is given by

fσ(z) =
θ(w− z)θ(w+ z)

2w
, (4.44)

whereθ(x) is the Heaviside function. Its Fourier cosine transform becomes

F (k) =
sinkw

kw
. (4.45)

4.6.3 In discrete space

In the rest of this chapter, we will confine our interest to systems in discrete space. It

is useful to obtain the results in discrete space especiallywhen it comes to comparing

analytical results with numerics. One of the discrete spaceanalogs of Eq. (4.41) is

dum

dt
= h

∫ t

0
dsφ(t − s) [um+1 + um−1 − 2um] + aum− bum

∑

n

Fn(w)um−n, (4.46)

whereFn(w) is the influence function. In particular, we consider

Fn(w) =
1

2w+ 1
θ(w− n)θ(w+ n), (4.47)

whose Fourier cosine transform is

F (k) =
1

2w+ 1

[
coskw− cos(k(w+ 1))

1− cosk

]
.

Again, we consider the evolution of the perturbed steady state u = u0 + ε cos(km)g(t), by

substituting it in Eq. (4.46) and taking its Laplace transform, we get

g̃(ε) =
1

ε +G(k)φ̃(ε) + aF (k)
, (4.48)
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where

G(k) = 2h (1− cosk) .

If the memory is a delta distribution,φ(t) = δ(t − s),

g̃(ε) =
1

ε +G(k) + aF (k)
,

therefore,g(t) is given by

g(t) = e−(G(k)+aF (k))t , (4.49)

and the perturbation would grow if

F (k) < −G(k)
a

. (4.50)

The exponential time dependence is not surprising as we onlykept terms that are linear in

ε. If the memory is an exponentially decaying function,φ(t) = αe−βt, g̃(ε) becomes

g̃(ε) =

[
ε + ξ

(ε + ξ)2 − η +
β − ξ

(ε + ξ)2 − η

]
,

where

ξ =
β + aF (k)

2
,

η =
(β + aF (k))2

4
− aβF (k) − αG(k),

andg(t) is given by

g(t) = c+e
−(ξ−√η)t + c−e

−(ξ+
√
η)t,

c± =
1
2

(
1± β − ξ√

η

)
.

Let us take a closer look at the exponent

ξ ± √η = β + aF (k)
2

± 1
2

√
(β + aF (k))2 − 4(aβF (k) + αG(k)).
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Note that the exponent is positive only when

F (k) < −α
β

G(k)
a

.

The Markoffian limit corresponds to settingα = β and taking the limitβ → ∞. Let us

rewrite the exponent as

ξ ± √η = β + aF (k)
2

± β
2

√
1+

4
β

(
−aF (k)

2
− α
β

G(k)

)
+

1
β2

a2F 2(k).

As we are interested in the limitβ → ∞, the second term inside the square root sign is

small compared to 1 so that we can make the approximation
√

1+ x ' 1 + x/2, which

leads to

ξ +
√
η = β −G(k),

ξ − √η = aF (k) +G(k),

if we ignore the term which goes asβ−2. As β is large and positive,e−(ξ+
√
η)t will vanish

andg(t) will be proportional to

g(t) ∝ e−(ξ−√η)t = e−(aF (k)+G(k))t ,

which is the result we obtained in Markoffian limit earlier.

4.6.4 Slowly decaying memories

If the memory decays slowly, e.g. algebraically, then transport can be sub- or superdiffu-

sive [5]. A φ(t) whose integral in [0,∞) is divergent will lead to superdiffusion. On the

other hand, if the integral ofφ(t) in the same interval vanishes andφ(t) ∼ t−1−γ, where

0 < γ < 1, then the transport will be subdiffusive.

Superdiffusion:
∫ ∞

0
dsφ(s)→ ∞

Subdiffusion:



∫ ∞

0
dsφ(s) = 0

φ(t) ∼ t−1−γ, 0 < γ < 1
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In order to investigate superdiffusion, we consider memory functions of the form

φ(t) = α(βt + γ)ν, −1 < ν < 0, (4.51)

whose first and second integrals are
∫ t

0
dsφ(s) =

α

β(ν + 1)

[
(βt + γ)ν+1 − γν+1

]
,

MSD ∝
∫ t

0
ds

∫ s

0
ds′φ(s′) =

α

β(ν + 1)

[
1

β(ν + 2)

[
(βt + γ)ν+2 − γν+2

]
− γν+1t

]
∼ tν+2,

where MSD stands for mean square displacement.

For subdiffusion, we take up

φ(t) = δ(t) + α(βt + γ)ν, −2 < ν < −1, (4.52)

with
∫ t

0
dsφ(s) = 1+

α

β(ν + 1)

[
(βt + γ)ν+1 − γν+1

]
,

MSD ∝
∫ t

0
ds

∫ s

0
ds′φ(s′) =

1
β(ν + 2)γν+1

[
(βt + γ)ν+2 − γν+2

]
∼ tν+2.

Observe thatα/β = (ν+1)/γν+1 needs to hold in order that the integral
∫ ∞

0
dsφ(s) vanishes.

Let us see what these basic properties imply about the time evolution of the perturbations

when they decay. If the perturbations decay, then the integral
∫ ∞

0
dtg(t) = limε→0 g̃ (ε) will

have a finite value. The value of this integral gives us an ideaabout the characteristic time

associated with the decay of the perturbations, which is given by

g̃(0) =
1

G(k)φ̃(0)+ aF (k)
. (4.53)

The integral of the memory,̃φ(0), is finite for exponential andδ-distribution memories as

well as for the memory we considered in the subdiffusive case. Inverse of the characteristic

time for each of these cases is given by

τ−1
c = g̃(0) =



G(k) + aF (k), φ(t) = δ(t)

(α/β)G(k) + aF (k), φ(t) = αe−βt

aF (k), φ = δ(t) + α (βt + γ)ν
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Note thatτc for the Markoffian limit is identical to the exponent we found in Eq. (4.49) and

the expression for it is simplify modified by a factor ofα/β if the memory is exponential.

Obviously, the characteristic time of the decay for the subdiffusive case is meaningful only

if F (k) is positive.

Our aim is to obtain a condition on the parameters of the memory function that deter-

mines whether the perturbation will grow or decay. We shouldnot forget that the condition

for the growth of the perturbation is not necessarily the same as the condition for pattern

formation. Growth of the perturbation is necessary but not sufficient for the formation

of patterns. In the rest of this section, we will discuss a wayof obtaining the short time

behavior of the functiong(t) for the super- and sub-diffusive cases. Let us consider the

memory function

φ(t) = ζδ(t) + α(βt + γ)ν. (4.54)

If the parameterζ is equal to 1, then Eq. (4.54) is the memory function we consider for

the subdiffusive case, and ifζ is 0, it is identical to the memory in the superdiffusive case.

The Laplace transform of Eq. (4.54) is given by

φ̃ (ε) = ζ + α
∫ ∞

0
dt (βt + γ)ν e−εt. (4.55)

Recall that the Laplace transform of the functiong(t) that describes the time evolution of

the perturbation is given by

g̃(ε) =
1

ε +G(k)φ̃(ε) + aF (k)
.

Our treatment of the evolution of the perturbation is valid only if the amplitude of the

perturbation is small. Hence, we can rely on the expression for g(t) only for short times.

In the super- and sub- diffusive cases, it does not look like we can analytically take the

Laplace transform of̃g (ε) and obtain behavior of the perturbation as a function of time

because of the complicated nature ofg̃ (ε). Because we are necessarily interested in the

short time behavior ofg(t), we can focus our interest on approximating it. In order to do
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this, we notice that the behavior of a functionf (t) at short times is related to its Laplace

transform at large values of the Laplace variable. For the limiting behavior of f (t), we

have the well known result [59]

lim
t→0

f (t) = lim
ε→∞

ε f̃ (ε) . (4.56)

As we are interested in the values ofg(t) for small values oft different from 0, we can take

the inverse Laplace transform of the approximate form ofg̃ (ε) for large values ofε. If we

make the change of variablesτ = βt + γ, then Eq. (4.55) can be written as

φ̃ (ε) = ζ +
α

β
I ,

where

I =
∫ ∞

γ

dττνe−
ε
β
(τ−γ)

.

Performing integration by parts twice on the integral, we obtain

I =
γν

ε/β
+

ν

ε/β

[
γν−1

ε/β
+
ν − 1
ε/β

∫ ∞

γ

dττν−2e−
ε
β
(τ−γ)

]
.

We realize that if we performn integration by parts, we will get the following result

In =

n−1∑

m=0

γν−m ν!
(ν −m)!

1

(ε/β)m+1
+

ν!
(ν − n)!

1
(ε/β)n

∫ ∞

γ

dττν−ne−
ε
β
(τ−γ)

, (4.57)

where the subscriptn on I denotes the number of times we used integration by parts. Up to

this point, the expressions we have worked with are exact. Inorder to be able to continue

with analytical calculations, we now make an approximationwhich is exact forε → ∞.

Note that the exponential under the integral sign inI would be vanishingly small for the

large values ofε which we are interested in calculating̃g (ε) at. Therefore, we make the

following approximation

(ε/β) e
ε
β
(τ−γ) ≈ δ(τ − γ),
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that leads to
∫ ∞

γ

dττν−ne−
ε
β
(τ−γ) ≈ γ

ν−n

ε/β
,

which is exact whenε/β → ∞. It is worthwhile to note that approximation of the integral

in I would get better and better with increasing values ofn, asτν−n gets weaker for large

values ofτ, with increasingn. Using this approximation we can expressg̃ (ε) as

g̃ (ε) =
P (ε)
Q (ε)

, (4.58)

whereP (ε) andQ (ε) are polynomials inε. Hence, taking the inverse Laplace transform

of g̃ (ε) reduces to the problem of finding the roots of the polynomialQ (ε) and then cal-

culating the residues of̃g (ε) at these roots.

One can go through this procedure and get approximate forms for g(t), but for our

purpose it is not essential to do so. We would like to know whether the perturbation is

going to grow or decay. In other words, we are interested in finding howg(t) changes for

smallt. By using the following theorem for Laplace transforms [59]

L
{

d f(t)
dt

}
= ε f̃ (ε) − f (0),

and Eq. (4.56), we can write

lim
t→0

dg(t)
dt
= lim

ε→∞

[
ε2

ε +G(k)φ̃ (ε) + aF (k)
− ε

]
.

In the limit ε → ∞, we can replacẽφ (ε) by γν/(ε/β) due to the discussion above. After

doing this, we get

lim
t→0

dg(t)
dt
= − [

G(k)ζ + aF (k)
]
.

Therefore, the necessary conditions for the perturbationsto grow in the super- and sub-

diffusive cases are

lim
t→0

dg(t)
dt

> 0 if



aF (k) < 0 super-diffusive case,

[G(k) + aF (k)] < 0 sub-diffusive case.
(4.59)
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Note that the growth rate of the perturbation att = 0 for the sub-diffusive case is identical

to that in the Markoffian limit given by Eq. (4.50). For super-diffusion, we see that the

growth rate att = 0 is independent from theG(k) which is the term that involvesh, the

analog of the diffusion coefficient in discrete space.

As we have seen above, we can calculate the first derivative ofg(t) exactly att = 0. In

fact we can do the same for all higher derivatives ofg(t) by using the following property

of the Laplace transforms

L
{

dn f (t)
dtn

}
= εn f̃ (ε) − εn−1 f (0)− . . . − dn−1 f (t)

dtn−1

∣∣∣∣∣∣
t=0

.

Using this and Eq. (4.56), we can calculatedng(t)/dtn and expandg(t) in a Taylor series

aroundt = 0. We find that the the first four terms in the Taylor expansion are

g(t) ≈ 1− aF (k)t +

[
− αγνG(k) + a2

F
2(k)

]
t2

2

− aF (k)

[
− 2αγνG(k) + a2

F
2(k)

]
t3

6
, (4.60)

for the super-diffusive case, and

g(t) ≈ 1− (G(k) + aF (k)) t +

[
−ν + 1

γ
G(k) + (G(k) + aF (k))2

]
t2

2

− (G(k) + aF (k))

[
−2

ν + 1
γ

G(k) + (G(k) + aF (k))2

]
t3

6
(4.61)

for the sub-diffusive case. Therefore, Eqs. (4.60) and (4.61) provide an alternative for

finding an approximate form forg(t) by inverting the Laplace transform in Eq. (4.58).

4.7 Numerical solution of the integro-differential equa-

tion and results of our analysis

In this section we will go over the method we employed to solvethe system of integro-

differential equations (4.46) numerically. Eq. (4.46) is a Volterra integro-differential equa-

tion with a convolution kernel, which appears in many dynamical systems (see ref. [150]
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and references therein). Numerical solution of systems of Volterra integro-differential

equations is costly, especially when the one discretizes a partial differentiation operator

and uses small step sizes to obtain reasonable accuracy. Thefact that we restrict our atten-

tion to a discrete R-D system rather than considering Eq. (4.41) helps us go around this

problem of having to choose small step sizes in discretizingthe space variable. Below, we

give an algorithm that approximates the solution of a systemof Volterra integro-differential

equations using embedded Runge-Kutta methods, found in Hoppensteadt and others [150]

and follows from the results obtained in refs. [151, 152, 153, 154].

Consider the system of equations

du(t)
dt
= G

(
t, u(t),

∫ t

0
dsk(t − s) f (s, x(s))

)
, (4.62)

with the initial conditionu(0) = u0, whereu(t) is a vector andG is a vector valued function

of its arguments that can be nonlinear. Discretizing the time interval [0, t] such thattn+1 =

tn + hn, the 5th order Runge-Kutta approximation to solution of Eq. (4.62) at the n + 1st

timestep is found to be [150]

un+1 = un + hn

s∑

j=1

b jG
(
tn + cjhn,X j,n, F

∗
n

(
tn + cjhn

)
+ Zj,n

)
, (4.63)

where

Xi,n = xn + hn

i−1∑

j=1

ai jG
(
tn + cjhn,X j,n, F

∗
n

(
tn + cjhn

)
+ Zj,n

)
,

Zj,n = hn

j−1∑

l=1

a jl k
((

cj − cl

)
hn

)
f
(
tn + clhn,Xl,n

)
,

F∗n(t) is the approximation for the integral

Fn(t) =
∫ tn

0
dsk(t − s) f (s, x(s)) ≈ F∗n(t)

=

n−1∑

l=1

hl

s∑

j=1

b jk
(
t − tl − cjhl

)
f
(
tl + cjhl ,X j,l

)
,
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u1 is taken to be the same as the initial condition, and the indicesi andn run from 1 tos

andN, respectively. The values ofai j , bi, andci depend on the order of the Runge-Kutta

method used. For a 5th order approximation we have (see Eq. (1.4) of ref. [150])

a =



0 0 0 0 0 0 0
1
5 0 0 0 0 0 0
3
40

9
40 0 0 0 0 0

44
45 −56

15
32
9 0 0 0 0

19372
6561 −25360

2187
64448
6561 −212

729 0 0 0
9017
3168 −355

33
46732
5247

49
176 − 5103

18656 0 0
35
384 0 500

1113
125
192 −2187

6784
11
84 0



,

b =
[

35/384 0 500/1113 125/192 −2187/6784 11/84 0
]
,

and

c =
[

0 1/5 3/10 4/5 8/9 1 1
]
.

These values fora, b, andc describe the method proposed by Dormand and Prince [154].

Now we will display the results obtained by numerically solving Eq. (4.46) using the

algorithm described above.

When the transport in the system is sub-diffusive such that the memory is given by

Eq. (4.52), we find that the system still forms patterns. The nature of the patterns seem

to be very similar to those that arise in the Markoffian limit. Moreover, the condition for

the growth of perturbations, as given in Eq. (4.59) is the same as it is in the Markoffian

limit. Obviously, the time evolution in the sub-diffusive case is much slower than it is in

the Markoffian limit. In Fig. 4.15, we display the patterns that form for aparticular choice

of parameters along with the functionΩ(k) = −(G(k) + aF (k)), which shows the growth

rate of thekth Fourier mode of the perturbation. The parameter values for these plots can

be found in the figure captions.
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Figure 4.15: On the left, we display the steady state patterns observed in the R-D system
given in Eq. (4.46) with parameter valuesh = 0.5, a = 4, b = 1, γ = 0.1, w = 10,
β = 1, ν = −3/2. The discrete system consists of 101 lattice points, and periodic boundary
conditions are imposed (this explains the split peaks in thepattern structure aroundx = 0
and 100). The stepsize used in the integration is∆t = 0.2. The shape of the patterns that
arise in this case seem to be identical to those in the Markoffian limit. On the right, the
quantityΩ(k) = −(G(k) + aF (k)) is plotted as a function ofk. As explained in the text, if
Ω(k) is greater than 0, then the corresponding Fourier mode grows in time and if it is less
than 0, then the Fourier mode decays. Bear in mind that these statements are valid only
for short times as our calculations are for small amplitudesof the perturbation. IfΩ(k) is
less than 0 for allk, then small perturbations will not lead to the formation of patterns.

In Fig. 4.16, both numerical findings and theoretical results for the time evolution of

the amplitude of the perturbation,g(t), is plotted. The initial condition we consider in this

case is of the following form

um = u0 + ωg(t) cosKm, (4.64)

whereK is a particular value of the Fourier variablek, u0 is the steady state solution of

Eq. (4.46), andω is the amplitude of the perturbation. In our analysis we setu0 = 4 and

ω = 0.1. The plots show theKth Fourier mode of the numerical solution of Eq. (4.46) as a

function of time. The left plot in Fig. 4.16 corresponds toK = 0.4355 (thek value at the

first peak), and the Fourier mode grows. On the right, we plot the time evolution of the

Fourier mode withK = 0.7465 (corresponding to the first dip after the first peak) which
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decays, in accordance with the theoretical predictions. Inboth of these plots, open circles

correspond to numerical findings with the parameter values given in the figure caption,

solid lines represent theoretically obtainedg(t) curves given in Eq. (4.61), and the dashed

lines represent the approximation tog(t) calculated by taking the inverse Laplace transform

of Eq. (4.58), which is

g′(t) = e−ξt/2
cosh

( √
ξ2 − 4ηt/2

)
−
ξ sinh

( √
ξ2 − 4ηt/2

)

√
ξ2 − 4η

 , (4.65)

where

ξ = ζG(k) + aF (k),

η =

[(
ν + 1
γν+1

)
ζ + α (1− ζ)

]
γνG(k)

Eq. (4.65) is obtained by keeping just a few of the terms in Eq.(4.58) that vanish in the

limit ε → ∞ and thus, only approximatesg(t) crudely.

For the super-diffusive case, steady state patterns do not form. In this case, our numer-

ical findings indicate that when perturbations grow, patterns that oscillate in time evolve.

Therefore, the super-diffusive case requires a different treatment in which one takes the

effects of the full nonlinearity into account.

4.8 Concluding remarks

Results on two different aspects of R-D systems, front propagation and patternformation,

was studied in the first and second parts of this chapter respectively. The research we

presented on front propagation differs from most of the work that has been done in the

literature as it focuses on the transient dynamics in the system rather than on the steady

state behavior. Exploring the transient dynamics in systems which obey nonlinear evolu-

tion equations is a difficult task and can seldom be done exactly. In our case, it also was
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Figure 4.16: Here we plot the short time behavior of the solution of Eq. (4.46) with the
initial condition being the perturbation given in Eq. (4.64), for two values ofK. The
parameter values areh = 0.1, a = 4, b = 1, γ = 0.1, w = 10, β = 1, ν = −3/2 and
the system consist of 101 lattice points. The integration intime is performed by using a
stepsize of∆t = 0.005. On the left,K = 0.4355 which corresponds to the value ofk at the
first peak of the curve in Fig. 4.15 (right). For thisK value, the perturbation grows in time.
On the rightK = 0.7465, corresponding to the first dip in Fig. 4.15 (right). In this case
the perturbation decays. The solid and dashed lines represent the theoretical, approximate,
predictions for the time evolution of the perturbation, given by Eqs. (4.61) and (4.65),
respectively.

not possible to solve the evolution equation exactly, therefore we resorted to a numerical

analysis. However, we carefully selected our R-D equation so that we can obtain their trav-

eling front solutions analytically, which provided us a well defined method of analyzing

transient dynamics, as explained in Sec. 4.4. We reviewed the concept of linear stability

of traveling fronts and applied it to our traveling front solutions. Our results are displayed

in Figs. 4.8, 4.9, 4.10, 4.11, 4.12 and show aspects of the relaxation behavior of the differ-

ent initial conditions we consider. As we mentioned in the introduction, the type of R-D

systems we considered here are relevant in real world problems such as flame propagation

and population dynamics. The results we obtained would be relevant in studying the re-

sponse of these kind of systems when their steady states are perturbed in the ways that we

describe in Fig. 4.7.
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The aim of the second part of this chapter is to explore the effects of anomalous diffu-

sion on the formation of patterns in an R-D system. The specific R-D system we consid-

ered here is described by the FKPP equation with a modified nonlinear term that allows

spatially non-local interactions. Based on the analysis ofFuentes, Kuperman, and Kenkre

[114, 22] regarding the emergence of patterns in this R-D system, we derived necessary

conditions for the formation of patterns under more generaltransport types. The neces-

sary condition for pattern formation is the growth of perturbations in the steady state, or

the steady state becoming unstable, can depend on the transport mechanism in the sys-

tem. In order to explore this, we generalized the equation used by Fuentes et al. [22] to

include a memory, that can be specified appropriately to attain diffusive, super- or sub-

diffusive transport in the system. When the memory is aδ−distribution, we recover the

results obtained in ref. [22]. For different types of memories, including exponentially and

algebraically decaying forms, we found that the rate of change of the perturbations in the

diffusive and sub-diffusive cases are the same ast → 0 as seen in Eqs. (4.49) and (4.59),

whereas in the super-diffusive case, it has a different value given by Eq. (4.59). Fort > 0,

the evolution of the perturbations is found to be different in each case. It is not possible

to solve the R-D equation we consider exactly, therefore, analyzed the problem by doing

numerical simulations. In our simulations, we found that ifthe perturbations grow in the

diffusive and sub-diffusive cases, the system forms steady state patterns, although we did

not establish a sufficient condition for the formation of patterns. For the super-diffusive

case, we noticed that when the perturbations grow, steady state patterns do not form, in-

stead, oscillating structures appear. As yet, we have not fully pursued the properties of

these oscillations mainly due to the well known difficulties of numerically solving integro-

differential equations for extended periods of time. Therefore, a clear future direction of

the research we presented here is studying the dynamics in the system for super-diffusive

transport. A question that needs to be answered is whether the oscillations arise because

of the particular memory function we considered for the super-diffusive case, or is it a

general feature of super-diffusive transport.
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Chapter 5

Cluster size distribution in an

addition-deletion network

5.1 Introduction

The work described in this chapter was done while the author was working at the Los

Alamos National Laboratory as a summer student in collaboration with Eli Ben-Naim

of the theoretical division of the Los Alamos National Laboratory. It is loosely connected

with the rest of the thesis. It deals with a problem in complexnetworks, the latter providing

the connection with the rest of the thesis.

Studying the properties of networks has attracted an enormous amount of attention over

the past 10 years [30, 28, 29, 31]. The main reason is the usefulness of networks in rep-

resenting complex systems of many different kinds, seemingly as disparate as food webs

[155], semantic networks [156], and Bose-Einstein condensates [28]. Networks, or graphs

in the terminology of applied mathematics, have been studied by using both numerical and

analytical techniques. The vast majority of the results obtained in the literature pertain to

static properties of networks, and not as much have been doneabout studying network
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structures that evolve, at least in terms of obtaining exactresults. See Dorogovstev and

Mendes [29] on a relatively early review on evolving networks.

Here, we are interested in studying an addition-deletion network in which nodes, the

basic elements of the network, are added and removed in a random fashion as a function

of time. See refs. [23, 24, 25, 27, 26] for examples of addition-deletion networks. These

types of networks are potentially useful in modeling a wide range of systems, including

the world wide web [27]. Many properties of these networks have been studied, such as

the degree distribution [23, 24, 25, 27, 26], the in-component distribution [26], the height

distribution [26], and the effects of preferential attachment [27]. In our study, we consider

random recursive trees, which are perhaps the simplest of all network structures. For a

detailed discussion on trees and many other graph structures, see, for instance, ref. [157].

Our goal is to study the distribution of cluster sizes in a random recursive tree, in which

nodes are randomly removed as well as added in the course of time. Below, we will give

the necessary properties of the network structures we study, along with the explanation of

the terminology, without going into much detail.

This chapter is organized as follows: in Sec. 5.2, we give thedefinition of some of the

commonly used terms in the study of networks, and present a description of the problem

we are interested in. In Secs. 5.3 and 5.4, we describe the methods we use to approach the

problem and give our numerical findings. Some of the results that we obtained analytically,

concerning a simpler version of the quite general problem webegan with, is given in Sec.

5.5. In Sec. 5.6, we make concluding remarks.

5.2 Some basic definitions and description of the problem

The basic elements of a network, or a graph, are nodes and links. A network is charac-

terized by a set of nodes, that may or may not be connected to each other with links. In

149



Chapter 5. Cluster size distribution in an addition-deletion network

general, links can point in a particular direction but our study focuses on a network with

undirected links. If each of the two connected nodes are alsoconnected to a third node a

cycle appears. Cycles of larger sizes can appear with the involvement of more than three

connected nodes. The degree of a given node is defined as the number of links that it

has, thus it is equal to the number of nodes to which it is connected. These concepts are

illustrated in Fig. 5.1 for a randomly constructed network.The structure of the addition-

deletion network we consider is similar to that of a randomlygrown recursive tree. One

can generate a random recursive tree by starting with one node att = 0 and subsequently

introducing new nodes. The newly introduced node is attached to a randomly selected

existing node, which we will call the parent node. Therefore, each new node starts with a

degree equal to 1. Note that a network that grows according tothis rule cannot have cycles

(hence, the name tree is used to described these kinds of structures). If the parent node has

a degree of k, it will have a degree ofk + 1 after the addition of the new node. Therefore,

it is straightforward to write a Master equation for the evolution of the number of nodes

with degreek, denoted bynk, as

dnk

dt
=

1
N

(nk−1 − nk) + δk,1,

whereN is the total number of nodes in the system at timet, and for convenience we set

the rate at which new nodes come about to 1. This equation can easily be solved fornk

in the long-time limit, givingnk = N2−k so that the probability of finding a node with

degreek is pk = 2−k. Therefore, the average degree of a node is given by〈k〉 = 2. Many

exact results like these are known about more general types of evolving graphs (for a few

examples, see refs. [158, 159, 160, 161, 26]).

The dynamics of the network that we are interested in studying differs from what we

described above in the way that nodes can also be deleted at a certain rate. Hence, the

term addition-deletion network is used to describe these structures. Networks with such

dynamics were studied in the past by several authors [23, 24,25, 27, 26]. A schematic

illustration showing the evolution of the addition-deletion network we study is given in
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a link
a node

degree = 4

degree = 1

Figure 5.1: A general network structure employed to illustrate the concepts we mention in
the text. The colored nodes are part of cycles of length 3 and 5. One of the properties of
recursive trees, which we are interested in studying throughout this chapter, is that they do
not have cycles.

Fig. 5.2. Note that as a result of the deletion events, the network is partitioned into

smaller segments, which are also trees, that we will call clusters. Our aim is to gain an

understanding of the distribution of cluster sizes in this network.

Figure 5.2: A schematic illustration of the evolution of theaddition-deletion network. At
t = 0 there is only one node, the root. Arrows point to the next state of the network
after each time step in the simulations. Links and nodes withdashed lines correspond to
deletion events, and they are removed from the network. In the last step of the evolution,
the deletion of a node along with all its link lead to the formation of three clusters one of
which has size 3, while the other two consist of disconnectednodes.
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5.3 Methods of study

Firstly, we perform Monte Carlo simulations of the addition-deletion network and explore

the properties of the numerically obtained distribution ofcluster sizes. We will describe

the simulation methods and give the results in Sec. 5.4 below. The original aim of this

investigation was to obtain an exact expression for the distribution of cluster sizes, or for its

the asymptotic behavior. As yet, we have not succeeded in accomplishing that task. It turns

out that writing a closed equation for the evolution of cluster sizes in the form of a Master

equation is not straightforward. However, we succeed in obtaining exact expressions for

the distribution of branch sizes of a given node, which we think is an important step in

solving the original problem. The calculations and resultspertaining to the distribution of

branch sizes will be presented in Sec. 5.5. In the rest of thissection, we briefly describe

our strategy in solving this problem aside from doing simulations.

In the opinion of the author, there are two different approaches that one can take in an

attempt to make progress in determining how cluster sizes are distributed. One of them

is concerned with finding out the specific ways in which trees of different sizes give rise

to new clusters when they are fractured(because of the random removal of a node). This

could give us an idea about how the rate of appearance of new clusters with different

sizes behave as a function of the size of the cluster being fractured. We call this approach

microscopicas it is all about unraveling patterns in randomly growing trees of different

sizes. The second approach treats the number of clusters of size s, ns, as a random variable

and tries to figure out the stochastic process that describesthis random variable. As no

reference to the underlying structure of the network is madehere, we call this approach

macroscopic.

For networks that grow without the removal of nodes, it is easier to write down closed

equations for various quantities like the degree distribution. When a node is removed from

a network, along with all the links associated with it, multiple events occur at one time
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step. The removal of a node produces clusters of many different sizes. If one adopts the

microscopic approach, in order to give an account on how the number of clusters of a

certain size evolve, one needs to find out about the details ofthis process. To do this, we

do simulations in which a random recursive tree is grown until it hasN+ 1 nodes, without

any removal of nodes, and then one node is removed from it at random. As a result, the

original tree breaks up into disconnected components. Thenwe calculate the probability of

finding a component of sizes along with the probability of findingn of these components

of sizes. We find that the function that relates the sizeN + 1 of the original tree and the

size distribution of the subsequent components scale as

f (N, s) =
1

(N + 1)2
f
( s
N + 1

)
.

The derivation of the exact form of the size distribution of these components, or branches,

will be given in Sec. 5.5 in detail.

If we look at the problem from the point of view of the macroscopic approach, we

may proceed in the following way. Letns(ti) be a random variable that corresponds to the

number of clusters with sizes. Let F(ns,∆t), ∆t = ti+1 − ti, be a stochastic process that

governs the evolution ofns. Then,

ns(ti+1) = ns(ti) + F(ns,∆t). (5.1)

If we can gain some insight into whar the functional form of the processF is by doing

simulations, we may be able to analytically express the number of clusters of sizes as

t → ∞. The author has not pursued this method.

5.4 Simulation of the addition-deletion network

We perform Monte Carlo simulations of the addition-deletion network we study, in trying

to explore the cluster size distribution. During a time stepof the Monte Carlo simulation,
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a new node is added to an existing node with probability

padd=
r

r + 1
,

and an existing node is deleted with probability

pdel =
1

r + 1
.

Typically, we run the simulation until the total number of nodes in the network reach

107 ∼ 108. We repeat this procedure a few thousand times and ensemble average over

the findings to obtain the final results. While constructing the network in this way, we

calculate various quantities like the frequency of observing clusters of different sizes.

The main result obtained from the simulations is the clustersize distributionP(s). In

Fig. 5.3, we plotP(s) as a function of the cluster sizes, for various values ofr. The func-

tional form ofP(s) for large values ofs is well approximated by a stretched exponential,

P(s) ' e−sγ .

In order to estimate the parameterγ, ln(− ln(P(s))) found numerically and is plotted against

ln(s). A linear fit is performed by considering the points withs> s0 for somes0. Fig. 5.4

shows the behavior of ln(− ln(P(s))) as a function of ln(s). Furthermore, In Fig. 5.5 we

plot ln(P(s)) againstsγ with theγ values obtained by the procedure described above, to

see if the relationship is linear, which would provide more reason for us to think thatP(s)

behaves like a stretched exponential for largesvalues.

It is also worth mentioning that the simulation described above is repeated for a special

case of random recursive trees for which the maximum degree is two, i.e. only two nodes

can be attached to a given node, one being its parent, and the other its child. For a chain

like network like this, we find that the cluster size distribution falls off exponentially.

Another interesting quantity we explore in the simulationsis the number and size of the

clusters that result from removing a node from a random recursive tree withN + 1 nodes.
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Understanding this simple problem may help us in developinga theory for the cluster size

distribution. Note that this is related to the microscopic approach we mentioned earlier.

We observe numerically that the size distribution of the clusters obtained by removing one

node from a network ofN + 1 nodes is a function of the form

f (N, s) = 1/(N + 1)2 f (1/(N + 1), s).

Also, the number of clusters of a certain size obtained in this way seems to follow an

exponential distribution. In this, case the simulation is performed in the following way. A

recursive tree is grown until it reaches a size ofN+ 1 by constantly, and randomly, adding

new nodes to the existing nodes in a uniform fashion. Then a randomly selected node is

removed from the tree. The resulting structure is a collection of disconnected trees (or a

tree withN nodes if the node chosen for removal is a leaf, which is a node of degree 1),

which we call clusters. We are interested in obtaining the probability of finding a cluster

of sizes after the removal of a node from a tree of sizeN + 1. This quantity is denoted

by Ps(N) and is numerically calculated as follows: during each run of the simulation a

random tree of sizeN + 1 is grown and one randomly chosen node is removed. Then the

number and size of the resulting clusters are found andPi
s(N) is updated to give

Pi+1
s (N) =

Pi
s(N) + ni

s/S
i

i + 1
(5.2)

where the indexi pertains to the ensemble averaging carried out, makingPi
s(N) the prob-

ability of finding a cluster of sizes when a node is randomly removed from a tree of size

N + 1 averaged overi + 1 different realizations. Here,ni
s is the number of clusters of size

s andSi the total number of clusters found after thei th run of the simulation (P0
s(N) = 0).

With this definition ofPs(N) we obviously have the normalization condition

∑

s

Ps(N) = 1.

The average degree of a node in a growing network of this kind is 2, in the limitN → ∞,

as we mentioned earlier. Therefore, on average, one should expect to find two clusters as
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a result of removing a node at random. This is indeed what we see in the simulations. The

simulation results that pertain to this case is presented inSec. 5.5, along with the exact

expressions.
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Figure 5.3: The cluster size distributionP(s) as a function ofson log-log scale, for various
values of the parameterr. The value ofr determines the probabilities of addition and
deletion of a node at each simulation step. From left to right, the data sets correspond to
r = 1.1, 1.3, 1.5, 1.7, 1.9, 3, 6, 8, and 10. Note that for large values of r, which correspond
to fewer deletion events, big clusters appear with more probability, as expected. In order
to obtain each data set, the network is allowed to evolve until it contains 107 ∼ 108 nodes.
This procedure is repeated a few thousand times and the results are averaged to obtain the
displayed values ofP(s).

We also calculate the probability that the number of clusters with a given sizeschanges

by n during one time step. Knowing this probability distribution would provide one with

the details of the stochastic process by which the random variablens, number of clusters

with sizes, evolves. We did not pursue research along these lines further, as we mentioned

in passing while discussing the macroscopic approach above.
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Figure 5.4: We suggest that the cluster size distribution behaves like a stretched exponen-
tial, e−sγ , for large values ofs. If it is so, then plots of ln(− ln P(s)) against lns should
be well approximated by straight lines. Here, we display such plots corresponding to
r = 1.1, 1.3, 1.5, 1.7, 1.9, 3, 6, 8, and 10 from left to right. Note that for small values ofr,
ln(− ln P(s)) seems to vary linearly with lns.

5.5 Exact results for the distribution of branch sizes

In this section we study the distribution of the branch sizesof a randomly selected node,

which is equivalent to the distribution of the size of the clusters that appear as a result

of removing a randomly chosen node of a tree. Note that the clusters thus formed would

themselves be trees as shown in Fig. 5.6. Therefore, a branchis a tree whose root is

connected to the node that is intended to be removed. Accordingly, the number of branches

that form after the removal is equal to the degree of the node being removed. As the

average degree for a random recursive tree is equal to 2, on average, one would expect to

see two clusters forming after a removal event. Two of the most abundant type of nodes

in a random recursive tree are leaves that have degree equal to 1, and the nodes that are

connected to leaves. This means that most of the time the removal of a node will partition

the network into one piece with one less node than the original tree or into two parts with

a disconnected node and all the rest.
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Figure 5.5: Plotted is lnP(s) as a function ofsγ, where theγ values are found by fitting
lines to the plots in Fig. 5.4. Each data set corresponds to a different value ofr, as
indicated on the figure. The data sets that correspond tor values that lie between 1.1 and
1.9 are practically indistinguishable. Looking at these plots, we see that it is reasonable
to approximate them with straight lines. This provides further support for our suggestion
tharP(s) behaves like a stretched exponential for large values ofs. Supposing thatP(s) is
truly a stretched exponential distribution for larges values, the slopes of the lines in these
plots would correspond to the constantα in P(s) ' e−αsγ . Note thatα seems to depend on
r in a non-monotonic fashion.

In order to write a closed equation for a quantity related to the distribution of branch

sizes, we first define a parameterτ associated with each node. The value ofτ for a given

node indicated the time at which it was introduced to the network. Thus, the root hasτ = 0

and all other nodes haveτ > 0. Then we define the average number of branches of a node,

introduced att = τ, at timet asPs(t, τ). Examining the network structure shown in Fig.

5.6 helps us realize thatPs(t, τ) obeys the recursion relation

Ps(t + 1, τ) = Ps(t, τ) +
(s− 1)Ps−1(t, τ) − sPs(t, τ) + δs,1

t + 1
, (5.3)

wheret + 1 is equal to the total number of nodes in the system at timet.

The last three terms in Eq. (5.3) represent the change inPs(t, τ) when a newly arriving

node attaches itself to one of the branches of the node characterized withτ. Among these

terms, the first, the second, and the third correspond to the newly added node attaching
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The root, τ = 0

Figure 5.6: An illustration showing the branches of a given node in a random realization of
the addition-deletion network we consider. The black colored node has 4 branches of size
1, 2, 6, and 10, each represented by coloring the nodes in the same branch with different
shades of grey. Note that each branch is itself a tree.

itself to a branch of sizes− 1, s, and to the node itself. The minus sign in the second

term simply indicates that when the new node is attached to a branch of sizes, the number

of branches with sizes decreases. Note that a node that is added to the network att = τ

satisfies the intial condition

Ps(τ, τ) = δs,τ, (5.4)

which says the the new node only has a single branch of sizes. Finally, the average size

of a branch in a tree of sizeN + 1 can be obtained by averagingPs(t, τ) as follows

Ps(N) =
1

N + 1

N∑

τ=0

Ps(N, τ). (5.5)

The branch size distribution satisfies the normalization

N =
∑

s

sPs(N). (5.6)

In the rest of this section, we will be concerned with the details of calculating the distribu-

tion Ps(N). Using the above recursion relations we can find the averagesize of a branch
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for smallN.

Ps(1) = δs,1

Ps(2) =
2
3

(δs,1 + δs,2)

Ps(3) =
1
12

(7δs,1 + 4δs,2 + 7δs,3).

5.5.1 Solving the recursion relation forPs(t, τ)

Let us write down the equation forP1(τ + 1, τ) by substitutingt = τ in Eq. (5.3),

P1(τ + 1, τ) =
1

τ + 1
[
1+ τδ1,τ

]
, (5.7)

where we usedPs(τ, τ) = δs,τ. Now that we haveP1(τ + 1, τ), we can substitute it into Eq.

(5.3) to getP1(τ + 2, τ). Repeating this forn times we find that

P1(τ + n, τ) =
1

τ + n

[
n+ τδ1,τ

]
. (5.8)

Going over this procedure for different values ofs, we find thatPs(τ+n, τ) for small values

of sare given by

P2(τ + n, τ) =
1

(τ + n)(τ + n− 1)

[
n(n− 1)

2
+ nτδ1,τ + τ(τ − 1)δ2,τ

]
(5.9)

P3(τ + n, τ) =
1

(τ + n)(τ + n− 1)(τ + n− 2)

[
n(n− 1)(n− 2)

3

+ n(n− 1)τδ1,τ + 2nτ(τ − 1)δ2,τ + τ(τ − 1)(τ − 2)δ3,τ

]
(5.10)

P4(τ + n, τ) =
1

(τ + n)(τ + n− 1)(τ + n− 2)(τ + n− 3)

[
n(n− 1)(n− 2)(n− 3)

4

+ n(n− 1)(n− 2)τδ1,τ + 3n(n− 1)τ(τ − 1)δ2,τ

+ 3nτ(τ − 1)(τ − 2)δ3,τ + τ(τ − 1)(τ − 2)(τ − 3)δ4,τ

]
(5.11)
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P5(τ + n, τ) =
1

(τ + n)(τ + n− 1)(τ + n− 2)(τ + n− 3)(τ + n− 4)

×
[
n(n− 1)(n− 2)(n− 3)(n− 4)

5
+ n(n− 1)(n− 2)(n− 3)τδ1,τ

+ 4n(n− 1)(n− 2)τ(τ − 1)δ2,τ + 6n(n− 1)τ(τ − 1)(τ − 2)δ3,τ

+ 4nτ(τ − 1)(τ − 2)(τ − 3)δ4,τ + τ(τ − 1)(τ − 2)(τ − 3)(τ − 4)δ5,τ

]

(5.12)

Observe that in all of these terms, the term that multiplies everything in the square

brackets has the form

(τ + n− s)!
(τ + n)!

. (5.13)

The first term that appears in the square brackets has the form

1
s

s−1∏

i=0

(n− i), (5.14)

and the rest of the terms in the square brackets can be represented by

s−1∑

j=1


j−1∏

k=0

(τ − k)




s− j−1∏

l=0

(n− l)


(
s− 1
j − 1

)
δ j,τ +

s−1∏

m=0

(τ −m) δs,τ, (5.15)

where the summation in the first term is defined to be zero fors = 1. Therefore, it looks

like we have

Ps(τ + n, τ) =
(τ + n− s)!

(τ + n)!


s−1∑

j=1


j−1∏

k=0

(τ − k)




s− j−1∏

l=0

(n− l)


(
s− 1
j − 1

)
δ j,τ

+

s−1∏

m=0

(τ −m) δs,τ +
1
s

s−1∏

p=0

(n− p)

 . (5.16)

Eq. (5.16) can also be expressed as

Ps(t, τ) =
(t − s)!

t!

[
1
s

s−1∏

i=0

(t − τ − i) + τ
(t − τ)!(s− 1)!
(t − s)!(s− τ)!

s∑

j=1

δ j,τ

]
. (5.17)
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wheret = τ + n andt ≥ s. For t ≥ s+ τ, the product in Eq. (5.17) can be replaced by a

ratio of factorials and we have

Ps(t ≥ s+ τ, τ) =
1
s

(t − τ)!
t!


(t − s)!

(t − s− τ)! +
τs!

(s− τ)!

s∑

j=1

δ j,τ

 . (5.18)

We need to verify that Eq. (5.17) is a solution of Eq. (5.3). For s= 1, Eq. (5.3) reads

P1(t + 1, τ) = P1(t, τ) −
P1(t, τ)
t + 1

(5.19)

Substitutings= 1 in Eq. (5.17) gives

P1(t, τ) =
1
t

(
t − τ + τδ1,τ

)
. (5.20)

By substituting this into Eq. (5.3), we clearly see that it isthe correct solution. In order

to verify the solution for alls , 1, we substitute Eq. (5.17) into Eq. (5.3). With simple

algebraic manipulations, we make the limits of the sums and products the same all through

the equation. Then it is found that the coefficients of the sums and products at each side of

the equality are the same, implying that Eq. (5.17) is the solution of Eq. (5.3).

For the first few values ofτ, Eq. (5.17) gives

Ps(t, 0) = Ps(t, 1) =
1
s
,

Ps(t, 2) =
1
s
+

3s− (1+ 2t)
t(t − 1)

,

Ps(t, 3) =
1
s
+

2s2 − 3(4− t)s+ 4+ 6t − 3t2

t(t − 1)(t − 2)
. (5.21)

Observe thatPs(t, τ) is independent fromt for the root and the first node. In the limit

t → ∞ (but finiteτ), Eq. (5.18) becomes

lim
t→∞

Ps(t ≥ s+ τ, τ) =
1
s

(5.22)

as

lim
t→∞

(
(t − τ)!

t!
(t − s)!

(t − s− τ)!

)
= 1

lim
t→∞

(
(t − τ)!

t!
τs!

(s− τ)!

)
= 0. (5.23)
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We can express the average number of branches of sizes of randomly chosen node in

a tree withN + 1 nodes as

Ps(N) =
1

N + 1

N∑

τ=0

Ps(N, τ). (5.24)

which can be found by using Eq. (5.17) to be

Ps(N) =
1

s(s+ 1)
+

(s− 1)!
(N + 1)!

s∑

n=1

(N − n)!
(s− n)!

n, (5.25)

or equivalently

Ps(N) =
1

s(s+ 1)
+

1
(N + 1)

s∑

n=1

(
s−1
n−1

)

(
N
n

) . (5.26)

It is instructive to examine the first few values ofPs(N)

P1(N) =
1
2
+

1
(N + 1)N

(5.27)

P2(N) =
1
6
+

1
(N + 1)N

+
2

(N + 1)N(N − 1)
(5.28)

P3(N) =
1
12
+

1
(N + 1)N

+
4

(N + 1)N(N − 1)
+

6
(N + 1)N(N − 1)(N − 2)

(5.29)

Note thatP1(3) = P3(3) andP1(2) = P2(2), this suggests thatPs(N) has a symmetric form.

Examining Eqs. (5.27-5.29) closely, it is evident thatPs(N) has the following simple form

Ps(N) =
1

s(s+ 1)
+

1
(N + 2− s)(N + 1− s)

, (5.30)

and the symmetry in the expression is now clear

Ps(N) = PN+1−s(N). (5.31)
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We can easily calculate the first few moments ofPs(N),

M0[Ps(N)] =
N∑

s=1

Ps(N) = 2
N

N + 1
, (5.32)

M1[Ps(N)] =
N∑

s=1

sPs(N) = N, (5.33)

M2[Ps(N)] =
N∑

s=1

s2Ps(N) = N(N + 3)− 2(N + 2)
N∑

k=1

1
k+ 1

= (N + 4)(N + 1)− 2(N + 2)HN+1. (5.34)

whereHN =
∑N

i=1 1/i which is asymptotically equal toHN ' ln(N) + γ, γ being the Euler

constant, and we used
∑n

i=1 1/(i(i + 1)) = n/(n+ 1). In general

Mn[Ps(N)] =
N∑

s=1

snPs(N) =
N∑

k=1

[
kn + (N + 1− k)n

k(k+ 1)

]
, (5.35)

=

N∑

k=1


kn−1(1+ (−1)n)

k+ 1
+

1
k

n−1∑

m=0

(
n
m

)
(N + 1)n−m(−1)m

km

k+ 1

 , (5.36)

=

N∑

k=1

[
(1+ (−1)n)


n−2∑

l=0

(−1)lkn−l−2 +
(−1)n−1

k+ 1



+
1
k

n−1∑

m=0

(
n
m

)
(N + 1)n−m(−1)m


m−1∑

l=0

(−1)lkm−l−1 +
(−1)m

k+ 1


]
, (5.37)

where in (5.35), we made the change of variablek = N+1− sand used the fact that it also

runs from 1 toN, in (5.36) the binomial theorem is used and in (5.37) we employed

km

k+ 1
=

m−1∑

n=0

(−1)nkm−n−1 +
(−1)m

k+ 1
. (5.38)

Although Eq. (5.37) looks complicated, one only needs to evaluate sums of powers of

integers, which may be represented by closed forms when the powers are fixed, and sum

over finite harmonic sequences.

Note that, in Eq. (5.37), the term with the largest power ofN is produced by the second

term in the brackets withm= 0, except forn = 0, which is
(
n
0

)
N(N + 1)n−1. (5.39)
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Therefore, asN → ∞ we have

M0[Ps(N)] ' 2,

Mn>0[Ps(N)] ' Nn.

5.5.2 TheN→ ∞ limit

In theN → ∞ limit, the degree distributionQk is exponentialQk = 2−k. Consequently the

average degree equals 2. The average degree equals the average number of branches and

therefore,

2 = lim
N→∞

∑

s

Ps(N). (5.40)

It is possible to show this by using our solution forPs(N). In the limit N→ ∞, Eq. (5.32)

becomes

lim
N→∞

∑

s

Ps(N) = lim
N→∞

2
N

N + 1
= 2. (5.41)

Furthermore, the probability that a node is a leaf is 1/2 and therefore we should expect,

1
2
= lim

N→∞
PN(N). (5.42)

Because of the symmetry, we haveP1(N) = PN(N). The expression forP1(N) should

reduce to 1/2 in the limit N → ∞, and it indeed does

lim
N→∞

PN(N) = lim
N→∞

P1(N) = lim
N→∞

(
1
2
+

1
N(N + 1)

)
=

1
2
. (5.43)

Lastly, we would like to consider howPs(N) scales with tree size. Note that Eq. (5.30)

can be written in the following form

Ps(N) =
1

(N + 1)2


1(

s
N+1

) (
1

N+1 +
s

N+1

) + 1(
1+ 1

N+1 −
s

N+1

) (
1+ 2

N+1 −
s

N+1

)
 . (5.44)
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For large values ofN, Eq. (5.44) becomes

Ps(N � 1) =
1

(N + 1)2


1

(
s

N+1

)2
+

1
(
1− s

N+1

)2

 . (5.45)

Therefore,Ps(N) has the scaling form

Ps(N) =
1

(N + 1)2
F

( s
N + 1

)
(5.46)

F(x) =
1
x2
+

1
(1− x)2

(5.47)

F(x) = F(1− x)
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exact for N → ∞

Figure 5.7: (N + 1)2Ps(N) vs s/(N+ 1) for N =6(open circles), 96(crosses), and 384(dots)
corresponding to the results of the Monte Carlo simulations. The solid line shows the
behavior of the scaling functionF(x) in x ∈ (0, 1).

5.6 Concluding remarks

The main goal of the research described in this chapter is to reveal a previously unexplored

aspect of addition-deletion networks, which is calculating the cluster size distribution. In
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order to solve this problem, we did Monte Carlo simulations of the addition-deletion net-

work we consider, and as a result, suggested that the distribution of cluster sizes asymp-

totically behaves like a stretched exponential. Figs. 5.3,5.4, and 5.5 in Sec. 5.4 show the

results of our analysis. Although we could not arrive at an analytical expression for the

cluster size distribution or the evolution equation for it,we managed to gain some insight

into the quantities we are interested in through simulations. However, we managed to find

the exact solution of a simplified version of the general problem, which is the cluster size

distribution after a single deletion event, for any networksize. We believe that solving

the simpler problem was an important step in making progresstowards solving our orig-

inal problem, as it captures the essential features of the dynamics of the system. To our

knowledge, the exact result we obtained for the cluster sizedistribution after a one deletion

event, given in Eq. (5.44) in Sec. 5.5, was not known in the literature.

We believe that the findings of this research project will help us reach the solution of

our original problem in the near future.
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Knowledge so conceived is not a series of
self-consistent theories that converges towards an
ideal view; it is not a gradual approach to the truth.
It is rather an ever increasing ocean of mutually
incompatible alternatives, each single theory, each
fairy-tale, each myth that is part of the collection
forcing the others into greater articulation and all of
them contributing, via this process of competition,
to the development of our consciousness. Nothing
is ever settled, no view can ever be omitted from a
comprehensive account.

Paul K. Feyerabend, “Against Method”

Chapter 6

Conclusion

The results obtained in this thesis can be concisely stated as follows. In Chapter 2, it

is shown by comparison with experimental data that a simple mathematical model that

describes the motion of a random walker moving in the presence of permeable barriers

can adequately predict the observed diffusion properties of molecules in cell membrane.

Furthermore a generalized mathematical model that allows one to account for the possi-

ble effects of structural disorder in the system is provided. In Chapter 3, extensions are

presented of the well-known effective medium theory of transport in disordered lattices

to predict the time dependence of transport quantities as well as their asymptotic values.

Some other interesting aspects of the results provided by effective medium theory are also

discussed such as the appearance of a percolation thresholdfor finite systems, significance

of long-range memory functions and the effects of correlations in the disordered lattice.

Our findings appear to indicate that the type of correlated disorder we consider does not

modify the long-time diffusion coefficient in the system. In the next chapter, where the

focus is on the analysis of R-D systems, results are presented on the transient dynamics

in front propagation and conditions for pattern formation.Because of the difficulties in-

volved in the analysis, our results for the transient dynamics in front propagation are only

of qualitative, rather than quantitative, nature. Exact results are presented for necessary
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conditions for pattern formation in a generalized R-D equation, with different, and gener-

alized, transport modes. Chapter 5, the last chapter of thisthesis, is about an exploratory

investigation of the cluster size distribution in addition-deletion networks. Results of our

simulations and exact analysis are presented there, it is suggested that the cluster size dis-

tribution is well approximated by a stretched exponential for large values of the cluster

size, and an analytical expression on the distribution of branch sizes is provided.

As a result of having worked on all these research projects inthe last four years, par-

ticipating in numerous research meetings, and being a graduate student in physics as well

as taking part in a biology-inspired interdisciplinary program, the authors views about sci-

ence have changed considerably. The interdisciplinary program exposed me to research

done by scientists from many different backgrounds, ranging from anthropology to com-

puter science. I believe that this was a unique experience and it gave me a good idea about

how different scientists from other disciplines tend to think and approach their own, as

well as others, problems. I had the opportunity to observe when a physicists approach to

a given problem of general nature is favorable, and when it isnot. In the future, I would

like to keep learning and practicing physics, but at the sametime work with groups of

scientists with from different backgrounds. I think this is an excellent way of developing

oneself as a scientist and an intellectual in general.
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