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Abstract

This thesis is the report of a study of severdfatient problems in statistical physics. The
first two are about random walks in a disordered lattice, &fiplications to a biological
system, the third is about reactiorffdision systems, particularly the phenomena of front
propagation and pattern formation, and the last is abouwt@alkind of evolving complex
networks, the addition-deletion network. The motivation the first of the two random
walk investigations is provided by thefflision of molecules in cell membranes. A math-
ematical model is constructed in order to predict molecdifiusion phenomena relating
to the so-called compartmentalized view of the cell meméradine theoretical results are
compared with experimental observations available initeeature. The second random
walk part in the thesis contains contributions to the anslgktransport in disordered sys-
tems via &ective medium theory. Calculation of time-dependent fpansquantities are
presented along with discussion dfexts of finite system size, significance of long-range
memory functions, and consequences of correlated disorterinvestigation of reaction-

diffusion systems that deals with front propagation is conckwith providing a method

viii



of studying transient dynamics in such systems whereaduhlg sf pattern formation fo-
cuses on determining necessary conditions for such pattermrise in situations wherein
sub- and super-tfusion are present in addition to simpléfdsion. In the network study,
results are reported on cluster size distribution in addiieletion networks, on the basis

of both numerical and analytic investigations.
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Much learning does not teach understanding.

Heraclitus of Ephesus

Chapter 1

Introduction

1.1 Opening remarks

This thesis is on problems both in fundamental aspects, pptications of statistical
physics. At a conceptual level, it is mainly divided into tparts. The first that consists of
Chapter§ 2 anld 3 is about transport in disordered latticésapiplications to biology and
the second that is formed by Chapter 4 is on some propertiesicfion-difusion systems,
that are described byftlision equations with nonlinear interaction terms. Thedhapter
is about an investigation in network theory, which has disthéd a place for itself in the

statistical physics literature during the last decade or so

It is worthwhile to note that the two main parts of this thesie ondisordered and
norlinear systems. As opposed to ordered and linear problestegjvely less tools are
available to study disordered and nonlinear problems. Wiestudy systems that are
described by linear equations, we have access to a whold tobls including integral
transformations that make life easy. In addition to thiss gossible to use the principle of
superposition in solving linear equations and take fullaadage of the Green’s function

formalism to make progress. When we consider systems thbteezccording to nonlinear
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equations, superposition principle does not hold and wex@anse a large number of
tools available for solving linear equations. The situaigsimilar in disordered systems.
Solving a problem that involves an ordered structure camllysbe conveniently done

by taking advantage of the symmetries in the problem. lalegansforms such as the
Fourier transform are very useful in doing these. Howevdrenvthe structure in the
system is disordered, it is usually not possible to find amgregtry that would allow us

to proceed in this way. Therefore, exploring systems withlinearities or disorder and
finding generally applicable results can be cumbersome.eftle®less, nonlinear terms
and disordered structures lead to behavior that is enoriynaaker than that observed in

linear systems, making them more interesting to study.

There are four chapters in this thesis whose contents afhyfsummarized in the next
section. The necessary background regarding the subjectssded in the thesis is given

in the first section of each chapter individually, rathemthare in the introduction.

1.2 Overview of the thesis

The first Chapter of this thesis is about a problem that is terest to both physics and
biology. It is about constructing a mathematical model faecular motion in cell mem-
branes, based on a relatively recent perception of the aathimmanes [1]. Motivated by
the results of high resolution single molecule trackingeskpents, Kusumi and collabo-
rators [1] proposed two new models for the plasma membraatecin account for some
phenomena that the Fluid Mosaic Model [2] cannot. Accordandpese new models, there
is a mesh-like structure beneath the surface of the plasmabna@e which can directly
or indirectly interfere with, and hinder theftlision of molecules that fluse in the mem-
brane. Based on these new ideas, we constructed a mathamabidel that can predict
time dependent transport quantities such as tifasion codicient and the mean square

displacement. To our knowledge, there were two other maditieat models in the liter-
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ature that are similar to ours in the spifit [3, 4], which wentien in passing in Chapter
2. The model we proposeftirs from one of its earlier counterparts in the way that it
provides explicit and simple expressions for the exafftidion codicient and the mean
square displacement. We compare the predictions of the lragdmst the results of some
single molecule tracking experiments and find good agreelmetween them. We then
generalize the model to account for thiéeets of disordered structures that are always
present in real cell membranes. We believe that this gamati@n which considers the
disordered nature of the system we are interested in is aartang one, which was not

done previously in an explicit way.

The mathematical model that we present in Chdgter 2 is alegamat in some physics
problems. In fact, the calculation we present in inspiredtynpublished work of Kenkre
on the transport of excitons in molecular crystals [5]. Hfere, the calculations that we

present there also apply for many solid state physics pnablavolving exciton transport.

Earlier we mentioned that this thesis makes contributionstatistical physics both
fundamentally and in an applied way. Chapter 3 is where weegnmtethe contributions to
the theoretical development of statistical mechanics.tdpie we are interested in Chapter
is dfective medium theory of transport in disordered latticesl ié&s extensions. fec-
tive medium theory, orfective medium approximation, has been used in mafigreint
contexts[[6] 7, 8,19, 10] in physics, ranging from the caltataof the dfective resistivity
of a random resistor network [11] to random walks in disoeddattices([[12, 13, 14, 10]
to obtain approximate expressions for ensemble averagadtitias. Most of the previous
work in this subject is limited to studying the long-time was of the observables of inter-
est. In our analysis, one of the main goals is to extend arifi/\ube applicability of the
effective medium theory in predicting the quantities of ing¢rfer all times, as suggested
by Kenkre [15] in the context of stress distribution in griamumaterials. We do this by
treating the problem of random walk in a one dimensional Jl&itice whose sites are

connected to each other with transfer rates that are randwoimbles with our extended
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use of the #ective medium theory. In addition to discussing the cakboaof time de-
pendent observables, we also explore tiieats of correlated random transfer rates, finite
system size, and a few more, as giverLin [16]. It is also worthtioning that we include

a clear prescription of how to use thffextive medium theory, by starting from the basic

principles.

In Chaptef#1, we are interested in twafdrent aspects of reactionfilision systems.
Reaction-difusion systems have been extensively studies, mainly duetoapplicabil-
ity to a large number of problems in physics, chemistry,dmygl and other research areas.
They provide a convenient framework for studying systemsthiich the constituents are
entities that flow in real or in some phase space, and intertictone another and them-
selves. A few early, but remarkable, works on reactidiiadion systems are due to Fisher
[17] on the spread on advantageous genes in a populatiog aliéim Kolmogorov, Petro-
vskii, and Piskunovi[18], Turing on pattern formation in loigical systems explained in
his seminal article titled “The chemical basis of morphaggs’ [19], and Belousov [20]
and Zhabotinskii[21] on a class of chemical reactions wittmgnreacting species that can

show oscillatory behavior, now termed “Belousov-Zhabsitiif reactions.

Although reaction-dfusion systems are very useful in modeling various phenomena
the equations they involve are rarely exactly solvable fiertime evolution of the quan-
tities in the system. In the first part of Chaplér 4, we repesuits on a study that is
interested in the transient behavior in some reactifiusion systems and thus, is an at-
tempt at understanding the time evolution in a reactidfudion system. After stating the
exact solutions of the reactionftlision equations considered for long times, we discuss
our way of analyzing the problem. The method we use in tryindiscover the properties
of the transients in the system relies on our knowledge cfefexact solutions. Concep-
tually, our analysis consists of comparing the numerichltgm of the problem with the
exact solution can calculate thefférence between them at all times. In this way, we hope

to gain same insight into how the system relaxes to its asytigolution.
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In the second part of Chaptel 4, we concentrate on a quiferelint problem: pat-
tern formation in reaction-éiusion systems. The work we present there is inspired by
the relatively recent work of Fuentes, Kuperman, and KelfiR2% on pattern formation
in a particular reaction-€fiusion system with spatially non-local interactions. Ratfer-
mation in reaction-dfusion systems has been extensively studied. Most of thadeest
consider the formation of patterns in reactioiff@sion systems involving multiple react-
ing species. Our study filers from them in this respect, as it involves only one species
that interact with itself, and éfuse in a bounded space with periodic boundary conditions.
As early as in the work of Turing [19], it was shown that theeraf diffusion plays an
important role in determining the properties of the paigroduced. An interesting ques-
tion to ask is: how does the characteristic properties ofspart, like its being dfusive,
sub- or super-diusive, éfect the formation of patterns? Motivated by this questioa, w
use a generalized reactionfidision equation, much like a generalized master equation [5]
with a memory function, to be able to consider types of transpther that dfusion. We
proceed by generalizing the approach of Fuentes et al. §22i exploring the conditions

for pattern formation as a function of transport properties

The last chapter is about a special kind of evolving netwottke addition-deletion
network [23[24] 25, 26, 27]. For over 10 years, the study ofijglex networks has also
been considered a topic of statistical physics, and mangrashments has been made [28,
[29,[30/31]. Most of the early findings concerning the prapsrbf complex networks are
due to mathematicians. The branch of mathematics thataseistied in studying network
structure is called graph theory. Perhaps the first writterkvon the theory of graphs
is known as the Konigsberg problem, and was studied by thiesSwathematician Euler
[32]. One of the most remarkable advances in the theory qiftgrés due to the Hungarian
mathematicians Erdés and Rényi[33], who started a piitibb study of graphs. Today
Erdds and Rényi are considered as the founders of the magdaph theory. The addition-
deletion network that we are interested in studying in thests is also a form of random

graph. Itis constructed by starting with a single netwodosnt, and subsequently adding
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or removing network elements in a random fashion. Becausareveemoving elements

in addition to adding them, the network will be partitionatbi disconnected components.
And it is the size distribution of these components that veeiaterested in calculating in

Chaptefb.

The last chapter is reserved for a brief statement of thdtseshtained in this thesis,

and for some final thoughts of the author.



Chapter 2

A mathematical model for molecular

motion Iin cell membranes

2.1 Introduction

The cell membrane plays essential roles in the life of alhorgms. The most fundamental
of these is isolating the organelles, which constitute tidmachinery of life, from the
noisy environment. Besides this crucial function, a fewha bther important processes
that it takes part in are: cell shaping and movemient [34],dieision [35], transduction

of signals that are vital for the organism at many leviels [88[ selective transportation
of molecules in and out of the cell [37]. Some of these tas&parformed by membrane
molecules, such as proteins, thatdse in the membrane. Therefore, investigating the mo-
tion of membrane molecules in detail is important in underding how cell membranes
function. In this chapter, we will present transport cadtians for molecular diusion in
cell membranes inspired by new membrane models proposedsyrii and collaborators
[1] and an earlier theoretical treatment offdsion in the presence of permeable barriers

given by Powles and otheis [3]. Most of the results we presehis chapter of this thesis
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are published in two articles by Kenkre, Giuggioli and KaJag] and Kalay, Parris, and
Kenkre [39].

Before discussing our calculations, we will briefly summarhow cell membrane
models evolved. Several models were proposed startingiadaHy 20" century. In 1925,
Gorter and Grendel [40] suggested that a bilayer of lipids fcam a membrane that is
similar to the ones found in live cells. Phospholipids, whace one of the most common
types of lipids in the membrane, can spontaneously comehegand form a bilayer
under most circumstances. In an aqueous medium, hydrappatis of the phospholipids
point inside the bilayer whereas their hydrophilic partnpout into the surroundings.
This model does not make any reference to proteins that aveknown to exist in the
membrane. Later in 1935, Davson and Danielli [41] used thid bilayer as their starting
point and incorporated membrane proteins into the pictartheir description, membrane
proteins are attached to the hydrophilic parts of the lipadenoules, which are on the outer
surfaces of the bilayer. But later it has become apparenmtptiodeins can also be found
in the membrane as its integral components. Finally in 1$i2ger and Nicholsor [2]
came up with the famous fluid mosaic model of the cell membrAoceording to the fluid
mosaic model, proteins are inserted into the lipid bilayet @an be found throughout the
membrane and not just on its outer surfaces. Therefore dllection of lipid molecules
are thought to form a two dimensional (2-D) fluid in which mear®e proteins move

around and take part in numerous membrane functions.

The fluid mosaic model can account for many phenomena as$sdaiath the mem-
brane. However, starting in 1980’s, results of single maledracking experiments with
very high temporal resolution gave rise to new puzzles. # fsand that moleculesfiuse
5 to 50 times slower in live cell membranes than in artifigiaftconstituted membranes
[42,143,[44[ 45, 46, 47, 48] 1] (see Tablel2.1). In additiorhts, tan even more surprising
result was that larger moleculedidise at much slower rates than one would expect them
to in a 2-D fluid [49]. S&man and Delbriick showed that the translationfildion codi-
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Figure 2.1: A schematic illustration of the evolution of nanane models. First Gorter
and Grendel’s lipid bilayer, then Davson and Danielli modih peripheral proteins, and
then the Fluid Mosaic model with integral proteins due taggirand Nicholson. The Fluid
Mosaic model accounts for many phenomena, but our desamipfithe membrane is still
evolving. Images are from: htfpvwwl.umn.edgshipg9-2/membrane.htm

cient of a cylindrical object with radius diffusing in a bilayer with its axis perpendicular

to the surface is given by [50]

_ kBT /lh
D‘47wh('”,/r y), (2.1)

whereh is the thickness of the bilayer which is also equal to the tlerd the cylindrical
object, y is Euler’'s constantkgT is the thermal energy; andu’ are the viscosity of
the bilayer and the environment respectively. One of thetnmpgortant implications of
this relation is thaD drops df with the radius of the diusant in a very slow fashion.
Experimentally it was found that larger moleculeffuse at rates that are significantly
lower than what Eq. [(2]11) gives [49] 1]. These observatiomkcate that it may not

be correct to consider the membrane molecules as objedtslithizse in a viscous and
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homogeneous fluid.

Cell type or Effective difusion codicient [,umZJ
Probe-Protein artificial membrane lipid & reference
FI-AchR DMPC 2.4+0.8 [51]
Rh-AchR Rat Myotube 0.016+0.003 [52]
FI-Thy-1 DOPC:SM, 1:1 ratio 0.58+0.04 [53]
Gold-Thy-1 C3H 10T%2 0.081:0.007 [54]

Table 2.1: Dffusion codicients of some membrane proteins as measured in live cell
membranes and in artificial membranes. Excerpt from Tablér&éfo [1I]. DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine) and SM (sgjamyelin) are lipids used in the
artifical membranes and C3H 10/21(mouse embryo fibroblast) and Rat Myotube are
the live cell types. FI- and Rho-AchR are fluorescein andateéthylrhodamine labeled
bungarotoxin bound to acetylcholine receptor, respelgtaved FI- and gold- Thy-1 corre-
spond to Thy-1 labelled with fluorescein-isothiocyanate emiloidal gold particles.

By conducting single molecule tracking experiments withyvaigh time resolution,
such as on the scale of 2, Kusumi and collaborators observed [1] that at very short
times, the difusion codicient of membrane proteins and lipids in live cell membrases
very close to what it would be, were theyfidising in an artificial lipid membrane. How-
ever, long-time diusion codicients are found to be significantly lower than those for
short-times. It is impossible to observe thifeet without the use of high speed imaging
techniques as the frame length at usual video speed¥3(ns) is already long enough
for the difusion codficient to reach its final value. To explain the slowdowieets ob-
served in the motion of molecules in the membrane, two newatspdamely “Membrane
Skeleton Fence Model” and “Anchored-Protein Picket Modhel’e been proposed by the
Kusumi lab [55/1]. According to the Membrane Skeleton Femoelel, motion of large
membrane molecules like proteins are hampered because woiténaction between their
cytoplasmic parts and the surface of the cytoskeleton, whes just below the lipid bi-
layer and is basically a meshwork of actin filaments. SeelERjfor a schematic illustra-

tion. Therefore, the membrane proteins that interact viighactin meshworkfeectively
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Figure 2.2: The Membrane Skeleton-Fence model.

move in a compartmentalized space, where the compartnmg sange from 30 to 240
nm|[1, 55,/56]. The observed temporary confinement of theseem®strongly supports
this model (see the review![1], and references therein). tWeheven more interesting is
that lipids, which do not have any cytoplasmic part, and tamnot interact with the mem-
brane skeleton, are also observed to be temporarily conlikegroteins, in domains of
similar size[[57]. In the Anchored Protein-Picket modelk érgued that some of the mem-
brane proteins are attached to the membrane skeleton tthporarily or permanently so
that they present themselves as immobile obstacleshigsdig lipids and other molecules
in the cell membrane, as illustrated in F[g.12.3. In this ¢casength of the confinement
effect on lipids would be proportional to the fraction of the g@artment boundaries that

are covered with immobile protelins

lUnfortunately, it is not possible to measure directly whatfion of the boundaries are oc-
cupied by proteins. However, one can do simulations of lipiation for various values of this
fraction and find its value for which the results fit experitafindings the best [57].

11
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Figure 2.3: The Anchored Protein-Picket model.

Many different experiments [1] provide further evidence for thetexise of compart-
ments. Here, we will mention a couple of these in passing.eBErgents in which a latex
bead in the plasma membrane dragged by the use of opticatévwsesghowed that this in-
duces a drift in the motion of nearby molecules![45]. Thisprts the hypothesis that a
mesh-like structure exists below the cell surface. Anothrare direct, evidence for the
existence of the membrane skeleton is provided by the eleaticroscope images of the
cytoplasmic part of the cell surfade [58]. In these imagss,possible to see the network

of actin filaments forming the compartment boundaries.

The rest of this chapter is mainly divided into two parts. Tinst part consists of
Section$ 2]2-216 and is about the fundamentals of our @lonk, expressed for ordered
systems. The second part is given in Secl 2.7, and it is coedexith generalizing our

results for the first part to include disorder. In Séc.] 2.2, psesent the details of our

12
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mathematical model concerning the random walk problemsnrdie space. In Selc. .3,
we take the continuum limit of our results to be able to mak&act with experimentally
observable quantities. Sectidns|2.4 2.5 are aboutiieschow to convert the ex-
pressions we obtained in the previous sections to functbtime using explicit Laplace
inversions, partly analytical and partly numerical, andrtlusing them to compare our
theory with published experimental observations. Befoowing on to Secl_2]7 in which
a generalization of our calculations is given, some prattiesults are presented in Sec.
[2.8. Final remarks are made in SEc.] 2.8 that mark the endotliaipter.

The three main research contributions of this thesis chapée obtaining exact for-
mulas concerning transport quantities for a random walkh@ firesence of permeable
barriers as functions of time, using explicit Laplace isien schemes, part analytical and
part numerical, showing that the predictions based on tfwessulas agree well with ex-
perimental results, and generalizing the calculationstalile to account for the presence

of imperfections in the system.

2.2 Our mathematical model

In this section we introduce the mathematical model for maker difusion in plasma
membranes, presented by Kenkre, Giuggioli, and Kalay in[&8]. Based on the
Membrane-Skeleton Fence model, we think of the membrane2ab &pace which is
partitioned into domains of the same size with permeabladyar Obviously, this is an
idealization of the live cell membranes which would natiyrabve varying compartment
sizes and barrier strengths. Later in this chapter, we willae the &ects of disorder in
barrier strengths and locations in detail. In our model, ek of the difusing molecules
as random walkers moving in the partitioned space we dest@above. As the domains
we consider in this idealized picture are squares with egizal, motion of the random

walker in x andy directions will be independent from each other (provideat the bar-

13
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riers lie parallel to thec andy axes). Therefore, under these assumptions, we only need
to model the motion of the random walker in 1-D. To do this, wk e@onsider a random
walk in a 1-D chain, i.e. in discrete space, with periodicalaced barriers, and then take
the continuum limit of the results to obtain experimentallyservable transport quanti-
ties. This calculation is inspired by the unpublished woilKenkre on Frenkel exciton

transport[[5] in deutered molecular crystals.

To our knowledge, there have been two exactly solvable nsdoeldiffusion in the
presence of permeable barriers, presented by Powles,tM&lekayzen, and Evans|[3],
and Dudko, Berezhkovskii, and Weiss [4]. We were aware oféBalts given by Powles,
but we came to know about the work of Dudko after our article wablished. Although
Powles and collaborators give exact results for the praibabf finding the random walker
at a certain position and time, their expressions are vamyptioated and dficult to eval-
uate, even numerically. In addition to this, explicit exgsi®ns for the exact mean square
displacement of diusion codficient, which are quantities of great relevance in experi-
ments, are not found among their results. Therefore, orfeeafibtivations for our analysis
is obtaining simpler and more useful expressions for erpemially accessible quantities

that can be easily computed.

We start by considering a 1-D chain whose links have the seansfer ratéd=. Then
we modify the transfer rate of evety + 1" link, so that it becomes$. If f < F, the links
with transfer ratef will act like barriers to difusion as the random walker seldom moves
through them. Because every+ 1" link is a barrier, the chain we construct in this way is
partitioned into compartments that hawde- 1 sites each. See Fig. 2.4 for an illustration of
this structure. Obviously, the molecules whose motion weseto model do not move in
discrete space. The reason we consider random walks iretBsgpace is that, in solving
this problem, we will take advantage of the tools that ardiegiple to discrete lattices.
Also, as we will see later, the generalization of this prabl® include varying barrier

heights is straightforward in discrete space, through #eedi éfective medium theory.
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Figure 2.4: Schematic illustration of a piece of the 1-D ohaith periodically placed
links of different transfer rate. Transfer rate within a compartmeRtgereas the rate of
moving from one compartment to the nextfisHereH = 2, so that there arel + 1 = 3
sites in each compartment. The dotted vertical lines indicampartment boundaries.

Let Pr(t) be the probability of finding the random walker at thi site of the chain at

timet. Assuming that transitions occur only between neighbosites,P.,(t) obeys

dPn(t)
dt

= F [Pma(t) + Pm-a(t) - 2Pm(1)]

if the sitemis not on the boundary of a compartment,

dP(t)
dt

= f [Prya(t) — P ()] + F [Pr_1(t) — P, (D],

if mis the rightmost site in a compartment, and

dPr+1(t)
dt

= f [P;(t) = Prya(t)] + F [Prya2(t) — Pra(D)],

if mis the leftmost site in a compartment as illustrated in Eid. 2s there aréi + 1 sites

in one compartment, the indexakes on the valugd/2 + (H + 1) wheref is any integer.
Using Kronecke®'s, §;; = 1 fori = j and 0 otherwise, the three equations above can be
put together in a compact form

dPn(t)
dt

-F [Pm+1(t) + I:)m—l(t) - 2Pm(t)] =-A Z [Pr+l(t) - Pr(t)] (5mr - 5mr+1) s
(2.2)

whereA = F - f and the primed summation is over barrier locations. Eq)) {2 2ot newly

introduced. Equations of this form have been used to destmddynamics of excitons in

15
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molecular crystald [5]. Since Eq._(2.2) is linearRp(t), it is possible to convert it to an
algebraic equation by an appropriate integral transforetyl(t) be the solution of Eq.

(2.2) forA = 0, i.e. when there are no barriers, given by
Nm(t) = Z Ym-n(t)Pn(0),
n

whereyn(t) is the probability propagator for a 1-D chain with uniforrarisfer rates-.
Taking the Laplace transform of Ed._(R.2), and using the tlaatn(t) is solution of its

homogeneous part, we write
Prn(€) = m(€) = A > Bi(€) [m-1(€) = Um-r-1(€) (2.3)

wherep, = P.q (e) — P, (e). In order to make progress, we can try to obtain a closed
equation inp;. To do this, we substitutes = s+ 1 andm = sin Eq. (Z.3), wheresis a site

to the left of a barrier, to get the following equations

Psia(€) = Tsea(e) — A Z Bi(€) | ¥sra(e) - s (9)]

T
Ps(€) =Tis(e) - A Z P:(&) [Fsr(€) = ¥s-ra(e)].
T

SubtractingPs (¢) from Ps.1 (), we obtain

Ps(e) = Zs(f) - A 2 Pr (E)\T’s—r(f)’ (2.4)

r

where we defined

Zs(f) = Ns+1(€) — 175(€),
lAI’#’r(E) = $r+l(5) + Jr—l(f) - 2%(6)-

Note thatym(t)'s obey the Laplace transform of the homogeneous part ofEEH)

€W (€) = Ym(0) = F [Yme1 (€) + ¥rm1.(€) = 20m ()]

16
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so that we can write

P, (e) = % |evi(€) = 610

where we used the fact that,(0) = 1, asyn_n(t) is the probability of finding the random
walker at sitemif it started at siten. Note that solving Eq[(214) fgps (¢) requires solving
a set ofN simultaneous linear equations, wheMeis the number of barriers. If we are
considering a finite system, it may be plausible to solvedhespiations fops (¢). When
there are infinitely many barriers, as in our case, we neecdhtbdn alternative solution.

One way is to sum Eq[{2.4) over

Zs]’ﬁs(e) = ;Zs(e) —Azs]ﬁs(erﬁs(e), (2.5)
where

fis(e) = Z%(e),

and calculateis(e) for specific cases. Note thatif(e) is independent o$, then Eq.[(Z.b)
leads to

_ 1 ~
Zs: Ps(e) = T+ A (0) Zs: Zs(e),

which means that we can replapge) with Zs(e)/(1 + A% (€)), under sums oves, if the
summation is over all values af Therefore, the expression fB¥, (¢) given by Eq. [ZB)
would become a solution after this replacement. It turnstbat when the barriers are
placed periodicallyis(e) is independent o§, as shown beIoB\/ In this case, we need to

evaluate the sum

Hs = Z \Tls—r = % Z (GJs—r - 5s—r,0) .

2|t is worth mentioning thafis(e) is also independent &fif the barriers are placed randomly.
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Note thatr = H/2+ (H + 1) and¢ runs over all integers. This means tisatr = (H + 1)n,

wheren can be any integer just @3s. Therefore, the summation is equivalent to
1O~
p=z n;O (W10 — Ono) - (2.6)

The Laplace transform of the propagaiai(t) is explicitly given by

~ (2F)m
e(e + 4F) (e + 2F + Ve(e + 4F))
If we define coslf = 1 + €/2F, then the propagator can be written as
— g=¢Im
Ym(e) = 2F sinhé’ (2.8)
Substituting this in EqL(216), we get
= l € i g <(H+Dinl _ q (2.9)
F | 2F sinh¢ &4 '
1 tanh(£/2)
~ F|tanh(¢(H + 1) /2) 1] ' (2.10)

Now we can use Eq[{2.3) to express the solutiogte) in terms of the initial conditions

(hidden in7; (¢)), the propagators af, (¢), and thez function as

A ’

Pu(©) =) - () 2 740 1O B (@ - Ta(@)]. (221)

If the random walker initially occupies thg" site of the chain, i.eP,(0) = 6, ,, we have

ﬁm (€) = Jm—p (€).

Note that choosing such an initial condition does not caufEss in generality as we
can express any initial condition as a superpositiod,gfs in this linear problem. As
all compartments are equivalent, we will take the initiadlycupied site to be within the

middle compartment that contains th& €ite. Thereforep € [-H/2, H/2].
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The transport quantities that we are interested in calicgare the time-dependent
mean square displacement (MSD), anffudiion codficient. The dimensionless mean

square displacement for a random walker that starts gi'trsite is defined as
MSDy(t) = (M- p)?) = > (M= p)*Pn(t).
m

Using this definition and the result given in EQ.(2.11), wa eapress the Laplace trans-
form of the MSD as

MSDp(e) = > (M= )Yt p() = A D Bi(€) D (M= P |dmr(€) = Ymr-1(e)]

(2.12)

where

DILCE T PECRAO)]
The first term in the right hand side of Eq._(2.12) is simply M8D in the absence of
barriers. We will denote it bWI?fD?, (€). Note that we can express the square—(p)?
as(m-p)? = m? - 2p(m- p) — p? =, which proves useful in showing the following
results. From Eq.[(217), it is clear that the first moment & finopagators is zero, as
¥m (€) = ¥_m (€). Using this result together with,,¥m (€) = 1/¢, we can show that
2r-2p+1

€

M= PP [Fre(€) — Fnr-a(€)] = -

Therefore, the Laplace transform of the MSD becomes

— — 1 A ’ — —
MSDy(€) = MSD?)(ﬁ) m (m) Z (2r-2p+1) [lﬁr—p(f) - l/’r+1—p(€)] :

It is well known that in the absence of barriers, MBP= 2Ft so thal\7l§f)z(e) = 2F /€%
Note that MS[g(t) is the second integral of the functioR &(t). Therefore, we can express
MSDy(t) as the second integral oF2,(t), whereg,(t) = 5(t) —gp(t) andgy(t) is a function

whose Laplace transform is

— A . 1\~ —
Op (€) = ETEA,EZ (r - P+ 5) ('ﬁr—p - l//r+1—p)- (2.13)
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The summations involved in this equation can be evaluatagsing Eq. [(2.B), to give
Z (~ = ) _sinh¢/2)  sinhgp)
r Vi-p = ¥re1p) = F sinh¢) sinh¢(H + 1)/2)’

o H+1 Sinhg/2)cosH“H122)
Zr(wr—P_l//Hl—P) = oF Sinhf smhz(@)

r

Substituting these in Eq[(2.13) and going through sometedbut simple algebra, the

functiongp, (¢) can be put in the following form

A 1

F P(e) + (¢/2F + 2f/F) Q(e)
P(e) + (¢/2F) Q(e)

P(e) + (2 + €/2F) Q(¢)

whereP(e) = coshfH/2) andQ(e) = sinh¢H/2)/ sinh&. OnceH is fixed, it is straight-

forward to calculat@p(e). In order to give the reader an idea of how the inverse Laplac

Gple) =

x| (H+1) coshép) — 2psinh¢p) tanhg/2)|. (2.14)

transform ofg,(e) behaves as a function of time, we will presepft) for a couple ofH
values below. For compartments consisting of 3 sites soHhat 2, P(e) = 1 + ¢/2F,
Q(e) =1and

0o0(t) = 3F [e‘3Ft _ ;e—(né)pt] |

E eSF (F2—Ff/2+ fz)e—(1+2é)|:t N @
2 f-F F(f-F) 2F )

gz,il(t) = A(
where the first and second subscriptg(j correspond to the value éf and initial posi-
tion of the random walker, respectively. When there aregsger compartmenty = 4,
we haveP(e) = 1 + 2¢/F + €2/2F2, Q(e) = 2 + ¢/F and

. f f 2
L sinh(VBFt/2) ¢, S'“h( V5-4t+4(t) Ft/z)
Oso(t) = 10F [ ——M—— — —e(Bre)Ft

V5o F J5- 4L+ a(Ly

(2.15)

For this case, the expressions corresponding to the ictiadlitions withp = 1,2 and 3

are lengthy, and thus not displayed here.
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In many experiments, the knowledge about initial condgi@ absent, so that it is
appropriate to average over all initial positiopswithin a compartment. The average of

Op () overpis defined as

_ 1 8B
6 =g D, Gule) (2.16)
p=—-H/2

and is explicitly given by

A P(e) + (e/2F + 2) Q(e)

F (H + 1) P(e) + (¢/2F + 2f /F) Q(e)’ (2.17)

9(e) =

From now on, the absence of the subscpph all quantities will imply an average over

initial conditions in the sense of Ed. (2]16).

Before moving on, a few limiting properties of,(t) are worth mentioning. If the
starting site is not adjacent to a compartment boundaryat §mes the random walker
will diffuse as if there are no barriers, and its MSD will go &.2This means that
limi_o0gp(t) = lim._ €0, (¢) must vanish provided that the sifeis not adjacent to a
boundary. As for the long time limit, we would expect Jirg, gp(t) to vanish, as its in-
tegral, which is related to the filusion codficient, must be finite. Lastly, the asymptotic
diffusion codicient should be independent from the initial conditionst &sdetermined
by the structure of the chain, which depends on the valudsarfdF. Using Eq. [(2.14)
and limit theorems of the Laplace transfofmlI[59], it can bevamthatg,(t) satisfies all of

these asymptotic properties.

If we define the time dependent hopping rate, which is theoaned of the diusion
codficient in discrete space, &s(t) = (1/2)d(MSDy(t))/dt, then transport quantities that

we are interested in are conveniently given as

MSDy(t) = 2F f ds f Sds¢p(g), (2.18)
0 0

Fo(t) = 2F fo dspp(S), (2.19)
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in time domain and

(SD, (€) = 2F ¢p€2€),
Fole) = 2F¢"T(E),

in Laplace domain. The functiop(t) acts like the memory of a generalized master equa-
tion [5] considering the way it is connected with the MSD dnd Using the Laplace
transform off (), we can easily calculate the hopping rate at asymptoyidatig times,
which we will call the éfective hopping rate, and denote it By;. It is well known that

the integral of a functiom(t) from 0 to is related to its Laplace transform throughl|[59]
f dshs) = limh(e).
0 e—0

Hence the ffective hopping rate is given by

H+1
1+ (f/F)H’

Note that-¢; is independent fronp as expected. Let us take a closer look at Eq. {2.20) and

Feg = F fwdspp(s) =F |inr(1)$p (€)= f (2.20)
0 e

its marginal values. If = F, then all the links in the chain have the same transferfate
and consequentliyo; = F. If we consider the situation in which the barriers are inélyi
high, so that it is not possible for the random walker to cthem,f = 0 andF; vanishes
according to Eq.[{Z.20). This is what one would expect, asahdom walker is confined
within a compartment, so that its MSD will saturate and the aawhich the MSD changes
should become zero. If the barrier heights are large, bunfiatte so that there is a small
rate for leaving one compartment for anotheg; is predominantly determined by the
ratio (f /F)H. If (f/F)H is negligible, we hav&; ~ f(H + 1). Another interesting case
of a completely dferent nature i§ > F. This means that the random walker’s hopping
rate is enhanced rather than suppressed, periodicallyghout the chain. One would
expect that this would cause an increasEdg and itindeed does. Fdr> F, Eq. (2.20)

becomes

Fer ~ F (L+ 1/H).
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Note that the enhancementhi; due tof being larger tha is limited to a factor of 32,

and decreases witH.

In order to verify these results, we compare the MSD giverdagecalculations to that
found by Monte Carlo simulations fé# = 4. In this case it is straightforward to calculate
gp(t), see Eq.[(2.15) fogso(t), for p = 0, +1, +2 and obtain MS[Xt). The Monte Carlo
simulation of the random walk is performed similarly aslif],évhere a random walk on
a network structure is considered. Initially, we place #redom walker at one of the sites
in the middle compartment. At each subsequent step of thaelaiion, which corresponds
to an incrementt in time, the random walker moves between neighboring sifdse
probability it will take a step either to the left or right isvgn by hjAt, whereh; is a
transfer rate between sites and the subscripdicates direction. This implies that with
probability 1— (hett + hrignr)At, the random walker will not move during that step. The
incrementAt should be chosen to be a small enough number such that thakpiites
hiAt and 1- (hiert + hiignt) At are between 0 and 1. In order to obtain the M@P we
calculate the value off— p)? for 20000 trajectories, each generated in the way described
above. The comparison between exact calculations and aimilresults are shown in

Fig.[2.5 for diferent initial conditions.

2.3 The continuum limit

Our aim is to predict the time dependence of transport gtiestike the MSD of
molecules dtusing in the cell membrane. The results that are shown saafatue the
effects of compartments onftlision, but they apply for entities that move in discrete
space. Therefore, we somehow need to find the counterpatt®sé results that are
valid in continuous space. In this section we will show hovathieve this by taking the

appropriate limits of the results obtained earlier.
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Figure 2.5: Comparison of exact results with Monte Carlosations for the mean square
displacement of the random walker. Parametersfax€0.01,F = 2 H = 4. Solid curves
show the result of the simulations, averaged over 20008di@jies, whereas the dashed
curves are analytical results. The agreement between thestalmost perfect. The inset
shows the behavior at short times.

Letabe the spacing between two adjacent sites in the chain, asishéig.[2.6. Then
the size of a compartment can be expressea(lds+ 1). Note that if the number of sites
goes to infinity while their spacinggoes to zero, the discrete chain of sites can be thought
as a continuous 1-D space. In continuum, we will denote theei a compartment bly,

lim a(H +1)=L. (2.21)

a—0

Naturally, the initial condition will be given by
lim pa= Xo. (2.22)
a—0

Next, we will show howf andF change in the continuum limit. Without the presence of
barriers, the dfusion equation in 1-D is

07(Y) _ (P
ot e

whereD is the difusion codficient with dimension{;length]2 [time] ™, and.22(x, ) is the

probability density By discretizing the second derivative with respecktohe difusion
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Figure 2.6: Anillustration of the discrete chain and thetoarum with periodically placed
barriers (shown by vertical dotted lines in discrete spaxksalid lines in continuum). In
discrete space, each site is separated from its neighbordistancea. In taking the
continuum limit, we taken — 0, and the number of sites in a compartmenttesuch that
(H + 1)a — L becomes the compartment size.

eqguation can also be written as

IPCm ) _ 5 iy POmes ) + P01, €) = 2P0, 1)
ot a—0 a2 ’

(2.23)

where we also multiplied both sides layto convert the probability density?(x,t), to
the probabilityP(x,t) = aZ?(x,t). Note the similarity between Eq[(2]23) and the left
hand side of Eq.[{Z]12). Hence, one of the steps in taking théraoum limit of Eq. [Z.2)
involves multiplying and dividing the second term on thé kefnd side witta?, and letting
a — 0. This implies that the ¢liusion codicient is related to the transfer rate (or hopping
rate)F by

lim Fa? = D. (2.24)

a—0

Now that we know the limiting properties &f andH asa — 0, we can use Eq[(2.20) to
find out what happens tbin the continuum limit. As ling_,o Fa? = D, Fea? given by Eq.

(2.20) should become thdtective difusion codicient, Dg;. As a result, ifFza2 stays
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finite whena — 0, Eqgs. [(2.20, 2.21, 2.24) imply th&tshould satisfy,

lim fa= D,

a—0

where D is a quantity with dimensiongength] [time]™*, and is proportional to the per-
meability of barriers, as we will see later. Consequentlg @analogue of Eq..(2.20) in

continuum is

, (2.25)

that is the asymptotic value d@(t). This expression is equivalent to that obtained by
Powles and collaborators|[3], witfh/D being the permeability of each barrier, denoted
by P.

Having established the basics of taking the continuum Jinvé now will give the
expressions for the functiain continuous space. Multiplying and dividing the terms in
Eqgs. [Z.1%) and (Z.17) by powers aflettinga — 0 and using the limits in Eqs[_(Z.21,
[2.22[2.24 2.25), we obtain

& 2x0) 2Xo . (2x0 )]
oS (9) = cothscoshl —s| — — sinh| —s]|, 2.26
9 (9 scoshs + 524 sinhs[ %( L L L (2.26)
and

sinhs

g(s) = . (2.27)

scoshs + 5=2- sinhs

eff

wheregy (s) andg®(s) are the continuum limits af, () and its average over initial con-
ditions, g (e). In order to simplify the notation, we defined the quangty (L/2)ve/D,
which is proportional to the Laplace variakieWe are now in a position to give expres-

sions for the MSD and@® in terms of theg's. The MSD in continuum is defined as

MSD, (1) = ((x— %)°) = f ) dX(X — X0)?2(x,1).
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The MSD andD are related to the memouny, (t) = o(t) — g5, (t) by

t S
MSDXO(t):ZDf dsf d§¢§@(s'), (2.28)
0 0
t
DXO(t):ZDf dspy (9), (2.29)
0
in time domain and
MSDy, (€) = 2D 2 (2.30)
D, (¢) = 2D¢X°€(E), (2.31)

in Laplace domain. From now on, we will drop the supersatjps we concentrate on
comparing the predictions with experiments, in which orig tontinuum limit of the

expressions is relevant.

2.4 Inverting the Laplace transforms

To this point, all expressions for the MSD abdwere given in the Laplace domain, in
terms of the Laplace transform ¢{t). In order to be able to compare these results with
experimental data, one needs to take their inverse Laptacsforms to express them
as functions of time. In this section, our aim is to describe/ lho obtain the transport

guantities in time domain by showing the details of taking itiverse Laplace transform
MSD,, (¢), given by Eq. [2.30).

We would like to calculate
L7 {MSDy,(€)] = MSD, ().

where£~! denotes the inverse Laplace transformation operator gmdsents the

Bromwich contour integral

LHf(e) = f(t) = % f jﬂw deet T (e), (2.32)
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andy is a real number larger than the real parts of all singuéitif f (€). Therefore, we

are interested in evaluating

gxo (€) et

€2

MSD,,(t) = 2Dt — 2D Sé de , (2.33)
whereslé represents a contour integral wirbeing any deformation of the contour defined
in Eq. (2.32) that encloses all singularities@fe). See, for instance, ref[ [61] on the
freedom in choosing the contour in the Bromwich integral.téNitnat in Eq. [(2.33)gy,

is taken as a function of, but as Eq. [(2.26) shows, it can more conveniently be written
as a function ofs = (L/2)+ve/D. Therefore, it is convenient to change the integration
variable frome to s. Furthermore, we will use the following notation in ordersimplify

the expressions

¥ = Der/ (D — Denr) , (2.34)
@ = 2%/L, (2.35)
T = 4Dt/L>. (2.36)

After changing the integration variable and doing somelaigeEq. [(2.38) becomes

2
MSD,, (1) = L? (7 = (04(r) = yora(t) — acrs(1))).

where
1 cosh@rs)es”
710 = o 9§d &sinhs

oa(r) = 5 P ds coshege™

“& (scoshs + y sinhs)’

1 sinh@s)es™
o3(1) = — S - :
27 Jo = s(scoshs+ ysinhs)

(2.37)

Therefore,o1, o5, o3 Will be equal to the sum of the residues of the integrands is. Eq
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237). Let
cosh@rs)es”
(s ) = e
~ coshfs)es™
Wo(s.7) = ?(scoshs + y sinhs)’
(s 1) = sinh@s)es
AST) = s(scoshs + y sinhs).
Then,

MSDy,(7) = L;(T - (Z Regwi, s} — 72 Regw,, s,) — « Z Regws, sn})),
Sh Sh Sh

where s,’s are the poles ofv;, w,, andws. For w, andws, s,’s are the solutions of
—s = ytanhs, and forwy, they satisfy sints = 0. At s = 0, w; andw, have poles of

order 3 andwvs has a pole of order 2. The residuesat 0 for each case are

Reswy, 0} = 7 + a?/2 — 1/6,
Regw,, 0} = (6r(y + 1) + 32?(y + 1) — (¥ + 3))/(6(y + 1)?),
Regws, O} = a/(y + 1).

Note that each of the functiong, w, andws possess infinitely many poles in addition to
the pole ats=0. By expanding sinB andscoshs + y sinhsin Taylor series, we see that
all other poles are simple poles, as the first derivative eg¢hexpressions do not vanish at
s = s,. By solving sinhs = 0, it is found that the nonzero poleswf are located as=imsn
wherem = +1,+2,+3.... Forw, andws, exact locations of the poles cannot be found

because it is not possible to find the roots of the transceabeqguationrscoshs+ y sinhs
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analytically. Therefore,

o1(t) = 7+ a2 - 1/6 + Z%%%, (2.38)
6T(7+1)+3a2(y+1)—(7+3)
oelr) = 60/ + 17
cosh@s)e®”
" Z s—s (ssinhs+ (1 + y) coshs)’ (2.39)
sinh@s)es”
7olr) = 1) " Z s> §(ssinhs+ (1 + y) coshs)’ (2.40)

wheres, # 0 in the summations. Because the roots of Shk{ 0 can be found analyti-

cally, o1(r) can also be expressed as

I’T]27rT
ri) = ) (op e 241)
m;ﬁO

which is related to the integral of elliptic theta functiansegrated over.

In order to evaluater,(r) ando3(r), we need to find the roots, numerically with
high precision, and perform the sums in Eqs._(2.39) and §2140doing this, we use the
bisection method to find the first few thousands of the roots,6f) with an accuracy of
1013, The sums involved in Eqs[ {2139) arid (2.40) converge quicds,’s in the term
e are purely imaginary numbers. Furthermore gligy coshgrs) and lim,,5, sinh@s) lie
in [-1, 1] and the magnitude of lim,s ((1+y) coshs+ ssinhs) tends tox with increasing
Im(s,). Therefore, unless ~ 0, summing over just a few terms provides one with results

that are significantly precise.

Using the procedure we described above, one can find expnedsir many other time

dependent transport quantities. A collection of resultgusn in Sec[_2]6 of this chapter.

In Fig.[2.7 we show behavior of the dimensionless quant&®/L? andD/D(0) as
a function ofr, where the latter is defined as

D) 1d 2 d

5 = 55 g"SP = 5 MSD(). (2.42)
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MSD/ L2
\
\

0.1

T

Figure 2.7: The mean square displacement (left) and tfigsitbn codicient (right) as
a function of dimensionless timg normalized bylL? and D, respectively. Each of the
plotted quantities are obtained by averaging over allahgonditions. The solid, dashed,
and dash-dotted curves in both plots corresporidgg D being equal to 0.001, 0.01, and
0.1.

The quantities plotted in Figl_2.7 are averaged over ing@iditions. In order to
demonstrate thefkect of initial conditions, we show that half the derivatiietlee MSD,
in discrete space, which is the time dependent transfergiaen by Eq. [(2.I9), as a
function of time in Fig[Z.B. We chose to display the resutsthe discrete case because
of a couple of reasons. Firstly, as the number of sites in gpa@otment is finite in this case,
we can cover all possible initial states of the system. Saélgpwe observed no qualitative
difference between considering discrete space and continubenregults shown in Fig.
[2.8 pertain to a chain with 11 sites per compartment. Becatisee symmetry in the
problem, initial conditions that are merely the mirror ireagpf each other will produce
the same results. Therefore, there are fiedent values op that we need to consider:
p=0,+1 +2 +3 +4, and+5. Among these cases, Fig. 2.8 shgws 0, starting at the
center of the compartmen,= +4 and+5, starting at the site that is 1 site away from the
boundary and next to the boundary, respectively. Additlgnae also display the result
for averaging over alp within a compartment. Note that except when averaged oeer th

initial conditions, the behavior al(MSD)/dt is non-monotonic. In order to understand
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the significance of these features, let us first remember heviithe dependent transfer
rate,F(t), is defined.F(t) is given by

F() = > (m-pP— (2.43)

whereP(t) obeys the master equation

dP,
d_'[m = I:Ieft (Pm—l - Pm) + Fright (Prml - Pm)-

Here,Fier, Frign: are the transfer rates of the links to the left and right ofsitem, respec-
tively. At very short times only th@™" site is occupied so that the only contribution to the

F(t) is made by the nonzero terms

de+1
=F
dt =0 lefts
de_l
dt o = I:right,

where we use®,(0) = §,0. Note thatdP,/dtis also nonzero, but it is weighed by¢ p)?

which vanishes. According to these equations, we have
F(0) = Fiet + Frignt. (2.44)

If pis not next to a compartment boundary, teg: = Figne = F, so thatF(0) = 2F.
However, if p is on the boundary, thefe andFign: Will have diterent values with their
sum being F + f)/2. Therefore, if the random walker is initially placed at tieundary

of a compartment, it will diuse with the rateR + f) which is less thafr. Fig.[2.8 clearly
shows this behavior. Having explained the relation betwibef (0) and the initial condi-
tions, we now focus on the other features=¢f). Note that when the random walker starts
at the center of the compartmeft(t) goes below its asymptotic vali&g for some time
and then rises to readhy. This dfect can easily be understood by taking another look at
Eq. (2.43). As we have seen above, the valugRyf/dt is lower whemmis a site adjacent

to a compartment boundary compared to what it is wiméa away from the boundaries.

Therefore, as the probability of occupation of the siteaeeljit to the boundaries increases,
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we expect the value d¥(t) to decrease. As time goes by, the random walker will cross
the boundary and step into an unexplored compartment. HsigWo consequences: the
probability of occupation of the sites that are adjacenhé&loundary will decrease while
the probability of occupation of the sites that are away fitbwn boundary will increase.
As a result, after reaching a minimura(t) will start increasing until the probability of
finding the random walker around the next barrier becomesfgignt. As the probabil-

ity distribution broadens, thigi@ct will be repeatedly observed with rapidly diminishing
magnitude, a& (t) reaches its asymptotic vallig;. The non-monotonic behavior &f(t)

for all other initial conditions can also be explained ingbgéerms.

107 10° 10
Time (in units of 1/F)
Figure 2.8: Time dependent transfer r&é), which can be thought as the analogue of

D(t) in discrete space, for flerent values of the initial condition parameperin this case

H = 10 so that there are 11 sites in each compartment,faRd= 0.01. p = 0, +4, and
+5 correspond to the random walker starting at the centereodimpartment, 1 site away
from the compartment boundary and next to the boundaryeotisely. The dash-dotted
line showsF(t) obtained by averaging over all initial placemeptsNote that unless one
averages over all initial condition§;(t) evolves non-monotonically while it reaches its
asymptotic valud-¢;.

As a final remark, we will briefly discuss puttifgSD,,(s) in an alternative form.
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Writing out Eq. [Z3D) by expandingf, (), we get

809 = — (L -~ L s %)
9= 85\ & ~ Fcoshs @
L* De 1 tanhs
+— = Q(s, xo, L), (2.45)
8D D — Der S (coshs + 52 sinhs)
eff
where
Q(s; %o, L) = cothscos%(zTXOs) — ZTXO sinh(zTX0 s).

Note that whemD¢; = 0 so that the random walker is completely confined, the setaynu
in Eq. (2.45) vanishes. It is interesting to note that the MSEhe presence of permeable
barriers can be written as a sum of the MSD for complete comigm and an additional
term. This is reminiscent of a perturbation expansion wisdommonly used in tackling
many problems in physics. See ref. [38] for an extended d&on. The inverse Laplace
transform of the first term in Eq_(2.U5) can be taken anajificto give

12(1 o e—%(znu)z(i—gt)

MSDRe=0(t) = —| = -32) —r—
SDe W =751373 L4 7H2n+ 17 |

by using methods similar to those described in detail above.

2.5 Comparison with experiment

In this section, we put the theoretical results obtainedasad use, by showing how they
compare against observations of molecules in cell membrafife consider two dlierent
sets of experimentally found MSD versus time data, obtalmedsing single molecule
tracking technique. One of them is shown in Fig. 4b (left) ak&ki and others [62],
and pertains to the motion of a membrane protein. The others#d is about the motion
of phospholipids that are much smaller than proteins, abthiby Fujiwara and others

and is displayed in Fig. 2b of ref[_[57]. Both of the experit@mesults given in these
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references are obtained by single molecule tracking teci@si where the molecule of
interest is tagged with a colloidal gold particle so thatihde seen. The time resolution
in these experiments is 25, which is high enough to capture the short time behavior of
the diffusion codicient when the molecules arefidising freely in a compartment. Note
that in this context, by short times we mettess than the expected value lot/2D,
which is the characteristic time scale in this problem. ldesrto compare our results with
experimental findings, we digitized plots of MSD versus timblished in the articles

mentioned above.

In each of the following cases, we first extract #endy components of the MSD from
experimental data. Then we separately fit them to the theatetxpression for MSQYJ,
given by Eq. [[2.6R) in Secl_2.6. The parameters we use in ttadias follows.D:
the diffusion codicient without the presence of compartments, or equivaletité short
time diffusion codicient, Dg;: asymptotic value of the ffusion codficient which also
is the dttfusion codicient one would find if the observations are carried out witbva
time resolution, and finally.: the compartment size. Our specific aim is to find out how

experimental data compares with the theoretical predistfor typical values of..

In ref. [62], the authors observed thefdsion of a gold-tagged G-protein coupled
u-opioid receptor in the plasma membrane of normal rat kidsedlg. It was found that
the motion of this complex is not simply Brownian, as f) is varies greatly over the
duration of the observation. After performing the fit in thaywve described above, we
find that that the linear compartment sizeshould lie between 250 nm and 470 nm. This
range of values fot is compatible with the distribution of compartment sizegegiin
Fig. 4d of ref. [62] and with other general results in therhtere [1]. We would like to
emphasize that the data set that was available us to use wasiiogle trajectory rather
than an ensemble average over many. Therefore, iffisult to either be accurate in the

prediction ofL, or give statistics about the error involved.

The second set of data we considered consists of the MSD aschdin of time of a

35



Chapter 2. A mathematical model for molecular motion in oe#imbranes

phospholipid molecule (1,2-dioleoyl-sn-glycero-3-pplosethanolamine), again as a sin-
gle trajectory, and is given in ref._[57]. In this case we pilw theoretical prediction for
the MSD against th& andy components of the experimental data. The extreme values of
the difusion codficient,D andD¢; are found by performing a linear fit to the slope of the
experimental data at appropriate time intervals. The tesué turned out to be the same
as those given in ref[_[57] without much surprise, and carobed in the caption of Fig.
[Z.9. In Fig[2.® experimental data and three theoreticalesieach corresponding to a dif-
ferent value oL, are plotted. The theoretical results correspond to[E§2f2vhich is the
MSD as a function of time, averaged over all initial condiso We found that the agree-
ment between theory and experiment is remarkably good #1230, which is the value
of the average compartment size deduced in ref. [57]. Faifgigntly smaller or larger
compartment sizes, the theoretical predictions subsintieviate from the experimental

results, as shown in Fig. 2.9.

Since the data correspond to a single trajectory, it canatoimformation about the
initial position of the molecule relative to the compartrheaundaries. Motivated by this,
MSD;,(t) as given by Eq.[(2.32) is plotted with the same experimeddta in Fig.[2.110,
for different values ok,. The value ofL is taken to be 230 nm, aridl and D is kept the

same.

2.6 A summary of useful results

In this section we present a collection of additional exgi@ss for various transport quan-
tities, as functions of time. All of the results presentethiis section are derived by going
through the procedure for inverting the Laplace transfofrgu(e), as described in full
detail in Sec[Z}4.
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0.06

o MSD, ' ' .
A MSD, .

0.04

MSD (pm?)

0.02

0.0025 0.60(5) 0.0075 0.01
time (s
Figure 2.9: Theoretical predictions forfi#irent values of the compartment sizeersus
experimental results concerning théfdsion of phospholipids, reported in ref. [57]. This
plot emphasizes that the agreement between theory andreemeis best wheh is close
to the value deduced in ref._[57], whichlis= 230 nm. Therefore, the theoretical pre-
diction makes sense, even when it is compared to a singéetaay. Circles and triangles
correspond tox andy components of the experimentally obtained MSD versus tiata.d
The parameter values used to plot the theoretical curvels ar@3 nm (dotted)L. = 230
nm (solid),L = 2300 nm (dashed), witB=4.6 un?s* andDe=1.2 un?s* the same for
all cases. Note that except whenr- 230 nm, theory and experiment do not agree.

2.6.1 Expressions for MSD andD

L2 © cos@rm)e ™™
MSDy,(7) = 7(cl +GT+ Yy (-1 @‘HZH)]Z

Mm=—oco,
m#0

D
—a& 4 gstanh@s)
+ 3 lim e CZOSh@S) DDy ) (2.46)
— s> gcoshg) | - + stanh@)
where
2 2
Clzil_ka__ Y :(1_%)}4_@__}%
y+1\6 2 3@+1) D/\6 2 3D
Y Des
-7 _ = 2.47
C2 | D’ ( )
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Figure 2.10: Comparison of theoretical predictions giverEh. (2.52) with experimental
data in ref. [[5¥], for various initial conditiong,. For the solid lines representing the
theory, the initial position isxy=0, L/8,L/4, 3L/8 and 1./16, from top to bottom. Again,
the circles and triangles correspond to experimental dgd@ameter values are the same
as those in Fid._ 219 except that helcehas the fixed value 230 nm.

v, 7, anda are defined by Eq.[(2.86), ars] represents the solutions ef= —y tanh{)

other thans = 0. For convenience, we make the following definition:

2. cosh@s) |5y * astanh@s)
Q1(Deg/D) = I 2.4
1(Derr/D) Zn:sfs‘n SZCOShS) (2.48)
WhenDg = D, s, = int, n=+1, +2,+3... and
U mZT
cos@rm)e™
0:(1) - Z (- om (2.49)
m¢o
so that the MSD becomes
L2
MSDR==P(1) = =1, (2.50)

2
as expected. In complete confinemddiy = 0, s, = i(2n+ 1)r/2, n = 0,+1, +2, +3...

and we have

)m+1sin((2n + 1)ar/2)e™ @l /4

(2m+ 1)2 ’ (2.51)

Q4(0) = 4a/n® i (-1

m=—oo
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giving,
2 113
MSDEr=0() = L (l+3a Z a 1)mcos@mm)e

( 1)m+1 sin (2m+ 1)an e (2m+1)2 -
oy ( %) ) 252
= (2m+ 1275
Similarly, we can write expressions for the dimensionlagsision codficient
Dw(r) 2 d
T —MSDy, (7). (2.53)
For arbitraryD¢; /D we have
D [ee)
"E)(T) =C,— m;x) (-1)" cosam)e ™ ™™
m=0
h o+ astanh@s)
+ 3 fim 0SNG (2.54)
~ sos, coshg)

The first sum in the expression above can be expressed in¢érasobi Theta Functions:

[ee)

Z (-1)" cos@rm)e™ ™™ ﬁ4( >

m=—oco,
mz0

whered4(ulr’) is the Theta function of the fourth kind as given in Eq. (81§ of ref.

m) 1 (2.55)

[63], so that we can write

Dy(@) _ (Der , 2.cosh@s) +astanh@s)
D ( D ) 1(}4( 2 Im) - lzrs]n coshg)
(2.56)
Let us define
~ _ o.cosh@s) | by * astanh@s)
Q,(Deg/D) = n M;e coshE (2.57)
ForDeg = D, sy =inm, n=x1,£2, £3... andQ,(1) = U4 (“—2” im’) — 1 so that:
(DX"(T)) -1 (2.58)
D Deg=D
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ForDer = 0,5, = i(2n+ 1)n/2, n = 0,+1,+2,+3... andQ,(0) = aﬁl(“—z’r
U1(ul7’) is the Theta function of the first kind as given in Eq. (8.280f ref. [63].

im’) where

Therefore, we have

Dy (7) _
o7,

IJTT) + aldy (azn iJTT) ) (2.59)

2.6.2 Quantities that are averaged over initial conditions

In this section we consider the M§J0r) and Dy, (7) that are averaged over all initial

conditions such that

1
MSD(7) = %fl daMSDy, (1), (2.60)
and
D(r) 1 (', Dy(7)
Therefore, we have
)tanhg)
MSD(7) = —(cl ) (2.62)
wherec; = %(1— %ﬁ) ForDes = O,
12(1 oo e—%(zml)z(i_gt)
Der=0(ty — — | = _
MSD, = =(t) > (3 32 2, —n4(2n+ 7| (2.63)
Similarly, for D(r)/D
Deg
D) Da | v, €[5+ (o5 —1tanhg)
b - "M (2.69)
and wherDgs = 0
2
D(T) s e—(2m+1)2"77
9, S
Deg=0 m=—co 7
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2.6.3 Expression for the memory

As we stated in several occasions, the MSD Bncan also be expressed as integrals of a

memory functionp(t).

t S
MSD(t) = 2Df dsf ds¢(s)
0
D(t
#(t) = — (#) (2.66)
Using the expressions we gave above, the memory can bemaiite

|m)] Z jim 27 20SNES) | D

$—% coshg)

- + astanh@s)

¢(r) = —— [m( ] (2.67)

2.7 Hifects of disorder

The mathematical model we presented so far describes ahngabrane in which all
compartment boundaries have the same properties and thgadonent size is uniform.
In naturally occurring membranes, barrier heights assediith each boundary and com-
partment sizes tend to vary, as shown by the electron miopysicnages of the cell sur-
face obtained by Morone and others|[58]. Hence, we thinkiinisortant to extend our
mathematical model to take into account tiffeets of disorder in barrier heights and com-

partment sizes.

In this section, we present a generalization of our modelrapleying an &ective
medium theory. Most of the discussions and results preddrgee have also been pub-
lished in the work of Kalay, Parris, and Kenkre [39]féctive medium theories (offec-
tive medium approximations) have been successfully usedltwlate ensemble averaged
guantities in many disordered systems. For a review on tiigst and an extensive list of
references see Chaplér 3 of this thesis. Here we will statesfults that are obtained by
using an &ective medium theory without much detail, as an extensigeudision is given
in ChaptefB.
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Figure 2.11: lllustration of dierent types of disorder we would like to incorporate in our
mathematical model presented in the previous section. &abe and ¢ correspond to
disorder in barrier heights, in barrier locations and batbarrier height and locations.

First, we will consider the situation in which the compartisizes are uniform, but
the barrier heights are taken to be random variables. Wegeileralize the model first
in the discrete space, and then take the continuum limit actyx the same way as in the

previous sections. In this case, the analogue of[Eql (2.2) is

dPn,

W =F [Pm+l + P — 2Pm] - Z(F - fr) [Pr+l - Pr] (5mr - 5mr+1) ’ (2'68)
r

wheref, stands for the transfer rate of the barrier to the right ofrthsite. We suppose
that f,’s are independently distributed random variables, eaawdifrom a probability
distributionp(f). In principle Eq. [2.6B) can be solved for a particular izsion of
the f,’s by means of diagonalizing matrices. However, this is aloeirsome task that is
impractical, especially for large systems. Our aim is t@gldte transport quantities that
are averaged over the disorder, which we will do with the hlpn efective medium

approximation.

In our context, the essence of thieetive medium theory is transforming a Master

equation with disordered transfer rates to a generalizestenaquation with translation-
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ally invariant transfer rates. Therefore, the disorderpace is &ectively replaced by

nonlocal time evolution that is characterized by the menuairthe generalized master
equation. In Eq. [(Z2.68), the only transfer rates that arédaanvariables are those that
connect the sites around each barrier. Hence, makindiibetige medium approximation

will correspond to modifying EqL(2.68) around each barnidrich results in

dPm(t)
dt

= F [Pmia(t) + Proa(t) — 2Pm(t)]

- fo dt [Fd(t - t,) - ‘}—(t - t,)] Z [Pr+1(t,) - Pr(t,)] (6m,r - 5mr+1), (2-69)

r

where# (t) is the memory of this generalized master equation around barrier. We
then proceed to solve fof (t), or its relevant limiting values, using our knowledge of th

disorder characterized ky(f). The Laplace transform of the probability propagator for
Eq. (2.69) is given by

F-F <~ — = =
- _ = __ r-n+l — Yr-n m-r — ¥Ym-r-1)» 2.70
1+(F_¢)ﬁ2(w 1= D) Wi = Urr-) (2.70)

which is simply Eq. [Z211) witlPn(0) = 6,0 and f — F. In order to find#, we will

impose a self consistency condition, whose details areamgud in Chapter]3. Suppose

Xmn = Jm—n -

that we replace the link between the sitesnds + 1, wheres s a site to the left of one

of the barriers, by one with transfer rate Then the propagator for this modified chain

becomes

_ f-F) _ _ _

Xmn + m(xms — Xms+1)(Xs+1.n — Xsn)s (2.71)
where

:8 = _¥s+1,s +}s+1,s+1 +;as _;ss+1-

As f is supposed to be distributed accordingo{d), if we average Eq.[(2.T1) over all
values of f weighted byp(f), it should reduce to the propagator given in Eq.__(R.70)

regardless of the values ofands. That is to say,

fdfp(f)f_—?;., - 0. (2.72)
1+(f-F)B
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This is what we referred to as the self consistency condiaiving Eq. [Z.72) fo can
be cumbersome in general. However, we will be interestedlirirgy for the integral ofF

over all times, for which the expressions simplify subgtiyt

Note that the integral of from O to co will be the dtective transfer rate of a batrrier,
defined by

for = fo ) dsF(s) = 7(0).

This can be seen from Ed._(2]119) wit(t) being the memory(t). This means that, if we
are interested in the value of observables at asymptaotitzatje times, each barrier will

act like it has the fective transfer ratde;. The quantityf (0) can be easily calculated

from Eq. [2.72),

R ()
fepf—%(o) fdf f

where we used

—~ 1
I. - =
El—rr(l)ﬁ (6) \7_‘(0)

Substitutingfe; for f in Eq. (2.20), we get thefiective hopping rate as a function of the
distributionp(f)

H+1
A
1,1 p(f) "
£+ fdie

Eq. (2.73) is the main result of this section as it providesvilk a relation between the

Fur = (2.73)

effective transfer rate and the properties of the disordemiicuum, Eq.[(Z.73) becomes

the dfective difusion codicient,

a0 1+ [do572
¢ =lim fa, (2.75)
a—0

where we used Eqs_(2]21) and (2.24). In the next subseeti®mill give results corre-

sponding to a few diierent choices foo(f).
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2.7.1 Results for specific cases

We will begin with considering one of simplest choices #f) which is the sum of two

o-distributions
o(f) = ad(f — f1)) + (L - )s(f - ). (2.76)

Substituting this in Eq[{2.73), we get

H+1

ﬂ (1—[2) f1+[2f2 :
FT 5

Feﬂ‘:

Note that if eitherf; or f, is zero,Fe vanishes. This makes sense, because when there is
a possibility of having impenetrable barriers, the randoatker will be confined and its

diffusion codicient will eventually vanish.

In this simple case, it is possible to solve for the memBre) for all values ofe,

exactly. For a general(f), Eq. (2.72) can be put in the following form

‘[ ar— 2 2.77)
f+(C-F)
where
po__ @+ER)-FE
{ +0(1+7F) - FR)

and

B coth¢/2)-1

=

= %(1 — 2 coth§/2) + cothf(¢£/2) cothe(H + 1)).

In arriving Eq. [2.7¥), we made use of the following expressior 3 in terms of the

propagatorg, andy,

. f_F _ L
= 2(1 — o) — —— (1 26y + € 2.1
B=200-90 - e |17 2 eZw
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where

~—, _ cothé(H + 1)
T 4F?sinife

r

Settingp(f) in Eq. (2.7T) equal to the sum of twidistributions as given in EqQ[(2.76)
and doing some algebra, we obtain a cubic equatioﬁ?for

F+bF2+cF +d=0, (2.78)
where

b=—(fL+ f2—1/6) —n/bu,

c= fifo - [u(f2 + a(f - 12)) + (L + uF) —n(fL + 2)]/0k,
d=[nfifo - (f2 + a(fs - £2))(1 + uF)]/6k,
n=<,+60(1+uF).

Using the well known cubic formula, EqL_{2]78) can be solvadff as a function of.
The physically relevant solution is displayed in Hig. 2.&24d particular choice of;, f,

H, anda given in the figure caption. Note th@t has the following limiting properties

= i
M = dahsah (2.79)
lim F = af, + (1 - a)fo. (2.80)

E—00

In the rest of this subsection, we will consider thre&aient distributiong(f), or
o(Z5) in continuum, and calculate the correspondifig@&ive difusion codicient. The
first of these distributions is what we will call a uniform t@tibution, which is equal to a
constant in an interval Ju] and zero elsewhere, the second is a Rayleigh distribudia,
the last is a Rice distribution. For each of these cases, Weresent the results in the
continuum limit, as we are interested in quantities thatgierto molecules diusing in

continuum.
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Figure 2.12: The memory functiofi (¢), which satisfies Eq.[{2.78), normalized to its
initial value as a function of. Heree is taken to be a real although it is a complex number
by definition. Sometimes the inverse Laplace transform direction can be taken by
evaluating it only at real values of the Laplace variablee Shaptef13 for an example.
Thep(f) that gives rise to this memory function is a sundafistributions;p(f) = aé(f —

f1) + (1 — a)é(f — f,) wheref, = 0.1F, f, = 0.2F, @ = 0.5, and the compartment size,
H + 1, is equal to 11. The solid horizontal line corresponds toalymptotic value of

F (€) /F(0), which is given by the ratio of Eq.(2.80) to Ef.(2.79).

Uniform distribution

In this casep(%;) is defined by

L 1<% <u

p(Zs) =
0 otherwise

Then, Eq.[(2.75) gives

-1
De _ [1+ DIn(u/I)] ' (2.81)

D Lu-1
Note thatZ; has the dimensions of [length][tinié]and ifl = u = D/L, thenDg; = D.
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Rayleigh distribution

The Rayleigh distribution is a biased Gaussian distrilbytitefined in the following way
9 e—@fz/ZO'Z

and its the mean and variance are givewbyr/2, o2 (4‘7”) respectively. Note that(2;)

vanishes identically a¥; = 0. Substituting the Rayleigh distribution in EQ. (2.75), get

D[y, 0372

2.82
D Lo ( )

Rice distribution

Lastly, we will consider a distribution which is referredas the Rice distribution,

9 _(@?wZ) v
p(70) = =& 57 1o F15).
ag a
The main reasons for choosing this distribution is thatkenthe Rayleigh distribution,

the value at which it peaks does not depend on its varianckit @anishes identically at

2 = 0. It has two parameters; andv that determine its mean

(e \/772|-1/2 (—V2/20'2) ,

and variance
o?+ VP — 710'2/2L§/2 (—V2/20'2) ,
where

L1/2(X) = €/2[(1 = X)1o(-X/2) — Xl3(-x/2)]

is the Laguerre Polynomial of fractional order dpgx) are modified Bessel Functions of

the first kind. For this casB« /D becomes

-1
Der _ 1y o DNT2evarty (27007 (2.83)
D Lo
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In Fig.[2.13, we display plots of Rayleigh and Rice distribns for various parameter
values. Note that although the Rice distribution is asymimét %, it can be made

substantially symmetric by choosing its parameters apjataby.

As pointed out in ref.[[39], thefBective difusion constant depends on the ratidof
to the product ot and a value of7; that depends on the particular distributj@(@f).

Figure 2.13: Rayleigh(solid) and Rice(dashed) distrimgias a function ok = %;. For
the Rice distributiong=0.05 in all cases. All of these distributions satisfy themaliza-
tion condition [ dxp(x) = 1.

2.7.2 Treatment of a case with disorder in compartment size

So far we gave results for theffiision codicient in the presence of equally sized com-
partments with either homogeneous or varying barrier hisighs we stated earlier, one of
our aims is to generalize our mathematical model to incluslerder also in compartment
sizes. In this subsection, we describe how to achieve thésparticular way by taking

advantage of the results that are already given.

Treating the compartment sizes, or equivalently the balowations, as random vari-

ables turns out to be a little bit more complicated than dtivegsame with barrier heights.
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In the previous subsection, we saw that one can choose ahglmhty distributionp(%s)
for the distribution of barrier heights and easily calcalat;. An important point that we
did not emphasize in that situation is that the random véegatinat correspond to barrier
heights were uncorrelated. When one usesfieteve medium theory, the random vari-
ables being uncorrelated makes the problem much easielvi® fee the last section of
chaptef B for a detailed discussion on this. If the compantrsiee is distributed according
to the probability distributioriP(q), then the locations of the barriers will mostly likely be
correlated random variables. Therefore, in this case ibtssn simple to obtain a rela-
tion betweerDg; andP(q) because of the fliculties involved in solving the problem with
correlated random variables. Below, we will present a wagaihg around this diiculty
by choosing the barrier locations to be uncorrelated randanables to begin with, and
then calculating the corresponding compartment sizeiligton P(q). This way we will
be able to use the results we already obtained to treat aylartkind of disorder in com-
partment sizes. The shortcoming of this method is that tha fof P(q) obtained in this

way is very restricted.

Consider the following distribution for barrier heights
o(f) =adé(f —g) + (L —a)é(f — F). (2.84)

This means that the transfer rate across a barrier is gjtbeF with corresponding prob-
abilitiesa and 1- a. Choosing the distribution of barrier heights in this wayresponds
to starting with a chain that has periodic barriers of the esdnmightg, as in ref. [38],
and removing each barrier with probability-lo. Note that a barrier with transfer rafe
acts just like another link within one compartment. Therefeome of the compartments
are now merged as the barrier between them is removed. Tl ab@ined in this way
will have compartment sizes that are always in multiplestbf{1)a, as compartments
of different size will arise as a result of merging events. Helethe lattice spacing as
before. Our next task is to find the distribution of compamitgze, which is a random

variable whose statistics depend on the probahility Eq. (2.84). Below we will show
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how this can be done by using some simple arguments.

We start with considering points in a discreet linear space. Each point is assigned
a numbers which is either 1 or 0. The points in this space will corregpaa links
that were barriers in our original problem. A poinwvith s = 1 and O will represent a
barrier with transfer rat& andg, respectively. Hence points with = 1 indicate that the
compartments that th& barrier was separating is now merged. According to Eq. }2.84
0’s will occur with probabilitya and 1's with 1- a. We leto- be the number of elements
in a contiguous sequence of 1's such that the distance bettmeeconsecutive barriers
is given by ¢~ + 1)(H + 1)a. Note thato = 0 corresponds to the distance between two
consecutive barriers taking on its minimum valttey1)a. In the light of these arguments,
we find

N-1
N (0) = 650 ) (1= 5)(L = Sp1a)

j=1
N—-o-1 o-1
+1-06s0) ) (1-s) []_[ s,-+i+1) (1= Sisoe1): (2.85)
=1 i=0
where_# (o) is the number distribution af in a particular realization of the chain, i.e. for
a specific choice of each of thegs. The first and second terms in E§._(4.85) correspond
to the number of occurrence of compartments of siz¢s-(1)a and ¢ + 1)(H + 1)a

respectively. As we taks’s to be uncorrelated random variables, we can write:
(s)=1-a,

where the angular brackets mean an ensemble average ovealahtions ofs’s. The

ensemble averaged number distribution is given by

(N (0)) = (N =0 = 1)?(1-a), (2.86)

and therefore the probability distribution foris equal to the ratio

(A (o))

P(0)) = —oom .
Pl NN ()
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As we are interested in infinite chains, we take the liMit— oo and the probability
distribution foro- becomes

(Pnow(0)) = a(l— ). (2.87)

As o is proportional to the size of a compartment, the ensemideaged compartment

size distribution is given by
P(g,@) = a(1- )71,

whereq = (o + 1)(H + 1) is the dimensionless compartment size. The mean anchearia
of P(o, ) are

H+1

g=

(0

b

1

(0

(2.88)

(2.89)

a?

(A2 = (@) - (@ =(H+1)

0 5 10 0 0.5 1

Figure 2.14: The distribution of compartment sizB&r, @), as a function otr (left) and
a (right). By definition,o is an integer, however the curves plotted in the left are for
illustrtive purposes and obtained from Elq. (217.2) by irept- as a continuous variable.

Fig. [2.14 shows a plots of the compartment size distribudi®ra function ot and
a. Note thatP(o, @) has a maximum at = 0, and decreases exponentially with as

shown on the plot on the left. This is a consequencg’®being uncorrelated. In order to
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obtain more generd(c, «) that peak at a nonvanishing valuemgfone needs to introduce
correlations between th&'s. The plot on the right show(c-, @) as a function ofr. The
valuesa = 0 and 1 correspond to no barriers and periodically placeddranwith period

H + 1), respectively.

Now we are in a position to give an expressionfgg andD, for the particular case

of nonuniformity in compartment sizes described above. sSuhing Eq. [2.84%) in Eq.

(2.73), we obtain

q
1/f+(@-1)/F’

whereq is defined in Eq.[(2.88)f andF are the transfer rate across a barrier and within

Fur = (2.90)

a compartment, respectively. Taking the continuum limiEqgf (2.90) gives theféective
diffusion codicient
D -1
1+ —| , 291
Q@fl (2.91)

whereQ = gais the mean compartment size in continuum.

Det
D

It is possible to extend this result for cases in which bothltarrier heights and com-

partment sizes are independently distributed randomiasa Consider the distribution
p(f) = L -a)o(f - F) +n(f, ), (2.92)

wheren(f, @) is a distribution normalized ta, andn(0, @) = 0. Based on the discussions
above, using the distribution in Eq._(2192) correspondgadiag with a chain that has
periodically placed barriers, removing a fraction{&) of them and sampling the transfer
rates of the rest of them from the distributigff, ). It is worthwhile to note that the
statistics of compartment size distribution do not changmeéf the barrier heights are not
the same, provided that the random variables involved atervelated. Hences o and

its continuum limitDeg are given by

H+1

Fer = - : 2.93
R(ER) R ar @
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and

Der [, D Rl

The distributionn(Zs, @) is normalized tar, such thatfowdxn(x, @) = a. This implies
thatn(x,0) = 0 asp is defined to be positive for all values of the independenitlde
X. Therefore, whemx = 0, we recover the results forftlision without the presence of

barriers, such thd . = F andDgs = D.

2.7.3 Comparison of theory with numerical solutions

In this subsection, we will compare numerically found valder a transport quantity
against the those we obtained theoretically. The transpamtity we choose is the time
dependent transfer rakgt) defined in Eq.[(2.119), and is the analog of thudiion codfi-
cient in discrete space. Comparing the theory and numeassalts in discrete space also
has the advantage of avoiding discretization errors. laiabtg the numerical solutions,
we first solve the Master equation for the chain with disceddrarrier heights, Eq._(2.68),
for many realizations of the random variablgsand calculatd-(t) for each case. Then
we average over all of these to obtain the final results. Bflyiave average over 10000
differentF(t) curves each corresponding to a particular realizatiorhefdisorder. The
main plot in Fig.[2.1b shows numerically calculate@)/F as a function ot for three
Rice distributions with parameterg € 0.1, s = 0.02), (* = 0.2, s = 0.06) and ¢y = 0.4,

s = 0.02) that are represented by the dashed, solid, and dasgtddntives respectively.
The horizontal dotted line corresponds to the theoretiqaiédicted value of ¢, given
by Eq. [2.78), for each case. There is excellent agreeméneba theory and numerics at
long times. The inset shows the shape of the probabilityidigion o(f) corresponding to
each case, keeping the same linestyle code. We also geaisiasllts for dierento(f)’s,
but here we only display results for the Rice distributioteTapparent dip i (t)/F at

intermediate times is due to the particular initial coratitthosen in numerically solving
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the Master equation. The initial condition for all of theseses is such that the random
walker occupies the central site in the starting compartm&herefore, it is natural to

expect this feature if (t), as explained with detail in Selc. 2.4.

25

A R R R e

~

o2

10°
Ft

Figure 2.15: Comparison of theoretical results obtainedising the &ective medium
theory and the numerical solutions of the Master equalid®g(? for the time-dependent
transfer rate=(t). The barrier heights are sampled from three Rice disiobstwith pa-
rameters\{ = 0.1, s = 0.02), v = 0.2, s = 0.06) and ¢y = 0.4, s = 0.02) and the
corresponding-(t)/F versug plots are represented by the dashed, solid, and dash-dotted
curves, respectively. Horizontal lines show the valu& gffor each case. The agreement
between theoretical predictions and numerical solutisnsxcellent at dticiently long
times. The plots in the inset display the behaviopdbr each curve in the main figure,
using the same linestyle code. For further details, see text

2.8 Concluding remarks

In this chapter we described our mathematical model for tbean of molecules in cell
membranes also published in refs, [[38, 39]. Our model cadigtrthe transport proper-
ties of molecules diusing in the cell membrane in the presence of compartmeatain

effects due to the membrane skeleton, as explained in the udtiod with considerable

detail. In Secs[21P-2.6, we presented our results for tbered case, in which one as-
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sumes that the compartment sizes and barrier heights gmmaniSimilar results for this
case are also found in the literature in the works of Powles|é¥t, Rickayzen, and Evans
[3], and Dudko, Berezhkovskii, and Weiss [4]. Our analysisulted in considerably sim-
ple expressions for the time-dependent transport pregseaind are summarized in Sec.
[2.8. The Laplace transforms of the formulas we obtain foseheansport properties are
exact. In order to express them as functions of time, we eyranbalytical and numerical
methods of taking the inverse Laplace transform, which vesqdained in detail in Sec.
Z.4. In Sec[ 2]5 we compared the predictions of our theorl exiperimental data, and
showed that they agree well. An important feature of ourysisis that the #ects of the
initial position of the molecule on thefliusion codficient and mean square displacement
are clearly explained. In the past, thfeets of initial conditions were virtually inac-
cessible because of the large experimental errors, buettent advancements in single

molecule tracking techniques may make it possible for ubseove them.

In the second part, which consists of S&c.] 2.7, we describadtb generalize our
model to account for the structural disorder in the systencobraged by the success of
our simple mathematical model for the ordered case, we gkrexd it to take into account
the disorder in compartment sizes and barrier heightsshmesent in live cell membranes.
We used anféective medium approximation to calculate dfeetive difusion constant for
diffusion in the presence of barriers, that have variable hgigimd placed disorderly in
space. We believe that this achievement is one of the mosiriant contributions of our
work as the previous models that describéudiion in the presence of permeable barriers

did not consider thefeects of disorder explicitly.
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Chapter 3

Contributions to the effective medium

theory of transport in disordered lattices

3.1 Introduction

In this chapter we are interested in investigating the pitogseof random walk in disor-
dered lattices by using théfective medium theory. fEective medium theories have been
widely used to estimate the values of ensemble averageditigsun many disordered
systems. Recently Kenkre, Kalay, and Parris [16] have madergial contributions to
this field, and some of their findings are part of this thesikisTthapter gives a back-
ground on the fundamental aspects of tife@ive medium theory and presents those new

contributions.

Understanding the motion of particles in disordered meslienportant in the investi-
gation of many natural phenomena. Examples include elettamsfer in organic crystals
[64], (65] (also important for understanding photosynthesienductivity in metals and
semiconductors [66, 67, 68, 5], motion of molecules in cetnmbranes[[4Z, 69, 70| 1],

and virtually any problem that involves the consideratibparticle motion in a random
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landscap€e10].

In discrete space, the most general structure that one cesiden is a graph. A graph
consists of a finite number of nodes, or infinitely many nodest may be connected to
each other with links in many flerent ways. Consider a random walker that hops between
connected nodes in a graph. g, denote the rate at which it hops in continuous time
from noden to nodem. In other wordsF,, is the transfer rate associated with the link
connecting those nodes. Then the probability of finding #melom walker at the"" node

of the graph at timéwill obey the Master equation
dph,
5t = 2, [FamPo(®) = FonPr(®)] (31)
n

For details on the master equation description of randorkayake for instance Bedeaux
et al. [71], Oppenheim et all_[72], Kenkre [5], van Kampen][#3ughes[[10] and refer-
ences therein. Another noteworthy resource is the extemsiview on the use of master
equation techniques in the description of energy transfengoy Kenkre[[74]. We will
be specifically interested in random walks that take pla@elirD chain, in which the ran-
dom walker can only hop between nodes that are nearest reghbs the graph we are
considering is a 1-D chain, the nodes can be thought as siggsmtce at which the random
walker can be found. In this respect, we will use the wordisiséead of node from now
on. The transfer rateS,,, are nonzero only fon = m+ 1 orn = m— 1. Furthermore, we
will take them to be symmetric so thkt,, = F,n which leads to unbiased random walk.

In this case Eq[(3l1) reduces to

dP,
d—t’“ = Fin[Pm-1 — Pm] + Fret [Pz — Pu] (3.2)

whereF,, denotes the transfer rate between sitesdn-1 so that~, = F,,n-1 = Fp_1n. AS
stated in the beginning of this section, we are interestedndom walks in a disordered
chain. Throughout this section, by a disordered chain wenntleat F,’'s are random
variables that are drawn from a probability density functi¢F1, F», F3,...) inthe general

case and simply(F) if F,’s are independently distributed. In the literature, theetyf
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disorder we are considering here is sometimes referreddorasdisorder, as the links (or
bonds) that connect each site in the chain with its neighbee Imonuniform transfer rates.
Our aim is to predict the evolution of transport quantites;h as the diusion codicient,

in a disordered chain where the disorder in transfer ratesasacterized by the probability
densityp. This problem has been addressed by many in the past, seesfance Parris
[12,[13,[14]. Although Eq.[(3]2) gives the evolution of prbbisies in its full detail for

a particular realization of the random variablgg it definitely is not possible to solve it
exactly and expresB,’s explicitly. In order to proceed, we would like to write davan
equation for the evolution of ensemble averaged probasliP;'>. One way of defining
Pes is to argue that it is equal to the average of all solutiBgsof Eq. (3.2) over all
possible realizations of the random chain. Note that azatidin of the random chain with
N sites is characterized By — 1 values of the transfer rates, sampled from the probability

density functiorp.

The properties of diusion in a lattice with random transfer rates is extensisaigied
in the past by using methods other than tifeaive medium theory. In a 1-D lattice, it is
possible to obtain exact results for the asymptotic valuhefdifusion codicient if the
transfer rates at ffierent locations are uncorrelated. Some of these exactsesud limit
theorems are given by Alexander et al.|[68], Zwanzid [75¢ Kawazu and Kesten [76].
In the review by Alexander et al. [68], exact results are carag to the predictions of the
effective medium theory for asymptotic times. Here, we wouté lio mention a couple
of other works that are related to studying random walk insmudiered lattice by using
Master equations. The first is due to Derrida and Llck [77d, taey consider diusion in
a lattice with random and asymmetric transfer rates usingraugbation theory approach
and obtain expressions for the weak disorder expansioneo¥élocity, the ditusion co-
efficient, and the conductivity. The second study is by Mach8&], [#ho obtained the
asymptotic difusion codicient in the disordered lattice by using a real space renlerma
ization group method. In his investigation, MacHtal[78Joashiows that the presence of

disorder leads to a generalized master equation and cedsidame of the properties of
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the memory function associated with it.

Here, we are interested in making dfeetive medium approximation which consists

of replacing the Master equatidn(B.2) with a generalizedteraquation

denI"IS_
dt

fo dSF (t— 9 [P (9) + PEIS.(9) - 2PNY9)] (3.3)

From now on, we will drop the superscript ens®$ that appear in fective medium
equations. Note that Eq[ (3.3) has two important featurdsstly; it is translationaly
invariant, as the memory functioffyt) do not depend on position. Secondly, itis nonlocal
in time, which means that the probabil®y,(t) at timet depends on its values at all earlier
times 0< s < t. The details of how one gets from Ed._(3.2) to Elg. (3.3) willgdeen
shortly in a broader context.

The dfective medium approximation that consists of replacing @) by Eq. [(3.B)
is not new, and was employed as early as in 1935 by Bruggenjan f&lculating the
dielectric constant of a mixture of dielectrical materia&ince then the theory has been
further developed an applied to manytdrent problems. One of the earlier successful
applications is due to Kirkpatrick [11] who used afieetive medium approximation to
calculate the #ective conductivity of a random resistor network. Many otsignificant
contributions were made by Odagaki [7], Lax [8], Haus and {8} just to name a few.

For an extensive list of earlier references and a brief disiam of the subject see Hughes

[10].

In almost all of these studies, the focus of interest has tieemasymptotic values of
transport quantities, such as the asymptotitudion codficient which is given by the
integral of7 (t) over allt in Eq. (3.3). Therefore, very little amount of work has beenel
about predicting the time dependence of transport quastity using theféective medium
approximation. Some exceptions to these are the works ofj@dand Lax [[7], Dyre
and Schroder [79], and Haus and Kehr![80,[81, 9] on ac condictParris [12/82] on

studying anisotropic disordered systems, and Kenkre [aS}eess distribution in granular
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materials.

As we stated above, théective medium approximation can be viewed as a procedure
in which one replaces a Master equation with inhomogene@unsfer rates by a gen-
eralized master equation that has space-independent mdéummtions. This obviously
involves a substantial simplification of the problem, andpgropriate provided that we
are interested in ensemble averaged quantities, espydaidiileir asymptotic values. Dur-
ing the earlier development of th&ective medium theory, the significance of considering
a generalized master equation instead of a Master equagidmbt been stressed. The
early works of Kenkre [5, 83, 84] show that the solutions aigalized master equations
can display a lot more features than those of the Master ieqidiecause of the free-
dom introduced by the memory function. Therefore, geneedlimaster equations have
the potential for modeling a wider range phenomena thandiasfuations, including, for
example, coherent transport of excitons [5]. As emphadizedf. [16], “What is really
necessary in the sense of calculations comes to ... the gradian explicit and practi-
cal prescription that would allow one to go from informatiabout the disorder in the
real system to the memories (or pausing time distributiorctions) in the replacement
problem”. One such attempt is in an early work, where Scher and [Laxd&6mpted to
give a method to calculate the waiting time distributionjebhis a quantity related to the
memory function[[88] in Eq.[(3]3), using the information hetdisorder. In this spirit, our
aim is to use a recipe which gives out the memory functionsespionding to a particular
kind of disorder, characterized by the distributj@rA clear recipe of this kind is given by

Kenkre [15] in the context of granular materials.

This chapter is organized as follows: In Séc.]3.2 we preseeatad the well known
ways of showing how the generalized master equation aresn, in Sec[_3]3, we give
the prescription that we use in solving for the memory fumgdiin the &ective medium
descriptions. The next three sections are devoted to edilcglthe time dependence of the

memory, finding the memories for some specific distributje(f3, and comparison of the
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predictions of the £ective medium theory with numerical findings, respectivétySec.
3.4, we explore the significance of long-range, or higheegrchemory functions with
respect to the nearest neighbor memory function, whichlis#ed by a discussion on the
effects of finite system size in Selc. 13.8. In SEc.] 3.9, we pressntts for the cases in
which the disorder is correlated so that links dfefient locations have transfer rates that
are not independently distributed anymore. Finally, weegisme concluding remarks in
Sec[31D.

3.2 How does the generalized master equation arise?

The Master equation, describes an evolution in which theeatirstate of the system is
determined entirely by its previous state. The type of psses that lead to this kind of
evolution are classified as Markov processes. In many siugtthe state of the system
in the future depends on part of its history and its evolutiuld poorly be described
by a master equation. For instance, if transport in a syssecoherent to some degree,
history dependent evolution will arise |[5,183]. In thes@aitons, one may use a general-
ized master equation that would respectriiEmory gect At this point, it is important to
understand how generalized master equations emerge, iy arsly first principles. Gen-
eralized master equations naturally arise while switcbietgveen microscopic and macro-
scopic descriptions of a system. The memory appears singglyuse of concentrating on
the evolutions of a part of the system and ignoring the restasvill see shortly. The
generalized master equation comes about naturally basdteamderlying microscopic
dynamics, and only under certain conditions reduces to thgten equation. In order to
show how these conclusions are drawn, we will follow Zwar{8@] and make use of
the projection operator technique that he originated aleitiy Nakajima [87]. Projection
operator techniques have been successfully used in mablepre in statistical mechan-

ics not only involving the transition from microscopic dynies to macroscopic dynamics
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which provides an understanding of the origin of irreveitgib[{88], but also for practical
problems|[89, 90, 91]. For a generalization of this techaj@ee Kenkre [83] and Kenkre
and Knox [84]. Letu be the density of states of a system. Thienill evolve according to

the Liouville equation,

ou .
_— = - L = H,
g iLu = {H, u}

where{-, -} stand for Poisson brackets ahdis the Hamiltonian. This equation governs
the evolution of the microscopic states of the system. Tlatwum mechanical analog of
the Liouville equation is the Von Neumann equation and iggigy

du

i
grn

=[H, u],

where [, -] is the commutator andnow stands for the density matrix of the system. For the
purpose of this discussion, it does not makeffedence to consider classical or quantum
mechanical evolution. Here, we consider the quantum meciasituation for notational
brevity. Suppose that we are only interested in the evalutioa part of the system. Let
us denote this subset of the whole systenutgnd the rest by, so thatu = U’ + u”. The

projection operators are defined as

/

Pu=uU,

1-P)u=u".

We can apply the operatofdand(1 — #) to both sides of the Liouville equation and use

u=u + U’ and obtain

ou’ . .
- _ L 4 _ L /I,
ot IPLU —IPLu
ou’ . .
(;Jt =—-i(1-P)LUL -i(1-P)LU.

We can formally solve fou” and substitute it in the fferential equation fou’, giving

ou
ot

{
= —iPLU - iPLe "Ly (0) - f dsPLe 9Pl (1 _ p) Lu'(s) (3.4)
0
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Note that Eq. [(3}4) does not depend whexcept at its initial value. 1f/’(0) = 0, then

Eq. (3.4) would be closed i’ and we can solve for it with whatever method is avail-
able. The conditions under whiet'(0) = 0 would depend on the nature of the particular
problem. For instance it may correspond to an initial phasedomization in the quantum
mechanical system being considered| [92, 93]. If we tBkas an operator that returns
the diagonal part of the matrix that it acts on, the first temnthie right hand side of Eq.
(3:4) vanishes akU' is an df diagonal matrix. One can easily see this by calculating the
matrix elements of.u’ = HU — uUH. From now on, we will taker’(0) = 0. This also
corresponds to arguing that the subset of the system thatevatarested in actually is
the whole system to begin with.fladiagonal elements can naturally develop in time, but

we will keep looking at the diagonal part only. Then we arévath

%‘{ __ fo dsK(t - U(S). (3.5)

where
K(t—s) = PLe'™9@L (1 —p) L,

which is the generalized master equation, as the diagoaaiezits ofu’ are the prob-
abilities of finding the system in a particular macroscopates In order to make fur-
ther progress, we need to make approximations or consideeafie system. Note that
Eq. (3.5) is a system of equations for the probability of fimgihe system in then™" state,
asPn, = U, One can put Eq.[{35) in a gain-loss form so that it takes emtbre fa-
miliar look of a generalized master equation. To do this, caretake the diagonal matrix
elements of both sides of Ed. (B.5)

/ t
M = 4P _ —f dsmiK(t — Su'm).
t dt 0

(m-—

where we use the Dirac notation, and then express the mé&meatsimK(t — s)u’|m) in

terms of the probabilitieBy(t).

Now we turn our attention to how the projection technique lsaremployed to study

transport in a disordered lattice. The discussion of thedsted procedure mainly follows
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that in [9]. Suppose that is a matrix of random transition rates. Then the probabgitf
finding the random walker at the lattice sites are given bynthster equation

dP
o TAP=0. (3.6)

whereP = P(Py,P,, Ps,...). We are not concerned with random walk in a particular
random lattice but in the one that is obtained by ensembleagireg over all possible
realizations of the random transition rates. Suppose hHeaptojection operataP takes
the ensemble average over transition rates when it actseamaltrixA. We start with Eq.
(3.8) and apply the operatofsand(1 — #) like we did above and obtain

t
@ = —PA[PP] + PA f dse@ A (1 P) A[PP]. (3.7)
0

In order to get this result, we assumed that we start wikhvehich is already ensemble
averaged over all of its possible realizations, so {fiat ) P(0) = 0. From now on, we
will put angular brackets around ensemble averaged qiemtd.g. PP = (P), PA = (A).
Taking the Laplace transform of Eq._(B.7) and rearrangingse

eP — P(0) = BP,
B(e) = —(A) + (Ale + (L - P) A [A - (A)]).

Note that the matriB describes a translationaly invariant system unfkdnverting the

Laplace transform, we get
t
dp = f dsB(t — ) P(s). (3.8)
dt 0
Let
Bmm(t) == Z Tnm(t),
n

Brmn(t) = Fmn(t).

Then we can express E@. (B.8) as

dPm(t)
dt

f | ds > [Fn(t = 9) Pa(S) = Fam (t = 9 Pn(9)] , (3.9)
0 n
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which is a generalized master equation in the more famiartpss form. This shows that
probabilities that are ensemble averaged ovEertnt realizations of the disorder obey a
generalized master equation with space-independent nydomastions. Therefore, in this
approach, the problem reduces to expressing the memortidaag,,(s) in terms of the

distribution of random transfer rates.

3.3 The dfective medium recipe

Probability of finding the random walker at thé” site in the &ective medium approxi-

mation is given by
dPy, !
L f ASF (t = 9 [Prna(S) + Prna() — 2Pu(9)] - (3.10)
0

The quantityP(t) should be interpreted as the probability of finding the mandvalker at
sitem of the ensemble averaged chain, which is translationabriamt in space. Our aim
is to solve for the memory (t) given a transfer rate distributiqr{f) which characterizes
the disorder in the system. In order to achieve this, we wilkenuse of a self consistency
condition also emplyed by many others ( see ref. [10] andeefes therein). Suppose
that we replace the memory function between gitesdr + 1 with f5 (t — s). This simply
means placing a link betweerandr + 1 whose transfer rate i With this replacement,
the equation foP,,(t) becomes

dPn _

dt

+mm{£3§ﬁ—swm@—H@memm—amﬂ

tﬂdgﬁFﬁﬂ%ﬂ©+Pwﬂ$—ﬂ%@]

+%4Ld§u—maw—adm—fmm—adm) (3.11)

Let nm(t) be the solution of EqL(3.10). It can explicitly be written a

M(® = D Um-a(OPa(0)
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Evidently 3, ¥mn(t) is the Green’s function for Eq[(3.11). Therefore, its $iolu can

formally be expressed as

Prn(t) = 7m(t) + { f 45y mnt-9

s [ 4 (= 9[Pa9) - P(9] - T (Pra® - PL0)

X

t
+ 6n,r (f dsﬁ:(t - S) [Pr(s) - Pr+l(s)] — f (Pr(t) - Pr+l(t)))]}-
0
(3.12)
Taking the Laplace transform of Eq. (3112) and doing algebranipulations, we obtain

711 (€) =1 (€)

Frn(6) = i (€) + A1 (D T (€
o N oA (3.9 - 30(9)

(Jm—r—l (€) - Jm—r (E)) ) (3.13)

whereA = 7 (e) — f, tildes denote Laplace transformed quantities amlthe Laplace
variable. Here comes the key point in this discussion. Thers®term in Eq. [(3.13)
stems from the fact that we replaced one of the links in ffecgve medium chain by one
with transfer ratef. Therefore, we introduced a defect into to the otherwiseslegionaly
invariant chain. If we average both sides of Hg. (8.13) dvasing the distributiop(f),
then this term should vanish, because this procedure esstbe translational invariance
by averaging over all possible valuesfgfand for a translationaly invariant chain we know

that Py, (¢) is simply equal taj, (¢). Therefore, we have

—= T+ (6) - (6) -~ -
(Pm(e)) = (ym( )) <A 7 1~ — m-r— (5) - m—r( ) >,
(= oA (72 (@ - 0 @) -t (€)= ()

P (€) =im(e),
<A M1 (€) = 7r (€)
1+ 2A (41 (€) — Yo (€)

(Jm—r—l (€) = U (E))> =0, (3.14)
where

(= fo“dfp(f)[.]_
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Note that averaging does ndfect Py, (¢) or 7 (€) as they are quantities that pertain to
the ensemble averagedfective medium chain. The expression given by Hqg. (3.14) is
a self consistency condition, as averaging over transtesraf the links with respect to
po(f) should give rise to the memory functioﬁs(e) in the first place. The self consistency

condition can be further simplified by noting that it shoutalchfor all values ofm andr,

giving

A
<1+ INCAQ) —Jo(e))> )

or

~ 7?(6)— f
dfp(f — — — =0. 3.15
e 2 @- )@ -n) 349

Eq. (3:I5) can be put[16] in a more compact form by using teetfaaty, (¢) satisfies
the Laplace transform of the generalized master equatipn{E&I10), so that
eo(€) — 1= F (€) (1 (€) + 1 (e) — 20 (€)).

where we used(0) = 1. This enables us to expregs, (¢) in terms ofy, (¢) and leads to

o) 1
fo dff+f(e)_%(e)+g(e)’ (3.16)

where

(@=F0 2
1-ego(e)

Eq. (3.16) is a very important result [16], as it provides uthva way of calculating
¥ (t) which can then be used to obtain various transport questiike the time dependent
diffusion codicient. In this section, we are interested in quantities geatain to an

infinite 1-D chain, for which
o (€) = 1/ €(E+4%(€)) ,
and

() =

( + 1+ 4F (e) /e).

-blm

68



Chapter 3. Contributions to thétective medium theory of transport in disordered lattices

In the subsequent sections, we explore the time dependércé)dy solving Eq. [(3.16)
for all e and taking its inverse Laplace transform. In many situ&jaarrying out this
procedure is possible only numerically because eithergithia integral is cumbersome,
or the equation fofF (€) is transcendental. However, it is very easy to get inforamati

about thes — 0 limit. In this limit, ey (¢€) vanishes and thereforébecomes zero, giving

0 f ¥ (0)
or %(O) = (1/f)"L. Note thaﬁfv(O) is equal to the asymptoticftlision codicient as it is
the integral of the memory function from 0 to. This well known result is actually an

exact solution in 1-D and was derived in severdlatent ways([68, 94].

In the next section, we will see what we can infer ab@ut) with the knowledge
we already have, before considering specific distributgri$ and calculating the corre-

sponding memories.

3.4 Time dependence of the memory

The solutions of theféective medium equation (3.10) need to be consistent witbettod
the Master equatiofi (3.2) that are averaged ovéemint realizations of the disorder. They
should give the same results for the derivativeBg(t) in the limitt — 0 as argued in ref.
[16]. That is to say

b

t—0

dt

d"Ph(t)
dtn

>_ d"PR"" (1)
t—0

wherePM(t) andPEMT(t) obey the master equatidn(B.2) and tfeetive medium equation
(3.10) respectively. Without loss of generality, we canetdke initial position of the

random walker to be zero, i.€2,(0) = 5mo. As shown in ref. [[16], with this choice we
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have
M
<de(t) > = —(Fm+ Frug) = =2(f) (3.18)
dt |,
EMT O+
dp”ln OF = [ 457t - 91Pra(9 + Prra(9 - 2Pu(). (3.19)
t—0 0-

We immediately observe that the right hand side of Eq. (3ch®) be finite only ifF (t)

contains a-function centered at= 0. Therefore, we must have
Ft)=as()+4(1),

wherea is a constant and(t) is a function of time. Using Eqs[ (3.8, 3]19) and0) =
5 dsF(s) = (1/f)~* we conclude thaf[16]

F (1) = (F)s (t) — Q(1),
fo dsQ(s) = (f) — 1/¢1/f).

Note that(f) — 1/(1/f) is always greater than or equal to zero as

(i H-1

fy—1/(1/f) = ,
()= 1/1/1) an

and

(F)fhH>(ffh=1

where the last the relation is a form of the Cauchy-Schwaeguality, ||al| ||bl]| > [labi.

Proceeding in the same manner, and equating the secondttersgive

M
<dpé“t(t) > = 4(f2) + 2(f)? (3.20)
t—0
EMT
dPn_OF  _ 6(f)? + 2Q(0), (3.21)
dt t—0
which yields

Q(0) = 2(¢f%) —(£)?).
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Therefore, one can keep calculating the higher order der@sof Q(t) att = 0 and
approximate it by a Taylor series. A simple approximatioffid) can be made by substi-

tuting an exponential function fap(t) with appropriate parameters [16]
Fapxlt) = ()S(0) - 2(<f2> _ <f>2) e t(2=OM)/(H-/H7) (3.22)

which satisfiesfom dsF(s) = (1/f)~1. We will compareFap,(t) with its numerically found

counterpart in the following sections.

3.5 Calculating the memory functions for specifigp(f)’s

We consider three fferent types of transfer rate distributignd) characterizing the dis-
order. A summary of the quantities related to each distigouthat we will use in the

calculations later in this section is given in Tablel 3.1. Titet one is a sum af-functions
M
p(f) = ao(f - f),
i=1

for which the transition rates take oneMfvaluesf; each with a weighd;, with Zi“ﬂl i =

1. For convenience, we will consider the céde= 2, so that

o(f) = ad(f — f)) + (L —a)s(f - ). (3.23)
The distributionp(f) for this case is shown as the two arrows in Fig.] 3.1 and will be
referred to as the “double-delta” distribution from now on.

The second form g(f) we consider is the gamma distribution given by

n+1

__7 Ney

A plot of p(f) is shown for the parameter values- 1 andy = 4 in Fig.[3.1.
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The last particular case we consider is the triangularibigion given by

(f-fo+fo)/f2  fo—fo<f<fo

p(F) = (=f + fo+ fo)/ T2 fo< f < fo+fy (3.25)

0 elsewhere

In this casef can only take values betwedg+ f, and fy+ f,. As for the parameter values:
f, is half the length of the base of the triangle agds the value of the abscissa at which
the distribution peaks, which also is equal to its mean valle distribution is shown in
Fig.[31 forf, = 0.3 andf, = 0.2.

double-delta Gamma Triangular
<f> a/f1+(1—a/)f2 n+1/’)/ fo
(12 | af2+(1-a)f2| (n+1(n+2)[y? f2+ £2/6
- _ 2\ fo/To
V) Sl e L n/y fyoIn 1((1 + 2 (1- ) )

Table 3.1: Summary of the distribution properties that a@oun the calculations.

5, ;
Il\ gamma
0 — — —triangular
] \
I \
< \
S /
< 25 i \
/ \
\
/
/ \
ot A A
0 0.5 1

f

Figure 3.1: lllustration of the threeftierent probability distributions(f) mentioned in the
text. The two arrows show the valuesfofor which the double-delta distribution peaks.
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3.6 Comparison of the #ective medium theory and nu-

merical solutions

After obtaining the memory functiof (t) we can calculate various observables that can
be used to compare the predictions of tifeetive medium theory (EMT) and numerical
results. In order do so, we need to solve EﬂB.leToﬁt) given a particular distribution
o(f). A couple of observables that can directly be calculatechfthe memory function
are the mean square displacement, denoted by M S&r(d the time dependentfilision

codficientD(t). In discrete space they are defined as

MSD() = (ma?) = » (Ma2Pn(t).

a? d

wherea is the distance between two lattice sites. The way thesetijearare related to
F (t) can be found by summing Ed.(3110) oweand solving for the MSOJ. This yields,

MSD(t) = 2a? ftdsfs?”(u)du, (3.26)
0 0
D(t) = & ft F(s)ds (3.27)
0

Note thatlim,_,.,D(t) = 7 (0). In this chapter, we will be using the dimensionless f®oh
MSD(t) andD(t). In order to simplify the notation, we are going to drop thetbrs ofa,

i.e. a = 0 throughout this chapter.

In the rest of this section, first we will be interested in campg the predictions of
EMT with numerical solutions for diierent types of disorder characterized by the three
o(f)’s mentioned above. In doing this, we consider initial dtinds that are of dferent
nature which give rise to disparate ensemble averagingrsetie Next, we will explore
how good the exponential approximation to the memory, giwekq. [3.22), is and when
the EMT does poorly. Finally we will compare the self prop@ags predicted by the EMT
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to those that are calculated exactly for a specific reabmati the random chain. This last
task is important as it provides us with another way of tgstimee EMT and as the self

propagators are used in calculating many observables isytem.

In order to obtain the time dependenffdsion codicient predicted by the EMT, we
need to solvegzﬁﬂ@ fof (¢), calculate its inverse Laplace transform and substitte th

result in Eq. To test the validity of the EMT predictions, we calcul&@é)/D(0)

numerically by solving the Master equatidn(3.2).

In order to solve the Master equation numerically, we takeaathge of the fact that
the matrixA in Eq. (3.6) is real and symmetric, and therefore, is diagpalle and has

real eigenvalues. Lép,) be the eigenvector &k corresponding to the eigenvalugthen
Algy) = i),
and|¢,)’s are normalized such that
(Daldr) =dan.
Therefore, the solution of Ed. (3.6) can be written as
P(t) = > e 1g) (61 | PO)),
1
where we used
A= Ale) @il
1
et =" eMp) (@il
1

Of course, this is not the only way of numerically solving E8.6), but it turns out that
this method is very fast as long as the system consists ojtest thousand lattice sites

or less.

LAt this point, it is useful to note that dividing the Laplacarisform of a function by corre-
sponds to integrating that function from Ottm time.
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As the EMT is concerned with ensemble averaged quantitieseed to make sure
that an ensemble averaging scheme is built into the nunhenbation obtained from the
Master equation. In this respect, we will consider two kinéigitial conditions that are
used to solve the master equation numerically. The first olidbe referred to as the
“localized” initial condition and it simply means that thendom walker initially occupies
one of the sites, for instance th& 8ite. In order to calculat®(t)/D(0) from the mas-
ter equation, we will numerically solve it for manyfiiirent realizations of the disorder
and ensemble average the results. Therefore, the ensevebdgimg involved in this pro-
cedure makes sure that the quantity we are calculatingipeta the &ective medium
chain so that it can be compared with the predictions of theTEMe second type of

initial condition we will take up is one that is extended irasp, as is given by

l H
Pn(0) = 5——= > 6mr.
m(0) u+14d e

By solving the Master equation with an initial condition ¢iig kind, we eliminate the
need for ensemble averaging ovelifelient realizations of the chain because of the follow-
ing reason: as the probability of occupation of the randornkevas dispersed over many
different sites right from the beginning, the random walkeraalyesamples a wide portion
of the random chain even at small times, which is equivalerdding an average over
different realizations of the chain. The main point in usingigigiextended initial condi-
tions is that in a physical system, we are generally intetest one particular realization
of the disordered structure under consideration. Thesefrsemble averaging over many
configurations may not be possible or meaningful. Howewvee, @an experimentally ar-
range situations in which the initial condition is spread, ethich leads to the ensemble
averaging in the way we described above, so that the predgtf the EMT can still be

meaningful.

Let us begin with the consideration of localized initial ddions. Substituting the
double-delta distribution given by Ed. (3]123) in EQ._(3.264 doing the integral, we get
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a cubic equation for the Laplace transform of the memory

F2—2F (2% /e + T+ fo) + F (8nfufa/e + (2f1fy + (fy + £2)? = 7))
—Af2 7€ — (2f1 (1 + f2) - 2nfif2) = O,

where
n=0Q-a)f,+af,.

We use the cubic formula to solve this equation &%(e) and then calculat®(t)/D(0)
from it. For the gamma and triangular distributions, theatimns we get fofF () have to
be solved numerically, as they turn out to be transcendeniaztions. This can done by
using high precision arithmetics so that the results obthare of practical value. In each
case, after obtaininﬁ (e) either analytically or numerically, we divide it yand take its

inverse Laplace transform numerically, which yiel0i&)
= t
L—l{TT(E)} = f dsF(s) = D(t),
0

where£! denotes the inverse Laplace transformation operator asefilsed as

LH (M) = % f T et (€),

y—ieo

wherey is a positive real number larger than the real parts of ajuderities of H (e).
The integral on the right hand side is referred to as the Briommtegral. Undoubtedly
the Laplace transform is a very useful tool in solving linddferential and integral equa-
tions by reducing them to algebraic equations. Unfortugataking the inverse Laplace
transform of the solution can be afittult task when it cannot be performed analytically.
Most of the cases of interest, including ours, fall into ttasegory because of the compli-
cations involved in doing the Bromwich integral involvedtire inversion process. There
are various ways of performing the inversion numericallgt #re nature of each problem

determines which one is the most suitable. Some of the widsdgl methods are known
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as the Fourier series [95], Talbot [96], Weeks|[97], and G&&tehfest[[98, 99] methods.
We chose to use the Gaver-Stehfest method because it onliyeedhe evaluation of the
Laplace transform at real values @fand is reliable when the inverse transform does not
oscillate. We know from our numerical experiments that ertde averaged mean square
displacement, diusion codficient and probability distribution function are all monoio
functions of time. Below is a brief outline of the numericagtinod used, as explained in
Abate and Whitt[[100]. They start with the Bromwich integral

H(t) = % fy y: dee'H (),

and make the change of variabkes et, and obtain
1 f o dseH (s/t). (3.28)
(2ri) t Jigy-ico)

The next step is approximating the exponential function byra of partial fractions [61]

ex y X (3.29)

n
ak—S
ko “k

wherewy and ax are complex numbers ang’s are distinct, so that the approximation
of € hasn + 1 simple poles and the approximation gets bettem acreases. There are
various ways in which one can choaggandwy to approximates® better, and basically

the specific choice determines the name of the Laplace iovensethod. Substituting the

approximation Eq.[(3.29) into EJ._(3]28) and doing the iraégrx,

Hy (1) = % S wnH (@d). (3.30)
k=0

Eq. (3:30) is am™ order approximation to the inverse Laplace transforriofe). It is
quite a general result in this form because of the freedorhenchoice of the complex
numbersv, anday. In the Gaver-Stehfest methad, ande, are taken to be real numbers.

Note that this means the Laplace transform will only be emad for real values of its

2Which is obviously 2i times the residue at each simple pole.
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argument. The specific way in which Gaver|[98] used to appnake/(t) gives [100]

22 _/1n2
Hy(t, M) = S Z(kﬂ (kT)’
k=1

Geo= (—1)M minz(k’:w T MV(25)( ]
< | MEUGN G k=)
j=l(k+1)/2]

whereHy(t, M) is the approximation toH(t) and|X] is the greatest integer less than or

equal tox. Observe that the magnitude of the terms in the alternagnigscan be very
large. Therefore, one needs to do the arithmetic with quigtie precision to obtain reliable
results. When the functiof(t) is bounded, it is possible to approximate the accuracy of
H,(t) and the number of significant digits that should be used loeae that accuracy
[101]. According to Abate and Whitt [100] the precision r@qd to sum the series, i.e.
the number of significant digits, isZM while the precision of the resulting expression
is 0.90M. Practically speaking, if one uses double precision in Hieutations, the value

of M should not be larger than 7. As the probability distributionction and difusion
codticient are both bounded functions in time, we can use theséiség reliably perform

the Laplace inversion numerically.

Following the steps that we described above, we calcéig D(0) both numerically
and by the EMT for the double-delta, gamma, and triangulairidutions. Numerical
results are carried out by calculatibgt) for over 20000 dierent realizations of the ran-
dom chain with localized initial conditions and averagingeioall of them. Results are
displayed in Fig[Z312. There is excellent agreement betweemerical results and the pre-
dictions of EMT for all times. Therefore, it looks like EMT cde used to make accurate

predictions of time dependent transport quantities su¢headitusion codicient.

It is natural to expect that for some parameter values, fleetevze medium approxi-
mation would break down. We will explore this shortly. Beddhat, let us consider the
situation in which we employ spatially extended initial ditions and do not average over

different realizations of the chain. Suppose that we use aalindgindition of following
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Figure 3.2: Normalized time-dependenffdsion codicient as a function of dimension-
less timer = (f)t, for different types of disorder. From top to bottom, solid lines cor-
respond to EMT predictions and open circles represent theenaal solutions fop(f)
being a double-delta distribution with/f, = 0.5 anda = 0.5, a triangular distribution
with f, = 0.3, f, = 0.2, and a gamma distribution with= 1. The agreement is remarkable
in all of the cases for all times. The numerical solution igrfd by using a localized initial
condition and averaging over 20000 calculation®@f)/D(0) each involving a dferent
realization of the disorder. Dashed lines on the right shwevasymptotic values of the
diffusion codicient predicted by the EMT, which is equal¥q0).

form

1 K
Pm(0) = Omr- 3.31
n(0) 2u+1; m (331)

With these initial conditions, we expect that the numersmaltion of the Master equation
for a particular realization of the disorder agrees withET predictions. The non-zero
width of the initial condition should play the role of ensdmlveraging over dlierent
realizations of the chain, as discussed earlier. In ordegdbthis idea, we generate a dis-
ordered chain whose transfer rates are drawn from the daldile distribution. Always
using the same chain, we calculdt)/D(0) by varying the width of the initial condi-
tion, which is 2« + 1 as seen from Eq[(3.81). Then we calculate the integratatives

difference Er, between the EMT predictions f@(t)/D(0) and numerical solutions with
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different initial condition widths. This quantity is defined by

B 00 DEMT (S) _ DEX (S)
Er = Lx’ DEX (9 ds

wheres = In((f)t), and DEMT(t) and DEX(t) are the EMT prediction and exact numer-

(3.32)

ical value of the dfusion codicient. As Fig.[3.B shows, numerical results agree with
EMT as the width of the initial condition increases. The nfaguare shows thaEg drops
quickly with the initial condition width and the inset showxt)/D(0) for two specific
initial conditions withu = 5 andu = 50. These plots in the inset demonstrate that the
results obtained for the narrower initial condition (cressditers substantially from the
EMT predictions whereas those for the broader initial cbadi(open circles) agree well
with it.

2255
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= g
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Figure 3.3: The main figure shows the behavioEgfas given by Eq.[(3:32) which is the
relative diference between EMT predictions and numerical results fatiafy extended
initial conditions calculated for a particular realizatiof the disordered chain. It clearly
shows thaEr monotonically decreases with increasing initial conditwidth. The inset
shows the time evolution dd(t)/D(0) for a couple of initial conditions, one of which is
narrower (crosseg; = 5) and the other being broader (open circles; 50), along with
the EMT prediction. The results that correspond to the bepaitial condition agree
surprisingly well with the EMT prediction for all times.

Next, we will explore how the exponential approximation ie memory, Eq.[(3.22)
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Chapter 3. Contributions to thétective medium theory of transport in disordered lattices

compares with the exactly calculated memory functions ahdnithe &ective medium
approximation breaks down. In order to address the first e¢hissues we need to find
an alternative way of calculating the memory without usirgg §3.16). Our aim is to

calculate the matrix elemertg/,,, (t) in
P t
d— +f dsWw(t - 9)P(s) =0,
dt 0

whereWmn(t) = =Frn(t), Winnt) = 3, Fam(t) andFa(t)’'s are the memory functions we

are looking for. The solution of this equation in the Lapldoenain can be expressed as
P =(e+W () PO) (3.33)

— 1. . : : . : :
where(e + W(e)) Is a translationaly invariant matrix. Meanwhile the mastguation
that describes the evolution of probabilities in a disoedeshain is

dP
o TAP=0.

whereAn, = —Fmp andAym = X Fom @andFon = Fin's are independently distributed

random variables. Its formal solution in the Laplace donmsin
P(e) = (e + A P(0).

If we average both sides of this equation over each possthblezation of the disordered

chain, we get
P (€) = ((e + AHP(0). (3.34)

Note that((e + A)~*) should be a translationaly invariant matrix because enkeaverag-
ing wipes out all inhomogeneities originally preseninNote that Eqs.[(3.33) and (3134)
should be equivalent as we are arguing that tfecéive medium equatiof (3.33) describes
the evolution of probabilities in the ensemble averagednchigherefore

e+ A = (e +W(e)
W(e)=e—((e+A™™

Fon(e) = [(e+ A e . (3.35)

n
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Therefore, what we need to do to get the memory functignst) is to perform the average
in Eq. (3.3%) for a large number (ideally infinite) offidirent realizations of the matrix
A, and then doing an inverse Laplace transformation. In Eidl, ®e display both the
exponential approximation given by Ed. (3.22) and the eramtnory obtained from Eq.
(3.35) wherp(f) is a double-delta distribution. The agreement betweem ibevery good,
but in some cases exponential approximation may lead toeorss results because of its
simple nature, as we will see shortly. We will also make usepf(3.35) later to calculate
memory functions while investigating non-nearest neigithemories andféects of finite

system size.

fot

Figure 3.4: Exponential approximation to the memory fumtttalculated by Eq[{3.22)
(dotted line) and its exact counterpart given by Eq. (3.86)id line), as a function of di-
mensionless timét. The agreement is good considering the simple nature oftpeoa-
imation. p(f) which characterizes the disorder in this case is a doudlie-dlistribution
with @ = 0.1, andf;/f, = 10.

The results we displayed so far show that the agreement beta#® T and numerical
calculations is remarkably good. However some discrepahoyld be expected at least
for certain values of the parameters. We find that tifkedénce betweeB(t)/D(0) found

numerically and predicted by the EMT, which from now on withgly be referred to as
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differenceincreases with the fraction of links that have very low sf@n rates. In order to
study this &ect quantitatively, we take( f) to be a double-delta distribution with= 0.5,
so that it is equally likely to find either of the ratésand f,. We choose this value af
on purpose as it makes the configuration maximally disodjeard we are interested in
the cases for which theffective medium approximation may break down. In Hig.] 3.5,
we show the comparison between EMT and numerical resultddoreasing values df
so that from top to bottom the ratify/ f, takes the values 0.5, 0.1, 0.01. Note that the
EMT predictions deviate from the numerical findings more aerate as one of the rates
gets closer and closer to zero. Therefore, if one of the rategual to zero, the fierence
should be maximal. The main graph in [Figl3.6 shows the meaarsglisplacement as a
function of dimensionless timg )t when one of the rates is equal to zero with concentra-
tion @« = 0.01 and 0.1, again for a double-delta distribution. Theretaereasons why
we chose the mean square displacement as the observabkdimstthe dfusion codi-
cient. First of all, when the EMT predictions deviate morenirthe numerical findings,
the magnitude of deviation is larger for the mean squardatement than what it is for
the difusion codicient, as the latter is the integral of the former. Secondb/,can ex-
actly calculate the saturation value of the mean squaréagdisment when one of the rates
is zero. Therefore, we can easily compare the exact sainraéilue of the mean square
displacement with the EMT predictions and the one obtainad the exponential approx-
imation to the EMT memory to further test its applicabiliys explained in ref.[[16], in
order to obtain the saturation value of the mean squareatispient in the exponential
approximation, we substitute EQ. (3122) in Hq. (3.26) to get
oy e 2 gy (¢Fy—c/fy

(1/f) (f2) = (f)?

_h-fy
2((f3 - (1))’

whose long time limit gives the saturation value is

(f)?
(f2y — ()2

) (1 -~ e‘t/T)

b

t|im<mz> =
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where we used the fact that/ f)~ vanishes when one of the rates is zero. It is clearly
seen in the main graph in Fig._B.6 that the saturation valadigted by the EMT is dif-
ferent from what is found numerically. The inset shows theamsquare displacement as
a function of time fore = 0.1 case but on semilogarithmic axes, so that the deviation is
clearly visible. Dotted and solid vertical lines corresgdo the prediction of the exponen-
tial approximation to the EMT and the exactly calculatedisztion valug, whereas the
solid curve is the EMT prediction. Apparently EMT predictgare not reliable when the
chain has broken bonds. Not surprisingly, the exponenpipt@imation is not accurate

either, as it is an approximation on the EMT.

1072 10° 10°

Figure 3.5: Normalized dliusion codficient is plotted as a function of the dimensionless
timer = (f)t for the double-delta distribution. Solid lines correspém@&MT predictions
and open circles correspond to numerical results. Fromddpmottom, the ratiof;/f,

is equal to 0.5, 0.1, and 0.01 with = 0.5 being equal for all of them. Note that the
agreement between EMT and numerical results gets slighihgevas the rates become
more and more disparate (when one of the rates gets closeias®t to zero).

As we mentioned in the introduction of this section, thereng more quantity that
we are interested in calculating: the self propagators. Waldvlike to see how well
EMT predicts the self propagators for the disordered chaithay are involved in the

calculation of many observables relevant to a system. Wewité a particular realization

3This is equivalent to calculating the average size of cotaeclusters of links.
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Figure 3.6: Mean square displacement as a function of dioeless time, for a double-
delta distribution withf; = 0, f, = 0.2 and two diterent values of. Again, solid lines
and open circles correspond to EMT predictions and numeesalts, respectively. Ap-
parently, the saturation value of the mean square displecepredicted by the EMT is
different from the numerical results. To emphasize the devistween them, in the inset
we plot thex = 0.1 by itself on semilogarithmic axes. In addition, the solatihontal line
correspond to the exact value of the long time limit of the meguare displacement (sat-
uration value) while the dotted horizontal line shows thieigaf its counterpart obtained
by using the exponential approximation to the EMT memory 8322).

of the disordered chain and calculate self propagatoredih 1 sites around the zeroth

site. Then we average over them to get the quantity

1 #
Y, = 2n+1 Z Yee.

{=—p

As we average over more and more self propagatorsfireint sites, we would expect
¥, to approach the self propagator that the EMT predicts foeffextive medium chain.

That is to say,
1 :u
Yoo = lim =—— 3"y, (3.36)

Should be approximated well by th&ective medium self propagator. In Fig. B.7, aver-

aged self propagators calculated numerically for a pdeiaealization of the disordered
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chain is shown fop = 3,9,15,25 and 401 for a chain with 801 sites. The comparison
between numerically found self propagator, for= 401, and the one predicted by the
EMT is shown in Fig[Z3.8 by open circles and the solid line ezspely. Good agreement
between them confirms the hypothesis that the self propagaten by Eq. [(3.36) is ap-
proximated well by the EMT. EMT provides us with thiextive transfer rat€; = F 0)

for the disordered cthn This means, for long times, we can replace the disordered
chain by one which has uniform transfer rakeg. Then it is natural to ask what the dif-
ference is between the time evolution in a chain that hasotmitransfer rate$ o, or
equivalently uniform Markfiian memoryF4(t), and in the &ective medium chain with
non-Markdfian memory# (t). The dashed line in Fig._3.8 represents the self-propagato
for a chain which has uniform transfer rateg;. Therefore, the dierence between the
time evolution shown by the dashed and solid lines are duestoany dfects, which are

significant at intermediate times.

3.7 Significance of higher order memory functions

We have implicitly assumed that long range memory functionthe dfective medium
equation[(3.10) can be neglected and expressed all of ocultgés terms of the nearest
neighbor memory functioff(t) (without using the subscript 1). In this section we would
like to verify the validity of this assumption by calculagihigher order memory functions
Fo(t), F3(1), ... that connect sites that are farther apart. We consiaérain of 100 sites
with disordered links whose transfer rates are charaetiy a double-delta distribution
with @ = 0.5 andf,/f, = 0.1. By using Eq.[(3.35), we numerically calculate the memory
functions#, forn = 1, 2, 3, and 4 and display the results in FigJ] 3.9. Eigl 3.9e)s the
comparison between EMT nearest neighbor memory (operesj;chnd its numerically

calculated counterpart. We note the excellent agreeméntba the two, which gets even

4Fq is equivalent to the dliusion codicient divided bya? but the value o is irrelevant in our
calculations so we may as well take it to be 1.
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self propagator

10°° 10° 10°

()t

Figure 3.7: Average self propagators for a particular raditon of the chain as a func-
tion of dimensionless time. Disorder is characterized bypuabie-delta distribution with
fi/f, = 0.1 anda = 0.5. A total of 401 self propagators at the 200 sites to the ledt a
right of the 0" site are calculated numerically. The dashed line showswage of all of
the 401 self propagators whereas the solid lines corresjpoanekraging over 3, 9, 15 and
25 (from top to bottom) of the self propagators around thgiori

better as the size of the ring increases. The first few highdgranemory functions are
shown in Fig.[3.B(b), that are calculated numerically. Aes $igale ofy-axis indicates,
the amplitude of higher order memaories are negligible camﬂ)a)ﬁ (e), especially for
€ > 1 ande < 1. Therefore, it is reasonable to discard higher order mgrwrctions

and calculate the observables using the nearest neighbnoméunctionﬁ (e).

3.8 Hfects of finite system size

As we have seen previously, EMT correctly predicts the langetdiffusion codicient
for a disordered infinite 1-D chain, which is given ﬁ?;(O). In this section we describe
the results of applying the EMT to a system of finite size, @ored in ref. [16]. We
consider a ring oN sites with periodic boundary conditions and for simplicitye choose

the transfer rates from a double-delta distribution witk 0.5. Laplace transform of the
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Figure 3.8: Self propagators as a function of dimensiortiess for various cases. Open
circles represent numerically found average of the 401melbagators mentioned in the
caption of Fig[3.l7. Solid line corresponds to the EMT prédit The dashed line shows
the behavior of the self propagator for a chain has transfasFq; throughout. It is
included to emphasize théects of having a nod-memory.

self propagator for a finite ring dfl sites is given by

~ 1 1
vole) = N Zk: €+ 27 (€) (1 - cosk)’ (3.37)

In order to find the fective transfer rat€q = 7 (0), we need to solve Eq.(3116) with
calculated with the propagator given by EQ. (3.37). Noté lina._o eyo (€) that appears
in £ is the asymptotic value afy(t), the probability of finding the random walker at thH& 0
site at long times, which is simply equal t¢N. Therefore, Eq.[{3.16) becomes

1N (D
Fert N-1Jo f+ Fea(rly)

After evaluating the integral with(f) = ad(f — 1)+ (1-a)5(f — f,), we obtain an equation
for the dfective transfer rate

-1
N-1

N

a 1-a

Fer =

Fet Fer
fi + N fo + ]
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Figure 3.9: In (a) the nearest neighbor memory functioniobthfrom EMT (open cir-
cles), and numerically by using Eq._(3135) (solid line) i®wh. Numerical results are
obtained by considering a chain of 100 sites and doubledistribution witha = 0.5,

and f,/f, = 0.1 for the disorder in transfer rates. In (b), higher order mgnfunctions

> (€), F3(€), andF4 (¢) for the same chain and disorder type are shown. Note that the
amplitude of higher order memory functions are negligitwmpared to that of the nearest
neighbor memory; (e).

whose solutions are given by

i+ JPFAN-D

Fes >

(3.38)

wherej = fi(1 - N + Na) + f,(1 — Na). When both off; and f, are nonzero, one of the
roots of Eq. [(3.3B) is always negative, therefore we needsttadd it and use the positive
root only. On the other hand if one of the rates is zero, fsay 0, then one root is always
zero and the other changes sign when the concentration kéttmonds reach = 1/N.

A plot of F¢; as a function ofr is shown in Fig.[3.10. It is interesting to note that this
plot looks like the diagram of a transcritical bifurcatidfOg] in which the two solutions
of Eq. (3.38) exchange stability at= 1/N. As N tends to infinity,Fez can only be zero.
Therefore, for an infinite chain, if the probability of hagia broken bond is greater than

zero,Fq vanishes.
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broken bond fraction «

Figure 3.10: Bifurcation of theffective long time transfer rate for a double-delta distri-
bution in a finite system ol sites. Plotted i$-¢ as a function of the concentration of
broken bonds (i.e., bonds with the rate = 0), the rate associated with the remaining
fraction 1- a of unbroken bonds being equal tg A transcritical bifurcation occurs when
a equals IN. For concentrations higher than this value, tlfie@ive rate vanishes but
changes linearly with the concentration for loweerSolid (dotted) lines denote the stable
(unstable) solution.

Lastly, we would like to compare the— 0 limit of memory functions calculated ex-
actly and by the EMT for finite rings. For finite rings we can &sg (3.35) to calculate the
nearest neighbor memory functign (e) exactly, as the number of all possible realizations
of the disorder in finite. The — 0 limit of 7, (e) calculated in this manner for rings of
sizeN = 2, 3, 4, and 5 are given below,

717(0)
r

2f2r +1
r(r+2)(2r +1)

25r + 1) +5)(r + 1
= b 3?11 3)r()r(§+)r)(r+l) (3-39)

16f2124r(1 +12) + 2302 + 17(1+ r4)
r3+2r)(2+3r)(L+4r)(4+r)

(7 +3r)(3+ 7r)(r + 1)(7+ 36r + 7r2)

where the superscript ex emphasizes that these are exaesyaha is the ratiof,/ f,. We

16f,
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calculate the relative fierence betwees(0) and thes — O limit of the EMT nearest
neighbor memony-¢;, given by Eq.[(3.38) as follows

1 [Feﬁ - ﬁe*(ow

] 7ex0)
and plot it in Fig. (311l foN = 3, 4, 5. Relative dference decreases with increasing
system size or when the ratip/ f, gets closer to 1. EMT predicts the correct value for

fi/ fo = 1 as expected.

0.25,
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Figure 3.11: Relative dlierence between the nearest neighifteative rates calculated
from the EMT and an exact numerical procedure as given by Eg38) and [(3.39),
respectively as a function di/f,. The disorder is characterized by a double-delta distri-
bution witha = 0.5.

3.9 Hfects of correlations

In this section we go beyond the results obtained by KenkedayKand Parris [16], and

report new results not published elsewhere.

Suppose that we generate random chains with bonds whosgetraates are drawn

from a distributiorp(F4, F», ...Fy), which is simply the probability that the bond between
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sites 1 and 2 has transfer rdfg and the one between sites 2 and 3 Rasand so on.
We will focus our interest on infinite chains sN, —» . If we perform an ensemble
average over all random chains generated in this fashierrggult will be translationally
invariant and we can describe the system by using fleetive medium equation (3.110)
as we discussed earlier. Lﬁt(e) be the Laplace transform of the EMT memory for this
chain. Consider replacing two of the bonds, say the one lestwitesg andq + 1, andr
andr + 1 with bonds that have transfer ratgsand f, instead of the memor‘f(e). Then

the generalized master equation

t
% = f dsF(t —S) (Pms1 + Pt — 2Pm) + Am (3.40)
0
where
t
Am = Z [f dsF(t-9) (Pii1 = Pi) = i (Piys = P) [ (Omis1 — Omi) - (3.41)
i=q,r 0

describes non-Markban transport in a 1-D chain that is translationally invariexcept
for two links between the sitegandq + 1 andr andr + 1. The Laplace transform of the

solution of Eq. [(3.40) can be written as
Pn= > PoOWmn+ > Abmn, (3.42)
n n

wherey, is the propagator for the infinite translationally invati@hain in the Laplace

domain, given by

—~ —— I
2F — \Jele+4F
~ 1 €+ 6( + ) (343)

W = — =
e(e+ 47:) 25

After doing some algebra, the solution of Eg. (3.40) can b&aw as

P = Tim + O, (3.44)
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whereim = 3, Patdm_n, andQp, is

Qm = [Fq (Jm—q—l - 'Zm—q) [Fraq—rnr + (1 - 2Fr ('7;0 - Jl))ﬁq]
+Fr (Jm—r—l - Jm—r) [anq—rnq + (1 - 2|:q (JO - Jl))ﬁf]
x[(1 - 2F% (0 - 9)) (1 - 2F (0 — 9)) - F'FO02, | . (3.45)

With F' = F — ., ¢ = 201 — his1 — iog @Nd7 = Ties — 7.

Our aim is to average ovdy and f, in a proper way that depends on the correlations
between them to restore the translational invariance atadroé self-consistency equation

analogous to Eg[(3.14) which was obtained for the case intwdlisorder is uncorrelated.

To do this, we focus on a chain in which transfer rates candaketwo values, like in
the double-delta distribution. In this picture, the tramsftes of bonds betweenfi@irent
sites, sayfy and f;, are correlated random variables that take on one of the &esf; or
f,. Correlation between the valuesfgfand f, arise according to the nature of interactions
between the two. We consider a situation in which neighlgobands with transfer rate
f, interact with energy-A so that they attract or repel each other wier 0 andA < 0
respectively. This system can be thought as a 1-D Ising miadehich them™ spin is
analogous to thet" link in the chain, so that-, = 1 ando,, = —1 correspond to transfer
ratesf; and f, respectively. As two point correlation functions in the lidlhng model is
analytically calculable, we find the joint probability disution, P(f,, f;), that the bond
between siteg andq + 1 has transfer rat&, and the bond between sitesindr + 1 has

transfer ratef, to be

1-— -

< )% > = P(ffl. ) = o + @ (1-a) X", (3.46)
1-

< =)+ > = P(f{L ) = P8, f)) =« (L- @) (1 %), (3:47)
1

< +2(Tq 1+2(rr > =P(f}. ) =1 - )" +a (1-a) X+, (3.48)
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where
‘e Vi-da(l-a)(1-e2)-1
VI da(l-a)A-e+1

a is the fraction of bonds that have transfer ratewhich is equivalent to the probability of

finding a bond with transfer ratk, andg = 1/kgT. Note thatx is a quantity proportional

to the external field in the analogous Ising model picture.

Now we are in a position to suggest the proper averaging selveenmentioned ear-
lier which restores translational invariance. Remembat tive Laplace transform of the

probability of finding the random walker at site is given by
ﬁm = ﬁm + Qm. (3.49)
Ensemble averaging over allftérent realizations of the chain, we get

<5m>ens = ﬁm + <Qm>ens- (350)

As the ensemble averaging makes the system translatiomediyant,(Qp)e,s Must vanish
so that the<5m>ens's are identically equal t@,,'s which are the solutions in the absence of
the defective bonds. For the type of bond-bond interacttomsidered here, the two point
correlation functions are known. Using this knowledge, weppse that the ensemble
averaging-YensiS explicitly given as

N

Oens= ), D, Pl T (3.51)

q=0 fq,fr:fl,fz
r=0

The summations in Eq.[(3.b1) makes sure that correlatiotvedem the paird, and f;
are going to be washed out, by averaging over all possiblégroations, i.e. all possible

(fq, ) pairs for allg andr, according to the joint probability distributid?(fg, f;).

Therefore, we have

N

Quens= Y, >, Plfg, f)Qm=0, (3.52)

g=0 fq,fr=flsf2
r=0
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for all m. The expressions simplify greatly in the linait> 0. In this limit we have

M (Ym-g-1 = Gm-q) = 1M (Yin-r-2 = Imr) = lim (G0 = v1). (3.53)
1

Iim79 =Ilim7y = ——— Pn(0), 3.54

e—>0 e—)On 7:(0) Zn: ( ) ( )

Iirrg)?ﬁk =0 fork> 0. (3.55)

Therefore, in the limit — 0 Eq. [3.52) becomes

. _
mej4¢© q+ﬂ®—qza

fq. fr=f1.f2 =0 fq fr
o

which is also equal to

S Y Ry [ﬂo)

q=0 fq: f]_, f2

(3.56)

o
5,5, o] FO

r=0 f f]_,fz

.
I
o

where

N
P(f) =D >, Py f),

qZO f f]_,fz
P(fq)—z > P(f, ),
= f f1,f2

are the marginal probability distributions. Note that

P(f1) = o,
P(f;) =1-a,

for the marginal probability distributions, regardlesgiué values ofy andr. Therefore,

Eq. (3.56) is equivalent to Ed. (3]17) which we obtained focarrelated disorder. There-
fore, this indicates that at long times fldision codicient does not depend on the type
of correlations. In order to test the validity of this, we geste disordered lattices by
simulating the 1-D Ising model with external magnetic fielthis way we guarantee that
correlations between links with fiierent transfer rates are such that Eqs. (8.46}3.48) are
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a J=-1 J=1
0.75| B=21 |p=146| B=0.02 | =148
0.5 B=0 |B=100 B=0 B =100
0.25|B=-21|B8=146| B=-0.02| 3=148

Table 3.2: Parameters used in the generation of chains witelated disorder. Similar
links repel or attract each other fdr= —1 andJ = 1, respectively.

satisfied. In order to simulate the Ising model, we start w&itthain in which the ratio of
the number of links with transfer rate to those withf, is approximatelyr/(1 — «) and

use the Metropolis algorithm to minimize the energy of thaltsystem, which is given by

E:—JZO'iO'j—BZO'i,
I.] i

where the primed sum is over nearest neighbors onlyoane 1 ando; = —1 represent
the two possible values of the transfer rate ofithénk, which aref, and f,, respectively.
At each step of the simulation, we calculate what would thengle in the energy of the
system be if we change the transfer rate of a randomly chasefrom f; to f, or from

f, to f; depending on its value just before that step of the simulaticthe change lowers
the energy of the system, we modify the transfer rate of tluseh link. However if the
change increases the energy of the system, then we accef jirebabilitye 258, This
helps avoid the system from getting stuck in a local minimanthie energy landscape.
Following this procedure, we generate random chains in kvkimilar links either repel
or attract each other. When the interaction between sirnilks is repulsive § < 0) the
chain ends up having a grained structure and when it is &ttegd > 0), clusters of links
that have the same transfer rate form. An illustration ofotes random chains generated
in this way are displayed in Fig[_(3112). Typical paramet&ues used in dierent cases
are given in the Table3.2.

In Fig. [3.13, we plotD(t) as a function of dimensionless time for random chains

with different correlation types. From top to bottom each set of 3emuporrespond to
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Figure 3.12: lllustration of various realizations of thedam chain with repulsive and
attractive link interactions. Black and gray indicate bewdth different transfer rates. The
cases a,b, and c correspond to repulsive link interactibrs{) for various concentrations
of different types of links. For each case, threffedent realizations of the chain are
displayed. The cases d, e and f display the same informatiowlien the interaction is

attractive ¢ > 0).

a different value ofr, the concentration of;. In each set, data represented by the thick
solid line, dashed line and thin solid line correspond teaative, neutral, and repulsive
link-link interactions. Although the behavior 8X(t) for different correlation types is quite
different for intermediate times, its asymptotic value seentefmend only onv. This
outcome supports the statement we made earlier about thepéstyc value ofD(t) being

independent from the correlations in the disorder (see[E§8}).

Another result we would like to mention in passing is abot &lsymptotic value of
d(m)/dt for different correlation types, within the presence of an extdrelal that intro-
duces a bias in transfer ratedm)/dt is proportional to the mobility of particles which
is a common and important transport property in many syst&reyviously, it was found

that [103] for particles that move under the influence of aemmal field in a random po-

97



Chapter 3. Contributions to thétective medium theory of transport in disordered lattices

Figure 3.13: Dffusion codicient as a function of dimensionless time for variougaatent
correlation types. Disorder is characterized by a doukleadlistribution withf; = 0.4,

f, = 0.1 anda, the concentration of;, takes the values.?5, Q5 and 025 from top
to bottom. Thick solid lines and dashed lines correspondttaaive and repulsive link
interactions, respectively, whereas the thin solid linevshthe behavior oD(t) when the
interactions are neural (uncorrelated disorder). Thendreads on the right represent the
asymptotic value oD(t) obtained from the EMT. It is seen thB(t) is not modified by the
different correlation types we consider here.

tential, mobility depends on the spatial correlations @n¢$n the random potential. We
numerically calculatel{m)/dt for different types of correlations when the transfer rates are
uniformly biased to the right by an amouff. Fig. [3.14 shows the results for a couple
of different values of the biasf. Interestingly, asymptotic value of the mobility does not

depend on the correlation type in our system.

3.10 Concluding remarks

Our objective in this chapter is to explore the propertiesaotiom walk in disordered lat-
tices in 1-D, by using thefBective medium theory. In the past, thiéeztive medium the-
ory was used to calculate the properties of many disordgrst@mms including transport

in disordered lattices, but most of these treatments westeicted to calculating steady
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Figure 3.14: Ensemble averaged velocity as a function oédsionless time for dierent
values of the biad f. Disordered transfer rates are sampled from a double-disitiabu-
tion with f; = 0.4, f, = 0.1 anda = 0.25. The dashed, the thick and the thin solid lines
correspond to repulsive, attractive and neutral link extéons. The value of the bias is
A = 0.01, andA = 0.001 for the plot on the left and the right, respectively. Fager
values of the bias, we observe similar behavior. Here wdalisgsults for small values
of Af in order to make sure that the mobility does not saturatergfe¢l03], Fig. 2).

state values of the quantities of interest (see referemc#sei introduction for some ex-
ceptions). Here, we show how one can obtain a prescriptiaincdmn be used to calculate
time-dependent quantities that pertain to random walk irsardered lattice, and obtain
expressions for the time-dependerftakion codficient and mean square displacement in
1-D. We consider a 1-D chain of sites with nearest neighbteractions and disordered
transfer rates, and show how to convert the disorder in spaenonlocal evolution in
time. In other words, we show that it is appropriate to replée Master equation (3.1)
by the generalized master equatibni3.3) which has the mesh(i. The prescription of
obtaining# (t) given the characteristic properties of the disorder is@ioed in Eq.[(3.16),
as given in ref. [[16]. One of our most important results ig thanost of the cases, this
replacement is meaningful not just for asymptotic timesftuall times, provided that we
are interested in quantities that are ensemble averagedhavéiterent realizations of the
disorder. Figd_3]2 ard 3.3 show the comparison betweenaions and theoretical find-

ings concerning the lusion codicient for all times, and for dierent initial conditions.
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We also show the cases in which th&eetive medium theory makes poor predictions in
Figs.[3.5 and 316, which corresponds to the cases in whictrdhsfer rates of some of

the links in the chain vanish.

In this chapter, we also present a few other interestingrigglithat have not been
previously explored in detail. These are the appearancengf tange memories and the

effects of finite system size as discussed in refl [16], andffleets of correlated disorder.

The disordered system we consider is a chain of sites thatareected with dis-
ordered transfer rates and the random walker is allowed poblagk and forth between
nearest neighbor sites only. An immediate question thaésaiis: how long will the range
of the memory functions be, in the generalized master egud8.3) ? By calculating
memory functions that connect sites that are not necegsadrest neighbors, we find
that even though the original system only has nearest neighteractions, longer range
memory functions naturally develop in th&extive medium description. In Fig._3.9 we
display results corresponding to memory functions withglemrange (or of higher order).
However, it should be noted that the amplitude of the longege memory functions are
much smaller than the nearest neighbor memory functionatariimost of the cases they

can be neglected.

For the most part, we are interested in infinite chains, butlse include results about
the dfects of finite system size in our study. When the system sigesgealler and smaller,
the predictions of theftective theory made by using the nearest neighbor memoryitumc
deviate more and more from the numerically found resultdhaws in Fig.[3.11. One of
the reasons for this growing deviation is the increasingartgnce of long range memory
functions in small systems. Another interesting behawat is observed in systems of
finite size is the vanishing of thefective transfer rate at a nonzero concentration of broken
links. In an infinite chain, if the probability of finding a knwith zero transfer rate, a
broken link, is nonzero, then thdfective transfer rate will vanish. However, for finite

systems, our findings$ [16] indicate that thféeetive transfer rate can be nonzero even for
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a nonzero concentration of broken links, as shown in[Figd.3.1

Lastly, we present some findings on random walks in a 1-D chatih correlated
disorder in Sec.[[319. Our results indicate that, intergstjnat asymptotic times, the
diffusion codicient does not depend on whether the random variables thahderize
the transfer rates of the links are correlated or not. Howdwe intermediate times, we
see a consistentfiierence in the diusion codicient when the characteristics of the joint

probability of the distribution of transfer rates change.
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Chapter 4

An analysis of transient dynamics and
pattern formation in some

reaction-diffusion systems

4.1 Introduction

Reaction-difusion systems have been used to model a large number of ppaapmainly

in physics, chemistry and biology. Many chemical reactioosur in a medium in which
reactants diuse and encounter each other which results in a set of pdlicé concen-
tration of chemical species in such chemical reactions edurally be described with the

following set of partial diferential diferential equations

6 .
a—l::l = DiVZUi + fi(Ul, u, ..., UN), (41)

whereV is the Laplacian operator in the space that the system oeg|lijiis the difusion
codficient of thei" species, and; is a, usually nonlinear, function af’s that describes

how species react with each other. A well known class of chalnéactions that have been
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modeled in this way is the Belusov-Zhabotinskii reactio, [21]. The time evolution of
the concentrations; in these type of systems turns out to be very rich, and carvievo

periodic oscillations or may display chaotic behavior [1Dd5].

One of the first problems that was studied using reactifinglon equation is about
population genetics. In his seminal paper published in 83T, Fisher employed an
equation of the following form to describe the spread of adlxgeous genes in a popula-

tion

ou 4%
E = DW + aU(l - U), (42)

whereD is a difusion constant andis a characteristic rate. This equation was also used
by Kolmogorov, Petrovskii and Piskunav [18] around the séime, and now it is referred

to as the Fisher-Kolmogorov-Petrovskii-Piskunov(FKRiR)aion. For more examples on
the use of reaction-tfusion equations in population dynamics and ecology, seaefs
[106,[107]. Recent work on those equations particularlgated at animal movement in

the theory of the spread of epidemics such as in the Hantgvisudue to Kenkre and

collaborators[108, 109, 110, 111, 112, 113].

Another interesting aspect of the reactioffusion systems is that they can produce
patterns. In many biological systems, patterns arise inradgeneous distribution of
matter, for instance during the process of morphogene8& [T herefore, many problems
in developmental biology include reactionfidision systems, and can be quantitatively
modeled by using systems of equation such as[Eq. (4.1).rRattan also arise in reaction-
diffusion systems as a result of spatially nonlocal interast[@h4 22| 115].

Some other examples of studies that involve reactidiusion systems are: flame
propagation[116, 117], propagation of pulses in nerve8,[119], aggregation [120], and
deposition[[1211]. In addition to these, there are many swidihose goals are to generalize
the reaction-dtfusion systems so that they display richer phenomena. A eaf@tudies

in this direction include allowing for convective transpfit22,(123], and non-diusive
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transport[[124, 125] in the system.

This chapter is divided into two parts and the first part istatavestigating the time
evolution of an initial condition in three reactionfiision systems that give rise to front
propagation. The traveling front speeds and shapes candbgtiaally calculated in the
cases that we consider, providing us with more motivationcfooosing them. A great
deal of the results presented in this section are publishdéteiarticle of Giuggioli, Kalay,
and Kenkre[[126] in which the author of this thesis took pdithe second part is about
pattern formation in a reactionftlision system with spatially non-local interactions. In
this part, we first summarize some results that are alreadwikrin the literature for the

FKPP equation and then present new results on the gendiaiizd the problem.

This chapter is organized in the following way. The first marunderstanding the tran-
sient behavior in some reaction systems and spans thersg€dibthrough 4]5. The second
part begins in Sed._4.6 and is concerned with pattern foonmaii reaction-diusion sys-
tems with nonlocal interaction terms. In SBc.14.3, we pregennonlinear reaction terms
associated with the reactionfllision systems we are interested in, give the corresponding
traveling front solutions that are obtained analyticalyd for a particular case, show how
to solve a reaction-éliusion equation for traveling fronts, for illustrative poges. In Sec.
4.4 the method we use to study the transient behavior is iegolan detail and the results
of our analysis are given. The next section, $ed. 4.5 is cardewith the linear stability
analysis of the traveling fronts we consider and is incluftedhe completeness of our
analysis. Sed._4.6 marks the beginning of the second pahnithapter, and is about a
different sub-topic, viz., pattern formation in a reactiofitdiion system. In this section,
we first examine the formation of patterns in FKPP equatiah wispatially nonlocal in-
teraction term and then present a generalization of it loyatlg for anomalous diusion.

In Sec[4.7, we present the method used in the numerical@olitthe reaction-dfusion
equation involved and present our results. This chaptes etth Sec[ 4.8 and is reserved

for concluding remarks.
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4.2 A brief introduction to traveling fronts

As the examples we gave in the introduction show, reactiffiaglon systems can display
a wide range of features. In this section we will only be iegted in a particular feature of
the reaction-dfusion (R-D) systems, which is giving rise to traveling frenA traveling
front is a particular kind of wave that propagates along tleelioom while preserving its
shape. Front propagation in many R-D systems has been axignstudied and a vast
amount of results have been collected [127128] 129]. Aleoniproblems that attracted
a substantial amount of attention in this field include: fingpihe relation between initial
conditions and the final front speed and shapel[130, 131]ireegdtigating the relaxation
behavior in the system while the front speed approachesysgtotic value[[127, 128,
[129].

50

Figure 4.1: Time evolution in the FKPP equation, given in §4.2) withD = 1. The
initial condition isu(x, 0) = 0.1 for x = 0 and 0 elsewhere.

In Fig.[4.1, we show the time evolution of an initial condition the 1-D FKPP equa-
tion, given in Eq. [[4.R). Initiallyu(x) = 0.1 for x = 0 and O otherwise. After a transient
period, the solution of the FKPP equation takes the form afweling front. For the
FKPP equation initial conditions that have compact supglevays lead to the formation

of a traveling front that moves with the speed= 2VD [129]. The relation between
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the initial conditions and the speed of the traveling fraréviolves into has been studied

extensively and some references on this subject will bengdetow.

In this chapter we restrict our attention to R-D systems D, ivhich are described by

ou o0u

— = D—; +af(u), 4.3
whereu = u(x, t) is the density of the entity under considerati@nis the difusion con-
stant,a a growth rate and (u) the nonlinearity. The nonlinearities that we are intexdst

vanish atu = 0 andu = 1, such thati = 0 andu = 1 are steady states.

/Shoulder

Y

Interior

Leading edge, or tail

-10 -5 0 5 10

Figure 4.2: Schematic illustration of a traveling front. releve label the regions of the
front to which we will refer frequently in the text.

The characteristics and propagation mechanism of the #fepénds on the stability
properties of the states that it connects. The traveling ftonnects states that are the fixed
points of the R-D equation, i.e. the valuesuwfor which du/ot = 0. If the nonlinearity

satisfies the following conditions

£/(0) > 0, (4.4)
f/(u) < f/(0) (4.5)
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for 0 < u < 1, then the characteristics of the traveling front are damily determined
by its leading edge [132, 127], whete~ 0. See Fig.[ 4]2 for the terminology used in
describing diferent parts of a traveling front. Fronts of this type are camiy called
pulled fronts as the leading edge determines the essentiantics, and thus pulls the
rest of the front[[127, 133, 129]. In this case, it is posstblealculate the speed of the
front by considering the R-D equation obtained by lineagzf (u) aroundu = 0. The
FKPP equation is one of the equations that give rise to pditaas. In this regime, the
speed of the front relaxes to its asymptotic value algebHgi¢l128,[129]. It turns out
that for pulled fronts, the speed of the front can assume malues that are greater than
a minimum speedy,». The problem of which speed is selected was analyzed by using
the linear marginal stability condition (see Van Saarldd&/] and references therein for

details).

When the nonlinearity does not satisfy the conditions giberEqgs. [4.4) and_(415)
such thatf’(u) is not equal to its maximum value at= 0, linearizing f(u) aroundu
does not give correct results for the speed of the front. ildase the dynamics of front
propagation is predominantly determined by the interidheffront [128| 133, 129], where
f’(u) attains its maximum value. These types of fronts are calleshed fronts [134], as
the interior of the front drives it. The speed of the travglironts of this kind converges to
its asymptotic value exponentially [128]. The problem oéap selection for this regime

was analyzed by employing the nonlinear marginal stakifitydition [128].

The nonlinearities we will consider in this chapter all sitif’(0) = 0 and attain a
nonzero maximum value far > 0. Therefore, the R-D systems we will be interested in
give rise to pushed fronts. As mentioned in ref. [126], noadirities of this form have been
used to study flame propagation [116, 117], certain autbtatahemical reactions [135]
and calcium deposition in bone formation [21]. In flame piggd#on, the traveling front
may represent the temperature profile [116] as well as theesdration of the reacting

species[[117], in chemical reactions, the order of the atédgsis [135], and in calcium
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deposition, the crystalline clusters that grow over the& lmilthe bone proportionally to
the square of its mass [136]. In population dynamic8udion-reaction systems with this
type of nonlinearity can be used to model populations thspldy the weak Allee féect
[137,[138]. If the growth rate of a population becomes negdtir very low population
densities, the system is said to display a strong Alléece If the growth rate is vanish-
ingly small but positive for low population densities, tieerh “weak Allee &ect” is used
to describe the situation. The nonlinearities we consideetihe propertie$(0) = 0 and
f’(0) = 0. Therefore, they can be employed to study populationsexiaibit the weak
Allee effect.

It is only in very rare instances that it is possible to obtdna analytic solution of

a diffusion-reaction equation with a nonlinear term, as a functibtime. Therefore, it

is a dificult task to predict how an initial condition is going to ewelin these systems.
Our aim is to contribute to the understanding of this problgniocusing on a particular
aspect of it. In our study, we consider three R-D equatioas ¢An be solved exactly
for the traveling front. If we use the traveling front sotutias the initial condition in
these equations, we know that it will not change in time. dadt we slightly modify the
traveling front solution in a few dierent ways, use it as the initial condition and observe
a guantity that measures theffdrence between the evolving solution and the eventual
traveling front solution. We describe this procedure inadeh Sec.[4.# where we also

give a quantitative as well as a qualitative interpretatibthe results.

4.3 The reaction terms and corresponding traveling wave

solutions

We will consider three diierent nonlinear term$(u) such thatf’(0) = 0, and the corre-

sponding traveling wave solutions. Among these, two of themave like a quadratic for
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u ~ 0, whereas the third behaves like a cubic. For demonstrptiygoses, we will show
the details of obtaining the traveling wave speed and shapthé Zel'dovich - Frank-

Kamenetskii (ZF) equation [139]. Then the explicit formstloése nonlinearities along
with the traveling wave solutions they lead to will be presein In Sec[ 415 of this chapter,

the stability of these traveling fronts will be discussed.

4.3.1 Solution of the ZF equation in a moving frame

The ZF equation is given by [139]

ou 6%
—=——-y(1- - 4.
wheret andx are appropriately redefined to eliminate thfukion codficientD. Fig.[4.3
shows a plot of the nonlinear term of this equation with aipaldr choice of parameters
v andu. Later on, we will focus on a particular form of this nonlimgawith v = 1 and

u = 0. We are interested in solving Eq._(#.6) for traveling fnBolutions of this type

0.1

0.06

0.02

-0.02 : : :
0 0.25 0.5 0.75 1

u

Figure 4.3: The nonlinear reaction term of E@._{4.6) as atfonoof u for y = 1 and
u = 0.25.

have a fixed shape and move with constant speed. Therefave,stvitch to a reference
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frame that moves with the speed of the traveling front, weukheee a profile that does
not change in time. To do this, we follow the standard procesisee for instance refs.
[129,[106]), and define a new varialde: x— vt wherev is the speed of the traveling front.

As a result of this change of variables, th&elientials transform in the following way

9 _0z29 0
ot otoz 0z
o 028 8

X~ dxodz 0z

so that Eq.[(4]6) can be rewritten as

d’t dd - .

2 VG y@A-O)w-0)d=0 4.7)
whereu = {i(2). For convenience we are going to drop the tildesudrom now on andu
will be taken as a function afonly, unless otherwise stated. L¥u) = —du/dz then Eq.
(4.1) becomes

(cjj_i +vI+y(1-u)(u—-uwu=0. (4.8)

Note that

dJ_didu__dd
dz dudz Tdu

Using this relation Eq[{418) can be expressed as

3—33 +vI+y(l-u)(u-uu=0. (4.9)

Suppose that we are interested in finding the traveling fsmhiitions that connect the
stable statess = 0 andu = 1. As a function ofz, these fronts will look like the curve

illustrated in Fig[4.4, and they clearly satisfy

limu=0,
Z—00

lim =1,

J(u) = —3—‘2‘, J(0) = J(1) = 0.
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Figure 4.4: Schematic illustration of a traveling frontttisannects the states= 0 and
u=1.
The properties od(u) leads one to consider the ansatz
J=/Ju(l-u),
where/ > 0 asdu/dz < 0. Substituting this ansatz in Eq._(#.9), one obtains
u(22=y)+ Vi +py -2 =0. (4.10)

In order that Eq.[(4.10) is satisfied, the fogents ofu andu® = 1 must vanish identically.

Imposing this condition results in the following relations

y =22,
V= \/2(1—2/1).

Therefore, the speed at which the front moves depends orathengters andp.

The shape of the front can be found by integratifig)

f::) -y ¢ f az

In order to do the integration, we need to specify the vali®@. Because we can take any

point z in the moving frame as a reference pointQ) can be assigned any value in the
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interval (Q 1) without loss of generality. Choosing0) = 1/2 and evaluating the integral,

one obtains the front shape

1

— (4.11)
1+eVi

ui2 =
Note that the shape of the front does not depend on where gtahla fixed poinj is.
The speed however, dependsgoand is positive folu < 1/2 and negative fop > 1/2.
This is the exact and only traveling front solution of the Zfuiation which connects the
statesu = 0 andu = 1, as it is known that [127, 128, 132] when the front conneets t
stable states, there can only be one solution. An intuitigg of understanding why the
solution must be unique is thinking of the R-D equation as watida’s equation of motion
[127,[128,13P]. Replacing the variakteoy t, which corresponds to time, in Eq_(%.7)

gives

du__du_dv

T —va e (4.12)

whereu is treated like the position variable of a particle movinglenthe influence of the

potentialV(u) whose derivative is

—?j—\lj = y(1 - u)(u — uu, (4.13)

and subject to a frictional forcevdu/dt, where the speed of the front acts like the friction
codficient. Fig.[4.b show¥(u) as a function ofu. Note thatV(u) has a minimum at
u = u. For illustrative purposes = 0.25 in the plot. If the particle starts at= O(u = 1),

it will reach the pointu = 1(u = 0) if and only if the friction coéficientv has the right
value. Otherwise, it will undershoot, or go over the desiomapoint. The velocity of
the traveling front, which is equal to the right value of thietion cosficient, is therefore
unique. Note that this is not true for fronts connecting astainle fixed point to a stable

one, for instance in the FKPP equation.
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0.04r

0
0 0.5 0.75 1

0.25 .
Figure 4.5: The potentidl(u) obtained by integrating EqL{4.13) with respectutoThe

parameter values ane= 1, u = 0.25

4.3.2 The three cases we consider

A particular form of the ZF nonlinearity

The nonlinear term that one obtains by settinggual to 0 in the ZF equation [139] is
(4.14)

f(u) = u*(1-u).

In the rest of this chapter, we will refer to this function & tquadratic nonlinearity,
because (u) ~ u? for u ~ 0. Substituting it in Eq.[{4]3) and solving the resulting atipn

for traveling waves, we get
(4.15)

u(z) — ;
14+ eVad’

wherec = v/Da/2 is the speed of the front.
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A logarithmic nonlinearity

Another nonlinearity that behaves quadratically around 0 and has a shape similar to

the previous one is
fu=U+1D[R2-NR)+Inu+1]IN*u+1)[n2)-Inu+1). (4.16)

Although this expression looks complicated, the R-D equmii leads to can be solved
analytically for traveling fronts [126]. Following the pzedure we reviewed earlier, the

traveling front shape and speed can be obtained as

U@ = -1 + 2R (4.17)
c = vDaln(2). (4.18)

In all of the discussions that follow, we will call Eq._(4]1#)e logarithmic nonlinearity.

A cubic nonlinearity

The last form off (u) that we are interested in studyindtérs from the others for small

and behaves like a cubic around: 0. It is expressed as
f(u) = psin(ru) [1 — cosfru)] . (4.19)

A nonlinear term of this form has been used in studying theadyins of the angle between
the electric field and the polarization in ferroelectricrahsmectic liquid crystals [140].
Note that it is periodic iru with period 2. In this study, we are interested in the cases fo
whichu < 1. Hence, the periodicity of this nonlinear term does noseaany &ects. The
R-D equation that has this nonlinear term can be solved lgxBtboth the shape and

speed of the traveling front. The results are
2
u@) = - arctar(e‘Z Vima/ D), (4.20)
c = +/nprDa. (4.21)
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The main reason we consider the cubic nonlinearity is thalewhis qualitatively very
similar to the other two, it behaves quiteffédrently foru ~ 0. Therefore, studying it
can give us an idea about th&exts of growth rate for small on transient dynamics.
Motivated by this, the parameter which controls the amplitude of the nonlinearity, is
set equal to; = 16/(81V3) so that the peaks of the cubic and quadratic nonlinesritie

coincide.

In Fig.[4.8, each of these nonlinearities are plotted astfonof u with the parameter

values indicated above.
0.16

< 0.08f J

0 L L L
0 0.25 0.5 0.75 1
U

Figure 4.6: Plots of the logarithmic (solid curve), quath@ashed curve), and cu-
bic(dotted curve) nonlinearities given by Eds. (4.10)1#, and[(4.19), respectively. For
the cubic nonlinearity the value gfis chosen to be 1/81V3).

4.4 Our method of studying the transients and the results

As we stated in the introduction of this chapter, our intelies in studying how slightly
modified traveling front solutions evolve according to thd®Rquations we consider, as
they approach the exact front solution. This is what we mgahdtransient and we do not

consider the full time evolution in the system starting framarbitrary initial condition.
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In Fig. [4.2, we labeled the fierent parts of the front as the shoulder, the interior, and
the tail. In obtaining the modified traveling fronts we wolike to use as our initial
condition, we modify either of these three parts of the ekasteling front solution, or a
combination of them. Our analysis showed that modifyingyahé shoulder of the exact
front does not result in very interesting behavior. Here,wi show results for three

different modification types, which are

A) Changing the characteristic leng#/D/ain the exact front solution, which modifies

all three parts.

B) Replacing the interior of the front with a line segmenarshg atu = 0 and ending

at a pointu < 0 where the line segment intersects the shoulder of the.front

C) Modifying both the interior and the tail of the front. Inishcase the interior is a
function that is obtained by changing the characteristigtle of the exact solution,

and the tail is replaced by a line segment.

Fig.[4.7 illustrates all three types of modifications to tkeat front solution.

In our analysis, for each nonlinearity we first consider atiahconditionu(x, 0) gen-
erated according to one of the cases A,B or C described almlvawanerically calculate
a quantity that measures an aspect of tHeetence between the numerical solution and
the exact traveling front. The quantity we chose is the nedagxcess speed defined as
(V(t) — ¢)/c, wherec is the speed of the exact front solution arft) is the instantaneous

speed of the evolving numerical solution given by

v(t) = dEth dxux, t), (4.22)

which is the rate of change of area under the cwfset) and a natural definition of the
speed. A similar approach is adopted in other studies a® (g instance ref.[ [122]).

After calculating the behavior of the excess speed as a tmess we try to explain the
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Figure 4.7: lllustration of the initial conditions emplayen Secs[ 4.4]11, 4.4.2, abd 44.3.
In (A), The initial condition is obtained by replacing the chaeaistic length+/D/a by
vD/a/¢ in the exact front solutions. Fgr> 1 and¢ < 1, the initial conditions formed are
termed shallower and steeper than the exact front, respsctiin (B), the modification
to the exact front consists of replacing a portion of its filepart with a line segment.
The line segments begins at= 1/2 and ends at a point with > 1/2 where the line
intersects the shoulder of the front. [B)( we modify both the interior and tail of the exact
front to obtain the initial condition. The interior is madeafiower than the exact front
by adjusting the characteristic length as A),(and the tail is simply replaced by a line
segment starting at = A and going down ta = 0. We generate initial conditions of this
type by modifyingA while keeping the projection of the line segment on xkexis at a
constant length.

significance of its features and their dependence on thaliognditions. In the rest of this

chapter, we will simply call\{(t) — ¢)/c the excess speed.

In solving the reaction-diusion equations numerically, we use an adaptive Adams-
Bashforth-Moulton multistep integration method. The stgge we used in discretizing

the space variableis 0.08 in units ofyD/a, which is the characteristic length in the R-D
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equations we consider. If the excess speed is is less thagual ® 108, we argue that
the numerical solution approached its asymptotic formcilig the exact traveling front

solution.

In the next three subsections, we will present the time degece of the excess speed

as a function of initial condition parameters for each noedirity.

441 CaseA

Suppose that we replace the characteristic lengtha in Eqs. [(4.1b[4.17) an@{4.20) by
VD/a/&, whereé is a dimensionless parameter. Eas 1, the derivative of this modified

front will vary in a slower fashion compared to the c@se 1, which corresponds to the
exact traveling front. In other words, this type of modifiedrits are shallower than the
exact front for allx. On the other hand, faf < 1 the modified front will be steeper than
the exact front. Plots of modified fronts of this kind alongwihe exact front is given in

Fig.[4.1 (A).

Considering such initial conditions and calculating theess speed for each nonlin-
earity, we found that the instantaneous speed of the nualetutions defined by Eq.
(@.22) changes monotonically in time. Moreover, the reiiaxeto the asymptotic value of
the front speed seems to be exponential in time. The insegin48 shows the magni-
tude of the excess speed on semilogarithmic axes fterdnt values of, which indicates
that at long times the excess speed decays exponentialgrefine, one can find an ex-
ponential decay constamf which has the dimensions of4, for various values of by
appropriately performing a linear fit to the excess speedugetime plots. The main plot
shows this decay constantas a function of the steepness of the modified feaniVe
immediately note that if the initial conditions are steefhem the exact front < 1, then
7 does not depend ahand varies with the type of nonlinearity. Hence, initial ddions

that are steeper than the exact front relax to the asymppéed in the same way. How-
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ever, this is not true fo£ > 1. For initial conditions that are shallower than the exact

front, 7 depends o as well as the type of nonlinearity. Similar qualitativeuks on the

relaxation behavior have also been reported by Van Sadl2&s.

<
e N\
12.5¢ L R
= -5 Ny
= NS
s |z
= g 10
«. 10.5f 0 50 100 °
o t
wn
:Jj mag O ) )
=
= 8.5}
= A
o
KON A A A A
@00 O O (@) (@)
6 .5}
0 0.5 1 2

Figure 4.8: Characteristic decay timén units of 1/a, plotted against the steepness of the
initial condition¢. For¢ > 1, the initial condition is shallower than the exact fromgda
for & < 1 itis steeper. The magnitude of the excess speed for varaluss of¢ is plotted

on semilogarithmic axes in the inset. The solid, dashedh-datted and dotted curves
correspond to an initial condition with= 1.250, 1.429, 1.539, and 2, respectively.

The characteristic decay times largest for the cubic nonlinearity and it is followed

by the logarithmic and quadratic nonlinearities. This isswrprising as the time scales in

the dynamics of the system should depend on the strengtle ofthlinear term. as seenin
Fig.[4.8, the quadratic nonlinearity is stronger than tlgatdhmic followed by the cubic

for most values ofi. Furthermore the cubic nonlinearity which gives rise to ldrgest

decay times is significantly weaker than the other two arauad.
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442 CaseB

The transient behavior we saw in Case A was monotonic andmaotteresting. Here
we consider a dierent initial condition that gives rise to a slightly ricitene evolution.
Suppose that we modify the interior of the exact front solugo that part of it is replaced
by a line segment. Obviously one can make a modification tontieeior in many diferent
ways, but it is convenient to consider a line segment as itiple enough to be described
by a single parameter. The initial conditions we considéhis subsection are depicted in
Fig. [4.7. The modification consists of replacing the parthefinterior by a line segment
starting atu = 1/2 and ending at some value> 1/2 at which the line segment and the
exact front intersect. In order to characterize initial didions of this type, we introduce
the parametet which is the ratio of the slope of the line segment to the sluffiee exact
front atu = 1/2. We are interested in assumiagsalues that lie in the interval (Q) so
that the initial condition we generate is shallower thate¢kact solution over its modified
part.

In Case A, we saw that when the initial condition is shallotxan the exact front for
all x, the excess speed decays monotonically. In this case,itia dondition we consider
is shallower than the exact front only over a finite portiorited space. At first one may
expect to observe similar monotonic behavior again, buiritg out that the excess speed

behaves quite etierently for the interior-modified initial condition.

Fig.[4.9 shows the time evolution of the excess speed foreaclinearity, for a partic-
ular value ofe (Dependence of the features of the excess speednith be demonstrated
in Fig.[4.10). Note that the excess speed no longer decaystornally. A maximum in
the excess speed versus time plot appears because of theifiglldevelopment. Instead
of just reforming and approaching the exact front shapenbdified part of the front
induces the lower part of the interior and the tail to becotmalswer than the interior

and the tail of the exact front solution. Therefore, for abamount of time, the solu-
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tion is shallower than the exact traveling front, and theeléxes to the exact front shape
which is steeper. It is well known that shallower fronts ebfaster than steeper fronts
[127,[128]. Therefore, itis natural to expect a maximum meRcess speed in the light of

this argument.

0.04

0 5 10 15
t (units of 1/a)

Figure 4.9: The nonmonotonic time evolution of the exceseddor interior modified
initial conditions (see Fid._4.7). The solid, dashed andetbturves correspond to results
for the logarithmic, quadratic and cubic nonlinearitiespectively.

In Fig. [4.10 we display results concerning the relation leetmvthe parameter and
the location and magnitude of the maximum. One our our firglisghat fora > 0.85
anda < 0.5 the maximum disappears and the time evolution becomes oo The
reason for this in each of these cases tgedent. Wherr < 0.5, the initial condition is
very shallow so that the flusion is negligible compared to thé&ects of the nonlinearity.
Therefore, the modified part of the front grows extremelydipand takes a steeper form
while approaching the exact front shape so that its speetincausly decreases. In the
opposite limit, whenr > 0.85, the modification from the exact front shape is slighthsa t
it can be regarded as a small perturbation. This small geation monotonically decays
and the excess speed does not show a maximum. For intermediaés ofr, we display

the results for the location and magnitude of the maximunxoéss speed in Fig._4.110.
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We defineT; to be the time it takes for the excess speed to reach a maxiamoh] to
be the magnitude of this maximum. The main graph and the ind&g. [4.10 show the

behavior ofT; andH as a function ofr, respectively.
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Figure 4.10: The behavior @f, the time it takes for the excess speed to reach a maximum,
as a function of the initial condition parameterin the inset, we plot the magnitude of the
same maximum again as a functioneofThe solid, dashed and dotted curves correspond
to results for the logarithmic, quadratic and cubic nordiniges, respectively.

443 CaseC

The last type of initial conditions we consider is obtaingdnodifying both the interior
and the tail of the exact front, and gives rise to the richasigient behavior. An illustration
of an initial condition of this kind is provided in Fig. 4.7 YCThe interior is modified such
that it is shallower than the exact front by changing the atigristic length as described
in Sec.[4.411. The talil is replaced by a line segment whichisstd f(u) = A and goes
down until it reaches zero. In order to generatéedent initial conditions, we adjust the
parameterA while keeping the projection of the line segment on xhexis constant. A

common feature of the nonlinearities we consider is that #ne very weak around = 0,
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i.e. f(u= 0)~ 0. If the initial condition has a substantial part which isiaero for small
values ofu, we may expect the dynamics to be very slow around that regiberefore,
some parts of the front will change rapidly and some will rastd this may give rise to

rich transient behavior.

In Fig.[4.11 we show the qualitative behavior of the excesgdps a function of time
for the logarithmic nonlinearity given by Eql_(4]16). Thesués for other nonlinearities
are essentially very similar and not shown in this figure.d\tbit now there is a minimum
in addition to a maximum in the excess speed versus time Ppbatake things easier, we
include the plots of the numerical solution and the exaattfemlution at three points in

time, whose significance we are set to understand.

The excess speed decreases as the interior part of thevitmiot) evolves faster than
the tail, becomes less and less steep and approaches thérerashape as shown in the
center inset in Figl'4.11. After the minimum is reached, tag pf the front where the
interior and the tail meet starts to grow as the top left in§&ig.[4.11 shows. This growth
induces the whole front to become shallower than the exait &nd keeps going until the
maximum point is reached. At the maximum point, the wholdifgds shallower than the
exact front as shown in the top right inset of Hig. 4.11. Theetievolution after this point
is monotonic and is almost identical to what we had in Casedveab

The main graph in Fig[_4.12 shows the excess speed as a furgdtibme for the
logarithmic nonlinearity for dterent values of the initial condition parameter An im-
mediate question that arises after looking at these plotwiw does the distance between
the extrema depend on the paramét@rThe four curves, the solid, the dotted, the dashed
and the dash-dotted, correspond to results for increaslagjer values ofA. At first, as
Aincreases the time fierence between the minimum and maximum also increases. How-
ever, forA greater than a certain value, a significantly larger portibtine shallow profile
grows rapidly because of the shape of the nonlinedi(ty (see Fig[ 46). Therefore, the

evolution of the initial condition gets substantially fasasA increases, and reduces the
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Figure 4.11: Excess speed as a function of time for the ldgaic nonlinearity with the
kind of initial condition described in Se€¢._4.%4.3. The issshow the evolving solution
of the R-D equation (solid curve) and the exact travelingfr@otted curve) at dierent
times for comparison purposes. The exact traveling froptaged by coinciding the two
curves au = 1/2.

time necessary for the profile to become shallow at all pam$pace. The last argument
that we presented provides the reason for why the maximuheaféashed and dash-dotted
curves shift to the left. The inset of the same figure showséavior ofT,, the time dif-
ference between the occurrence of the minimum and the mamwjrasi a function oA for
each of the three nonlinearities. Note that the behavidr,a$ significantly diferent for
the cubic nonlinearity. This implies that the timdfdrenceT, depends heavily on the

form of the nonlinearity around = 0.
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1.2

t (units of 1/a)

Figure 4.12: Excess speed as a function of time for the ltgarc nonlinearity for four
initial conditions of the type mentioned in Séc._414.3. Thkds dotted, dashed and dash-
dotted curves correspond fo= 0.04, 0.06, 0.1 and 0.12, respectively. The inset shows
how the dependence @5, the time diterence between the minimum and the maximum,
onAfor the logarithmic(solid curve), quadratic(dashed clraed the cubic(dotted curve)
nonlinearities.

4.5 Linear stability of traveling fronts

45.1 The method

In this section, we follow the standard procedure [141] 166ee if the traveling fronts
discussed in this paper are stable against finite pertorisith the moving frame. Consider

the difusion reaction equation with a nonlinear tefu):

u(x,t) _ du(x,t)
at o2

+ f(u(x 1))

In the moving frameX, t) — (z t) wherez = x — ct, the equation becomes

ou(z 1)
ot

_ou(zY)
, 0z

2
L Fuzy

: 57 + f(u(z 1)) (4.23)

t
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Suppose thatf(2) is a traveling wave solution of (4.23). Lets introduce atéirperturba-

tion w(z t) in the moving frame and write
u(zt) = uy(2 + ew(z. 1) (4.24)

Substituting[(4.24) intd(4.23) we get:

oW _ dug dus  aw  Pw .
€5 = dz + iz + ec— + €% + f(ug + ew) (4.25)

If we make a taylor series expansionfqfi) aroundug and just keep the first order terms

in € we get
ow  ow 6w
E_Cc’) +62+f(u0)w (4.26)

If we assume thati(z t) is of the formw(z t) = n(2)e~"* and substitute this into Ed. (4]26).
The result becomes

2
-An = c@ + d— + f/(ug)n (4.27)

dz dZ
We can get rid of the first derivative in the equation above lakimg the transformation
n(2) = é(2€°%2. Then Eq(4.27) turns into
d% (c?
(S rw)e-ae
Now, if we define the operatdf, = [— d?/dZ + c?/4 - f’(ug(z))], Eq. (4.2T) can be

expressed as

Hef = A¢ (4.28)

In order that the traveling front solutions are stable,A&lshould be positive (the case
A = 0 is special and we will come to that) so that the perturbata(z, t) decay in time.
This would be the case wheét is a positive definite operator. Note thédg is a self adjoint
differential operator [142]. This makes Ed._(4.28) equivalenthe time independent
Schrodinger equation withotential energy Yz) = ¢?/4— f'(u5(2)) upto a constant in front

126



Chapter 4. An analysis of transient dynamics and pattemd&pn in some reaction-li..

of the kinetic energy term but this is insignificant for ourpases. Using the analogy with
the Schrodinger equation, we see that the energy eigesaluare going to be greater
than zero if the potential enerd)(z) is always greater than zero whe(g) is non-zero (As
the perturbations that we consider are finitez) should vanish outside of some interval
(a, b) onz-axis). If the potential energy has negative valuegijt) the traveling front may
still be stable but then we need to prove that eigenvaluegraaer than zero by making

a different argument.

4.5.2 Linear stability of the fronts discussed in this chapsr

In Fig[4.13 we plotV(2) for each nonlinearity and find that for each case, it takes on
negative values in some interval. So, if the fronts are staké should be able to show, by
other means, that the eigenvalues are, in fact, positive tHi®purpose, we are going to
follow ref. [143] and find the eigenfunction &f; that corresponds td = 0 and argue that

the corresponding eigenvalueldf is the lowest.

Note that translated traveling wave solutions of the fofz + €) will still satisfy (2)
because of the symmetry in the system. If we expéizl+ €) aroundz, and keep the first

order term ine, we get

W2+ €) ~ W) + edfiz). (4.29)
If we compare Eq.[(4.29) with Ed._(4.24), we will see that wittem perturbationv(z, t) is
equal todu(z)/dzthen the perturbed solutiai{z t) = u§(2) + ew(z t) is just a translated
traveling front as we showed above. Thus if the perturbasiamthis form, then it will not
grow or decay (as all it does is to shift the front alagn time as the translated traveling
front is also a solution of Eq.[(4.23). We can find the eigenfiom corresponding to
A =0,%(2), by settingl = 0 inw(z t) = £(2e*“?e™" and equating this tdu(2)/dz as a
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Figure 4.13: Plot opotential energy vs.zSolid, dashed and dotted lines correspond to
logarithmic, quadratic and cubic nonlinearities respetyi

neither growing nor decaying perturbation should corraggo A = 0. This gives

cz29U(2)
&(2) =€ Z/ZF-

Now we will use another property of the solutions of the Sdimger equatior (4.28) to
argue about the other eigenvaluesthf Note thatdu(z)/dzis always negative for all
nonlinearities we considered as the front shapes are moicatty decreasing functions

of z. This means thaty(z) does not have any roots so twave functiorcorresponding to

A = 0is nodeless. Butitis well known in quantum mechanics thé4] the nodeless wave
function would correspond to the ground state of the systéimlawestA. Therefore, all
A are greater or equal to zero for all nonlinearities we caraid andl = 0 simply means

a translation ofi5(2).
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4.6 Patternformationin an R-D system with spatially non

-local interactions

As we mentioned in some detail in the introduction of thisptlkeg R-D systems display a
wide range of phenomena including front propagation, tsmihs, and chaotic behavior.
One other interesting feature of these systems is that treyorm patterns under certain

circumstances when an instability in the system arises.

Formation of patterns in R-D systems have been extensivetjexl [145] 106, 146,
[147,[148] after the pioneering work of Turing [19], who sugigel the use of an R-D
equation to study the formation of patterns in morphogenesbiology. He showed that
a system of chemical species that inhibit or activate ealclrand their own production
in a simple way can lead to formation of patterns provided ainanstability in the system

arises as a consequence of such interactions.

In this section, we will study some aspects of pattern foromain an R-D system
in which the mechanism that leads to the formation of stmestun the system is quite
different from what it is for Turing patterns. Recently it waswhdy Fuentes, Kuperman,
and Kenkre[[114, 22] that R-D equations with spatially n@alanteraction terms can lead
to the formation of steady state patterns. The specific Ru@xaton they considered was
an FKPP equation with a competition term that allows for tmsal interactions between
the constituents of the system. In this thesis, we are istiedein studying the formation
of patterns in a similar system. However, our special irgigigefor a transport mechanism
that is not necessarily fiusive. We consider a more general R-D equation than the one
mentioned in refs[[114, 22], by introducing a memory in th@usion term. By choosing
the memory appropriately, we can have super- or stiloigive transport of reactants in
the system. Our main interest lies in investigating the @ s under which patterns can
form as a function of the characteristic property of tramspothe system, i.e. diusive,

super- or sub-diusive.
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In the next section we will briefly review the findings in ré22] about pattern forma-
tion in an FKPP equation with spatially non-local competitterm, and then present our

results for the case with memory.

4.6.1 Fisher equation with nonlocal competition term in theMarkof-

fian limit

Fuentes, Kuperman, and Kenkre [114], 22] consider the fatigiorm of the FKPP equa-

tion with a modified competition term that allows nonlocdkiractions

au(xt) _ DGZU(x, )

ot o Haux.t) —bux.1) fg dy f-(x, y)u(y, 1), (4.30)

whereQ is the extent of the system arfg(x, y) is a function characterizing the influence
of pointy on pointx. It is reasonable to think of,(x,y) as a function o — y in many

situations. So we will assumig = f,(x —y) and that it is normalized of) such that

f dzf(2) = 1. (4.31)
Q

If patterns do form as — oo then the homogeneous solutiag,= a/b, must be unstable
[149,[147/ 146]. Therefore, in order to obtain a conditiontf@ existence of patterns, let
us analyze the stability of the homogeneous solution. Téieafethis section is a detailed

review of the discussion in ref._[22] provided as an intradrcto our study. Consider
u(x, t) = Up + € coskxe, (4.32)

wheree is be taken as a perturbation parameter. Next, we subskmte{4.32) in Eq.

(4.30) to see under which conditions the perturbation growdecays. We get

e coskxet = —Dk2e coskxe&' + au + ae coskxe

— b(up + ecoskxe) f dyf.(x,y) (Ug + € coskxe) . (4.33)
Q
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Using the properties of,(x, y), we put Eq.[(4.33) in the following form

_ ’ . COSKy 2
0= 6((,0 + Dk* + afg dyf,(x-y) coskx) + O(¢e9). (4.34)
Neglecting the term that is second ordekjn

cosky
coskx’

¢ = -Dk? - af dyf.(x-vy) (4.35)
Q

Let us takeQ to be the intervalfL/2, L/2] so that the size of the systemlis Then, the
integration variable takes values fromL/2 toL/2, andz = x—yruns fromz = x+L/2 to
z=Xx-L/2. As we impose periodic boundary conditions on the systran be thought
as a periodic variable, like an angle, with periodThis observation will be useful if we

express the integral in Eq._(4135) owsnstead ofy. After doing this, we get

coskxcoskz + sinkxsinkz
coskx

¢ =-DK? - af dyf(x—y) , (4.36)
Q

where we used coaf b) = cosacosb — sinasinb. Expressing the integrals ovewe get

¢ =-Dk* - a(f dzf,(2) coskz+ tankxf dzf.(2 sinkz), (4.37)
+ Q,

whereQ, means that is increasing along the path of integrationt¥ and explains how
we got rid of the minus sign introduced by the change of irgegn variable. Integrating
throughoutQ, Eq. [4.37) becomes

L/2 L/2
¢ =—DK? - a( dzf,(2) coskz + tankx dzf.(2 sinkz). (4.38)
-L/2 -L/2
The second integral in Eq._(4138) vanishes as the integmatitbiproduct of an even and

an odd function and we are left with

¢ = -DK* - a7 (K), (4.39)
where
L/2
Z(K) = dz{.(2) coskz

-L/2
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is the Fourier cosine transform of the influence functione Plerturbation will grow ifp
given in Eq. [(4.3DB) is positive and it will decay otherwises B, k, anda take positive
values, the perturbation can grow only# (k) is negative for at one of thievalues and
satisfies

Dk?
FH <

The growth of perturbations is a necessary but ndicant condition for pattern forma-

tion. If we take the influence function to be
1
fo(2) = 5= (0(c -2 0(c +2),
20
whered(x) is the Heaviside function
1 x>0,

6(x) =
0 x<0.

With this choice for the influence function, we have

(4.40)

A plot of the steady state patterns emerging in the R-D systearacterized by Eq._(4.80)
and the influence function given in Ed._(4140) is shown in Fgl4. Note thatp takes

positive values for two intervals &€

4.6.2 Our generalization with memory

The transport in the system governed by Hq. (4.30)fi&sive due to the term with the
second space derivative. In order to allow foffelient transport types such as super- and
sub-dttusion, we will modify this term by introducing a memory. latrsport is coherent

to some degree, then E._(4.30) can be replaced by

au(x b f dsp(t - s )62”(X 9 | au(x.t) - bux.1 f dyt(x yu(y.t). (4.41)
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Figure 4.14: On the left, we plot the steady state patterasappear in the R-D system
described by Eqs[(4.B0) arld (4.40). On the right, the cpomding.# (k) as a function
of k is shown. The value of the dimensionless paramet¢a/D is equal to 20V5.

See ref. [[5] for a discussion on memory functions, genezdlimaster equations, and

coherent transport. In this case, we will employ a more garferm of the perturbation

given in Eq. [(4.3R), namely
u(x, t) = ug + €g(t) coskx (4.42)

substituting Eq.[(4.42) in EqL{4.41) and proceeding in e way as in Se€._4.6.1, we

obtain

dg(t) _ > t
g0 = A7 () - Dszo dsp(t — 9)9(9).

Taking the Laplace transform of the equation above and dsonge algebra, we get
9(0)
€ + DK2g(e) + aZ (k)

where tildes denotes Laplace transformed quantities @the Laplace variable. Without

O(e) = (4.43)

loss of generality, we will takg(0) = 1 from now on. In the Markfiian limit, ¢(¢) = 1
and we have

o= -DK - aZ(K),
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given by Fuentes et al. [22].

In the following sections, we considerfiirent memory functions and theiffect on
the stability of the homogeneous solution. The influencetion we consider in all of the

cases is given by

o(w — 2)6(w + 2)

f(2) = 4.44
- o (4.44)
whered(x) is the Heaviside function. Its Fourier cosine transforradmes
() = Snkw (4.45)
o kw '

4.6.3 Indiscrete space

In the rest of this chapter, we will confine our interest totegss in discrete space. It
is useful to obtain the results in discrete space espeamilgn it comes to comparing

analytical results with numerics. One of the discrete spaatogs of Eq.[(4.41) is
dug, t
¢ =N | d8(t=9) [Una + Uy — 2Un] + @l — bl - Fo(Wlrn,  (4.46)
0 n
whereF,(w) is the influence function. In particular, we consider

Fn(w) =

N 19(W —n)o(w + n), (4.47)

whose Fourier cosine transform is

1 coskw — cosk(w + 1))
S 2w+1 1 - cosk

Again, we consider the evolution of the perturbed steadg sta Uy + € coskm)g(t), by

substituting it in Eq.[(4.46) and taking its Laplace tramsfowe get

1

= , (4.48)
€ + G(K)¢(e) + a.7 (K)

9(e) =
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where
G(K) = 2h (1 - cosk).

If the memory is a delta distribution(t) = 6(t — 9),

1
e+ GK +az (K’

oe) =
thereforeg(t) is given by
g(t) — e—(G(k)+a.95(k))t, (449)

and the perturbation would grow if

Z(K) < —¥. (4.50)

The exponential time dependence is not surprising as wekaqyterms that are linear in

e. If the memory is an exponentially decaying functigft) = ae™, g(e) becomes

e+¢ B-¢&

9= |exer—n " Cror—nl
where
7 (K
i)
2
p= 7O s 20 - aGK),

4

andg(t) is given by

g(t) — C+e_(‘f_ ‘/ﬁ)t + C_e_(§+ ‘/ﬁ)t,

1 ,8—5)
4+ = = 1i— .
o 2( NG

Let us take a closer look at the exponent

£+ 7= Laf(k) + % \/(ﬁ +aZ(K)? - 4(a8.7 (K) + aG(K)).
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Note that the exponent is positive only when
z _aGk
Z (k) < 5 a

The Markdtian limit corresponds to setting = 8 and taking the limi3 — oo. Let us

rewrite the exponent as

£+ 1= Laf(k) ig\/l+g(—MT® - %G(k)) +ﬁ—12a29*2(k).

As we are interested in the limit — oo, the second term inside the square root sign is

small compared to 1 so that we can make the approximatiba x ~ 1 + x/2, which

leads to
&+ \n=p-G(k),
&= n=a7z(K + G(Kk),

if we ignore the term which goes @#s2. As g is large and positiveg ¢+ vt will vanish

andg(t) will be proportional to

g(b) oc @€ VIt = g @FWCM

which is the result we obtained in Marf&@n limit earlier.

4.6.4 Slowly decaying memories

If the memory decays slowly, e.g. algebraically, then tpamscan be sub- or supeftli-
sive [B]. A ¢(t) whose integral in [0) is divergent will lead to superffusion. On the
other hand, if the integral af(t) in the same interval vanishes an¢t) ~ t~1, where

0 <y < 1, then the transport will be sulstiisive.

Superdﬁ“usion:f dsp(s) - o
0

fds/)(s):o
SubdiTusion Jo

pt) ~t17, 0<y<1
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In order to investigate supeftlision, we consider memory functions of the form
o) = a(Bt+7y), -1 <v <0, (4.51)
whose first and second integrals are

t @ v+ v+
| a9 = g [t -y,

t ° _ o 1 v+2 v+2 v+1 v+2
MSDochdsfo 486(5) = 7 gy [ B+ 12 =7 = t]~t ,

where MSD stands for mean square displacement.

For subdifusion, we take up

#(1) = 5(t) + (Bt + ), 2 <v < -1, (4.52)
with
t a v+ v+
[ a9 = 1+ gz [yt -y,

t S 1
MSDocfdsf dSp(s) = ———— (Bt + )2 —y" 2| ~ t7*2,
s | dSo(S) = o | (Bt ) -y

Observe that/s = (v+1)/y"*! needs to hold in order that the integﬁi dsp(s) vanishes.
Let us see what these basic properties imply about the timleitean of the perturbations
when they decay. If the perturbations decay, then the iatq(g"rdtg(t) = lim.og(e) will
have a finite value. The value of this integral gives us an abeait the characteristic time

associated with the decay of the perturbations, which isrgby

1
9(0) = — .
50) G(K)#(0) + a.7 (k)

The integral of the memory(0), is finite for exponential ané-distribution memories as

(4.53)

well as for the memory we considered in the siludiive case. Inverse of the characteristic

time for each of these cases is given by
G(k) + a7 (k), ¢(t) =d(t)
1 =T(0) = { (0/B)G(K) + aZ (K), (1) = ae™

azk), o¢=06t)+aBt+y)
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Note thatr. for the Markdfian limit is identical to the exponent we found in EQ. (4.49% an
the expression for it is simplify modified by a factor®fg if the memory is exponential.
Obviously, the characteristic time of the decay for the sfiibsive case is meaningful only

if #(K) is positive.

Our aim is to obtain a condition on the parameters of the megriusrction that deter-
mines whether the perturbation will grow or decay. We showliforget that the condition
for the growth of the perturbation is not necessarily theesasithe condition for pattern
formation. Growth of the perturbation is necessary but nffigent for the formation
of patterns. In the rest of this section, we will discuss a whygbtaining the short time
behavior of the functiomy(t) for the super- and subAtlisive cases. Let us consider the

memory function

o(t) = Zo(t) + (Bt + y)". (4.54)

If the parametet is equal to 1, then Eq[{4.54) is the memory function we caersior
the subdifusive case, and f is 0, it is identical to the memory in the supdftdsive case.
The Laplace transform of Ed._(4]54) is given by

de)=C+a f:o dt(st +y) e (4.55)

Recall that the Laplace transform of the functig(t) that describes the time evolution of

the perturbation is given by

1
e + G(K)g(e) + aZ (k)

Our treatment of the evolution of the perturbation is validyoif the amplitude of the

9(e) =

perturbation is small. Hence, we can rely on the expressipg(f) only for short times.

In the super- and sub- filisive cases, it does not look like we can analytically take th
Laplace transform of (¢) and obtain behavior of the perturbation as a function of time
because of the complicated naturegqt). Because we are necessarily interested in the

short time behavior ofi(t), we can focus our interest on approximating it. In orderdo d
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this, we notice that the behavior of a functib(t) at short times is related to its Laplace
transform at large values of the Laplace variable. For timdtilhg behavior off (t), we

have the well known result [59]
lim f(t) = lim ef (e). (4.56)

As we are interested in the valuesggf) for small values of different from 0, we can take
the inverse Laplace transform of the approximate forrg @) for large values ot. If we

make the change of variables= gt + v, then Eq.[(4.55) can be written as

E(e):m%l,

where

| = f drr’e 50,
Y

Performing integration by parts twice on the integral, weaab

AR Vi £ (=)
e/ 6//5[6/,8 e/Bf drrre? l

We realize that if we perform integration by parts, we will get the following result

- V! g5,
Zy (v—m)' @B o) (e/ﬁ)”f dre (4.57)

where the subscripton| denotes the number of times we used integration by partsoUp t
this point, the expressions we have worked with are exaatrder to be able to continue
with analytical calculations, we now make an approximatidnch is exact fore — oo.
Note that the exponential under the integral sign imould be vanishingly small for the
large values ot which we are interested in calculatiigge) at. Therefore, we make the

following approximation

(e/B) & ~ §( - ),
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that leads to

f ) dr e 50 & L_n,

y €/B

which is exact wher/B8 — . It is worthwhile to note that approximation of the integral
in | would get better and better with increasing values,ast " gets weaker for large
values ofr, with increasingn. Using this approximation we can expr@&gg) as
P (e)
Q(e)’

whereP () andQ (¢) are polynomials ire. Hence, taking the inverse Laplace transform

g(e) = (4.58)

of g(e) reduces to the problem of finding the roots of the polynorQi&) and then cal-

culating the residues @ (¢) at these roots.

One can go through this procedure and get approximate foomg(t), but for our
purpose it is not essential to do so. We would like to know Wwlethe perturbation is
going to grow or decay. In other words, we are interested thirfim howg(t) changes for

smallt. By using the following theorem for Laplace transforins [59]

L{%} = ef (€) - 1(0),
and Eq.[(4.56), we can write
dot) _ | €2

lim —= =
t—0 dt €—00

— — €
€ + G(K)g (e) + a.7 (K)
In the limite — oo, we can replace (¢) by v’/(e/B) due to the discussion above. After
doing this, we get

lim === = ~[G()¢ + aZ (K)].

Therefore, the necessary conditions for the perturbatiorggow in the super- and sub-

diffusive cases are
dg(t) a7k <0 super-difusive case,

lim = > 0 if (4.59)
0 [G(K) + aZ(K)] <0 sub-difusive case.

140



Chapter 4. An analysis of transient dynamics and pattemd&pn in some reaction-li..

Note that the growth rate of the perturbatiort at O for the sub-dtusive case is identical
to that in the Mark@ian limit given by Eq. [(4.50). For superitlision, we see that the
growth rate at = 0 is independent from th&(k) which is the term that involvel, the

analog of the dtusion codicient in discrete space.

As we have seen above, we can calculate the first derivatig@)ofxactly att = 0. In
fact we can do the same for all higher derivativeg@j by using the following property

of the Laplace transforms
df(t) .+ 1 dn1f(t)
L{ m }—ef(e) e f(0)-... ar |
Using this and Eq.[{4.56), we can calculdiflg(t)/dt" and expand(t) in a Taylor series

aroundt = 0. We find that the the first four terms in the Taylor expansi@n a

9t) ~ 1— aZ Kt + | — ay’G(K) + azﬁz(k)] g

—a% (k) [ — 20y'G(K) + &&F 2(k)] % (4.60)
for the super-dtusive case, and
gty 1-(G(K) +aZ(K)t + —%G(k) + (G(K) + aﬁ(k))Z] g
— (G(k) + a7 (k) [—ZV ; 1G(k) + (G(k) + agé’(k))z] g (4.61)

for the sub-difusive case. Therefore, Eq$._(4.60) ahd (4.61) provide @nnaltive for
finding an approximate form fag(t) by inverting the Laplace transform in Eq. (41.58).

4.7 Numerical solution of the integro-dfferential equa-
tion and results of our analysis
In this section we will go over the method we employed to sthesystem of integro-

differential equation§ (4.46) numerically. Eq. (4.46) is a&ol integro-dierential equa-

tion with a convolution kernel, which appears in many dyrnaahsystems (see ref. [150]
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and references therein). Numerical solution of systemsaitfexfa integro-dierential
equations is costly, especially when the one discretizesraap differentiation operator
and uses small step sizes to obtain reasonable accuracfactleat we restrict our atten-
tion to a discrete R-D system rather than considering Eddljselps us go around this
problem of having to choose small step sizes in discretitiegspace variable. Below, we
give an algorithm that approximates the solution of a sysiEvolterra integro-diferential
equations using embedded Runge-Kutta methods, found ipetmpeadt and others [150]
and follows from the results obtained in refs. [151,1152 ), 1531].

Consider the system of equations

du(t)

T g(t, u(t),f0 dskt - s)f (s, x(s))), (4.62)

with the initial conditionu(0) = uo, whereu(t) is a vector andy is a vector valued function
of its arguments that can be nonlinear. Discretizing thetimerval [Qt] such thatt,,; =

t, + hy, the 8" order Runge-Kutta approximation to solution of EQ._(4.62ha n + 1°
timestep is found to bé [150]

S
Uni1 = U+ P > BiG (tn + €jhn, X, F (tn + Cjh) + Zin) (4.63)
=1

where

i-1

Xi,n = Xp+ hn Z a,-jg(tn + Cj hn, Xj’n, F; (tn + thn) + Zj,n) y
-1

j-1
Zj,n = hn Z a| k((Cj - C|) hn) f (tn + C hn, X|,n) ,
I=1
F:(t) is the approximation for the integral

Fn(t) = ) dskt - g)f(s, x(s)) ~ Fy(b)
0

n-1 S
= Z h, Z bjk(t -t - th|) f (t| + cjhy, Xj,l) ,
- =
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u; is taken to be the same as the initial condition, and the @sdiandn run from 1 tos
andN, respectively. The values afj, by, andc; depend on the order of the Runge-Kutta

method used. For @%order approximation we have (see Eq. (1.4) of ref. [150])

0 0 0 0 0 0 O]
1 0 0 0 0 0 0
A1 0 0 0 0 0
9372 25360 6 8 212

165671 - 25187 6%%41 _7_%9 0 00
9017 355 46732 49 _5108 o q
3168 33 5247 176 18656

35 0 500 125 _2187 1
384 1113 192 6784 4 i

b=| 35/384 0 5001113 125192 —2187/6784 1184 O |,

and
c=|0 1/5 3/10 4/5 89 1 1.

These values faa, b, andc describe the method proposed by Dormand and Prince [154].
Now we will display the results obtained by numerically soty Eq. [4.46) using the

algorithm described above.

When the transport in the system is sulfulive such that the memory is given by
Eq. (4.52), we find that the system still forms patterns. Tawre of the patterns seem
to be very similar to those that arise in the Mditkan limit. Moreover, the condition for

the growth of perturbations, as given in E§. (4.59) is theesamit is in the Markfiian
limit. Obviously, the time evolution in the sub4tlisive case is much slower than it is in

the Markdfian limit. In Fig.[4.15, we display the patterns that form fgraaticular choice
of parameters along with the functiéi(k) = —(G(k) + a.# (k)), which shows the growth
rate of thek™ Fourier mode of the perturbation. The parameter valueshiesed plots can

be found in the figure captions.
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Figure 4.15: On the left, we display the steady state pattebserved in the R-D system
given in Eq. [(4.46) with parameter values= 05,a = 4,b = 1,y = 0.1, w = 10,

B =1,v=-3/2. The discrete system consists of 101 lattice points, aridgie boundary
conditions are imposed (this explains the split peaks irptteern structure around= 0
and 100). The stepsize used in the integratiofitiss 0.2. The shape of the patterns that
arise in this case seem to be identical to those in the Maakolimit. On the right, the
quantityQ(k) = —(G(k) + a.# (k)) is plotted as a function &. As explained in the text, if
Q(K) is greater than 0, then the corresponding Fourier modegnowme and if it is less
than 0, then the Fourier mode decays. Bear in mind that thatengents are valid only
for short times as our calculations are for small amplituafehe perturbation. 1£2(K) is
less than O for alk, then small perturbations will not lead to the formation aftprns.

In Fig. [4.16, both numerical findings and theoretical restdt the time evolution of
the amplitude of the perturbatiog(t), is plotted. The initial condition we consider in this

case is of the following form
Um = Ug + wg(t) cosKm, (4.64)

whereK is a particular value of the Fourier varialkeu, is the steady state solution of
Eq. (4.46), andv is the amplitude of the perturbation. In our analysis weuget 4 and

w = 0.1. The plots show th&™" Fourier mode of the numerical solution of EQ._(4.46) as a
function of time. The left plot in Figl_4.16 correspondskto= 0.4355 (thek value at the
first peak), and the Fourier mode grows. On the right, we plettime evolution of the

Fourier mode withK = 0.7465 (corresponding to the first dip after the first peak) Wwhic
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decays, in accordance with the theoretical predictionsoth of these plots, open circles
correspond to numerical findings with the parameter valisngn the figure caption,
solid lines represent theoretically obtairgt) curves given in Eq[{4.61), and the dashed

lines represent the approximatiorg(@) calculated by taking the inverse Laplace transform
of Eqg. (4.58), which is

(4.65)

gsinh( \E2 - 4nt/2)
2

g(t)=e? [cos VE - dnt/2) - :
\ ) VEZ =4

where

£ = (6K + a7 (K,
- [(* 1)4+a(1—§)]yve(k)

,yv+l

Eqg. (4.65) is obtained by keeping just a few of the terms in @g8) that vanish in the

limit e — oo and thus, only approximategt) crudely.

For the super-diusive case, steady state patterns do not form. In this casaumer-
ical findings indicate that when perturbations grow, patehat oscillate in time evolve.
Therefore, the super4iusive case requires affirent treatment in which one takes the

effects of the full nonlinearity into account.

4.8 Concluding remarks

Results on two dferent aspects of R-D systems, front propagation and pdtieration,
was studied in the first and second parts of this chapter cdgply. The research we
presented on front propagationffers from most of the work that has been done in the
literature as it focuses on the transient dynamics in theesysather than on the steady
state behavior. Exploring the transient dynamics in systetmnich obey nonlinear evolu-

tion equations is a flicult task and can seldom be done exactly. In our case, it as0 w
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Figure 4.16: Here we plot the short time behavior of the sotudf Eq. [4.46) with the
initial condition being the perturbation given in Ed._(4)6for two values ofK. The
parameter values ate= 0.1,a=4,b=1,y =01, w= 10,8 =1,v = -3/2 and
the system consist of 101 lattice points. The integratiotinme is performed by using a
stepsize ofAt = 0.005. On the leftK = 0.4355 which corresponds to the valuekadt the
first peak of the curve in Fig._4.15 (right). For thdsvalue, the perturbation grows in time.
On the rightK = 0.7465, corresponding to the first dip in Fig._4.15 (right). histcase
the perturbation decays. The solid and dashed lines reyrésetheoretical, approximate,
predictions for the time evolution of the perturbation, egivby Egs. [(4.61) and (4.65),
respectively.

not possible to solve the evolution equation exactly, tloeeewe resorted to a numerical
analysis. However, we carefully selected our R-D equatiaihat we can obtain their trav-
eling front solutions analytically, which provided us a Watfined method of analyzing
transient dynamics, as explained in Secl 4.4. We revieweddhcept of linear stability
of traveling fronts and applied it to our traveling frontgtbns. Our results are displayed
in Figs.[4.8[4.5,4.10, 4.1, 4]12 and show aspects of tagatbn behavior of the der-
ent initial conditions we consider. As we mentioned in thiedduction, the type of R-D
systems we considered here are relevant in real world prabdeich as flame propagation
and population dynamics. The results we obtained would lesaet in studying the re-
sponse of these kind of systems when their steady stategdtel@ed in the ways that we
describe in Fig_4]7.
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The aim of the second part of this chapter is to explore ffects of anomalous fiu-
sion on the formation of patterns in an R-D system. The speRHD system we consid-
ered here is described by the FKPP equation with a modifietineam term that allows
spatially non-local interactions. Based on the analysisugntes, Kuperman, and Kenkre
[114,[22] regarding the emergence of patterns in this R-Degsyswe derived necessary
conditions for the formation of patterns under more gentealsport types. The neces-
sary condition for pattern formation is the growth of pepations in the steady state, or
the steady state becoming unstable, can depend on thedransgchanism in the sys-
tem. In order to explore this, we generalized the equatied Uiy Fuentes et all_[22] to
include a memory, that can be specified appropriately tonattidfusive, super- or sub-
diffusive transport in the system. When the memory ds-distribution, we recover the
results obtained in refl_[22]. Forftierent types of memories, including exponentially and
algebraically decaying forms, we found that the rate of geanf the perturbations in the
diffusive and sub-diusive cases are the sametas 0 as seen in Eqsl_(449) aid (4.59),
whereas in the superdtlisive case, it has aftierent value given by Eql_(4.59). For 0,
the evolution of the perturbations is found to b&elient in each case. It is not possible
to solve the R-D equation we consider exactly, thereforalyaed the problem by doing
numerical simulations. In our simulations, we found thahg perturbations grow in the
diffusive and sub-diusive cases, the system forms steady state patterns, gitieeeidid
not establish a dficient condition for the formation of patterns. For the sugigiusive
case, we noticed that when the perturbations grow, steatky gatterns do not form, in-
stead, oscillating structures appear. As yet, we have gt fursued the properties of
these oscillations mainly due to the well knowiffidulties of numerically solving integro-
differential equations for extended periods of time. Theref@rdear future direction of
the research we presented here is studying the dynamice sytitem for super-fiusive
transport. A question that needs to be answered is whetbarsitillations arise because
of the particular memory function we considered for the supfusive case, or is it a

general feature of superftlisive transport.
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Chapter 5

Cluster size distribution in an

addition-deletion network

5.1 Introduction

The work described in this chapter was done while the autres working at the Los
Alamos National Laboratory as a summer student in collamravith Eli Ben-Naim

of the theoretical division of the Los Alamos National Ladiry. It is loosely connected
with the rest of the thesis. It deals with a problem in completworks, the latter providing

the connection with the rest of the thesis.

Studying the properties of networks has attracted an enggsrmmount of attention over
the past 10 years$ [30, 28,129,/31]. The main reason is thelasskiof networks in rep-
resenting complex systems of manytedient kinds, seemingly as disparate as food webs
[155], semantic networks [156], and Bose-Einstein conads{28]. Networks, or graphs
in the terminology of applied mathematics, have been stliolyausing both numerical and
analytical techniques. The vast majority of the resultaiiatd in the literature pertain to

static properties of networks, and not as much have been alomet studying network
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structures that evolve, at least in terms of obtaining exeslts. See Dorogovstev and

Mendes[[29] on a relatively early review on evolving netwsork

Here, we are interested in studying an addition-deletidwosk in which nodes, the
basic elements of the network, are added and removed in amafakhion as a function
of time. See refs.[[23, 24, 25,127,126] for examples of additieletion networks. These
types of networks are potentially useful in modeling a widege of systems, including
the world wide web[[2]7]. Many properties of these networkgehlaeen studied, such as
the degree distribution [28, 24,125,127] 26], the in-compaigstribution [26], the height
distribution [26], and theféects of preferential attachment[27]. In our study, we coesi
random recursive trees, which are perhaps the simplest oealork structures. For a
detailed discussion on trees and many other graph strsctsee, for instance, ref. [157].
Our goal is to study the distribution of cluster sizes in ad@n recursive tree, in which
nodes are randomly removed as well as added in the coursa@f Below, we will give
the necessary properties of the network structures we silmyg with the explanation of

the terminology, without going into much detail.

This chapter is organized as follows: in Secl 5.2, we gived#faition of some of the
commonly used terms in the study of networks, and presenseigéon of the problem
we are interested in. In Se¢s. 5.3 5.4, we describe tHeonetwve use to approach the
problem and give our numerical findings. Some of the reshidtswe obtained analytically,
concerning a simpler version of the quite general problenb&gan with, is given in Sec.

B.5. In Sec[5]6, we make concluding remarks.

5.2 Some basic definitions and description of the problem

The basic elements of a network, or a graph, are nodes arsl Ilketwork is charac-

terized by a set of nodes, that may or may not be connectecctoather with links. In
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general, links can point in a particular direction but owrdst focuses on a network with
undirected links. If each of the two connected nodes arealsaected to a third node a
cycle appears. Cycles of larger sizes can appear with tlodviement of more than three
connected nodes. The degree of a given node is defined as ifgenwf links that it
has, thus it is equal to the number of nodes to which it is coteae These concepts are
illustrated in Fig.[5.1l for a randomly constructed netwofke structure of the addition-
deletion network we consider is similar to that of a randogrigwn recursive tree. One
can generate a random recursive tree by starting with one atid= 0 and subsequently
introducing new nodes. The newly introduced node is atth¢bea randomly selected
existing node, which we will call the parent node. Therefe@ch new node starts with a
degree equal to 1. Note that a network that grows accorditigdoule cannot have cycles
(hence, the name tree is used to described these kinds cists). If the parent node has
a degree of k, it will have a degree lof 1 after the addition of the new node. Therefore,
it is straightforward to write a Master equation for the exmn of the number of nodes
with degreek, denoted by, as

dd_r:( = % (Nk-1 = Ni) + Ok 1,

whereN is the total number of nodes in the system at timand for convenience we set
the rate at which new nodes come about to 1. This equationasily ée solved fony

in the long-time limit, givingn, = N2 so that the probability of finding a node with
degreek is px = 27%. Therefore, the average degree of a node is givetkpy: 2. Many
exact results like these are known about more general tyfp@stving graphs (for a few

examples, see refs. [158, 159, 160,1161, 26])).

The dynamics of the network that we are interested in stugglifiers from what we
described above in the way that nodes can also be deletedeataanaate. Hence, the
term addition-deletion network is used to describe thesetsires. Networks with such
dynamics were studied in the past by several authors [232%2427,[26]. A schematic

illustration showing the evolution of the addition-detetinetwork we study is given in
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a node\ e a link

degree = 4\

degree = 1

Figure 5.1: A general network structure employed to illatgithe concepts we mention in
the text. The colored nodes are part of cycles of length 3 ar@rte of the properties of
recursive trees, which we are interested in studying thmougthis chapter, is that they do
not have cycles.

Fig. [5.2. Note that as a result of the deletion events, thevar&tis partitioned into
smaller segments, which are also trees, that we will calitels. Our aim is to gain an

understanding of the distribution of cluster sizes in tlasvork.

RAR O
hed e £
£y Ao

Figure 5.2: A schematic illustration of the evolution of thadition-deletion network. At
t = O there is only one node, the root. Arrows point to the nextestd the network
after each time step in the simulations. Links and nodes #lashed lines correspond to
deletion events, and they are removed from the network. drast step of the evolution,
the deletion of a node along with all its link lead to the fotioa of three clusters one of
which has size 3, while the other two consist of disconnectestes.
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5.3 Methods of study

Firstly, we perform Monte Carlo simulations of the additideletion network and explore
the properties of the numerically obtained distributiorchister sizes. We will describe
the simulation methods and give the results in $ecl 5.4 beldwe original aim of this

investigation was to obtain an exact expression for theidigton of cluster sizes, or for its
the asymptotic behavior. As yet, we have not succeeded onguicshing that task. It turns
out that writing a closed equation for the evolution of chustizes in the form of a Master
equation is not straightforward. However, we succeed iaiobtg exact expressions for
the distribution of branch sizes of a given node, which wakhs an important step in
solving the original problem. The calculations and respdigaining to the distribution of
branch sizes will be presented in SEc.] 5.5. In the rest ofsdgsion, we briefly describe

our strategy in solving this problem aside from doing sirtiatss.

In the opinion of the author, there are twdtdrent approaches that one can take in an

attempt to make progress in determining how cluster sizeslistributed. One of them
is concerned with finding out the specific ways in which treedifierent sizes give rise
to new clusters when they are fractured(because of the namdmoval of a node). This
could give us an idea about how the rate of appearance of nestect with diferent

sizes behave as a function of the size of the cluster beictuied. We call this approach
microscopicas it is all about unraveling patterns in randomly growirept of diferent

sizes. The second approach treats the number of clustaeesf Bs, as a random variable
and tries to figure out the stochastic process that desdtieesandom variable. As no
reference to the underlying structure of the network is maste, we call this approach

macroscopic

For networks that grow without the removal of nodes, it iS&a® write down closed
equations for various quantities like the degree distrdsutWhen a node is removed from

a network, along with all the links associated with it, npié events occur at one time
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step. The removal of a node produces clusters of matfigrdnt sizes. If one adopts the
microscopic approach, in order to give an account on how thmeber of clusters of a
certain size evolve, one needs to find out about the detatlsi®process. To do this, we
do simulations in which a random recursive tree is grownlitritasN + 1 nodes, without
any removal of nodes, and then one node is removed from ihdabra. As a result, the
original tree breaks up into disconnected components. Wesralculate the probability of
finding a component of sizealong with the probability of finding of these components
of sizes. We find that the function that relates the side- 1 of the original tree and the
size distribution of the subsequent components scale as

f(N.s) = (Nil)zf(Nil)'

The derivation of the exact form of the size distributionleése components, or branches,

will be given in Sec[ 5]5 in detail.

If we look at the problem from the point of view of the macrggimoapproach, we
may proceed in the following way. Let(t)) be a random variable that corresponds to the
number of clusters with size Let F(ns, At), At = ti;; — tj, be a stochastic process that

governs the evolution afs. Then,
r]s(ti+1) = ns(ti) + F(ns, At)- (5-1)

If we can gain some insight into whar the functional form of frocesd= is by doing
simulations, we may be able to analytically express the rarmob clusters of sizes as

t — oo. The author has not pursued this method.

5.4 Simulation of the addition-deletion network

We perform Monte Carlo simulations of the addition-deleti@twork we study, in trying

to explore the cluster size distribution. During a time stéfhe Monte Carlo simulation,
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a new node is added to an existing node with probability

r
Padd = PR

and an existing node is deleted with probability

Dot = 1
del = 7
Typically, we run the simulation until the total number ofdes in the network reach
10" ~ 10%. We repeat this procedure a few thousand times and ensendsiaga over
the findings to obtain the final results. While constructing hetwork in this way, we

calculate various quantities like the frequency of obseywlusters of dterent sizes.

The main result obtained from the simulations is the clusize distributionP(s). In
Fig.[5.3, we plotP(s) as a function of the cluster sizfor various values of. The func-

tional form of P(s) for large values o&is well approximated by a stretched exponential,
P(s) ~e¥.

In order to estimate the parameiein(— In(P(s))) found numerically and is plotted against
In(s). A linear fit is performed by considering the points with s, for somesy. Fig.[5.4
shows the behavior of Ir(In(P(s))) as a function of In§). Furthermore, In Fig[_5l5 we
plot In(P(s)) againsts’ with they values obtained by the procedure described above, to
see if the relationship is linear, which would provide magason for us to think thd&(s)

behaves like a stretched exponential for lasgalues.

It is also worth mentioning that the simulation describedvas repeated for a special
case of random recursive trees for which the maximum degreeo, i.e. only two nodes
can be attached to a given node, one being its parent, andheeits child. For a chain

like network like this, we find that the cluster size disttibu falls of exponentially.

Another interesting quantity we explore in the simulati@ihe number and size of the

clusters that result from removing a node from a random sageitree withN + 1 nodes.
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Understanding this simple problem may help us in develogitigeory for the cluster size
distribution. Note that this is related to the microscogipr@ach we mentioned earlier.
We observe numerically that the size distribution of thestdus obtained by removing one

node from a network ol + 1 nodes is a function of the form
f(N,s) = 1/(N + 1)*f(1/(N + 1), 9).

Also, the number of clusters of a certain size obtained is timy seems to follow an
exponential distribution. In this, case the simulationesfprmed in the following way. A
recursive tree is grown until it reaches a sizéNof 1 by constantly, and randomly, adding
new nodes to the existing nodes in a uniform fashion. Themdaaly selected node is
removed from the tree. The resulting structure is a cobbectif disconnected trees (or a
tree withN nodes if the node chosen for removal is a leaf, which is a nddiegree 1),
which we call clusters. We are interested in obtaining ttabability of finding a cluster

of size s after the removal of a node from a tree of side+ 1. This quantity is denoted

by Ps(N) and is numerically calculated as follows: during each r@ithe simulation a
random tree of siz&l + 1 is grown and one randomly chosen node is removed. Then the
number and size of the resulting clusters are foundrRyN) is updated to give
Py(N) + ni/S'

PSHN) = == (5.2)

where the index pertains to the ensemble averaging carried out, maRigly) the prob-
ability of finding a cluster of size& when a node is randomly removed from a tree of size
N + 1 averaged over+ 1 different realizations. Here. is the number of clusters of size
sandS' the total number of clusters found after iHerun of the simulationR(N) = 0).

With this definition ofPs(N) we obviously have the normalization condition

Z Ps(N) = 1.

The average degree of a node in a growing network of this ldrdj in the limitN — oo,

as we mentioned earlier. Therefore, on average, one shrpéteto find two clusters as
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a result of removing a node at random. This is indeed what wénsihe simulations. The

simulation results that pertain to this case is present&@em[5.5, along with the exact

expressions.

10

-10|

10

L L L L
0 1 2 3 4 5

10 10 10 10 10 10

Figure 5.3: The cluster size distributi®{s) as a function o on log-log scale, for various
values of the parameter The value ofr determines the probabilities of addition and
deletion of a node at each simulation step. From left to rifte data sets correspond to
r=1211,13,15,1.7,1.9, 3, 6, 8, and 10. Note that for large \sabie, which correspond
to fewer deletion events, big clusters appear with more givdity, as expected. In order
to obtain each data set, the network is allowed to evolve itictintains 10 ~ 1% nodes.
This procedure is repeated a few thousand times and thegeselaveraged to obtain the
displayed values d®(s).

We also calculate the probability that the number of clissteth a given sizeschanges
by n during one time step. Knowing this probability distributiavould provide one with
the details of the stochastic process by which the randomhlamg, number of clusters
with sizes, evolves. We did not pursue research along these linesfyegh we mentioned

in passing while discussing the macroscopic approach above
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35

1.75¢

In(—1In P(s))

0 2 4 6 8 10 12
Ins

Figure 5.4: We suggest that the cluster size distributidraies like a stretched exponen-
tial, e ¥, for large values of. If it is so, then plots of In¢ In P(s)) against Ins should
be well approximated by straight lines. Here, we displayhspiots corresponding to
r=211,13,15,1.7,1.9, 3, 6, 8, and 10 from left to right. Notatttor small values of,

In(—In P(s)) seems to vary linearly with Ia

5.5 Exact results for the distribution of branch sizes

In this section we study the distribution of the branch siziea randomly selected node,
which is equivalent to the distribution of the size of thestlrs that appear as a result
of removing a randomly chosen node of a tree. Note that theteaisi thus formed would
themselves be trees as shown in Hig.] 5.6. Therefore, a biarehree whose root is
connected to the node that is intended to be removed. Acugiydlthe number of branches
that form after the removal is equal to the degree of the nadegbremoved. As the
average degree for a random recursive tree is equal to 2,esags;, one would expect to
see two clusters forming after a removal event. Two of thetrabandant type of nodes
in a random recursive tree are leaves that have degree egliahhd the nodes that are
connected to leaves. This means that most of the time thevadraba node will partition
the network into one piece with one less node than the oligriea or into two parts with

a disconnected node and all the rest.
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In P(s)

30 40 50

s7

Figure 5.5: Plotted is IR(s) as a function ofs”, where they values are found by fitting
lines to the plots in Fig.L. 5l4. Each data set corresponds tdfereht value ofr, as
indicated on the figure. The data sets that correspond/édues that lie betweenIland
1.9 are practically indistinguishable. Looking at these plote see that it is reasonable
to approximate them with straight lines. This providesHhartsupport for our suggestion
thar P(s) behaves like a stretched exponential for large values Stipposing thal(s) is
truly a stretched exponential distribution for largealues, the slopes of the lines in these
plots would correspond to the constanin P(s) ~ €Y. Note thatr seems to depend on
r in a non-monotonic fashion.

In order to write a closed equation for a quantity relatechsdistribution of branch
sizes, we first define a parameteassociated with each node. The value ¢6r a given
node indicated the time at which it was introduced to the netwThus, the root has= 0
and all other nodes hawe> 0. Then we define the average number of branches of a node,
introduced at = 7, at timet asPg(t, 7). Examining the network structure shown in Fig.
helps us realize th&(t, 7) obeys the recursion relation

(s—1)Ps.1(t, 7) — SPs(t, 7) + ds1
t+1 ’

Ps(t+1,7) = Ps(t, 7) + (5.3)

wheret + 1 is equal to the total number of nodes in the system attime

The last three terms in Eq.(5.3) represent the changg(inr) when a newly arriving
node attaches itself to one of the branches of the node dkarse withr. Among these

terms, the first, the second, and the third correspond to éladyradded node attaching
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<«—Theroot, 7=0

Figure 5.6: An illustration showing the branches of a givedein a random realization of
the addition-deletion network we consider. The black cadanode has 4 branches of size
1, 2, 6, and 10, each represented by coloring the nodes irathe branch with dierent
shades of grey. Note that each branch is itself a tree.

itself to a branch of size — 1, s, and to the node itself. The minus sign in the second
term simply indicates that when the new node is attached tarech of sizes, the number
of branches with size decreases. Note that a node that is added to the network at

satisfies the intial condition
Ps(7, 7) = Os1» (5.4)

which says the the new node only has a single branch ofssigeally, the average size

of a branch in a tree of siZd + 1 can be obtained by averagifg(t, 7) as follows

1 N
PoN) = 51 2, PN (55)
The branch size distribution satisfies the normalization
N= )" sP(N). (5.6)
S

In the rest of this section, we will be concerned with the et calculating the distribu-

tion Ps(N). Using the above recursion relations we can find the avesegeof a branch
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for smallN.
Ps(l) = 55,1

2
Ps(2) = 5(5314‘5&2)

1
P5(3) = 1—2(7531 + 4532 + 7533).

5.5.1 Solving the recursion relation forPg(t, 7)

Let us write down the equation fét (7 + 1, 7) by substituting = 7 in Eq. (5.3),
1
Pir+171)= ——[1+ 761, (5.7)
T+1

where we use®s(t, 7) = ds.. Now that we havé, (7 + 1, 7), we can substitute it into Eq.
(5.3) to getP,(r + 2, 7). Repeating this fon times we find that

Pl(T + N, T) = rln [n + Td]_’-r] . (58)

Going over this procedure forfiierent values o$, we find thatP(r+n, 7) for small values

of sare given by

Por +0.7) = s (T1+ T [”(” = Y\ nesy. + (e - 1)52,,] (5.9)
3 1 nn-1)(n-2)
P(r+ D) = eI Dean=2) 3
+n(n—1)t61, + 2nt(r — 1)02, + 7(r — 1)(r - 2)53,7] (5.10)
3 1 nin—1)(n—2)(n - 3)
P4(T+n’T)_(T+n)(T+n—1)(T+n—2)(T+n—3)[ 4
+n(n—1)(n - 2)r61, + 3n(n — 1)r(r — 1)d,,
+3n7t(t — 1)(t — 2)03, + (v — 1)(v - 2)(7 — 3)64,7] (5.11)
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1
(t+nE+n=-LF+n-2)r+n=-3)(r+n-4)
o nn-21)n-2)(n-3)(n-4)

5

+4n(n - 1)(n - 2)r(7 — 1)6,. + 6n(n — 1)7(r — 1)(v — 2)03,

P5(T + N, T) =

+n(n—-21)(n-2)(n- 3)161,

+4nt(t — 1)t — 2)(t — 3)04. + (7 — 1) (7 — 2)(r — 3)(r — 4)05+
(5.12)

Observe that in all of these terms, the term that multiplieryghing in the square

brackets has the form

(r+n-9)!

(t +n)! (5.13)
The first term that appears in the square brackets has the form
1 s-1
S [ Jo-1. (5.14)
i=0

and the rest of the terms in the square brackets can be reprdds/

S— s-j-1
Z(l—[(‘l‘ k)][l_l(n I))(s 1)5,T+]_[(r m) s, (5.15)

j=1 \ k=0

where the summation in the first term is defined to be zers farl. Therefore, it looks

like we have
(r+n-9! - St s—1
P+ n) = = Z; ]_[(T K) ]_[ (n—1) ( 1)5,,
+]_[(T—m)5&7+§]_[(n—p)]. (5.16)
m=0 p=0
Eq. (5.16) can also be expressed as
(-9l L -D(s-D S
Ps(t,T) = [gli;[(t—T—O'i'Tm;dj’T]. (517)
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wheret = 7+ nandt > s. Fort > s+ 7, the product in Eq.[(5.17) can be replaced by a

ratio of factorials and we have
S

- (t-9)! 7l
Ptz s+r.1)= _ G_S_ﬂ{+®_Tﬂ2;mj. (5.18)

We need to verify that EqL(5.1L7) is a solution of Hq. 15.3) §e 1, Eq. [5.8) reads

P(t,
ma+Lﬂ:mey-;i? (5.19)
Substitutings = 1 in Eq. [5.17) gives
P.(t,7) = % (t—7+751,). (5.20)

By substituting this into Eq.[{5l3), we clearly see that iths correct solution. In order
to verify the solution for alls # 1, we substitute Eq[(5.17) into Ed._(b.3). With simple
algebraic manipulations, we make the limits of the sums aaduyxts the same all through
the equation. Then it is found that the @idgents of the sums and products at each side of
the equality are the same, implying that Eqg. (5.17) is thetami of Eq. [5.3).

For the first few values of, Eq. [5.17) gives

Pi(1,0)= Put, 1) = 3
1 3s—(1+2t
&@3:E+fm%%l,
1 282-3(4-t)s+4+6t—3t?
Pt3) =5 ﬁa—ﬁg—g | 20

Observe thaPg(t, 7) is independent fronh for the root and the first node. In the limit
t — oo (but finiter), Eq. [5.18) becomes

ﬂﬂpﬁzs+nﬂ:é (5.22)
as
(- (-9 \_
Hﬂ( t! a—s—ﬂJ_
e L
Em(t!(&ﬂJ_ (5.23)
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We can express the average number of branches osizeandomly chosen node in

a tree withN + 1 nodes as

=z

1
PN) = 1

Ps(N, 7). (5.24)
=0

which can be found by using Edq. (5117) to be

1 (s 1)! (N - n)'
PN = D F N D) Z s-ml " (5.25)
or equivalently
1 1 ()
PN D WD () (526)
It is instructive to examine the first few values®f(N)
1 1
P1(N) = (N DN (5.27)
1 1 2
Pa(N) = TINFDN T (N+DN(N-1) (5.28)
PA(N) = 1 L : ° (5.29)

TINFDN T (N+DN(N-1) " (N+ DN(N-D(N=2)

Note thatP;(3) = P3(3) andP1(2) = P,(2), this suggests th&(N) has a symmetric form.
Examining Eqs.[(5.2-5.29) closely, it is evident tRatN) has the following simple form

1 1

Py(N) = :
N = ey " Nez-9mN+1-9’ (5-30)
and the symmetry in the expression is now clear
Ps(N) = Pni1-s(N). (5.31)
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We can easily calculate the first few moment$giN),

N
N
Mo[Ps(N)] = » Ps(N) = 2—, (5.32)
° ; N+ 1
N
M4[PS(N)] = Z sPy(N) = N, (5.33)
N
Mo[Ps(N)] = Z SPN) = N(N+3)-2(N +2) ki
k=1
=(N+4)(N+1)-2(N + 2)Hn;1. (5.34)

whereHy = YN, 1/i which is asymptotically equal tely =~ In(N) + y, y being the Euler
constant, and we used, 1/(i(i + 1)) = n/(n+ 1). In general

N S [KY+ (N +1 - k)"
MAPN)] = > PN = ]
Z kz; k(k + 1)

n-1 n m
R NI S
=1
N n—
_ Z (1+( 1)n (Z( 1)Ikn |- 2 ( 1) 1]
n n-m m m=l- (_1)m

where in[5.3b), we made the change of varidbteN + 1 — sand used the fact that it also
runs from 1 toN, in (5.36) the binomial theorem is used and[in (5.37) we egsilo

(5.35)

Dllﬂzﬁ’

?T

Z( )K"= 1, ( 1)m (5.38)

Although Eq. EEV) looks complicated, one only needs tduate sums of powers of
integers, which may be represented by closed forms whenaivens are fixed, and sum

over finite harmonic sequences.

Note that, in Eq.[(5.37), the term with the largest poweXa$ produced by the second
term in the brackets witim = 0, except fom = 0, which is

(g)N(N + 1y (5.39)
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Therefore, afN — oo we have

Mo[Ps(N)] =~ 2
Mn>0[Ps(N)] =
5.5.2 TheN — oo limit

In theN — o limit, the degree distributio, is exponential), = 27¥. Consequently the

average degree equals 2. The average degree equals thgeawenaber of branches and

therefore,
2= h|I|anZ Ps(N). (5.40)
S
It is possible to show this by using our solution fy(N). In the limitN — oo, Eq. (5.32)
becomes
lim Z Py(N) = lim o N5 (5.41)
N=eo £ SV N+1 '

Furthermore, the probability that a node is a leaf/ig 4nd therefore we should expect,

5 = lim Pu(N). (5.42)

Because of the symmetry, we haRg(N) = Py(N). The expression foP;(N) should

reduce to 12 in the limitN — oo, and it indeed does

. . 1 1 1
|\||'Lnoo Pn(N) = |\||'Lnoo P1(N) = I|m (2 N(N + 1)) > (5.43)

Lastly, we would like to consider hoRs(N) scales with tree size. Note that Eg. (3.30)

can be written in the following form

1 1 1
Ps(N) = [ + . (5.44)
TN () (e ) () (L - )
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For large values o, Eq. (5.44) becomes

1
(N + 1)

Ps(N>1)=

1 1
+ . (5.45)
() (- —)]

Therefore Ps(N) has the scaling form

1 S
Ps(N) = (N + 1)2F (N n 1) (5.46)
FO) = 5 + T _1X)2 (5.47)
F(X)=F(1-Xx
10° :
O N=6
NI

exact for N — oo

o

0.2 0.4 0.6 0.8 1
s/(N+1)

Figure 5.7: N + 1)°Ps(N) vs s/(N + 1) for N =6(open circles), 96(crosses), and 384(dots)
corresponding to the results of the Monte Carlo simulatiofke solid line shows the
behavior of the scaling functioR(x) in x € (0, 1).

5.6 Concluding remarks

The main goal of the research described in this chapter es/gat a previously unexplored

aspect of addition-deletion networks, which is calculgtime cluster size distribution. In
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order to solve this problem, we did Monte Carlo simulatiohthe addition-deletion net-
work we consider, and as a result, suggested that the distnibof cluster sizes asymp-
totically behaves like a stretched exponential. Higs. .8, and 5.6 in Se¢. 5.4 show the
results of our analysis. Although we could not arrive at aalyical expression for the
cluster size distribution or the evolution equation fomie managed to gain some insight
into the quantities we are interested in through simulatidtowever, we managed to find
the exact solution of a simplified version of the general f@oh which is the cluster size
distribution after a single deletion event, for any netwesike. We believe that solving
the simpler problem was an important step in making progie@sards solving our orig-
inal problem, as it captures the essential features of tiharyjcs of the system. To our
knowledge, the exact result we obtained for the clusterdisgebution after a one deletion
event, given in Eq.(5.44) in Sdc. 5.5, was not known in thezditure.

We believe that the findings of this research project wilphat reach the solution of

our original problem in the near future.
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Knowledge so conceived is not a series of
self-consistent theories that converges towards an
ideal view; it is not a gradual approach to the truth.
It is rather an ever increasing ocean of mutually
incompatible alternatives, each single theory, each
fairy-tale, each myth that is part of the collection
forcing the others into greater articulation and all of
them contributing, via this process of competition,

C h a ter 6 _to the development_of our consciousne;s. Nothing

p is ever settled, no view can ever be omitted from a
comprehensive account.

Paul K. Feyerabend, “Against Method”

Conclusion

The results obtained in this thesis can be concisely staddliws. In Chaptef]2, it

is shown by comparison with experimental data that a sim@éematical model that
describes the motion of a random walker moving in the presefgermeable barriers
can adequately predict the observeffudiion properties of molecules in cell membrane.
Furthermore a generalized mathematical model that allovesto account for the possi-
ble dfects of structural disorder in the system is provided. Ingié@3, extensions are
presented of the well-knownffective medium theory of transport in disordered lattices
to predict the time dependence of transport quantities disasweheir asymptotic values.
Some other interesting aspects of the results providedfbgteve medium theory are also
discussed such as the appearance of a percolation thréshbidte systems, significance
of long-range memory functions and th#eets of correlations in the disordered lattice.
Our findings appear to indicate that the type of correlatedrdier we consider does not
modify the long-time dfusion codicient in the system. In the next chapter, where the
focus is on the analysis of R-D systems, results are presemte¢he transient dynamics
in front propagation and conditions for pattern formati@ecause of the diculties in-
volved in the analysis, our results for the transient dymranm front propagation are only

of qualitative, rather than quantitative, nature. Exasuhles are presented for necessary
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Chapter 6. Conclusion

conditions for pattern formation in a generalized R-D egumtwith different, and gener-

alized, transport modes. Chapiér 5, the last chapter oftibiss, is about an exploratory
investigation of the cluster size distribution in additideletion networks. Results of our
simulations and exact analysis are presented there, igested that the cluster size dis-
tribution is well approximated by a stretched exponentallarge values of the cluster

size, and an analytical expression on the distribution ahbh sizes is provided.

As a result of having worked on all these research projecdtisarast four years, par-
ticipating in numerous research meetings, and being a gtadiudent in physics as well
as taking part in a biology-inspired interdisciplinary gram, the authors views about sci-
ence have changed considerably. The interdisciplinargrara exposed me to research
done by scientists from manyftirent backgrounds, ranging from anthropology to com-
puter science. | believe that this was a unique experiend& gave me a good idea about
how different scientists from other disciplines tend to think andragch their own, as
well as others, problems. | had the opportunity to observenndnphysicists approach to
a given problem of general nature is favorable, and whennbts In the future, | would
like to keep learning and practicing physics, but at the sime work with groups of
scientists with from dterent backgrounds. | think this is an excellent way of dgvielg

oneself as a scientist and an intellectual in general.
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