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Abstract

The application of techniques widely used in physics to explain biological phenomena

has become a very successful endeavor in the past few decades. Such techniques

include, but are not limited to, kinetic equations and nonlinear dynamics.

We present an overview of some current topics of interest in ecology that use such

techniques to explain and predict a wide array of phenomena. Several successful

models are reviewed.

We present the results of our analyses of two datasets of repeated sessions of

mark-recaptures of the deer mouse, Peromyscus maniculatus (Rodentia: Muridae),

the host and reservoir of Sin Nombre Virus (Bunyaviridae: Hantavirus). The first

dataset corresponds to a three-year period of mark-recaptures in the Valles Caldera

National Preserve, New Mexico. The second one corresponds to a four-year period

vii



of mark-recaptures in the Wyoming grassland. We study the displacements of the

recaptured rodents from a web distribution of traps on the landscape (New Mexico),

and a square grid (Wyoming). From the displacements we extract the diffusion

constant of the motion of the rodents. In New Mexico, the short-time behavior (1

day) shows the motion to be approximately diffusive and the diffusion constant to be

320± 40 m2/day. In Wyoming, the average diffusion constant for the deer mice was

105 ± 10 m2/day. The long-time behavior is capable, in principle, of providing an

estimation of the extent of the rodent home ranges. However, the datasets analyzed

were not sufficiently detailed to yield a value for the home ranges, and the focus of

the thesis is on the diffusion constants rather than on the home ranges.
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Chapter 1

Introduction

It is a great time to be a physicist. Our discipline has proven time and again that it

is capable of solving or of helping solve daunting questions about the world. In this

spirit, collaboration with other sciences, both natural and social, becomes viable and

indeed very rewarding. With this in mind, for the purposes of this thesis, physics

has become a driving force behind aspects of biology, more specifically, ecology.

The research group to which the author belongs has been immersed in very ex-

citing research within the field of mathematical biology for quite some time now,

studying aspects of the Hantavirus, the West-Nile virus, and the Bubonic Plague,

among other topics [5–8]. As the author was looking for a project for his thesis last

year, Prof. Kenkre, his thesis advisor, invited Dr. Bob Parmenter, Research Profes-

sor at UNM’s Department of Biology and Chief Scientist at Valles Caldera National

Preserve (New Mexico) for a talk last summer, and they both got the author very

excited with the topic of epidemics. There was an opportunity to analyze real field

data that had been collected primarily to estimate population densities of rodents.

The author undertook to find diffusion constants for the movement of rodents in the

field, thus the results of the analysis of the data form the backbone of the present

1



Chapter 1. Introduction

thesis (see Chapter 3). As will be explained in Chapter 2, the diffusion constant is

one of the key parameters in the study of epidemics via reaction-diffusion equations.

It measures how, on average, a given population (of rodents, for example) diffuses or

moves in space, and is given in units of m2/day throughout Chapter 3.

Chapter 2 starts with a compendium of a certain collection of topics in statistical

mechanics and nonlinear science that are relevant to ecology. We also present an

overview of some related topics in modern ecology. We describe the importance of

patterns in ecology and how they have been successfully predicted in our group via

the Abramson-Kenkre model [5], as well as modifications to that model [8, 9]. We

look at the need for reaction-diffusion equations in mathematical biology and ecology

[10], and look at ways to apply these equations in order to describe and predict the

behavior of several epidemics [5,6,8]. Other related concepts such as home ranges of

the moving animals are discussed here as well.

In Chapter 3 we present the results of our analyses of two datasets of repeated

sessions of mark-recaptures of the deer mouse, Peromyscus maniculatus (Roden-

tia: Muridae), the host and reservoir of Sin Nombre Virus (Bunyaviridae: Han-

tavirus). The first dataset corresponds to a three-year period in the Valles Caldera

National Preserve, New Mexico. The second corresponds to a four-year period of

mark-recaptures in the Wyoming grassland. We study the displacements of the re-

captured rodents from two different distributions of traps on the landscape: web

(New Mexico) and square grid (Wyoming). The results of both datasets are com-

pared and contrasted, and physical quantities are extracted, within the limitations

of the data available. Most of the discussion is focused on the diffusion of the ro-

dents on the landscape, but the important concept of home range is also discussed,

although with less emphasis than the main focus of the investigation, the diffusion

constants.

Chapter 4 presents the concluding remarks of the present thesis. Conclusions

2



Chapter 1. Introduction

are drawn mainly from the analysis of the datasets presented in Chapter 3, in the

context of the review of topics presented in Chapter 2.

3



Chapter 2

A Survey of Some Current Topics

in Ecology and Epidemics

2.1 Overview

There is a vast amount of available literature regarding past and present research

in the fields of ecology and epidemics. In the present chapter we introduce the

basic concepts of statistical mechanics and nonlinear science used in and around this

thesis to tackle ecological problems from a mathematical perspective [1, 2, 10]. We

introduce the essential concepts of diffusion and reaction-diffusion equations. Within

ecology [1,2,10], the latter are used to model wavefront propagation (those that travel

without changing their shape), the existence of a minimal spatial region or domain

that can support positive species density profiles [1], and pattern formation [1, 2].

These three cases will be described in detail later in the present chapter.

4



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

2.2 Theoretical Background

2.2.1 Some Statistical Mechanics

When we use Newton’s, Hamilton’s, Schrodinger’s, and Liouville’s equations and we

reverse time, no difference of a qualitative nature occurs in the evolution. Any finite

system can always come back arbitrarily close to any previous state it occupied in the

past. This fundamental principle was enunciated by Poincaré for classical systems.

These are called Poincaré cycles (recurrences) and they are related to the size of the

system. In quantum systems, it was proven by Bocchieri and Loinger, and it all

points at the question of the direction of time, because it is clear that things die,

they decay, instead of just oscillating in time. Now comes one of the big questions in

all of physics: how do reversible equations of motion at the microscopic level result

in irreversible phenomena at the macroscopic level? (see Fig. 2.1). In other words,

how do oscillations end up in decay?

Figure 2.1: Micro, meso, and macroscopic descriptions in physics.

At the mesoscopic level, decay is built into the equations. Thus, it is natural to

5



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

ask the question, what kind of equations of motion live in the mesoscopic level? The

answer is the Master equation, the Chapman-Kolmogorov equation (random walk),

the Boltzmann equation, etc.

Let us suppose, for simplicity, that we have two sites, left (L) and right (R). The

probability of being at site L at any given time is given by PL(t) and the probability

of being at site R at any given time is given by PR(t). PL(t) +PR(t) = 1. The index

m can take either L or R:

dPL(t)

dt
= FPR(t) − FPL(t), (2.1)

dPR(t)

dt
= FPL(t) − FPR(t), (2.2)

and the general expression for the Master equation is given by

dPm(t)

dt
=

∑

n

FmnPn(t) − FnmPm(t). (2.3)

This is a simple form, called the gain-loss form, of the Master equation [11]. It is the

evolution equation for the probabilities of occupation of the states by the system,

and is always written as a linear equation.

Now let us picture a random walker on an infinite chain,

Figure 2.2: General structure of an infinite chain.

where F are the transition rates from one site to another (taken to be the same in

this case), the sites being labeled by m,m − 1,m + 1, etc. Let us write down the

6



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

Master equation for the chain in Fig. 2.2,

dPm
dt

= F (Pm+1 + Pm−1) − F (Pm + Pm) , (2.4)

for a translationally invariant system, that is, one in which any site is equivalent to

any other site. We can rewrite this expression as

dPm
dt

= F (Pm+1 + Pm−1 − 2Pm) , (2.5)

and we ask the question, where is this random walker? We look at the mean dis-

placement, given by

〈m〉 =
∞

∑

m=−∞

mPm, (2.6)

and find that it vanishes for symmetrical reasons. Therefore we look at the mean

square displacement :

〈

m2
〉

=
∞

∑

m=−∞

m2Pm. (2.7)

Now let us multiply both sides of Eq. 2.5 by m2 and sum. Then,

d 〈m2〉
dt

= F
∞

∑

m=−∞

m2Pm+1 + F
∞

∑

m=−∞

m2Pm−1 − 2F
〈

m2
〉

. (2.8)

After some algebra we arrive at the main result,

d 〈m2〉
dt

= 2F. (2.9)

The solution for the dimensionless mean square displacement is thus

〈

m2
〉

=
〈

m2
〉

0
+ 2Ft. (2.10)

The mean square displacement increases linearly with time (see Fig. 2.3).

7



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

Figure 2.3: Mean square displacement vs. time, assuming that
〈

m2
〉

0
= 0. This plot is

sometimes called an Einstein result.

The Continuum Limit

Let us connect the Master equation with the diffusion equation. Let us assume that

our random walker has a hopping distance a, called the lattice constant in solid state

physics (see Fig. 2.4).

The dimensioned mean square displacement (with units of the square of length) is

given by

a2
〈

m2
〉

=
〈

x2
〉

, (2.11)

〈

x2
〉

=
〈

x2
〉

0
+ (2Fa2)t, (2.12)

and we can say that dPm

dt
is a difference of differences:

dPm
dt

= a2F

[

(Pm+1−Pm)
a

− (Pm−Pm−1)
a

a

]

. (2.13)

8



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

Figure 2.4: General structure of an infinite chain, with distance a between chain sites.

In the continuum limit a→ 0, at the same time with F → ∞, and Fa2 → D, we get

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t), (2.14)

called the diffusion, heat, or Fourier equation, where D is the diffusion constant. The

parameter D has a special role in the modeling of epidemics (see Chapter 3), thus it

will be thoroughly discussed there. The mean square displacement is given by

〈

x2
〉

=

∫ ∞

−∞
x2P (x, t)dt = 2(Fa2)t = 2Dt. (2.15)

We can solve the diffusion equation for arbitrarily initial conditions by using Fourier

transforms. We start with the initial condition P (x, 0) = δ(x), and we solve this for

all initial conditions. Since Eq. 2.14 is a linear equation, we can use superposition

to solve it.

Solving the Discrete Case

Let us solve the discrete case of the diffusion equation for arbitrary initial conditions:

dPm(t)

dt
= F (Pm+1 + Pm−1 − 2Pm) . (2.16)

Let us use the discrete Fourier Transform,

P k =
∞

∑

m=−∞

Pme
ikm. (2.17)

9



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

After multiplying by eikm and summing over all m, Eq. 2.16 turns into

dP k

dt
+ 4 sin2(k/2)FP k = 0, (2.18)

whose solution is given by

P k(t) = P k(0)e−4Ft sin2(k/2), (2.19)

and let us go back to m-space in order to have a complete solution after inverting

the transform. Let us consider the simplest case, Pm(0) = δm,0:

P k(0) =
∞

∑

m=−∞

Pm(0)eikm = 1, (2.20)

P k(t) = e−4Ft sin2(k/2) = e−2Ft(1−cos k). (2.21)

Now let us turn back to m, which takes integer values from −∞ to ∞, while k takes

continuous values. The solution for Pm(t) when Pm(0) = δm,0 is

Pm(t) = Im(2Ft)e−2Ft, Pm(0) = δm,0, (2.22)

where we have the Bessel function Im(2Ft). In general we have

Pm(t) =
∞

∑

m=−∞

ψm−n(t)Pn(0), (2.23)

where the so-called propagator ψm−n(t) is the solution for the delta function localized

condition mentioned above.

Solving the Continuum Case

Let us start with Eq. 2.14,

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
. (2.24)

10



Chapter 2. A Survey of Some Current Topics in Ecology and Epidemics

We have solved the discrete case with Bessel functions, now let us solve the continuum

case. Let us use Fourier Transforms:

P̂ (k, t) =

∫ ∞

−∞
P (x, t)eikxdx→ P (x, t) =

1

2π

∫ π

−π
P̂ (k, t)e−ikxdk, (2.25)

d

dt
P̂ (k, t) = −Dk2P̂ (k, t), P̂ (k, t) = P̂ (k, 0)e−Dk

2t. (2.26)

The Fourier inverse is

P (x, t) =

∫ ∞

−∞
Ψ(x− x′, t)P (x′, 0)dx′, (2.27)

where P (x′, 0) is an initial condition and Ψ(x − x′, t) is the propagator, which is

the Fourier-inverse of e−Dk
2t. For the discrete case we have e−2Ft(1−cos k), where k

is dimensionless, and for the continuum case we have e−Dk
2t, where k has units of

1/distance and we will call it q. Starting from the discrete case we have, as k → 0,

q = k/a, and Fa2 k2

a2 t→ Dq2t, and the propagator is given by

Ψ(x, t) =
1

2π

∫ ∞

−∞
e−Dq

2te−iqxdq ⇒ 1√
4πDt

e
−x

2

4Dt . (2.28)

This expression will be of paramount importance in Chapter 3 when we study the

probability distributions of mice diffusing on the terrain. At different time scales,

e.g., 1 day, 2 days, 30 days, etc., from the data we will find a propagator that

approximates this shape, thus we will fit our distributions to resemble a Gaussian

shape in order to compute the mean square displacement as needed.

2.2.2 Some Nonlinear Dynamics

The last thirty or forty years have seen tremendous advances in the theory of nonlin-

ear science, which in turn have pushed forward the field of reaction-diffusion equa-

tions [1,2,10,12]. These equations occupy a central role in the modeling of epidemics

11
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as will be seen throughout this thesis. For this reason we will spend some time study-

ing some basic aspects of nonlinear dynamics.

Some examples of linear systems are

dy

dt
+ αy = 0, (2.29)

d2y

dt2
+ ω2y = 0, (2.30)

− h̄2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x) = ih̄

∂ψ(x, t)

∂t
. (2.31)

Some examples of nonlinear systems are

dy

dt
+ βy2 = 0, (2.32)

d2y

dt2
+ sin y = 0, (2.33)

d2y

dt2
+ α

(

dy

dt

)17

+ ω2y = 0. (2.34)

Nonlinear systems exhibit disappearance of superposition of initial conditions and

also superposition of responses corresponding to given stimuli. To explain the former,

let us take Eq. 2.29:

dy

dt
+ αy = 0, (2.35)

whose solution, for the initial condition y(0), is well-known:

y(t) = y(0)e−αt. (2.36)

If now we have the initial condition y1(0) + y2(0), we get the solution

y(t) = [y1(0) + y2(0)] e−αt, (2.37)

12
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so the propagator or Green function, e−αt, stays the same, meaning we have super-

position of initial conditions. For a nonlinear expression such as Eq. 2.32,

dy

dt
+ βy2 = 0, (2.38)

for an initial condition y(0), the solution is

y(t) = y(0)

(

1

1 + βty(0)

)

, (2.39)

and it is clear that the Green function changes compared to the linear case (it becomes

dependent on the initial condition).

In the context of the superposition of responses for given stimuli, let us take a

linear equation plus a constant,

dy

dt
= −αy + S, (2.40)

where S is called the stimulus, and if we take the limit as t→ ∞, we get

Limt→∞y(t) =
1

α
S. (2.41)

If we had S1, S2, we would get 1
α

(S1 + S2). This does not happen in nonlinear

systems.

There are very interesting aspects regarding nonlinear systems. We encounter a

richness of new phenomena, including:

• Abrupt transitions

• Thresholds

• Chaos (sensitivity to initial conditions)

• Bifurcations

13
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Let us focus, for the purpose of the present thesis, on bifurcations, and for this let

us use a classic example of a nonlinear system [10,12],

dy

dt
= ay − by2, (2.42)

also known as the logistic equation, that describes, for instance, the population den-

sity of animals, growing by birth (linear term) and dying by competition (bilinear

term) (Fig. 2.5).

Figure 2.5: General form of a logistic system, for a > 0.

If a = 0, we get Fig. 2.6.

Figure 2.6: General form of a logistic system, for a = 0.

14
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If a < 0, we get Fig. 2.7.

Figure 2.7: General form of a logistic system, for a < 0.

We are interested in observing the change in the stability of the fixed points as we
change a. We do this using a bifurcation diagram (see Fig. 2.8. This is called a
transcritical bifurcation, and is a key feature of the AK model for the spread of the
Hantavirus discussed later in this chapter.

Figure 2.8: Transcritical bifurcation.
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2.3 Nonspatial Models: Malthus, Verhulst, and

the Allee Effect

For many years investigators have tried to explain and predict epidemics using what-

ever tools, mathematical or otherwise, were available at the time [10]. Malthus (1798)

[1, 10] has been widely credited with attempting to model population dynamics for

the first time. His model for population growth is a density-independent (r not

dependent on u) model or a linear growth model [1, 12], given by

du(t)

dt
= r(t)u(t), (2.43)

where u(t) is the density of some population at time t, and r(t) is the birth rate of

the population. If the growth rate is constant, the solution to this equation is given

by

u(t) = u(0)ert, (2.44)

meaning we have either exponential growth or decay for the population as a function

of time, depending on the sign of r.

Another important model in the spread of epidemics is the one attributed to

Verhulst (1838) [1,10,12]: now the growth rate is affected by the population density,

and using the standard form ubiquitous in the biology literature [1] we write the

expression as

du(t)

dt
= r

(

1 − u(t)

K

)

u(t), (2.45)

where r is called the intrinsic growth rate of the population [1, 10], and K is called

the carrying capacity (more on this parameter will be discussed later). This is called

the logistic equation and is ubiquitous in the ecology and epidemics literature. Using

the language of nonlinear dynamics [10, 12], we can say positive solutions approach
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the equilibrium point or fixed point u(t) = K in a monotonic fashion, and it is a

stable fixed point; the point u(t) = 0 is unstable. There is yet another important

case as we go from linear (Malthusian) to quadratic (Verhulst or logistic) to cubic.

The latter is called the Allee effect [1, 10,12] and says that if the density falls below

a certain critical value, the population will eventually die. Kenkre and collaborators

have investigated the consequences of introducing Allee effects in reaction diffusion

systems [13–15]. An expression that models this behavior is given by

du(t)

dt
= r (u(t) − α) (K − u(t))u(t), (2.46)

where r > 0 and 0 < α < K. Any solutions between u(t) = 0 and u(t) = α will go to

u(t) = 0, but solutions that start at K > u(t) > α will go to u(t) = K monotonically

(u(t) = 0, K are stable and u(t) = α is unstable).

In order to study the spatial component of ecology we have to add something to

our equations that describes motion in space, and that is when diffusion comes to

mind. Let us take a look at the very important concepts of diffusion and reaction-

diffusion.

2.4 Spatial Models: Reaction-Diffusion and Wave-

fronts

In this section we review the first of three main applications [1,2] of reaction-diffusion

equations in the context of spatial ecology: the problem of propagating wavefronts.
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2.4.1 An Experimental Argument

Many phenomena in biology deal with the appearance of a traveling wave (mechanical

deformation or chemical concentration) [6, 10]. We may use the diffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
, (2.47)

to study the behavior of the wave-fronts, but if we take a length of the order of 1

mm, and use values of D for say, developing embryos (10−9 − 10−11cm2/sec), we

would get times of the order of 107 − 109sec which are extremely large for an early

embryonic process [10]. Thus, from the experiments we see the need for reaction-

diffusion equations of the form

∂u

∂t
= f(u) +D

∂2u

∂x2
, (2.48)

where f(u) represents the kinetics and D is the diffusion constant.

2.4.2 A Theoretical Argument

In order to model wavefront propagation, if we have a solution of the form

u(x, t) = u(x− ct) = u(z), z = x− ct, (2.49)

D
d2u

dz2
+ c

du

dz
= 0 ⇒ u(z) = A+Be−cz/D (2.50)

and since u has to be bounded for all z, then B must be zero because the exponential

becomes unbounded as z → −∞. u(z) = A is not a wave solution, so we can see that

pure diffusion does not help as far as reaching the desired bounded solutions, thus

the need for the reaction-diffusion equations that do exhibit traveling wave solutions.

Now let us take the Fisher equation

∂u

∂t
= ku(1 − u) +D

∂2u

∂x2
(2.51)
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which was suggested by Fisher in 1937 as a deterministic version of a stochastic model

for the spatial spread of a favored gene in a population [10]. It is the logistic equation

for growth population when it disperses via linear diffusion. After rescaling this

equation to get rid of k and D, and using linear stability analysis, always considering

limz→∞U(z) = 0, limz→−∞U(z) = 1, (2.52)

we find two singular points (0,0) and (1,0), which are the steady states, with a

minimum wave speed of cmin = 2 [10]. As suggested by Mollison (1977), to study

the dependence of the wave speed c on the initial conditions at infinity, we consider

the leading edge of the evolving wave where, since u is small, we can neglect u2 in

comparison with u. The dispersion relation, an expression relating a and c, is

c = a+
1

a
, (2.53)

where a comes from the initial condition u(x, 0) = Ae−ax, x→ ∞. If we now look at

a small parameter ǫ in the equations, ǫ = 1/c2 ≤ 0.25, we can look for asymptotic

solutions for 0 < ǫ << 1. If z = 0 where U = 1/2, and we use a standard singular

perturbation technique [10,12],

U(z) = g(ξ), ξ = z/c = ǫ1/2z. (2.54)

The solution up to the first term is (1+ez/c)−1, which is pretty close to the computed

wavefront solution of Fisher’s equation [10]. There is a clear relationship between

the wave speed and steepness of the wavefront at z = 0:

−U ′(0) = s =
1

4c
+O

(

1

c5

)

, c ≥ 2. (2.55)

So the faster the wave moves, the less steep the wavefront is. Now, in Chapter

3 we will find density-dependent diffusion, so a more realistic model would be an

expression of the form

∂u

∂t
= f(u) +

∂

∂x

[

D(u)
∂u

∂x

]

, D(u) = D0u
m, f(u) = kup(1 − uq). (2.56)
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Writing the full diffusion term, we get

∂u

∂t
= up(1 − uq) +mum−1

(

∂u

∂x

)2

+ um
∂2u

∂x2
, (2.57)

which clearly shows that the nonlinear diffusion can be thought of as contributing an

equivalent convection with velocity −mum−1∂u/∂x. The case where we have again

our beloved logistic population growth,

∂u

∂t
= u(1 − u) +

∂

∂x
+

[

u
∂u

∂x

]

, (2.58)

tells us that the population disperses to regions of lower density more rapidly as the

population gets more crowded [10]. This remarkable phenomenon will be studied

in much more detail in Chapter 3 when we analyze the results of our data for mice

diffusing on the landscape in the context of the Hantavirus epidemic.

2.4.3 The SI model for epidemics

Overview

We start with the assumption that we only have susceptible (non-infected) and

infected organisms within our population. MS(x, t) and MI(x, t) are the popula-

tion densities of susceptible and infected organisms, respectively, and M(x, t) =

MS(x, t) +MI(x, t) is the total population.

An Example of an SI model: the AK Model

The AK model [5], named after its authors Abramson and Kenkre, is a very successful

model that was developed to understand the infection of Hantavirus in deer mice,

Peromyscus maniculatus, based on biological observations in the North American

Southwest. The basic model, an SI model [10] introduced in [5] is given by the
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following expressions:

∂MS(x, t)

∂t
= bM − cMS −

MSM

K(x)
− aMSMI +DS∇2MS, (2.59)

∂MI(x, t)

∂t
= −cMI −

MIM

K(x)
+ aMSMI +DI∇2MI . (2.60)

Some key features of this model are the following:

• MS(x, t) and MI(x, t) are the population densities of susceptible and infected

mice, respectively, and M(x, t) = MS(x, t) +MI(x, t) is the total mice popula-

tion.

• Births: bM represents births of mice, all of them born susceptible, at a rate

proportional to the total density, since all mice contribute equally to the pro-

creation.

• Deaths: c represents the rate of natural death, mice don’t die from infection.

• Competition: −MS,IM/K represents a limitation process in the population

growth, due to competition for shared resources. It is formed by a mouse of

the corresponding class and one mouse of any class (since they have to compete

with the whole population). K is called the environmental parameter : higher

values represent more resources and less competition.

• Infection: aMIMS represents the number of susceptible mice that get infected

due to an encounter with an infected mouse, at some rate a.

• Diffusion: there are separate diffusion coefficients DS and DI for the two classes

of mice.

• Infected mice do not die of infection, and infected mice are infectious for their

whole lives. Infection is believed to be transmitted through aggression.
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Adding Eqs.(2.59, 2.60) we get

∂M(x, t)

∂t
= (b− c)M

(

1 − M

(b− c)K

)

+D∇2M, (2.61)

the Fisher equation for the whole population, widely used to describe self-limitating

populations [5, 10]. The critical value of the environmental parameter is given by

KC =
b

a(b− c)
. (2.62)

For environmental parameters above this value, so-called refugia appear [5]. Infection

persists only in these regions and disappears for regions where the resources fall below

KC .

The Modified AK Model

As a result of the saturation of the mean square displacement in time, it was con-

cluded that mice were moving within home ranges [3, 16,17]. The basic idea [8, 9] is

to replace the diffusion terms by corresponding terms of a Fokker-Planck equation:

D∇2M ⇒ ~∇ ·
(

D~∇M +M~∇U
)

= f(M), (2.63)

where U(x) is an attractive potential that represents the home ranges of mice.

∂MS(x, t)

∂t
= bM − cMS −

MSM

K
− aMSMI + f(MS), (2.64)

∂MI(x, t)

∂t
= −cMI −

MIM

K
+ aMSMI + f(MI), (2.65)

and the sum gives us

∂M(x, t)

∂t
= (b−c)M(x, t)−M

2(x, t)

K
+D∇2M(x, t) +~∇M(x, t)·~∇U(x)+M(x, t)∇2U(x).

(2.66)

The terms are the following:
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• (b− c)M : growth term for the population if b > c.

• M2/K: limits the growth of the population through competition of resources

K.

• D∇2M : diffusion term that acts to homogenize the mice population.

• ~∇M(x, t) · ~∇U(x): convection term. The “velocity” ~∇U(x) acts like a wind

forcing the mice to travel toward the center of their home range.

• M(x, t)∇2U(x): pseudo-growth term because it multiplies the density. Effec-

tively increases the growth rate (b− c), meaning increased protection from the

home range.

An attractive potential used to describe the home ranges is [8, 9]

U(x) = A cos

(

2πx

λ

)

. (2.67)

The second derivative of a sinusoidal is maximal at the bottom of the potential, so

the increased growth term is maximal at the center of the home range (max. amount

of protection or defense from predators). A sinusoidal potential represents multiple

home ranges, a situation that is not entirely representative of field data. More work

is necessary in this context.

2.4.4 The SIR model for epidemics

Overview

Let us suppose we have a population of organisms that can be divided into suscep-

tibles, those who can get the disease, infectives, those who have the disease and can

transmit it, and removed, those who have had the disease or have recovered from it

and are either immune or isolated from the rest of the population (they have been
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removed from the risk of being infected, NOT from the population). The progress

of infection can be described by [10]

S → I → R, (2.68)

thus the name of the model. Now let us make the following assumptions [10]:

• The gain in the number of infective individuals is proportional to infective and

susceptible organisms; susceptible organisms are lost at the same rate.

• The rate of infectives that are removed is proportional to the number of infec-

tives.

• The incubation period, a crucial factor in the spread of any epidemic, is neg-

ligible in this case, so a susceptible organism that contracts the disease can

infect another susceptible right away.

• The probability of an organism contacting another one is the same for every

pair of individuals.

Now let us proceed to modeling our epidemic. If S(t), I(t), R(t) are the three classes

we study in our model which depend on time,

S(t) + I(t) +R(t) = N, (2.69)

where N is the total size of the population. The time evolution of the three classes

can be modeled as follows [10]:

dS

dt
= −rSI, (2.70)

dI

dt
= rSI − aI, (2.71)
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dR

dt
= aI, (2.72)

where a > 0 is the removal rate of infectives and r > 0 is the infection rate of

susceptibles. It can be seen that

dS

dt
+
dI

dt
+
dR

dt
= 0, (2.73)

so the population N is conserved at all times [10]. The initial conditions for our

model are

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = 0, (2.74)

so we start with susceptible and infected individuals only. Now comes the crucial

part of the model and in fact of any successful epidemic model : We want to know,

given certain initial conditions, whether there will be a spread of the epidemic or

not, as times goes by. To fully address this issue we have

[

dI

dt

]

t=0

= I0 (rS0 − a)
>
< 0 if S0

>
< ρ =

a

r
. (2.75)

We also know that dS/dt ≤ 0, S ≤ S0, so we have, if S0 < ρ,

dI

dt
= I (rS − a) ≤ 0, t ≥ 0, (2.76)

so the initial number of infectives, I0, will be greater than I(t) which goes to zero

as t → ∞, so in this case there cannot be an epidemic. Now, if S0 > ρ, then I(t)

increases with time and an epidemic will certainly occur. In fact we use the word

“epidemic” whenever I(t) > I0 for t > 0 (see Fig. 1). The parameter ρ = a/r,

of paramount importance in this model, is called the relative removal rate, and its

reciprocal σ = r/a is called the contact rate. One important relation that can be

derived from our original model is [10]

dI

dS
= −(rS − a)I

rSI
=
ρ

S
− 1, I 6= 0, (2.77)
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and by integrating this equation we get

I + S − ρ lnS = I0 + S0 − ρ lnS0 = const., (2.78)

which gives us an expression for the phase plane trajectories in (I, S) space. Another

key concept in the mathematical modeling of epidemics is the severity of the epidemic

(within the population) [10]. Imax, the maximum value for I, occurs when dI/dt =

0, S = ρ,

Imax = N − ρ+ ρ ln

(

ρ

S0

)

. (2.79)

So going back we see that if S0 > Sc = ρ, there is an epidemic, whereas if S0 < Sc = ρ,

there can’t be one because the infective class is decreasing in time. Now, it will be

severe (within the given population) if I0 and Imax are not close to each other, and

not severe if they are relatively close. Another important parameter in the study of

epidemics has to do with the removal rate, which can be expressed as

dR

dt
= aI = a(N −R− S) = a (N −R− s0 exp(−R/ρ)) , R(0) = 0. (2.80)

However, given the lack of knowledge of some of the parameters involved in this

equation, it has been suggested [10] that, for relatively small epidemics (R/ρ small),

R(t) =
ρ2

S0

[(

S0

ρ
− 1

)

+ α tanh

(

αat

2
− φ

)]

, (2.81)

where the parameters are given as follows:

α =

[

(

S0

ρ
− 1

)2

+
2S0(N − S0)

ρ2

]1/2

, φ =
tanh−1

(

S0

ρ
− 1

)

α
. (2.82)

Application of the SIR model: British School Flu Epidemic

According to [10], back in 1978 there was a flu epidemic in a British boys boarding

school. The population was N = 763, and I0 = 1, which means one boy initiated
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the whole epidemic, and a total of 512 boys were confined to bed in a 2-week period!

When a boy was infected, he was confined to bed immediately, thus we can have I(t)

directly from the data. S0 = 762, ρ = 202, r = 2.18 x 10−3/day, and since S0 > ρ

there is clearly an epidemic, in fact a severe one.

2.5 Spatial Models: Reaction-Diffusion and The

Existence of a Minimal Domain Size

A central problem of theoretical ecology is the relation between the interactions

among organisms (and their environment) and population distributions and commu-

nity structures [1, 2]. Thus the role of space is vital in trying to solve this problem.

Many mathematical models have been used to understand this, including cellular

automata [1, 2], reaction-diffusion equations [1, 2, 8, 10], interacting particle systems

[1], etc. Different hypotheses regarding the structure and scale of the environment

and the motion of organisms about that environment characterize these models [1].

The existence of a minimal domain size is important in order to support positive

species density profiles. Since space is of paramount importance here, structure and

size of habitats affect the persistence and extinction of populations.

In the previous section we studied traveling waves, the first of three applications

of reaction-diffusion equations in the context of spatial ecology. In this section we

will study the second application: the effects of size, shape and heterogeneity of the

environment on the persistence of species and community structures [1]. The idea

that the size of a minimal patch can be predicted that will sustain a given population

appears to be first given by [18,19].

Before we proceed with our topic of study, we might wonder when should we use

reaction-diffusion equations and when should we use other methods available in the
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literature [1,2,10]. An often expressed view is that, if we want to achieve very detailed

predictions about a certain ecological problem, we should use computer-based models

such as cellular automata, interacting particle systems, or what is called individual-

based or agent-based models. These models can be used to generate artificial datasets

so observables, such as the mean square displacement, can be extracted later1. In

this view, reaction-diffusion models are recommended [1] for the sake of generality

and insight into the mechanisms behind the predictions. The situation is, however,

much more complex and neither the author nor his advisor subscribe to this view.

Because it would take us far afield we will not provide any further discussions of this

issue here.

Let us think in terms of a “patch”, that is some spatial region that due to spatial

heterogeneity can be distinguished from its surroundings [1,2,10]. The patch has an

edge, and the boundary conditions of the equations will be those on the edge of the

patch.

2.5.1 Boundary Conditions

Fick’s law is related to the idea that the rate of diffusion across an interface is given

by ~J · ~n, where ~n is the normal unit vector to the interface. If the density u of

the population we are studying diffuses at a rate D(x) and experiences advective

behavior with velocity ~v(x), then the flux is given by

~J = −D(x)∇u+ ~v(x)u. (2.83)

This is our constitutive relationship for the continuity equation,

∂u

∂t
+ ∇ · ~J = 0, (2.84)

1This is not the case for the present thesis (see Chapter 3), where real data were used
to analyze the diffusion of the deer mice and then an observable, the diffusion constant,
was extracted from the data.
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and substituting the flux into this equation, we get

∂u

∂t
= −∇ · ~J = ∇ ·D(x)∇u−∇ · (~v(x)u) , (2.85)

the evolution equation for u, a type of diffusion equation. The boundary conditions

for this equation relate the flux of individuals across a given boundary to the density

at the same boundary. Using the standard notation of the reaction-diffusion literature

[1], Ω will be our bounded region, ∂Ω will be its boundary, and ~n will be the outward

pointing normal unit vector. The flux across the boundary ∂Ω at a given point is

proportional to the density at the boundary:

~J · ~n = β(x)u, (2.86)

where β(x) is a proportionality constant. If β(x) = 0, the flux across ∂Ω vanishes,

which means the boundary becomes a perfect barrier avoiding any type of dispersal

of the individuals. This is also called a reflecting boundary condition. If along with

β(x) = 0, ~v = 0, then ∂u
∂~n

= 0 and this is called a Neumann condition in the literature

[1, 2, 10]. If β(x) increases, more individuals cross the boundary in the direction of

~n. If β(x) → ∞, and we rewrite Eq. 2.86 as

u =
1

β(x)
~J · ~n, (2.87)

we can see that the population density u vanishes on the boundary ∂Ω. In other

words, individuals who reach the boundary will cross it immediately, thus the density

on the boundary remains effectively equal to zero. This is an absorbing or Dirichlet

condition, also said to correspond to a lethal boundary in the ecological literature

[1], since individuals that encounter the boundary die. If we substitute Eq. 2.83 into

Eq. 2.86, we get

[−D(x)∇u+ ~v(x)u] · ~n = β(x)u, (2.88)

where ∇u · ~n is the directional derivative of the density u in the direction of ~n, and

is denoted by ∂u
∂~n

. Thus, we can express the boundary condition for Eq. 2.85 as

D(x)
∂u

∂~n
+ [β(x) − ~v(x) · ~n(x)]u = 0. (2.89)
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If we want to rewrite the logistic model (see Eq. 2.61) using an absorbing bound-

ary condition and a diffusion coefficient and birth and death rates that depend on

space, we have [1]

∂u
∂t

= ∇ ·D(x)∇u+ [a(x) − b(x)u]u in Ω × (0,∞)

u = 0 on ∂Ω × (0,∞)

u(x, 0) = u0(x) on Ω.

(2.90)

2.5.2 The Eigenvalue Approach

Let us start by looking at a model where u(x, t) is the population density on the

patch or region Ω. Let us assume a lethal exterior, that is, if individuals cross the

boundary ∂Ω, they die. r is the intrinsic growth rate of the population, and the

individuals move on the patch with diffusion coefficient D [1,18,19]:

∂u
∂t

= D ∂2u
∂x2 + ru in Ω × (0,∞)

u = 0 on ∂Ω × (0,∞) .
(2.91)

This type of model is called a KISS model (acronym for the authors’ initials). Since

we have a boundary condition, there is spatial heterogeneity. The related eigenvalue

problem is

σψ = D ∂2ψ
∂x2 + rψ in Ω

ψ = 0 on ∂Ω.
(2.92)

Solutions to Eq. 2.91 can be found by using the method of separation of variables in

terms of the solutions to Eq. 2.92. According to [1, 20], Eq. 2.92 admits a nonzero

solution ψ only for certain values of σ. A solution to Eq. 2.92 includes an eigenvalue

σ and a nonzero eigenfunction ψ(x). Given smoothness conditions [1] and other

mathematical assumptions [20], Eq. 2.92 has an infinite number of eigenvalues

σ1 > σ2 ≥ σ3 ≥ · · · ≥ σk ≥ · · · with σk −→ −∞, k → ∞. (2.93)
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If ψ is a solution to Eq. 2.92, the same can be said about cψ, where c is an arbitrary

constant. Also, the eigenfunctions are normalized, meaning

∫

Ω

ψ2dx = 1. (2.94)

According to [1, 20], solutions to Eq. 2.91 can be written as

u(x, t) =
∞

∑

k=1

uke
σktψk(x), (2.95)

where the numbers uk depend on the initial condition u(x, 0). The number σ1 is

called the principal eigenvalue and is the largest of all eigenvalues of Eq. 2.93. The

associated eigenfunction ψ1 is always positive [20] within the patch Ω. If σ1 < 0,

according to Eq. 2.93 all other eigenvalues will be negative, which means the solution

given by Eq. 2.95 will decay exponentially. If, on the other hand, σ1 > 0, the solution

to Eq. 2.91 will grow exponentially. The former case is called extinction and the

latter persistence of the population density within the patch Ω.

An Example in 1-D

Let us look at a one-dimensional example of this procedure [1]. Let Ω be the interval

(0, l) (one spatial dimension). Eq. 2.92 becomes

σψ = D
∂2ψ

∂x2
+ rψ. (2.96)

There are nonzero solutions that satisfy the boundary conditions only if, for some

integer k,

σ = σk = r −D
π2k2

l2
. (2.97)

In this case the eigenfunction is given by

ψk =
2

l
sin

(

πkx

l

)

. (2.98)
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The principal eigenvalue is given by

σ1 = r −D
π2

l2
, (2.99)

so σ1 > 0 only if l > π
√

D
r
. This number is the minimum patch size necessary to

support a population. If a patch is to be smaller than this value, the density would

be close enough to the boundary ∂Ω that the loss rate of individuals from dispersal

out of the patch, D π2

l2
, is greater than the local growth rate r. This means σ1 would

be negative and the population would become extinct [1].

An Example in 2-D

If we consider our patch Ω to be a square of area A, the principal eigenvalue, for the

associated eigenvalue problem (see Eq. 2.92) is given by [1]

σ1 = r − dD
π2

A
, (2.100)

and the associated eigenfunction is given by

ψ1 =
4

A
sin

(

πx√
A

)

sin

(

πy√
A

)

. (2.101)

For there to be persistence of the population within the patch, σ1 > 0, only possible

if A > 2D π2

r
. This is the minimum patch size for the two-dimensional case of a

square patch of area A.

The Scaling Problem

If we look at Eqs. 2.99 and 2.100, it is evident that the two principal eigenvalues we

just derived depend on the geometry of the patch (l, A) and the biological param-

eters of the population (r,D). In order to separate the two effects [1] proposes the
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associated eigenvalue problem

∂2φ
∂x2 + λφ = 0 in Ω

φ = 0 on ∂Ω.
(2.102)

If we assume that φ is an eigenfunction of Eq. 2.102, and we set ψ = φ, we get

D
∂2φ

∂x2
+ rψ = (r −Dλ)ψ. (2.103)

This means the eigenvalues of Eq. 2.92 and those of Eq. 2.102 are related by the

expression

σ = r −Dλ, (2.104)

and the fact that σ1 > 0 is now r
D
> λ1, where λ1 is the principal eigenvalue for Eq.

2.102. According to Strauss (1992) and [1], Eq. 2.102 has eigenvalues

λ1 < λ2 ≤ λ3 ≤ · · · , (2.105)

and λ1 is the only eigenvalue with a positive eigenfunction. In the 1-dimensional

case, λ1 = π2

l2
. In the 2-dimensional case, λ1 = 2π

2

A
. If we look carefully at these two

eigenvalues we notice they go as 1
l2

. It can be proven [1] that if we take a rescaled

version of Eq. 2.102, i.e.,

∂2φ̃
∂x2 + (λ/l2) φ̃ = 0 in Ω̃

φ̃ = 0 on ∂Ω̃,
(2.106)

the eigenvalues for this system are given by

λ̃k =
λk
l2
, (2.107)

where λk is an eigenvalue of Eq. 2.102. Thus, for a population to be able to persist

according to the model given by Eq. 2.91 given patch Ω̃ and boundary ∂Ω̃ (see Eq.

2.106), the following condition is necessary:

r

D
> λ̃1 =

λ1

l2
, (2.108)

which turns out to be independent of the geometry of the patch [1].
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2.5.3 The Energy Method Revisited

Refs. [1, 21–23] applied the so-called energy method from classical mechanics to

study reaction-diffusion models in one dimension in order to study the behavior of

the fixed points with respect to the size of the patch Ω. Let us consider the following

reaction-diffusion model with diffusion constant D = 1:

∂u
∂t

= ∂2u
∂x2 + f(u) on (−l/2, l/2) × (0,∞)

u(x, t) = 0 for x = ±l/2.
(2.109)

If we take the steady-state solution and multiply on both sides by du/dx, we obtain

0 = d2u
dx2

du
dx

+ f(u)du
dx

= d
dx

[

1
2

(

du
dx

)2
+ F (u)

]

,
(2.110)

where

F (u) =

∫ u

0

f(s)ds. (2.111)

From Eq. 2.110 we conclude that

1

2

(

du

dx

)2

+ F (u) = const. (2.112)

In physics this constant is called the energy of the system. If u is a fixed point of

the system given by Eq. 2.109, then u(x, t) must reach a maximum within the patch

Ω [1], denoted from now on by umax. We must have

1

2

(

du

dx

)2

+ F (u) = F (umax) (2.113)

since du
dx

= 0 at umax. Also, F (umax) ≥ F (u) for 0 ≤ u ≤ umax since u(x) takes all

values from 0 to umax. If f(u) > 0 for 0 < u < K but f(u) < 0 for u > K, then

F (u) < F (umax), except for u = umax [1]. If u(x0) = umax, then, solving for du/dx

in Eq. 2.113, we get










√
2
√

F (umax) − F (u) for − l/2 < x < x0

−
√

2
√

F (umax) − F (u) for x0 < x < l/2.
(2.114)
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According to [1], if we take x0 = 0, we get

l =
√

2

∫ umax

0

du
√

F (umax) − F (u)
, (2.115)

so for different nonlinearities f(u), this expression is useful to analyze the relationship

between umax and the length l of the patch.

Logistic Growth Revisited

Let us look again at the phenomenon of logistic growth in a population, and let us

analyze it in the light of the results yielded by the application of the energy method.

Our nonlinearity is

f(u) = r
(

1 − u

K

)

u = ru− r

K
u2. (2.116)

F (u) = r
u2

2
− r

3K
u3. (2.117)

If we make the substitution w = u/umax [1], Eq. 2.115 becomes

l =
√

2

∫ 1

0

umaxdw
√

F (umax) − F (wumax)
=

√
2

∫ 1

0

dw
√

F (umax)−F (wumax)
u2

max

, (2.118)

and using Eq. 2.117 and substituting terms we get

l =
√

2

∫ 1

0

dw
√

r
2
(1 − w2) − rumax

3K
(1 − w3)

. (2.119)

From this expression it is clear that as umax → 0, the integrand goes to

√

2
r√

1 − w2
, (2.120)

thus the length of the patch, l, approaches the value π√
r
. This is the minimum patch

size for the logistic case, and it can be plotted as a function of umax (see Fig. 2.9).

If umax = K, then the patch is infinitely large, it cannot be bounded.
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Figure 2.9: The length of the patch, l, versus the maximum density, umax, for the logistic
case. After Cantrell and Cosner [1].

2.6 Spatial Models: Reaction-Diffusion and Pat-

terns

In this section we will study the third application [1,2] of reaction-diffusion equations

in the context of spatial ecology: the formation of patterns. These patterns may

or may not change in time, depending on the particular assumptions made when

constructing the reaction-diffusion equations [2, 10].

The concept of invasion fitness [2] refers to the initial per/capita growth rate of

a rare mutant in a certain environment previously set by its residents. This concept,

at the heart of adaptive dynamics theory, can be readily measured in populations

without spatial structure. However, in populations that are spatially heterogeneous

(spatially-structured), invasion fitness is heavily influenced by the patterns that arise

from short-range ecological interactions. Our group has been very successful at pre-

dicting patterns [5–7] in several biological and physical contexts. For instance, spatial

patterns or “refugia” [5] were predicted using the AK model.

As pointed out in the previous section, different models can be used to describe

different ecological phenomena [1, 2, 10]. For the case of pattern formation also,
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within the framework of reaction-diffusion models, we can use either partial differen-

tial equations (PDEs) or cellular automata (CA) [2]. The former are thought to be

more suitable to describe processes such as the Belousov-Zhabotinsky reaction [2,10],

notorious for its intricate and often regular patterns. Also, CA models focus on lo-

cal correlations while PDEs are large-scale descriptions of populations and therefore

local correlations are often neglected [2, 10]. We will focus mainly on PDE-based

models for pattern formation in the remainder of this section.

Patterns and the Origin of Life

Pattern formation occupies a major role in some models that pretend to find insight

into the origin of life [2]. A biological system, for instance made up of molecules, is

studied in which the spatial factor eventually drives the system to become subdivided

into compartments, such that spread of infection is no longer possible due to the

presence of compartments and “firewalls” between them. The general PDE model

in one dimension used to describe the problem of the origin of life is given by [2]

∂Xi

∂t
= M

N
∑

j=1

kijXjXi − gXXi +DX
∂2Xi

∂x2
, i = 1, . . . , N (2.121)

∂M

∂t
= kM − gMM − LM

N
∑

i,j=1

kijXjXi +DM
∂2M

∂x2
, (2.122)

The terms of Eq. 2.121 are explained as follows:

• Xi is the density of polymers of type i.

• M is the density of monomers.

• N is the number of species of polymers present in the system.
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• M
∑N

j=1 kijXjXi is the catalyzed replication of polymer Xi, where the growth

rate is proportional to the density of activated monomers M and to the repli-

cation of templates Xi by polymers Xj via rate constants kij.

• −gXXi corresponds to decay of polymers, where gX is the decay rate constant.

• DX
∂2Xi

∂x2 is the diffusion term in one dimension, and DX is the diffusion constant

for the polymers.

The terms of Eq. 2.122, which describes the dynamics of the density of activated

monomers M that limits the growth of polymers Xi are explained as follows:

• M is the density of monomers.

• kM is the constant rate of production of monomers.

• −gMM corresponds to decay of monomers to an inactive form, where gM is the

decay rate constant.

• −LM ∑N
i,j=1 kijXjXi corresponds to the consumption of monomers due to the

replication of polymers; L is the number of monomers required to produce a

polymer.

• DM
∂2M
∂x2 is the diffusion term in one dimension, andDM is the diffusion constant

for the monomers, usually greater than DX .

Results in 2 Dimensions: Spirals

Before we look at the results of the simulations performed by [2] for the system

mentioned above, let us look at the very important concept of hypercycle. It was

introduced in the early 1970s [24] and consists of a set of self-replicating molecule

species Xi. The important point of this concept is the fact that each species provides
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catalytic support for the next species in the hypercycle [2,24]. Each species replicates

itself and “helps” with the replication process of the next species. This was dubbed

an “altruistic” process [2, 25] because it does not increase the number of copies of

one given species but increases those of the competing species which the first species

helps replicate. Parasites are an important part of hypercycle theory [2, 25] since

they can replicate on its own like the molecular species that form the hypercycle.

However, the difference lies in the fact that they receive support from some species

but they won’t give it back to any other species [2] (see Fig. 2.10). Thus, if a

parasite is selected in favor of another species, the hypercycle is gone, and this is

called evolutionary instability [2, 25].

Figure 2.10: Sketch of a hypercycle with 6 self-replicating molecular species and one
parasite species that gets help replicating from species 2 but won’t help anyone but itself
to replicate. Based on figures from Dieckmann, Law, and Metz [2].

Now let us focus on the results of the numerical simulations of Eqs. 2.121 and

2.122 performed by [2]. It was proven by [26] that in PDE-based reaction-diffusion

models such as the one mentioned above, hypercycles with 5 or more species yield

spiral patterns for most initial conditions (see Fig. 2.11). When a parasite is present

in the system, the spiral collapses [2].
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Figure 2.11: Reaction-diffusion spiral for five species. The color at each point represents
the species with the highest concentration at that given point. Copyright Wikimedia
Commons.

40



Chapter 3

Diffusion Constants of Rodents in

New Mexico and Wyoming

3.1 Overview

This chapter is a report of new theoretical research carried out by the author as

part of his Master’s thesis. The present analysis continues the efforts of our re-

search group to understand the behavior of the Sin Nombre Virus (Bunyaviridae:

Hantavirus), which was discovered in 1993 as the agent of the deadly Hantavirus

Pulmonary Syndrome (HPS) in the North American Southwest region [27]. The

movement characteristics of the principal host of the virus, the deer mouse, Per-

omyscus maniculatus [28], have been studied extensively in the past. An analytical

model [5, 29–31] was successfully developed and led to an understanding of spatio-

temporal patterns that have been confirmed by observations in the field.

The basic assumption of that model is that the movement of the animals has a

diffusive behavior, given by the diffusion constant D. This statement is supported by

many previous studies of animal movement [10,32], including studies of the deer mice
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[33, 34]. A comprehensive theory [35] that formed the basis for the extraction of ro-

dent parameters was applied in the first paper [16] of the present series (from now on

referred to as I), for the analysis of field data for marked-recaptures of Zygodontomys

brevicauda in Panama from trapping measurements in a grid arrangement.

A second application of the theory allowed an extraction of rodent parameters

in a subsequent paper [3] (from now on called II), for the deer mouse Peromyscus

maniculatus in the region of Sevilleta, New Mexico (USA). The measurement method

was trapping in a web arrangement, a method that was thoroughly explained by Dr.

Parmenter et al. [4] as a means to estimate small-mammal densities in the field

(compared to the grid-based arrangement). The diffusion constant found in I was

D = 200 m2/day and the value reported in II was D = 470 ± 50 m2/day. An

additional and crucial parameter of the rodent motion that the theory allowed to

extract was L, the home range size for the mice. In I it was found that L = 70 m.

In II, the long-time measurements show the home range size to be L = 100 ± 25 m,

using the box model introduced in I for home range estimation. We were not able

to find home range parameters when analyzing the datasets reported in the present

Chapter, given the absence of a saturation value for the mean square displacement

as a function of time.

3.2 Recapture of animals and displacement mea-

surement

Our interest in the present Chapter is in the extraction of rodent quantities from

field data gathered between June 2004 and May 2007 at the Valles Caldera National

Preserve in New Mexico (New Mexico from now on), and between June 1982 and

August 1985 in the Wyoming grassland (Wyoming from now on). For New Mexico,
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nine trapping webs were permanently set on the terrain (see Fig. 3.1) and animals

were captured on a monthly basis for three consecutive nights on each occasion.

Eight species of rodents were recaptured for the present analysis:

• Peromyscus maniculatus (deer mouse)

• Tamias minimus (chipmunk)

• Tamias quadrivitattus

• Reithrodontomys megalotis

• Neotoma mexicanus

• Neotoma cinereus

• Microtus longicaudus

• Spernophilus lateralis

However, only P. maniculatus yielded enough data to calculate the diffusion constant

of their movement. The data set contained 261 recaptures of P. maniculatus (114 in

the first, 86 in the second, and 61 in the third year), compared to 3765 in II. There

were 112 female and 149 male recaptures. The recaptures of deer mice included 191

adult and 70 juveniles, the cut-off between the two being a body mass of 16 grams.

This is important because we performed analyses over the two age-groups and we

also found diffusion constants for each of several years.

For Wyoming, there were three replicate square grids, labeled as North, Middle,

and South. The sites were sampled twice per year, once in Spring (May-July dates)

and once in late summer (August-September dates). Traps were run for four nights,

with traps being opened on a Monday, and checked each morning from Tuesday

through Friday. The deer mouse was the only rodent species present in the area, so
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Figure 3.1: Schematic arrangement of each of the 9 trapping webs used to obtain the New
Mexico dataset. Each dot represents a Sherman trap. There is only one trap at the center
as opposed to four traps in II. The four inner circles have radii increasing in 5 m intervals,
while the rest are separated by 10 m. There are 145 traps per web. [3, 4].

only this species contributed to the Wyoming dataset. It contained 272 recaptures in

1982, 537 in 1983, 192 in 1984, and 191 in 1985, for a total of 1192 recaptures. There

were 666 female and 526 male recaptures, and 250 juvenile and 942 adult recaptures.

As in New Mexico, the cut-off between the two age-groups was a body mass of 16

grams.

The mark-recapture data analyzed here come from the use of trapping webs such

as the one shown in Fig. 3.1 for New Mexico and grids for Wyoming, as seen in Fig.

3.2. This involves the implementation of the “distance sampling” method [36], also

used in II. The web configuration has the advantage that it can be used (and is widely

used) to estimate the absolute densities of rodents [4, 37]. However, for the study of

animal motion this configuration presents a problem: the distribution of the traps is

very inhomogeneous, as can be clearly seen in Fig. 3.1. As was first done in II, Fig.

3.3 shows the observed distribution of the displacements of deer mice at several time

scales, ranging from 1 day to 3 months, compared to the distribution of distances
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Figure 3.2: Schematic arrangement of each of the 3 square trapping grids used to obtain
the Wyoming dataset. Each dot represents a Sherman trap. Each grid has 225 traps, with
10 meters between traps in the two spatial directions. Each grid has a side of length 140
m, with 100 m between each grid.

in the web (for New Mexico). There is a strong bias in the distribution of distances

present in the array, as can be observed in the figure (heavy line, denoted w(r)). The

traps were measured every month during three consecutive days, so we have several

“time scales”, 1 day, 2 days, and multiples of 30 days. For the case of Wyoming,

the distribution of the traps was completely homogeneous (square grid, see Fig. 3.2)

and only the 1-day time-scale was present for this dataset given the frequency of the

recaptures. Fig. 3.3 shows the normalized histograms of the observations for New

Mexico.

As first pointed out in II, if the motion of the mice were purely diffusive, and if

the measurements of the displacements were fine enough, these distributions should

be decreasing Gaussians, always with a maximum at zero. The artifact produced by

the web is equivalent to a repulsion at short distances, as if the animals would prefer

to stay away from their initial position. This is obviously fictitious. However, it can
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Figure 3.3: Observed distribution q(r) of displacements r at several time scales, compared
with the distribution w(r) of distances in the web, for New Mexico.

be seen in Fig. 3.3 that for the 1-day time scale of New Mexico, the distribution

of displacements has a maximum at, or very near, zero. This is a clear indication

that the measurements on this time scale can be reliably used for the estimation of

the diffusion coefficient, thus from now on we will refer to the 1-day scale as our

“short-time-scale”.

Fig. 3.4 shows the number of distances present in the web used in New Mexico in

the East-West direction (see [3] for a thorough discussion). Since the web configura-

tion is symmetrical, the distribution in the East-West direction is identical to that

in the North-South direction. Fig. 3.5 shows the number of distances present in the

grid used in Wyoming in the East-West direction. Symmetry applies in this case as

well.
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Figure 3.4: Distribution of East-West and North-South distances in the web trapping
configuration (New Mexico). The diameter of the grid is 200 m.
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Figure 3.5: Distribution of East-West and North-South distances in the square grid trap-
ping configuration (Wyoming). The side of the grid is 140 m.
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Figure 3.6: Probability distribution of observed displacements for P. maniculatus in the
East-West direction for the 1 day time-scale (New Mexico).

3.3 Renormalization of the measurements and es-

timation of the diffusion constants

Following the approach used in I and II, we consider the displacements of the recap-

tured rodents as a statistical ensemble, representing the movement of a hypothetical

mouse (a random walker) whose statistical properties we want to derive from the

data. When observed on a short-time scale, the motion of the walker might be ap-

proximately diffusive for the reasons explained above. At longer times, both the

existence of home ranges and the finiteness of the array take over, constraining the

walk. Unfortunately, the datasets described in the present Chapter were not large

enough to yield data to compute the home ranges, so only diffusion constants will

be discussed here.

If we take the movement of the mice to be diffusive at short-time scales [3, 16],

the probability density function of the displacements of an ensemble of mice from an

48



Chapter 3. Diffusion Constants of Rodents in New Mexico and Wyoming

-150 -100 -50 0 50 100 150

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 

 

p(
x)

x (m)

 p(x) (renormalized)
 Gaussian fit

Figure 3.7: Renormalized probability distribution of actual displacements that char-
acterizes the movement of P. maniculatus in the East-West direction at 1 day (New
Mexico). The continuous line shows the least-squares Gaussian fit of the distribution
(χ2 = 1.0 × 10−5).

initial position is just the standard (Gaussian) propagator of diffusive motion, with

diffusion coefficients that are generally different in the different spatial directions due

to movement anisotropy, varying conditions of the terrain, slopes, etc. One of the

key points of the present analysis has to do with the fact that the measurements

of position are taken with a grid of traps, which is a discrete device. As was first

explained by [3], it is possible to take into account the distribution of distances

between traps in the web to take the effect of the bias, as follows: the observed

probability Q(x) = q(x)dx of making a displacement between x and x+ dx, is equal

to the probability P (x) = p(x)dx that, in a day’s time, the random walker actually

makes such a movement, multiplied by the probability that the web contains such a

distance, W (x) = w(x)dx. Using this relation, the observations can be renormalized

to obtain the distribution of displacements that characterizes the movement,

P (x) =
Q(x)

W (x)
=
q(x)

w(x)
. (3.1)

49



Chapter 3. Diffusion Constants of Rodents in New Mexico and Wyoming

Using the same procedure followed in II, the distributions q(x) and w(x) are built

from the recapture data and from the geometry of the web, respectively (see Figs. 3.5

and 3.6 for the New Mexico dataset). Since we assumed diffusive motion, the

distribution p(x) is bell-shaped (see Fig. 3.7), and is well fitted by a Gaussian

(χ2 = 1.0×10−5), supporting the hypothesis that the movement is initially diffusive.

Following this hypothesis, this Gaussian distribution is nothing but the propagator

of the diffusive movement process at 1 day, the shortest time scale available from

both datasets.

3.4 Movement Parameters

To obtain the following movement parameters, we went through the datasets and

used only recapture data, that is, data for rodents that were recaptured at least one

time. The analysis yielded the following results:

3.4.1 Results: Wyoming

Species: Peromyscus maniculatus Dx (m2/day) Dy (m2/day)

Full Wyoming dataset 80 ± 10 130 ± 10

Sample 1 (1982-1) 240 ± 30 170 ± 20

Sample 2 (1982-2) 90 ± 10 270 ± 30

Sample 3 (1983-1) 70 ± 10 110 ± 10

Sample 4 (1983-2) 60 ± 10 110 ± 10

Sample 5 (1984-1) 110 ± 10 95 ± 10

Sample 6 (1984-2) 100 ± 10 110 ± 10

Sample 7 (1985-1) 160 ± 15 280 ± 30

Sample 8 (1985-2) 30 ± 5 80 ± 10
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Males Sample 1 (1982-1) 300 ± 30 280 ± 20

Males Sample 2 (1982-2) 90 ± 10 450 ± 50

Males Sample 3 (1983-1) 190 ± 20 250 ± 30

Males Sample 4 (1983-2) 60 ± 10 210 ± 20

Males Sample 5 (1984-1) 320 ± 30 120 ± 10

Males Sample 6 (1984-2) 240 ± 20 80 ± 10

Males Sample 7 (1985-1) 310 ± 30 760 ± 80

Males Sample 8 (1985-2) 120 ± 10 110 ± 10

Females Sample 1 (1982-1) 200 ± 20 70 ± 10

Females Sample 2 (1982-2) 90 ± 10 140 ± 20

Females Sample 3 (1983-1) 30 ± 20 50 ± 30

Females Sample 4 (1983-2) 50 ± 5 70 ± 10

Females Sample 5 (1984-1) 40 ± 5 80 ± 10

Females Sample 6 (1984-2) 60 ± 5 120 ± 10

Females Sample 7 (1985-1) 30 ± 5 40 ± 5

Females Sample 8 (1985-2) 20 ± 5 70 ± 10

Juveniles Sample 1 (1982-1) 220 ± 20 240 ± 20

Juveniles Sample 2 (1982-2) − −
Juveniles Sample 3 (1983-1) 70 ± 10 80 ± 10

Juveniles Sample 4 (1983-2) 90 ± 10 150 ± 20

Juveniles Sample 5 (1984-1) 20 ± 2 50 ± 5

Juveniles Sample 6 (1984-2) 140 ± 15 65 ± 10

Juveniles Sample 7 (1985-1) 250 ± 30 830? ± 80

Juveniles Sample 8 (1985-2) 30 ± 5 90 ± 10

Adults Sample 1 (1982-1) 250 ± 30 150 ± 20

Adults Sample 2 (1982-2) 90 ± 10 260 ± 30

Adults Sample 3 (1983-1) 70 ± 10 120 ± 10
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Adults Sample 4 (1983-2) 50 ± 5 100 ± 10

Adults Sample 5 (1984-1) 120 ± 10 100 ± 10

Adults Sample 6 (1984-2) 90 ± 10 160 ± 20

Adults Sample 7 (1985-1) 150 ± 20 210 ± 20

Adults Sample 8 (1985-2) 30 ± 5 70 ± 10

Adult Males Sample 1 (1982-1) 350 ± 50 270 ± 30

Adult Males Sample 2 (1982-2) 90 ± 10 580 ± 110

Adult Males Sample 3 (1983-1) 200 ± 20 270 ± 30

Adult Males Sample 4 (1983-2) 50 ± 5 260 ± 20

Adult Males Sample 5 (1984-1) 320 ± 40 120 ± 10

Adult Males Sample 6 (1984-2) 190 ± 50 440 ± 30

Adult Males Sample 7 (1985-1) 380 ± 60 660 ± 90

Adult Males Sample 8 (1985-2) 180 ± 60 210 ± 30

Adult Females Sample 1 (1982-1) 210 ± 30 70 ± 10

Adult Females Sample 2 (1982-2) 90 ± 10 160 ± 10

Adult Females Sample 3 (1983-1) 40 ± 5 60 ± 5

Adult Females Sample 4 (1983-2) 50 ± 5 60 ± 5

Adult Females Sample 5 (1984-1) 40 ± 5 80 ± 10

Adult Females Sample 6 (1984-2) 60 ± 10 110 ± 20

Adult Females Sample 7 (1985-1) 30 ± 5 30 ± 5

Adult Females Sample 8 (1985-2) 16 ± 1 50 ± 5

Table 3.1: Diffusion constants in the two spatial directions at the short time scale (1 day)

for Wyoming.
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Adults vs. Juveniles (Wyoming)
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Figure 3.8: Diffusion constant vs. number of individuals for the total, adult, and juvenile
populations (Wyoming).
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Figure 3.9: Number of individuals vs. time for the total, adult, and juvenile populations
(Wyoming).
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Figure 3.10: Diffusion constant vs. time for the total, adult, and juvenile populations
(Wyoming).
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Males vs. Females (Wyoming)
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Figure 3.11: Diffusion constant vs. the number of individuals for the total, male, and
female populations (Wyoming).
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Figure 3.12: Number of individuals vs. time for the total, male, and female populations
(Wyoming).
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Figure 3.13: Diffusion constant vs. time for the total, male, and female populations
(Wyoming).
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Figure 3.14: Diffusion constant vs. the number of individuals for adult males, adult
females, and total adult populations (Wyoming).
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Figure 3.15: Number of individuals vs. time for adult males, adult females, and total
adult populations (Wyoming).
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Figure 3.16: Diffusion constant vs. time for adult males, adult females, and total adult
populations (Wyoming).
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3.4.2 Results: New Mexico

Species: Peromyscus maniculatus Dx (m2/day) Dy (m2/day)

Full New Mexico dataset 340 ± 40 300 ± 40
2004-05 230 ± 30 270 ± 30
2005-06 370 ± 40 100 ± 10
2006-07 370 ± 40 370 ± 40

Males 2004-05 370 ± 40 430 ± 40
Males 2005-06 150 ± 15 90 ± 10
Males 2006-07 360 ± 40 260 ± 30

Females 2004-05 390 ± 40 150 ± 15
Females 2005-06 370 ± 40 430 ± 40
Females 2006-07 370 ± 40 430 ± 40

Juveniles 300 ± 30 280 ± 30
Adults 370 ± 40 430 ± 40

Table 3.2: Diffusion constants in the two spatial directions at the short time scale (1 day)
for New Mexico.
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Figure 3.17: Mean square displacement in the two spatial directions as a function of time
for P. maniculatus (New Mexico). The initial slope of each curve is 2D, where D is the
diffusion coefficient.
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Conclusions

These concluding remarks refer, for the most part, to the research carried out in

Chapter 3 of this thesis.

From the point of view of the available resources at the different recapture sites,

we can safely say Panama (D = 200 m2/day) had the most resources (I), followed by

Valles Caldera National Preserve in New Mexico (D = 320 ± 40 m2/day) (Chapter

3), and finally Sevilleta, New Mexico (D = 470 ± 50 m2/day). We can immediately

see that the less resources the mice had, the faster they moved, meaning, on average,

they had to cover a greater area every day in order to look for food.

From Fig. 3.8 we can see very clearly that the diffusion constants become smaller

as the population becomes larger. This observation is due to Parmenter1. This is

probably due to: (1) Food is plentiful (hence the high reproduction and subsequent

densities of mice) and they don’t have to venture very far from their burrows to get

what they need (this has the advantage of reducing predation risk as well), and/or

(2) There are so many other mice around with which to get into fights (mice usually

don’t like each other and fight a lot) that the increased number of encounters (and

1Personal communication.
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fights) at high density tends to restrict their movements to the areas right near their

burrows. It may also be that both of these hypotheses are operating at the same

time.

Another important point has to do with the dependence of the motion of mice

on their age. It is apparent that for small populations, the juveniles move much

faster than for large populations, relative to the adults. It can also be concluded

that, for the same number of juvenile and adult mice, adults seem to move faster.

From Fig. 3.9 it is clear that for all times except that represented in the last sample,

more adults than juveniles were present within the population. This supports the

statement that the diffusion behavior with respect to the density mentioned above

was mainly governed by the adults, not the juveniles. Fig. 3.10 shows that, through-

out the four years of the study, the diffusion of the whole population was governed

by that of the adult mice, and the movement of the juveniles fluctuated around the

behavior of the adults and thus of the whole population.

If we look at the gender of the mice, we can see from Figs. 3.11 and 3.13 that

diffusion constants in general, as we mentioned above, tend to decrease with the

population. We also see that males tend to move much faster than females, probably

due to the fact that females prefer to stay closer to their home. Fig. 3.12 tells

us that, on average, population densities were similar, with a small domination of

females over males as far as sheer number of individuals. Fig. 3.13 also shows that

as time goes by, the diffusion for males and females tend to decrease and increase in

a similar fashion, so on average, when they decrease for one group they do for the

other, and vice versa.

For New Mexico, there was no important anisotropy in the movement regarding

the two spatial dimensions, since, according to Table 1, out of the 12 values reported

for New Mexico, 6 showed a dominance of the x direction and 6 a dominance of the

y direction.
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It was not possible to determine home ranges from the analyzed datasets, since,

according to I and II, a saturation of the mean square displacement vs. time is

needed in order to predict the size of the home range. Even though Fig. 3.17 shows

an apparent saturation in the North-South direction, the lack of data for say, 30 days,

precludes us from making any definitive conclusions regarding the home ranges using

the saturation method. The lack of apparent saturation in the East-West direction

also contributes to this. The Wyoming dataset was comprised of recaptures in the

1-day time-scale exclusively, so it was possible to find only diffusion constants, not

home ranges, from this dataset using the saturation method. However, just for

comparison purposes and without aiming at any precise results, let us extract from

Fig. 3.17 the apparent saturation value of the mean square displacement, 1000 m2,

using the North-South curve. Following the procedure for establishing home ranges

from saturation values of the mean square displacement [3], for a grid size G = 200

m (see Fig. 3.2), assuming a box potential, we obtain a home range L = 70 ± 20 m,

which is of the order of the one found in [3] (100 ± 25 m) and coincidentally similar

to that found in [16] (70 m) for Zygodontomys brevicauda in Panama from trapping

measurements in a grid arrangement.

The next natural step in future research related to this topic would be to construct

a model that incorporates some of the findings in the present thesis. For instance, it

is clear that diffusion constants depend on the number of individuals present at the

time, thus a model where D depends explicitly on the population M , or better, on

the population density u should be used. Dr. Parmenter had suggested a decaying

exponential for this behavior. Even though at first sight a Gaussian shape or even

a Lorentzian shape might look appropriate, considering the error involved in the

diffusion constants, we can conclude that a decaying curve is appropriate to describe

this behavior. The time-dependence of the diffusion constants should also be looked

at in light of the results of the previous chapter. Also, dependence of D on the

environmental parameter K should be considered in order to get a much better
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understanding of the situation.

In closing, we have reviewed a set of relevant topics in spatial ecology from the

point of view of statistical mechanics and nonlinear science. From that perspective,

we analyzed two datasets of mice motion and extracted diffusion constants, and, for

comparison purposes, an estimate of a home range from the VC dataset. We hope the

results presented in this thesis will be helpful to both theoretical and experimental

scientists as they formulate, calibrate, and/or refine mathematical models to explain

the spread of epidemics in the future.
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