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Thanks to Sebastian Röding at the University of Würzburg, who wrote

the original version of the C++ code used for the simulations described

in this thesis. His work and intellectual input were invaluable.

I would like to thank my professors at the Department of Physics and

Astronomy at UNM, especially Profs. V. M. Kenkre, Sudhakar Prasad,

Ivan Deutsch, Daniel Finley, Carl Caves, and Rouzbeh Allahverdi, for

teaching fantastic courses.

Thank you to Mickey Odom and Dr. Jeff Saul for your support, and for

teaching me so much about teaching.

My thanks go to all of my friends and family who supported me during

my time in school, especially my parents and my wonderful wife.

Finally, I would like to acknowledge the thousands of individuals who have

coded for the LaTeX project pro bono publico. It is due to their efforts

that anyone may now generate a professionally typeset document.

This work was supported in part by the Defense Threat Reduction Agency,

and the Department of Energy at Los Alamos National Laboratory.

v



A Study of Charge Transport: Correlated
Energetic Disorder in Organic

Semiconductors, and the Fragment
Hamiltonian

by

Jonathan Robert Allen

B.S., University of Idaho, 2007

M.S., Physics, University of New Mexico 2011

Ph.D., Physics, University of New Mexico 2014

Abstract

This dissertation details work done on two different descriptions of charge

transport. The first topic is energetic disorder in organic semiconductors,

and its effect on charge transport. This is motivated primarily by solar

cells, which can be broadly classified as either inorganic or organic. The in-

organic class of solar cells is older, and more well-developed, with the most

common type being constructed from crystalline silicon. The large silicon

crystals required for these cells are expensive to manufacture, which gave

rise to interest in photovoltaic cells made from much less costly organic

polymers. These organic materials are also less efficient than their silicon

counterparts, due to a large degree of spatial and energetic disorder. In

this document, the sources and structure of energetic disorder in organic

semiconductors are explored, with an emphasis on spatial correlations in

energetic disorder. In order for an organic photovoltaic device to func-

tion, there must be photogeneration of an exciton (a bound electron-hole

pair), exciton transport, exciton dissociation, and transport of the indi-

vidual charges to their respective terminals. In the case of this thesis, the

main focus is exciton dissociation. The effects of correlation on exciton
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dissociation are examined through computer simulation, and compared

to the theory and simulations of previous researchers. We conclude that

energetic disorder in organic semiconductors is spatially correlated, and

that this correlation improves the ability of excitons to dissociate.

The second topic of this dissertation is the Fragment Hamiltonian model.

This is a model currently in development as a means of describing charge

transport across a range of systems. Currently there are many differ-

ent systems which exhibit various charge transport behaviors, which are

described by several different models. The overarching goal of the Frag-

ment Hamiltonian model is to construct a description of charge transport

which accurately describes the behavior of multiple different materials

(i.e. metallic conductors or ceramic insulators) in the appropriate limits.

The Fragment Hamiltonian model is explored in the context of the tight-

binding model, and properties such as the conductivity of several different

systems are deduced.
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1

Introduction

Nearly every piece of modern technology we interact with on a daily basis is electronic,

or has electronic components. This has been made possible by the explosion in our

understanding of electronic behavior at the micro- and nanoscale over the last half-

century. Our knowledge is far from complete, if such a thing can even be said to

exist. To fill in the gaps, tools are constantly being developed, be they ever more

sophisticated analytical models, or continuously improving computer simulations.

This dissertation is composed of two parts. In the first, we will be examining

disordered organic semiconductors and the charge transport behavior they exhibit.

In the second part, a model of charge transfer named the Fragment Hamiltonian (FH)

is developed.

The conductivity σ of a material is an important quantity for any physical ap-

plication. Whether a substance is a conductor, a semiconductor, or a insulator is

defined by whether or not it will carry an electrical current at low temperature and

in the presence of a small perturbing electric field. The low temperature requirement

(actually the limit that T → 0 in ideal models) ensures that random thermal fluc-

tuations are not responsible for the motion of electrons. The requirement of a small

electric field (again, in ideal models actually an infinitesimal field strength dE) allows

the distinction between the conductor, semiconductor, and insulator to be made. A

conductor will typically carry a current which is proportional to the electric field

~J = σ ~E, (1.1)

1



an expression of Ohm’s law. In an insulator, the conductivity σ = 0, and no current

will appear for any applied field, at least in an ideal model. In real insulators a strong

enough electric field will cause ionization in the material, resulting in what is called

dielectric breakdown, and often the destruction of a component or device.

The definition of a semiconductor is less exact, and generally depends on how

strong the electric field is to which it will be exposed [1]. Generally speaking, a

semiconductor is an insulator for small values of the electric field. As the field strength

is increased, there is a critical value for which a semiconductor will begin conducting

a current. The energy one must input via the electric field before conduction occurs

is called the bandgap.

Many semiconductors such as the ubiquitous silicon, used in computing and pho-

tovoltaic cells, are fashioned to have a very orderly microscopic structure. Some of

the highest quality silicon solar cells, for example, are fabricated using a single large

crystal [2]. This give electrons in the material a very high mobility µ, defined as

µ =
ve
E
, (1.2)

the velocity ve of an electron in an electric field of magnitude E. This high mobility

allows for efficient solar cells.

The expense required to grow these large crystals has given rise to great interest in

organic semiconductor technology. Devices made from organic polymers can be made

at much smaller cost. The trade off, however, is that these organic materials are

subject to much less control in their manufacture. This causes them to be disordered

on the microscopic level. This disorder results in lower mobilities, and in the case

of solar cells, consequently lower efficiencies. The exact nature and consequences of

this disorder on charge transport are not well understood. In Chapter 2 an overview

of solar cell technology and the underlying physics will be given. Chapter 3 gives a

review of the diffusion mechanism by which charges move about in semiconductors,

as well as a description of the Onsager model [3] of charge dissociation in a medium

which forms the foundation of much of the modern understanding of charge behavior

in organic solids. Chapter 4 details some of the preceding work which motivated

the results presented in this dissertation. Chapter 5 is a discussion of the nature

of disorder in organic semiconductors, including its structure and what causes it, as

2



well as what effects it is expected to have on charge transport. Chapter 6 completes

the first part of this thesis by detailing the simulations performed by the author and

collaborators, giving a comparison of the results to previous analytical, numerical,

and simulative work, and discussing the overall significance of the results and the

conclusions drawn from them.

Part 2 of this dissertation is an exploration of the Fragment Hamiltonian model.

The FH formalism, being developed by Valone [4] at Los Alamos National Laboratory,

attempts to describe a flexible, general model for charge transfer across a variety of

systems. A hurdle in modeling complex systems is the fact that in most cases materials

which exhibit different charge transport behaviors are described by different models,

which are often not compatible. As a result, it is difficult to accurately describe, for

example, the behavior at an interface of a conductor and an insulator.

In an attempt to overcome such hurdles, the FH model describes systems in terms

of ‘fragment’ quantities and their charge states. Ideally, a fragment is defined such

that the description of charge transfer in a system is simplified enough that the

expectation values for observables of interest may be determined. This may mean

that individual atoms become fragments, or that larger structures such as whole

molecules or clusters of molecules are defined as fragments. Once this determination

is made, the Fragment Hamiltonian may be expressed as

Ĥ(f) =
∑

A

ĤA +
1

2

∑

A 6=B
V̂AB, (1.3)

where the terms ĤA represent the energy of a fragment A due to all the various rel-

evant electronic contributions, and the terms V̂AB represent the interactions between

two fragments A and B.

Chapter 7 gives an overview of the tight-binding model and some other relevant

formalism, in the context of which the FH model will subsequently be discussed. In

Chapter 8 the Hubbard model is introduced. The Hubbard model is an extension of

the tight-binding model which includes electron-electron interactions, and is used as

a place of comparison with the FH model, which can be defined analogously to the

Hubbard model and can be expected to exhibit similar behavior. Finally, in Chapter

9 the FH model is examined for the same system as the Hubbard model, as well as a

larger system, and its behavior relative to the tight-binding and Hubbard models is
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discussed.
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Part I

Energetic Disorder in Organic

Semiconductors
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2

Some Background on Photovoltaic

Cells

To motivate the discussion in the following few chapters, it is helpful for the reader

to understand the basic operating principles of photovoltaic cells. These can be

classified broadly into two types, organic and inorganic. Both types have the same

basic function, in that the goal of both types of devices is to absorb photons which

excite electrons that are subsequently gathered as electric current. The two categories

of devices use quite different processes to achieve this result, however. Said processes

will be discussed presently, and details can be found in numerous texts such as [5, 6].

2.1 Electron-Hole Pair Generation and Recombi-

nation

Electron-hole pairs can be produced in a material by any process which supplies

enough energy to excite an electron out of its bound state in the valence band into

the conduction band (see Chapter 7 for more details on band structure), forming a

coulombically attracted pair of charges. Such a process could be a thermal excitation,

with a strong phonon bumping the electron into an excited state. Another is impact

ionization, with another particle in the material colliding to supply the energy. In

photocells, however, the dominant process which achieves this is the absorption of
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2.1 Electron-Hole Pair Generation and Recombination

photons.

If a photon is incident on a material and carries energy equal to or larger than

the band gap of the material, it can excite an electron. Otherwise, it is reflected

or absorbed as heat. If the energy supplied is enough to promote an electron to the

conduction band, but not sufficient for the electron and hole to overcome their mutual

coulomb attraction and move away from one another, a temporary bound state called

an exciton is formed. In inorganic semiconductors this binding energy tends to be

smaller than the ambient thermal energy kbT at room temperature, and the electron

and hole behave more or less as free particles. In organic semiconductors the binding

energy tends to be larger than kbT at room temperature, resulting in mobile excitons

[5], which will be discussed in more detail later.

These electron-hole excitations are inherently transient, and the charges will re-

combine via a number of different processes. The simplest way in which this happens

is radiative recombination. An electron and hole will approach near one another, and

the coulomb attraction will draw them together into neutrality, releasing a photon

with energy equal to the kinetic energy given up by the particles. If an electron

and hole which began together are recombined together, the process is referred to as

geminate recombination. Otherwise, the process is called bulk recombination.

Other forms of recombination are non radiative, such as Auger recombination.

Auger recombination is essentially the reverse of impact ionization, and there are

two possible cases for this process. The first is that of a free electron imparting its

energy upon a hole, which is subsequently dissipated into the lattice as phonons.

The second possibility involves two electrons and one hole. The first electron moves

through the system with some energy before colliding with the second electron and

transferring that energy. The first electron, now slowed down, annihilates with a hole

while the second electron dissipates the energy into the lattice via phonons. This sort

of dissipative loss is unavoidable in practice, and largely responsible for the efficiency

ceiling silicon solar cells are beginning to encounter [5].

Another form of recombination is due to impurities. Some impurities within

the material have occupation energies which lie between the valence and conduc-

tion bands, capturing electrons or holes and successively dissipating their energy over

several energy states. This makes recombination easier than in processes in which the

energy is dissipated in a single transition, since the charges’ energy can be dissipated
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2.2 Inorganic Photocells

in a series of steps by a series of phonons.

Keeping in mind the descriptions of these processes, the diffusion length of an

electron or hole, once generated, is the average distance which it can diffuse in a

material before it suffers a recombination event (or events, as the case may be).

This distance varies based on the substance in question, with diffusion lengths in

disordered organic semiconductors being much shorter than those inside inorganic

crystal semiconductors.

2.2 Inorganic Photocells

Inorganic photovoltaic cells are the more well-developed of the two categories of de-

vices, and comprise the vast majority of solar cells currently in operation. They

are typically fabricated from a light-absorbing silicon layer (the “active layer”) sand-

wiched between two metallic terminals. This is known as a bilayer configuration, as in

Figure 2.1. One terminal is a conductor such as aluminum, while the other terminal

is most often Indium Tin Oxide (ITO), which is transparent to allow light into the

cell.

The silicon layer is arranged into a P-N junction (see [1], pp. 590-605), with

two zones being “doped” to contain a larger or smaller number of charge carriers

as necessary. The process of doping replaces some of the silicon atoms with a guest

material possessing the desired electronic properties. To produce the N-zone, a dopant

such as phosphorous is used, which possesses one more electron in its valence shell

than silicon, resulting in a surplus of bound electrons. The P-zone is often doped with

boron, which has one fewer electrons than silicon, resulting in a surplus of bound holes.

The reader should bear in mind that materials are charge neutral, but possess different

chemical potentials as a result of doping. When the two zones are brought together,

electrons from the N-zone migrate to the holes in the P-zone near the interface as a

result of the difference in the chemical potential between the two zones. As charges

migrate, the charge imbalance produces a net electric potential difference across the

interface. Charges cease migrating when the equilibrium condition

φn − φp = µp − µn (2.1)
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2.2 Inorganic Photocells

Figure 2.1: Electrons are excited in the p-type zone, where they diffuse to the space-
charge region at the interface of the two zones. Those which successfully diffuse without
recombining are then swept across the interface to the positive terminal, contributing
to the current (Image courtesy of the Center for Future Chemistry, Kyushu University).

is reached, where the φ’s are the electric potentials and the µ’s are the chemical

potentials. This results in a rather substantial electric field in the region very near to

the interface, as high as 106 V
m

at a range of 10-300nm from the interface [1, 5]. The

extent of this so-called space charge region is much smaller than either the penetration

length of relevant wavelengths of light or the diffusion length of the charge carriers

in a silicon cell, however. The field therefore drives charges strongly only near the

interface, and weakly elsewhere in the device.

To operate, the device is connected into a circuit and illuminated. In the case

of solar cells, the light corresponds to the solar spectrum. The frequencies of light

incident on a particular material play a large part in determining how much energy can

be collected. Different materials absorb different wavelengths more readily. Inorganic

semiconductors such as silicon absorb across the entire visible spectrum and into the

infrared. A silicon cell has a bandgap of approximately 1.1eV [7], corresponding to

the near-infrared part of the solar spectrum. Electrons will be excited most effectively

by photons at or just above this energy, so the inorganic crystals’ broad absorptivity

contributes greatly to their effectiveness in photocells.
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2.2 Inorganic Photocells

Once an electron is excited into the conduction band, it will diffuse through the

medium. Electrons in such uniform silicon crystals, where scattering is low, have

rather large mobility µ =
vdrift
E

, the drift velocity per unit electric field. In a silicon

crystal the value of µ is on the order of 103 cm2

V s
. Therefore, even though the electric

field is weak outside the narrow zone near the junction and the charge motion is

primarily diffusive, they still traverse the cell with reasonable efficiency. If a charge

does not undergo a recombination process at some point in its journey, upon reaching

the space charge region near the junction interface it will be quickly swept across by

the electric field and onward to its respective terminal to be collected and contribute

to the current, as in Figure 2.2.

Figure 2.2: An energy diagram of an excited charge traversing an inorganic solar cell.
(Wikimedia Commons)

One important consideration which must be made is that of the dimensions of

the device. If the device is too thin, light passes through it without interacting. If

the device is too thick, dissipative recombination effects take away charge carriers

before they can be collected at the terminals, robbing some of the useful current.

Additionally, if the device is too thick, light cannot penetrate the entire depth of

the cell, resulting in wastefully dark, inert regions. Given the absorptivity of the

silicon compounds employed, typical specifications for a silicon solar cell put the light
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2.3 Organic Semiconductors and Energetic Disorder

absorbing P-zone at approximately 300µm and the N-zone at roughly 1µm [5].

2.3 Organic Semiconductors and Energetic Disor-

der

At this point, we turn our attention to photovoltaics made from organic semiconduc-

tors. There are variety of organic materials whose electronic properties have been

investigated over the years. These range from organic perfect crystals such as naph-

thalene, anthracene, and tetracene [8], to long-chain conjugated polymers such as

polyacetylene [9], to conjugated small molecules such as copper phthalocyanine [10].

When saying that a molecule is conjugated it is meant that there is a region where

the atomic p-orbitals overlap as in Figure 2.3 to form a pi-bond. This results in a

Figure 2.3: p-orbitals overlapping to form a pi-bond. (Wikimedia Commons)

delocalized orbital which spans the entire molecule (however large or small it may

be). If this pi-bonded region is doped to remove a few electrons, the electron mobility

in the region becomes very high, and their motion is locally band-like.

The largest motivating factor in modern organic photocell research is economy of

manufacture. Producing large organic crystals is more expensive and time consuming

than creating thin films whose morphology is much less controlled, and therefore much

more disordered. Such cells are often fabricated by evaporating the material and vapor

depositing it onto an appropriate substrate. Another method is to centrifugally spin

11
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coat the material onto the device as a liquid solution. In either case the result is

a disordered solid with small conjugation lengths, usually spanning no more than

a few molecules. In addition, the polymer chains have twists, kinks, packing, and

various defects which affect the size and shape of the orbitals, and the degree to which

they overlap [11]. As a result, the electrons become localized to single molecules or

small clusters of molecules. Due to this localization, the charges cannot exhibit band

motion over the whole medium, but rather exhibit so called “hopping” motion, as

in Figure 2.4. This localization means that the eigenstates are better approximated

Figure 2.4: Band Motion in a crystal (left) versus hopping motion in a disordered
polymer (right).

by localized orbitals in a site basis, rather than Bloch states which describe band

motion (see Chapter 7). The participating orbitals at each site are called the Highest

Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital

(LUMO). The disorder in the system translates into disorder in the energies at each

site. These differences in site energies mean the electrons spend the majority of their

time residing on a site, and have a probability to intermittently hop, as illustrated in

Figure 2.5.

There exist finishing procedures which mitigate the disorder, such as annealing.

This process amounts to cooking the material to allow it to organize into clusters

of crystal structures which are less disordered. However, the annealing process itself

is somewhat random, and only serves to mitigate the disorder [7]. The disorder in

such systems is difficult (if not impossible) to avoid, and makes local charge transport

much harder to predict than in ordered systems.

12



2.4 Organic Photocells

Figure 2.5: The energetic disorder between the occupation levels causes hopping
transport.

2.4 Organic Photocells

Having discussed energetic disorder and how it sets organic semiconductors apart from

inorganic, the operation of organic photovoltaic cells will be discussed in more detail.

Reference [7] is a review article from the University of Würzburg which contains

details of the current state of the technology.

Organic solar cells are similar in construction to their inorganic counterparts, but

differ in several important ways. One difference is in the way the active material

interacts with light. The organic polymers in question have a much higher light

absorptivity, which means a much thinner layer of material is needed to capture

photons. Typical device thicknesses are on the order of 100-300 nm, as opposed to

∼ 300 µm for an inorganic cell. Unfortunately, The part of the available spectrum

which can be absorbed is generally narrower than in silicon devices. While inorganic

devices may absorb across the entire visible spectrum and well into the infrared, the

organic polymers typically used only absorb in the visible spectrum [7]. This leaves

a portion of the solar spectrum, namely infrared, unused.

The mechanisms of charge transport are markedly different in organic cells, as well.

The terminals are made from the same, or similar, materials as in a silicon device, but
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2.4 Organic Photocells

the choice of materials is much more important to the successful operation of the cell.

In a silicon cell, charge carriers depend on largely on their high mobility (∼ 103 cm2

V s
)

to diffuse across the majority of the active layer. In an organic cell, however, µ is

on the order of 10−2 cm2

V s
. The lower the mobility, the more time a charge spends

in transit, and the higher the probability is that it will experience a recombination

event. This reduces the current produced. The low mobility in organics means that a

significant electric field must be present across the entire device to drive the charges.

This is where the choice of metals for the terminals becomes important. The amount

of energy required to remove an electron to some point far away with zero energy

corresponds to the Fermi level Ef of the metal. The work function W of a metal is

defined as the energy required to bring the electron back to the surface of the metal

where there exists an electrostatic potential Φ,

W ≡ −eΦ− Ef . (2.2)

When two metals with different work functions are brought into close proximity,

the energy difference produces a net electrostatic potential difference between them.

The thinness of organic photocells means that the terminals are close enough to

one another that this can produce a substantial electric field across the device. For

example, consider two common metals which are used as terminals, aluminum and

ITO. Aluminum has a work function between 4-4.5 eV, while ITO can have a work

function as high as 5.3 eV [12]. This can produce a field across the entire device on

the order of 104 − 105 V
m

. This field helps compensate for the low mobility in organic

semiconductors, and increases the speed with which the charges are transported.

As mentioned earlier, the exciton binding energies in organic polymers are larger

than those in silicon, preventing the electron and hole from dissociating as easily.

Instead, they tend to form mobile, bound excitons. Some of the earliest organic

photovoltaic cells were constructed with a single layer of material. As far back as 1958,

the photovoltaic effect was reported in a cell based on magnesium phthalocyanine

by Kearns and Calvin [13]. These designs relied largely on thermal excitations to

dissociate the excitons generated in the active layer (everything between the terminals,

in this case), and since the Coulomb binding energy of a typical exciton in such a

system is on the order of 0.5 eV, which is much larger than the thermal energy at

room temperature ( 0.025eV), exciton dissociation was very inefficient. Something
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2.4 Organic Photocells

more was needed to disengage the electron and hole from one another.

The next iteration in organic solar cells, presented by Tang [10] in 1986, was a

bilayer cell analogous to the inorganic cells described earlier. In this configuration

two materials are used. One is a polymer donor material with a low electronega-

tivity, and the second a highly electronegative fullerene acceptor. Electronegativity

can be defined in various ways (some definitions have units, and some not), and it

measures the tendency of an atom or molecule to attract electrons [14]. An overview

of electronegativity can found in Appendix A. Excitons are generated from absorbed

photons primarily in the donor material due to its lower relative electronegativity. As

an exciton migrates to the interface, the acceptor provides a lower energy state for

the electron to occupy than in the donor, and pulls the electron across the interface,

dissociating the exciton. This configuration improved efficiency by a large factor, but

the total efficiency was still quite low, around 1% under the solar spectrum. The prob-

lem lay in the fact that exciton diffusion lengths in the organic materials used were

not large enough for many excitons to reach the interface. Exciton diffusion length is

defined as the average distance an exciton travels before it undergoes a recombination

event, and can be very short due to disorder in organic materials. Diffusion lengths

have been reported for various materials in experiment to be in the range of 3-30 nm

[7]. Given that the devices are larger than 100 nm, the excitons could not travel far

enough to reach the interface reliably, illustrated in Figure 2.6.

Figure 2.6: The exciton diffusion length falls short of reaching the interface in an
organic bilayer device.

Modern organic solar cells have introduced methods to minimize the distance any
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given exciton must travel to reach an interface. The most important way in which

this is accomplished is with what is known as the bulk heterojunction configuration.

This method was presented in a 1995 paper by Yu et al. [15] In this arrangement

the donor and acceptor materials are mixed in solution in such a way that they have

random phase separation throughout, as in figure 2.7. By random phase separation,

Figure 2.7: A schematic for an organic bulk heterojunction solar cell (Image courtesy
of the Center for Future Chemistry, Kyushu University).

it is meant that the two materials are not completely mixed, but that there are small

pockets of each material intertwining one another. In this way the distance between

interfaces is decreased, increasing the chance that an exciton will reach one within its

lifetime, and increasing the efficiency of these devices.

This was a big step forward, as once an exciton reaches an interface and dissoci-

ates, geminate recombination is very unlikely. Numerous issues still remain, however.

Many of the excitons still fall short of reaching an interface, for example. Another

problem is that due to the random nature of the mixing in the active layer, sometimes

a charge will end up in an “island” of material which has no interface with a terminal.

Such charges have no way to reach a terminal, cannot contribute to the current, and

will eventually recombine. Thus, in spite of dramatic improvements in the past few

decades, organic solar cells are still far behind their silicon counterparts in terms of

efficiency. As of the writing of this document, highly optimized bulk heterojunction

polymer solar cells have been reported with solar spectrum power conversion effi-

16



2.4 Organic Photocells

ciencies on the order of 10%. While a vast improvement, this is still well below the

efficiencies of inorganic cells, which can reach efficiencies above 30% [16].

In order to further improve the performance of organic solar cells, and organic

optoelectronic devices in general, a better understanding of the processes which occur

is needed. In order for such a device to function, there must be photoabsorption,

exciton transport, exciton dissociation, and charge transport. In the case of this

thesis, the main focus is exciton dissociation.
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3

Fundamentals of Charge Diffusion

As mentioned earlier, one of the most fundamental considerations in an optoelectronic

device is the motion of electrons and holes. As such, it is important to have an

understanding of the basic mechanisms governing how charges behave before one can

deal with elaborate systems such as solar cells. To that end, the following chapter

will attempt to lay a groundwork for understanding diffusion in anticipation of the

discussion of charge dissociation to follow later.

3.1 The Diffusion Equation

In 1855, Adolph Fick derived the equation which describes the diffusive flux ~J of

particles which have concentration f in a continuous medium [17]. Fick’s first law is

phenomenological, and states

~J = −D~∇f, (3.1)

where ~J is the particle flux through some unit area, the diffusion coefficient D de-

termines how the concentration f changes in time as a function of the concentration

gradient. ~J has units of quantity
area·time , and D has units of area

time
. Now consider the continuity

equation in the case of steady state

∂f

∂t
= −~∇ · ~J. (3.2)
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Inserting (3.1) into (3.2), we arrive at Fick’s second law, also commonly referred to

as the diffusion equation
∂f

∂t
= D∇2f. (3.3)

This equation describes the change in the concentration of particles as a function of

time due to diffusion.

Another way in which the concentration of particles may change is via drift, i.e.

particle motion due to some force. In the next section, the Smoluchowski equation

will be described, which generalizes the diffusion equation to include drift terms.

3.2 The Smoluchowski Equation for a Pair of Dif-

fusing Charges

A relevant example of diffusion in the presence of drift is the case of two oppo-

site charges undergoing Brownian motion in a fluid. The formalism was developed,

founded on Fick’s work, by a few different people near the beginning of the twentieth

century, most notably Einstein and Smoluchowski [18, 19]. The two charges in ques-

tion may represent an electron and an ion diffusing in a fluid such as an electrolyte

solution, which was a problem of interest at the time. This model of diffusion in a

continuous medium is inadequate to describe charge motion in more complex systems

such as disordered solids, but it is a useful and venerable foundation upon which to

build a theory.

Consider now two opposite charges diffusing near one another through space. Let

the positive charge be located at position ~r1, and the negative charge at position ~r2.

The two particles also experience one another’s coulomb potential U , with

U1 =
+e

ε|~r1 − ~r2|
, U2 =

−e
ε|~r1 − ~r2|

, (3.4)

where ε is the dielectric constant. Incorporating the effect of the Coulomb poten-

tials, the distribution function f(r1, r2, t) describing the locations of the particles as

a function of time then obeys [19]

∂f

∂t
= D1

~∇1 · ~∇1f +D2
~∇2 · ~∇2f − µ1

~∇1 · (−~∇1U1)f − µ2
~∇2 · (−~∇2U2)f, (3.5)
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where −~∇U is the force on a charge. The mobilities µ1 and µ2 give the drift velocity

of a charge per electric field
(

~v

| ~E|

)
. They are represented by

µ1 =
+eD1

kbT
, µ2 =

−eD2

kbT
. (3.6)

At this point, it should be noted that only the relative motion of the charges is

important, and so will be extracted. With that in mind, define the relative coordinate

~r and the center-of-mass (CM) coordinate ~R as

~r = ~r1 − ~r2

~R =
m1~r1 +m2~r2

m1 +m2

= a~r1 + b~r2, (3.7)

where the m’s are the masses of the particles, and a and b are defined simply for

brevity. Letting the operator ~∇α be the gradient with respect to the coordinate

α = ~r1, ~r2, ~R,~r, one finds from the definitions in (3.7)

~∇r1 = a~∇R − ~∇r

~∇r2 = b~∇R + ~∇r. (3.8)

Equation (3.5) then becomes

∂f

∂t
= D1(a~∇R − ~∇r) · ((a~∇R − ~∇r)f) +D2(b~∇R + ~∇r) · ((b~∇R + ~∇r)f)

+µ1(a~∇R − ~∇r) · ((a~∇R − ~∇r)U1)f + µ2(b~∇R + ~∇r) · ((b~∇R + ~∇r)U2)f

=
(

(a2D1 + b2D2)∇2
R + (D1 +D2)∇2

r + 2(bD2 − aD1)~∇R · ~∇r

)
f

+
e

kbT

(
(a2D1 + b2D2)∇2

RU1 + (D1 +D2)∇2
rU1 + 2(bD2 − aD1)~∇R · ~∇rU1

)
f,

(3.9)

noting that U1 = −U2.

In the interest of eliminating the cross terms ~∇R · ~∇r, consider the diffusion coef-

ficients. For particles undergoing Brownian motion in some fluid, it is reasonable to

assert on physical grounds that the diffusivity is inversely proportional to the mass

of the particle. However, in the most general case of diffusion, this is not necessarily

true. Consider the time-independent Schrödinger equation, which has an analogous
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form to the diffusion equation

(E − V (~r))Ψ(~r) =
−~2

2m
~∇2Ψ(~r). (3.10)

When one separates Ψ(~r) into relative and center-of-mass coordinates, one arrives at

the same transformation as in (3.7). Since −~
2

2m
is analogous to D, it stands that the

center-of-mass coordinate R goes as

~Rcm =
1
D1
~r1 + 1

D2
~r2

1
D1

+ 1
D2

. (3.11)

Therefore, one is justified in saying

D1 ∝
1

m1

, D2 ∝
1

m2

⇒ D1

D2

=
m2

m1

. (3.12)

Recall from equation (3.7) the following

a =
m1

m1 +m2

=
1

1 + D1

D2

b =
m2

m1 +m2

=
1

1 + D2

D1

. (3.13)

This implies that

aD1 =
1

1
D1

+ 1
D2

= bD2. (3.14)

Thus, all of the cross terms of the form 2(bD2 − aD1)~∇R · ~∇r vanish. Equation (3.9)

then reduces to

∂f

∂t
=
(

(a2D1 + b2D2)∇2
R + (D1 +D2)∇2

r

+
e

kbT
((a2D1 + b2D2)∇2

RU1 + (D1 +D2)∇2
rU1)

)
f. (3.15)

Performing a standard separation of variables, assume that f has the seperable form
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f = f(~r)f(~R). Plugging this into equation (3.15), we get

∂f(~r)

∂t
− (D1 +D2)∇2

rf(~r)− e

kbT
(D1 +D2)∇2

rU1 = Cf(~r)

=
∂f(~r)

∂t
− ~∇r ·

(
(D1 +D2)~∇rf(~r) +

e

kbT
(D1 +D2)f(~r)~∇rU1

)

→ ∂f(~r)

∂t
− ~∇r · ~J = Cf(~r), (3.16)

where ~J is the particle current. Since ∂f(~r)
∂t

= 0 in steady state, the continuity equation

(3.2) dictates that C = 0. Redefining

~∇r = ~∇ , D1 +D2 = D (3.17)

for brevity, we get
∂f

∂t
= D~∇ · (~∇+

e

kbT
~∇U1)f. (3.18)

This equation has various names in various disciplines, such as the convection-diffusion

equation or the drift-diffusion equation, but in this context it will be referred to as

the Smoluchowski equation [20].

The Smoluchowski equation is often used to determine chemical reaction rates

[21]. As electrons and ions diffuse around each other, they can recombine if they

approach closely enough, constituting a chemical reaction. Understanding this sort

of interaction is also necessary if one is to understand charge behavior in more so-

phisticated systems, such as solar cells. To that end, the next section develops the

concept of geminate recombination, defined as the recombination of an electron with

the parent ion or hole from which it originated.

3.3 Onsager’s Charge Recombination Theory

Prototypical work on charge recombination can be traced back to the beginning of

the twentieth century. In his famous treatise “Radioactivity”, Rutherford posited the

phenomenon of impact ionization [22], which would inform the work of many scientists

to follow. During the 1920’s and 1930’s, the effects of ionizing cosmic rays upon the

air were being studied by numerous scientists in an attempt to explain the seemingly

spontaneous ionization observed in gases within closed vessels [23–26]. The amount
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3.3 Onsager’s Charge Recombination Theory

of spontaneous ionization observed was agreed to be too great to be accounted for

by ambient radioactive sources in the ground, air, and other surrounding materials.

Thus, cosmic radiation became suspect [24].

One of the relationships being investigated was that between the amount of ion-

ization and pressure. The ionization was measured inside metal pressure vessels at

pressures sometimes over 100 atmospheres and altitudes as high as that at the top

of Pike’s Peak (14,000 ft.) [26]. The measured ionization was found not to decrease

linearly with pressure, but to saturate to a limiting value near 140 atmospheres. One

hypothesis which was proposed said that at high pressures a geminate recombination

event becomes more likely, as the higher density causes an ejected electron to lose

its kinetic energy to collisions before it can escape the coulomb attraction of the ion

from whence it came [27, 28]. This discussion marked some of the earliest treatment

of charge recombination.

In 1938, Lars Onsager wrote a famous paper titled “Initial Recombination of

Ions” [3], in which he analyzed the phenomenon of an excited electron undergoing

immediate recombination with its parent ion. Decades later, this paper became a

cornerstone to the subject of charge recombination in materials, especially organic

semiconductors. One of the important things Onsager addressed was the presence

of an electric field. Compton and company predicted that a very large field would

be required to have an appreciable affect on the ionization [29], and therefore one

need not consider an external applied field. Compton arrived at this conclusion as

follows: consider an electron and ion which have been excited apart from each other

with initial distance r. On average, as each charge diffuses it will move a distance λ

before it scatters. By definition, λ is the mean free path. The new separation of the

second ion relative to the initial position of the other ion will then be

r + δ =
√
r2 + λ2, (3.19)

as in Figure 3.1. Therefore, assuming λ2 � r2 the probable separation of the particles

after each scatters for the first time is

r + δ1 + δ2 = 2
√
r2 + λ2 − r ≈ r

(
1 +

λ2

r2

)
, (3.20)
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3.3 Onsager’s Charge Recombination Theory

Figure 3.1: The two cases of a.) Stationary flow from a source at the origin, and b.)
Diffusion from an initial separation r0 and initial angle θ to the electric field.

which means the total change in separation is

δr =
λ2

r
. (3.21)

The speed at which the ions diffuse is

δr
τ

=
λ2

τr
, (3.22)

for an average time between scattering events τ . Meanwhile, the amount that the

ions would be drawn together given an acceleration a due to the coulomb force in an

interval τ is 1
2
aτ 2. The rate of approach due to the coulomb force is then

δcoulomb
τ

=
e2τ

mr2
. (3.23)

The condition that the ions escape one another is then

λ2

τr
>

e2τ

mr2
, (3.24)
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3.3 Onsager’s Charge Recombination Theory

which Compton expressed as

r > r0 , r0 ≡
e2τ 2

mλ2
. (3.25)

Expressing the scattering time as τ = λ
v
, with v given by

1

2
mv2 =

3

2
kbT, (3.26)

one gets

r0 =
e2

3kbT
. (3.27)

At room temperature, the electric field due to an electron at a distance r0 is roughly

4 × 104 V
cm

. This caused Compton to conclude that a large field would be required

to have an appreciable effect, and an external field was thus initially neglected as a

consideration. Experimental observation [30], Onsager submitted, indicated that not

to be the case, and that a weaker field than that predicted by Compton would have an

appreciable effect. The following is Onsager’s analysis of the situation, in the context

of weak electrolytes (i.e. those having a low concentration of ions) in a liquid. While

it is true that Compton’s work was in the context of a gas, an electrolyte solution is

qualitatively very similar. It should therefore at least provide context for a qualitative

explanation of the experimentally observed effects of an external field.

The first part of the analysis comes from an earlier paper written in 1934 [31],

wherein Onsager approximately solved the diffusion equation in order to find the

field dependence of the dissociation coefficient, which represents the fraction of the

solution which is ionized. Parts of the analysis in [31] would become the basis for the

result presented in his later paper, [3].

Consider a solution containing the time dependent densities n1, n2, ..., ns of ions

of types 1, 2, ..., s. The Coulomb interaction will cause the concentrations of ions at

different locations to depend on the presence of other ions nearby. With that in mind,

define the following quantity,

nij ≡ nij(~r2 − ~r1), (3.28)

as the time average concentration of j-ions in a volume element dV2 located at ~r2

given an i-ion in the volume element dV1 located at ~r1. The distribution function
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3.3 Onsager’s Charge Recombination Theory

that gives the chance of simultaneously finding an i-ion in dV1 and a j-ion in dV2 can

then be defined as

fij(~r2 − ~r1) = ninij(~r2 − ~r1). (3.29)

To demarcate a bubble of interaction, define the quantity

Q =
q1q2

2εkbT

as the “effective range” of the ions, namely the distance at which the coulomb in-

teraction is comparable to the thermal energy. ε is the dielectric constant of the

material, kb is Boltzmann’s constant, and T is temperature. The total concentration

of interacting pairs of ions can be expressed as

νij = ni

∫ Q

a

nij(~r)4πr
2dr, (3.30)

where a is some small radius of nearest approach between the ions.

Since these charges are diffusing in a fluid, Onsager set about describing the system

using the Smoluchowski equation described earlier. He expressed this as

∂f

∂t
= kbT (ω1 + ω2)~∇ · (e−

U
kbT ~∇fe

U
kbT ) = 0. (3.31)

Onsager assumes the boundary conditions of a source at the origin and a sink at

infinity (i.e. lim r →∞f(r) = 0) so that the system is in steady state (∂f
∂t

= 0). The

ω’s are diffusion coefficients per kbT (ω = D
kbT

) so that qω = µ, the mobility of an

ion. Equation (3.31) tells us

~∇ · (~∇f − 1

kbT
f ~∇U) = 0. (3.32)

The potential U represents the sum of the interactions with all the other ions in

the solution and the external field. This makes the problem very difficult to solve.

As a result, an approximation must be made, since a many-body interaction between

ions is intractable. Therefore, since it has been assumed that the concentration of

ions is low, let the potential experienced by the two ions simply include their mutual
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3.3 Onsager’s Charge Recombination Theory

coulomb interaction. The potential U then becomes

U = −qEr cos θ − q2

εr
= −kbT (2Br cos θ +

2Q

r
), (3.33)

where B = qE
2kbT

(for convenience later), E is the magnitude of the applied field, and

q is the elementary charge. This relation is still not exactly solvable, but for the

boundary condition

lim
r→∞

f(r) = 0 (3.34)

it can be expressed in the form of a definite integral [31]

f(r, θ) =
1

r
eBr(cos θ−1)+ 2Q

r

∫ s=2Q

s=0

J0

(
(−8Bs)

1
2 cos

θ

2

)
e−

s
r ds. (3.35)

J0 is the zeroth order Bessel function of the first kind. This relation acts as the

starting point for the more famous result Onsager published in 1938 [3]. The result

regards the probability φ that two charges will escape one another, defined as moving

a very large (effectively infinite) distance apart. In order to define φ, one first defines

the pair survival probability,

F (t) =

∫
f(~r, t)d3~r. (3.36)

This represents the chance that a charge pair has not recombined at some time t.

The quantity of more interest, however, is the probability φ that an initially bound

electron-hole pair will escape one another entirely [32]. The probability φ is simply

defined as the long time limit of F (t),

φ = lim
t→∞

F (t). (3.37)

Some adjustments needed to be made to the analysis at this point to describe

the phenomenon of initial recombination. Equation (3.32) was derived in [31] for

the case of stationary flow from a source at the origin with a sink at r = ∞. The

problem of initial recombination, however, assumes some instantaneous separation r0

between the electron and hole to start, i.e. f = f(r, r0, ; t). Since some impulse is

imparted upon them by incident radiation, driving them a short distance apart before

they relax, the charges are not initially arbitrarily close. Therefore in his subsequent
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3.3 Onsager’s Charge Recombination Theory

paper [3], Onsager takes the source to lie at some point (r0, θ), with initial angle θ to

the electric field, and the origin and infinity to both be sinks, as in Figure 3.2.

Figure 3.2: The two cases of a.) Stationary flow from a source at the origin, and b.)
Diffusion from an initial separation r0 and initial angle θ to the electric field.

At this point equation (3.32) is in terms of ~r. What we want is the escape proba-

bility φ in terms of the initial separation r0. In order to get such an expression, some

manipulation of equation (3.32) is in order. Its Laplace transform is

~∇ · (~∇f̃ − 1

kbT
f̃ ~∇U)− sf̃ = 0, (3.38)

with

f̃(r, r0, ; s) =

∫ ∞

0

f(r, r0, ; t)e
−stdt. (3.39)

Introducing

u(r, r0; s) = f̃(r, r0; s)e
U
kbT , (3.40)

equation (3.38) becomes

~∇ · (e−
U
kbT ~∇u)− se−

U
kbT u = 0, (3.41)

which is now self adjoint. This means that one can apply the reciprocity relation [33]

u(r, r0, ; s) = u(r0, r, ; s), (3.42)

which gives

~∇r0(e
−U(r0)

kbT ~∇r0u)− se−
U(r0)
kbT u = 0. (3.43)
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Plugging equation (3.40) back into equation (3.43) yields

~∇2
r0
f̃ − 1

kbT
~∇r0U(r0) · ~∇r0 f̃ − sf̃ = 0. (3.44)

Taking the inverse Laplace transform, one arrives at

~∇2
r0
f − 1

kbT
~∇r0U(r0) · ~∇r0f = 0. (3.45)

Finally, integrating over r and taking the long time limit as per equations (3.36) and

(3.37), the expression governing the escape probability φ is

~∇2
r0
φ− 1

kbT
~∇r0U(r0) · ~∇r0φ = 0, (3.46)

which Onsager writes as

~∇r0 · (e
−U(r0)

kbT ∇r0φ) = 0. (3.47)

If φ is taken to be a function of the initial distance r0 and the initial angle θ with

respect to the “downstream” direction of the electric field, the boundary conditions

on φ are

φ(0, θ) = 0

φ(∞, θ) = 1, (3.48)

In the case of zero electric field (B = 0), equations (3.47) and (3.48) are satisfied

simply by the reciprocal of the Boltzmann factor times kbT ,

φ = kbTe
U(r0)
kbT = kbTe

− 2Q
r0 , (3.49)

since in that case

lim
r0→0

~∇r0 · (e
−U(r0)

kbT ∇(kbTe
U(r0)
kbT )) = 0 (3.50)

and

lim
r0→∞

~∇r0 · (e
−U(r0)

kbT ∇(kbTe
U(r0)
kbT )) = lim

r0→∞
∇2U(r0) = δ(r0). (3.51)

It turns out that the more difficult case of a nonzero field was actually solved in [31].

Recall the expression for f(r, θ) in equation (3.35). It so happens that dividing the

right hand side by the Boltzmann factor satisfies the boundary conditions (3.48) for
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φ.

φ(r, θ) = eBr(cos θ−1)

∫ s=∞

s= 2Q
r

J0

(
(−8Bs)

1
2 cos

θ

2

)
e−sds (3.52)

To see the relative effect of the field, one divides equation (3.52) by equation (3.49).

This effect is greatest for small values of the initial separation r0, in which case

e
2Q
r0 φ(r0, θ)→ J0

(
4(−BQ)

1
2 cos

θ

2

)
. (3.53)

Approximating (3.53) as a power series in the dimensionless field strength B, one gets

e
2Q
r0 φ(r0, θ) = 1 + 2BQ(1 + cos θ) +O(B2). (3.54)

At this point, it is reasonable to assume a uniformly random distribution of initial

angles, and an ensemble average over cos θ gives zero. The current of ions escaping

recombination relative to the zero field case can then be approximated as

I(E)

I(0)
=
φ(E)

φ(0)
≈ 1 + 2BQ. (3.55)

For ε = 1 and T = 300 Onsager gets

2BQ = 1.07× 10−4|E|.

For the above value of 2BQ and a field strength of 104 V
cm

, I(E)
I(0)
≈ 2. This is a significant

increase, at a field strength lower than that predicted by Compton et al. This result

was rather famous in the extensive study of electrolytes at its time, but languished for

many years after the Second World War until the advent of organic semiconductors.

It became important in the last few decades in the context of organic photovoltaic

devices, as most operate in this field regime ( 104 V
cm

) [7]. In 1983, Charles Braun

extended this model to consider charge transfer states in donor-acceptor systems [34].

The problem which Braun addressed was the unrealistically large apparent initial

separation of excited charges in some semiconductors ([34] and references therein).

When using the Onsager model to estimate the initial separation, the number of

charges which were observed to dissociate implied an initial separation of 2 − 3 nm.

This is a rather large distance, much larger than is reasonable given the energy im-

parted to the excitation, which should only produce an initial separation of roughly
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1 nm. To account for this increased dissociation, Braun points out that the initial

excited state, referred to as the first charge transfer state (CT1), has some nontrivial

lifetime (∼ 10−8 s). This prevents the exciton from instantly recombining as it would

in the original Onsager model. As the charges linger in CT1, they may partially disso-

ciate and fall back into CT1 many times, which improves the probability of ultimate

dissociation to agree more closely with experiment. With this extension the Onsager

result became something of a benchmark for results in exciton transport.

One of the major drawbacks of the Braun-Onsager model is that it does not

account for spatially varying energetic disorder which is present in virtually all organic

semiconductors. This disorder causes local changes in the behavior of the charges.

For example, the presences of small crystallite clusters causes charges to have high

mobility while in the crystals, but low mobility between clusters [35]. In the absence of

an analytic theory in the face of disorder, much of the work done on charge transport in

organic semiconductors is experimental and computational. In the following chapter,

some of this work will be discussed.
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4

Motivating Work on Energetic Dis-

order

4.1 Rates for Hopping Transport

This chapter will begin to explore charge transport in disordered semiconductors. It

is immediately apparent that there are some major differences in the description of

charge motion in a disordered solid when compared to a fluid such as the electrolyte

solutions studied by Onsager. One of the most important differences is that charges

do not experience continuous diffusion through the medium. In disordered organic

semiconductors excited charges tend to spend the majority of their time occupying

an atom or molecule. The valence electron orbitals of these occupation sites will

overlap those of nearby sites to varying degrees, and occasionally the excited charges

will tunnel, or “hop” to a nearby site. In this fashion they will undergo a random

walk through the material under the influence of ambient electrostatic fields. The

mobility of a charge in a disordered semiconductor depends on the rate at which it

makes hops from site to site. There are a few different formalisms to describe these

hopping rates, two of which will be discussed presently.
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4.1.1 The Miller-Abrahams Hopping Rate

In 1960, Miller and Abrahams published a paper titled, “Impurity Conduction at Low

Concentrations” [36]. The system being described corresponds to a doped semicon-

ductor, with some concentration of ionized impurity sites. They perform a quantum

mechanical analysis to derive the transition rates onto and off of these impurities.

One assumption made, as one might infer from the title of the paper, is that the con-

centration of impurity sites is low. This means the individual impurities are far from

one another, so that electrons interacting with an impurity are not interfered with

by excited electrons elsewhere in the system. A second approximation is that of low

temperature (on the order of a few kelvin). Finally, the electron-phonon coupling of

the dopant sites is estimated according to the deformation potential approximation,

in which the site energies are changed by an amount E1η, where η is the relative

change in the local lattice spacing.

Evaluating the overlap of the site matrix elements under these approximations,

Miller and Abrahams arrived at the expression for the hopping rate νij from site i to

site j,

νij = ζE2
1 |∆|R

3
2 e
− 2R
a1

{
n ∆ > 0

n+ 1 ∆ < 0
(4.1)

The coefficient ζ is

ζ =
e2

6ρ0s5~4εa((a1/b1)2 − 1)
, (4.2)

where e is the elementary charge, ρ0 is the density of the medium, s is the speed of

sound, and ε is the dielectric constant. ∆ represents the energy difference between

the sites, Ej − Ei. R is the distance between the sites, and a1 and b1 are the trans-

verse and longitudinal radii of the local (approximately) hydrogen-like wavefunctions,

respectively, which have the form,

ΨHyd =
1√
πa2

1b1

e−
√

(x2+y2)/a2
1+z2/b21 . (4.3)

The value of a1 is,

a1 =

√
~2Eobs

2m
, (4.4)

where Eobs is the experimentally observed ionization energy for the donor ground
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state.

The factor of n is the Bose-Einstein distribution for phonons which are coupled

to the electrons of interest, so the distribution of phonons carrying the correct energy

to induce hopping is

n =
1

e
∆
kbT − 1

. (4.5)

Since this system is being considered at low temperature, e
∆
kbT � 1, so that

n =
1

e
∆
kbT − 1

≈ 1

e
∆
kbT

= e
− ∆
kbT . (4.6)

In the case of n+ 1,

n+ 1 =
e

∆
kbT

e
∆
kbT − 1

≈ e
∆
kbT

e
∆
kbT

= 1. (4.7)

The Miller-Abrahams hopping rate is typically rendered

νij =

{
ν0e
− 2R
a1 e
− ∆
kbT ∆ > 0

ν0e
− 2R
a1 ∆ < 0

(4.8)

4.1.2 The Marcus Hopping Rate

Another formulation of the transition rate was developed by Rudolph Marcus, and

can be found in a paper of his from 1965 [37]. Originally formulated for the case of

ions reacting in a solution, it was later extended to describe hopping in solids. In

either case, the picture is that of a pair of ions transferring electrons across a dielectric

background.

One of the central ideas Marcus had in mind while constructing this model of

charge hopping was that of a “reorganization energy”, represented by γ. This term

arises from the idea that the surrounding medium is polarizable, and that there is some

energy cost associated with changing the local polarization. The Marcus hopping rate

is typically expressed as

νij = ν0e
− (∆+γ)2

4γkbT . (4.9)

The prefactor ν0 is an attempt frequency, similar to that in the Miller-Abrahams

rate, or in any other rate theory equation. ∆ is the same as in equation (4.8), which
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Marcus expresses as the free energy in a vacuum of the reaction in question. The re-

organization term γ is a function of the electron orbital distortion of the environment,

and is typically determined experimentally.

The decision about which hopping rate to use in a model has been subject to much

debate, as it is difficult to determine which description is the better for a given system.

The Marcus rate can be problematic, as it is Gaussian in ∆ when ∆� γ, which is a

valid regime, for example in a solid with low polarizability. Consider expanding the

exponent in equation 4.9

νij = ν0e
− (∆+γ)2

4γkbT = ν0e
− ∆2

4γkbT
− ∆

2kbT
− γ

4kbT . (4.10)

In a system with very low polarizability, i.e. a very small γ, the first term in the

expansion will cause the hopping rate to become very small. A too-small hopping

rate may not accurately describe the hopping dynamics of the system, as the hopping

rate in a very nonpolarizable material may be weakly dependent on the reorganization

energy.

The Miller-Abrahams rate is not without its own problems, however. The assump-

tion of low temperature is certainly not valid for modeling semiconductors at room

temperature. The assumption of low concentration is also not necessarily valid for

all systems which the Miller-Abrahams rate is used to model. In spite of these draw-

backs, the Miller-Abrahams rate is a decent approximation, and is used extensively

for a wide range of parameters.

4.2 Bässler’s Pair Dissociation in Energetically Ran-

dom Hopping Systems

Much of the author’s work presented in the next chapter on energetically disordered

hopping systems was predicated on the work of H. Bässler et al. [38–46]. This

work focused on the geminate recombination of coulombically interacting electron-

hole pairs diffusing within an energetically random hopping system, and the effect

that energetic disorder has on the dissociation rate of the charge pairs. This system

was explored by Albrecht and Bässler through Monte Carlo computer simulations.
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This chapter will focus on those detailed in [41].

It is generally agreed that in organic semiconductors there exist a few intermediate

excitonic charge transfer (CT ) states [7, 34]. Many organic solids such as crystalline

polydiacetylenes [41] have a low dielectric constant. As a result, the coulombic binding

energies of these CT excitons are high, and the initial separations are small.

Experiments indicate that excited charges in non-crystalline conjugated polymers

such as polyphenylene vinylenes (PPVs) have a lower coulomb binding energy. There-

fore they may relax to relatively large “thermalization lengths”, defined as the dis-

tance at which the electron’s excess kinetic energy has been dissipated into the lattice.

The charges then equilibrate, forming an exciton with the electron and hole bound

across 2-3 nm [41]. Albrecht and Bässler conducted simulations regarding this large

exciton as the initial state. The charges were then allowed to diffuse, and the rate of

recombination was recorded.

In these simulations [41], the system is represented as a cubic lattice in which each

site possesses an occupation energy for an electron or hole to reside on it. In this

case, the occupation energies are drawn from a Gaussian distribution, as in Figure

4.1. In reality the disorder of the occupation energy is due to contributions from

Figure 4.1: Gaussian occupation energies in 1D.

various sources. The differences in electronegativity, an atom or molecule’s tendency

to bind electrons (or conversely, to repel holes), are one such contribution. Another
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factor is the charge-dipole interaction. There are a number of fixed dipole moments

distributed throughout the material, and for a charge located on a site anywhere in

the system the energy from this contribution is

Ui =
∑

j 6=i
~pj · ~Ei, (4.11)

where ~pj is the dipole moment at site j and ~Ei is the field due to the charge at site

i. These myriad contributions are difficult to completely account for, however. The

choice of the so-called “Gaussian Disorder Model” was prompted by the fact that

spectroscopy indicates that electronic density of states (DOS) of organic semiconduc-

tors tends to have a Gaussian profile, with variances reaching σ = 0.1eV, which is

approximately 4kbT at room temperature [40, 41].

A natural question to ask is “How can these simulations be performed on a uniform

cubic lattice if organic semiconductors are spatially disordered, as well as energeti-

cally? Shouldn’t a complete simulation include effects of positional disorder?” Spa-

tial disorder has certainly been treated by several different investigators, for example

[39, 47–49].

Energetic and spatial disorder may each dominate under different circumstances.

Most hopping rates are some variation on the form e−2αRe
− ∆
kbT . It may be the case

that two sites which have a large, favorable downhill energy mismatch do not have

strongly overlapping wavefunctions, as in Figure 4.2. In this case, the e−
2R
a term

may be very small and prevent an otherwise probable hop, to the point of causing

temperature independence. It may also happen that two sites are close to one another,

and overlap strongly, as in Figure 4.3. In this event, e−
2R
a ≈ 1, and the hopping is

governed entirely by ∆ and the temperature. A whole range of configurations is

possible. In 1969, Mott published a model describing conduction in non-crystalline

materials which is known as Mott Variable Range Hopping [47]. He defined the range

between two sites to be

R = 2αR +
∆

kbT
. (4.12)

The rates ν to hop between two sites

ν ∝ e−R (4.13)
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Figure 4.2: Two hopping sites with a large energy mismatch and a small wavefunction
overlap.

38
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Figure 4.3: Two hopping sites with a small energy mismatch and a large wavefunction
overlap.

are highest for the smallest values of the four-dimensional coordinate R which de-

scribes the different configurations of sites.

In the systems being treated presently there are some factors which mitigate spa-

tial disorder. One is the fact that the temperature is usually taken to be near room

temperature, T = 300K. This causes hopping to tend toward nearest spatial neigh-

bors. In addition, the packing of molecules in a relevant polymer tend to be restrictive

enough that the spatial variation is not large. Thus it is valid to focus on the effects

of energetic disorder over spatial disorder.

Albrecht and Bässler’s simulations were performed using the Monte Carlo method

[41], in which an ensemble average of a random process is taken from many iterations.

Each iteration was initialized with a cubic lattice with a spacing between sites of

a = 8 Å. The sites were populated with a Gaussian random distribution of energies

of variance 0.05eV ≤ σ ≤ 0.15eV . A uniform electric field was superimposed over

the entire lattice. A hole was located at the center of the lattice, and an electron

placed three lattice sites in the downfield direction to represent a thermalized charge

transfer state as described earlier. The electron was then allowed to diffuse about

the grid, hopping according to the Miller-Abrahams rate. This process is visualized
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4.2 Bässler’s Pair Dissociation in Energetically Random Hopping Systems

in Figure 4.4. The conditions for ending an iteration of the simulation were either

Figure 4.4: A diagram representing charges hopping on a model lattice. The charges
are initially placed a distance r0 apart with the electron placed “downstream” in the di-
rection of the electric field, and then allowed to diffuse according to the Miller-Abrahams
hopping rate. In the simulations of Albrecht and Bässler, only the electron is allowed
to migrate, as in the Onsager model.

that the electron and hole occupy the same site (recombination), or that the electron

traveled 100a from the hole, stated to be five times the coulombic capture radius at

295K and a = 8 Å. The coulombic capture radius Rc corresponds to the separation

between the charges at which the coulomb potential energy is equal to the ambient

thermal energy,
e2

εRc

= kbT → Rc =
e2

εkbT
. (4.14)

2000 iterations were made per data point.

4.2.1 Energetic Disorder in Bässler’s Simulations

Before discussing the conclusions at which Bässler et al. arrived, an aside regarding

some of the reasoning underlying these simulations is given. The question remains,
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why would one expect such energetic disorder to change the probability of an exci-

ton dissociating? One answer is that such energetic disorder may provide a barrier

to recombination. Organic photovoltaic devices generally absorb light primarily in

the visible spectrum, where photon energies are typically 1 − 3 eV [7]. As a result,

excited charges are initially relatively “hot”, letting them achieve appreciable sepa-

ration before they thermalize into the charge transfer state discussed earlier. In an

energetically flat system there is little to resist the charges’ mutual coulomb attrac-

tion, causing them to be drawn back together. In an energetically disordered system,

however, there is an opportunity for the two charges to be excited across an energetic

barrier, which would inhibit recombination, as in Figure 4.5. As a result, one might

Figure 4.5: Energetic disorder preventing recombination.

expect that a certain amount of disorder would improve the probability of a charge

pair escaping one another and dissociating, and improve the overall photocurrent.

Energetic disorder may actually lower the mobility of the charges, but increase the

total number of pairs which dissociate.

4.2.2 φ versus T

One of the relationships these simulations explore is the effect of temperature on the

escape probability φ in an energetically disordered system. Albrecht and Bässler’s

41



4.2 Bässler’s Pair Dissociation in Energetically Random Hopping Systems

findings on this front are presented in Figure 4.6. As one can see, the presence of

Figure 4.6: An Arrheneius plot of Albrecht and Bässler’s result for φ versus 1
T . Initial

charge separation r0 = 3a = 24Å, field of 104 V
cm , temperature T = 250K, and dielectric

constant ε = 3.55. The dashed line is the prediction of the three-dimensional Onsager
theory.

energetic disorder in the simulation improves the chances for charge pair to dissociate

relative to the Onsager theory. The trend of the data for large T is toward converging

with the Onsager result, which is reasonable. At very large T , the thermal energy of

the charges is well above the strength of the disorder, i.e. e
∆
kbT ≈ 1 for all values of

∆. As a result, the disorder cannot appreciably change the hopping dynamics in this

regime.

According to Figure 4.6, the energetic disorder has the greatest effect at low tem-

peratures. For small values of T , the thermal energy of the charges is now comparable

to or smaller than the strength of the disorder. This means that hopping configura-

tions such as the one described in Figure 4.5 would be much more effective at keeping

the charges separated.
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4.2.3 φ versus σ

The behavior of most interest in the context of this thesis is that of the escape

probability φ versus the strength of the disorder, which is characterized by the width σ

of the Gaussian disorder profile. Albrecht and Bässler’s results are displayed in Figure

4.7. For a fixed temperature, the dissociation yield appears to increases exponentially

Figure 4.7: Bässler’s result for φ versus σ. Initial charge separation r0 = 3a = 24Å,
field of 104 V

cm , temperature T = 250K, and dielectric constant ε = 3.55. The data
point for σ = 0 is the value predicted by the Onsager theory.

with the strength of the disorder. While this is a rather important result, it is

founded on three data points, presumably due to computational limitations at the

time (1995). The data point for σ = 0 is taken from the theoretical Onsager result

rather than simulation. The validity of such an assumption may be questionable in

the context of these simulations. For example, in [50] Scher and Rackovsky present

an analytical description of geminate recombination on a lattice, and conclude that

while their results are qualitatively the same as Onsager’s, they are quantitatively

different. Reference [50] studies an ordered lattice, but one would not expect that

the presence of disorder in the simulations would improve the agreement of the result

with Onsager’s theory. This difference in behavior between the lattice and continuum

is also supported by the author’s work which follows.
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Correlated Energetic Disorder

The preceding chapters have been laying the foundation for the idea of correlated

energetic disorder in solids. The organic semiconductors which are useful for opto-

electronic applications are largely amorphous or polycrystalline [7], so the presence

of disorder is a given. As we have already discussed, one of the more popular descrip-

tions of this disorder is the Gaussian Disorder Model, introduced by Bässler [38]. It

is inferred from spectroscopic results that the electronic DOS is Gaussian in shape,

and many simulations similar to those described in the previous chapter [41] imple-

ment this as a completely Gaussian random distribution of the occupation energies

of hopping sites. However, having a Gaussian DOS and having energies pulled from

a Gaussian random distribution are not necessarily the same thing.

There is no reason, a priori, to believe that the energetic disorder at any given point

in an organic polymer is determined completely randomly, without regard for the local

structure. Several papers have explored this idea, including [51–57]. These papers are

concerned largely with explaining observed mobilities in disordered polymers. Papers

[53–55] discuss a possible source of correlation, namely the charge-dipole interaction,

which is strongly indicated as the dominant source of spatial energetic correlation

[54].
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5.1 Dipole Correlation

5.1 Dipole Correlation

One of the ideas central to understanding energetic correlation is discussed by Novikov

and Vannikov in [53], and that is the concept of dipole field contributions to the energy

landscape. There are myriad fullerene compounds, organic polymers, and dopants

used in the construction of optoelectronic devices. The individual materials possess

fixed molecular dipole moments ranging from very weak to very strong, usually in

the range of 1-8 Debyes [58]. These dipole moments can also change based on factors

such as molecular orientation and packing, but the bottom line is that, in their bulk

forms, these materials contain various fixed dipole moments throughout. The field

produced by such a collection of dipoles makes up the dominant contribution to the

energy landscape a charge will see when it traverses the material.

Consider now a charge undergoing hopping motion on a lattice such as the one used

in the simulation described in the previous chapter. The potential that it experiences

at some site i on the lattice can be described by

Ui =
∑

j 6=i
~pj · ~Ei, (5.1)

where ~pj is the dipole moment at site j and ~Ei is the field due to the charge at site

i. As the charge hops to an adjacent site, the angle it makes with any given dipole

in the lattice only changes a small amount. As a result, net field the charge sees due

to the dipole contributions from the entire lattice also only changes a small amount,

as pictured in Figure 5.1. This implies that the site energies are correlated, and

that the energy landscape of the material should have smoother gradients than those

in a system characterized by perfectly random energetic disorder. Figures 5.2 and

5.3 illustrate the contrast between a random distribution of occupation energies and

spatially correlated energies.

5.2 Consequences of Correlation

Having established that it is perfectly reasonable to expect that the energetic disorder

within an organic polymer should be correlated, the next topic to address is that of
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Figure 5.1: An illustration of the charge-dipole interaction as a charge moves across
a lattice.

Figure 5.2: A 1D example of Gaussian site energy distribution. The energies indicated
by the bars are drawn independently from a Gaussian distribution of width σ.
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Figure 5.3: An example of what correlated site energy distribution would be expected
to look like. This is merely illustrative, and not data.

the effects correlation will have on the charge transport.

5.2.1 Charge Trapping

One of the more obvious effects of correlation is a reduction of charge trapping. When

referring to a “trap”, it is meant the presence of a site (or a cluster of sites) which

has very low energy relative to its surroundings. Such regions can cause carrier local-

ization, a phenomenon in which the charges are stuck in a location for an extended

period of time. In contrast to many simulations where only a single pair of charges are

considered, in a real device there are ∼ 1015 electrons
cm3 traveling through the system. In

the presence of an electric field, the electrons have some average drift velocity in one

direction. In that case, that there are ∼ 1015 holes
cm3 moving in the opposite direction.

The longer a charge remains trapped, the higher the probability becomes that it will

encounter a hole, and be lost to one of the various bulk recombination mechanisms

described in Chapter 2. Correlation in the disorder means, however, that the presence

of isolated sites with deep energies which act as traps is reduced [56]. If a site has a

low occupation energy, the correlation dictates that the sites nearby will have similar

energies, making the trap less severe.

It is conceivable that the strength and density of traps in an organic polymer
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could be manipulated by modifying the correlation. This might be accomplished by

strategically doping the host material with some highly polar substance in a clever

fashion.

5.2.2 Field-Dependent Mobility

The Poole-Frenkel law, originating from 1938, states that for a charge in a semicon-

ducting solid

µ(E) ∝ eγ
√
E, (5.2)

where µ is the mobility of the charge, E is an applied electric field, and γ ∝ 1
kbT

.

This behavior was first observed an organic semiconductor by Pai in 1970 [59], and

has been found to be ubiquitous among many organic solids. In 1995 Gartstein and

Conwell published a paper detailing Monte Carlo simulations of a molecular system

with correlated disorder [60]. Their results gave a field dependent mobility which

resembles the behavior of equation (5.2). This was later corroborated analytically by

Dunlap, Kenkre, and Parris [56].

The results of [60] and [56] were important, as they shed light on a question which

had lacked a satisfactory answer for more than two decades. Simulations had been

done using the Gaussian Disorder Model in the parameter regimes which had been

probed by experiment, but these show a behavior which resembles µ ∝ eE rather

than the observed µ ∝ e
√
E behavior [56].

Bulk mobility is frequently used as a figure of merit when studying energetic dis-

order. Much work has been done analytically, numerically, and in simulation [61–69]

for various quantities of merit (field-dependent mobility, power conversion efficiency,

geminate recombination rates, etc.), but mobility is a natural choice. After all, the

speed of a charge with mobility µ is v = µE, which means µ = σ
e
, the conductivity per

unit charge. When characterizing a semiconductor, conductivity is often a priority.

In the last few years, Groves et al. conducted extensive simulations relating to

organic photovoltaic devices [64, 65, 68, 69]. These simulations were rather sophis-

ticated, designed to encompass many features of an actual device. A comprehensive

simulation does allow one to study several quantities of merit at once, but the space

of tunable parameters may be large. This may make it difficult to isolate the factor
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or combination of factors which cause a particular behavior.

A 2010 paper by Groves et al. [69] examines the effect of charge trapping on the

performance of polymer solar cells. Both Gaussian disorder and correlated disorder,

using the approach of Gartstein and Conwell [60], were simulated in the report. The

correlated disorder was found to reduce trapping, and give a slightly larger mobility

than the uncorrelated. However, correlating the disorder was found to substantially

improve the power conversion efficiency over uncorrelated disorder by a factor of

2.5 and 3.1 for simulated bilayer and blended heterojunction devices, respectively.

These improvements were indicated to have little to do with the differences in bulk

mobility between correlated and uncorrelated disorder, but were instead a result of

spatial configuration of the disorder. This indicates that a better understanding of

the local properties within a material is important to a better understanding of charge

transport.

5.2.3 Charge Separation

Another, perhaps less obvious, effect of spatial correlation is that of driving an

electron-hole pair apart from one another spatially. To help explain this, consider

Figure 5.4. These plots are example cross-sections of correlated Gaussian energy

landscapes. The method used to correlate the disorder follows Gartstein and Con-

well [60]. These landscapes were achieved in this case by first generating a lattice of

site energies drawn from a Gaussian random distribution, as in the previous chapter.

Then for each site an average of all the energies of the surrounding sites was taken,

out to some predetermined distance referred to as the correlation radius, Rc. On a

cubic lattice this was taken such that the zone being averaged was a cube of size R3
c

rather than a sphere for computational simplicity. The energy of each site was then

reassigned to be this average, i.e. for an uncorrelated energy landscape with energies

Ei at sites i, the correlated energy at each site is

Ei
cor =

∑
j∈Rc Ej

R3
c

. (5.3)

This produces a “smoothing” effect on the energy landscape. As the reader can see,

the correlation radius does not have to become very large at all before extended

zones (i.e. comprised of several or more adjacent sites) of high and low energy begin
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Figure 5.4: A selection of 2D cross-sectional samples of correlated energy landscapes.
The uncorrelated case (top left) is simply Gaussian disorder, and the energy gradients
are very sharp. For a correlation radius Rc = 2a (top right), zones of similar energy
are already beginning to appear. At Rc = 5a (bottom left), energetic hills and valleys
which extend across large fractions of the landscape have appeared. Finally, at Rc = 10a
(bottom right), the energy landscape is partitioned into just a few large zones of high
and low energy.
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Figure 5.5: An illustration of opposite charges experiencing opposite energy land-
scapes. For an electron and hole initially near one another in what is a potential
minimum for the electron, the hole sees a potential maximum instead.

to appear. These energetic “hills” and “valleys” result in a charge carrier avoiding

certain locations on the lattice while preferring others. A profound effect appears

when both the positive and negative charges are considered simultaneously. Due to

their opposite charge, the occupation energy for a particular site will differ between

the electron and hole by a sign. Then, for example, if both charges are initially

near one another in what is a potential minimum for the electron, the hole will see a

potential maximum instead. This results in the negative charge tending to be drawn

to locations which the positive charge avoids, and vice versa, as illustrated in Figure

5.5. This tendency to be drawn apart spatially should result in the electron and hole

dissociating with higher probability than in the perfectly random case. In this way

energetic correlation may provide a mechanism which is useful for improving charge

transport in disordered organic materials.
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Simulating Geminate Recombination

To study correlated energetic disorder, computer simulations were employed. The

simulations were programmed in C++, and performed on various personal computers,

using the Monte Carlo method. I would like to acknowledge Sebastian Röding, an

exchange student from the University of Würzburg for the prototype program design.

In this chapter, several phases of simulation will be detailed after the general spec-

ifications of the program are presented. The first phase of simulations were performed

on a lattice with no disorder present, so that a reference can be made to the Onsager

calculation. Next, geminate recombination (recombination of an electron and hole

which originated together) was simulated on a lattice using the Gaussian Disorder

Model, similar to those of Albrecht and Bässler described in 4.2. The author’s re-

sults are then compared and contrasted. Finally, simulations were done in a system

with spatially correlated energetic disorder, so that the effects of correlation may be

examined.

6.1 Simulation Specifications

The system was simulated on a simple cubic lattice, with spacing a = 8Å. The

energy landscapes were generated as three-dimensional lattices of size 40 × 40 × 40

sites. In order to allow the charges to move beyond the boundaries of said lattice,

the simulations were done on an arbitrarily large lattice formed by tessellating these
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40 × 40 × 40 lattices. It was recognized that this would introduce some artificial

long-range order, but this was deemed acceptable due to the fact that in most cases

the condition for the charges to escape one another required them to be separated

by no more than ∼ 100a, and would therefore generally result in their traversing no

more than two sub-lattices.

Various system sizes and choices of boundary conditions appear throughout the

literature. Schönherr et al. performed simulations of exciton diffusion under the

Gaussian Disorder Model on a lattice 29 × 29 × 29 sites in extent. Gartstein and

Conwell performed hopping mobility simulations on a lattice of size 1000 × 40 ×
40, with a field in the x-direction. Both Groves et al. [68] and Bässler [40] chose

lattices of size 70 × 70 × 70 with periodic boundary conditions. For lattice spacings

of 0.8 − 1.0nm, 70 lattice sites approaches the size of an organic device (∼ 100nm),

and so there is not much reason to simulate very large systems. The lattice size

for the author’s simulations was chosen on the grounds that it was the largest that

was computationally tenable, as for the later simulations involving dipole fields, the

computational effort scales as N6, where N is the number of lattice sites. This is

due to the fact that to simulate a physical dipole field, every site on the lattice was

populated with a randomly oriented fixed dipole. The energy on each site was then

calculated from the contributions of the dipoles on the other N3 − 1 sites. Thus,

∼ N3 ×N3 = N6 operations are required.

Let an iteration of the simulation be defined as a single pair of charges being

allowed to hop until the termination conditions are met (recombination or escape).

A single data point is then the average of many iterations. For hopping on a lattice

with no disorder, a round of simulation (30 data points, with ∼ 104 iterations) took

a few minutes. In the case of Gaussian disorder, the charges took very many more

hops (∼ 26 per iteration), and a round of simulation (10− 15 data points, with ∼ 104

iterations) took a few hours. For artificially correlated disorder and dipole disorder,

many operations were required to generate each lattice, as mentioned above. This

greatly increased the the CPU time required, and a round of simulation (10−15 data

points, with ∼ 2× 104 iterations) took as much as two days.

For a given iteration, each lattice site j was assigned an occupation energy E0j

based on the type and strength of the disorder. Several different varieties of ener-

getic disorder were studied. First, simulations were done using the Gaussian Disorder
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Model to provide a baseline for comparison with Albrecht and Bässler. Following

that, a set of simulations were performed using the method of imposed correlation

corresponding to equation (5.3). Finally, a set of simulations were done to demon-

strate a physical source of correlation, incorporating the charge-dipole interaction

produced by superimposing randomly oriented fixed dipoles at every lattice site.

The simulations were performed on one energy configuration a predetermined

number of times before the site energies were re-randomized. The ensemble was

thus comprised of many small ‘batches’. The majority of the processing time was

taken by constructing the lattices, and this served to reduce the computational load

compared to generating a new energy landscape every single iteration. The charges

were oriented randomly on a sphere of radius r0 at the center of the lattice, as opposed

to Albrecht and Bässler’s simulations, in which the charges were started at a fixed

location. Randomizing the starting location means that the particles effectively see

a different disorder field for each trajectory, as pointed out by Gartstein and Conwell

[51]. This allowed more data points to be gathered by taking advantage of processor

time already spent to generate a lattice. The total number of iterations differed

depending on the computational complexity of the configuration being simulated,

but every data point consists of no fewer than 2000 iterations.

A uniform electric field of magnitude E in the x direction was imposed on the

lattice to represent the field that arises due to the built-in potential of a device. The

positive charge was located at the center of the lattice, and the negative charge was

placed randomly on a spherical shell of radius 3a about the positive charge. Both

charges were then allowed to hop to nearest neighbors only, according to the Miller-

Abrahams rate defined in equation (4.8), with ν0 = e−
2R
a = 1, as in Figure 6.1. Taking

all the contributions into account, the energy difference ∆ij for hopping from site i

to site j is

∆ij = (E0j − E0i)− q ~E · ~aij + (
q2

εri
− q2

εrj
), (6.1)

where ~aij is the vector from site i to an adjacent site j, and rj is the distance from

the charge in question on site j to the other charge, so that q2

εrj
is the energy due to

the Coulomb potential felt by a charge on site j due to its complementary charge.

Normalizing the hopping rate Rij from site i to site j by the sum of the rates for all
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Figure 6.1: A diagram representing charges hopping on a model lattice. The charges
are initially placed a distance r0 apart with the electron placed on a spherical shell
about the hole, and then allowed to diffuse according to the Miller-Abrahams hopping
rate. In the present simulations, both charges are allowed to hop.
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adjacent sites gives the probability to hop from site i to site j, i.e.

Pi→j =
Rij∑
k Rik

, (6.2)

where k spans all adjacent sites. To choose which charge hopped in which direction

at each step, a random number p (normalized to one) is chosen from a uniform

probability distribution. The probability for charge m = 1 or 2 to hop in a direction

l = ±x,±y,±z is denoted Pm,l. An array P is populated with the probabilities Pm,l,

and is normalized so that
∑

m,l Pm,l = 1, viz.,

|P1,+x| . . . |P1,−z|P2,+x| . . . |P2,−z|, (6.3)

where each cell has width Pm,l. The value of p falls into one of these cells, simultane-

ously choosing which particle hops, and which direction it takes.

An iteration of the simulation would be terminated upon meeting one of two crite-

ria. The first criterion was that of both charges occupying the same site, interpreted

as recombination. The second condition was that of escape, when the charges traveled

sufficiently far apart from one another. The range for this was determined in one of

two ways, via either the coulomb radius, as in Albrecht and Bässler’s simulations, or

the Poole-Frenkel radius, a new additional criterion. The coulomb radius corresponds

to the distance at which the coulomb energy of the two charges is equal to the thermal

energy kbT of the environment, i.e.

q2

εrc
= kbT → rc =

q2

εkbT
. (6.4)

The Poole-Frenkel radius [70] is field dependent, calculated in the following man-

ner: the energy of the mobile charge is

U = −q
2

εr
− q ~E · ~r. (6.5)

To put a lower bound on the Poole-Frenkel radius, let the charges lie on a line parallel

to the field, so that ~E · ~r = Er. Doing this also serves to put a lower bound on the

Poole-Frenkel radius. Next, find the saddle point, by setting the derivative of the

56



6.2 Results: Comparison with the Onsager Calculation

potential energy surface to zero,

dU

dr
=

q2

εr2
− qE = 0. (6.6)

Solving for r gives the Poole-Frenkel radius

rpf =

√
q

εE
. (6.7)

This distance is a watershed for the charges. At less than this distance, the attractive

interaction between the particles dominates, and they tend to approach one another.

At greater than this distance, the external field takes over, and the charges tend to be

swept apart. This criterion was used in the high-field regime, since merely comparing

the coulomb attraction to the system’s thermal energy is not an accurate indicator

of how bound the particles are at high field (E > 105 V
cm

).

Which radius was used depended on the field strength for a particular simulation.

The two conditions were compared, and whichever radius was smaller was used. The

escape condition was then set to be five times the appropriate radius to minimize

error in declaring the charges dissociated, and in an attempt to maintain contact

with Albrecht and Bässler’s simulations.

6.2 Results: Comparison with the Onsager Calcu-

lation

As a benchmark for our computer simulations, we will begin with a comparison to

the Onsager result [3]. For these comparisons, the positive charge was fixed at the

center of the lattice, and the other charge was allowed to hop, in accordance with the

conditions used by Onsager. Results for the case of an ordered lattice are presented

in Figure 6.2. As the reader can see, dissociation yield on an ordered lattice has the

same shape as the Onsager continuum result, but different values. The lattice case

produces a higher yield at lower field strengths, and also does not saturate to 100%

for very high values of the field.

The reason for the difference between the simulation and the continuum case
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Figure 6.2: The dissociation yield φ as a function of field magnitude for an ordered
lattice and for the Onsager theory. The Miller-Abrahams hopping rate is used on a
lattice with spacing a = 8Å. The initial condition for both curves is r0 = 3a = 24Å.
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Figure 6.3: A simplified illustration of the effect of varying the lattice spacing. Case a.)
represents an inter-site distance of 8Å as used in simulation, while case b.) represents
a larger spacing of 10Å.

studied by Onsager is not completely clear. The most obvious difference between

the two cases is that the Onsager result is determined by diffusion in the continuum,

whereas the hopping charges are restricted to a discrete lattice. It seems likely that the

nature of the Miller-Abrahams hopping rate is responsible for some of the deviation

of the simulation from the Onsager theory. To clarify, consider the effect of varying

the lattice constant in the zero disorder, zero field, room temperature case (| ~E| =

0, T = 300K). Figure 6.3 gives a picture of what occurs. Merely varying the inter-

site distance between the two cases changes the energy of the coulomb interaction,

causing the value of ∆ to be markedly different and altering the hopping rates. The

probability to recombine on the first hop was calculated to be P = 0.989 for case a,

and P = 0.966 for case b. Thus, parameters which are not present in the Onsager

theory will have effects which cause the simulations on a discrete lattice to deviate

from the continuum theory. However, taking the limit of a very small lattice spacing

while keeping the initial separation distance constant causes the results for the discrete

system to converge toward the solution in the Onsager theory, as in Figure 6.4 (cf.

Figure 6.2). As the reader can see, shrinking the lattice constant does indeed result

in dissociation yields more near to the Onsager result.
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Figure 6.4: The dissociation yield φ as a function of field magnitude for an ordered
lattice at a = 8Å, an ordered lattice at a = 2Å, and for the Onsager theory. This is to
confirm that the results for the discrete case converge to the Onsager analytic result in
the continuum. T = 300K and r0 = 24Å in all cases.
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Figure 6.5: The dissociation yield φ as a function of field magnitude for several values
of the disorder parameter σ at T = 300K.

6.3 Dissociation with Uncorrelated Gaussian Dis-

order

Having confirmed that our numerical approach agrees with the continuum approach

(Onsager) for the case of no disorder, let us now turn our attention to the effects of

disorder on the quantum yield. This stage of simulations was an effort to compile

results for charge hopping using the Gaussian Disorder Model. These results could

then be compared with previous results, namely those of Albrecht and Bässler [41].

For this set of simulations, the positive charge was fixed at the center of the lattice

while the negative charge was allowed to roam, to maintain contact with reference

[41]. Figure 6.5 shows the field dependence of φ for several different values of σ.

Increasing σ generally causes an increase in the dissociation yield for a given field

strength. Note however that a small amount of disorder (σ = 0.05 eV) actually

decreases the value of φ slightly relative to the case of no disorder. This agrees with
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Figure 6.6: The dissociation yield φ as a function of the disorder parameter σ at
T = 250K, T = 300K, and T = 350K. In all cases | ~E| = 104 V

cm and r0 = 24Å.

Figure 6.6, which plots the value of φ versus the disorder strength σ. φ dips slightly

before beginning to increase in each curve, for reasons not currently understood. A

large number of iterations were averaged to produce each data point, giving a rather

narrow error. The process being simulated can be described as a Bernoulli coin flip

with a weighted probability

p ,Dissociation

1− p ,Recombination.
(6.8)

The variance of such a process is p(1 − p), and the standard error is thus p(1−p)√
N

,

where N is the number of iterations. We will approximate p by the value of the data

point. The number of iterations is at least 2000, so for φ = 0.01, an error estimate is
0.01(1−0.01)√

2×103 ≈ 3× 10−3, or about 3%. Therefore, this oscillation appears to fall slightly

outside of the noise, but its source is unknown.

It appears that for uncorrelated disorder, referring in particular to Figure 6.5,
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6.3 Dissociation with Uncorrelated Gaussian Disorder

a rather large value of σ is required to significantly improve the dissociation rate.

Significant increases in φ do not begin to appear until values of σ approach 0.15eV,

which is well above the values of the disorder width usually found in experiment

(< 0.1eV) [7]. This seems to indicate that uncorrelated disorder cannot have a large

effect on φ.

The relationship between φ and σ in Figure 6.6 appears to be roughly linear,

rather than the exponential relationship indicated by Albrecht and Bässler. In [41]

they point out that an asymptotic form of the dissociation yield is

lim
E→0

φ = erc/r0 , (6.9)

recalling rc to be the coulombic capture radius. They then assert that an increase in σ

corresponds formally to a decrease of the ratio rc/r0. We believe them to be mistaken.

It has already been shown that it is very unlikely that the data point for σ = 0 in

Figure 4.7 is correct, as the dissociation yield on a lattice differs from the Onsager

result. This leaves three data points, from which a conclusion is difficult to justify.

Furthermore, consider the ratio rc/r0; since r0 is an independent parameter, lowering

rc is the only way to shrink the ratio. A lowering of rc corresponds to a lowering

of the coulombic binding energy. This cannot be due to energetic disorder as it is

implemented. To lower the coulombic binding energy, one would have to screen the

charges from one another, and introducing disorder into the site occupation energies

does no such thing. Thus, it is difficult to see how energetic disorder would have an

effect on the ratio rc/r0 and lead to and exponential relationship between φ and σ.

Figure 6.6 does corroborate Bässler’s conclusions that disorder improves the dis-

sociation yield, and that this effect is more pronounced at low temperatures. By this

it is meant that, if the reader compares the curves in Figure 6.6, the data set for the

lower temperature sees a larger gain in φ relative to the higher temperatures. The

value of φ in the curve at the lowest temperature for maximum σ is roughly triple the

value for no disorder (φ(σ=0.12)
φ(σ=0)

≈ 3). The curve for the highest temperature, on the

other hand only sees a gain of roughly 30% (φ(σ=0.12)
φ(σ=0)

≈ 1.3). One might expect this,

since as the temperature of the system increases, the relative strength of the disorder

decreases, pictured in Figure 6.7. An electron with more thermal energy does not see

as large of an energetic barrier when hopping to a site with a large occupation energy

as does an electron at a lower temperature.
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6.4 Correlated Energetic Disorder I

Figure 6.7: As the temperature increases, the energy required to hop between adjacent
sites is reduced.

Between these results and those cited previously, it is clear that energetic disorder

reduces the occurrence of geminate recombination. Still remaining are the questions of

whether this energetic disorder is being properly modeled, and what a more appropri-

ate model may be in the case that it is not. The following sections are concerned with

the notion that energetic disorder must be correlated, and how correlation occurs.

6.4 Correlated Energetic Disorder I

After constructing a reference point from the simulations on Gaussian random energy

landscapes, the next step was to introduce correlated energetic disorder. How does

one go about correlating disorder? Several methods may be found in the literature,

a few examples of which will be presented in this section, followed by a description

of the methods used by the author, and the reasoning behind those choices.

In a paper by Abramavicius and Valkunas [57], energetic correlation between two

sites was modeled by an exponential pair correlation function. Specifically, in 1D

(which generalizes directly to higher dimensions) for sites l and m with energies El

and Em,

〈ElEm〉 = σ2e−
|xl−xm|
Rc , (6.10)

64



6.4 Correlated Energetic Disorder I

where 〈...〉 denotes a statistical average, σ2 is a variance, |xl − xm| is the distance

between the two sites, and Rc is the correlation radius. The site energies can always

be expressed in terms of their Fourier transforms,

El = σ
∑

k

ake
2iπkx/N , (6.11)

where N is the number of sites and k is the Fourier index. It can be shown that the

Fourier coefficients satisfy

|ak| =
√
Ik, (6.12)

Ik being the amplitude of the power spectrum.

This is one approach to expressing the energetic correlation, but it is not physically

appropriate to describe what is understood to be the dominant source of correlation

[53, 54], namely the charge-dipole interaction. The exponential correlation described

in [57] decays strongly with distance, and is a weaker correlation than that induced

by a system of dipoles. The correlation described by Novikov and Vannikov in [53]

is more long ranged, decaying proportional to 1
r

in 3D, rather than exponentially.

In addition this correlation retains a Gaussian character in 3D. We are interested in

simulating a physical system of dipoles, therefore the exponential correlation will not

be used.

For reasons which were also mentioned in section 5.2.3, this phase of simulation

departs further from the typical procedure employed when simulating charge diffusion

on a disordered lattice [41, 44, 51, 57]. Usually, the positive charge is fixed at the

center of the lattice while the negative charge is allowed to roam, corresponding with

Onsager’s formalism. For this simulation, however, both charges will be free to hop.

This is because fixing one charge would defeat one of the major benefits of correlation

described in 5.2.3. Since the site occupation energy each charge experiences differs by

a sign, each of the charges sees an energy landscape which is inverted compared to the

other. This results in areas of the lattice which are high energy for the electron to be

low energy for the hole, and vice versa. As the two charges seek out their respective

low energy regions, they become spatially separated. If both charges were not allowed

to diffuse this effect would not appear, at least not completely.

In this phase of simulations, the correlation method used was that described in

section 5.2.3. First, the lattice was populated with random energies drawn from a
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6.4 Correlated Energetic Disorder I

Figure 6.8: The dissociation yield as a function of the correlation length, parametrized
by several values of σ, with T = 300K and | ~E| = 104 V

m . As the correlation radius is
increased, the overall dissociation yields go up. However, in the limit of Rc → ∞
these curves all tend asymptotically to the same value, as this limit corresponds to an
energetically flat landscape, independent of σ.

Gaussian distribution. Then, each site was then reassigned an energy equal to the

average of the energies of all the sites around it out to the radius Rc, called the

correlation radius. This produces a “smoothing” effect proportional to the size of Rc.

Several examples of correlated energy landscapes for various values of Rc are found

in Figure 5.4.

The reason for using this simplified correlation method at this stage, as opposed

to a more physical correlative procedure, was to establish some of the qualitative

behavior of the system. For example, having the correlation radius as a tunable

parameter (which it is not in [53]) allows one to examine the behavior of the system

as a function of the strength of the correlation. This allows for the investigation of

the effects of correlation across different length scales.

Figure 6.8 is a plot of φ versus Rc for several values of σ. There are a few features

to note. First, as a function of Rc the dissociation yield peaks at some value of the
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6.4 Correlated Energetic Disorder I

correlation radius, and then begins to taper down as Rc continues to increase. For

small values of Rc, φ will have approximately the same values as the uncorrelated

case. When Rc becomes very large, every point in the lattice is being correlated with

many other sites. As the samples over which an average is being taken become large

(i.e. Rc is large), the energy of each site approaches the mean value of the random

distribution which originally populated the sites, per the Central Limit Theorem. In

this case the original distribution was Gaussian, with a mean of zero. Thus, when

Rc becomes very large, the correlated energies of all the sites on the lattice tend

asymptotically to zero. Simply stated, when Rc is so large that every site becomes

the average of all the sites in the system, the energy landscape becomes flat.

It should be noted that there is a process competing with the asymptotic flattening

of the energy landscape, however. After the averaging procedure was performed

during the correlation step, the energies were scaled up by a factor of
√
N , where

N = (2Rc)
3 is the number of sites within the correlation radius. This is once again

due to the Central Limit Theorem, wherein the variance of the distribution of samples,

σs, is equal to

σs =
σ√
N
. (6.13)

This was done to make sure that the variance of the correlated landscape remained

the same as the uncorrelated one from which it was derived.

Another interesting behavior is the magnification of the effect of the disorder which

occurs when correlation is introduced. As mentioned previously while discussing Fig-

ure 6.6, increasing the strength of the disorder σ leads to an increase in the dissociation

yield φ. In the case of correlated disorder, the trend becomes magnified. In Figure

6.9, the relationship between φ and σ is very linear, with a much steeper slope than

in the uncorrelated case. This concurs with the idea presented in 5.2.3 of correlated

disorder causing the pair of charges to be driven apart. Larger values of σ manifest as

deeper valleys and taller hills in the correlated energetic landscape. Consider a valley

in the energy map. As this valley becomes deeper, it presents a stronger attractive

center to its corresponding charge, while simultaneously becoming a more repulsive

to the opposite charge. This causes the effect of the disorder to be magnified relative

to the uncorrelated case, in which there are no distinct attractive or repulsive regions.

While artificial, this method of correlation was nonetheless very useful for gather-
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6.4 Correlated Energetic Disorder I

Figure 6.9: The dissociation yield as a function of σ at T = 300K and | ~E| = 104 V
cm .

In this case, data was taken on a correlated energy landscape, with Rc = 6a, roughly
where the peak values of φ occur in Figure 6.8. Compare to the upper curve in Figure
6.6, which represents the uncorrelated case for otherwise identical parameters.
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6.5 Correlated Energetic Disorder II

ing information about the qualitative effects of energetic disorder. It has been clearly

demonstrated that correlation enhances the effect the disorder has on dissociating the

two charges. It has also been demonstrated that there exists some optimal correlation

range for the purpose of separating the pair of charges.

Unfortunately, in actual physical systems the ability to manipulate the correlation

is still quite limited, as it arises from interactions which are intrinsic to the mate-

rial being studied. Precisely manipulating the correlation would require controlling

structures at the molecular scale, which is not economical at the moment. Thus, the

correlation length is not an accessible feature in current disordered organic semicon-

ductor technology. In the next section a more physical model of correlation will be

examined.

6.5 Correlated Energetic Disorder II

In the final stage of simulations, a physical system of fixed dipoles was mimicked. To

achieve this, each lattice site was assigned a fixed, randomly oriented dipole. These

dipoles were given moments ranging between 0 and 5 Debyes, and the moments of all

the dipoles on a given lattice were the same, only the orientation was randomized.

Once the dipoles were placed, the contribution to the occupation energy of each site

due to the charge-dipole interaction from this field of dipoles was calculated. Due

to the long computation time required for such a process, the size of the lattice was

reduced to 20× 20× 20. A few test results were compared to the original lattice size

of N = 40, and no significant difference was found. An example of the dipolar energy

landscape is presented in Figure 6.10, alongside a sample of a landscape which was

correlated synthetically, as in section 6.4.

As the reader can see, the two samples appear to have a very similar structure.

In the case of dipole disorder, there is no correlation radius Rc available as a tunable

parameter, and as a result the spatial extent of the energetic hills and valleys is

essentially fixed. Changing the strength of the dipole moments corresponds to tuning

the width σ of the Gaussian distributions used to generate disorder in the previous

phases of simulation. Increasing the dipole strength causes stronger disorder, which

is to say it results in higher hills and deeper valleys in the energy landscape, but

this effect is not apparent on a 2D cross-section of the energy. A comparison of the

69



6.6 Concluding Thoughts on Disorder

Figure 6.10: The plot on the left is a cross-section of an artificially correlated land-
scape with Rc = 2a. On the right is a plot of an energy landscape generated by
summing the charge-dipole interaction across a field of randomly oriented dipoles with
moments of strength 2.5 Debyes. In both cases, the variance of the disorder is σ ≈ 0.1
eV. Qualitatively, the artificially correlated disorder seems to have sightly broader hills
and valleys, but both plots have very similar character.

dissociation yield for dipole disorder versus artificially correlated disorder with a fixed

correlation radius is plotted in Figure 6.11. As the variance for the dipolar landscape

was increased by increasing the strength of the dipole moments, the charges began

to make excessively many hops (> 2× 106), making gathering data untenable. This

is why the domain for the dipolar system is smaller than for the correlated system.

In Figures 6.12 and 6.13, the dipole disorder is compared to uncorrelated Gaussian

disorder. There is a significant increase in φ for the dipole case over the strictly

random disorder at higher values of σ. This is a strong indicator that energetic

disorder in a physical system yields better charge separation than one might expect

when using the Gaussian Disorder Model.

6.6 Concluding Thoughts on Disorder

If the discussion up to this point were to be distilled down to a few key ideas, it may

be said that

• Disordered organic semiconducting systems of interest have less well-defined
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Figure 6.11: The dissociation yield as a function of σ at T = 300K and | ~E| =
5 × 104 V

cm . Data for the upper curve was taken on a correlated energy landscape,
with Rc = 2a. Data for the lower curve was taken from a dipolar landscape. The
dipole disorder exhibits a dip similar to the Gaussian disorder case for small values of
σ (corresponding to 0.2− 0.4 Debyes). At larger values of σ, the dipole disorder trends
upward, resembling the artificially correlated case.
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6.6 Concluding Thoughts on Disorder

Figure 6.12: The dissociation yield as a function of σ at T = 250K and | ~E| =
5 × 104 V

cm . Plotted is dipole disorder versus uncorrelated Gaussian disorder. The
dipole disorder appears to dip more strongly for small values of σ, but increases more
rapidly as σ grows.
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6.6 Concluding Thoughts on Disorder

Figure 6.13: The dissociation yield as a function of σ at T = 300K and | ~E| = 105 V
cm .

Plotted is dipole disorder versus uncorrelated Gaussian disorder. At a larger field
magnitude, statistics are easier to gather, since the charges tend to dissociate more
easily, and the average number of hops a particle makes is reduced. This reduces the
noise, and the dipole disorder shows an even more pronounced increase in φ over the
uncorrelated disorder.
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6.6 Concluding Thoughts on Disorder

charge transport behavior than their crystalline inorganic and organic counter-

parts.

• Disorder is not necessarily detrimental to the process of separating and extract-

ing charges.

• Understanding the local properties, correlation, and effects of energetic disorder

is important to understanding the macroscopic behavior organic semiconduc-

tors.

Now there remain a few last ideas to address.

6.6.1 Scale of Disorder Versus Scale of the System

Many experiments that attempt to characterize organic semiconductors are concerned

largely with the macroscopic behavior of the material, e.g. the bulk mobility. These

experiments often probe length scales much larger than many of the local features

of the system. For example, time-of-flight experiments [71] measure the mobility

of charges across samples that are on the order of microns, while an actual organic

photovoltaic cell may only be 100nm across. Furthermore, the scales of clusters of

molecules or crystallites in a disordered organic semiconductor are even smaller, on

the order of a few nanometers. Such experiments tend to average over these local

structures. Consider Figure 6.14, in which the blue ellipses represent zones of local

energetic correlation (e.g. a crystallite). The charge is forced by the disorder in

the system to take a meandering path across the material, resulting in a low bulk

mobility. If the size of devices becomes smaller, an occurrence which certainly has

precedent, the local order of materials may become more important. An important

consequence of correlated disorder, however, is the introduction of long-range order

which can supersede the local order of crystallites and other small structure. Consider

Figure 6.15, representing a device in which the long-range order due to correlation

spans across a device. The path of a charge, the red arrow, travels through an

extended correlated zone, rather than the short-range local order presented by the

small structures that comprise the organic material. If methods are developed that

allow for the level of correlation in energetic disorder to be altered, the scale of the

disorder could be tuned to make more effective devices.
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6.6 Concluding Thoughts on Disorder

Figure 6.14: A schematic representation of a disordered organic solid, with the blue
ellipses representing zones in which the energy is locally correlated. The red path
indicates a charge being driven across by an applied electric field. The charge takes
an irregular path through the material due to the high disorder over the range of its
transit.
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6.6 Concluding Thoughts on Disorder

Figure 6.15: A schematic representation of a disordered organic solid that possesses
long range order as a result of correlation. The red path indicates a charge being driven
across by an applied electric field. The black lines represent the boundaries of a device,
for example the terminals of a solar cell. The material may have local disorder, but the
long-range correlation allows the charge to cross the device.
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6.6.2 Manipulating Disorder

The biggest reason organic semiconductors are a topic of such great interest is the

fact that the organic versions of many electronic devices can be fabricated at much

less cost and time investment. On the other hand, this reduction in effort means

that a sacrifice is made in the control of the microscopic structure of the material.

Understanding the mechanisms which give rise to disorder may allow the development

of methods to manipulate it. It seems conceivable that one might be able to engineer

disorder in a device in such a way as to guide charge transport, forcing charges into

desired regions, and disallowing them from others. One example might be strategically

doping an organic polymer to change the energetic landscape in such a way that paths

of favorable energy appear. To determine what methods might be used to control

disorder, the sources and effects of disorder must be understood first.

Understanding this disorder may lead to new uses for organic materials, or im-

proved performance of existing devices. The author hopes that the discussion of

energetic disorder presented in this thesis may help to provide a better understand-

ing of charge transport in organic semiconductors.
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The Fragment Hamiltonian
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7

Some Preliminary Formalism

7.1 Introduction

The Fragment Hamiltonian (FH) model is currently in development by Valone [4, 72]

at Los Alamos National Laboratory. The goal of the FH model can be broadly de-

scribed as attempting to provide a general model for charge transfer in a material that

reduces to the behavior of a metal or an insulator in the corresponding appropriate

parameter regimes. Describing charge flow at the microscopic level is a fundamental

problem, and has been long studied in physics and chemistry.

There are good descriptions for the very small constituent parts of many systems,

such as atoms in a solid. Having a good fine-grained description of the elements of

a system does not necessarily mean that one automatically understands the system,

however [73]. Certainly one would not attempt to describe a macroscopic system

directly in terms of the individual behavior and interaction of its huge number of

constituent atoms. The behavior of many macroscopic structures is understood in

terms of the collective behavior of its components. For example, the electronic prop-

erties of materials with a well-ordered periodic crystal structure can be described in

terms of a basis of Bloch states exactly because of their large-scale structure [74].

Systems become difficult to describe when large-scale order is disrupted. The

models describing many materials take advantage of some sort of symmetry, e.g. the

electronic structure of a crystal being described in terms of Bloch states, as mentioned
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7.2 A One-Band 1D Tight-Binding Model

above. For example, consider two materials whose individual behavior is understood

apart from one another. If two (or more) materials are brought together, however,

the interface between them can disrupt the periodicity, causing the previous models

to fail. The Fragment Hamiltonian endeavors to describe a system in terms of the

charge states of component “fragments”, which are a partitioning of the system into

new elementary units. For example, the fragments of a system might be defined

as clusters of atoms that exhibit an approximately periodic structure, where the

individual atoms themselves do not. In this way, it is hoped that systems which

previously resisted description can be modeled.

What is meant by a ‘fragment’ will be explained in more precise detail later, but

presently it is important to provide some historical and theoretical context. Many

of the approaches of the author and collaborators to the Fragment Hamiltonian have

been through a tight-binding-like framework. In order for that work to make sense,

it is important that the reader have an understanding of the tight binding method

employed by the author. To that end, this chapter will lay a groundwork for the

tight binding model to be called upon later. In the next chapter, an extension to the

tight-binding model, the Hubbard model, will be introduced. The current-carrying

behavior of some simple examples of tight-binding and Hubbard systems will also be

examined, for comparison against the FH model later. All of the discussion in the

following chapters takes place in 1D. As such, we are not attempting to model any

actual physical system, but rather build a frame of reference for the FH model in

terms of traditional solid state methods.

7.2 A One-Band 1D Tight-Binding Model

To build context for discussing the Fragment Hamiltonian, let us introduce the tight-

binding model. Our discussion here follows treatments that may be found in many

textbooks, for example [1, 74, 75]. The tight-binding model derives its name from

the fact that it is built on the assumption that one has a lattice of atoms whose

individual electronic wavefunctions overlap weakly. As a result, the electrons in the

system tend to be tightly bound to the atoms. Since these wavefunctions are weakly

interacting with those of their neighbors, each atomic wavefunction approximates

that of an isolated atom. The wavefunction for the lattice is approximated as the
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7.2 A One-Band 1D Tight-Binding Model

following linear combination of atomic orbitals (LCAO)

|Ψ(~r, t)〉 =
∑

m

Cm(t)|φm(~r)〉, (7.1)

where the Cm’s are the occupation amplitude at site m, and the φm’s are the local

wavefunctions. For simplicity, the φm’s are an orthonormal basis of Wannier functions,

and the Hamiltonian includes only nearest neighbor interactions. This is to say

〈φm(~r)|φ′m(~r)〉 = δm,m′

〈φm(~r)|H|φm(~r)〉 = E0

〈φm(~r)|H|φm±1(~r)〉 = −V,

where the E0’s are the on-site energies, and the V ’s represent the wavefunction over-

laps between nearest neighbors. Thus, the Hamiltonian matrix in the site basis looks

like

H →




E0 −V 0 0

−V E0 −V 0 . . .

0 −V E0 −V
0 0 −V E0

. . .



, (7.2)

To give a picture of the tight-binding model, consider the oft-used simple example

a uniform string of N hydrogen atoms. A diagram is presented in Figure 7.1. Consider

a large chain of these identical simple atoms with lattice spacing a which present a

perfectly periodic potential, and are connected to form a ring. The time-dependent

Schrödinger equation is

i~
∂

∂t

∑

m

Cm(t)|φm(~r)〉 = H
∑

m

Cm(t)|φm(~r)〉. (7.3)

Taking an inner product of 〈φn(~r)| with (7.3),

i~
∂

∂t
〈φn(~r)|

∑

m

Cm(t)|φm(~r)〉 = 〈φn(~r)|H
∑

m

Cm(t)|φm(~r)〉. (7.4)

Since H only has nearest neighbor interactions, equation (7.4) vanishes whenever
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Figure 7.1: A schematic of a monatomic tight binding chain.

n 6= m,m± 1. As a result, the amplitudes C are represented by

i~Ċm(t) = E0Cm − V (Cm−1 + Cm+1). (7.5)

At this point, it is useful to perform a discrete Fourier transform on this expression,

using the relation

Ck =
∑

m

Cme
ikam. (7.6)

For simplicity, let ka → k, so that k is now a dimensionless quantity. Multiplying

both sides of (7.5) by eikm and summing over m, one gets

i~
∑

m

Ċm(t)eikm = E0

∑

m

Cme
ikm − V

∑

m

(Cm−1 + Cm+1)eikm. (7.7)

Now it is important to note that

∑

m

Cm±1e
ikm = e∓ik

∑

m±1

Cm±1e
ik(m±1). (7.8)
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This means (7.7) may be expressed as

i~Ċk = E0Ck − V (Cm−1e
ikm + Cm+1e

−ikm) = (E0 − 2V cos k)Ck. (7.9)

Taking the ansatz

Ck(t) = C0ke
− iEt~ (7.10)

it follows that the energy for a single band is

E(k) = E0 − 2V cos k. (7.11)

A single period of k is referred to as the first Brillouin zone [1], or more commonly

simply the Brillouin zone. The first Brillouin zone is usually defined from −π to π as

in Figure 7.2, rather than from 0 to 2π, so that the energy minimum corresponds to

k = 0, as for a free particle.

Figure 7.2: A plot of the first Brillouin zone.

The energy eigenvalues E(k) correspond to the Bloch states Ψk(~r) = ei
~k·~ruk(~r)

with momentum ~k, where uk(~r) is an envelope with the same periodicity as the lattice

potential. Note that in more complex systems which possess more than one band,

the energies become En(k), with n as the band index. The Bloch states arise from

the translational symmetry of the system. In spite of the model being called “tight

binding”, suggesting that individual site wavefunctions are very localized, connections

to neighboring atoms result in the electron wavefunctions extending across the lattice.
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Treatments of Bloch waves can be found in many textbooks, for example Ashcroft

and Mermin [1], and will not be detailed further here.

7.3 The Fermi Surface

As electrons are added to the system, these energy levels are populated from lowest

to highest, with alternating spins, according to the Aufbau principle. For the simple

case of hydrogen atoms, the system will equilibrate to a charge-neutral ground state

with N electrons, one for each atom. This is referred to as a half-filled band, since

the maximum number of electrons the system may contain (neglecting excited states)

is 2N . The conductivity of a system of electrons obviously depends on the number

of electrons; If there are none, the conductivity is identically zero, since there are no

charges to carry a current. However, if the band is completely full the conductiv-

ity is also zero, as all available states are occupied, and the electrons cannot make

transitions. A more detailed discussion of conductivity may be found in Appendix C.

At zero temperature the top of this stack of energy states (the “Fermi sea”)

is called the Fermi energy, which is the energy one must expend to add another

electron to the system. If a band is partially filled, the energy levels at the Fermi

energy constitute the Fermi surface [1]. It is near this surface that the excitations

in the system take place, as in Figure 7.3. The electrons below the Fermi surface

are distributed across all available states within that range of k-values. Ordinary

electrical and thermal excitations are on the order of fractions of an electron volt

(e.g. kbT ≈ 0.025eV at room temperature). The Fermi energy in a typical metal,

however is on the order of a few electron volts. As a result, such excitations cannot

boost most of the electrons in the Fermi sea up to an available empty state, restricting

the electrons participating in the current to those close to the Fermi surface.

7.4 The Density of States

The density of states (DOS) measures the number of available electronic states per

unit energy interval [1]. By the definition of the DOS g(E), the number of states Ns
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7.4 The Density of States

Figure 7.3: The Fermi level within a single band.
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occupied in a system is

Ns =

∫ Ef

0

g(E)dE, (7.12)

where Ef is the Fermi energy. For one dimensional systems, a differential interval in

k-space in the Brillouin zone is dk
2π

. The density of energy in that slice of k-space is

g(E)dE =
dk

2π
, (7.13)

from which it follows that

g(E) =
1

2π

dk

dE
. (7.14)

For example, in the tight-binding system in section 7.2 above,

E = E0 − 2V cos k → k = arccos
E0 − E

2V
. (7.15)

Differentiating with respect to E, it follows that

g(E) =
1

2π

dk

dE
=

1

4πV

1√
1−

(
E0−E

2V

)2
. (7.16)

7.5 A Binary Alloy on a 1D Lattice

The case of a single band is more demonstrative than practical. In this section, the

concept of a bandgap will be treated in more detail, using a model of a binary alloy

that behaves in a way more typical of many common semiconductors and insulators.

Consider a very long chain of atoms of two different alternating species, with pairs

of atoms defining the unit cells. It is these cells that are now enumerated by m, rather

than the individual atoms. Using the same procedure as in equations (7.3) through

(7.5), the occupation amplitudes obey

i~ĊL
m = −VbCR

m−1 − VaCR
m (7.17)

i~ĊR
m = −VaCL

m − VbCL
m+1 (7.18)

where E0 has been set to zero for convenience, Va and Vb are the alternating interac-

tion matrix elements between the two different species, and C
R(L)
m is the occupation
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7.5 A Binary Alloy on a 1D Lattice

amplitude for right (left) atom in the mth cell, as in Figure 7.4.

Figure 7.4: A schematic of a diatomic tight binding chain.

By performing a discrete Fourier transform as in equation (7.6),

CL
k =

∑

m

CL
me

ikm(2a), (7.19)

and letting k again be a dimensionless quantity by taking 2ka→ 2k, (7.17) becomes

iĊL
k = −Vb

∑

m

CR
m−1e

i2km − VaCR
k = −Vbei2k

∑

m

CR
m−1e

i2k(m−1) − VaCR
k

= −Vbe2ikCR
k − VaCR

k . (7.20)

The transformation for (7.18) is exactly similar, and equations (7.17) and (7.18) have

now become

iĊL
k = −CR

k (Vbe
i2k + Va) (7.21)

iĊR
k = −CL

k (Va + Vbe
−i2k). (7.22)

From here, let us take the ansatz

C
R(L)
k (t) = C

R(L)
k (0)e−iEt, (7.23)
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where E is an energy eigenvalue to be determined. Our equations then become

ECL
k = −CR

k (Vbe
i2k + Va) (7.24)

ECR
k = −CL

k (Va + Vbe
−i2k). (7.25)

Expressing these in matrix form, we get

(
E −(Vbe

i2k + Va)

−(Va + Vbe
−i2k) E

)
(7.26)

Taking the determinant of this matrix yields

E(k) = ±
√
V 2
a + V 2

b + 2VaVb cos 2k, (7.27)

the energy of the upper and lower bands with respect to k, plotted in Figure 7.5.

Figure 7.5: A plot of the valence and conduction bands for a 1D binary system.

The disallowed region present between the bands in Figure 7.5 is called the

bandgap. The presence of a bandgap results in what are referred to as Bloch-Wilson

[76] or band insulators [77], as opposed to Mott insulators which will be discussed

later. At T = 0, once the states of the lower band (called the valence band) are fully

populated, the system cannot support a current.

Consider the band filling, as described for the one-band case. It is still the case
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7.5 A Binary Alloy on a 1D Lattice

that the system tends toward overall charge neutrality, and that this state corresponds

to one electron per site. The magnitude of the Bloch vector, k, is allowed to take

values

k =
2πn

2N + 1
, (7.28)

where n is an integer. A proof of this can be found in Appendix B. If the system is

half full (n = N), then in the ground state the energy levels will be populated for
2πN

2N+1
≈ π values of k. Since k is taken to be symmetric about zero, this means that

− π

2
< k <

π

2
. (7.29)

Referring to Figure 7.5, one can see that this completely fills the lower band. In this

instance the Fermi energy lies halfway between the valence band and the conduction

band. Since all the accessible states are occupied in the lower band, and there are

zero available states within the band gap, the system is insulating.

Now that some necessary formalism has been introduced, in the next chapter, we

will discuss the current carrying behavior of some small systems, against which the

behavior of the FH model may be compared later.
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8

The Two-Site Hubbard Model

In the previous chapter, the tight-binding model was developed while ignoring electron-

electron repulsions. Is this justified? According to Landau’s theory of Fermi liquids

[78], this may be justified after the fact, as electrons at the Fermi surface can be

treated as free particles with a modified effective mass. We expect, however, that

this approximation breaks down as the inter-atomic spacing becomes larger, and the

coulomb repulsion becomes large compared to the kinetic energy. At some point,

the monatomic material should undergo a Mott metal-insulator transition, which will

be discussed shortly. The Hubbard Hamiltonian describes a many body system as

a tight-binding lattice, and attempts to address this question by including coulomb

repulsion between electrons. There is a rich literature on the Hubbard model, as it

has few exact solutions, one of the most famous being that of Lieb and Wu on an

infinite chain in 1D [79]. Here we look at the Hubbard model for two electrons on

two sites.

8.1 The Hubbard Hamiltonian

The next stage in developing a practical Fragment Hamiltonian is to compare it to

a model whose behavior is understood. A logical place to start is with the Hubbard

model, with the reasons for this being explained shortly. This model is an extension

of the tight-binding model which includes electron-electron interactions on the same

site. It was introduced in a 1963 paper by Hubbard titled “Electron Correlations in
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8.1 The Hubbard Hamiltonian

Narrow Energy Bands” [80]. For a chain of identical hydrogen atoms, the Hubbard

Hamiltonian is

Hhub = −V
∑

i=j±1,σ

(a†i,σaj,σ + a†j,σai,σ) + Uhub

∑

i

ni↑ni↓ (8.1)

It has become convenient to express the Hamiltonian in terms of the second quan-

tized operators ai,σ, a
†
j,σ. A discussion of second quantized operators can be found

in chapter 2 of the textbook by Atland and Simons [81]. These operators obey the

anti-commutation rules for fermions, with the anti-commutator defined as [A,B]+ =

AB +BA.

[ai,σ, ai′,σ′ ]+ = 0 (8.2)

[a†i,σ, a
†
i′,σ′ ]+ = 0 (8.3)

[a†i,σ, ai′,σ′ ]+ = δi,i′δσ,σ′ (8.4)

The annihilation operator ai,σ deletes an electron with spin σ from site i, while the

creation operator a†j,σ creates an electron with spin σ on site j. The first term in (8.1)

is then simply the nearest neighbor hopping term, as in the tight-binding model.

The operators ni↑ = a†i,↑ai,↑ and ni↓ = a†i,↓ai,↓ are the number operators, and count

how many electrons with spin σ =↑, ↓ are one site i. Since electrons obey the Pauli

exclusion principle, this number is either 0 or 1. This means the second term in (8.1)

represents a coulombic on-site interaction between electrons which happen to occupy

the same site. This energy is referred to as the “Hubbard U”. The Hubbard U is

defined as

Uhub = EI − E = E(H−) + E(H+)− 2E(H). (8.5)

EI is the ionization energy, or the energy required to remove an electron from the

atom. E is the electron affinity, the energy change when an electron is added to a

neutral atom to form a negative ion (see Appendix A).

The Hubbard model is an expression of a system known as a Mott insulator

(specifically, a Mott-Hubbard insulator) [77]. In 1949 Mott gave an example of a

transition between a metal and an insulator now referred to as a Mott transition [82].

There are a few exact solutions to the Hubbard model for some specific cases [83], for

example the famous solution to the 1D Hubbard model of Lieb and Wu, using the
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8.1 The Hubbard Hamiltonian

Bethe ansatz [79]. In general, however, Mott insulators are not fully understood.

The following is a conceptual explanation of the behavior of Mott-Hubbard in-

sulator (see [77]). Consider a half-filled tight-binding system as described in section

7.2. A site occupied by one electron lies in the center of a half-filled band of width

W = 4V = |2V (cos π − cos 0)|. In a Hubbard system as described by (8.1), the

band is split in two by the on-site electron-electron interaction. The width of the

lower Hubbard band defined as W2. A singly-occupied site participates in the lower

Hubbard band, and therefore has energy W2

2
. The upper Hubbard band is formed by

the electrons on doubly-occupied sites, and has a bandwidth W1. The center of the

upper band is elevated an amount Uhub above the center of the lower band, and so

the energy required to boost and electron into the upper band is Uhub − W1

2
. Thus,

the total chemical potential of a half-filled system is not continuous. Once the lower

Hubbard band is full, the energy required to begin populating the upper Hubbard

band is ∆µ = Uhub − W1

2
− W2

2
= Uhub − (W1+W2

2
) > 0.

Figure 8.1: The splitting of a single band into two due to the presence of the Hubbard
U . Note that at half filling, −π

2 < k < π
2 , and the lower Hubbard band is full, resulting

in an insulating state.

If the sites in the tight-binding model are very far from one another, the overlap

V is very small, and thus the bandwidth W is small. Assuming W1+W2

2
≈ W , if

W � Uhub, then a gap is present. This is due to the fact that if V � Uhub, then

it is energetically more favorable for the electrons to remain localized than to try to

overcome the Coulomb repulsion encountered when attempting to move about the

lattice. As the lattice sites are moved closer to each other, the overlap interaction

V becomes larger, along with W1 + W2. At the point where Uhub = (W1+W2

2
) the
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8.2 Current on a Two-Site Ring

upper and lower Hubbard bands overlap, and the system changes from insulating to

metallic, known as the Mott Metal-Insulator Transition.

One of the reasons the Hubbard model is being examined is that it is closely

analogous to the descriptions of the FH model we have been exploring. In the present

work, the FH model is being studied as a tight-binding-like system, a chain of N

fragments which may interact with nearest neighbors, and are each allowed to occupy

the charge states ζ = 0,−,+, as in the examples from section 9.1. The Hubbard

Hamiltonian also describes a system of nearest-neighbor interacting sites which may

host 0, 1 or 2 electrons, corresponding to charge states ζ = +, 0, and −, respectively.

Consider equation (9.11). This may be recast as

ĤA = HA
00 +




0 HA
0− HA

0+

HA
−0 HA

−− −HA
00 HA

−+

HA
+0 HA

+− HA
++ −HA

00


 . (8.6)

We can make the identifications, HA
−− − HA

00 = −E and HA
++ − HA

00 = EI , taking

fragment A to be an atomic site as in the Hubbard model. Then we have an analogous

quantity UFH = HA
−− +HA

++ − 2HA
00. This is an example of why the Hubbard model

was chosen to compare against, as it has some features which correspond to the

treatment of the FH model presented in the next chapter. The correspondence is not

exact, however, as the FH model depends on some variables different to those in the

Hubbard model, as we will see.

The place to begin almost any study is with a simple example. In the next sections

the dynamics of the smallest nontrivial system available will be examined. A ring

geometry is imposed on a two-site system, and a comparison of the current-carrying

behavior is made between the tight-binding, Hubbard, and FH models.

8.2 Current on a Two-Site Ring

In this section we will be looking at the current-carrying behavior of (a non-Hubbard)

tight-binding chain consisting of two sites as a means of introducing some formalism,

and establishing a baseline. One might intuitively suspect that an isolated two-site

system cannot support a current. The amount of charge traveling from site 1 to site
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8.2 Current on a Two-Site Ring

2 is the same as that traveling from site 2 to site 1, resulting in zero net current. In

order to avoid this, we impose a ring geometry on the system by applying a phase

factor to the hopping matrix elements that is sensitive to the direction of travel; eiφ

for clockwise, and e−iφ for counter-clockwise. These so-called Peierls phase factors

arise if the motion is restricted to a ring that is threaded by a magnetic flux, as

in Figure 8.2. We then calculate the ground state energy as a function of φ. The

Figure 8.2: A simple visualization of a ring of sites. An imposed magnetic field threads
the ring, imparting a phase factor with sign depending on the direction of travel.

(diamagnetic) moment for a magnetic field B can be defined as µ = ∂E(φ)
∂B

, and since

µ = IS (where S is the area enclosed by the ring), this defines a current I = 1
S
∂E(φ)
∂B

.

The idea of using magnetic response as a diagnostic for the onset of a Mott

metal/insulator transition dates back to a 1964 paper by Kohn [84]. The idea was to

consider the AC electric conductivity in the limit of low frequencies. For a metallic

state resembling a free Fermi gas at T = 0 K, one anticipates that the imaginary part

of the conductivity,

σ′′ (ω) ∼ −ne
2

m∗ω
,

diverges as a simple pole in ω. According to Kohn, the important question is, as the

distance between the atoms increases, does the effective mass m∗ increase monotoni-

cally, or is there a critical value of atomic separation beyond which the residue of the
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8.2 Current on a Two-Site Ring

pole vanishes abruptly, i.e.,

lim
ω→0

ωσ′′ (ω) = 0.

The residue has come to be known as the “charge stiffness” [85]. The AC electric field

E exp(iωt) may be introduced formally via the vector potential A, where the system

is imagined to be in the shape of a ring of radius R that is threaded by a time-varying

magnetic field, giving

~A =
}
e
k φ̂

where k = eE
i}ω exp(iωt). From time-dependent perturbation, Kohn showed that

lim
ω→0

ωσ′′ (ω) =

( −1

2πR

)
∂2E

∂k2
(8.7)

where E is the ground state energy of the system.

Instead of considering an ac electric field generated by a changing magnetic flux

in the limit of low frequency, one could consider the ring to be subjected to a uniform

magnetic field B. In such a case, the vector potential will be

~A =
1

2
Brφ̂

The magnetic moment

µ = −∂E(B)

∂B
≡ πR2I

is given by the change in the ground state energy with respect to B, and is formally

related to the product of the current I and the area of the ring. The second derivative

with respect to B gives the magnetic susceptibility,

χ =
∂µ

∂B
= −∂

2E(B)

∂B2
. (8.8)

Comparing (8.7) and (8.8), noting that BR
2

replaces eE
i}ω , we see that Kohn’s “charge

stiffness” is equivalent to measuring the diamagnetic susceptibility. Whether or not

he was aware of it, at the end of the day, Kohn was suggesting that one use the

diamagnetic susceptibility of a ring as a way to characterize the Mott transition.

Consider the Hamiltonian (7.2) for a ring of sites. In Dirac notation with E0 = 0,
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it is expressed

H = −V
∑

m

(|m〉〈m+ 1|+ |m+ 1〉〈m|) , (8.9)

The effect of a magnetic field is incorporated by inserting phase factors so that

H = −V
∑

m

(
eiφ|m〉〈m+ 1|+ e−iφ|m+ 1〉〈m|

)
. (8.10)

Before continuing further, it should be made clear that the Peierls phase factors

can be understood by bringing in the magnetic field through a gauge transformation.

Recall that the Hamiltonian for a (positive) charge in the presence of a vector potential

~A is,

H =

(
~P − e ~A

)2

2me

+ V, (8.11)

where ~P = −i~~∇ is the momentum, and V is some potential. Consider the Schrödinger

equation,

HΨ = EΨ. (8.12)

Making the gauge transformation,

Ψ̃ = e−i
e
~
∫
~A·d~lΨ, (8.13)

we have

Hei
e
~
∫
~A·d~lΨ̃ = Eei

e
~
∫
~A·d~lΨ̃. (8.14)

Note now that (
~P − e ~A

)
ei
e
~
∫
~A·d~lΨ̃ = ei

e
~
∫
~A·d~l
(
~P Ψ̃
)
. (8.15)

Therefore, it follows that,

Hei
e
~
∫
~A·d~lΨ̃ = ei

e
~
∫
~A·d~l
(

~P 2

2me

+ V

)
Ψ̃ = Eei

e
~
∫
~A·d~lΨ̃

→
(

~P 2

2me

+ V

)
Ψ̃ = EΨ̃. (8.16)

This tells us that if Ψ̃ are eigenfunctions of H in the absence of a magnetic field, then

Ψ = ei
e
~
∫
~A·d~lΨ̃ are the eigenfunctions in the presence of a magnetic field. In terms of
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our tight-binding basis states, this means that,

|m〉with field = ei
e
~
∫
~A·d~l|m〉without field. (8.17)

It follows that

φm =
e

~

∫
~A · d~l =

e

~
Ama =

e

~
πB0r

2

2
=
eB0S

2~
, (8.18)

where B0 is the magnitude of the magnetic field, and a is the spacing between sites,

so that ma is the distance along the ring. For two adjacent sites |m〉 and |m ± 1〉,
the phase accumulated in a single hop (in units of a) is

〈m|m± 1〉 = e−i
e
~Amei

e
~A(m±1) = e±i

e
~A = e±iφ. (8.19)

We return now to the discussion of current on the ring of sites. Using the LCAO

representation (7.1)

Ψ =
∑

m′

Cm′|m′〉, (8.20)

the time-independent Schrödinger equation takes the form

HΨ = −V
∑

m,m′

(
eiφCm′|m〉〈m+ 1|m′〉+ e−iφCm′ |m+ 1〉〈m|m′〉

)

= −V
∑

m,m′

(
eiφCm′|m〉δm+1,m′ + e−iφCm′|m+ 1〉δm,m′

)

E
∑

m

Cm|m〉 = −V
(
eiφCm+1|m〉+ e−iφCm|m+ 1〉

)
. (8.21)

Closing with 〈n| from the left,

E
∑

m

Cm〈n|m〉 = −V
(
eiφCm+1〈n|m〉+ e−iφCm〈n|m+ 1〉

)

E
∑

m

Cmδn,m = −V
(
eiφCm+1δn,m + e−iφCmδn,m+1

)
. (8.22)

Applying the Kronecker δ’s and then letting n→ m we have

ECm = −V
(
eiφCm+1 + e−iφCm−1

)
. (8.23)

Since we are concerned with a two site system, m+ 1 and m− 1 both correspond to
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the same site. This means the above equation reduces to a pair of equations

EC1 = −2V cosφC2 (8.24)

EC2 = −2V cosφC1, (8.25)

with energy eigenvalues

E = ±2V cosφ. (8.26)

For the current in the ground state Eg = −2V cosφ, we have,

I =
1

S

∂Eg
∂B

=
∂Eg
∂B0S

=
e

2~
∂Eg
∂φ

=
eV

~
sinφ, (8.27)

a current which varies sinusoidally with φ. The expression for the current due to a

charge on a ring may also be derived using the Feynman-Hellman theorem, found in

Appendix D.

We may alternatively talk about current in terms of the velocity operator for an

electron on a chain. First, consider the position operator,

x̂ =
∑

m

|m〉〈m|ma, (8.28)

where a is the spacing between sites. The velocity operator is

v̂ =
dx̂

dt
=
i

~
[H, x̂]. (8.29)

To evaluate this commutator, we insert (8.10) and (8.28).

Hx̂ = −V
∑

m

(
eiφ|m〉〈m+ 1|+ e−iφ|m+ 1〉〈m|

)∑

n

|n〉〈n|na

= −V
∑

m

(
eiφ|m〉〈m+ 1|(m+ 1)a+ e−iφ|m+ 1〉〈m|ma

)
(8.30)

Likewise,

x̂H = −V
∑

m

(
eiφ|m+ 1〉〈m|(m+ 1)a+ e−iφ|m〉〈m+ 1|ma

)
. (8.31)
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Putting this all together, the velocity operator is

v̂ = − i
~
V a
∑

m

(
eiφ|m〉〈m+ 1| − e−iφ|m+ 1〉〈m|

)
. (8.32)

For a two site system with periodic boundary conditions, this becomes

v̂ = − i
~
V a
(
eiφ|1〉〈2| − e−iφ|2〉〈1|

+eiφ|2〉〈1| − e−iφ|1〉〈2|
)
, (8.33)

which reduces to

v̂ =
2V a

~
sinφ (|1〉〈2|+ |2〉〈1|) . (8.34)

The ground state of the system, corresponding to E = −2V cosφ, is |GS〉 = 1√
2
(|1〉+

|2〉). The expectation value of the velocity operator in the ground state is

〈GS|v̂|GS〉 =
2V a

~
sinφ. (8.35)

Since the current is defined to be I = ev
na

, where n is the number of sites in the ring,

we have

I =
eV

~
sinφ, (8.36)

which is the same as (8.27).

8.3 Current on a Two-Site Hubbard Ring

We now turn our attention back to the Hubbard model. The system in question is

the same two-site ring as in the previous section, with the addition of the on-site

coulomb interaction mediated by the Hubbard U .

The Hubbard Hamiltonian for an isolated two site system can be represented as

Hhub =− V (a†1↑a2↑ + a†2↑a1↑ + a†1↓a2↓ + a†2↓a1↓)

+ Uhub(a†1↑a1↑a
†
1↓a1↓ + a†2↑a2↑a

†
2↓a2↓). (8.37)
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The basis states for this system at half filling are

a†1↑a
†
2↑|0〉 = |s↑↑〉

a†1↓a
†
2↓|0〉 = |s↓↓〉

a†1↑a
†
2↓|0〉 = |s1〉

a†1↓a
†
2↑|0〉 = |s2〉

a†1↑a
†
1↓|0〉 = |d1〉

a†2↑a
†
2↓|0〉 = |d2〉 (8.38)

The first two states are referred to as “spin polarized”, and are eigenstates of the

Hamiltonian with eigenvalue zero, meaning they don’t couple to any other states and

can be ignored [81]. The remaining states are the singly occupied states (|s1〉 and

|s2〉) and the doubly occupied states (|d1〉 and |d2〉). Using the (s1, s2, d1, d2) basis,

the Hamiltonian has the form

H =




0 0 −V −V
0 0 −V −V
−V −V Uhub 0

−V −V 0 Uhub



. (8.39)

The analysis can be simplified by introducing the linear combinations,

|s±〉 =
1√
2

(|s1〉 ± |s2〉) , (8.40)

|d±〉 =
1√
2

(|d1〉 ± |d2〉) . (8.41)

In the (s+, s−, d+, d−) basis, the Hamiltonian matrix elements are

H =




0 0 −2V 0

0 0 0 0

−2V 0 Uhub 0

0 0 0 Uhub



. (8.42)

Conveniently, the states s− and d− completely decouple from the others, with eigen-

values 0 and Uhub respectively. Neither corresponds to the ground state, as we will

see. Writing the remaining Hamiltonian in terms of the coupled states s+ and d+, we
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have a 2× 2 operator,

H =

(
0 −2V

−2V Uhub

)
, (8.43)

with eigenvalues

E =
1

2

(
Uhub ±

√
U2

hub + 16V 2

)
. (8.44)

The normalized ground state |GS〉, corresponding to Eg = 1
2

(
Uhub −

√
U2

hub + 16V 2
)

,

is

|GS〉 =
−2V√

4V 2 + E2
g

|s+〉+
Eg√

4V 2 + E2
g

|d+〉. (8.45)

The next step is to put the two-site system on a ring, and introduce a magnetic

field. For the specific case of a two-site ring, something interesting occurs. On a

ring larger than two sites, a charge may traverse one direction and acquire a phase,

or it may traverse the opposite direction and acquire the opposite phase. On a

two-site ring, the charge has the possibility to reach the other site by traveling either

direction around the ring, as pictured in Figure 8.3. As a result, both of the transitions

described in equation (8.9) have a sum of the phases corresponding to moving either

direction attached to them,

|m〉〈m+ 1| → |m〉〈m+ 1|
(
eiφ + e−iφ

)
,

|m+ 1〉〈m| → |m+ 1〉〈m|
(
eiφ + e−iφ

)
.

This is equivalent to,

V →
(
V eiφ + V e−iφ

)
= 2V cosφ. (8.46)

Consequently, equation (8.43) now takes the form

H =

(
0 −4V cosφ

−4V cosφ Uhub

)
, (8.47)

with energy eigenvalues

E =
1

2

(
Uhub ±

√
U2

hub + 64V 2 cos2 φ

)
. (8.48)
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8.3 Current on a Two-Site Hubbard Ring

Figure 8.3: A diagram of a two-site ring, in which a charge may move to the opposite
site by traveling either direction around the ring.
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8.3 Current on a Two-Site Hubbard Ring

The ground state energy corresponds to

Eg =
1

2

(
Uhub −

√
U2

hub + 64V 2 cos2 φ

)
. (8.49)

For an energy eigenvalue E, the current is I = −∂E
∂φ

,

I = −∂Eg
∂φ

=

(
16V 2 sinφ cosφ√
U2

hub + 64V 2 cos2 φ

)
. (8.50)

Note that in the limit Uhub → 0, equation (8.50) reduces to I = 2V sinφ, verifying

equation (8.35). The current as a function of φ is plotted in Figure 8.4. The current

Figure 8.4: The current I on a two site ring as a function of φ at Uhub = V = 1. It
exhibits a rapid reversal near φ = 2n+1

2 π.

is oscillatory, with a rapid change of sign near φ = 2n+1
2
π.

An important question to ask is, “Does the limiting behavior of this current make

sense?” In particular, we expect the current to fall off for small values of the ratio
V

Uhub
. As Uhub gets large relative to V , we expect the system to look something like a

Mott-Hubbard insulator. The two-site Hubbard ring does not correspond to a system

which would exhibit a sudden Mott transition, however. The current I(U) in (8.50)

tends to zero continuously as Uhub →∞.

In the interest of examining the behavior of the current as a function of Uhub and
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8.3 Current on a Two-Site Hubbard Ring

V , let φ be fixed at φ = π
4
. For the case that V = 1, the dimensionless current I(U)

appears in Figure 8.5. This exhibits the behavior that one would expect, specifically

Figure 8.5: The current I on a two site ring as a function of the Hubbard U for φ = π
4

and V = 1. As one would expect, the current falls off as Uhub is increased.

that the magnitude of the current decreases as Uhub grows. In addition, the current

should diminish as the interaction V decreases, all else being equal. To check for

this behavior, I(U) is plotted for V = 0.5 in Figure 8.6. As one would expect, the

current is smaller for a smaller value of V at corresponding values of Uhub. This result

is interesting due to the fact that it does not share the behavior of the infinite 1D

chain solution found by Lieb and Wu [79]. On an infinite chain, they predict that the

system is insulating for any nonzero value of Uhub, whereas the solution for a two-site

ring predicts that the system will always conduct.

In the next chapter, we will discuss the Fragment Hamiltonian. After making

some definitions and constructing a bit of formalism, the current carrying behavior of

the FH model on a ring will be examined, for two sites, and for larger rings. Having

these results for the Hubbard model, we can compare the behavior of the FH model

against them.
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8.3 Current on a Two-Site Hubbard Ring

Figure 8.6: The current I on a two site ring as a function of the Hubbard U for φ = π
4

and V = 0.5. The current is smaller than the case of a larger V = 1 for corresponding
values of Uhub.
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9

Exploring the Fragment Hamiltonian

In this chapter, we will begin by giving a definition of the Fragment Hamiltonian.

Following that is a discussion of the behavior of the FH model on a ring of sites,

analogous to the tight-binding and Hubbard systems described in chapters 7 and 8.

By exercising the FH model in this way, comparing the behavior to traditional solid

state methods can serve as a diagnostic.

9.1 Defining the Fragment Hamiltonian

Modern materials science relies heavily on families of electronic structure and “atom-

istic” methods to describe systems [86–89]. Electronic structure methods include

Density Functional Theory (DFT) [90], configuration interaction (CI) [91], and tight-

binding (TB). These approaches are concerned with extracting the states of the elec-

trons in a system. Broadly speaking, an atomistic model is one in which a large

molecule or bulk structure is represented by a set of atomic sites connected by chem-

ical bonds. The interaction between sites due to the electrons and the interaction

between sites and electrons is described by a potential, often referred to as a “force

field”, which is built from contributions due variously to inter-atomic bond stretching,

bending, torsion, and other effects. These force fields are largely empirically deter-

mined. The goal at present is the development of a description in terms of fragments,

in an effort to theoretically construct a force field. In this section, the basic definition

of FH model will be presented.
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9.1 Defining the Fragment Hamiltonian

In electronic structure methods the building blocks are single electrons and their

states. In a system constructed from fragments, however, the granularity is more

coarse. The fundamental quantities may be the charge states of whole atoms, or even

molecules [4]. Consider the wavefunction for an entire system,

ψ(Ne) =
∑

i

ciψi(Ne). (9.1)

Ne is the number of electrons in the system, the ci’s are the state amplitudes, and

the states i represent possible configurations of the electrons (as opposed to indexing

sites on a lattice). For example, in the case of Ne = 1 on a tight-binding chain of size

N , the wavefunction is a superposition of the electron being located at site 1, site 2,

and so forth all the way up to site N , viz.,

|ψ(1)〉 =
∑

i

ci|1, 2, . . . , N − 1, N〉

= c1|1, 0, 0, . . .〉+ c2|0, 1, 0, . . .〉+ . . . (9.2)

Next, let us define a fragment A. The wavefunction describing a fragment is

ψA(Ne) ≡
∑

ζ

CAζψAζ(Ne). (9.3)

The index ζ represents a possible charge state for a fragment. To clarify the term

“charge state”, suppose that fragment A is an atom which is allowed to be neutral,

be missing an electron (cation), or be host to one extra electron (anion). There are

then three allowed charge states, A0, A−, and A+. This means the allowed values of

ζ are ζ = 0,−,+ (cf. Figure 6.1).

The wavefunction for a specific charge state of a fragment, ψAζ(Ne), is defined as

ψAζ(Ne) ≡
1

CAζ

∑

i

δζ,ζAi ciψi(Ne). (9.4)

This wavefunction is a superposition of all of the configurations i which leave the

fragment A in charge state ζ. Consider for example, a system consisting of three

species of atoms, A, B, and C which are allowed to take on the neutral, cation, or

anion states as above, and let them share charge with one another. If the half-filling
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9.1 Defining the Fragment Hamiltonian

constraint that there be an average of one electron per atom in the system is imposed,

then there are three configurations which leave fragment A in the A0 state. In the

(Aζ , Bζ , Cζ) basis they are

|ψ1〉 ≡ (A0, B0, C0)

|ψ2〉 ≡ (A0, B−, C+)

|ψ3〉 ≡ (A0, B+, C−)

Therefore, the wavefunction for the fragment state A0 is

ψA0(Ne) =
1

CA0

(c1ψ1(Ne) + c2ψ2(Ne) + c3ψ3(Ne)) . (9.5)

It is now that we finally arrive at the Hamiltonian part of the Fragment Hamil-

tonian formalism. The total electronic Hamiltonian for some fragment A is given

by,

ĤA = T̂A + V̂A + V̂ ee
A . (9.6)

The operator T̂A is the kinetic energy of the electrons associated with fragment A; V̂A

is the electron interaction with the nucleus of the fragment; V̂ ee
A is the electron-electron

interaction on fragment A. In the general case, following the reasoning of Moffitt [92],

the total electronic Hamiltonian may be rewritten as the Fragment Hamiltonian

Ĥ =
∑

A

ĤA +
1

2

∑

A 6=B
V̂AB, (9.7)

where A and B index the different fragments, and V̂AB is the interaction between

fragments. The expectation value of the energy for a fragment is

ĒA =
∑

ζ,ζ′

CAζCAζ′H
A
ζζ′ . (9.8)

The term HA
ζζ′ is defined as

HA
ζζ′ ≡ 〈ψAζ |ĤA

ζζ′|ψAζ′ 〉, (9.9)

where

ĤA
ζζ′ ≡

ĤA
ζ + ĤA

ζ′

2
. (9.10)
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9.1 Defining the Fragment Hamiltonian

On the right side of equation (9.10), the ĤA
ζ terms represent the on-fragment energy of

fragment A while in charge state ζ. As such, ĤA
ζζ′ on the left side of (9.10) represents

the change in energy when transitioning from charge state ζ to ζ ′. The decision

for ĤA
ζζ′ to be the average of the operators for the two different charge states was

somewhat arbitrary, and is currently a working definition. However, the form makes

intuitive sense, and also preserves Hermiticity [4].

As a simple example, consider again a fragment A which is allowed to take on

charge states ζ = 0,−,+ (neutral, anion, cation, as before). Given the above defini-

tions, the matrix for ĤA looks like

ĤA =




HA
00 HA

0− HA
0+

HA
−0 HA

−− HA
−+

HA
+0 HA

+− HA
++


 , (9.11)

Note that for the diagonal terms, HA
ζζ = HA

ζ .

The interaction energy between fragments, V̄AB, is defined similarly;

V̄AB =
∑

ζ,ζ′

CAζCBζ′V
AB
ζζ′ . (9.12)

The factor V AB
ζζ′ represents the energy from the coulomb interaction between fragment

A in charge state ζ with fragment B in charge state ζ ′.

The total energy of the system is

Ē =
∑

A

(
ĒA +

1

2

∑

A 6=B
VAB

)
. (9.13)

At this level, the Fragment Hamiltonian model is still very general in its formula-

tion. The Fragment Hamiltonian describes a system in terms of fragment quantities,

but the model itself does not place constraints on how large or small a fragment is.

That is a choice which must be made dependent on the type of system being de-

scribed. For example, the sites in the hopping system illustrated in Figure 6.1 could

readily be defined as fragments. In the context of charge hopping in Part 1, the

focus is on the presence of an electron or hole in a molecular orbital at a site. In

the context of fragments, however, the focus is on the charge states of the fragments,
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which change as the charge shifts from site to site, and how the energy of the system

changes as the charge configuration changes.

This may make the FH model something of a double-edged sword. The ability to

describe systems which are not highly regular or completely periodic is very powerful,

but the success of the model depends on carefully defining what the fragments are

which compose the system.

9.2 A Tight-Binding-Like Description of the Frag-

ment Hamiltonian Model

In this section the Fragment Hamiltonian will be written to describe a chain of iden-

tical fragments, in the spirit of tight-binding. Consider a 1D chain of identical atoms,

each of which can occupy three possible charge states, labeled +, 0, and − (Cation,

neutral, and anion, respectively). These atoms, labeled as sites m, will serve as the

fragments in our system. We are working in a basis of fragment charge states, i.e.,

|ψAζ〉 → |mζ〉, (9.14)

where |ψAζ〉 corresponds to equation (9.4). It then follows that equation (9.3) takes

the form,

|m〉 = C+
m|m+〉+ C0

m|m0〉+ C−m|m−〉. (9.15)

For an interaction between fragments VAB that is restricted to nearest neighbors, the

time-independent Schrödinger equation is

E
∑

m

|m〉 = H
∑

m

|m〉 =
∑

m

(∑

m′

Ĥm′ +
1

2

∑

m′=m±1

V̂m,m′

)
|m〉. (9.16)

Closing with 〈m′| from the left,

E
∑

m

〈m′|m〉 =
∑

m

(∑

m′

〈m′|Ĥm′ +
1

2

∑

m′=m±1

〈m′|V̂m,m′
)
|m〉. (9.17)
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At this point, it is helpful to write out the explicit forms of Ĥm′ and V̂m,m′ . The

on-fragment term Ĥm′ is

Ĥm′ =




Hm′
00 Hm′

0− Hm′
0+

Hm′
−0 Hm′

−− Hm′
−+

Hm′
+0 Hm′

+− Hm′
++


 =




ε0 0 0

0 ε− 0

0 0 ε+


 , (9.18)

with on-fragment energies εζ , and the vanishing off-diagonal terms indicating that

fragments are not allowed to change their charge state independently of their neigh-

bors in this description. The fragment-fragment interaction term V̂m,m′ is,

V̂m,m′ =



−V00 −V0− −V0+

−V−0 −V−− −V−+

−V+0 −V+− −V++


 , (9.19)

where the matrix elements Vζ,ζ′ are the interaction between a fragment in charge state

ζ and its neighbor in charge state ζ ′.

Inserting equations (9.18) and (9.19) into (9.17) yields a system of three equations

for the charge state amplitudes Cζ
m,

EC0
m =− V0+C

+
m−1 − V00C

0
m−1 − V0−C

−
m−1

− V0+C
+
m+1 − V00C

0
m+1 − V0−C

−
m+1 + ε0C

0
m, (9.20)

EC−m =− V−+C
+
m−1 − V−0C

0
m−1 − V−−C−m−1

− V−+C
+
m+1 − V−0C

0
m+1 − V−−C−m+1 + ε−C

−
m, (9.21)

EC+
m =− V++C

+
m−1 − V+0C

0
m−1 − V+−C

−
m−1

− V++C
+
m+1 − V+0C

0
m+1 − V+−C

−
m+1 + ε+C

+
m. (9.22)

Equations (9.20), (9.21), and (9.22) should be compared with equation (7.5) for the

one-electron Schrödinger equation for the tight-binding Hamiltonian. The structure

describes the evolution of a state amplitude, formerly Cm giving the amplitude for

an electron on the mth site, and now Cζ
m gives the amplitude that the mth site
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carries a charge ζ. Formerly, there were N possible states for the system, describing

the number of ways an electron can occupy the N sites. Now there are 3N possible

states, corresponding to the 3N ways to excite the system by charging one of the sites.

The Hilbert space is greatly contracted from the 2N possible states of the Hubbard,

and at best represents the Hubbard model in a mean-field approximation. How to

express such a mean-field theory remains to be seen, and is the subject of current

research. Leaving that issue aside, let us move onward to address several observables,

• Energy eigenvalues

• Current on a ring

• Net charge of the system

9.2.1 Energy Eigenvalues

Having reached the limit of what can be gleaned in site space, let us make a discrete

Fourier transform (cf. section 7.5),

i~Ċ0
k =− (V0+C

+
k + V00C

0
k + V0−C

−
k )eik

− (V0+C
+
k + V00C

0
k + V0−C

−
k )e−ik + ε0C

0
k , (9.23)

i~Ċ−k =− (V−+C
+
k + V−0C

0
k + V−−C

−
k )eik

− (V−+C
+
k + V−0C

0
k + V−−C

−
k )e−ik + ε−C

−
k , (9.24)

i~Ċ+
k =− (V++C

+
k + V+0C

0
k + V+−C

−
k )eik

− (V++C
+
k + V+0C

0
k + V+−C

−
k )e−ik + ε+C

+
k , (9.25)

where k has once again been taken to be dimensionless by letting ka → k. Taking

the familar ansatz, Cζ
k(t) = Cζ

0ke
− iEt~ , the three equations above become,

(ε0 − E)C0
k − 2 cos k(V0+C

+
k + V00C

0
k + V0−C

−
k ) = 0, (9.26)

(ε− − E)C−k − 2 cos k(V−+C
+
k + V−0C

0
k + V−−C

−
k ) = 0, (9.27)

(ε+ − E)C+
k − 2 cos k(V++C

+
k + V+0C

0
k + V+−C

−
k ) = 0, (9.28)
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9.2 A Tight-Binding-Like Description of the Fragment Hamiltonian
Model

which may be expressed in matrix form as,




(ε0 − E)− 2V00 cos k −2V0− cos k −2V0+ cos k

−2V−0 cos k (ε− − E)− 2V−− cos k −2V−+ cos k

−2V+0 cos k −2V+− cos k (ε+ − E)− 2V++ cos k


 = 0.

(9.29)

Taking the determinant of (9.29) equal to zero gives the following characteristic

equation,

(E − ε− + 2V−− cos k)×
[
(E − ε0 + 2V00 cos k)(E − ε+ + 2V++ cos k)− 4V0+V+0 cos2 k

]
+

(4V−+ cos2 k) [V+−(ε0 − E) + 2(V0−V+0 − V00V+−) cos k] +

(4V−0 cos2 k) [V0−(ε+ − E) + 2(V0+V+− − V0−V++) cos k] = 0. (9.30)

While unwieldy, this expression is easily solved using computer algebra software. In

this case, Mathematica was used.

9.2.2 Matrix Elements of the Fragment Hamiltonian

Before examining the solutions of equation (9.30), an aside on the components of the

Fragment Hamiltonian. The Hamiltonian matrix in k-space H̃ may be extracted from

equation (9.29) as,

H̃ =




ε0 0 0

0 ε− 0

0 0 ε+


+−2




V00 V0− V0+

V−0 V−− V−+

V+0 V+− V++


 cos k. (9.31)

As mentioned previously, this formulation of the Fragment Hamiltonian has some fea-

tures in common with the Hubbard Hamiltonian. For example, the on-site repulsion

term in the Hubbard model, Uhub = EI − E = E(anion) + E(cation) − 2E(neutral)

has an analog in the Fragment Hamiltonian, where UFH = ε− + ε+ − 2ε0. We also

believe that the matrix elements Vζζ′ correspond to transitions between bands, these

bands being analogous to the upper and lower Hubbard bands.
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9.2.3 The Fragment Hamiltonian Band Structure

Samples of the numerical solutions to equation (9.30) for some different sets of pa-

rameters will now be presented. In Figure 9.1, a plot of the dispersion and the cor-

responding DOS appears for some baseline parameter values which are listed. Since

Figure 9.1: A sample of the dispersion curves and DOS for the Fragment Hamiltonian
modeled on a 1D chain. For this choice of parameters, the bands do not cross.

(9.30) is cubic in E(k), three bands appear. For this particular choice of parameters,

the bands never actually cross, but there is a small amount of energetic overlap.

A second example is presented in Figure 9.2. The values of the parameters rep-

resented in these plots were chosen more aggressively, such that the bandgaps have

closed.

The important question to ask is, “What is the meaning of these bands?” Are

they analogous to bands for non-interacting electrons in the tight-binding model, the

bands that arise when there is a lattice with a basis (such as in section 7.5)? If so,

do we think of the charge on a site as being a fermion? How many charged sites

are there at 0K? Presumably, at T = 0, everything is neutral on average, but these
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Figure 9.2: A sample of the dispersion curves and DOS for the Fragment Hamiltonian
modeled on a 1D chain. The choice of parameters was made for this case such that the
bandgaps close.
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changes represent quantum fluctuations which allow the system to lower its energy.

The ground state is thus the lowest possible state formed in the three-band manifold,

and occurs at k = 0 in the lowest band.

Another issue has to do with the overall charge in the system. An eigenvalue E(k)

corresponds to a state amplitude Ck composed of a linear combination of C+
k , C0

k , and

C−k , which in turn correspond to the amplitudes for charging the sites m. The charge

in the system can be calculated by introducing the (dimensionless) charge operator,

Q̂ =
∑

m

(
|m+〉〈m+| − |m−〉〈m−|

)
. (9.32)

The expectation value of this operator in a state,

|ψ〉 = C+
k |ψ+

k 〉+ C0
k |ψ0

k〉+ C−k |ψ−k 〉 (9.33)

is exactly what one would anticipate,

Qk = 〈ψ|Q̂|ψ〉 = |C+
k |2 − |C−k |2. (9.34)

If this is not zero, one can always make the system neutral overall by introducing a

uniform background of compensating charge −Qk. The difficulty comes when we look

at the response of the system to an external perturbation. We will find it necessary

to bring in different amounts of compensatory charge for different magnetic fields,

which requires bringing in the chemical potential and looking at the free energy.

9.3 Chemical Potential and Variational Methods

The FH set of basis states does not in general maintain a constant charge. That is,

if you assume a trial wavefunction,

|ψ〉 =
∑

m

(
C+
m|ψ+

m〉+ C0
m|ψ0

m〉+ C−m|ψ−m〉
)
, (9.35)

then, as you vary the coefficients to find the lowest value for 〈H〉, one finds that 〈Q〉
changes. While this is an annoyance if our intent is to describe a system at constant

Q, it is not without precedent to encounter this type of thing in a variational scheme.
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For example, in Schrieffer’s variational approach to the problem of superconductivity

(BCS theory) [93], he took a trial wavefunction that did not conserve the number of

electrons as its parameters were varied. Rather than search for an alternate method

of solution, he chose to minimize the auxiliary quantity,

F = 〈H − µN〉. (9.36)

This “Lagrange multiplier scheme” may be used to enforce charge conservation. To

this end, we will minimize the free energy,

〈F 〉 =
〈H − µQ〉
〈ψ|ψ〉 . (9.37)

The normalization 〈ψ|ψ〉 can be imposed by introducing an additional Lagrange mul-

tiplier E to the auxiliary function,

〈F̃ 〉 = 〈F 〉 − EF 〈ψ|ψ〉 = 〈ψ|H − µQ− EF |ψ〉. (9.38)

Varying 〈F̃ 〉 with respect to the expansion coefficients Cζ
m leads to the same set of

coupled equations as (9.20)-(9.22), with the addition of the chemical potential to

preserve charge, as we will see.

9.4 Current on a Ring in the Fragment Hamilto-

nian Model

In order to make contact with the results from Chapter 8, we will now examine the

current carrying behavior of the FH model on a ring.

Consider a large ring of m identical fragments. In the presence of a magnetic field,

the charges pick up phase φm corresponding to how far around the ring they have

traveled (see Figure 8.2). The wavefunctions acquire a phase,

Ψ+
m → Ψ+

me
2iφm,

Ψ0
m → Ψ0

me
iφm,

Ψ−m → Ψ−m.
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In k-space, these amplitudes become

Ψ+
k+2φ =

∑

m

ei(k+2φ)mΨ+
m,

Ψ0
k+φ =

∑

m

ei(k+φ)mΨ0
m,

Ψ−k =
∑

m

eikmΨ−m.

The Hermitian charge operator Q̂ defined in equation (9.32) has an expectation

value in the state

|ψ〉 = C+
k+2φ|ψ+

k+2φ〉+ C0
k+φ|ψ0

k+φ〉+ C−k |ψ−k 〉 (9.39)

that is what one would expect it to be, namely,

〈ψ|Q̂|ψ〉 = |C+
k+2φ|2 − |C−k |2. (9.40)

Setting the variation δ〈F̃ 〉 = 0 gives the following set of equations,




(ε+ − µ− EF ) 0 0

0 (ε0 − EF ) 0

0 0 (ε− + µ− EF )







C+
k+2φ

C0
k+φ

C−k


+

2 cos (k + φ)



−V++ −V+0 −V+−

−V0+ −V00 −V0−

−V−+ −V−0 −V−−







C+
k+2φ

C0
k+φ

C−k


 = 0. (9.41)

We set the determinant of this matrix to zero and look for the lowest eigenvalues

E(k, φ). This eigenvalue is the lowest value of the free energy, F = H − µQ.

The current response of the system is what we are after. Define the current at

constant charge Q as,

IQ =

(
∂〈H〉
∂φ

)

Q

=

(
∂EH
∂φ

)

Q

, (9.42)

where EH are the eigenvalues of H (as opposed to EF , which are the eigenvalues of

the auxiliary quantity F ). Also define the current at constant chemical potential µ
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9.4 Current on a Ring in the Fragment Hamiltonian Model

as,

Iµ =

(
∂〈F 〉
∂φ

)

µ

=

(
∂EF
∂φ

)

µ

. (9.43)

We would like to know the value of IQ, but in order to constrain the charge in

the system to be constant, we are forced to work with the eigenvalues EF . Given

knowledge of the values EF , how does one find IQ? First, note that the charge Q is

given by,

Q =

(
∂F

∂µ

)

φ

, (9.44)

which gives us a relation between Q, µ, and φ. This allows us to find,

µ = µ(Q, φ), (9.45)

as a function of Q and φ. Making a formal Legendre transformation to H,

H(Q, φ) = F (µ(Q, φ), φ) +Qµ(Q, φ). (9.46)

Finally, let us take a derivative with respect to φ at constant Q, which gives,

IQ =

(
∂〈H〉
∂φ

)

Q

=

(
∂〈F 〉
∂φ

)

µ

+

(
∂〈F 〉
∂µ

)

φ

(
∂µ

∂φ

)

Q

+Q

(
∂µ

∂φ

)

Q

= Iµ +

(
∂µ

∂φ

)

Q

[(
∂〈F 〉
∂µ

)

φ

+Q

]
= Iµ, (9.47)

since the term in square brackets is zero.

With the result IQ = Iµ in hand, the next step is to seek a numerical solution

to Iµ =
(
∂EF
∂φ

)
µ
. To that end, we tabulate values of EF (µ, φ), choosing the lowest

value of EF at each step to be the ground state. In addition, for a given value of φ,

µ is found such that Q remains constant. We then calculate an accompanying list

EF (µ, φ + δφ) while not changing the values of µ. Finally, a numerical derivative is

taken,

Iµ(µ, φ) =
EF (µ, φ+ δφ)− EF (µ, φ)

δφ
. (9.48)

At each value of φ, the value of k must be chosen corresponding to the lowest en-

ergy eigenvalue. Since these eigenvalues are a function of cos(k+φ), as φ is increased,

the value of k will change periodically to keep the system in the ground state. For
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9.4 Current on a Ring in the Fragment Hamiltonian Model

the case of a two-site ring, the only allowed values of k are 0 and π, since k = 2πn
N

,

where N is the number of sites. At φ = π
2
, the value of k changes, resulting in a step

as pictured in Figure 9.3. The oscillatory behavior of the current in Figure 9.3 resem-

ε+ = UFH

ε0 = 0

ε− =
UFH

2

V00 = 0.5

V++ = V−− = 0.8

V0+ = V+0 = V0− = V−0 = 0.1

V+− = V−+ = 0.1

Figure 9.3: The current on a two-site FH ring for the parameters listed. As φ is
increased, the value of k which corresponds to the lowest energy eigenvalue changes,
resulting in a step in the current. This plot displays several curves, parametrized by
values of UFH given in the legend. As UFH increases, the maximum value of the current
decreases.

bles that of Hubbard ring in Figure 8.4. Note that the behavior as a function of UFH

also resembles that of the Hubbard ring, in that the current falls off as UFH increases

relative the the fixed parameters Vζ,ζ′ . The current appears to tend asymptotically

toward a nonzero maximum value as UFH gets larger, however, unlike the Hubbard

case. It is unclear as to why this happens, as the relationship between UFH and the

interaction terms Vζ,ζ′ is not completely understood.

An interesting behavior arises when the size of the ring is increased. As more sites

are added to the ring, the shape of the current I(φ) approaches a sawtooth, pictured

in Figure 9.4. When there are a larger number of sites in the ring, there are a larger

number of available k-values. This causes the current to step more frequently. The

maximum magnitude of the current is also lower than in the two-site case, as the

amount the current is allowed to rise between steps decreases as the steps become

more frequent.
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ε+ = UFH

ε0 = 0

ε− =
UFH

2

V00 = 0.5

V++ = V−− = 0.8

V0+ = V+0 = V0− = V−0 = 0.1

V+− = V−+ = 0.1

Figure 9.4: The current on an FH ring of 500 sites for the parameters listed. As more
sites are added, there are more allowed values of k, which in turn causes the current to
step more frequently. Note that the range of φ is only 0.1 in this plot, indicating that
the current is highly oscillatory.

9.5 Discussion of the Fragment Hamiltonian and

Hubbard Results

The behavior exhibited by the two-site ring in both the Hubbard and FH cases is

interesting in light of the solution found by Lieb and Wu for an infinite 1D chain

[79]. They concluded that, for an infinite chain, any nonzero value of Uhub results

in an insulating stated. However, the two site ring in both the Hubbard and FH

cases carries a current for nonzero Uhub and UFH, respectively. When the FH chain

is extended to a large number of sites, as in Figure 9.4, the maximum magnitude of

the current at constant UFH decreases, as I(φ) is highly oscillatory. Extrapolating

from this trend, the current will vanish as the number of sites becomes infinite, and

it seems that fragment-chain description agrees with the Lieb and Wu solution as the

size of the chain becomes very large. Due to limitations in the numerical method,

determining the current on a large chain at UFH = 0 to check the agreement with Lieb

and Wu has not yet been done. Such a result remains a topic of near-term research.

In this thesis, the FH model was employed in a tight-binding-like fashion, and

displayed some similarities to analogous tight-binding systems, although there is still

much to be developed about the FH model. It was demonstrated that, once the issue
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9.5 Discussion of the Fragment Hamiltonian and Hubbard Results

charge conservation is addressed, the FH model exhibits a current-carrying behavior

similar to that of the Hubbard model for small systems. Something which remains

elusive, however, is a description of a metal-insulator transition. On the two-site

ring, the Hubbard model lacks an abrupt, discontinuous phase transition that Mott

submitted was a possibility [47]. For the FH model on two sites, no metal-insulator

transition was found for the parameter ranges that were examined. That being said,

the parameter space is large, and the exact meanings behind the matrix elements in

the tight-binding-like formulation of the Fragment Hamiltonian are not completely

understood.

Something interesting which may bear investigating is the relationship between

the current calculated in this chapter for the FH model, and the “charge stiffness”

presented by Kohn [84] [85]. The slope of the current ∂I(φ)
∂φ

in Figures 9.3 and 9.4

corresponds to the diamagnetic susceptibility ∂2E(B)
∂B2 in equation (8.8). It may very

well be that there is a particular configuration of the system for which this value

vanishes, indicating a metal-insulator transition.

It may turn out in the future that a tight-binding approach is not the most ap-

propriate way to employ the Fragment Hamiltonian. The generality of the formalism

leaves it flexible to be used by more than one description. It has demonstrated some

interesting behavior in a tight-binding-like system, however, and the author hopes

that this thesis may inform the further development of the model.
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Concluding Thoughts

The overarching theme of this dissertation has been charge transport, discussed in

two rather different contexts. Another theme running through this thesis is that of

correlation. The difference in transport mechanisms being emphasized in Parts 1

and 2 serves to underscore how considering different types and ranges of correlation

reveals interesting behavior within a system. Electron-electron correlations occur

between electrons on the same atom, between electrons on different nearby atoms,

and between electrons far from one another within a system. In this thesis systems

that were discussed include correlations spanning this gamut.

In Part 1, the discussion was focused on hopping charge transport in disordered

organic solids. Such a system is described in terms of the local molecular orbitals of

sites which an electron may occupy. The energies of these orbitals are in large part

a result of a long-range classical charge-dipole interaction. In a real system there are

certainly electron correlations within the molecular wavefunction, e.g. exchange and

Coulomb correlation between electrons in different orbitals below the HOMO of the

site. These do not appear explicitly in such a hopping treatment, but rather the net

effect of these correlations is represented by site occupation energies which correspond

to some statistical distribution. It is important to note that the word ‘correlation’

can have different meanings in different contexts. Unfortunately, we use the term

“correlation” to mean two different things in this thesis, which can be confusing. In

the case of spatially correlated energetic disorder, the energies of the occupation sites

are correlated to those of nearby sites as a result of a charge’s interaction with the
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field arising from the contributions of the fixed net dipole moments of all the other

sites. This spatial correlation of site energies uses the word in a different context.

The problem we solve is one of electron-hole dissociation, where the electron and

hole are both able to move about under the influence of the field of the the other.

Because this is a two-body problem, there is a temptation to rewrite the problem

from the center of mass frame of reference, so that it looks as though one body is

moving in the field of the other. While this is possible in the absence of disorder

(and is what Onsager did, and what we did for the non-disordered case on a lattice),

once the disorder is introduced, such that the charges see opposite energy landscapes,

it is no longer possible to reduce it to a one-body problem. We must track both

moving charges. Defining a “strongly-correlated” electron system as one that cannot

be reduced to a one-body problem [94], such a system of an electron and hole might

be thought of as strongly-correlated, even though it is a classical diffusive hopping

problem, and not a quantum mechanical one.

In Part 2, we turned aside from classical calculations, and looked at fully quantum

systems of more than one electron moving on a lattice. We focused on the 1D problem,

which amounts to a description of electrons moving on a chain of atoms. Here we

were interested in the current-carrying behavior of several tight-binding type systems

where Coulomb interactions could not be described by a mean-field approach. In a

system described using a basis of Bloch states, the electrons are noninteracting, and

much of the electronic correlation is neglected. The simplest case which accounts for

electron-electron correlations that was introduced in Part 2 is the Hubbard model.

In the Hubbard model the Coulomb correlation between electrons which share the

same site is mediated by the Hubbard U . This correlation is as local as possible, only

appearing as an on-site interaction. Such a local interaction is already enough to give

rise to a global effect, in this case the splitting of a single energy band into an upper

and lower Hubbard band, and the appearance of an insulating state. Accounting for

this type of electron-electron is important to the dynamics of the system. If one were

to consider the two-site ring in terms of a mean field description, i.e. each electron sees

the average field of the other, one would have a degenerate dimer, and the effect of U

would be lost. Allowing both electrons to occupy the same site, which is energetically

unfavorable, allows for nontrivial transport. This requires that we keep track of both

electrons relative to one another, rather than merely considering one electron at a
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time.

The crux of Part 2 was the treatment of the Fragment Hamiltonian cast in a tight-

binding-like way. The FH model does the most accounting for electron correlations

of the models examined in this thesis. It represents on-site correlations in terms of

the charge state energies of a fragment, εζ , which we have demonstrated are analo-

gous to the on-site Coulomb interaction in the Hubbard model. The FH formalism is

distinct from the other models studied in this thesis in that it has an inter-fragment

correlation, represented by the terms Vζ,ζ′ . In the Hubbard model there are transition

terms V take an electron between adjacent sites. In the FH model, the terms Vζ,ζ′ are

dependent on the relative charge states of interacting fragments (taken to be nearest

neighbors in this thesis, but does not have to be the case in general). This Coulomb

correlation between different charge states gives rise to behavior similar to, but richer

than, that in the Hubbard model. Rather than tracking the correlation between

electrons, a fragment-fragment correlation arises due to the Coulomb interaction be-

tween fragments in various charge states. Exploring these charge state interactions is

an exciting prospect for research in the near future.

The models examined in this dissertation were simple approximations of compli-

cated physical systems, but some essential behavior was deduced nonetheless. The

author hopes that a better fundamental understanding of charge transport in these

systems will be useful to their future development.

125



11

Appendices
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Appendix A

Electronegativity

A cornerstone concept in the study of charge transfer is that of electronegativity,

which represents the tendency of an atom or molecule to attract electrons. The

concept of electronegativity was first proposed in 1932 by Linus Pauling [95] as an

explanation of the fact that given two atomic species A and B, the bond (A− B) is

stronger than expected if one simply takes the average of the strengths of the (A−A)

and (B−B) bonds. The Pauling electronegativity χPauling is a dimensionless relative

quantity defined by the difference

χPauling = χA − χB =
1√
eV

√
Ed(AB)− Ed(AA) + Ed(BB)

2
, (A.1)

where Ed is the energy required to dissociate the pair indicated. Since this is a relative

quantity, a reference point must be set before a scale can be constructed. Pauling

used hydrogen, since it is common and involved in many chemical reactions. Once

this reference point was set, the electronegativity of the rest of the elements could

be expressed in terms of their difference from hydrogen. Bromine, for example, has

a Pauling electronegativity of 0.73, since Ed(H,Br) = 3.79 eV, Ed(H,H) = 4.52

eV, and Ed(Br,Br) = 2.00 eV. This definition is semi-empirical, and requires one to

apply a bit of physical intuition to things such as the selection of signs. For example,

hydrogen bromide dissolves in water to form H+ and Br−, indicating that bromine

is more electronegative than hydrogen and that a positive sign should be chosen

accordingly.
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In 1934 Robert Mulliken published a paper [96] presenting a definition which has

been called “absolute electronegativity” [97]. Consider a molecule formed from two

atomic species A and B. Mulliken expressed the wavefunction of the molecule in

terms of a superposition of the charge states of A and B,

ψAB = γψ(A0B0) + αψ(A+B−) + βψ(A−B+), (A.2)

where γ, α, and β are unknown coefficients. Quoting Pauling [95], Mulliken states “if

the two atoms have the same degree of electrongativity... the terms corresponding to

A+B− and A−B+ will occur with the same coefficient”, which is to say that α = β.

He then submits that in the event

EIA − EB = EIB − EA, (A.3)

one expects that α = β, and thus that χA = χB. EI is the ionization energy, or the

energy required to remove an electron from the atom. E is the electron affinity, the

energy change when an electron is added to a neutral atom to form a negative ion.

In the case that (A.3) is true, then it is also true that

EIA + EA = EIB + EB. (A.4)

Mulliken suggests that this allows one to define the absolute electronegativity as

χ =
EI + E

2
, (A.5)

where both sides of equation (A.4) were divided by 2 for practical convenience. It

seems intuitive that the electronegativity would be the average of two quantities, but

there is no analytical reason to believe that factor in particular is correct. Mulliken

validates the form of (A.5) by instead comparing to empirical data, which agrees well

with the choice. The Pauling and Mulliken definitions of electronegativity are the

two most commonly used.
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Appendix B

Proof for the Allowed Values of the

Bloch Vector ~k

Consider the discrete Fourier transform of the occupation amplitudes Cm on a 1D

tight-binding lattice with N sites.

Ck =
∑

m

Cme
ikm (B.1)

Its inverse transform is

Cm =
1

2N + 1

N∑

k=−N
Cke

−ikm. (B.2)

Inserting (B.1) into (B.2), we have

Cm =
1

2N + 1

∑

k

e−ikm
∑

n′

eikn
′
Cn′ .

=
∑

n′

Cn′

(
1

2N + 1

∑

k

e−ik(m−n′)
)

(B.3)

It must be true that the quantity in parenthesis is a Kronecker delta δm,n′ . To satisfy

this, let

k =
2πn

2N + 1
, (B.4)
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and define the quantity in parenthesis in equation (B.3) to be

S =
1

2N + 1

N∑

n=−N
e−i

2πn
2N+1

(m−n′) (B.5)

Note that

Se−i
2π

2N+1
(m−n′) =

1

2N + 1

N∑

n=−N
e−i

2π(n+1)
2N+1

(m−n′) =
1

2N + 1

N+1∑

n′′=−N+1

e−i
2π(n′′)
2N+1

(m−n′)

= S − 1

2N + 1
ei

2πN
2N+1

(m−n′) +
1

2N + 1
e−i

2π(N+1)
2N+1

(m−n′), (B.6)

which leads to

S
(
e−i

2π
2N+1

(m−n′) − 1
)

=
1

2N + 1

(
e−i

2π(N+1)
2N+1

(m−n′) − ei 2πN
2N+1

(m−n′)
)
. (B.7)

From this point, we get

Se−i
π(m−n′)

2N+1

(
2i sin

(
π(m− n′)

2N + 1

))

=
1

2N + 1
e−i

π(m−n′)
2N+1 2i sin

(
2π(N + 1

2
)(m− n′)

2N + 1

)
. (B.8)

Cancelling several terms across both sides, we get an expression for S

S =
sin (π(m− n′))

(2N + 1) sin
(
π(m−n′)

2N+1

) . (B.9)

For m−n′ 6= 0, S vanishes. If m−n′ is any integer multiple of 2N + 1, S = 1. Thus,

the Kronecker delta requirement is satisfied, and in addition

S =
∞∑

n=−∞
δ(m−n′),n(2N+1). (B.10)
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Appendix C

The Kubo-Greenwood Conductivity

For most systems in condensed matter physics, the electrical conductivity is an im-

portant quantity. The following is a derivation for the Kubo-Greenwood formulae,

which follows closely that found in Madelung’s Introduction to Solid State Theory,

section 8.3.4 [75].

C.1 Kubo Linear Response

First, define the expectation value 〈f〉 of an operator f as

〈f〉 = Tr[fρ], (C.1)

where ρ is the Boltzmann distribution normalized by the partition function Z, called

the statistical operator

ρ =
1

Z
e

H
kbT , Z = Tr[e

H
kbT ]. (C.2)

The time derivative of ρ is the commutator

i~ρ̇ = [H, ρ] (C.3)

Let H be a sum of a zero-field Hamiltonian H0 and a perturbation δH. For an

electric field ~E applied to the system at time t = −∞ and increased adiabatically to
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C.1 Kubo Linear Response

some value at t = 0, we have

H = H0 + δH = H0 + lim
α→0

(
e ~E · ~re−iωt+αt

)
, ρ = ρ0 + δρ. (C.4)

It is the perturbation δρ to the probability distribution which gives rise to a current.

To linearize the equations of motion for ρ, we take

i~ρ̇ = i~(ρ̇0 + δρ̇) = i~δρ̇ = [H0 + δH, ρ0 + δρ]

= [H0, ρ0] + [δH, ρ0] + [H0, δρ] + [δH, δρ]. (C.5)

Neglecting the quadratic terms of order δHδρ, we get

i~δρ̇ = [δH, ρ0] + [H0, δρ]. (C.6)

To find δρ, we define ∆ρ by shifting to the interaction picture

δρ = e−
i
~H0t∆ρe

i
~H0t. (C.7)

Continuing to neglect quadratic perturbation terms, it follows that

i~∆ρ̇ = e
i
~H0t[δH, ρ0]e−

i
~H0t

= lim
α→0

(
e−iωt+αte

i
~H0t[e~r, ρ0]e−

i
~H0t · ~E

)
. (C.8)

At t = 0, δρ and ∆ρ are the same, and at t = −∞ they are both zero. Therefore, δρ

is defined by the following integration

δρ(t = 0) = − i
~

lim
α→0

(∫ 0

−∞
e−iωt+αte

i
~H0t[e~r, ρ0]e−

i
~H0t · ~Edt

)
. (C.9)

Using equation (C.9) to find the current density j, we have

〈~j〉 = Tr[~jδρ] = − i
~

lim
α→0

(∫ 0

−∞
e−iωt+αtTr

[
~je

i
~H0t[e~r · ~E, ρ0]e−

i
~H0t

]
dt

)
. (C.10)

Since the conductivity tensor σµν is given by

jµ = σµνEν , (C.11)
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C.1 Kubo Linear Response

equation (C.10) tells us

σµν = lim
α→0

∫ 0

−∞
e−iωt+αtKµνdt, (C.12)

with

Kµν = − i
~
Tr
[
jµe

i
~H0t[erν , ρ0]e−

i
~H0t

]
. (C.13)

We are nearly at the Kubo formula. Next, note that

[rν , ρ0] = ρ0(ρ−1
0 rνρ0 − rν) = ρ0

(
e
H0
kbT rνe

− H0
kbT − rν

)

= ρ0

∫ 1
kbT

0

d

dλ

(
eλH0rνe

−λH0
)
dλ

= ρ0

∫ 1
kbT

0

d

dλ

(
eλH0 [H0, rν ]e

−λH0
)
dλ. (C.14)

The commutator [H0, rν ] is the time derivative −i~ṙν . Also note that −eṙν = jν .

Then we have

[erν , ρ0] = i~ρ0

∫ 1
kbT

0

eλH0jνe
−λH0dλ, (C.15)

and consequently

Kµν =

∫ 1
kbT

0

Tr
[
ρ0jmue

i
~H0(t−i~λ)jnue

− i
~H0(t−i~λ)

]
dλ. (C.16)

The final step is to shift back from the interaction picture to the time-dependent

current in the Heisenberg picture

j(t) = e
i
~Ht~je−

i
~Ht. (C.17)

Writing 〈f〉 = Tr[ρ0f ] we arrive at

Kµν =

∫ 1
kbT

0

〈jmu(0)jnu(t− i~λ)〉dλ. (C.18)

Equation (C.18) taken with equation (C.12) is the customary form of the Kubo for-

mula.
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C.2 The Kubo-Greenwood Formula

C.2 The Kubo-Greenwood Formula

The Kubo Formula for conductivity is extremely general. The Kubo-Greenwood

formula is a simplified form which is more relevant for the 1D tight-binding model.

Let the current density 〈j〉 be defined by the current operator jop as

〈j〉 = Tr[ρjop], (C.19)

with

jop = Re

[
− e~
iVgme

~∇
]
. (C.20)

Vg is the volume of the system (length in the 1D case). For a vector potential ~A, the

electric field is ~E = − ~̇A, and H is

H =
e

me

~A · ~p =
e~
ime

~A · ~∇ = − e~
meω

~E · ~∇, (C.21)

assuming an electric field of the form E = limα→0 e
−iωt+αt. It was shown earlier in

the text (Madelung [75], equation 3.53) that δρ has the form

〈Ψε′|δρ|Ψε〉 =
f(ε′)− f(ε)

ε′ − ε− ~ω − i~α〈Ψε′|H|Ψε〉, (C.22)

where Ψε is the electronic wavefunction for energy ε, and f is the Fermi-Dirac distri-

bution function

f =
1

e(ε−µ)/kbT + 1
. (C.23)

The current density may be written explicitly as

〈j〉 = V 2
g

∫ ∫
g(ε)g(ε′)〈Ψε′ |δρ|Ψε〉〈Ψε′|jop|Ψε〉dεdε′. (C.24)

g(ε) is the density of states. Inserting equations (C.20), (C.21), and (C.22) into

equation (C.19), we get for the ij-th component of the conductivity tensor

σij(ω) = Re

[
lim
α→0

e2~2Vg
iωm2

e

∫ ∫
g(ε)g(ε′)〈Ψε′|

∂

∂xi
|Ψε〉〈Ψε|

∂

∂xj
|Ψε′〉

f(ε′)− f(ε)

ε′ − ε− ~ω − i~αdεdε
′
]
.

(C.25)
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Noting that

Re

[
lim
α→0

1

i

1

ε′ − ε− ~ω − i~α

]
= πδ(ε′ − ε− ~ω), (C.26)

it follows that

σij(ω) =
e2~2πVg
ωm2

e

∫
g(ε)g(ε+~ω)〈Ψε+~ω|

∂

∂xi
|Ψε〉〈Ψε|

∂

∂xj
|Ψε+~ω〉(f(ε+~ω)−f(ε))dε.

(C.27)

In the limit that omega → 0, we get the Kubo-Greenwood expression for the DC

conductivity

σ = −
∫
e2~2πVg
m2
e

g(ε)2

∣∣∣∣〈Ψε|
∂

∂x
|Ψε〉

∣∣∣∣
2
∂f

∂ε
dε (C.28)

C.3 Application to the Tight-Binding Model

For the 1D tight-binding model, we have

ε = −2V cos k → k = arccos
−ε
2V

(C.29)

and

g(ε) =
1

2π

dk

dε
=

1

2πV

1√
1− (−ε

2V
)2

(C.30)

Before continuing, note that the phase velocity ~v(k) is

~v(k) =
1

~
~∇kεk =

1

~
d

dk
(−2V cos k) = 2V sin k. (C.31)

With that in hand, the factor 〈Ψε| ∂∂x |Ψε〉 becomes

〈Ψε|
∂

∂x
|Ψε〉 = 〈Ψε|

−p
i~
|Ψε〉 = 〈Ψε|

−mv
i~
|Ψε〉 =

−m
i~
∑

k

〈k|1
~

2V sin k|k〉〈k|k〉. (C.32)

Finally, let’s consider the term ∂f
∂ε

. When referring to conductivity, the two broad

categories a material may fall into are metal and insulator. These classifications are

made at zero temperature, with a material being defined as a metal if it possesses a

non-zero conductivity at T = 0K, and an insulator otherwise. As such, let T = 0. In
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C.3 Application to the Tight-Binding Model

that case,
∂f

∂ε
= δ(ε− εf ) (C.33)

where εf is the fermi energy. Putting all of these factors together, and making a

change of variables to an integral over dk

σ =
e2~2πVg
m2

∫
1

16π2V 2

1

| sin k|2
4m2V 2

~4
| sin k|2δ(k − kf )2V sin kdk (C.34)

Quite a few things cancel, and the Dirac delta collapses the integral, leaving the final

result

σ =
Vge

2V

2π~2
sin kf (C.35)

The conductivity varies sinusoidally with the filling of the band. When the band

is empty (kf = 0), the conductivity vanishes. The conductivity peaks for a half filled

band (kf = π
2
), and vanishes again when the band is full (kf = π).
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Appendix D

Current and the Feynman-Hellman

Theorem

In this appendix, an expression for the current due to a charge undergoing circular

motion in a magnetic field will be derived using the Feynman-Hellman theorem. The

Feynman-Hellman theorem states

dE

dλ
= 〈Ψ(λ)|dH

dλ
|Ψ(λ)〉, (D.1)

where E is the energy eigenvalue for state Ψ, H is the Hamiltonian, and λ is a

parameter of interest.

Consider a charge in a magnetic field defined by a vector potential ~A. For a

uniform magnetic field in cylindrical coordinates,

~A =
1

2
rB0φ̂, (D.2)

and the momentum ~P is

~P = −i~
r

∂

∂φ
. (D.3)

The Hamiltonian is

H =

(
~P − e ~A

)2

2me

. (D.4)
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The time independent Schrödinger equation is

(
~P − e ~A

)2

2me

|Ψ〉 = E|Ψ〉. (D.5)

Taking the ansatz Ψ = e−imφ with m an integer due to obey periodicity, the energy

eigenvalues for this system are

Em =
~2

2mer2

(
m− eB0r

2

2~

)2

. (D.6)

Note that as B0 increases, one must choose m appropriately to remain in the ground

state.

Next, we need a velocity operator. Note that

mev = |~P − e ~A|. (D.7)

Also note that

mevr = |~L− e~r × ~A|. (D.8)

Therefore,

v =
L− eAr
mer

= ωr. (D.9)

Now note that the current through some point on the ring is

I = eν = e
ω

2π
, (D.10)

where ν is the frequency in Hz. The current then becomes

I =
e

2π

(L− eAr)
mer2

. (D.11)

We will use this momentarily. Note that our Hamiltonian has the form

H =
(L− eAr)2

2mer2
. (D.12)

138



Recalling that A = 1
2
B0r,

∂H

∂B0

= −1

2

e(L− eAr)
me

= −πr2I. (D.13)

This can also be expressed as

− I =
∂H

∂(B0πr2)
=
∂H

∂φ
. (D.14)

Thus, according to the Feynman-Hellman theorem (D.1), we arrive at

Im = −∂Em
∂φ

. (D.15)
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