
University of New Mexico
UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

7-12-2014

Star Operations and Numerical Semigroup Rings
Bryan White

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
White, Bryan. "Star Operations and Numerical Semigroup Rings." (2014). https://digitalrepository.unm.edu/math_etds/55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of New Mexico

https://core.ac.uk/display/151575938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/55?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu




Star Operations and Numerical
Semigroup Rings

by

Bryan White

B.S., University of California, Davis, 2006

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

May, 2014



c©2014, Bryan White

iii



Dedication

I dedicate this dissertation to my mother and father who have supported me

throughout my mathematical career.

iv



Acknowledgments

The original ideas in this dissertation were developed in part through conversations
with my advisor Janet Vassilev. Many thanks! I would also like to thank
Janet Vassilev, Alex Buium, Micheal Nakamaye, and Bruce Olberding for their
participation on my dissertation committee and Janet Vassilev, Alex Buium, Cristina
Pereyra, and Jurg Bolli for writing letters of recommendation on my behalf.

v



Star Operations and Numerical
Semigroup Rings

by

Bryan White

B.S., University of California, Davis, 2006

Ph.D., Mathematics, University of New Mexico, 2014

Abstract

We aim to classify the star and semistar operations on conductive numerical

semigroup rings which are of the form k + xnk[[x]]. By classifying the star and

semistar operations on conductive numerical semigroup rings we obtain a better

understanding of the set of star and semistar operations on general numerical

semigroup rings. Here we classify all star and semistar operations on the ring

k + x4k[[x]] as well as all semistar operations on k + x5k[[x]] that are not star. We

investigate star operations on k + x5k[[x]] with Macaulay 2 and also present several

results about general conductive numerical semigroup rings that bring us closer to

our goal.
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Chapter 1

Introduction

1.1 Overview

We begin our discussion by defining closure operations on rings in general. A closure

operation on a commutative ring with unity R whose set of ideals is denoted I is a

function cl : I→ I satisfying the following for all I ∈ I ,denoting cl(I) = Icl:

• I ⊆ Icl

• If I ⊆ J , then Icl ⊆ J cl

• (Icl)cl = Icl

One of the first papers (or perhaps the first paper) to discuss general closure

operations of ideals over a commutative ring with unity was Kirby’s 1969 paper [Ki].

A closure operation ? on a domain R is said to be star if for all x ∈ R, (xI)? = xI?.

This definition can be extended in an obvious way to define star operations on the

set of fractional ideals of the given ring R. In fact, the defining properties of star

operations on the set of fractional ideals of a domain were introduced by Krull
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Chapter 1. Introduction

in his 1935 book, Idealtheorie [Kr], in which he used notation that inspired later

mathematicians to call them prime operations. Epstein distinguishes between prime

and star operations in his 2011 paper [Ep] and shows that the two definitions coincide

in the context of domains.

In their 2011 paper [HMP1], Houston, Mimouni and Park discuss domains that

admit at most two star operations. This inquiry was inspired in part by the following

result by Bass [Ba, Theorem 6.3] and Matlis [M, Theorem 3.8] done independently. A

local Noetherian domain (R,m) is divisorial (i.e. admits exactly one star operation)

if and only if R has dimension one and m−1 is a two-generated R-module. Bass and

Matlis do not talk about star operations explicitly as the result is presented in the

context of homological algebra, but the result pertains to star operations nonetheless.

The line of inquiry explored in this paper was inspired primarily by another

paper by Houston, Mimouni and Park, namely [HMP2], and a paper by Lance

Bryant, namely [Br]. Noetherian domains which have only finitely many star

operations are discussed in [HMP2] as the title suggests while numerical semigroups

and their associated rings are discussed in [Br]. In [HMP2], two constructions of

star operations are used extensively, namely the constructions in [A, Theorem 2] and

[HHP, Proposition 3.2]. The first makes use of overrings to construct star operations

and the second utilizes fractional ideals I such that (I : I) = R.

A partial ordering on the set of star operations on a ring is also introduced in

[HMP2], that is if ?1 and ?2 are two star operations on a ring R, then we say that

?1 ≤ ?2 if I?1 ⊆ I?2 for all ideals I of R. The set of star operations on a ring is a

lattice under this partial ordering with the infimum being the identity operation, i.e.

the operation sending each ideal to itself, and the supremum being the v-operation

defined by sending an ideal I to (I−1)−1. The fact that the identity operation is the

infimum is obvious. The fact that the v-operation is a star operation, let alone the

supremum of star operations, is not obvious and is proven by Gilmer in [G] and by

2



Chapter 1. Introduction

Epstein in [Ep]. This fact makes the implication of the theorem by Bass and Matlis

to star operations clear.

Here we discuss star operations on numerical semigroup rings which are

Noetherian domains (in fact, 1-dimensional domains) that may admit infinitely many

star operations. In fact, any numerical semigroup ring with infinite base field k

and dimkm
−1/m ≥ 4 (where m is the maximal ideal) admits infinitely many star

operations as shown in [HMP2, Corollary 2.8]. This includes k + xnk[[x]] for n ≥ 4.

However, every numerical semigroup ring with finite base field k admits only finitely

many star operations as will be discussed in Proposition 2.2.8. In either case, we

have classified all of the star operations on the particular ring k + x4k[[x]] and have

counted them in terms of |k| for finite k.

As previously indicated, we will focus specifically on numerical semigroup rings.

A numerical semigroup is a submonoid of N0 generated by mutually relatively prime

numbers (taking N0 = N ∪ {0}). The numerical semigroup ring associated with the

numerical semigroup S =< a1, . . . , aν > is the ring R(S) = k[[xa1 , . . . , xaν ]] where k

is any field. We shall assume that ai < aj if i < j.

We open Chapter 2 with some basic definitions which leads into a short discussion

about Goto numbers in Section 2.1. In Section 2.2, we discuss some of the basic

properties of numerical semigroups and their associated rings. We also introduce

the notions of conductive and semiconductive subrings of numerical semigroup rings

and prove that every star operation on a numerical semigroup ring persists on these

subrings. That is, if R is a numerical semigroup ring, ? a star operation on R,

R′ a semiconductive subring, and ?′ the star operation on R′ defined by setting

I?
′

= (IR)? ∩ Iv′ (where v′ is the v-operation on R′) for all ideals I ⊆ R′, then

I?
′

= I? for every I ⊆ R,R′ which is an ideal in both rings. In Chapter 3, we

present several results about star operations on conductive numerical semigroup

rings. The two most notable of these results give strict restrictions on the actions

3



Chapter 1. Introduction

of star operations on the fractional ideals intermediate between the ring and k[[x]].

We also show that, for general domains, if I is a fractional ideal that is also a ring,

then I? is also a ring. We take that result a bit further by showing that if R is a

domain, R′ a fractional ideal of R that is also a ring, ? a star operation on R and

I a fractional ideal of R that is also an R′-module, then I? is an (R′)?-module. In

Section 4.1, we classify all star operations on the ring k + x4k[[x]] using the results

from Chapter 3 and count the number of star operations in the case where k is finite

and in Section 4.2 we classify the semistar operations on k + x4k[[x]]. In Section

5.1, we classify the semistar operations on k + x5k[[x]] that are not star and then in

Section 5.2, we examine star operations on k+ x5k[[x]] using results from Chapter 3

and the computer program Macaulay 2 [GS]. In Chapter 6, we discuss some goals of

future inquiry and examine how the results from Chapter 3 can be applied to general

conductive numerical semigroup rings.

4



Chapter 2

Numerical Semigroup Rings

We begin our discussion with some basic definitions. A numerical semigroup is a

subsemigroup of N0 = N∪ 0 generated by mutually relatively prime numbers. These

are denoted < a1, . . . , aν >. Note that if we had a subsemigroup of N0 generated by

numbers that weren’t mutually relatively prime, then we could obtain a semigroup

isomorphism with a numerical semigroup by dividing each generator by the gcd.

Also, one may observe that these semigroups are in fact monoids. A numerical

semigroup ring is one of the form R = k[[xa1 , . . . , xaν ]] where < a1, . . . , aν > is a

numerical semigroup. Since a numerical semigroup is by definition generated by

mutually relatively prime natural numbers, there is a natural number N such that

every natural number n ≥ N is in the semigroup. The conductor is defined to be

the smallest such number and will be denoted c(S) for a numerical semigroup S. We

also have the closely related frobenius which is one less than the conductor (i.e. the

largest number not in the semigroup) and will be denoted f(S). Here we present

these definitions as well as a few others.

Definition 2.0.1. Let S =< a1, . . . , aν > be a numerical semigroup.

1. The frobenius of S is defined to be f(S) = max N0 \ S.

5



Chapter 2. Numerical Semigroup Rings

2. The conductor of S is defined to be c(S) = f(S) + 1.

3. The multiplicity of S is defined to be e(S) = a1.

4. The Apéry set of S with respect to n ∈ N is

Ap(S;n) = {w ∈ S | w − n 6∈ S}.

5. The pseudo-frobenius numbers of S are

PF (S) = {n ∈ N0 \ S | n+ s ∈ S ∀0 6= s ∈ S}.

6. Define A(s) = {α ∈ {1, 2, . . . , a1} | s− α ∈ S}.

The definition of the multiplicity of a numerical semigroup S may seem like an

unnecessary renaming of the smallest generator, but the alternative notation for this

number is motivated by the fact this number coincides with the usual commutative

ring theoretic notion of multiplicity, i.e. the multiplicity of R(S) in the commutative

ring theoretic sense is equal to a1.

Here we introduce several definitions in numerical semigroup rings that are related

to the conductor and the frobenius.

Definition 2.0.2. Let S =< a1, . . . , aν > be a numerical semigroup and R(S) =

k[[xa1 , . . . , xaν ]] the associated ring.

1. Define ms(S) = xsk[[x]] ∩ R(S) for s ∈ S, s ≤ c(S). We shall call such an

ideal of R(S) a semiconductor ideal of R(S).

2. The subring of R(S) whose maximal ideal is ms(S), i.e. k + ms(S), shall be

called a semiconductive subring of R(S).

3. The conductor ideal of the associated semigroup ring is defined to be c =

xc(S)k[[x]].

6



Chapter 2. Numerical Semigroup Rings

4. A numerical semigroup ring is said to be conductive if its maximal ideal is

its conductor, i.e. R = k + xnk[[x]] for some n.

Recall that the pseudo-frobenius numbers of a numerical semigroup are defined

as PF (S) = {n ∈ N \ S | for all s ∈ S with s 6= 0, n + s ∈ S}. Note that the

frobenius is one of these numbers and that these numbers resemble the frobenius in

that they share the above described quality.

In the following set of definitions, we present an analogy to the pseudo-frobenius

numbers of a numerical semigroup S and several related definitions in the context of

the associated ring R(S).

Definition 2.0.3. Let S be a numerical semigroup and R(S) the associated ring.

Let I ⊆ R be an ideal

1. The anchor of I is a(I) = max{a ∈ N0 | x−aI ⊆ R(S)}.

2. The pseudo-frobenius numbers of I are

PF (I) = {n ∈ N \ S | xnx−a(I)I ⊆ R(S)}.

3. The order of I is ord(I) = min{ord(f) | f ∈ I} where ord(f) is the usual

order of f as an element of k[[x]], i.e. the minimum power of x occurring in f

with non-zero coefficient.

2.1 Goto Numbers

We begin by discussing Goto numbers in the context of numerical semigroup rings.

Here we present the definition of a Goto number of a parameter ideal of a Noetherian

local ring.

7



Chapter 2. Numerical Semigroup Rings

Definition 2.1.1. Let Q be a parameter ideal of a Noetherian local ring (R,m).

Then the Goto number is

g(Q) = max{q ∈ N | (Q : mq) is integral over Q}.

If S =< a1, . . . , aν > is a numerical semigroup and R = R(S) = k[[xa1 , . . . , xaν ]],

then for s ∈ S we define the Goto number g(s) = g(xs).

Note that in the case of a numerical semigroup ring, an ideal of the form xs

is always a parameter ideal since these rings are 1-dimensional local domains. The

following definition is necessary to work with Goto numbers of elements of a numerical

semigroup.

Definition 2.1.2. We define σ(s) = max{ord(w) | w ∈ Ap(S; s)} =

max{ord(p+ s) | s ∈ PF (S)}

.

Here the order of an element w of the semigroup is the m-adic order of xw where

m is the maximal ideal of R(S). In subsequent sections, ord(f) shall refer to the

(x)-adic order of f in k[[x]].

Proposition 2.1.3 (Bryant). For S =< a1, a2 >, g(ka2) = a2 + k − 2 − bka2

a1
c for

1 ≤ k ≤ a1 − 1 and g(u) = a1 − 1 for all other u ∈ S.

We utilize the above formula to derive another formula.

Proposition 2.1.4. For S =< a1, a2 >,
∑a1

k=1 σ(k) = 1
2
(a1 − 1)(a2 + (a1 − 1)).

Proof. We have that g(ka2) = a2 + k − 2− bka2

a1
c. Suppose a1 is odd.

8



Chapter 2. Numerical Semigroup Rings

Then we have

a1−1∑
k=1

bka2

a1

c =

1
2

(a1−1)∑
k=1

(bka2

a1

c+ b(a1 − k)a2

a1

c)

=

1
2

(a1−1)∑
k=1

(bka2

a1

c+ a2 − b
ka2

a1

c − 1)

=

1
2

(a1−1)∑
k=1

(a2 − 1)

=
1

2
(a1 − 1)(a2 − 1).

Suppose a1 is even.

Then

a1−1∑
k=1

bka2

a1

c = b
a1

2
a2

a1

c+

1
2

(a1−2)∑
k=1

bka2

a1

c

=
1

2
(a2 − 1) +

1
2

(a1−2)∑
k=1

(bka2

a1

c+ b(a1 − k)a2

a1

c)

=
1

2
(a2 − 1) +

1
2

(a1−2)∑
k=1

(bka2

a1

c+ a2 − b
ka2

a1

c − 1)

=
1

2
(a2 − 1) +

1
2

(a1−1)∑
k=1

(a2 − 1)

=
1

2
(a2 − 1) +

1

2
(a1 − 2)(a2 − 1)

=
1

2
(a1 − 1)(a2 − 1).

9



Chapter 2. Numerical Semigroup Rings

Thus
a1∑
k=1

σ(k) =

a1∑
k=1

g(ka2)

= (a1 − 1) +

a1−1∑
k=1

(a2 + k − 2− bka2

a1

c)

= (a1 − 1) + (a1 − 1)a2 +
1

2
a1(a1 − 1)− 2(a1 − 1)

− 1

2
(a1 − 1)(a2 − 1)

= (a1 − 1)(1 + a2 +
1

2
a1 − 2− 1

2
(a2 − 1))

= (a1 − 1)(
1

2
a2 +

1

2
a1 −

1

2
)

=
1

2
(a1 − 1)(a2 + (a1 − 1)).

2.2 Multiplicative Ideal Theory in Numerical

Semigroup Rings

The following propositions are well-known and proofs are provided for the purpose

of completeness. The ideals we will be most interested in throughout this discussion

will be non-principal ideals.

Proposition 2.2.1. Let R be a domain and I ⊆ R a non-principal ideal. Then for

every f ∈ I, f−1 6∈ I−1.

Proof. Let f ∈ I and suppose that f−1 ∈ I−1. Then for every g ∈ I, f−1g ∈ R.

Then we have g = ff−1g which implies that I = (f).

In the context of numerical semigroup rings, we can see that the previous result

tells us that I−1 is contained in the integral closure of the ring, namely k[[x]].

10



Chapter 2. Numerical Semigroup Rings

Corollary 2.2.2. Let R be a numerical semigroup ring and let I ⊆ R be a

non-principal ideal. Then a(I) ≤ ord(I)− e.

Proof. Suppose that a(I) > ord(I) − e. Since the only elements f ∈ R with

ord(f) < e have order 0, we have that there is a g ∈ I such that x−a(I)g ∈ R× yielding

xa(I)g−1 ∈ R×. Then we have xa(I)g−1I = I which implies that g−1I = x−a(I)I ⊆ R.

Thus g−1 ∈ I−1 which implies that I is principal.

The following definition gives a star operation which will be discussed in further

detail in Section 3.

Definition 2.2.3. Let R be a domain. Then the v-operation is defined by

Iv = (I−1)−1 for all ideals I ⊆ R.

A ring in which Iv = I for all fractional ideals I is called divisorial. Conductive

numerical semigroup rings are in some sense as far from being divisorial as possible.

Proposition 2.2.4. Let R be a conductive ring with multiplicity e and I ⊆ R a

non-principal ideal. Then Iv = xord(I)k[[x]].

Proof. Since R is conductive, we have a(I) ≥ ord(I) − e. Since I is non-principal,

we have that a(I) ≤ ord(I) − e by Corollary 2.2.2 and so a(I) = ord(I) − e. Thus

it suffices to assume that ord(I) = e. We know that I ⊆ c which implies that

k[[x]] ⊆ I−1, and so it suffices to show that I−1 ⊆ k[[x]]. Let f ∈ I−1. We know

that there is a g ∈ I with ord(g) = e and thus ord(f) ≥ −e. If ord(f) > −e, then

ord(fg) > 0 which implies that ord(fg) ≥ e yielding ord(f) ≥ 0 which gives us

f ∈ k[[x]] (since fg ∈ R by assumption). Thus it suffices to show that ord(f) 6= −e.

Suppose that ord(f) = −e. Then ord(fg) = 0 which implies that fg ∈ R× which

yields an h ∈ R such that hfg = 1 implying that hf = g−1 ∈ I−1 and thus I is

principal, a contradiction.

11



Chapter 2. Numerical Semigroup Rings

Recall the definition of the Apéry set Ap(S;n) = {s ∈ S : s−n 6∈ S}. The Apéry

set will be used in a slightly different way than usual. We want to find the elements

s ∈ S such that s + n 6∈ S so we replace n with −n. The following proposition

describes the action of the v-operation on monomial ideals in numerical semigroup

rings.

Proposition 2.2.5. Let S be a numerical semigroup, R = R(S) its associated ring,

and I ⊆ R(S) a monomial ideal. Set s = ord(I)− a(I), let G be the set of monomial

generators of ms(S), and J be the ideal generated by

G \ {xα | α ∈
⋃

n∈PF (I)

Ap(S;−n)}.

Then Iv = xa(I)J.

Proof. Since the v-operation is a star operation, it suffices to assume that a(I) = 0.

By the given definitions, we see that I−1 ⊇ R(S∪PF (I)) (this fact holds for general

ideals with a(I) = 0). We also know that for n < 0, xnI 6⊆ R since a(I) = 0 by

assumption, hence I−1 ⊆ k[[x]]. We want to show that

I−1 ⊆ R(S ∪ PF (I)).

Let f ∈ k[[x]] such that fI ⊆ R, i.e. f ∈ I−1. Suppose n ∈ N \S is such that the xn

term of f occurs with a non-zero coefficient. Then we have that

for every m such that xm ∈ I, xm+n ∈ R.

Then n ∈ PF (I) and hence f ∈ R(S ∪ PF (I)). It remains to be shown that

R(S ∪ PF (I))−1 = J.

Suppose f ∈ R \J. Then for some n ∈ PF (I) and some m ∈ Ap(S;−n) the xm term

of f occurs with a non-zero coefficient. Then xnxm 6∈ R while xn ∈ R(S ∪ PF (I))

which implies that fR(S ∪ PF (I)) 6∈ R and so

f 6∈ R(S ∪ PF (I))−1.

12



Chapter 2. Numerical Semigroup Rings

Conversely, let f ∈ J. Then for every m ∈ PF (I), fxm ∈ R. Thus

fR(S ∪ PF (I)) ⊆ R which implies that f ∈ R(S ∪ PF (I))−1.

Remark 2.2.6. For general ideals I, Proposition 2.2.5 gives an upper bound for Iv.

That is, Iv ⊆ J where J is the ideal generated by

G \ {xα | α ∈
⋃

n∈PF (I)

Ap(S;−n)}.

Corollary 2.2.7. If m is the maximal ideal of R(S), then m−1 = R(S ∪ PF (S)).

Proof. In the proof of Proposition 2.2.5, we showed that for monomial ideals I with

a(I) = 0, I−1 = R(S ∪ PF (I)). Clearly PF (m) = PF (S).

From [HMP2, Lemma 3.7] we have that every fractional ideal of (R,m) is

isomorphic to one intermediate between R and m−1 if and only if m−1 is a PID. Then

by Corollary 2.2.7, the only numerical semigroup rings for which every fractional

ideal is isomorphic to one intermediate between R and m−1 are the conductive ones.

In this case, m = c and m−1 = k[[x]]. This means that any star operation on

a conductive numerical semigroup ring is completely determined by its action on

these intermediate fractional ideals. Furthermore, these fractional ideals are the

ones generated by 1 and a set of k-linearly independent polynomials from k[x] of

degree no more than n − 1 as will be discussed in more detail in Chapter 3. One

consequence of this fact is given in the following proposition.

Proposition 2.2.8. Let R = k + xnk[[x]] be a conductive numerical semigroup ring

with finite base field k. Then R admits only finitely many star operations.

13
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Proof. We know from Proposition 2.2.4 that for any star operation ? on R and any

fractional ideal F intermediate between R and k[[x]], F ? ⊆ F v = k[[x]]. Since every

star operation on R is determined by its action on the fractional ideals intermediate

between R and k[[x]], it suffices to show that there are only finitely many such

fractional ideals. Observe that every such fractional ideal can be generated as an

R-module by polynomials in k[x] of degree at most n − 1. Since k is assumed to

be finite, there are only finitely many such polynomials and thus, only finitely many

fractional ideals intermediate between R and k[[x]].

14



Chapter 3

Star Operations on Numerical

Semigroup Rings

Recall that the set of star operations on a ring R is a partially ordered set with the

partial ordering given by ?1 ≤ ?2 if I?1 ⊆ I?2 for all ideals I ⊆ R. It is clear that

the identity operation is the infimum of all star operations. The following definition

gives us the supremum of all star operations.

The v-operation is the supremum of all star operations on a domain as shown

in [G]. Epstein introduces a generalized version of the v-operation that applies to

non-domains in [Ep] and proves that it is the supremum of all star operations for any

commutative ring with unity. The following propositions help us better understand

the v-operation on numerical semigroup rings.

Proposition 3.0.9. [BDF] Let S be a numerical semigroup and R(S) the associated

ring. Let I ⊆ R(S) be an ideal. Then for any star operation ?, ord(I) = ord(I?).

Remark 3.0.10. Note that every semiconductor ideal is divisorial since ms(S) is

maximal over ideals I such that ord(I) = s and since ord(Iv) = ord(I) for all ideals

I.

15
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It is known that, in general, principal ideals of a domain are divisorial, i.e.

v-closed, and hence, are ?-closed for any star operation ?. The following proposition

shows that in a conductive numerical semigroup ring, we have Iv is a multiple of

the conductor for any non-principal ideal I and is, in fact, the largest ideal with the

same order as I.

In [HMP2], overrings that are intermediate between R and m−1 are used

extensively to create distinct star operations on the local ring (R,m). Here we

characterize m−1 for numerical semigroup rings in particular.

We now present a proposition that allows us in some sense to think of the set of

star operations on a numerical semigroup ring as a subset of the set of star operations

on any of its semiconductive subrings. If R is a numerical semigroup ring and I is

any ideal, then I is also a fractional ideal of any subring of R. If ? is a star operation

on R, R′ is a subring, and v′ is the v-operation on R′, then we can define the star

operation ?′ on R′ by setting I?
′

= (IR)? ∩ Iv′ as in [A, Theorem 2]. If R′ happens

to be a semiconductive subring, then for any ideal I of R, I? = I?
′

(where ?′ may

act on I as a fractional ideal).

Proposition 3.0.11. Let R be a numerical semigroup ring and Rs = k+xsk[[x]]∩R

a semiconductive subring. Suppose ?1, ?2 are distinct star operations on R. For ideals

I ⊆ Rs, denote Iv
′
= (Rs : (Rs : I)). Define ?′i on Rs by I?

′
i = (IR)?i ∩ Iv′. Then the

?′i are distinct star operations on Rs. Furthermore, if I ⊆ R is an ideal with I ⊆ Rs,

then I?
′
i = I?i.

Proof. The above construction of the ?′i always yields a star operation so it suffices to

prove that these are distinct. Let I ⊆ R be an ideal with I ⊆ Rs such that I?1 6= I?2 ,

and suppose that Iv ⊆ Iv
′
. Then I?i ⊆ Iv ⊆ Iv

′
and so I?

′
i = I?i , which implies that

the ?′i define distinct star operations.

We have that for any ideal I ⊆ R, there is an n ∈ N such that

16
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xnI ⊆ c ⊆ Rs. Since there is an ideal I ⊆ R such that I?1 6= I?2 , we may assume

by the previous statement that I ⊆ c. Since principal ideals are divisorial, it suffices

to consider non-principal ideals. Also, we can choose f ∈ k[[x]]× such that a′(fI) =

max{a′(gI) | g ∈ k[[x]]×} (where a′(I) = max{a ∈ N | x−aI ⊆ Rs} is the anchor of I

with respect to Rs). Thus it suffices to assume that a′(I) yields the maximum of all

such a′(fI) (note that fI ⊆ c for any f ∈ k[[x]]).

To show the inclusion Iv ⊆ Iv
′
, we shall prove that it holds for I0 = x−a

′(I)I.

Since a′(I) is maximal, we have that (Rs : I0) ⊆ k[[x]]. Let f ∈ Iv0 . We know that

ord(f) ≥ ord(I0) since ord(Iv0 ) = ord(I0). Then ord(f(Rs : I0)) ≥ ord(I0) ≥ s. We

also have that f(Rs : I0) ⊆ f(R : I0) ⊆ R. Thus, since f(Rs : I0) is an Rs-submodule

of R, it follows that

ord(f(Rs : I0)) ≥ s implies that f(Rs : I0) ⊆ Rs.

One particularly useful consequence of the previous proposition is that the set

of star operations on a numerical semigroup ring can be realized as a subset of the

set of star operations on the conductive subring. Thus, if we can classify all star

operations on conductive numerical semigroup rings, we will have classified all star

operations on general numerical semigroup rings (although the set of star operations

on a particular numerical semigroup ring may only be a small subset of the set of

star operations on its conductive subring).

As mentioned previously, every fractional ideal of a numerical semigroup ring is

isomorphic to one intermediate between the ring itself and k[[x]]. Here we discuss the

conductive numerical semigroup rings, i.e. rings of the form k+xnk[[x]]. An example

an intermediate fractional ideal of the ring k + x5k[[x]] would be k + xk + x5k[[x]].

Another example would be k+(x+ax2)k+x5k[[x]] for any choice of a ∈ k. If a is not

zero, we can add these fractional ideals to get k + xk + x2k + x5k[[x]]. One can see
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from these examples that in general these fractional ideals are k + xnk[[x]]-modules

generated by 1 and some set of polynomials in k[x] which need not be of degree

higher than n − 1. The following notation allows us to more easily refer to these

fractional ideals.

Notation 3.0.12. Let R = k + xnk[[x]]. We denote

Ai =
∑

j 6=i,0≤j<n

xjR for 0 < i < n.

For example, if n = 5, then

A4 = R + xR + x2R + x3R = k + xk + x2k + x3k + x5k[[x]].

We denote Bi = R + xiR = k + xik + xnk[[x]]. We denote

A(i1,...,iµ) =
∑

j∈{0,...,n−1}\{i1,...,iµ}

xjR

and similarly we denote

B(i1,...,iµ) = R +
∑

j∈{i1,...,iµ}

xjR.

For any f1, . . . , fn−1 ∈ k[[x]]× we denote

Bi(fi) = R + xifiR = k + xifik + xnk[[x]].

We denote

B(i1,...,iµ)(fi1 , . . . , fiµ) =
∑

j∈{i1,...,iµ}

Bj(fj).

We can further condense this notation by denoting

B(i1,...,iµ)(f(i1,...,iµ)) = B(i1,...,iµ)(fi1 , . . . , fiµ).

We will also use the hat notation to denote omission of an index, that is

(i1, . . . , îj, . . . , iµ) = (i1, . . . , ij−1, ij+1, . . . , iµ).
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This notation is somewhat redundant since, for instance, if n = 5 then B(1,3) =

A(2,4). We see the usefulness, however, when we observe that B(1,2,3) = A4. We may

also find it convenient to extend the above notation in such a manner:

A4(f1, f2, f3) = B(1,2,3)(f1, f2, f3).

We begin by constructing some star operations on R = k+xnk[[x]]. The following

constructions form star operations on general Noetherian rings R:

If R′ is an overring of R, then we can define ?R′ by letting I?R′ = IR′∩ Iv for any

fractional ideal I of R as constructed in [A, Theorem 2].

If F is a fractional ideal such that (F : F ) = R, then we can define another

star operation �F by letting I�F = (F : (F : I)) for any fractional ideal I of R as

constructed in [HHP, Proposition 3.2].

Given any two star operations ?1 and ?2, we can construct the infimum by defining

?1 ∩ ?2 to be given by I?1∩?2 = I?1 ∩ I?2 . We can also construct the supremum by

defining ?1 ⊕ ?2 to be given by I?1⊕?2 = ∪n∈NI(?2◦?1)n .

The fact that ?1⊕ ?2 gives the supremum of the two star operations was brought

to my attention by Jesse Elliott in conversation. He proves this fact in his paper

[El]. I include my own proof for the purpose of completeness.

Proposition 3.0.13. Let R be a Noetherian ring and let ?1 and ?2 be two star

operations on R. Then ?1 ∩ ?2 is the infimum of ?1 and ?2 and ?1 ⊕ ?2 is the

supremum.

Proof. To show that ?1 ∩ ?2 is the infimum of ?1 and ?2, it suffices to show that

?1 ∩ ?2 is a star operation since the intersection of two ideals yields the infimum of

those ideals. Let I be an ideal of R. Then I ⊆ I?1 and I ⊆ I?2 which implies that

I ⊆ I?1 ∩ I?2 = I?1∩?2 .
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If J is an ideal with I ⊆ J , then I?1 ⊆ J?1 which implies that I?1 ∩ I?2 ⊆ J?1 and a

similar argument shows that I?1 ∩ I?2 ⊆ J?2 and so

I?1∩?2 = I?1 ∩ I?2 ⊆ J?1 ∩ J?2 = J?1∩?2 .

Observe that, since I ⊆ I?1∩?2 ⊆ I?1 , (I?1∩?2)?1 = I?1 and similarly (I?1∩?2)?2 = I?2 .

Thus,

(I?1∩?2)?1∩?2 = (I?1∩?2)?1 ∩ (I?1∩?2)?2 = I?1 ∩ I?2 = I?1∩?2 .

Let x ∈ R regular. Then

(xI)?1∩?2 = (xI)?1 ∩ (xI)?2 = xI?1 ∩ xI?2 = x(I?1 ∩ I?2) = xI?1∩?2 .

Thus ?1 ∩ ?2 is a star operation.

We first prove that ?1 ⊕ ?2 is a star operation. Clearly I ⊆ I?1⊕?2 . If J is an

ideal such that I ⊆ J , then I?1 ⊆ J?1 which implies that (I?1)?2 ⊆ (J?1)?2 . Thus,

for all n ∈ N, I(?2◦?1)n ⊆ J (?2◦?1)n which yields I?1⊕?2 ⊆ J?1⊕?2 . To show that

(I?1⊕?2)?1⊕?2 = I?1⊕?2 , we use the Noetherian condition on R. Observe that

I ⊆ I?2◦?1 ⊆ I(?2◦?1)2 ⊆ . . . ⊆ I(?2◦?1)n ⊆ . . .

forms an ascending chain and, since R is Noetherian, there exists N ∈ N such that

I(?2◦?1)n = I(?2◦?1)N for every n ≥ N . Thus I?1⊕?2 = I(?2◦?1)N and it is clear that

(I?1⊕?2)?1⊕?2 = I?1⊕?2 . Let x ∈ R regular. We see that

(xI)?2◦?1 = ((xI)?1)?2 = (xI?1)?2 = x(I?1)?2 = xI?2◦?1 .

Then for all n ∈ N, (xI)(?2◦?1)n = xI(?2◦?1)n and, in particular,

(xI)(?2◦?1)N = xI(?2◦?1)N thus (xI)?1⊕?2 = xI?1⊕?2 .

Finally, we show that ?1 ⊕ ?2 is the supremum of ?1 and ?2. Let ?sup be the

supremum of ?1 and ?2. Observe that

I?1 ⊆ (I?1)?2 and so I?1 ⊆ I?1⊕?2 , i.e. ?1 ≤ ?1 ⊕ ?2.

20



Chapter 3. Star Operations on Numerical Semigroup Rings

Similarly, since I ⊆ I?1 ,

I?2 ⊆ (I?1)?2 so that I?2 ⊆ I?1⊕?2 , i.e. ?2 ≤ ?1 ⊕ ?2.

We have established that ?1 ⊕ ?2 is an upper bound for ?1 and ?2 so that certainly

?sup ≤ ?1 ⊕ ?2. It remains to be shown that ?1 ⊕ ?2 ≤ ?sup. Let J be an ideal such

that I ⊆ J ⊆ I?sup . Then J?sup = I?sup which yields the inclusions

J?1 ⊆ I?sup and J?2 ⊆ I?sup .

Since I ⊆ J?1 ⊆ I?sup , I ⊆ J?2◦?1 ⊆ I?sup . In particular, I ⊆ I?2◦?1 ⊆ I?sup . If

I ⊆ I(?2◦?1)n ⊆ I?sup , then I ⊆ I(?2◦?1)n+1 ⊆ I?sup so that

for all n ∈ N, I ⊆ I(?2◦?1)n ⊆ I?sup .

In particular, I ⊆ I(?2◦?1)N ⊆ I?sup and so

I?1⊕?2 ⊆ I?sup , i.e. ?1 ⊕?2 ≤ ?sup.

For an arbitrary collection of star operations {?γ}γ∈Γ, we can construct the

infimum
⋂
γ∈Γ

?γ by setting I

⋂
γ∈Γ

?γ
=

⋂
γ∈Γ

I?γ . This is constructed and proven in [A,

Theorem 2]. For the supremum, a slightly different construction is needed. We

start by taking
∑
γ∈Γ

I?γ . Let I1 be this ideal. Define an ascending chain of ideals

recursively by setting In+1 =
∑
γ∈Γ

I
?γ
n . If |Γ| = 2, then this construction coincides

with the construction used in Proposition 3.0.13 since In ⊆ I(?2◦?1)n ⊆ In+1.

By observing that every fractional ideal of R is isomorphic to one intermediate

between R and k[[x]], we see that any star operation on R is completely determined

by its action on such fractional ideals. For example, if R = k + x4k[[x]], it suffices

to consider the fractional ideals A1, A2(f2), A3(f1, f2), B1(f1), B2(f2), and B3. The

following propositions eliminate many of the possible actions of star operations on

these fractional ideals.
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Proposition 3.0.14. Let R = k+ xnk[[x]]. Let ? be a star operation on R. Then if

A?i = Ai, then A?j = Aj for any j such that j ≤ i.

Proof. Observe that for any i ∈ {1, . . . , n − 1}, A?i = Ai or A?i = k[[x]]. Suppose

that A?i = Ai and that A?j = k[[x]] for some j < i. Then we have xi−jAj ⊆ Ai which

implies that xi−jk[[x]] ⊆ Ai which gives us xi ∈ A?i since xj ∈ k[[x]] yielding the

desired contradiction.

Figure 3.2 illustrates how the previous proposition applies to the ring k+x4k[[x]].

We shall use a dotted arrow like in Figure 3.1 to indicate the implication J? = J

I //___ J

Figure 3.1: Implication on actions of star operations.

only if I? = I for any star operation ?.

k[[x]]

A1
//_____ A2

//_____ A3

B3 B2 B1

k + x4k[[x]]

Figure 3.2: Implication by Proposition 3.0.14 applied to k + x4k[[x]].

Proposition 3.0.15. Let R = k + xnk[[x]] and let A = Ai(f(1,...,̂i,...,n−1)) for some

i ∈ {1, . . . , n − 1} and fj ∈ k[[x]]×. Then there is an f ∈ k[[x]]× such that fA =∑
j 6=i,j<n x

jR = Ai.
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Proof. Without loss of generality, we may assume that fj = 1 for j > i and that

fj = 1+ajx
i−j for j < i and for some aj ∈ k. To see this, we construct an (n−1)×n

matrix whose rows are given by the coefficients of the polynomial generators of A. If

we perform elementary row operations on this matrix (with scalars coming from the

base field k), the result will have rows that give coefficients for alternate polynomial

generators of A. By the way we constructed A, we see that the rank of this matrix

is n − 1 and, when put into reduced row echelon form, will have its free variable in

the i + 1st column (the one corresponding to the coefficient for the xi term of the

polynomial). We wish to construct the desired f ∈ k[[x]]×. Let f = 1+
∑i−1

l=1−ai−lxl.

Then fA =
∑

l 6=i,l<n ffjx
jR. For j < i we have

ffjx
j = xj +

i−1∑
l=1

−ai−lxl+j + ajx
i(1 +

i−1∑
l=1

−ai−lxl)

= xj +

i−j−1∑
l=1

−ai−lxl+j +−ai−(i−j)x
(i−j)+j+

i−1∑
l=i−j+1

−ai−lxl+j + ajx
i +

i−1∑
l=1

−ai−lajxl+i

= xj +

i−j−1∑
l=1

−ai−lxl+j + (aj − aj)xi+

i−1∑
l=i−j+1

−ai−lxl+j +
i−1∑
l=1

−ai−lajxl+i

= xj +

i−j−1∑
l=1

−ai−lxl+j +
i−1∑

l=i−j+1

−ai−lxl+j +
i−1∑
l=1

−ai−lajxl+i.

If j > i, then

ffjx
j = xj +

i−1∑
l=1

−ai−lxl+j.

We know that xnk[[x]] ⊆ A which gives us that fxnk[[x]] ⊆ fA yielding the inclusion

xnk[[x]] ⊆ fA. We shall show by induction that xi+1k[[x]] ⊆ fA. We have already

shown this in the case where i = n− 1. If i < n− 1, let m ≥ i+ 1 and suppose that
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xm+1k[[x]] ⊆ fA. Then

ffmx
m = xm +

i−1∑
l=1

−ai−lxl+m ∈ fA

which implies that xm ∈ fA since

i−1∑
l=1

−ai−lxl+m ∈ xm+1k[[x]] ⊆ fA.

Thus the claim holds. It remains to be shown that xm ∈ fA for m < i. We may

ignore the case where i = 1. If m = i− 1, then

ffi−1x
i−1 = xi−1 +

i−1∑
l=2

−ai−lxl+i−1 +
i−1∑
l=1

−ai−lai−1x
l+i

which implies that xi−1 ∈ fA since
∑i−1

l=2−ai−lxl+i−1 +
∑i−1

l=1−ai−lai−1x
l+i is an

element of xi+1k[[x]] which is contained in fA. Let m < i and suppose that∑i−1
l=m+1 x

lR ⊆ fA. We have

ffm = xm +
i−m−1∑
l=1

−ai−lxl+m +
i−1∑

l=i−m+1

−ai−lxl+m +
i−1∑
l=1

−ai−lamxl+i.

Thus xm ∈ fA since

i−m−1∑
l=1

−ai−lxl+m +
i−1∑

l=i−m+1

−ai−lxl+m +
i−1∑
l=1

−ai−lajxl+i

is an element of
∑i−1

l=m+1 x
lR + xi+1k[[x]] which is contained in fA. This concludes

the proof.

To illustrate how this process is performed in practice, we consider the following

example.

Example 3.0.16. Let R = k + x4k[[x]] and consider the fractional ideal

A3(1 + x2, 1− 2x) = R+ (x+ x3)R+ (x2− 2x3)R. We take f to be f = 1 + 2x− x2.
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Then we have

fA3(1 + x2,1− 2x)

= (1 + 2x− x2)R + (x+ 2x2 + 2x4 − x5)R + (x2 − 5x4 + 2x5)R

= (1 + 2x− x2)R + (x+ 2x2)R + x2R

= R + xR + x2R = A3.

To see the second to last equality, observe that x2 ∈ fA3(1 + x2, 1 − 2x) and

x + 2x2 ∈ fA3(1 + x2, 1 − 2x) by Line 3 so x ∈ fA3(1 + x2, 1 − 2x). Likewise,

x2 ∈ fA3(1+x2, 1−2x), x ∈ fA3(1+x2, 1−2x) and 1+2x−x2 ∈ fA3(1+x2, 1−2x)

so 1 ∈ fA3(1 + x2, 1− 2x).

One can easily draw many quick conclusions from Propositions 3.0.14 and 3.0.15.

For example, if ? is a star operation on R = k + x4k[[x]] and if A?2 = A2, then

A?1 = A1 by Proposition 3.0.14. By Proposition 3.0.15 we could also conclude that

A2(f1)? = A2(f1) for any f1 ∈ k[[x]]×. A somewhat less obvious conclusion that could

be drawn is that for any star operation ?, B?
3 6= A2 despite the fact that B3 ⊆ A2.

Suppose B?
3 = A2. Then A?2 = B?

3 ⊆ A?1 which implies that A?1 = k[[x]], since k[[x]] =

A1 +A2 ⊆ (A1 +A2)? = (A?1 +A?2)? = (A?1)? = A?1. This implies by Proposition 3.0.14

that A?2 = k[[x]]. By our supposition, however, A?2 = (B?
3)? = B?

3 = A2 6= k[[x]]. This

observation is generalized in the following corollary.

Corollary 3.0.17. Let ? be a star operation on R = k+xnk[[x]], µ ∈ {1, . . . , n− 2}

and f1, . . . , fn−2 ∈ k[[x]]×. Then for any j ∈ {1, . . . , n − 1} \ {i1, . . . , iµ} with j 6=

min({1, . . . , n− 1} \ {i1, . . . , iµ}), B(i1,...,iµ)(f(i1,...,iµ))
? 6= Aj(f(1,...,ĵ,...,n−2)).

Proof. Suppose that B(i1,...,iµ)(f(i1,...,iµ))
? = Aj(f(1,...,ĵ,...,n−2)). Let

M = min({1, . . . , n− 1} \ {i1, . . . , iµ}).

We have that

B(i1,...,iµ)(f(i1,...,iµ)) ⊆ AM(f(1,...,M̂ ,...,n−2))
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which implies that

B(i1,...,iµ)(f(i1,...,iµ))
? ⊆ AM(f(1,...,M̂ ,...,n−2))

?

yielding the inclusion

Aj(f(1,...,ĵ,...,n−2)) + AM(f(1,...,M̂ ,...,n−2)) ⊆ AM(f(1,...,M̂ ,...,n−2))
?

which gives us that AM(f(1,...,M̂ ,...,n−2))
? = k[[x]]. Then by Proposition 3.0.14,

Aj(f(1,...,ĵ,...,n−2))
? = k[[x]]. By Proposition 3.0.15, A?M = k[[x]] = A?j . By supposition,

B(i1,...,iµ)(f(i1,...,iµ))
? = Aj(f(1,...,ĵ,...,n−2)) which implies that Aj(f(1,...,ĵ,...,n−2))

? =

Aj(f(1,...,ĵ,...,n−2)). Then by Proposition 3.0.15,

A?j = Aj 6= k[[x]].

Figure 3.3 shows how the results of Corollary 3.0.17 apply to the case where

n = 4. Here, the arrows indicate the possible actions of star operations on these

fractional ideals.

k[[x]]
		

A1

99ssssssssss��
A2(f1)

OO

II
A3(f1, f2)

ggOOOOOOOOOOOO 		

B3

OO

BB������������������**
B2(f2)

eeKKKKKKKKKK

;;

		
B1(f1)

ggOOOOOOOOOOO

__??????????????????? 		

k + x4k[[x]]
		

Figure 3.3: All possible actions of star operations on k + x4k[[x]].

One might think that Corollary 3.0.17 could be generalized by replacing j with

a vector of indices and demanding that these indices are the minimum possible
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such indices but the corollary fails to hold if such a substitution were made in the

statement as shown in the following example.

Example 3.0.18. Let R = k+x5k[[x]]. Note that A(1,2) and A(1,3) are rings. Observe

that B
?A(1,2)

4 = A(1,2) while B
?A(1,3)

4 = A(1,3).

The following two propositions eliminate possibilities for star operations on R =

k + xnk[[x]] where n ≥ 5.

Proposition 3.0.19. Let R be any domain. Let R′ be a fractional ideal of R that is

also a ring and let ? be a star operation on R. Then (R′)? is also a ring.

Proof. First we show that (R′)? is an R′-module. Since we know that (R′)? is an

R-module, it must be closed under addition, thus it suffices to show that (R′)? is

closed under R′-scaling. Let f ∈ R′. Since R′ is a ring, fR′ ⊆ R′ which implies that

(fR′)? ⊆ (R′)? which yields the inclusion f(R′)? ⊆ (R′)?.

Now let f ∈ (R′)?. Since (R′)? is an R′-module, fR′ ⊆ (R′)? implying that

(fR′)? ⊆ (R′)? yielding f(R′)? ⊆ (R′)?.

We give an example of how Proposition 3.0.19 can be used to narrow down the

possible actions of star operations on these rings.

Example 3.0.20. Consider R = k + x5k[[x]]. We have B3 ⊆ A(1,2), A(1,4), A(2,4) so

that a priori B?
3 could be any of these for an arbitrary star operation ?. However,

B?
3 6= A(1,4), A(2,4) since B?

3 must be a ring by Proposition 3.0.19 while A(1,4) and

A(2,4) are not rings.

Proposition 3.0.21. Let R, R′, and ? be as in Proposition 3.0.19, and let I be a

fractional ideal of R that is also an R′-module. Then I? is an (R′)?-module.
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Proof. We begin by showing that I? is an R′-module. As in Proposition 3.0.19, it

suffices to show that I? is closed under R′ scaling. Let f ∈ R′. Then fI ⊆ I which

implies that (fI)? ⊆ I? which yields the inclusion fI? ⊆ I?.

To show that I is an (R′)?-module, it suffices once again to show that I? is closed

under (R′)? scaling. Let f ∈ I?. Then fR′ ⊆ I? implying that (fR′)? ⊆ (I?)? = I?

yielding f(R′)? ⊆ I?.

In the following example, we use a sub-result of Proposition 3.0.21, that is if I is

an R′-module, then so is I?, to eliminate some possible actions of star operations on

k + x7k[[x]].

Example 3.0.22. Let R = k + x7k[[x]]. Note that B4 is a ring and B(3,4) is a

B4-module (and not a ring) while B(2,3,4) is not a B4-module. Thus, by Proposition

3.0.21, B?
(3,4) 6= B(2,3,4) for any star operation ?.

The following proposition from Gilmer helps eliminate more possibilities of star

operations on R = k + xnk[[x]] and, along with the Propositions 3.0.14, 3.0.15, and

Corollary 3.0.17, allows us to classify all star operations on k + x4k[[x]].

Proposition 3.0.23. [G, Section 32, Exercise 1] Let R be a domain and let ? be a

star operation on R. Suppose that A is a ?-closed fractional ideal of R. Then for

any fractional ideal B of R, (A : B) is ?-closed.

Proof. It suffices to show that (A : B)? ⊆ (A : B). Let f ∈ B. Then f(A : B) ⊆ A

which implies that (f(A : B))? ⊆ A? yielding the inclusion f(A : B)? ⊆ A. Since

this holds for all f ∈ B, it follows that (A : B)? ⊆ (A : B).

Note the following two consequences of the previous proposition:

Observe that if R = k + x4k[[x]], then (B1(f1) : B3) = xf1B3. It follows that if

B1(f1) is ?-closed, then so is B3. We also have that (B2(f2) : B3) = x2f2A1 which
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tells us that if B2(f2) is ?-closed, then so is A1. These results can be generalized in

the following proposition:

Proposition 3.0.24. Let R = k+xnk[[x]], ? a star operation on R, i ∈ {1, . . . , n−2},

and fi ∈ k[[x]]×. Then if Bi(fi) is ?-closed, then so is B(n−i,...,n−1).

Proof. First we show that (Bi(fi) : Bn−1) = xifik + xnk[[x]]. Since 1 ∈ Bn−1,

(Bi(fi) : Bn−1) ⊆ Bi(fi). We see that for any a ∈ k, axifiBn−1 =

xifik + xn+i−1k[[x]] ⊆ Bi(fi), so xifik ⊆ (Bi(fi) : Bn−1). Clearly

xnk[[x]] ⊆ (Bi(fi) : Bn−1) so xifik + xnk[[x]] ⊆ (Bi(fi) : Bn−1).

Suppose f ∈ Bi(fi) \ xifik + xnk[[x]]. Then ord(f) = 0 which implies that

fxn−1 ∈ fBn−1. Since ord(fxn−1) = n−1, fxn−1 6∈ Bi(fi) and so f 6∈ (Bi(fi) : Bn−1).

Then we have that (Bi(fi) : Bn−1) = xifik + xnk[[x]] which is isomorphic to

B(n−i,...,n−1) since

x−if−1
i (xifik + xnk[[x]]) = k + xn−if−1

i k[[x]] = k + xn−ik[[x]] = B(n−i,...,n−1).

In Proposition 3.0.15, we observed that star operations act in essentially the same

way on fractional ideals of the form Ai(f(1,...,̂i,...,n−2)) for a particular i. The following

equivalence relation describes the extent to which this phenomenon occurs for other

fractional ideals intermediate between k + xnk[[x]] and k[[x]].

Definition 3.0.25. Let I be a fractional ideal of R = k + xnk[[x]] intermediate

between R and k[[x]]. We define the following relation:

We say that I ∼ J if there exists f ∈ I ∩ k[[x]]× such that f−1I = J .

Proposition 3.0.26. The relation defined in Definition 3.0.25 is an equivalence

relation.
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Proof. Let I, J and L be fractional ideals intermediate between R and k[[x]].

1. Since 1 ∈ I, I ∼ 1−1I = I.

2. Suppose I ∼ J . Then for some f ∈ I ∩k[[x]]×, f−1I = J . Since 1 ∈ I, f−1 ∈ J

and then (f−1)−1J = fJ = I. Thus J ∼ I.

3. Suppose I ∼ J and J ∼ L. Then there exist f ∈ I ∩k[[x]]× and g ∈ J ∩k[[x]]×

such that f−1I = J and g−1J = L. Then f−1g−1I = L so it remains to be

shown that fg ∈ I. We know that g ∈ J = f−1I and so fg ∈ I as desired.

Note that Proposition 3.0.15 shows that Ai(f(1,...,̂i,...,n−2)) ∼ Ai(g(1,...,̂i,...,n−2)) for

any f(1,...,̂i,...,n−2) and g(1,...,̂i,...,n−2).

Remark 3.0.27. There is an equivalence relation on general fractional ideals defined

by I ∼ J if there is an f ∈ K such that fI = J where K is the fraction field

of R. Here we define an equivalence relation on specifically the fractional ideals

intermediate between R and k[[x]]. Note that if f 6∈ I, then 1 6∈ f−1I so f−1I does

not contain R.

Recall that for any fractional ideal F satisfying (F : F ) = k + x4k[[x]], we can

define the star operation �F by setting I�F = (F : (F : I)) for every fractional

ideal I of k + x4k[[x]]. In particular, every fractional of the form B1(f1) satisfies

(B1(f1) : B1(f1)) = k + x4k[[x]] so we can define �B1(f1) in this fashion.

Example 3.0.28. Let R = k + x4k[[x]] and k = F2. Consider the fractional ideals

B1(1 + ax+ bx2). We have (1 + x) ∈ B1 which yields (1 + x)−1B1 = B1(1 + x+ x2)

so that B1 ∼ B1(1 + x + x2). Similarly we have (1 + x + x2) ∈ B1(1 + x) yielding

(1 + x+ x2)−1B1(1 + x) = B1(1 + x2) so that B1(1 + x) ∼ B1(1 + x2).
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In the following proposition, we show that those fractional ideals intermediate

between R and k[[x]] that are rings are equivalent only to themselves under ∼.

Proposition 3.0.29. Let R′ be an overring of R intermediate between R and k[[x]].

Then the equivalence class of R′ under ∼ consists only of R′.

Proof. Let f ∈ R′ ∩ k[[x]]×. Since R′ is a ring, fR′ ⊆ R′ and so R′ ⊆ f−1R′. If we

write R′ in terms of its generators as an R-module, i.e. R′ = R +
∑ν

j=1 fijx
ijR,

we see that R′ is completely determined by the quotient R′/xnk[[x]] which is a

finite-dimensional k-vector space. Since f−1 ∈ k[[x]]×, we have that f−1R′/xnk[[x]] =

f−1k+
∑ν

j=1 f
−1fijx

ij which is at most ν-dimensional and contains the ν-dimensional

k-vector space R′/xnk[[x]]. Thus f−1R′/xnk[[x]] = R′/xnk[[x]] and so R′ =

f−1R′.

The following result classifies the equivalence classes of fractional ideals of the

form B1(f) in the case where R = k + x4k[[x]].

Proposition 3.0.30. Let R = k+x4k[[x]] and f = 1+ax+ bx2 and consider B1(f).

Then the function φ : k → B̃1(f) defined by

φ(α) = B1(1 + (a− α)x+ (b− 2aα + α2)x2),

where B̃1(f) is the equivalence class of B1(f) under ∼, is a bijection.

Proof. If φ(α1) = φ(α2) then a − α1 = a − α2 which implies that α1 = α2 and so

φ is injective. Now let B ∈ B̃1(f). Then there is a g ∈ B1(f) ∩ k[[x]]× such that

g−1B1(f) = B. We may assume that g is of the form

g = 1 + αx+ αax2 + αbx3 + h

for some h ∈ x4k[[x]] and some α ∈ k. Then we can write g−1 as

1− αx+ (α2 − αa)x2 + (2α2a− αb− α3)x3 + l
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for some l ∈ x4k[[x]]. Since R ⊆ B, B can be generated by 1 and

−αx+ (α2 − αa)x2 + (2α2a− αb− α3)x3.

Then we have that B = B1(1 + (a− α)x+ (b− 2αa+ α2)x2) = φ(α).

One consequence of this is that if k is a finite field, then |B̃1(f)| = |k| and

since there are exactly |k|2 fractional ideals of this type, there are exactly |k| such

equivalence classes. We see that if B1(f) ∼ B1(g) then B1(f) is �B1(g)-closed. In the

following proposition, we show that these star operations are actually the same.

Proposition 3.0.31. Let R = k + x4k[[x]] and I be fractional ideal intermediate

between R and k[[x]]. Suppose there is g ∈ I with 1 ≤ ord(g) ≤ 2 and that I 6∈ B̃1(f).

Then I�B1(f) = k[[x]].

Proof. It suffices to show that (B1(f) : I) ⊆ x4k[[x]]. Since 1 ∈ I, we observe that

(B1(f) : I) ⊆ B1(f) . Let h ∈ (B1(f) : I). We have that either ord(hg) ≥ 4 or

ord(hg) = 1. If ord(hg) ≥ 4, then ord(h) ≥ 3 which gives us ord(h) ≥ 4 since

h ∈ B1(f). If ord(g) = 2 then ord(hg) 6= 1 and we are done. If ord(g) = 1,

then ord(h) = 0 and so hI/x4k[[x]] is a k-vector space of dimension at least 2

which is contained in B1(f)/x4k[[x]]. Since B1(f)/x4k[[x]] is a 2-dimensional k-vector

space, we have that B1(f)/x4k[[x]]hI/x4k[[x]] which implies that B1(f) = hI yielding

h−1B1(f) = I. Since h ∈ B1(f), it follows that I ∈ B̃1(f) which contradicts our

hypotheses.

The only fractional ideals intermediate between R and k[[x]] that don’t satisfy the

hypotheses of the above proposition are those in B̃1(f) and B3. We know that every

I ∈ B̃1(f) is �B1(f)-closed. By Proposition 3.0.24 we know that B3 is �B1(f)-closed.

This leads us to the conclusion that if I ∈ B̃1(f), then �B1(f) = �I .
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Star and Semistar Operations on

k + x4k[[x]]

4.1 Classification Theorem for Star Operations on

k + x4k[[x]]

We examine the star operations on the ring k + x4k[[x]] by examining their actions

on the fractional ideals intermediate between k + x4k[[x]] and k[[x]]. Recall that if

R′ is an overring of k+ x4k[[x]], then we can define the star operation ?R′ by setting

I?R′ = IR′∩ Iv for every fractional ideal I of k+x4k[[x]]. In particular, we have that

the fractional ideals of the form B2(f2) are overrings of k + x4k[[x]] and so we can

define ?B2(f2) in this fashion. Similarly, we have B3 and A1 as overrings of k+x4k[[x]]

and we define the corresponding star operations ?B3 and ?A1 . Recall also that for any

fractional ideal F satisfying (F : F ) = k+x4k[[x]], we can define the star operation �F
by setting I�F = (F : (F : I)) for every fractional ideal I of k+x4k[[x]]. In particular,

every fractional of the form B1(f1) satisfies (B1(f1) : B1(f1)) = k + x4k[[x]] so we

can define �B1(f1) in this fashion. As we will see in the statement of Theorem 4.1.1,
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we can construct all star operations on k + x4k[[x]] by building suprema and taking

intersections of the above star operations. The following proposition classifies all star

operations on k + x4k[[x]].

Theorem 4.1.1. Every star operation on k + x4k[[x]] other than the identity

and v is one of the following for some index sets Γ and ∆ and some collections

{fγ ∈ k[[x]]× | γ ∈ Γ} and {fδ ∈ k[[x]]× | δ ∈ ∆}:

1. ?B3 ∩ (
⋂
δ∈∆

�B1(fδ)) ∩ (
⋂
γ∈Γ

?B2(fγ))

2. (?B3 ⊕ ?B2) ∩ (
⋂
δ∈∆

�B1(fδ)) ∩ (
⋂
γ∈Γ

?B2(fγ))

3. (?B3 ⊕ �B1) ∩ (
⋂
δ∈∆

�B1(fδ)))

Proof. Propositions 3.0.14 and 3.0.15 yield the following implication: If A3(f1, f2)

is ?-closed, then ? is the identity operation. Thus, it suffices to assume that

A3(f1, f2)? = k[[x]]. We will consider three possible cases:

k[[x]]
		

A1

��
A2(f1)

		
A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK 		
B1(f1)

ggOOOOOOOOOOO 		

k + x4k[[x]]
		

Figure 4.1: All possible star operations on k + x4k[[x]] assuming A1 and A2 are
?-closed.

1. A1 and A2(f1) are both ?-closed.
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2. A1 is ?-closed and A2(f1)? = k[[x]].

3. A?1 = k[[x]] = A2(f1)?.

We first examine all possible star operations ? such that A1 and A2(f1) are

?-closed. The possibilities in this situation are described by the diagram in 4.1.

We have one of these diagrams for each pair f1, f2 ∈ k[[x]]×. Note that in this

case, B3 must be closed because if B?
3 = A1, then A1 ⊆ A?2 which implies that

A?2 = k[[x]], contrary to our supposition.

Consider the star operation ?B3 . The action of this star operation is described

by the diagram of Figure 4.2.

k[[x]]
		

A1

��
A2(f1)

		
A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK

B1(f1)

ggOOOOOOOOOOO

k + x4k[[x]]
		

Figure 4.2: Diagram of ?B3 .

One can see that this star operation is the supremum over all of those that satisfy

the hypothesis. Given any f2 ∈ k[[x]]×, we can construct a star operation that fixes

B2(f2) but does not fix B1(f1) for any f1 ∈ k[[x]]× nor B2(f) for any f ∈ k[[x]]×

such that B2(f) 6= B2(f2), namely, ?B2(f2). The action of this star operation is
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k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

OO

B2(f2)
		

B1(f1)

__???????????????????

k + x4k[[x]]
		

Figure 4.3: Diagram of ?B2(f2), main slice.

demonstrated in Figures 4.3 and 4.4.

Figure 4.4 demonstrates a different ”slice” of the lattice.

k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f)

ggOOOOOOOOOOO

B3

OO

B2(f)

eeKKKKKKKKKK

B1(f1)

__>>>>>>>>>>>>>>>>>>>

k + x4k[[x]]
		

Figure 4.4: Diagram of ?B2(f2), auxiliary slice.

The intersection of ?B3 and ?B2(f2), namely ?B3 ∩ ?B2(f2), yields the diagrams
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k[[x]]
		

A1

��
A2(f1)

		
A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

		
B1(f1)

ggOOOOOOOOOOO

k + x4k[[x]]
		

Figure 4.5: Diagram of B3 ∩B2(f2), main slice.

k[[x]]
		

A1

��
A2(f1)

		
A3(f1, f)

ggOOOOOOOOOOO

B3

��
B2(f)

eeKKKKKKKKKK

B1(f1)

ggOOOOOOOOOOO

k + x4k[[x]]
		

Figure 4.6: Diagram of B3 ∩B2(f2), auxiliary slice.

shown in Figures 4.5 and 4.6.

Figure 4.6 shows what a different ”slice” would look like.

One can see easily that if we intersect many of these star operations, then we can

construct a star operation that fixes as many of the B2(f)’s as we wish pushing all

of the B1(f)’s up and satisfying the hypotheses.
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k[[x]]
		

A1

99ssssssssss
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

;;

B1(f1)
		

k + x4k[[x]]
		

Figure 4.7: Diagram of ?B1(f1), main slice.

We now examine the star operations of the form �B1(f1). The diagrams are shown

in Figures 4.7 and 4.8.

If f is such that B1(f) 6∼ B1(f1), we obtain a different ”slice” of the lattice that

is shown in Figure 4.8.

k[[x]]
		

A1

99ssssssssss
A2(f)

OO

A3(f, f2)

ggOOOOOOOOOOO

B3

��
B2(f2)

;;

B1(f)

__>>>>>>>>>>>>>>>>>>>

k + x4k[[x]]
		

Figure 4.8: Diagram of ?B1(f1), auxiliary slice.
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k[[x]]
		

A1

��
A2(f1)

		
A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK

B1(f1)
		

k + x4k[[x]]
		

Figure 4.9: Diagram of ?B3 ∩ ?B1(f1), main slice.

k[[x]]
		

A1

��
A2(f)

		
A3(f, f2)

ggOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK

B1(f)

ggOOOOOOOOOOO

k + x4k[[x]]
		

Figure 4.10: Diagram of ?B3 ∩ ?B1(f1), auxiliary slice.

So if we intersect this star operation with ?B3 , namely ?B3 ∩ �B1(f1), we obtain

the diagrams in Figures 4.9 and 4.10.

A different ”slice” is shown in 4.10.

We see that we can intersect these with the ?B2(f2)’s to fix as many of the B2(f2)’s

and B1(f1)’s as we want. This suffices to cover all possibilities in this case.

Now suppose that A1 is ?-closed and that A2(f1)? = k[[x]]. The possibilities are

described in Figure 4.11.
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k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

OO

**
B2(f2)

eeKKKKKKKKKK 		
B1(f1)

__??????????????????? 		

k + x4k[[x]]
		

Figure 4.11: All possible actions of star operations on k + x4k[[x]] assuming that
A?1 = A1 and A?2 = k[[x]].

k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

OO

B2(f2)

eeKKKKKKKKKK

B1(f1)

__???????????????????

k + x4k[[x]]
		

Figure 4.12: Diagram of ?A1 = ?B3 ⊕ ?B2 .

First consider the star operation ?A1 . Note that ?A1 = ?B3 ⊕ ?B2 which is the

result of a more general phenomenon described in Proposition 6.0.2. The diagram

for this star operation is exhibited in Figure 4.12.

It is clear from the diagram that this is the supremum of all star operations

satisfying these hypotheses. Observing the diagram of ?B2(f2), we obtain the two

diagrams for ?B2(f2) ∩ ?A1 shown in Figures 4.13 and 4.14.

By intersecting these we can construct star operations that fix as many of the
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k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

OO

B2(f2)
		

B1(f1)

__???????????????????

k + x4k[[x]]
		

Figure 4.13: Diagram of ?B2(f2) ∩ ?A1 , main slice.

k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f)

ggOOOOOOOOOOO

B3

OO

B2(f)

eeKKKKKKKKKK

B1(f1)

__>>>>>>>>>>>>>>>>>>>

k + x4k[[x]]
		

Figure 4.14: Diagram of ?B2(f2) ∩ ?A1 , auxiliary slice.

?B2(f2)’s as we wish while simultaneously pushing B3 and all of the B1(f1)’s up.

Now consider the star operation ?B3 ⊕�B1 . The diagram is shown in Figure 4.15.

We see that this star operation pushes everything up to k[[x]] except for B3 which

it fixes. Thus, if we intersect this star operation with the ones discussed above, we

can fix as many of the B2(f2)’s as we want while fixing B3 and pushing all of the

B1(f1)’s up.

Recall the following implication: If B1(f1) is ?-closed for any f1 ∈ k[[x]]×, then

so is B3. With this fact, we see that B3 must be ?-closed for the remainder of the
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k[[x]]
		

A1

99ssssssssss
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

;;

B1(f1)

__???????????????????

k + x4k[[x]]
		

Figure 4.15: Diagram of ?B3 ⊕ ?B1 .

k[[x]]
		

A1

��
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK

B1(f1)
		

k + x4k[[x]]
		

Figure 4.16: Diagram of ?B1(f1) ∩ ?A1 , main slice.

discussion of this particular case.

Observing the diagrams for �B1(f1), we see that the star operation �B1(f1) ∩ ?A1

yields the diagrams shown in Figures 4.16 and 4.17

For f such that B1(f1) 6∼ B1(f) we obtain the diagram in Figure 4.17.

Intersecting these and the ?B2(f2)’s, we can fix as many of the B2(f2)’s and classes

B̃1(f1)’s as we like provided that B3 is ?-closed whenever any of the B1(f1)’s are.

Now suppose that A?1 = k[[x]] = A2(f1)?. Recall the following implication: If
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k[[x]]
		

A1

��
A2(f)

OO

A3(f, f2)

ggOOOOOOOOOOO

B3

��
B2(f2)

eeKKKKKKKKKK

B1(f)

__>>>>>>>>>>>>>>>>>>>

k + x4k[[x]]
		

Figure 4.17: Diagram of ?B1(f1) ∩ ?A1 , auxiliary slice.

k[[x]]
		

A1

99ssssssssss
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

BB��������������������
B2(f2)

;;

B1(f1)

__??????????????????? 		

k + x4k[[x]]
		

Figure 4.18: All possible actions of star operations on k + x4k[[x]] assuming that
A?1 = A?2 = k[[x]].

B2(f2) is ?-closed, then A1 is ?-closed.

With this fact in mind, we have the diagram in Figure 4.18 to describe the set of

all possibilities in this case.

Note that B2(f2) is never fixed in this scenario because of the previously discussed

implication. The supremum of all such star operations is the v-operation whose

diagram is shown in Figure 4.19.

We have already observed that the star operation ?B3 ⊕ �B1 pushes everything
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k[[x]]
		

A1

99ssssssssss
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

BB������������������
B2(f2)

;;

B1(f1)

__???????????????????

k + x4k[[x]]
		

Figure 4.19: Diagram of the v-operation on k + x4k[[x]].

k[[x]]
		

A1

99ssssssssss
A2(f1)

OO

A3(f1, f2)

ggOOOOOOOOOOOO

B3

��
B2(f2)

;;

B1(f1)
		

k + x4k[[x]]
		

Figure 4.20: Diagram of ?B1(f1), main slice.

up to k[[x]] except for B3 which it fixes.

Recall once again the following implication:

If B1(f1) is ?-closed for any f1 ∈ k[[x]]×, then so is B3. In light of this, we may

assume that B3 is ?-closed for the remainder of the discussion of this case. Recall

the star operation �B1(f1) whose diagrams are those given in 4.20 and 4.21 for f such

that B1(f1) 6∼ B1(f).

Intersecting these, we can fix as many of the classes B̃1(f1)’s as we like which
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k[[x]]
		

A1

99ssssssssss
A2(f)

OO

A3(f, f2)

ggOOOOOOOOOOO

B3

��
B2(f2)

;;

B1(f)

__>>>>>>>>>>>>>>>>>>>

k + x4k[[x]]
		

Figure 4.21: Diagram of ?B1(f1), auxiliary slice.

covers all of the remaining possibilities. We have now constructed all possible star

operations on the ring k + x4k[[x]].

It has already been shown by Houston, Mimouni and Park in [HMP2] that if

(R,m) is a local ring with dimkm
−1/m ≥ 4, then there are at least 1

2
|k| + 3 star

operations on R by [HMP2, Theorem 2.8]. In light of this result, we see that if k is

infinite, then there are infinitely many star operations on R. The ring k + x4k[[x]]

satisfies the hypotheses of the previous proposition, and one can see that 2|k| star

operations can be constructed by intersecting, for example, operations of the form

?B2(f2). However, if k is finite, then we can use the classification of star operations

on k+x4k[[x]] in Theorem 4.1.1 to count the exact number of star operations on this

ring.

Corollary 4.1.2. Suppose k is finite. Then k + x4k[[x]] has exactly

22|k|+1 + 2|k|+1 + 2 star operations.

Proof. We begin by counting the star operations ? such that A?3 = k[[x]] and A1 and

A2 are ?-closed. Recall that all such star operations fix B3 and are thus completely
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determined by their action on the fractional ideals of the form B2(f2) and and the

equivalence classes B̃1(f1). Furthermore, if we let B1 = {B̃1(f1) | f1 ∈ k[[x]]×},

B2 = {B2(f2) | f2 ∈ k[[x]]×}, and F = B1 ∪B2, then for any subset S ⊆ F we can

construct a star operation that fixes all of the fractional ideals in S while not fixing

those in F \ S. We constructed these by intersecting star operations of the form

?B3 ∩ ?B2(f2) and ?B3 ∩ �B1(f1). Thus, to count all of the star operations satisfying

these hypotheses, it suffices to count the number of subsets of F. To count the

fractional ideals of the form B2(f2), we need only count the polynomials of the form

1 + ax since x4k[[x]] ⊆ B2(f2). Similarly, to count the fractional ideal classes of the

form B̃1(f1), it suffices to count the polynomials of the form 1 + ax+ bx2 and divide

by the number fractional ideals in each class, i.e. |k|. In light of this observation, we

see that there are |k| fractional ideals of the form B2(f2) and |k|2 fractional ideals of

the form B1(f1) giving |k| classes of the form B̃1(f1). Thus, there are |k|+ |k| = 2|k|

elements of F yielding 22|k| subsets corresponding to the star operations satisfying

these hypotheses.

Next we count the star operations ? such that A?3 = k[[x]] = A?2 and A1 is

?-closed. Recall that if any fractional ideal of the form B1(f1) is ?-closed, then so

is B3. In other words, if B3 is not ?-closed, then neither is any fractional ideal of

the form B1(f1). We shall begin by counting the star operations satisfying these

hypotheses that do not fix B3. Under this additional assumption, we have that B3

and the fractional ideals of the form B1(f1) are not fixed by ?, i.e. B?
3 = A1, and

B1(f1)? = k[[x]]. For any subset S ⊆ B2, we can construct such a star operation

that fixes all of the fractional ideals in S while not fixing any of the fractional ideals

in F\S by intersecting operations of the form ?B2(f2). To count these star operations,

we need only count the subsets of B2 of which there are 2|k|. Now suppose that B3

is ?-closed. For any subset S ⊆ F, we can construct a star operation that fixes all

of the fractional ideals in S but does not fix any of the fractional ideals in F \S by

intersecting operations of the form ?B2(f2) and (?B3 ⊕ ?B2) ∩ �B1(f1). To count these
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star operations, we need only count the subsets of F of which there are 2|k|+|k| = 22|k|.

Thus, we have counted 22|k| + 2|k| star operations ? such that A?3 = k[[x]] = A?2 and

A1 is ?-closed.

Finally, we count the star operations ? such that A?1 = A?2 = A?3 = k[[x]]. Recall

that if A1 is not ?-closed, then neither is B2(f2) for any f2 ∈ k[[x]]×. Thus, for

any star operation satisfying these hypotheses, B2(f2)? = k[[x]] for all f2 ∈ k[[x]]×.

Suppose that B?
3 = k[[x]]. Then B1(f1)? = k[[x]] for every f1 ∈ k[[x]]× and we find

that the only such star operation is the v-operation adding one more to our total

count. Now suppose that B3 is ?-closed. Then for any subset S ⊆ B1, we can

construct such a star operation that fixes all of the fractional ideals in S while not

fixing those in B1 \S by intersecting operations of the form �B1(f1) (or take ?B3⊕?B1

in the case that S is empty). Thus, to count these it suffices to count the subsets of

B1 of which there are 2|k|.

The only case we have not considered is the case where A1, A2, and A3 are

?-closed. As discussed earlier, the only such star operation is the identity operation

which adds one more to our total count. If we add up all the star operations we have

counted, we obtain

22|k| + 2|k| + 22|k| + 1 + 2|k| + 1 = 22|k|+1 + 2|k|+1 + 2.

4.2 Classification of Semistar Operations on

k + x4k[[x]]

Previously we classified all star operations on k + x4k[[x]]. With little effort, we can

classify all semistar operations on this ring as well. First we shall define semistar

operations.
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Definition 4.2.1. Let R be a domain, K its field of fractions and F̄ (R) the set of

R-submodules of K. A star operation ? is a map ? : F̄ (R)→ F̄ (R) written F 7→ F ?

satisfying the following for any F,G ∈ F̄ (R) and any x ∈ K.

1. F ⊆ F ?

2. If F ⊆ G, then F ? ⊆ G?.

3. (F ?)? = F ?

4. (xF )? = xF ?

This definition is very similar to the definition of a star operation the

key differences being that a semistar operation is defined on the entire set of

R-submodules of K instead of just being defined on the fractional ideals and

we no longer demand that R? = R. In the case of numerical semigroup rings,

F̄ (R) = F (R) ∪ {k((x))} where F (R) is the set of fractional ideals of R. It was

shown by Anderson and Anderson in (reference) that for any semistar operation ?,

R? is an overring of R. Thus, if we restrict ? to the fractional ideals of R?, we obtain

a star operation on R?. We now examine the semistar operations on R = k+x4k[[x]].

Proposition 3.0.23 by Gilmer still holds when ? is only assumed to be semistar so the

restrictions on the actions of star operations that came from this proposition still hold

for semistar operations. For example, we determined that if B1(f1) is ?-closed, then

so is B3. We also have that Propositions 3.0.14 and 3.0.24 still hold in the semistar

case so all of the possible actions of semistar operations on the fractional ideals not

isomorphic to R have already been determined assuming that no fractional ideal is

sent to a submodule not contained in k[[x]]. There is only one semistar operation

which sends a fractional ideal to such a module and that is e defined by Ie = k((x))

for all submodules I as is shown in the following proposition.
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Proposition 4.2.2. Let ? be a semistar operation on a numerical semigroup ring

R. Suppose that I? 6⊆ k[[x]] for some fractional ideal I intermediate between R and

k[[x]]. Then ? = e.

Proof. We know that R? is an overring of R so either R? is intermediate between

R and k[[x]], or R? = k((x)) since there are no rings in the fraction field strictly

between k[[x]] and k((x)). If R? = k((x)), then ? = e. If R? is an overring of R

intermediate between R and k[[x]], then ? is a star operation when restricted to the

fractional ideals of R?. Thus k[[x]] is ?-closed and so I? ⊆ k[[x]] for all I intermediate

between R and k[[x]].

From this proposition we can conclude that every semistar operation other than

e on R = k + x4k[[x]] will coincide with some star operation on the non-principal

fractional ideals. Thus we shall examine the semistar operations by considering their

actions on R. We begin by constructing some semistar operations that are not star.

Previously, we had constructed star operations from overrings in the following way.

If R′ is an overring of R, define ?R′ by I?R′ = IR′ ∩ Iv for every fractional ideal

I. We shall define the semistar operation ?̄R′ by I ?̄R′ = IR′. In particular, this

semistar operation sends R to R′ so if R 6= R′, then ?̄R′ is not star. We will need

one more construction to complete our list of semistar operations on k + x4k[[x]].

If R′ is an overring of R and ? a semistar operation on R′, then ?(?̄R′) defined by

I?(?̄R′ ) = (IR′)? is a semistar operation on R. The following proposition classifies all

semistar operations on k + x4k[[x]].

Proposition 4.2.3. Every semistar operation on k + x4k[[x]] is a star operation or

is of one of the following forms:

1. e

2. ?̄B2(f2)
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3. ?̄B3

4. ?̄B3 ⊕ �B1

5. ?A1(?̄B3)

6. ?̄A1

7. ?̄k[[x]]

Proof. Suppose R? = k[[x]]. Then ? = ?̄k[[x]].

Suppose R? = A1. Then A?1 ⊆ I? for every fractional ideal I intermediate between

R and k[[x]]. Thus A?2 ⊇ A2 + A1 = k[[x]] and so A?2 = A?3 = k[[x]]. We also have

A1 ⊆ B?
3 ⊆ A?1 = A1 and similarly for B2(f2). Finally, B1(f1)? ⊇ B1(f1)+A1 = k[[x]].

Thus ? = ?̄A1 .

Suppose that R? = B2(f2). Then B2(f2) is ?-closed which implies that A1 is

?-closed. If f ∈ k[[x]]× is such that B2(f) 6= B2(f2), then A1 = B2(f) + B2(f2) ⊆

B2(f)? ⊆ A1. Similarly, B?
3 = A1. We also have that A?2 ⊇ A2 + B2(f2) = k[[x]] so

A?2 = A?3 = k[[x]]. Finally B1(f1)? ⊇ B2(f2) so B1(f1) is not ?-closed which implies

that B1(f1)? = A2(f1) or B1(f1)? = k[[x]]. Since A2 is not ?-closed, we must have

B1(f1) = k[[x]]. Thus ? = ?̄B2(f2).

Suppose R? = B3. We have three cases under this assumption.

1. A?1 = k[[x]] = A?2.

2. A?1 = A1 and A?2 = k[[x]].

3. A?1 = A1 and A?2 = A2.

If A?1 = k[[x]] = A?2, then B2(f2)? = k[[x]] since A1 is not ?-closed. Similarly,

B1(f1)? = k[[x]]. Thus ? = ?̄B3 ⊕ �B1 .
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Now suppose that A?1 = A1 and A?2 = k[[x]]. Then B3 ⊆ B2(f2)? ⊆ A1 and so

B2(f2)? = A1. Also, B3 ⊆ B1(f1)? which implies that B1(f1)? = k[[x]] since A2 is

not ?-closed. Thus, ? = ?B3
A1

.

Finally, suppose that A?1 = A1 and A?2 = A2. Then B3 ⊆ B2(f2)? ⊆ A1 and B3 ⊆

B1(f1)? ⊆ A2(f1) and so B2(f2)? = A1 and B1(f1)? = A2(f1). Thus ? = ?̄B3 .

51



Chapter 5

Star and Semistar Operations on

k + x5k[[x]]

5.1 Classification of Semistar Operations on

k + x5k[[x]]

The classification of all star operations on k + x5k[[x]] is a work in progress but the

semistar operations on k + x5k[[x]] which are not star are classified by Proposition

5.1.2. Before we classify these, we need the following proposition.

Proposition 5.1.1. The ring k[[x3 + ax4, x5, x7]] has exactly four star operations.

The identity, the v-operation, ?B4, and v( ¯?B4) ∩ v.

This was proven in [HMP2] where a = 0. The proof easily extends to the slightly

more general case. The diagram of the lattice of intermediate fractional ideals is

given in Figure 5.1.

This diagram simplifies, however, under the observation that < 1, x >=
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k[[x]]
		

1, x2, x4

77ooooooooooo��
1, x+ ax2, x4

OO

HH 1, x+ bx4, x2 + cx4

iiSSSSSSSSSSSSSSSS ��

1, x4

OO

??�������������������33
1, x2 + ax4

ggOOOOOOOOOOO

;;

��
1, x+ ax2 + bx4

iiSSSSSSSSSSSSSS

ccGGGGGGGGGGGGGGGGGGGGGG ��

R
��

Figure 5.1: All possible actions of star operations on R = k[[x3, x5, x7]].

< 1, x, x4 > and < 1, x, x2 >= k[[x]] as shown in Figure 5.2.

k[[x]]
		

1, x2, x4

OO

��
1, x+ ax2, x4

ggOOOOOOOOOOO

HH

1, x4

OO

;;

33
1, x2 + ax4

ggOOOOOOOOOOO

__??????????????????? ��

R
��

Figure 5.2: All possible actions of star operations on R = k[[x3, x5, x7]] revised.

Proposition 5.1.2. Every semistar operation on k + x5k[[x]] is a star operation or

is of one of the following forms where ?4 is any of the star operations described in

Theorem 4.1.1.

1. e

2. ?̄B3(f3)

3. v(?̄B3(f3))

53



Chapter 5. Star and Semistar Operations on k + x5k[[x]]

4. v(?̄B3(f3)) ∩ ?B(3,4)
(?̄B3(f3))

5. ?A1(?̄B3(f3))

6. ?4(?̄B4)

7. ?̄A1

8. ?̄k[[x]]

Proof. Suppose R? = k[[x]]. Then ? = ?̄k[[x]].

Suppose R? = A1. Then A?1 ⊆ I? for every fractional ideal I intermediate between

R and k[[x]]. Thus A?2 ⊇ A2 + A1 = k[[x]] and so A?2 = A?3 = k[[x]]. We also have

A1 ⊆ B?
3 ⊆ A?1 = A1 and similarly for B2(f2). Finally, B1(f1)? ⊇ B1(f1)+A1 = k[[x]].

Thus ? = ?̄A1 .

Suppose R? = B4. Then ? coincides with a star operation on B4 = k + x4k[[x]]

which were given in Theorem 4.1.1.

Suppose R? = B3(f3). Then ? coincides with a star operation on B3(f3) as

discussed previously.

Suppose R? = B(3,4). Then ? coincides with a star operation on B(3,4) all three of

which were determined by Houston, Mimouni and Park in [HMP2].

5.2 Star Operations on k + x5k[[x]]

The star operations on k + x5k[[x]] are still not yet classified. However, we at least

have the following constructions.
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1. ?A1

2. ?B(3,4)

3. ?B(2,4)(f2)

4. ?B4

5. ?B3(f3)

6. �B1(f1)

7. �B2(f2)

8. �B(1,2)(f1,f2)

9. �B(1,3)(f1,f3)

In Example 3.0.20, we saw how Proposition 3.0.19 becomes useful. We examine

a very similar example here.

Example 5.2.1. Consider R = k + x5k[[x]]. We have B4 ⊆ A(1,2), A(1,3), A(2,3) but

B?
4 6= A(2,3) since B?

4 must be a ring by Proposition 3.0.19 while A(2,3) is not a ring.

If we put Propositions 3.0.14, 3.0.15, and 3.0.19, together with Corollary 3.0.17,

we can eliminate many possible actions of star operations immediately. The diagram

in Figure 5.3 describes the possible actions of star operations on the monomial

fractional ideals intermediate between k+ x5k[[x]] and k[[x]] in light of Propositions

3.0.14, 3.0.15, 3.0.19 and Corollary 3.0.17. This suffices to represent the possible

actions on all such fractional ideals. We omit the arrows indicating the possibility of

each fractional ideal being fixed by the star operation and denote R = k + x5k[[x]].

Here we have seen that many possible actions of star operations on the set of

fractional ideals intermediate between R and k[[x]] have been eliminated. We can
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k[[x]]

A1

33gggggggggggggggggggggggggggggg A2

;;vvvvvvvvv
A3

ccHHHHHHHHH

A4

kkWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

A(1,2)

OO

33

A(1,3)

ccHHHHHHHHH

11

A(1,4)

iiSSSSSSSSSSSSSSSSSSS

DD																
A(2,3)

iiSSSSSSSSSSSSSSSSSSS

ZZ5555555555555555

A(2,4)

oo

mm

A(3,4)

iiSSSSSSSSSSSSSSSSSSS

kk

B4

OO ;;vvvvvvvvv

dd

OO

B3

ccHHHHHHHHH

ZZ55555555555555555

NN

B2

ii kkWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

;;vvvvvvvvv

mm

PP

B1

iiSSSSSSSSSSSSSSSSSSS

ccHHHHHHHHH

OO

YY

PP

R

Figure 5.3: All possible star operations on k + x5k[[x]].

eliminate some more possibilities with Proposition 3.0.24. That is, for any

f1, f2, f3 ∈ k[[x]]× and any star operation ? on R, we have that

1. If B1(f1) is ?-closed, then so is B4.

2. If B2(f2) is ?-closed, then so is A(1,2).

3. If B3(f3) is ?-closed, then so is A1.

As far as constructing star operations, we already have ?B4 , ?B3(f3), �B2(f2), and

�B1(f1). We also have ?B(2,4)
as discussed earlier. In fact we have ?B(2,4)(f2). We also

have ?B(3,4)
although we can construct this by taking ?B3⊕?B4 and similarly we have

?A1 = ?B3 ⊕ ?B(2,4)
. We can also construct more ”diamond” operations as we have

that (A(2,4)(f1, f3) : A(2,4)(f1, f3)) = R and likewise (A(3,4)(f1, f2) : A(3,4)(f1, f2)) =

R yielding the operations �A(2,4)(f1,f3) and �A(3,4)(f1,f2) respectively. The remaining

fractional ideals fail to generate star operations since they are neither rings nor

satisfy (F : F ) = R except for A4. We have that (A4 : A4) = R which yields a �A4 ,

however, we have that A
�A4
4 = A4 which implies that �A4 is the identity operation
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by Propositions 3.0.14 and 3.0.15. This phenomenon also occurred in the case of

k+x4k[[x]] with A3. In fact, for k+xnk[[x]], we have that (An−1 : An−1) = k+xnk[[x]]

and that �An−1 is the identity operation.

The actions of the ? constructions are fairly obvious but it can be difficult to

determine what the � operations will do, especially �B(1,2)(f1,f2), and �B(1,3)(f1,f3). For

this reason, we utilize the computer program Macaulay 2 [GS] to gather some data

about these star operations for specific fields k. The following data were collected

on the action of �B(1,2)
on fractional ideals of the form B1(f1) setting k = Z/2Z.

1. B
�B(1,2)

1 = B1

2. B1(1 + x+ x2 + x3)
�B(1,2) = B1(1 + x+ x2 + x3)

3. B1(1 + x)
�B(1,2) = B(1,2)

4. B1(1 + x2 + x3)
�B(1,2) = B(1,2)(1 + x2 + x3, 1 + x)

5. B1(1 + x2)
�B(1,2) = B(1,2)(1 + x2, 1 + x2)

6. B1(1 + x+ x3)
�B(1,2) = B(1,2)(1 + x2 + x3, 1 + x)

7. B1(1 + x+ x2)
�B(1,2) = B(1,4)(1 + x+ x2)

8. B1(1 + x3)
�B(1,2) = B(1,4)
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Future Work

Here we have classified all star operations on the ring k + x4k[[x]], but the long

term goal of this line of inquiry is to classify all star operations on general numerical

semigroup rings. In the case of k + x4k[[x]], we could construct all of the star

operations with ?B3 , ?B2(f2), and �B1(f1). In the general case of k + xnk[[x]], we have

that Bj(fj) is a ring if j ≥ n
2

and (Bj(fj) : Bj(fj)) = k+xnk[[x]] if 0 < j < n
2
. Thus,

?Bj(fj) is defined for each j with n
2
≤ j < n and every fj ∈ k[[x]]× and similarly

�Bj(fj) is defined for each j with 0 ≤ j < n
2

and every fj ∈ k[[x]]×. It is reasonable to

conjecture that every star operation on k + xnk[[x]] can be constructed from these

in a fashion similar to Theorem 4.1.1. However, in the case of R = k + x5k[[x]],

we have ?B(2,4)
which cannot be constructed from ?B4 , ?B3(f3), �B2(f2), and �B1(f1)

since B
?B(2,4)

4 = B(2,4) while the only star operation out of ?B4 , ?B3(f3), �B2(f2), and

�B1(f1) that fix B(2,4) is ?B4 which also fixes B4. The immediate next goal is to

classify all the star operations on k+x5k[[x]]. We can already see that, for example,

?B(3,4)
= ?B3 ⊕ ?B4 . In fact this observation can be made general by the following

proposition.

Proposition 6.0.2. Let R be a conductive numerical semigroup ring and let
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n
2
≤ i1 < i2 < n. Then

?B(i1,i2)(fi1 ,fi2 ) = ?Bi1 (fi1 ) ⊕ ?Bi2 (fi2 ).

Proof. To show this, we need only show that for any overring R′ intermediate between

R and k[[x]] and any ideal I of R, IR′ ⊆ Iv. Proposition 2.2.4 gives us that Iv =

xord(I)k[[x]]. Since R′ ⊆ k[[x]], ord(IR′) = ord(I) which implies that IR′ ⊆ Iv.

One might wonder what conditions a fractional ideal of this type are necessary

or sufficient for it to be a ring. One condition we have is that if R = k + xnk[[x]],

then B(i1,...,iµ) is a ring if and only if {i1, . . . , iµ}∪n+N is a numerical semigroup. It

would be nice, however, to find some conditions that were easier to check in a general

setting. We would also like to find necessary or sufficient conditions for one of these

fractional ideals to satisfy (F : F ) = R. We can easily see that if F is one of these

fractional ideals, then F is a ring if and only if (F : F ) = F , and so F cannot be a ring

and satisfy (F : F ) = R unless F = R. More investigation will hopefully reveal more

widely applicable conditions. We saw how Proposition 3.0.23 yielded Proposition

3.0.24. Proposition 3.0.23 can give us even more information. For example, in the

case where R = k + x5k[[x]], we have that (B(2,3) : B4) = x2k + x3k + x5k[[x]]

which is isomorphic to A2 implying that if ? is a star operation on R, then A2 is

?-closed if B(2,3) is. It seems likely that there is some phenomenon at work here

that is a generalization of Proposition 3.0.24. We ask two final question: Are all

star operations on conductive numerical semigroup rings able to be constructed from

these ”star” and ”diamond” constructions using intersections and the ⊕ operation?

What are the minimal sets of star operations necessary to construct all of them in

this fashion? Hopefully, these questions will be answered upon further investigation.
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Appendix A

Macaulay 2 Code

In Chapter 3.0.20, we discussed the use of the computer program Macaulay 2 to

compute the ?-closures of ideals. Macaulay 2 has a built in function for computing

the ideal (I : J) where I and J are ideals of the ring R. The difficult part of using

Macaulay 2 to do this in the ring R = k + x5k[[x]] is constructing the ring within

the confines of the Macaulay 2 environment. Actually, Macaulay 2 does not yet

have a package for formal power series rings but as shown in Chapter 3.0.20, the

ring k + x5k[x] will suffice for our purposes. Macaulay 2 is limited to quotients

of polynomial rings so to construct k + x5k[x], we must represent this ring as a

quotient of k[x1, x2, x3, x4, x5]. In other words, we must produce sufficient relations

among the variables to produce a ring that is isomorphic to the one desired. The

following proposition establishes such an isomorphism writing k[x1, x2, x3, x4, x5] as

k[x5, x6, x7, x8, x9] to indicate which variable is to correspond to which power of x.

Proposition A.0.3. The ring R = k+x5k[[x]] (resp. R = k+x5k[x]) is isomorphic

to the ring S = k[[x5, x6, x7, x8, x9]]/I (resp. S = k[x5, x6, x7, x8, x9]/I) where

I = (x5x7 − x2
6, x5x8 − x6x7, x5x9 − x6x8, x5x9 − x2

7, x
3
5 − x7x8, x

3
5 − x6x9,

x2
5x6 − x7x9, x

2
5x6 − x2

8, x
2
5x7 − x8x9, x

2
5x8 − x2

9).
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Proof. First note that the same proof works for both the polynomial rings and the

formal power series rings so we’ll just prove it for the power series rings. The map

we claim to be an isomorphism is φ : S → R defined by φ(a) = a for all a ∈ k and

φ(xi) = xi. Define the map φ̃ : k[[x5, x6, x7, x8, x9]] → k + x5k[[x]] in the same way

as φ. It is easy to see that φ̃ is a surjective homomorphism. It is also not difficult to

check that I ⊆ kerφ̃ and so the map φ is well-defined. It remains to be shown that φ is

injective. This breaks down to a semigroup-theoretic argument. The map φ̃ induces

the obvious analog from N5
0 (where N0 = N ∪ {0}) to < 0, 5, 6, 7, 8, 9 >. We simply

need to show that for any n ∈< 5, 6, 7, 8, 9 >, every N0-linear combination of 5, 6, 7, 8

and 9 yielding n can be reduced to one particular such linear combination using the

relations analogously obtained from I. For instance 5, 6, 7, 8, 9, 10 and 11 each only

have one such N0-linear combination representing them. However, 5 + 7 = 12 and

2 ·6 = 12 so that φ̃ maps two elements onto x12, namely x5x7 and x2
6. However, since

x5x7 − x2
6 is a generator of I, φ only maps one element to x12. We will proceed by

showing that all possible N0-linear combinations are equivalent under the relations

given by I for each natural number from 12 to 19. Then we will use the fact that

the conductor of the semigroup < 5, 6 > is 20 to conclude that every natural number

greater than or equal to 20 can be written as an N0-linear combination of 5 and 6.

Then we will show that the relations given by I are sufficient to rewrite any N0-linear

combination representing one of these numbers in the form n · 5 + i · 6 where n ∈ N

and i ∈ {0, 1, 2, 3, 4}. We have already taken care of 12. For 13 we have 5 + 8 = 13

and 6 + 7 = 13 which are identified by the relation x5x8 − x6x7. 14 can be written

as 5 + 9, 6 + 8, or 2 · 7 which are covered by the relations x5x9− x6x8 and x5x9− x2
7.

We have 15 = 3 · 5 = 6 + 9 = 7 + 8 which are covered by the relations x3
5 − x6x9

and x3
5 − x7x8. For 16 we have 2 · 5 + 6 = 7 + 9 = 2 · 8 which are identified by the

relations x2
5x6 − x7x9 and x2

5x6 − x2
8.

For the numbers 17 through 19, we can partially reduce the problem to one of

the previous numbers. For example, we have that 17 = 5 + 12 = 6 + 11 = 7 + 10 =
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8 + 9. We already have that 10 and 11 each have only one N0-linear combination

representing them. We found two for 12 and a relation from I identifying them so

we can multiply this relation by x5 to identify the two N0-linear combinations of the

form 5 + 12 representing 17. Thus we need only find relations identifying one of the

N0-linear combinations of the form 5+12 to one of each of the other forms. Of course

6 + 11 = 6 + 6 + 5 = 5 + 12 so the first and second type are really the same. We

identify the last two N0-linear combinations with the relation x2
5x7 − x8x9 and we

have 7 + 10 = 7 + 5 + 5 = 12 + 5 so this one was of the first type in the first place.

We have 18 = 5 + 13 = 6 + 12 = 7 + 11 = 8 + 10 = 2 · 9. We have that

8 + 10 = 8 + 5 + 5 = 13 + 5 equating these two types of N0-linear combinations and

similarly 7 + 11 = 7 + 6 + 5 = 13 + 5. We also have 6 + 12 = 6 + 7 + 5 = 13 + 5 so

we need only identify 2 · 9 to one of these which we do with the relation x2
5x8 − x2

9.

For 19 we have 19 = 5 + 14 = 6 + 13 = 7 + 12 = 8 + 11 = 9 + 10. We have

9 + 10 = 9 + 5 + 5 = 14 + 5, 8 + 11 = 8 + 6 + 5 = 14 + 5, 7 + 12 = 7 + 7 + 5 = 14 + 5,

and 6 + 13 = 6 + 8 + 5 = 14 + 5 which equates all of these N0-linear combinations.

Every number from here can be written as an N0-linear combination of 5 and 6.

We also obtain x5
6 = x6

5 from x5
6 = x2

6x
3
6 = x5x7x5x7x6 = x2

5x7x8x5 = x3
5x

3
5 = x6

5.

Thus we have sufficient relations to reduce any N0-linear combination of 5 and 6 to

one where the 6 coefficient is from 0 to 4. Suppose we have n5 ·5+n6 ·6+n7 ·7n8 ·8n9 ·9

an N0-linear combination of a number that is at least 20. Since we have the relation

x2
5x8−x2

9, we may assume that n9 = 1 or n9 = 0. We also have x2
5x6−x2

8 which allows

us to assume that n8 = 1 or n8 = 0. We also have the relation x5x9−x2
7 so if we reduce

our N0-linear combination with this relation first we may also assume that n7 = 1

or n7 = 0. Suppose n7 = n8 = n9 = 1. Then we have the relations x7x9 = x2
5x6 and

x2
5x8 = x3

6 so we have reduced this to an N0-linear combination of 5 and 6. Suppose

that n7 = n8 = 1 and n9 = 0. Then the relation x7x8 = x3
5 allows us to reduce this

to an N0-linear combination of 5 and 6. Suppose n7 = n9 = 1 and n8 = 0. Then
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we have x7x9 = x2
5x6 reducing this to an N0-linear combination of 5 and 6. Suppose

n8 = n9 = 1 and n7 = 0. Then x8x9 = x2
5x7 = x5x

2
6 allowing this to be written as an

N0-linear combination of 5 and 6. Suppose that n7 = 1 and n8 = n9 = 0. Since the

number is assumed to be at least 20, n5 +n6 ≥ 3. If n5 ≥ 1 then we have x5x7 = x2
6.

If n5 = 0, then n6 ≥ 4 so we have x3
6x7 = x2

6x5x8 = x6x5x5x9 = x2
5x6x9 = x2

5x
3
5.

Thus we can reduce this to an N0-linear combination of 5 and 6. Suppose n8 = 1

and n7 = n9 = 0. Then n5 +n6 ≥ 2. If n6 = 0 then n5 ≥ 2 so x2
5x8 = x5x6x7 = x6x

2
6.

If n5 = 0 then n6 ≥ 2 and so x2
6x8 = x6x5x9 = x5x

3
5. If n6 = 1 then n5 ≥ 2 and if

n5 = 1 then n6 ≥ 2. Thus this can be reduced to an N0-linear combination of 5 and

6. Suppose that n9 = 1 and n7 = n8 = 0. If n6 ≥ 1 then x6x9 = x3
5. If n6 = 0 then

n5 ≥ 3 so x3
5x9 = x2

5x
2
7 = x4

6. Thus we can reduce this to an N0-linear combination

of 5 and 6.

This proposition justifies us in using the following code to represent k+x5k[x] in

Macaulay 2.

R=ZZ/2[x_5,x_6,x_7,x_8,x_9,Degrees=>{5,6,7,8,9}]

I=ideal(x_5*x_7-x_6^2, x_5*x_8-x_6*x_7, x_5*x_9-x_6*x_8,

x_5*x_9-x_7^2, x_5^3-x_7*x_8, x_5^3-x_6*x_9,

x_5^2*x_6-x_7*x_9, x_5^2*x_6-x_8^2, x_5^2*x_7-x_8*x_9,

x_5^2*x_8-x_9^2)

S=R/I

Note that we may replace Z/2Z with any field Macaulay 2 is programmed with

including Q, R, C or any finite field achievable within the physical constraints of

the hardware. Once we have constructed the desired ring in Macaulay 2, we may

proceed to compute (I : J) but we must be careful since Macaulay 2’s built in colon

function works over the ring itself, not the ambient fraction field (or total ring of

fractions if the ring is not a domain). To account for this, we use the fact that
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(aI : bJ) = ab−1(I : J). For example, if we wish to compute (B(1,2) : B1), we

compute (x10B(1,2) : x5B1) = x5(B(1,2) : B1) since (B(1,2) : B1) ⊆ k[[x]] which implies

that x5(B(1,2) : B1) ⊆ x5k[[x]] ⊆ k + x5k[[x]]. For example, if we wish to compute

B
�B(1,2)

1 , we compute (x10B(1,2) : (x10B(1,2) : x5B1)) = x10(B(1,2) : x5(B(1,2) : B1)) =

x5(B(1,2) : (B(1,2) : B1)) = x5B
�B(1,2)

1 . We see what this computation yields in the

following example.

Example A.0.4. To compute x5B
�B(1,2)

1 , we define the following two ideals in R.

Bd_12=ideal(x_5^2,x_5*x_6,x_5*x_7)

B_1=ideal(x_5,x_6)

This defines the ideals x10B(1,2) and x5B1. Now we compute x5B
�B(1,2)

1 as follows.

input:Bd_12:(Bd_12:B_1)

output:ideal(x_5,x_6)

In other words, x5B
�B(1,2)

1 = x5B1 and so B
�B(1,2)

1 = B1 so B1 is �B(1,2)
-closed.

The following code defines all fractional ideals intermediate between k + x5k[[x]]

and k[[x]] for k = Z/2Z multiplied by x5 (except for Ai(f(1,...,i−1))).

B_1=ideal(x_5,x_6)

Bf_1=ideal(x_5,x_6+x_7)

Bg_1=ideal(x_5,x_6+x_7+x_8)

Bh_1=ideal(x_5,x_6+x_7+x_8+x_9)

Bi_1=ideal(x_5,x_6+x_8+x_9)

Bj_1=ideal(x_5,x_6+x_9)

Bk_1=ideal(x_5,x_6+x_7+x_9)
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Bl_1=ideal(x_5,x_6+x_8)

B_2=ideal(x_5,x_7)

Bf_2=ideal(x_5,x_7+x_8)

Bg_2=ideal(x_5,x_7+x_8+x_9)

Bh_2=ideal(x_5,x_7+x_9)

B_3=ideal(x_5,x_8)

Bf_3=ideal(x_5,x_8+x_9)

B_4=ideal(x_5,x_9)

B_12=ideal(x_5,x_6,x_7)

Bf_12=ideal(x_5,(x_6+x_8+x_9),x_7)

Bg_12=ideal(x_5,(x_6+x_8),x_7)

Bh_12=ideal(x_5,(x_6+x_9),x_7)

Bi_12=ideal(x_5,x_6,(x_7+x_8))

Bj_12=ideal(x_5,(x_6+x_8+x_9),(x_7+x_8))

Bk_12=ideal(x_5,(x_6+x_8),(x_7+x_8))

Bl_12=ideal(x_5,(x_6+x_9),(x_7+x_8))

Bm_12=ideal(x_5,x_6,(x_7+x_8+x_9))

Bn_12=ideal(x_5,(x_6+x_8+x_9),(x_7+x_8+x_9))

Bo_12=ideal(x_5,(x_6+x_8),(x_7+x_8+x_9))

Bp_12=ideal(x_5,(x_6+x_9),(x_7+x_8+x_9))

Bq_12=ideal(x_5,x_6,(x_7+x_9))

Br_12=ideal(x_5,(x_6+x_8+x_9),(x_7+x_9))

Bs_12=ideal(x_5,(x_6+x_8),(x_7+x_9))

Bt_12=ideal(x_5,(x_6+x_9),(x_7+x_9))

66



Appendix A. Macaulay 2 Code

B_13=ideal(x_5,x_6,x_8)

Bf_13=ideal(x_5,(x_6+x_7),x_8)

Bg_13=ideal(x_5,(x_6+x_9),x_8)

Bh_13=ideal(x_5,(x_6+x_7+x_9),x_8)

Bi_13=ideal(x_5,x_6,(x_8+x_9))

Bj_13=ideal(x_5,(x_6+x_7),(x_8+x_9))

Bk_13=ideal(x_5,(x_6+x_9),(x_8+x_9))

Bl_13=ideal(x_5,(x_6+x_7+x_9),(x_8+x_9))

B_14=ideal(x_5,x_6,x_9)

Bf_14=ideal(x_5,(x_6+x_7),x_9)

Bg_14=ideal(x_5,(x_6+x_8),x_9)

Bh_14=ideal(x_5,(x_6+x_7+x_8),x_9)

B_23=ideal(x_5,x_7,x_8)

Bf_23=ideal(x_5,(x_7+x_9),x_8)

Bg_23=ideal(x_5,x_7,(x_8+x_9))

Bh_23=ideal(x_5,(x_7+x_9),(x_8+x_9))

B_24=ideal(x_5,x_7,x_9)

Bf_24=ideal(x_5,(x_7+x_8),x_9)

B_34=ideal(x_5,x_8,x_9)

A_1=ideal(x_5,x_7,x_8,x_9)

A_2=ideal(x_5,x_6,x_8,x_9)

A_3=ideal(x_5,x_6,x_7,x_9)
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A_4=ideal(x_5,x_6,x_7,x_8)

In order to apply the various �I operations to these ideals, we must define ideals

of the form x10I. Here we do so for ideals of the form B(1,2)(f1, f2) and B(1,3)(f1, f3).

Bd_12=ideal(x_5^2,x_5*x_6,x_5*x_7)

Bdf_12=ideal(x_5^2,x_5*(x_6+x_8+x_9),x_5*x_7)

Bdg_12=ideal(x_5^2,x_5*(x_6+x_8),x_5*x_7)

Bdh_12=ideal(x_5^2,x_5*(x_6+x_9),x_5*x_7)

Bdi_12=ideal(x_5^2,x_5*x_6,x_5*(x_7+x_8))

Bdj_12=ideal(x_5^2,x_5*(x_6+x_8+x_9),x_5*(x_7+x_8))

Bdk_12=ideal(x_5^2,x_5*(x_6+x_8),x_5*(x_7+x_8))

Bdl_12=ideal(x_5^2,x_5*(x_6+x_9),x_5*(x_7+x_8))

Bdm_12=ideal(x_5^2,x_5*x_6,x_5*(x_7+x_8+x_9))

Bdn_12=ideal(x_5^2,x_5*(x_6+x_8+x_9),x_5*(x_7+x_8+x_9))

Bdo_12=ideal(x_5^2,x_5*(x_6+x_8),x_5*(x_7+x_8+x_9))

Bdp_12=ideal(x_5^2,x_5*(x_6+x_9),x_5*(x_7+x_8+x_9))

Bdq_12=ideal(x_5^2,x_5*x_6,x_5*(x_7+x_9))

Bdr_12=ideal(x_5^2,x_5*(x_6+x_8+x_9),x_5*(x_7+x_9))

Bds_12=ideal(x_5^2,x_5*(x_6+x_8),x_5*(x_7+x_9))

Bdt_12=ideal(x_5^2,x_5*(x_6+x_9),x_5*(x_7+x_9))

Bd_13=ideal(x_5^2,x_5*x_6,x_5*x_8)

Bdf_13=ideal(x_5^2,x_5*(x_6+x_7),x_5*x_8)

Bdg_13=ideal(x_5^2,x_5*(x_6+x_7+x_9),x_5*x_8)

Bdh_13=ideal(x_5^2,x_5*(x_6+x_9),x_5*x_8)

Bdi_13=ideal(x_5^2,x_5*x_6,x_5*(x_8+x_9))

Bdj_13=ideal(x_5^2,x_5*(x_6+x_7),x_5*(x_8+x_9))

Bdk_13=ideal(x_5^2,x_5*(x_6+x_7+x_9),x_5*(x_8+x_9))
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Bdj_13=ideal(x_5^2,x_5*(x_6+x_9),x_5*(x_8+x_9))

With this code we are able to determine actions of star operations like

B1(1 + x)
�B(1,2) as in the following example.

Example A.0.5. We compute B1(1 + x)
�B(1,2) in the following manner.

input: Bd_12:(Bd_12:Bf_1)

output: ideal(x_5, x_6, x_7)

This tells us that x5B1(1 + x)
�B(1,2) = x5B(1,2) and so B1(1 + x)

�B(1,2) = B(1,2).
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