
University of New Mexico
UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

3-16-2012

The effects of temperature forcing on dengue
dynamics via the extrinsic incubation period
Paula Danielle Weber

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for
inclusion in Mathematics & Statistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Weber, Paula Danielle. "The effects of temperature forcing on dengue dynamics via the extrinsic incubation period." (2012).
https://digitalrepository.unm.edu/math_etds/54

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/54?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


     
  

           
       Candidate  
      
           
     Department 
      
 
     This thesis is approved, and it is acceptable in quality and form for publication: 
 
     Approved by the Thesis Committee: 
 
               
                   , Chairperson 
  
 
           
 
 
           
 
 
           
 
 
           
 
 
           
 
 
            
 
 
            
 
 
            
 
 
  



The Effects of Temperature Forcing on
Dengue Dynamics via the Extrinsic

Incubation Period

by

Paula Danielle Weber

B.S., Mathematics, University of New Mexico, 2008

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mathematics

The University of New Mexico

Albuquerque, New Mexico

December, 2011



c©2011, Paula Danielle Weber

iii



Dedication

To my husband who supports, loves, and challenges me.

As well as to my parents who instilled in me at an early age a love for learning and

were ceaselessly encouraging during my education.

iv



Acknowledgments

I would like to thank my advisor, Professor Helen Wearing, for her tireless guidance
and incredible insight during this process. Thanks to John Shadid, for the opportu-
nity to work with and learn from him. I would also like to thank Harry Gullett and
Reed Weber for their thoughts on the numerous revisions. Thanks to Jesus Christ
who holds all things together.

v



The Effects of Temperature Forcing on
Dengue Dynamics via the Extrinsic

Incubation Period
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Abstract

Dengue fever is a mosquito-transmitted disease that is endemic in many parts of the

tropical world and affects a significant proportion of the human population. Tem-

perature is known to influence aspects of the dengue transmission cycle, which has

consequences for disease dynamics. Previous work has explored the effects of tem-

perature on the mortality rate of the mosquito and the resulting population change.

However, there is substantial evidence that the extrinsic incubation period (EIP) of

the pathogen within the vector host, Aedes aegypti, is also temperature dependent.

This dependence has not been thoroughly researched. We present a single serotype

compartmental model with a gamma-distributed exposed vector class to account

for a temperature-dependent EIP. Where appropriate, temperature-dependent vec-

tor mortality is convolved with the temperature dependent EIP using the mortality

function presented by Yang et al. [49]. Both seasonally and diurnal temperature

changes are examined for their potential effects upon dengue persistence. The mean

and range of temperature fluctuations that facilitate persistence are presented based
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upon the EIP function, initial conditions, seasonal temperature forcing with and

without vector mortality, as well as seasonal and diurnal temperature forcing with

and without vector mortality. With seasonal forcing and temperature dependence

only in the EIP, all simulations with mean temperatures above 26◦C show persis-

tence. However, if vector mortality is also variable, persistence is no longer possible

in higher temperatures with higher temperature ranges. Diurnal forcing exacerbates

this effect limiting persistence to mean temperatures of 23◦C to 34◦C with variable

temperature ranges. It is clear that more data are needed to reduce the uncertainty

in estimating the relationships between both EIP and vector mortality because these

relationships can have large effects on disease dynamics. Additionally, this work

demonstrates that when modeling temperature-dependent effects, it is vital to not

only include seasonal variation in temperature but also diurnal variation.
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Chapter 1

Introduction

1.1 Dengue Epidemiology

Dengue fever is a disease that is the subject of much research in epidemiology. While

a great deal is known about the pathogen that causes dengue as well as the vector that

carries it, Aedes aegypti, there remain vast areas of research unexplored. Temperature

is thought to be a major contributor to the dynamics of dengue infection. Most of

the modeling of temperature dependence is relegated simply to the population size of

the vector. However, it is known that the time which it takes the pathogen to render

the mosquito infectious is considerably variable. Some measures have been made to

quantify this variability, but this measure has not been studied to identify whether it

is a major factor in dengue dynamics. This being the case we present a short review

of what is known about dengue fever, examine the biology of the vector itself and its

potential for temperature dependence, and review the available data on the length

of time before the vector is infectious. We shall also present a short review of past

studies on the climatological influence of dengue as well as temperature-dependence

studies using different pathogens, and review previous dengue modeling as well as
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Chapter 1. Introduction

the efforts to incorporate temperature. From this foundation we shall then develop

our model which incorporates temperature-dependence in the vector biology as well

as the variable EIP.

Dengue currently has the potential to affect two fifths of the world’s population

and is endemic in over 100 countries [32]. It is possible that due to increased temper-

atures, as a consequence of climate change, this proportion could increase because

the primary vector of the disease is the mosquito, Aedes aegypti, whose geographic

range may expand with an increase in temperature [17]. This increase in tempera-

ture may also contribute to a worsening in the severity of disease in certain regions.

Factors that are thought to contribute to the severity of the disease are diverse and

not well understood but may include: host genetics, nutrition, age, sex, and previ-

ous illnesses [13]. Symptoms of dengue resemble the flu and include mild to severe

fever, headache and pain behind the eyes, muscle and joint pain, and rash. Thus the

social impact of dengue fever is one of morbidity not mortality. Dengue hemorrhagic

fever (DHF) and dengue shock syndrome (DSS) are, however, another matter. DHF

has more severe symptoms of fever, abdominal pain, vomiting, and bleeding and is

potentially fatal with a mortality rate as high as 20% and mainly affects children

[16, 32]. Treatment is limited and there is no vaccine, but maintaining hydration

is vital and medical intervention increases survival. Without a vaccine, controlling

the disease and its spread is accomplished mainly through control of the vector A.

aegypti’s population size.

The history of the A. aegypti mosquito and the subsequent spread of dengue is

an interesting one. A. aegypti was also the primary vector for yellow fever, and

in 1915 the Rockefeller Foundation spearheaded an effort to eradicate Yellow Fever

in the Western Hemisphere through the use of pesticides to wipe out the mosquito

population [44]. Their efforts were very costly, but in the 1950’s and 1960’s they had

achieved near eradication of the mosquito A. aegypti in urban South and Central

2



Chapter 1. Introduction

America. At this time the control measures were lifted, Aedes aegypti repopulated

urban areas and is found worldwide in tropical and sub-tropical regions. With this

growth in population we have seen an astonishing increase in both the frequency of

epidemics as well as the severity. Although dengue was endemic, in that there was

continuous and high incidence, in the Americas there were still only rare cases of

DHF until the early 1980’s. By the end of the decade, however, there were regular

occurrences of DHF in every endemic country [16]. This is echoed by the World

Health Organization: 40 years ago nine countries experienced DHF and now that

number has quadrupled [32].

Dengue is caused by a virus that is subdivided into four serotypes: DEN1, DEN2,

DEN3, DEN4. The human body recognizes each serotype as a distinct virus, so while

the symptoms are the same and each is considered dengue, a person could be infected

with four strains of dengue sequentially. A person after being infected with DEN1

acquires lifetime immunity to DEN1, but is susceptible to DEN2, DEN3, and DEN4.

There is thought to be some measure of cross-immunity that may decrease over a

matter of months after exposure which means that for several months after being

infected with DEN1, an individual is unlikely to be infected with the other serotypes,

but this protection wanes. It is also interesting to note that DSS and DHF are

observed where two or more serotypes are epidemic, or serially epidemic [18]. In

epidemiology, a very important measure of a pathogen’s fitness is the reproduction

number, R0, which is the average number of secondary infections due to one infection

in a completely susceptible population. An R0 less than one will not result in an

epidemic and the pathogen will not persist. Estimates of the reproduction number

for dengue range from 0.49 to 11.6 [18]. However, for areas of high endemicity it is

thought to lie in the range of 4.3-5.8 [6].

3



Chapter 1. Introduction

1.2 The Mosquito: Aedes aegypti

The primary vector of the Dengue virus is the mosquito Aedes aegypti. Like all

other mosquitoes, it goes through four life stages: egg, larva, pupa, and adult; only

adult females take a blood meal. In this study we will not consider transovarial

transmission to be a factor because, although it has infrequently been observed in

the lab, it is extremely rare in nature. Khin examined this phenomenon finding two

cases out of 16,258 mosquitoes, but both were male [23] and as they were male they

could not transmit dengue because males do not take blood meals.

1.2.1 Bloodmeals and Biting

Dengue is spread from the human host to the mosquito during the blood meal. Once

the mosquito has become infectious, each subsequent human host upon which it

feeds will be infected with dengue. The first blood meal is often taken 23 or 24

hours after emergence, but has been observed as early as 21 hours after emergence

from the pupa life stage into the adult stage [21]. Females are capable of multiple

bloodmeals in their lifetime, some as early as 2-5 hours after the first blood meal

[21], and as the mosquito ages it is no less capable or likely to take a blood meal

[35]. The frequency of taking a bloodmeal is connected to the mosquito’s oviposition

frequency; in order to lay eggs the female must first imbibe a bloodmeal and mate.

However, it has been hypothesized that at temperature extremes the meal may be

used for the mosquito’s survival instead of oviposition [9]. Males primarily feed upon

fruit which is also a food source for females, but in the lab females are primarily fed

using sugar cubes or a sucrose solution [27, 30, 35]. In a study that captured female

mosquitoes that were attempting to bite, recaptures of the same mosquito indicate

a four day gonotrophic cycle with secondary (as well as tertiary) feeding occurring

every two days [8]. There have been numerous studies on the biting rate of A. aegypti
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Chapter 1. Introduction

in multiple locations, some with conflicting results. An increase in temperature in

Thailand resulted in a significant increase in blood feeding, but this was not found

in Puerto Rico [39]. It appears that the biting rate may be geographically dependent

and may be influenced by multiple factors including temperature. Biting peaks often

occur either mid-morning or mid-afternoon but biting can occur at any time of day

as opportunity allows [2, 31, 43]. However, there appears to be consistency in that

the majority of biting activity occurs in the temperature range of 25-35◦C with an

optimum close to 35◦C [29, 31]. Identifying the peaks of biting can be important as

it can be used to help target and reduce the risk of bites during these periods [31].

Other activity of the mosquito is also temperature dependent. Aedes aegypti ’s range

of activity is also temperature dependent, normal flight is not seen below 21.1◦C.

Flight is possible but limited and clumsy below this range until 10◦C where very

little activity is observed and no flight occurs [38]. Reduction in flight and activity

has the potential to effect the survival of the mosquito as well as the transmission of

dengue.

1.2.2 Oviposition

An increase or reduction in oviposition will affect the mosquito population size in the

future. A. aegypti ’s eggs are laid in standing water, often in objects such as tires or

cans or in pools of water [45]. The eggs can survive large variations in temperature

(as well as availability of water) making them a hearty species. Eggs can survive

sustained temperatures of as low as 8.9◦C and as high as 43.3◦C [42, 41]. However

the majority were killed when maintained for seven days at or below a temperature of

15.6◦C [42]. It was found by Costa et al. [9], that at high temperatures (35◦C) fewer

eggs were laid per mosquito but again this was slightly counteracted by humidity. In

general, humidity allowed for more eggs to be laid than low humidity and increased

temperature decreased the amount laid to various extents.
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Table 1.1: Mean number of eggs laid per mosquito

Temp(in◦C) low humidity high humidity
25 85.99 99.08
30 82.89 75.75
35 54.53 59.62

1.2.3 Development

At each stage of development the mosquito is under predatory and caloric pressures.

In one study the number of mosquitoes that survived from egg to adult was correlated

directly with the amount of food and only to a small degree with the availability of

water [19]. It was found that activation began after two weeks with an average

temperature of 18.3◦C [42]. Average weekly temperatures below 15.6◦C killed most

larvae but some survived in temperatures as low as 8.8◦C [42]. If eggs are not

activated, even if they are without water for an extended period of time, it is possible

for these eggs to fully develop once temperatures are again high [19, 42].

1.2.4 Adult Mortality

The mortality of the mosquito is very important, both in the total population size

and in the ability of the pathogen to render the mosquito infectious (see section 1.3).

A. aegypti reared under lab conditions can live an extraordinarily long time, some

as long as 225 days [38]. In nature, however, females survive 15 days on average

with a maximum of 42 days (Korovitskii and Artemenko according to Schoof [38]).

Different population models choose differing averages, some with a conservative 15-

20 days [7] and others as low as 8.6 days [18]. Some stochastic models choose to

take the maximum day of survival to be 45 days with a survival rate in the range

of (.8-.95) [3] or a lower survival rate of (.87-.91) with no maximum lifespan. Some

field studies give a survival rate of as low as .656 [8], but this may be low due to the
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nature of the data: it was limited to females who are feeding again during a short

time span. Elevated temperature also has an effect on mortality for adults. 100%

of adults were killed after 30 minutes of exposure to 46.1◦C as well as 15 minutes

of exposure to 48.9◦C. All stages of Aedes aegypti can survive extended periods in

temperatures of 40.6◦C [41]. In another study, Rohani and colleagues found mortality

rates for dengue-infected mosquitoes (values for DEN2 and DEN4 are given) for

temperatures 26, 28, 30◦C to be 20-25%, 30%, and 40-45% respectively. Increased

temperature decreased the mosquito’s lifespan and reduced oviposition, but there

was also a link between high and low humidity where high humidity would offset to

various degrees the negative effects of high temperature [9]. Different strains of A.

aegypti have different mortality rates as well when maintained at the same constant

temperature [27]. Mortality/survivorship rates contribute to the dynamics of the

adult population size, but they are by no means the only factor because of the life

stages of the mosquito.

1.2.5 Other Environmental Effects

It is thought that “the amount of rainfall may or may not affect the population size

depending upon the normal state of the location in question. If it is typically dry then

an increase in rain often produces an increase in the vector population. However, if

a locale is generally very wet then the seasonal upswing in rain may not increase the

population dramatically but may instead affect the adult survivorship and feeding

activity” [18]. Again seasonal fluctuations of a population may be geographically

dependent as well, in that cold may reduce the typical range of the mosquito (in

both altitude and laterally/longitudinally) as it is dependent on the normal state of

the location and temperature and rainfall. Drought may not affect the range of A.

aegypti but rather its density or vice versa [44].
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Chapter 1. Introduction

1.3 Extrinsic Incubation Period (EIP)

The extrinsic incubation period (or EIP) of a virus is the length of time from the

mosquito’s acquisition of the disease until it is infectious and thus able to transmit the

disease to another host. Different methods are used to determine EIP. The method

that makes the most sense biologically starts with the mosquitoes being offered a

bloodmeal by an infectious host. Later these mosquitoes are allowed to feed on a

different host and this host is examined for transmission of the disease. It is also cus-

tomary to sacrifice a small number of the exposed mosquitoes periodically to examine

if there is virus present in either its abdomen, salivary glands, or both. The virus can

not be transmitted until it reaches the salivary glands, a necessary but not sufficient

qualification. The work by Watts et al.uses the method of testing an exposed host.

They used both a high and a low dose in the initial feeding of the mosquitoes [45] for

DEN2. McLean et al.used a similar procedure, also using DEN2, but in one of the

trials they directly injected infected blood into the mosquito’s abdomen, which has

been noted to inaccurately accelerate the EIP [30]. This acceleration is due to the

process itself, by injecting directly into the mosquito’s abdomen the entire process

of the virus passing from the mouth piece to the gut is overlooked. In this way it

is not reliable to determine the EIP and is not an appropriate proxy for it either

given that other data are available. In the trial using the feeding procedure, at the

lowest temperature (12.9◦C), the mosquitoes would not bite but the pathogen had

reached the salivary glands. Rohani et al.periodically sacrificed exposed mosquitoes

and determined if virus had reached the salivary glands or not. They conducted

experiments with both DEN2 and DEN4 [37].

8



Chapter 1. Introduction

Table 1.2: EIP as a function of temperature in days with the methods described in
section 1.3. *** denotes presence of virus in mosquito but feeding did not occur at
that temperature. > denotes no host was infected during the duration of the study
and the length of the study is given.

Temp.◦C Watts-high Watts-low McLean-feeding McLean-Injection Rohani-DEN2 Rohani-DEN4
12.9 35*** 13
20 >25

23.9 23.9
24 >25
26 >25 >25 9 9

26.7 13 10
28 9 9
30 12 25 5 5
32 7

32.2 6 6
35 7 3

1.4 Climatological Factors and Dengue Incidence

Considering the biology of the disease and the mosquito, there is a profound po-

tential for variation and complexity. The biology of the vector leads many experts

to conclude that rainfall and temperature contribute the greatest influence to the

dynamics of dengue by the effect on the mosquito population, its life cycle, mortal-

ity rate, and the disease’s EIP [18]. Temperature alone could have a major impact

on oviposition, hatching, pupation, emergence, mortality, and transmission [5]. As

described in sections 1.2 and 1.3, studies have attempted to quantify some of these

potential influences.

Other studies take a reverse engineering perspective and instead look at past

records of dengue incidence in a region and (most often) the weather patterns asso-

ciated with the time and location. One such study looked at El Niño (or El Niño

Southern Oscillation or ENSO) effects in Thailand, Puerto Rico, and Mexico over a

period of 13-20 years (depending on location) using Wavelet analysis [20]. El Niño

and epidemics in the regions cohered on the annual scale but not on the multi-year

scale demonstrating a seasonal forcing of dengue but not a direct forcing due to El
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Niño. Another study looked at multiple aspects of weather (land/sea temperature,

rainfall, humidity) and their contribution to vector populations (BI or breteau index

which is a method of estimating a location’s mosquito population size) and dengue

incidence in Taiwan [25]. It was found that dengue fever admissions and high BI

did not coincide at the same period of each year but in years with large epidemics

there was an above average BI. A study by Chowell and Sanchez looked at the 2002

Colima, Mexico epidemic and five climatological factors [7]. The factors examined

were precipitation, evaporation, maximum, minimum, and mean temperature; each

was considered with variable time lags of one to three months. They found that

each factor had the highest correlation with dengue incidence with different lags, but

that the greatest correlation existed between minimum and mean temperature and

precipitation. A similar study looked at reported cases in Taiwan for the years 2001-

2008 [5]. They considered rainfall, maximum, minimum and mean temperatures and

found that rainfall and minimum temperature with a lag of three months and one

month respectively were significant. In this study it was also noted that minimum

temperature had the greatest effect and was most significant. Another study looked

at biting rates and the possible effects temperature may play over a year [50]. Data

were collected in the same location weekly over the course of a year; the maximum

temperature did not change much although the minimum did. It was found that

the correlation coefficient between biting rate and the minimum temperature was

significant and may have accounted for the seasonality of biting. Researchers now

conclude that lowest daily temperature, instead of average daily temperature may

be the strongest influence in dengue transmission [18].

10
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1.5 Temperature Dependence of Other Diseases

Many diseases are temperature dependent due to the biology of the vector or the

pathogen itself. Malaria has a more complicated life cycle than dengue in that it

requires sexual reproduction inside the vector before rupturing the mosquito stomach

and moving to the salivary gland to infect any subsequent humans fed upon. Malaria

has a temperature dependent EIP in which changes as small as 2◦C have a significant

impact. It was found that a constant temperature of 18◦C led to an incubation period

of 46 days but with diurnal fluctuations of ± 7◦C it was reduced to 32 days. Too

much of an increase in temperature had the opposite effect; mean temperatures above

24◦C increased the incubation period [34]. These results imply crucial changes in the

strength and geographic bounds of malaria due to climate change.

A study by Reisen et al. examined West Nile virus and specifically the NY99

strain. They found the zero transmission temperature (14.3◦C) and found a marked

shortening of the EIP with increasing temperature. Also, small differences in the

temperature had significant consequences for the likelihood of transmission, leading

to the conclusion that certain locations had a much higher likelihood of an epidemic

than others. For example, with normal temperatures, Long Beach and Monrovia

in California have EIP’s of 17.9 and 12.4 days respectively, but the shortened EIP

doubles the infective lifetime of the mosquito in Monrovia [36]. Another study looked

at two strains of West Nile disease and found that the WN02 strain was much more

virulent in higher temperatures than NY99. When considering the degree days and

incubation rates, while the typical degree day is defined as DD = tT (where DD

is degree day and t is time in days and T is temperature in ◦C) a quartic function

(DD = tT 4) is much more representative of the data and thus a small change in

temperature results in a highly significant change in infection capability [24].

Temperature dependence is a general phenomenon that plays a significant role in
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the dynamics and resulting epidemics of many diseases.

1.6 Previous Modeling of Temperature Dependence

in Vectored Disease Systems

Strictly considering the population of A. aegypti, Dye determined an appropriate

continuous-time population model of the vector and found that adult survivorship

is the most sensitive parameter, more so than birth rate or availability of breeding

sites [10]. An SEIR, SEI (susceptible, exposed, infectious, recovered - see Fig. 2.1

and Fig. 2.2) compartment model is used with two serotypes in another model [33].

It is a stochastic model with some temperature dependence, but this is in play

only in the population dynamics of the vector through its life stages. The timing

of introduction of an infectious human was variable and it played a major role in

the size of the resulting epidemic. During the winter months no epidemic ensues

but the further into the summer the infection is introduced the larger the resulting

epidemic. Another study, also using a two serotype compartmental model, included

seasonal forcing on biting, EIP estimates, and larval mortality rates in conjunction

with seasonal data from Bangkok [4]. Biting rate and mortality was found to have a

significant effect.

A different study looked at the vector capacity with temperature dependent sur-

vival rate and EIP [3]. The gonotrophic cycle was temperature dependent as well

as the mortality rate. The EIP was not temperature dependent, but it was varied

within a range of 4-24 days to determine when the first and subsequent infectious

bites would be possible, if ever, due to the mortality rate in the mosquito.

Another set of studies focused on the temperature effects on the vector population

as well as its oviposition rate or the frequency of biting [47, 48, 49]. These studies
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looked at temperature dependent mortality rates and hatching rates for each stage

of the vector and then the resulting effect on the rate at which female mosquitoes

oviposit.

A similar study using a different vector (Aedes albopictus) used a temperature-

dependent stochastic population model of the vector with a constant temperature

EIP [11, 12]. The ability of a mosquito to transmit the disease is determined by

the time at which the mosquito takes an infected blood meal. It then tracks the

amount of time determined by the EIP based on the temperature and then the model

determined the time required before its next blood meal, this is its first infectious

bite. Subsequent bites are possible depending on the mortality rate and time at

which the mosquito took its first infectious blood meal in its life cycle. This model

was able to accurately detect the early season spikes as well as the end of season die

off of the mosquito populations based on the climate and temperatures for the region

studied.

In a series of studies, Focks et al.developed a simulation model of a mosquito

population (CIMSiM) using a large number of input parameters including type and

number of water containers, max/min temperature, relative humidity, availability

of food, and so on to be used in conjunction with a compartmental model of dis-

ease [13, 14, 15]. The population model has used numerous locations and climates

with reasonable success. The adult mosquito population size, as well as the size

of the mosquitoes themselves, are parameters passed to the DENSiM simulation as

mosquito size is thought to influence biting rate. DENSiM uses the four serotypes

and assumes infection from one serotype gives lifelong immunity to that serotype

and temporary (several months) immunity to the other serotypes, a temperature

dependent EIP is used. Daily survivorship and EIP thus interact nonlinearly and

are the driving force in the disease dynamics. It was found that the onset was not

affected by the adult population size so much as a reduction in EIP, however titer
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strength (or the amount of virus in the infected blood meal) also contributes.

A model has also been developed that is driven by climate to predict dengue

using a region’s local forecasts of weather (temperature and precipitation primarily)

to predict regions in a country that may experience epidemics up to five months in

advance. Under and over predicting of incidence was observed, but this can only be

improved with more data both quantitatively and qualitatively [28].

As one can see, a great deal of work has begun to investigate temperature de-

pendence in dengue incidence. However, these models use a variable population size

allowing temperature to drive the population size of the mosquito. In most cases

this is the only means in which temperature acts upon the system. A handful of

models used a variable EIP but not as a function of temperature. Only one model

used a temperature-dependent EIP (Focks et al. ) which is a constant value except

at temperature extremes in which it is cut-off. We shall develop a model that consid-

ers temperature-dependent EIP as well as temperature dependent vector mortality.

With this framework we will explore the impact of the variable EIP and attempt to

determine if this is a significant factor in dengue transmission and if it allows per-

sistence of the disease where mean temperatures might otherwise suggest it would

not.
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Methods

We will build a model based upon the typical indirect transmission compartment

model used in epidemiology. We will modify it to accommodate a variable incubation

period in the vector. The incubation period will be temperature dependent based

upon the data presented in section 1.3. In addition, the mortality of the vector

optionally can be temperature dependent and this function will be presented. All

parameters used in the model are summarized in table 2.1 at the end of section 2.2.

2.1 Model Framework

Compartment models divide the host and vector populations into multiple categories

or classes. The simplest model is the SI compartment model which represents the

members of the population that are susceptible (S) and infectious (I). The number of

compartments is dependent upon the biology of the organism involved. The human

host is represented by the SEIR model (see Fig. 2.1) which is broken into four classes

of susceptible (S), exposed or latent (E), infectious (I), and recovered (R). The vector,

on the other hand, is infectious until its death and is therefore represented by the
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SEI model (see Fig. 2.2) [1]. Only the female vector population is modeled as only

females take bloodmeals and are thus capable of transmitting dengue.

Figure 2.1: SEIR flow diagram representative of human population

Members of the host as well as the vector populations move from compartment to

compartment based on different rates and the dynamics can therefore be represented

as a system of ordinary differential equations (ODE’s) (eqn. 2.3 and 2.4). Our

model assumes a constant population size and so the death rate (µ) is equal to the

birth rate. Members of the susceptible population move to the exposed class at the

(transmission) rate (βI

N
). The system of equations for each organism is coupled by

transmission as the mosquito infects the human and the human infects the mosquito.

The exposed population then moves to the infected class after passing through the

latent period at a rate (σ). This latent period in the vector population is the EIP and

is therefore not constant but temperature-dependent. If the recovered class exists

then the members of the infectious class move into it at the recovery rate (γ).
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Figure 2.2: SEI flow diagram representative of mosquito population
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2.2 Model Parameterization

2.2.1 Temperature Dependent EIP Function

For development of the EIP function we took the various data sets as described

in section 1.3 and used nonlinear least squares to fit the function A expBT where

A and B are unknowns and T is temperature. Each data set yielded a different

function, each of which may be specified in the model. We then used all of the data

sets (excluding the McLean injection data), and for the data points in the lower

temperature regions that require longer than 25 days to reach infection a length

of 45 days was used. The fit and all the data points are included in Fig. 2.3. Some

model development was pursued with each of the data fits, but unless otherwise noted

τ = 25597.18 exp (−.26197T ) is the EIP temperature-dependent function used.

To examine a temperature-dependent EIP, one must modify the transition from

the exposed class to the infected class. Instead of the newly infected mosquitoes

moving from the susceptible class to an exposed class and finally to an infective

class, one could instead introduce a time delay and thus use a delay-differential

equation. The infective population would then be a function of (t-τ ). There are

standard techniques for solving dde’s when τ is constant. However, τ is temperature-

dependent, and thus a time-dependent function. This approach is flawed because it

requires additional measures to bookkeep or maintain records of vector status. An

example can be seen in a vector population moving in to the exposed class with an

EIP of 14 days. After five days the temperature increases such that the EIP is now

seven days. The population that entered five days ago has progressed in the cycle

and would now see an acceleration in EIP as well, but how is this to be handled?

Is it appropriate to now consider these mosquitoes to have an EIP of five days and

to have progressed as far as 5∗5
14

days into the five day EIP period? What if the

EIP shortened to two days? Would these mosquitoes all be infective? A different
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Figure 2.3: Data points from multiple EIP data sets with exponential function fit:
τ = 25597.18 exp(−.26197T ). This is the EIP function used for the various models
unless otherwise indicated.

construction is needed for the exposed mosquitoes which takes this variation directly

into account.

Instead we introduced a gamma distribution for the time spent in the exposed

class which modifies Fig. 2.2 to Fig. 2.4. In the simple case, n=1, a gamma distribu-

tion is in fact an exponential. This would correspond to continuous movement from

the exposed to the infective class with no time delay. At the other extreme, n → ∞,

the gamma distribution approaches a delta function which would correspond to an

exact time delay of τ days, so the time spent in the exposed class would be described

by a step function. To determine n we took the data of the number of mosquitoes that

had infective salivary glands for each day sampled as given by Watts et al. [45] and

fit a gamma distribution to determine n for each data set. The results were n=14.8
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Figure 2.4: SEI flow diagram (without coupling) representative of mosquito popula-
tion with gamma function used for exposed class

for 26◦C, n=24.6 for 30◦C, n=12.5 for 32◦C, and n=8.4 for 35◦C. For this study we

chose to use n=10. There are therefore n sub-stages of the exposed mosquito class

and the mosquitoes move through these stages at a rate of ρ = n
τ

which could be

useful in a stochastic model as other findings develop [46].

2.2.2 Temperature-Dependent Mosquito Mortality

The mosquito’s lifespan is influenced by many factors, a reasonable but more strin-

gent mortality rate of 1
14

(1/day) was considered when vector mortality was not

assumed to be temperature dependent. In the work by Yang et al. [49] they found

the function .000003809T 4 − .0003408T 3 +.01116T 2− .159T +.8692 to represent their

data the best. This same function was used in our calculations when vector mortality

was assumed to be a function of temperature (see Fig. 2.5). The inverse of the rate of
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mortality is of course the average lifespan (see Fig. 2.6). Based upon other readings

(see sect. 1.2), the length of survival in the temperature range of (17-32◦C) may be

higher than what is found in the field. These mortality rates do not consider preda-

tion and allow for ample feeding. Female mosquitoes, in particular, may experience

a higher death rate while feeding. This function has extremely high mortality rates

at temperature extremes, but mosquitoes have been noted to change activity levels

in order to survive (such as seeking shelter and shade when it is very hot). Therefore

with further data this function may be modified to have higher values in the nominal

temperature ranges and reduced at the extremes. The average mortality rate for the

temperatures we were looking at given this function is 1
27

per day, so this mortality

rate was also used when vector mortality was not to be temperature dependent, but

it is noted when this is the case.
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Figure 2.5: Vector mortality function used, as presented by Yang [49]

A conservative estimate of β = 70
365

was used in this model, however, some authors

use a β as large as .75 [4]. The average human lifespan was taken to be 60 years. The

human intrinsic incubation period was taken to be five days which is well within the
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Figure 2.6: Vector survival based on Yang’s mortality function

range of 4-10 days given by Siler [40]. Large population sizes were assumed because

deterministic compartment models are inappropriate for considering the dynamics

of small populations which are sensitive to stochasticity.

2.2.3 Temperature

The temperature forcing T = T1 + T2, on a yearly scale, where T1 represents the

seasonal forcing and T2 the daily forcing was given by the function

T1 = −A cos
π(t + t1)

180
+ M (2.1)

where A is the amplitude or half of the temperature range, M is the mean yearly

temperature, t is time in days, and t1 allows the user to start at varying time of the

year by shifting the peak temperature: winter=0, spring=91, summer=182, fall=274.

If a diurnal forcing was also being used then the function used for daily temperature

variation was

T2 = −DTR sin 2πt (2.2)
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where DTR is the daily temperature range (9.44◦C for all simulations). This range

was used based upon the average DTR for three cities in Central and South America

and then this was converted to ◦C. If diurnal forcing was used then temperature was

the sum of eqn.2.1 and eqn.2.2.
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Table 2.1: Model Parameters

Coefficients for equations Value Reference

n 10 Maximum likelihood using the salivary gland data of Watts [45]

τ (T ) - linear τ = −5
4

T + 183
4

days Line through data of Watts et al. [45]for temps 26-32

τ (T ) - exponential τ = 97.177e−.0795∗T Nonlinear least squares using Mclean et al. feeding data [30];

τ (T ) - exponential τ = 126.9373e−.1006∗T Nonlinear least squares using Rohani et al. [37];

τ (T ) - exponential τ = 500.1015e−.1265∗T Nonlinear least squares using Watts et al. [45];

τ (T ) - exponential τ = 25597.18e−.26197∗T Nonlinear least squares using multiple data sets;

ρ n
τ

1/days

µh
1

60∗365
1/days avg life expectancy

βh
70
365

1/days transmission rate

σh
1
5

1/days avg duration of latent period[40]

γh
1
6

1/days recovery rate

Nh 500,000 human population size

Nm 1,000,000 mosquito population

βm
70
365

1/days transmission rate

µm − high 1
14

1/days avg life expectancy

µm(T ) .000003809T 4 − .0003408T 3 + .01116T 2 − .159T + .8692 1/days life expectancy given by Yang et al. [49]

µm − low 1
27

1/days avg life expectancy of Yang function for given mean temperatures
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2.3 Equations

2.3.1 Coupled SEIR and SEI Systems

Human SEIR system

dSh

dt
= µhNh −

(

βhIm

Nh

+ µh

)

Sh

dEh

dt
=

βhShIm

Nh

− (µh + σh)Eh

dIh

dt
= σhEh − (µh + γh)Ih

dRh

dt
= γhIh − µhRh

(2.3)

Mosquito SEI system

dSm

dt
= µmNm −

βmIhSm

Nh

− µmSm

dEm,1

dt
=

βmIhSm

Nh

− (µm + ρ)Em,1

dEm,2

dt
= ρEm,1 − (µm + ρ)Em,2

dEm,3

dt
= ρEm,2 − (µm + ρ)Em,3

...

dEm,n

dt
= ρEm,n−1 − (µm + ρ)Em,n

dIm

dt
= ρEm,n − µmIm

(2.4)
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2.3.2 Non-Dimensionalization

To normalize and simplify the equations used, we first chose to non-dimensionalize

the coupled system. We non-dimensionalize by scaling the population variables by

total population size and time by human lifespan.

Nondimensionalize using:

T = µht

Sh = S ′

hNh

Eh = E ′

hNh

Ih = I ′

hNh

Rh = R′

hNh

Sm = S ′

mNm

Em,i = E ′

m,iNm

Im = I ′

mNm

(2.5)
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to get the system:

µhNh

dS ′

h

dT
= µhNh −

βhI
′

mNmS ′

hNh

Nh

− µhS
′

hNh

µhNh

dE ′

h

dT
=

βhS
′

hNhI
′

mNm

Nh

− (µh + σh)E
′

hNh

µhNh

dI ′

h

dT
= σhE

′

hNh − (µh + γh)I
′

hNh

µhNh

dR′

h

dT
= γhI

′

hNh − µhR
′

hNh

µhNm

dS ′

m

dT
= Nmµm −

βmI ′

hNhS
′

mNh

Nh

− µmS ′

mNh

µhNm

dE ′

m,1

dT
=

βmI ′

hNmS ′

mNh

Nh

− (µm + ρ)E ′

m,1Nh

...

µhNm

dE ′

m,i

dT
= ρE ′

m,i−1Nh − (µm + ρ)E ′

m,iNh

...

µhNm

dI ′

m

dT
= ρE ′

m,nNh − µmI ′

mNh

(2.6)

Divide by µhNh for human equations and divide by µhNm for the mosquito eqns to

27



Chapter 2. Methods

get the system:

dS ′

h

dT
= 1 −

βhNm

Nhµh

I ′

mS ′

h − S ′

h

dE ′

h

dT
=

βhNm

Nhµh

I ′

mS ′

h −

(

1 +
σh

µh

)

E ′

h

dI ′

h

dT
=

σh

µh

E ′

h −

(

1 +
γh

µh

)

I ′

h

dR′

h

dT
=

γh

µh

I ′

h −R′

h

dS ′

m

dT
=

µm

µh

−
βm

µh

I ′

hS
′

m −
µm

µh

S ′

m

dE ′

m,1

dT
=

βm

µh

I ′

hS
′

m −

(

µm

µh

+
ρ

µh

)

E ′

m,1

...
dE ′

m,i

dT
=

ρ

µh

E ′

m,i−1 −

(

µm

µh

+
ρ

µh

)

E ′

m,i

...

dI ′

m

dT
=

ρ

µh

E ′

m,n −
µm

µh

I ′

m

(2.7)

28



Chapter 2. Methods

Replace with non-dimensional parameters and drop the “primes”

µ =
µm

µh

a =
βhNm

µhNh

b =
σh

µh

c =
γh

µh

d =
βm

µh

f =
ρ

µh

=
n

τµh

(2.8)

dS

dT
= 1 − aImSh − Sh

dEh

dT
= aImSh − (1 + b)Eh

dIh

dT
= bEh − (1 + c)Ih

dRh

dT
= cIh − Rh

dSm

dT
= µ − dIhSm − µSm

dEm,1

dT
= dIhSm − (µ + f)Em,1

...

dEm,i

dT
= fEm,i−1 − (µ + f)Em,i

...

dIm

dT
= fEm,n − µIm

(2.9)
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2.3.3 Finding the Endemic Equilibrium

To mimic situations of endemic disease we chose to use initial conditions equivalent

to the endemic steady state of the system, if temperature forcing were not considered.

Here we find an analytical expression for computing the steady state which is used

in the code as the initial conditions for each simulation.

0 = 1 − aImSh − Sh

0 = aImSh − (1 + b)Eh

0 = bEh − (1 + c)Ih

0 = cIh − Rh

0 = µ − dIhSm − µSm

0 = dIhSm − (µ + f)Em,1

...

0 = fEm,i−1 − (µ + f)Em,i

...

0 = fEm,n − µIm

(2.10)

30



Chapter 2. Methods

Begin substituting

1 = (aIm + 1)Sh ==> Sh =
1

aIm + 1

aImSh =
(1 + b)(1 + c)

bc
Rh

Eh =
1 + c

bc
Rh

Ih =
1

c
Rh

µ = dIhSm + µSm ==> Sm =
µ

dIh + µ

dIhSm = (µ + f)Em,1 ==>

(

µ + f

f

)n−1
µ(µ + f)

f
Im

Em,1 =

(

µ + f

f

)n−1
µ

f
Im

...

Em,i =

(

µ + f

f

)n−i
µ

f
Im

...

Em,n−3 =
µ + f

f
Em,n−2 ==> Em,n−3 =

(

µ + f

f

)3
µ

f
Im

Em,n−2 =
µ + f

f
Em,n−1 ==> Em,n−2 =

(

µ + f

f

)2
µ

f
Im

Em,n−1 =
µ + f

f
Em,n ==> Em,n−1 =

µ + f

f

µ

f
Im

Em,n =
µ

f
Im

(2.11)
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Sh =
1

aIm + 1

Rh =
abcImSh

(1 + b)(1 + c)
==> Rh =

abcIm

(1 + b)(1 + c)(aIm + 1)

Eh =
aIm

(1 + b)(aIm + 1)

Ih =
abIm

(1 + b)(1 + c)(1 + aIm)

Sm =
µ

dIh + µ
==> Sm =

µ

d
(

abIm

(1+b)(1+c)(aIm+1)

)

+ µ

dIhSm =

(

µ + f

f

)n

µIm (2.12)

Em,1 =

(

µ

f
+ 1

)n−1
µ

f
Im

...

Em,i =

(

1

f
+ 1

)n−i
µ

f
Im

...

Em,n =
µ

f
Im

(2.13)

Solve for Im. Using eqn 2.12 and substituting for Ih and Sm to get:

dabIm

(1 + b)(1 + c)(aIm + 1)
×

µ

d
(

abIm

(1+b)(1+c)(aIm+1)

)

+ µ
=

(

1

f
+ 1

)n

µIm (2.14)
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Im = 0 is one of the roots, which represents the disease free state.

Now assume Im does not equal 0; then divide it out:

dab

(1 + b)(1 + c)(aIm + 1)
(

dabIm

(1+b)(1+c)(aIm+1)
+ µ
) =

(

1

f
+ 1

)n

(
1

f
+ 1)n(dabIm + µ(1 + b)(1 + c)(aIm + 1)) = dab

Im

(

1

f
+ 1

)n

(dab + aµ(1 + b)(1 + c)) + µ(1 + b)(1 + c)

(

1

f
+ 1

)n

= dab

(2.15)

Im =
dab − µ(1 + b)(1 + c)

(

1
f

+ 1
)n

(

1
f

+ 1
)n

[dab + aµ(1 + b)(1 + c)]
(2.16)

Note: µ � 1; b � 1;c � 1; and f � 1 unless τ = ∞ which we are not considering

at this time. Therefore 1 + b ≈ b; 1 + c ≈ c; and 1
f
≈ 0.

Im ≈
dab − µbc

dab + µabc
(2.17)

Canceling the b’s gives:

Im ≈
da − µc

da + µac
(2.18)
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Using the constants from table 2.1 with µ = 1
14

and τ = 5 give us Im = 0.000422004

Now simplify eqns 2.13 and the approximations above to get:

Sh =
1

aIm + 1
==> Sh = 0.426069167

Eh =
aIm

b(aIm + 1)
==> Eh = 0.000131034

Ih =
aIm

c(1 + aIm)
==> Ih = 0.000157241

Rh =
aIm

aIm + 1
==> Rh = 0.573930833

Sm =
µ

(

daIm

c(aIm+1)

)

+ µ
==> Sm = 0.999577

...

Em,i =
µ

f
Im ==> Em,i =

τ

14n
...

Im = .000422004

(2.19)

(note: for n> 1 => Em,i � Im)

These values are just shown for one particular case. In the matlab program all the

exact values are calculated using the exact parameter for the appropriate temperature

average and these values are passed to the solver as the initial conditions to begin at

the endemic steady state (assuming time-invariant EIP and mortality).
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2.4 R0

The reproduction number is the average number of secondary infections due to one

infection in a completely susceptibel population. R0 can be derived by examining the

disease free equilibrium. Since an R0 < 1 describes the state in which the infection

dies out it is a condition requiring the system to be stable. This corresponds to all

eigenvalues having real parts less than zero. First we find the Jacobian (presented

in table 2.2) of the system of equations presented in eqns 2.3 and 2.4.

R0 =
βhβmσhNm

µmNh(γh + µh)(σh + µh)
(

1 + µmτ

n

)n (2.20)

The disease free state requires all populations are equal to zero excluding the

susceptible populations (table 2.3).
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Table 2.2: Jacobian of system using eqn.2.3 and 2.4

∂Sh ∂Eh ∂Ih ∂Rh ∂Sm ∂Em,1 ∂Em,2 · · · ∂Em,n−1 ∂Em,n ∂Im

dSh

dt
−
(

βhIm

Nh
− µh

)

0 0 0 0 0 0 · · · 0 0 −βhSh

Nh

dEh

dt

βhIm

Nh
−(µh + σh) 0 0 0 0 0 · · · 0 0 βhSh

Nh

dIh

dt
0 σh −(µh + γh) 0 0 0 0 · · · 0 0 0

dRh

dt
0 0 γh −µh 0 0 0 · · · 0 0 0

dSm

dt
0 0 −βmSm

Nh
0 -

(

βmIh

Nh
+ µm

)

0 0 · · · 0 0 0

dEm,1

dt
0 0 βmSm

Nh
0 βmIh

Nh
−(µm + ρ) 0 · · · 0 0 0

dEm,2

dt
0 0 0 0 0 ρ −(µm + ρ) · · · 0 0 0

... 0 0 0 0 0 0
. . .

. . . 0 0 0

dEm,n−1

dt
0 0 0 0 0 0 0

. . . −(µm + ρ) 0 0

dEm,n

dt
0 0 0 0 0 0 0 · · · ρ −(µm + ρ) 0

dIm

dt
0 0 0 0 0 0 0 · · · 0 ρ −µm
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Table 2.3: Jacobian presented in table 2.2 evaluated ath the disease free state equi-
librium where R1 is a (n-4)x(n-4) bidiagonal matrix with diagonal −(µm + ρ) and
sub-diagonal ρ. R2 is a column vector of length n-4 of zeros except R2(1) = ρ; R3 is
a zero row vector of length n-4 except R3(n − 4) = ρ. Z1 is a 7x(n-4) zero matrix,
Z2 is a (n-4)x6 zero matrix, Z3 is a (n-4)x3 zero matrix, and Z4 is a 2x(n-4) zero
matrix.

∂Sh ∂Eh ∂Ih ∂Rh ∂Sm ∂Em,1 ∂Em,2 · · · ∂Em,n−1 ∂Em,n ∂Im
dSh

dt
−µh 0 0 0 0 0 0 0 0 −βhSh

Nh
dEh

dt
0 −(µh + σh) 0 0 0 0 0 0 0 βhSh

Nh
dIh

dt
0 σh −(µh + γh) 0 0 0 0 0 0 0

dRh

dt
0 0 γh −µh 0 0 0 Z1 0 0 0

dSm

dt
0 0 −βmSm

Nh
0 -µm 0 0 0 0 0

dEm,1

dt
0 0 βmSm

Nh
0 0 −(µm + ρ) 0 0 0 0

dEm,2

dt
0 0 0 0 0 ρ −(µm + ρ) 0 0 0

... Z2 R2 R1 Z3
dEm,n−1

dt
0 0 0 0 0 0 0 R3 −(µm + ρ) 0 0

dEm,n

dt
0 0 0 0 0 0 0 Z4 ρ −(µm + ρ) 0

dIm

dt
0 0 0 0 0 0 0 0 ρ −µm
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We are looking for the eigenvalues so we must find the determinant of the matrix J.
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F
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sp
ace

con
cern
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allow

A
=
−

(µ
m

+
ρ
+

λ
).

J =

























































−µh − λ 0 0 0 0 0 0 · · · 0 0 −βhSh

Nh

0 −µh − σh − λ 0 0 0 0 0 · · · 0 0 βhSh

Nh

0 σh −µh − γh − λ 0 0 0 0 · · · 0 0 0

0 0 γh −µh − λ 0 0 0 · · · 0 0 0

0 0 −βmSm

Nh
0 −µm − λ 0 0 · · · 0 0 0

0 0 βmSm

Nh
0 0 A 0 · · · 0 0 0

0 0 0 0 0 ρ A 0 0 0

Z2 R2 R1 − λI 0 0 0

0 0 0 0 0 0 0 R3 A 0 0

0 0 0 0 0 0 0 Z4 ρ A 0

0 0 0 0 0 0 0 · · · 0 ρ −µm − λ
























































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After a little algebraic tweaking one gets the lower triangular matrix J1 whose

determinant is simply the product of the diagonal terms. Where, again, A =−(µm +

ρ + λ) and

B = −

[

µh + σh −
ShSmβhβmσhρ

n

N2
h(µh + γh)(µm + λ)(µm + ρ)n

]

(2.21)
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J1 =

























































−µh − λ 0 0 0 0 0 0 · · · 0 0 0

0 B 0 0 0 0 0 · · · 0 0 0

0 σh −µh − γh − λ 0 0 0 0 · · · 0 0 0

0 0 γh −µh − λ 0 0 0 · · · 0 0 0

0 0 −βmSm

Nh
0 −µm − λ 0 0 · · · 0 0 0

0 0 βmSm

Nh
0 0 A 0 · · · 0 0 0

0 0 0 0 0 ρ A 0 0 0

Z2 R2 R1 − λI 0 0 0

0 0 0 0 0 0 0 R3 A 0 0

0 0 0 0 0 0 0 Z4 ρ A 0

0 0 0 0 0 0 0 · · · 0 ρ −µm − λ
























































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which results in the n+5 degree characteristic polynomial:

0 = (−1)n

[

(µm + λ)(µh + σh) −
βhβmShSmσhρ

n

N2
h(µh + γh)(µm + ρ)n

]

(µh + λ)(µh + γh + λ)

(µh + λ)(µm + λ)(µm + ρ + λ)n

(2.22)

In our case with n=10 this simplifies to:

0 =

[

(µm + λ)(µh + σh) −
βhβmShSmσhρ

10

N2
h(µh + γh)(µm + ρ)10

]

(µh + λ)(µh + γh + λ)

(µh + λ)(µm + λ)(µm + ρ + λ)10

(2.23)

For stability, we require all λ < 0 which is trivial for most of the terms as our

parameters are all positive values. There is only one term which remains to examine.

0 = (µm + λ)(µh + σh) −
βhβmShSmσhρ

10

N2
h(µh + γh)(µm + ρ)10

(2.24)

This simplifies to:

λ = −µm +
βhβmShSmσhρ

10

N2
h(µh + γh)(µh + σh)(µm + ρ)10

(2.25)

but as it is the disease free state, Sm = Nm and Sh = Nh. Also note that because

ρ = n
τ

(

ρ

µm + ρ

)10

=

(

1
µm

ρ
+ 1

)10

=

(

1
µmτ

10
+ 1

)10

(2.26)

and so equation 2.25 simplifies to

λ = −µm +
βhβmNmσh

Nh(µh + γh)(µh + σh)(
µmτ

10
+ 1)10

< 0 (2.27)

For our system more generally,

R0 =
βhβmσhNm

µmNh(γh + µh)(σh + µh)
(

µmτ

n
+ 1
)n < 1 (2.28)
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Results

Given the model as described, we will first look at R0 as a function of temperature.

We will then look at the simulations of the vector and human populations using

various temperatures, temperature ranges, and means of varying temperature. A

presentation of the different EIP data sets and the resulting temperature-dependent

functions is accompanied by an examination of the potential persistence given multi-

ple mortality rates. Results are given of the addition of a time dependent mortality

function. Differing initial conditions are presented. This is followed by examining the

effects of annual and diurnal forcing with EIP only dependence and then mortality is

also temperature-dependent. The addition of a minimum population cut-off is also

examined.

3.1 R0 as a Function of Temperature

R0 as calculated with EIP only temperature dependence, assuming a mean yearly

temperature of 29.4◦C and multiple temperature ranges, is shown in Fig. 3.1. It

begins mid-spring (day 0) and is plotted over the course of the year. The R0 is so
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high because of the mortality rate used, µ = 1
27

, which has increased the R0 to values

outside those observed in the field. This µ was chosen so that figures 3.1, 3.2, 3.3,

and 3.4 could be compared directly given that the mortality rate function used by

Yang gives a survival length of approximately 27 days at 29.4◦C. As one can see,

R0 increases entering in to the summer (day 45) and plateaus if the range is large

enough. R0 then begins to decrease as it approaches fall (day 136) and then drops,

drastically or moderately, depending upon the temperature range. This drop is due

to the increase in length of the EIP during the colder winter months. Considering

only changes to EIP, R0 can be increased slightly or reduced greatly with a large

enough temperature range.
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Figure 3.1: R0 with an annual cycle considering EIP only for 29.4◦C

The same parameters used in Fig. 3.1 are used to obtain the plot of Fig. 3.2 except

now the mortality rate is not constant at 1
27

(1/days), but is temperature dependent.

One observes two drops in R0; the first is during the summer when the increase in

temperature leads to a higher mortality rate. The larger the range, the greater the
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increase and thus a greater reduction in the R0. The second drop off is again due to

the lengthening of the EIP, but is compounded by the increase in the death rate at

lower temperatures.
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Figure 3.2: R0 with an annual cycle considering EIP and vector mortality for 29.4◦C

In Fig. 3.3, R0 is calculated with EIP only temperature-dependence and a mean

yearly temperature of 29.4◦C with multiple temperature ranges, with a diurnal tem-

perature fluctuation of 9.44◦C. It also begins in the spring and is plotted over the

course of a year. Here R0 is constantly changing, even with no yearly change in

temperature the daily fluctuation forces R0 to vary between 6.9 and 16.3. For each

of the temperature ranges it also appears that they follow a similar pattern to what

was observed in Fig. 3.1 except that each varies about this pattern with different

envelopes. In the summer with a large temperature range, the resulting R0 is re-

stricted to a very high value (16.71-17.57), but in the winter it decreases while the

range of R0 values is greatly expanded (.00058-4.27). With a range of 10◦C, R0 has

a greatly increased envelope of values which do contract in the summer (11.07-16.95)

as compared to the winter (2.76-14.88) but not as severely as the large temperature
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range.
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Figure 3.3: R0 with an annual and diurnal cycle considering only EIP for 29.4◦C

Fig. 3.4 uses the same settings as Fig. 3.3, except that vector mortality is now

temperature dependent. Where previously, the EIP only temperature-dependence

with annual and diurnal forcing showed some similarity, here it is absent. With the

incorporation of mortality and diurnal temperature changes, no annual variation and

only daily temperature change results in R0 values between 4.04 and 12.34. In the

summer, a temperature range of 10◦C results in values from 2.56 to 9.74; this range

is expanded in the winter to between .93 and 11.78. The range of 40◦C has a range

of values between .41 and 3.54 during the summer and .000006 to 1.80 during the

winter. The additional maxima and minima are due to the interaction of shortened

EIP with high mortality rates and short time exposures to extreme temperatures.

It is very clear that given any variation in a region’s temperature, whether simply

annually or daily, the resulting R0 is not constant. A variable R0 implies a varying

ability of the pathogen to persist as well as a variation in the strength to which it

will persist. Therefore, if R0 is less than one for long enough, extinction will occur
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where one might expect persistence given its average value.
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Figure 3.4: R0 with an annual and diurnal cycle considering EIP and vector mortality
for 29.4◦C
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Figure 3.5: R0 with an annual and diurnal cycle considering EIP and vector mortality
for 29.4◦C zoomed in to days 24-27

48



Chapter 3. Results

3.2 Model Simulations

3.2.1 Time Series and Spectral Analysis

Matlab’s ode45 function was used to solve the system described in section 2.3.2. First

we consider the effects of temperature-dependent EIP as well as vector mortality

given a constant temperature of 26.7◦C and 32.2◦C with no temperature forcing.

The population levels are shown in Fig. 3.6. One can see the disease persists at high

levels for both temperatures.
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Figure 3.6: Population levels of the infected class for the vector and host populations
when no temperature forcing is considered for temperatures 26.7◦C and 32.2◦C.

An example of annual temperature forcing is shown in Fig. 3.7. Each simulation

has a temperature range of 11.02◦C such that in Fig. 3.7a the temperature varies

between 21.14◦C and 32.26◦C and in Fig. 3.7b it varies between 26.64◦C and 37.76◦C.

The temperature range of 11.02◦C was chosen as it displays the potential time series

results most clearly for all the experiments attempted. There is clearly now an annual

peak of incidence, what is interesting is that in (a) this peak is in the fall whereas in
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(b) its peak is in the spring. Each goes through a trough after three or five years but

the human infected population of (a) reaches a minimum of 1.092 while in (b) the

human population has a minimum of 1.08E-8 which could indicate, given a stochastic

model, that the infection would not recover and would instead go extinct.
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(a) 26.7◦C
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Figure 3.7: Example of time series with temperature forcing on an annual scale with
a temperature range of 11.02◦C

Assuming a constant yearly temperature, but daily temperatures that fluctuate

about that temperature with a range of 9.44◦C introduces a third set of dynamics.

There are no longer yearly cycles, which is expected, but each simulation has a

dominant period representing a large epidemic every 7 years (a) and every 11 years

(b). Again 26.7◦C and 32.2◦C go through troughs in the infective population but

minima are quite different, 78.6 and .00079 respectively.

In Fig. 3.9 we now have both annual and diurnal temperature fluctuations. For

(a), on the hottest day temperatures would reach 36.98◦C and on the coldest night

temperatures would drop to 16.42◦C. Likewise, in (b), temperatures get as high as
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42.48◦C and as low as 21.92◦C. The annual cycles are again very evident in both

models with 26.7◦C again showing another multi-year cycle of approximately 11

years. It does go through a trough again after about three years but never has

a human infectious population below 1.01 and then the disease recovers to have a

maximum infectious population of over 780. 32.2◦C on the other hand, experiences

three years of the human infectious population being no larger than 4.4E-8. Under

these conditions it is unlikely that the disease would be able to persist to again reach

an infectious population greater than one as is indicated after nearly 20 years.

The time series of the human infectious population was then subjected to spectral

analysis using Matlab’s fft function after which the spectral peaks with the two largest

amplitudes were used to determine the two dominant periods of the time series. The

mean value of the signal was subtracted out in order that the zero-frequency would

be ignored and the standard deviation of the signal was divided out such that the

amplitudes of the significant frequencies could be compared. The total length of

each of the time series is 20 years so any period that is greater than half of this

length (ten years) is not reliable given the length of data sampling. The results

of the spectral analysis for the time series with daily temperature forcing but no

yearly forcing are shown in Fig. 3.10. For 26.7◦C and 32.2◦C the maximum peaks

are periods of 7.18 years and 11.97 years respectively as was discussed previously

but 11.97 years can not be taken as a reliable period as the signal is only 20 years

in length. Given the structure of the spectral analysis results there is little meaning

in the secondary periods (13.81 years and 4.38 years for (a) and (b) respectively).

However, when looking at Fig. 3.11, the spectral analysis results of Fig. 3.7a which is

a mean temperature of 26.7◦C with annual forcing in the range of 11.12◦C, one can

see a different result and interpretation. The peak periods are 8.16 years and .99

years, both of which are evident in the time series plot. Every year there is a cycle of

increase and decrease in incidence from the temperature change and approximately

every eight years there is a larger epidemic. This longer period which results in a
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sizeable epidemic is an intrinsic aspect of the pathogen’s biology and is approximated

by 2π
√

1
µ(R0−1)(µ+γ)

[22] for directly transmitted diseases. In our case it is generalized

to 2π
√

LG
R0−1

where L is a function of the lifespan of the human host and G is a

function of the generation time of the pathogen.
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Figure 3.8: Example of time series with temperature forcing on a daily scale with a
temperature range of 9.44◦C
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Figure 3.9: Example of time series with temperature forcing on a daily scale with a
temperature range of 4.72◦C as well as annual forcing with a temperature range of
11.02◦C
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Figure 3.10: Example of spectral analysis results from the time series of Fig. 3.8.
Maximum peaks give a period of 7.18 years Fig. (a) and 11.97 years Fig. (b) but
11.97>10 which is half of the time series total length. Secondary peaks give period
of 13.81 Fig. (a) and 4.38 years Fig. (b) with 13.81>10 so again this period can not
be taken as a reliable period.
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Figure 3.11: Example of spectral analysis results from the time series of annual
temperature forcing with a mean temperature of 26.7◦C a temperature range of
11.12◦C. Maximum peak gives a period of 8.16 years and the secondary peak gives
a period of .99 years.
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3.3 Colorplots of Incidence Based upon Specific

EIP Data Sets

In this section, the last ten years of the observed infective human population was

averaged and this was then used to determine the percentage of infectives out of the

total human population for each time series for mean temperatures of [21.1, 23.9,

26.7, 29.4, 32.2, 35.0, 37.8] each with temperature ranges of [2.22, 4.44, 6.66, 8.88,

11.12, 13.34, 15.56, 17.78, 20.0, 22.2]. The colorplots represent this percentage for

each of the means and temperature range to attempt to see consistent persistence or

extinction of the disease. The mortality rate is held constant so that one can look at

the effects of only the temperature-dependent EIP. The EIP function is described in

table 2.1 and corresponds to the appropriate EIP data set. The leftmost figure has a

mortality rate of 1
27

, this is the average of Yang’s function for temperatures 21.1-37.8.

The center figure has a mortality rate of 1
14

which is biologically reasonable given the

wide range of temperatures. The rightmost figure is a plot of the data points and

the line of best fit found for the particular data set used.

Using the data given by McLean et al˙, one can see that persistence is possible

in all temperature ranges for both mortality rates (see Fig. 3.12). There may be a

slight decline for a mean temperature of 21.1◦C and the largest range, but even this

is not zero. One can also observe that a much larger percentage of the population

is infective over the entire range of temperatures in Fig. (a) versus Fig. (b) which

is due entirely to the difference in vector mortality. The mosquito lives longer in

(a) and is able to take more infective bites over the course of its lifetime and this

results in higher transmission. The temperature at which the EIP is the same as the

vector survival is approximately 16.11◦C and 24.37◦C for (a) and (b) respectively

which means that the variation in temperature may in some way have a rescue effect

for the mean temperatures of 21.1◦C and 23.9◦C when the survival time is 14 days.
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The other possibility is that with the EIP and mortality rate being the same length

of time, transmission is reduced but not impossible. The dynamics of temperature

ranges here “on the boundary” would probably benefit from a stochastic model.
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Figure 3.12: Color plot with the average of the last half of the time series for EIP
with a fit based on McLean’s Feeding data only with annual temperature forcing
starting mid-spring. (a)Colorplot of incidence with mosquito survival set at 27 days.
(b)Colorplot of incidence with mosquito survival set at 14 days. (c) Exponential fit:
97.177e−.0795T

The results using data from Rohani et al. are quite similar, which is not surprising

given that the two exponential functions are similar. Fig. 3.13 shows persistence

is possible in all temperature ranges and incidence is higher given a lower vector
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mortality. Given this function, the temperature at which the EIP matches the length

of survival is approximately 15.386◦C for 27 day survival and 21.915◦C given 14 days

of survival. Given the range of temperatures examined, there would be no hinderance

to persistence at these EIP and mortality rates.
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Figure 3.13: Color plot with the average of the last half of the time series for EIP
with a fit based on Rohani’s data with only annual temperature forcing starting
mid-spring. (a) Colorplot of incidence with mosquito survival set at 27 days. (b)
Colorplot of incidence with mosquito survival set at 14 days. (c) Exponential fit:
126.9373e−0.1006T .

With the data from Watts we see the potential for different results (see Fig. 3.14),

given a survival time of 27 days the temperature at which the EIP matches this is still
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low at 23.075◦C giving ample temperature ranges at which dengue could persist. This

is clear in the presence of dengue for all temperature ranges in Fig. 3.14. However,

the temperature when the mortality rate is 1
14

is increased to 28.266◦C which mirrors

the observed extinction at mean temperatures of 21.1 and 23.9 and with a large

enough range given a mean temperature of 26.7 in Fig. 3.14b.
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Figure 3.14: Color plot with the average of the last half of the time series for EIP with
a fit based on Watts’ data only with annual temperature forcing starting mid-spring.
(a)Colorplot of incidence with mosquito survival set at 27 days. (b)Colorplot of
incidence with mosquito survival set at 14 days. (c)Exponential fit: 500.1015e−.1265T .

Fig. 3.15 shows the EIP function that was fit to multiple data sets and is the

function that is used hereafter. Given a survival time of 27 days this is matched by the
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EIP at a temperature of approximately 26.165◦C; a survival of 14 days corresponds

to 28.672◦C. Here, (Fig. 3.15a) even with a long survival time we see persistence is

not possible for the 21.1◦C mean temperature case and is only possible for small

ranges of temperature around 23.9◦C. Too large of a range seems to force the EIP to

be too long for an extended period of time such that incidence can not be sustained.

A shortened survival time cuts off persistence even more as seen in Fig. 3.15b. For

mean temperatures of 21.1, 23.9, and 26.7◦C there is no persistence, and not until

29.4◦C do we see sustained incidence and for a range of temperatures.

Using the EIP function given by multiple data sets in conjunction with the tem-

perature dependent mortality function with annual temperature forcing is shown in

Fig. 3.16. Persistence is no longer possible in all higher temperatures for all ranges.

Instead as the temperature increases the temperature ranges that show persistence

dwindle.
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Figure 3.15: Color plot with the average of the last half of the time series for EIP
with an exponential function from multiple data sets using only annual temperature
forcing starting mid-spring. (a) Colorplot of incidence with mosquito survival set
at 27 days. (b) Colorplot of incidence with mosquito survival set at 14 days. (c)
Exponential fit: 25597.18e−.26197T .
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Figure 3.16: Color plot with the average of the last half of the time series for EIP
and vector mortality with annual temperature forcing.

61



Chapter 3. Results

3.4 Effects of Varying Initial Conditions

Since the initial conditions of time dependent ordinary differential equations can

have profound influence upon the resulting solution, four time periods representing

the four seasons were used to examine the differences when the model is begun mid-

season (Fig. 3.17). Summer, fall, and winter give very similar results only differing

in presence of disease for mean temperatures of 21.1◦C and 37.8◦C with two ranges

each and the strength of incidence given a mean of 35.0◦C and a range of 5.56◦C. A

start time in the spring, however, is different in that it allows all the higher mean

temperatures that had persistence in any of the other three models to persist and

persist at a higher percentage, the mean temperature of 23.9◦C loses persistence

for any range about the mean greater than 11.12 ◦C and has no persistence for

21.1◦C which is a departure from the other three initial conditions. This is somewhat

surprising in that given a reduction in the allowed range for lower temperature means

one would expect a winter start to also have a reduction in the lower means but this

is not the case.

Looking at the plot of R0 as seen in Fig. 3.18, given a large enough range, the

R0 drops both mid-summer and through the winter. It is not surprising that large

temperature ranges do not persist for this low mean temperature; what is surprising

is that the other three seasons do allow it to persist. An example is shown of a

timeseries that persists given a summer initial condition but does not persist for

the spring (see Fig. 3.19). A spring start begins with more mosquitoes and humans

that are infectious but it decays at a faster rate and to a much lower value. For

consistency we used an initial start in the spring for all simulations excluding these

plots as it was the most limited in giving persistence and thus may be prone to

under-prediction in the lower temperatures with large ranges.
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(a) Spring
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(b) Summer
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(c) Fall
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(d) Winter

Figure 3.17: Color plot with the average of the last half of the time series for EIP
and vector mortality with annual temperature forcing starting in different seasons:
(a) spring, (b) summer, (c) fall, (d) winter.

63



Chapter 3. Results

0 100 200 300 400
0

2

4

6

8

10

12

14

Days

R
0

 

 

R
0
 for range of 0C

R
0
 for range of 10C

R
0
 for range of 40C

Figure 3.18: R0 for 23.9◦C with EIP and vector mortality given annual forcing.
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Figure 3.19: Time series of spring and summer with 23.9◦C and a range of 17.72◦C
with differing persistence based on the season in which the simulation is initiated.
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3.5 Colorplots with Annual and Diurnal Temper-

ature Forcing

An annual temperature forcing with a constant mortality rate of 1
27

gave persistence

for all mean tempertures greater than or equal to 26.7◦C and for a limited range of

temperatures with a mean of 23.9◦C (see Fig. 3.15a). When a daily temperature range

of 9.44◦C is also added (Fig. 3.20) we see that incidence in the lower temperatures

decreases, and only an annual range of 11.12◦C with a mean of 23.9◦C has persistence

but the level of incidence is greatly reduced.
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Figure 3.20: Color plot with the average of the last half of the time series for EIP only
with annual temperature forcing with a diurnal forcing with a temperature range of
9.44◦C starting mid-spring

When EIP as well as vector mortality are allowed to vary with diurnal forcing

the range of temperatures that allow for persistence is greatly changed (Fig. 3.20

versus Fig. 3.21). Lower temperatures show persistence and many of the higher

temperatures can no longer sustain the disease. When the temperature gets too
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high the mortality rate increases dramatically and so although the EIP is short, the

mosquitoes are dying too quickly for the disease to reach the salivary glands and the

disease dies out, this was also shown in the reduction of R0 over the winter as well

as summer months in Fig. 3.3.

Comparing Figs. 3.21 and 3.17a one can now also see the reduction in temperature

ranges allowed with the diurnal forcing versus simply using an annual temperature-

dependence. All means greater than 21.1◦C gave persistence at least for ranges

1.11-4.44 (Fig. 3.17a) with diurnal forcing many of these no longer persist. 35.0◦C

and 37.9◦C give no persistence for any temperature range which is not entirely un-

expected given the high mortality rate in high temperatures. The range allowed

for a mean of 32.2◦C is greatly reduced and the range for 29.4◦C is moderately re-

duced losing two viable ranges. Temperatures 23.9◦C and 26.7◦C show very similar

persistence patterns as before but lose one range. Diurnal forcing has limited the

mean temperatures and ranges but in the viable temperatures has actually increased

incidence.

The deep troughs that many of the time series went through prompted an ex-

amination of the results if a cut-off requirement was added. Simply, if the infected

population of the mosquito or host decreased below .0001 then the disease was said to

have no chance of recovery and the infected populations of both species were reduced

to zero for the remainder of the experiment. One can see the differences here when

only annual forcing is utilized and vector mortality as well as EIP are allowed to vary.

Again only “boundary” ranges were reduced, but given the first results where no cut

off was used (Fig. 3.22b) there are no changes to mean temperatures of 37.8◦C and

23.0◦C, and 26.7◦C only lost one range which showed low incidence to begin with.

What is interesting is that the results for mean tempertures 29.4◦C, 32.2◦C, and

35.0◦C each dropped one, one, and two ranges respectively, each of which showed

high incidence before the cut off. This implies that the disease reached a very low in-
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cidence but was numerically able to regain strength to the point that large epidemics

resulted later. A different cut off criteria could have pronounced effects limiting even

more ranges which is why the arbitrary cut off of .0001 is so unsatisfying. A stochastic

model would better show the possibility of extinction or persistence in these border

temperature regions.

The instantiation of a cut-off also affected the persistence in the diurnal fluctua-

tions as seen in Fig. 3.23. An annual range of 15 degrees or larger is no longer capable

of sustaining the disease for any mean temperature; A mean of 35◦C is no longer able

to support the disease for any temperature range and the range at which 32.2◦C is

able to sustain the disease is greatly reduced. For 26.7◦C and 29.4◦C, however, only

the most extreme temperature range is no longer persisting. The choice for the cut

off is arbitrary since a biological population of less than one does not make sense.

However, it acts to validate the use of a stochastic model for further examinations.
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Figure 3.21: Color plot with the average of the last half of the time series for EIP
and vector mortality with annual temperature forcing with a diurnal forcing with a
temperature range of 9.44◦C starting mid-spring
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(b)

Figure 3.22: Color plot with the average of the last half of the time series for EIP
and vector mortality with annual temperature forcing starting mid-spring. (a) Col-
orplot of incidence with the rest of the timeseries set to 0 if the number of infected
mosquitoes or humans goes below .0001. (b) Colorplot of incidence without the use
of a cut-off.
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(b)

Figure 3.23: Color plot with the average of the last half of the time series for EIP and
vector mortality with annual and diurnal temperature forcing starting mid-spring.
(a) Colorplot of incidence with the rest of the timeseries set to 0 if the number of
infected mosquitoes or humans goes below .0001. (b) Colorplot of incidence without
the use of a cut-off.
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3.6 Spectral Analysis Data

The spectral analysis results shown here correspond to the settings used in the col-

orplot seen in Fig. 3.17a. As one can see, there is reasonable agreement between the

colorplots showing persistence and the spectral analysis returning a dominant period

in the time allowed. There are some discrepancies as seen with a mean of 26.7◦C

colorplot data allowing persistence at two larger ranges than the table shows, 29.4◦C

allowing one more range in the table than in the colorplot, and 35.0◦C allowing one

less range in the table than in the colorplot. These could each be considered “bound-

ary” temperatures and were in half of the cases the temperatures that were shown

not to persist if a cut-off was used. Table 3.1 acts as another reference that may

indicate persistence and can be useful for observing the underlying periods of oscil-

lation. We often see the expected approximately one year cycle as well as a longer

period of six to eight years as was evident in certain time series data (Figs. 3.7 and

3.9). However, it is not only the “boundary” points that may be different from the

colorplot to the table.

Table 3.2 and Fig. 3.21 correspond to the same parameters, but there are more

differences between the two. A mean temperature of 23.9◦C and 29.4◦C has one

more range in the table versus the colorplot, but the more glaring differences exist in

the mean temperatures of 32.2◦C, 35.0◦C, and 37.8◦C. 35.0◦C and 37.8◦C show no

persistence in the plot and are unlikely to persist at these temperatures with diurnal

forcing, but now have a dominant period in the allowed time period for no less

than six combined temperature ranges. 32.2◦C shows dominant periods in the two

most extreme temperature ranges in which no mean temperature showed persistence

according to the plot. The spectral analysis results can help confirm areas, but also

raises new issues of persistence given the deterministic model.
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Table 3.1: Spectral analysis data for multiple data EIP, vector mortality taken into
account. It begins mid-spring and has annual temperature forcing. Take M as
the period corresponding to the frequency with maximum amplitude and S as the
period corresponding to the frequency with the second largest amplitude peak, it is
presented as M/S in the table. If the period returned is greater than half of the time
series’ total length of 20 years it is simply represented as T.

Temp 21.1 23.9 26.7 29.4 32.2 35.0 37.8
2 T/T T/.99 .99/7.81 5.99/.99 .99/5.79 .99/7.18 .99/T
4 T/T T/.99 .99/8.16 6.19/.99 6.19/.99 7.81/.99 .99/T
6 T/T T/.99 .99/8.55 6.65/T 7.48/.99 9.98/.99 T/.99
8 T/T T/8.98 8.98/.99 8.16/4.08 9.98/4.18 8.16/T T/8.55
10 T/T T/9.45 9.98/6.19 T/7.48 T/5.79 T/T T/9.45
12 T/T T/T T/8.16 T/9.98 T/T T/T T/T
14 T/T T/T T/T T/9.98 T/T T/T T/T
16 T/T T/T T/T T/T T/T T/T T/T
18 T/T T/T T/T T/T T/T T/T T/T
20 T/T T/T T/T T/T T/T T/T T/.T

Table 3.2: Spectral analysis for multiple data EIP, vector mortality taken into ac-
count. It begins mid-spring and has annual temperature forcing as well as diurnal
forcing with a temperature range of 9.44◦C. Take M as the period corresponding to
the frequency with maximum amplitude and S as the period corresponding to the
frequency with the second largest amplitude peak, it is presented as M/S. If the
period returned is greater than half of the time series’ total length of 20 years it is
simply represented as T.

Temp 21.1 23.9 26.7 29.4 32.2 35.0 37.8
2 T/T T/8.98 7.18/.99 6.91/3.33 T/6.19 T/T T/T
4 T/T T/8.98 .99/7.18 7.81/3.90 7.81/T T/T T/T
6 T/T T/8.98 7.81/.99 9.98/4.49 5.61/8.55 T/9.98 T/T
8 T/T T/8.55 8.16/.99 T/7.81 T/T T/T T/T
10 T/T T/8.55 9.98/4.73 T/9.45 T/T T/T T/T
12 T/T T/9.45 T/7.81 T/T T/T T/T T/T
14 T/T T/T T/T T/T T/T T/T T/T
16 T/T T/T T/T T/T T/T T/9.45 T/T
18 T/T T/T T/T T/T T/9.98 .99/T .99/T
20 T/T T/T T/T T/T T/6.41 .99/.49 .99/.49
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Discussion

Average temperatures and temperature ranges that are hospitable to dengue persis-

tence are sensitive to the function used for the EIP as well as vector mortality. The

initial conditions also have the potential to impact the dynamics of the system. Con-

sidering temperature dependent vector mortality and EIP with annual forcing gives

persistence for all temperature averages above 23◦C but with limited ranges. When

considering diurnal forcing in conjuction with seasonality, regions that allow persis-

tence are further limited (23◦C - 34◦C with variable ranges). This can be translated

to examine dynamics in countries that are currently endemic given specific climate

data.

Thailand, Puerto Rico, Mexico and Iquitos, Peru all experience dengue. Thailand

has an average temperature of 29◦C, but to use the model as we have developed

other metrics need to be taken into account. Thailand has summer temperatures

that range from 28◦C at night to 37◦C in the day and winter temperatures that are

as low at 15◦C at night and rise to 25◦C in the day. A DTR of 10.5◦C with a yearly

mean of 25.5 and range of 11 were used. The time series (Fig. 4.1) with these values

show persistence, in the last year of the model the number of infectious humans
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ranges from 46.2 to 319. Also by looking at Fig. 3.23, this is well within the range of

persistence.
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Figure 4.1: Timeseries representative of dengue in Thailand

Puerto Rico has average maximum temperatures ranging from 28.3◦C to 31.5◦C

and average minimum temperatures ranging from 21.3◦C to 24.7◦C. A DTR of 7

is used with a mean of 25.5◦C and a yearly range of 9◦C. Persistence is shown in

Fig. 4.2; in the final year of the model the population of infectious humans never goes

below 67.8 and is as large as 412.1.

Iquitos, Peru has average maximum temperatures ranging from 31.1◦C to 32.2◦C

and average minimum temperatures ranging from 20.0 mydegree to 21.1◦C. This

results in a much smaller temperature range needed (only 1.1◦C) and the mean temp

to be 26◦C with a DTR of 10◦C. This shows persistence in our model given Fig. 4.3,
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with a minimum reaching as low as 28.86 at the end of the fourth year. The last

year has a maximum of 113.7 infectives and a minimum of 70.53.
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Figure 4.2: Timeseries representative of dengue in Puerto Rico

Mexico is a larger country with a varied terrain and climate so we shall look

at two regions that represent temperature extremes. The pacific coastal region of

Mexico has average high temperatures of 30.5◦C to 32.2◦C and average lows ranging

from 21.1◦C to 23.8◦C. This leads to a mean of 26.6◦C with a range of 3.33◦C and

a DTR of 9◦C and persistence is once again possible as shown in Fig. 4.4. The

infectious human population has a minimum of 63.78 occupants and maximum of

196.7. Northern Mexico, however, has highs that range from 19.4-35◦C and lows

ranging from 8.8-23.3◦C giving a slightly larger DTR of 12◦C and a mean of 21.7◦C

with range of 14◦C which does not show persistence given Fig. 4.5. The cut-off

population is reached after approximately a year and a half.
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Figure 4.3: Timeseries representative of dengue in Iquitos, Peru
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Figure 4.4: Timeseries representative of dengue on the Pacific coast of Mexico
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Figure 4.5: Timeseries representative of dengue in Northern Mexico
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The model is performing sensibly and with limited data comparison gives reason-

able results. It helps to flesh out some of the differences that different regions may

experience given differing climate and temperature norms. The model could be im-

proved greatly with the development of a stochastic model. This modification would

require different code for the framework of the model but the parameters and struc-

ture would be consistent with what has already been done. This addition could more

clearly define where persistence is much more probable and the conditions where the

disease would instead go extinct.

It is also clear that the daily temperature contributes greatly. Having a tempera-

ture dependent model without diurnal fluctuations omits key interactions and leads

to wrong conclusions about potential regions of persistence. This is also supported

by the recent work done by Lambrechts et al. [26] in which they found that the di-

urnal fluctuations have the potential to shorten EIP, but so far this is unsupported

by field data. A further improvement could be made by using a more realistic daily

temperature curve instead of the sine function. One such function is presented in

Paaijmans [34], but this would necessitate interpolation and could drastically increase

the computation time needed.

What is most clear is that more data are needed in terms quality and quantity; for

both the extrinsic incubation period and the vector mortality. Both of these param-

eters contribute greatly to the overall transmissibility of dengue. They interact in a

non-linear fashion, and thus both parameters need more data points to give greater

resolution for the fitted function as well as error estimates for each temperature.
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