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Abstract

The dissertation consists of two parts, Well-posedness and ill-posedness for the non-

linear beam equation and Strichartz estimates of the beam equation on the domains.

In the first part, we will work to introduce the further studies of Strichartz es-

timates with initial data both in homogeneous Sobolev spaces Ḣs × Ḣs−2 and in

inhomogeneous Sobolev space Hs × Hs−2. We take advantage of the Strichartz es-

timates to build well-posedness theorems of the nonlinear beam equations for rough

data by the Picard iteration method. We will apply these methods on the nonlinear

beam equation with “energy critical, subcritical” and “energy supercritical” cases.

Since the beam equation does not satisfy finite speed propagation, we introduce the

further result of the fractional chain rule to deal with the “energy super critical”

case. We obtain the global well-posedness with initial data in homogeneous Sobolev

space Ḣs×Ḣs−2 and local well-posedness with initial data in inhomogeneous Sobolev
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space Hs×Hs−2. At the same time, we extend the range of order s. With the global

existence for small data, we prove the scattering and asymptotic completeness result

for the nonlinear beam equation. Last we prove the nonlinear beam equation is ill-

posed in defocusing case ω = −1 when 0 < s < sc = n
2
− 4

κ−1
by small dispersion

analysis of M. Christ, J. Colliander and T. Tao.

In the second part, we will study Strichartz estimates on Riemannian manifolds

(Ω, g) with boundary, for both the compact case and the case that is the exterior of

a smooth, non-trapping obstacle in Euclidean space for the beam equation.
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Chapter 1

Introduction

In recent years, some models involving the beam equations have been studied. Peleti-

er and Troy [19] presented several such nonlinear equation models in physics liter-

ature. E.Cordero and D.Zucco [3] studied dispersive properties of the linear beam

equation. B. Pausader [17], [18] investigated the well-posedness and scattering the-

ory in the energy space for nonlinear beam equations. In this dissertation, we will

mainly consider the Cauchy problem for the nonlinear beam equation with force F

as the power-type nonlinearity
∂2
t u(t, x) +42u(t, x) = ω|u|κ−1u(t, x),

u |t=0= f(x)

∂tu |t=0= g(x)

, (1.1)

where, ω = ±1 and 1 < κ <∞, and u : R×Rn → C. The equation (1.1) is said to be

defocusing when ω < 0, and focusing when ω > 0. We investigate the global and

local well-posedness in fractional homogeneous and inhomogeneous Sobolev spaces

for the Cauchy problem of this equation under minimal regularity assumptions on

the initial data in Euclidean space Rn. We will also study this type of equation on

Riemannian manifolds (Ω, g) with boundary for both the compact case and the case
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Chapter 1. Introduction

that is the exterior of a smooth, non-trapping obstacle in Euclidean space. For the

Sobolev space we introduce the following

Definition 1.0.1. The inhomogeneous Sobolev space W s,r and the homogeneous

Sobolev space Ẇ s,r are defined for s ∈ R and 1 < r <∞ as the closure of Schwartz

functions f under their respective norms

‖f‖W s,r = ‖〈D〉sf‖Lr ,

‖f‖Ẇ s,r = ‖|D|sf‖Lr ,

where the fractional differentiation operators 〈D〉s and |D|s are the Fourier multipli-

ers defined by

〈̂D〉sf(ξ) := 〈ξ〉sf̂(ξ) and |̂D|sf(ξ) := |ξ|sf̂(ξ),

where 〈ξ〉s = (1 + |ξ|2)
s
2 .

In particular, if s = 2, then 〈D〉s = I −4, where I is the identity operator, and

|D|s = −4. If r = 2, these spaces are also denoted by Hs and Ḣs.

The specific choice of power-type nonlinearity has a number of nice properties.

It has the scaling symmetry and it is associated to a Hamiltonian potential. This

beam equation enjoys the scaling symmetry

u(t, x) 7→ λ
−4
κ−1u

(
t

λ2
,
x

λ

)
; f(x) 7→ λ

−4
κ−1f

(x
λ

)
; g(x) 7→ λ

−4
κ−1
−2g

(x
λ

)
. (1.2)

This scale invariance predicts a relationship between time existence and regularity

of initial data (see Tao[24]). If we compute the initial data ‖λ
−4
κ−1f

(
x
λ

)
‖Ḣs we see

that

‖λ
−4
κ−1f

(x
λ

)
‖Ḣs ∼ λ−s+sc‖f‖Ḣs , (1.3)

where

sc :=
n

2
− 4

κ− 1

2



Chapter 1. Introduction

is the critical regularity. For the nonlinear beam equations, to establish local and

global properties of the solution, much of the work is in the development of regularity

and norm estimates for the solutions. By using the iteration method in various func-

tion spaces we establish a local and perturbative theory, combining with frequency

analysis and conservation laws we then obtain a global non-perturbative theory.

1.1 Strichartz estimates for the beam equation in

Rn

The space-time norm estimates known as Strichartz estimates provide a good quan-

titative measure of the dispersion phenomena for various dispersive equations. As it

turns out, they are very useful in the study of various corresponding nonlinear equa-

tions. They play the principal role in the study of the local and global well-posedness

of nonlinear equations in Sobolev spaces, scattering theory and nonlinear analysis.

The mixed Strichartz space-time norm is defined as the following

‖u‖LpILr =

[∫
I

(∫
Rn
|u(t, x)|rdx

) p
r

dt

] 1
p

.

The works [12],[25] provided us with the fact that the homogeneous beam equation

(1.1) can be factorized as the following product

(∂2
t +42)u = (i∂t +4)(−i∂t +4)u.

Which displays the relation with the Schrödinger equation, suggesting that we can

recover Strichartz estimates for the beam equation from the ones for the Schrödinger

equation. Some classical references on Strichartz estimates in Rn for the Schrödinger

equation are provided by [5],[7],[11], [23]. In 2007, B. Pausader [17] investigated

the Strichartz estimates for nonlinear beam equation in the “energy critical” case.

In 2011, E.Cordero, D.Zucco [3] discussed Strichartz estimates for the linear beam

3



Chapter 1. Introduction

equation in homogeneous Sobolev spaces. In order to make full of use Strichartz

estimates for the nonlinear beam equation, in this dissertation, we will extend these

results, proving estimates with initial data in homogeneous Sobolev spaces Ḣs×Ḣs−2

and estimates in inhomogeneous Sobolev spaces Hs ×Hs−2 for the Cauchy problem

of the beam equation
∂2
t u(t, x) +42u(t, x) = F (t, x)

u |t=0= f(x)

∂tu |t=0= g(x).

(1.4)

We take the following definitions:

Definition 1.1.1. We say that the exponent pair (p, q) is a Schrödinger-admissible

pair if

2 ≤ p, q ≤ ∞, 2

p
+
n

q
=
n

2
, n ≥ 1, (p, q, n) 6= (2,∞, 2).

Definition 1.1.2. We say that the exponent triple (p, r, s) is a beam-admissible

triple if

2 ≤ p, r ≤ ∞, 2

p
+
n

r
=
n

2
− s, n ≥ 2, (p, r, n) 6= (2,∞, 2).

We have the following results when f ∈ Ḣs, g ∈ Ḣs−2,

Theorem 1.1.3. Let n ≥ 1, s ∈ R, I be either the interval [0, T ], T > 0, or [0,∞),

(p, r, s) be a beam-admissible triple, (a,b) is a Schrödinger-admissible pair, and (a′, b′)

is the Hölder conjugate pair of (a, b). If u is a solution to the Cauchy problem (1.4),

then we have the following estimates:

‖u‖LpILr+‖u(T, ·)‖Ḣs(Rn)+‖∂tu(T, ·)‖Ḣs−2(Rn) . ‖f‖Ḣs+‖g‖Ḣs−2+‖F‖La′I Ẇ s−2,b′ , (1.5)

with implicit constant independent of T . In particular, when 0 ≤ s ≤ 2, b̃ = nb′

n+(2−s)b′ .

‖u‖LpILr +‖u(T, ·)‖Ḣs(Rn) +‖∂tu(T, ·)‖Ḣs−2(Rn) . ‖f‖Ḣs +‖g‖Ḣs−2 +‖F‖La′I Lb̃ , (1.6)

with implicit constant independent of T .

4



Chapter 1. Introduction

When f ∈ Hs, g ∈ Hs−2, for p, r, a, b defined as above, we prove the following:

Theorem 1.1.4. Let n ≥ 1, s ∈ R, I be the interval [0, T ], 0 < T < ∞, (a,b) be

Schrödinger-admissible pair, (a′, b′) be the Hölder conjugate pair of (a,b). If u is a

solution to the Cauchy problem (1.4), then we have the following estimates,

‖u‖LpILr + ‖u(T, ·)‖Hs(Rn) + ‖∂tu(T, ·)‖Hs−2(Rn)

. (1 + |T |
1
p

+1)(‖f‖Hs + ‖g‖Hs−2 + ‖F‖La′I W s−2,b′ ), (1.7)

where (p, r, s) satisfies the following condition

2 ≤ p, r ≤ ∞, 2

p
+
n

r
≥ n

2
− s, n ≥ 2, (p, r, n) 6= (2,∞, 2).

Actually, by counterexamples, we only have this estimate locally.

1.2 Well-posedness and scattering theory for the

nonlinear beam equation in Rn

The local and global well-posedness of semilinear dispersive equations has attracted

a lot of attention in the past years. In general, when global well-posedness is

established, the existence of a scattering operator, comparing the nonlinear dy-

namics and the linear one, is a direct by-product. H. Lindblad and C. D.Sogge

[15] proved existence for semilinear wave equations with low regularity data and

determined the minimal Sobolev regularity that is needed to ensure local well-

posedness. They took advantage of the Strichartz estimates to prove well-posedness

theorems for the nonlinear wave equation with rough initial data by the Picard iter-

ation method. By this method, we will investigate well-posedness with initial data

f(x) ∈ Ḣs(Rn), g(x) ∈ Ḣs−2(Rn), and f(x) ∈ Hs(Rn), g(x) ∈ Hs−2(Rn) for “en-

ergy critical”, “energy subcritical” exponents κ ≤ n+4
n−4

and “energy supercritical”

5



Chapter 1. Introduction

exponents κ > n+4
n−4

, and determine the minimal Sobolev regularity that is needed

to ensure local and global well-posedness for the nonlinear beam equation. Since

the beam equation does not satisfy finite speed of propagation, we introduce further

results on the fractional chain rule to deal with the “energy super critical” case. At

the same time we extend the range of regularity s. We will also be concerning the

asymptotic completeness and scattering for small amplitude solutions. For “energy

critical” and “energy subcritical” exponents κ ≤ n+4
n−4

, when f ∈ Ḣs, g ∈ Ḣs−2, we

have the following

Theorem 1.2.1. Set s = n
2
− 4

κ−1
, if n ≥ 4,max{ 8

n
+ 1, n+1

n−3
} < κ ≤ n+4

n−4
, then there

is a T > 0, a unique (weak) solution of the nonlinear beam equation (1.1) satisfying

(u, ∂tu) ∈ C([0, T ]; Ḣs × Ḣs−2) and u ∈ L2κ
I L

nκ(κ−1)
3κ+1 . (1.8)

Moreover, there is ε(κ) > 0, so that if

‖f‖Ḣs + ‖g‖Ḣs−2 < ε(κ),

then one can take T = ∞. When n = 3, κ > 5, we have the results above as

u ∈ L
(n+2)(κ−1)

4 ([0, T ]× Rn).

When f ∈ Hs, g ∈ Hs−2, we have similarly local well-posedness result since

Strcichartz estimates only are available locally with this initial data.

In the “energy supercritical” range κ > n+4
n−4

case, for small initial data f ∈

Ḣs, g ∈ Ḣs−2, we have the following

Theorem 1.2.2. Set s = n
2
− 4

κ−1
, n > 4. Suppose there exists an l ∈ N, l ≥ 1, with

n
2
− 4

κ−1
− 2 ≤ l ≤ κ − 1, then there is a T > 0, a unique (weak) solution of the

nonlinear beam equation (1.1) satisfying

(u, ∂tu) ∈ C([0, T ]; Ḣs × Ḣs−2) and u ∈ L2κ([0, T ], L
nκ(κ−1)
3κ+1 (Rn)). (1.9)

6



Chapter 1. Introduction

Moreover, there is ε(κ) > 0, so that if

‖f‖Ḣs + ‖g‖Ḣs−2 < ε(κ),

then one can take T =∞.

For initial data f ∈ Hs, g ∈ Hs−2 we have the following:

Theorem 1.2.3. Set s = n
2
− 4

κ−1
, n > 4. Suppose there exists an l ∈ N, with

n
2
− 4

κ−1
− 2 ≤ l ≤ κ, then there is a T > 0, a a unique (weak) solution of the

nonlinear beam equation (1.1) satisfying

(u, ∂tu) ∈ C([0, T ];Hs ×Hs−2) and u ∈ L
(n+2)(κ−1)

4 ([0, T ]× Rn). (1.10)

For the asymptotic completeness and scattering for small amplitude solutions,

the results follows:

Theorem 1.2.4. For κ ≥ 1, consider u is the solution of the equation (1.1) with the

norm of the data small, namely,

‖f‖Ḣsc + ‖g‖Ḣsc−2 < ε. (1.11)

Then there exists ε > 0 small such that for such data (f,g), there is small data

(f+, g+) ∈ Ḣsc × Ḣsc−2, so that the solution to the free beam equation with this data,


∂2
t u+ +42u+ = 0,

u+ |t=0= f+ ∈ Ḣsc ,

∂tu+ |t=0= g+ ∈ Ḣsc−2

(1.12)

satisfies

lim
T→+∞

‖u(T, ·)− u+(T, ·)‖ ˙s(κ) = 0, (1.13)

7



Chapter 1. Introduction

where

‖u(T, ·)‖2
˙s(κ)

= ‖u(T, ·)‖2
Ḣsc

+ ‖∂tu(T, ·)‖2
Ḣsc−2 .

Conversely, if (f−, g−) ∈ Ḣsc × Ḣsc−2 has sufficiently small norm and u− is the

solution to the free beam equation with this data, then there exists a solution u to

(1.1) satisfying

lim
T→−∞

‖u(T, ·)− u−(T, ·)‖ ˙s(κ) = 0. (1.14)

Thus, the scattering operator S : (f−, g−)→ (f+, g+) exists in a neighborhood of the

origin in Ḣsc × Ḣsc−2.

1.3 Ill-posedness for the nonlinear beam equation

in Rn

There are certain equations and certain regularities for which the Cauchy problem

is ill-posed. M. Christ, J. Colliander and T. Tao [4] give examples of solutions to

nonlinear wave and Schrödinger equations on Rn which show that the problem is ill-

posed in the Sobolev space when the exponent s is lower than the critical exponent

predicted by scaling. In this dissertation, we will discuss the ill-posedness results for

the Cauchy problem of the nonlinear beam equation with 0 < s < sc by the small

dispersion analysis of M. Christ, J.Colliander and T. Tao.

Theorem 1.3.1. Let n ≥ 1, ω = −1 and κ > 1. If κ is not an odd integer, we

assume κ ≥ k + 2 for some integer k > n/2. Suppose that 0 < s < sc = n
2
− 4

κ−1
.

Then for any ε > 0 there exist a real-valued solution u of the nonlinear beam equation

(1.1) and t ∈ R+, such that u(0) ∈ S,

‖u(0)‖Hs < ε,

ut(0) = 0,

8



Chapter 1. Introduction

0 < t < ε,

‖u(t)‖Hs > ε−1.

In particular, for any t > 0 the solution map S × S 3 (u(0), ut(0)) → (u(t), ut(t)),

for Cauchy problem (1.1) fails to be continuous at 0 in the Hs ×Hs−2 topology.

1.4 Strichartz estimates for the beam equation on

compact Riemannian manifolds and exterior

domains

Recently, Strichartz estimates have been developed for nontrivial geometries. The

Strichartz estimates on Riemannian manifolds (Ω, g) with boundary, for both the

compact case and the case that is the exterior of a smooth, non-trapping obstacle

in Euclidean space for Schrödinger equation have been established by M. Blair, H.

Smith and C. Sogge [1], [2]. O. Ivanovici [9] deduced classical Strichartz estimates

for the Schrödinger equation outside a strictly convex obstacle. In this dissertation,

we will only discuss the Strichartz estimates of the beam equation in time locally.

Consider the homogeneous beam equation (1.1) with Dirichlet boundary conditions

u(t, x)|x∈∂Ω = 0 4gu(t, x)|x∈∂Ω = 0.

On compact manifolds with boundary we have the following theorem.

Theorem 1.4.1. Let (Ω, g) be a smooth compact Riemannian manifold with bound-

ary. If u is a solution to the (1.4), then

‖u‖Lp([−T,T ];Lr(Ω)) . ‖f‖
H

4
3p

+ ‖g‖
H

4
3p−2 + ‖F‖

L1([−T,T ];H
4
3p−2

(Ω))
, (1.15)

where

2 ≤ p, r ≤ ∞, 2

p
+
n

r
=
n

2
, n ≥ 2, (p, r, n) 6= (2,∞, 2).

9



Chapter 1. Introduction

Let Ω = Rn \Θ be the domain exterior to a compact non-trapping obstacle with

smooth boundary. Non-trapping means that every unit speed generalized bicharac-

teristic escapes each compact subset of Ω in finite time. For the Strichartz estimates

of the beam equation on these kind domains, we have the following:

Theorem 1.4.2. let Ω = Rn \ Θ be the exterior domain to a compact non-trapping

obstacle with smooth boundary, and 4 the standard Laplace operator on Ω, subject

to Dirichlet conditions. Suppose 3
p

+ n
q
≤ n

2
, n = 2,

1
p

+ 1
q
≤ 1

2
, n ≥ 3,

(1.16)

and
2

p
+
n

q
=
n

2
− s.

Then for the solution of beam equation (1.4 ) with Dirichlet boundary conditions, the

following estimate hold

‖u‖Lp([−T,T ];Lq(Ω)) ≤ CT‖u0‖Hs + ‖u1‖Hs−2 + ‖F‖L1([−T,T ];Hs−2(Ω)). (1.17)

When Θ is strictly convex, we have the following:

Corollary 1.4.3. Let Ω = Rn\Θ, where Θ is a compact with smooth boundary.

Suppose that n ≥ 2 and ∂Ω is strictly geodesically concave throughout. Assume the

pair (p, q) satisfying the scaling condition:

2

p
+
n

q
=
n

2
− s,

then for the solution of beam equation (1.4) with Dirichlet boundary conditions the

following estimate holds

‖u‖Lp([−T,T ];Lq(Ω)) . ‖u0‖Hs + ‖u1‖Hs−2 + ‖F‖L1([−T,T ];Hs−2(Ω)).

10



Chapter 2

Strichartz estimates for the beam

equation in Rn

In this chapter, we first introduce some notations and definitions that will be fre-

quently used in this dissertation. The expression X . Y means X ≤ CY for some

constant C. Consider the linear beam equation,


∂2
t u+42u = F,

u |t=0= f,

∂tu |t=0= g.

(2.1)

The solution of this equation can be formally written in the integral form

u(t, ·) = cos(t4)f +
sin(t4)

4
g +

∫ t

0

sin((t− s)4)

4
F (s)ds.

11



Chapter 2. Strichartz estimates for the beam equation in Rn

2.1 Strichartz estimates with initial data in homo-

geneous Sobolev spaces Ḣs × Ḣs−2

We have the following theorem about Strichartz estimates for solutions to the beam

equation with initial data f ∈ Ḣs, g ∈ Ḣs−2.

Theorem 2.1.1. Let n ≥ 1, s ∈ R, I be either the interval [0, T ], T > 0, or [0,∞),

(p, r, s) be a beam-admissible triple, (a,b) is a Schrödinger-admissible pair, and (a′, b′)

is conjugate pair of (a,b). If u is a solution to the Cauchy problem (2.1), then we

have the following estimates:

‖u‖LpILr+‖u(T, ·)‖L∞I Ḣs(Rn)+‖∂tu(T, ·)‖L∞I Ḣs−2(Rn) . ‖f‖Ḣs+‖g‖Ḣs−2+‖F‖La′I Ẇ s−2,b′ ,

(2.2)

with implicit constant independent of T . In particular, when 0 ≤ s ≤ 2, b̃ = nb′

n+(2−s)b′ ,

‖u‖LpILr +‖u(T, ·)‖L∞I Ḣs(Rn) +‖∂tu(T, ·)‖L∞I Ḣs−2(Rn) . ‖f‖Ḣs +‖g‖Ḣs−2 +‖F‖La′I Lb̃ ,

(2.3)

with implicit constant independent of T .

Proof. By the work of E.Cordero, D.Zucco [3], the following estimates hold

‖u‖LpIẆ s,q . ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖F‖La′I Ẇ s−2,b′ , (2.4)

where (p, q) and (a, b) are Schrödinger-admissible pairs. For fixed t, by Sobolev

embedding, we have

‖u(t, ·)‖Lr . ‖u(t, ·)‖Ẇ s,q ,

when 1
q

= 1
r

+ s
n
, combining with

2

p
+
n

q
=
n

2
,

12



Chapter 2. Strichartz estimates for the beam equation in Rn

we have
2

p
+
n

r
=
n

2
− s.

Therefore we have the estimate

‖u‖LpILr . ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖F‖La′I Ẇ s−2,b′ . (2.5)

Let v be the solution of (2.1) with F (t, x) = 0, w be the solution of (2.1) with

vanishing initial data. Then the solution of (2.1) is u = v + w. By the energy

inequality for the linear Cauchy problem, we have

‖v(T, ·)‖L∞I Ḣs(Rn) + ‖∂tv(T, ·)‖L∞I Ḣs−2(Rn) ≤ 2(‖f‖Ḣs + ‖g‖Ḣs−2). (2.6)

For w(t, ·) =
∫ t

0
sin((t−s)4)

4 F (s)ds, we have the inhomogeneous Strichartz estimates

from [3], ∥∥∥∥∫ t

0

ei(t−s)4

4
F (s)ds

∥∥∥∥
LpIẆ

s,q

. ||F‖La′I Ẇ s−2,b′ ,

where (p, q), (a, b) are Schrödinger-admissible pairs. When p = ∞, q = 2, by the

definition of the homogeneous Sobolev space, we have

‖(−4)
s
2w(T, ·)‖L∞I L2(Rn) . ‖F‖La′I Ẇ s−2,b′ .

Then we have,

‖w(T, ·)‖L∞I Ḣs(Rn) + ‖∂tw(T, ·)‖L∞I Ḣs−2(Rn) . ‖F‖La′I Ẇ s−2,b′ . (2.7)

Combining with (2.5),(2.6),(2.7), we have the estimates (2.2). Since

‖F‖La′I Ẇ s−2,b′ = ‖(−4)
s−2
2 F‖La′I Lb′ ,

now assume s ≤ 2 , for fixed t, by the Theorem 1 of chapter 5 in [22] (which is

equivalent to Sobolev embedding),

‖(−4)
s−2
2 F (t, ·)‖Lb′ . ‖F (t, ·)‖Lb̃ ,

13



Chapter 2. Strichartz estimates for the beam equation in Rn

where, 1
b̃

= 1
b′

+ 2−s
n
. Then by the same way of proving (2.2), we have the Strichartz

estimates (2.3) where ,

2

p
+
n

r
=
n

2
− s =

2

a′
+
n

b̃
− 4. (2.8)

2.2 Strichartz estimates in inhomogeneous

Sobolev space Hs ×Hs−2

Now we consider the Strichartz estimates for solutions to the beam equation with

initial data f ∈ Hs, g ∈ Hs−2 (inhomogeneous Sobolev space), we have the following

Theorem 2.2.1. Let n ≥ 1, s ∈ R, I be the interval [0, T ], 0 < T < ∞, (a,b) be

Schrödinger-admissible pair, (a′, b′) be the conjugate pair of (a,b). If u is a solution

to the Cauchy problem (2.1), then we have the following estimates,

‖u‖LpILr + ‖u(T, ·)‖Hs(Rn) + ‖∂tu(T, ·)‖Hs−2(Rn)

. (1 + |T |
1
p

+1)(‖f‖Hs + ‖g‖Hs−2 + ‖F‖La′I W s−2,b′ ), (2.9)

where (p, r, s) satisfies the following condition

2 ≤ p, r ≤ ∞, 2

p
+
n

r
≥ n

2
− s, n ≥ 2, (p, r, n) 6= (2,∞, 2).

Proof. Let β(ξ) be a smooth cutoff function with support

supp(β) ⊂ B2(0),

supp(1− β) ⊂ {|ξ| ≥ 1}.

Let u0 = β(D)u, F0 = β(D)F , u1 = (1− β(D))u, F1 = (1− β(D))F , where u is the

solution of (2.1), then we have

∂2
t u0 +42u0 = F0, (2.10)

14



Chapter 2. Strichartz estimates for the beam equation in Rn

∂2
t u1 +42u1 = F1. (2.11)

Since

|ξ| ≥ 1 =⇒ |ξ|s−2 ≈ (1 + |ξ|2)
s−2
2 ,

by Theorem 2.1.1 we have

‖u1‖LpILr + ‖u1(T, ·)‖Hs(Rn) + ‖∂tu1(T, ·)‖Hs−2(Rn)

. (‖f‖Hs + ‖g‖Hs−2 + ‖F1‖La′I W s−2,b′ ). (2.12)

Since, |ξ| ≤ 1 =⇒ (1+|ξ|2)s1 ≈ (1+|ξ|2)s2 for any s1, s2, then for u0, first, by Sobolev

embedding we have,

‖u0‖LpILr . (1 + |T |
1
p )‖u0‖L∞I Hs ≈ (1 + |T |

1
p )‖u0‖L∞I L2 . (2.13)

We define the energy of u0 by

E(u0; t) =

∫
1

2
|∂tu0(t, x)|2 +

1

2
|4u0(t, x)|2dx. (2.14)

The energy identity gives us

∂tE(u0; t) =

∫
∂tu0(t, x)F0(t, x)dx. (2.15)

By Cauchy-Schwarz inequality

|∂tE
1
2 (u0; t)| . ‖F0(t, x)‖L2 . ‖F0(t, x)‖Hs−2 .

By the fundamental theorem of calculus,

‖u0(t, ·)‖L2 ≤ ‖u0(0, ·)‖L2 +

∫ t

0

‖∂tu0(τ, ·)‖L2dτ ≤ ‖u0(0, ·)‖L2 +

∫ t

0

E
1
2 (u0; τ)dτ

≤ ‖u0(0, ·)‖L2 +

∫ t

0

‖F0(τ, ·)‖L2dτ ≤ ‖u0(0, ·)‖L2 + ‖F0‖L1
IH

s−2 . (2.16)

15



Chapter 2. Strichartz estimates for the beam equation in Rn

Therefore we have

‖u0‖L∞I Hs + ‖∂tu0‖L∞I L2 . ‖f‖Hs + ‖g‖Hs−2 + ‖F0‖L1
IH

s−2 . (2.17)

Since F0(x) = β(x)∨ ∗ F (x), by Young’s inequality,

‖F0‖Hs−2 = ||β∨ ∗ 〈D〉s−2F‖L2 ≤ ‖β∨‖Lb1‖〈D〉s−2F‖b′ . ‖F‖W s−2,b′ , (2.18)

where, 1
2

= 1
b1

+ 1
b′
− 1. Combining with (2.13) (2.16) (2.17) and (2.18), we have

‖u0‖LpILr + ‖u0(T, ·)‖Hs(Rn) + ‖∂tu0(T, ·)‖Hs−2(Rn)

. (1 + |T |
1
p

+1)(‖f‖Hs + ‖g‖Hs−2 + ‖F‖La′I W s−2,b′ ). (2.19)

Therefore combines (2.12) and (2.19), we have the Strichartz estimates (2.9).

2.3 Counterexample

The Theorem above tells us the Strichartz estimates of the beam equation exist

locally in inhomogeneous Sobolev space Hs × Hs−2, actually, the following coun-

terexample tells us this Strichartz estimate is only valid locally.

Theorem 2.3.1. For T sufficiently large, we have

sup
g∈S

∥∥∥ sin(t4)
4 g

∥∥∥
L∞([0,T ];Hs)

‖g‖Hs

≥ c|T |.

Proof. Take f = 0, then the solution of the homogeneous beam equation will have

the form u(t, ·) = sin(t4)
4 g. Let βε(ξ) be a smooth cut off supported in

supp(βε) ⊂
{
ξ :

ε2

2
≤ |ξ|2 ≤ 3ε2

2

}
, ε� 1.
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Chapter 2. Strichartz estimates for the beam equation in Rn

Set ĝ(ξ) = βε(ξ), then

‖u(t, ·)‖2
Hs =

∫ ∣∣∣∣sin(t|ξ|2)

|ξ|2
βε(ξ)〈ξ〉s

∣∣∣∣2 dξ.
Therefore, at t = π

2
ε−2, ‖u(t, ·)‖Hs ≈ ε−2(

∫
|βε(ξ)|2dξ)

1
2 . Also

‖g‖Hs−2 ≈ (

∫
|βε(ξ)|2dξ)

1
2 .

Therefore,

‖u(π
2
ε−2, ·)‖Hs

‖g‖Hs−2

≥
‖u(π

2
ε−2, ·)‖Hs

‖g‖Hs−2

& ε−2 (
∫
|βε(ξ)|2dξ)

1
2

(
∫
|βε(ξ)|2dξ)

1
2

= ε−2 ≈ t.

Therefore, we have

sup
g∈S

∥∥∥ sin(t4)
4 g

∥∥∥
L∞([0,T ];Hs)

‖g‖Hs

≥ c|T |,

for T � 1.
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Chapter 3

Well-posedness and scattering for

the nonlinear beam equation in Rn

Consider the Cauchy problem for the nonlinear beam equation with force F which

is the power-type nonlinearity function


∂2
t u(t, x) +42u(t, x) = ω|u|κ−1u(t, x),

u |t=0= f(x)

∂tu |t=0= g(x),

(3.1)

where ω = ±1 and 1 < κ < ∞, and u : R × Rn → C. The equation (3.1) is said to

be defocusing when ω < 0, and focusing when ω > 0. We are concerned in this

chapter with proving local well-posedness and global well-posedness for small data

in Ḣs × Ḣs−2 and local well-posedness in Hs ×Hs−2.

To prove the existence of the solution, we use Picard iteration argument. First

we define Fκ(u) = ω|u|κ−1u. Set u−1 ≡ 0, and define um,m = 0, 1, 2, ..., by

18



Chapter 3. Well-posedness and scattering for the nonlinear beam equation in Rn


(∂2
t +42)um = Fκ(um−1),

um |t=0= f,

∂tum |t=0= g.

(3.2)

At last we need show that there is a 0 < T ≤ ∞ and a function u so that

um → u and Fκ(um)→ Fκ(u), in D(ST ) with ST = [0, T ]×Rn. (3.3)

3.1 Well-posedness Theorems for “energy

critical” and “energy subcritical” cases

For “energy critical” and “energy subcritical” exponents κ ≤ n+4
n−4

, when f ∈ Ḣs, g ∈

Ḣs−2, we have the following

Theorem 3.1.1. Set s = n
2
− 4

κ−1
, if n ≥ 4,max{ 8

n
+ 1, n+1

n−3
} < κ ≤ n+4

n−4
, then there

is a T > 0, a unique (weak) solution of the nonlinear beam equation (3.1) satisfying

(u, ∂tu) ∈ C([0, T ]; Ḣs × Ḣs−2) and u ∈ L2κ
I L

nκ(κ−1)
3κ+1 . (3.4)

Moreover, there is ε(κ) > 0,so that if

‖f‖Ḣs + ‖g‖Ḣs−2 < ε(κ),

then one can take T = ∞. When n = 3, κ > 5, we have the results above with

u ∈ L
(n+2)(κ−1)

4 ([0, T ]× Rn).

Because the main step is to show that the nonlinear mapping um → um+1 is a

contraction for the proof of the existence, we set the following lemma.
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Lemma 3.1.2. For given n ≥ 4,max{ 8
n

+ 1, n+1
n−3
} < κ ≤ n+4

n−4
, s = n

2
− 4

κ−1
, then for

I = [0, T ] if we set,

Am(T ) = ‖um‖
L2κ
I L

nκ(κ−1)
3κ+1

andBm(T ) = ‖um − um−1‖
L2κ
I L

nκ(κ−1)
3κ+1

, (3.5)

there is an ε0 > 0, so that if 2A0(T ) ≤ ε0 and if m = 0, 1, 2, ...

Am(T ) ≤ 2A0(T ), Bm+1(T ) ≤ 1

2
Bm(T ). (3.6)

Proof. Suppose that u is a weak solution of the linear equation (3.1), by Theorem

2.1.1, if 0 ≤ s ≤ 2 and n(κ−1)
3κ+1

> 1 (which imply max{ 8
n

+ 1, n+1
n−3
} < κ ≤ n+4

n−4
), for

every T > 0, we have the following Strichartz estimate for any I ⊆ R

‖u‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖u(T, ·)‖Ḣs(Rn) + ‖∂tu(T, ·)‖Ḣs−2(Rn)

. ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖F‖
L2
IL

n(κ−1)
3κ+1

. (3.7)

Then if we write

(∂2
t +42)(um+1 − uj+1) = Vκ(um, uj)(um − uj)

with

Vk(u, v) =
Fκ(u)− Fκ(v)

u− v
,

then by (3.7), the Hölder inequality and the fact that Vκ(um, uj) = O(|um|κ−1 +

|uj|κ−1),

‖um+1 − uj+1‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ C‖Vκ(um, uj)(um − uj)‖
L2
IL

n(κ−1)
3κ+1

≤ C ′‖Vκ(um, uj)‖
L

2κ
κ−1
I L

nκ
(3κ+1)

‖um − uj‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ C ′′(‖um‖κ−1

L2κ
I L

nκ(κ−1)
3κ+1

+ ‖uj‖κ−1

L2κ
I L

nκ(κ−1)
3κ+1

)‖um − uj‖
L2κ
I L

nκ(κ−1)
3κ+1

.
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Take j = −1

‖um+1 − u0‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ C ′′‖um‖κ
L2κ
I L

nκ(κ−1)
3κ+1

. (3.8)

Thus, if εκ−1
0 is small enough so that there exist a constant C ′′ such that εκ−1

0 C ′′ < 1
4

and if we assume that Am(T ) ≤ 2A0(T ) then by (3.8) we get

Am+1(T ) ≤ A0(T ) +
1

2
Am(T ),

by induction we get the result. Taking j = m− 1 gives Bm+1(T ) ≤ 1
2
Bm(T ).

Proof of Theorem 3.1.1. First of all, by (3.7) we have,

‖u0‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ C(‖f‖Ḣs + ‖g‖Ḣs−2).

Therefore if the right side is sufficiently small for all T take T = ∞. Otherwise the

dominated convergence theorem furnishes T sufficiently small such that

2‖u0‖
L2κ
I L

nκ(κ−1)
3κ+1

= 2A0 ≤ ε0.

Since B0(T ) = A0(T ), using the lemma result, it follows that um converges to a limit

u ∈ L2κ
I L

nκ(κ−1)
3κ+1 (ST ) and hence in the sense of distributions. Since

‖Fκ(um+1)− Fκ(um)‖
L2
IL

n(κ−1)
3κ+1

≤ C ′‖Vκ(um+1, um)‖
L

2κ
κ−1
I L

nκ
(3κ+1)

‖um+1 − um‖
L2κ
I L

nκ(κ−1)
3κ+1

. (3.9)

By the lemma, we have Fκ(um)→ Fκ(u) in L2
IL

n(κ−1)
3κ+1 . Meanwhile, if we assume the

initial data belong to C∞0 , by (3.6) and (3.7), there exists a v, (um, ∂tum) must be

a Cauchy sequence in C([0, T ]; Ḣs × Ḣs−2) converging to (u, v). An examination of

the Duhamel formula reveals that v = ∂tu, where

u(t, ·) = cos(t4)f +
sin(t4)

4
g +

∫ t

0

sin((t− s)4)

4
F (u(s))ds.

21



Chapter 3. Well-posedness and scattering for the nonlinear beam equation in Rn

Hence the proof of existence part of Theorem 3.1.1 with κ ≤ n+4
n−4

is completed.

To prove the uniqueness, we first define w(t, ·) = u1(t, ·)− u2(t, ·), where u1(t, ·),

u2(t, ·) are two solutions of (3.1) satisfying (3.7), then w(t, ·) is the solution of

(∂2
t +42)w(t, ·) = Vκ(u1(t, ·), u2(t, ·))w(t, ·) with zero inital data. We consider the

following equation

(∂2
t +42)w(t, ·) = Vκ(u1, u2)w(t, ·), (3.10)

where Vκ(u1, u2) ∈ L
2κ
κ−1

I L
nκ

3κ+1 . Let T be the largest number such that

‖Vκ(u1, u2)‖
L

2κ
κ−1
I L

nκ
3κ+1

< εs, for, t ≤ T,

where εs is a universal constant to be determined. In particular, for some constant

C, if εs ≤ C−1/2, then by (3.7) and Hölder inequality

‖w‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ 1

2
‖w‖

L2κ
I L

nκ(κ−1)
3κ+1

,

which implies w(t, ·) = 0, this implies uniqueness of solutions u1(t, ·) = u2(t, ·) ∈

L2κL
nκ(κ−1)
3κ+1 ([0, T ] × Rn). For n = 3, κ > 5, we can adjust Strichartz norm of u as

u ∈ L
(n+2)(κ−1)

4 ([0, T ] × Rn) that we could use to get Picard iterates to converge by

taking advantage of Strichartz estimates as above and prove the results.

3.2 Well-posedness Theorems for “energy super-

critical” case

For the “energy supercritical” range κ > n+4
n−4

, we have two cases to discuss.

(1) Small initial data f ∈ Ḣs, g ∈ Ḣs−2, we have the following

Theorem 3.2.1. Set s = n
2
− 4

κ−1
and assume n > 4. Suppose there exists an

l ∈ N, l ≥ 1 with n
2
− 4

κ−1
− 2 ≤ l ≤ κ − 1, then there is a T > 0 a unique (weak)
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solution of the nonlinear beam equation (3.1) satisfying

(u, ∂tu) ∈ C([0, T ]; Ḣs × Ḣs−2) and u ∈ L2κ([0, T ], L
nκ(κ−1)
3κ+1 (Rn)). (3.11)

Moreover, there is ε(κ) > 0,so that if

‖f‖Ḣs + ‖g‖Ḣs−2 < ε(κ),

then one can take T =∞.

To show that the nonlinear mapping um → um+1 is a contraction for the proof

of the existence of this theorem requires a different argument from Lemma 3.1.2.

We have to use a specific inequality which comes from Strichartz estimates as the

following:

Theorem 3.2.2. Suppose that u is a solution of (2.1). Then,

‖u‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖(
√
−4)s−2u‖

L2κ
I L

2nκ
(n−4)κ−2

+ ‖u(T, ·)‖Ḣs(Rn) + ‖∂tu(T, ·)‖Ḣs−2(Rn)

. ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖(
√
−4)s−2F‖

L2
IL

2n
n+2

, (3.12)

with ST = [0, T ]× Rn.

Proof. We assume v = (
√
−4)s−2u, then

(∂2
t +42)v = (

√
−4)s−2(∂2

t +42)u = (
√
−4)s−2F,

and

v|t=0 = (
√
−4)s−2f ∈ Ḣ2,

vt|t=0 = (
√
−4)s−2g ∈ L2.
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By (2.3) with s = 2, we have,

‖(
√
−4)s−2u‖

L2κ
I L

2nκ
(n−4)κ−2

. ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖(
√
−4)s−2F‖

L2
IL

2n
n+2

. (3.13)

Choose p = 2κ, r = nκ(κ−1)
3κ+1

for (2.2), we have

‖u‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖u(T, ·)‖Ḣs(Rn) + ‖∂tu(T, ·)‖Ḣs−2(Rn)

. ‖f‖Ḣs + ‖g‖Ḣs−2 + ‖(
√
−4)s−2F‖

L2
IL

2n
n+2

. (3.14)

Combining with (3.13) and (3.14), we have (3.12).

We first introduce fractional chain rule lemma,

Lemma 3.2.3. Let F ∈ C l+1(C;C), l ∈ N. Assume that there is κ ≥ l such that

|∇iF (z)| ≤ |z|κ−i, i = 1, 2, ..., l.

If κ > 2, 0 ≤ s ≤ l, 1 < q < r < ∞ obey the scaling condition n
q

= nκ
r
− (κ − 1)s,

then

‖F (f)− F (g)‖Ẇ s,q(Rn) . (‖f‖Ẇ s,r(Rn) + ‖g‖Ẇ s,r(Rn))
κ−1‖f − g‖Ẇ s,r(Rn), (3.15)

for all f, g ∈ Ẇ s,r.

Proof. By the fundamental theorem of calculus we write

F (f)− F (g) =

∫ 1

0

DF ((1− θ)f + θg)(f − g)dθ.

Let V (f, g) =
∫ 1

0
DF ((1 − θ)f + θg)dθ, we have F (f) − F (g) = (f − g)V (f, g). By

the generalized Leibniz rule (see Theorem, 5 A. Gulisashvili and M.A. Kon [8])

‖F (f)− F (g)‖Ẇ s,q . ‖f − g‖Ẇ s,r‖V (f, g)‖Lp + ‖f − g‖La‖V (f, g)‖Ẇ s,b ,

where 1
q

= 1
r

+ 1
p
, 1
q

= 1
a

+ 1
b
.

Since

‖V (f, g)‖Lp . ‖f‖κ−1
Lp(κ−1) + ‖g‖κ−1

Lp(κ−1) ,
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by Sobolev embedding, we have

‖V (f, g)‖Lp . ‖f‖κ−1

Ẇ s,r + ‖g‖κ−1

Ẇ s,r ,

if 1
r
− 1

p(κ−1)
= s

n
. Combining with 1

q
= 1

r
+ 1

p
, we have

n

q
=
nκ

r
− (κ− 1)s.

Therefore

‖f − g‖Ẇ s,r‖V (f, g)‖Lp . ‖f − g‖Ẇ s,r(‖f‖κ−1

Ẇ s,r + ‖g‖κ−1

Ẇ s,r). (3.16)

By Leibnitz rule for fractional derivatives (see Lemma A3, T. Kato[10]), and Sobolev

embedding,

‖V (f, g)‖Ẇ s,b .
∫ 1

0

‖(1− θ)f + θg‖κ−1

Ẇ s,cdθ . ‖f‖κ−1

Ẇ s,c + ‖g‖κ−1

Ẇ s,c

‖f − g‖La . ‖f − g‖Ẇ s,r ,

where 1
b

= κ−1
c
−(κ−2) s

n
, 1

a
= 1

r
− s
n
, combining with 1

q
= 1

a
+ 1
b

and n
q

= nκ
r
−(κ−1)s,

we have c = r. Therefore we have

‖f − g‖La‖V (f, g)‖Ẇ s,b . ‖f − g‖Ẇ s,r(‖f‖κ−1

Ẇ s,r + ‖g‖κ−1

Ẇ s,r), (3.17)

with
n

q
=
nκ

r
− (κ− 1)s.

Combining with (3.16) and (3.17), we have the result.

Then we give the contraction lemma as the following:

Lemma 3.2.4. Given s = n
2
− 4

κ−1
, n > 4, there exists an l ∈ N, when n

2
− 4

κ−1
− 2 ≤

l ≤ κ− 1, and l ≥ 1, then if we set,

Am(T ) = ‖um‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖(
√
−4)s−2um‖

L2κ
I L

2nκ
(n−4)κ−2

,
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and,

Bm(T ) = ‖(
√
−4)s−2(um − um−1)‖

L2κ
I L

2nκ
(n−4)κ−2

, (3.18)

there is an ε0 > 0 so that if m = 0, 1, 2, ...

Am(T ) ≤ 2A0(T ), Bm+1(T ) ≤ 1

2
Bm(T ), if 2A0 ≤ ε0. (3.19)

Proof. By the Leibniz rule for fractional derivatives (see Lemma A3, T.Kato[10])

with 0 ≤ s− 2 ≤ l,

‖(
√
−4)s−2F (u)‖L2

IL
q . ‖u‖κ−1

L2κ
I Lp
‖(
√
−4)s−2u‖L2κ

I Lr , (3.20)

where 1
q

= κ−1
p

+ 1
r
. We apply (3.20) with q = 2n

n+2
, p = nκ(κ−1)

3κ+1
, r = 2nκ

(n−4)κ−2
.

Specifically , this inequality along with (3.12) applied to the equation

(∂2
t +42)(um+1 − u0) = Fκ(um),

gives

‖um+1‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖(
√
−4)s−2um+1‖

L2κ
I L

2nκ
(n−4)κ−2

≤ C‖um‖κ−1

L2κ
I L

nκ(κ−1)
3κ+1

‖(
√
−4)s−2um‖

L2κ
I L

2nκ
(n−4)κ−2

+ ‖u0‖
L2κ
I L

nκ(κ−1)
3κ+1

+ ‖(
√
−4)s−2u0‖

L2κ
I L

2nκ
(n−4)κ−2

. (3.21)

So we have

Am+1 ≤ C ′‖um‖κ−1

L2κ
I L

nκ(κ−1)
3κ+1

Am + A0

≤ C ′′Aκm + A0.
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From (3.12),

A0(T ) = ‖u0‖
L2κ
I L

nκ(κ−1)
3κ+1

+‖(
√
−4)s−2u0‖

L2κ
I L

2nκ
(n−4)κ−2

≤ C(‖f‖Ḣs+‖g‖Ḣs−2). (3.22)

Then we choose a proper ε0 with a constant C such that C2κεκ−1
0 < 1, then we

could get Am+1 ≤ 2A0 by induction. By Hölder inequality for

Bm+1(T ) = ‖(
√
−4)s−2(um+1 − um)‖

L2κ
I L

2nκ
(n−4)κ−2

≤ C‖(
√
−4)s−2(Fκ(um) − Fκ(um−1))‖

L2
IL

2n
n+2

. (3.23)

By (3.15) with 0 ≤ s− 2 ≤ l, we have

‖(Fκ(um)− Fκ(um−1))‖
L2
IẆ

s−2, 2n
n+2

≤ C ′(‖um‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

+ ‖um−1‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

)κ−1‖um − um−1‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

≤ C ′′εκ−1
0 Bm(T ),

leading to the desired bound if C ′′εκ−1
0 < 1

2
.

With this contraction lemma, we finish the following

Proof of Theorem 3.2.1. Arguing as before for 2A0 ≤ ε0 holds. Since B0(T ) ≤

A0(T ), then by (3.19), um must tend to a limit in L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2 . Similarly, we see

that Fκ(um) converges to a limit in L2
IẆ

s−2, 2n
n+2 . By Fatou’s lemma,

‖u‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ lim inf
m→∞

‖um‖
L2κ
I L

nκ(κ−1)
3κ+1

≤ 2A0(T ) <∞, (3.24)

then u ∈ L2κ
I L

nκ(κ−1)
3κ+1 . By (3.18), (3.19) we have (

√
−4)s−2u ∈ L2κ

I L
2nκ

(n−4)κ−2 , and

by the fractional chain rule we have (
√
−4)s−2Fκ(u) ∈ L2

IL
2n
n+2 . Applying Theorem

3.2.2, we proved (u, ∂tu) ∈ C([0, T ]; Ḣs×Ḣs−2), then the existence proof of Theorem

3.2.1 with κ > n+4
n−4

is completed.
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To prove the uniqueness part of the theorem, we assume u1(t, ·) and u2(t, ·) are

two solutions of (3.1) satisfying (3.11) then the difference w(t, ·) = u1(t, ·) − u2(t, ·)

satisfies the equation

(∂2
t +42)w(t, ·) = V (t, ·),

w(0, x) = ∂tw(0, x) = 0,

V (t, ·) = Fκ(u1(t, ·))− Fκ(u2(t, ·)).

By the Strichartz estimates (2.4), we have

‖w‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

≤ C‖V ‖
L2
IẆ

s−2, 2n
n+2

.

By (3.15),

‖(Fκ(u1)− Fκ(u2))‖
L2
IẆ

s−2, 2n
n+2

≤ C ′(‖u1‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

+ ‖u2‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

)κ−1‖u1 − u2‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

.

Then we have,

‖w‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

≤ C ′(‖u1‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

+ ‖u2‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

)κ−1‖w‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

If we choose T sufficiently small, ‖w‖
L2κ
I Ẇ

s−2, 2nκ
(n−4)κ−2

= 0 in [0, T ], iterating the argu-

ment it follows that w = 0 in [0, T ] for any fixed T > 0 and this proves uniqueness.

(2) For initial data f ∈ Hs, g ∈ Hs−2 and we have the following

Theorem 3.2.5. Set s = n
2
− 4

κ−1
and assume n > 4. Suppose there exists an l ∈ N

with n
2
− 4

κ−1
−2 ≤ l ≤ κ, there is a T > 0, a unique ( weak) solution of the nonlinear

beam equation (3.1) satisfying

(u, ∂tu) ∈ C([0, T ];Hs ×Hs−2) and u ∈ L
(n+2)(κ−1)

4 ([0, T ]× Rn) (3.25)
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Similar to the proof of Theorem 3.2.1, we also need specific Strichartz inequality

as the following theorem.

Theorem 3.2.6. Suppose that u is a solution of (2.1). Then,

‖u‖
L

(n+2)(κ−1)
4 (ST )

+ ‖(
√
I −4)s−2u‖

L
2(n+2)
n−4 (ST )

+ ‖u(T, ·)‖Hs(Rn) + ‖∂tu(T, ·)‖Hs−2(Rn)

. ‖f‖Hs + ‖g‖Hs−2 + ‖(
√
I −4)s−2F‖

L
2(n+2)
n+4 (ST )

, (3.26)

with ST = [0, T ]× Rn, T <∞.

The proof of this theorem is similar to the proof of Theorem 3.2.2. We also need

the following

Lemma 3.2.7. Given s = n
2
− 4

κ−1
, n > 4, there exists an l ∈ N, when n

2
− 4

κ−1
− 2 ≤

l ≤ κ, q = (n+2)(κ−1)
4

then if we set,

Am(T ) = ‖um‖Lq(ST ) + ‖(
√
I −4)s−2um‖

L
2(n+2)
n−4 (ST )

,

and

Bm(T ) = ‖um − um−1‖
L

2(n+2)
n−4 (ST )

, (3.27)

there is an ε0 > 0 so that if 2A0(T ) ≤ ε0, B0(T ) . A0(T ) and if m = 0, 1, 2, ...

Am(T ) ≤ 2A0(T ), Bm+1(T ) ≤ 1

2
Bm(T ). (3.28)

Proof. By the same way to prove Lemma 3.2.4, we easily have

Am+1 ≤ C ′‖um‖κ−1

L
(n+2)(κ−1)

4

Am + A0

≤ C ′′Aκm + A0.
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From (3.26),

A0(T ) = ‖u0‖Lq(ST ) + ‖(
√
I −4)s−2u0‖

L
2(n+2)
n−4

≤ C(‖f‖Hs + ‖g‖Hs−2). (3.29)

Then we want to choose ε0 small enough with a constant C ′′ such that C ′′2κεκ−1
0 < 1,

for then Am+1 ≤ 2A0 by induction. Similarly, by Hölder’s inequality, Strichartz

inequality and (3.20)( which also works for inhomogeneous spaces), for

Bm+1(T ) = ‖um+1 − um‖
L

2(n+2)
n−4

≤ C‖Fκ(um)− Fκ(um−1)‖
L

2(n+2)
n+4

≤ C ′(‖um‖κ−1

L
(n+2)(κ−1)

4

+ ‖um−1‖κ−1

L
(n+2)(κ−1)

4

)Bm(T )

≤ C ′′εκ−1
0 Bm(T ).

If we choose a ε0 such that C ′′εκ−1
0 < 1

2
, we have Bm+1(T ) ≤ 1

2
Bm(T ).

With this contraction lemma, and since ‖u0‖
L

2(n+2)
n−4

. ‖(
√
I −4)s−2u0‖

L
2(n+2)
n−4

,

then we have B0(T ) . A0(T ). By the same way to prove Theorem 3.2.1 (Fatou’s

Lemma), we have u ∈ L
(n+2)(κ−1)

4 ([0, T ] × Rn). Also if φ ∈ C∞0 , 〈um, φ〉 → 〈u, φ〉 as

m→∞. Therefore, by Hölder inequality

|〈um, φ〉| ≤ ‖(
√
I −4)s−2um‖

L
2(n+2)
n−4
‖(
√
I −4)2−sφ‖

L
2(n+2)
n+8

(3.30)

≤ 2A0‖(
√
I −4)2−sφ‖

L
2(n+2)
n+8

, (3.31)

we have

|〈u, φ〉| ≤ 2A0‖(
√
I −4)s−2φ‖

L
2(n+2)
n+8

,

and hence (
√
I −4)s−2u ∈ L

2(n+2)
n−4 . By Strichartz estimates and the fractional chain

rule, we have (
√
I −4)s−2Fκ(u) ∈ L

2(n+2)
n+4 . Applying Theorem 3.2.6, we proved

(u, ∂tu) ∈ C([0, T ];Hs × Hs−2), then the existence proof of Theorem 3.2.5 with

κ > n+4
n−4

is completed. By the same way of the uniqueness proof in the previous

theorem, we get the uniqueness of the solution.
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3.3 Scattering Theory

In this section we consider the existence of scattering operators for nonlinear beam

equation (3.1) with initial data f ∈ Ḣs, g ∈ Ḣs−2.

Theorem 3.3.1. For κ ≥ 1, consider u is the solution of the equation (3.1) with the

norm of the data is small, namely,

‖f‖Ḣsc + ‖g‖Ḣsc−2 < ε. (3.32)

Then there exists ε > 0 small such that for such data (f, g), there is small data

(f+, g+) ∈ Ḣsc × Ḣsc−2 so that the solution to the free beam equation with this data,
∂2
t u+ +42u+ = 0,

u+ |t=0= f+ ∈ Ḣsc ,

∂tu+ |t=0= g+ ∈ Ḣsc−2,

(3.33)

satisfies

lim
T→+∞

‖u(T, ·)− u+(T, ·)‖ ˙s(κ) = 0, (3.34)

where

‖u(T, ·)‖2
˙s(κ)

= ‖u(T, ·)‖2
Ḣsc

+ ‖∂tu(T, ·)‖2
Ḣsc−2 .

Conversely, if (f−, g−) ∈ Ḣsc × Ḣsc−2 has sufficiently small norm and u− is the

solution to the free beam equation with this data, then there exists a solution u to

(3.1) satisfying

lim
T→−∞

‖u(T, ·)− u−(T, ·)‖ ˙s(κ) = 0. (3.35)

Thus, the scattering operator S : (f−, g−)→ (f+, g+) exists in a neighborhood of the

origin in Ḣsc × Ḣsc−2.

In the proof, we will only consider κ ≤ n+4
n−4

, n > 4 case, because for κ > n+4
n−4

case,

the method is the same, provided l satisfies hypothesis of Theorem 3.2.5.
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Proof. To prove (3.38), first, by the proof of Theorem 3.1.1, we have u ∈ L2κL
nκ(κ−1)
3κ+1

and Fκ(u) ∈ L2L
n(κ−1)
3κ+1 . It follows that there is an increasing sequence of times,Tj,

for which

(

∫ ∞
Tj

(

∫
Rn
|Fκ(u)|

n(κ−1)
3κ+1 dx)

2(3κ+1)
n(κ−1) dt)

1
2 < 2−j. (3.36)

Then we let uj solve the free beam equation with the same data as u at t = Tj: ∂2
t uj +42uj = 0,

uj |t=0= u(Tj, ·), ∂tuj |t=0= ∂tu(Tj, ·)
.

Then u− uj has zero data at t = Tj and satisfies

(∂2
t +42)(u− uj) = Fκ(u).

Then by the Strichartz estimates (2.2) and (3.40), we have for T > Tj,

‖u(T, ·)− uj(T, ·)‖ ˙s(κ) ≤ C(

∫ ∞
Tj

(

∫
Rn
|Fκ(u)|

n(κ−1)
3κ+1 dx)

2(3κ+1)
n(κ−1) dt)

1
2 < 2−j. (3.37)

Since u and uk have a the same initial data at t = Tk, if k > j this implies

‖uk(Tk, ·)− uj(Tk, ·)‖ ˙s(κ) = ‖u(Tk, ·)− uj(Tk, ·)‖ ˙s(κ) ≤ 2−j.

Consequently, the energy inequality yields

‖uk(0, ·)− uj(0, ·)‖ ˙s(κ) ≤ C2−j.

Therefore fj = uj(0, ·), gj = ∂tuj(0, ·), is a Cauchy sequence of initial data in

Ḣsc × Ḣsc−2. If we let limj→∞ fj = f+, limj→∞ gj = g+, then (3.41) and the en-

ergy inequality yield

lim
T→+∞

‖u(T, ·)− u+(T, ·)‖ ˙s(κ) = 0.

To prove the second part of the theorem we define u− so that the solution to the

free beam equation with initial data (f−, g−) ∈ Ḣsc × Ḣsc−2, has small norm. We let
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u−1 = 0 and u0 = u− be defined by
∂2
t u− +42u− = 0,

u− |t=0= f− ∈ Ḣsc ,

∂tu− |t=0= g− ∈ Ḣsc−2,

(3.38)

and define um,m = 1, 2, ... by

um(t, ·) = u0(t, ·) +

∫ t

−∞

sin((t− s)4)

4
Fκ(um−1)(s, ·)ds, (3.39)

which means that um solves ∂2
t um + 42um = Fκ(um−1) with initial data (f−, g−).

Then use the Picard iteration argument. Similar to Lemma 3.1.2, we have um con-

verges to a solution u of

u(t, ·) = u0(t, ·) +

∫ t

−∞

sin((t− s)4)

4
Fκ(u)(s, ·)ds, (3.40)

where u ∈ L2κL
nκ(κ−1)
3κ+1 , Fκ(u) ∈ L2L

n(κ−1)
3κ+1 and for any T, (u, ∂tu) ∈ C([0, T ]; Ḣsc ×

Ḣsc−2). Then we have (3.39), therefore, the scattering operator S : (f−, g−) →

(f+, g+) exists in a neighborhood of the origin in Ḣsc × Ḣsc−2.
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Ill-posedness for the nonlinear

beam equation in Rn

We now consider ill-posedness of the nonlinear beam equation (1.1) in the defocusing

case.

We analyze the small dispersion approximation for the beam equation (1.1),
∂2
τφ(τ, y) + ν442φ(τ, y) = ω|φ|κ−1φ,

φ(0, y) = φ0(y),

∂sφ(0, y) = 0,

(4.1)

in the zero-dispersion limit ν → 0. Then for time t define

u(t, x) = φ(t, νx). (4.2)

For fixed initial datum φ0 in the small dispersion regime ν →0, (4.1) can be trans-

formed back into (1.1). Indeed, for any solution φ of (4.1), by the scaling symmetry,

λ
−4
κ−1φ(λ−2t, λ−1νx) (4.3)

34
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also defines a solution of (1.1). Setting ν = 0 in (4.1) gives the ODE
∂2
sφ(τ, y) = ω|φ|κ−1φ,

φ(0, y) = φ0(y),

∂τφ(0, y) = 0.

(4.4)

We define φ0 as this ODE solution. In the defocusing case ω = −1, we give the

solution formula as the following

φ0(τ, y) = C(|φ0(y)|
κ−1
2 τ)φ0(y), (4.5)

where C : R→ R is the unique solution to the ODE

−C ′′(τ) = |C(τ)|κ−1C(τ); C(0) = 1; C ′(0) = 0.

This is the Hamiltonian flow on a two dimensional phase space with Hamiltonian

H :
1

2
|C ′(τ)|2 +

1

κ+ 1
|C(τ)|κ+1.

It can be seen that C is a bounded nonconstant periodic function and Cκ+2 function

since F = ω|φ|κ−1φ ∈ Cκ. To avoid causing some problems with smoothness of

|φ0(y)|, we let φ0(y) = (ψ(y))2l, where ψ(y) is Schwartz function.

We now use the following lemma to see that the solution of (4.1) φ may stay close

to the ODE solution φ0, when ν > 0 but small.

Lemma 4.0.2. Let n ≥ 1, κ ≥ 1, k > n
2

be an integer, and if κ is not an odd integer,

then κ ≥ k + 2. Let φ0(y) = (ψ(y))2l, where ψ(y) is a Schwartz function, and l is

sufficiently large, so φ0 is the square of a Schwartz function. Then there exist C, c,

such that for each sufficiently small real number 0 < ν ≤ c, there exists a solution

φ(τ, y) of (4.1) for all |τ | ≤ c| ln ν|c such that

||φ(τ)− φ0(τ)||Hk + ||φτ (τ)− φ0
τ (τ)||Hk ≤ C|ν|, (4.6)

with φ0 as in (4.5).

35
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Proof. We define the function F : C→ C by

F (z) = |z|κ−1z,

and plug F in (4.4), thus

∂2
τφ

0 = ωF (φ0),

and the equation to be solved is

∂2
τφ+ ν442

yφ = ωF (φ),

then with the ansatz

φ = φ0 + w

w is a solution of the Cauchy problem
∂2
τw + ν442w = ν442φ0 + ω(F (φ0 + w)− F (φ0)),

w(0, y) = 0,

∂τw(0, y) = 0.

. (4.7)

Since κ ≥ k + 2, it is guaranteed that F is a Ck+2 function with all k derivatives

locally Lipschitz and hence C is Ck+4. Define the energy of w by

Eν(w(τ)) =

∫
1

2
|wτ (τ, y)|2 +

ν4

2
|4w(τ, y)|2dy, (4.8)

if we have ∂2
τw + ν442w = F , then the energy identity gives

∂τEν(w(τ)) =

∫
wτ (τ, y)F(τ, y)dy. (4.9)

By Cauchy-Schwarz inequality

|∂τE
1
2
ν (w(τ))| ≤ C‖F(τ)‖2.

Similarly, if we define

Eν,k(w(τ)) =
k∑
j=0

∑
|α|≤j

Eν(∂
α
yw(τ)).
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Chapter 4. Ill-posedness for the nonlinear beam equation in Rn

Then

|∂τE
1
2
ν,k(w(τ))| ≤ C‖F(τ)‖Hk (4.10)

and

E
1
2
ν,k(w(τ)) =

∫ τ

0

∂τE
1
2
ν,k(w(τ ′))dτ ′ ≤ C

∫ τ

0

‖F(τ ′)‖Hkdτ ′. (4.11)

Since φ0 = ψ(y)2l, ψ(y) is Schwartz, F is Ck+2 and C is Ck+4 ,

‖φ0‖Hk + ‖φ0‖Ck ≤ C(1 + |τ |)k, (4.12)

and

‖ν442φ0‖Hk ≤ Cν4(1 + |τ |)k+4. (4.13)

Using Taylor formula and the fact that Hk is an algebra since k > n
2
, we have

‖F (φ0 + w)(τ)− F (φ0)(τ)‖Hk . ‖w(τ)‖Hk(‖w(τ)‖κ−1
Hk + ‖φ0(τ)‖κ−1

Hk ).

Define

e(τ) := sup
0≤τ ′≤τ

E
1
2
ν,k(w(τ ′)),

which is a non-decreasing function. By the fundamental theorem of calculus

‖w(τ)‖Hk ≤
∫ τ

0

‖wτ (τ ′)‖Hkdτ ′ ≤
∫ τ

0

E
1
2
ν,k(w(τ ′))dτ ′ ≤ Cτe(τ). (4.14)

Under the assumption that w(τ) is bounded in Hk, e.g. ‖w(τ)‖Hk ≤ 1 and combining

with (4.13), (4.14), we have

‖ν442φ0 + F (φ0 + w)(τ)− F (φ0)(τ)‖Hk ≤ C(1 + |τ |)c(ν4 + e(τ) + e(τ)κ).

Then combining with (4.12), we have the differential inequality

e(τ) ≤ C

∫ τ

0

(1 + |τ ′|)C(ν4 + e(τ ′) + e(τ ′)κ)dτ ′.

Since e(0) = 0, by Gronwall’s inequality , for |τ | ≤ c| ln ν|c, then we have e(τ) ≤ Cν
7
2 ,

and the claim follows from (4.14) if ν is sufficiently small.
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Chapter 4. Ill-posedness for the nonlinear beam equation in Rn

Now we give the ill-posedness result about the nonlinear beam equation (1.1) as

the following

Theorem 4.0.3. Let n ≥ 1, ω = −1 and κ > 1, if κ is not an odd integer, we assume

κ ≥ k + 2 for some integer k > n/2. Suppose that 0 < s < sc = n
2
− 4

κ−1
. Then for

any ε > 0, there exist a real-valued solution u of the nonlinear beam equation (1.1)

and t ∈ R+ such that u(0) ∈ S,

‖u(0)‖Hs < ε,

ut(0) = 0,

0 < t < ε,

‖u(t)‖Hs > ε−1.

In particular, for any t > 0 the solution map S × S 3 (u(0), ut(0)) → (u(t), ut(t)),

for Cauchy problem (1.1) fails to be continuous at 0 in the Hs ×Hs−2 topology.

Remark 4.0.4. Since when time progresses, the function φν(t̃) transfers its energy

to increasingly higher frequencies, then we take considering Hs instead of Ḣs.

Proof. Let 0 < ν � 1 be a parameter. We will construct solutions of (1.1) which are

depending on ν, and analyze them quantitatively as ν ↘ 0. By the lemma above,

for ν ≤ c there exists a solution φν(τ, y) = φ(τ, y) to the equation (4.1) with initial

data,

φν(0, y) := φ0(y), φντ := 0, (4.15)

and we have for |τ | ≤ C| ln ν|c,

||φν(τ)− φ0(τ)||Hk + ||φντ (τ)− φ0
τ (τ)||Hk ≤ C|ν|. (4.16)

Applying the scaling symmetry gives then solutions u(t, x) = u(ν,λ)(t, x) to (1.1)

defined by

u(ν,λ)(t, x) = λ
−4
κ−1φν(λ−2t, λ−1νx). (4.17)
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Chapter 4. Ill-posedness for the nonlinear beam equation in Rn

In particular, we have the initial data

u(ν,λ)(0, x) = λ
−4
κ−1φ0(λ−1νx); u

(ν,λ)
t (0, x) = 0. (4.18)

Assume 0 < λ ≤ ν � 1, and observe

[u(ν,λ)(0)]∧(ξ) = λ
−4
κ−1 (

λ

ν
)nφ̂0(

λ

ν
ξ).

Hence

‖u(ν,λ)(0)‖2
Hs = λ

−8
κ−1 (

λ

ν
)2n

∫
|φ̂0(

λ

ν
ξ)|2(1 + |ξ|2)sdξ,

define η = λ
ν
ξ,

‖u(ν,λ)(0)‖2
Hs = λ

−8
κ−1 (

λ

ν
)n
∫
|φ̂0(η)|2(1 + |ν

λ
η|2)sdη

≈ λ
−8
κ−1 (

λ

ν
)n−2s

∫
|η|≥λν−1

|φ̂0(η)|2|η|2sdη + λ
−8
κ−1 (

λ

ν
)n
∫
|η|≤λν−1

|φ̂0(η)|2dη

= λ
−8
κ−1 (

λ

ν
)n−2s

∫
Rn
|φ̂0(η)|2|η|2sdη + λ

−8
κ−1 (

λ

ν
)n−2s

∫
|η|≤λν−1

|φ̂0(η)|2((
λ

ν
)2s − |η|2s)dη.

Then for some constant C, we have

‖u(ν,λ)(0)‖Hs ≤ Cλ
−4
κ−1 (

λ

ν
)
n
2
−s = Cλsc−sνs−

n
2 .

Given ν, define

λsc−sνs−
n
2 = ε. (4.19)

Consider the behavior of u(ν,λ)(t̃) for t̃ > 0, starting with the analysis of φ0(t̃, x) for

t̃� 1, gives,

∂jxφ
0(t̃, y) = φ0(x)t̃j(∇y|φ0(y)|

p−1
2 )jC(j)(t̃|φ0(y)|

p−1
2 ) +O(t̃j−1),

for j = 0, 1, ..., k. Since C and its derivatives vanish on a countable set we have

‖φ0(t̃)‖Hj ∼ t̃j.
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Chapter 4. Ill-posedness for the nonlinear beam equation in Rn

In particular, since the Sobolev norms Hs are interpolation spaces,

‖φ0(t̃)‖Hs ∼ t̃s,

whenever s ≥ 0 is no larger than the greatest integer ≤ κ − 1. If κ is not an odd

integer, then s < sc <
n
2
< k, and κ−1 ≥ k, for all s under consideration in Theorem

4.0.3 this conclusion holds. If ν � 1 and 1� t̃ ≤ c| ln ν|c, (4.6) implies that

‖φν(t̃)‖Hs ∼ t̃s. (4.20)

This estimate indicates that when time progresses, the function φν(t̃) transfers its

energy to increasingly higher frequencies. We now exploit the supercriticality of s

via the scaling parameter λ to create arbitrarily large Hs norms at arbitrarily small

times. Applying (4.6), we have

[u(ν,λ)(λ2t̃)]∧(ξ) = λ
−4
κ−1 (

λ

ν
)n[φν(t̃)]∧(

λ

ν
ξ).

By the change of varables η := λ
ν
ξ

‖u(ν,λ)(λ2t̃)‖2
Hs ≥ cλ

−8
κ−1 (

λ

ν
)n
∫
|[φν(t̃)]∧(η)|2(1 + |ν

λ
η|2)sdη.

Since λ
ν
≤ 1,∫
|[φν(t̃)]∧(η)|2(1 + |ν

λ
η|2)sdη ≥ (

λ

ν
)−2s

∫
|η|≥1

|[φν(t̃)]∧(η)|2|η|2sdη

≥ (
λ

ν
)−2s(c‖φν(t̃)‖2

Hs − C‖φν(t̃)‖2
H0).

From (4.20), it is that ‖φν(t̃)‖H0 � ‖φν(t̃)‖Hs for t̃� 1. Thus by (4.19) and (4.20)

‖u(ν,λ)(λ2t̃)‖Hs ≥ cλ
−4
κ−1 (

λ

ν
)
n
2
−s‖φν(t̃)‖Hs ≥ cεt̃s.

Therefore for ‖u(t)‖Hs , when t̃ ≈ c| ln ν|c, choose ν is small enough such that

c| ln ν|c � ε−
2
s ,
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Chapter 4. Ill-posedness for the nonlinear beam equation in Rn

for t = λ2t̃, ν sufficiently small,

t ≈ c| ln ν|cλ2 = C| ln ν|cν2(
n/2−s
sc−s

)ε
2

sc−s < ε,

we have

‖u(t)‖Hs ≥ ε−1.

Theorem 4.0.3 follows.
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Chapter 5

Strichartz estimates for the beam

equation on domains

5.1 Introduction

Recently, Strichartz estimates have been developed for nontrivial geometries. This

chapter is primarily concerned with proving Strichartz estimates for the beam equa-

tion on Riemannian manifolds (Ω, g) with boundary, for compact manifolds and

when Ω is exterior of a smooth, non-trapping obstacle in Euclidean space. Define

Laplace-Beltrami operator on Riemannian manifolds (Ω, g):

4 : H2
0 (Ω) −→ L2(Ω),

and

4gφ =
1√

det gij
∂i(g

ij
√

det gij∂jφ).

In particular when Ω is a subset of Rn we have 4gφ =
∑n

j ∂
2
xj
φ. Here H2

0 (Ω) is the

closure of C∞0 (Ω) under the norm ‖φ‖H2
0 (Ω) =

∑
|α|≤2 ‖∂αφ‖L2(Ω), it also defines the

Sobolev space on domain Ω of order 2. The remaining Sobolev spaces Hs(Ω) can be

42



Chapter 5. Strichartz estimates for the beam equation on domains

defined by interpolation and duality. This is equivalent to defining them using the

functional calculus (I −∆g)
s/2f ∈ L2. Especially, when Ω is compact manifold with

boundary, we could define Sobolev space Hs(Ω) as (see [16]):

Hs(Ω) = {f ∈ L2(Ω) :
∞∑
j=1

(1 + λ2
j)
s‖Ej(f)‖2

L2 <∞},

where the eigenvalues 0 < λj ↗∞, Ej are the corresponding eigenspaces.

We consider the beam equation
∂2
t u(t, x) +42

gu(t, x) = F (t, x)

u |t=0= f(x)

∂tu |t=0= g(x)

(5.1)

with Dirichlet boundary conditions

u(t, x)|x∈∂Ω = 0, 4gu(t, x)|x∈∂Ω = 0,

where 4g denotes the Laplace-Beltrami operator on (Ω, g). The homogeneous beam

equation (5.1) can formally be factorized as the following product

(∂2
t +42

g)u = (i∂t +4g)(−i∂t +4g)u,

which displays the relation with the Schrödinger equation. This suggests to recover

Strichartz estimates for the beam equation from the ones for the Schrödinger equa-

tion.

The Strichartz estimates for the Schrödinger equation on domains is by now

deeply studied. On a compact manifold, M. Blair, H. Smith and C. Sogge [1] im-

proved on the current results for compact (Ω, g) where either ∂Ω 6= ∅, (or ∂Ω = ∅

and g Lipschitz), by showing that Strichartz estimates hold with a loss of s = 4/3p

derivatives. Consider the Schrödinger equation, i∂tu(t, x) +4gu(t, x) = 0

u |t=0= f(x)
(5.2)
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Chapter 5. Strichartz estimates for the beam equation on domains

with Dirichlet boundary conditions

u(t, x)|x∈∂Ω = 0.

Definition 5.1.1. The exponent pair (p, q) is admissible if

2 ≤ p, q ≤ ∞, 2

p
+
n

q
=
n

2
, (p, q, n) 6= (2,∞, 2).

We have the following:

Theorem 5.1.2. Let (Ω, g) be a smooth compact Riemannian manifold with bound-

ary. Then the following Strichartz estimates holds for any admissible pair (p, q)

‖u‖Lp([−T,T ];Lq(Ω)) . ‖u‖
H

4
3p (Ω)

. (5.3)

We now consider the case where Ω is the exterior of a smooth, non-trapping

obstacle in Euclidean space, that is, Ω = Rn\Θ for some compact set Θ with smooth

boundary. Non-trapping means that every unit speed generalized bicharacteristic

escapes each compact subset of Ω in finite time. O. Ivanovici [9] deduced classical

Strichartz estimates for the Schrödinger equation outside a strictly convex obstacle.

All Strichartz estimates are valid when Θ is strictly convex with the exception of

endpoint estimates with p = 2. M. Blair, H. Smith and C. Sogge [2] proved scale

invariant Strichartz estimates on domains exterior to a non-trapping obstacle for the

Schrödinger equation as the following:

Theorem 5.1.3. Let Ω = Rn \ Θ be a domain exterior to a compact nontrapping

obstacle with smooth boundary, and 4 is the standard Laplace operator on Ω, subject

to Dirichlet conditions. Suppose that p > 2 and q <∞ satisfy 3
p

+ 2
q
≤ 1, n = 2

1
p

+ 1
q
≤ 1

2
, n ≥ 3.

(5.4)
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Chapter 5. Strichartz estimates for the beam equation on domains

Then for any solution u = exp(it4)f to the Schrödinger equation (5.2), the following

estimates hold

‖u‖Lp([0,T ];Lq(Ω)) ≤ CT‖f‖Hs(Ω), (5.5)

provided that
2

p
+
n

q
=
n

2
− s.

5.2 Strichartz estimates for the beam equation on

compact domains

By the relation between the beam equation and Schrödinger equation, we deduce the

Strichartz estimates of the beam equation as the following:

Theorem 5.2.1. Let (Ω, g) be a smooth compact Riemannian manifold with bound-

ary. If u is a solution to (5.1), then

‖u‖Lp([−T,T ];Lr(Ω)) . ‖f‖
H

4
3p

+ ‖g‖
H

4
3p−2 + ‖F‖

L1([−T,T ];H
4
3p−2

(Ω))
, (5.6)

where

2 ≤ p, r ≤ ∞, 2

p
+
n

r
=
n

2
, n ≥ 2, (p, r, n) 6= (2,∞, 2).

Proof. First of all, consider the solution of (5.1) with the Dirichlet boundary condi-

tion and F = 0,

v(t, x) = cos(t4g)f +
sin(t4g)

4g

g.

Since we have the simple but efficacious formulas

cos(t4g) =
eit4g + e−it4g

2
,

sin(t4g)

4g

=
eit4g − e−it4g

2i4g

.
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Chapter 5. Strichartz estimates for the beam equation on domains

By Theorem 5.1.1, we have

‖ cos(t4g)f‖Lp([−T,T ];Lr(Ω)) . ‖f‖
H

4
3p
.

Now consider,

‖e
it4g

4g

g‖Lp([−T,T ];Lr(Ω)).

Let h = (4g)
−1g, because Ω is compact with boundary, denote the eigenvalues

of
√
−4g by 0 < λ1 ≤ λ2 ≤ · · ·λn · · · , and the corresponding eigenspaces by

Ej, j = 1, 2, 3, . . . n . . . , then

g =
∞∑
j=1

Ej(g),

4gEj(g) = −λ2
jEj(g),

and

(4g)
−1g =

∞∑
j=1

λ−2
j Ej(g),

Since,

‖g‖2

H
4
3p−2

=
∞∑
j=1

(1 + λ2
j)

4
3p
−2‖Ej(g)‖2

L2 <∞.

Therefore, by the Theorem 5.1.1 again. we get,

‖ sin (t4g)h‖Lp([−T,T ];Lr(Ω)) . ‖h‖
H

4
3p

= ‖(4g)
−1g‖

H
4
3p

= ‖g‖
H

4
3p−2 .

Let w be the solution of (5.1) with vanishing initial data,

w(t, ·) =

∫ t

0

sin((t− s)4g)

4g

F (s)ds.

By Minkowski inequality, we have the inhomogeneous Strichartz estimates∥∥∥∥∫ t

0

ei(t−s)4g

4g

F (s)ds

∥∥∥∥
Lp([−T,T ];Lr(Ω))

. ||F‖
L1([−T,T ];H

4
3p−2

(Ω))
.
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Therefore for the solution of (5.1) u = v + w we have

‖u‖Lp([−T,T ];Lr(Ω)) . ‖f‖
H

4
3p

+ ‖g‖
H

4
3p−2 + ‖F‖

L1([−T,T ];H
4
3p−2

(Ω))
.

5.3 Strichartz estimates on domains exterior to a

compact non-trapping obstacle with smooth

boundary

Let Ω = Rn \ Θ be the domain exterior to a compact nontrapping obstacle with

smooth boundary. For the Strichartz estimates of the beam equation on this kind of

domain we have the following:

Theorem 5.3.1. Let Ω = Rn \ Θ be the domain exterior to a compact nontrapping

obstacle with smooth boundary, and 4 the standard Laplace operator on Ω, subject

to Dirichlet conditions. Suppose

 3
p

+ n
q
≤ n

2
, n = 2,

1
p

+ 1
q
≤ 1

2
, n ≥ 3,

and
2

p
+
n

q
=
n

2
− s.

Then for any solution of beam equation (5.1) with Dirichlet boundary conditions, the

following estimates hold

‖u‖Lp([−T,T ];Lq(Ω)) . ‖u0‖Hs + ‖u1‖Hs−2 + ‖F‖L1([−T,T ];Hs−2(Ω)). (5.7)

We begin the proof with the following Bernstein-type lemma on domains.
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Lemma 5.3.2. Let β ∈ C∞, supp(β) ⊆ (1
4
, 4),and define βj(ξ) = β(2−2jξ), then

‖βju‖Lr . 2jn( 1
q
− 1
r

)‖u‖Lq ,

where, r ≥ q. Furthermore,

‖4βju‖Lq ≈ 22j‖βju‖Lq .

Proof. Set

β(−2−2j4) =

∫
e−2−2j(1−it)4ψ(t)dt,

where ψ(t) is a Schwartz function. By Corollary 3.2.8 and Theorem 3.4.8 of E.B.

Davies [6] the complexified heat kernel of the Dirichlet Laplacian satisfies

K(2−2j(1− it), x, y) . (2−2j)−
n
2 exp{−Re( b|x− y|2

(1 + ε)2−2j(1− it)
)}

. 2jn(1 +
22j|x− y|2

1 + t2
)−N ,

then

Kβj(x, y) =

∫
K(2−2j(1− it), x, y)ψ(t)dt

.
∫
|K(2−2j(1− it), x, y)||ψ(t)|dt

. 2jn
∫

Ω

(
1 +

22j|x− y|2

1 + t2

)−N
|ψ(t)|dt.

So

‖βju‖Lr =

{∫
Ω

∣∣∣∣∫
Ω

Kβj(x, y)u(y)dy

∣∣∣∣r dx} 1
r

.

Since

sup
x

(∫
Ω

∣∣Kβj(x, y)dy
∣∣k) 1

k

.

∫
Ω

2jnk

(∫
Ω

(
1 +

22j|x− y|2

1 + t2

)−N
ψ(t)dt

)k

dy

 1
k

,
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by Minkowski inequality for integrals,

sup
x

(∫
Ω

∣∣Kβj(x, y)dy
∣∣k) 1

k

. 2jn(1− 1
k

)

∫
Ω

|ψ(t)|(1 + t2)
n
2kdt . 2jn(1− 1

k
).

Since ψ(t) is Schwartz function and the same bound holds with the roles of x and y

reversed, by Young’s inequality,

‖βju‖Lr . 2jn(1− 1
k

)‖uj‖Lq ,where,
1

k
= 1− (

1

q
− 1

r
).

Then we have

‖βju‖Lr . 2jn( 1
q
− 1
r

)‖u‖Lq .

To see the final claim, apply the same argument to the function ξ−2β(ξ).

Proof of Theorem 5.3.1. The solution to the beam equation can be written in the

form

u(t, ·) = cos(t4)f +
sin(t4)

4
g +

∫ t

0

sin((t− s)4)

4
F (s)ds.

We still set u = v + w, where

v(t, x) = cos(t4)f +
sin(t4)

4
g,

w(t, ·) =

∫ t

0

sin((t− s)4)

4
F (s)ds.

By Euler’s formula

cos(t4) =
eit4 + e−it4

2
,

sin(t4)

4
=
eit4 − e−it4

2i4
,

which shows that the estimates for cos(t4) follow directly from the ones for the

Schrödinger equation. By Theorem 5.1.3,

‖ cos(t4)f‖Lp([−T,T ];Lq(Ω)) . ‖f‖Hs ,

whereas estimates on sin(t4)
4 can be obtained by the propagator eit4

4 . By taking a

Littlewood-Paley decomposition of g in the x variable with respect to the spectrum
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of 4, we have,

sin(t4)

4
g =

sin(t4)

4
β(4)g +

∞∑
j=1

sin(t4)

4
βj(4)g, (5.8)

where β(·) = 1 −
∑∞

j=1 β(2−2j·),
∑∞

j=1 β(2−2j4) = 1 for s ≥ 2, and β is supported

by s ∈ [1
2
, 2]. Consider

‖4−1eit4gj‖Lp([−T,T ];Lq(Ω)).

For fixed time t, by the Lemma 5.3.2,

‖4−1eit4gj‖Lq(Ω) ≈ 2−2j‖eit4gj‖Lq(Ω).

Since

‖eit4gj‖Lp([−T,T ];Lq(Ω)) . ‖gj‖Hs .

Then

2−2j‖eit4gj‖Lq(Ω) . ‖gj‖Hs−2 .

Then by the Littlewood-Paley squarefunction estimate (see Theorem 0.2.10 of [20])

and Sobolev embedding for the first term of (5.8) (see the proof of Theorem 2.2.1),

‖sin(t4)

4
g‖Lp([−T,T ];Lq(Ω)) . ‖g‖Hs−2 .

Combining with the estimates of cos(t4) we have

‖v‖Lp([−T,T ];Lq(Ω)) . ‖u0‖Hs + ‖u1‖Hs−2 . (5.9)

For w, by Minkowski inequality we have∥∥∥∥∫ t

0

ei(t−s)4g

4g

F (s)ds

∥∥∥∥
Lp([−T,T ];Lq(Ω))

. ||F‖L1([−T,T ];Hs−2(Ω)).

Combining with (5.9), we have the estimate (5.7)

Similarly, when Θ is strictly convex, all Strichartz estimates are valid for the

Schrödinger equation. By the methods above, we have the following:
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Corollary 5.3.3. Let Ω = Rn\Θ, where Θ is compact with smooth boundary. Sup-

pose that n ≥ 2 and ∂Ω is strictly geodesically concave throughout. Assume the pair

(p, q) satisfies the scaling condition:

2

p
+
n

q
=
n

2
− s,

Then for the solution of the beam equation (5.1) with Dirichlet boundary conditions

the following estimates hold

‖u‖Lp([−T,T ];Lq(Ω)) . ‖u0‖Hs + ‖u1‖Hs−2 + ‖F‖L1([−T,T ];Hs−2(Ω)).
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Chapter 6

Future Work

6.1 Future directions for the nonlinear beam

equation

(1) I will continue to investigate the ill-posedness of the nonlinear beam equation in

focusing case with initial data in Ḣs × Ḣs−2 or Hs × Hs−2. I had found the small

dispersion analysis doesn’t work in this case. For the wave equation in the focusing

case, H. Lindblad and C. D. Sogge [15] proved that blow-up and ill-posedness can be

obtained via the ODE method. They showed that truncating the initial data in space

yields compactly supported solutions which blow up in finite time by virtue of the

finite speed of propagation. Then, they transformed these blowup solutions using the

scaling symmetry to establish blowup in arbitrarily short time when s < sc. Because

the beam equations don’t satisfy finite speed of propagation, it becomes diffcult to

use the ODE method. So I will try to discuss if almost finite speed propagation

could be established for (1.1) with initial data in Ḣs × Ḣs−2 or Hs × Hs−2, or try

the contradiction method to discuss this case.

(2) I will continue to consider the Strichartz estimates and establish local and global
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properties of the solutions in low regularity Sobolev space for the nonlinear beam

equation with the following type

∂2
t u(t, x) +42u(t, x) +mu = ω|u|κ−1u, with m > 0.

6.2 Future directions for the nonlinear beam

equations on domains

S. Levandosky and W. Strauss [13] derived an analogue of Morawetz’ radial identity

for the nonlinear beam equation. It follows that all solutions decay to zero in a

certain sense as t→∞. By these results, J. E. Lin [14] showed that the local energy

of solution is integrable in time and the local L2 norm of the solution approaches

zero as t→∞ for a nonlinear beam equation with the Euclidean spatial dimension

> 5. I will investigate the local energy; that is, the norm in H2(Ω)× L2(Ω) for any

exterior domain Ω ∈ Rn, is integrable and tends to zero as t→∞.
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