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Abstract

Maxwell’s equations establish that patterns of electric charges and currents can be

animated to travel faster than the speed of light in vacuo and that these superlumi-

nal distribution patterns emit tightly focused packets of electromagnetic radiation

that are fundamentally different from the emissions by previously known terrestrial

radiation sources. Novel antennae that employ extended distributions of polarization

currents moving faster than light have proven to be effective emitters of electromag-

netic radiation and are currently tested for applications in radar and low-power,

secure communications technologies.

Here, we we study the emission of a localized charge in constant superluminal

rotation. We set out by applying basic methods introduced by Huyghens and Fresnel

to gain phase information and find that radiation sources that travel not only faster

than light, but are also subject to acceleration, possess a two-sheeted envelope and

a cusp – a region of intense concentration of energy. Moreover, careful analysis of

the relationship between emission and observation time reveals that this need not be

monotonic and one-to-one, as multiple retarded times – or even extended periods of
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source time – can contribute to a single instant of reception. Finding solutions to

this unusual temporal relation enables us to “measure” the intriguing electromag-

netic effects that occur on the cusp and within the envelope of the emitted wave

fronts quantitatively. Finally, we proceed to calculate the more sophisticated elec-

tromagnetic potentials and fields for these locations, thereby introducing amplitude

in addition to phase information. Since integral solutions to Maxwell’s equations,

traditionally used in the context of stationary or subluminally moving sources, may

be problematic when applied to faster-than-light charges due to the presence of mul-

tiple or extended retarded times, we will derive and visualize what constitutes the

main, substantive part of the present work: The correct formulae for the Liénard-

Wiechert potentials and fields of a point charge travelling arbitrarily fast along a

given trajectory.

Numerical evaluation of these expressions shows that this radiation field has the

following intrinsic characteristics: (i) it is sharply focused along a rigidly rotating

spiral-shaped beam that embodies the cusp of the envelope of the emitted wave fronts,

(ii) it consists of either one or three concurrent polarization modes (depending on

the relative positions of the observer and the cusp) that constitute contributions to

the field from differing retarded times, (iii) it is highly elliptically polarized, (iv) the

position angle of each of its linearly polarized modes swings across the beam by as

much as 180o, and (v) the position angles of two of its modes remain approximately

orthogonal throughout their excursion across the beam.

In an appendix, we compare these findings to the radiation emitted by pulsars,

rapidly rotating, highly magnetized neutron stars, and find that virtually all of the

enigmatic features of pulsar radiation - the polarization properties, image structure,

apparent radiation temperature and peak spectral frequencies - can be explained

using a single, elegant model with few input parameters and no external assumptions.

Hence, superluminal emission is almost certainly not only a human artifact, but an
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important and likely ubiquitous process in the observable universe that may represent

significant amendments to standard models of many astronomical objects.

Most calculations in Chapters 4, 5 and the Appendix are of a formal nature only.

Rigor can, however, be achieved rather easily in future studies by means of the theory

of distributions as outlined in the final part of Chapter 5.
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Chapter 1

Sources that Travel Faster than

their Emitted Waves – An

Introduction

Figure 1.1: Bow wave of the USS Connecti-

cut, on her speed trials in 1906 or 1907.

This thesis concerns sources of water,

sound, and electromagnetic waves that

move faster than the emitted waves them-

selves. We discuss the mathematical

treatment of such sources, the unique fea-

tures of their emission, and practical im-

plementations and applications, on the

Earth as well as in the universe.
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Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

1.1 Constant Motion

Figure 1.2: Model of a pentecon-

ter, a galley with one row of oars

on each side.

A source that moves uniformly through a homoge-

neous medium emits directed waves if the velocity

of the source exceeds the speed of the waves them-

selves [1]. This general property of sources that

travel faster than their own waves was likely first

studied in hydrodynamics, since a ship that glides

across the sea faster than the wave propagation

speed – about 2.5 ×
√
l knots, where l is the wa-

terline length of the vessel in meters [2] – excites

easily observable directed surface waves (Fig. 1.1).

That ancient seafaring nations were well aware of bow waves, wakes, and their effects

on the speed of a boat, is evidenced by numerous historical accounts dating back as

far as Homer’s Iliad, whose written version is usually dated to around the eighth

century BC:

And Apollo, that worketh afar, sent them a favouring wind, and they set up

the mast and spread the white sail. So the wind filled the belly of the sail,

and the dark wave sang loudly about the stern of the ship, as she went, and

she sped over the wave, accomplishing her way [3].

A ship travelling swiftly creates a bow wave which it has to climb, expending consid-

erable energy which would be better spent to increase the vessel’s speed. The longer

a ship is, the faster it can travel before being hampered by this effect, but long ships

were difficult to construct with the limited technology available [4]. Through a pro-

cess of trial and error, the monoreme – a galley with one row of oars on each side –

reached the peak of its development in the penteconter, about 38 meters long, with

25 oarsmen on each side. It is generally assumed that Odysseus’ “black ship,” the

fastest military vessel of its day (Fig. 1.2), was a penteconter [4], whose swift journey

2



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

Figure 1.3: Left: Schlieren photograph by Ernst Mach depicting a projectile in supersonic
flight. Right: Mach’s schematic representation of the same projectile. ww denotes the bow
wave, kk the wake with its turbulences [6].

“across the wine-dark” Ionian sea to the island of Ithaca is described in the Odyssey:

And as upon a plain four harnessed stallions spring forward all together at the

crack of whip, and lifting high their feet speed swiftly on their way; even so

the ship’s stern lifted, while in her wake followed a huge upheaving wave of

the resounding sea [5].

It is perhaps not surprising that the Austrian physicist Ernst Mach (1838-1916)

immediately recognized the similarity between the ballistic shock waves captured by

his schlieren photographs 1 and the bow wave of a moving ship when he investigated

the sound waves generated by a projectile moving through the air at supersonic speed

(Fig. 1.3):

1Schlieren photography is a visual process that is used to photograph the flow of fluids
of varying densites. The basic optical schlieren system uses light from a single collimated
source shining on, or from behind, a target object. Variations in the refractive index caused
by density gradients in the fluid distort the collimated light beam. The distortion creates
a spatial variation in the intensity of the light, which can be visualized directly with a
shadowgraph system.
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Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

Figure 1.4: Sketch by

Ernst Mach depicting

Huyghens wavelets that

combine to form the

envelope of the “Mach

cone” [6].

Wenn ich nicht sagen würde, was das Bild vorstellt,

so könnten Sie wohl glauben, dass es das Bild

ist eines rasch auf dem Wasser dahinfahrenden

Bootes, aus der Vogelperspective aufgenommen.

Vorn sehen Sie die Bugwelle ww, hinter dem

Körper eine Erscheinung kk, welche dem Kiel-

wasser mit seinen Wirbeln sehr ähnlich sieht. In

der That ist der helle, hyperbelähnliche Bogen am

Scheitel des Projectils eine Luftverdichtungswelle,

die ganz analog ist der Bugwelle eines Schiffes,

nur dass erstere keine Oberflächenwelle ist. Sie

entsteht im Luftraume und umgibt das Projectil

glockenförmig von allen Seiten [6]. 2

Ernst Mach, a polymath within science and, in his time,

a leading authority in philosophy, physiology and physics,

was the first to study projectiles in flight systematically,

using various high speed diagnostic methods [7]. In col-

laboration with Peter Salcher (1848-1928), a professor of

physics and mechanics at the Royal and Imperial Naval

Academy at Fiume, he took successful photographs of projectiles travelling faster

than sound, establishing that bow waves precede any body in supersonic motion.

Letters exchanged weekly between Salcher and Mach reveal that the latter recognized

the head wave at once as the envelope of disturbances originating from the projectile;

2”If I did not say what the picture represents you might believe it to be the picture of
a boat that glides rapidly on the water, taken from bird’s-eye view. In front the bow wave
ww can be seen, behind the body an appearance kk that is rather similar to the wake with
its turbulences. In fact, the light, hyperbola-shaped bow at the apex of the projectile is
an air-compression wave, which is very analogous to the bow wave of a ship, just that the
former is not a surface wave. It is formed in air space and surrounds the projectile like a
bell from all sides.”

4



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

a shock front created by a source that exceeds the speed of its own waves [8, 9].

So wie nun ein langsam bewegtes Boot keine Bugwelle zeigt, und so wie

diese erst dann auftritt, wenn das Boot sich mit einer Geschwindigkeit be-

wegt, die grösser ist als die Fortpflanzungsgeschwindigkeit der Wasserwellen,

so kann man auch vor dem Projektil keine Verdichtungswelle sehen, so lange

die Projektilgeschwindigkeit kleiner ist als die Fortpflanzungsgeschwindigkeit

des Schalles. Erreicht und übersteigt aber die Projektilgeschwindigkeit diesen

Wert, so nimmt die Kopfwelle, wie wir sie nennen wollen, zusehends an Mäch-

tigkeit zu, und zugleich wird dieselbe immer gestreckter, d. h. der Winkel der

Contouren der Welle mit der Flugrichtung wird immer kleiner, gerade so wie

beim Wachsen der Bootgeschwindigkeit etwas Ähnliches geschieht. In der Tat

kann man nach einem in der dargelegten Weise gewonnenen Momentbild die

Projektilgeschwindigkeit ungefähr abschätzen [6]. 3

In his compilation of public lectures, Populärwissenschaftliche Vorlesungen, Mach

visualizes the sound waves emitted by a body in supersonic flight by using the

Huyghens-Fresnel principle (Fig. 1.4), which recognizes that every point on a propa-

gating wave front is a source of spherical waves in its own right. Huyghens wavelets,

expanding with the velocity of sound cS, are centered on successive positions of the

body at chosen time intervals (Fig. 1.5 left). If the projectile moves faster than sound

(Fig. 1.5 right), they represent a conical shock wave front with the line of flight as

axis and half angle α given by sinα = cS/v = 1/M , where v is the speed of the

3Just as a slowly moving boat does not show a bow wave, and just as this wave only
manifests itself when the boat moves at a velocity greater than the propagation speed of
water waves, one cannot see a compression wave ahead of the projectile as long as the
velocity of the projectile is less than the propagation speed of sound. If the speed of
the projectile reaches or exceeds this value, however, the head wave, as we like to call it,
increases steadily in magnitude, and, at the same time, is elongated, which is to say that
the angle of the contours of the wave with the flight path decreases, just as something
similar happens when the speed of the boat increases. In fact, from a picture taken in the
manner described above, one is able to roughly estimate the speed of the projectile.

5



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

Figure 1.5: Left: Huyghen’s wavelets emitted by a source moving along a rectilinear path
with constant subsonic speed, M = 0.8. Since the source is moving, the center of each new
wavefront is slightly displaced to the top. As a result, the wavefronts begin to “bunch up”
ahead of the source and are spread further apart behind it. This is known as the “Doppler
effect,” first explained in 1842 by Christian Doppler. Right: The same source moving with
constant supersonic speed, M = 1.6. Since the source is moving faster than the sound
waves it creates, it leads the advancing wavefront and will pass by a stationary observer
before he hears the sound it creates. Notice the formation of the Mach cone, the angle of
which depends on the ratio of source speed to sound speed alone. [10]

object and M a dimensionless constant named “Mach number” in honor of Ernst

Mach [9].

Mach’s discovery of the bow shock that precedes a projectile in supersonic flight

did not only lay the foundation for modern aerodynamics, but also shed light on

two unsolved ballistics problems of the day [9]. During the Franco-Prussian war of

1870-1871, it was found that the new French Chassepôt high-speed bullets caused

big crater-shaped wounds. The French were suspected of using explosive projectiles

and, therefore, of violating the International Treaty of Petersburg, which prohibited

the use of explosive ammunition. Mach put an end to the controversy by giving the

complete and correct explanation: The extensive injuries were, in fact, caused by the

high-pressure air between the bullet’s bow wave and the bullet itself.

Perhaps more importantly for our purposes, Mach’s observations explained why

artillerists could hear two bangs downrange from a marksman when high-speed pro-

jectiles were fired, but only one from low-speed bullets. It was realized that, in

6



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

addition to the explosion from the muzzle, an observer downrange would experience

the arrival of a shock wave front. The precise nature of this “sonic boom,” however,

was not thoroughly investigated until the early 1950’s and the testing of the first

supersonic airplanes.4

Although sources that travel faster than their emitted waves have been studied

extensively in hydrodynamics and acoustics, the same cannot be said for electro-

dynamics, where the publication of Einstein’s special theory of relativity [11] put

an abrupt end to early research. Scientific investigation of the electromagnetic field

generated by a charged particle that moves faster than light began with a largely

ignored article by physicist and mathematician Oliver Heaviside in 1887 [12] and is

the subject of of several papers written by Sommerfeld in 1904 and early 1905 [13].

In his Electrical Papers [12], Heaviside describes the optical analogue to the “Mach

cone” as follows:

Returning to the case of a charge q at a point moving through a dielectric,

if the speed of motion exceeds that of light, the disturbances are wholly

4 On a historical note that may resonate with many scientists today, we add that Ernst
Mach remained a life long socialist, advocate for the working class and peace activist [7].
It is unfortunate that his seminal research ultimately led to to the development of more
refined weapons, an irony which was not lost on the eminent Austrian scientist. Hence he
prefaces his lecture Über Erscheinungen an fliegenden Projektilen with the following words:

Die Menschen fühlen sich heutzutage verpflichtet, zuweilen für recht frag-
würdige Ziele und Ideale sich gegenseitig in kürzester Zeit möglichst viele
Löcher in den Leib zu schiessen. Und ein anderes Ideal, welches zu den vorge-
nannten meist in schärfstem Gegensatze steht, gebietet ihnen zugleich, diese
Löcher von kleinstem Kaliber herzustellen, und die hergestellten möglichst
rasch wieder zu stopfen und zu heilen [6].

(Humans nowadays feel compelled, sometimes for rather dubious goals and
ideals, to shoot, within the shortest time, as many holes into each other’s
body as possible. And another ideal, which is most often in stark contrast
to the one previously mentioned, demands that they simulataneously produce
these holes with the smallest caliber possible, and to mend and heal the ones
produced as swiftly as possible.)

7



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

left behind the charge, and are confined within a cone, AqB. The charge

is at the apex, moving from left to right along Cq. The semi-angle, θ, of

the cone, or the angle AqC, is given by sin θ = c/u, where c is the speed

of light, and u that of the charge [12]. 5

The publication of the special theory of relativity in June 1905 [11], however,

discouraged further work as one of its tenets is, of course, that any known particle

that has a charge also has a rest mass and is so barred from moving faster than light.

Moreover, no source that moves faster than the wave speed can be pointlike, for this

results in magnetic fields of infinite strength 6 on the envelope of the emitted wave

fronts [14].

However, while relativity holds that the speed of light in vacuo is a universal

constant (c), the speed at which electromagnetic waves propagate in a material may

be significantly less: In water, for instance, they move at a mere 0.75c [15]. Whenever

the velocity v = βc of a charged particle, most commonly an electron, exceeds c/n,

where n is the refractive index of the medium and β denotes, analogous to the Mach

number, the dimensionless entity v/c, this particle emits Čerenkov radiation [15], so

named after its discoverer Pavel Alekseyevich Čerenkov (1904-1990).

In 1934, while working under S. I. Vavilov, Čerenkov observed bright cirulean-

blue light emanating from a bottle of water that was subject to radioactive bom-

bardment [16]; a discovery which proved to be of great consequence for subsequent

5 The original document denotes the speed of light as v rather than the customary
constant c. The denomination c, for the latin celeritas – swiftness – was first introduced
in 1856, when Wilhelm Eduard Weber and Rudolf Kohlrausch used it for a constant later
shown to equal

√
2 times the speed of light in vacuo. In 1894 Paul Drude redefined c,

giving it its modern meaning. Einstein used V in his original German-language papers on
special relativity in 1905, but in 1907 he switched to c, which by then had become the
standard symbol.

6 As will be shown in coming sections, it is mathematically more accurate to describe
the strength of the magnetic fields on the envelope as “undefined” rather than “infinite.”

8



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

experimental work in nuclear physics and the study of various cosmic phenomena [15].

Figure 1.6: Blue Čerenkov light em-

anating from the reactor of a nuclear

power plant.

As the Huyghens constructions of Figure 1.7

show, Čerenkov radiation is very similar in na-

ture to the generation of a bow wave: Radiation

emitted by an excited atom S travelling along

the x-axis will form a coherent wavefront – the

Čerenkov envelope – at a specific angle [15].

This caustic constitutes the surface of of a cone

whose axis coincides with the particle’s trajec-

tory and whose aperture is given by

θ = cos−1

(
c
n
t
)

βct
= cos−1 1

βn
, β >

1

n
; (1.1)

hence, the higher the source speed, the nar-

rower the cone. For a “true” superluminal

source, e.g., a source of electromagnetic ra-

diation that is moving faster than the speed of

light in vacuo, thereby giving rise to so-called

“vacuum Čerenkov radiation,” expression (1.1)

reduces to θ = cos−1(1/β) since n = 1. 7

Moreover, Figure 1.7 illustrates a general and rather remarkable aspect of radi-

ation emitted by sources that exceed their own wave speed: The relation between

retarded (source) and reception times need not be monotonic and one-to-one. Multi-

ple retarded times can contribute to a single instant of reception, which is to say that

several wave fronts with differing emission times can pass through a single observation

point simultaneously. An observer situated outside the Čerenkov envelope cannot

see the source since none of the advancing waves have reached him yet, whereas one

7 The first demonstration that our faster-than-light technology demonstrators function
as true superluminal sources involved the detection of vacuum Čerenkov radiation emitted
at an angle that depends on the speed of the source alone (Fig. 1.12) [17,18].

9



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

Figure 1.7: Huyghens wavelets (light curves) and their envelope for a superluminal source
moving at a constant velocity along a rectilinear trajectory. Left: An observer (P ) inside
the Čerenkov envelope samples two images of the source (I1, I2), one to his left and one to
his right. Right: On the envelope of the wave fronts, two contributions from the source’s
history coalesce and an observer will see one image of the source only. Nothing is seen
outside the envelope.

within it samples two distinct images from the source’s history (Fig. 1.7 left). 8 On

the envelope of the wavefronts two contributions from the source’s history coalesce

and one sole image is received (Fig. 1.7 right).

8 Readers of a sci-fi bent will be amused to learn that this effect is known as the
“Picard Maneuver” among followers of the American television series “Star Trek” and
denotes a battle tactic invented by Starfleet Captain Jean-Luc Picard. In 2355, Picard was
in command of the USS Stargazer when it was attacked by an unknown alien vessel, later
determined to be of Ferengi origin. During the engagement which came to be known as the
“Battle of Maxia,” the Stargazer, which was holding station several million kilometers away
from its adversary, suddenly accelerated to warp 9 (1516 times the speed of light) directly
towards the Ferengi ship. Because the enemy vessel was only equipped with light speed
sensors, the ship’s crew had no way of knowing that the Stargazer had changed position
until it was too late. When the light from the moved vessel reached the Ferengi ship’s
sensors, wavefronts from its previous position were still arriving and, alas, the Ferengi saw
two images of the Stargazer concurrently. The Picard Maneuver later became required
reading at Starfleet Academy.
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1.2 On Acceleration and “Sonic Booms”

On October 14, 1947 engineers on the ground at Muroc field in the Mojave desert

heard test pilot Chuck Yeager drawl deadpan on the radio, “Say, Ridley... make

another note, will ya? ...there’s somethin’ wrong with this ol’ machometer ...” (faint

chuckle) “...it’s gone kinda screwy on me...” – code that the famed pilot had “broken

the sound barrier” and his aeroplane – an X-1 built by the Bell Aircraft Corporation

under an Army contract – had gone supersonic [19]. And, at that very moment, a

monumental “boom” rocked over the quonset-style hangars and the single concrete

runway, just as predicted by physicists and aeronautics engineers many years before. 9

Figure 1.8: Chuck Yeager in front of

his Bell X-1, named “Glamorous Glen-

nis” in honor of his wife.

Ever since the end of the second world war,

the American and British Air Forces had en-

gaged in a furious race to achieve Mach 1

first; however, pilots reported that the con-

trols would lock or “freeze” or even alter their

normal function [19] when their ’planes ap-

proached the speed of sound in dives . In

1946, Geoffrey de Havilland, son of the famous

British aircraft designer and builder, tried to

take one of his father’s DH 108 Swallows su-

personic. The plane started buffeting and then

disintegrated, killing the pilot and leading aeronautics engineers to speculate that

the shock waves became so severe and unpredictable that no aircraft could withstand

them. Talk about “the sonic wall” and “the sound barrier” emerged, implying that

9In 1944, at the height of the Second World War, Theodore von Kármán, at the time an
aerodynamicist at the California Institute of Technology in Pasadena, observed that when
an entire aircraft, not just the air accelerating over the thickest part of the wing, went
supersonic, shock waves would be sent to the ground. He theorized that people nearby
would hear and feel the passing of that pressure pulse [20].
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the speed of sound was a physical boundary, absolute and not to be “broken” or

“pierced” by pilots.

On September 6, 1948, John Derry became – quite serendipitously – “the first

Briton to pass the speed of sound and live to tell about it,” 10 and while Yeager’s

tremendous achievment had become “a piece of thunder with no reverberation” due

to the highly classified nature of the Air Force project, the “historic feat” of the

“fine-looking” young British pilot immediately captured the immagination of the

public and was rewarded with the “coveted R. Ae. C. Gold Medal.” 11 As a result,

entire families flocked to events such as Britain’s annual Farnborough Air Show to

witness novel airplanes dive through the sound barrier, generating shock waves that

“sounded like cannon fire” and “ – palpable as ocean breakers – crashed against the

crowd’s bodies and ears [21].”

It was not until these public demonstrations of the “sonic boom” that physicists

began to engage in an open discussion of the acoustic phenomena that accompany the

dive of an aircraft to attain supersonic speed. In a letter to Nature, T. Gold pointed

out that a shock will reach a stationary observer when the wavelets emanating from

successive elements of the path of the source (e.g., the aircraft) superpose at the

observer [23]. Hence a spectator will experience an earshattering thunderclap from

every occasion on which the aircraft is travelling towards him at the speed of sound

and with zero acceleration, which happens whenever −dr/dt = cS, where r is the

scalar (retarded) distance of the aircraft from the observer. P. Rothwell [24] added

that in the case of a body which accelerates and then decelerates through the speed

of sound, the shock wave departs radically from the single conical surface depicted

10 It is widely believed that de Havilland passed Mach 1 before the remnants of his plane
crashed into the Thames estuary [21].

11 In a cruel twist of fate, John Derry died four years, to a day, after passing the speed
of sound in what became known as “The Farnborough Tragedy.” His plane, the first
prototye de Havilland 110 supersonic fighter, disintegrated during the S.B.A.C. Show at
Farnborough, killing the young pilot, his co-pilot and 29 spectators [22].

12
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by Mach and becomes a two-sheeted meniscus symmetrical about the line of flight

as shown in Figure 1.9. Here, the duration of supersonic flight is 16 seconds and the

Mach numbers are shown at the respective positions of the body at second inter-

vals. Using Huyghens constructs and schlieren photographs, G. M. Lilley et al. [10]

showed that, for a source moving along a straight path at a speed which increases

(Fig. 1.10 left) or increases and then decreases (Fig. 1.10 right) through the speed

of sound, two curved wave fronts emerge, joined at their outer extremities by cusps.

These wave bundles, which eventually move ahead of the retarded source as the

aircraft slows down to subsonic speeds, cause loud bangs as they pass the observer.

Figure 1.9: Shock wave formed by a body

moving in a straight line at a speed which

increases and then decreases through the

speed of sound [24].

Meanwhile, eminent Hungarian physicist

Theodore von Kármán [25] as well as Jakob

Ackeret in Zürich [26] and Maurice Roy in

Paris [27] suggested that the booms are due

to the piling up of sound impulses – such

as engine noise – emitted during the peri-

ods in which the flying body passes through

the sound barrier. If the airplane is mov-

ing toward a stationary observer, these im-

pulses will reach him over a shorter time

span than that over which they were emit-

ted. 12 Hence, extended periods of source

time can contribute to a single instant of

reception, which is to say that several wave

fronts with differing emission times can

pass through a distant observation point simultaneously. This is known as tem-

12 This becomes evident if one considers that all sound emitted from a source moving
exactly with sound velocity straight toward the observer would reach the latter in one short
moment; namely when the sound source arrived at the location of the observer. The reason
is that sound and sound source would be travelling at the same speed.
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Figure 1.10: Left: Huygen’s wavelets emitted by a source accelerating along a straight
line from subsonic to supersonic speed. Right: The same source accelerating from subsonic
to supersonic speed and then retarding to subsonic speed [10].

poral focusing or focusing in time, i.e., the concentration of energy carried by the

waves in the time domain. In other words, in the aircraft’s frame of reference, low

energy sound is excited over an extended time frame, all of which arrives at a distant

location instantaneously, creating a large and concentrated “boom.” As a former

Concorde pilot puts it, “You don’t actually hear anything on board. All we see is

the pressure wave moving down the aeroplane – it gives an indication on the instru-

ments. And that’s what we see of Mach 1. But we don’t hear the sonic boom or

anything like that. That’s rather like the wake of a ship – it’s behind us [28].”

1.3 Faster than Light

It was not until the early 1970s that eminent Soviet physicists B. M. Bolotovskii and

V. L. Ginzburg [14, 29] pointed out that, while special relativity precludes massive

particles from moving faster than light, patterns or disturbances caused by the rel-

ative motion of individual charged particles – e.g., polarization currents – are not

restricted to subluminal speeds. Polarization P, formally defined as the dipole mo-
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ment per unit volume, results from the displacement of positive and negative charges

in opposite directions. A polarization current occurs when a polarized region moves

or changes with time t. As will be shown below, the polarization current density is

∂P/∂t and has the same dimensions as a conventional current density of electrons.

The term was introduced by Maxwell as a correction to Ampère’s equation of in-

duction to ensure conservation of charge [30]. If polarization currents oscillate or

accelerate, they will emit electromagnetic radiation, just as accelerated or oscillating

currents of electrons do. However, unlike electrons, which possess rest mass and

are therefore limited to speeds less than c, the speed of light, a polarization current

may travel arbitrarily fast as the displacement of its constituent elements is mini-

mal; while the radiation source travels faster than c, the individual massive particles’

speeds are allowed to remain subluminal [17, 18,31,32].

1.3.1 Maxwell’s Equations: A Tale of Two Fields

Maxwell’s equations – named after the Scottish physicist and mathematician James

Clerk Maxwell (1831-1879) – represent the most elegant and concise way to state the

fundamentals of electricity and magnetism. They describe the electric and magnetic

fields arising from varying distributions of electric charges and currents, and how

those fields change with time. Maxwell’s own contribution is just the last term of the

last equation, but realizing the necessity of that term had dramatic consequences.

It made evident for the first time that varying electric and magnetic fields could

feed off each other and hence propagate indefinitely through space, far from the

varying charges and currents where they originated. His new term (he called it

the displacement current) freed the fields to move through space in a self-sustaining

fashion, and even predicted their velocity, which is the speed of light [30, 33].

The four equations for the electric and magnetic field intensities E and H as well
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as the electric displacement D and magnetic induction B are given by (SI units)

∇ ·D = ρ, (1.2)

∇ ·B = 0, (1.3)

∇× E = −∂B

∂t
, (1.4)

∇×H = J +
∂D

∂t
, (1.5)

where ρ and J denote the free electric charge density and free current density, re-

spectively. In an insulating, uniform, isotropic medium they are zero while B and

H, and D and E are connected as follows:

B = µH, (1.6)

D = ε0E + P = εE. (1.7)

Here, µ and ε – both constants 13 – are the magnetic permeability and electric

permittivity, respectively; ε0 is known as the permittivity of free space. (1.4) and

(1.5) reduce to

∇× E = −∂B

∂t
= −µ∂H

∂t
, (1.8)

∇×H =
∂D

∂t
= ε

∂E

∂t
. (1.9)

Taking the curl on both sides of (1.4) and utilizing (1.6) gives

∇×∇× E = ∇(∇ · E)−∇ · (∇E) = −∇× ∂B

∂t
(1.10)

≡ − ∂

∂t
(∇×B) (1.11)

≡ −µ ∂
∂t

(∇×H) (1.12)

We take the partial derivative with respect to time on both sides of (1.9), which

gives

∂

∂t
(∇×H) = ε

∂2

∂t2
E, (1.13)

13 In an inhomogeneous, non-isotropic medium, µ and ε will be position-dependent ten-
sors.
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and, combining (1.12) and (1.13), find that

∇(∇ · E)−∇ · (∇E) = −µε ∂
2

∂t2
E. (1.14)

Hence,

∇2E− µε ∂
2

∂t2
E−∇(∇ · E) = 0. (1.15)

Since ∇·D = ∇·εE = 0 (1.7) when ρ = 0 (1.2), this results in the three dimensional

wave equation14

∇2E− µε ∂
2

∂t2
E = 0 (1.16)

This shows that the electic field E propagates with wavelike motion and velocity

v = (εµ)−1/2. A similar method can be used to show that

∇2H− µε ∂
2

∂t2
H = 0. (1.17)

In a vacuum, ε → ε0 and µ → µ0, the permittivity and permeability of free space,

leading to c = (ε0µ0)−1/2. This latter result enabled Maxwell to relate the units of

magnetism and electrostatics and show the true nature of electromagnetic radiation.

1.3.2 Ampère’s Missing Term

As shown above, a polarization current can be described by Maxwell’s IV equation

(1.5)

∇×H = J +
∂D

∂t
,

where the displacement field D is defined as

D = ε0E + P

14 (1.16) and (1.17) are often refered to as the “electromagnetic wave equations” in
textbooks and the pertinent literature.
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(1.7). We note that (1.5) is invariant under Lorentz transformations [33] and there-

fore relativistic. Taking the time derivative on both sides of (1.7) and substituting

the resulting equation into (1.5) we find that

∇×H− ε0
∂E

∂t
= J +

∂P

∂t
, (1.18)

in which the polarization current ∂P/∂t contributes to the fields in just the same

way as the current J of free charges; however, as it is not carried by massive particles,

it is not limited to subluminal speeds. Although capable of moving faster than light,

such a source distribution does not violate special relativity as it cannot be used to

transmit a signal superluminally; the emitted radiation (as any other) travels at the

speed of light.

Figure 1.11: “The Mexican Wave” as it

surges through a stadium.

Polarization currents may be com-

pared to the “Mexican Wave,” or La

Ola (Fig. 1.11), which surges through

the rows of spectators in a stadium as

those in one section leap to their feet

with their arms up, and then sit down

again as the next section rises to repeat

the motion [34]. An observer will see a

wave of standing spectators that travels

rapidly through the crowd, a rotating

pattern whose speed is only limited by

the accuracy of timing and whose constituent particles never move away from their

seats.

As will be shown in subsequent sections, extended sources of electromagnetic

radiation whose distribution patterns move faster than light in vacuo have been

realized in the laboratory on numerous occasions. In experiments carried out in

Russia, the United Kingdom, and the USA, polarization currents travelling at up to
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20 times the speed of light (and, hence, “hyperluminally”) have been shown to emit

tightly-focused pulses of radiation [1, 14, 17,18,35–40].

Furthermore, as will be seen through the remainder of this work, and especially in

Appendix A, superluminal polarization currents are almost certain to be responsible

for the extreme properties of the electromagnetic radiation received from astronom-

ical objects such as pulsars and magnetars (rapidly spinning, highly magnetized

neutron stars), gamma-ray bursts (short-lived bursts of gamma-ray photons) and

quasars (starlike objects that emit electromagnetic energy, including radio waves

and visible light). Hence, as suggested by Bolotovskii and Ginzburg in 1972 [14],

superluminal emission appeqars to be an important and ubiquitous process in the

observable universe that may demand significant amendments to standard models of

many astronomical objects.

1.4 Practical Superluminal Antennae

In 2003, John Singleton of the Physics Department of Oxford University, his post-

doctoral student, Arzhang Ardavan, and Houshang Ardavan of the University of

Cambridge, built the first man-made superluminal light source (Fig. 1.12 left). The

device was based on the latter’s theoretical work in pulsar astronomy and the acous-

tic phenomena effected by rotating helicopter blades and constitutes, in effect, the

first ground-based simulation of a rotating neutron star. The 2-meter-long device

was mounted on a scissor lift and tested on a runway at Turweston Aerodrome

in Northhampton after airtraffic had shut down for the night. The construction

of the “polarization synchrotron,” as the machine was called, soon led to numer-

ous articles in the scientific [41–49] and popular press, many of which were neither

particularly flattering nor scientifically accurate. “Money Spinner or Loopy Idea?”

Edwin Cartlidge asked, somewhat ominously, in Science [50], while Martin Durrani of
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Figure 1.12: Left: Practical superluminal light source. A curved strip of dielectric material
is placed between a continuous ground plate and an array of metal electrodes, each of which
is connected to an individual amplifier. By turning the amplifiers on and off in sequence one
can generate a polarized region that moves along the dielectric at arbitrarily high speeds.
The voltage Vj applied to the jth electrode is of the form Vj = V0 cos[mω(j∆t− t)] cos(Ωt),
where ω and Ω are angular frequencies and m is a positive integer. The source speed v
is determined by the phase difference between the oscillations of neighboring electrodes;
given the dimensions of the electrodes of the experimental machine, a superluminal speed
v > c is obtained for ∆t < 148.8ps. Right: Since the source is traveling faster than the
speed of light in vacuo, it emits “vacuum Čerenkov radiation” at an angle that depends
on the speed of the source alone: The higher the source speed, the narrower the cone.

Physics World [51] stated the obvious by noting that the “revolutionary device polar-

izes opinions.” Anthony Hewish, who shared the 1974 Nobel Prize in physics for the

discovery of pulsars, declared the device “a waste of tax-payers’ money [52],” claiming

cantankerously that the physics “is nonsense” and “simply wrong... The radiation

from such a device must be conventional.” John Hannay, a theoretical physicist at

Bristol University, even believed that he had “come up with a three-line proof which

shows beyond doubt that Dr Ardavan’s mathematics must be flawed [52].”

The vitriolic press notwithstanding, subsequent experimental and theoretical

20



Chapter 1. Sources that Travel Faster than their Emitted Waves – An Introduction

  

Figure 1.13: Left: Experimental animation of a superluminal polarization current. (a) A
simplified dielectric solid containing negative (	) and positive (⊕) ions. In (b), a spatially-
varying electric field has been applied, causing the positive and negative ions to move in
opposite directions; a finite polarization P has therefore been induced. If the field is made
to move along the direction of the arrow, the polarized region moves with it. (c) Schematic
side view of a practical superluminal source, showing metal electrodes above a strip of
dielectric (shaded region) and a ground plate below it. “0” indicates that there is no
voltage on that particular upper electrode; the symbol + indicates that a positive voltage
is applied. The voltage on the electrodes produces a finite polarization of the dielectric
(red shading). (d) By switching the voltages on the electrodes on and off, the polarized
region can be made to move along the dielectric. (e) Top view, showing the curvature of
the dielectric. Right: Practical superluminal light sources built at Los Alamos National
Laboratory between 2007 and 2010.

work conducted at Los Alamos National Laboratory and in the UK demonstrated un-

ambiguously that polarization currents can indeed be animated to travel faster than

the speed of light in vacuo, thereby opening a promising and largely unexplored field

in Electrodynamics (Fig. 1.12 right). In parallel, a team under A. V. Bessarab used

the ISKRA-5 laser at Sarov to demonstrate emission by superluminal polarization

currents, veryifing the fundamental physics involved [38].

Between 2007 and 2011, four second-generation practical superluminal sources

were designed, constructed and tested in Los Alamos [35,36]. Whilst the competing
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Russian group demonstrated the feasability of superluminal emission using polariza-

tion shock waves in a plasma generated by a photolytically pumped iodine gas laser,

the operating principle of the machines in Los Alamos, as well as their British prede-

cessor, is based on electrostatic control and animation of the polarization current; a

technique far more amenable for useful and controllable devices. The left-hand panel

of Figure 1.13 shows the basic principle: A series of electrodes is placed on one side

of a dielectric – a polarizable medium such as alumina – mounted on a ground plate.

The application of voltages to the electrodes creates a polarized region underneath;

this can then be moved by switching the voltages on the electrodes on and off. The

voltage Vj applied to the jth electrode is of the form

Vj = V0 cos[mω(j∆t− t)] cos(Ωt), (1.19)

where ω and Ω are angular frequencies and m is a positive integer. The first cosine

gives rise to the polarization-current wave that propagates along the dielectric and

the second to a modulation of this wave. The source speed v is determined by the

phase difference between the oscillations of neighboring electrodes: Given the sizes

of practical devices (∼ 0.1− 1m), superluminal speeds can be readily achieved using

switching speeds in the MHz to GHz range (timings ∼ 10− 102 picoseconds).

The two superluminal light sources shown in Fig. 1.13 (right) have been tested

in anechoic chambers and outdoor ranges at Los Alamos as well as Sandia National

Laboratories. The linear accelerator, shown in the top right-hand panel of Figure 1.13

and in Figure 1.14, has generated superluminal polarization currents that move at

up to 20 times the speed of light and emit coherent beams of radiation [35].
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Figure 1.14: John Singleton and Andrea Schmidt at Los Alamos Airport in November
2011, after the first data transmission by a superluminal antenna (center). Herbert
Howells’ Magnificat as well as excerpts from Louis Vierne’s Sanctus and Agnus Dei
were broadcast across roughly 500 meters of airstrip.

1.5 Some Organizational Remarks

The remainder of the present thesis is organized as follows: In Chapter 2 we will

use basic methods introduced by Huyghens and Fresnel to study point charges, e.g.,

polarization-current elements of infinitesimal volume, that travel faster than light in

a vacuum. In order to facilitate the later discussion, we will investigate the concep-

tually more transparent case of a point source subject to rectilinear acceleration first

and then move on to more complex source paths and geometries. Chapters 3 and 4

are concerned with the calculation of the potentials and radiation fields emitted by

such charges, thus adding amplitude to the phase information gained in the previous

sections. In Chapter 3 we rederive the fundamental causal solution to the scalar wave

equation and argue that integral solutions to Maxwell’s equations, derived in the con-

text of stationary or subluminally moving sources, may not always be appropriate in

treating faster-than-light charges. Chapter 4 contains the main, substantive point of
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the current work: The correct expressions for the Liénard-Wiechert potentials and

fields of a point charge travelling arbitrarily fast along a given trajectory are derived

and numerically evaluated. Chapter 5 gives a brief summary and outlines future

work and, finally, in an appendix, we compare the findings of the previous chapters

to the radiation emitted by pulsars.

24



Chapter 2

Mathematical Treatment I: A

Huyghens Analysis

As pointed out in Section 1.1, a source that travels faster than light must be volume-

distributed since the electric and magnetic fields due to a point charge moving at

superluminal velocities become infinitely strong as they approach the envelope of

the emitted wave fronts from the inside [14, 53] and are undefined on the caustic

itself. However, the fields generated by extended superluminal sources can be built

up from the superposition of the fields of their constituent volume elements, which

are essentially point-like. Doing so makes the singularities vanish, provided that the

surface – or volume – density of the source, as the case may be, remain finite [53].

This was shown exhaustively by the eccentric British mathematician G. A. Schott,

one of the last ‘respectable’ scientists to oppose the quantum formalism introduced

by Niels Bohr. While Schott recognizes that “useful physical theories such as the

“Relatiftheorie”1 of Lorentz and Einstein are incompatible” with particle velocities

greater than that of light, he considers the limitation to the subluminal regime as

“undesirable from the standpoint of complete mathematical generality” [53].

1 Theory of Special Relativity
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Furthermore, as will be discussed in detail in Sections 2.1 – 2.3 below, the radi-

ation field of an extended superluminal source as observed at a given distant point

P is dominated by cusp emission, emission from those of its volume elements that

approach P , along the radiation direction, with the speed of light and no acceleration

at the retarded time. These elements comprise a filamentary part of the source, a

threadlike structure whose constituents are all situated at the same optical distance

from the observer (see [31,32,54–57] and Chapter 3). In consequence, the radiation

field of a volume-distributed source in the far zone shares all the intrinsic qualities of

that emitted by a point charge, which makes the investigation of the latter not only

a necessary prerequisite for the calculation of the radiation received from extended

faster-than-light sources, but a tool in its own right for studying the fundamental

physics involved in the superluminal emission process.

In the sections to follow we shall study point sources travelling faster than light

using the Huyghens constructs introduced briefly in Chapter 1. In particular, we will

analyze the relationship between emission and observation time (Sections 2.1 and

2.2), which need not be monotonic and one-to-one: As with sound waves, multiple

retarded times – or even extended periods of source time – can contribute to a

single instant of reception. We will show that radiation sources that travel not only

faster than light, but are also subject to linear acceleration, possess a two-sheeted

Čerenkov envelope and a cusp – a region of intense concentration of radiation –

where these two sheets meet tangentially. The chapter concludes with a description

of the electromagnetic effects associated with the unusual temporal relation between

source and observer (Section 2.3), especially those that occur at or near the cusp of

the emitted wavefronts, and attemps to quantify them using a “measure” that we

christen the “temporal focusing factor.”
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Figure 2.1: Wave fronts emanating from a point charge that travels with constant accel-
eration parallel to the z-axis of a Cartesian coordinate system. The velocity of the source
in the left-hand panel remains below that of light, while the charge to the right accelerates
through the “light barrier.” (After [10].)

2.1 Point-Charges Subject to Linear Acceleration:

(More than) an Introductory Case

The emission of sound waves by a supersonic source in rectilinear acceleration has

already been covered in brief in Section 1.2. The analogous case of the superluminal

emission process is rather simple in its caustic geometry and conceptually transpar-

ent. Hence, it will serve here as a prelude to the analysis of the more complex source

paths and geometries which will follow later in this chapter. 2

Take a point source that travels with constant acceleration a along the z-axis of

a Cartesian coordinate system as shown in Figure 2.1, i.e., whose path x(t) is given

by

x = const, y = const, z = z̃ + ut+
1

2
at2, (2.1)

where z̃ and u are its position and speed at time t = 0, respectively. The wave fronts

2 The discussions below and in Section 2.2 are much indebted to [53] and Appendix D
of [58].
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that are emitted by this source in an empty and unbounded space are described by

|xP − x(t)| = c(tP − t), (2.2)

where the constant c denotes the wave speed and the space-time of observation points

is given by (xP , tP ) = (xP , yP , zP , tP ). Inserting Eq. (2.1) into Eq. (2.2) and squaring

the resulting expression, we find that the square of the retarded distance R from the

source to an observer is

R2(t) ≡ (xP − x)2 + (yP − y)2 + (zP − z̃ − ut−
1

2
at2)2 (2.3)

= c2(tP − t)2.

Hence, a retarded time t for observation time tP must satisfy

tp = t+R(t)/c. (2.4)

Characteristic Equation (2.4) simply expresses the fact that the emitted wavefronts

travel the distance R at velocity c – the speed of light. If tP is taken as a variable

parameter, the expression describes a family of expanding concentric spheres, namely

the successive loci of the particular wave emitted at position (x, y, z) and time t . If,

on the other hand, one lets t vary, the equation denotes a family of spheres whose

centers lie on the path of the charge, i.e., the positions at a given time tP of all the

waves emitted up to that time. As long as the velocity of the charge is less than c,

every wave contains all subsequent ones, as is shown in Figure 2.1 (left); in acoustics

and radar this is known as the Doppler effect. If the charge travels faster than light,

however, and “outruns” the waves that it emits, some of the wavefronts intersect to

form an envelope as illustrated in Figure 2.1 (right). If both tP and t are allowed to

vary, the characteristic equation denotes a doubly infinite system of spheres, namely

all the positions of all the waves emitted by the source [53].

Returning to Eq. (2.3), we introduce the natural length scale l = c2/a, which

allows us to express the equation in terms of the dimensionless entities β = (u+at)/c
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and βP = (u + atP )/c, electromagnetic analogues to the Mach number that denote

the scaled values of emission and observation time, respectively, and write

g(β) ≡ 1

4
β4 − β2

(
1

2
β2

P −
(z̃ − z̃P )

l
+ 1

)
+ 2βPβ +

(
1

2
β2

P −
(z̃ − z̃P )

l

)2

− β2
P +

[(x− xP )2 + (y − yP )2]
1/2

l
(2.5)

= 0,

where (z̃− z̃P )/l marks the separation between z̃ = z−ut− 1
2
at2, the position of the

source point, and

z̃P ≡ zP − utP −
1

2
at2P , (2.6)

the observer’s location. Fig. 2.2 shows the relationship between observation and emis-

sion time for four characteristic combinations of source speed and observer position.

Since the source travels not only faster than light, but is also subject to linear

acceleration, the wave fronts for which β > 1, i.e., those that are emitted after

the source breaks the “light barrier,” possess a Čerenkov envelope consisting of two

axisymmetric sheets and an elongated nose (Fig. 2.3). This tube-like structure is the

locus of contributions that stem from points in time at which the charge approaches

the observer along the radiation direction and at the speed of light, e.g., emissions

for which

∂g/∂β = β3 − (β2
P − 2

z̃ − z̃P
l

+ 2)β + 2βP = 0. (2.7)

Anywhere within the volume confined by the envelope, the function g(β) is oscillatory

(Figure 2.2) and images of the source from three retarded times will be received as

shown in curve (c). On the envelope of the wavefronts, two contributions from the

source’s history coalesce and an observer situated on the ordinate will sample two
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Figure 2.2: Relationship between emission (t) and observation (tP ) time (in units of β) for
an observation point (a) outside the envelope, (b) on the cusp of the envelope, (c) inside
the envelope and (d) on the envelope.

images, one of which was emitted at t < 0, e.g., before the source’s existence, and is

therefore irrelevant for practical purposes (curve (d)).

Cubic equation (2.7) has three real roots, two of which satisfy the requirement

β > 0. Using Cardano’s3 method [59], we find that these physically relevant solutions

are

β± =
2√
3

(β2
P − 2

z̃ − z̃P
l

+ 2)−1/2 cos[
1

3
(π ± σ)], (2.8)

3 The method is, in fact, due to Scipione del Ferro and Niccolò Fontana Tartaglia, but
was published by (and, hence, named after) Gerolamo Cardano in 1545.
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Figure 2.3: Superluminal source that is linearly accelerated. The wave fronts that
are emitted after the source breaks the “light barrier” form a Čerenkov envelope
consisting of two axisymmetric sheets (ξ+ and ξ−) which meet to form the cusp (C),
a region of intense concentration of emitted radiation.

where

σ ≡ arccos

[
33/2βP (β2

P −
2(z̃ − z̃P )

l
+ 2)−3/2

]
. (2.9)

β+ and β− denote a local maximum and local minimum of g(β), respectively. To

calculate the location of the two-sheeted envelope, it is mathematically convenient,

if at the expense of physical transparency, to move the problem to the (ζ, ξ) space,

where

ξ ≡ [(x− xP )2 + (y − yP )2]1/2

l
(2.10)

represents the distance of the observation point from the path of the source in units

of l and the Lagrangian coordinate

ζ ≡ z̃ − z̃P
l

(2.11)
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denotes the separation between source and observation point in the (x, y, z̃) space.

Inserting β = β± in equation (2.5) and solving for ξ as a function of ζ, we find that

ξ± ≡
[

1

2
(
1

2
β2
P − ζ + 1)β2

± −
3

2
βPβ± + β2

P − (
1

2
β2
P − ζ2)

]1/2

. (2.12)

The two sheets, ξ+ and ξ−, meet tangentially to form a cusp, a region of intense

concentration of radiation (illustrated in Figure 2.3), that is emitted when the charge

approaches the observer not only with the wave speed but with zero acceleration at

the retarded time. On the cusp, the function g(β) has a point of inflection, as shown

in Figure 2.2, curve (b), and ∂2g/∂β2 as well as ∂g/∂β and g all vanish. It is easy

to see that these “shock waves” of light constitute, in effect, an optical analogue of

the “sonic boom;” as shown in Section 1.2, the most intense concentration of sound

waves occurs when ∂r/∂t = −c, where r is the retarded separation of aircraft and

observer and c – in that case – the speed of sound.

Following a procedure similar to the one outlined in Equation (2.12), the cusp

can be described mathematically as a circle expanding at the speed of light around

the source’s path, where

ξ = (β
2/3
P − 1)3/2 ≡ ξC , ζ =

1

2
β2
P −

3

2
β

2/3
P + 1 ≡ ζC (2.13)

and

β = β
1/3
P ≡ βC . (2.14)

The analysis of faster-than-light sources that move along a rectilinear trajectory

serves not only as an introductory case to more complex dynamical systems but has

applications in its own right such as the development of novel directed energy and

radar technologies [65, 66]. Of more relevance from an astrophysical point of view,

however, is the investigation of the electromagnetic fields that arise if a source of this

type rotates about a fixed axis at a constant angular frequency. While our studies
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of such radiation sources were originally motivated by astronomical observations of

pulsars, they extend to rapidly spinning, highly magnetized stellar remenants in

general and may aid in the explanation of phenomena as diverse as gamma-ray burst

afterglows and the intense radiation received from quasars.

2.2 Anatomy of a Charge in Superluminal Rota-

tion

Consider a localized charge q, e.g., a polarization-current element of infinitesimal

volume, that rotates in the X-Y plane at radius r with angular velocity ω, i.e.,

whose path x(t), in terms of the cylindrical coordinates (r, ϕ, z), is

r = const, z = 0, ϕ = ϕ̂+ ωt, (2.15)

where the Lagrangian coordinate ϕ̂ denotes the initial value of ϕ and is, without

loss of generality, assumed to be zero throughout the remainder of this chapter.

The wave fronts that are emitted by such a source in an empty and unbounded

space are given by Eq. (2.2), where the constant c denotes the wave speed and the

space-time of observation points is defined as (xP , tP ) = (rP , ϕP , zP , tP ); hence, the

equation describes expanding spheres of radius c(tP − t) whose fixed centers rP = r,

ϕP = ϕ̂+ ωt = ωt and zP = z = 0 depend on their emission times t.

By the Pythagorean Theorem, the retarded distance R from the source to an

observer is given by

|xP − x(t)| ≡ R(t) =
[
z2
P + r2

P + r2 − 2rP r cos(ϕP − ωt)
]1/2

(2.16)

= c(tP − t).
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Figure 2.4: Relationship between observation and emission time for an observation point
(a) inside, (b) on the cusp of, and (c) outside the envelope. (Curves (a) and (c) are
originally given on p. 85 of Ref. [53], (b) in Ref. [58].)

and a retarded time t for observation time tP must therefore satisfy

tP = t+R(t)/c (2.17)

= t+
[
z2
P + r2

P + r2 − 2rP r cos(ϕP − ωt)
]1/2

/c

= h(t).

Figure 2.4 shows the function h for three characteristic combinations of source

speed and observer position, where solutions of tP = h(t) are intersections of the

horizontal lines tP with the graph of h. Due to the oscillating term in Eq. (2.16),

the function need not be monotonic and one-to-one; h(t) can equal tP at more than

one value of t and there is no longer a straightforward relationship between the

(retarded) time at which the source emits and the time at which the emitted waves

arrive at an observer or detector. Hence, for case (a) there may be three contributions
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from the domain of h for a single observation time. Higher source speeds increase

the amplitude of the oscillations in h, resulting in higher odd numbers of retarded

times. 4 A space-time diagram depicting the intersection of the trajectory of the

point charge S with the past light cone of the observer position P is shown in Figure

2.5.

Figure 2.5: (b), (c) and (d) Space-time (i.e. ct versus distance x) diagrams showing
the intersection of the trajectory of the source point S with the past light cone of
the observation point P when P lies outside (b), inside (c), and on the cusp of (d)
the envelope of wave fronts.

Analogous to a source that travels along a rectilinear trajectory (discussed in

Sections 1.1, 1.2 and 2.1), the wavefronts emitted by a rotating point-charge intersect

to form a tubelike structure – the Čerenkov envelope (Fig. 2.6 (left)) – when the

source exceeds the wave speed and rω/c > 1. In Astronomy and Astrophysics,

the quantity r = c/ω is traditionally referred to as the “velocity of light cylinder”

(or “light cylinder,” in short) and denotes the (imagined) cylinder located at radial

distance r from a pulsar’s center, where a co-rotating extension of the star would

have a speed equal to the velocity of light, i.e., v/c = 1, where v = rω denotes

4 Schott showed that this is the case when

tan

√(ω
c

)2
− 1 =

√(ω
c

)2
− 1, (2.18)

that is, for the values (ω/c)2 = 1, 1 + (1.43π)2, 1 + (2.45π)2....
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the instantaneous linear velocity [82, 100]. In this spirit and for mathematical ease,

we introduce here the length scale c/ω (where a circumflex over a length variable

denotes such a scaled length) and express all distances in units of light cylinders (e.g.,

r̂ = rω/c, ẑ = zω/c, r̂P = rPω/c and ẑP = zPω/c). We shall, however, on occasion

revert to the use of unscaled quantities, most notably for calculating the degree of

temporal focusing in Section 2.3, where quantitative measurements are needed.

Since the source is not only moving faster than light, but is also subject to

centripetal acceleration, the envelope of the emitted wave fronts consists of two sheets

(corresponding to tP± in Fig. 2.4), which form where the caustics meet tangentially

and two of the roots of h(t) = tP coincide (Fig. 2.7). As was shown in Section 1.2

above, the wave fronts that combine to create the envelope are emitted when the

charge approaches the observer along the radiation direction at the speed of light

and

∂h/∂t =
1

ω

[
1− r̂r̂P sin(ϕP − ωt)/R̂(t)

]
= 0. (2.19)

For points situated on the envelope, e.g., those for which h(t) is as in curve (a) of

Fig. 2.4, Eq. (2.19) has the doubly infinite set of solutions t = t± + 2nπ, where

t± =
1

ω

[
ϕP + 2π − arccos

(
1∓∆1/2

r̂r̂P

)]
, (2.20)

∆ ≡ (r̂2
P − 1)(r̂2 − 1)− ẑ2

P , (2.21)

and n is an integer. Function h(t) is locally maximum at t+ + 2nπ and minimum at

t− + 2nπ.

Inserting t = t± in Eq. (2.17), we find the following expression for T±, the tem-

poral relation that determine the location of the two sheets of the envelope (Fig. 2.6

left and Fig. 2.7):

T± ≡ h(t±) =
1

ω

[
2π − arccos

(
1∓∆1/2

r̂r̂P

)]
+ R̂±, (2.22)
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Figure 2.6: Left: Cusp (C) and envelope (T±) of the spherical wave fronts emanating
from a point charge (S) in constant superluminal rotation. The bold curves show the
cross section of the envelope with the rotational plane of the source. The larger of the two
broken circles marks the orbit (at r = 2.5c/ω), the smaller one the velocity of light cylinder
(r = c/ω). Right: Segment of the cusp curve, touching the light cylinder before spiraling
out above and below the plane of rotation, approaching the cone of polar angle arcsin c/rω
in the far field. This expanding spiral shape may be derived from Equation (2.34). (After
Ref. [58].)

in which

R̂± ≡
[
ẑ2
P + r̂2 + r̂2

P − 2(1∓∆1/2)
]1/2

. (2.23)

denote the values of R̂ at time t = t±.

The two sheets meet tangentially to form a cusp, the locus of points that are

emitted when the source approaches the observer not only with the wave speed, but

with zero acceleration at the retarded time. This corresponds to the inflection point

of curve (b) of Fig. 2.4. The cusp curve is tangent to the light cylinder in the plane

of rotation (point C in Fig. 2.6 (left)) and spirals out above and below the plane, 5

approaching the cone of polar angle θP = arcsin(c/rω), as shown in Fig. 2.6 (right).

Mathematically, TC , the temporal relation that determines the location of the cusp

5 We will encounter this geometrical property of the cusp again in Eq. (2.34).
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Figure 2.7: Development of the two-sheeted envelope for source velocities of rω = c (left),
1.75c (center) and 2.5c (right).

can be expressed as

TC ≡ h(tC) =
1

ω

[
2π − arccos

(
1

r̂r̂P

)
+ (r̂2

P r̂
2 − 1)1/2

]
, (2.24)

ẑC = ẑP ± (r̂2
P − 1)1/2(r̂2 − 1)1/2. (2.25)

The unusual electromagnetic phenomena associated with the cusp will be investi-

gated more thoroughly in the following section.

2.3 Temporal Focusing and the “Electromagnetic

Boom”

Let us examine Figure 2.4 in more detail, in particular curve (b), which corresponds

to an observation point located on the cusp of the envelope and is, for our purposes,

the most intriguing of the three cases. From visual inspection it is evident that

there is an extended region where the gradient of h(t) becomes infinitesimal. In

this area, emission covering a prolonged period of source time is compressed into a

much shorter period of observation time. This unique effect, which has been demon-

strated experimentally [17, 18, 35–37], constitutes temporal focusing, i.e., focusing

of radiation in the time domain. In consequence, a relatively weak faster-than-light
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source that emits over an extended period of its own time frame may produce very

tightly-focused, intense pulses of radiation. As before, this is of course the electro-

magnetic analogue to the “sonic boom” described in Section 1.2: In the aircraft’s

frame of reference, low energy sound is emitted over an extended period of time, all of

which arrives at a distant location instantaneosly creating a large and concentrated

“boom.”

The objective of this section is to evaluate the degree of temporal focusing with

respect to tP – the observer’s time frame – numerically. To determine the length of

source time corresponding to a given reception period, we move a “window” along

h(t) as shown in Figure 2.8 (left). The window’s height was chosen to be one nanosec-

ond, a period of reception time that allows realistic comparisons with the radiation

received from pulsars, since it is the minimum time interval resovable in current

astronomical instrumentation. The width of the window is determined by the inter-

sections of the horizontal lines tP0 and tP0 + 1ns with h.

Calculating the degree of temporal focusing of h(t) is mathematically reminis-

cent of taking the Lebesgue measure, which is usually introduced as part of the

modern theory of integration [67]. In the Lebesgue scheme, instead of partitioning

the domain of a function f , the range of f is subdivided, i.e., min f ≥ y0 < y1 <

... < yn ≥ max f , to form the sum
n∑
i=1

yi−1 · measure({x|f(x) ∈ [yi−1, yi]}). Here,

measure({x|f(x) ∈ [yi−1, yi]}) is the sum of the lengths of those subintervals of [a, b]

on which yi−1 ≤ f(x) ≤ yi or, in the present case, the differences ∆i in Figure 2.8.

In other words, it is determined how much of the domain is mapped by the function

to some value between two end points in the range. While the Lebesgue measure is

traditionally intimately connected whith the notion of integrability, we use it here to

analyze the behavior of the function h(t) as it transitions through its characteristic

forms and to derive quantitative – e.g., measurable – conclusions.

Since we wish particularly to examine the radiation sampled by an observer sit-
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Figure 2.8: Left: The curve tP = h(t) (see Eq. (2.17)) for an observation point on, or
very close to, the cusp, e.g., θP = θPC

. The reception time window δtP (observer) slides
along the curve, and the corresponding limits in the source’s time frame, t0 and t1, are
found. The degree of temporal focusing is ∆t/δtP , where ∆t = t1 − t0. Right: The curve
tP = h(t) for the case θPC

< θP < 180o − θPC
. Here, there are three windows of ∆t

corresponding to δtP . To assess the degree of temporal focusing, ∆t/δtP is again used, but
with ∆t = ∆t1 + ∆t2 + ∆t3.

uated on (or very close to) the cusp of the envelope, the first step is to choose such

an observation position (rP , ϕP , zP ) approximately. 6 The value of zP is then refined

until the desired accuracy is achieved.

The process begins with a choice of rP and the use of the far-field approximation

for θP , the polar angle of the cusp location,

sin θP =
c

rω
. (2.26)

6 Notice that Equations (2.24) and (2.25), albeit analytically exact, cannot be used here
since we are seeking the location of the cusp in terms of the observer’s frame of reference,
rather than the source’s, e.g., we are trying to find zPC

, not zC .

40



Chapter 2. Mathematical Treatment I: A Huyghens Analysis

Figure 2.9: Left: Degree of temporal focusing calculated for an observer situated on the
cusp. More than 10, 000ns of source time are compressed into a single ns of reception time,
which is, analogous to the “sonic boom,” perceived as a powerful electromagnetic pulse.
This “electromagnetic boom” passes the observer once during each rotation of the source
(center). Right: Outside the envelope, temporal focusing is almost imperceptible.

The relation relation between θP , rP and zP then gives a first estimate for zP , namely

tan θP =
rP
zP
. (2.27)

To refine the location more precisely, recall that in Section 2.2, Eq. (2.16), we

established that the square of the retarded distance R from the source to an observer

is

R2 = z2
P + r2

P + r2 − 2rrP cosωt, (2.28)

where ϕP has, without loss of generality, been set to zero. 7 Taking the first and

second partial derivatives with respect to t on both sides of (2.28) yields

R
∂R

∂t
= rrPω sinωt (2.29)

7 ϕP is irrelevant here, as for the correct values of rP and zP the cusp must pass the
observer once each rotation (see Fig. 2.9 (center)).
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and (
∂R

∂t

)2

+R
∂2R

∂t2
= rrPω

2 cosωt, (2.30)

respectively. Since the charge approaches the observer at the speed of light and zero

acceleration,

∂R

∂t
= −c and

∂2R

∂t2
= 0;

hence,

rrPω
2 cosωt = c2. (2.31)

To eliminate t from the above equation, we make use of the relations

cosωt =
c2

rrPω2
and (2.32)

sinωt =

(
1− c4

r2r2
Pω

4

)1/2

, (2.33)

and utilize (2.28) and (2.29) such that

r2r2
Pω

2
(

1− c4

r2r2Pω
4

)
r2
P + r2 − 2 c2

rrPω2 rrP + z2
P

= c2. (2.34)

It is (2.34) that defines the expanding, spiral-shaped locus of the cusp curve described

at the beginning of the present section and shown in Fig. 4.1.

Rearranging terms and substituting the linear velocity v for rω, we find that

c2

v2

(
1 +

v2 − c2

ω2(r2
P + z2

P )

)
=

r2
P

r2
P + z2

P

= sin2 θP . (2.35)

Equation (2.35) gives the means to refine zP until the cusp is located to the desired

precision. This is done by iterating through

zP = rP/ tan θP (2.36)
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and

θPnew = arcsin

[
c

v

(
1 +

v2 − c2

ω2(r2
P + z2

P )

)1/2
]

(2.37)

until convergence for θP is reached. This procedure, albeit simple, tends to converge

to a precision of 10−15 in less than 20 iterations.

Once the values of rP and zP have been determined, the function tP = h(t)

(Eq. (2.17)) can be generated for an abitrarily small neighborhood around the cusp

location. As shown in Fig. 2.8 (left), the window of observation time, δtP = 1ns,

can be moved along this curve and the corresponding upper and lower limits in the

source-time domain, t0 and t1, determined. In the discussion that follows below,

we will plot the ratio ∆t/δtP , where ∆t = t1 − t0, as a measure of the degree of

temporal focusing. The root-finding procedure used to find the retarded times t and

their values will be outlined in detail in Section 4.1 and can be found in Section 4.4.

Having located the cusp, zP can be raised or lowered to assess the degree of

temporal focusing on either side. Figure 2.8 (right) shows tP = h(t) for a location

θPC
< θP < 180o − θPC

, where θPC
denotes the exact angle of observation of the

cusp. In this case, there are values for tP at which either – or both – edges of the

window δtP intersect the curve tP = h(t) on more than one occasion. In such cases

we calculate ∆t =
∑

i ∆ti as in Fig. 2.8 (right), where the ∆ti denote the extent of

source time for each contribution. Fig. 2.9 (left) shows the results of a calculation of

∆t/δtP for a point on the cusp. Values of ω = 4.5× 103/2π Hz and r = 105 m were

chosen to reflect a pulsar similar in size and characteristics to the Crab (see Appendix

A). The observer is located at rPC
= 3 × 105 m and zPC

≈ 3.2744 × 105 m, where

the subscript C, as in previous sections, denotes “cusp”. It is clear that a very large

amount of source time, e.g., 1.0421× 104 ns, is compressed into 1 ns of observation

time. The exceptional degree of focusing in the time domain that occurs on (or near)

the cusp is responsible for some of the intriguing properties of cusp radiation (e.g., its

unusual “brightness” and non-spherical decay, see Chapter 3), which, in Appendix A,
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will be relevant for the analysis and interpretation of astronomical data. The degree

of temporal focusing for several θP is shown in Fig. 2.10 (top). The bottom panel

shows the corresponding tP = h(t) curves and observer locations. As mentioned

above in the discussion of Fig. 2.9, ∆t/δtP exhibits a pronounced spike at locations

for which θP = θPC
, i.e., those that are subject to cusp radiation. For θP < θPC

or

θP > 180o− θPC
, a single hump is observed, but for θPC

< θP < 180o− θPC
, the three

intervals of source time that arrive within one interval of observation time result in a

double-horned structure. As will be seen later, these features resemble closely those

observed in pulsar light curves. Figure 2.10 is also suggestive of how the fact that

cusp radiation from an extended source decays more slowly than predicted by the

inverse square law (see Chapter 3) does not violate conservation of energy. Though

∆t/δtP exhibits huge spikes on the cusp, elsewhere it is much less than one, which

is to say that the radiation that is expended to form the strong fields on the cusp

– a travelling caustic that is constantly dispersed and reconstructed from different

waves – is “stolen” from weaker fields elsewhere in the emitted radiation. In the case

of a stationary source, ∆t/δtP would be one everywhere since there exists an exact

correspondence between observation and retarded time.

Using, in essence, basic methods established by Huyghens and Fresnel, we have

quantitatively analyzed (“measured”) the relation between emission and observation

time of a radiation source in constant superluminal rotation and found that intrigu-

ing phenomena occur on the cusp and within the envelope of the emitted wave fronts.

To investigate these unusual features further, we now proceed to calculate the more

sophisticated Liénard-Wiechert potentials and fields for these locations, thereby in-

troducing amplitude in addition to phase information. First, however, we will issue a

word of caution against using textbook formulae, derived in the context of stationary

or subluminal sources, indiscriminately when treating faster-than-light charges. This

will be the focus of the next chapter.
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Observer

θ

Figure 2.10: Top: Waterfall plot for the degree of temporal focusing (a) inside, (b) on the
cusp of, and (c) outside the envelope of the wave fronts. ∆t/δtP exhibits a pronounced
spike at locations for which θP = θPC

. For θP < θPC
or θP > 180o − θPC

, a single, broader
peak is observed, but for θPC

< θP < 180o − θPC
, e.g., region (b), the three intervals of

source time that arrive within one interval of observation time result in a double-horned
structure. Bottom: Corresponding tP = h(t) curves and observer locations.
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Chapter 3

Potentials, Fields and How to

Treat Them

Many texts in electromagnetism contain retarded integral solutions to Maxwell’s

equations that may be evaluated to give the time-dependent electric and magnetic

fields due to a charge (or charges) in motion (see, e.g., [33] or [60]). Generated either

directly from the wave equations governing the fields or via the analogous expressions

for the retarded potentials, these solutions are applied widely to treat, for example,

synchrotron radiation and the power radiated by various antennae. The question,

therefore, arises as to why these solutions, derived in the context of stationary or

subluminal sources, must be used with circumspection in the present context of

charges that exceed the speed of light.

We have already established (Chapter 2) that superluminal sources are unusual

in that the radiation received at a distance may contain contributions from multiple

retarded times, or even an extended period of emission time. As we now show,

it is precisely this feature of faster-than-light sources that leads to difficulties with

standard textbook expressions. Thus we are left with the alternative between the
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integral solution, Equation (3.2), or the integral equation (3.12). Both are correct,

but we will focus on the latter.

In the sections to follow we will demonstrate, by an intuitive argument, that part

of the radiation field generated by a rotating superluminal source decays as 1/d,

rather than spherically as 1/d2, with distance d, implying that the radiation stays

focused in the far field. We then derive the fundamental causal solution, or causal

“Green’s function solution” to the scalar wave equation governing the electromag-

netic field ab initio and show that the resulting formula contains a surface integral

which includes the gradient of the radiation field and reflects its boundary conditions.

The boundary term may be (and is) neglected if it diminishes with distance faster

than the contribution of the source density, a volume integral traditionally called the

“source term.” This is the case for conventional radiation sources, whose emission

decays according to the inverse square law, but not for a source whose distribution

pattern both rotates and travels faster than light. Hence, an argument based on

a retarded integral solution which neglects the boundary term (as given, e.g., on

page 246 of [33]) ignores nonspherically-decaying contributions to the field, which,

as we have shown, dominate in the far zone (see, e.g., the discussion of the “electro-

magnetic boom” in Section 2.3). We conclude the chapter with a brief introduction

to electromagnetic potentials, and, in the process, demonstrate that results derived

from the retarded potentials – rather than the fields – do not depend crucially on the

boundary term, which, in this case, can always be rendered equal to zero by virtue

of a gauge transformation.

47



Chapter 3. Potentials, Fields and How to Treat Them

3.1 Radiation That Stays Focused in the Far Field

– An Intuitive Argument

As evidenced in Chapter 2, the most intense electromagnetic disturbances caused by

a point-like source in constant superluminal rotation occur on the cusp of the wave

fronts, which is emitted when the charge approches the observer not only with the

wave speed but with no acceleration at the retarded time. We observed that on this

locus (given by Equation (2.34)), the degree of temporal focusing is sharply peaked

(Figures 2.9 and 2.10). As the cusp, reminiscent of an old-fashioned bed spring in

shape, spirals up and out into the far field, it asymptotically approaches a cone of

semi-angle arcsin c/v.

Let us now assume that this source is extended, and that it can be treated as a

collection of closely spaced source points. All source elements situated at a constant

radius and lying on a filament extending vertically (i.e., parallel to the rotation axis)

must possess the same instantaneous velocity. Their cusps will, therefore, propagate

outwards in unison along parallel paths. In consequence, a distant observer will

encounter a vertical line of cusps whose reach in the z–direction is determined only

by the vertical extent of the filamentary source. Such a string of cusps produces what

appears to be an unusual “beam” (or “subbeam,” as it is often referred to in the

literature [57]), with fixed azimuthal angular width (because the temporally-focused

pulse rotates rigidly with the source), but a z–extent that is fixed in height, leading

to a polar angular width that narrows with separation from the source. The energy

in this beam is spread over an area that increases with distance, rather than distance

squared, leading to an intensity that falls off nonspherically as 1/d (Figure 3.1).

Though the discussion thus far has just involved a simple qualitative extension of

the temporal focusing concepts introduced in Chapter 2, detailed analytical studies

( [17,18,35,36]) as well as experimental observations ( [31,32,55]) confirm that tem-
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Figure 3.1: Schematic illustration of the light cylinder r = c/ω, the filamentary part
of the source that approaches the observation point with the speed of light and zero
acceleration at the retarded time, the orbit r = c/(ω sin θP) of this filamentary source,
and the subbeam formed by the bundle of cusps that emanate from the constituent
volume elements of this filament.

poral focusing leads to the magnitude of this particular component of the source’s

emission falling off more slowly than emission from a conventional radiation source

which diminishes as 1/d2 with distance d. This nonspherically decaying component

of the radiation appears as a spiral-shaped packet of intense localized electromag-

netic waves, a diffraction-free propagating caustic that, when detected by a far-field

observer, presents itself as a powerful pulse of light. The fact that cusp radia-

tion decays more slowly than predicted by the inverse square law does not violate

conservation of energy since the radiation field is not isotropic; weaker fields else-

where in the emitted radiation compensate for the strong fields on the cusp (again,

see [17, 18, 31, 32, 35, 36, 55] and the discussion of Figure 2.9), which is constantly

reconstructed from conventional (i.e., spherically decaying) waves that combine and

disperse. Because the “beams” are narrower, in angular terms, the farther away from

the source they are detected, the absolute value of the gradient of the radiation field

49



Chapter 3. Potentials, Fields and How to Treat Them

associated with them will increase with distance, rather than decrease, as is the case

for conventional, diffracting radiation.

That a radiation field which possesses a gradient that increases, rather than

decreases, with distance, does not per se constitute a violation of the conservation

laws, as can be illustrated with the following gedankenexperiment, borrowed from [56]:

Imagine a rotating radiation beam with the amplitude

A(RP , ϕP , tP ) = A0R̂
1/2
P exp[−(R̂3

P ϕ̂P )2]

where, as before, R̂P stands for the scaled distance RPω/c, ϕ̂P ≡ ϕP − ωtP is the

azimuthal angle in the rotating frame, tP denotes the observation time, and A0 is a

constant. This beam would be observed as a Gaussian pulse that has an azimuthal

width of the order of R̂−3
P and carries a constant flux of energy,

∫
A2R2

P sin θPdθPdϕP = (2π)1/2(c/ω)2A2
0,

across any large sphere of radius RP . The gradient of the amplitude of this pulse,

∂A/∂ϕ̂P = −2A0R̂
7/2
P (R̂3

P ϕ̂P ) exp[−(R̂3
P ϕ̂P )2],

increases in magnitude with distance as R
7/2
P at the edges of the pulse.

It has been shown explicitly that the gradient of the nonspherically decaying field

generated by a source in superluminal rotation increases as d7/2 with distance d. The

derivation of these results, however, is non-trivial and exceeds the scope of this work;

we refer the interested reader to [56]or [57] instead.
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3.2 Derivation of the Fields via the Inhomoge-

neous Wave Equation

In Section 1.3.1 we described that electric and magnetic fields arising from varying

distributions of electric charges and currents can, with wave-like motion, propagate

indefinitely through space, far from the varying charges and currents where they

originated. We then proceeded to show that Maxwell’s four equations can easily be

combined to yield a pair of homogeneous three dimensional wave equations governing

the electric and the magnetic field intensities in vacuo and far from the sources of

their origin.

In the presence of sources, the inhomogeneous wave equation that governs the

electric and magnetic field intensities can be given in the general form [60]

∇2Ψ− 1

c2

∂2Ψ

∂t2
= −4πq(x, t), (3.1)

where the function q(x, t) describes the charge density, giving not only the distribu-

tion of the sources, but also their time dependence at each point in space.1

The issue of mathematical rigor has already been covered in brief in the abstract

and will be further discussed in Chapter 5. In the context of Equation (3.1) this

is to mean the following. There exists a unique smooth solution of the initial value

problem of the inhomogeneous wave equation (3.1) when the function q and the

initial data Ψ(·, 0), ∂Ψ
∂t

(·, 0) are sufficiently smooth functions (see, e.g., [61], Section

1 In the interest of generality, we extend the discussion to follow to source distributions,
rather than restrict it to point charges as in previous chapters. We will return to the
treatment of point sources in Chapter 4, where we discuss the potentials and fields emitted
by a single charged particle moving at an arbitrary velocity.
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2.4). This solution has the form

Ψ(x, t) =

∫
Bt(x)

q(y, t− |x− y|/c)
|x− y|

dy

+
1

4πc2t

∫
∂Bt(x)

∂Ψ

∂t
(y, 0)dσ(y) +

1

4πc2

∂

∂t
[
1

t

∫
∂Bt(x)

Ψ(y, 0)dσ(y)] , (3.2)

where t ≥ 0 and

Bt(x) := {y ∈ R3 : |x− y| ≤ ct} , ∂Bt(x) := {y ∈ R3 : |x− y| = ct} . (3.3)

Returning to (3.1), we wish to find the fundamental solution (or, equivalently,

the Green’s function) for the problem, that is, the response of the physical system

to a concentrated or impulsive forcing function. By inspection, we suggest

∇2G− 1

c2

∂2G

∂t2
= −4πδ(xP − x)δ(tP − t), (3.4)

where, as in previous chapters, t is the retarded time, the time at which light must

be emitted from location x in order to reach location xP at time tP . Clearly, the

source is an impulse occuring at time t and location x. G then gives the description

of the effect of this impulse as it travels away from x in the course of time. It

seems reasonable to impose causality as an initial condition, e.g., that G and ∂G/∂t

should be zero for tP < t: if an impulse occurs at t, no effects of this impulse should

be present at an earlier time. The directionality in time imposed by the Cauchy

conditions implies that (3.4) is invariant under time translation and the reciprocity

relation becomes (see, e.g., pg 835 of [60] for a detailed discussion):

G(xP, tP |x, t) = G(x,−t|xP,−tP ). (3.5)

To solve (3.1), we use this reciprocity relation and write

∇2G(xP, tP |x, t)−
1

c2

∂2G(xP, tP |x, t)
∂t2

= −4πδ(xP − x)δ(tP − t). (3.6)
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Multiplying (3.1) by G, (3.6) by Ψ and subtracting the latter from the former results

in

G∇2Ψ−Ψ∇2G+
1

c2

(
∂2G

∂t2
Ψ−G∂

2Ψ

∂t2

)
= 4π {Ψδ(xP − x)δ(tP − t)− q(x, t)G} , (3.7)

and we may now integrate over the volume of interest as well as t:∫ tP

0

dt

∫
V

d3x

{
G∇2Ψ−Ψ∇2G+

1

c2

(
∂2G

∂t2
Ψ−G∂

2Ψ

∂t2

)}
= 4π

{
Ψ(xP, tP )−

∫ tP

0

dt

∫
V

d3x q(x, t)G

}
. (3.8)

Since

G∇2Ψ−Ψ∇2G = ∇ · (G∇Ψ−Ψ∇G), (3.9)

we utilize the vector form of Green’s theorem (see, e.g., [63]) and write∫
V

d3xG∇2Ψ−Ψ∇2G =

∫
Σ

dS · (G∇Ψ−Ψ∇G). (3.10)

Hence, Equation (3.8) can be re-stated as∫ tP

0

dt

∫
Σ

dS · (G∇Ψ−Ψ∇G) +
1

c2

∫
V

d3x

[
∂G

∂t
Ψ−G∂Ψ

∂t

]tP
0

+ 4π

∫ tP

0

dt

∫
V

d3x q(x, t)G = 4πΨ(xP, tP ) (3.11)

and, after formally integrating the second term, 2 the complete solution to the inho-

mogeneous problem (3.1), including the satisfaction of initial conditions, becomes

Ψ(xP, tP) =

∫ tP

0

dt

∫
V

d3x q(x, t)G+
1

4π

∫ tP

0

dt

∫
Σ

dS · (G∇Ψ−Ψ∇G)

− 1

4πc2

∫
V

d3x

(
∂G

∂t
Ψ−G∂Ψ

∂t

)
t=0

. (3.12)

2Notice that the integrand vanishes when evaluated at t = tP due to the initial condi-
tions imposed on G.
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The first integral on the right side of Equation (3.12) is the source term, which stands

for the effect of the sources q distributed throughout the volume V, the last involves

the effect of the initial conditions, and the second – the boundary term – represents

the effect of the boundary conditions on space boundaries. It is the boundary term

around which the current discussion is centered.

In the derivation of Equation (3.12), the sole assumption made on the volume

V is that it contains xP . We now remark further on V , so let (xP , tP ) be fixed. If

we choose V such that the ball BtP (x) is a subset of V , then the boundary term,

i.e., the second term on the RHS of (3.12), vanishes and (3.12) is identical to (3.2).

If, however, V is chosen as a subset of BtP (x), then, in general, the second term

on the RHS of (3.12) does not vanish since it has to ‘compensate’ information for

Ψ(xP , tP ) that is ‘missing’ in the first and third terms on the RHS of (3.12). Thus,

by choosing an appropriate V , the second term on the RHS of (3.12) may yield

interesting information about Ψ(xP , tP ).

Various methods can be applied to find the explicit form of the Green’s function G

in Eq. (3.4). Here we proceed to remove the explicit time dependence by introducing

a Fourier transform with respect to frequency. We assume that Ψ(xP, tP ) and q(x, t)

have the Fourier integral representations

Ψ(xP, tP ) =
1

2π

∞∫
−∞

dω Ψ̃(xP, ω)eiωt and (3.13)

q(x, t) =
1

2π

∞∫
−∞

dω q̃(x, ω)eiωt where (3.14)

Ψ̃(xP, ω) =

∞∫
−∞

dtΨ(xP, tP )eiωt, (3.15)

q̃(x, ω) =

∞∫
−∞

dt q(x, t)eiωt (3.16)

54



Chapter 3. Potentials, Fields and How to Treat Them

Introducing the Fourier integrals into (3.1) we find that they satisfy the inhomo-

geneous Helmholtz equation(
∇2 +

ω2

c2

)
Ψ̃(xP, ω) = −4πq̃(x, ω) (3.17)

Hence, upon insertion of the Green’s function appropriate for the problem we have

(
∇2 + k2

)
g(xP, ω|x, t) = −4πδ(xP − x), (3.18)

where k = ω/c denotes the wave number. In the absence of boundary surfaces,

the Green’s function can depend only on R = |xP − x| and must possess spherical

symmetry about the source point. We write, in spherical coordinates,

1

R

d2

dR2
(Rg) +

ω2

c2
g = −4πδ(R). (3.19)

For R 6= 0, the right hand side of (3.19) is identically zero and Rg(R) satisfies the

homogeneous equation

1

R

d2

dR2
(Rg) +

ω2

c2
g = 0, (3.20)

which has the solution

Rg = AeikR +Be−ikR (3.21)

g =
1

R
(AeikR +Be−ikR).

Near the origin, where the delta function contributes, the second term on the left

hand side of (3.18) is negligible compared to the first, and the equation becomes

∇2 g = −4πδ(xP − x), (3.22)

which is satisfied by

lim
kR→0

g(R) =
1

R
. (3.23)
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Hence the general solution for the Green’s function is

g(xP, ω|x, t) =
1

R

(
AeikR +Be−ikR

)
. (3.24)

Using the inverse transforms from (3.13), we finally write the time-dependent Green’s

function as

G(xP, tP |x, t) =
A

R
δ [t− (tP −R/c)] +

B

R
δ [t− (tP +R/c)] . (3.25)

The first term in Equation (3.25) is called the retarded Green’s function because it

exhibits the causal behavior associated with a wave disturbance: An effect observed

at point xP at time tP is caused by the action of a source at distance R at an

earlier time t = tP −R/c. The second term, the advanced Green’s function, must be

rejected as it does not satisfy the causality condition imposed earlier, namely, that

no response may be predicted to an event occurring in the future. Hence, B ≡ 0,

which implies A = 1, and

G(xP, tP |x, t) =
δ [(R/c)− (tP − t)]

R
; R, tP − t > 0. (3.26)

Let us now examine the specific case of the inhomogeneous wave equation that

governs the magnetic field, B. In analogy with (3.1), it can be written as

∇2B− 1

c2

∂2B

∂t2
= −4π

∇× j

c
(3.27)

and has the full solution

B(xP, tP) =
1

c

∫ tP

0

dt

∫
V

d3x (∇× j)G+
1

4π

∫ tP

0

dt

∫
Σ

dS · (G∇B−B∇G)

− 1

4πc2

∫
V

d3x
(
B
∂G

∂t
−G∂B

∂t

)
t=0

(3.28)

with G as given in (3.26). Here, the source q(x, t) is assumed to be a current with

density j. Under the null initial conditions B|t=0 = (∂B/∂t)t=0 = 0 assumed through-

out this chapter (see above), the third term in Eq. (3.28) is identically zero and the

expression reduces to

B(xP, tP) =
1

c

∫ tP

0

dt

∫
V

d3x (∇× j)G+
1

4π

∫ tP

0

dt

∫
Σ

dS · (G∇B−B∇G). (3.29)
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However, in some standard textbooks (see, e.g., Eq. (6.52) of [33]), formula (3.29)

is published as

B(xP, tP) ' 1

c

∫
d3x

[∇× j]ret
|xP − x|

. (3.30)

It is immediately obvious that the derivation of Eq. (3.30) involves the neglect of

the boundary term, which here entails a surface integral over the boundary values of

both the field and its gradient.3 In the case of a conventional source, this boundary

term decays more rapidly with distance than the integral that remains in Eq. (3.30).

For a rotating superluminal source, where the gradient of the field increases as R
7/2
P

with the distance RP from its source, this boundary contribution is proportional to

R
−1/2
P [56]. Not only is this not negligible relative to the contribution from the source

term, but the boundary term constitutes the dominant contribution to the radiation

field in this case [56].

It is important to note that the radiation field cannot be calculated directly from

the integral equation (3.12) (the solution whose boundary term is normally neglected

[41–45]), as it is merely a mathematical identity, not a solution that could be used to

calculate the field arising from a given source distribution in free space. Thus we are

left with the alternative between Equation (3.2) or (3.12). As will be shown in the

next section, one can instead first solve the wave equation governing the potential

(whose solution is independent of the boundary term) and then use this solution to

evaluate the neglected term in the exact version of the retarded solution for the field

(Eq. (3.28)). Thus, one could argue that the rôle of the classical expression for the

retarded potential in radiation theory is much more fundamental than that of the

corresponding retarded solution of the wave equation governing the field [56]. Clearly,

one way to calculate the free-space radiation field of an accelerated superluminal

source is to calculate the retarded potential and differentiate the resulting expression

3 Note also that the Green’s function G has been integrated over tP and is given ex-
plicitly as 1

|xP−x| .
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to find the field [56,57] (see also [32,48]). This will be shown in detail in Section 4.1,

where we derive the Liénard-Wiechert fields for a charge moving arbitrarily fast from

the corresponding potentials.

3.3 Derivation of the Fields via the Retarded Po-

tentials

The calculations in Section 3.2 illustrate that the results of an analysis based on

the retarded solution to the wave equation governing the field depend crucially on

the boundary conditions satisfied by the field at infinity. Here we will show that, if

we instead base our analysis on the retarded potential, we require no corresponding

explicit knowledge of the value of the potential in the radiation zone. Contrary to the

claims made, e.g., in [41–45], there is no discrepancy between the results obtained

from the retarded solution for the potential and the retarded solution for the field

once the boundary term in the solution to the wave equation governing the field is

retained.

3.3.1 In the Lorenz Gauge

In the simplest of terms, a potential is taken to be a function whose derivative yields

a field [33,60]. Hence, fields are associated with forces, potentials with energy. If we

define he magnetic vector potential A in terms of the magnetic field B [33],

B = ∇×A, (3.31)

Faraday’s law (1.4) can be written

∇×
(

E +
∂A

∂t

)
= 0, (3.32)

58



Chapter 3. Potentials, Fields and How to Treat Them

and the quantity with vanishing curl in (3.32) may be expressed as the gradient of

some scalar function, namely the electric scalar potential Φ [33]:

E = −∇Φ− ∂A

∂t
. (3.33)

The definition of B and E in terms of the potentials (3.31) and (3.33) satisfies identi-

cally the two homogeneous Maxwell’s equations (1.3) and (1.4). The inhomogeneous

equations can be expressed in terms of the potentials using relations (1.6) and (1.7)

while recalling that (ε0µ0)1/2 = c,

∇2Φ +
∂

∂t
(∇ ·A) = − ρ

ε0
(3.34)

and

∇2A− 1

c2

∂2A

∂t2
−∇

(
∇ ·A +

1

c2

∂Φ

∂t

)
= −µ0J. (3.35)

Thus the set of Maxwell’s equations has been whittled down to two – if coupled

– expressions. Elementary electromagnetism (and basic calculus), however, suggests

that there must be some freedom in the choice of Φ and A: While the fields B and

E are unique and cannot change, they are both defined in terms of derivatives of the

potentials; in consequence, there exists an infinite family of possible potentials that

will all lead to the same fields. Since B is defined through (3.31) in terms of A, the

vector potential is arbitrary to the extent that the gradient of some scalar function

Λ can be added. Hence, B is left unchanged by the transformation

A→ A′ = A +∇Λ. (3.36)

The above expression is called a gauge transformation of the vector potential; it

leaves the field invariant. For the electic field to be unchanged as well, the scalar

potential needs to be similarly transformed, namely

Φ→ Φ′ = Φ− ∂Λ

∂t
. (3.37)
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Hence we can choose a set of potentials that satisfy the Lorenz condition 4

∇ ·A− 1

c2

∂

∂t
Φ = 0 (3.38)

and uncouple Equations (3.34) and (3.35) such that we are left with two homogeneous

wave equations that can be written in the familiar form (3.1):

∇2A− 1

c2

∂2A

∂t2
= −µ0J (3.39)

and

∇2Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0
. (3.40)

[33] emphasizes that Equations (3.39) and (3.40) together with the Lorenz condition

(3.38) form a set of equations equivalent to the Maxwell’s equations in vacuo, as

observed by Lorenz et al.

The expressions for the retarded potentials describe the scalar or vector potential

for electromagnetic fields of a time-varying current or charge distribution. As is

the case for the fields, the retardation of the influence connecting cause and effect is

thereby essential; e.g., the signal takes a finite time, corresponding to the propagation

at the velocity of light, to travel the distance from x to xP, where an effect is produced

or measured.5 This temporal relation for sub- and superluminal sources has already

been discussed in detail in Chapters 2.

4Named after Ludvig Valentin Lorenz (1829–1891), a Danish mathematician and physi-
cist. Not to be confused with the Dutch physicist Hendrik Lorentz.

5 The same principle underlies the derivation of Special Relativity, so that all rigorously-
defined descriptions of Electromagnetism – e.g., Maxwell’s Equations – are necessarily
relativistic [33,83].
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3.3.2 The Classical Expression for the Retarded Potential

In the Lorenz gauge, (i.e., the choice of a set of potentials (A, A0) that satisfy the

Lorenz condition ∇ ·A + c−2∂A0/∂t = 0), the electromagnetic fields

E = −∇PA
0 − 1

c

∂A

∂tP
, B = ∇P×A, (3.41)

are given by a four-potential6 Aµ that satisfies the wave equation

∇2Aµ − 1

c2

∂2Aµ

∂t2
= −4π

c
jµ, µ = 0, · · · , 3, (3.42)

where A0/c and j0/c are the electric potential and charge density and Aµ and jµ

for µ = 1, 2, 3 are the Cartesian components of the magnetic potential A and the

current density j [33]. As we have seen in the sections above, the solution to the

initial-boundary value problem for Eq. (3.42) satisfies the Green’s identity

Aµ(xP, tP) =
1

c

∫ tP

0

dt

∫
V

d3x jµG+
1

4π

∫ tP

0

dt

∫
Σ

dS · (G∇Aµ − Aµ∇G)

− 1

4πc2

∫
V

d3x
(
Aµ

∂G

∂t
−G∂A

µ

∂t

)
t=0
,

(3.43)

in which G is the retarded free-space Green’s function given in equation (3.26), and

Σ is the surface enclosing the volume V of the retarded distribution of the localized

source already discussed in Section 3.2.

While Equation (3.43) is deceptively similar in form to (3.12) (derived in Section

3.2), there is a fundamental difference between the retarded solution of the wave

6The electromagnetic four-potential combines both an electric scalar potential and a
magnetic vector potential into a single four-vector. In cgs units it can be defined as

Aµ = (Φ,A)

in which Φ is the electric, A the magnetic potential. The fields associated with the four-
potential are

E = −∇Φ− 1

c

∂

∂t
A, B = ∇×A.
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equation that governs the field and the corresponding expression for the potentials:

As discussed in the previous section, one can always use the freedom implied in

gauge transformations (3.36) and (3.37) to choose potentials such that the boundary

contribution (the second term) in Eq. (3.43) is made to vanish, since this term, too,

satisfies the homogeneous wave equation. Under the null initial conditions Aµ|t=0 =

(∂Aµ/∂t)t=0 = 0 assumed here, the contribution from the third term in Eq. (3.43) is

identically zero, and the retarded Green’s function has the familiar form (3.13).

Irrespective of whether the radiation decays spherically (as in the case of a conven-

tional source) or nonspherically (as applies for a rotating superluminal source—see

Section 3.1 and [31,56]), therefore, the potential Aµ due to a localized source distri-

bution that is switched on at t = 0 in an unbounded space can be calculated from

the first term in Eq. (3.43):

Aµ(xP, tP) = c−1

∫
d3xdt jµ(x, t)δ(tP − t−R/c)/R, (3.44)

i.e., from the classical expression for the retarded potential.

In conclusion, we have seen in this section that the indiscriminate application

of integral solutions to Maxwell’s equations, derived within the standard theory of

moving charges, can yield misleading answers in the superluminal regime if terms

are omitted that are negligible for subluminal sources, but that may dominate in the

case of superluminal ones. To wit, if one ignores the boundary term in the retarded

solution of the wave equation governing the field, as in [33, 41–45], one obtains a

different result, in the superluminal regime, from that obtained by calculating the

field via the retarded potential [31,32,48]. This apparent contradiction stems solely

from having ignored a term in the solution to the wave equation that is, by a factor

of the order of R
1/2
P , larger than the term that is normally kept, and disappears once

the neglected term is taken into account.
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We note, furthermore, that the representation

A(xP, tP) =
1

c

∫
d3x

[j(x, t)]ret
|x− xP|

, (3.45)

of the retarded potential is differentiable as a classical (as opposed to generalized)

function only in the case of a moving source whose speed does not exceed that of the

waves it generates. Contrary to the usual assumption [41–45], the retarded distribu-

tion of the density of a moving source is not necessarily smooth and differentiable if

its rest-frame distribution is: As we have seen in Chapter 2.1, the retarded distri-

bution of a rotating source with a moderate superluminal speed is in general spread

over three disjoint volumes (differing in shape from each other and from the volume

occupied by the source in its rest frame) whose boundaries depend on the space-

time position of the observer. Hence, in the superluminal regime, derivatives of the

integral representing the retarded potential are well-defined only as generalized func-

tions [55]. For an outline of a rigorous treatment in terms of generalized functions,

see Chapter 5 .

We submit that the key issue is, in essence, the presence of multiple or extended

retarded times and the associated non-spherical decay observed in the far field. In

what follows, we therefore return to basics, to the fundamental Liénard-Wiechert

potentials and fields, and take great care in the evaluation of the retarded times

involved in the problem.
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Chapter 4

Mathematical Treatment II:

Liénard-Wiechert Potentials and

Fields

The expressions for the radiation field emitted by a single charged particle moving

at an arbitrary velocity – in essence a generalized solution to Maxwell’s equations

– were formulated correctly in 1898 by Alfred-Marie Liénard (1869-1958) and Emil

Wiechert (1861-1928), before the advent of the special theory of relativity. Equivalent

solutions were given by Sommerfeld (1904) and Schott (1912); for detailed historical

and mathematical accounts, see, e.g., [53] or [68]. As shown by Maxwell (Section

1.3.1), electromagnetic waves, once emitted by a charged particle, will propagate

at the speed of light, irrespective of how fast the particle is moving, just as sound

waves propagate at a speed independent of the source’s velocity. Hence, as pointed

out in Section 1.3.2 and Chapter 3, Maxwell’s equations are invariant under Lorentz

transformations and the results derived by Liénard and Wiechert, in consequence,

relativistic [33].
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Here we will rederive their calculations, which are today encountered in the analy-

sis of synchrotron radiation, and generalize them such that the speed of the source

is not restricted to the subluminal regime (Section 4.1). In Section 4.2, we proceed

to evaluate the radiated fields derived in 4.1 numerically, which requires a detailed

investigation of the function that determines the temporal separation between source

and observer (already encountered in Chapter 2). As will be seen, the relation h(t) is

of the form of Kepler’s equation for elliptical orbits and poses unexpected difficulties

when solved for large (e.g., astronomical) distances. Finally, the chapter concludes

with a discussion of the results of the evaluations of the Liénard-Wiechert field for

faster-than-light charges.

4.1 Liénard and Wiechert’s formulae for a Charge

Moving Arbitrarily Fast

The Liénard-Wiechert potentials A and Φ describe radiation emanating from a mov-

ing electric point charge in terms of a vector and a scalar potential, respectively, and

are discussed in many excellent texts to which we refer the interested reader (see, for

example, [33] or [68]). Built directly from Maxwell’s equations, they give the com-

plete, relativistically correct, time-varying electromagnetic field for a point charge q

in arbitrary motion. Developed by Alfred-Marie Liénard and, independently, Emil

Wiechert in the late 1800s, they can be written [33]

Φ(xP, tP ) =

[
q

(1− βββ · n)R

]
ret

, A(xP, tP ) =

[
qβββ

(1− βββ · n)R

]
ret

. (4.1)

Here, as before, R(t) ≡ |xP−x| denotes the temporal separation between source and

observer, n ≡ R/R designates the radiation direction, and βββ ≡ v/c is the velocity

vector of the source scaled by the speed of light. The subscript “ret” indicates that

the quantity within the brackets is to be evaluated at the retarded time.
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As discussed in detail in Section 3.3.1, the corresponding electric and magnetic

fields – the Liénard-Wiechert fields – can be calculated directly from the potentials

(4.1), using the definitions E = −∇Φ− ∂A/∂t and B = ∇×A, listed as Equations

3.31 and 3.33 in Section 3.3.1. The derivation, however, is non-trivial and requires a

number of steps, which exceed the scope of this work and can be found in standard

textbooks. Here, we just state the result and give the expressions for the fields as

follows [33]:

E(xP , tP ) = q

[
n− βββ

γ2(1− βββ · n)3R2

]
ret

+
q

c

[
n× {(n− βββ)× β̇ββ}

(1− βββ · n)3R

]
ret

(4.2)

and B = n× E.

Here,

γ =

√
1

1− βββ2
,

denotes the Lorentz factor, a quantity encountered ubiquitously in electrodynamics.

As advanced in the introduction to this chapter, formulae (4.2) are generalized so-

lutions to Maxwell’s equations and describe the radiation field emitted by a single

charged particle traveling along an arbitrary path. Today, they are widely used in

the standard analysis of synchrotron radiation. Jackson ( [33], p. 657) points out

that they divide themselves naturally into “velocity fields,” which are independent

of acceleration, and “acceleration fields,” which depend linearly on β̇ββ. The velocity

fields are essentially static fields falling off as R−2, whereas the acceleration fields are

typical radiation fields varying as R−1.

While the formulation of the Liénard-Wiechert potentials as given in (4.1) (and

in most standard textbooks) is sufficient to describe charges that remain subluminal,

they must be generalized if the source is allowed to travel arbitrarily fast and multiple

retarded times may occur. We propose

Φ(xP, tP ) = q
∑
tret

[
1

|1− βββ · n|R

]
, A(xP, tP ) = q

∑
tret

[
βββ

|1− βββ · n|R

]
, (4.3)
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where we added summations and absolute-value brackets in the factor |1 − βββ · n|,

which stems from the evaluation of the Dirac delta function δ(t− tP + R/c) ((3.26)

after having made use of the reciprocity relation (3.5)) in the classical expression

for the retarded potential (Eq. (3.42)). Both are typically omitted from textbook

derivations, since for the subluminal regime, retarded times are unique and 1−βββ · n

must be positive. We note that the potentials diverge where βββ ·n = 1; that is, where

the source approaches the observer at the speed of light. Furthermore, it is easy to

see that Equations (4.3) reduce to (4.1) for a point source whose velocity remains

below c.

Here we verify that the potentials (4.3) are indeed fundamental causal solutions

for Maxwell’s equations for the special case of a point charge in uniform circular

motion. We recall from Sections 3.2 and 3.3 that the scalar potential arising from

the polarization-current element of infinitesimal volume considered in Section 2.2

satisfies the retarded solution of the wave equation and may hence be written

∇2G− 1

c2

∂2G

∂t2
= −4πρ, (4.4)

in which

ρ(r, ϕ, z, t) = δ(r − rP )δ(ϕ− ωt− ϕ̂)δ(z − zP )/r (4.5)

is the density of a point source of unit strength moving along the trajectory (2.15)

[32]. As before, r, ϕ, z and t indicate retarded quantities, whereas the space-time

of observation points is denoted by the subscript P . The Lagrangian coordinate ϕ̂

stands, as in Section 2.2, for the initial value of ϕ and is, without loss of generality,

assumed to be zero. Causality is imposed by demanding that the solution be zero

before any cause takes effect, which excludes from the outset the consideration of

anti-causal derivations.

Since the scalar potential Φ must also satisfy 3.40, it is sufficient to show that

67



Chapter 4. Mathematical Treatment II: Liénard-Wiechert Potentials and Fields

G ≡ Φ(xP, tP ), e.g.,

G = q
∑
tret

[
1

|1− βββ · n|R

]
= Φ(x, t), (4.6)

where q = 1 since the charge is of unit strength. In other words, we need to ascertain

that Φ(xP, tP ) satisfies the equation for the Green’s function G in (4.4).

In the absence of boundaries and accounting for the conditions (2.15), the poten-

tial in (4.4) has the value [32]

G(xP, tP ) =

∫
d3xdtρ(x, t)

× δ(tP − t− |xP − x|/c)/|xP − x| (4.7)

=

∫ +∞

−∞
dtδ(tP − t−R(t)/c)/R(t).

where R(t) is the function defined in (2.16). After substituting h(t) for tP−t−R(t)/c

and formally evaluating the integral, (4.7) may be rewritten as1

G =
∑
t=tj

1

R|∂h(t)/∂t|
, (4.8)

where the retarded times tj are, of course, the roots of the transcendental equation

h(t) (Equation (2.17), already discussed at length in Chapter 2) and correspond to

the retarded times at which the source point (x, t) makes its contribution towards

the value of G at the observation point (xP, tP ).

Equation (4.8) confirms the results that we derived in Chapter 2 using basic

Huyghens techniques: Namely that the potential G of a point source is discontinous

on the envelope and the cusp of the wave fronts. If we approach the envelope from

1 Due to the integral form of the generalized scaling property,∫ +∞

−∞
dx f(x)δ(g(x)) =

∑
i

f(xi)

|g′(xi)|
,

where the summation extends over all roots of g(x), which are assumed to be simple.
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the outside, the sum (4.8) has only a single term and yields a finite value for G, but

if we approach it from the inside, two of the tj coalesce at an extremum of h and the

equation yields a divergent value for G.

Recalling that n = R/R = xP − x(t)/R, where x(t) = [r, ϕ̂ + ωt, z] and xP =

[rP , ϕP , zP ], we return to Equation (4.8) and find that∣∣∣∣∂h∂t
∣∣∣∣ = |1− rP (rω/c) sin(ϕP − ωt)/R(t)|

= |1− n · ẋ/c| (4.9)

= |1− βββ · n|

Indeed,

G = q
∑
tret

[
1

|1− βββ · n|R

]
= Φ(xP, tP ).

Having verified that the potentials (4.3) are indeed fundamental causal solutions

of Maxwell’s equations, the Liénard-Wiechert fields of a point charge q travelling

arbitrarily fast on a given trajectory x(t) as observed at space-time coordinates

(xP, tP ) can now be derived directly and may be given

E(xP , tP ) = q
∑
tret

[
n− βββ

γ2|1− βββ · n|3R2

]
+

[
n× {(n− βββ)× β̇ββ}
|1− βββ · n|3cR

]
(4.10)

and B = n× E.

Notice that, for a charge that moves faster than c, the Lorentz factor γ is complex,

not real, as in the subluminal regime. As a result, the intensity of the radiation due

to a superluminal source oscillates as a function of its frequency. This unique feature

of faster-than-light sources explains, among others, the oscillations observed in the

frequency spectrum of the Crab pulsar, which will be discussed briefly in Appendix

A.2.3.
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Figure 4.1: (left) Field strength in the plane of the source’s orbit, for r̂ = 2.5. Note
the high radiation intensity along the inner edges of the envelope and near the cusp.
(right) Relative radiation intensity on the limiting cone of the cusp.

4.2 The Relation between Emission and Observer

Time: An Old Problem Revisited

The evaluation of the radiation fields given in Equation (4.10) poses no difficulties

once the number of retarded times t and their values have been determined. Hence,

we must find the root(s) of function h(t) (Eq. (2.17)), i.e., solutions to the relation

t− tP + c−1[z2
P + r2

P + r2 − 2rP r cos(ϕP − ωt)]1/2 = 0, (4.11)

which is transcendental.

For mathematical ease, if, again, at the cost of physical transparency, we intro-

duce the Lagrangian variables ϕ̂ ≡ ϕ − ωt and ϕ̂P ≡ ϕP − ωtP, capturing the rigid

rotation of the patterns of the source and the radiation field [69]. Using distances

scaled by units of light cylinders as introduced in Section 2.2, (2.16) becomes

φ = h(ϕ) ≡ ϕ+
[
R̂2
P + r̂2 − 2r̂r̂P cos(ϕ− ϕP )

]1/2

, (4.12)

where φ ≡ ϕ̂ − ϕ̂P and R̂2
P = ẑ2

P + r̂2
P. A numerical difficulty with (4.12) is that a

large (e.g., astronomical) R̂P swamps the oscillations in the cosine term. We remedy
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this by subtracting R̂0 ≡ (R̂2
P + r̂2)1/2 from both sides, resulting in

∆φ = ∆h(ϕ) ≡ ϕ+ R̂(ϕ)− R̂0

= ϕ− 2r̂r̂P sinϕ

(R̂2
0 − 2r̂r̂P sinϕ)1/2 + R̂0

, (4.13)

where we have also chosen ϕP = −3π/2 for convenience. In the limit that R̂P →∞,

this becomes

∆φ = ϕ− r̂ sin θP sinϕ, (4.14)

which is of the form of Kepler’s Equation2 for elliptical orbits,

M = E − e sinE. (4.15)

Simply stated, Kepler’s Equation relates the eccentric anomaly E, the mean

anomaly M , and the eccentricity e in an elliptic orbit. It is, up to this day, of

fundamental importance in celestial mechanics, but cannot be inverted directly to

determine E – the angular parameter that defines the position of the body. Hence,

despite its apparent simplicity, papers devoted to Kepler’s Problem have appeared

in virtually every decade from 1650 to the present, endowing it with an undeniable

luster and allure for the modern practitioner, although a number of satisfactory

solutions are long known. Peter Colwell’s text [70] provides an excellent survey of

the problem and its treatment over the centuries, beginning with early attempts by

Kepler himself, 3 Newton, Euler, Gauss and Cauchy. Infinite series solutions – the

2 What we call Kepler’s Equation and Kepler’s method of solving it appeared, in fact,
in the ninth century writings of Habash-al-Hasib in connection with problems of parallax.

3 Kepler’s own solution can be summarized as follows: Given e and M , guess an ap-
proximate solution E0 for E and calculate

M0 = E0 − e sinE0.

Let E1 = E0 + (M −M0) and calculate

M1 = E1 − e sinE1.

Then E2 = E1 + (M −M1) should yield a better approximation of E.

71



Chapter 4. Mathematical Treatment II: Liénard-Wiechert Potentials and Fields

most elegant – use Lagrange’s Theorem, Bessel functions and Levi-Civita as well as

Lie series while modern treatments are due to Burniston and Siewert [71], Ioakimidis

and Papadakis [72], and Delves and Lyness [73]. In our case, the “eccentricity” e is

greater than one when multiple solutions for retarded times are possible, which is to

say that the orbit is “nearly parabolic.”4

The correspondence of Eq. (4.14) with Kepler’s Equation brings to the fore the

serious numerical difficulty in solving either of the transcendental equations (4.13)

or (4.14): That e near one and M near zero results in severe subtractive cancellation

[70]. In orbital mechanics, this special case of determining the eccentric anomaly

near the pericenter of a near-parabolic orbit is usually merely a side issue, but for

our superluminal sources, the analogous situation is a central concern: As described

in Section 2.3, we are interested precisely in determining retarded times near the

cusp of the envelope, which are the strongest contributors to the observed field. For

typical pulsar observations, r̂ sin θP is very near indeed to unity. Close to the cusp,

the increment above one is of the order of R̂−2
P , with the scaled distances R̂P to

pulsars being of order 109 to 1015. The oscillatory region of g is correspondingly

tiny: in radians, ϕ− − ϕ+ is of order R̂−1
P , and φ+ − φ−, R̂−3

P . Hence, one of the

central problems of the present thesis is one in numerical analysis: To find one or

more solutions to Kepler’s Equation near the pericenter of a near-parabolic orbit,

where e is near one and M near zero.

4.2.1 An Iterative Solution to Kepler’s Equation

Whilst various numerical methods of approximation have been suggested to find the

(usually sole) root of Kepler’s Equation, most contemporary solutions are based on

4An elliptic or a hyperbolic orbit with eccentricity close to 1 is said to be “nearly
parabolic.” Convention holds that this this is the case if the boundary δ = |e− 1| ≤ 0.01.
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an iterative algorithm developed by Newton and later refined by Raphson.5

Given a real-valued continuous function f , we wish to construct a sequence (xi),

using iteration, which converges to a solution of f(x) = 0. Newton’s method for the

solution of this problem is formally defined as

xi+1 = xi −
f(xi)

f ′(xi)
, i = 0, 1, 2, ..., (4.16)

with prescribed starting value x0, where we implicitly assume that f ′(xk) 6= 0 for all

k ≥ 0.

Hence, Newton’s method is a simple iteration of the function

g(x) = x− f(x)/f ′(x), (4.17)

that, unlike other iterative approximation algorithms, requires the evaluation of both

the function f(x) and its derivative f ′(x) at arbitrary points x. Geometrically, it

consists of extending the tangent line at a current point xi until it crosses zero, then

setting the next guess xi+1 to the abscissa of that zero-crossing.

The power of Newton’s method lies in its rate of convergence, which is quadratic,

where quadratic convergence of a sequence is defined as follows:

Suppose that ξ = limi→∞ xi. We say that the sequence (xi) converges to ξ with at

least order q > 1, if there exists a sequence (εi) of positive real numbers converging

to 0, µ > 0, such that

|xi − ξ| ≤ εi, i = 0, 1, 2, ..., and lim
i→∞

εi+1

εqi
= µ. (4.18)

If (4.18) holds with εi = |xi − ξ| for i = 0, 1, 2, ..., then the sequence (xi) is said

to converge to ξ with order q. In particular, if q = 2, the sequence (xi) is said to

converge to ξ quadratically.

5 For an exhaustive list of references, see [70].
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Taylor’s theorem states that any function f(x) which has a continuous second

derivative can be represented by an expansion about a point that is close to a root

of f(x). Suppose this root is ξ. Then the expansion about xi is of the form

f(ξ) = f(xi) + f ′(xi)(ξ − xi) +R, (4.19)

where the Lagrange form of the remainder R is

R =
1

2!
f ′′(χi)(ξ − xi)2, (4.20)

with xi ≤ χi ≤ ξ.

Since ξ is a root, (4.19) assumes the form

f(ξ) = 0 = f(xi) + f ′(xi)(ξ − xi) +
1

2
f ′′(χi)(ξ − xi)2. (4.21)

Rearranging and dividing Equation (4.21) by f ′(xi) gives

f(xi)

f ′(xi)
+ (ξ − xi) = − f

′′(χi)

2f ′(xi)
(ξ − xi)2. (4.22)

Recalling that xi+1 is defined by (4.16), we find that

ξ − xi+1︸ ︷︷ ︸
εi+1

= − f
′′(χi)

2f ′(xi)
(ξ − xi)︸ ︷︷ ︸

εi

2, (4.23)

that is,

εi+1 = − f
′′(χi)

2f ′(xi)
ε2i . (4.24)

Taking absolute values on both sides yields

|εi+1| =
|f ′′(χi)|
2|f ′(xi)|

ε2i , (4.25)

which shows that the rate of convergence is quadratic. As in (4.16) above, we require

that f ′(x) 6= 0 ∀x ∈ I , where I is the interval [ξ − r, ξ + r] for some r ≥ |(ξ − x0)|,

and that f ′′(x) be finite ∀x ∈ I. Furthermore, the prescribed starting value x0 needs

to be sufficiently close to the root.
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Figure 4.2: Pathological cases in which Newton’s method as applied to (4.14) will fail
to converge. Carefully chosen bracketing bounds and the insertion of a bisection step
whenever Newton-Raphson would take the solution out of bounds prevent calamities such
as these.

While Newton’s method has very attractive local convergence properties, its

global behavior can be complicated and erratic [74–77]. Many texts in numerical

analysis include detailed studies of pathological cases, where the algorithm yields

grossly inaccurate, meaningless corrections, enters a nonconvergent cycle or attempts

to locate a root at infinity [74–77]. While a formal analysis of the Newton-Raphson

formula as applied to Kepler’s equation for nearly parabolic orbits is beyond the

scope of this work, we include two examples (Figure 4.2) which illustrate how the

procedure will fail to locate the roots of (4.14) if the starting values ϕ0 are ill-chosen.

Since the global convergence properties of Newton’s method are rather poor, it is

necessary to design routines that i) guard against the method making inappropriate
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corrections while ii) ensuring that rapid convergence be maintained. The former is

achieved fairly easily by utilizing a combination of bisection and the Newton-Raphson

formula as suggested in [78]. The hybrid algorithm takes a bisection step whenever

the Newton-Raphson procedure would take the solution out of bounds or is not

reducing the bracket size – the extent of the region around the function’s crossing of

the abscissa – swiftly enough. A full listing of the algorithm is given in Section 4.4.

The latter, namely to bracket the roots such that few bisection steps need to be taken

and quadratic convergence remains ensured, requires more diligence and ingenuity.

The first step is to assess the characteristic combination of emission and observa-

tion time for each individual point of the radiated field, i.e., to determine whether

the observer is located inside, on the cusp of, or outside the envelope. To this end

we evaluate the difference ∆ ≡ (r̂P
2 − 1)(r̂2 − 1) − ẑP 2 (Eq. (2.21)). If this is non-

positive, then h is nonoscillatory and we have a single zero of h(t) − tP somewhere

on the closed interval bounded by tP − c−1(r2 + r2
P + z2

P ± 2rrP )1/2 We may employ

Newton’s method as outlined and modified above or any other numerical procedure

that locates a single root on a continuous interval. If, on the other hand, ∆ is posi-

tive, there may be multiple retarded times, each bracketed by a sequence of adjacent

local extrema with alternating signs (or zero). Using (2.20), we locate the greatest

minimum h(tmin0) not exceeding tP and the least minimum h(tmink
) greater than tP .

Then the extrema of h between h(tmin0) (inclusive) and h(tmink
) (exclusive) delimit

a sequence of monotonic intervals, each of which contains a single zero of h(t)− tP ,

and we apply our numerical root-finder to each of these. The full algorithm for this

bracketing routine is listed in Section 4.4.

Whilst the approach described above is sufficiently accurate for terrestrial dis-

tances, difficulties arise if we move to astronomical length scales, especially if we

wish to determine the eccentric anomaly near the pericenter of the nearly parabolic

orbit, as outlined above. (The closest known pulsar to Earth is PSR J0108-1431 in
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the direction of the constellation Cetus, at a distance of about 85 parsecs or 280 light

years from the sun.)

Our solution to finding retarded times in this critical region is to precisely locate

the turning points (ϕ+, φ+) and (ϕ−, φ−) of h using multiple-precision arithmetic

and approximate ∆Φ in this region by a cubic interpolating the turning points and

matching the zero derivatives at those points. We find that this cubic is typically

a good approximation to ∆Φ over a range several orders of magnitude larger than

ϕ− − ϕ+, and it can be directly inverted to yield three real roots for φ− < φ < φ+

or one elsewhere. Beyond this range, ∆Φ is well enough behaved that, starting

from a linear first approximation to the root, Newton’s modified iteration method

will converge quickly. There may be other regions of the parameter space, however,

where a more involved interpolation technique will be needed to produce a root or

a first approximation. However, it appears that approximating the Kepler function

by a cubic Hermite spline with knots at multiples of π or π/2 might be a viable

approach to solving Kepler’s problem in the near-parabolic case.

4.3 Discussion of Results

Having evaluated the relevant retarded times using the methods described above,

Eq. (4.10) is summed numerically to yield the Liénard-Wiechert fields at space-time

points xP, tP . 6 The radiated electric field thus produced has an orientation, or

polarization, that changes rapidly with time and location. In addition to visualiz-

ing |E|2, which is proportional to the average power in the radiated fields, we will

employ Stokes parameters, which provide a description of the polarization state of

electromagnetic radiation and are widely used in the analysis of astronomical data

(see, e.g., pp. 25–37 of [81]). Named after Sir George Stokes (1819–1903), these

6The results described below were published in part as [54].

77



Chapter 4. Mathematical Treatment II: Liénard-Wiechert Potentials and Fields

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

Lo
g(

in
te

ns
ity

)

Pulse window

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−50

0

50

Pulse window

Po
si

tio
n 

an
gl

e 
(d

eg
re

es
)

Figure 4.3: (Top) The relative strengths of the three radiation modes (green, red, blue)
and the total field (black) as experienced by an observer inside the envelope (e.g., θPC

<
θP < 180◦ − θPC

) near the cusp on a sphere of large radius. Note that the contribution
from the third retarded time (green) is much stronger than that from the first (blue) near
the beginning of the pulse, with these rôles reversed near the end. Furthermore, two of
the contributions are stronger than the third everywhere except in the middle of the pulse.
(Bottom) Position angle of the contributions from the three retarded times (green, red, and
blue triangles) are shown relative to one another for the same source and observation arc
as above. The position angles of the dominant contributions are shown with open, those of
the weakest contributions with filled triangles. Note that the position angle of the second
contribution (red) closely follows the average position angle, bridging the first and third
contributions.

quantities are defined as

I = |E‖|2 + |E⊥|2
U

I
=

2|E‖/E⊥| cos δ

|E‖/E⊥|2 + 1
(4.26)

Q

I
=
|E‖/E⊥|2 − 1

|E‖/E⊥|2 + 1

V

I
=

2|E‖/E⊥| sin δ
|E‖/E⊥|2 + 1,
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where the subscripts ‖ and ⊥ denote directions parallel and perpendicular to an axis

chosen to be in the plane transverse to the direction of light propagation given by

S = E ×H. The parameter δ is the phase difference, at the frequency of interest,

between E‖ and E⊥. In visualizing and discussing the results of Eq. (4.10), we will

use the following:

degree of circular polarization:
V

I
(4.27)

degree of linear polarization:
L

I
=

√
Q2 + U2

I

and

polarization position angle:
1

2
tan−1 U

Q
,

which is also the standard procedure of depicting pulsar data [82]. Typical results for

I ∝ |E|2 are shown in Figure 2.6, for the plane of the source’s orbit (left), and for the

limiting cone of the cusp (right), θP = sin−1 c/v. The former clearly shows that most

of the radiated energy is confined within the boundaries of the Čerenkov envelope,

most notably its edges, as well as regions near the cusp (compare with Fig. 2.7). The

intensity on the cone that approaches the cusp curve asymptotically from the outside

as RP → ∞ (Fig. 4.1, right) falls off almost imperceptibly with increasing distance

(as expected, see Section 2.3). As this region of high electromagnetic intensity spirals

out and into the far-field, it will sweep past an observer once for every rotation of

the source, delivering a powerful pulse of light. This is in exact correspondence to

the sharp “spikes” observed in the temporal focusing plots of Figure 2.9 (left) and

(center).

Since the field of the rotating source itself rotates rigidly, an observer at spherical

coordinates (RP , ϕP , θP ) samples, during each rotation period, the field on the arc

that lies at the intersection of the cone θP = constant and the sphere RP = constant.

For the limiting cone of the cusp, this arc lies partly inside and partly outside the

envelope. Owing to the discontinuous change in the strength of the field across
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the envelope, the intensity of the radiation received along this curve has a pulsed

distribution consisting of two sharply peaked components; the closer the opening

angle of the cone to sin−1 c/v, the smaller the width of this two-component pulse,

until, on the cusp itself, the two peaks combine to form a single flash of light.

Moving off the cusp further into the volume enclosed by the two sheets of the

envelope, (e.g., θPC
< θP < 180◦ − θPC

), the temporal focusing calculations (see

Figure 2.10) would lead one to expect three retarded contributions. This is indeed

shown in Fig. 4.3, which depicts the time dependence (in units of the pulse window 7)

of the intensity from each of these retarded time contributions. The total yields a

double-peaked structure connected by a saddle, which is very reminiscent indeed of

the temporal focusing calculations for a similar location (Fig. 2.10). Thus, the “light

curve” of the pulses can be seen to reflect the degree of temporal focusing directly.

The polarization characteristics of the emitted radiation are probably most eas-

ily grasped by following the example of observational astronomers and calculating

the Stokes parameters, in particular the polarization position angle. The bottom

panel of Figure 4.3 shows the position angles of the contributions from the three

retarded times across the pulse window, where open triangles donote the dominant,

closed ones the weakest contributions, respectively. Two of the radiation modes

remain approximately parallel to each other for the duration of the pulse, display-

ing very little change in their position angles. The third contribution, however,

closely follows the average position angle, bridging the remaining two in an S-shaped

curve. Figure 4.4 shows similar plots for several observer locations in the range

θPC
< θP < 180◦ − θPC

, which reveal that the position angles of the three radiation

modes are mirror-symmetrical about the plane of rotation (θP = 90◦); the position

angles of the two contributions depicted in green and blue reverse signs, while the

position angles of the third retarded-time component reverses its direction of swing.

7 The pulse emission from pulsars is usually confined to a time span of a few per cent
of the pulsar period – the “pulse window”.
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Figure 4.4: Position angle of the contributions from the three retarded times (green,
red, and blue triangles) for several observer locations in the range θPC

< θP < 180◦−
θPC

. The position angles of the three radiation modes are mirror-symmetrical about
the plane of rotation (θP = 90◦); the position angles of the two contributions depicted
in green and blue reverse signs, while the position angles of the third retarded-time
component reverses its direction of swing.

The polarization position angles for the entire field, scaled by their intensity, are

shown in Figure 4.5. The aesthetically pleasing, filigreed structure seems organic in

its appearance, showing that the relative directions and sizes vary only subtly over

the duration of a pulse.

The numerical valuations of the temporal focusing factor as well as the Liénard-

Wiechert fields of a localized source in superluminal rotation show a consistent set

of intrinsic characteristics. A formal summary of the numerical data in Figures 2.9

to 4.5 inclusive may be given as follows:
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Figure 4.5: Polarization position angles and intensities for the same source as de-
picted in Fig. 4.1 (right). The arrows represent the direction and magnitude of the
electric field for a given field point.

(i) The radiation is sharply focused along a narrow, rigidly rotating spiral-shaped

beam that embodies the cusp of the envelope of the emitted wave fronts.

(ii) For moderately superluminal sources, it consists of either one or three con-

current polarization modes (depending on the position of the observer relative

to the cusp) that arise from contributions to the field from differing retarded

times.

(iii) At each edge of the pulse, two of the modes are comparable in strength, dom-

inating over the third. Near the middle of the pulse, the three modes are of

comparable strength (Fig. 4.3).

(iv) The position angle of one of the modes, as well as that of the total field, swings

across the beam by as much as 180◦, while the position angles of the other two

modes remain approximately orthogonal throughout their excursion across the

beam (Fig. 4.5).
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(v) One of the three modes is highly circularly polarized and differs in its sense of

polarization from the other two.

(vi) Two of the modes are highly linearly polarized across the entire pulse.

In Appendix A, we will see how these predictions relate to astronomical ob-

servations of highly magnetized, rotating stellar remnants, and thereby justify the

superluminal model as a viable explanation for observational pulsar data.

4.4 Listing of Algorithms

1 function [ s o l n s ]= f i n d t ( r , r p , f i p , z p , t p )

2 %Finds s o l u t i o n s to the equat ion t P=h ( t )=t+R( t ) /c

3 %Synopsis : [ s o l n s ] = f i n d t ( r , r p , f i p , z p , t p )

4 %

5 %Input : r = the r a d i u s o f source p o i n t x

6 % r p , f i p , z p = the c y l i n d r i c a l p o l a r c o o r d i n a t e s o f

7 % o b s e r v a t i o n p o i n t x P

8 % t p = o b s e r v a t i o n time

9 %Output : s o l n s = s o l u t i o n s to the equat ion t=t P−R( t ) /c

10

11 global a b hb ;

12 a=z pˆ2+r pˆ2+r ˆ2 ;

13 i f r p == 0.0 %degenera te case : o b s e r v e r on z−a x i s

14 s o l n s = [ t p−sqrt ( a ) ] ;

15 else

16 hb = r p ∗ r ;

17 b = hb+hb ;

18 %Determine i f h i s o s c i l l a t o r y , t h a t i s , i f t h e r e are d i s t i n c t
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19 %r e a l r o o t s in cos (\ varphi−t ) to dh/ dt = 0:

20 d=(r p ˆ2−1) ∗( r ˆ2−1)−(−z p ) ˆ2 ;

21 i f d <= 0 % n o n o s c i l l a t o r y

22 % h i s monotonica l l y i n c r e a s i n g . The s i n g l e roo t l i e s

23 % between t p−s q r t ( a[−+]b ) i n c l u s i v e .

24 s o l n s = findRoot ( ’ f i n d t h 0 ’ , t p−sqrt ( a+[b,−b ] ) ) ;

25 else % o s c i l l a t o r y

26 %The r o o t s ( p o s s i b l y m u l t i p l e ) are b r a c k e t e d by a

27 %sequence o f ad j ace n t l o c a l extrema with a l t e r n a t i n g s i g n s

28 %( or zero ) .

29 q = 1 + sqrt (d) ;

30 %l o c a l maximum , minimum

31 extremum = f i p − acos ( [ ( a/hb−hb) /q , q/hb ] ) ;

32 h0 = f i n d t h 0 ( extremum ) ;

33 %Find the f i r s t l o c a l maximum >= 0 .

34 %Back up to the p r e v i o u s minimum .

35 twopi = 2∗pi ;

36 k = f loor ( h0 (1 ) / twopi ) ;

37 de l t a = twopi ∗ [ k , k +1] ;

38 extremum = extremum − d e l t a ;

39 h0 = h0 − d e l t a ;

40 i = [ 2 1 ] ;

41 s o l n s = [ ] ;

42 while sign ( h0 (1 ) ) ˜= sign ( h0 (2 ) )

43 % the extrema b r a c k e t a zero

44 i f h0 ( i (2 ) ) == 0

45 % the extremum i s a doub le roo t

46 s o l n s = [ so lns , extremum ( i (2 ) ) ] ;

47 % Advance two i n t e r v a l s .

48 extremum = extremum + twopi ;
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49 h0 = h0 + twopi ;

50 else

51 s o l n s = [ so lns , f indRoot ( ’ f i n d t h 0 ’ , extremum ( i ) ) ] ;

52 % Advance one i n t e r v a l .

53 extremum ( i (1 ) ) = extremum ( i (1 ) ) + twopi ;

54 h0 ( i (1 ) ) = h0 ( i (1 ) ) + twopi ;

55 i = i ( [ 2 1 ] ) ;

56 end

57 end

58 end

59 end

60

61 function xr = findRoot ( fun , xb )

62 %Using a combination o f Newton−Raphson and b i s e c t i o n ,

63 %findRoot f i n d s the roo t o f a f u n c t i o n b r a c k e t e d between

64 %xb (1) and xb (2) . The root , re turned as f u n c t i o n v a l u e xr ,

65 %w i l l be r e f i n e d u n t i l the s t e p does not change the e s t i m a t e .

66 % fun i s a user−s u p p l i e d s u b r o u t i n e which r e t u r n s both the

67 %f u n c t i o n v a l u e and the f i r s t d e r i v a t i v e o f the f u n c t i o n .

68 %Synopsis : xr = f indRoot ( fun , xb )

69 %

70 %Input : fun = ( s t r i n g ) name o f a matlab e x t e r n a l

71 % f u n c t i o n

72 % xb = v e c t o r o f b r a c k e t endpo in t s

73 %Output : xr = root ( or s i n g u l a r i t y ) o f the f u n c t i o n

74 % in xb

75

76 MAXIT=100; %Maximum number o f i t e r a t i o n s a l l o w e d

77 %Evaluate the user−s u p p l i e d s u b r o u t i n e at the b r a c k e t endpo in t s

78 yb = feval ( fun , xb ) ;
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79 %Determine i f an endpoint i s e x a c t l y zero

80 z = find ( yb==0,1) ;

81 i f ˜isempty ( z )

82 xr = xb ( z ) ;

83 return

84 end

85 %Guard a g a i n s t empty b r a c k e t s

86 i f prod ( yb ) > 0

87 error ( ’ Root must be bracketed in f indRoot . ’ ) ;

88 end

89 %Orient the search such t h a t f ( xb (1) )<0.

90 i f yb (1) > 0

91 xb = xb ( [ 2 1 ] ) ;

92 end

93 dxold = d i f f ( xb ) ; %the penu l t imate s t e p s i z e

94 dx = 0.5∗ dxold ; %the l a s t s t e p s i z e

95 xr = xb (2) ; %the l a s t e s t i m a t e

96

97 for j =1:MAXIT

98 xro ld = xr ;

99 xr = xr − dx ;

100 i f xr == xro ld

101 return

102 end

103 [ f , d f ]= feval ( fun , xr ) ;

104 xb ( ( f>=0)+1) = xr ; %maintain the b r a c k e t .

105 %B i s e c t i f Newton out o f range or not d e c r e a s i n g f a s t enough .

106 i f prod ( ( xr−xb ) ∗df−f ) >= 0 | abs (2∗ f ) > abs ( dxold∗ df )

107 dxold = dx ;

108 dx = xr − 0 .5∗sum( xb ) ;
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109 else %Newton s t e p a c c e p t a b l e

110 dxold = dx ;

111 dx = f / df ;

112 end

113 end

114 warning ( ’ f indRoot has exceeded maximum i t e r a t i o n s . ’ )
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Chapter 5

Conclusions and Future Studies

In this thesis, we studied the emission of a polarization-current element of infinites-

imal volume in constant superluminal rotation. We set out by applying basic meth-

ods introduced by Huyghens and Fresnel to gain phase information and found that

radiation sources that travel not only faster than light, but are also subject to accel-

eration, possess a two-sheeted envelope and a cusp – a region of intense concentration

of energy. Moreover, we carefully analyzed the relationship between emission and

observation time, which need not be monotonic and one-to-one, as multiple retarded

times – or even extended periods of source time – can contribute to a single instant

of reception. This unusual temporal relation is of the form of Kepler’s equation

for elliptical orbits, which is of fundamental importance in celestial mechanics, but

cannot be inverted directly to determine the position of the body. The numerical

difficulty in finding one or more solutions to Kepler’s problem near the pericenter of

a near-parabolic orbit was solved by implementing an iterative algorithm developed

by Newton and later refined by Raphson. This enabled us to analyze the electro-

magnetic effects associated with the unusual temporal relation between source and

observer quantitatively using a “measure” that we christened the “temporal focusing

factor.” Not surprisingly, it was found that intriguing phenomena occur on the cusp
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and within the envelope of the emitted wave fronts. To investigate these unusual

features further, we proceeded to calculate the more sophisticated Liénard-Wiechert

potentials and fields for these locations, thereby introducing amplitude in addition

to phase information. Since integral solutions to Maxwell’s equations, derived in the

context of stationary or subluminally moving sources, can be inconvenient in treat-

ing faster-than-light charges due to the presence of multiple or extended retarded

times, we derived what constitutes the main, substantive part of the present work:

The correct formulae for the Liénard-Wiechert potentials and fields of a point charge

travelling arbitrarily fast along a given trajectory. Once found, these expressions

were numerically evaluated and the results visualized.

Whilst many features are already clarified by this point-like source, further devel-

opment will require the introduction of a source that has finite extent. One possible

method would be to consider summation over a volume distribution of discrete, point-

like sources; alternatively, one could try to develop the integration of a continuous

function. However, owing to the complexity of the problem, any such calculation

will involve numerical processing, which always implies some form of discretization.

Hence, both approaches ultimately involve discrete sums, but over different length-

scales. This is an intriguing problem, because a macroscopic polarization current is,

by its nature, an extended object, as is required for a superluminal source. How-

ever, if one looks on a sufficiently small (e.g., atomic) lengthscale, the polarization

no longer appears like a continuous distribution, but instead consists of a volume

distribution of discrete dipoles (atoms and ions). Over such distances, the assump-

tions of the superluminal model may be in question. Once an extended source model

is developed, quantitative model comparisons with the point source model can be

made, as well as possible implications for pulsars studied.

An important feature of future work will be the issue of mathematical rigor since

most computations in the present thesis are of a formal nature only. Rigor can be
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achieved rather easily since the initial value problem for the inhomogeneous wave

equation is well understood for all sources and all initial data mentioned in this

work. Moreover, the initial value problem for Maxwell’s equations can be treated by

simple corollaries to the theorems for the initial value problem of the inhomogeneous

wave equation.

In fact, there exist existence/uniqueness theorems for the initial value problem

of the inhomogeneous wave equation for all sources and all initial data mentioned.

For example, in the case of smooth source data and smooth initial data we already

introduced an existence/uniqueness theorem from [61] and applied it in Section 3. In

the case of nonsmooth source data and/or nonsmooth initial data one has at one’s

disposal an existence/uniqueness theorem where the initial data are distributions in

D′(R3) and the source data and solution are distributions in D′(R4) (details on the

initial value problem of the inhomogeneous wave equation for D′ distributions can

be found for example in [79, 80]). Indeed, all initial data mentioned in the present

work are in D′(R3) and all source data are in D′(R4) whence the above mentioned

existence/uniqueness theorem applies for all data used throughout this thesis. Using

D′ distributions the inhomogeneous wave equation reads as

∇2Ψ̂− ∂2Ψ̂

∂t2
= Ŝ , (5.1)

where Ŝ is a distribution in D′(R4) which contains the source data and the initial

data. The above mentioned existence/uniqueness theorem says that (5.1) has exactly

one solution Ψ̂ in D′(R4) whose support is a subset of {(x, t) : x ∈ R3, t ≥ 0}. Most

importantly this unique solution has the form

Ψ̂ = −Ĝ ∗ Ŝ , (5.2)

where Ĝ is that distribution in D′(R4) which corresponds to Green’s function G and

where ∗ denotes the convolution in D′(R4). Note that the convolution Ĝ ∗ Ŝ is, by
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being a convolution of D′ distributions, not a convolution of functions. Thus every

formal computation which treats Ĝ, Ŝ as functions has to be taken with a grain

of salt (and this, in turn, is one reason why D′ distributions are important in our

context). Although the definition of ∗ in D′(R4) is slightly more intricate than the

convolution of functions, computations with Ĝ ∗ Ŝ are not necessarily more intricate

than those for functions, especially so, when Ŝ contains the delta distribution. In

the case where the source and initial data are not only D′ distributions but regular

distributions in D′, i.e., distributions which can be represented by locally integrable

functions (e.g., smooth functions), one has an existence/uniqueness theorem where

the unique solution Ψ̂ is a regular distribution in D′(R4), i.e., can be represented by

a locally integrable function. In that case the convolution Ĝ ∗ Ŝ can be written as

an integral over functions. In particular Equation (3.2) covers the smooth subcase.

Note finally that all theorems mentioned above don’t care if the source data

are subluminal or superluminal. However as this work indicates, the solutions for

superluminal sources can differ appreciabely from those for subluminal sources.
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Appendix A

The Superluminal Model of Pulsar

Emission

In what is to follow, we compare the findings of the previous chapters to the radia-

tion emitted by pulsars, rapidly rotating, highly magnetized neutron stars, and find

that virtually all of the enigmatic features of their radiation can be explained using

a single, elegant model with few input parameters and no external assumptions. Al-

though physical and heuristic – rather than mathematical – in nature, these results

have been included in the present thesis, as they demonstrate that superluminal emis-

sion is almost certainly an ubiquitous process in the observable universe and may,

therefore, be of importance for the astronomical and astrophysical communities.
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A.1 Pulsars 101

A.1.1 The Discovery of Pulsars

Soon after Jocelyn Bell, quite serendipitously, discovered the first pulsars in the Sum-

mer of 1967 [88], Pacini [89,90] and Gold [91,92] suggested independently that rapidly

rotating, highly magnetized neutron stars must be responsible for the observed radio

pulses since “no other theoretically known astronomical object would possess such

short and accurate periodicities [91].” This insight provided an entirely unexpected

verification of a proposal made more than 30 years earlier by Walter Baade and Fritz

Zwicky [93], who suggested the existence of a new form of star, namely the neutron

star, which would be the end point of stellar evolution. In 1934 the two astronomers

wrote [93]:

“...with all reserve we advance the view that a supernova represents the tran-

sition of an ordinary star into a neutron star, consisting mainly of neutrons.

Such a star may possess a very small radius and an extremely high density.”

However, since such a neutron star would likely be small, cold, inert and emit pre-

ciously little light, their conjecture seemed, at the time, beyond the possibility of

actual astronomical verification.

In his seminal letter to Nature, Gold also pointed out that pulsar emission per unit

emitting volume must be exceptionally high, since “the size of the region emitting any

one pulse can, after all, not be much larger than the distance light travels in the few

milliseconds that represent the lengths of the individual pulses,” and that rotational

energy must be lost through magnetic dipole radiation, such that the pulsar would

appreciably “spin down” with age [91]. Subsequent measurements confirmed that

the period of the Crab pulsar lengthenes uniformly by 36.48 ± 0.04ns per day, i.e.,

by over 1µs per month [94]. This rate of change is not only consistent with the

known age of the Crab nebula, thus confirming the association of the pulsar with the
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Figure A.1: Discovery observations of pulsating radio sources recorded by Jocelyn Bell in
July 1967 [88].

supernova observed in AD 1054 (Fig. A.3), but also provides sufficient energy for the

excitation of the synchrotron radiation that continuously emanates from the nebula

itself [92]. Soon thereafter, Goldreich and Julian [95] concluded that, in spite of their

intense surface gravity, rotating magnetic neutron stars “cannot be surrounded by a

vacuum,” but must possess a “dense magnetosphere.” The particle density within

this “plasma atmosphere” can be approximated by

nGJ ≡ n− − n+ = 7× 10−2BzP
−1cm−3, (A.1)

where nGJ is known as the Goldreich-Julian density, Bz is the axial component of

the magnetic field in Gauss, and P is the period in seconds [95].

In January 1969, a small team at the Steward Observatory in Arizona observed

optical pulsations emanating from the Crab pulsar, confirming the possibility that

rotating neutron stars might emit pulses of light as well as radio waves [96], and

two rocket flights, launched shortly thereafter by a team at the Naval Research

Laboratory in Washington [97] and the Massachusetts Institute of Technology [98],

respectively, showed that the Crab’s frequency spectrum extends into the X- and
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gamma-ray regions.1

Figure A.2: Schematic representa-

tion of a pulsar. (Credit: P. Volegov,

LANL)

45 years after their initial discovery, the cat-

alogue of known pulsars, observed by numer-

ous ground-based and orbiting telescopes, has

grown to more than 1500 identified sources. Yet,

many of the intrinsic characteristics of spin-

ning neutron stars have remained mysterious

and seemingly impervious to human analysis.

Most noticeably, neither the location of the

source of the emision within the pulsar mag-

netosphere nor the mechanism that produces it

have been unambiguously identified, a quandary

which caused eminent pulsar astronomer Jean

Eilek from NRAO to exclaim in frustration, ”We

know why they pulse. But why do they shine? ” 2

A.1.2 The Physics of Neutron Stars

A pulsar is born when a massive star exhausts its supply of fuel and, without the

opposing force of fusion to balance gravity, collapses in a powerful and violent su-

pernova explosion.3 What is left behind is a ball of tightly-packed neutrons which

1 X-radiation is absorbed by the Earth’s atmosphere; hence, instruments to detect X-
rays must necessarily be taken to high altitude by balloons, sounding rockets, and satellites.
Since there was no X-ray telescope orbiting the Earth in 1969, the only possibility lay in
rocket flights.

2 Jean Eilek, 2006, personal communication.
3 The supernova explosion that created the Crab nebula and its central pulsar in AD

1054 was visible on Earth at high noon, and remained discernible during daylight for
23 days. The appearance of a very bright “guest star” in the constellation Taurus was
recorded by Chinese and Japanese astronomers around July 4, 1054 and was noticed by
Anasazi Indians as evidenced by petrographs in Navajo Canyon and White Mesa (both
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Figure A.3: Left: The Crab pulsar, a city-sized, magnetized neutron star spinning 30 times
a second, lies at the center of this composite image of the Crab Nebula, which combines
optical data (red) from the Hubble Space Telescope and X-ray images (blue) from the
Chandra Observatory. Right: Petrographs in Chaco Canyon depicting Supernova 1054
(now Crab nebula) above and Halley’s comet below.

is only about 20 kilometers in diameter but contains most of the progenitor’s core –

about 1.5 to 2 solar masses – which makes neutron stars the most compact objects

in the observable universe apart from black holes.4 Due to conservation of angular

momentum these neutron balls rotate rapidly, with spin periods ranging from 1.4

milliseconds to about eight seconds.

Pulsars are extraordinarily luminous. Their brightness temperature, given by

Tb = c2Sν(2kBν
2Ω)−1, (A.2)

where Sν is the measured flux5 at frequency ν, Ω the opening angle of the source

as seen from the Earth, and kB denoes the Boltzmann’s constant, is generally be-

AZ) as well as in the Chaco Canyon National Park (NM) (Fig. A.3).
4 Indian astrophysicist Subrahmanyan Chandrasekhar showed that the theoretical upper

limit to the mass of a white dwarf star – the ”Chandrasekar limit” – is approximately 1.4
solar masses. Above this limit, degenerate electron pressure is insufficient to prevent gravity
from collapsing the star further to become a neutron star. If the Oppenheimer-Volkoff limit,
generally believed bo be about 2 to 3 solar masses, is exceeded as well, the collapse will
result in a black hole.

5 Flux (or radiant flux), S, is the total amount of energy that crosses a unit area per
unit time. Flux is measured in Joules per square meter per second (Joules/m2/s), or Watts
per square meter (Watts/m2).
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tween 1025 and 1030K, but can be as high as 1039K. The central neutron star

is surrounded by a “plasma atmosphere” – the magnetosphere – through which a

magnetic field of extraordinary strength (at the order of 107 to 1011Tesla) rotates.

Figure A.4: Light curves, circular

(light gray) and linear (dark gray) po-

larization, and polarization position

angles for PSR B0144+59.

The electromagnetic waves emitted by pulsars

are broadband with frequencies extending over

60 octaves from radio waves to high-energy

gamma rays, the broadest spectrum known to

arise from any single source. In general, the

observed light curves consist either of a sin-

gle, sharp pulse (Fig. A.4) or two closely spaced

peaks (Fig. A.5) and the integrated pulse pro-

files – constructed from some hundreds or thou-

sands of individual pulses – remain surpris-

ingly consistent across all frequencies. More-

over, pulsar emission is highly linearly and cir-

cularly polarized, often with a sense change of

circular polarization through the pulse. Linear

polarization is usually dominant, however, very high degrees of circular polarization

are occasionally observed (mean values are typically 20 − 30 per cent, but can be

as high as 100 per cent in individual pulses). The position angle of the radiation

follows an S–shaped curve as a function of pulse longitude, often broken by one or

more ”jumps” (Figures A.4 and A.5, bottom panels).

Given these widely accepted findings, radio astronomer D. B. Melrose [99] pos-

tulated in 1996 that any model seeking to explain the mechanics of pulsar emission

must account for the characteristic light curves, the enigmatic polarization prop-

erties, and the broad frequency spectrum. However, he conceded that “we cannot

expect a theory of pulsar emission to be quantitative in the sense that the theory of

synchrotron emission is quantitative” and that “our theories are likely to be useful
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only in describing the most general features of pulsar emission – the ‘climate’ as

opposed to the ‘weather’ ” [99].

A.2 The Model

A.2.1 Introduction

In the four and a half decades since the discovery of the first pulsars, a plethora

of disperse models has been employed to explain pulsar radiation processes and to

identify their associated locations of emitting regions. An excellent summary of

pulsar data and their interpretation is available [100]; yet even a brief perusal of this

book will reveal that standard models of pulsar emission are fraught with problems.

The authors identify three sources of emission: The surface of the neutron star,

the polar caps and the “outer magnetospheric gap.” The latter is is a volume bounded

by the “last closed field line” as defined by Julian and Goldreich and extends from the

“neutral surface” to the velocity of light cylinder. (For a definition of the velocity

of light cylinder, see Section 2.2.) Standard models assume three regimes under

Figure A.5: Light curves, circular (light gray) and linear (dark gray) polarization, and
polarization position angles at different frequencies for PSR B0525+21.
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which pulsars radiate, namely, in order of increasing complexity: Thermal radiation

from the surface, observed principally in the X-ray region of the frequency spectrum;

beamed incoherent curvature radiation from high-energy electrons and positrons in

the outer magnetospheric gaps; and beamed coherent radio emission from electrons

and positrons located both in the outer gaps and above the magnetic poles. However,

none of these mechanisms are able to account for more than a modest fraction of

pulsar observations quantitatively.

The superluminal model of pulsar radiation, on the other hand, invokes a single

emission mechanism operating across the entire frequency spectrum, namely emission

by superluminal polarization currents. As has already been shown in Section 1.3,

polarization P , defined as the dipole moment per unit volume, results from dis-

placement of positive and negative charges in opposite directions. A polarization

current occurs when a polarized region moves or changes with time t, hence the po-

larization current density is ∂P/∂t and has the same dimensions as a conventional

current density of electrons. If a polarization current oscillates or accelerates, it will

emit electromagnetic radiation, just as a current of electrons does. However, un-

like electrons, which possess rest mass and are therefore limited to speeds less than

c, the speed of light, polarization currents may travel arbitrarily fast, because the

displacements of their constituent negative and positive particles are small; though

the polarization currents travel faster than c, the particles’ speeds remain sublumi-

nal. Albeit capable of moving faster than light, such a source distribution does not

violate special relativity as it cannot be used to transmit a signal superluminally;

the emitted radiation – as any other – travels at (or below) the speed of light. In

Section 1.3.2 we compared this phenomenon to the “Mexican Wave,” where slow,

but carefully-timed movements of spectators send a rapidly-moving “wave” around

a sports stadium. In the same section we showed that superluminal polarization

currents have been created successfully in the laboratory. In experiments carried out

in Russia, the United Kingdom and the USA, currents traveling at up to 12c have
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been shown to emit tightly-focused pulses of radiation. Our ability to predict the

results of these well-characterized, ground-based experiments gives us confidence in

the use of the same models and techniques to treat pulsars.

The superluminal model of pulsar radiation assumes that a pulsar is a spinning

neutron star with a strong, off-axis, magnetic field, B. This field will thus rotate

through the pulsar’s plasma atmosphere, at an instantaneous speed v = ωr, where r

is the perpendicular distance from the rotation axis and ω is the angular velocity [69].

A moving B will displace oppositely-charged particles in opposite directions, leading

to a moving, electrically-polarized region, i.e. to a polarization current [69].

Though a similar assumption is a starting point for most pulsar models, such

theories generally (i) constrain the emission to be within the light cylinder, at which

the field’s speed is the speed of light c, and (ii) consider only emission due to free cur-

rents of electrons. However, Maxwell’s Equations show that the pulsar’s distribution

of fields and currents should rotate rigidly, so that for r > c/ω, the distribution will

be traveling faster than light [69]. For the reasons discussed above, such currents will

be polarization currents. It is the emission from these faster-than-light polarization

currents circling just outside the neutron star’s light cylinder that is the basis of the

present model.

Given that many emission processes are possible in a pulsar’s atmosphere, it is

natural to ask why superluminal emission dominates observations made from Earth.

As has been shown exhaustively in Sections 2.3 through 4.3, this is due to a unique

property of any source that both travels faster than the waves it emits and accelerates:

Waves from several retarded times or even an extended period of source time can

arrive instantaneously at a very distant point. As outlined in Section 1.2, such

phenomena are well known in acoustics, e.g., when a whip is cracked, a shot is fired

from a gun or a high-performance aircraft accelerates through the sound barrier. In

the aircraft’s frame of reference, low energy sound is emitted over an extended period
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of time, all of which arrives at a distant location instantaneously, creating a large

and concentrated ”boom.”

Thus, a rotating superluminal source naturally produces very tightly-focused, in-

tense pulses. More detailed studies show that the temporal focusing leads to the

flux S of this particular component of the pulsar’s emission falling off as 1/d, rather

than the usual S ∝ 1/d2 (see Section 2.3 and references therein), a prediction re-

cently backed up by a statistical study of the Parkes Multibeam Survey [101, 102].6

Hence, at large distances (e.g., from Earth), this component of the emission will

always dominate over other emission mechanisms whose flux falls off as 1/d2. Note

that conservation of energy is not violated, as temporal focusing at this point is

accompanied by dilation elsewhere (Section 2.3).

So, in spite of the certain presence of other emission mechanisms in pulsars, the

efficient energy propagation of the wave packets emitted by superluminal polarization

currents at, or close to, cusp conditions leads to their dominance in observations from

Earth. The flux due to all other emission mechanisms falls off as 1/d2 (the inverse

square law); the flux due to superluminal emission falls off more slowly. Hence, pulsar

observations from Earth should be entirely explicable by superluminal processes. In

the following sections, we compare the models outlined in Chapters 1 and 2 with

observational data.

6 The Parkes Multibeam (PM) Pulsar Survey uses a 20 cm multibeam receiver system
and multibeam filter banks, digitizer and data-acquisition system to survey a region within
|b| < 5 degrees in the inner Galactic plane for pulsars, many of which will be young and/or
short-period. The PM Survey is specifically targeted for (i) obscured regions of the Galactic
plane, (ii) young pulsars, and (iii) binary pulsars with massive companions. As of August
1999, analysis of about 50 per cent of the total expected data to be collected has resulted
in the confirmed detection of over 400 new pulsars (an increase of more than 50 per cent
of the known population).
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A.2.2 Light Curve and Polarization

Single Pulse

The degree of temporal focusing (Figures 2.9 and 2.10) as well as the calculations

of the Liénard-Wiechert fields (Fig. 4.1) of a rotating superluminal point charge

show that an observer situated on the limiting cone of the cusp (θP = θPC
) will

receive a very sharp pulse during each rotation of the source. For the astronomical

scales on which both calculations are carried out, such a pulse has a width of ≤ 1ns

and the periodicity of the pulse arrival is the same as that of the pulsar’s rotation.

Encouragingly, around 50 per cent of the pulsars in the Parkes data base (see footnote

[1]) exhibit a single pulse, virtually all of the rest display double pulses, a phenomenon

that we will explain in Section A.2.2. However, at first sight, there seems to arise a

discrepancy in the pulse duration. Typical data suggest that the pulse width is at

the order of milliseconds (see e.g., Figure A.6 a)) and the data collected by J. Bell

shown in Section A.1), much longer than the few nanoseconds predicted. However,

this apparent width is almost certainly due to instrumental time resolution: In most

telescopes, effective sensitivity is the most important consideration, and averaging

of very many pulses is used to maximize this. 7 In other words, time resolution is

sacrificed to sensitivity.

However, pulses from the Crab are sufficiently intense to permit high time resolu-

tion recordings of individual pulses (Fig. A.6 b) and c)). Once this is accomplished,

structure on much shorter timescales reveals itself (Fig. A.6 a) and b)). Instru-

mental issues restrict the apparent widths to microseconds, but the observing team

(T. Hankins, personal communication) believe that the true duration may be on a

nanosecond timescale. Therefore, the short durations of the individual pulses are in

accord with the model predictions from Chapter 2. From pulse to pulse, the tim-

7 J. Middleditch and T. Hankins, numerous personal communications.
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  Pulsar phase (o) 

     about 15 ms

a) b)

c)

Figure A.6: a) Standard, time-averaged fluxes of the emission from the Crab pulsar,
illustrating that the averaged pulse has a width in the milisecond range. b) and c) High
time resolution data, showing individual pulses. The fine structure revealed is on timescales
of microseconds.

ing and height of the sharp features (Fig. A.6 b) and c)) varies, eventually building

up the broader, time-averaged pulses shown in Figure A.6 a). The latter are very

predictable and regular, reflecting the stable rotation of the neutron star. The pulse-

to-pulse variation, on the other hand, likely reflects the turbulence and atmospheric

variations in the emitting plasma, the “weather,” to speak with D. B. Melrose, and

is likely to have a millisecond timescale.
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Double Pulses and Polarization Structure

As the observer moves away from the cusp into the volume enclosed by the envelope

of the emitted wave fronts such that θPC
< θP < 180◦ − θPC

, the single pulse ex-

perienced on the cusp gives way to a double-horned structure (Fig. 2.10), reflecting

the underlying presence of three retarded contributions to the signal (Fig. 4.3). The

intesities due to the three contributions have already been displayed in Figure 4.3; in

Figure A.7, they are compared with pulsar observational data. Allowing for instru-

mental time resolution issues that will act to broaden features in the observational

data, the agreement is very good.

Though a detailed examination of the frequency dependent spectrum predicted

by the calculations of the radiation fields is a topic for future study (Chapter 5),

the sharpness of the peaked structure (Figs. 2.10 and 4.3) will certainly lead to

very broadband emission. The relative timing of the two pulses varies with observa-

tion angle, again accounting qualitatively for the double-peaked data in the Parkes

Multibeam Survey [101]. A distinct feature of this mechanism will therefore be pulse

timings that remain the same at all frequencies. This is in agreement with many

observations; see, for instance, Figure A.5. The latter also allows for comparison

of polarization properties; as was described in Section 4.3 and shown in Figure 4.1,

results from the Liénard-Wiechert calculations for a generic charge in superluminal

rotation can be expressed as Stokes parameters (Equation (4.26)), which are widely

used in the analysis of astronomical data. Figures A.8 and A.9 illustrate such com-

parisons of Stokes parameters. As can be seen, the superluminal model accounts

for the observational data very well, reproducing the light curve and swing in po-

larization position angle quantitatively. In particular, the polarization information

extracted from 1404 MHZ observations of PSR B2016+28 by McKinnon [103] and

shown in his Figure 1 (here Fig. A.9 (top)) is strikingly similar to our calculations

(Figure A.9 (bottom)). The author notes some intriguing polarization properties
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Figure A.7: Top: Calculated intensities of the contributions from the three retarded times
(colour) and their resultant (black). Bottom: Observation of the gamma-ray intensity em-
anating from Geminga, related to the pulse phase, as detected by the EGRET instrument
on the Compton Gamma Ray Observatory.

while all but conceding that standard models offer no explanation for the observed

phenomena:

Polarization observations of the radio emission from PSR B2016+28 at 1404

MHz reveal properties that are consistent with two, very different, interpre-

tations of the pulsar’s viewing geometry. The pulsar’s average polarization

properties show a rapid change in position angle (PA) near the pulse center,

suggesting that the observer’s sightline nearly intersects the star’s magnetic

pole. But single pulse, polarization observations of the pulsar show nearly

orthogonal modes of polarization following relatively flat and parallel PA tra-
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Figure A.8: Left: Stokes parameters, L (top) and V (bottom), from Liénard-Wiechert
calculations described in Chapter 2. One of the three retarded times gives highly circularly
polarized radiation and differs in its sense of polarization from the other two. Two of the
modes have a very high degree of linear polarization. Right: Comparison with data. PSR
B0144+59 has high right circular polarization (light gray) and moderate linear polarization
(dark grey) in central portions of the pulse.

jectories across the pulse, suggesting that the sightline is far from the pole.

Additionally, PA histograms reveal a “modal connecting bridge,” of unknown

origin, joining the modal PA trajectories over much of the pulse and following

the rapid PA change shown in the average data.

We note that the swing in position angle and the near orhogonality of the two po-

larization modes are entirely consistent with a superluminal source, which does not

require a particular viewing angle with respect to the star’s magnetic pole. Further-

more, we submit that the “modal connecting bridge of unknown origin” may well be

the signal of the second of three contributing times of a superluminal source.
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Figure A.9: Top: Data: Position angle histogramm of PSR 2016+28 at 1404MHz. Note
the presence of the “mystery third component” bridging the middle of the pulse. Bottom:
The three retarded times reproduce all of the features of the observational data, including
the 90o swing.

The Interpulse

Section A.2.2 describes how the superluminal model can reproduce the two-horned

pulse structure observed in the emission of many pulsars. However, some pulsars

emit an “interpulse,” which is widely separated in time from the main pulse (by

about half a rotational period). A detailed discussion of the interpulse is beyond the

scope of this thesis. However, it is believed that the main and interpulses represent

superluminal emission by two distinct regions of the pulsar’s “atmosphere.” This

conclusion is suported by recent analysis of the Crab pulsar [104–107].
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A.2.3 Spectral Features

The author of this thesis is involved in a project to fit broadband pulsar observa-

tions to the expected emission spectrum of a rotating superluminal source, and so a

brief description is included here for completeness. As pointed out in Chapter 4.1,

the emission of a small superluminal volume element is in many ways analogous to

synchrotron radiation. In the latter, a highly relativistic single electron, or a highly

relativistic compact bunch of electrons, emits radiation as it undergoes centripetal

acceleration. The frequency spectrum of the radiation is, in essence, the Fourier

transform of the electric field of the electron(s) as they pass the observer. Given that

the source is both fast and compact, the time-dependent electric field is very sharply

peaked: Hence the corresponding emission is very broadband and rather featureless.

Figure A.10: The Swiss Light Source (SLS)

at the Paul Scherrer Institut is a third-

generation synchrotron light source. With an

energy of 2.4GeV, it provides photon beams of

high brightness for research in materials sci-

ence, biology and chemistry. .

The rôle of the electron’s electric field

is fulfilled by the sharply-peaked elec-

tric field of the cusp radiation (see Fig-

ures 2.9 and 2.10) in the superluminal

model. However, since the source it-

self is superluminal, the Lorentz factor

1/
√

1− v2/c2 is imaginary (see Chapter

4.1). This has the effect of rendering ex-

ponential terms in the synchrotron radi-

ation formulae oscillatory; in contrast to

conventional synchrotron radiation with

its smooth spectrum, the point-like su-

perluminal source has an emission spec-

trum that oscillates as a function of fre-

quency. The radiation spectrum is given by the following set of equations (for a

complete mathematical treatment, see [69, 108]) in which n = 2πf
ω

, and Ai and Ai′
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are the Airy function and its derivative, respectively:
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in which

S1(n) = n2/3|Kr|Kϕ0

(
|s̄r|2 + |s̄ϕ cos θP − s̄z sin θP |2

)1/2
,

S2(n) = n2/3|Kr|Kϕ0

(
|s̄ϕ|2 + |s̄r|2 cos2 θP

)1/2
,

and

S3(n) = n2/3|Kr|Kϕ0

×
{
=
[
s̄∗r cos θP (s̄ϕ cos θP − s̄z sin θP )− s̄rs̄∗ϕ

]}1/2
.

Here, s̄r,ϕ,z are the Fourier components of the source densities sr,ϕ,z|r̂=csc θP with re-

spect to z, = and the superscript star denote the imaginary part and the conjugate of

a complex variable, respectively, and (RP , θP , ϕP ) are the spherical polar coordinates

of the observation point P . The function Kϕ0 is defined by

Kϕ0 = (−1)n+m sin

(
πΩ

ω

)(
µ+

n− µ+

+
µ−

n− µ−

)
, (A.4)

where

µ+ =

∣∣∣∣Ω + ω

ω

∣∣∣∣ and µ− =

∣∣∣∣Ω− ωω

∣∣∣∣ . (A.5)

Though Equation (A.3) appears complicated, the following points should be noted:
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Figure A.11: Top: Superluminal emission is, analogous to that of synchrotrons, very
broadband, but the Lorentz factor γ is imaginary. Hence, the intensity oscillates as a func-
tion of frequency. These oscillations are observed in Crab interpulses. Bottom: Predictions
(left) fit observations (right) very well. The predicted oscillations of the spectrum of the
emission for ω/(2π) = 30.3 Hz and Ω/ω ' 1.9× 104, shown in (a), have the same spacing
as those of the emission bands in the observed spectrum of the Crab pulsar.

1. The function is generic; it should apply to all rotating faster-than-light sources.

Therefore the frequency-dependent emission of all pulsars should have a qual-

itatively similar form.

2. Whilst details of the spectrum can be adjusted by varying the relative sizes

of S1, S2, and S3, the overall appearance of the spectrum is determined by

just two adjustable parameters, ω (the angular velocity of the source) and Ω, a

frequency at which the pulsar’s atmosphere responds resonantly to electromag-

netic disturbances. This is thought to correspond to the plasma frequency of

the free electrons, ωP =
(
Ne2

ε0me

)1/2

, where N is the number density of electrons,
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Figure A.12: Left: The points show observational data (where available) on the spectrum
of the Crab pulsar. The curves show the spectral distribution log(dPn/dΩP ), predicted by
equation (A.3), versus log n and log ν for ν = nω/(2π) ' 30.3n Hz and Ω/ω ' 1.9 × 104.
In the model, the recovery of intensity at the ultraviolet peak (∼ 1015 Hz) is caused by
resonant enhancement due to the azimuthal modulation frequency mω/(2π) ' 3 × 1013

Hz. The steepening of the gradient of the spectrum by −1 at 2.4 × 1018 Hz reflects a
transition through the Rayleigh distance. Right: A similar fit for the Geminga pulsar. The
overall characteristics of pulsar emission are determined by the superluminal nature of the
source: Only the details depend on the pulsar “atmosphere”, i.e., its relative permittivity.
One further parameter, namely the electron cyclotron frequency, is used to fit the peak at
higher ν.

e the electron charge and me denotes the electron mass.

3. If there are subsequent, higher frequency, resonances in the plasma atmosphere,

the emission will be enhanced at those frequencies. The only notable resonance

expected for a pulsar’s atmosphere would be the electron cyclotron frequency,

ωc = eB
me

, where B is the magnetic field in the emitting region of the atmosphere.

Typical fits are shown in Figures A.11 and A.12. From such models, the electron

density and magnetic field at the emitting region can be deduced: Thus far, this

has been done for 12 pulsars [69, 108]. The values deduced are in accord with the

expectations for neutron stars and their atmospheres.

More recently, we employed the calculations outlined above to fit pulsed gamma-
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Figure A.13: Spectral energy distribution (SED) of the Crab pulsar in gamma rays.
VERITAS flux measurements are shown by the solid red circles, Fermi-LAT data by green
squares, and the MAGIC flux point by the solid triangle. The empty symbols are upper
limits from CELESTE, HEGRA, MAGIC, STACEE, and Whipple. The bowtie and the
enclosed dotted line give the statistical uncertainties and the best-fit power-law spectrum
for the VERITAS data using a forward-folding method. The result of a fit of the VERITAS
and Fermi-LAT data with a broken power law is given by the solid line and the result of a
fit with a power-law spectrum multiplied with an exponential cutoff is given by the dashed
line.

rays from the Crab pulsar at energies above 100GeV, detected by the VERITAS

array of atmospheric Cherenkov telescopes [109]. The authors of [109] note that “the

detection cannot be explained on the basis of present pulsar models,” and conclude

that the photon spectrum of pulsed emission between 100MeV and 400GeV is best

described by a broken power law Figure A.13.

As Fig. A.14 shows, the superluminal model yields a comparable goodness of

fit for the high-energy data observed by FERMI and VERITAS, while, at the same

time, accounting for the entire frequency spectrum of the Crab pulsar, covering more

than 9 orders of magnitude.
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Figure A.14: Left: Fit of the superluminal model to the same FERMI and VERITAS
observations as shown in Fig. A.13. Right: The superluminal model not only yields a
comparable goodness of fit for the high-energy data observed, but accounts for the entire
frequency spectrum of the Crab pulsar, covering more than 9 orders of magnitude.

Other Features

It will be clear from the previous sections that the electromagnetic emission of a small

superluminal source in a circular orbit is extremely broadband (i.e., it spans a very

wide frequency range), and indeed, many pulsars are observed to emit from the radio

frequencies to the X or gamma ray regions. (This has, in the past, led to some unusual

deductions. If one assumes, for example, that the pulsar emission is thermal, then

an inordinately high apparent brightness temperature results.) Moreover, the pulses

themselves appear to be coherent. The latter behaviour can be understood in terms

of the cusp, which results from the part of the source that approaches the observer

at the speed of light and no acceleration. Consequently, all of the phase information

from this part of the source will collapse onto a single arrival time, making the source

appear coherent. This apparent coherence has been demonstrated in ground-based

experiments.

Once one accepts that the emission from superluminal polarization currents dom-

inates pulsar observations from Earth, the superluminal model of pulsar emission

explains all the following data [108]: (i) the flux-distance relationship derived from

the Parkes Multibeam Survey; (ii) the enigmatic polarization properties (e.g. swing
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in position angle); (iii) the apparent radiation temperature and pulse shape; (iv) the

oscillatory intensity seen in the Crab pulsar at around 10GHz; and (v) the broad-

band radiation spectrum, covering 16-18 orders of magnitude of frequency. The latter

point (i.e., a single model fitting the entire broadband spectrum) shows the great

advantage of the the present model; though we can show that, e.g., the “slot gap”

or “outer gap” models give comparable quality fits to parts of the data, they are

only applicable to a small frequency window, and so a plethora of other (unrelated)

phenomena must be invoked to cover the entire spectral range.
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Überschall-Projektilen, Plus Lucis, 2/2002–1/2003, pp. 22–6 (German).

[8] Wolfgang F. Merzkirch, Mach’s Contribution to the Development of Gas Dy-
namics, Ernst Mach: Physicist and Philosopher. Edited by R. S. Cohen and
Raymond J. Seeger, Boston Studies in the Philosophy of Science, D. Reidel
Publishing Company, Dodrecht, Holland, 2010, pp. 42–59.

[9] H. Reichenbach, Contributions of Ernst Mach to Fluid Dynamics, Ann. Rev.
Fluid Mech., 1983, 15:1-28.

115



References

[10] G. M. Lilley, R. Westley, A. H. Yates and J. R. Busing, The supersonic Bang,
Nature, 1953, 171:994–7.

[11] Albert Einstein, Zur Elektrodynamik bewegter Körper, Annalen der Physik, 1905,
17:891–921 (German).

[12] Oliver Heaviside, Electrical Papers, first edition, Macmillan and Co., New York
and London, 1894.

[13] A. Sommerfeld, Zur Elektronentheorie (3 Teile), Nach. Kgl. Ges. Wiss.
Göttingen, Math. Naturwiss. Klasse, 1904, 99–130, 363–439, 1905, 201–35 (Ger-
man).

[14] B. M. Bolotovskii and V. L. Ginzburg, The Vavilov-Čerenkov effect and the
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[75] E. Süli and D. Mayers, An Introduction to Numerical Analysis, Cambridge Uni-
versity Press, Cambridge, UK, 2003.

[76] F. B. Hildebrand, Introduction to numerical analysis, Dover Publications, Mi-
neola, N. Y., 1956.

120



References

[77] C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers, McGraw-Hill, New York, 1978.

[78] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical
Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University
Press, Cambridge, UK, 1986.

[79] F.G. Friedlander, M. Joshi, Introduction to the Theory of Distributions, 2nd
edition, Cambridge University Press, Cambridge, 1998.

[80] H. Triebel, Hoehere Analysis, VEB Deutscher Verlag der Wissenschaften, Berlin,
1972.

[81] S. Chandrasekhar, Radiative Transfer, Dover, NewYork, 1960.

[82] D. R. Lorimer and M. Kramer, Handbook of Pulsar Astronomy, Cambridge
University Press, Cambridge, UK, 2005.

[83] A. P. French, Special Relativity, The M.I.T. Introductory Physics Series, Thomas
Nelson and Sons, London, 1968.

[84] H. Ardavan, Method of handling the divergences in the radiation theory of
sources that move faster than their waves, J. Math. Phys. 40, 1999, 4331–6.

[85] H. Ardavan, A. Ardavan, J. Singleton, Frequency spectrum of focused broadband
pulses of electromagnetic radiation generated by polarization currents with super-
luminally rotating distribution patterns, J. Opt. Soc. Am. A 20, 2003, 2137–55.

[86] A. S lowikowska, A. Jessner, B. Klein, G. Kanbach, Optical polarisation of the
Crab pulsar: precision measurements and comparison to the radio emission,
2005, ArXiv:astro-ph/0511599v2.

[87] G. Efstathiou, R. S. Ellis, and B. A. Peterson, Analysis of a complete galaxy
redshift survey – II the field-galaxy luminosity function, 1988, Mon. Not. R. Astr.
Soc., 232:431–61.

[88] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, R. A. Collins, Observation
of a rapidly pulsating radio source, Nature, 1968, 217:709–713.

[89] F. Pacini, Energy emission from a neutron star, Nature, 1967, 216:567–68.

[90] F. Pacini, Rotating neutron stars, pulsars and supernova remnants, Nature,
1968, 219:145–46.

[91] T. Gold, Rotating neutron stars as the origin of the pulsating radio sources,
Nature, 1968, 218:731–32.

121



References

[92] T. Gold, Rotating neutron stars and the nature of pulsars, Nature, 1969, 221:25–
27.

[93] W. Baade, F. Zwicky, F., On super-novae, Proc. Nat. Acad. Sci., 1934, 20:254–
59.

[94] D. W. Richards, J. M. Comella, The period of pulsar NP 0532, Nature, 1969,
222:551–52.

[95] P. Goldreich, W. H. Julian, Pulsar electrodynamics, Ap. J.,1969,157:869–880.

[96] W. J. Cocke, M. J. Disney, D. J. Taylor, Discovery of optical signals from pulsar
NP 0532, Nature, 1969, 221:525–27.

[97] G. Fritz, R. C. Henry, J. F. Meekins, T. A. Chubb, H. Friedmann, X-ray pulsar
in the Crab nebula, Science, 1969, 164:709–712.

[98] H. Bradt, S. Rappaport, W. Mayer, R. E. Nather, B. Warner, M. Mcfarlane,
J. Kristian, X-ray and optical observations of the pulsar NP 0532 in the Crab
nebula, Nature, 1969, 222:728–730.

[99] D. B. Melrose, Whence the pulses? Pulsars: Problems and Progress, ASP Con-
ference Series, 1996, 105:139–146.

[100] A. G. Lyne, F. Graham-Smith, Pulsar Astronomy, Cambridge University Press,
Cambridge, 2006.

[101] J. Singleton, P. Sengupta, J. Middleditch, T. L. Graves, M. R. Perez, H. Ar-
davan, A. Ardavan, Violation of the inverse square law by the observed flux-
distance relationship for pulsars, Nature Magazine (London), submitted (2009).

[102] A. Schmidt, J. Singleton, P. Sengupta, J. Middleditch, T. L. Graves, H. Arda-
van, A. Ardavan, Violation of the inverse square law by pulsars in the Parkes
Multibeam Survey, 2012, in preparation, also presented at the 119th Meeting of
the AAS in Austin, TX.

[103] M. M. McKinnon, The transition between nonorthogonal polarization modes in
PSR B2016+28 at 1404 MHz, ApJ, 2003, 590:1026–034.

[104] S. C. Lundgren, J. M. Cordes, M. Ulmer, R. Foster, T. H. Hankins, Giant pulses
from the Crab pulsar: A joint radio and gamma-ray study, The Astrophysical
Journal, 1995, 453:433–55.

[105] T. H. Hankins, J. S. Kern, J. C.Weatherall, and J. A. Eilek, Nanosecond radio
bursts from Strong Plasma Tuburlence in the Crab Pulsar, Nature, 2003, 422:141.

122



References

[106] J. A. Eilek, T. H. Hankins, What makes the Crab pulsar shine?, 2007,
ArXiv:0710.1891v1 [astro-ph].

[107] T. H. Hankins, J. A. Eilek, Radio Emission Signatures in the Crab Pulsar,
2007, ArXiv:astro-ph/0701252v1.

[108] H. Ardavan, A. Ardavan, J. Singleton, J. Fasel, W. Junor, J. Middleditch, M. R.
Perez, A. Schmidt, P. Sengupta, P. Volegov, Comparison of multiwavelength
observations of 9 broad-band pulsars with the spectrum from an extended current
with a superluminally rotating distribution, 2009, ArXiv:0908.1349v1 [astro-ph].

[109] The VERITAS Collaboration, Detection of Pulsed Gamma Rays Above 100
GeV from the Crab Pulsar, Science, 2011, 334:69–72.

[110] A. Ardavan, H. Ardavan, J. Fasel, J. Middleditch, M. R. Perez, A. Schmidt,
J. Singleton, A new mechanism for generating pulsar-like polarization, in pro-
ceedings of Polarimetry days in Rome: Crab status, theory and prospects, 2009,
Proceedings of Science (CRAB2008)016, http://pos.sissa.it.

123


	University of New Mexico
	UNM Digital Repository
	1-30-2013

	Terrestrial and extraterrestrial radiation sources that move faster than light
	Andrea Caroline Schmidt Zweifel
	Recommended Citation


	Sources that Travel Faster than their Emitted Waves – An Introduction
	Constant Motion
	On Acceleration and ``Sonic Booms''
	Faster than Light
	Maxwell's Equations: A Tale of Two Fields
	Ampère's Missing Term

	Practical Superluminal Antennae
	Some Organizational Remarks

	Mathematical Treatment I: A Huyghens Analysis
	Point-Charges Subject to Linear Acceleration: (More than) an Introductory Case
	Anatomy of a Charge in Superluminal Rotation
	Temporal Focusing and the ``Electromagnetic Boom''

	Potentials, Fields and How to Treat Them
	Radiation That Stays Focused in the Far Field – An Intuitive Argument
	Derivation of the Fields via the Inhomogeneous Wave Equation
	Derivation of the Fields via the Retarded Potentials
	In the Lorenz Gauge
	The Classical Expression for the Retarded Potential


	Mathematical Treatment II:Liénard-Wiechert Potentials and Fields
	Liénard and Wiechert's formulae for a Charge Moving Arbitrarily Fast
	The Relation between Emission and Observer Time: An Old Problem Revisited
	An Iterative Solution to Kepler's Equation

	Discussion of Results
	Listing of Algorithms

	Conclusions and Future Studies
	The Superluminal Model of Pulsar Emission
	Pulsars 101
	The Discovery of Pulsars
	The Physics of Neutron Stars

	The Model
	Introduction
	Light Curve and Polarization
	Spectral Features


	References

