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Abstract

We examine the algebraic structure of closure, semiprime and prime operations on

submonoids of N0. We find that the closure operations under composition do not

form a submonoid under composition. We also describe all the semiprime operations

on N0 and show that they are a submonoid.

We investigate the relations among the semiprime operations on ideals of the sub-

semi-group (2, 3) and define which of these operations may form a monoid or a left

act under composition.

We also consider the algebraic structure of monoids with multiple maximal ideals

and generalize these results to higher dimensions.
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Chapter 1

Introduction

1.1 General Direction

In the following pages we will “translate” and explore some results from [13] on

the structure of closure operations in a commutative ring in the new context of a

monoid. We will investigate which theorems have analogs in this new realm and what

structure gets preserved upon switching to this new sphere. In the next section we

will review the pertinent mathematical definitions and concepts, but for now we note

that the definition of a monoid involves fewer requirements than that of a ring, i.e.,

it has less structure, in a way. Somewhat counterintuitively, this actually expands

our field of applicability, since having less rules gives us more “elbow room”. Just as

studying, say, anyone who ever lived in New Mexico gives us a greater range of data

to work with than setting our rules for subjects to those currently alive who live in

the Heights, so here also constraining our field of study to monoids will expand the

results to more mathematical objects.
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Chapter 1. Introduction

1.2 Definitions and Concepts

Abstract or Modern Algebra often starts by taking the familiar properties of some set

of numbers such as the integers and “abstracting” the rules that govern manipulating

those numbers into a structure that can be applied to any sets sharing those numbers’

properties. In the definition of a ring, some of the properties of integers become the

axioms which define the new mathematical object. Thus a ring is based on an

abstraction of the properties which apply to the integers. Formally, we recall from

[2] that a ring is a nonempty set R along with 2 operations, + and · and which has

the following properties for + :

closure : for a, b ∈ R, a+ b ∈ R

commutative : a+ b = b+ a for a, b ∈ R

associative : (a+ b) + c = a+ (b+ c) for a, b, c ∈ R

identity there exists an element 0 such that 0 + a = a for a ∈ R

inverse for every a ∈ R, there exists an element b ∈ R such that a+ b = 0.

and these properties for · :

closure : a · b =∈ R for a, b ∈ R

associative : a · (b · c) = (a · b) · c for a, b ∈ R

along with a distributive property:

a · (b+ c) = a · b+ a · c and (b+ c) · a = (b · a) + (c · a) for a, b, c ∈ R.

This base definition is then tweaked to generate different types of rings: the integers

themselves are an example of a commutative ring with unit (the base definition does

not require that the operation of multiplication be commutative, or specify that

there is an element such that 1 · a = a = a · 1, though it is common to assume that

2



Chapter 1. Introduction

rings have a unit in general). Mathematical results are computed directly using the

abstract structure; the integers may be brought out for concrete examples.

I is a subring of R if I is a subset of R in which the operations“·” and “+” are just

those of R applied to the elements of I.

Ideals may be thought of as infinite packets or classes of numbers. Following [7], [2],

we define an an ideal (in a commutative ring) as a nonempty subset I of a ring R

such that:

(a) I is a subring of R

(b) For any element “r” in R and element “a” in I, the products “ra” and “ar” are

also in I.

Thus, an example of an ideal would be the set {· · · − 4,−2, 0, 2, 4, . . .} = I, in the

integers where we see that any member of I times any integer gives another member

of I.

A group may be thought of as a generalization of the rules for the set of integers,

only allowing one operation, +. Here is the abstract definition [7], [2]:

A group is a non-empty set G together with an operation ∗ for which the following

exist:

(a) Closure : For a, b in G, a ∗ b is also in G.

(b) Associativity : For a, b, c in G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(c) Identity : There is an element e in G such that for every a in G,

a ∗ e = e ∗ a = a.

(d) Inverse : For every a in G, there is an element b in G such that

a ∗ b = b ∗ a = e.

In the integers, the additive identity is 0, and the inverse of any integer a

3



Chapter 1. Introduction

will be −a.

If we delete some of these properties, we obtain different sets of algebraic structures

based on generalizations of different sets of numbers. Thus a set G that has only

closure is called an algebraic structure with binary operation; if G has closure and

associativity it is a semi-group (a generalization of the natural numbers, N), and if

G has closure, associativity and an identity element it is a monoid (a generalization

of the natural numbers plus the number zero, denoted N0).

Our focus is on the monoid, whose stand-in will be N0 with the operation of addition.

Since our operation is +, the ideals (defined later) will be sets such as {2, 3, 4, . . .}

for the ideal < 2 > .

A submonoid will be a subset of a monoid in which the operation + will be that of

the monoid applied to the subset.

In this exploration we will also use the concept of an action. A group action of a

group G on a set A is a map that takes a pair of elements (one each from the group

G and the set A) and combines them using the rules for operations in G to obtain a

new element in the set A. In symbols we write G×A −→ A and write g · a to mean

that a specific element from G is acting on an element from A, where the new element

will be some a in A. This map is defined to have the following properties:

(i) g1 ·(g2 ·a) = (g1g2)·(a) , where on the right hand side of this equation g1g2 combine

to form a new element of G which in turn acts on an element of A to produce another

element in A , and on the left hand side of the equation g2 · a yields an element in A

which is acted on by g1 to produce another element in A.

(ii) 1 · a = a

The concept of an action is often useful for gaining additional information about a

given group and set by observing the way the action of the group on the set gets

carried out. In the above discussion we have actually described a left action, since

4



Chapter 1. Introduction

the group elements appear on the left. A right group action may be defined similarly

but with the group elements appearing on the right.

There exists a generalization of this notion of the action of a group on a set in the

monoid setting, where instead of a group acting on a set we have an act of a monoid

on the set. In our setting we will thus refer to left or right acts of monoids on

sets.

1.3 Background/History

In the mid 1800’s Kummer created a new kind of number, the ideal number, to

allow extending the Fundamental Theorem of Arithmetic (that every integer greater

than 1 may be uniquely factored as a product of primes) to certain types of rings.

this was made necessary as part of his attempt to solve Fermat’s ”Last Theorem”

(xn + yn = zn is impossible for rational integers x, y, z if n > 2, n an integer). [1]

[p. 473] Dedekind built on this concept to develop his ideals, which we have defined

heuristically above. Krull [9] published the classic Idealtheorie in 1935, in which he

developed the main abstract properties of ideals still used today. With the work

of Wolfgang Krull and Emmy Noether (around 1930), the general ideal theory of

commutative rings became an autonomous theory.[5] [p. iii]

The results we will be re-interpreting in the sphere of monoids involve the structure

of closure operations (to be defined) on the set of ideals of a ring, which build on

the properties first defined by Krull and later expanded on by Sakuma [11], Kirby

[8], Heinzer, Ratliff, and Rush [6], and continued in papers such as those by Elliott

[3].

5



Chapter 1. Introduction

1.4 Goals/Purpose

We will define and explore the structure on the set of closure operations on the ideals

of the monoid defined by the natural numbers along with the identity zero, taking

the results of [13] as a starting point. We will find out which theorems hold and

examine whether the (potential) invariability of results can be predicted. We will

also explore whether there are additional results that hold for monoids that weren’t

true in the arena of rings.

6



Chapter 2

Basics and closure operations on

N0

A semigroup is a S set together with an associative binary operation. A monoid is

a semigroup with an identity element. We will denote the monoid of the natural

numbers with zero (and the binary operation addition), as N0 = N ∪ {0}. An ideal

in N0 will be defined as < i >= {i+ a | i ∈ N, a ∈ N0, i fixed}.

Let I = {< i >⊆ N0 | < i > is an ideal of N0} and let MI = {f : I → I }. The

set MI together with the binary operation of function composition and the identity

map e : I → I is a monoid since function composition is associative.

CN0 ⊆MI will be the set of closure operations in MI , where a closure map fc ∈ CN0

such that fc(< i >) 7→< i > has the following properties:

(a) < i >⊆ fc(< i >)

(b) If < i >⊆< j >, then fc(< i >) ⊆ fc(< j >)

(c) fc ◦ fc = fc.

SN0 , the set of semiprime operations in N0, satisfies (a)-(c) and also:

7



Chapter 2. Basics and closure operations on N0

(d) fc(< i >) + fc(< j >) ⊆ fc(< i+ j >).

PN0 , the set of prime operations in N0, satisfies (a)-(d) and also:

(e) fc(< b > + < i >) =< b > +fc(< i >), ∀ b ∈ N0.

Proposition 2.0.1 CN0, SN0 and PN0 are partially ordered sets where the partial

ordering is defined as f ≤ g if f(I) ⊆ g(I) for every I.

Proof :

fc(I) ⊆ fc(I), so that fc ≤ fc and the operations are reflexive.

The closure operations are antisymmetric since if fc ≤ gc and gc ≤ fc then fc = gc,

and the operations are transitive since if fc ≤ gc and gc ≤ hc, then fc ≤ hc, therefore,

CN0 , SN0 and PN0 are partially ordered sets. �

Definition 2.0.2 A closure operation f is bounded on a numerical semigroup S if

there is a proper ideal I such that for every ideal J ⊆ I, f(J) = I. If this does not

hold, then f is unbounded.

Proposition 2.0.3 Under composition, (CN0 , ◦) is not a submonoid.

Proof :

Let fn : I → I and gn : I → I be defined as follows:

fn(< i >) =

 < i > if i ≤ n

< n > if i > n

gm(< i >) =

 N0 if i ≤ m

< m > if i > m

and fn(< 0 >) =< 0 >= gm(< 0 >).

We want to show that property (c) does not hold, i.e.,

fc ◦ fc 6= fc, i.e., (fn ◦ gm) ◦ (fn ◦ gm)(< i >) 6= (fn ◦ gm)(< i >)

8



Chapter 2. Basics and closure operations on N0

Letting m > n, we have that:

fn ◦ gm(< i >) =

 N0 if i ≤ m

< m > if i > m

Thus,

(fn◦gm)◦(fn◦gm)(< i >) =

 (fn ◦ gm)(N0) = fn(N0) = N0 if i ≤ m

(fn ◦ gm)(< n >) = fn(N0) = N0 if i > m (5)

In equation (5) we did not get < n >, so that we have now shown that fc ◦ fc 6= fc.

Thus (CN0 , ◦) is not a submonoid, since property (c) does not hold. �

We next look at whether SN0 and PN0 (the sets of semiprime and prime operations of

MI ) are submonoids under composition. We will see that SN0 is a submonoid and

that PN0 is {e} (the trivial submonoid of MI ).

Proposition 2.0.4 For the monoid N0 (whose maximal ideal is < 1 >), the set of

semiprime operations SN0 may be expressed as the submonoid

M0 = {e} ∪ {fm ∈MI }

Where

fm(< i >) =

 < i > if 0 ≤ i < m

< m > if i ≥ m

We can get a similar proposition for N0∪{∞} if we use the following definition from

[10].

Definition 2.0.5 Let S be a monoid, and A be any set. Then A is a left (right)

S-act if there is a map δ : S × A −→ A (δ : A× S −→ A) such that

δ(st, a) = δ(s, δ(t, a)) (δ(a, st) = δ(δ(a, s), t))) for every a ∈ A

and for every s, t ∈ S. δ(e, a) = a (δ(a, e) = a).

In N0, e is the identity map where e : I −→ I such that e(< i >) =< i >.

9



Chapter 2. Basics and closure operations on N0

Proposition 2.0.6 For the monoid N0 ∪ {∞}, 0 is the identity element and ∞ is

an analog to the zero element since a +∞ = ∞ for every a ∈ N0. SN0∪{∞} may be

decomposed into the union of two submonoids, but SN0∪{∞} is not a submonoid under

composition.

M0 = {e} ∪ {fm ∈MI }

Where

fm(Pi) =

 Pi if 0 ≤ i < m

Pm if i ≥ m
and f(<∞ >) =<∞ >

Mf = {e} ∪ {gm ∈MI }

Where

gm(< i >) =

 Pi if 0 ≤ i < m

Pm if i ≥ m
and g(<∞ >) =< m >

Before proving these propositions, we will prove some lemmas which will be used in

the proof.

Lemma 2.0.7 Let fc be a semiprime operation on N0. If fc is constant for < i >

on a finite interval m ≤ i ≤ n for m < n, then there exists a j ≤ m such that

fc(< i >) =< j > for every i ≥ j.

Proof : Suppose that fc is constant for < i >, where m ≤ i ≤ n and m < n. Suppose

also that fc(< i >) = < j >. Then, using the closure property fc ◦ fc = fc, we

have

< j >= fc(< i >)

⇒ fc(< j >) = fc(fc(< i >)) = fc(< i >)

⇒ fc(< j >) =< j >

10



Chapter 2. Basics and closure operations on N0

and because j ≤ m, then

< m >⊆ fc(< m >) =< j > .

Since the ideals of N0 are totally ordered and since fc is a closure operation we have

fc(< i >) ⊆ fc(< j >) for < i >⊆< j > by property (b), so that fc is increasing on

the ideals of N0.

We thus know fc(< n >) =< j >. If we can also show that fc(< n+ 1 >) =< j >

then it will follow by induction that fc(< n >) =< j > for every i ≥ j.

Since fc is increasing,

fc(< n+ 1 >) =< k >⊆ fc(< j >) =< j >, j ≤ k ≤ n+ 1.

We may apply fc to both sides of

fc(< n+ 1 >) =< k >

and get

fc(fc(< n+ 1 >)) = fc(< k >) =< k >⊆ fc(< j >) =< j > .

Since

fc(fc(< n+ 1 >)) = fc(< n+ 1 >),

we then either have that

fc(< n+ 1 >) =< j > or fc(< n+ 1 >) =< n+ 1 > .

Suppose that fc(< n+ 1 >) =< n+ 1 >. Since fc is a semiprime operation,

fc(< i >) + fc(< k >) ⊂ fc(< i+ k >) ∀ i, k ∈ N0.

So,

fc(< 1 >) + fc(< n >) = fc(< n+ 1 >)

11



Chapter 2. Basics and closure operations on N0

and since we have j < n, then j + 1 < n+ 1, so that

< n+ 1 >*< j + 1 >

and thus

< j + 1 >⊆ fc(< 1 >) + fc(< n >) ⊂ fc(< n+ 1 >) =< n+ 1 >⊂< j + 1 >⇒

< n+ 1 >⊂< j + 1 > and < n+ 1 >⊇< j + 1 >,

a contradiction. Thus, fc(< n + 1 >) 6= < n + 1 >, so that fc(< n + 1 >) = < j >.

�

We will show that Mf is a left M0-act but not a right M0-act under composition in

Lemma 2.0.8 and Lemma 2.0.9, respectively.

Lemma 2.0.8 Mf is a left M0-act under composition.

Proof :

Applying Definition 2.0.4, we have δ : M0 ×Mf −→ Mf such that δ(fm ◦ fn, gl) =

δ(fm, δ(fn, gl)). Note that

fm(fn(gl(∞)) = fm(fn(< l >)) = gmin{m,n,l}

under the definition of an act, so that

δ(fm ◦ fn, gl) = δ(fmin{m,n}, gl) = gmin{m,n,l} and

δ(fm, δ(fn, gl)) = δ(fm, gmin{n,l}) = gmin{m,n,l}.

Thus, δ(fm ◦ fn, gl) = δ(fm, δ(fn, gl)) and hence Mf is a left M0-act under composi-

tion. �

Lemma 2.0.9 Mf is not a right M0-act under composition.

12



Chapter 2. Basics and closure operations on N0

Proof :

For Mf to be a right M0-act, we would need to have:

δ : Mf ×M0 −→Mf such that δ(gl, fm ◦ fn) = δ(δ(gl, fm), fn).

But, since fn(<∞ >) =∞ 6= min(n,∞), we get:

δ(gl, fm ◦ fn) = δ(gl, f∞ or min{m,n}) 6= gmin{l,m,n}.

That is, since fn(<∞ >) =∞ 6= min{n,∞}, we don’t necessarily get the

min{l,m, n} as the min{m,n} could be “buried” by ∞ as follows:

For n < m < l,

gl(fm(fn(<∞ >))) = gl(fm(<∞ >)) = gl(<∞ >) =< l > 6= min{l,m, n}.�

For case II, the above holds, and also

fc(<∞ >) ⊆
⋂
i≥0

fc(< i >) =< m > .

Thus, fc(< ∞ >) = < ∞ > or fc(< ∞ >) = < m > since fc(< n >) = < m >

for n ≥ m. So, fc = fm or fc = gm as stated in case II of Proposition 2.0.3.

fc(<∞ >) ⊆ fc(< i >) =< i > for i ≥ 0.

Then fc(< ∞ >) ⊆ ∩i≥0fc(< i >) = < ∞ > so that fc must be the identity map

(case I), or the sets M0,Mf in SN0∪{∞} (case II) are submonoids of MI .

Proof of Proposition 2.0.4 and 2.0.6:

This proof will cover both N0 and N0 ∪ {∞}.

By Lemma 2.0.7, for any semiprime operation fc on N0 or N0∪{∞} which is constant

on some finite interval,

fc(< i >) =< m > for every i ≥ m, for some m.

13



Chapter 2. Basics and closure operations on N0

Now, we will show that fc(< i >) =< i > for i ≤ m.

Suppose, on the contrary, that fc(< i >) = < k > for some k ≤ i (we must have

k ≤ i since fc is increasing). Then for k ≤ j ≤ i,

fc(< i >) =< k > (by hypothesis)

fc(fc(< i >)) = fc(< k >) (applying fc to both sides)

fc(< i >) = fc(< k >) (by closure properties, fc ◦ fc = fc)

< k >= fc(< k >)

So, < k >= fc(< k >) ⊇ fc(< j >) ⊇ fc(< i >) =< k > If k < i, then k < m also,

and Lemma 2.0.7 implies that fc(< i >) =< k > on the interval i ≥ k.

This contradicts fc(< i >) =< m > (for i ≥ m, shown earlier). Thus,

fc(< i >) =< i > for i ≤ m, after all.

So, now we will have

fm(< i >) =

 < i > if 0 ≤ i < m

< m > if i ≥ m

Now, we take a semiprime operation fc which is not constant for every interval

m ≤ i ≤ n, where m < n. Suppose that fc(< i >) = k for k < i.

Then < k > = fc(< k >) ⊇ fc(< j >) ⊇ fc(< i >) = < k > for every k ≤ j ≤ i,

which contradicts fc not being constant on any interval.

Therefore, fc(< i >) =< i > so that fc must be the identity map.

Since fm ◦ fn = fmin{m,n} and gm ◦ gn = gmin{m,n} we have closure on SN0 , so that the

set M0 of semiprime operations in SN0

As shown earlier, in case II Mf is a left act but not a right act under composition,

and gm ◦ fn is not a closure operation. So, SN0∪{∞} = M0 ∪Mf is not a submonoid

under composition.

14



Chapter 2. Basics and closure operations on N0

In case II, n ≥ 0,Mn = {e} ∪ {fn} ∪ {gn} are finite submonoids of MI in SN0∪{∞}

∀n ≥ 0, so that M0 and Mf are related. �

Proposition 2.0.10 The only element of PN0 or of PN0∪{∞} is the identity element

{e}, where e : I ⇒ I such that e(< i >) =< i >.

Proof :

Let fc be fm where

fm(< i >) =

 < i > if i < m

< m > if i ≥ m

< b > + fm(< m >) =< b > + < m > 6=< m >= fm(< b+m >)

which contradicts fm being prime, since then we would have

< b > + fm(< m >) 6= fm(< b+m >)

(instead of < b > + fm(< m >) = fm(< b+m >), as the definition requires). Thus,

the only element of PN0 or PN0∪{∞} is {e}. �
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Chapter 3

Sub-semi-groups of N0

We now consider the sub-semi-group S, where S = (2, 3) = {2 · i+3 · j | i, j ∈ N0}.

Here i and j indicate how many copies of 2 and 3 to take in forming each element

of S. Multiplying the element 2 by a given i ∈ N0 is then analogous to raising the

number 2 by a power, so that multiplication is a version of exponentiation in the

monoids formed by ( N0,+ ) and its sub-semi-groups. S then includes the additive

identity, zero, as the result of adding zero copies of the integers 2 and 3. Thus we

get S = {0, 2, 3, 4, 5, . . .}.

Following Gilmer [4], the sum A+B of 2 nonempty subsets of a sub-semi-group will

be defined as {a+ b | a ∈ A, b ∈ B}

We will use the symbol <> to indicate an ideal, so that < 2, 3 > is the ideal generated

by the elements 2 and 3, thus < 2, 3 > is the set obtained by adding 2 to each element

of S and then adding 3 to each element of S.

A principal ideal is one which is generated by a single element of S. In this case, a

given principal ideal will consist of a single fixed element i of S together with the

elements created by summing i with each element of S in turn, or:

16
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< i >= {i+ s | s ∈ S; i ∈ N; i ≥ 2, i fixed }

The non-principal or two-generated ideals are defined as:

< i, j >= {n | n = i+ s or n = j + s, s ∈ S; i, j ∈ N; i ≥ 2, j > i, i fixed }

Now, if j ≥ i+ 2, the element j will already be included in the set generated by the

ideal < i >, as we obtain it when i gets to the element i + (j − i) as i is added to

each element of S in turn, since S includes all the consecutive numbers after i + 2.

Thus < i, j > = < i > for j ≥ i+ 2.

For example, < 6, 8 >= {6, 8, 9, 10, . . .} and < 6 >= {6, 8, 9, 10, . . .},

so that < 6, 8 >=< 6 >.

Hence, the only two-generated non-principal ideals will be of the form

< i, i+ 1 >= {i, i+ 1, i+ 2, . . . }. For example, < 6, 7 >= {6, 7, 8, . . .}

or of the form

< i >= {i, i+ 2, i+ 3, . . .}. For example, < 8 >= {8, 10, 11, 12, . . .}

Note that < i, i + 1 > gives the consecutive integers starting with i, whereas < i >

gives the consecutive integers with the element i+ 1 deleted.

We have just shown the following proposition:

Proposition 3.0.11 Every ideal of S = (2, 3) can be expressed either as a principal

ideal, < i >, or as a two-generated ideal of the form < i, i+ 1 > .

We may form an infinite chain with these ideals, where each ideal is contained in the

ideal to its left, as indicated in figure 3.1.

17
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Figure 3.1:

In the following discussion, we will abbreviate the principal ideal < i > as Pi, and

the two-generated ideal < i, i+ 1 > as Mi. An arbitrary, general ideal of either type

will be denoted as I.

We will now see that a map that sends only one principal ideal to the main line will

not be a semi-prime operation, and that mapping one ideal to the main line will end

up forcing other ideals to be mapped to the main line in order to preserve semi-prime

property (d).

For example, property (d) fui (I)+fui (J) ⊆ fui (I+J) is contradicted in the following

example where fu3 is a map which sends only the ideal < 3 > to the main line, and

maps all other ideals back to themselves:

fu3 (< 3 >) + fu3 (< 4 >) =< 3, 4 > + < 4 >=< 7, 8 >* < 7 >= fu3 (< 7 >) =

fu3 (< 3 > + < 4 >)

In general, we may state the following proposition:

Proposition 3.0.12 For S = (2, 3) = {0, 2, 3, 4, 5, }, the following map defines a

closure operation which is not semi-prime:

fui (I) =

 Mi if I = Pi or Mi

I if I 6= Pi or Mi

i.e., we will show the following statements, which define a closure operation, are

true:

(a) I ⊆ fui (I)

18
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(b) I ⊆ J ⇒ fui (I) ⊆ fui (J)

(c) fui (fui (I)) = fui (I)

but that the property defining the semi-prime operation is not true:

(d) fui (I) + fui (J) ⊆ fui (I + J)

Proof:

(a) I ⊆ fui (I) holds since fui (Pi) = Mi ⊇ Pi and

fui (Mi) = Mi ⊇ Mi

(b) I ⊆ J ⇒ fui (I) ⊆ fui (J) Take Pi ⊆ Mi then fui (Pi) = Mi ⊆ Mi if j = i.

If i > j + 2 then Pi ⊆ Pj so that

fui (I) = Mi ⊆ Mj.

and if I = Mi ⊆ Pj = J , then fui (I) = Mi ⊆ Mj = fui (J), since Pj ⊆ Mj.

(c) fui (fui (I)) = fui (I):

(d) fui (I) + fui (J) * fui (I + J):

fi(Pi) + fi(Pj) = Mi + Pj = Mi+j * Pi+j = fi(Pi+j) = fi(Pi + Pj)

This is true ∀ i, j ∈ N, thus semiprime property (d) fui (I) + fui (J) ⊆ fui (I + J) does

not hold, and the closure operation is not semiprime. �

If we changed this map to one in which all the principal ideals to the right of some

particular principal ideal (on figure 3.1) were to map to the main line, we would then

have a semiprime operation.

For instance,

fu3 (< 3 >) + fu3 (< 4 >) =< 3, 4 > + < 4, 5 >=< 7, 8 >⊆ < 7, 8 >= fu3 (< 7 >) =

fu3 (< 3 > + < 4 >)

In general, we may state:
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Corollary 3.3 The following map defines a semiprime closure operation over S =

{0, 2, 3, ...} for i ≥ 2:

fun (I) =

 I if i < n

Mi if I = Pi or I = Mi and i ≥ n

Where I =< i > or < i, i+ 1 >, and Mi =< i, i+ 1 >.

This map causes an ideal on figure 3.1 to either stay where it is or bump to the

nearest node on the main line. All the principal ideals Pi will bump to the main line

whenever i ≥ n.

Proof: I ⊆ fun (I) since I ⊆ I and < i >⊆< i, i+1 >, so this map is extensive.

For I ⊆ J we need fun (I) ⊆ fun (J) for this map to be increasing. This clearly holds

when the map keeps the ideal at same spot on the chain. Now if both I and J bump

to the main line, we have Pi ⊆ Pj 7−→Mi ⊆Mj

and if only one ideal bumps to the main line, we have

Pi ⊆ Pj 7−→Mi ⊆Mj or Pi ⊆Mj

so this map is increasing.

If we take fun (fun (I)), it will equal fun (I), since once an ideal has bumped to the main

line (which is the only case where it moves) it will stay there when we take fun again

(that is, i ≥ n will still hold once we’ve moved to Mi), so that the operation is

idempotent.

To show that this map is semiprime, we also need fun (I) + fun (J) ⊆ fun (I + J) to be

true. As we can see by generalizing the examples given earlier:

If I and J are Mi and Mj, then property (d) holds trivially.

If I and J are Pi and Pj, then if i, j < n but i+ j > n we will have

fun (Pi) + fun (Pj) = Pi + Pj = Pi+j ⊆Mi+j = fun (Pi+j) = fun (Pi + Pj)
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If I and J are Pi and Pj, and if i < n but j ≥ n we will have

fun (Pi) + fun (Pj) = Pi +Mj = Mi+j ⊆Mi+j = fun (Pi+j) = fun (Pi + Pj)

The inclusion holds similarly if one ideal is principal and the other a main line

ideal.

Thus the map fun (I) given above is indeed a semiprime operation. �

In the next 4 lemmas, we will look at 4 mappings that will force our closure operation

to be a bounded closure operation.

First we show that any semiprime map which moves a main line ideal 2 or more slots

to the left on figure 3.1 must be a bounded semiprime map:

Lemma 3.0.13 If f b is a operation on S such that

f b(Mi+2) = Mi

then f b is a bounded semiprime operation.

Proof: By the properties of closure operations, we have

I ⊆ J ⇒ f b(I) ⊆ f b(J) and f b(f b(I)) = f b(I), thus since

Mi+2 ⊆ Mi+1 ⊆ Mi we must also have

f b(Mi+2) ⊆ f b(Mi+1) ⊆ f b(Mi).

But f b(Mi+2) = Mi , so that f b(Mi) = f b(f b(Mi+2)) = Mi, and thus

Mi = f b(Mi+2) ⊆ f b(Mi+1) ⊆ f b(Mi) = Mi,

so that f b of any of these ideals must be Mi.

In general, we would expect that f b(Mi+m) = Mi, and we will show by induction

that this is true: Suppose that f b(Mi+k) = Mi. We want to show that f b(Mi+k+1) =

Mi.

Now P2 +Mi+m−1 =< 2 > + < i+m− 1, i+m >
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= {2, 4, 5, ...}+ {i+m− 1, i+m, i+m+ 1, ...}

= {i+m+ 1, i+m+ 2, i+m+ 3, ...}

= Mi+m+1.

So Mi+m+1 = P2 +Mi+m−1.

Thus f b(Mi+m+1) ⊇ f b(P2 + Mi+m−1) ⊇ f b(P2) + f b(Mi+m−1) (since we are deal-

ing with a semiprime operation) and then f b(P2) ⊇ P2 by definition of a closure

operation.

We thus obtain the chain

f b(Mi+m+1) ⊇ P2 + f b(Mi+m−1) ⊇ P2 + f b(Mi+k) = Mi+2 ⊇Mi+m+1.

If we apply f b to the above chain, we get

f b(Mi+m+1) ⊇ f b(Mi+2) = Mi ⊇ f b(Mi+m+1),

and since the left and right entries of the last chain are equal,

f b(Mi+m+1) = Mi.

Therefore the semiprime operation f b on S where f b(Mi+2) = Mi is a bounded

semiprime operation, as Mi provides a bounds for f b. �

We now show that if 2 main line ideals that are 2 or more slots apart map to the

same ideal, then f b is a bounded semiprime operation.

Lemma 3.0.14 If f b is a semiprime operation on S = {0, 2, 3, ...} and f b(Mi) =

f b(Mi+2) for some i, then f b is a bounded semiprime operation.

Proof We will have 2 cases:

(1) f b(Mi) = Mk where k ≤ i, or

(2) f b(Mi) = Pk, where k ≤ i− 2
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Case (1): Mk = f b(Mk) ⊇ f b(Mk+1) ⊇ f b(Mk+2) ⊇ f b(Mi+2) = Mk, and then f b is

bounded by Lemma 3.0.4.

Case (2): f b(Mi) = Pk, k ≤ i − 2. Here it suffices to show that for I ⊆ Pk,

f b(I) = Pk.

Now Pk ⊇ I ⊇ Mi+2, thus f b(Pk) ⊇ f b(I) ⊇ f b(Mi+2) and since f b(Pk) = f b(Mi),

then f b(Mi) = f b(Mi+2), so Pk = f b(Mi) = f b(Mi+2) = f b(I).

We will show by induction that f b(Mi+m) = Pk for m ≥ 2:

Suppose that f b(Mi+j) = Pk for 2 ≤ j ≤ m.

Since Mi+m+1 = P2 +Mi+m−1, we have

f b(Mi+m+1) = f b(P2) + f b(Mi+m−1) ⊇ Pk+2 ⊇Mi+m+1 (1)

Now Mi+2 ⊆ Pk+2 ⊆ Pk, so f b(Pk+2) = Pk, so when we take f b of chain (1), we get

that f b(Mi+m+1) = Pk.

Thus f b(Mi+n) = Pk for n ≥ 0.

Also, Mk+n ⊇ Pk+n ⊇Mk+n+2. If we apply f b to this chain, we get

f b(Mk+n) ⊇ f b(Pk+n) ⊇ f b(Mk+n+2),

and since f b(Mk+n) = Pk for every n ≥ 2, this chain becomes Pk ⊇ f b(Pk+n) ⊇ Pk,

so that f b(Pk+n) = Pk.

Thus for I ⊆ Pk, f
b(I) = Pk and f b is bounded. So the map f b where f b(Mi) =

f b(Mi+2) provides a bounded semiprime operation. �

The following defines another bounded semiprime operation:

Lemma 3.0.15 If f b is a semiprime operation on S = {0, 2, 3, 4, ...} and f b(Mj) =

f b(Mj+1) for some j, then f b is a bounded semiprime operation.

Proof
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We will have 2 cases:

(1) f b(Mi) = Mj where j ≤ i, or

(2) f b(Mi) = Pj, where j ≤ i− 2

Case (1): If we take j ≥ 2 and let f b(Mj) = S, then f b(M2j) = f b(Mj +Mj),

since Mj +Mj =< j, j + 1 > + < j, j + 1 >

= {j, j + 1, j + 2, ...}+ {j, j + 1, j + 2, ...}

= {j + j, j + j + 1, j + j + 2, ...}

=< 2j, 2j + 1 >.

= 2 < j, j + 1 >

= 2Mj = M2j.

So f b(M2j) = f b(2Mj) ⊇ 2f b(Mj) = 2S = S.

Now Mj ⊇Mj+2 ⊇M2j, so f b(Mj) ⊇ f b(Mj+2) ⊇ f(M2j), and since

f b(Mj) = S and f b(M2j) = S, this implies that f b(Mj) = f b(Mj+2), and thus f b is

bounded by lemma 3.0.5.

For case (2), Mj−1 ⊇Mj

so f b(Mj−1) ⊇ f b(Mj) = Pj−2

and f b(Mj−1) ⊇Mj−1.

Thus f b(Mj−1) ⊇ Pj−1 ∪Mj−1 = Mj−2 ⊇Mj−1

so that f b(Mj−1) = f b(Mj−2).

Now If f b(Mj−2) = Mj−2, f b will be bounded from the result of case (1). If not, then

we have

f b(Mj−2) = f b(Mj−1) = Pj−4.
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Now P2j−8 = f b2(Mj−1) ⊆ f b(M2j−2) ⊆ f b(M2j−4) ⊆ f b(P2j−8). (5)

After applying f b to chain (5), we get

f b(M2j−2) = f b(M2j−4)

and f b is then bounded by Lemma 3.0.14. Since f b is bounded in each case, f b is

therefore a bounded semiprime operation. �

Lemma 3.0.16 If f b is a semiprime operation on S = {0, 2, 3, ...} such that

f b(Mj) = f b(Pj−2), for j ≥ 4, then f b is a bounded semiprime operation.

Proof By the same reasoning used in Lemma 3.0.15,

f b(Mj) = f b(Pj−2) will imply that

f b(Mj−1) = f b(Mj−2), so that f b is bounded by Lemma 3.0.15. �

We will now define the unbounded semiprime operations over S = {0, 2, 3, ...}.

Theorem 3.0.17 If f is an unbounded semiprime operation over S = {0, 2, 3, 4, ...}

and I =< i > or < i, i+ 1 >, then the function may be either the identity operation

or we may have one of the following cases:

fun (I) =

 I if i < n

Mi if I = Pi or I = Mi and i ≥ n

gun(I) =

 I if i ≤ n+ 1 and i 6= n

Mi if I = Pi or I = Mi and i ≥ n or i ≥ n+ 2

That is, all the ideals below a given n map to themselves, and the principal ideals

contained in Pn will map to the main line. The fun function will map Pn+1 to Mn+1,

whereas the gun function will map Pn+1 to itself, so that the functions only differ in

where they map Pn+1.

Proof: Suppose fun is an unbounded semiprime operation over S = {0, 2, 3, 4, ...}

which is not the identity function. Then fun (I) 6= I for some I. If I = Mj for some
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j ≥ 2 , then by Lemma 3.0.14, fun would be bounded, contradicting our assumption

that f was unbounded, so I must be a principal ideal.

If fun (Pk) = fun (Pk+2) for some k, then fun (Pk) = fun (Mk+2) = fun (Pk+2) and fun is

bounded by Lemma 3.0.16, and we have a contradiction again, so that this is not

allowed, either.

If fun (Pk) = fun (Mk−1) for some k, then fun (Pk) = fun (Mk) = fun (Mk−1), which is

bounded by Lemma 3.0.15.

Thus fun (Pk) = Mk.

Let W = {k | fun (Pk) = Mk for some k ≥ 2}. Since W is a nonempty subset of

N, there exists a smallest j ≥ 2 in W . Since Pn = Pj + Pn−j, for every n ≥ j + 2,

then

fun (Pn) ⊇ fun (Pj) + fun (Pn−j) ⊇Mj + Pn−j = Mn ⊇ Pn. (1)

If we take fun of chain (1), we get

fun (Pn) ⊇ fun (Pj) + fun (Pn−j) ⊇ fun (Mj) + fun (Pn−j) = fun (Mn) ⊇ fun (Pn).

And this implies that fun (Pn) = Mn for every n = j or n ≥ j + 2.

For n = k+1 we have two possible mappings and thus obtain the two functions listed

above, since Pn+1 may map to itself (as it does with gun) or Pn+1 may map to Mn+1

(as it does with fun ). The following diagram illustrates these possibilities:
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Figure 3.2:

Thus all unbounded semiprime operations must take one of the forms in the diagram

or be the identity function. �

Theorem 3.0.18 All of the bounded semiprime operations on S = {0, 2, 3, 4, ...} are

of one of the following forms (where I =< i > or < i, i+ 1 >):

f bm(I) =



Pm if I ⊆ Pm

Mm if I = Pm+1 or I = Mm+1

Mm−1 if I = Pm−1

I if I ⊇ Pm

f bn,m(I) =



Mm if I ⊆Mm

Mi if I ⊆Mn

I if I +Mn
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If n < m− 2 we will have:

gbn,m(I) =



Mm if I ⊆Mm

Mn+1 if I = Pn+1

Mi if I ⊆Mn and I 6= Pn+1

I if I *Mn

f̃ bn,m(I) =



Mm if I ⊆Mm

Mm−2 if I = Mm−1 or I = Pm−1 or I = Pm−2

Mi if I ⊆Mn and I *Mm−2

I if I *Mn

For n < m− 3 we will have:
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g̃bn,m(I) =



Mm if I ⊆Mm

Mm−2 if I = Mm−1 or I = Pm−1 or I = Pm−2

Mi if I ⊆Mn and I *Mm−2

Mn+1 if I = Pn+1

Mi if I ⊆Mn and I 6= Pn+1

I if I *Mn

Proof: If f b is a bounded semiprime operation, we must have one of the following

cases:

(1) f bc (I) = Pm for I ⊆ Pm

(2) f bc (I) = Mm for I ⊆Mm

Case (1): In case 1, all ideals contained in Pm are mapped to Pm, and this mapping

preserves the closure and semiprime properties for every I ⊆ Pm. We need to consider

what can happen to the ideals Pm−1,Mm+1, and Pm+1, i.e., what sort of mappings will

still preserve the semiprime properties, since they are not comparable to Pm.

If we let the ideals Pm−1,Mm+1, and Pm+1 just map back to themselves, then we run

into a contradiction with the closure property (b)I ⊆ J ⇒ Ic ⊆ Jc.

For example, if we have Mm+2 ⊆Mm+1 then

f bc (Mm+2) = Pm *Mm+1 = f bc (Mm+1), violating property (b).
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The same problem occurs if we try to map Pm+1 and Pm−1 to themselves, so we need

Pm−1,Mm+1, and Pm+1 to map to some ideal I such that Pm ⊆ I.

If f bc (Mm+1) = Mm, then for Mm+2 ⊆Mm+1 we will get

f bc (Mm+2) = Pm ⊆Mm = f bc (Mm+1),

which preserves property (b).

Then Pm+1 ⊆ Mm+1 must imply f bc (Pm+1) ⊆ f bc (Mm+1), so that f bc (Pm+1) = Mm+1

would work, but then we would have

f bc (f
b
c (Pm+1) = f bc (Mm+1) = Mm 6= Mm+1 = f bc (Pm+1),

contradicting closure property (c) (Ic)c = Ic.

Thus f bc (Pm+1) must be Mm, i.e., mapping Mm+1 to Mm also forces Pm+1 to go to

Mm.

Pm−1 is similarly forced to map to Mm−1, and then for Mm+1 ⊆ Pm−1,

f bc (Mm+1) = Mm ⊆Mm−1 = f bc (Pm−1), so property (b) still holds.

This we must have the ideals incomparable to Pm be mapped as follows:

f bc (Pm−1) = Mm−1, f bc (Mm+1) = Mm, f bc (Pm+1) = Mm.

We then need to see if this mapping also forces any of the ideals lower than Pm−1,

Mm+1, and Pm+1 to map to a new lower ideal, or if the lower ideals have to map

back to themselves.

We already showed that Pm−1 must map to Mm−1, so we need to see if any other

Pm−a also can or need to map to the main line. Suppose f bc (Pm−a) = Mm−a, a < 1.

Then we would have

f bc (Pm−5) + f bc (Pm−2) = Mm * Pm = f bc (Pm−5 + Pm−2),

contradicting the semiprime property. Thus f bc (Pm−a) = Pm−a after all.
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Suppose, for a > 1, we allow f bc (Mm−a) = Mm−a−1. Then we will run into the same

contradiction with the semiprime property. For example,

f bc (Mm−4) + f bc (Mm−3) = Mm−5 +Mm−4 = Mm−2 * f bc (Mm−4 +Mm−3) = f bc (Mm) =

Mm.

So Mm−a must map to itself in order to preserve the semiprime property.

The above results may be summarized in the following diagram:

Figure 3.3:

Case (2) We will now investigate the case where f bc is a bounded semiprime operation

such that f bc (I) = Mm for I ⊆ Mm. In general, we will want to look at any ideals

incomparable to Mm and decide where they need to go to preserve the closure prop-

erties, and then determine the valid mappings for all ideals below those incomparable

to Mm.

In this case all ideals contained in Mm are mapped to Mm, and this mapping preserves

the closure and semiprime properties for every I ⊆Mm. Only Pm−1 is not comparable

to Mm, so we need to examine what mapping of Pm−1 will preserve the semiprime

properties.

If f bc (Pm−1) = Pm−1, then we would contradict closure property (b) I ⊆ J implies

Ic ⊆ Jc, for we could then have Mm+1 ⊆ Pm−1 but then the mapping would give that

f bc (Mm+1) = Mm * Pm+1 = f bc (Pm−1) since Mm and Pm−1 are not comparable.

This may be solved by putting f bc (Pm−1) = Mm−1 or Mm−a, a ≥ 1. We will see which
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cases are valid in the following discussion.

First we will examine where to map M2, and show that f bc (M2) = M2. If f bc (M2) 6=

M2, then it must equal S itself to preserve property (a) I ⊆ Ic.

Suppose f bc (M2) = S. Then

f bc (Mm−2) = f bc (M2) + f bc (Mm−2) ⊆ f bc (M2 +Mm−2) = f bc (Mm) = Mm,

and if we apply f bc to this chain, we get that f bc (Mm−2) ⊆ f bc (Mm). Combining this

with the fact that Mm ⊆ Mm−2 implies that f bc (Mm) ⊆ f bc (Mm−2) we see that the

following equality is true: Mm = f bc (Mm) = f bc (Mm−2). But since Mm−2 * Mm, we

have a contradiction. Thus, f bc (M2) = M2 after all.

Next, we look at the ideals on the main line between Mm−2 and the lowest main line

ideal, M2. We will show that f bc (Mn) = Mn for 2 < n ≤ m − 2. Suppose Mn is

mapped down by at least one slot, i.e. Mn ( f bc (Mn) = I.

Now, Mm = Mn +Mm−n, Pn−2 +Mm−n = Mm−2,Mn−1 +Mm−n = Mm−1

and Mm−1 ⊆Mm−2, so that

Mm−1 ⊆ f bc (Mn)+f bc (Mm−n) ⊆ f bc (Mn+Mm−n) = f bc (Mm) = Mm ⊆Mm−1. Thus we

get once again that Mm = f bc (Mm) = f bc (Mm−1), a contradiction. Hence f bc (Mn) =

Mn for 2 ≤ n ≤ m− 2.

Now we examine where the Pk, 2 ≤ k ≤ m − 2 may map. Pk ⊆ Mk implies that

f bc (Pk) ⊆ f bc (Mk) = Mk, and since Pk ⊆Mk and Mk ⊆Mk, assigning f bc (Pk) to either

Mk or to Pk will satisfy the semiprime properties. Although both of the above as-

signments above are allowed for Pk, 2 ≤ k ≤ m−2, once a given Pk has been mapped

to the main line this will force the Pj for k < j ≤ m− 2 to also map to the main line

to avoid contradicting semiprime property (d). For instance, if f bc (Pm−4) = Mm−4

and f bc (Pm−2) = Pm−2 , then we could get that

f bc (Pm−4) + f bc (Pm−6) = Mm−4 + Mm−6 = Mm−2 * Pm−2 = f bc (Pm−2), a contradic-

tion.
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We now need to examine the mapping possibilities for Pm−1, Pm−2 and Mm−2. If

f bc (Pm−1) = Mm−1, then the above reasoning implies that f bc (Pm−2) = Pm−2 or

f bc (Pm−2) = Mm−2, while f bc (Mm−1) = Mm−1 to preserve property (c) (Ic)c = Ic.

For f bc (Pm−1) = Mm−2, then if f bc (Pm−3) = Pm−3 we would have Pm−1 ⊆ Pm−3 but

that f bc (Pm−1) = Mm−2 * Pm−3 = f bc (Pm−3).

However, f bc (Pm−1) = Mm−2 ⊆ Mm−3 = f bc (Pm−3) is valid, so f bc (Pm−3) = Mm−3 in

this case.

If f bc (Pm−1) = Mm−2 then the semiprime properties are satisfied when f bc (Pm−2) is

equal to either Mm−2 or Pm−2, although, as mentioned before, if some Pk, 2 ≤ k ≤

m − 2 has mapped to the main line, then f bc (Pm−2) must also map to the main

line.

Now f bc (Pm−1) may only be Mm−1 orMm−2, since if f bc (Pm−1) = Pm−3 we could have

that Pm−1 ⊆Mm−2, whereas f bc (Pm−1) = Pm−3 *Mm−2 = f bc (Mm−2).

The above cases are summarized in the following diagrams, in which the thick dotted

lines indicate the cases where the Pk may be assigned to themselves or to Mk (within

the conditions mentioned above). The “fixed n” diagrams demonstrate how once a

given n is chosen, then all the principal ideals contained in Pn and below the bounds

must map to the main line, and that then all ideals to the left of Pn on the lattice

will map to themselves.
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Figure 3.4:
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Figure 3.5:
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We now let Mo = {e} ∪ {fun , gun, f bm, gbm, f bn,m, gbn,m, f̃ bn,m, g̃bn,m}, and consider the

possible compositions that may be formed with functions from this set.

The following compositions show that the subset M1 = {e} ∪ {fun , gun, f bn,m, gbn,m}

will be a monoid under composition.

fun ◦ fup = fup ◦ fun =



fun = fup if n = p

fun if p > n

fup if n > p

gun ◦ gup = gup ◦ gun =



fup if n = p+ 1

gup if n ≥ p+ 2

fun if p = n+ 1

gun if p ≥ p+ 2

f bn,m ◦ f bp,q = f bp,q ◦ f bn,m =



f bp,q p ≤ n , q ≤ m

f bp,m p ≤ n , q ≥ m

f bn,q p ≥ n , q ≤ m

f bn,m p ≥ n , q ≥ m
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gbn,m ◦ gbp,q = gbp,q ◦ gbn,m =



f bn,m n = p− 1 , m ≤ q

f bp,m n = p− 1 , m ≤ q

f bn,q n = p− 1 , m ≥ q

f bp,q n = p− 1 , m ≥ q

gbn,m n ≤ p− 2 , m ≤ q

gbp,m n ≤ p− 2 , m ≤ q

gbn,q n ≤ p− 2 , m ≥ q

gbp,q n ≤ p− 2 , m ≥ q

fun ◦ gup = gup ◦ fun =



fun (= fup ) if n = p

fun n ≤ p+ 1

gup n ≥ p+ 2

fun ◦ f bp,m = f bp,m ◦ fun =


f bn,m n ≤ p

f bp,m n ≥ p
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fun ◦ gbp,m = gbp,m ◦ fun =



f bp.m n = p or n = p+ 1

f bn,m n ≤ p− 1

gbp,m n ≥ p+ 2

gun ◦ f bp,m = f bp,m ◦ gun =


f bn,m n ≤ p

f bp,m n ≥ p

gun ◦ gbp,m = gbp,m ◦ gun =



f bp,m if n = p+ 1

f bn,m if n = p− 1

gbp,m if n = p or n ≥ p+ 2

gbn,m if n = p or n ≤ p− 2
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f bn,m ◦ gbp,q = gbp,q ◦ f bn,m =



f bn,q n ≤ p ,m ≥ q

f bn,m n ≤ p ,m ≤ q

f bp,q n = p+ 1 ,m ≥ q

f bp,m n = p+ 1 ,m ≤ q

gbp,q n ≥ p+ 2 ,m ≥ q

gbp,m n ≥ p+ 2 ,m ≤ q

The following array shows that f bm can be composed with itself:

f bm ◦ f bq = f bq ◦ f bm =



f bm = f bq if m = q

f bn,q (where n = q − 1) if m = q + 1

f bq if m ≥ q + 2

f bn,m (where n = m− 1) if q = m+ 1

f bm if q ≥ m+ 2

However, the function f bm could not be included in the monoid we defined, since it

is possible to take f bm ◦ fun of an ideal and get a function which is not defined as one

our closure operations. The following case provides our counterexample, since the

output function is not a valid closure operation:
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Take n = 7 = m. Then

f b7 ◦ fu7 (< i >) =



< i > i ≤ 5

< 6, 7 > i = 6

< 7, 8 > i = 7 or 8

< 7 > i ≥ 9

f b7 ◦ fu7 (< i, i+ 1 >) =



< i > i ≤ 7

< 7, 8 > i = 8

< 7 > i ≥ 9

But if we form a set whose elements are

{f bm, f bn,m, gbn,m} = S0

We may form a left act of M1 = {e} ∪ {fun , gun, f bn,m, gbn,m} on S0 if we can show

that the composition of any function in M1 with a function from S0 yields another

function in the set S0, and the operation is then closed over the set S0.

We have already shown in the work defining the monoid that the composition of

any function from M1 with f bn,m or gbn,m yields a function from S0, and the following

results show that any function from M1 combined with f bm yields another function

in S0.
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fun ◦ f bm =


f bn,m if n ≤ m

f bm if n > m

gun ◦ f bm =



gbn,m if n ≤ m− 3

f bn,m if n = m− 2

f bn−1,m if n = m

f bm if n = m− 1 or n > m

f bp,q ◦ f bm =



f bp,m if p ≤ m− 1

f bp−1,p if p = m

f bm if p ≥ m+ 1

gbp,q ◦ f bm =



gbp,m p ≤ m− 3

f bp,m p = m− 2

f bp−1,p p = m

f bm p = m− 1 or p ≥ m+ 1
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The function f̃ bn,m could also not been in the monoid, since we may take the compo-

sition of f̃ bn,m with itself and get a non-valid function, as shown below:

f̃ b5,10 ◦ f̃u5,9(< i >) =



< i > i ≤ 4

< 5, 6 > i = 5

< 6, 7 > i = 6

< 7, 8 > i = 7

< 7, 8 > i = 8

< 8, 9 > i ≥ 9

We also similarly get a non-valid function when composing g̃bn,m with itself.

However, if we form a set of the functions {f̃ bn,m, g̃bn,m} = S1, and take the submonoid

{e}∪{fun , gun} = M2, we will get a left act of M2 on S1, as the following compositions

show:

fun ◦ f̃ bp,m = f̃ bp,m ◦ fun =


f̃ bn,m n ≤ p

f̃ bp,m n ≥ p

gun ◦ f̃ bp,m = f̃ bp,m ◦ gun =


f̃ bn,m n ≤ p

f̃ bp,m n ≥ p

42



Chapter 3. Sub-semi-groups of N0

fun ◦ g̃bp,m = g̃bp,m ◦ fun =



f̃ bp.m n = p , n = p+ 1

f̃ bn,m n ≤ p− 1

g̃bp,m n ≥ p+ 2

gun ◦ g̃bp,m = g̃bp,m ◦ gun =



g̃bp.m n = p

f̃ bp,m n = p+ 1

f̃ bn,m n = p− 1

g̃bn,m n ≤ p− 3

g̃bp,m n ≥ p+ 2

We were not able to have a left act of the monoid M1 = {e} ∪ {fun , gun, f bn,m, gbn,m} on

S1 = {f̃ bn,m, g̃bn,m} since when we compose f bn,m with g̃bp,q we get a function not in the

set S1:
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fbn,m ◦ g̃bp,q = g̃bp,q ◦ fbn,m =



g̃bp,m

m = q

m = q − 1

m ≥ q + 3

n ≥ p+ 2

f̃bp,m

m = q

m = q − 1

m ≥ q + 3

n = p+ 1

f̃bn,m

m = q

m = q − 1

m ≥ q + 3

p ≤ 1

g̃bp,q

m = q + 1

or

m = q + 2

n ≥ p+ 2

f̃bp,q

m = q + 1

or

m = q + 2

n = p+ 1

f̃bn,q
m = q + 1 n = p or n = p− 1

m = p+ 2 n = p or n = p− 1

g̃bn,q
m = q + 1

m = q + 2
n ≤ p− 2

gbp,m

m = q − 2

m = q − 3

m = q − 4

n ≥ p+ 2

fbp,m n ≤ q − 2 n = p+ 1

fbn,m
m = q − 2

m = q − 3
n ≤ p

fbn,m m ≤ q − 4
n = p

n = p− 1

gbn,m n ≤ q − 4 n ≤ p− 2
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Since we may expect similar results upon taking f bn,m ◦ f̃ bp,q, g̃bn,m ◦ f bp,q and

gbn,m ◦ g̃bp,q, we would expect to also see a left act of M1 = {e}∪{fun , gun, f bn,m, gbn,m} on

S2 = {f bn,m, gbn,m, f̃ bn,m, g̃bn,m}, although these last 3 compositions have not yet been

tested.

f bm ◦ f̃ bp,q and f bm ◦ g̃bp,q both yield functions which are not valid. Although f̃ bp,q ◦f bm and

g̃bp,q ◦ f bm do yield valid functions, we recall that f̃ bp,q and g̃bp,q could not be composed

with themselves and thus we cannot form a monoid with f̃ bp,q and g̃bp,q, so constructing

a left act in this case is not possible.
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Monoids With Multiple Maximal

Ideals

Consider the monoid N0 × N0 ∪ {∞} with maximal ideals given by < (1, 0) > and

< (0, 1) >. The principal ideals of N0 × N0 correspond to a lattice point (i, j) with

i, j ∈ N0, of N0×N0, and are of the form < (i, j) > which we will denote more simply

as < (i, j) >. Let the semiprime operation fc on the principal ideals in N0×N0∪{∞}

be:

fc(< (i, 0) >) =

 < (i, 0) > for i < m

< (m, 0) > for i ≥ m

fc(< (0, j) >) =

 < (0, j) > for j < n

< (0, n) > for j ≥ n
,

and fc(<∞ >) =< (m,n) >

In this section we will define the operation ∩ on the principal ideals to be such

that

fc(< (i, 0) >) ∩ fc(< (0, j) >) ⊆ fc(< (i, j) >).
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So, for example,

fc(< (4, 0) >) ∩ fc(< (0, 5) >) ⊆ fc(< (4, 5) >).

So, by a bumping up (see Remark 4.0.19 below) process we obtain:

fc(< (i, j) >) =



< (i, n) > for i < m, j ≥ n

< (i, j) > for i < m, j < n

< (m, j) > for i ≥ m, j < n

< (m,n) > for i ≥ m, j ≥ n

Remark 4.0.19 Thus, we have bounds for our ideals. If an ideal is inside the

bounds, it stays where it is. If it is outside of the bounds, it gets bumped up to

the bound, and if the ideal is < ∞ > then it will be bumped up to the lattice point

at the corner of the bounds to the ideal < (m,n) > corresponding to the lattice point

(m,n) in N0 × N0.

For example, if m = 3 and n = 2, in N0 × N0 ∪ {∞} we would have the situation

shown in Figure 4.1.

Here the boxed lattice points represent the identity box, which is the set of all points

(i, j) such that fc(< (i, j) >) =< (i, j) >. Each column of lattice points above n = 2

bumps up (we say “up” since the resulting set is larger) to the first boxed point below

it, as shown by the arrows. Similarly, the lattice points to the right of m = 3 bump

up to the boxed lattice point directly to its left. Then all of the remaining points

(those in the shaded area) bump to the corner lattice point (3, 2).

In the case of N0 × N0 × N0 ∪ {∞}, with maximal ideals < (1, 0, 0) >,< (0, 1, 0) >,
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Figure 4.1:

< (0, 0, 1) > we obtain

fc(< (i, j, k) >) =



< (m,n, r) >

< (i, n, r) >

< (m, j, r) >

< (m,n, k) >

< (i, n, k) >

< (m, j, k) >

< (i, j, r) >

< (i, j, k) >
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by using similar bumping rules to those used in the N0 × N0 ∪ {∞} case. The

corresponding diagram for this case is given in Figure 4.2.

Figure 4.2:

The lattice points outside the box are mapped to the nearest face of the box (as shown

by the arrows) and the remaining lattice points (including < ∞ >) are mapped to

the corner of the box (the point (m,n, r) in Figure 4.2).

4.1 Generalizing to Higher Dimensions

The coproduct of N0 will be the monoid defined by

∐
λ∈Λ

N0 = {φ : Λ −→ N0 | φ(λ) = 0 for all but finitely many λ ∈ Λ},
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i.e. the coproduct is the set of all functions mapping all but finitely many elements

to zero.

Suppose φ(λj) = mj for λ1, λ2, . . . , λs and φ(λj) = 0 for all other λj. This would

correspond to the ideal < φm1 m2 ... mr
λ1 λ2 ... λr

>. The function φ ≡ 0 in
∐

λ∈Λ N0 corresponds

to the ideal < φ0 >=< 0 >= N0.

We will use certain subsets of the monoid
∐

λ∈Λ N0 to determine the semiprime

operations of a monoid with maximal ideals < φm1 m2 ... mr
λ1 λ2 ... λr

>, λ ∈ Λ in a manner

similar to that used to identify semiprime operations in N0. All of the non-zero ideals

in a monoid are of the form < φm1 m2 ... mr
λ1 λ2 ... λr

>. Note: we are still only doing operations

on the principal ideals in the coproduct.

Definition 4.1.1 A generalization of the identity box B into higher dimensions is

the identity λ-box Bλ of a semiprime operation fc on some monoid.

For ease of notation, we are denoting an element φjλ ∈
∐

λ∈Λ N0 where φ(λ) = j

unless λ /∈ Λ, then φ(λ) = 0. The elements of
∐

λ∈Λ N0 are of the form

φj1 j2 ... jrλ1λ2 ... λr
=: φj1 + j2 +···+ jr

λ1+ λ2 +···+ λr
if the λ’s are distinct. This corresponds to the set of all

φm1 m2 ... mr
λ1 λ2 ... λr

in
∐

λ∈Λ N0, where fc(< φm1 m2 ... mr
λ1 λ2 ... λr

>) =< φm1 m2 ... mr
λ1 λ2 ... λr

>.

Example 4.1.2 Consider the following example where Λ is N0, so that our map

will assign values to finitely many of the slots in the element (0, 0, 0, .........). If the

identity box is

φ7 11 3
2 5 10(λ) =



7 for λ = 2

11 for λ = 5

3 for λ = 10

0 for λ 6= 2, 5, 10

Then we get (0,7,0,0,11,0,0,0,0,3...) as the lattice point element. To get 7 for λ = 2

means 7 goes in the 2nd slot, then 11 goes in the 5th slot, etc.
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Thus fφ7 11 3
2 5 10

(< φ8 6 1 8
2 5 10 21 >) = < φ7 6 1

2 5 10 > = (0, 7, 0, 0, 6, 0, 0, 0, 0, 1, 0, 0, . . . ) after

applying the closure operation.

That is, the closure operation takes < φ8 6 1 8
2 5 10 21 > to < φ7 6 1

2 5 10 >. The 21st slot is

assigned to 0, since the identity box assigns no value to the 21st slot. Note that the

5th slot stays at 6 since 6 < 11, and the 10th slot stays at 1 since 1 < 3.

The λ-box Bλ is bounded if for every λ ∈ Λ there exists a finite m such that

fc(< φj1 j2 ... jrλ1 λ2 ... λr
>) =< φm1 m2 ... mr

λ1 λ2 ... λr
> for j ≥ m.

For every λh ∈ Λ define

mh =

 m if fc(< φjλh >) =< φmλh >

∞ otherwise

In fact, all semiprime operations on the ideals of
∐

λ∈Λ N0 satisfy

fBΛ
(< φj1 j2 ... jr

λ1 λ2 ... λr
>) =



< φj1 j2 ... jrλ1 λ2 ... λr
> if < φj1 j2 ... jrλ1 λ2 ... λr

> ∈ BΛ

< φk1 k2 ... kr
λ1 λ2 ... λr

> if < φj1 j2 ... jrλ1 λ2 ... λr
> /∈ BΛ and

kl = ml 6=∞ for some l and kh = jh

for all h with kh ≤ mh.

If we have two identity Λ-boxes CΛ and DΛ, then CΛ ∩ DΛ will also be an identity

Λ-box. The effect of applying the composition fCΛ
◦ fDΛ

to any given ideal (except

<∞ >) is the same as that of the mapping fCΛ
∩fDΛ

since in each case the resulting

ideal will be the result of bumping up from the previous value.

The semiprime elements of NΛ
0 ∪{∞} (NΛ

0 is N0×N0×· · ·×N0,Λ times) correspond

to elements of
∐

λ∈Λ N0 under partial ordering. Thus, when BΛ is bounded by a finite

λ ∈ Λ,mλ 6= 0, there exist two types of semiprime operations, fBΛ
and gBΛ

where

fBΛ
(< ∞ >) = < ∞ > and gBΛ

(< ∞ >) = < φm1 m2 ... mr
λ1 λ2 ... λr

> and {λ1, λ2, . . . , λr} is

the set of all λj ∈ Λ with mj <∞.
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We may define two subsets of MI as the following:

Mf = {e} ∪ {gBΛ
∈MI | gBΛ

(<∞ >) =< φm1 m2 ... mr
λ1 λ2 ... λr

>},

the set of closure operations whose ideal <∞ > is closed, and

M0 = {e} ∪ {fBΛ
∈MI | fBΛ

(<∞ >) =<∞ >},

the set of closure operations whose ideal <∞ > is not closed.

Suppose that CΛ and DΛ are two identity Λ-boxes such that both CΛ and DΛ are

bounded. Then, since CΛ ∩ DΛ is also a bounded identity Λ-box and fCΛ
◦ fDΛ

=

fCΛ∩DΛ
, gCΛ

◦ gDΛ
= gCΛ∩DΛ

, we have closure on MI of M0 and Mf . Thus, M0 and

Mf are submonoids of MI .

Now suppose that CΛ and DΛ are two distinct identity Λ-boxes and that DΛ is

bounded. Then, CΛ ∩DΛ ⊆ DΛ is also a bounded identity Λ-box.

We also have for fCΛ
∈ M0 and gDΛ

∈ Mf that fCΛ
◦ gDΛ

= gCΛ∩DΛ
so that Mf is a

left M0-act. But, gDΛ
◦ fCΛ

6= gCΛ∩DΛ
(i.e. does not necessarily equal), because

gDΛ
◦ fCΛ

(<∞ >) = gDΛ
(<∞ >) =< φm1 m2 ... mr

λ1 λ2 ... λr
> ∈ DΛ 6= CΛ ∩DΛ

so that gDΛ
◦ fCΛ

is not a closure operation. Thus, Mf is not a right M0-act.

Proposition 4.1.3 The set of semiprime operations on
∐

λ∈Λ N0 can be decomposed

into two submonoids, Mf and M0, where Mf is a left but not a right M0-act under

composition.

Proposition 4.1.4 The only element of the set of prime operations on
∐

λ∈Λ N0 is

the identity map {e} where e(< φm1 m2 ... mr
λ1 λ2 ... λr

>) =< φm1 m2 ... mr
λ1 λ2 ... λr

>.

Proof :

Let < b >=< φ
m

′
0

λ
′
0

>, fc = fφm1 m2 ... mr
λ1 λ2 ... λr
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If fc is prime, then

< b > +fc(< φm1 m2 ... mr
λ1 λ2 ... λr

>)

= fc(< b > + < φm1 m2 ... mr
λ1 λ2 ... λr

>)

= fc(< φ
m

′
0

λ
′
0

> + < φm1 m2 ... mr
λ1 λ2 ... λr

>)

= fc(< φ
m

′
0+m1

λ
′
0+λ1

+ φm2 ... mr
λ2 ... λr

>)

since fc could be fφm1 m2 ... mr
λ1 λ2 ... λr

, we would have

< b > +fc(< φm1 m2 ... mr
λ1 λ2 ... λr

>)

=< b > + < φm1 m2 ... mr
λ1 λ2 ... λr

>$< φm1 m2 ... mr
λ1 λ2 ... λr

> fc(< φ
m

′
0 +m0 m1 m2 ... mr

λ
′
0 + λ0 λ1 λ2 ... λr

>;

= fc(< b > + < φm1 m2 ... mr
λ1 λ2 ... λr

>),

which implies

< b > +fc(< φm1 m2 ... mr
λ1 λ2 ... λr

>) $ fc(< b > + < φm1 m2 ... mr
λ1 λ2 ... λr

>),

contradicting property (e). Thus, {e} is the only member of the set of prime opera-

tions on
∐

λ∈Λ N0. �
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Future Research Directions

We may investigate the effect on the results of chapter 3 of adding the ∞ element

to the subsemigroup S.

This work could also by continued by analyzing the algebraic structure of closure

operations on N0 act Z and on N0∪{∞} act Z∪{∞}. In this case, the recent paper

“A Look at the Prime and Semiprime Operations of One-dimensional Domains” [12]

should have some results that would have analogs that could be applied to N0 act Z.

In these new cases, we would introduce ideals generated by negative integers, see if

the ideals may be totally or partially ordered, find what closure operations are valid,

and investigate the structure of the relations among the new closure operations.
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