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Abstract

Microelectromechanical systems (MEMS) are part of every modern technological ad-

vance. Electrodeposited thin nickel (Ni) polycrystalline films in MEMS often show

fiber texture resulting in transverse isotropic elastic properties. It is of interest to

determine these elastic properties, in particular the in-plane Young’s modulus, since

it plays a fundamental role in device performance. The fabrication process of MEMS

films introduces uncertainties in the microstructure geometry, crystallographic tex-

ture, the crystal elastic constants, the physical film dimensions and other parame-

ters. In this thesis the numerical value of the in-plane Young’s modulus of thin Ni

polycrystalline films is predicted. The predicted values lie between the Reuss-Voigt

averages, a result that is consistent with theory. Additionally the uncertainties of the

predictions of the in-plane Young’s moduli are quantified by taking into account the

uncertainties in microstructure geometry, crystallographic texture, and the numerical

values of the Ni single-crystal constants. Representative volumes of the microstruc-

ture geometry are modeled with Voronoi diagrams. The crystallographic texture is

numerically generated from real X-ray diffraction experimental data by using a tex-
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ture discretization algorithm. The Young’s modulus is estimated by simulating uni-

axial stress tests on the numerically generated microstructures with a self-consistent

fast Fourier transform (FFT) method. The uncertainties in microstructure geome-

try, crystallographic texture, and single-crystal elastic constant values are treated as

epistemic due to the lack of available experimental data. The sensitivity of the in-

plane Young’s modulus is examined with respect to the three uncertainties addressed

above. The study of the propagation of uncertainties throughout the model lead us

to the conclusion that the in-plane Young’s modulus of the electrodeposited thin Ni

films is extremely sensitive only with respect to the uncertainties in the Ni crystal

constants.

A Voronoi based algorithm that attempts to simulate the complete polycrystalline

film microstructure geometry is also developed for future large-scale simulations. Fi-

nally a J2 plasticity model that attempts to decribe the overall mechanical response

of the Ni film is developed. The J2 model is based on a phase-field dislocation model

developed by Koslowski and it includes the Hall-Petch size effect. The numerical

predictions of the J2 model are compared with real tensile stress experiments per-

formed on as-deposited and annealed Ni samples. The J2 model predictions show

good agreement with phase-field simulations, and capture aspects of size effects.
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Chapter 1

Introduction

Microelectromechanical systems are small devices that are a combination of electri-

cal and mechanical elements whose sizes range from the submicrometers to a few

millimeters. The range of applications of MEMS devices is wide and it spans the

areas of medicine (medical equipment), communications (cell phones, satellites), en-

tertainment (video game consoles) and robotics (microrobots) just to mention a few

examples.

All MEMS contain microscopic functional elements and these may be minia-

turized structures, microsensors, microactuators and microelectronics. The most

notable functional elements are the microsensors and microactuators [41, 10, 39].

Microsensors and microactuators are characterized by converting one form of en-

ergy into another. Microactuators use an energy source, electricity for example, and

convert it into mechanical motion; microsensors do the opposite.

Nowadays many devices like motors, valves, pressure sensors and switches have

been reduced to the microscale, forming part of MEMS technology. It is natural

to ask why it is important to make efforts in developing miniaturized technology or

MEMS devices. The reasons are the following [41, 10, 39]:
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Chapter 1. Introduction

1. MEMS optimize space usage: Space optimization in MEMS is an advan-

tage because it makes them portable with lower power consumption and more

versatility compared to their macroscopic counterparts. For example, medical

doctors can use very small biomedical devices so that they can be injected

into the human bloodstream and selectively destroy sick cells or germs, leaving

healthy body tissue intact. This would be impossible with the earlier macro-

scopic counterparts of MEMS. It is speculated that one day MEMS may even

be used to manipulate DNA.

2. MEMS performance exceeds those of their macroscale counterparts:

In spite of the microscopic size of MEMS it is surprising that many of them can

cause effects at the macroscale. For example, MEMS researchers have placed

small microactuators on the leading edge of airfoils of an aircraft and have been

able to steer the aircraft using only these microscopic devices. Besides produc-

ing effects at the macroscale, MEMS performance is more efficient than their

macroscale counterparts. One example is the microscopic version of pressure

sensors. They tend to give more accurate pressure measurements than their

earlier macroscopic versions.

3. MEMS can be manufactured using batch fabrication techniques:

Most of the MEMS devices, especially their mechanical parts, are made of

silicon. This has important implications in the MEMS fabrication process be-

cause silicon is the most abundant solid material in the Earth’s crust and is

a high strength solid. As a result MEMS have low fabrication cost and mate-

rial strength is not a key limiting factor in MEMS performance and reliability.

Another reason why MEMS have low cost is because generally they are batch

fabricated using a process similar to that used in integrated circuit technology.

We can safely say that MEMS are part of every modern technological advance.

Because of the wide range of applications of MEMS devices and their relevance in

2



Chapter 1. Introduction

science, predicting their reliability and durability is considered an important problem

in modern technology. All MEMS devices have failure mechanisms that are not well

understood. One main reason is that at the microscopic level additional physical

phenomena, usually not significant at the macroscopic level, become relevant. For

example, van der Waals forces become important when microscopic surfaces are a

few micrometers apart. Another interesting phenomenon, known as the Hall-Petch

effect, appears in polycrystalline materials. When the grains of a polycrystalline

material are nanometer size the yield stress of the polycrystalline material is bigger

than the yield stress of coarser grained polycrystalline materials of the same material.

Some other phenomena are not completely understood, for example the reverse Hall-

Petch effect1 and elastic strain recovery2. These physical phenomena usually can be

ignored in the macro-scale but they become important in the micro-scale. Without

sufficient attention to these factors, reliability and quality of MEMS devices can be

so impaired that they are unusable.

Some common MEMS failure modes are the following [50]:

1. Sticking: Sticking can occur when surfaces come into contact. It can even

affect elements that are not powered.

2. Creep: Creep is defined as the tendency of a solid material to deform slowly

and permanently under the influence of stresses. The stresses are usually below

the yield strength and this commonly happens in materials exposed to heat.

But it has been observed that creep exists in some MEMS devices, even at

room temperature.

1The Hall-Petch effect is associated with an increase in yield stress as grain size is
reduced. This process of an increase of yield stress is reversed once the grains have sizes
smaller than 20nm [60].

2This occurs when a load is released from a stress-strain test, some of the total defor-
mation is recovered as elastic deformation [51].

3



Chapter 1. Introduction

3. Electrostatic Clamping of Gears: Evidence has been found to show that

clamping of gears due to electrostatic charges present at certain energy levels

prevents the gears from moving.

4. Environmental attack: MEMS are designed for a variety of applications

where environmental effects can be important. This includes valves, sensors,

and pumps where the contacting fluids, including water, can be corrosive. Ex-

periments have shown that crack growth is a function of moisture.

5. Particle Contamination: Particles can affect the electrical and mechanical

devices especially when introduced in small gaps between surfaces. Particles

coming from the exterior are now a minor problem because of clean room

enviroments. Special attention is given to internally generated particles in

MEMS.

The Center for Prediction of Reliability, Integrity and Survivability of Microsys-

tems (PRISM), located at Purdue University, investigates this kind of problem by

developing models and software for MEMS simulation. One of the PRISM projects

consists of predicting the reliability, integrity and survivability of the microswitch

shown in Fig. 1.1. This microswitch is an example of a microactuator.

The top surface shown in Fig. 1.1 shows a cut away of a polycrystalline thin

nickel film (or membrane) of length about 400µm, width about 100µm and thickness

between 1µm and 3µm. The nickel crystals (or grains) forming the membrane are

nanometer size. The grain geometry is V-shaped columnar and most of the grains

have a preferred orientation producing a special type of texture in the thin film

known as fiber texture. The grain geometry and the fiber texture are developed

from a manufacturing technique known as electrodeposition.

The membrane is simply supported by two vertical anchors and is surrounded

by air at room temperature at one atmosphere of pressure. This device can also
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Figure 1.1: Microswitch studied in the PRISM project.

be pressurized by a surrounding gas like nitride (N2). The yellow-blue part below

the membrane is an electrode that is connected directly to a voltage source. When

the voltage is activated electric fields are generated from the electrode producing

body forces in the thin film. As a result, the membrane bends until it contacts the

electrode. When the voltage is deactivated, the membrane relaxes to the original

configuration shown in Fig. 1.1.

The microswitch is considered to have a high quality lifetime if its performance

after several activations and deactivations, typically on the order of billions, is still ef-

ficient. One important problem consists in identifying and understanding the failure

mechanisms of this MEMS device. In this particular case, it has been observed that

the MEMS switches are very sensitive to environmental contaminants and humidity.

High humidity levels favor high adhesion forces that may lead to stiction between

the membrane and electrode, a failure mechanism of the device. Also nearly-zero hu-

midity is not ideal for the MEMS switches since it significantly increases the friction
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between the contacting surfaces, leading to premature failure. A second example

that leads to stiction in the MEMS switches is related to the stiffness of the MEMS

switch. It is known that larger stiffness of the MEMS switch increases the pull-in

voltage necessary to activate the switch. Higher pull-in voltages accelerate charg-

ing of the electrode’s dielectric coating, leading to permanent stiction between the

membrane and electrode, and therefore leading to failure.

Like all MEMS, predicting the reliability of the MEMS switch requires expertise

from different areas of knowledge. For example, knowledge from solid and fluid

dynamics is required for the modeling of air damping in the membrane when it

bends. Solid mechanics is required for modeling phenomena like creep, size effects

and dynamical loading. Contact physics is used to model the surface chemistry and

the interactions between surfaces [48]. Besides having the physical models and the

numerical tools to make the simulations, uncertainties may play a significant role in

the numerical solutions of mathematical models. For example, the vertical deflection

of the membrane is modeled with a partial differential equation that depends on

the film thickness, the Poisson’s ratio and Young’s modulus. These parameters

are not known exactly but it is known that they lie in a known interval of finite

length. The length of the inverval partially measures the amount of uncertainty of

each parameter. Even if some parameters are known experimentally, measurements

always carry errors and the exact values of the parameters always lie in an interval.

It may happen that the solution of the governing equation is sensitive to one or more

of these parameters. If this is the situation then parameter uncertainties must be

reduced in order to obtain reliable simulations.

The possible range of the parameters does not describe completely the uncertain-

ties. Also it is important to know their probability distribution (PDF). Knowing the

PDF of uncertainties gives a better idea of what parameter values are more likely to

occur in the uncertainty interval.
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The science that studies the quantitative characterization and reduction of uncer-

tainties in applications is known as uncertainty quantification (UQ). Uncertainties

are ussually classified into two basic categories [49]:

1. Aleatoric uncertainties: These arise from physical variability present in a

system or its enviroment [25], and are irreducible and naturally defined within

a probabilistic framework [1]. For example, when measuring the crystal con-

stant values of nickel, these may oscillate around a mean value, which can be

described with a probability distribution function. This type of uncertainty

can not be reduced because it is inherent to the laboratory equipment under

normal operation, but still can be measured.

2. Epistemic uncertainties: These are defined as potential deficiencies due to

a lack of knowledge [25]. These types of uncertainty are reducible and usu-

ally arise from assumptions or simplifications introduced in the derivation of

a mathematical model or from physical quantities that cannot be measured

experimentally due to technological limitations [1]. Because of their nature,

epistemic uncertainties are described by finite length intervals and not by prob-

ability distribution functions [57]. For example, the in-plane Young’s modulus

of the MEMS nickel films can not be measured experimentally due to the pres-

ence of residual stresses. Therefore a reasonable estimate of this modulus can

be obtained by deriving lower and upper bounds. These bounds can be the

Reuss-Voigt averages and they can be improved with the Hashin-Shtrikman

bounds. In any case, an interval of finite length describes the possible values

of the in-plane Young’s modulus.

In any application both kinds of uncertainties are often present. Uncertainty

quantification works toward reducing epistemic uncertainties to aleatoric uncertain-

ties. The aleatoric uncertainties are quantified with PDFs by doing hundreds or
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thousands of realizations. Sampling techniques are useful for the construction of the

PDFs, for example the latin hypercube technique or Monte Carlo methods.

In this thesis we focus on the following problems:

1. Estimate the stiffness of the thin nickel membrane and its sensi-

tivity to experimental uncertainties like crystallographic texture,

microstructure geometry, elastic crystal constant values and grain

boundaries.

2. Model the polycrystalline geometry consistently with experimental

data.

3. Develop constitutive models that match experimental measurements

of the elastic-plastic behavior of the thin film.

This thesis is organized as follows: Chapter 2 is background material, a brief

introduction to crystallography, texture analysis and solid continuum mechanics is

provided. In Chapter 3 we define the Reuss-Voigt averages of polycrystalline materi-

als. We also prove analytically that the stiffness of the thin membrane of the MEMS

switch is bounded between the Reuss-Voigt averages. Chapter 4 is our main result,

whereby we calculate accurately the stiffness of the thin nickel membrane. The stiff-

ness uncertainties are changed from epistemic (Reuss-Voigt averages) to aleatoric (a

PDF of the stiffness is generated). Then we study how this stiffness is sensitive to

uncertainties in the polycrystalline geometry, uncertainties in experimental texture

and uncertainties in values of the elastic crystal constants. We conclude that the

stiffness is most sensitive to uncertainties in elastic crystal constants. In Chapter 5

we model the polycrystalline microstructure geometry of the MEMS film with the

use of Voronoi diagrams. An algorithm is developed and justified to generate always

a desired output. The numerical microstructures are tested with real experimental
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microstructures. Some features are captured with high accuracy like the grain-size

distribution and grain-size dependence on film thickness. Finally in Chapter 6 we

develop a J2 constitutive model in order to predict the elastic-plastic behaviour of

the membrane. The numerical simulations are compared with real experimental data

[18, 17] and dislocation dynamics simulations [31]. Chapter 7 provides concluding

remarks.

9



Chapter 2

Crystallography and Texture

Analysis Background

In this chapter we give a brief introduction to crystallography, texture analysis and

solid continuum mechanics. In Section 2.1 we talk about crystallography, in Sec-

tion 2.2 we discuss some texture analysis concepts and finally Section 2.4 reviews the

neccesary material for solid continuum mechanics and elasticity theory.

2.1 Crystallography

Crystallography is the science that studies the arrangement of atoms in a crystal.

A crystal is a solid whose molecular structure consists of a three dimensional peri-

odic arrangement of atoms, ions or molecules. Perfect crystals are solid materials

with anisotropic and homogeneous properties [4]. These macroscopic properties are

induced because of their special molecular structure. The periodic arrangement of

atoms can be as simple as α−Polonium shown in Fig. 2.1a or apparently complicated

like K2B12H12, shown in Fig. 2.1b. Independently of how simple or complicated the
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(a) (b)

Figure 2.1: (a) Crystal structure of alpha−polonium. (b) Crystal structure of
K2B12H12 [14].

atomic structure of crystals is, all crystals are described in terms of the following two

concepts:

• Mathematical lattice.

• Motif.

A mathematical lattice is defined as the set of all integral linear combinations of

a given set of linearly independent vectors. The integral linear combinations result in

a periodic arrangement of points in space. An integral linear combination of vectors

is a linear combination of vectors with coefficients restricted to the set of integers.

The dimension of the lattice is defined as the number of linearly independent vectors

that generate all points of the lattice. An example of a two dimensional lattice is

shown in Fig. 2.2a, the generating vectors are a and b. Note that the generating

vectors are not unique, Fig. 2.2b shows two additional possible choices.

The motif of a crystal is defined as the physical object that appears repeatedly

at each point of the given lattice. In crystallography the object can be as simple
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(a) (b)

Figure 2.2: (a) Two dimensional lattice with generating vertors a and b. (b) The
two dimensional lattice of Fig. 2.2a with three different pairs of generating vectors.

as an atom or complicated like a molecule. For example, the α−Polonium crystal

structure has a lattice generated by three orthogonal vectors of the same length, the

motif is a single polonium (Po) atom located at each lattice point. The K2B12H12

crystal structure has the three dimensional lattice shown in Fig. 2.7a, the motif is the

complicated molecule K2B12H12 located at every lattice point. We can observe that

given a fixed lattice, different motifs describe different crystals, but the “skeleton”

of the crystal relies on the mathematical concept of lattice. This is the reason why

we center our attention on the concept of a mathematical lattice through the rest

of this section. This concept facilitates the mathematization of geometric crystal

properties.

In crystallography it is convenient to define a coordinate system within a crystal

lattice in such a way that the origin coincides with a lattice point. The choice of the

lattice point is arbitrary and the coordinate axes usually are defined to be aligned

with a set of generating vectors. As a consequence the coordinate system may not

be rectangular. Once the coordinate system is defined, every point p of the lattice

12



Chapter 2. Crystallography and Texture Analysis Background

is represented in the form

p = ua + vb + wc,

where a, b, c are the generating vectors and u, v, w are integers. In crystallography

negative integers are represented with a bar at the top of the number, for example

negative four is represented by 4̄ instead of −4.

The parallelepided whose sides are represented by the vectors a, b, c is called

the unit cell of the lattice. Fig. 2.3a shows a two dimensional unit cell of a two

dimensional grid. The set whose elements are the lengths of the generating vectors

together with the measure of the angles between the linearly independent vectors

are called the lattice parameters or lattice constants of the lattice. Fig. 2.3b shows a

unit cell in three dimensions with lattice parameters {|a|, |b|, |c|, α, β, γ}. Note that

unit cells form a tessellation of the Eucledian space.

(a) (b)

Figure 2.3: (a) Unit cell with lattice parameters {|a|, |b|, θ}. (b) Unit cell with lattice
parameters {|a|, |b|, |c|, α, β, γ}.

Lattices can be rotated about any of their points or reflected about a line (two

dimensional case) or plane (three dimensional case) and may remain unchanged. For
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example, a two dimensional lattice with lattice parameters |a| = |b| and α = 90◦

remains unchanged when rotated 90◦ (clockwise or counterclockwise) about any of

its lattice points. The lattice also remains unchanged when reflected with respect to

any line that contains a or b.

Amazingly there are five rotations such that for any given lattice there is at least

one of these five rotations that leaves the lattice unchanged. The rotation angles

are 0◦, 60◦, 90◦, 120◦ and 180◦. This is a very important result in crystallography

because it classifies lattices from an infinite number to a finite number. We provide

a justification of this result for two dimensional lattices [26].

Theorem 1. For every two dimensional lattice the only rotations about a lattice point

that can leave the lattice unaltered are 0◦, 60◦, 90◦, 120◦ and 180◦. These rotations

are called one−fold, six−fold, four−fold, three−fold and two−fold respectively. In

general, an n−fold rotation is a rotation angle of magnitude 360◦

n
that leaves a lattice

unchanged. Here n is a natural number.

Proof. Let us assume we have a general two dimensional lattice that contains an

n−fold rotation. This means that the lattice remains unchanged after a rotation

of θ = 360◦

n
. We want to show that n = 1, 2, 3, 4, or 6. Choose the origin of the

coordinate system to be located at a lattice point. Define a as the vector that joins

two lattice points with the restriction that there are no lattice points between the

endpoints of a. Now let us rotate a at an angle of θ clockwise and counterclockwise.

Let us represent the rotated vectors by b and c respectively, then by definition of

n−fold rotation we have that the endpoints of b and c are at a point of the lattice,

see Fig. 2.4.

If the endpoints of b and c are at lattice points then the sum b+c = d is a vector

that also joins lattice points. Note that b and c can be decomposed into the sum of

two vectors, one orthogonal to a and the other parallel to a. The components along
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Figure 2.4: Clockwise and counterclockwise rotation of a at an angle θ.

the orthogonal direction of a cancel each other when summed, therefore

b + c = 2|a| cos θâ,

where â is the unit vector along a. Because b + c joins two lattice points in the

direction of a we have

2|a| cos θ = m|a|,

where m is an integer. This means cos θ = m
2
, but | cos θ| ≤ 1 implies −1 ≤ m

2
≤ 1.

The only values of m that satisfy this property are m = 0,±1,±2, therefore the

values of θ are 0◦, 60◦, 90◦, 120◦ and 180◦.

The previous theorem leads to the concept of Bravais lattice, a term used in

honor of the physicist Auguste Bravais (1811-1863). There are only five types of two

dimensional Bravais lattices, these are classified according to rotation symmetry and

reflection symmetry properties of the lattice. The two dimensional Bravais lattices

are: the oblique lattice, rectangular primitive lattice, rhombic lattice, hexagonal

lattice and square lattice. Fig. 2.5 shows these lattices.
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Figure 2.5: The five two dimensional Bravais lattices.

Three dimensional lattices also possess at least one of the five rotation symme-

tries mentioned above. This time the number of reflection symmetries increases with

respect to the two dimensional case because there are more degrees of freedom. As

a consequence the classification of Bravais lattices for the three dimensional case

is more laborious. Notice that rotations and reflections are not equivalent opera-

tions, rotations preserve the coordinate system orientation while reflections invert

orientations.

Three dimensional lattices are classified into fourteen Bravais lattices, and these

are grouped into a family of seven lattice systems. The lattice systems are described

in terms of the three basis vectors. For example, if the basis vectors are not or-

thogonal and of unequal length then we say the lattice generated by the three basis

vectors belongs to the triclinic system. If the basis vectors are orthogonal and of

equal length then we say the generated lattice belongs to the cubic system. The list

of lattice systems together with their respective Bravais lattices can be found on pg.

90 of [4]. Here we mention only two lattice systems:

• Hexagonal system: This system has one Bravais lattice, the hexagonal closed
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packed (HCP) Bravais lattice.

• Cubic system: This system has three Bravais lattices, the simple cubic, the

body centered cubic (BCC) and the face centered cubic (FCC) Bravais lattice.

The hexagonal and simple cubic lattices are shown in Fig. 2.6a and Fig. 2.6b, the

FCC and BCC lattices are shown in Fig. 2.7a and Fig. 2.7b respectively. Nickel is

an example of a crystal that has an FCC Bravais lattice where the motif is a single

Ni atom.

(a) (b)

Figure 2.6: (a) The HCP Bravais lattice. (b) The simple cubic Bravais lattice.

In many applications it is important to describe mathematically directions, lo-

cation of atoms (point sites) and planes of atoms within the crystal lattice. For

example, in crystal plasticity theory it is known that crystals deform permanently

along certain planes and specific directions. Also the orientation of a crystal with

respect to a reference coordinate system can be described in terms of planes and

directions defined within the crystal lattice. The next sections explain how point

sites, directions and planes are described in a crystal lattice.
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(a) (b)

Figure 2.7: (a) The FCC Bravais lattice. (b) The BCC Bravais lattice.

Representation of Lattice Points

Consider the unit cell shown in Fig. 2.3b. The basis vectors a, b, c have different

lengths and they do not form an orthogonal system. This type of lattice is known as

triclinic Bravais lattice. The vertices of the parallelepiped are lattice points. Without

loss of generality assume the origin of the coordinate system is located at the lower

left vertex of the frontal face of the parallelepiped. The coordinate axes are aligned

with the basis vectors a, b and c. Let P be a lattice point, then there exists a unique

vector p that represents the position of P with respect to the origin such that

p = ua + vb + wc,

where u, v and w are integers. We can express the lattice point P in terms of the

coordinates of p,

P = uvw.

In crystallography lattice points are represented as a triple of integers, parenthesis

are not used like we do with Cartesian coordinates. The integers are the coordinates

of the vector that represents the position of the lattice point with respect to the basis
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vectors a, b and c. For example, the lattice point −a is represented as 1̄00 and the

lattice point a + c as 101.

Representation of Crystallographic Directions

Consider a triclinic Bravais lattice with basis vectors a, b and c. A crystallographic

direction is any vector joining two lattice points and is represented by a parallel vector

of the same length with the origin as initial point. The notation is a triple of integers

in square brackets that denotes the coordinates of the vector translated to the origin.

The triple of integers is known as the Miller indices of the crystallographic direction.

For example, assume we have a crystallographic direction joining the lattice points

P = u1v1w1 and Q = u2v2w2, then the vector

p = (u2 − u1)a + (v2 − v1)b + (w2 − w1)c

is parallel to the given crystallographic direction. The vector p is identified with its

coordinates u = u2 − u1, v = v2 − v1 and w = w2 − w1, then the crystallographic

direction that joins P and Q is represented with the triple

[uvw].

In crystallography the triple [uvw] does not only describe the crystallographic di-

rection with initial point at the origin and terminal point uvw, it represents all

crystallographic directions parallel to the vector p = ua + vb + wc. Figure 2.8

is the projection of the triclinic lattice onto the a − b plane, it shows some of the

crystallographic directions [210].

Now assume we have a cubic lattice, that is, a triclinic lattice with |a| = |b| = |c|
and α = γ = β = 90◦. Consider the crystallographic directions [100], [01̄0] and [001].

Notice that the directions [100] and [001] are not parallel but they are geometrically

equivalent in the sense that both are perpendicular to a face of the cubic lattice. From
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Figure 2.8: Projection of the triclinic lattice onto the a−b plane. The longest vectors
are a subset of [210].

a geometrical point of view the faces of the cubic lattice are indistinguishable, all faces

look the same. In this particular case we say that [100] and [001] are crystallographic

equivalent. Similarly we can verify that [01̄0] is crystallographic equivalent to [100].

In crystallography a family of equivalent crystallographic directions is represented

with angular brackets “<>”, since all directions are equivalent, one representative is

sufficient to describe the complete family. In our example, the notation

< 100 >,

represents the crystallographic directions [100], [1̄00], [010], [01̄0], [001] and [001̄]. All

directions are perpendicular to a face of the cubic lattice and are indistinguishable

from a geometrical point of view. The family of equivalent directions < 100 >

depends of the lattice symmetry. Indeed, if we have the general triclinic Bravais

lattice then [100] may not be equivalent to [010], or even to [1̄00].
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Representation of Crystallographic Planes

Consider a triclinic Bravais lattice with basis vectors a, b and c. A crystallographic

plane is any plane of a crystallographic lattice passing through at least one lattice

point. We know a plane is determined from three noncollinear points. In crystal-

lography planes are not represented in the conventional way of analytic geometry.

The representation is better illustrated with examples. Consider a plane P that

passes through the points 100, 020 and 001. These lattice points are located at the

coordinate axes. The notation used to represent the plane passing through these

three points consists first in taking the reciprocals of the multiples of the lattice pa-

rameters at which the plane intersects the coordinate axes. In this case the a−axis

is intersected at one multiple of |a|, then the first reciprocal number is one. The

b−axis is intersected at two times the lattice parameter |b|, then the second recip-

rocal number is 1
2
. The c−axis is intercepted at one multiple of |c|, then the third

reciprocal number is one. Next we write these reciprocals in ordinary parenthesis

“()” as follows

(1
1

2
1),

finally we multiply all fractions by the least common multiple of the denominators

so that all numbers become integers. In this case the least common multiple of the

denominators is two, then the crystallographic plane that passes through 100, 020

and 001 is represented as

(212),

the integers of the triple (212) are called the Miller indices of P . Now consider a

plane P
′

parallel to P that passes through the points 300, 060 and 003. If we follow

the steps that define the Miller indices of a plane, we obtain that

(212),
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are the Miller indices of the plane P
′

. In conclusion, the notation (212) represents

a family of planes. Indeed, it describes the plane P and all other planes parallel to

P . The Miller indices of a family of planes are always relatively prime numbers, this

means that they do not have common factors other than the unity.

Let us consider a more subtle example, let P
′′

be a plane that passes through

100 and is parallel to the bc−plane. In this case there are no intercepts located

at the b−axis and c−axis. When a plane has no intercepts with a coordinate axis,

conventionally we denote the intercept by ∞. Following the convention 1
∞

= 0, we

conclude that the Miller indices of P
′′

are (100).

Now assume we have a cubic lattice, consider the crystallographic planes (100),

(010) and (001). Notice that these planes are not parallel but geometrically they are

equivalent. This means that because the cubic lattice has 4−fold rotations about

the directions [100], [010] and [001], the planes (100), (010) and (001) are indistin-

guishable from a geometrical point of view. In crystallography a family of equivalent

crystallographic planes is represented with curly brackets “{}”. Since all planes are

equivalent, one representative is sufficient to describe the complete family. In our

example, the notation

{100},

represents the crystallographic planes (100), (010) and (001).

2.2 Orientation of Single Crystals

Many solid materials, like metals and ceramics, are composed of many crystals of

varying sizes and orientations. Solid materials of this type are known as polycrystals.

For the purpose of estimating mechanical properties of polycrystals, it is important

to describe how their crystallites are oriented with respect to the polycrystal.
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In order to describe the orientation of a single crystal living in a polycrystalline

material, we first define a fixed rectangular coordinate system in the polycrystal. The

way the sample coordinate system is chosen is, in principle, arbitrary [6]. Generally,

the external shape of the sample will suggest the choice of the coordinate system.

For example, in the case of a thin wire, it seems natural to place a coordinate axis

along the wire axis, like in Fig. 2.9a. The choice of the second axis is arbitrary and

perpendicular to the first axis and the third axis is naturally defined from the first

two. Another example is the case of a thin sheet or a thin film, like the one shown

in Fig. 2.9b. It is natural to choose a coordinate system whose axes coincide with

the sides of the sample. In this work we consider samples with geometry like the one

shown in Fig. 2.9b.

(a) (b)

Figure 2.9: (a) Thin wire, one of the sample’s coordinate axes is chosen naturally to
coincide with the wire axis. (b) Thin metallic film, the sample coordinate axes are
chosen naturally to coincide with the three orthogonal sides of the sample.

Once the sample coordinate system is defined an additional coordinate system

within each single crystal must also be defined. The choice of each crystal coordinate

system is arbitrary. When the coordinate system in a particular crystallite is settled,
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the crystallographic coordinates of the coordinate system axes must be the same for

all crystallites. It is conventional, from all possible selections of crystal coordinates,

to choose a crystal coordinate system that is appropriate for the crystal symmetry [6].

In our case the crystallites of interest have cubic symmetry. For crystals possesing

cubic symmetry it is appropriate to choose the coordinate axes to be aligned with

the unit cell principal directions. Note that in this case there is still ambiguity in

the choice of the coordinate axes. Indeed, there are 24 possible choices of coordinate

axes that are aligned with the unit cell principal directions. Despite the ambiguity,

any choice of the 24 possible selections gives the same crystal orientation.

Let us denote the sample coordinate system by CS and the crystal coordinate

system by CC . The orientation of the crystallite within the polycrystalline sample is

defined as the linear transformation R that gives the position of the crystal coordinate

system with respect to the specimen coordinate system. The linear transformation

R : CS → CC,

is by definition a rigid rotation that makes the coordinate system CS coincide with

CC . Therefore R can be represented by an orthogonal matrix of determinant positive

one. There are nine components for the matrix R, but they are not independent.

Indeed, the third column of R can be obtained by taking the cross product between

the first two columns of R. This reduces the total number of independent components

from nine to six. Each column of R is described with a unit vector, setting the norms

of the first two columns to one reduces the number of independent components from

six to four. But the columns of R are orthogonal, taking the dot product between

the first and second column of R and equating it to zero reduces the number of

independent components from four to three.

In general, crystallographic orientations are described with three independent

variables [52]. There is an intuitive explanation of why we need at most three inde-

pendent parameters to describe a crystal orientation. Imagine the coordinate systems
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CS and CC sharing the same origin but their axes not necessarily coincident. If we

try to rotate CS and make it coincide with CC then the rotation must be done about

a unit vector. The unit vector is represented with two independent variables and

the rotation about the unit vector is represented with one varible, the angle of ro-

tation. Therefore there is at most a total number of three independent variables for

describing the orientation of CC with respect to CS.

There are many ways of representing mathematically a crystal orientation, but all

representations, in principle, are equivalent and can be converted into one another

[6]. Some examples are the Euler angles, quaternions, rotation matrices and the

angle/axis representation. Depending on the type of application, each representation

has an advantage over the others. In this thesis we shall consider the Euler angle

and the rotation matrix representation. The Euler angle representation is based in

the following Euler’s Rotation Theorem:

Theorem 2. Any two independent orthonormal coordinate frames can be related by

a sequence of rotations (not more than three) about coordinate axes, where no two

successive rotations may be about the same axis [32].

The order in which the successive rotations are applied is not unique, also the

choice of rotation axes is arbitrary. In materials science it is common to follow a

convention known as the “Bunge Euler Angle Convention” and this is the one we

follow in this thesis.

Bunge Euler Angle Convention

The Bunge Euler angle convention refers to three rotations which, when performed in

the correct sequence make the coordinate system CS coincide with CC . Let the axes

of CS be represented by {RD, TD, ND} and the axes of CC by {[100], [010], [001]}.
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Assume both coordinate systems share the same origin, then the successive rotations

that define Bunge’s convention are described in the following three steps:

1. Rotate an angle of φ1 about the axis ND, transforming the axis TD into TD′

and the axis RD into RD′. The magnitude of φ1 is such that the axis RD′

belongs to the plane that contains [100] and [010].

2. Rotate an angle of Φ about the axis RD′, transforming the axis TD′ into TD
′′

and the axis RD′ into RD
′′

. The magnitude of Φ is chosen so that the axes

ND
′′

and [001] coincide.

3. Rotate an angle of φ2 about the axis ND
′′

so that both coordinate systems

coincide.

The angles φ1, Φ and φ2 are known as Euler angles in Bunge’s convention. Analyti-

cally, the three successive rotations are expressed as

Rφ1 =











cos φ1 sin φ1 0

− sin φ1 cos φ1 0

0 0 1











,

RΦ =











1 0 0

0 cos Φ sin Φ

0 − sin Φ cos Φ











,

Rφ2 =











cos φ2 sin φ2 0

− sin φ2 cos φ2 0

0 0 1











.

The rotation matrix R is related to the Euler angles in the following way:

R = Rφ1RΦRφ2 , (2.1)
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where the elements of R are given by:

R11 = cosφ1 cos φ2 − sin φ1 sin φ2 cos Φ,

R12 = sin φ1 cos φ2 + cosφ1 sin φ2 cos Φ,

R13 = sin φ2 sin Φ,

R21 = − cos φ1 sin φ2 − sin φ1 cos φ2 cos Φ,

R22 = − sin φ1 sin φ2 + cosφ1 cos φ2 cos Φ,

R23 = cosφ2 sin Φ,

R31 = sin φ1 sin Φ,

R32 = − cos φ1 sin Φ,

R33 = cos Φ.

It follows from the definition of Bunge’s convention that the angles φ1, Φ and φ2 are

periodic with period 2π. It can be shown that the most general range of Euler angles

in Bunge’s convention satisfies [52]

0 ◦ ≤ φ1, φ2 ≤ 360 ◦, 0 ◦ ≤ Φ ≤ 180 ◦.

2.3 The Euler Space

In many applications it is useful to represent the three parameters φ1, Φ and φ2

of a crystal orientation in a three-dimensional coordinate system whose axes are

given by the three Euler angles. The set of all possible crystal orientations in this

coordinate system is known as the Euler space. Points in the Euler space are denoted

by g = (φ1, Φ, φ2). Each point of the Euler space corresponds to a crystal orientation

and reciprocally, each crystal orientation is represented by a point of the Euler space.

It is important to notice that when Φ = 0 the representation of a crystal orientation

in the Euler space is not unique. From the definition of Bunge’s convention it follows
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that when Φ = 0 the crystal orientation is determined by the sum φ1+φ2 = constant.

This means that all points in the line Φ = 0, φ1 + φ2 = constant represent the same

crystal orientation. This phenomenon is known as the gimbal lock. Despite the non-

uniqueness of φ1 and φ2 during the gimbal lock phenomenon, the crystal orientation

remains clear, as will be seen in Chapter 4.

For the most general case the Euler space corresponds to the rectangular box

Ω0 = [0 ◦, 360 ◦] × [0 ◦, 180 ◦] × [0 ◦, 360 ◦].

The volume of this box can be reduced by taking into account the symmetries of the

sample and the crystal. The higher the crystal symmetry and the sample symmetry,

the smaller is the volume of the Euler space. The reason is because orientations have

more equivalent descriptions as the symmetries increase. In our case the crystallites of

interest possess cubic symmetry and the sample (thin Ni film) possesses orthorhombic

symmetry. For this case it can be shown that the Euler space reduces to [28]

Ω = [0 ◦, 90 ◦] × [0 ◦, 90 ◦] × [0 ◦, 90 ◦].

Crystallographic Texture

Polycrystalline materials have crystallites of different shapes, sizes and orientations.

The effective material properties of these polycrystals depend on the material prop-

erties of the single crystals and the way these are oriented. Since crystals are

anisotropic, that is, their material properties are directionally dependent, the crys-

tallographic orientations of the crystallites play an important role in the effective

material properties of the polycrystal. We define crystallographic texture as the

phenomenon of crystallites within a polycrystal having a preferred set of orienta-

tions. When all possible orientations of the crystals occur with equal frequency, the

effective response of the polycrystal is isotropic [6]. The reason is that the orienta-

tion dependence of the polycrystal dissapears when orientations of single crystals are
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averaged. Polycrystals with effective isotropic behaviour are said to have uniform

texture. The branch of materials science that studies the development, the mea-

surements and mathematical representation of crystallographic textures is known as

texture analysis.

Textures are induced during material fabrication. For example, the making of

metal wires or fibers induces all crystals to have nearly identical orientations along

the axial direction, but nearly random radial orientations. Texture in ceramics usu-

ally arises because the crystallites in a slurry have shapes that depend on crystalline

orientation, often needle- or plate-shaped. These particles align themselves as wa-

ter leaves the slurry. Another example of texture occurs during the manufacturing

process of polycrystalline thin films with thickness in the nanometer and micrometer

range. The type of textures produced are known as fiber textures. These textures

have the property that one of the crystallographic directions of the crystallites tends

to be aligned with a unit vector of the polycrystal. In our case, the thin Ni mem-

brane has a < 001 > fiber texture. This means that for almost all the Ni crystals,

one of the cubic crystallographic directions, < 001 >, tends to be parallel to the ND

direction.

Texture plays an important role in applications because many material proper-

ties are highly dependent on the material texture. Some of these material properties

are strength, magnetic susceptibility, stress corrosion cracking resistance and resis-

tance to radiation damage. For example, the magnetic susceptibility of transformer

cores can be modified by controling the crystallographic texture of the core’s silicon

steel sheets. As a consequence the magnetic hysteresis may be reduced indirectly

and therefore reduce energy losses. During the fabrication process of certain mate-

rials some unfavorable crystallographic textures may be developed and these may

contribute to a reduction of efficiency in device components. As a consequence the

systematic choice of materials and manufacturing process plays an important role in
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the survivability and performance of engineered materials because of the development

of certain kinds of favorable/unfavorable crystallographic textures.

Crystallographic textures have a mathematical representation and it is not obvi-

ous. It may seem natural to express all crystal orientations as a function of position,

that is, g(x, y, z), where (x, y, z) is a point that belongs to the physical volume of

the polycrystal. This vector-valued function is piecewise constant. It is continu-

ous at interior points of the crystallites and discontinuous at the grain boundaries.

This function has been experimentally determined for only a very few cases [6], and

its mathematical treatment is very complicated and it is not practically applicable.

Fortunately an easier mathematical representation of crystallographic textures ex-

ists. The main idea is to relate the frequency of occurence of crystal orientations

with the volume fractions of orientations within the polycrystal. The spatial position

of crystal orientations is ignored in this relationship.

Let V denote the total volume of the polycrystal, and ∆V(∆ΩE) the totality of

all volume of the polycrystal which possess the orientations g ∈ ∆ΩE , where ∆ΩE

is a subregion of the Euler space ΩE . It is assumed that there exists an orientation

distribution function (ODF) denoted by f(g) that satisfies

∆V(∆ΩE)

V
=

∫

∆ΩE
f(g)dg

∫

ΩE
f(g)dg

, (2.2)

where dg is the volume differential in the Euler space. In [6] it is shown that the

differential volume1 dg = sin Φ dφ1dΦdφ2. The left-hand side of (2.2) is called the

physical volume fraction of the polycrystal and the right-hand side is known as the

orientation volume fraction and both quotients are between zero and one. The right-

hand side of (2.2) is interpreted as the probability of finding crystals within the

sample with orientations in ∆ΩE . An extreme case will be ∆ΩE = ΩE , when all

1Intuitively the volume element dg is the product of three infinitesimal quantities: dφ1

dφ2 which correspond to the two polar angles φ1 and φ2 and the term sinΦ dΦ which
corresponds to the contribution of the azimuthal angle Φ of spherical coordinates.
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possible crystallographic orientations are taken into account. Intuitively the proba-

bility of finding crystals within the sample with orientations in ΩE is unity because

we are taking into account all possible orientations. Note that in this extreme case

∆V(ΩE) = V , consistent with (2.2). This means that the behaviour of f determines

which orientations are more likely to happen (texture). For example, if f is sharply

peaked in a neighbourhood of an orientation g and almost zero elsewhere, then al-

most all the crystallites within the polycrystal will have orientations about g and

if f is constant then all crystallographic orientations of the Euler space are equally

likely.

The ODF satisfies the following properties:

1. f(g) ≥ 0 for all orientations g ∈ ΩE .

2. f is periodic.

3.
∫

ΩE
f(g)dg =

∫

ΩE
dg.

The ODF behaves almost like a PDF, except for the second and third properties. In

the case of a PDF the integral of the density function is performed over all space so

that the result is unity. In the case of an ODF, the periodicity condition restricts the

integration domain to the finite region ΩE . Also the integral of a PDF is always unity,

independently of the choice of parameters, while the integral of the ODF depends

on the size of the Euler space, in other words, the crystal and sample symmetries.

Property three is imposed for convenience, if f(g) = c, where c is a constant,

then c = 1. This means that if all crystallites within the polycrystal have the same

frequency of ocurrence then f ≡ 1, in other words all isotropic polycrystals have the

ODF f(g) = 1, for all g ∈ ΩE . The units of an ODF are called “multiples of random

distribution” (m.r.d.) because every ODF f is a multiple of the uniform distribution,

that is, f ≡ 1 · f .
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The ODF of a polycrystal gives knowledge about the sample’s crystallographic

texture but other important details of the polycrystal are ignored. For example,

the grain shapes are not taken into consideration in definition (2.2), only volume

fractions. Indeed, given a collection of physical volume fractions, there are infinitely

many polycrystals with different grain morphologies having the same set of physical

volume fractions. The grain morphologies may be described analytically by associat-

ing the grain boundaries with mathematical surfaces in two variables. Constructing

the algebraic expressions for the mathematical surfaces is as hard as constructing the

spatial dependence of grain orientations g(x, y, z). This description is not practical

and therefore an orientation distribution function of grain boundary surfaces is de-

fined in order to facilitate the mathematics [6]. Other types of distribution functions

exist and their purpose is to capture features of the polycrystal that other distribu-

tions may ignore. In this thesis we work only with the ODF because this is the only

distribution we know from experimental measurements.

Crystallographic textures can be determined experimentally with different tech-

niques, most of them are based on the diffraction of radiation by crystal lattices.

Some of these methods are the neutron diffraction method, the electron backscatter

diffraction (EBSD) method and the X-ray diffraction (XRD) method. Each method

has its advantages and disadvantages. The features, advantages and disadvantages

of the XRD method are summarized as follows [52]:

• Features

– X-rays have a large penetration depth, typically 5µm.

– XRD has a spatial resolution that ranges from 25µm up to 1mm.

• Advantages

– XRD is a well established technique.
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– Relatively large areas are scanned in one scan, typically 10mm2.

– A large number of grains, usually 104 grains, can be analyzed in one

experiment.

• Disadvantages

– The ODF is not obtained directly from XRD measurements, instead pole

figures are generated. The ODF can be estimated from pole figure infor-

mation but in some cases the calculations may be complicated leading to

erroneous information about the crystallographic texture of the sample.

Pole figures are discussed in the next section.

– XRD measurements have poor spatial resolution, they are not appropriate

for microscopic samples.

The features, advantages and disadvantages of the EBSD method are summarized

as follows [52]:

• Features

– EBSD measurements are surface sensitive because electrons have a small

penetration depth, typically 20nm.

– EBSD has a spatial resolution of approximately 10nm.

• Advantages

– The direct calculation of the ODF is possible.

– Other microstructural parameters may be measured, for example grain

size.

– Crystallographic texture of two phase materials can be measured easily.

• Disadvantages
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– It is expensive to use.

– It is not adequate for some types of samples, for example polymers.

– It is less practical for texture measurements of large grain-size materials.

– It may give erroneous texture measurements if highly deformed grains are

present.

In the majority of the cases XRD methods are used to measure crystallographic tex-

ture. Because of the advantages and disadvantages of the EBSD and XRD methods,

in practice both techniques may be used to complement each other.

The neutron diffraction method is not as common as the XRD technique. The

main reason is that the neutron diffraction method requires specialised facilities like

a nuclear reactor. This method is used when there are clear advantages over the

XRD method, some of these situations are [52]:

• Samples with irregular or large grains. The texture characterization of these

polycrystals requires a larger penetration depth. Neutron diffraction methods

also work well in porous materials.

• Samples with low crystal symmetry or multi-phase systems.

• When the speed of measurement becomes important, for example in situations

of texture evolution.

The crystallographic texture of the thin Ni film shown in Fig. 1.1 was measured

with XRD methods. A brief explanation of how crystallographic texture is obtained

from the XRD method is provided in Appendix A. It was mentioned above that one

disadvantage of the XRD method is that the ODF is not directly estimated, instead

a plot of diffraction intensity peaks is obtained as a function of the reflection angle θ

of crystallographic planes. The process of constructing the ODF from the diffraction

intensity peaks is explained in the next section.
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From XRD Measurements to the ODF

We know from Appendix A that XRD measurements lead to diffraction intensity

peak plots. The crystallographic planes (hkl) that reflect high intensities at an

angle θ can be calculated from Bragg’s law and therefore the orientation of the

crystallite with respect to the sample can be known. Assume we are interested

in counting intensity peaks that correspond to reflections of (hkl) crystallographic

planes of different crystals. The intensity peaks of the (hkl) planes may correspond

to different reflection angles and therefore to different crystals. The (hkl) planes

are identified with their unit normals and therefore these normals also represent the

crystals orientations. The collection of unit normals within the sample represent

geometrically the crystallographic texture of the material, in this case by showing

the crystal orientations in terms of the plane unit normals. The problem with this

representation is that it is three dimensional, the information lives in a unit sphere

and it is difficult to interpret for thousands of crystals. Fortunately there exists a

two dimensional representation of crystallographic texture known as a pole figure.

A pole figure of a polycrystal associated to the (hkl) crystallographic planes is

defined as the collection of the stereographic projections of the unitary normals of

the (hkl) planes onto the sample. A schematic representation of a pole figure is

shown in Fig. 2.10. The circle that contains the RD and TD axes is the equator of

the unit sphere. The center of the unit sphere coincides with the origin of the sample

and the north and south poles of the sphere are located at the positive and negative

ND axis respectively. The black dots located at the equator are the stereographic

projections of the unit normals. The stereograhic projection of each normal may be

done from the north pole or the south pole of the unit sphere. The pole is chosen so

that the stereograhic projection falls inside the sphere on the equatorial plane.

In general, one pole figure is not sufficient to describe the polycrystal texture;
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Figure 2.10: Schematic representation of a pole figure.

usually at least two pole figures are required but three are preferable even when the

crystals have high symmetries [52]. In practice the pole figures are obtained from

specialised software. Some examples of this software are the preferred orientation

package - Los Alamos (popLA) and the Materials Analysis Using Diffraction (MAUD)

software.

Once the pole figures are generated, these are used to approximate the ODF.

This can be done with MTEX, a Matlab toolbox for quantitative texture analysis.

The ODFs are generally described by the m.r.d. given on a grid defined in the Euler

space with angles taken in steps of 5◦. The case when the ODF is known only at a

set of discrete values is called a discrete orientation distribution function. The term

ODF is reserved for the continuos mathematical expression of f(φ1, Φ, φ1).

Table 2.1 shows a few entries of the discrete ODF of one of the MEMS switches.
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φ1 Φ φ2 f(φ1, Φ, φ2)
0◦ 0◦ 0◦ 9.12178 m.r.d.
0◦ 0◦ 10◦ 9.11875 m.r.d.
0◦ 0◦ 15◦ 9.11197 m.r.d.
0◦ 0◦ 20◦ 9.10393 m.r.d.
0◦ 0◦ 25◦ 9.09851 m.r.d.
0◦ 0◦ 30◦ 9.10278 m.r.d.
0◦ 0◦ 35◦ 9.14714 m.r.d.
...

...
...

...
355◦ 90◦ 85◦ 7.88253 m.r.d.

Table 2.1: Discrete ODF of one of the MEMS switches.

The Euler angles range as follows:

φj
1 = j5◦, i = 0, 1, . . . , 71,

Φk = k5◦, k = 0, 1, . . . , 18,

φl
2 = l5◦, l = 0, 1, . . . , 17. (2.3)

At the end of Section 2.3 it was mentioned that the Euler space of a polycrystal with

orthorhombic symmetry and cubic crystal symmetry is ΩE = [0, π
2
] × [0, π

2
] × [0, π

2
].

Note that some of the discrete Euler angles (2.3) are outside the Euler space ΩE .

This is not a problem in texture calculations because any information outside ΩE is

redundant, f is a periodic function.

It is important to notice that any < hkl > pole figure can be recovered from

the discrete ODF. This is done by constructing a cumulative distribution function

defined on a path through the set of discrete Euler angles. By a path we mean

an ordering of the discrete Euler angles. Specifically, assume the angles (2.3) are

ordered in an arbitrary way, this means that the grid points (φj
1, Φ

k, φl
2) may be

placed along a line. Let us represent the ordering of these grid points by {gi}24624
i=1
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then a cumulative distribution function is defined as follows:

FN =
N
∑

i

∫

Bjkl
f(φj

1, Φ
k, φl

2)dg
∫

B
dg

, 1 ≤ N ≤ 24624,

where Bjkl is a box centered around the grid point (φj
1, Φ

k, φl
2), the indices j, k, l

correspond to the well ordered index i and B = [0◦, 360◦]× [0◦, 90◦]× [0◦, 90◦]. Note

that each integer i is identified uniquely with an orientation (φj
1, Φ

k, φl
2). If Nmax

uniformly distributed random numbers {xn}Nmax

n=1 ⊂ (0, 1) are generated, then there

exist integers I such that FI ≤ xn < FI+1. We identify each xn with the index I and

therefore with the orientation (φj
1, Φ

k, φl
2) corresponding to the index I.

In this way crystal orientations (φj
1, Φ

k, φl
2) are generated with radom numbers

xn. Therefore the < hkl > crystal directions with orientations (φj
1, Φ

k, φl
2) can be

projected with the stereographic projection. When a large number of orientations is

sampled, the < hkl > pole figure is obtained. Typically the sampling number is in

the thousands.

MTEX is a powerful quantitative texture analysis tool. Besides generating dis-

crete ODFs from pole figures it can also generate pole figures from the discrete ODF.

Figure 2.11 shows the < 001 >, < 110 > and < 111 > pole figures of the experi-

mental discrete ODF of Table 2.1. The < 001 > pole figure shows that the < 001 >

crystallographic directions are almost aligned with the ND direction of the sample.

The blue rings observed in the < 110 > and < 111 > pole figures indicate that

the in-plane orientations are uniformly distributed. These pole figures indicate that

the polycrystal has fiber texture, where the isotropy plane is located in the RD-TD

plane. MTEX can also compute other quantities that arise in texture analysis like

mean orientations, reconstructed ODFs and misfits. These concepts are mentioned

in Section 4.4 of Chapter 4.
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Figure 2.11: Experimental pole figures < 001 >, < 110 > and < 111 > of one
MEMS device. The pole figures were generated from the discrete ODF using the
MTEX software. The colorbar is a measure of the m.r.d. .

2.4 Governing Equations of Motion of Solid De-

formable Bodies

Every solid body under the action of applied external forces exhibits deformation

to some extent. By deformation we mean changes in volume, shape or motion.

The deformation of the body is described mathematically in the following way. Let

B ⊂ R3 be a body2, ϕ : B× [0, T ] → R3 a motion3 of B. The scalar T > 0 represents

the maximum time of interest. Assuming a coordinate system is defined, points in

B are represented by capital letters X and are called material points while points

in R3 are represented by lower case letters x and are called spatial points. For a

particular time t ∈ [0, T ] we have the relationship [42]

x = ϕ(X, t),

2B is an open bounded set of R
3 with piecewise smooth boundary.

3ϕ is a motion if it is smooth, orientation preserving and injective map.
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Figure 2.12: Motion of the body B in the time interval [0, t]. Material point X

follows the indicated trajectory from X at time t = 0 to x at time t.

which means that the material point X is at position x at time t. For X fixed and

t ∈ [0, T ], the vector-valued function φ
X

(t) = ϕ(X, t) describes the trajectory of

material point X in the time interval [0, T ]. This is illustrated in Fig. 2.12.

By definition, at time t = 0 we have B ≡ ϕ(B, 0); this is called the initial

configuration of the body B. For a particular time t ∈ (0, T ], the set Bt ≡ ϕ(B, t)

is called the current configuration of B. Let b(x, t) be a body force4 per unit mass

acting on Bt at x and time t and ρ(x, t) be the mass density of Bt at point x and time

t. The local forms of conservation of linear and angular momentum are summarized

in the following initial boundary value problem (IBVP) [56]:

ρ
d2u

dt2
= div σ + ρb,

σ = σT ,

4Here b is a vector field acting on Bt × (0, T ).
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where the initial and boundary conditions are

u(X, 0) = u0(X),
∂u

∂t
(X, 0) = v0(X),

u|∂uB = ū, σ · n̂|∂σB = t̄,

in the above, u : B̄t × [0, T ] → R3 is the displacement field, n̂ is the unit normal

vector to ∂σB, σ(x, t) is the second order Cauchy stress tensor at x and time t,

u0, v0 are prescribed displacements and velocities in B and ū, t̄ are prescribed

displacements and tractions on ∂uB and ∂σB respectively. The sets ∂uB and ∂σB

are portions of the boundary ∂B that satisfy ∂uB ∩ ∂σB = φ and ∂B = ∂uB ∪ ∂σB.

The displacement field at time t and position x is defined as u ≡ x − X, where

X is such that ϕ(X, t) = x. Geometrically the displacement field u describes the

position of points of the current configuration relative to their associated material

points of the initial configuration. Therefore if u is known, then the deformation of

the body is entirely determined [56].

The equations of conservation of linear and angular momentum can be solved

assuming the stress σ is known. Generally this is not the case, a complementary set

of equations for σ is required. Intuitively the motion of a body depends on material

properties, indeed, a set of external forces applied to a solid rigid body will produce

different motion than the same set of forces applied to a ”malleable” solid body.

The conservation laws contain no information about the material, therefore the

required set of complementary equations must contain information of this type. This

set of complementary equations are called constitutive equations. It has been ob-

served from experiments that not all solid materials deform displaying the same set

of features. For example, some materials, like rubber, may suffer big deformations

under the action of external forces and recover their original shape when these forces

are removed. Other solid materials, for example most metals, recover their original

shape only for small deformations. Other materials, like glass, may suddenly break
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or fail after the application of forces greater than a given magnitude without showing

deformation (or very small deformation) for forces smaller than the given magnitude.

These types of materials are known as brittle materials. The list of features is nu-

merous and new features are showing up with the development of new engineered

materials. For example, polycrystalline nanomaterials may exhibit a Hall-Petch ef-

fect, a phenomenon that has been observed only in nanomaterials and not in bulk

materials. The Hall-Petch effect is explained in Chapter 6.

The above observations on material deformation indicate that there is no single

constitutive model that describes the deformation of all solid materials. It is prac-

tically impossible for a mathematical model to capture all experimental features.

Developing constitutive models for solid materials is an art, and this can be done

from physical principles or from purely mathematical relations which try to fit ex-

perimental data. The first class of constitutive models are known as mechanistic

models and the second class are known as phenomenological models. The constitu-

tive models we develop and study in this thesis are phenomenological. We start with

the phenomenological linear model known as Hooke’s law.

2.5 Hooke’s Linear Constitutive Model

In the previous section it was mentioned that the deformation of the body B is

completely determined if the displacement vector field u is known. The displacement

can be used directly to describe the deformation of a solid body, but sometimes it

may be of interest to know if the relative displacements between material points of

the current configuration have changed. These relative displacements may not be

evident to detect directly from u. For example, motions like translations and rigid

rotations of B have the property that the relative displacements between material
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points of the current configuration remain constant5, but the displacement vector

field u may be a complicated non-constant mathematical function of x and t.

The tensor field that describes changes of the relative displacements between

material points in the current configuration is called the strain tensor. There is no

universal definition of strain tensor, but when deformations are “small” it turns out

that all definitions of the strain tensor are equivalent. In this thesis we adopt the

following widely used definition :

ε = sym (∇u) , (2.4)

where ε is the strain tensor, sym (∇u) = 1
2

(

∇u + (∇u)T
)

is the symmetric part

of the second order tensor ∇u and ∇ is the gradient operator with respect to the

spatial variable x.

Most metals, in particular Ni, exhibit a stress-strain relationship like the one

shown in Fig. 2.13. Naturally this plot is between one component of σ and one

component of ε. The following terminology is common in describing stress-strain

relations:

1. There exists an initial approximate linear relationship between stress and strain;

we call this the linear elastic range. By elastic we mean that when the stress

is reduced to zero, the strain is also reduced to zero along the same line. In

other words, when the external forces are removed, the body recovers its orig-

inal shape. The stress in this region ranges from zero to a maximum value σ0,

called the proportional limit.

2. Generally there is a nonlinear region, still elastic, where stress takes values

between σ0 and σy ≥ σ0. The stress σy is known as the yield stress or elastic

limit of the material. The yield stress σy is defined as the maximum stress at

5Neglecting relativistic effects.
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σ

ε

σ0

σy

Figure 2.13: Relationship between stress and strain.

which a solid remains elastic. Experimentally it has been observed that many

solids satisfy σ0 ≈ σy, but there exist cases where a significant difference is

appreciated [27].

3. There exists a plastic behaviour, this is achieved when the stresses are higher

than σy. Plastic behaviour is defined as a permanent deformation in a solid

body; that is, after unloading to zero stress, a permanent non-zero strain re-

mains in the solid. The plastic behaviour of polycrystals is studied in Chapter 6.

The linear elastic range is described mathematically with Hooke’s law:

σ = C : ε, (2.5)
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where C is the fourth order elastic stiffness tensor. The colon represents the standard

double dot product between the stiffness and elasticity tensors. If a rectangular

coordinate sytem is defined, then (2.5) takes the form

σij = Cijklεkl, (2.6)

where the scalars σij , Cijkl and εkl are the components of σ, C and ε respectively.

All subindices take values in the set {1, 2, 3} and repeated indices follow Einstein’s

summation convention [42]. The relations σT = σ and εT = ε applied to (2.6) imply

Cijkl = Cjikl = Cjilk = Cijlk,

these are known as minor symmetries of C. Assuming the total elastic energy of the

body is conserved [58] then C satisfies the additional symmetry

Cijkl = Cklij,

known as major symmetry. Hooke’s law (2.5) can also be represented in the form

ε = S : σ, (2.7)

where S = C
−1 is the fourth order compliance tensor or flexibility tensor. The tensor

S also satisfies minor and major symmetries. Note that C or S have a total number

of eighty-one components, but only twenty-one are independent, this follows from

their minor and major symmetries.

Voigt introduced a convenient notation where the components of the symmetric

second order stress and strain tensors are put into a vector of length six, and the

components of the fourth order compliance and stiffness tensors are put in a six-by-six
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matrix. In Voigt’s notation, Hooke’s law (2.6) is



























σ11

σ22

σ33

σ23

σ13

σ12
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C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212





















































ǫ11

ǫ22

ǫ33

2ǫ23

2ǫ13

2ǫ12



























. (2.8)

where the numerical values of the components of (2.8) depend on the choice of the

coordinate sytem.

Some materials exhibit certain types of symmetries in the sense that when the

coordinate system is rotated at a certain angle about an axis, the components of

the stiffness matrix (2.8) remain unchanged. These types of symmetries are known

as material symmetries. For the purpose of determining the matrix structure of the

stiffness matrix (2.8) under material symmetries, it is useful to know how fourth

order tensor components change under coordinate system transformations. Let Dijkl

denote the components of the fourth order tensor D with respect to a rectangular

coordinate system C1. Assume the coordinate system C1 is rotated with respect

to its origin to the coordinate system C2. Then there exists an orthogonal linear

transformation R : C1 → C2 with positive determinant such that

D
′

ijkl = RtiRrjRmkRnlDtrmn, (2.9)

where D
′

ijkl are the components of D with respect to the coordinate system C2. The

relation (2.9) is known as fourth order tensor transformation.

Physically the material symmetries of most metals depend on how their crystal-

lites are oriented. For example, if all crystallites are oriented identically, forming

a single crystal, then the material symmetries are deduced from the crystal lattice

symmetries. If the crystal orientations are not identical, e.g. they are described with
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an ODF, then the material symmetries of the stiffness matrix are deduced from aver-

aging over the crystallographic texture which results in an effective elasticity matrix.

This averaging process is explained in detail in Chapter 3.

Assuming that an effective elasticity matrix corresponds to a polycrystal, then its

material symmetries lead to simplified forms of (2.8). For example, if the crystallites

are randomly oriented (uniform texture), then the stiffness matrix in (2.8) is invariant

under rotations. Using the fourth order tensor transformation (2.9) it can be shown

that the stiffness matrix (2.8) reduces to the form

C =



























λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0

λ λ λ + 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ



























(2.10)

where λ and µ are independent constants known as Lamé constants. Materials

exhibiting this type of symmetry are known as isotropic. Sometimes it is convenient

to express (2.10) in terms of an alternative pair of constants which depend on the

Lamé constants. The constants we use in this thesis are the bulk modulus K, the

shear modulus G, the Young’s modulus E and Poisson’s ratio ν. These constants

satisfy λ = K − 2
3
G, µ = G, E = 9KG

3K+G
and ν = 3K−2G

2(3K+G)
. The stiffnes matrix for

isotropic materials (2.10) in terms of the bulk and shear modulus takes the form

C =



























K + 4G
3

K − 2G
3

K − 2G
3

0 0 0

K − 2G
3

K + 4G
3

K − 2G
3

0 0 0

K − 2G
3

K − 2G
3

K + 4G
3

0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G



























, (2.11)
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this form of C will be used in Chapter 3.

There are many other types of material symmetries that lead to simplified forms

of the stiffness matrix provided the coordinate system is chosen appropriately. The

material symmetries relevant in this work, besides isotropy, are cubic symmetry and

plane isotropy.

A solid material is defined to have cubic symmetry if there exists a rectangular

coordinate system such that its stiffness matrix takes the form

C =



























C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



























, (2.12)

where C11, C12 and C44 are constants. The stiffness matrix (2.12) has the property

that when the coordinate system is rotated in multiples of π
4

about any of its coor-

dinate axes then its entries remain unchanged. The geometrical meaning of this is

that materials with cubic symmetry possess nine planes of symmetry whose normals

are on the three coordinate axes and on the coordinate planes making an angle of

π
4

with the coordinate axes [59]. Single crystals falling in the cubic system category

have this geometrical property when the axes of the coordinate system are aligned

with the unit cell vectors. In particular, Ni which has an FCC lattice, has a stiffness

matrix of the form (2.12) provided the coordinate system axes are aligned with the

unit cell vectors.

Now assume a solid material has the property that the components of its stiffness

matrix do not change when its reference coordinate system is rotated about a fixed

line that contains one of its coordinate axis. The plane perpendicular to this line is

called plane of symmetry. Without loss of generality assume this line contains the
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third axis of the coordinate system. Then from the fourth order tensor transformation

(2.9) it follows that the stiffness matrix takes the form

C =



























C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 1
2
(C11 − C12)



























, (2.13)

where C11, C12, C13, C33 and C44 are constants. This type of material symmetry is

known as plane isotropy or transverse isotropy. Materials with transverse isotropy

symmetry have the same elastic loading paths when the components of stress and

strain are restricted to the plane of symmetry. The slope common to all loading

paths which are restricted to the plane of symmetry is known as the in-plane Young’s

modulus of the material and it is calculated as the reciprocal of the 1 − 1 or 2 − 2

component of the compliance matrix S = C−1. The in-plane Young’s modulus in

terms of the fourth order compliance tensor is the reciprocal of the 1 − 1 − 1 − 1 or

2 − 2 − 2 − 2 component of S, this follows from the equivalence between the tensor

notation and Voigt’s matrix notation.

An example of a solid exhibiting transverse isotropy is the polycrystalline thin Ni

film of the MEMS device shown in Fig. 1.1. These devices are transverse isotropic be-

cause the electrodeposition process induces a crystallographic fiber texture in them.

It is important to note that if C has the form (2.10), (2.12) or (2.13) then S = C−1

also has the same matrix structure as C.
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Bounding Effective Material

Properties

The interest in determining the effective elastic behavior of polycrystalline materi-

als started approximately in the end of the 1920’s with the investigations of Voigt

[61] and Reuss [53]. Voigt estimated the effective polycrystalline stiffness tensor C

by assuming all crystals deform with the same strain ε throughout the polycrystal.

Reuss estimated the effective polycrystalline compliance tensor S by assuming uni-

form stress σ throughout the polycrystal. Both assumptions are unrealistic. Voigt’s

assumption leads to a situation where the forces between grains can not be in equi-

librium while Reuss’s assumption leads to a configuration of deformed grains that

can not fit together, that is, the strains are not compatible.

In 1952 Hill [20] demonstrated that some of the effective elastic moduli of isotropic

polycrystalline aggregates are bounded below and above by the Reuss and Voigt

averages respectively. The moduli that are bounded in [20] are the shear modulus G,

the bulk modulus K and Young’s modulus E. Bounds on polycrystalline aggregates

with anisotropy were not developed in [20].
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In 1962 Hashin and Shtrikman [15] developed variational principles which lead to

tighter isotropic aggregate bounds compared to the Voigt and Reuss bounds. In [16]

Hashin and Shtrikman applied their results to isotropic aggregates made of cubic

crystals. Their theoretical estimates were tested on real materials like copper (Cu),

gold (Au) and α−iron (α−Fe) 1. The bounds were also compared with the already

known Reuss-Voigt bounds. The numerical results of [16] were reported in a table

similar to Table 3.1, where G is the shear modulus, GR, GV are the Reuss and Voigt

effective shear moduli and G1, G2 are the Hashin-Shtrikman lower and upper bounds

of the shear modulus G, respectively. The improvement of the Hashin-Shtrikman

bounds over the Reuss-Voigt bounds is clear from Table 3.1.

Metal C11 C12 C44 GR GV G1 G2 G
Cu 171 122 69.1 40 54 44.8 47.2 45.5
Au 186 157 42 24 31 27 29 27.7

α−Fe 237 141 116 74 89 80 83 83.1

Table 3.1: Hashin-Shtrikman bounds compared to the Reuss-Voigt bounds for Cu,
Au and α-Fe. All material constants are in GPa.

Bounding effective material properties can be useful, specially when no geomet-

rical or statistical information is known about the grain orientations. Knowing the-

oretical bounds on effective material properties can also help verify numerical simu-

lations. One example of verification is shown in the next chapter for polycrystalline

thin nickel films.

An interesting example of the importance of knowing bounds on effective material

properties is shown in [62]. It is mentioned that the separation between the Voigt

and Reuss bounds on the bulk and shear moduli of olivines can be as large as 4%.

The Hashin-Shtrikman bounds developed in [62] reduced the separation to about

0.5%. For many practical purposes these numerical bounds can be considered as

1Copper and gold are FCC crystals and α−iron is a BCC crystal.
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exact.

The purpose of this chapter is to provide an analytical proof that the in-plane

Young’s modulus of polycrystalline materials with transverse isotropy is bounded be-

tween the Reuss-Voigt averages. The bounds do not follow directly from [20] because

the polycrystalline microstructure of the MEMS device is not isotropic. The bounds

were developed by combining results from [20] and [8, 46]. This chapter is organized

as follows: First we discuss the Reuss-Voigt averages [53, 61] then Hill’s result [20]

on bounding effective material properties. Finally we provide the analytical proof

that the in-plane Young’s modulus of the polycrystalline microstructure is bounded

between the Reuss-Voigt averages.

Crystal Averages

Let Ω ⊂ R3 be the physical domain of a polycrystalline material, T(x) a tensorial

quantity that depends on the position x ∈ Ω. The volume average of this tensorial

quantity is defined as

〈T(x)〉 =
1

V

∫

Ω

T(x)dV,

where V is the volume of Ω and dV is the volume differential. In this chapter

occasionally we use the notation T to represent the average 〈T(x)〉. The position

x ∈ Ω belongs to a single crystal and therefore it is identified with the corresponding

crystal orientation g. Based on the relation [6]

dV

V
= f(g)dg,

the average T can also be expressed in terms of the ODF f(g) as follows:

T =

∫

Ω0

T(g)f(g)dg,
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where Ω0 is the Euler space. It is important to know that in general

〈

T
−1(x)

〉

6= 〈T(x)〉−1 .

The problem of calculating effective elastic properties is formulated as follows:

Assume the elastic stiffness C
c(x) of the individual crystals forming Ω are known.

Also assume the texture of the polycrystal given by f(g) is known. The macroscopic

response of Ω is assumed to obey Hooke’s law

σ = C : ε,

where σ = 〈σ(x)〉, ε = 〈ε(x)〉 and C is the effective elasticity tensor. The goal

is to determine C as a function of Cc and the material texture. We now

present Voigt and Reuss estimates of C.

Reuss-Voigt Averages

Assume forces are applied to a linear elastic material Ω, then for all x ∈ Ω we have:

σ(x) = C
c(x) : ε(x). (3.1)

If we average both sides of the above equation we get

〈σ(x)〉 = 〈Cc(x) : ε(x)〉 . (3.2)

Voigt assumed all crystals deform with uniform strain ε = 〈ε(x)〉. Under this as-

sumption equation (3.2) takes the form

σ = 〈Cc(x)〉 : ε,

the quantity CV = 〈Cc(x)〉 is known as Voigt’s average and it is an approximation

to the macroscopic elasticity tensor C. Voigt’s average associated to the compliance

tensor is defined as SV =
(

CV
)−1

.
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Instead of averaging (3.1), Reuss averaged

ε(x) = S
c(x) : σ(x),

where S
c(x) = (Cc)−1 (x). Instead of assuming all crystals deform identically, Reuss

assumed all crystals had uniform stress σ = 〈σ(x)〉, then under this assumption the

average of the above expression takes the form

ε = 〈Sc(x)〉 : σ.

The quantity SR = 〈Sc(x)〉 is known as Reuss’s average and CR :=
(

SR
)−1

is an

approximation to the macroscopic elasticity tensor C. In general CR 6= CV .

Hill’s 1952 Result

In this section we summarize Hill’s result [20]. It is known from Bishop and Hill [3]

that if the polycrystalline aggregate Ω contains a sufficiently large number of grains

and if it is macroscopically homogeneous then

σ : ε =

∫

Ω

σ (x) : ε (x) dV. (3.3)

Let σ∗ (x) denote the stress that would exist in a crystal having strain ε. Similarly,

denote by ε∗ (x) the strain that would be produced in such a crystal by a stress σ,

in other words

σ∗ (x) = C
c(x) : ε, (3.4)

ε∗ (x) = S
c(x) : σ. (3.5)

Consider the expression

σ (x) : ε∗ (x) .

If we use σ(x) = Cc(x) : ε(x) and (3.5) in the above equation we obtain

σ (x) : ε∗ (x) = (Cc(x) : ε(x)) : (Sc(x) : σ)

= σ : ε (x) .
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Similarly, if we substitute ε(x) = Sc(x) : σ(x) and (3.4) in σ∗ (x) : ε (x) we obtain

σ∗ (x) : ε (x) = (Cc(x) : ε) : (Sc(x) : σ (x))

= σ (x) : ε.

It is convenient to represent σ (x) : ε∗ and σ∗ (x) : ε (x) in the following equivalent

forms:

σ (x) : ε (x) + (σ (x) − σ∗ (x)) : (ε (x) − ε) = σ∗ (x) : ε + 2 (ε (x) − ε) : σ (x) ,

σ (x) : ε (x) + (σ (x) − σ) : (ε (x) − ε∗ (x)) = σ : ε∗ (x) + 2 (σ (x) − σ) : ε (x) .

We claim that the second terms of the left-hand side of the previous two equations

are nonnegative, indeed, we know that Cc (x) is positive definite for all x ∈ Ω, then

(σ (x) − σ∗ (x)) : (ε (x) − ε) = [(Cc(x) : ε(x)) − (Cc(x) : ε)] : (ε (x) − ε)

= (ε (x) − ε) : C
c (x) : (ε (x) − ε)

≥ 0,

where the relation σ(x) = Cc(x) : ε(x) and (3.4) were used. Similarly we can show

(σ (x) − σ) : (ε (x) − ε∗ (x)) ≥ 0,

by using (3.5), ε(x) = Sc(x) : σ(x) and the positive definiteness of Sc (x). Therefore

the previous two inequalities imply

σ (x) : ε (x) ≤ σ∗ (x) : ε + 2 (ε (x) − ε) : σ (x) ,

σ (x) : ε (x) ≤ σ : ε∗ (x) + 2 (σ (x) − σ) : ε (x) .

If we take volume averages of both sides of these two inequalities and use (3.3) we

obtain

σ : ε ≤ ε : 〈σ∗ (x)〉 ,

σ : ε ≤ σ : 〈ε∗ (x)〉 .
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But since σ∗ (x) = Cc (x) : ε and ε∗ (x) = Sc (x) : σ, then the two previous

inequalities take the form

σ : ε ≤ ε : 〈Cc (x)〉 : ε,

σ : ε ≤ σ : 〈Sc (x)〉 : σ.

If we apply σ = C : ε and ε = S : σ to the left-hand side of the first and second

inequalities above, respectively, and note CV = 〈Cc (x)〉 and SR = 〈Sc (x)〉 we obtain

ε : C : ε ≤ ε : C
V : ε, (3.6)

σ : S : σ ≤ σ : S
R : σ, (3.7)

for all σ and ε. It is important to notice that inequalities (3.6) and (3.7) hold for

any kind of crystal symmetry and sample symmetry. In [20] Hill proved that the

bulk modulus, shear modulus and Young’s modulus are bounded between the Reuss

and Voigt averages when Ω is macroscopically isotropic. The proof of the bounds

is essentially an application of the following theorem [13] to inequalities (3.6) and

(3.7):

Theorem 3. Let A and B be two symmetric n×n matrices that satisfy the inequality

xT Ax ≤ xT Bx for all n dimensional vectors x. If {λ1, . . . , λn} and {β1, . . . , βn}
are the eigenvalues of A and B written in increasing order, respectively, then λi ≤ βi

for i = 1, . . . , n .

Let us prove first that Voigt’s average is an upper bound of the three elastic

constants mentioned previously. It was already shown by Voigt and Reuss that if Ω

has macroscopic isotropic properties then CV and SR must also be isotropic [61, 53].

The isotropy of C
V and S

R holds independently of the degree of anisotropy of the

individual single crystals. Voigt and Reuss gave explicit expressions for the bulk

modulus and shear modulus of CV and SR in terms of the elastic constants of the

single crystals of Ω.
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Because C, S, CV and SR are isotropic, two independent constants determine

completely each fourth order tensor. Let G and K denote the shear and bulk modulus

associated with C and S. Similarly, let GR, KR denote the shear and bulk modulus

associated with CR and SR and GV , KV the shear and bulk modulus associated with

CV and SV .

Now we assume (3.6) and (3.7) are expressed in Voigt’s matrix notation, then

the matrix A in Theorem 3 plays the role of Voigt’s representation of C or S in (3.6)

and (3.7). Similarly, matrix B in Theorem 3 plays the role of Voigt’s representation

of C
V or S

R in (3.6) and (3.7). The vector x plays the role of ε or σ because the

second order tensors ε and σ are vectors in Voigt’s notation.

Let C and CV denote Voigt’s representation of C and CV respectively. Because

Ω is isotropic then C takes the form (2.11) with respect to any orthonormal basis

{e1, e2, e3}. The eigenvalues of C are G and 3K. Similarly, the eigenvalues of CV

are GV and 3KV . Then from the theorem it is clear that G ≤ GV and K ≤ KV .

The Young’s modulus E of C can be expressed in terms of K and G as follows

1

E
=

1

3G
+

1

9K
.

The inequalities G ≤ GV and K ≤ KV imply 1
E

≥ 1
3GV

+ 1
9KV

. But by definition

1
EV

= 1
3GV

+ 1
9KV

, therefore E ≤ EV . Similarly, applying the above theorem to

inequality (3.7) we can prove G ≥ GR, K ≥ KR and E ≥ ER .

Apparently when Ω is orthotropic, like the MEMS films, it is harder to prove

with the same methods employed above, that the in-plane Young’s modulus of Ω lies

between the Reuss-Voigt averages. The reason is that the number of independent

constants of C increases to five and the eigenvalues of C are algebraically more

complicated expressions that depend on these constants. The eigenvalues can be

computed from (2.13). Directly from inequalities between the eigenvalues of C, CV ,

S and SR it is not easy to show ER ≤ E ≤ EV ; we decided to follow a different
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path.

Based on experimental observations we assume C has plane isotropy. We do not

know anything about CV and SR. The symmetry of CV and SR depends on the

crystallographic texture of Ω. We also do not know anything about the analytic

form of the ODF f(g). We know from XRD experiments that Ω has < 001 > fiber

texture.

In [8] it is mentioned that if the [001] crystallographic axis of almost all single

crystals in Ω is aligned with an imaginary axis v, then for any orthogonal coordinate

system {e1, e2, e3}, with e3 and v aligned, the ODF f can be approximated with a

function that depends only on the Euler angle Φ. We will show that this information

is sufficient to prove that CV and SR share the same symmetry as C.

By definition of Voigt’s average we have

CV
ijkl =

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0

Cs
ijkl(φ1, Φ, φ2) f(Φ) sin Φ dφ1 dΦ dφ2, (3.8)

where Cs
ijkl(φ1, Φ, φ2) = RtiRrjRmkRnlC

c
trmn is the ijkl−component of the crystal

stiffness with respect to the sample coordinate system, Cc
trmn is the trmn−component

of crystal stiffness with respect to the crystal corrdinate system and Rij is the

ij−component of the rotation matrix (2.1). Note that Rij depends on the Euler

angles and Cc
trmn is constant. Simplifying (3.8) requires laborious symbolic calcula-

tions. For this process we decided to use Matlab’s symbolic toolbox. The simplified

result can be expressed as follows

CV =



























CV
1111 CV

1122 CV
1133 0 0 0

CV
1122 CV

1111 CV
1133 0 0 0

CV
1133 CV

1133 CV
3333 0 0 0

0 0 0 CV
2323 0 0

0 0 0 0 CV
2323 0

0 0 0 0 0
(

CV
1111 − CV

1122

)

/2
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where CV
1111, CV

1122, CV
1133, CV

3333 and CV
2323 are complicated expressions that depend

on the crystal constants Cc
trmn and on

∫ π

0

f(Φ) sinq Φ dΦ,

where q = 1, 3, 5. Fortunately the explicit form of the above constants is not relevant

for our main purpose of proving ER ≤ E ≤ EV .

Note that CV has the same matrix structure as C, in other words we proved CV

preserves the transverse isotropic structure of C provided the ODF f depends only

on Φ. Because C and S share the same kind of symmetries it follows that SR has

the same matrix structure as CV .

Now if we use Voigt’s notation in (3.6) we have

ǫT
(

CV − C
)

ǫ ≥ 0, (3.9)

where ǫ is Voigt’s vector representation of ε. This means CV −C is a positive semi-

definite matrix. Now we use the following theorem which is proved in Appendix B

of [46]:

Theorem 4. Let A and B be n × n matrices and let the symbol A ≥ 0 denote that

A is a positive semi-definite matrix and A ≥ B denote A−B ≥ 0. If A ≥ B then

B−1 ≥ A−1.

If we apply Theorem 4 to (3.9) then C−1 −C−V ≥ 0, it follows that all diagonal

entries of C−1 − C−V must be non-negative. In particular the 1 − 1 component of

C−1 − C−V is non-negative, that is

1

E
− 1

EV
≥ 0,

therefore E ≤ EV . The proof that ER ≤ E follows directly from (3.7).
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Quantifying Uncertainties of the

In-plane Young’s Modulus

Electrodeposited thin films in MEMS devices often show fiber texture resulting in

transverse isotropic elastic properties. This is the case for the RF MEMS switches,

made of nickel, studied at the Purdue PRISM Center. It is of interest to understand

the elastic properties of these devices since these properties play a role in the lifetime

and reliability of the switches. For example, larger stiffness of the bridge in these

devices increases the pull-in voltage necessary to activate the switch. Higher pull-

in voltages accelerate charging of the electrode’s dielectric coating, a key failure

mechanism in the device [7]. Hence, an accurate estimate of the true modulus is

critical to the analysis and design of these MEMS switches.

Texture plays a fundamental role in the mechanical behavior of materials. Indeed,

materials of the same type with different crystallographic texture may have different

mechanical responses [28]. If the crystallites are oriented preferentially within the

film, the Young’s modulus of the film can vary significantly from the bulk value.

For example, [18] found the in-plane Young’s modulus of LIGA nickel structures to
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be 20% lower than handbook values for bulk polycrystalline Ni. The difference in

modulus is observed to be related to the presence of 〈001〉 out-of-plane texture in the

samples. This observation is based on calculations, assuming perfect fiber texture,

of the average Young’s modulus in the {001} plane which gives values close to those

measured in the microsamples.

Reference [7] demonstrates the importance of accounting for the degree of fiber

texture in estimating the in-plane Young’s modulus for the nickel polycrystalline

bridges in the RF MEMS devices that we are studying. If perfect 〈001〉 out-of-

plane texture is assumed, one would obtain an in-plane Young’s modulus that is

18% less than the isotropic Young’s modulus. However, there is not perfect 〈001〉
fiber texture. There is also a weak 〈111〉 texture present in the samples which has

the effect of increasing the in-plane Young’s modulus relative to the expected value

for a film with perfect 〈001〉 fiber texture. The result is a predicted in-plane Young’s

modulus that is 5-7% less than the bulk isotropic value of the Young’s modulus of

nickel [7].

In addition to understanding material properties of devices, the PRISM Center

has a focus on quantifying uncertainty in predictions of performance of the devices.

Accordingly, we are interested in estimating the probability distribution of material

properties for use in downstream simulations aimed at predictions of performance,

lifetime or reliability. In this chapter we obtain a probability distribution function

(PDF) of the in-plane Young’s modulus, rather than a single value, because we take

into account that the modulus itself depends on uncertainties due to fabrication

conditions that lead to variations in quantities such as grain geometry, individual

crystal properties and the crystal orientation distribution. Typically more uncer-

tainty in these quantities leads to more uncertainty in an estimate of the Young’s

modulus. However, it might be the case that the modulus is not sensitive to vari-

ability in some fabrication condition. Thus, that condition would not lead to more
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uncertainty in predictions of the modulus. It is the aim of this chapter to explore

and quantify how uncertainties in the fabrication process affect predictions of the

in-plane Young’s modulus. A more sharply peaked PDF of the modulus, with less

spread, implies less uncertainty and a more spread out distribution means more un-

certainty. The better we can quantify the uncertainty in the modulus, the better the

downstream predictions based on this modulus will be.

In [18] and [7] estimates of the in-plane Young’s modulus are made assuming that

(i) the elastic properties of individual crystals are known precisely, and (ii) there

is perfect fiber texture [18] or the texture is measured experimentally [7]. Under

these circumstances, one can compute an estimate of the effective in-plane Young’s

modulus from the single-crystal elastic constants and the texture using the classical

Hill average [20]. One way to quantify the uncertainty in this estimate is also to

calculate the Reuss average [53] and Voigt average [61] which provide lower and

upper bounds, respectively. In Section 4.1, the definition of the Hill average in-plane

Young’s modulus is provided. The Hill average serves as a reasonable prediction

in the Reuss-Voigt range. But in principle, the true in-plane Young’s modulus is

between the Reuss-Voigt range and can be quite far away from Hill’s average. If we

only count with this information, a reasonable PDF of the in-plane Young’s modulus

would be a uniform distribution over the Reuss-Voigt range.

In order to obtain more detailed information about the PDF of in-plane Young’s

modulus, we use numerical simulations. These simulations, described in Section 4.2,

necessitate a model for the microstructure geometry of polycrystals and an assign-

ment of fiber texture consistent with experimental observations. With these inputs,

and specification of elastic properties of the constituent individual grains, we numer-

ically perform uniaxial tension tests on this microstructure in order to determine the

effective modulus. The numerical simulation method is a full-field method based on

a fast Fourier Transform (FFT) technique [34]. As an illustration, in Section 4.6, we
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show that if the texture and the elastic moduli of single crystals are known, then the

numerical simulations provide a computed PDF of Young’s modulus that is sharply

peaked about the Hill average value. This result is insensitive to the underlying

microstructure geometry. In Section 4.7, we examine the affect of varying the crys-

tallographic texture and in Sections 4.8 and 4.9 we consider the effect of different

types of uncertainty in the single-crystal elastic constants.

4.1 Preliminary Information

In this section we briefly summarize how texture is measured for the PRISM Center

MEMS devices. Next we discuss how the Hill’s average of the in-plane Young’s

modulus is defined and finally the implications the Reuss-Voigt averages have on the

quantification of uncertainties.

Texture Measurement

In Section 2.3 of Chapter 2 we mentioned that crystallographic texture is typically

represented with an ODF. There are several methods for experimentally measuring

texture to determine the ODF. The details of efficient and accurate methods used

at the PRISM Center can be found in [7]. Briefly, crystal orientation is measured

experimentally using 2D X-ray diffraction (XRD). For more details on the XRD

method see Appendix A. From the XRD data, texture analyses are then carried out

using the Rietveld refinement software MAUD [38] to calculate inverse pole figures.

These pole figures are then imported into MTEX [19, 40] for further analysis. Finally

MTEX produces a discrete ODF whose format is shown in Table 2.1. This process

is done per MEMS device. For illustrative purposes, in our computations we use 10

ODFs named ODF1, ODF2, and so on, corresponding to texture measurements of
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10 RF MEMS switches labeled batch #1 in [7].

Calculation of the In-Plane Young’s Modulus

We know from Chapter 3 that if the ODF and the crystal elastic constants of a

polycrystalline microstructure are known then the effective elastic properties of the

sample can be estimated by averaging over the Euler space. The averages we studied

are the classical Reuss-Voigt averages. We also showed that some of the elastic

constants corresponding to isotropic and transverse isotropic materials are bounded

between these averages. In particular we showed that the in-plane Young’s modulus

Ein−plane of transverse isotropic materials is between the Reuss-Voigt averages.

Assume we have a polycrystalline aggregate, let SR denote its Reuss average

compliance tensor and CV its Voigt average stiffness tensor, then its Hill average

compliance tensor is defined as follows:

S
Hill =

1

2

(

S
R + S

V
)

,

where SV = C−V . We know from Chapter 3 that if the sample has fiber texture then

the Voigt and Reuss averages, as well as the effective properties exhibit transverse

isotropy. If we choose an orthonormal basis, e1, e2, e3, with e3 perpendicular to the

plane of symmetry, then the Hill average in-plane Young’s modulus is defined as

EHill
in−plane =

1

SHill
1111

=
1

SHill
2222

. (4.1)

Consider the results from [7] for batch #1 devices, reproduced here in Table 4.1.

In that work, the single-crystal elastic constants of Ni are assumed known and taken

to be C11 = 249 GPa, C12 = 155 GPa, and C44 = 114 GPa, the mean values of

experimental measurements shown in Table 4.2 [36]. As noted above, the mean
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in-plane Young’s modulus calculated with the experimental ODF, which is predom-

inantly 〈001〉 fiber texture, but also includes weak 〈111〉 texture, is intermediate

between the mean modulus calculated assuming perfect 〈001〉 fiber texture and the

bulk isotropic value. However, the range of possible values, given by the Reuss and

Voigt bounds, is narrower if perfect 〈001〉 fiber texture is assumed compared to the

experimental texture. It is observed experimentally that the Hill average modulus is

close to experimentally measured effective properties of polycrystals; although, there

is no theoretical basis for this observation. Thus, it is reasonable to use the Hill aver-

age as an estimate of the true effective response. In order to quantify the uncertainty

in this estimate, without any other information, we would assume that any value of

the in-plane Young’s modulus between the Reuss and Voigt bounds is equally likely.

Accordingly, the PDF of in-plane Young’s modulus would be a uniform distribution

on this range, as illustrated in Fig. 4.1. Notice that different assumptions about

texture in the sample significantly impacts the PDF of in-plane Young’s modulus,

again emphasizing the importance of knowing the ODF for the sample.

Perfect 〈001〉 RF MEMS Uniform
Texture Switches Texture

(batch #1)
(GPa) (GPa) (GPa)

ER
in−plane 163.3 178.8 ± 1.1 192.4

EHill
in−plane 172.4 194.7 ± 1.3 209.7

EV
in−plane 182.7 210.3 ± 1.5 225.7

Table 4.1: The Reuss, Hill, and Voigt average in-plane Young’s moduli of three
different types of texture: A simulated perfect 〈001〉 fiber texture sample, an exper-
imentally measured texture calculated from batch #1 of RF MEMS switches and a
uniform texture sample from [7]. Here ER

in−plane, EHill
in−plane and EV

in−plane denote the
Reuss, Hill, and Voigt average in-plane Young’s moduli respectively.
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Figure 4.1: PDF of in-plane Young’s modulus for perfect texture, experimental tex-
ture, and uniform texture assuming a uniform distribution on the Voigt-Reuss range.

C11 C12 C44

GPa GPa GPa
Exp. 249 ± 4 155 ± 7 114 ± 12

Table 4.2: Single Crystal Elastic stiffness constants for Nickel [36].
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4.2 Effect of Microstructure Geometry on In-plane

Young’s Modulus

The uniform distribution determined in the last section is pessimistic. In this section

we will see that if we take into account actual geometry of the microstructure, assign

grain orientations to the geometry consistent with the experimentally determined

ODF, and use numerical simulations to calculate the effective modulus, we greatly

reduce the uncertainty in our estimate of the in-plane Young’s modulus. For now,

we continue to assume we know the elastic moduli of the individual crystals, and use

the mean values from Table 4.2. In order to carry out this analysis, we must specify

the geometry, the method for assigning texture to that geometry, and the numerical

procedure for computing the effective modulus once these specifications are made.

We next address these issues in turn.

4.3 Microstructure Geometry

We imagine cutting a small, rectangular parallelepiped sample of approximately 1000

grains from the MEMS devices under consideration. Electrodeposition tends to pro-

duce V-shaped columnar grains with the grain axis perpendicular to the plane of the

film. A schematic representation of a cross-section of the thin film microstructure is

shown in Fig. 5.1 of Chapter 5. We consider the rectangular parallelepiped sample to

be at the near top of the thin film where grains tend to be perfectly columnar. Thus,

we represent the microstructure geometry of this sample with perfectly columnar

grains based on a Voronoi diagram construction. Columnar grains are obtained by

distributing generating points for the Voronoi diagram in a single plane, constructing

a tessellation of the plane to represent grain cross-sections, and then extending the

grain geometry to the third dimension to make columns.
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To be more specific, recall the definition of a Voronoi diagram in a plane. Given

a non-empty set R ⊂ R
2 and a finite set of generating points, {pk}N

k=1 ⊂ R, the

Voronoi diagram of R associated with the points {pk}N
k=1 is defined as the collection

of all sets of the form

Vj = {x | x ∈ R, |x − pj | ≤ |x − pi| and for all i 6= j} .

The set Vj is called the jth Voronoi cell associated with the point pj. The collection

of all cells {Vj}N
j=1 forms a tessellation of R, each Vj is a convex set, and

N
⋃

j=1

Vj = R.

In this work the set R is a rectangle. The cells Vj contained in R are extended

perpendicular to the plane of the rectangle to form columns making a sample that is

a rectangular parallelepiped. The extended cells will also be denoted by Vj, and these

cells represent crystal grains in the numerically constructed polycrystalline sample.

For numerical purposes, we prefer periodic Voronoi diagrams generated from the

regular Voronoi diagrams in the following way:

• Define a rectangle R ⊂ R2.

• Choose uniformly randomly distrubuted generating points in R.

• Extend R periodically, together with the generating points, in all directions.

• Compute the tessellation of the extended periodic space.

• Compute the intersection between the cells of the periodic space with R. The

resulting collection of subsets contained in R defines the periodic Voronoi dia-

gram of R associated with the generating points.
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Figure 4.2: Periodic Voronoi diagram composed of 1000 cells.

An example of a two dimensional periodic Voronoi diagram is shown in Fig. 4.2. The

next step is to assign orientations to the crystals represented by these Voronoi cells

consistent with the experimental ODF.

4.4 The Texture Discretization Algorithm

As we have already seen, the mechanical response of polycrystalline materials is

highly influenced by crystallographic texture. Therefore the prediction of effective

material properties, like the in-plane Young’s modulus of MEMS devices, depends on

the accurate numerical representation of the texture. By accurate numerical texture

we mean that all numerically generated crystal orientations should statistically rep-

resent experimental texture coming from the XRD measurements. The measure that

indicates how close the numerical texture is to experimentally measured texture is

called misfit. This measure depends on the experimental ODF, which is known, and
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a recalculated ODF that is obtained from the results of the texture discretization

algorithm discussed in this section.

Assume a model microstructure is given, for example one generated using the

Voronoi construction of the last section. Note, we are considering microstructures

where the grains are of unequal volume. We follow a modified version of the algorithm

suggested by [44] to assign orientations to the microstructure. First, the sample is

divided into Nu elementary volumes each of identical volume Vu. Each grain contains

many elementary volumes.

Next, the Euler space is divided into N cubic cells Ci, i = 1, 2, . . . , N , with a side

length of 5◦. The volume fraction of each cell in the orientation space is given by

fi =

∫

Ci
f(g)dg

∫

Ω0
f(g)dg

, i = 1, 2, . . . , N.

A cumulative distribution function of volume fractions is defined in the following

way

F (M) =
M
∑

i=1

fi, 1 ≤ M ≤ N.

By construction, we have 0 < F (M) ≤ 1. Each integer M is identified with a

value F (M) and an orientation gM at the center of CM . This establishes a 1-1

correspondence between the numbers F (i) and the orientations gi, i = 1, . . . , N .

The texture discretization algorithm or the numerical method that assigns orien-

tations to crystals of a polycrystalline microstructure is summarized in the following

four steps:

1. Sample Nu uniformly distributed random numbers between zero and one. Each

random number, x, will satisfy F (i) ≤ x < F (i + 1) for some i, 1 ≤ i ≤ N .

In this way, identify each x with the orientation gi, producing a list of Nu

orientations.
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2. Select the biggest grain of the microstructure. Represent the grain with index

G, and call NG the number of elementary volumes in the grain. Randomly

select one of the orientations generated in step 1. Find the remaining NG − 1

orientations out of the list so that the disorientation between the first and the

remaining is less than a given threshold value. Following [44] we choose 7◦ for

the threshold value.

3. Compute the mean orientation1 of the NG orientations selected in step two.

The resulting mean orientation is the orientation assigned to grain G. Remove

this set of NG orientations from the list created in step one.

4. Go back to step two and repeat until all grains are selected.

The accuracy of the above algorithm is measured with the misfit

Misfit =

∫

Ω0
(fexp(g) − frec(g))2 dg
∫

Ω0
(fexp(g))2 dg

,

where fexp stands for the experimental ODF and frec is the reconstructed ODF from

the orientations determined above using the texture discretization algorithm. We

calculate frec with the MTEX software. The input parameters for MTEX are the

crystal symmetry, sample symmetry and the volume fractions of both, physical and

orientation space. As a rule of thumb, misfits less than 15% are considered acceptable

numerical representations of experimental crystallographic texture.

It is possible for this algorithm to fail if we cannot find NG orientations all within

the threshold disorientation. In this case, we use whatever number of orientations

that are found within the threshold and compute the mean in step 3 using this re-

duced number. Independently of the success of step 2 , the accuracy of the algorithm

is determined with the misfit.

1This step may lead to gimbal lock.
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4.5 Numerical Method

The polycrystal is modeled as an aggregate of perfectly bonded single-crystal grains

with different orientations. We use a spectral formulation [47, 33, 5, 35] to perform

virtual uniaxial tension tests on our numerically-generated samples to obtain the

effective in-plane Young’s modulus of each sample. The numerical method gives

the effective elastic response based on full-field micromechanical solutions obtained

efficiently using Fast Fourier Transforms (FFT).

The elastic FFT-based formulation uses Green’s functions and Fourier trans-

forms to find a strain field, associated with a kinematically-admissible displacement

field, that minimizes the average of the local strain energies, fulfilling the consti-

tutive stress-strain relation under the constraint imposed by the stress equilibrium

conditions. The problem is solved for a periodic unit cell of material, discretized

into a regular grid of points. Since the microstructures of interest are columnar, a

512 × 512 × 1 grid is sufficient for an accurate calculation of Ein−plane. The use of

this grid represents the smallest Voronoi grain with roughly 115 points. Note that

only one layer of points is needed through the thickness because the cross-sections of

the columnar grains are identical and therefore, have the same mechanical response.

The local elastic constitutive relation is given by

σij (x) = Cijkl (x) εkl (x) (4.2)

where Cijkl are the components of the anisotropic local elastic stiffness tensor, func-

tions of the grain orientation associated with point x. Adding and subtracting an ex-

pression involving C0
ijkl, the components of the stiffness of a reference linear medium,

from the stress, gives

σij (x) = σij (x) + C0
ijkluk,l (x) − C0

ijkluk,l (x) , (4.3)
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where uk,l (x) is the displacement gradient tensor, i.e.

εkl (x) = (uk,l (x) + ul,k (x)) /2.

Regrouping terms in (4.3)

σij (x) = C0
ijkluk,l (x) + ϕij (x) , (4.4)

where the polarization field is given by

ϕij (x) = σij (x) − C0
ijklεkl (x) , (4.5)

and combining expression (4.5) with the equilibrium equation σij,j (x) = 0, we obtain

C0
ijkluk,lj (x) + ϕij,j (x) = 0. (4.6)

Solving differential equation (4.6) for a periodic unit cell under an applied strain

Eij = 〈εij (x)〉 using the Green’s function method requires writing the following

auxiliary problem

C0
ijklGkm,lj (x − x′) + δimδ (x − x′) = 0, (4.7)

where Gkm (x) is the Green’s function associated with the displacement field uk (x).

The solution for the displacement gradient is given by the convolution integral

uk,l (x) =

∫

R3

Gki,jl (x − x′)ϕij (x′) dx′. (4.8)

Solving (4.8) in Fourier space using the convolution theorem, the compatible strain

field deriving from the solution of (4.8) is given by

εij (x) = Eij + FT−1
(

sym
(

Γ̂0
ijkl (k)

)

ϕ̂kl (k)
)

(4.9)

and (4.2) can be used to obtain the corresponding stress field. In (4.9), the hat

symbol ”ˆ” indicates Fourier transform (FT) and k is a point (frequency) in Fourier
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space. The Green operator in Fourier space, which is only a function of the reference

stiffness tensor and the frequency, is given by

Γ̂0
ijkl (k) = −kjklĜik (k) , (4.10)

with Ĝik (k) =
[

C0
kjilklkj

]−1
. Since the polarization field, defined in (4.5), is precisely

a function of the sought strain field, an iterative procedure is required, such that the

i-guess of the strain field εi
ij (x) is used in (4.2) through (4.8) to obtain the (i + 1)-

guess εi+1
ij (x) given by (4.9), until two consecutive strain fields coincide within a

certain tolerance.

Note that, while (4.2) through (4.10) are valid for arbitrary material points x

and frequencies k, the numerical method consists in evaluating these expressions in

points and frequencies belonging to regular grids (of the same size) in Cartesian and

Fourier spaces, respectively, in which case, the direct and inverse Fourier Transforms

in (4.10) become discrete, and the FFT algorithm can be applied.

While the algorithm described above solves the problem for a fully imposed strain

tensor, the actual boundary conditions (BCs) applied to the unit cell can be mixed,

i.e. some components of macroscopic strain Eij and some complementary compo-

nents of the macroscopic stress Σij may be imposed. In particular, in the case of

tension along x1 for the calculation of the in-plane Young’s modulus, E11 > 0 and

Σ22 = Σ33 = 0 are the imposed diagonal strain and stress components. In such

mixed BC cases, the algorithm should include the following extra step, after σi+1 (x)

is determined by means of (4.9) and (4.2). If component Σpq is imposed, the corre-

sponding (i + 1)-guess for strain component Ei+1
pq is obtained as [45]

Ei+1
pq = Ei

pq + C0−1
pqklα

(kl)
(

Σkl −
〈

σi+1
kl (x)

〉)

,

where α(kl) = 1 if component Σkl is imposed, and zero otherwise.
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4.6 Calculation of the In-Plane Young’s Modulus

In this section, we examine how the in-plane Young’s modulus Ein−plane, is affected by

microstructure geometry. We study this effect by generating many microstructures

of different geometries and use known texture and elastic crystal constants. The

Ein−plane is measured for each microstructure and then a numerical PDF is generated.

The accuracy of the numerical PDF depends on a precise calculation of Ein−plane per

realization and on the total number of realizations.

The accuracy of each realization depends on the input parameters of the texture

discretization algorithm and the FFT-based method. In the case of the texture

discretization algorithm, the input parameters are the experimental ODF, number

of grains, grain volume fraction of each grain, number of elementary volumes and

the threshold disorientation angle. The output of the algorithm is a set of grain

orientations or numerical texture. The measure of the accuracy of the algorithm is

determined by the misfit. A low misfit, usually less than 15%, indicates that the

numerical texture is close to the experimental texture.

We test the input parameters for the texture discretization algorithm using one

of the experimental ODFs, ODF2. The input parameters that lead to low misfits

are determined by applying the texture discretization algorithm to different numer-

ical microstructures with different numbers of grains and grain sizes. With 20,000

elementary volumes and a 7◦ threshold disorientation angle misfits less than 15%

are obtained. We also conclude that working with a 1000-grained microstructure is

sufficient to get low misfits. These numbers are also suggested in [44].

The next step consists in determining the input parameters of the FFT method.

In this case, the input parameters are the numerical microstructure geometry, nu-

merical texture, crystal constants, the Fourier grid size, the error tolerance and the

maximum number of iterations. The microstructure geometry and numerical tex-
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ture are already known from the texture discretization algorithm. We use the same

crystal constants of the last section, C11 = 249 GPa, C12 = 155 GPa, and C44 = 114

GPa, in order to compare with the results of that section. The error tolerance and

the maximum number of iterations are previously determined. Because the input

parameters of the texture discretization algorithm produce misfits less than 15% and

the FFT method converges so that all reported digits of Ein−plane are correct within

the error tolerance, we conclude Ein−plane is calculated accurately per realization.

Knowing Ein−plane is calculated accurately, we next determine the total number

of realizations of Ein−plane required to capture the correct statistics. To answer

this question, we generate a fixed 1000-grained microstructure and apply the texture

discretization algorithm using ODF2 to the same microstructure 700 times obtaining

as a result 700 different numerical textures. All misfits have values less than 12%.

The Ein−plane is calculated for each texture with the FFT method leading to the

histogram shown in Fig. 4.3.

The mean and standard deviation of the PDF are 193.6 GPa and 0.32 GPa

respectively. In [7], the Reuss, Voigt and Hill estimates (4.1) are calculated for the

ten experimental ODFs, as listed in Table 4.1. The PDF values shown in Fig. 4.3 are

consistent with the inequalities, ER
in−plane ≤ Ein−plane ≤ EV

in−plane. It is interesting to

see that our improved mean Ein−plane value, 193.6 GPa, is close to the Hill average.

The numerical simulations have allowed us to greatly reduce the uncertainty in the

predicted in-plane Young’s modulus compared to the uniform distribution over the

interval given by lower and upper bounds provided by the Reuss and Voigt averages.

To test the robustness of the computed PDF with respect to the number of

realizations, we reduce the number of realizations. With 300 realizations, the PDF of

Ein−plane still has approximately the same shape, mean and standard deviation values

of Fig. 4.3. This observation allows us conclude that 300 realizations of Ein−plane are

sufficient for the generation of an accurate PDF.
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Figure 4.3: PDF of Ein−plane based on 700 realizations of the texture distribution.
The textures are generated to be statistically consistent with ODF2. The geometry
and crystal properties are fixed.

In the next numerical experiment we study how the PDF of Ein−plane is affected by

uncertainties in microstructure geometry. We generate 300 different microstructures

and assign texture to each one. The crystallographic texture for each geometry is

chosen to be statistically the same as the experimental ODF2. The misfits for the

generated texture are all less than 12%. The crystal elastic constants are fixed over

all realizations with the mean values given in Table 4.2. The Ein−plane is computed

numerically for each microstructure and a PDF is generated. In Fig. 4.4a we compare

the PDF of Fig. 4.3 based on one geometry with the PDF of Ein−plane that includes

geometric uncertainties. We see that both histograms essentially coincide. Indeed,

the mean and standard deviation of the new PDF are 193.5 GPa and 0.33 GPa,

respectively. All values are centered around the Hill average in both PDFs. Fig. 4.4b

shows a plot of the PDFs in the Reuss-Voigt range. The sharpness of both PDFs

makes us conclude that Ein−plane is not sensitive to geometric uncertainties. Clearly,

the Hill average provides a good prediction of Ein−plane.
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(a) (b)

Figure 4.4: (a) Comparison of PDF of in-plane Young’s modulus based on one mi-
crostructure and 300 microstructures. (b) The same PDFs as in (a) plotted along
with the uniform distribution from Fig. 4.1 for experimental texture.

4.7 Effect of Uncertainties in Crystallographic Tex-

ture

In this section, we examine how variations in texture affect the distribution of

Ein−plane. The microstructure geometry and crystal elastic constants are fixed over

all realizations. The elastic constants are the same as those used previously, and the

microstructure is fixed at the 1000-grained microstructure used to generate Fig. 4.3.

Crystallographic texture uncertainties are taken into account by computing Ein−plane

using the ten different experimental ODFs in batch #1 of MEMS devices [7]. For

each experimental ODF we do 300 realizations of Ein−plane values, resulting in 3000

numerical values of Ein−plane for all ten experimental ODFs. The resulting PDF is

shown in Fig. 4.5. The PDF is trimodal, this can be explained in terms of the ODF

misfits, and the mean and the standard deviation of the Ein−plane values for each of

the 300 realizations per ODF.
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The minimum and maximum misfit between the experimental ODF and the 300

numerically generated, discrete ODFs, the mean Ein−plane and the standard deviation

are summarized in Table 4.3 for each of the 10 experimental ODFs. From the table,

we deduce that the two peaks located at the rightmost of Fig. 4.5 correspond to

contributions of ODF4 and ODF8 since the mean values of each of the 300 Ein−plane

values for these two ODFs is larger (196-7 GPa) than the mean values of the 300

Ein−plane values for the other ODFs (193-4 GPa).

(a) (b)

Figure 4.5: (a) PDF of the in-plane Young’s modulus computed using the 10 ODFs
in batch #1 of MEMS devices [7], illustrating the effect of crystallographic texture
on the PDF. (b) The same PDF as in (a) plotted along with the uniform distribution
from Fig. 4.1 for the experimental texture.

In Table 4.4 we list the misfits between the ten experimental ODFs. The entries

of Table 4.4, computed with MTEX, are percent misfit. Note that the maximum

misfit per column, except for columns four and eight, occur at rows four and eight.

Columns four and eight tend to have the largest misfits. The misfits of columns four

and eight are smallest only at rows four and eight. This means ODF4 and ODF8

are almost the same but different from the rest of the experimental ODFs. This

observation leads us to expect that the PDF of Ein−plane generated by the ten ODFs
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ODF min-misfit(%) max-misfit(%) Mean Ein−plane Std Ein−plane

1 9.8 11.2 193.0 0.31
2 9.7 11.0 193.5 0.32
3 9.7 11.0 193.6 0.31
4 13.8 14.2 197.0 0.13
5 10.0 11.5 194.3 0.33
6 9.9 11.5 194.5 0.34
7 11.7 12.2 193.5 0.13
8 13.1 13.5 196.3 0.12
9 12.1 12.5 193.1 0.13
10 10.1 11.4 194.2 0.33

Table 4.3: Crystallographic texture misfits, mean and standard deviation values of
Ein−plane.

is trimodal. The rightmost two peaks correspond to contributions of ODF4 and

ODF8 since both have similar mean Ein−plane values and small standard deviations.

The leftmost peak corresponds to the rest of the ODFs. The gap between the two

peaks is pronounced because all standard deviations are small as we can see from

Table 4.3.

Note that the Ein−plane values shown in Fig. 4.5 are consistent with the theoretical

estimate ER
in−plane ≤ Ein−plane ≤ EV

in−plane. Still, the numerically calculated PDF is

substantially narrower than a uniform distribution over the Reuss-Voigt range, as

can be seen in Fig. 4.5b.

The misfits of Table 4.3 are less than 15%, as expected from the numerical con-

struction. The PDF has Ein−plane values ranging from 192.2 GPa to 197.3 GPa with

a mean of 194.3 GPa and standard deviation of 1.3 GPa. We conclude that the

variability in the texture due the manufacturing process leads to a small change in

the mean Ein−plane values. Indeed, a change of approximately 5 GPa in Ein−plane is

observed when uncertainties in an experimental ODF are within 16.1%. As a con-

sequence, MEMS devices coming from the same manufacturing process with fiber
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ODF 1 2 3 4 5 6 7 8 9 10
1 0 4.4 4.6 15.3 6.3 7.1 4.3 12.2 5 5.9
2 4.4 0 0.8 14.6 3 4.3 3.6 12.8 6.4 4.2
3 4.6 0.8 0 14.4 3.4 4.7 3.4 12.7 6.6 4.8
4 15.3 14.6 14.4 0 14.9 16.1 13 6 14.7 15.8
5 6.3 3 3 14.9 0 2.2 4.2 12.3 6.2 2.1
6 7.1 4.3 4.7 16.1 2.2 0 6.2 13.6 7.5 2.3
7 4.3 3.6 3.4 13 4.2 6.2 0 9.8 4.5 5.6
8 12.2 12.8 12.7 6 12.3 13.6 9.8 0 10.7 12.8
9 5 6.4 6.6 14.7 6.2 7.5 4.5 10.7 0 5.8
10 5.9 4.2 4.8 15.8 2.1 2.3 5.6 12.8 5.8 0

Table 4.4: Misfits between experimentally measured ODFs.

crystallographic textures within uncertainty errors of about 16% will tend to have

the same in-plane Young’s moduli. This is true provided that the individual crystal

constants are identical for all crystals and all devices.

4.8 Effect of Uncertainties in Single-Crystal Elas-

tic Constants

So far, our simulations have assumed that the single-crystal elastic constants are

known. In this section we study how Ein−plane is affected by uncertainties in the

single-crystal elastic moduli under various scenarios. A closer look at [36] reveals

that the values given in Table 4.2 have variability arising from averaging experimental

results over nine experiments using different experimental techniques on nominally

pure nickel with varying amounts of impurities. If, as in the case of the PRISM

MEMS devices, we do not have information about the impurites, then it is reasonable

to assume the uncertainties in crystal properties are given by the range of values in

Table 4.2. Thus, we start by considering nickel crystal constants ranging over all the
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experimental values

245 GPa ≤ C11 ≤ 253 GPa,

148 GPa ≤ C12 ≤ 162 GPa,

102 GPa ≤ C44 ≤ 126 GPa.

(4.11)

We can see from (4.11) that experimental crystal constants deviate from 1.6% up

to 10.5% with respect to their mean values. The biggest uncertainty range occurs

in C44. Since the PDFs of C11, C12 and C44 are not known, an overestimate of

uncertainty is obtained if these constants are independently distributed and each is

uniformly random. We expect this assumption to give an overestimate because we

believe that these elastic constants are correlated.

Simulations in this section fix the microstructure geometry and the crystallo-

graphic texture over all the realizations. The geometry is the same 1000-grained

microstructure used previously and the texture is generated using ODF2 with a

misfit less than 12%. For this microstructure, we generate realizations of the single-

crystal constants to examine their effect on the prediction of Ein−plane. In order to

sample and cover the whole range of constants described by (4.11), we apply latin

hypercube sampling [43] with 350 samples.

In Fig. 4.6a we compare the resulting numerical PDF of Ein−plane with the PDF

shown in Fig. 4.3 which uses the same geometry. The wide PDF corresponds to

uncertain crystal constants. The mean and standard deviation of the wide PDF are

192.8 GPa and 6.6 GPa, respectively. The wide spread indicates that the in-plane

Young’s modulus is sensitive to uncertainties in crystal elastic moduli. Note that

the mean value 192.8 GPa is still close to the Hill average, 194.7 GPa, even with

the spread in Ein−plane. The minimum and maximum Ein−plane values of Fig. 4.6a

for the wide distribution are 176.6 GPa and 207.0 GPa, respectively. Coincidentally,

as shown in Fig. 4.6b, the wide distribution of these moduli falls approximately on

the uniform distribution over the interval [178.8 GPa, 210.3 GPa] obtained using
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(a) (b)

Figure 4.6: (a) Comparison between the PDF of Fig. 4.3 and the PDF of in-plane
Young’s modulus when uncertainties in single-crystal elastic constants are taken into
consideration. (b) The wide PDF of (a) plotted along with the uniform distribution
from Fig. 4.1 for experimental texture.

the Hill average and the experimental texture as in Fig. 4.1. Note that some of the

predicted Ein−plane values are less than the Reuss average. This does not contradict

the result ER
in−plane ≤ Ein−plane ≤ EV

in−plane proved in Chapter 3, indeed, in this

numerical experiment we are sampling uniformly over the range of crystal constant

values (4.11), while the Reuss-Voigt range [178.8 GPa, 210.3 GPa] corresponds to

the mean values C11 = 249 GPa, C12 = 155 GPa and C44 = 114 GPa.

Each choice of single-crystal constants in each realization that goes into com-

puting the wide PDF in Fig. 4.6a, itself can be associated with a Reuss, Voigt or

Hill average. Computing these averages for the experimental texture given by ODF2

using MTEX provides some insight into the result in Fig. 4.6. Figure 4.7 shows the

distribution of Reuss, Voigt and Hill estimates for the same 350 crystal values used

to generate Fig. 4.6. The PDF shown with a solid line at the center of Fig. 4.7

corresponds to EH
in−plane and is approximately the same wide PDF of Fig. 4.6a. The

PDFs shown at the left in red and at the right in blue in Figure 4.7, correspond
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Figure 4.7: Numerical PDFs of Reuss, Hill and Voigt estimates based on 350 samples
of crystal values from (4.11) and using the experimental texture given by ODF2.

to ER
in−plane and EV

in−plane respectively. All Ein−plane values have as upper and lower

bounds EV
in−plane and ER

in−plane, consistent with theory.

The scenario assumed in this section is that we have no knowledge of the specific

alloy, and thus base our uncertainty in the single-crystal elastic constants on the

uncertainty across many experimental measurements of different alloys. The results

can also be interpreted as the uncertainty due to experimental error in measurements

of a single alloy. In such a case, we might not expect the range of values to be quite

as large as (4.11), but we expect the same qualitative results. If the uncertainty in

the range of constants is smaller, the uncertainty in the predicted PDF of Ein−plane

would be reduced.
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4.9 Uncertainties using Correlated Single-Crystal

Elastic Constants

In this section we compute the PDF of Ein−plane based on more detailed experimental

measurements of the elastic crystal constants. Again, we use the same microstructure

and crystallographic texture of the previous section. However, in the previous section

we assume that uncertainties in the single-crystal constants distributed uniformly

randomly over their range of values. This assumption is not based on experimental

evidence, but on a conservative assumption that probably gives larger uncertainty

than in reality. Nevertheless, it is the best assumption possible if the correlation

among the crystal constants is not known.

In [11] and [55], the elastic constants of nickel-copper alloys are measured. Both

references report that the nickel elastic constants have a piecewise linear behavior

when expressed as a function of nickel concentration. For nickel concentrations from

100% down to 70%, there is a linear relationship between crystal constants and

concentration. A deviation occurs for nickel concentrations lower than 70%, but the

breakdown of the linear behavior is considered small so that a linear least squares fit

of the experimental data gives very good estimates of the nickel crystal constants.

In Fig. 4.8 we show graphically the dependence of the nickel elastic constants on

the amount of copper concentration in the nickel-copper alloy. The horizontal axis

represents the percentage of copper in the alloy. The vertical axis is in GPa. From

bottom to top, the lines represent C44, C12 and C11. All lines are least squares fits

of the experimental data reported in [11]. Explicitly the linear relationships are

C11 = −78.13η + 245.63,

C12 = −34.13η + 155.59,

C44 = −48.50η + 123.55,

(4.12)

where 0 ≤ η ≤ 1 is the copper concentration.
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Now assume our device is composed of the nickel-copper alloy from [11] and that

the copper concentration is at most of 30%, that is, 0 ≤ η ≤ 0.3. Then from (4.12)

we have

222.19 GPa ≤C11 ≤ 245.63 GPa,

145.35 GPa ≤C12 ≤ 155.59 GPa,

109.00 GPa ≤C44 ≤ 123.55 GPa.

(4.13)

There is a 3-6% variability in these single-crystal elastic constants over this range of

copper concentration.

Next, we generate the PDF of the in-plane Young’s modulus based on the uncer-

tainties given by (4.12) and (4.13). The main difference between this scenario and

the one of the previous section is that now C11, C12 and C44 are correlated. Once

the copper concentration η is known, then the crystal constants are also known from

(4.12). Therefore, we only need to sample over η, 0 ≤ η ≤ 0.3. We assume η has

a uniformly random distribution in this range. To be consistent with the previous

section we use 350 realizations, however this number is larger than needed to capture

the statistics.

Figure 4.9 shows the computed PDF of Ein−plane based on different realizations of

η in 0 ≤ η ≤ 0.3. The wide PDF of Fig. 4.9a corresponds to this case. For comparison

we also show the PDF of Fig. 4.3 which uses the same microstructure, the mean

single-crystal elastic constants from Table 4.2, and varies the texture consistent with

experimental ODF2. The wide distribution in Fig. 4.9 has minimum and maximum

Ein−plane values of 169.95 GPa and 196.8 GPa. Many of these Ein−plane values are

outside the Reuss-Voigt range [178.8 GPa, 210.3 GPa] because we are sampling over

a subset of (4.13), while the Reuss-Voigt range [178.8 GPa, 210.3 GPa] corresponds

to C11 = 249 GPa, C12 = 155 GPa and C44 = 114 GPa. The mean and standard

deviation of the Ein−plane values are 184.04 GPa and 7.11 GPa, respectively. The

mean value, 184.04 GPa, is smaller than that of Fig. 4.6 because the crystal constants
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Figure 4.8: Elastic constants of nickel-copper alloys. The horizontal axis represents
copper concentration.

C11 and C12 of (4.13) tend to be smaller than the ones listed in Table 4.2 and (4.11).

The values of C44 shown in (4.13) and (4.11) are similar. However, the range of

values, i.e., the width of the distribution is similar. Surprisingly, the fact that the

constants are correlated reduces the width of the PDF only slightly. This is better

appreciated from Figure 4.9b, where the wide PDF of Fig. 4.9a is plotted along with

the uniform distribution from Fig. 4.1 for experimental texture. Based on Fig. 4.9

we again conclude that Ein−plane is sensitive to uncertainties in single-crystal elastic

properties, even when these constants are correlated.
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(a) (b)

Figure 4.9: (a) Comparison between the PDF of Fig. 4.3 and the PDF of in-plane
Young’s modulus when uncertainties in single-crystal elastic constants are correlated
by (4.12). (b) The wide PDF of (a) plotted along with the uniform distribution from
Fig. 4.1 for experimental texture.
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Chapter 5

Microstructure Modeling

In this chapter we propose a more accurate microstructure model of the polycrys-

talline thin Ni film shown in Fig. 1.1. It is known from experiments that the geometry

of the Ni crystals depends of the film thickness. Grains located at the bottom of the

film are equiaxed and grains at the top of the film tend to be V-shaped columnar.

As a consequence, the average in-plane grain size also changes as a function of film

thickness. Average in-plane grain sizes are smaller at the bottom of the membrane

and bigger at the top.

A schematic representation of the polycrystalline microstructure is shown in

Fig. 5.1. The film thickness is represented from bottom to top and the film width

or film length is represented from left to right. No information is known about the

schematic representation of the transverse geometry of the grains except the size

distribution. The V-shaped columnar grains represent the Ni layer of the membrane

and its thickness ranges from 1µm to 3µm. The horizontal black band represents

a Ni layer characterized by having equiaxed grains with sizes of the order of the

nanometers. Along the bottom is a titanium (Ti) layer approximately 250Å thick,

that we ignore because it represents 0.83% − 2.5% of the Ni layer.
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Figure 5.1: Sketch of a cross-section of the film microstructure showing representative
grain geometry in a slice through the thickness of the Ni film.

Define a right-handed coordinate system with origin at the bottom left of Fig. 5.1

with positive x axis pointing to the right and positive z axis pointing upwards. If

h represents the film thickness, Lx the film length and Ly the film width, then the

polycrystalline membrane is contained in the the domain Ω = [0, Lx]× [0, Ly]× [0, h].

Based on the transmission electron microscopy (TEM) technique it has been

observed that the average in-plane grain size of the microstructure as a function of

the film thickness changes as follows (Patrick Cantwell, Lehigh University, personal

communication):

• The average in-plane grain size d is an increasing function of z and it obeys

the power law d(z) = z0.58.

• For any fixed 0 ≤ z ≤ h, the in-plane grain sizes distribute log-normally.

The measurements of the average in-plane grain sizes are summarized in Table 5.1.
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Film thickness Average in-plane grain size Grain morphology
0nm − 200nm 20 ± 8nm equiaxed

200nm − 600nm 28 ± 17nm equiaxed
600nm − 1µm 35 ± 26nm V-shaped
1µm − 1.6µm 61 ± 47nm V-shaped

1.6µm − 2.8µm 125 ± 60nm V-shaped

Table 5.1: In-plane grain sizes as a function of film thickness.

The average in-plane grain sizes are expressed in the form d ± σd, where σd is the

standard deviation and d is the mean grain size. The log-normal in-plane grain size

distributions as a function of z are shown in Fig. 5.2 (Patrick Cantwell, personal

communication).

Figure 5.2: Log-normal in-plane grain size distributions as a function of z. From left
to right, the values of z are: 75nm, 365nm, 890nm, 1.25µm and 1.680µm. The hori-
zontal axis represents in-plane grain size and for all plots the range is [0nm, 250nm].
The vertical axis represents probability density (Patrick Cantwell, personal commu-
nication).
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In this chapter we attempt to develop an algorithm that generates the microstruc-

ture geometry shown in Fig. 5.1. The algorithm is based on Voronoi diagram meth-

ods, additionally the algorithm captures the two experimental features mentioned

above. The numerical in-plane grain sizes are tested with the experimental data

shown in Fig. 5.2. This chapter is organized as follows: We start by generating sim-

ple geometries based on Voronoi diagram methods. Each simple geometry captures

a feature of the schematic representation shown in Fig. 5.1. For example, we de-

velop techniques that allow us to generate perfect columnar grains, perfect columnar

grains with peaked bottoms and perfect columnar grains with in-plane grain sizes

distributing log-normally. The perfect columnar grains describe the top part of the

microstructure well and the peaks describe the bottom part of the columns of the

microstructure. The perfect columnar grains with in-plane grain sizes distributing

log-normally capture the two desired experimental features. Finally, the complete

geometry sketched in Fig. 5.1 is described by combining systematically the techniques

that generate simple geometries.

5.1 Some Voronoi Diagram Techniques

In this section we develop techniques that generate the following simple microstruc-

ture geometries:

• Perfect columnar microstructures.

• Almost V-shaped grains.

• A perfect columnar microstructure with in-plane grain sizes distributing log-

normally.
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These geometries can be generated by distributing Voronoi seeds systematically over

the physical volume Ω. For simplicity, we illustrate the techniques in two dimensional

rectangular domains. The extension to three dimensions follows naturally from the

two dimensional case.

Perfect columnar grained microstructures

Consider the rectangular domain Ω = [0, 1] × [0, 1]. It is clear from the definition of

Voronoi cell that if all seeds are of the form {(xi, y)}N
i=1, where N is the number of

seeds and 0 ≤ y ≤ 1 is fixed, then the Voronoi cells are N rectangles whose heights

are unit length segments parallel to the y axis and the bases are limited by the

perpendicular bisectors of the points {xi}N
i=1 ∪ {0, 1}. A similar situation occurs if

the seeds are of the form {(x, yi)}N
i=1, where N is the number of grains and 0 ≤ x ≤ 1

is fixed. Fig. 5.3 illustrates these two cases for N = 6. Note that the value of y

or x is irrelevant, as long as all seeds lie along a line the Voronoi cells will

be perfectly columnar.

5.2 Almost V-shaped grains

V-shaped grains are generated by modifying the perfect columnar microstructure.

First the seeds are distributed along a segment to generate perfectly columnar grains,

then the seed that is closest to a grain boundary is displaced perpendicularly to

the line of seeds. The displacement must be small enough so that the seed is still

contained in Ω. Then the next closest seed is displaced perpendicularly out of the line

but in an opposite direction to the previous displaced seed and so on until all seeds

are displaced perpendicularly to the segment. The Voronoi diagram that results from

this seed configuration is a set composed of almost V-shaped grains. For example,
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Figure 5.3: (a) Voronoi diagram with seeds of the form (xi, y) for i = 1, . . . , 6 and
y = 0.3. Here xi = 0.1, 0.17, 0.23, 0.42, 0.72, 0.92. (b) Voronoi diagram with seeds of
the form (x, yi) for i = 1, . . . , 6 and x = 0.8. Here yi = 0.1, 0.3, 0.4, 0.6, 0.7, 0.9.

assume Ω = [0, 1] × [0, 1] with seeds described by ( i
10

, 0.3), where i = 1, . . . , 9 . This

set of seeds forms perfectly vertical columnar grains. Now displace the leftmost seed

downwards a distance of ǫ = 0.06, the next seed is displaced upwardly by the same

distance ǫ and so on. The resulting Voronoi diagram is shown in Fig. 5.4a. These

grains have a perfectly columnar structure at the top and peaked structure at the

bottom. To obtain V-shaped grains similar to the ones shown in Fig. 5.1, we add

vertical displacements of different magnitudes over all seeds, but still, consecutive

seeds must be displaced in opposite directions. For example, if we displace all seeds

with random numbers of the form

(xi, yi) = (
i

10
, 0.3 + rand(i) (−1)i ǫ),

where 0 ≤ rand(i) ≤ 1 is a random number that distributes uniformly, then Voronoi

diagrams like the one shown in Fig. 5.4b are generated. These diagrams tend to be

geometrically more consistent with the V-shaped grain morphology shown in Fig. 5.1.
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Figure 5.4: (a) Voronoi diagram with seeds of the form ( i
10

, 0.3 + ǫ(−1)i), where
i = 1, . . . , 9. (b) Voronoi diagram with seeds of the form ( i

10
, 0.3 + rand(i) ǫ (−1)i),

where i = 1, . . . , 9. Here yi = 0.1, 0.3, 0.4, 0.6, 0.7, 0.9.

5.3 A perfectly columnar microstructure with in-

plane grain sizes distributing log-normally

First we start with a brief description of a log-normal distribution and some of its

properties. A log-normal distribution is defined as a continuous probability distri-

bution function of a random variable whose logarithm is normally distributed. This

means that if the random variable X distributes log-normally then Z = log X dis-

tributes normally. It follows that if Z is a random variable that distributes normally

then X = eZ distributes log-normally.

The above definition of a log-normal distribution and its relationship with normal

distributions implies that there is a one to one correspondence between normal and

log-normal distributions. As a consequence, the mean and variance of a log-normal

distribution are expressed in terms of the mean and variance of its associated normal

distribution.
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The statement: “The random variable X distributes normally with mean µ and

variance σ2” is usually represented symbolically as X ∼ N(µ, σ2). The symbol “∼”

means “distributes like” and N indicates the random variable X distributes normally.

It is known from the literature that if X ∼ N(µ, σ2) , then Z = eX has mean

eµ+σ2/2 and variance (eσ2 − 1)e2µ+σ2
. Despite the differences between the mean and

variances of a normal and a log-normal distribution, generally a log-normal distribu-

tion is represented by

X ∼ Log-N
(

µ, σ2
)

,

instead of X ∼ Log-N
(

eµ+σ2/2, (eσ2 − 1)e2µ+σ2
)

. The PDF of a log-normal distribu-

tion is given by

f(x, µ, σ) =
1

x
√

2πσ2
e−

(log x−µ)2

2σ2 , x > 0,

where σ2 and µ are the variance and mean of the associated normal distribution.

The following properties of log-normal distributions are well known:

1. If Xi ∼ Log-N (µi, σ
2
i ), for i = 1, . . . , n, are independent log-normally dis-

tributed variables then Z =
∏n

i=1 Xi satisfies

Z ∼ Log-N

(

n
∑

i=1

µi,
n
∑

i=1

σ2
i

)

. (5.1)

2. Let α > 0 and X ∼ Log-N (µ, σ2) then Z = αX satisfies

Z ∼ Log-N
(

µ + log α, σ2
)

. (5.2)

3. Let α 6= 0 and X ∼ Log-N (µ, σ2) then Z = Xα satisfies

Z ∼ Log-N
(

αµ, α2σ2
)

. (5.3)
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4. If Xi ∼ Log-N (µi, σ
2
i ), for i = 1, 2 then Z = X1 + X2 does not distribute

log-normally in general, but it can be approximated by another log-normal

distribution Z
′

with mean µ and variance σ2

σ2 = log

[

∑

(eσ2
i − 1)e2µi+σ2

i

(
∑

eµi+σ2
i /2
)2 + 1

]

, (5.4)

µ = log
[

∑

eµi+σ2
i /2
]

− σ2

2
. (5.5)

We are now ready to formulate an algorithm whose input is a mean µ, a variance σ2

and a number of grains Ng. The output is a Voronoi microstructure of Ng perfect

columnar grains with the property that its in-plane grain sizes distribute log-normally

with mean µ and variance σ2.

In this work we measure the in-plane grain size of a crystal as the diameter of

the circle whose area is identical to the total transverse area of the crystal. Mathe-

matically, let Ag denote the total area of any transverse section of a crystal, then its

in-plane grain size d is defined as d =
√

4Ag

π
.

Since the output of the algorithm is a perfectly columnar microstructure with

in-plane grain sizes distributing log-normally, the main idea for generating such a

microstructure consists in distributing seeds along a plane in such a way that the

Voronoi in-plane cells form perfect rectangles. The seeds contained in the plane are

the result of the Cartesian product of two sets of seeds that distribute log-normally.

Each set of seeds is contained in a segment.

Knowing that the seeds contained in the segments distribute log-normally, we

can show the areas of the resulting rectangles distribute approximately log-normally.

Consequently the in-plane grain sizes distribute approximately log-normally. The

justification of this conclusion is based on the above properties of log-normal distri-

butions.

Let Xg = {gx
1 , . . . , g

x
N} and Yg = {gy

1 , . . . , g
y
N} be two sets of positive real numbers
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both distributing log-normally with mean µ0
1d and variance (σ0

1d)
2
. Distribute N − 1

seeds along the interval [0, (gx
1 + gx

N)/2 +
∑N−1

j=2 gx
j ] contained in the x-axis so that

the abscissas xi, for i = 1, . . . , N − 1 satisfy:

x1 =
gx
1

2
,

x2 = x1 + gx
2 ,

x3 = x2 + gx
3 ,

...

xN−1 = xN−2 + gx
N−1, (5.6)

Similarly distribute N−1 seeds along the interval [0, (gy
1+gy

N)/2+
∑N−1

j=2 gy
j ] contained

in the y-axis so that the ordinates yi satisfy:

y1 =
gy
1

2
,

y2 = y1 + gy
2 ,

y3 = y2 + gy
3 ,

...

yN−1 = yN−2 + gy
N−1. (5.7)

The Cartesian product of both set of seeds is a non regular Cartesian grid contained

in the rectangle [0, (gx
1 +gx

N)/2+
∑N−1

j=2 gx
j ]× [0, (gy

1 +gy
N )/2+

∑N−1
j=2 gy

j ]. The Voronoi

diagram of the resulting Cartesian grid is a set of (N −1)2 rectangles of bases
gx

i +gx
i+1

2

and heights
gy

j +gy
j+1

2
, where i, j = 1, . . . , N − 1. Fig. 5.5 shows an example with

µ0
1d = 3.59, σ0

1d = 0.48 and N = 7.

The areas of these rectangles distribute approximately log-normally. By hypothe-

sis the data {gx
i } and {gy

j } are independent and come from a log-normal distribution

with mean µ0
1d and variance (σ0

1d)
2
. Then, by (5.2) we have that the data {gx

i /2} and
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Figure 5.5: Cross section of perfect columnar grains with in-plane grain sizes dis-
tributing log-normally. This case has µ0

1d = 3.59, σ0
1d = 0.48 and N = 7. There is a

total of 36 grains.

{gy
j /2} are independent, log-normal with mean and variance

µ1d = µ0
1d − log 2,

σ2
1d =

(

σ0
1d

)2
.

The bases bi =
gx

i +gx
i+1

2
and heights hj =

gy
j +gy

j+1

2
do not distribute log-normally and

even worse, the data {bi} and {hj} are not independent anymore. We can still

approximate the mean µsum and variance σ2
sum of a log-normal distribution that

generates the data {bi} and {hj}, indeed, we can apply equations (5.4) and (5.5).

The resultant approximate mean µsum and variance σ2
sum are:

σ2
sum = log

(

eσ2
1d + 1

2

)

,

µsum = µ1d +
σ2

1d − σ2
sum

2
.
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Then because of (5.1), the areas Aij = bihj distribute approximately log-normally

with mean µprod and variance σ2
prod

µprod = 2µsum,

σ2
prod = 2σsum.

The in-plane grain sizes Dij satisfy D2
ij = 4

π
Aij and the areas {Aij} distribute

approximately log-normally, so from (5.2) we have that D2
ij distributes approximately

log-normally with mean µd2 and variance σ2
d2

µd2 = µprod + log

(

4

π

)

,

σ2
d2 = σ2

prod.

Finally because of (5.3) we have that the in-plane grain sizes distribute approximately

log-normally with mean µ2d and variance σ2
2d

µ2d =
1

2
µd2 ,

σ2
2d =

1

4
σ2

d2 .

The above construction of the distribution of in-plane grain sizes assumes the

inputs µ0
1d and (σ0

1d)
2

are known. The goal is to generate an output of in-plane grain

sizes distributing log-normally with prescribed mean µ2d and variance σ2
2d coming

from experimental data.

Fortunately given µ2d and σ2
2d we can determine analytically an expression for

µ0
1d and (σ0

1d)
2

in terms of µ2d and σ2
2d, indeed, if we solve the above equations from

bottom to top we obtain

(

σ0
1d

)2
= log

(

2e2σ2
2d − 1

)

, (5.8)

µ0
1d = µ2d −

1

2
log

(

4

π

)

+ σ2
2d −

1

2

(

σ0
1d

)2
+ log 2. (5.9)
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The above discussion is summarized in the following algorithm:

Input :

• The mean µ2d and variance σ2
2d of the in-plane grain size distribution of the mi-

crostructure. It is assumed that the in-plane grain size distributes log-normally.

• The number of seeds Nx−1 along the x-axis and the number of seeds Ny−1 along

the y-axis. This determines the total number of grains Ng = (Nx − 1)(Ny − 1).

• The film thickness h > 0. In our case the thickness h is taken to be much

smaller than the length and width. The length and width are determined below.

Output :

• A perfect columnar microstructure with in-plane grain sizes that distribute log-

normally.

Steps:

1. Compute the mean µ0
1d and variance (σ0

1d)
2

using equations (5.9) and (5.8)

respectively.

2. Generate two sets of real numbers Xg = {gx
1 , . . . , g

x
Nx
} and Yg = {gy

1 , . . . , g
y
Ny
},

where gx
i > 0 and gy

j > 0 for i = 1, . . . , Nx and j = 1, . . . , Ny. Each set comes

from a log-normal distribution of mean µ0
1d and variance (σ0

1d)
2
.
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3. Set the dimensions of the microstructure as

L =
gx
1 + gx

Nx

2
+

Nx−1
∑

i=1

gx
i ,

W =
gy
1 + gy

Ny

2
+

Ny−1
∑

j=1

gy
j ,

H = h,

where L, W and H are the length along the x-axis, width along the y-axis and

heigth along the z-axis respectively.

4. Generate (Nx−1)(Ny−1) seeds with coordinates (xi, yj, z0), where the xi satisfy

the formula (5.6) and the yj satisfy (5.7). This time we let 1 ≤ i ≤ Nx − 1 and

1 ≤ j ≤ Ny − 1 instead of ranging i and j in the same set of subindices, say

{1, . . . , N−1}. The applicate z0 is constant and is chosen to satisfy 0 < z0 < h.

5. Apply the Voronoi tessellation algorithm to the domain

Ω = [0, L] × [0, W ] × [0, H ],

which contains the seeds (xi, yj, z0) described in the previous step. By con-

struction the result will be the desired perfect columnar microstructure with

in-plane grain sizes that distribute log-normally with mean µ2d and variance

σ2
2d.

The microstructure generated by the above algorithm has the property that the

log-normal in-plane grain size distribution is independent of the film height 0 < z <

h. The real microstructure has an in-plane grain size distribution that depends on

the film thickness z. One way to capture this additional feature is by applying the

above algorithm to the microstructure at different height levels z. For example, we

know from Fig. 5.2 that at z1 = 75nm and z2 = 365nm the log-normal distributions
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have means µ1 = 3.35, µ2 = 3.59 and variances σ1 = 0.34, σ2 = 0.48 respectively.

With no difficulty we can apply the algorithm at z = z1 and z = z2. The resulting

configuration will have perfect columnar grains with in-plane grain sizes distributing

as in Fig. 5.2. The first two film heights, z = z1 and z = z2, can be modeled with

perfect columnar grains because from Table 5.1 we have that grains are equiaxed. At

the height z5 = 1680nm the grain morphology is also almost columnar, see Fig. 5.1.

Therefore we can still model the film thickness at z = z5 with perfectly columnar

grains.

The main challenge is to model the remaining V-shaped grains at z3 = 890nm

and z4 = 1250nm. We know from Fig. 5.2 that the log-normal distributions have

means µ3 = 3.57, µ4 = 3.73 and variances σ1 = 0.47, σ2 = 0.56 respectively. We

apply the algorithm like we did with the other layers and the log-normal distributions

are generated. Now the problem is how to capture the V-shaped grain morphology

without destroying the log-normal distributions. In section 5.2 it is shown that

almost V-shaped columnar microstructures can be obtained from perfect columnar

grained microstructures by adding an out of plane perturbation1 to the seeds living

in perfect columnar grains. In our case the perturbed seeds at layers z = z3 and z4

change only in their third compoment like

z∗3 = z3 + rand(i, j) ǫ,

z∗3 = z3 + rand(i, j) ǫ,

where ǫ > 0 is the perturbation amplitude, rand(i, j) is a real number that distributes

uniformly in [−1, 1] and i, j are the indices of the x and y components of the seeds

belonging to layer z = z3 or z = z4. If we make ǫ = 0.2, Nx = Ny = 35 then

1Also an in-plane perturbation is added with the purpose of destroying the perfect
rectangular in-plane grain shapes. This is done by perturbing the Voronoi seeds of each
rectangle of dimensions bi, hj . We decided to perturb each seed along two independent
directions. Along x by 10% of the base bi and along y by 10% of the height hj uniformly
randomly. The 10% is an empirical factor, we noticed that higher perturbations destroyed
the grain-size log-normal distribution.
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we obtain a microstructure of dimensions L = 1153.72nm, W = 1790.46nm. The

log-normal distributions at z = z3 and z = z4 are shown in Fig. 5.6a and Fig. 5.6b

respectively. We can see that both distributions look identical to the ones shown in

Fig. 5.2.
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Figure 5.6: (a) Log-normal grain size distribution at z = z3. (b) Log-normal grain
size distribution at z = z4.

The transverse grain morphology is shown in Fig. 5.7. The main disadvantage of

this method is that the Voronoi microstructures, like the one shown in Fig. 5.7, do

not correspond to real microstructures.

104



Chapter 5. Microstructure Modeling

Figure 5.7: Microstructure geometry at z = z3.
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Chapter 6

Crystal Plasticity Constitutive

Modeling

6.1 Description of the Problem

In Section 2.4 it was mentioned that the conservation laws of angular and linear

momentum are not sufficient to describe the mechanical behaviour of a solid body,

unless the stress σ is known, but usually this is not the case. Thus, a complementary

set of equations is required in order to complete the governing set of equations. This

complementary set of equations is known as constitutive equations and they can be

derived from physical principles or from purely mathematical relations that try to fit

experimental data. In this thesis we study exclusively the latter phenomenological

models.

In Section 2.5 it was mentioned that most metals, in particular Ni, exhibit the

stress-strain relationship shown in Fig. 2.13. The linear elastic zone is modeled with

Hooke’s law (2.5) but the plasticity region is more complicated to deal with. The

main reason is because the physical mechanisms that cause plastic deformation can
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vary widely, consequently the mathematical models are many. In this chapter we

are interested in modeling the plasticity of polycrystalline materials. It has been

observed experimentally that plasticity in polycrystalline metals is produced from

crystal dislocations.

6.2 Crystal Plasticity Theory

In Section 2.1 we defined a crystal as a three dimensional periodic arrangement of

atoms, ions or molecules. The atoms or molecules are located at points of a regular

lattice. There are fourteen types of lattices known as Bravais lattices. From all

lattice types we are interested only in the FCC structure because Ni is of this type.

Figure 2.7a shows the crystal structure of Ni, where a single Ni atom is located at

each lattice point.

The concept of a perfect crystal is an idealization. In nature these tend to have

some ”defects” [22]; that is, the lattice is not regular anymore. The most common

type of defects are the point, line, surface and volume defect. We are interested only

in line defects. These are known as dislocations and are important in the study of

plasticity of crystals.

Dislocations are classified into edge dislocations, screw dislocations or a combi-

nation of both [21]. Figure 6.1 shows an example of an edge dislocation. The perfect

lattice, which consists of blue points, has an extra layer of atoms or molecules (shown

in red) of the same type.

Dislocations in a crystal lattice can be created permanently by applying external

forces which exceed a critical value known as the critical resolved shear stress. This

process is illustrated in Figure 6.2. Assume a crystal lattice is exposed under the

action of a set of increasing external forces like in Figure 6.2a. A dislocation is
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Figure 6.1: The extra layer of red atoms is an example of an edge dislocation.

created once the external forces deform the lattice like in Figure 6.2b. Here the

crystal remains elastic, this means that if the external forces are removed then the

dislocation moves to the left leaving the lattice like in Figure 6.2a. If the external

forces keep increasing in magnitude, but still smaller than the critical value, then a

configuration like Figure 6.2c is achieved. Note how the dislocation is moving to the

right boundary of the crystal, but again, once the external forces are removed this

dislocation moves to the left until it leaves the lattice like in Figure 6.2a. Finally, once

the external forces reach the critical resolved shear stress then the dislocation must

have moved to the right boundary of the crystal, leaving a permanent deformation.

This means that if the external forces are removed, then the dislocation does not

move to the left anymore. The distance between this dislocation and the perfect

lattice is known as the magnitude of Burger’s vector. Usually this number is of the

order of angstroms. We do not define Burger’s vector in this thesis because only its

magnitude is relevant to us. For more details on Burger’s vector and dislocations see
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[21].

(a) (b) (c) (d)

Figure 6.2: (a) Perfect cystal lattice. (b) Crystal lattice deformed under the action
of external forces. An edge dislocation has been created at the left side of the lattice,
but the crystal remains elastic. (c) The previous configuration under the action of
higher external forces. Note how the edge dislocation is moving to the right as the
external forces increase, but still the crystal remains elastic. (d) Plastic deformation
of the crystal. Now the dislocation is at the boundary of the crystal lattice at a
distance of Burger’s vector length.

Experimentation has shown that plastic deformation of crystals1 is a result of

relative motion (or slip) on specific crystallographic planes in response to shear stress

along the planes. It has been observed that slip planes correspond to planes of closest

packing. The main reason for this is that parallel planes of closest packing have the

greatest separation and therefore the slip between them is easiest, indeed, interatomic

forces decrease rapidly with interatomic distance [37].

Slip occurs in a preferred set of directions for a given slip plane, these directions

are called slip directions. A slip plane and a slip direction together form what is called

a slip system. Figure 6.3 illustrates 3 slip systems of a FCC crystal, say, (ni, sj),

where j = 1, 2, 3. Note that the plane shown in Figure 6.3 is crystallographically

equivalent to three more crystallographic planes. Therefore all FCC crystals have 12

different slip systems [37].

1The movement of dislocations to crystal boundaries.
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Figure 6.3: Three slip systems in a FCC crystal.

Multisurface Plasticity

In this section we give an introduction to the set of constitutive equations that arise

in single crystal plasticity. The exposition of the constitutive equations is based on

[56].

We assume the total strain ε at every point of the crystal admits the additive

decomposition

ε = εe + εp, (6.1)

where εe is the elastic strain and εp is the plastic strain. The elastic strain is governed

by Hooke’s law (2.5),

σ = C : (ε − εp) .

The interpretation of εp is that when the total stress σ is reduced to zero, then a

permanent deformation εp is left at every point of the crystal2. It is important to

2This follows from Hooke’s law, indeed, given that the elastic strain εe = ε−εp satisfies
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mention that the additive decomposition (6.1) is valid only for small deformations

[56].

The new variable εp, which is associated to plastic deformation, requires a con-

stitutive equation. Also a limit must be imposed on the elastic region of the crystal

because we are assuming the existence of a critical stress that leads to plastic defor-

mation εp. Therefore, following [56], we assume the elastic domain Eσ of the crystal

to be described mathematically as follows:

Eσ = {(σ, q) ∈ SYM × R
m|fi(σ, q) ≤ 0, i = 1, 2, . . . , N},

where fi are N ≥ 1 functions that intersect possibly nonsmoothly, q is a set of

hardening parameters and SYM denotes the set of all symmetric second order tensors.

The functions fi are known as yield functions and each fi corresponds to a slip

system. In the next section we give explicit forms of these functions. The boundary

and the interior of Eσ are denoted as ∂Eσ and E̊σ respectively, and are defined in

the topological sense. The boundary ∂Eσ is known as the yield surface of the crystal

and it is piecewise smooth.

We assume the plastic strain evolves with time as follows

ε̇p =
N
∑

i=1

γ̇i
∂fi(σ, q)

∂σ
, (6.2)

where γ̇i ≥ 0 are consistency parameters that satisfy the Kuhn-Tucker complemen-

tarity conditions

γ̇i ≥ 0, fi(σ, q) ≤ 0, and γ̇ifi(σ, q) = 0.

Also the following consistency conditions are satisfied

γ̇iḟi(σ, q) = 0.

σ = C : (ε − εp), then σ = 0 and the invertibility of C imply ε = εp.
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Finally a set of internal variables α satisty the following evolution equations [56]

α̇ =
N
∑

i=1

γ̇i
∂fi(σ, q)

∂q
. (6.3)

Note that the plastic strain (6.2) and the internal variables (6.3) are obtained di-

rectly from the yield functions {fi}N
i=1 by taking the partial derivatives with respect

to σ and q, respectively. Models of this type are known as associative and have

the mathematical advantage that once the yield functions {fi}N
i=1 are known, the

evolution equations of the plastic strain and the internal variables are automatically

derived. Also, associative constitutive models automatically satisfy the second law

of thermodynamics.

6.3 A Crystal Plasticity Model

Here we consider the elastic-plastic response of a single crystal submitted to a general

three dimensional loading. We present the model described in [63] and point out that

the model is a particular case of the general model given in the previous section. Next,

a numerical algorithm is presented followed by some numerical results.

In Section 6.2 it was mentioned that plasticity of a single crystal occurs by the

slip of crystallographic planes on a set of preferred slip directions. This phenomena

is described in terms of a set of yield functions fi, i = 1, . . . , N , where N is the

number of slip systems and in terms of a set of consistency parameters γi.

Let ni be the unit normal to the ith slip plane and si be a unit vector along the

slip direction (see figure 6.3). Then the plastic strain rate in the crystal is defined to

be
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ε̇p =
N
∑

i=1

γ̇i sgn(τi) mi,

where γ̇i ≥ 0 is the plastic slip on the ith slip system. The tensor mi,

mi =
1

2
(ni ⊗ si + si ⊗ ni)

is the Schmidt tensor and τi = σ : mi is the resolved shear stress on slip system i.

The yield condition in slip system i is given by Schmid’s law:

fi(σ, γ) = |τi| − τ c
i (γ) = 0, (6.4)

where γ = (γ1, . . . , γN) and τ c
i (γ) is the critical resolved shear stress (CRSS) in slip

system i, the CRSS evolves in time in the following way

τ̇i
c =

N
∑

j=1

hij γ̇j. (6.5)

The initial condition τi(0) = τc0 is assumed to be known and is assumed identical in

all slip systems (τc0 is a material constant). The hardening rates hij are assumed to

satisfy

hij = qijhj , (6.6)
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where qij is one if the slip systems i and j are coplanar and qij > 1 otherwise. An

example of the hardening rate hj is

hj(τ
c
j ) = h0{1 −

τ c
j

τ c
s

}a,

where h0, τ c
s and a are hardening parameters of the crystal taken to be identical for

all slip systems. It can be shown that the model described is associative; indeed,

ε̇p =
N
∑

i=1

γ̇i
∂fi(σ, γ)

∂σ
.

Now we present an algorithm that solves the above model numerically:

1. Let ε̇ be a given loading. Assume at time t = tn we know γi(tn), εp
n and τ c

i (tn)

for i = 1, . . . , N . Let ∆tn be a time increment, then the total strain increment

is ∆εn = ε̇∆tn. At time tn+1 = tn + ∆tn the total strain is εn+1 = εn + ∆εn.

For the given total strain εn+1 it’s assumed the material remains elastic3.

2. Elastic behaviour implies

ε
p
n+1 = εp

n, γi(tn+1) = γi(tn) and τ c
i (tn+1) = τ c

i (tn),

for i = 1, . . . , N . Let ε
e(trial)
n+1 = εn+1 − ε

p
n+1 be a trial elastic strain, then

the corresponding trial stress at time t = tn+1 is computed with Hooke’s law

σtrial(tn+1) = C : ε
e(trial)
n+1 .

3. The set of yield functions
{

fi(σ
trial
n+1, γ(tn+1))

}N

i=1
is evaluated, if fi < 0 for all

i then we are done. The assumption of having an elastic state is correct. Go

back to step 1 and take another time increment ∆tn+1.

3This assumption is part of the numerical algorithm. Further tests will determine the
correct state of the material.
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4. If there exists i such that fi(σ
trial(tn+1), γ(tn+1)) > 0 then plasticity has been

reached and the assumption of having elasticity is incorrect. A correction to

γi(tn+1) and τ c
i (tn+1) must be done.

5. Let I be any index such that

fI(σ
trial(tn+1), γ(tn+1)) = max

1≤i≤N
{fi(σ

trial(tn+1), γ(tn+1)) > 0}.

Assume for the moment plasticity occurs only in system I; that is,

γi(tn+1) = γi(tn),

τ c
i (tn+1) = τ c

i (tn),

for i 6= I. The goal is to make fI(σ
trial(tn+1), γ(tn+1)) < tol, for some tolerance

tol > 0.

One way to do this is with the secant method:

Define

g(σ, x) = fI(σ, γ1(tn), . . . , γI−1(tn), x, γI+1(tn), . . . , γN(tn)),

we want to compute x so that g(σ, x) = 04. Let

{γI,k(tn+1)}Nmax

k=0 ,

be a sequence of real numbers that approaches to the state γI(tn+1). Later an

explicit form of {γI,k(tn+1)}Nmax

k=0 is shown. The positive integer Nmax represents

the maximum number of secant iterations.

Define γI,0(tn+1) = γI(tn), σtrial
1 (tn+1) = σtrial(tn+1) and

δγI,k(tn) = γI,k(tn+1) − γI,k−1(tn+1).

4Note that σ depends on x; that is, the stress depends on the plastic slip. Strictly
speaking g depends only on x.
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Let ∆γI,1(tn) = δγI,1(tn) be a positive “small” real number, 10−6 or less for

example. We update γI,k(tn+1) by decreasing g to zero with the following secant

iterations:

∆kg = g(σtrial
k (tn+1), γI,k(tn+1)) − g(σtrial

k (tn+1), γI,k−1(tn+1)),

δγI,k+1(tn) = −g(σtrial
k (tn+1)), γI,k(tn+1))

∆kg
δγI,k(tn), (6.7)

∆γI,k+1(tn) = ∆γI,k(tn) + δγI,k+1(tn),

γI,k+1(tn+1) = γI,0(tn+1) + ∆γI,k+1(tn).

After computing ∆γI,k+1(tn) the plastic strain suffers the following increment

∆ε
p
n,k = ∆γI,k+1(tn) sgn(τI(tn))mI , (6.8)

ε
p
n+1,k = εp

n + ∆ε
p
n,k. (6.9)

The new trial stress is computed in the following way

∆σn,k = C : (∆εn − ∆ε
p
n,k),

σtrial
k+1 (tn+1) = σ(tn) + ∆σn,k.

Now τ c(tn) is updated. Since we are assuming only slip system I is active, a

backward Euler method applied to (6.5) implies

∆τ c
I,k(tn) = h0∆γI,k(tn)

(

1 −
τ c
I (tn) + ∆τ c

I,k(tn)

τ c
s

)a

, (6.10)

the previous equation can be solved for ∆τ c
I,k(tn) with Newton’s Method. After

∆τ c
I,k(tn) is computed then make the update

τ c
I (tn+1) = τ c

I (tn) + ∆τ c
I,k(tn).

The yield function at slip system I is reevaluated,

fI ≡ |σtrial
k+1 (tn+1) : mI | − τ c

I (tn+1), (6.11)
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if fI ≥ tol then go back to the set of equations (6.7) of secant’s method until

(6.11) satisfies fI < tol. If (6.11) satisfies fI < tol then we are done with slip

system I. Make the updates

∆τ c
i,k(tn) = qiIh0

(

1 − τ c
I (tn+1)

τ c
s

)a

∆γI,k(tn),

τ c
i (tn+1) = τ c

i (tn) + ∆τ c
i,k(tn),

and go back to the beginning of step 5 until all slip systems satisfy the condition

fi < tol, for i = 1, . . . , N .

In [63] the responses of an FCC copper crystal under shear loading and uniaxial

strain loading are studied. We apply the above algorithm to these two cases in the

next two sections. The algorithm we propose is different from the algorithm used in

[63], but the numerical results obtained with both algorithms are in good agreement.

6.4 Numerical Example for Shear Loading

Consider a copper sample under a cyclic shear loading in the e1 − e2 plane given by

ε̇ = ˙ε12 (e1 ⊗ e2 + e2 ⊗ e1) .

First the strain rate ˙ε12 = 0.1s−1 is applied until ε12 = 0.01, then the strain rate

is reversed to ˙ε12 = −0.1s−1 until ε12 = 0. Finally the strain rate is reversed to

˙ε12 = 0.1s−1 until ε12 = 0.01.

The material constants of copper are:
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Poisson’s Ratio ν 1
3

Young’s Modulus E 124GPa

Initial Critical Resolved Shear Stress τc0 16MPa

Saturated Critical Resolved Shear Stress τ c
s 148MPa

Hardening Exponent a 2.25

Hardening Coefficient h0 180MPa

Finally qij = 1 if slip systems i and j are coplanar and qij = 1.4 otherwise. The

Schmidt tensors were computed with the formula mi = 1
2
(ni ⊗ si + si ⊗ ni). The

normal vectors and slip directions for copper are given by [63]:

• For i = 1, 2, 3:

ni =
1√
3

(e1 + e2 + e3) ,

s1 =
1√
2
(e2 − e3), s2 =

1√
2
(−e1 + e2), s3 =

1√
2
(−e1 + e3).

• For i = 4, 5, 6:

ni =
1√
3

(e1 − e2 + e3) ,

s4 =
1√
2
(−e2 − e3), s5 =

1√
2
(e1 − e3), s6 =

1√
2
(e1 + e2).

• For i = 7, 8, 9:

ni =
1√
3

(−e1 + e2 + e3) ,

s7 =
1√
2
(−e2 + e3), s8 =

1√
2
(−e1 − e3), s9 =

1√
2
(−e1 − e2).

• For i = 10, 11, 12:

ni =
1√
3

(−e1 − e2 + e3) ,

s10 =
1√
2
(e2 + e3), s11 =

1√
2
(−e1 − e3), s12 =

1√
2
(−e1 + e2).
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A direct calculation shows

|τi| = |σ : mi| =
1√
6
|σ12|, i = 1, 3, 4, 5, 7, 8, 10, 11, (6.12)

|τi| = 0, otherwise.

This means eight slip systems activate initially when σ12 =
√

6τc0.

The numerical algorithm of the previous section was applied with a constant time

step of ∆t = 2× 10−3s. The initial conditions at time t = 0 are εp(0) = 0, γi(0) = 0

and τ c
i (0) =, for i = 1, ..., 12. The choice of the index in step 5

fI = max
1≤i≤N

{

fi(σ
trial(tn+1), γ(tn+1))

}

,

was taken to be the minimum of all indices that correspond to maximum positive

values of fi. It’s clear that many choices are possible, taking the greatest index is

an example. Different index choices lead to different numerical values of γ(t). This

means γ is not unique. Analytical solutions where γ is not unique are also available.

Figure 6.4 shows a normalized shear stress-shear strain response. The normalized

shear stress σ̄12 is defined by σ̄12 = 1
τc0

σ12. It’s clear from Fig. 6.4 that yielding occurs

at the expected value σ̄12 =
√

6. Figure 6.5 shows the relationship between the plastic

slips γi and the shear strain ε12, for i = 1, 4. This is an expected result from (6.12).

The horizontal trajectories correspond to elastic behaviour, this is consistent with

the theory and Fig. 6.4. Numerically the plastic slips {γ2, γ6, γ9, γ12} remain zero.

This is consistent with (6.12). Also the plastic slips {γ3, γ5, γ7, γ8, γ10, γ11} remain

zero in this case, but other choices of I in (6.13) may activate some of these.

Figure 6.6 illustrates the relationship between εp
12 and ε12. The horizontal seg-

ments indicate elastic behaviour, consistent with Fig. 6.4. Apparently non-uniqueness

occurs only in the plastic slips γi.
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Figure 6.4: Normalized shear stress σ̄12 vs. shear strain ε12.
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Figure 6.5: Plastic slips γ1 and γ4 vs shear strain ε12.
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Figure 6.6: Shear plastic strain εp
12 vs shear strain ε12.

6.5 Numerical Example for Uniaxial Loading

Consider the same copper sample of the previous section5 under the cyclic uniaxial

strain loading described by

ε̇ = ε11e1 ⊗ e1.

First the strain rate ε̇11 = 0.1s−1 is applied until ε11 = 0.002, then the strain rate

is reversed to ε̇11 = −0.1s−1 until ε11 = 0. Finally the strain rate is reversed to

ε̇11 = 0.1s−1 until ε11 = 0.002.

In this case the following holds:

|τi| = |σ : mi| =
1√
6
|σ11 − σ22|, i = 2, 3, 5, 6, 8, 9, 11, 12,

|τi| = 0, otherwise.

5This means the number of slip systems, the Schmidt tensors and the material constants
of the previous example are all the same.
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This means eight slip systems will activate first when σ11 − σ22 =
√

6τc0.

This problem was solved numerically with the same numerical algorithm and data

of the previous experiment. The criteria for the choice of the index I corresponding

to maximum values of fi is also the same.

Figures 6.7a−c correspond to relationships between {σ̄11, σ̄22} vs ε11, σ̄11 − σ̄22

vs ε11 and {εp
11, εp

22} vs ε11 respectively. Their interpretation is similar to the shear

loading experiment of the previous section. The results of the present section and

Section 6.4 are in good agreement with [63].
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Figure 6.7: (a) {σ̄11, σ̄22} vs ε11. (b) σ̄11 − σ̄22 vs ε11. (c) {εp
11, εp

22} vs ε11.

Some Results on Crystal Plasticity at the Nanoscale

In this section the plastic response of thin films at the nanoscale is briefly discussed.

Constitutive equations developed in [9] are shown. A closed expression of the disloca-

tion densities in a thin Cu film is presented [23]. The hardening parameters together

with the dislocation densities are adapted to the rate independent constitutive equa-

tions of single crystal plasticity exposed in previous sections. We end this section

with numerical solutions of the stress strain response of a thin Cu film under shear

loading. Different film thicknesses are considered in order to aprreciate size effects.
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Experiments have shown that the plastic response of metallic thin films is size

dependent at the micron or sub micron range. One example is the yield stress, that

tends to increase as a characteristic size of the film decreases. This type of relation

is known as the Hall-Petch effect. Experimentally it has been found that the yield

stress σH
y of a film at sub micron levels satisfies

σH
y = σy + αµ

b

hn
,

where σy is the yield stress of the bulk material, µ the shear modulus, b is the

magnitude of Burger’s vector, h the film thickness, n is a constant and α a scaling

parameter.

Recent experiments have shown there exists a significative difference between

the proportional limit and the elastic limit at the sub micron level [27]. Also a

strain recovery (not total) after unloading to zero stress has been noticed [51]. The

constitutive models we develop in this thesis include the Hall-Petch effect.

6.6 A model for single crystal plasticity

In this section a model for single crystal plasticity is presented [23], [9]. The con-

stitutive equations are applied to describe the shear response of a thin Cu film. It’s

assumed the film thickness is made of a single grain.

Assume the deformation gradient6 F can be decomposed in the form7

F = F eF p,

6The deformation gradient F is defined as F = I + GRAD (u), where I is the second
order identity tensor, u is the displacement vector field and GRAD (·) is the gradient
operator respect to the material variable X.

7This multiplicative decomposition holds for large deformations.
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where F e and F p are called the elastic part and plastic part of the deformation

gradient respectively. F e is related to the lattice deformation of the crystal and

F p to the cummulative effect of the dislocation motion. The plastic part of the

deformation gradient is assumed to satisfy [2], [23]

F p = I +
N
∑

α=1

γαsα ⊗ mα,

where N is the number of slip systems and γα, sα, mα are the plastic slip, slip

direction and normal vector to the slip plane α respectively. The plastic slips are

assumed to satisfy

γ̇α =











γ̇α
0

(

τα/τα
y

)1/m
, if τα ≥ τα

y

0 otherwise,
(6.13)

where γ̇α
0 is a reference strain rate, τα is the resolved shear stress in slip plane alpha,

τα
y is the flow stress in slip system α and m is a hardening exponent set to 0.01 in

[23].

The flow stress satisfies

τ̇α
y =

N
∑

β=1

hαβ γ̇β, (6.14)

where hαβ are hardening parameters. In [9], [23] it is assumed hαβ satisfies

hαβ =
aµnα

ρα

(

τα
y

τα
0

)3
(

cosh

(

τα
0

τα
y

)2

− 1

)

δαβ ,

where τα
0 = aµb

√
nα is a characteristic flow stress 8, a is a constant, nα is the number

of forest dislocations piercing the slip plane α. The number of forest dislocations is

assumed to depend on the dislocation densities ρα in the following way:

nα =
N
∑

β=1

aαβρβ

8This is called Taylor’s hardening law.
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where aαβ are constants. For Cu, the numerical values of aαβ were determined

experimentally by Franciosi and Zaoui [12]. The row sum of the matrix
(

aαβ
)

is

always constant, for Cu this sum is approximately 7.7 × 10−2.

The dislocation density ρα satisfies an evolution equation, generally it depends

on the initial dislocation density ρ0, the saturation density ρsat and the plastic slip

γα. The following form of the dislocation density was used [23]:

ρα = ρsatγ̄
α b

h

√

√

√

√

(

1 − 2x2

h

)2

(

x2

h

) (

1 − x2

h

) + ρ0, (6.15)

where h is the film thickness, γ̄α is an average plastic strain that depends of time

and x2 is the position along the film thickness. The coordinate system is centered at

the bottom of the film. The coordinate axis are parallel to the crystal lattice.

The form of equation (6.15) follows from the phase-field theory of dislocations

developed by Koslowski [30], [29], [24].

Now we adapt the above model to the single crystal plasticity model presented

in Section 6.3. The following was assumed:

• Define the yield functions by fβ ≡ |τβ | − τβ
y , where

τβ
y (0) = τc0 +

bµ

h
, (6.16)

is the initial yield stress, τc0 is the yield stress of the bulk material. Note that

the yield stress is identical in all slip systems. Also the Hall-Petch effect is

incorporated with n = 1, α = 1.

• The hardening parameters appearing in the evolution equation of the critical

resolved shear stress

τ̇α
y =

N
∑

β=1

hαβγ̇β ,
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are assumed to satisfy

hαβ =
aµnα

ρα

(

τα
y

τα
0

)3
(

cosh

(

τα
0

τα
y

)2

− 1

)

δαβ . (6.17)

• We assume the dislocation density ρα satisfies

ρα(x) = ρsatγ̄
α b

h

√

√

√

√

(

1 − 2x2

h

)2

(

x2

h

) (

1 − x2

h

) + ρ0, (6.18)

where γ̄α = 0.3 is constant9. Therefore ρα is identical in all slip systems.

The dislocation density ρα changes only along the film thickness and tends to

increase near the boundaries.

Now we are ready to compute some numerical results.

6.7 Shear Loading of a Thin Crystalline Film

Consider a Cu thin film under shear loading in the e1 − e2 plane given by

ε̇ = ˙ε12 (e1 ⊗ e2 + e2 ⊗ e1) .

The strain rate ˙ε12 = 0.1s−1 is applied until ε12 = 0.01. The following material

parameters10 where taken from [23], [12], [63] and [54]:

9This value was taken from [23], strictly γ̄α changes with time.
10Remember Cu has N = 12 slip systems.
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Poisson’s Ratio ν 1
3

Young’s Modulus E 124GPa

Magnitude of Burger’s vector b 0.256nm

Initial Critical Resolved Shear Stress τc0 16MPa

a 0.3

Initial dislocation Density ρ0 1011m−2

Saturated Dislocation Density ρsat
8

πb2

∑12
β=1 aαβ 7.7 × 10−2

The numerical algorithm for single crystal plasticity is applied with a constant

time step of ∆t = 2 × 10−3s. The initial conditions at time t = 0 are εp(0) = 0,

γα(0) = 0 and τα
y (0) = τc0 + bµ

h
, for α = 1, ..., 12.

The new hardening parameters hαβ require a modification of (6.10), indeed, the

critical resolved shear stress is now updated by solving for ∆τ I
y :

τ I
y + ∆τ I

y

τ I
0

=
τ I
y

τ I
0

+
∆γIaµnI

ρIτ I
0

(

τ I
y + ∆τ I

y

τ I
0

)3(

cosh

(

τ I
0

τ I
y + ∆τ I

y

)2

− 1

)

.

Newton’s method can be applied. It’s convenient to make the change of variable

x =
τ I
y + ∆τ I

y

τ I
0

, (6.19)

then approximate with Newton’s method the unique positive zero of f(x) = 0, where

f(x) = x − ∆γIaµnI

ρIτ I
0

x3

(

cosh

(

1

x

)2

− 1

)

−
τ I
y

τ I
0

.

Initial conditions like x0 =
τI
y

τI
0

+ δ, where δ > 0 “sufficiently small”, make New-

ton’s method converge. After knowing the approximate value of x then ∆τ I
y can be

approximated using (6.19).
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Figure 6.8 shows the relationship between the normalized shear stress

σ̄12 =
σ12

τc0

,

and the shear strain ε12 at different levels of a Cu film of thickness h = 2µm. The

horizontal line between 2 and 3 describes the normalized yield stress of the bulk

material. Previously it was shown this value is
√

6. The Hall-Petch effect is clear,

the yield stress of the Cu film is higher than the yield stress of the bulk material.

From bottom (curve with squares) to top (curve with stars), the normalized shear

stress-shear strain responses correspond to x2

h
= 0.5, 0.6, 0.7, 0.8, 0.9. Since ρα is sym-

metric respecto to x2

h
= 0.5, the responses are identical for x2

h
= 0.5, 0.4, 0.3, 0.2, 0.1

respectively. We can appreciate hardening is higher at the boundaries of the film

while at the midplane practically we have perfect plasticity. This is an expected

result, indeed, from (6.18) we have ρα is minimum at the midplane and unbounded

near the film boundaries.

Figure 6.9 illustrates the same case of figure 6.8 but for a film thickness of h =

0.2µm. Since the film thickness is at the submicron level, the size effects are clearly

more pronounced. Figures 6.10 and 6.11 correspond to h = 20µm and h = 200µm

respectively. We can appreciate the Hall-Petch effect is reduced as the film thickness

increases. When h = 200µm the yield stress of the bulk material is practically the

same as the yield stress of the film.

6.8 A J2 model for polycrystals with size effects

The polycrystalline microstructure shown in Fig.5.1 is made up of many crystals

with different sizes and orientations. Solving for the mechanical behaviour of the

whole device depends on the responses of each individual crystal. This requires an
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Figure 6.8: σ̄12 = σ12

τc0
vs ε12 for h = 2µm.
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Figure 6.9: σ̄12 = σ12

τc0
vs ε12 for h = 0.2µm.
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Figure 6.10: σ̄12 = σ12

τc0
vs ε12 for h = 20µm.
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Figure 6.11: σ̄12 = σ12

τc0
vs ε12 for h = 200µm.
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enormous amount of computational effort. To start we assume the overall response of

the device can be described with an homogenized theory; that is, there exists a single

crystal medium (Effective Medium) that behaves like the polycrystalline medium in

average sense.

The rest of this section presents a J2 model for polycrystals incorporating size

effects. The single crystal plasticity model with size effects of the previous section

is used to develop a homogenized model by averaging material properties over all

grains along the film thickness. The model was developed by Sulsky.

Assume the critical resolved shear stress, plastic slips and dislocation densities are

the same in all slip systems (unrealistically), then the yield condition is postulated

to satisfy

f(σ, τ c) = (
3

2
σd : σd)

1
2 − τ c(γ), (6.20)

where the previous equation looks almost the same as the yielding condition (6.4), the

main difference resides on the term J2 = (3
2
σd : σd)

1
2 which is the second invariant

of the stress tensor, a quantity that remains constant under rotations [56]. This is

the reason why we call this theory J2. As a consequence the plastic behavior of the

material is isotropic.

Assuming all plastic slips are identical and the model is associative then it can

be shown the flow rule takes the form

ε̇p = γ̇
σd

(σd : σd)
1
2

.

Equation (6.18) describes variations of the dislocation density with respect to the

vertical position x2 inside a single crystal. If we want to describe a response for all

the polycrystalline aggregate then as a first try we average over the film thickness 11

11Strictly it must be averaged over the whole film, but the dislocation density changes
only along the film thickness.
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and use the following estimate for the dislocation density

ρ =
1

h

∫ h

0

ραdx2

= 2ρsatγ
b

h
+ ρ0, (6.21)

where γα was replaced by γ. The replacement of γα by γ was done in order for ρ to

increase with time12.

The assumption ρ is the same for all slip systems implies the number of forest

dislocations is the same in all slip systems. The expression for the forest dislocations

n simplifies to

n = nα

= Aρ,

where A =
∑

β aαβ is the constant row sum. Also Taylor’s law is identical in all slip

systems,

τ0 = τα
0

= a
√

Aµb
√

ρ.

The hardening moduli hαβ can be approximated to

hαβ = Aaµ

(

τ c

τ0

)3(

cosh
( τ0

τ c

)2

− 1

)

δαβ ≈ 1

2
Aaµ

(τ0

τ c

)

δαβ ,

where the approximation coshx ≈ 1 + x2

2!
was used13. The critical resolved shear

stress evolves in the following way

τ̇ c =
1

2
Aaµ

(τ0

τ c

)

γ̇. (6.22)

12This is a desired property because the dislocation density is an increasing function. In
the experiments of the previous section we took γα constant. Still (6.21) is not adequate
because theoretically is expected ρ → ρsat as γ → ∞.

13Provided τ0
τc ≪ 1. The experiments shown further satisfy this relation.

132



Chapter 6. Crystal Plasticity Constitutive Modeling

Finally we assume the initial critical resolved shear stress is identical in all slip

systems. This completes the model.

6.9 Numerical examples

In this section we study the mechanical response of a thin Ni film under uniaxial

tensile stress. The J2 model of the previous section is used and solved numerically.

Results are compared with real experimental data shown in [18] and [17]. The values

of the parameters used in the experiments are shown in the following table

Poisson’s Ratio ν 0.2

Young’s Modulus E 180GPa

Magnitude of Burger’s vector b 2.5 × 10−10m

a 0.3

Initial dislocation Density ρ0 1011m−2

Saturated Dislocation Density ρsat 4.07m−2

Row sum of matrix A 7.6 × 10−2

The parameters a and A were chosen to fit the data given in [18] and [17]. The

initial dislocation density was taken from [23]. Young’s modulus comes from [18].

Poisson’s ratio and the magnitude of Burger’s vector from [54].

Figure 6.12 shows experimental tensile stress-strain curves for as-deposited LIGA

Ni and annealed Ni microsamples. The curve at the right corresponds to the annealed

sample14. The Hall-Petch effect is clear. Grains in the as-deposited Ni sample are

smaller than the annealed sample. The as-deposited grain size is h = 4µm and

the yield stress τc0 = 410MPa [18]. The annealed yield stress is 120MPa and

14Is the same as-deposited LIGA Ni sample annealed for 1 hour at 800 ◦C.
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Figure 6.12: Experimental tensile stress-strain curves of an as-deposited LIGA Ni
sample (left) and the corresponding annealed Ni microsample (right) [18].

the grain size was taken to be 4 × 10−1m. The rate of loading is ε̇11 = 10−4s−1.

Figures 6.13a−b show the numerical results obtained with the J2 model for the

as-deposited and annealed microsamples respectively.

Figure 6.14 shows experimental tensile stress-strain curves of different as-deposited

LIGA Ni microsamples [17]. Curves with higher yield stress correspond to microsam-

ples with smaller grains. It’s known from [17] that the curve at the bottom corre-

sponds to grain sizes of 4µm and the curve below the one at the top corresponds

to grain sizes of 200nm. The curve of the bottom is the same as the one shown in

Fig. 6.12. It has a yield stress of 410MPa.

The gain size and yield stress of the rest of the curves is not available. The values

where estimated with “by eye” and linear interpolation. From bottom to top, the

second curve was assigned a grain size of 2.48µm and a yield stress of 790MPa. The

third curve was assigned a grain size of 1.85µm and yield stress of 930MPa. The
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Figure 6.13: (a) Tensile stress-strain curve of the J2 model for the as-deposited
LIGA Ni sample. (b) Tensile stress-strain curve of the J2 model for the annealed Ni
microsample.

fourth curve was given a yield stress of 1180MPa. The fifth curve was assigned a

grain size of 160nm and a yield stress of 1280MPa.

Figure 6.15 shows the numerical results obtained with the J2 model. Note that

the plastic behaviour shown in Fig. 6.15 has an upward concavity. Opposite to the

downward concavity shown in the real experiments of Fig. 6.14.

Figure 6.16 shows some numerical results obtained by Koslowski [31]. The ex-

periments consider tensile stress loading applied to different as-deposited LIGA Ni

microsamples. The grain sizes were available. From bottom to top we have grain

sizes of 16nm, 8nm and 4nm. The yield stress was not available, it was estimated

“by eye”. From bottom to top the yield stresses were estimated to be 7.75GPa,

8.7GPa and 9.3GPa.

Figure 6.17 shows the numerical results obtained with the J2 model. The grain

sizes and yield stresses are the same as Figure 6.16. Note that the stress-strain curves

of the J2 model are close to Koslowski’s stress strain-curves, despite the simplifica-
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Figure 6.14: Experimental tensile stress-strain curves of different LIGA Ni microsam-
ples [17].

tions done to derive the J2 model.
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Figure 6.15: J2 model stress-strain curves of the different as-deposited LIGA Ni
microsamples shown in Fig. 6.14.

Figure 6.16: Koslowski’s stress-strain curves of as-deposited LIGA Ni microsamples.
From bottom to top, the considered grain sizes are 16nm, 8nm and 4nm [31].
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Figure 6.17: J2 model stress-strain curves of as-deposited LIGA Ni microsamples.
The considered grain-sizes are 16nm, 8nm and 4nm (from bottom to top).
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Conclusions

In this thesis the mechanical response of the RF MEMS switch illustrated in Fig. 1.1

is studied. In particular, the in-plane Young’s modulus and the elastic-plastic be-

haviour of the thin Ni membrane of the MEMS device are calculated. The method-

ology to compute the in-plane Young’s modulus Ein−plane is presented in Chapter 4

and consists in (i) creating a model representative volume element which consists of

perfect columnar grains constructed with periodic Voronoi diagrams, (ii) numerically

representing experimentally determined crystallographic texture and (iii) simulating

uniaxial stress for the computation of Ein−plane. This methodology is applied to de-

termine not only mean values, but also the full probability distribution of Ein−plane

by taking into account that the modulus itself depends on uncertainties due to fab-

rication conditions. In particular, we studied variability of the predicted value of

Ein−plane due to uncertainties in microstructure geometry, in crystallographic tex-

ture, and in single-crystal elastic constants.

In [7] the Reuss average ER
in−plane, the Hill average EH

in−plane and the Voigt average

EV
in−plane of PRISM MEMS devices are calculated with the MTEX software [19, 40].

The importance of taking into account accurate crystallographic texture is observed
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and recapitulated in Fig. 4.1. Both the mean value and the range of values are

affected if either perfect fiber texture or uniform texture is assumed in place of the

experimentally observed texture. In this thesis, we observe that the distribution of

Ein−plane is not sensitive to microstructure geometry generated by periodic Voronoi

diagrams, as shown in Fig. 4.4. The calculated Ein−plane moduli are between the

Reuss and Voigt averages, an expected result that is proved analytically in Chapter 3.

Moreover, the distribution is also not sensitive to the variations in experimentally

measured crystallographic texture for the devices in batch #1 of [7], as seen in

Table 4.3 and Fig. 4.5. The experimental crystallographic texture has uncertainties

up to about 16% measured by misfit. We conclude that MEMS devices coming

from the same manufacturing process with fiber crystallographic textures within

uncertainty errors of about 16% misfit will tend to have the same in-plane Young’s

modulus, provided that single-crystal constants are identical for all devices. The

PDFs of in-plane Young’s modulus show sharply peaked distributions centered at

the Hill average value of the modulus. The sharpness of these PDFs illustrates the

advantage of using full field simulations to estimate Ein−plane compared to using a

uniform distribution over allowable values given by the Reuss and Voigt bounds.

We also find that knowledge of the single-crystal elastic moduli is crucial for de-

termining the PDF of Ein−plane. This observation is demonstrated in Figs. 4.6 and

4.9. The results shown in Fig. 4.6 are based on the assumption that the single-crystal

constants (4.11) distribute uniformly randomly within their range. This assumption

is not based on experimental evidence, but is an assumption made due to the lack of

information about how the values distribute. This PDF of Ein−plane is representative

of the uncertainty in the in-plane Young’s modulus that arises due to imprecise char-

acterization of the crystallites making up the device. The single-crystal constants

(4.11) cover a range of values reported in the literature, measured with varying ex-

perimental techniques on nickel with different impurities. Similar uncertainty would

arise in Ein−plane if experimental measurements on actual devices had errors resulting
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in a range of possible values.

The results shown in Fig. 4.9 are based on more detailed experimental data. An

explicit relation between C11, C12, C44 and the concentration of copper in the alloy

[11], shown in (4.12), is used. Qualitatively, the results in Figs. 4.6 and 4.9 are similar.

Uncertainty in single-crystal elastic moduli gives a broad distribution of possible

values for Ein−plane, that is somewhat uniform over its range. Thus, surprisingly,

taking into account the correlation between the single-crystal properties, does not

substantially reduce the uncertainty in the in-plane Young’s modulus.

Device-scale simulations cannot as yet resolve individual grains. So, these simula-

tions require effective material properties to model the response of the device. Since

the elastic properties play a role in lifetime and reliability predictions for MEMS

devices, the effective properties need to be determined accurately. Furthermore, in

order to quantify the uncertainty in lifetime and reliability predictions, the uncer-

tainty in effective properties needs to be quantified as well. Chapter 4 presents a

methodology to make predictions of Ein−plane for electrodeposited thin films with

fiber texture, and to quantify the uncertainty in those predictions.

Device-scale simulations may require a complete numerical geometry model of

the complete polycrystalline microstructure. The perfect columnar Voronoi based

microstructures of Chapter 4 are approximate small representative volume elements

of the top part of the Ni membrane. A Voronoi based algorithm that captures some

experimental geometric features of the complete microstructure geometry is proposed

in Chapter 5. The experimental features are the grain-size dependence with respect

to the film thickness and the log-normal distribution of the in-plane grain sizes. The

log-normal in-plane grain-size distribution is generated by exploiting the properties

(5.1)−(5.5) of log-normal distributions. An algorithm that generates microstructures

with in-plane grain-sizes distributing log-normally is given in Section 5.3. The advan-

tage of this algorithm is that the in-plane grain-sizes of the output microstructures
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distribute log-normally with mean and s.t.d. values with any degree of accuracy. Un-

fortunately the in-plane grain geometries are rectangles, an unrealistic cross-section

of a microstructure. A typical output of this algorithm is shown in Fig. 5.5.

At the end of Section 5.3 an attempt to generate more realistic microstructure

geometries is done in such a way that the log-normal in-plane grain-size distribution

generated by the algorithm is still preserved. The idea consists in destroying the

rectangular in-plane grain geometries by adding an in-plane perturbation with the

expectation that the resulting microstructure cross-sections look similar to Fig. 4.2.

Additionally, we destroy the perfect columnar grain structure with the out-of-plane

perturbation described in Section 5.2 with the purpose of creating V-shaped grain

geometries as indicated in Fig. 5.1. Based on Table 5.1, this idea is tested by gener-

ating one microstructure that represents the portion of the polycrystalline membrane

that is between the height levels z = 890nm and z = 1250nm. The resulting nu-

merical in-plane grain-size distributions are shown in Fig. 5.6 and they match the

experimental measurements of Fig. 5.2. Unfortunately the in-plane grain geometries

are still unrealistic as shown in Fig. 5.7. Therefore a significant improvement has to

be done in this direction.

The plastic behavior of polycrystalline materials is studied in Chapter 6. A J2

plasticity model for polycrystals is developed in Section 6.8. The J2 model attempts

to describe the overall elastic-plastic behavior of the polycrystalline Ni film and it is

derived as follows. The single crystal plasticity model [23, 9], based on the phase-

field theory of dislocations of Koslowski, is used to develop a homogenized model

by averaging material properties over all grains along the film thickness. The yield

condition is assummed to be isotropic, this is mathematically expressed in (6.20).

The plastic strain is assumed to be associative and the CRSS, which is assumed

to be the only hardening parameter of the effective medium, evolves according to

(6.22). The form proposed in (6.22) is a consequence of assuming a unique average
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dislocation density over the film thickness. This quantity is computed in (6.21).

The average dislocation density of the sample leads to a macroscopic medium with

identical forms of Taylor’s law and identical forest dislocations per slip system. The

simplified form of the macroscopic CRSS is obtained from (6.14). The J2 model has

the property that it includes the Hall-Petch size effect by assuming that the CRSS

initiates like (6.16).

The J2 model is numerically solved with the algorithm proposed in Section 6.3.

The accuracy of the algorithm is first tested in Sections 6.4 and 6.5 by solving

numerically the single crystal plasticity model of Section 6.3. The latter plasticity

model has a more general mathematical structure than the J2 model. In Section 6.4

a single crystal Cu sample under cyclic shear loading is studied. Figures 6.4, 6.5 and

6.6 are obtained with the algorithm of Section 6.3 and they are in good agreement

with [63]. In Section 6.5 the same Cu sample is under cyclic uniaxial strain loading

and the stress-strain relationships shown in Fig. 6.7 are also in good agreement with

[63]. This shows the accuracy of the algorithm and it verifies its implementation.

The incorporation of the Hall-Petch effect in the initial CRSS of the J2 model

is tested on the single crystal plasticity model of Section 6.6. This model describes

the plastic behavior of thin single crystal films and is an adaptation of the single

crystal plasticity model of [23, 9] to the single crystal plasticity model given in

Section 6.3. Section 6.7 considers thin Cu films of different thicknesses (or grain-

sizes) under shear loading. Figures 6.8−6.11 illustrate the Hall-Petch size effect at

different height levels. The thinner the film thickness, or the smaller the grain-sizes,

the higher its yield stress.

After verifying the above, the J2 model predictions are compared with Koslowski’s

phase-field simulations and with real tensile stress experiments performed on as-

deposited and annealed Ni microsamples. Figure 6.12 shows the experimental tensile

stress-strain curves for as-deposited and annealed Ni microsamples. The curve at
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the left corresponds to the as-deposited case because of the higher yield stress. The

J2 model prediction for the as-deposited Ni microsample is shown in Fig. 6.13a.

The curve is obtained by choosing parameters in such a way that the experimental

data is fitted the best possible. Parameters like Poisson’s ratio, Young’s modulus,

the magnitude of Burger’s vector, the initial dislocation density and the saturated

dislocation density are obtained from the literature. Note that the predicted plastic

behavior agrees qualitatively with the experiment in terms of energy dissipation and

initial yield but not in detail in terms of the shape of the stress-strain response. The

right curve of Figure 6.12 corresponds to the annealed case. The J2 model predictions

for the annealed case are shown in Fig. 6.13b. The J2 model parameters in this case

are the same as the ones chosen for the as-deposited case, except for the average

grain-size which is bigger in this case. Note that the predicted plastic behavior

agrees reasonably well with experiments. The simulated stress-strain curves have

less hardening than the experimental stress-strain curves, provided the maximum

strain is 0.8%.

Figure 6.14 shows experimental tensile stress-strain curves for different as-deposited

Ni microsamples. Curves with higher yield stress correspond to microsamples with

smaller grains. The J2 model predictions are shown in Fig. 6.15. In this case the

experimental stress-strain curves are measured up to a maximum strain of 4%, five

times higher than the previous maximum strain. The predicted stress-strain curves

have more hardening than the experimental curves, additionally the concavities are

opposite. The discrepancies between predictions and experiments may be overcome

by considering a different type of constitutive model known as a rate-dependent

model. This was suggested by Koslowski.

Figure 6.16 shows different tensile stress-strain curves coming from Koslowski’s

phase-field simulations on as-deposited Ni microsamples. The phase-field model pre-

dicts the yield stresses based on dislocation information and grain-sizes. The J2
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model results are shown in Figure 6.17. The grain-sizes and yield stresses are are

the same as Fig. 6.16. Note that the stress-strain curves of the J2 model are in good

agreement with the phase-field simulations, despite the simplifications done to derive

it.
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A The X-Ray Diffraction Method 4
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The X-Ray Diffraction Method

X-rays are a form of electromagnetic radiation whose wavelengths range from 0.01nm

to 10nm. Usually crystals have lattice constants that are on the order of angstroms

(tenths of nanometers). Since the crystal lattice parameters are almost of the same

order of magnitude as X-ray wavelengths, X-rays diffract in all directions when they

pass through a crystal lattice. The diffraction intensities provide information on the

positions of the atoms that form the crystal. Once knowing the location of atoms

in the crystal lattice, the crystal’s orientation can be calculated. In this Appendix

we give a brief explanation of how XRD intensities are useful for measuring crystal

orientations.

For simplicity the diagrams shown below represent two dimensional crystals but

the ideas illustrated in them apply to three dimensional crystals. Assume an X-ray

source S emits X-rays with a wavelength λ onto a crystal. A schematic representation

of this situation is shown in Fig. A.1. X-rays are electromagnetic waves that are

composed of oscillating magnetic and electric fields of the same oscillation frequency.

The oscillation frequency ν of the electromagnetic fields is known as the the X-ray

frequency and it satisfies the relation c = λν where λ is the X-ray wavelength and
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Figure A.1: X-rays incident on a crystal lattice.

c is the speed of light which depends on the properties of the medium where the

electromagnetic waves are traveling.

Once the electromagnetic fields enter the crystal lattice they exert forces on the

nuclei and electrons of all atoms. The forces oscillate with the same frequency as the

electromagnetic waves and these forces mostly influence the electrons because they

are much lighter than the nuclei. The vibrating electrons are behaving like small

harmonic oscillators, where the electron vibration frequency is ν. As a consequence

the vibrating electrons now behave like point sources emitting electromagnetic radi-

ation in all directions. The electromagnetic waves emitted by the electrons interact

with each other causing wave interference. At some points in space the interference

is constructive and at other points it is destructive or a combination of both. It

is difficult to give a mathematical description of this physical process (diffraction

pattern) in detail. Fortunately in 1912, the physicist Sir William Lawrence Bragg

(1890-1971) showed that the periodic arrangement of crystal atoms can be seen like
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Figure A.2: Bragg’s lattice plane interpretation.

an arrangement of lattice planes. This idea is illustrated in Fig. A.2. Lattice planes

are always separated by the same distance d known as the interplanar spacing. These

planes have the property of reflecting incident X-rays with the same angle of inci-

dence. The choices of lattice planes is not unique. Bragg pointed out that reflection

from all sets of lattice planes must be considered in the XRD analysis.

The crystal lattice planes reflect X-rays with different electromagnetic intensities.

High electromagnetic intensities occur because of constructive interference and low

electromagnetic intensities because of destructive interference. The intensity with

which the lattice planes reflect depends of the X-ray incidence angle. Bragg discov-

ered a physical law, now known as Bragg’s Law, that relates the X-ray incidence

angles and the lattice planes that reflect the highest electromagnetic intensities. Be-

fore formulating Bragg’s law let’s consider the following proposition:

Proposition 1. Assume a source S emits X-rays onto a lattice plane with an inci-

dence angle θ. If all rays emitted by S are in-phase then an observer O will detect
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Figure A.3: In-phase X-rays incident on the same lattice plane.

only in-phase reflected rays.

The justification for this principle follows inmediately from Fig. A.3. Note that

rays R1 and R2 are traveling at the speed of light; so they travel the same distances

in the same amount of time. It follows that both rays are incident on the lattice

plane at the same time at points C and D respectively. From Snell−Descartes law

we have that R1 and R2 reflect at the same angle of reflection θ into the rays R
′

1 and

R
′

2 respectively. Rays R
′

1 and R
′

2 have the speed of light and they travel the same

distances in the same amount of time. Therefore the observer O detects rays R
′

1 and

R
′

2 approaching at the same time, in other words, O will see in-phase reflected rays.

Proposition 2. Assume a source S emits X-rays onto a family of parallel lattice

planes P1, P2, . . . of interplanar spacing d at an incidence angle θ. Then an observer

O will detect the reflected rays of maximum intensity if and only if 2d sin θ = mλ,

where m is an integer and λ is the X-ray wavelength.
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Figure A.4: In-phase X-rays incident on different lattice planes.

In Fig. A.4 we illustrate schematically the source S emitting X-rays at an inci-

dence angle θ onto a family of lattice planes P1, P2, . . . . It is important to mention

that some of the incident rays can pass through P1, P1 and P2 or any number of

consecutive lattice planes. The reason is because the lattice planes do not form a

continuum, in reality there is a periodic arrangement of atoms separated by the lat-

tice parameters. The separations between atoms allow some of the X-rays to pass

through the lattice planes.

Note from Fig. A.4 that ray R1 reflects on plane P1 at point A and ray R2 reflects

on plane P2 at point B. The reflected rays are denoted by R
′

1 and R
′

2 respectively.

Note that the reflected rays are now out of phase. This happens because ray R
′

2

travels a longer distance than ray R
′

1, meaning that the observer O will detect R
′

2

delayed with respect to R
′

1. We can see from the geometry of the figure that the

extra distance traveled by R
′

2 is between the lattice planes P1 and P2 and is given

by 2d sin θ. This means that the rays R
′

1 and R
′

2 will be in-phase if and only if the
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Figure A.5: Intensity peak plot.

distance 2d sin θ is a multiple of the X-ray wavelength λ. Therefore O will detect

constructive interference if and only if 2d sin θ = mλ, where m is an integer.

The relation

2d sin θ = mλ,

is known as Bragg’s law. In practice the source S is an X-ray source, the observer O

is a camera or device that measures electromagnetic intensity and the lattice planes

correspond to a crystal living in a polycrystalline sample. According to Bragg’s law,

the intensities measured by O vary with the incident angle θ.

In an XRD experiment the camera O rotates at different angles θ and measures

the electromagnetic intensities as a function of θ. The result is a plot like the one

shown in Fig. A.5, known as the intensity peak plot. The vertical axis represents

the intensity and the horizontal axis the angle 2θ. It has been observed that the

intensity peaks always correspond to m = 1, higher modes (m > 1) are too weak to
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Figure A.6: Measurement of a crystal orientation with the XRD method.

be detected.

The reason why the horizontal axis of an intensity peak plot is 2θ and not θ can

be understood from Fig. A.6. Note that X-rays are incident with an angle θ on the

lattice planes of a crystal but there is an extra angle θ measured from the incident

X-rays. Then the camera measures intensities at an angle 2θ measured from the

incident rays.

The high peaks of the intensity plot correspond to constructive interference and

therefore they satisfy Bragg’s law. The high peaks appearing at different angles

correspond to reflections from different lattice planes. We provide an example of

how to estimate the lattice planes from the scatter plot for the case when the sample

is a single crystal. For polycrystalline samples the process of measuring crystal

orientations is more complicated but in principle follows the methodology we show

in the next example.
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Example A.0.1. A single crystal Cu sample is studied with XRD. The wavelength

of the X-ray beam is λ = 0.154nm and the first high peak of the intensity peak plot

occurs at 2θ = 33.6◦. What is the lattice parameter of Cu? What are the Miller

indices for this peak? Another peak occurs at 2θ = 43.2◦, what are the Miller indices

for this peak? The two peaks give an idea of the crystal orientation with respect to

the sample, are these orientations consistent? Use the information that Cu is an

FCC cubic crystal.

Solution. We know that Bragg’s law is satisfied at intensity peaks, then

2dhkl sin θ = λ,

where dhkl is the interplanar spacing of lattice planes (hkl). We need to determine

the values of the integers h, k, l. We know from [4] that for cubic crystals

dhkl =
a√

h2 + k2 + l2
,

where a is the lattice parameter. So we do not know the lattice parameter a of

Cu and the Miller indices (hkl). In this case Bragg’s law can be expressed in the

following form

sin θ =

√
h2 + k2 + l2

2a
λ.

Note that θ is smallest when
√

h2 + k2 + l2 has the smallest value. Since h, k, l are

integers, the smallest possible value occurs when h2 +k2 + l2 = 1, or when h = k = 0,

l = 1 or any equivalent combination described by the family (001). If this is the case

then

a =
λ

2 sin θ

=
0.154nm

2 sin 33.6◦

2

≈ 0.362nm.

The lattice parameter a ≈ 0.362nm can be checked in any crystallography table,

for example see the reference [26], pg. 296, Table 7.6 . Note that this information
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is sufficient to measure the crystal orientation, indeed, the incident X-rays form an

angle of 90◦ − 16.8◦ with one of the (001) plane normals. Usually the first peak of

the intensity peak plot is used to determine the lattice parameters.

Now we calculate the Miller indices corresponding to the peak located at the

angle 2θ = 43.2◦. From Bragg’s law we have

√
h2 + k2 + l2 =

2a

λ
sin θ

=
2 · 0.362nm

0.154nm
sin

43.2◦

2

≈ 1.73

then h2 + k2 + l2 ≈ 3. The Diophantine equation (polynomial equation restricted to

the set of integers)

h2 + k2 + l2 = 3

has solution only when h = k = l = 1. Therefore the Miller indices for the peak

located at 2θ = 43.2◦ are (111). If we draw a picture of the (001) lattice planes and

the (111) planes with their respective angle of incidence θ, we can easily see that

both orientations are consistent with each other. ◭
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