
University of New Mexico
UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

2-1-2016

Studies of Coherent Synchrotron Radiation with
the Discontinuous Galerkin Method
David Bizzozero

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been
accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of UNM Digital Repository. For more information, please
contact disc@unm.edu.

Recommended Citation
Bizzozero, David. "Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method." (2016).
https://digitalrepository.unm.edu/math_etds/4

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/4?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

Department

 This dissertation is approved, and it is acceptable in quality and form for publication:

Approved by the Dissertation Committee:

 , Chairperson

David Bizzozero

Mathematics and Statistics

Stephen Lau

James Ellison

Daniel Appelö

Robert Warnock

Klaus Heinemann

Studies of Coherent Synchrotron
Radiation with the Discontinuous

Galerkin Method

by

David A. Bizzozero

M.S., Applied Mathematics

University of New Mexico, 2010

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Mathematics

The University of New Mexico

Albuquerque, New Mexico

December, 2015

Dedication

To Oscar and Nora

iii

Acknowledgments

Foremost, I would like to thank Jim Ellison for his invaluable dedication towards
the progress of my graduate career. I would also like to thank Stephen Lau for
his expert insight in advanced mathematical concepts, Robert Warnock for his vast
experience in accelerators and beam dynamics, Daniel Appelö for his helpful dis-
cussions on discontinous Galerkin schemes, Klaus Heinemann for general comments
on the thesis, and Dann Brewer for his assistance in the setup of our GPU-enabled
computing desktop. This material is based upon work primarily supported by the
U.S. Department of Energy, Office of Science, Office of High Energy Physics under
Award Number DE-FG02-99ER41104 and supported in part by the National Science
Foundation under Grant No. NSF PHY 0855678.

iv

Studies of Coherent Synchrotron
Radiation with the Discontinuous

Galerkin Method

by

David A. Bizzozero

M.S., Applied Mathematics

University of New Mexico, 2010

Ph.D., Mathematics, University of New Mexico, 2015

Abstract

In this thesis, we present methods for integrating Maxwell’s equations in Frenet-

Serret coordinates in several settings using discontinuous Galerkin (DG) finite el-

ement method codes in 1D, 2D, and 3D. We apply these routines to the study

of coherent synchrotron radiation, an important topic in accelerator physics. We

build upon the published computational work of T. Agoh and D. Zhou in solving

Maxwell’s equations in the frequency-domain using a paraxial approximation which

reduces Maxwell’s equations to a Schrödinger-like system. We also evolve Maxwell’s

equations in the time-domain using a Fourier series decomposition with 2D DG mo-

tivated by an experiment performed at the Canadian Light Source. A comparison

between theory and experiment has been published (Phys. Rev. Lett. 114, 204801

(2015)). Lastly, we devise a novel approach to integrating Maxwell’s equations with

3D DG using a Galilean transformation and demonstrate proof-of-concept. In the

above studies, we examine the accuracy, efficiency, and convergence of DG.

v

Contents

List of Figures xi

1 Introduction 1

1.1 Scope of Thesis . 1

1.1.1 Coherent Synchrotron Radiation Overview 1

1.1.2 Discontinuous Galerkin Overview 2

1.2 Summary of Chapters . 3

2 Maxwell’s Equations and Transformations 5

2.1 Maxwell’s Equations . 5

2.1.1 Statement of Maxwell’s Equations 5

2.1.2 Wave Equation Forms . 7

2.2 Transformations and Transforms . 13

2.2.1 Frenet-Serret Coordinates . 13

2.2.2 Source Terms and Boundary Conditions 19

vi

Contents

2.2.3 Fourier Series in y . 22

2.2.4 Paraxial Approximation . 24

3 1D Frequency Domain Study – Proceedings of FEL2014 29

3.1 Statement of the Physical Problem 29

3.2 Statement of the Computational Problem 31

3.3 Numerical Implementation . 32

3.3.1 Finite Difference Scheme . 33

3.3.2 Discontinuous Galerkin Scheme 34

3.4 Numerical Results . 39

3.4.1 Finite Difference versus Discontinuous Galerkin 39

3.4.2 Fourier Series Convergence . 42

3.4.3 CSR Impedance . 45

4 2D Frequency Domain Study – Proceedings of FEL2013 49

4.1 Statement of the Physical Problem 49

4.2 Statement of the Mathematical Problem 52

4.3 Overview of Our DG Approach . 54

4.4 Numerical Implementation . 58

4.4.1 Construction of the Elements and Matrices 59

4.4.2 Construction of the Initial Data 59

vii

Contents

4.4.3 Evolution of the Fields . 60

4.4.4 Computation of the Impedance 60

4.5 Numerical Results . 61

4.5.1 DG Results . 61

4.5.2 FD Results and Impedance Comparison 64

5 2D Time Domain Study – Work for the Canadian Light Source 68

5.1 Statement of the Problem Domain . 68

5.2 Problem Setup and Formulation . 71

5.2.1 Maxwell’s Equations and Transforms 71

5.2.2 Initial Conditions . 73

5.2.3 Boundary Conditions . 75

5.2.4 Evolution Procedure . 76

5.3 Numerical Methods . 78

5.3.1 Discontinuous Galerkin Formulation 78

5.3.2 Convergence Test Results . 82

5.3.3 Physical Results . 83

6 Full 3D Time Domain Study – Work presented at ICOSAHOM14 89

6.1 Introduction . 89

6.2 Galilean Transformation . 90

viii

Contents

6.3 Statement of the Problem . 91

6.4 DG Formulation . 96

6.5 Numerical Implementation . 99

6.5.1 Preprocessing Steps . 99

6.5.2 Initial Condition Setup . 102

6.5.3 Time Evolution . 103

6.6 Convergence Results . 108

7 Conclusions and Future Work 111

7.1 Overview of Completed Work . 111

7.1.1 Chapter 3 – Summary . 111

7.1.2 Chapter 4 – Summary . 112

7.1.3 Chapter 5 – Summary . 112

7.1.4 Chapter 6 – Summary . 113

7.2 Conclusions . 113

7.3 Future Work . 114

A DG Code for CLS 116

A.1 CLS Algorithm Overview . 116

A.2 Preprocessing Routines . 119

A.2.1 Parameter Definitions . 119

ix

Contents

A.2.2 Mesh Generation . 121

A.2.3 DG Operator Setup . 125

A.2.4 Initialization of fields and sources 144

A.2.5 Optional Preprocessing . 149

A.3 Timestepping routines . 172

A.3.1 Main Timestep Loop (LSERK) 172

A.3.2 Optional Timestepping Routines 176

A.4 Postprocessing Routines . 182

A.4.1 Cleanup and Save Data . 182

A.4.2 Optional Postprocessing . 183

A.5 Variable and Routine Dependencies 189

A.5.1 List of Variables . 189

A.5.2 Flowchart of Routines . 195

References 196

x

List of Figures

3.1 Real (red) and imaginary (blue) parts of DG reference solution for

Êyp using (N,K) = (12, 80), for p = 1, k = 8·103 m−1, at s = 0.200 m.

The corner at x = 0 is due to the δ(x) term in the sources ρ and j. . 42

3.2 L2 error Êr
y for varying pmax using (N,K) = (12, 80) evaluated on a

1441 × 481 (x, y) grid, for k = 8 · 103 m−1, at s = 0.200 m using the

line charge model G(y) = δ(y). 43

3.3 L∞ norm Êyp for varying p using a Gaussian source G(y) with varying

σy. The solution is computed at s = 0.200 m using the DG method

with (N,K) = (8, 30). 44

3.4 DG reference solution for Re(Êr
y)/λ̂(k) (top), Im(Êr

y)/λ̂(k) (bottom)

with pmax = 39 and (N,K) = (12, 80) evaluated on a 1441×481 (x, y)

grid, for k = 8 · 103 m−1, at s = 0.200 m. 47

3.5 Real (red) and imaginary (blue) parts of Êyp for p = 19 with using

(N,K) = (12, 80), for k = 8 · 103 m−1, at s = 0.200 m. 48

3.6 Real (red) and imaginary (blue) parts of Ês(smax, 0, 0, k) for a source

with σy = 0.002 m using pmax = 9 and (N,K) = (8, 30). 48

xi

List of Figures

4.1 Example of a 24 element domain using 4th order elements (15 nodes

per element). The nodes (red dots) are not equally spaced among

each element. 59

4.2 Initial condition for Êr
x with C(k) = qcZ0λ̂(k)/2π. This initial con-

dition is the solution to (4.14) with the boundary conditions (4.13). 62

4.3 Real (top) and imaginary (bottom) parts of Êr
x for R = 1 m, L =

200 mm, a = 30 mm, b = 10 mm,k = 8 mm−1. 66

4.4 Real (top) and imaginary (bottom) parts of the impedance for ρ =

1 m, L = 200 mm, a = 30 mm, b = 10 mm. DG (blue solid), FD

(red dashed) . 67

5.1 Physical laboratory frame (top) and Frenet-Serret transformed frame

(bottom). The dashed line indicates the source’s trajectory, the re-

gion between the dotted blue lines indicate where the curvature is

non-zero, and the red dots indicate points where the boundary ge-

ometry transitions. 69

5.2 L2 error for Eyp along s = 0mm at τ = 200mm for order N = 2

(blue), N = 4 (green), N = 6 (red), and N = 8 (cyan) elements of

approximate size h0. The optimal rate of N + 1 is achieved for lower

orders; however for N = 8, at the higher resolutions, we conjecture

that the saturation in error is caused by double precision limitations. 85

5.3 Backward port (red dot) where Exp is sampled at each timestep. The

source at x = 0 (dashed line) travels from left to right. The photon

absorber (cyan) and M1 mirror assembly (magenta) are also shown. 86

xii

List of Figures

5.4 (Top) Low-pass filtered E2
xp field for σ = 2mm bunch length source

at the backward port. (Bottom) Experimental RF diode measure-

ments (oscilloscope traces) for various diode configuration and polar-

ization: (1) [red] backward/horizontal, (2) [blue] backward/vertical,

(3) [black] forward/horizontal. For clarity, the curves have been sep-

arated vertically. 87

5.5 (Top) Exp field for σ = 2mm at τ = 2.5m on the entire domain.

(Bottom) Zoom-in view of Exp field at τ = 4.0m at the backward

port (red dot). 88

6.1 An example cube containing 6 congruent tetrahedral elements de-

noted by vertices: ACBE, BEFC, FCGE, DEAC, HCDE, and

GEHC. One tetrahedron, HCDE, is highlighted in red. 100

6.2 Tetrahedral 6th-order nodes for element ACBE. (Top left) interior

volume nodes in red. (Top right) face nodes only shared with 1 other

element in green. (Bottom left) Edge and corner nodes shared with

several other elements in blue. (Bottom right) all Np = 84 nodes

displayed together. 102

6.3 L2 error for Ex for the 3D common grid at t = 1.0m/c for order

N = 2 (blue), N = 4 (green), N = 6 (red), and N = 8 (cyan)

and varying number of elements with a corresponding edge length of

h0 = 4(K/6)−1/3m. 110

xiii

Chapter 1

Introduction

1.1 Scope of Thesis

This thesis consists of a hybrid analysis of Coherent Synchrotron Radiation (CSR)

in the context of accelerators along with a study of Discontinuous Galerkin (DG)

schemes in these applications. We aim to provide a clear overview of the physical

systems, their mathematical representations, and their numerical solutions arising

from applications in beam dynamics.

1.1.1 Coherent Synchrotron Radiation Overview

Our starting point for the thesis work are the well-established Maxwell’s Equations.

Through the use of transformations and approximations, we construct various ap-

proaches to analyzing the electromagnetic fields produced, in a vacuum chamber of

varying geometry, in both the frequency and time domain. We build upon the com-

putational CSR analysis done by T. Agoh et al [1, 2], D. Zhou et al [22, 23], and G.

Stupakov et al [20].

1

Chapter 1. Introduction

The mechanism for producing synchrotron radiation in this thesis are relativistic

bunches of electrons whose trajectory is altered by an external magnetic field. The

external magnetic fields we consider are assumed hard-edged and constant. This

results in the electron bunch orbits to be comprised of straight sections, where no

radiation is emitted, and arcs of circles where the radiation is produced. The co-

herency in CSR assumes that the electron bunch size is smaller than the wavelength

of the radiation produced; thus the electrons radiate in phase providing constructive

interference for the radiation.

While the production of CSR may be desirable in some experiments, CSR can

cause difficulties in bunch compression and cooling of the external structures housing

the electron beam. The study on how to mitigate CSR effects is of great importance

in the operation of current facilities and construction of new facilities.

1.1.2 Discontinuous Galerkin Overview

In the numerical implementation used in this thesis, we adopt the discontinuous

Galerkin method, a high-order method which shares features with both finite ele-

ment and finite volume methods. It has seen rapid development with a myriad of

applications over the past 15 years, however, we are not aware of its use in the beam

physics community. We therefore give a short overview of our approaches, closely

following the treatment of [11].

The DG formulations in this thesis involve decomposition of a computational

domain into simplex elements, local representations of the relevant operators and so-

lution on each element, and coupling of adjacent elements through flux terms along

common boundaries. The element-wise local solutions are represented by polynomi-

als, but these local solutions may be discontinuous across elements. See [7, 11, 13, 18]

for more thorough and general treatments of DG formulations.

2

Chapter 1. Introduction

1.2 Summary of Chapters

For chapters 3–6, we introduce the necessary background material in chapter 2. In

all formulations of Maxwell’s equations, the electromagnetic fields and sources are

functions of 4 variables; spatial, temporal, or parametric. We divide the study of

CSR using DG into 4 parts: chapters 3 and 4 address Maxwell’s equations in the

frequency-domain while chapters 5 and 6 study the time-domain.

Additionally, we separate these 4 chapters by the dimension of PDE they address.

In chapter 3 we evolve PDEs in space in the frequency domain with 1 independent

spatial variable and 2 parameters arising in a 1D formulation. In chapter 4 we also

evolve PDEs in space in the frequency domain, however, with 2 spatial independent

variables and 1 parameter arising in a 2D formulation. In chapter 5 we evolve

PDEs in the time-domain with 2 spatial independent variables and 1 parameter also

arising in a 2D formulation. In chapter 6 we evolve PDEs in the time-domain with

3 spatial independent variables arising in a full 3D formulation. Lastly, chapter 7 is

dedicated to discussions on the results and possible future work. We also discuss a

few difficulties encountered in the thesis studies here.

Chapter 2 – To set the stage for the study of CSR using DG formulations, we

begin with a thorough analysis of Maxwell’s equations and their equivalent formula-

tions. We also present a few coordinate transformations and integral transforms to

solve and analyze the solutions of Maxwell’s equations in various geometries. Addi-

tionally, we derive the paraxial approximation, useful for frequency-domain analysis.

Chapter 3 – This chapter is a typographically edited version of our submission

[6] to the Free Electron Laser Conference 2014 in Basel, Switzerland. The document

has been modified for clarity and consistency with the rest of the thesis. Our goal in

this chapter is to examine CSR in the frequency domain using 1D code simulations by

use of a Fourier series. We adopt a toroidal vacuum chamber segment of rectangular

3

Chapter 1. Introduction

cross section of uniform curvature with infinite straight segments adjoining each end.

Chapter 4 – This chapter is a typographically edited version of our submission

[5] to the Free Electron Laser Conference 2013 in New York. The document has also

been modified for clarity and consistency with the rest of the thesis. Chronologically,

the content of this chapter predates that of chapter 3; however, here we present the

frequency-domain method without the Fourier series. Here, our goal is to accurately

compute the electric fields to compare to [22, 23] using DG. We use the same vacuum

chamber model as in chapter 3.

Chapter 5 – In this chapter, we examine methods for simulating wake fields in a

flared vacuum chamber in the time-domain. Our goal is to accurately represent the

physical vacuum chamber at the Canadian Light Source (CLS) and apply numerical

techniques to solve for the fields given a prescribed electron bunch profile and initial

field. The numerical parts of this work were published in [4].

Chapter 6 – In this chapter, we examine a different approximation to modeling

the fields in a full 3D volume. We combine the Frenet-Serret and Galilean trans-

formations to obtain new evolution PDEs for the 6 Maxwell field components. This

approach is useful when the sources are localized, and the fields away from the source

are not a quantity of interest. Portions of this work were presented at the Interna-

tional Conference on Spectral and High-Order Methods (ICOSAHOM) 2014 in Salt

Lake City, UT.

Chapter 7 – In this chapter, we organize the results and conclusions of chapters

3–6. We discuss the viability of DG versus finite difference (FD) schemes in the var-

ious cases and their efficiency. Furthermore, we examine the difficulties encountered

in programming the various codes used in our analyses. Lastly, we discuss possible

directions for future work.

4

Chapter 2

Maxwell’s Equations and

Transformations

2.1 Maxwell’s Equations

In this section we prove equivalence for the initial value problem of Maxwell’s equa-

tions in two different forms as well as in the wave equation form. The goal of the

equivalence is to allow for algorithms which use one form of the equations to auto-

matically provide the solution to the other forms. Also, we consider only the full

space domain R3 and defer details on boundary conditions to section 2.2.2.

2.1.1 Statement of Maxwell’s Equations

We begin with a prescribed charge and current density (ρ(R, t), j(R, t)), in Cartesian

coordinates R := (Z,X, Y)>, which satisfy the continuity equation:

∂ρ

∂t
= −∇ · j(R, t), (2.1)

5

Chapter 2. Maxwell’s Equations and Transformations

With the given charge and current densities satisfying (2.1), we pose the initial value

problem for Maxwell’s equations, for the electric and magnetic fields E(R, t) and

B(R, t), as:

∂E

∂t
= c2∇×B− cZ0j(R, t), (2.2)

∂B

∂t
= −∇× E, (2.3)

0 = ∇ · E− cZ0ρ(R, t), (2.4)

0 = ∇ ·B, (2.5)

E(R, 0) = E0(R), (2.6)

B(R, 0) = B0(R), (2.7)

where c = 1/
√
µ0ε0 is the speed of light and Z0 =

√
µ0/ε0 is the free space impedance

in SI units. We call (2.2)–(2.3) Maxwell’s evolution equations, (2.4)–(2.5) Maxwell’s

constitutive equations, and (2.6)–(2.7) the initial conditions. The continuity equation

(2.1) is derived by taking the divergence of (2.2) and applying (2.4).

Note, the constraints given in (2.4)–(2.5) need only be imposed on the initial data

(2.6)–(2.7). This is proved in the following theorem:

Theorem 1 If the fields, (E(R, t),B(R, t)), satisfy (2.2)–(2.3) and at t = 0 satisfy

(2.4)–(2.5), then (E(R, t),B(R, t)) automatically satisfy (2.4)–(2.5) for all time.

Proof: Taking the divergence of (2.2) and applying the continuity equation (2.1) we

obtain:

∇ · ∂E

∂t
= c2∇ ·∇×B− cZ0∇ · j

∇ · ∂E

∂t
= −cZ0∇ · j

∇ · ∂E

∂t
= cZ0

∂ρ

∂t
∂

∂t

(
∇ · E− cZ0ρ

)
= 0. (2.8)

6

Chapter 2. Maxwell’s Equations and Transformations

Thus ∇ · E − cZ0ρ is constant in time. However, since E0(R) satisfies (2.4), this

constant is zero at t = 0. Therefore ∇ ·E− cZ0ρ = 0 for all time, establishing (2.4).

Similarly, taking the divergence of (2.3) we obtain:

∇ · ∂B

∂t
= −∇ ·∇× E

∇ · ∂B

∂t
= 0

∂

∂t

(
∇ ·B

)
= 0. (2.9)

Thus ∇ ·B is constant in time. However, since B0(R) satisfies (2.5), this constant

is zero at t = 0. Therefore ∇ ·B = 0 for all time, establishing (2.5). 2

For the proofs in the next section, we will assume the fields (E(R, t),B(R, t)) and

sources (ρ(R, t), j(R, t)) are smooth. However, this restriction to smooth fields and

sources can be lifted by employing distribution theory not covered in the scope of

this thesis. Furthermore, we do not address boundary conditions until section 2.2.2

and thus consider only the full space problem.

2.1.2 Wave Equation Forms

In this section we derive the wave equations for (E(R, t),B(R, t)) and state the

standard existence and uniqueness theorem. We use this result to prove existence

and uniqueness for the Maxwell equations in the form (2.2)–(2.3).

To derive the wave equation for E, we begin by taking the curl of (2.3), applying

7

Chapter 2. Maxwell’s Equations and Transformations

vector identities, and substituting (2.2) and (2.4):

∇× (∇× E) = −∇× ∂B

∂t

∇(∇ · E)−∇2E = − ∂

∂t
(∇×B)

∇(∇ · E)−∇2E = − ∂

∂t

(
1

c2

∂E

∂t
+
Z0

c
j

)
∇(∇ · E)−∇2E = − 1

c2

∂2E

∂t2
− Z0

c

∂j

∂t

cZ0∇ρ−∇2E = − 1

c2

∂2E

∂t2
− Z0

c

∂j

∂t
1

c2

∂2E

∂t2
−∇2E = −cZ0∇ρ− Z0

c

∂j

∂t
. (2.10)

Similarly, to derive the wave equation for B, we take the curl of (2.3), apply appro-

priate vector identities, and substitute (2.2) and (2.5):

∇× (∇×B) =
1

c2
∇× ∂E

∂t
+
Z0

c
∇× j

∇(∇ ·B)−∇2B =
1

c2

∂

∂t
(∇× E) +

Z0

c
∇× j

∇(∇ ·B)−∇2B = − 1

c2

∂2B

∂t2
+
Z0

c
∇× j

1

c2

∂2B

∂t2
−∇2B =

Z0

c
∇× j. (2.11)

We now define the initial value problems for E(R, t) and B(R, t) separately for

arbitrary but smooth (ρ(R, t), j(R, t)) and initial conditions:

1

c2

∂2E

∂t2
−∇2E =− cZ0∇ρ− Z0

c

∂j

∂t
,

1

c2

∂2B

∂t2
−∇2B =

Z0

c
∇× j, (2.12)

E(R, 0) =E0(R), B(R, 0) =B0(R), (2.13)

∂

∂t
E(R, t)

∣∣∣
t=0

=E1(R),
∂

∂t
B(R, t)

∣∣∣
t=0

=B1(R). (2.14)

8

Chapter 2. Maxwell’s Equations and Transformations

Together, these initial value problems can be paired as:

1

c2

∂2U

∂t2
−∇2U =S(R, t), (2.15)

U(R, 0) =U0(R), (2.16)

∂

∂t
U(R, t)

∣∣∣
t=0

=U1(R). (2.17)

with U representing either E or B, and S as the appropriate source term from the

right-hand-side of (2.10) or (2.11).

Theorem 2 The initial value problem of (2.15)–(2.17) has a unique solution U(R, t)

given smooth initial displacement U0(R), initial velocity U1(R), and source S(R, t).

Proof: Applying Kirchhoff’s formula and Theorems 2, 4, and 5 in [9] (p72-82), the

unique (see [16] for uniqueness) solution to (2.15)–(2.17) in Cartesian coordinates is:

U(R, t) =
1

4π

∫
|R′|<ct

S(y, t− |R
′−R|
c

)

|R′ −R|
d3R′

+
1

4πc2t2

∫
|R′|=ct

[
(R′ −R) ·∇

]
U0(R′) + U0(R′) + tU1(R′)dS(R′),

(2.18)

with the notation:
[
b ·∇

]
A(R′) := (b ·∇AZ(R′),b ·∇AX(R′),b ·∇AY (R′))>. We

emphasize this solution is defined using Cartesian coordinates. 2

Next, to consider the existence and uniqueness of solutions to Maxwell’s Equa-

tions, we must impose extra restrictions on the initial conditions and source terms:

∇ · E0(R) = cZ0ρ(R, 0), (2.19)

∇ ·B0(R) = 0, (2.20)

E1(R) = c2∇×B0(R)− cZ0j(R, 0), (2.21)

B1(R) = −∇× E0(R), (2.22)

9

Chapter 2. Maxwell’s Equations and Transformations

The additional requirements (2.19)–(2.22), which couple E(R, t) and B(R, t), are

necessary to satisfy the Maxwell’s equations in the form of (2.2)–(2.3).

Theorem 3 The initial value problems of (2.12)–(2.14) with the restrictions (2.19)–

(2.22) have a unique solution (E(R, t),B(R, t)) which is also the unique solution to

Maxwell’s equations (2.2)–(2.3).

Proof: Part 1 (Existence)

We begin by applying Theorem 2 to construct the solutions (E(R, t),B(R, t))

from the initial value problem (2.12)–(2.14) subject to the restrictions on the source

and initial data (2.19)–(2.22). Since (2.4)–(2.5) follow directly from the restrictions

posed in (2.19)–(2.22) we must only show (2.2)–(2.3) are satisfied by (E,B).

To show (2.3) is satisfied, we take the curl of the wave equation for E and sub-

stitute the wave equation for B for the right-hand-side in (2.12):

1

c2
∇× ∂2E

∂t2
−∇×∇2E = −cZ0∇×∇ρ− Z0

c
∇× ∂j

∂t
1

c2

∂2

∂t2
(∇× E)−∇2 (∇× E) = − ∂

∂t

(
Z0

c
∇× j

)
1

c2

∂2

∂t2
(∇× E)−∇2 (∇× E) = − ∂

∂t

(
1

c2

∂2B

∂t2
−∇2B

)
1

c2

∂2

∂t2

(
∇× E +

∂B

∂t

)
= ∇2

(
∇× E +

∂B

∂t

)
. (2.23)

We now have a wave equation for U ≡ ∇ × E + ∂B/∂t with S = 0. We also have

U0 ≡ ∇ × E0 + B1 = 0 by (2.22). We must only show U1 = 0 to assert (2.3) is

10

Chapter 2. Maxwell’s Equations and Transformations

satisfied by invoking Theorem 2 again. Examining U1 and using (2.21) we note:

U1 ≡∇× E1 +
∂2B

∂t2

∣∣∣
t=0

= ∇×
(
c2∇×B0 − cZ0j(R, 0)

)
+
∂2B

∂t2

∣∣∣
t=0

= c2∇× (∇×B0)− cZ0∇× j(R, 0) +
∂2B

∂t2

∣∣∣
t=0

= c2∇(∇ ·B0)− c2∇2B0 − cZ0∇× j(R, 0) +
∂2B

∂t2

∣∣∣
t=0

= −c2∇2B0 − cZ0∇× j(R, 0) +
∂2B

∂t2

∣∣∣
t=0
.

Thus U1 = 0 since B(R, t) satisfies the wave equation (2.12) by construction. There-

fore, U ≡∇× E + ∂B/∂t = 0 proving (2.3) is satisfied.

Similarly, to show (2.2) is satisfied, we begin by taking the curl of the wave

equation for c2B and using the wave equation for E for the right-hand-side in (2.12):

∇× ∂2B

∂t2
− c2∇× (∇2B) = cZ0∇× (∇× j)

∇× ∂2B

∂t2
− c2∇2(∇×B) = cZ0∇(∇ · j)− cZ0∇2j

∇× ∂2B

∂t2
− c2∇×∇2B =

∂

∂t
(−cZ0∇ρ)− cZ0∇2j

∇× ∂2B

∂t2
− c2∇×∇2B =

∂

∂t

(
1

c2

∂2E

∂t2
−∇2E +

Z0

c

∂j

∂t

)
− cZ0∇2j

1

c2

∂2

∂t2

(
c2∇×B− ∂E

∂t
− cZ0j

)
= ∇2

(
c2∇×B− ∂E

∂t
− cZ0j

)
(2.24)

We now have a wave equation for U ≡ c2∇×B−∂E/∂t− cZ0j with S = 0. We also

have U0 ≡ c2∇ × B0 − E1 − cZ0j(R, 0) = 0 by (2.21). As before, must only show

U1 = 0 to assert (2.2) is satisfied by invoking Theorem 2 once more. Examining U1

11

Chapter 2. Maxwell’s Equations and Transformations

and using (2.22) we note:

U1 ≡ c2∇×B1 −
∂2E

∂t2

∣∣∣
t=0
− cZ0

∂j

∂t

∣∣∣
t=0

= −c2∇×
(
∇× E0

)
− ∂2E

∂t2

∣∣∣
t=0
− cZ0

∂j

∂t

∣∣∣
t=0

= −c2∇(∇ · E0) + c2∇2E0 −
∂2E

∂t2

∣∣∣
t=0
− cZ0

∂j

∂t

∣∣∣
t=0

= −c3Z0∇ρ(R, 0) + c2∇2E0 −
∂2E

∂t2

∣∣∣
t=0
− cZ0

∂j

∂t

∣∣∣
t=0
.

Thus U1 = 0 since E(R, t) satisfies the wave equation (2.12) by construction. There-

fore, U ≡ c2∇×B− ∂E/∂t− cZ0j = 0 proving (2.2) is also satisfied.

Proof: Part 2 (Uniqueness)

The next task is to prove the solutions (E(R, t),B(R, t)), constructed in part 1,

are unique. Assume two solutions (Ea,Ba) and (Eb,Bb) both satisfy (2.2)–(2.3) with

the same initial conditions and sources. Now define the differences:

ED(R, t) := Ea(R, t)− Eb(R, t), BD(R, t) := Ba(R, t)−Bb(R, t),

ED(R, 0) = Ea(R, 0)− Eb(R, 0) = 0, BD(R, 0) = Ba(R, 0)−Bb(R, 0) = 0.

Furthermore, since the sources are the same for (Ea,Ba) and (Eb,Bb) and the diver-

gence and curl operators are linear, applying (2.2)–(2.3) yields:

∇× ED = −∂BD

∂t
, ∇×BD =

1

c2

∂ED

∂t
.

Therefore, since ED(R, 0) = 0 and BD(R, 0) = 0 we have:

∂ED

∂t

∣∣∣
t=0

= 0,
∂BD

∂t

∣∣∣
t=0

= 0.

Next, following the derivation of the wave equations as in (2.10)–(2.11):

1

c2

∂2ED

∂t2
−∇2ED = 0,

1

c2

∂2BD

∂t2
−∇2BD = 0.

12

Chapter 2. Maxwell’s Equations and Transformations

Lastly, we note that unique solution to the initial value problem for the homogeneous

wave equation with zero initial data is zero. Thus:

ED(R, t) = 0, BD(R, t) = 0.

Therefore, solutions (E(R, t),B(R, t)) constructed by (2.12)–(2.14) with the restric-

tions (2.19)–(2.22) satisfy (2.2)–(2.3) and are unique. 2

2.2 Transformations and Transforms

Accelerator systems are designed so that particle bunches move roughly along a

reference orbit. It is useful to consider Maxwell’s equations in Frenet-Serret coor-

dinates using the reference orbit of the particle motion. This is done for numerical

convenience in modeling the charge and current densities.

2.2.1 Frenet-Serret Coordinates

In the cases studied in this thesis, we consider a planar reference orbit in the Y = 0

plane, defined in Cartesian coordinates R = (Z,X, Y)> by:

Rr(s) =


Zr(s)

Xr(s)

0

 , (2.25)

where s is the arclength along the reference orbit. The unit tangent and normal

vectors t(s), n(s), and eY are given by:

t(s) = R′r(s) =


Z ′r(s)

X ′r(s)

0

 , n(s) =


−X ′r(s)

Z ′r(s)

0

 , eY =


0

0

1

 , (2.26)

13

Chapter 2. Maxwell’s Equations and Transformations

so that the Frenet-Serret transformation is defined as:

R(r) := Rr(s) + xn(s) + yeY , (2.27)

which is, in component form:

Z(s, x, y) = Zr(s)− xX ′r(s),

X(s, x, y) = Xr(s) + xZ ′r(s),

Y (s, x, y) = y.

where r := (s, x, y)>, the Frenet-Serret coordinates. We assume (2.27) is a diffeomor-

phism on a neighborhood of the reference orbit (2.25). The y coordinate is unchanged

from Y . For a general smooth trajectory, the curvature, up to a sign, is defined as:

|κ(s)| := |R′′r(s)| = |Z ′′r (s)X ′r(s)− Z ′r(s)X ′′r (s)|. (2.28)

Choosing the counterclockwise orientation: κ(s) = Z ′′r (s)X ′r(s) − Z ′r(s)X
′′
r (s), we

obtain the relations:

t′(s) = −κ(s)n(s), n′(s) = κ(s)t(s). (2.29)

It is also useful to define the radius of curvature R and curvilinear scale factor η by:

R(s) := 1/|κ(s)|, η(s, x) := 1 + κ(s)x. (2.30)

As an example, consider a circular reference orbit with center Rc = (0, R, 0)

starting at the origin: Rr(0) = 0 and undergoing uniform curvature κ = −1/R. The

components of R(r) are:

Z(s, x, y) = R sin(s/R)− x sin(s/R)

X(s, x, y) = R−R cos(s/R) + x cos(s/R) (2.31)

Y (s, x, y) = y

14

Chapter 2. Maxwell’s Equations and Transformations

with the transformation uniquely defined and invertible for 0 ≤ s < 2πR and x < R.

Next, to transform the spatial derivatives of Maxwell’s equations (2.2)–(2.5), into

Frenet-Serret coordinates, we consider a vector field F(R) and its components in r:

F(R) := FZ(R)eZ + FX(R)eX + FY (R)eY

≡ Fs(r)t(s) + Fx(r)n(s) + Fy(r)eY , (2.32)

where R and r are related by (2.27). We use (2.32) on the fields E(R, t) and B(R, t)

to define (Es(r, t), Ex(r, t), Ey(r, t)) and (Bs(r, t), Bx(r, t), By(r, t)), the (t,n, eY)

components of (E,B). The Cartesian components are related to the Frenet-Serret

components by:

FZ(R(r)) = Fs(r)Z ′r(s)− Fx(r)X ′r(s) (2.33a)

FX(R(r)) = Fs(r)X ′r(s) + Fx(r)Z ′r(s) (2.33b)

FY (R(r)) = Fy(r) (2.33c)

To transform the derivatives we require the inverse r(R) of (2.27) which satisfies

R = Rr(s(R)) + x(R)n(s(R)) + y(R)eY . Now, using (2.27), the partial derivatives

of (s, x, y) in (Z,X, Y) satisfy:

1 = (Z ′r −X ′′r x)
∂s

∂Z
−X ′r

∂x

∂Z
, 0 = (X ′r + Z ′′r x)

∂s

∂Z
+ Z ′r

∂x

∂Z
, 0 =

∂y

∂Z
,

0 = (Z ′r −X ′′r x)
∂s

∂X
−X ′r

∂x

∂X
, 1 = (X ′r + Z ′′r x)

∂s

∂X
+ Z ′r

∂x

∂X
, 0 =

∂y

∂X
,

0 = (Z ′r −X ′′r x)
∂s

∂Y
−X ′r

∂x

∂Y
, 0 = (X ′r + Z ′′r x)

∂s

∂Y
+ Z ′r

∂x

∂Y
, 1 =

∂y

∂Y
.

Inverting this system with the definition of η in (2.28)–(2.30), results in:

∂s

∂Z
=

1

η
Z ′r,

∂s

∂X
=

1

η
X ′r,

∂s

∂Y
= 0,

∂x

∂Z
= −X ′r,

∂x

∂X
= Z ′r,

∂x

∂Y
= 0, (2.34)

∂y

∂Z
= 0,

∂y

∂X
= 0,

∂y

∂Y
= 1.

15

Chapter 2. Maxwell’s Equations and Transformations

Lastly, differentiating with respect to R in R = R(r(R)) with the above relations,

we obtain the following:

∂FZ
∂Z

=
1

η
Z ′2r

∂Fs
∂s
− Z ′rX ′r

∂Fs
∂x
− 1

η
Z ′rX

′
r

∂Fx
∂s

+X ′2r
∂Fx
∂x

+
κ

η
Z ′rX

′
rFs +

κ

η
Z ′2r Fx,

(2.35a)

∂FX
∂Z

=
1

η
Z ′rX

′
r

∂Fs
∂s
−X ′2r

∂Fs
∂x

+
1

η
Z ′2r

∂Fx
∂s
−X ′rZ ′r

∂Fx
∂x
− κ

η
Z ′2r Fs +

κ

η
Z ′rX

′
rFx,

(2.35b)

∂FY
∂Z

=
1

η
Z ′r
∂Fy
∂s
−X ′r

∂Fy
∂x

, (2.35c)

∂FZ
∂X

=
1

η
Z ′rX

′
r

∂Fs
∂s

+ Z ′2r
∂Fs
∂x
− 1

η
X ′2r

∂Fx
∂s
− Z ′rX ′r

∂Fx
∂x

+
κ

η
X ′2r Fs +

κ

η
Z ′rX

′
rFx,

(2.35d)

∂FX
∂X

=
1

η
X ′2r

∂Fs
∂s

+ Z ′rX
′
r

∂Fs
∂x

+
1

η
Z ′rX

′
r

∂Fx
∂s

+ Z ′2r
∂Fx
∂x
− κ

η
Z ′rX

′
rFs +

κ

η
X ′2r Fx,

(2.35e)

∂FY
∂X

=
1

η
X ′r

∂Fy
∂s

+ Z ′r
∂Fy
∂x

, (2.35f)

∂FZ
∂Y

= Z ′r
∂Fs
∂y
−X ′r

∂Fx
∂y

, (2.35g)

∂FX
∂Y

= X ′r
∂Fs
∂y

+ Z ′r
∂Fx
∂y

, (2.35h)

∂FY
∂Y

=
∂Fy
∂y

, (2.35i)

where we emphasize that the left-hand-sides of (2.35) are evaluated at R(r). We can

now construct the gradient, divergence, and curl operators in Frenet-Serret coordi-

nates by transforming the Cartesian operators with the partial derivatives (2.34).

Given f(R) we define φ(r) := f(R(r)) so that φ(r(R)) ≡ f(R) and we have:

∇f :=
∂f

∂Z
eZ +

∂f

∂X
eX +

∂f

∂Y
eY

=

(
∂φ

∂s

∂s

∂Z
+
∂φ

∂x

∂x

∂Z

)
eZ +

(
∂φ

∂s

∂s

∂X
+
∂φ

∂x

∂x

∂X

)
eX +

∂φ

∂y

∂y

∂Y
eY

=
1

η

∂φ

∂s
t +

∂φ

∂x
n +

∂φ

∂y
eY . (2.36)

16

Chapter 2. Maxwell’s Equations and Transformations

Similarly, using F(R) = Fs(r(R))t(s(R)) +Fx(r(R))n(s(R)) +Fy(r(R))eY with the

partial derivatives in (2.35), we obtain:

∇ · F :=
∂FZ
∂Z

+
∂FX
∂X

+
∂FY
∂Y

=
1

η

∂Fs
∂s

+
1

η

∂(ηFx)

∂x
+
∂Fy
∂y

, (2.37)

∇× F :=

(
∂FY
∂X
− ∂FX

∂Y

)
eZ +

(
∂FZ
∂Y
− ∂FY

∂Z

)
eX +

(
∂FX
∂Z
− ∂FZ
∂X

)
eY

=

(
∂Fy
∂x
− ∂Fx

∂y

)
t +

(
∂Fs
∂y
− 1

η

∂Fy
∂s

)
n +

(
1

η

∂Fx
∂s
− 1

η

∂(ηFs)

∂x

)
eY .

(2.38)

Next, the scalar and vector Laplacian operators are built from (2.36)–(2.38):

∇2f :=∇ · (∇f)

=
1

η

∂

∂s

(
1

η

∂φ

∂s

)
+

1

η

∂

∂x

(
η
∂φ

∂x

)
+
∂2φ

∂y2
, (2.39)

∇2F :=∇(∇ · F)−∇× (∇× F)

=

[
1

η

∂

∂s

(
1

η

∂Fs
∂s

)
+

1

η

∂

∂x

(
η
∂Fs
∂x

)
+
∂2Fs
∂y2

+
2κ

η2

∂Fx
∂s

+
κ′

η3
Fx

]
t

+

[
1

η

∂

∂s

(
1

η

∂Fx
∂s

)
+

1

η

∂

∂x

(
η
∂Fx
∂x

)
+
∂2Fx
∂y2

− 2κ

η2

∂Fs
∂s
− κ′

η3
Fs

]
n

+

[
1

η

∂

∂s

(
1

η

∂Fy
∂s

)
+

1

η

∂

∂x

(
η
∂Fy
∂x

)
+
∂2Fy
∂y2

]
eY . (2.40)

With these relations, Maxwell’s equations (2.2)–(2.5) can be transformed into Frenet-

17

Chapter 2. Maxwell’s Equations and Transformations

Serret coordinates. Specifically applying the operators in (2.37)–(2.38) we note:

∂Es
∂t

= c2

(
∂By

∂x
− ∂Bx

∂y

)
− cZ0js(r, t), (2.41a)

∂Ex
∂t

= c2

(
∂Bs

∂y
− 1

η

∂By

∂s

)
− cZ0jx(r, t), (2.41b)

∂Ey
∂t

= c2

(
1

η

∂Bx

∂s
− 1

η

∂(ηBs)

∂x

)
− cZ0jy(r, t), (2.41c)

∂Bs

∂t
= −

(
∂Ey
∂x
− ∂Ex

∂y

)
, (2.41d)

∂Bx

∂t
= −

(
∂Es
∂y
− 1

η

∂Ey
∂s

)
, (2.41e)

∂By

∂t
= −

(
1

η

∂Ex
∂s
− 1

η

∂(ηEs)

∂x

)
, (2.41f)

0 =
1

η

∂Es
∂s

+
1

η

∂(ηEx)

∂x
+
∂Ey
∂y
− cZ0ρ(r, t), (2.41g)

0 =
1

η

∂Bs

∂s
+

1

η

∂(ηBx)

∂x
+
∂By

∂y
. (2.41h)

As a consequence of the transformation, it is important to note the Cartesian

volume element is d3R = dZdXdY and thus densities, when written in the Frenet-

Serret coordinate system, must be integrated with respect to the curved volume

element d3r = η(s, x)dsdxdy. Thus in (2.41), ρ(r, t) ≡ ρL(R(r), t) where ρL(R, t) is

the charge density in Cartesian coordinates mentioned throughout section 2.1.

Another particular result of the curved volume element is that rigid charge den-

sities of the form: ρ(r, t) = λ(s − βct)w(x)h(y) are not physically meaningful since

the spread in x given by the distribution function w(x) creates a velocity dispersion

over the source. That is, charge along x = x1 moves at a different speed than charge

at x 6= x1. To illustrate this in an example, consider the uniform circular trajectory

18

Chapter 2. Maxwell’s Equations and Transformations

given by (2.31), where κ = −1/R, with the density:

ρ(r, t) =

 1/(1 + κx) : 0 ≤ s− βct ≤ ∆s, 0 ≤ x ≤ ∆x, 0 ≤ y ≤ ∆y

0 : otherwise

(2.42)

This ρ represents a curved slab of uniform density of total charge Q = ∆s∆x∆y in

Cartesian coordinates. The slab rigidly rotates about the axis (Z,X) = (0, R) with

constant angular speed βc/R. The portion of the source along x = 0 moves at speed

βc however the portion of the source along x = ∆x moves at speed βc(1 + κ∆x).

This dispersion is unphysical for the bunches of electrons we consider in accelerator

structures.

Therefore, we consider only thin sources where w(x) = δ(x) so that charge density

can maintain a rigid profile without velocity dispersion. Another consequence of the

thin source is that the scale factor η(s, x) in the volume element ηdsdxdy simplifies

to dsdxdy for integrals involving the charge or current density.

2.2.2 Source Terms and Boundary Conditions

Following the derivation of the Frenet-Serret coordinates, we discuss the source terms

for the charge and current densities ρ and j used throughout this thesis. Additionally,

we address the boundary conditions which are used for Maxwell’s equations inside

the vacuum chamber.

To model a line charge beam, used in Chapters 3 and 4, we adopt the charge and

current densities of a bunch moving in the +s direction with the form:

ρ(r, t) = qλ(s− βct)δ(x)δ(y), (2.43)

j(r, t) = qβcλ(s− βct)δ(x)δ(y)t, (2.44)

19

Chapter 2. Maxwell’s Equations and Transformations

where q is the total charge and λ(z) is the longitudinal distribution. Clearly, these

source terms satisfy (2.1). We consider a Gaussian distribution for λ(z) given by:

λ(z) =
1

σ
√

2π
e−z

2/2σ2

, (2.45)

where the standard deviation σ is often called the bunch length. Since the source

travels very close to the speed of light, we additionally take β = 1 which is a good

approximation for our work in this thesis. A particular advantage in setting β = 1 is

that we can construct a steady-state initial condition for the time-domain problems

where the initial conditions depend on s only through λ. This construction will be

discussed in detail in Chapters 3–6.

Other sources we consider are those of a ribbon or round bunch where we allow

the beam to have some transverse width in x and y. For Chapters 3 and 5 we adopt

the ribbon beam source:

ρ(r, t) = qλ(s− ct)δ(x)G(y), (2.46)

j(r, t) = qcλ(s− ct)δ(x)G(y)t, (2.47)

and for Chapter 6 we use the round bunch:

ρ(r, t) = qλ(s− ct)λ(x)λ(y), (2.48)

j(r, t) = qcλ(s− ct)λ(x)λ(y)t. (2.49)

The distribution G(y) in (2.46)–(2.47) is also assumed to be a Gaussian but of possi-

bly a different transverse standard deviation σy. Note, the round bunch model (2.49)

for Chapter 6 is not physical and is only used for algorithm testing purposes.

The boundary for the vacuum chamber is assumed to be perfectly conducting.

While in Chapters 3 and 4 we only require the perfectly electrically conducting (PEC)

boundary conditions, in Chapters 5 and 6 we require a different approach to handle

the open boundaries in the longitudinal s direction. We will defer from these special

considerations until discussions in Chapters 5 and 6.

20

Chapter 2. Maxwell’s Equations and Transformations

The PEC boundary condition for a simply-connected volume Ω ⊂ R3 enclosed

by a piece-wise smooth boundary ∂Ω is:

n× E
∣∣
∂Ω

= 0, (2.50a)

n ·B
∣∣
∂Ω

= 0. (2.50b)

where n is an outward normal vector along the boundary ∂Ω. Considering sources

whose support is interior to Ω, we conjecture that while the tangential E and normal

B fields are imposed with the Dirichlet-type boundary conditions (2.50), the normal

E and tangential B fields satisfy Neumann-type boundary conditions.

This conjecture is motivated by (2.41) and applying (2.50) with source terms

which vanish on the boundary ∂Ω. For example, for a planar PEC boundary at

x = a with the interior of Ω in the region x < a we have:

∂Ex
∂x

∣∣∣
x→a−

= 0,
∂Bs

∂x

∣∣∣
x→a−

= 0,
∂By

∂x

∣∣∣
x→a−

= 0, (2.51)

and likewise for a planar PEC boundary at y = b with the interior of Ω in the region

y < b we have:

∂Ey
∂y

∣∣∣
y→b−

= 0,
∂Bs

∂y

∣∣∣
y→b−

= 0,
∂Bx

∂y

∣∣∣
y→b−

= 0. (2.52)

These extra boundary conditions in (2.51) or (2.52) are redundant and are satisfied

automatically with (2.50) for Maxwell’s equations; however, they are necessary for

the Maxwell wave equations. These Neumann conditions are derived from examining

waveguide solutions to Maxwell’s equations, see pages 358–359 in [12].

Another interesting fact is that (2.50b) must only be imposed for B initially. This

is proven by considering the signed distance function of Ω:

f(r) =

 −d(r,Ωc) : r ∈ Ω

d(r,Ω) : r ∈ Ωc
(2.53)

21

Chapter 2. Maxwell’s Equations and Transformations

with the distance function d(r,Ω) := infr′∈Ω d(r, r′). If the boundary ∂Ω is smooth,

then we can set n = ∇f and thus taking the time derivative of (2.50b) we obtain:

∂

∂t
(n ·B)

∣∣∣
∂Ω

= −n · (∇× E)
∣∣∣
∂Ω

= ∇ · (n× E)
∣∣∣
∂Ω
− E · (∇× n)

∣∣∣
∂Ω

= 0

since E satisfies (2.50a) and ∇×(∇f) = 0. Thus, if B satisfies (2.50b) initially, then

B satisfies (2.50b) for all time. Therefore, this condition on B is only required in

constructing initial conditions of Maxwell’s equations. Corners along the boundary

∂Ω do not pose a problem since the normal n is well defined around the corner.

Numerically, this is handled by placing an element vertex or grid point at the corner.

2.2.3 Fourier Series in y

In this subsection we consider Maxwell’s equations (2.41) in the infinite slab of thick-

ness h: Ω = {r| − h/2 < y < h/2}. Here we adopt the Frenet-Serret coordinates

r = (s, x, y)> presented in section 2.2.1 as our starting point; however, we can apply

the same transformations in Cartesian coordinates with no difference since y = Y .

Applying the PEC boundary conditions at y = ±h/2 we note:

n× E
∣∣∣
y=±h/2

= 0, n ·B
∣∣∣
y=±h/2

= 0, (2.54)

where n = ±eY denoting the normal of the boundary ∂Ω. Applying (2.54) with

Maxwell’s equations results in Es = Ex = By ≡ 0 and ∂Ey/∂y = ∂Bs/∂y =

∂Bx/∂y ≡ 0 on y = ±h/2. A useful transformation when the y-boundaries are

independent of (s, x) and are of either Dirichlet-type or Neumann-type is to decom-

pose fields modally with Fourier Series in y. That is, we decompose f(s, x, y, t) in

22

Chapter 2. Maxwell’s Equations and Transformations

either a sine or cosine series:

f(s, x, y, t) =
∞∑
p=1

b̂p(s, x, t) sin (αp(y + h/2)) ,

b̂p(s, x, t) =
2

h

∫ h/2

−h/2
f(s, x, y, t) sin (αp(y + h/2)) dy,

(2.55)

f(s, x, y, t) =
â0(s, x, t)

2
+
∞∑
p=1

âp(s, x, t) cos (αp(y + h/2)) ,

âp(s, x, t) =
2

h

∫ h/2

−h/2
f(s, x, y, t) cos (αp(y + h/2)) dy,

(2.56)

with αp = πp/h. Now applying (2.55) to each of the 3 Dirichlet-type boundary fields

yields motivated by (2.54), we obtain:
Es(s, x, y, t)

Ex(s, x, y, t)

By(s, x, y, t)

 =
∞∑
p=1


Êsp(s, x, t)

Êxp(s, x, t)

B̂yp(s, x, t)

 sin
(
αp(y + h/2)

)
. (2.57)

And similarly, applying (2.56) to the remaining fields we obtain:
Ey(s, x, y, t)

Bs(s, x, y, t)

Bx(s, x, y, t)

 =
∞∑
p=0


Êyp(s, x, t)

B̂sp(s, x, t)

B̂xp(s, x, t)

 cos
(
αp(y + h/2)

)
. (2.58)

It is important to note that Maxwell’s equations are satisfied term-by-term in the

Fourier series and we choose the appropriate expansion (2.55) or (2.56) depending

on the types of boundary conditions. Additionally, the source components ρ, js, jx

are expanded with (2.55) while jy is expanded with (2.56). In the particular case

where the sources (ρ, j) are either symmetric in y, all even p modes for both the fields

and sources reduce to zero. At this point, each of the field equations in the volume

(s, x, y) are reduced to equations in the plane (s, x) with the parameter p denoting

the mode in the y direction.

23

Chapter 2. Maxwell’s Equations and Transformations

2.2.4 Paraxial Approximation

In this subsection we consider a Fourier transform in s − ct after the Frenet-Serret

transformation in section 2.2.1 with or without the additional Fourier series in y

given in section 2.2.3. In the derivation of the approximation, consider the fields

without the Fourier series in y, namely the result of section 2.2.1 and define the

Fourier transform and inverse as:

f̂(s, x, y, k) =
c

2π

∫ ∞
−∞

f(s, x, y, t)e−ik(s−ct)dt,

f(s, x, y, t) =

∫ ∞
−∞

f̂(s, x, y, k)eik(s−ct)dk.

(2.59)

This pair follows easily from any of the standard 1D Fourier transform conventions.

The motivation behind this transformation is to study the behavior of the fields

when the sources and fields move in the same direction. In this case, we expect

the fields (Ê, B̂) to be slowly varying in s. By considering the ribbon source which

obeys (2.46)–(2.47), we begin with the wave equations for (E(r, t),B(r, t)) in Frenet-

Serret coordinates. By applying the vector identity (2.40), we note the components

of (E,B) from Maxwell’s wave equations (2.12), satisfy equations of the form:

− 1

c2

∂2Us
∂t2

+
1

η2

∂2Us
∂s2

− κ′x

η3

∂Us
∂s

+
κ2

η2
Us

+
∂2Us
∂x2

+
κ

η

∂Us
∂x

+
∂2Us
∂y2

+
2κ

η2

∂Ux
∂s

+
κ′

η3
Ux = Ss,U(r, t),

(2.60a)

− 1

c2

∂2Ux
∂t2

+
1

η2

∂2Ux
∂s2

− κ′x

η3

∂Ux
∂s
− κ2

η2
Ux

+
∂2Ux
∂x2

+
κ

η

∂Ux
∂x

+
∂2Ux
∂y2

− 2κ

η2

∂Us
∂s
− κ′

η3
Us = Sx,U(r, t),

(2.60b)

− 1

c2

∂2Uy
∂t2

+
1

η2

∂2Uy
∂s2

− κ′x

η3

∂Uy
∂s

+
∂2Uy
∂x2

+
κ

η

∂Uy
∂x

+
∂2Uy
∂y2

= Sy,U(r, t), (2.60c)

where κ(s) is the curvature and η(s, x) = 1+κ(s)x. Note that the s and x components

of the fields are now coupled in (2.60) but the y component remains uncoupled. Due

to the δ(x) term in the source terms, we take η = 1 in derivatives involving (ρ, j)

24

Chapter 2. Maxwell’s Equations and Transformations

so the specific right-hand-sides of (2.60) in Frenet-Serret coordinate components

(t,n, eY) are:


Ss,E(r, t)

Sx,E(r, t)

Sy,E(r, t)

 =


0

qcZ0λ(s− ct)δ′(x)G(y)

qcZ0λ(s− ct)δ(x)G′(y)

 , (2.61a)


Ss,B(r, t)

Sx,B(r, t)

Sy,B(r, t)

 =


0

−qZ0λ(s− ct)δ′(x)G(y)

qZ0λ(s− ct)δ(x)G′(y)

 . (2.61b)

Now we apply (2.59) to (2.60) to obtain the frequency-domain equations:

k2Ûs +
1

η2

(
∂2Ûs
∂s2

+ 2ik
∂Ûs
∂s
− k2Ûs

)
− κ′x

η3

(
∂Ûs
∂s

+ ikÛs

)
+
κ2

η2
Ûs

+
∂2Ûs
∂x2

+
κ

η

∂Ûs
∂x

+
∂2Ûs
∂y2

+
2κ

η2

(
∂Ûx
∂s

+ ikÛx

)
+
κ′

η3
Ûx = Ŝs,U(x, y, k),

(2.62a)

k2Ûx +
1

η2

(
∂2Ûx
∂s2

+ 2ik
∂Ûx
∂s
− k2Ûx

)
− κ′x

η3

(
∂Ûx
∂s

+ ikÛx

)
− κ2

η2
Ûx

+
∂2Ûx
∂x2

+
κ

η

∂Ûx
∂x

+
∂2Ûx
∂y2

− 2κ

η2

(
∂Ûs
∂s

+ ikÛs

)
− κ′

η3
Ûs = Ŝx,U(x, y, k),

(2.62b)

k2Ûy +
1

η2

(
∂2Ûy
∂s2

+ 2ik
∂Ûy
∂s
− k2Ûy

)
− κ′x

η3

(
∂Ûy
∂s

+ ikÛy

)

+
∂2Ûy
∂x2

+
κ

η

∂Ûy
∂x

+
∂2Ûy
∂y2

= Ŝy,U(x, y, k).

(2.62c)

25

Chapter 2. Maxwell’s Equations and Transformations

with the right-hand-sides corresponding to the Fourier transform of (2.61):
Ŝs,E(x, y, k)

Ŝx,E(x, y, k)

Ŝy,E(x, y, k)

 =


0

qcZ0λ̂(k)δ′(x)G(y)

qcZ0λ̂(k)δ(x)G′(y)

 , (2.63a)


Ŝs,B(x, y, k)

Ŝx,B(x, y, k)

Ŝy,B(x, y, k)

 =


0

−qZ0λ̂(k)δ′(x)G(y)

qZ0λ̂(k)δ(x)G′(y)

 . (2.63b)

It is important to note that the frequency-domain equations (2.62) are elliptic and

thus ill-posed as initial value problems with s as the evolution variable. If we restrict

our approach to consider only slowly varying solutions in s, we can take ∂2/∂s2 terms

as “small” and thus ignore them. Also, if we consider only portions of trajectories of

uniform or slowly varying curvature, where κ′(s)x/η � k, we can omit those terms

as well. With these changes, the altered equations are almost Schrödinger-like and

are of the form:

k2Ûs +
1

η2

(
2ik

∂Ûs
∂s
− k2Ûs

)
+
κ2

η2
Ûs

+
∂2Ûs
∂x2

+
κ

η

∂Ûs
∂x

+
∂2Ûs
∂y2

+
2κ

η2

(∂Ûx
∂s

+ ikÛx

)
= Ŝs(x, y, k),

(2.64a)

k2Ûx +
1

η2

(
2ik

∂Ûx
∂s
− k2Ûx

)
− κ2

η2
Ûx

+
∂2Ûx
∂x2

+
κ

η

∂Ûx
∂x

+
∂2Ûx
∂y2

− 2κ

η2

(∂Ûs
∂s

+ ikÛs

)
= Ŝx(x, y, k),

(2.64b)

k2Ûy +
1

η2

(
2ik

∂Ûy
∂s
− k2Ûy

)
+
∂2Ûy
∂x2

+
κ

η

∂Ûy
∂x

+
∂2Ûy
∂y2

= Ŝy(x, y, k). (2.64c)

Note, (2.64a) and (2.64b) still remain coupled from the Frenet-Serret transfor-

mation. This omission of the ∂2/∂s2 terms is commonly referred to as the paraxial

approximation and is valid in systems where the fields and sources move together

in the same direction. More precisely, this approximation is an ad hoc method to

26

Chapter 2. Maxwell’s Equations and Transformations

ignore contributions to fields which travel away from the source. Thus, while the new

equations (2.64) can be solved instead of (2.62), the solutions are very different if the

∂2/∂s2 terms are not “small”. One example of where the paraxial approximation is

invalid, where the fields propagate in a direction different than that of the source, is

when reflections occur due to a reflecting boundary such as a mirror.

Two important issues arise from the use of the paraxial equations. {1} How is

the solution of (2.60a)–(2.60c) used to construct the initial fields of (2.64a)–(2.64c)

and {2} when are the fields governed by (2.64a)–(2.64c), when transformed back

to the time domain with (2.59), a good approximation to the fields which satisfy

(2.60a)–(2.60c).

To address {1}, we consider the IBVP of (2.60a)–(2.60c) in an infinite pipe Ω with

cross-section A; that is, Ω = {(s, x, y)|(x, y) ∈ A}. We have E0(s, x, y) = E(s, x, y, 0)

and B0(s, x, y) = B(s, x, y, 0) given as initial data in Ω. We replace s with −ct in

E0 and B0 and construct Ê0(x, y, k) and B̂0(x, y, k) by (2.59):

Ê0(x, y, k) =
1

2π

∫ ∞
−∞

E0(−ct, x, y)eikctdt (2.65)

B̂0(x, y, k) =
1

2π

∫ ∞
−∞

B0(−ct, x, y)eikctdt (2.66)

Now we evolve (2.64a)–(2.64c) in s using Ê0(x, y, k) and B̂0(x, y, k) as initial con-

ditions. The transverse (x, y) boundary conditions of (2.60a)–(2.60c) on ∂Ω are

converted naturally to boundary conditions for (2.64a)–(2.64c) provided they are

not time nor s-dependent.

One key fact implicit in (2.65)–(2.66) is that we assume the solutions of (2.60a)–

(2.60c) for E and B are plane-wave solutions of the form F(s − ct, x, y). This as-

sumption constructs the solution at s = 0 for all time for use in the Fourier transform

in (2.65)–(2.66). Of course, the general solution of (2.60a)–(2.60c) admits solutions

other than the form F(s − ct, x, y); in which case extracting the solution at s = 0

would require knowledge of the fields for all time a priori.

27

Chapter 2. Maxwell’s Equations and Transformations

To address {2}, we begin by examining the validity of taking ∂2Û/∂s2 = 0.

Solving for Û we obtain:

Û(s, x, y, k) = F̂ (x, y, k) + sĜ(x, y, k), (2.67)

where F̂ and Ĝ are arbitrary functions of (x, y, k). Next, taking the inverse Fourier

transform with respect to k yields:

U(s, x, y, t) = F (s− ct, x, y) + sG(s− ct, x, y) (2.68)

In particular, (2.68) admits plane-wave solutions of a rigid field profile moving in the

+s direction at speed c. Thus any plane-wave solutions of the form F (s − ct, x, y)

in (2.60a)–(2.60c) will exactly satisfy the paraxial equations (2.64a)–(2.64c) in the

frequency-domain provided the trajectory is straight by κ(s) ≡ 0. Equivalently, if a

solution of the form (2.68) is a good approximation to the solution of (2.60a)–(2.60c),

then the paraxial approximation is valid.

28

Chapter 3

1D Frequency Domain Study –

Proceedings of FEL2014

3.1 Statement of the Physical Problem

We start with the wave equation for the Ey and Hy := (c/Z0)By fields given by (2.12)

in the Frenet-Serret coordinates (r, t):

∇2Ey −
1

c2

∂2Ey
∂t2

= Z0

(
1

c

∂jy
∂t

(r, t) + c
∂ρ

∂y
(r, t)

)
, (3.1a)

∇2Hy −
1

c2

∂2Hy

∂t2
= −1

η

∂jx
∂s

(r, t) +
∂js
∂x

(r, t) +
κ

η
js(r, t), (3.1b)

where κ(s) is the local curvature as in (2.28), η(s, x) := 1 + κ(s)x and ∇2 is defined

from (2.39). We aim to solve for the fields in a rectangular cross-section vacuum

chamber with perfectly conducting walls at x = xin, xout and y = ±h/2. The refer-

ence orbit is centered in the chamber and has bending radius R. We next apply the

Fourier series in y from section 2.2.3, and the Fourier transform in s−ct from section

29

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

2.2.4. With these transformations, the fields and sources are expressed in the form:

F (s, x, y, t) =

∫ ∞
−∞

dk eik(s−ct)
∞∑
p=1

φp(y)F̂p(s, x, k),

φp(y) =

 cos

sin

(αp(y + h/2)
)
, αp =

πp

h
.

(3.2)

Note, recalling from section 2.2.3, if the vertical distribution of charge is an even

function of y, which we assume, then only odd integers p are involved. Moti-

vation by the appropriate boundary conditions for each field, the factor φp con-

tains only cosine terms for Ey, Hx, Hs, jy, whereas it contains only sine terms

for Hy, Ex, Es, ρ, jx, js. After applying the transformations in (3.2), and using

equations (2.62c), (3.1) with F̂p(s, x, k) representing either Êyp or Ĥyp become:

2ik

η2

∂2F̂p
∂s2

+

(
1

η2
− κ′x

η3

)
∂F̂p
∂s

+
∂2F̂p
∂x2

+
κ

η

∂F̂p
∂x

+

(
γ2
p −

k2η + ikκ′x

η3

)
F̂p = Ŝp(x, k),

(3.3)

where γ2
p = k2 − α2

p and Sp(x, k) is the transform of the specific right-hand-sides

of (3.1) given explicitly in (3.5). In the approximation of slowly varying amplitude

(paraxial approximation), where ∂2/∂s2 terms are neglected, and in a constant cur-

vature bend where κ′(s) = 0, the transformed equations (3.3) for F̂p(s, x, k) become:

2ik

η2

∂F̂p
∂s

= −∂
2F̂p
∂x2

− κ

η

∂F̂p
∂x
−
(
γ2
p −

k2

η2

)
F̂p + Ŝp(x, k). (3.4)

For the ribbon charge and current densities (2.46)–(2.47), the source terms Ŝp(x, k)

for Êyp, Ĥyp in (3.4) are:

ŜÊyp(x, k) = σp(k)δ(x), ŜĤyp(x, k) = τp(k) (δ′(x) + δ(x)κ) , (3.5a)

σp(k) = qZ0αpcλ̂(k)Gp, τp(k) = qcλ̂(k)Gp, (3.5b)

where λ̂ and Gp are Fourier transforms of λ and G respectively. The factors σp(k) and

τp(k) are introduced here for convenience. For a Gaussian G(y) with width σy � h

we have Gp = (−1)(p−1)/2(2/h) exp(−(αpσy)
2/2).

30

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

Next, the perfectly conducting boundary conditions from section 2.2.2 are im-

posed by (2.50) and (2.51) and satisfy the following:

Êyp

∣∣∣
x=xin,xout

= 0,
∂Ĥyp

∂x

∣∣∣
x=xin,xout

= 0. (3.6)

As an aside, we must impose the Neumann boundary conditions on Ĥyp since we are

evolving the wave equations which require a boundary condition for each field on each

boundary. To construct initial conditions for Êyp, Ĥyp, we assume an infinite straight

prior to the entrance of the bend and use the steady-state solutions F̂p0 = Êyp0, Ĥyp0

which satisfy ∂F̂p0/∂s = 0 with κ = 0, thus from (3.4) we have:

d2F̂0p

dx2
− α2

pF̂0p = Ŝp(x, k). (3.7)

With the solutions to (3.7) as initial conditions for (Êyp, Ĥyp) we pose the initial

boundary value problem given by (3.4)–(3.7) for each k and p. We don’t require

any initial conditions for the remaining fields: (Êsp, Êxp, Ĥsp, Ĥxp) since they can be

obtained from (Êyp, Ĥyp) through additional relations discussed in (3.42).

3.2 Statement of the Computational Problem

To solve (3.4) numerically, we first introduce a transformation, credited to Robert

Warnock, to remove the singularities of (3.5a):

Vp(s, x, k) = Êyp(s, x, k)− σp(k)xΘ(x), (3.8a)

Wp(s, x, k) = Ĥyp(s, x, k)− τp(k)Θ(x), (3.8b)

with Θ(x) being the Heaviside step function. Under these transformations, (Vp,Wp)

still satisfy (3.4); except, the sources now become:

SV p(x, k) = −σp(k)Θ(x)

[
κ

η
+ x

(
γ2
p −

k2

η2

)]
, (3.9a)

SWp(x, k) = −τp(k)Θ(x)

(
γ2
p −

k2

η

)
. (3.9b)

31

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

We have eliminated δ and δ′ from the source, allowing a standard numerical imple-

mentation. A jump in the sources at x = 0 remains, and while that too can be

removed by a second transformation, it is not necessary here since we only require

that the source terms be bounded and resolvable numerically.

The boundary conditions for Vp and Wp are:

Vp|x=xin = 0, Vp|x=xout = −σpxout,

∂Wp

∂x

∣∣∣
x=xin

= 0,
∂Wp

∂x

∣∣∣
x=xout

= 0.
(3.10)

Next, we rewrite (3.4) as:

i
∂u

∂s
= a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
+ c(x)u+ S̃u(x) (3.11)

with u representing either Vp or Wp, and S̃u = η2SV p,Wp/2k. We have omitted the

k and p dependence for convenience. It is important to note that our Schrödinger-

type equation (3.11) is only parabolic in the sense of infinite propagation speed. It

is hyperbolic-like in the sense that initial conditions are not smoothed by the PDE

evolution. The solutions of (3.7) to provide initial conditions are found readily by

variation of parameters:

Êyp0(x, k) =− σp(k)

αp

sinh(αpxout) sinh(αp(x− xin))

sinh(αp(xout − xin))

+
σp(k)

αp
sinh(αpx)Θ(x),

(3.12a)

Ĥyp0(x, k) =− τp(k)
sinh(αpxout) cosh(αp(x− xin))

sinh(αp(xout − xin))

+ τp(k) cosh(αpx)Θ(x).

(3.12b)

3.3 Numerical Implementation

In this section we describe our numerical algorithms for integrating (3.11) by finite

difference (FD) and nodal discontinuous Galerkin (DG) numerical schemes. We use

32

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

explicit time-stepping in s for both methods.

3.3.1 Finite Difference Scheme

We begin by discretization of [xin, xout] into Nres +1 equidistant nodes spaced by ∆x.

The nodal coordinates are defined by xi = xin + (i− 1)∆x and ui = u(xi). We define

the 4th order differentiation operators by:

du

dx

∣∣∣∣
xi

≈ ui−2 − 8ui−1 + 8ui+1 − ui+2

12∆x
,

d2u

dx2

∣∣∣∣
xi

≈ −ui−2 + 16ui−1 − 30ui + 16ui+1 − ui+2

12∆x2
.

(3.13)

For points near the boundaries, i.e. i = 1, 2, Nres, Nres + 1, we use lopsided 5 point

stencils. For explicit time stepping, we employ a leap-frog scheme. It is important to

note: the leap-frog scheme is unstable for the heat equation [19] and does have a weak

instability for our Schrödinger-type equation in (3.11). Von Neumann analysis asserts

that this weak instability, due to the b(x)∂u/∂x term in (3.11), is not significant in

the parameter studies we consider with η ∼ 1. The leap-frog scheme is:

un+1 = un−1 + 2∆sΦ(un), (3.14)

with Φ(un) denoting the right-hand-side of (3.11) with the discretization (3.13) at

s = n∆s. For stability, we take:

∆s = CCFLk∆x2. (3.15)

In our tests, we determine experimentally that CCFL < 0.3 results in a stable scheme

for p . 40. Due to the sharp peaks in the solution for large p, a higher resolution

must be used if larger p-modes are desired. This will be discussed in section 3.4.2.

The boundary conditions on Vp are imposed by setting Vp;1 = 0 and Vp;Nres+1 =

−σpxout while the boundary conditions for Wp are imposed with a one-sided deriva-

tive stencil and solving for Wp;1 and Wp;Nres+1 as functions of the nearby grid values

33

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

Wp;2,...,5 and Wp;Nres−3,...,Nres respectively. The initial conditions on (Vp,Wp) are com-

puted analytically from (3.12).

3.3.2 Discontinuous Galerkin Scheme

We derive our DG scheme in some detail since it is not as well known as FD. DG

methods have features taken from finite element (FE) and finite volume methods

(FV). Solutions are represented by polynomials local to each element as in FE;

however, the PDE can be represented in an explicit semi-discrete form. The PDE is

satisfied using fluxes between elements similar to FV. This results in a scheme which

can maintain high-order accuracy (hp-adaptivity) and stability for wave-dominated

problems [11].

We rewrite the PDE in (3.11) for both Vp or Wp each as a first order system:

i
∂u

∂s
= a(x)

∂q

∂x
+ b(x)q + c(x)u+ f(x), q =

∂u

∂x
. (3.16)

To find an approximate solution, we begin by partitioning the domain [xin, xout] into

K elements. In each element, we represent the solution as a polynomial of degree

N . Thus total number of nodes is given by (N + 1)K. We next focus on a particular

element Dk = [xk1, x
k
N+1] (note, this k is not related to Fourier transform frequency

variable in (3.2)). We approximate the solution on this element in the Lagrange

polynomial basis:

uk(x, s) =
N+1∑
j=1

ukj (s)`
k
j (x), (3.17)

qk(x, s) =
N+1∑
j=1

qkj (s)`kj (x), (3.18)

with `kj (x
k
i) = δij for nodal coordinates xki . The derivatives of u in (3.16) are given

by differentiating (3.17). The terms bq, cu and f are replaced by their natural

34

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

interpolating polynomials

(bq)k =
N+1∑
j=1

bkj q
k
j (s)`kj (x),

(cu)k =
N+1∑
j=1

ckju
k
j (s)`

k
j (x), (3.19)

fk =
N+1∑
j=1

fkj (s)`kj (x),

and ∂q/∂x is replaced by

(
∂q

∂x

)k
=

N+1∑
j=1

qkj (s)[`kj (x)]′. (3.20)

Note that each of these is a polynomial of degree N or N−1. Inserting (3.17), (3.19),

(3.20) into (3.16) we obtain the following residuals Rk
1,2(x, s) defined by

Rk
1(x, s) := i

∂uk

∂s
− ak ∂q

k

∂x
− (bq)k − (cu)k − fk, (3.21a)

Rk
2(x, s) := qk − ∂uk

∂x
. (3.21b)

If we require that the residualsRk
1,2(x, s) be orthogonal to the `ki , this yields N+1

equations for each (ukj , q
k
j) of the form

∫
Dk

Rk
1(x, s)`ki (x)dx = 0,

∫
Dk

Rk
2(x, s)`ki (x)dx = 0, (3.22)

for i = 1, ..., N + 1. Clearly, requiring these to be zero will not yield a viable

algorithm, as there would be no coupling between elements. The heart of DG is to

couple adjacent elements using the numerical flux. This is obtained by integrating the

[`ki (x)]′ terms by parts, inserting the flux condition, and then reversing the integration

35

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

by parts. We illustrate this on Rk
2(x, s):∫

Dk

−∂u
k

∂x
`ki dx =

∫
Dk

uk`ki (x)′dx−
[
uk`ki

]xkN+1

xk1
≈∫

Dk

uk`ki (x)′dx−
[
u∗`ki

]xkN+1

xk1
=∫

Dk

−∂u
k

∂x
`ki dx+

[
(uk − u∗)`ki

]xkN+1

xk1
(3.23)

and the calculation is identical for the x derivative of q in (3.22). The approximation

step introduces u∗ and q∗ which give rise to the numerical fluxes which combine

boundary information from the two elements in contact at the interface at xk1 and

xkN+1. While many choices of numerical fluxes exist, we opt to use a local DG flux

for better convergence properties [11]. These numerical fluxes have the form:

u∗(xk1) = uk1, u∗(xkN+1) = uk+1
1 ,

q∗(xk1) = qk−1
N+1, q∗(xkN+1) = qkN+1.

(3.24)

Remark: at this point we will present the motivation for the choice of fluxes in

(3.24) which lead to a stable scheme. A requirement for stability is that the total

energy |u|2 be non-increasing in s; we enforce this by ensuring the energy for a single

element is non-increasing. For this derivation, we consider the simpler problem with

a(x) = −1, b(x) = 0, c(x) = 0, and f(x) = 0:

∂u

∂s
= i

∂q

∂x
, q =

∂u

∂x
. (3.25)

Now, constructing the residuals as in (3.21) leads to:∫
Dk

Rk
1(x, s)vk(x)dx = 0,

∫
Dk

Rk
2(x, s)wk(x)dx = 0, (3.26)

for any test functions vk(x) and wk(x) in the same space of polynomials spanned by

`ki (x) for i = 1, ..., N +1. To examine the local energy |uk|2 it is convenient to choose

vk = ūk and wk = q̄k, where the bar ¯ denotes complex conjugation. Integrating the

36

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

residual expressions by parts, with our choices for vk and wk, we obtain:∫
Dk

∂uk

∂s
ūk + iqk

∂ūk

∂x
dx− i

[
q∗ūk

]xkN+1

xk1
= 0, (3.27)∫

Dk

qkq̄k + uk
∂q̄k

∂x
dx−

[
u∗q̄k

]xkN+1

xk1
= 0, (3.28)

where we have introduced the numerical fluxes u∗ and q∗ as before but have not yet

specified them. Now, integrating (3.28) by parts once more we obtain:∫
Dk

qkq̄k − q̄k ∂u
k

∂x
dx−

[
(u∗ − uk)q̄k

]xkN+1

xk1
= 0. (3.29)

Next, we complex conjugate (3.27) and (3.29) respectively to obtain:∫
Dk

∂ūk

∂s
uk − iq̄k ∂u

k

∂x
dx+ i

[
q̄∗uk

]xkN+1

xk1
= 0, (3.30)∫

Dk

q̄kqk − qk ∂ū
k

∂x
dx−

[
(ū∗ − ūk)qk

]xkN+1

xk1
= 0. (3.31)

Now we add equations (3.27) and (3.30) to arrive at:∫
Dk

∂uk

∂s
ūk +

∂ūk

∂s
uk + iqk

∂ūk

∂x
− iq̄k ∂u

k

∂x
dx− i

[
q∗ūk − q̄∗uk

]xkN+1

xk1
= 0. (3.32)

Noting that (∂uk/∂s)ūk + (∂ūk/∂s)uk = ∂|uk|2/∂s is the s derivative of the energy,

and substituting (3.29) and (3.31) into (3.32), we obtain:

∂

∂s

∫
Dk

|uk|2dx = −i
[
q̄∗uk − q∗ūk − ū∗qk + ūkqk + u∗q̄k − ukq̄k

]xkN+1

xk1
. (3.33)

For stability, we require that the energy be non-increasing in s on each element Dk.

Thus at each interface between elements, we must choose a u∗ and q∗ which ensures

the net contribution of the flux from each elements adjoining at the interface of the

right-hand-side of (3.33) be less than or equal to zero. We now show that (3.24)

results in a stable method. Considering the interface between elements Dk and Dk+1

we note the energy flux at the interface is:

Flux = −i[q̄∗uk+1 − q∗ūk+1 − ū∗qk+1 + ūk+1qk+1 + u∗q̄k+1 − uk+1q̄k+1

−q̄∗uk + q∗ūk + ū∗qk − ūkqk − u∗q̄k + ukq̄k].
(3.34)

37

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

Inserting (3.24), i.e. u∗ = uk+1 and q∗ = qk into (3.34) we obtain Flux = 0. Equiv-

alently, we could have chosen u∗ = uk and q∗ = qk+1 for a stable scheme. The

important aspect in the choice of numerical flux is that u and q are taken from

opposite directions at the interface. This concludes our remark on the motivation

for the choice of numerical flux. For more details on deriving these numerical flux

conditions, see [21].

Returning to the original equations (3.16) and continuing onward from (3.24), we

define the vectors `k(x) = (`k1(x), ..., `kN+1(x))> and similarly for uk(s), qk(s), and

fk. We also introduce the mass and stiffness matrices:

Mk
ij =

∫
Dk

`ki `
k
jdx, Skij =

∫
Dk

d`ki
dx

`kjdx. (3.35)

Thus (3.22) and (3.23) yield:

qk =(Mk)−1Skuk − (Mk)−1
[
(u− u∗)`k

]xkN+1

xk1
, (3.36a)

i
duk

ds
=Ak(Mk)−1Skqk −Ak(Mk)−1

[
(q − q∗)`k

]xkN+1

xk1

+ Bkqk + Ckuk + fk.

(3.36b)

where Ak = diag(ak1, ..., a
k
N+1) and similarly for Bk and Ck. We introduce a slight

error in (3.36b) from commuting (Mk)−1 and Ak. This is acceptable since Ak does

not vary much within each element and this error scales as maxi,j |∂a/∂x||xi−xj|N−1

over the element k which is described in detail in [11] on p254.

In our code, we combine all K elements, thus we can arrange the solution u and

q as (N + 1) × K arrays with mass and stiffness matrices M and S common to

all elements. This approach enables the right-hand-side operations to be done using

dense matrix-matrix multiplication. Boundary conditions are handled by adjustment

of the fluxes (3.24). Dirichlet conditions for Vp are imposed by:

u∗V (x1
1) = 0, u∗V (xKN+1) = −σpxout,

q∗V (x1
1) = q1

1, q∗V (xKN+1) = qKN+1,
(3.37)

38

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

and Neumann conditions for Wp are imposed on q∗ instead of u∗:

u∗W (x1
1) = u1

1, u∗W (xKN+1) = uKN+1,

q∗W (x1
1) = 0, q∗W (xKN+1) = 0,

(3.38)

The (u,q) systems for Vp and Wp are evolved in s separately using a 4th order low-

storage Runge-Kutta scheme. The restriction for ∆s scales as in (3.15) with ∆x as

the minimal distance between two nodes on an element. For the xki nodal locations in

(3.17)–(3.18), we use Legendre-Gauss-Lobatto quadrature nodes (see p.43-51 in [11])

due to advantages in matrix conditioning; however, this choice of nodes imposes

severe restrictions on ∆s at high orders N . A balance of K and N is needed for

optimal efficiency.

3.4 Numerical Results

In this section we examine several aspects for a line charge model (i.e. σy → 0 and

thus G(y)→ δ(y)). First we compare results for Vp in the FD and DG schemes of the

previous section, emphasizing both computational accuracy and efficiency. Next, we

examine the convergence of the Fourier series sum over p of Êyp. Lastly, we compute

the longitudinal impedance from a relation for Êsp using Vp and Wp to compare to

results presented in [22, 23].

3.4.1 Finite Difference versus Discontinuous Galerkin

For our numerical tests, we use the following parameters (as in [5, 22, 23]):

39

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

xin = −0.030 m xout = 0.030 m

h = 0.020 m κ = 1.000 m−1

q = 10−12 C β = 1

k = 8 · 103 m−1 p = 1

A common grid of points in x is used for the error comparisons of both FD and

DG methods. A reference solution for Vp at s = 0.200 m is computed by the FD

scheme with Nres = 5760. The FD scheme errors are displayed in Table 3.1.

Table 3.1: FD Êyp Error and Computation Time

Nres 240 480 960 1920
L∞ Error 1.46e-4 1.06e-5 1.31e-6 4.58e-7
L2 Error 1.24e-4 9.08e-6 1.40e-6 4.61e-7

Time 0.4 s 2.4 s 6.9 s 15.0 s

While our FD stencil is fourth-order accurate, the method exhibits lesser-order

self-convergence (convergence with respect to a higher resolution solution). We at-

tribute this reduction in order of convergence to the jump discontinuities at x = 0 of

the source terms in (3.11). The use of a higher-order stencil was partly unnecessary

in this context and a simpler second-order stencil would have performed at the same

level of convergence albeit with higher error constants.

The fourth-order stencil would exhibit its optimal convergence rate if additional

transformations were made to Vp and Wp to smooth the source terms further. Specif-

ically, this would require transforming Vp and Wp so that the Θ(x) terms in (3.9) have

the form x2Θ(x), ensuring enough smoothness on the initial conditions to enable the

fourth-order convergence. More details on this issue for FD can be found on page

214 [19].

Next, the DG scheme with the same parameters is compared for varying order

N and elements K. A reference solution for Vp is computed using (N,K) = (12, 80)

40

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

which is compared on the set of nodes for (N,K) = (2, 20), common to all solutions.

The common set of nodes xci lie at the locations xci = xin + (i − 1)(xout − xin)/40

for i = 1, ..., 41. Note, the DG solutions are multivalued along the interior interfaces

between elements located on the common set of nodes at xc2m+1 for integers m. Thus

while there are a total 60 of nodes in the (N,K) = (2, 20) solution, there are only 41

unique coordinates. We take the average of the solutions on these multivalued DG

nodes for our comparison.

Furthermore, the DG reference solution with (N,K) = (12, 80), while different

from the FD reference solution with Nres = 5760, exhibits a maximum point-wise

relative difference of 1.62e-7 over the 41 common coordinates xci .

Table 3.2: DG Êyp Error and Computation Time

K\N 2 4 6 8
2.91e-2 9.01e-3 5.67e-4 1.97e-5

20 3.69e-2 5.22e-3 2.67e-4 8.49e-6
0.04 s 0.22 s 1.0 s 2.8 s

8.89e-3 1.92e-4 2.18e-6 3.36e-8
40 9.08e-3 2.03e-4 2.13e-6 3.10e-8

0.10 s 1.0 s 4.4 s 14 s
1.88e-3 1.22e-5 3.64e-8 1.82e-9

80 1.26e-3 7.98e-6 2.23e-8 1.96e-9
0.50 s 5.0 s 24 s 77 s

In Table 3.2, we list the L∞ (top), L2 (middle), and CPU times (bottom) for

varying values of K and N . We observe spectral convergence, where the errors scale

with the element sizes h0 and polynomial order N as hN+1
0 with h0 ∝ 1/K. The

DG method overcomes the issue of reduction in the order of convergence due to

discontinuous source terms if an element interface is placed at the discontinuity. For

this example, we ensure an element vertex is placed at x = 0. Both FD and DG

methods display comparable efficiency by comparing the CPU times in the tables for

similar errors for the parameter ranges we studied.

41

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−1

−0.5

0

0.5

1

x (m)

Ê
y
p
(V

/m
)

Figure 3.1: Real (red) and imaginary (blue) parts of DG reference solution for Êyp
using (N,K) = (12, 80), for p = 1, k = 8 · 103 m−1, at s = 0.200 m. The corner at
x = 0 is due to the δ(x) term in the sources ρ and j.

3.4.2 Fourier Series Convergence

To construct the solutions in y, we use the Fourier series as defined in (3.2). We

concentrate on Êy defined as:

Êy(s, x, y, k) =
∞∑
p=1

Êyp(s, x, k) cos (αp(y + h/2)) . (3.39)

It is important to note that for the line source G(y) = δ(y), while each Êyp is

bounded, the infinite sum introduces a singularity at (x, y) = (0, 0) for a line charge

model. One method to study the L2 self-convergence of the partial sums in (3.39), is

to subtract the singularity by adopting the approach used in [1, 2, 20, 22, 23]. The

singular term in Êy, by the expression in [2], is:

Êb
y =

qZ0cλ̂(k)

2π

y

x2 + y2
. (3.40)

42

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

Defining Êr
y := Êy − Êb

y, we obtain

Êr
y =

∞∑
p=1

[
Êyp − Êb

yp

]
cos (αp(y + h/2)) , (3.41)

with Êb
yp as the Fourier series components of (3.40). Thus, we can examine the L2

self-convergence of Êr
y . We take the pmax = 39 partial sum (p = 1, 3, ..., pmax) as a

reference solution for (3.41) for k = 8 · 103 m−1. This solution is compared to the

partial sums for varying pmax.

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

pmax

L
2
e
r
r
o
r

Figure 3.2: L2 error Êr
y for varying pmax using (N,K) = (12, 80) evaluated on a

1441×481 (x, y) grid, for k = 8 ·103 m−1, at s = 0.200 m using the line charge model
G(y) = δ(y).

The self-convergence plot in Figure 3.2 shows only a few p-modes are necessary to

obtain a solution for Êr
y accurate to 10−2 for our choice of parameters. The solutions

were computed in ∼100 seconds for pmax = 19 at this resolution. In contrast, in [5],

this took ∼1000 seconds for the same parameters using a 2D FD method. Thus, this

1D approach provides a large computational speed-up over the 2D FD method in [5]

43

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

using the same computer hardware. The reference solution of Êr
y as a surface plot is

displayed in Figure 3.4.

Alternatively, we can examine the convergence of Êy directly if we use the Gaus-

sian source with σy 6= 0 where Gp = (−1)(p−1)/2(2/h) exp(−(αpσy)
2/2). For this

convergence we will examine the L∞ norm of the p-modes: Êyp with increasing p.

Since Gp ∼ exp(p−2) and scales each field, then the Fourier series Êy converges uni-

formly for all x as pmax →∞. If σy is very small however, a larger pmax must be used

to resolve the Gaussian G(y). This effect is shown in Figure 3.3 where the L∞ norm

of the p-modes decays rapidly in p once the Gaussian G(y) is resolved (i.e. when Gp

is small). For the line source model G(y) = δ(y), where |Gp| = 2/h, the maximum

norm of the p-modes do not decay in p at x = 0.

0 2 4 6 8 10 12 14 16 18 20
10

−8

10
−6

10
−4

10
−2

10
0

p

||
Ê

y
p
||
∞

Maximum norm of Êyp versus p

σy = 2.00mm
σy = 1.00mm
σy = 0.50mm
σy = 0.25mm

Figure 3.3: L∞ norm Êyp for varying p using a Gaussian source G(y) with varying σy.
The solution is computed at s = 0.200 m using the DG method with (N,K) = (8, 30).

44

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

3.4.3 CSR Impedance

In this section we compute the longitudinal impedance by examining the dependence

of Ês on k/κ. The Ês field Fourier series components are given in terms of Vp(s, x, k)

and Wp(s, x, k) by:

Êsp(s, x, k) =
−1

γ2
p

[
αp
η

(
ik (Vp + σpxΘ) +

∂Vp
∂s

)
− ikZ0

∂Wp

∂x

]
. (3.42)

We mention here that the transforms in s−ct and y also yield formulas for Êxp, Ĥxp,

Ĥsp which depend only on Vp and Wp and their s and x derivatives. The ∂/∂s terms

in (3.42) are computed by the right-hand-sides of (3.11).

In the case of the smooth Gaussian G(y), the high p-mode terms are attenuated

by Gp ∼ exp(p−2) and thus while the sharp peaks in Êyp and Ĥyp become badly

resolved, the Gp factor scaling the fields dominates the bound on these sharp peaks.

Thus a maximum resolution can be used in x for all p-modes since the sharp peak

in the higher p-mode solutions are greatly attenuated.

However, in the case of the line source G(y) = δ(y), a resolution issue occurs

as p increases. This issue is seen in the calculations of Êyp and Ĥyp which become

very sharply peaked at x = 0 with increasing p and thus finer spatial resolution is

required as the desired accuracy is increased. For large p-modes using the line source

model: Gp = (−1)(p+1)/2(2/h), the Êyp and Ĥyp fields become arbitrarily sharp at

x = 0. This issue implies that if the higher p-modes are desired, finer grids in x are

required. Thus, for σy = 0, while Ês can be computed from:

Ês(s, x, y, k) =
∞∑
p=1

Êsp(s, x, k) cos (αp(y + h/2)) , (3.43)

the sharply peaked solution: (Vp+σpxΘ) and ∂Wp/∂x in (3.42) for large p introduces

a large error in Êsp(s, x, k) at x = 0. The plot for Êyp(s, x, k) for p = 19 with σy = 0

is shown in Figure 3.5. As p increases, the peak in Figure 3.5 becomes narrower but

its height stays constant.

45

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

As a workaround, the solution Ês(s, x, y, k) computed with equation (3.43) can be

evaluated at (x, y) = (0, 0) by using interpolation. We interpolate each p-mode Êsp

at x = 0 with a spline formed by nodes near x = 0. We then sum the interpolated

values at x = 0 to obtain Ês(s, 0, 0, k).

Figure 3.6 shows the value of Ês at the end of the bend: smax = 0.200 m sampled

at the source location (x, y) = (0, 0). The spline interpolation was not necessary for

this plot as the source distribution G(y) was taken to be a Gaussian with σy = 2 mm.

46

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

Figure 3.4: DG reference solution for Re(Êr
y)/λ̂(k) (top), Im(Êr

y)/λ̂(k) (bottom)
with pmax = 39 and (N,K) = (12, 80) evaluated on a 1441 × 481 (x, y) grid, for
k = 8 · 103 m−1, at s = 0.200 m.

47

Chapter 3. 1D Frequency Domain Study – Proceedings of FEL2014

−0.03 −0.02 −0.01 0 0.01 0.02 0.03
−1

−0.5

0

0.5

1
Êyp vs x for p = 19

x(m)

Ê
y
p
(V

/m
)

Figure 3.5: Real (red) and imaginary (blue) parts of Êyp for p = 19 with using
(N,K) = (12, 80), for k = 8 · 103 m−1, at s = 0.200 m.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.06

−0.04

−0.02

0

0.02

0.04
Ês(smax, 0, 0, k) vs kR

kR

Ê
s

Figure 3.6: Real (red) and imaginary (blue) parts of Ês(smax, 0, 0, k) for a source
with σy = 0.002 m using pmax = 9 and (N,K) = (8, 30).

48

Chapter 4

2D Frequency Domain Study –

Proceedings of FEL2013

4.1 Statement of the Physical Problem

Derivations of the paraxial approximation can be found in section 2.2.4 as well as in

the theses by T. Agoh [1] and D. Zhou [22]. The starting point here are Maxwell’s

equations with the source given by a line charge moving at near the speed of light,

where for our study, taking β = 1 is an appropriate approximation. We consider

the source orbit to be on circular arc of radius R and length L, and confine the

domain by a perfectly conducting rectangular cross-section vacuum chamber as in

[1, 2, 22, 23]. The electric field components Ex and Ey written in Frenet-Serret

coordinates r = (s, x, y) for a bend of constant curvature κ = 1/R, are obtained

49

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

from (2.60b)–(2.60c) and satisfy:

− 1

c2

∂2Ex
∂t2

+
1

η2

∂2Ex
∂s2

− κ2

η2
Ex +

∂2Ex
∂x2

+
κ

η

∂Ex
∂x

+
∂2Ex
∂y2

− 2κ

η2

∂Es
∂s

= Sx(r, t),

(4.1a)

− 1

c2

∂2Ey
∂t2

+
1

η2

∂2Ey
∂s2

+
∂2Ey
∂x2

+
κ

η

∂Ey
∂x

+
∂2Ey
∂y2

= Sy(r, t). (4.1b)

where Sx(r, t) and Sy(r, t) are the source term components for the electric field wave

equations. Specifically, the source terms follow from (2.61a) with G(y) = δ(y) for

the line charge:

 Sx(r, t)

Sy(r, t)

 =

 qcZ0λ(s− ct)δ′(x)δ(y)

qcZ0λ(s− ct)δ(x)δ′(y)

 . (4.2)

Next, applying the Fourier transform in s− ct from section 2.2.4 to (4.1) results in:

k2Êx +
1

η2

(
∂2Êx
∂s2

+ 2ik
∂Êx
∂s
− k2Êx

)
− κ2

η2
Êx

+
∂2Êx
∂x2

+
κ

η

∂Êx
∂x

+
∂2Êx
∂y2

− 2κ

η2

(
∂Ês
∂s

+ ikÊs

)
= Ŝx(x, y, k),

(4.3a)

k2Êy +
1

η2

(
∂2Êy
∂s2

+ 2ik
∂Êy
∂s
− k2Êy

)

+
∂2Êy
∂x2

+
κ

η

∂Êy
∂x

+
∂2Êy
∂y2

= Ŝy(x, y, k),

(4.3b)

where the Fourier transform of the source, which is independent of s, is:

 Ŝx(x, y, k)

Ŝy(x, y, k)

 =

 qcZ0λ̂(k)δ′(x)δ(y)

qcZ0λ̂(k)δ(x)δ′(y)

 . (4.4)

50

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

To compare with results in [22, 23], we rearrange (4.3) to collect all the derivatives:

1

η2

∂2Êx
∂s2

+
2ik

η2

∂Êx
∂s

+
∂2Êx
∂x2

+
κ

η

∂Êx
∂x

+
∂2Êx
∂y2

+ k2

(
1− 1

η2

)
Êx −

2κ

η2

(
∂Ês
∂s

+ ikÊs

)
= Ŝx(x, y, k),

(4.5a)

1

η2

∂2Êy
∂s2

+
2ik

η2

∂Êy
∂s

+
∂2Êy
∂x2

+
κ

η

∂Êy
∂x

+
∂2Êy
∂y2

+ k2

(
1− 1

η2

)
Êy = Ŝy(x, y, k),

(4.5b)

Applying the paraxial approximation from section 2.2.4 we omit the ∂2/∂s2 terms

to arrive at:

2ik

η2

∂Êx
∂s

+
∂2Êx
∂x2

+
κ

η

∂Êx
∂x

+
∂2Êx
∂y2

+ k2

(
1− 1

η2

)
Êx −

2κ

η2

(
∂Ês
∂s

+ ikÊs

)
= Ŝx(x, y, k),

(4.6a)

2ik

η2

∂Êy
∂s

+
∂2Êy
∂x2

+
κ

η

∂Êy
∂x

+
∂2Êy
∂y2

+ k2

(
1− 1

η2

)
Êy = Ŝy(x, y, k),

(4.6b)

Now, we apply the low-curvature expansion (1 − η−2) ≈ 2κx where η ≈ 1 and

assume κ� k, as in [22, 23], to arrive at the following equations:

∂Êx
∂s

=
i

2k

(
∂2Êx
∂x2

+
∂2Êx
∂y2

)
+ ikκxÊx −

cZ0i

2k
Ŝx(x, y, k), (4.7a)

∂Êy
∂s

=
i

2k

(
∂2Êy
∂x2

+
∂2Êy
∂y2

)
+ ikκxÊy −

cZ0i

2k
Ŝy(x, y, k), (4.7b)

with the specific forms of the source terms for the electric field wave equation. We

now combine the equations in (4.7) by defining Ê := (Êx, Êy)
> and Ŝ := (Ŝx, Ŝy)

>.

Due to the singularity in the sources of (4.7), we introduce the decomposition given

in [2]: Ê ≡ Êr + Êb so that the singular source terms in Ŝ are absorbed by the Êb

51

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

term. This decomposition is not unique. For a line charge, one choice for Êb, which

satisfies Poisson’s equation ∇2
⊥Êb = cZ0Ŝ, where ∇2

⊥ := (∂2/∂x2) + (∂2/∂y2), is:

Eb
x(x, y, k) = C(k)

x

x2 + y2
, Eb

y(x, y, k) = C(k)
y

x2 + y2
, (4.8)

where C(k) = qcZ0λ̂(k)/2π. Now we rewrite (4.7) as:

∂Êr

∂s
+
∂Êb

∂s
=

i

2k
∇2
⊥Êr +

i

2k
∇2
⊥Êb + ikκxÊr + ikκxÊb − cZ0i

2k
Ŝ. (4.9)

Our choice in Êb allows the simplification to:

∂Êr

∂s
=

i

2k
∇2
⊥Êr + ikκxÊr + ikκxÊb, (4.10)

For a rectangular vacuum chamber, we consider a cross-section of size 2a × 2b

with perfectly conducting boundary conditions as defined in equations (2.50)–(2.52).

Specifically, the boundary conditions for this geometry are:

Êx

∣∣∣
y=±b

≡ Êr
x + Êb

x

∣∣∣
y=±b

= 0,
∂Êx
∂x

∣∣∣
x=±a

≡ ∂Êr
x

∂x
+
∂Êb

x

∂x

∣∣∣
x=±a

= 0, (4.11a)

Êy

∣∣∣
x=±a

≡ Êr
y + Êb

y

∣∣∣
x=±a

= 0,
∂Êy
∂y

∣∣∣
y=±b

≡
∂Êr

y

∂y
+
∂Êb

y

∂y

∣∣∣
y=±b

= 0. (4.11b)

Lastly, the initial conditions are given by assuming the solution Ê has achieved a

steady state in an infinite straight preceding the bend. The derivation of the initial

conditions follows in next the section.

4.2 Statement of the Mathematical Problem

Here we study the initial boundary value problem for the two Schrödinger-type equa-

tions given in (4.10). Our goal is to solve for the unknown radiation field Êr which

yields the electric field Ê when combined with the known beam field Êb of (4.8) as

52

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

described in [2]. The decoupled initial boundary value problems for Êr(x, y, k) are:

∂Êr
x

∂s
=

i

2k
∇2
⊥Ê

r
x + ikκxÊr

x + ikκxÊb
x(x, y, k), (4.12a)

∂Êr
y

∂s
=

i

2k
∇2
⊥Ê

r
y + ikκxÊr

y + ikκxÊb
y(x, y, k), (4.12b)

on the domain 0 ≤ s ≤ L, −a ≤ x ≤ a, −b ≤ y ≤ b, with the boundary conditions

in (4.11). These conditions for Êr
x and Êr

y are given in terms of Êb
x and Êb

y:

Êr
x =− Êb

x for y = ±b, (4.13a)

∂Êr
x

∂x
=− ∂Êb

x

∂x
for x = ±a, (4.13b)

Êr
y =− Êb

y for x = ±a, (4.13c)

∂Êr
y

∂y
=−

∂Êb
y

∂y
for y = ±b. (4.13d)

By the same approach in Chapter 3, we build the initial conditions by assuming

the fields have reached a steady state ∂Ê/∂s = 0 in an infinite straight prior to the

bend where κ = 0. Using (4.12)–(4.13), at s = 0 we have:

∇2
⊥E

r
x = 0, ∇2

⊥E
r
y = 0. (4.14)

The initial fields are given by the solutions to Laplace’s equation in (4.14) with the

boundary conditions in (4.13). The solution to these can be found analytically using

Fourier series; however, we use a Poisson solver to construct the solution numerically.

We note that the initial boundary value problems for Êr
x and Êr

y are uncoupled.

The field Êr
s is needed on 0 ≤ s ≤ L in order to compare with the impedance

calculation in [22]. The field Êr
s is derived from Maxwell’s equation (2.41g) and

taking η → 1 in the low curvature limit, that is:

∂Es
∂s

+
∂Ex
∂x

+
∂Ey
∂y

= qcZ0λ(s− ct)δ(x)δ(y). (4.15)

53

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

Next, applying the Fourier transform in s− ct to the above yields:

ikÊs = −∂Êx
∂x
− ∂Êy

∂y
+ qcZ0λ̂(k)δ(x)δ(y). (4.16)

Lastly, by splitting the field into Ês ≡ Êr
s + Êb

s, the beam field contribution Êb
s,

generated from ∇2
⊥Êb = cZ0Ŝ, reduces to zero since:

∂Êb
x

∂x
+
∂Êb

y

∂y
= qcZ0λ̂(k)δ(x)δ(y). (4.17)

Therefore, only Êr
s 6= 0 and we obtain:

Êr
s =

i

k

(
∂Êr

x

∂x
+
∂Êr

y

∂y

)
. (4.18)

The impedance at (x, y) = (0, 0) in our notation is given by:

Z(k) = − 1

qλ̂(k)

∫ ∞
0

Êr
s(s, 0, 0, k)ds. (4.19)

The calculation of Es(s, 0, 0, k) for s ≥ L is discussed in section 4.4.4.

4.3 Overview of Our DG Approach

To make the discussion of the DG approach simpler, we introduce dimensionless

variables through the rescaling:

s→ 2ka2s̃, x→ ax̃, y → aỹ, Êr
x → C(k)U/a, Êr

y → C(k)V/a

but in this subsection we will write (s, x, y) for the dimensionless variables (s̃, x̃, ỹ).

In terms of these rescaled variables, (4.12a) becomes:

−i∂U
∂s

= ∇2
⊥U + F1(U, x, y, k), (4.20)

54

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

where F1(U, x, y, k) = 2k2κa3x(U + x/(x2 + y2)). The boundary conditions (4.13a)–

(4.13b) become:

∂U

∂x

∣∣∣
x=±1

=
1− y2

(1 + y2)2
, U

∣∣∣
y=±b/a

= − x

x2 + (b/a)2
. (4.21)

Similarly, with the rescaling of Er
y , (4.12b) becomes:

−i∂V
∂s

= ∇2
⊥V + F2(V, x, y, k), (4.22)

where F2(V, x, y, k) = 2k2κa3x(V + y/(x2 + y2)). The boundary conditions (4.13c)–

(4.13d) similarly become:

V
∣∣∣
x=±1

= − y

1 + y2
,

∂V

∂y

∣∣∣
y=±b/a

=
(b/a)2 − x2

(x2 + (b/a)2)2
. (4.23)

The initial conditions are also rescaled by C(k)/a, and we continue to write

(s, x, y) in place of (s̃, x̃, ỹ). We note that U and V only depend parametrically on

2k2a3κ and b/a, and that the integration domain 0 ≤ s ≤ L becomes 0 ≤ s ≤ L/2ka2.

The factor C(k) only enters into the magnitude of the fields Êr
x and Êr

y .

Both (4.20) and (4.22) can be written in the form,

−i∂u
∂s

=
∂qx
∂x

+
∂qy
∂y

+ F (u, x, y), (4.24a)

qx =
∂u

∂x
, (4.24b)

qy =
∂u

∂y
. (4.24c)

Now, we partition Ω ≡ [−1, 1] × [−b/a, b/a] into K triangular elements, focus on a

single element Dk ⊂ Ω, and assume that on Dk the local solution uk ∈ PN(Dk) is

polynomial of degree N . Multiplication of each equation in (4.24) by a test function:

55

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

v ∈ PN(Dk) and the integration over Dk yields

−i
∫
Dk

v
∂uk

∂s
dA =

∫
Dk

[
v
∂qkx
∂x

+ v
∂qky
∂y

+ vF k

]
dA (4.25a)∫

Dk

vqkxdA =

∫
Dk

v
∂uk

∂x
dA, (4.25b)∫

Dk

vqkydA =

∫
Dk

v
∂uk

∂y
dA. (4.25c)

Equations (4.25) are exact, but involve only the local polynomials uk, qkx, qky , and v on

Dk. To couple adjacent elements, we now adjust the above equations by introducing

flux terms along the boundary ∂Dk which couple Dk to neighboring elements. In the

strong form, the so-called residual equations (4.25) become:

−i
∫
Dk

v
∂uk

∂s
dA =

∫
Dk

[
v
∂qkx
∂x

+ v
∂qky
∂y

+ vF k(u, x, y)

]
dA

−
∫
∂Dk

v
[
nx(q

k
x − q∗x) + ny(q

k
y − q∗y)

]
dL,

(4.26a)

∫
Dk

vqkxdA =

∫
Dk

v
∂uk

∂x
dA−

∫
∂Dk

nxv(uk − u∗)dL, (4.26b)∫
Dk

vqkydA =

∫
Dk

v
∂uk

∂y
dA−

∫
∂Dk

nyv(uk − u∗)dL, (4.26c)

In these formulas dL and (nx, ny) respectively specify the arc-length measure and

outward normal vector for ∂Dk. The terms u∗, q∗x, q
∗
y are numerical fluxes which

depend not only on the local solutions uk, qkx, qky on Dk but also on the solutions

belonging to adjacent elements. We specify our choice of fluxes in (4.31). One way

to “derive” (4.26) from (4.25) is to first integrate by parts, shifting all derivatives

onto each test polynomial v. This process generates integrals along the boundary

∂Dk. Next, in these boundary integrals one makes the intermediate replacements

uk, qkx, q
k
y → u∗, q∗x, q

∗
y , and then invokes a second round of integration by parts to

arrive at (4.26). Of course, without the intermediate replacements, this process

would arrive back at (4.25), as is easily seen by taking (u∗, q∗x, q
∗
y) = (uk, qkx, q

k
y) in

(4.26).

56

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

To obtain matrix formulas from (4.26), we first express the local solution on

element Dk and each test polynomial as follows:

uk(x, y) =

Np∑
j=1

ukj `
k
j (x, y), v(x, y) = `ki (x, y),

qkx(x, y) =

Np∑
j=1

qkx,j`
k
j (x, y), qky(x, y) =

Np∑
j=1

qky,j`
k
j (x, y).

(4.27)

Here, Np denotes the number of nodes on the element Dk, which is related to the

polynomial order N through Np = (N + 1)(N + 2)/2. Moreover, `ki (x, y) is the

Lagrange basis polynomial which is 1 at the ith node (xki , y
k
i) ∈ Dk, but zero at

all other nodes (xkj , y
k
j), j 6= i. Since `i ∈ PN(Dk), by taking i ∈ {1, . . . , Np} as

arbitrary, we sample the whole test space since every polynomial of degree N is

uniquely decomposed by the Np basis polynomials. We note that the index variable

i here is distinct from the imaginary unit
√
−1 coefficient in the PDEs (4.20) and

(4.22). With expansion coefficients as in (4.27), we define the corresponding vectors:

uk = (uk1, u
k
2, . . . , u

k
Np

)>,

qkx = (qkx,1, q
k
x,2, . . . , q

k
x,Np

)>,

qky = (qky,1, q
k
y,2, . . . , q

k
y,Np

)>,

`k = (`k1, `
k
2, ..., `

k
Np

)>.

(4.28)

Substitution of (4.27) and the vectors into (4.26) yields:

−idu
k

ds
=(Mk)−1Skxqkx + (Mk)−1Skyqky + Fk

− (Mk)−1

∫
∂Dk

[
nx(q

k
x − q∗x) + ny(q

k
y − q∗y)

]
`kdL

(4.29a)

qkx =(Mk)−1Skxuk − (Mk)−1

∫
∂Dk

nx(u
k − u∗)`kdL (4.29b)

qky =(Mk)−1Skyuk − (Mk)−1

∫
∂Dk

ny(u
k − u∗)`kdL, (4.29c)

57

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

where Fk := F (uk,xk,yk) is evaluated at the nodal coordinates. In these expressions

the mass Mk and stiffness Skx , Sky matrices are defined as:

[Mk]ij =

∫
Dk

`ki (x, y)`kj (x, y)dA,

[Skx]ij =

∫
Dk

∂`ki
∂x

(x, y)`kj (x, y)dA,

[Sky]ij =

∫
Dk

∂`ki
∂y

(x, y)`kj (x, y)dA,

(4.30)

To reach the given form (4.29) of the local semi-discrete equations, we invert the

local mass matrix Mk, and put these equations into their final form by defining u∗,

q∗x, q
∗
y as follows:

u∗ = {{u}}, q∗x = {{qx}} − τ [[u]]x, q∗y = {{qy}} − τ [[u]]y. (4.31)

The {{·}} and [[·]] operations respectively denote the average value and jump in a

value across a boundary. For example, if two elements Dk1 and Dk2 share a common

boundary segment ∂Dk1,2 , then along the segment q∗x = 1
2
(q+
x +q−x)−τ(n−x u

−+n+
x u

+).

In the case τ = 0 we recover the central flux scheme which is stable; however, for

better conditioned solution, we set the penalty parameter τ as described on p263 of

[11]. Every element follows the same construction yielding a total Np ×K nodes for

Ω, where K is the total number of elements.

4.4 Numerical Implementation

This section presents the steps used to obtain the electric fields and longitudinal

impedances for the curved and straight portions of the vacuum chamber. This process

is repeated for every wave number k we consider. We now return to the notation

in the section on the statement of the problem, since our actual code employs the

physical variables.

58

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

4.4.1 Construction of the Elements and Matrices

The first step begins by dividing the rectangular cross-section Ω of the vacuum

chamber into rectangles and then subdividing each rectangle diagonally into two

triangles. The total number of elements K = 2N res
x N res

y , with N res
x and N res

y denoting

the resolution of elements in the x and y directions. Figure 4.1 shows an example

configuration of nodes and elements with N res
x = 6, N res

y = 2, of polynomial order

N = 4. We employ Lagrange-Gauss-Lobatto nodal spacing for better conditioning

of the mass and stiffness matrices. More discussion on this choice of spacing is found

on p47 of [11]. Next, the mass and stiffness matrices are computed via (4.30). These

Figure 4.1: Example of a 24 element domain using 4th order elements (15 nodes per
element). The nodes (red dots) are not equally spaced among each element.

matrices are then used to obtain the derivative matrix products Dx = M−1Sx and

Dy =M−1Sy, appearing in (4.29).

4.4.2 Construction of the Initial Data

The next step is to construct the initial conditions at s = 0 using (4.14) subject

to the boundary conditions given by (4.13). The transverse fields Êr
x and Êr

y are

constructed numerically with the DG Poisson solver described on p275-280 of [11].

Next, Êr
s is computed with the derivative matrices from step 1:

Êr
s =

i

k
(DxÊr

x +DyÊr
y). (4.32)

59

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

4.4.3 Evolution of the Fields

The third, and most computationally intensive, step is to evolve the PDEs in (4.12)

for the transverse fields Êr
x and Êr

y . These are evolved using the classical 4th order

explicit Runge-Kutta scheme. The time step for the evolution is first determined by

∆s = CCFL · k · r2
min, (4.33)

where rmin is minimal distance between the nodes. Note that rmin decreases quadrat-

ically with the order N ; therefore, for large N this time step restriction is severe.

We have taken the CFL constant CCFL as 0.25 for our computations. This constant

was determined experimentally.

The evaluations of du/ds required for timestepping are implemented as follows:

qx and qy are obtained from (4.29b)–(4.29c), with the results then substituted into

(4.29a). This process is done for both Êr
x and Êr

y . Finally, Êr
s is computed from Êr

x

and Êr
y at each timestep with (4.32).

4.4.4 Computation of the Impedance

We separate the impedance integral in (4.19) into two parts, Z = Zb + Zs, where:

Zb(k) = − 1

qλ̂(k)

∫ L

0

Êr
s(s, 0, 0, k)ds, (4.34a)

Zs(k) = − 1

qλ̂(k)

∫ ∞
L

Êr
s(s, 0, 0, k)ds. (4.34b)

Throughout the evolution process in step 3, we record Êr
s at the origin: Êr

s0(s, k) :=

Êr
s(s, 0, 0, k). Zb is then approximated by the trapezoidal rule:

Zb(k) ≈− ∆s

qλ̂(k)

[
Êr
s0(0, k) + Êr

s0(L, k)

2
+

Nsteps−1∑
n=1

Êr
s0(n∆s, k)

]
. (4.35)

60

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

Following [22], we evaluate the remaining integral Zs as a mode expansion:

Zs(k) ≈ 1

qλ̂(k)

M∑
m=1

P∑
p=1

Dmp(k) sin
(mπ

2

)
sin
(pπ

2

)
, (4.36)

where the coefficients Dmp(k) are determined by the transverse fields Êr
x and Êr

y at

the end of the bend, s = L, through the following expressions:

Dmp(k) =
8(Amp(k)kx +Bmp(k)ky)

k2
x + k2

y

, (4.37a)

Amp(k) =
1

ab

∫∫
Ω

Êr
x(L, x, y, k) cos (kxx) sin (kyy) dA, (4.37b)

Bmp(k) =
1

ab

∫∫
Ω

Êr
y(L, x, y, k) sin (kxx) cos (kyy) dA, (4.37c)

kx =
mπ

2a
, ky =

pπ

2b
. (4.37d)

The values of M and P should ideally be infinite; however, in our experiments,

M & (N + 1)N res
x and P & (N + 1)N res

y are sufficient for a good approximation.

4.5 Numerical Results

In this section, we consider a narrow source length where we take λ̂(k) to be constant

for the k values of interest. We further note that the initial conditions and solutions

scale in direct proportion with λ̂(k).

4.5.1 DG Results

Although comprehensive strategies [14, 15] exist for optimized DG simulations on

GPUs, we have adopted a simple approach based on MATLAB’s gpuArray. Our

simulations have been performed on an Nvidia GeForce GTX Titan with the following

61

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

parameters: a = 60 mm, b = 20 mm, L = 200 mm, R = 1 m, and k = 8 mm−1.

We have used K elements with Np = (N + 1)(N + 2)/2 nodes per element, and the

internal penalty flux parameter τ mentioned earlier. We consider results for both (i)

impedance calculations and (ii) performance and accuracy.

The initial condition is shown in Figure 4.2 and is dependent on k only through

λ̂(k). Figure 4.3 shows an example of the real and imaginary parts of Êr
x, for k =

8 mm−1, at s = 200 mm, i.e. at the end of the bend by integrating (4.12) with

(N,K) = (8, 2400).

Figure 4.2: Initial condition for Êr
x with C(k) = qcZ0λ̂(k)/2π. This initial condition

is the solution to (4.14) with the boundary conditions (4.13).

We have performed a high resolution simulation with (N,K) = (8, 2400), and

taken the resulting numerical solution as the “exact” solution. This simulation took

about one hour. Errors for lower-resolution solutions have been computed against

this reference solution, with the results for Êr
x at s = 200 mm and k = 8 mm−1

shown in Table 4.1.

62

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

Table 4.1: DG Er
x Error and Computation Time

N\K 150 600 1350 2400
8.107e-1 3.915e-1 7.471e-2 2.453e-2
8.032e-1 2.528e-1 4.291e-2 1.484e-2

2
9s 28s 49s 81s

122 486 1093 1943
1.265e-1 4.897e-3 9.344e-4 3.590e-4
8.017e-2 3.427e-3 9.462e-4 4.342e-4

4
29s 88s 202s 392s
539 2156 4850 8622

1.122e-2 5.177e-4 1.407e-4 5.483e-5
6.974e-3 6.187e-4 1.932e-4 8.045e-5

6
83s 283s 677s 1319s

1691 6764 15218 27054
1.569e-3 1.672e-4 5.612e-5 N\A*

1.493e-3 2.098e-4 7.473e-5 N\A*
8

208s 723s 1867s 3630s
4174 16693 37559 66771

*:Used for comparison to other tests.

The table shows relative L∞ (top) and relative L2 (upper middle) errors corre-

sponding to Êr
x evaluated on a 31× 11 grid. This evaluation grid was the largest set

of nodes common to all DG grids. Computation times (lower middle) and time-step

counts (bottom) are also listed.

The large errors for (N,K) = (2, 150), (2, 600), and (4, 150) are due to the fields

not being sufficiently resolved. The errors decrease and the time-step counts increase

with increasing K and N . For stability, we note the stepsize from (4.33) follows

∆s ∝ 1/(KN2) since the nodes are not equally spaced throughout each triangular

element. The minimal nodal spacing within an element scales with the polynomial

order as N−2.

Our MATLAB DG code was first written for a CPU; the GPU version required

little additional work. Our GPU calculations become more efficient for larger matrix

63

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

systems, and when less communication between the CPU and GPU is required. For

the lower-order tests, the GPU functioned at around 20% of its maximum capacity.

However, for the higher-order tests, the GPU efficiency increased to over 60%. In

our GPU simulations we have observed speed-ups of up to ∼ 10 over our CPU

simulations.

4.5.2 FD Results and Impedance Comparison

We have also written a MATLAB finite difference (FD) code modeled after the FD

method discussed in [1, 2, 22, 23]. This FD method uses leap-frog as the time-

stepper. Our DG code allows for any spatial order N , whereas the FD code employs

a second-order stencil, commonly known as Yee’s method.

The FD grids were of size (N res
x + 1)× (N res

y + 1). As a test of the two codes, we

calculated the impedance using (4.19). For both the FD and DG approaches, Figure

4.4 depicts the resulting real and imaginary parts.

To the eye, these impedances are in agreement with Figure 3 in [23]. The dis-

crepancy between our DG and FD results stems from how the spatial derivatives in

(4.18) are computed. The FD method uses lower order difference stencils instead of

the derivative matrices Dx and Dy.

We have run the FD code for (N res
x , N res

y) = (60, 20), (120, 40), (180, 60), and

(240, 80), and the results are shown in Table 4.2. The errors were calculated with

respect to the high resolution DG calculation, using a 61× 21 grid which is common

to all the cases. The organization of the table is as in Table 4.1, with listings for

the relative L∞ and L2 error, run time, and time-step count. Clearly, our DG GPU

code outperforms our FD CPU code. However, this is in part due to the GPU

implementation of the DG code. The FD code could not be easily extended to GPU

computing since sparse matrices are not natively supported in MATLAB’s CUDA

64

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

library. However, using the CPU only, our DG code still outperforms our FD code.

Table 4.2: FD Er
x Error

Grid 61× 21 121× 41 181× 61 241× 81
3.845e-1 1.126e-1 4.016e-2 3.440e-2
4.539e-1 1.223e-1 4.551e-2 2.840e-2

8s 125s 642s 2032s
200 800 1800 3200

65

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

Figure 4.3: Real (top) and imaginary (bottom) parts of Êr
x for R = 1 m, L = 200 mm,

a = 30 mm, b = 10 mm,k = 8 mm−1.

66

Chapter 4. 2D Frequency Domain Study – Proceedings of FEL2013

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

k (mm−1)

R
e

Z
 (

oh
m

s)

1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

60

k (mm−1)

Im
 Z

 (
oh

m
s)

Figure 4.4: Real (top) and imaginary (bottom) parts of the impedance for ρ = 1 m,
L = 200 mm, a = 30 mm, b = 10 mm. DG (blue solid), FD (red dashed)

67

Chapter 5

2D Time Domain Study – Work

for the Canadian Light Source

5.1 Statement of the Problem Domain

In this chapter, we solve Maxwell’s equations in a vacuum chamber in a bend at the

CLS using the Frenet-Serret coordinates and a Fourier series in y as seen in sections

2.2.1 and 2.2.3. We adopt the trajectory of the electron bunch as the reference orbit

of the Frenet-Serret transformation. The reference orbit is a fixed distance from the

inner wall of the bend as shown in Figure 5.1.

For solutions in the time-domain, we adopt the scaled time coordinate τ := ct.

Next, our domain of interest is a vacuum chamber of fixed height h with perfectly

conducting walls at y = ±h/2. Along the transverse direction x, the boundary is

allowed to vary in shape with s, and also has perfectly conducting walls. Furthermore,

we assume the inner wall does not vary in s, thus we denote the x-boundaries by

x = xin and x = xout(s). We close the computational domain by bounding the s-

direction at s = smin and s = smax with an open boundary condition; this will be

68

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

discussed in detail in section 5.2.3. We mark the transition from a straight section

to the beginning of the bend by s = s0.

(Z0,X0) (Z1,X1)

(Z2,X2)

(Z3,X3)

(Z4,X4)
(Z5,X5)

(Z6,X6)

Xout

Xin

(s0, x0)

(s1, x1)

(s2, x2) (s3, x3)

(s4, x4) (s5, x5)

(s6, x6)

xout

xin

Figure 5.1: Physical laboratory frame (top) and Frenet-Serret transformed frame
(bottom). The dashed line indicates the source’s trajectory, the region between the
dotted blue lines indicate where the curvature is non-zero, and the red dots indicate
points where the boundary geometry transitions.

The cross-sectional dimensions and bending radius of the CLS chamber are:

h = 0.032m, xin = −0.032m, xout(s0) = 0.078m, R = 7.143m (5.1)

The curvature of the reference orbit κ(s) is piecewise constant:

κ(s) =

 1/R : s0 ≤ s ≤ s2

0 : otherwise
(5.2)

69

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

The outer wall profile xout(s) in Frenet-Serret coordinates is piecewise continuous:

xout(s) =



x0 : s ≤ s0

(R + x0) sec(s/R)−R : s0 < s ≤ s1

(R + x0) tan(s1/R) csc(s/R)−R : s1 < s ≤ s2

x2 : s2 < s ≤ s3

x2 + (s− s3) cot(2.5◦) : s3 < s ≤ s4

x4 : s4 < s ≤ s5

x5 − (s− s5) cot(7.5◦) : s5 < s ≤ s6

x6 : s > s6

(5.3)

The points along the outer wall boundary (si, xi) denote transition points between

the different features of the boundary. The chamber begins as a semi-infinite straight

of fixed width w = xout(s0) − xin for s < s0. The inner wall in this region follows

along this curved trajectory in Cartesian coordinates maintaining a fixed distance

from the reference orbit to the wall xin. The outer wall, a straight in the laboratory

space, is curved in the Frenet-Serret coordinates and flares outward to a maximum

of xout(s1). At s1, the location of a photon absorber in the chamber, the wall forms

a right angle and bends inwards towards the beam.

At s = s2, the end of the photon absorber, the bunch again travels along a straight

path and the outer wall remains at a distance x2 parallel to the source trajectory.

As s = s3, the wall moves outward at 2.5◦ from the normal to form a cavity behind

the photon absorber. The corners at s = s4, s5 form the bounds of the cavity which

then angles towards the beam at 7.5◦ from the normal. The bottom portion of this

wall is the M1 mirror. Lastly, at s = s6, the end of the M1 mirror, the outer wall is

assumed to continue onward and parallel to the source trajectory at distance x6 from

the source. The corners and transition points along the boundary profile xout(s) are

70

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

approximately located at:

s0 = 0.0000m, x0 := xout(s0) = 0.07800m,

s1 = 1.8326m, x1 := xout(s1) = 0.32236m,

s2 = 1.8825m, x2 := xout(s2) = 0.12908m,

s3 = 1.9425m, x3 := xout(s3) = 0.12908m, (5.4)

s4 = 1.9509m, x4 := xout(s4) = 0.32236m,

s5 = 2.0820m, x5 := xout(s5) = 0.32236m,

s6 = 2.1225m, x6 := xout(s6) = 0.01500m.

These locations are the transformed coordinates of (Zi, Xi), the Cartesian coordinate

laboratory frame locations where the boundary geometry transitions.

Lastly, to model the electron bunch at the CLS we consider the ribbon charge and

current densities (2.46)–(2.47). However, we offset the argument of λ to (s−ct−soff)

where soff < s0 is an offset distance so that the bunch starts at s = soff at t = 0. In

Figure 5.1, the starting position of the source at soff is located in the initial straight

segment to the left of s0. The value of soff is chosen to ensure the source is supported

in the region s < s0.

5.2 Problem Setup and Formulation

5.2.1 Maxwell’s Equations and Transforms

Using the geometry and source for the time-domain problem defined in the previous

section, we pose Maxwell’s equations transformed into Frenet-Serret coordinates from

section 2.3.1. Maxwell’s evolution equations for (E,H), where H := cB/Z0, with the

71

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

source prescribed by (2.46)–(2.47) in the scaled time coordinate τ = ct are:

∂E

∂τ
= Z0∇×H− Z0j, (5.5)

∂H

∂τ
= − 1

Z0

∇× E. (5.6)

Next, by recalling the components of Maxwell’s equations using the Frenet-Serret

vector formulas in (2.41) we have:

1

Z0

∂Es
∂τ

=
∂Hy

∂x
− ∂Hx

∂y
− qcG(y)λ(s− τ − soff)δ(x) (5.7a)

1

Z0

∂Ex
∂τ

=
∂Hs

∂y
− 1

η

∂Hy

∂s
(5.7b)

1

Z0

∂Ey
∂τ

=
1

η

∂Hx

∂s
− ∂Hs

∂x
− κ

η
Hs (5.7c)

Z0
∂Hs

∂τ
=
∂Ex
∂y
− ∂Ey

∂x
(5.7d)

Z0
∂Hx

∂τ
=

1

η

∂Ey
∂s
− ∂Es

∂y
(5.7e)

Z0
∂Hy

∂τ
=
∂Es
∂x

+
κ

η
Es −

1

η

∂Ex
∂s

(5.7f)

noting the curvilinear scale factor η(s, x) = 1 + κ(s)x. The curvature κ(s) in (5.2)

is discontinuous which assumes the source particles encounter hard-edged magnets

to generate the prescribed reference orbit. While hard-edged magnets result in κ′(s)

becoming unbounded at the interface, this is only an issue in the wave equation

forms of Maxwell’s equations since the κ′(s) terms do not appear in (5.7). Lastly,

the parameter soff is a fixed offset distance to the initial source position which centers

the distribution λ(s) to s = soff at t = 0. More details on this offset distance are

discussed in section 5.2.2.

Now, applying Fourier Series in y from section 2.2.3 to (5.7) with αp = πp/h

corresponding to wavenumber p:

Fj(s, x, y, τ) =
∞∑
p=1

φj(αp(y + h/2))Fjp(s, x, τ), (5.8)

72

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

with φj(·) = cos(·) for Ey, Hs, Hx, and φj(·) = sin(·) for Es, Ex, Hy and G(y). The

six field equations are expressed modally as:

1

Z0

∂Esp
∂τ

=
∂Hyp

∂x
+ αpHxp − qcGpλ(s− τ − soff)δ(x), (5.9a)

1

Z0

∂Exp
∂τ

= −αpHsp −
1

η

∂Hyp

∂s
, (5.9b)

1

Z0

∂Eyp
∂τ

=
1

η

∂Hxp

∂s
− ∂Hsp

∂x
− κ

η
Hsp, (5.9c)

Z0
∂Hsp

∂τ
= αpExp −

∂Eyp
∂x

, (5.9d)

Z0
∂Hxp

∂τ
=

1

η

∂Eyp
∂s
− αpEsp, (5.9e)

Z0
∂Hyp

∂τ
=
∂Esp
∂x

+
κ

η
Esp −

1

η

∂Exp
∂s

. (5.9f)

5.2.2 Initial Conditions

In this section we choose soff so that the initial longitudinal distribution of the source

λ(s− soff) is assumed to be compactly supported in s < s0 ≡ 0. While our Gaussian

source distribution: λ(z) = (2πσ2)−1/2 exp(−z2/2σ2) is not compactly supported,

we choose soff = −10σ so that λ(soff)/λ(0) < εmach ≈ 10−16. The initial fields are

constructed by assuming the source and fields are steadily transported as they enter

the domain from an infinitely long straight chamber. Steady-state refers to functions

depending on s and τ only through the argument (s−τ). Using κ = 0 for the straight

region, we seek a solution which satisfies (5.9a)–(5.9f) with Fp(s, x, τ) = Fp(s− τ, x)

for each field; this last restriction is thus a plane wave solution.

To construct these fields directly, we use the wave equation forms of Maxwell’s

equations in Cartesian coordinates since (Z,X, Y) = (s, x, y) and t = eZ in the

73

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

straight where s < s0 and κ = 0:

∂2E

∂s2
+
∂2E

∂x2
+
∂2E

∂y2
− ∂2E

∂τ 2
= Z0

(
∂j

∂τ
+ c∇ρ

)
,

∂2H

∂s2
+
∂2H

∂x2
+
∂2H

∂y2
− ∂2H

∂τ 2
= −∇× j.

(5.10)

Next, using ρ and j from (2.46)–(2.47), and applying the plane wave condition to E

and H, the fields satisfy:

∂2Es
∂x2

+
∂2Es
∂y2

= 0, (5.11a)

∂2Ex
∂x2

+
∂2Ex
∂y2

= qZ0cG(y)λ(s− τ − soff)δ′(x), (5.11b)

∂2Ey
∂x2

+
∂2Ey
∂y2

= qZ0cG
′(y)λ(s− τ − soff)δ(x), (5.11c)

∂2Hs

∂x2
+
∂2Hs

∂y2
= 0, (5.11d)

∂2Hx

∂x2
+
∂2Hx

∂y2
= −qcG′(y)λ(s− τ − soff)δ(x), (5.11e)

∂2Hy

∂x2
+
∂2Hy

∂y2
= qcG(y)λ(s− τ − soff)δ′(x). (5.11f)

Lastly, applying the Fourier Series in y, the fields satisfy the following ordinary

differential equations (taking s− τ as a parameter):

d2Esp
dx2

− α2
pEsp = 0, (5.12a)

d2Exp
dx2

− α2
pExp = qZ0cGpλ(s− τ − soff)δ′(x), (5.12b)

d2Eyp
dx2

− α2
pEyp = qZ0cαpGpλ(s− τ − soff)δ(x), (5.12c)

d2Hsp

dx2
− α2

pHsp = 0, (5.12d)

d2Hxp

dx2
− α2

pHxp = −qcαpGpλ(s− τ − soff)δ(x), (5.12e)

d2Hyp

dx2
− α2

pHyp = qcGpλ(s− τ − soff)δ′(x). (5.12f)

The boundary conditions for each field follow from the assumption of perfectly con-

74

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

ducting walls as in (2.50)–(2.51), thus we have:

dExp
dx

∣∣∣∣
xin,x0

= 0, Eyp

∣∣∣∣
xin,x0

= 0, Esp

∣∣∣∣
xin,x0

= 0,

Hxp

∣∣∣∣
xin,x0

= 0,
dHyp

dx

∣∣∣∣
xin,x0

= 0,
dHsp

dx

∣∣∣∣
xin,x0

= 0.

Due to the homogeneous boundary conditions with zero source term for Esp and Hsp,

the unique solutions are Esp = 0 and Hsp = 0. The remaining E fields have the form:

Exp(x; s− τ) = −qZ0cGpλ(s− τ − soff)Φp(x),

Eyp(x; s− τ) = −qZ0cGpλ(s− τ − soff)Ψp(x),

where the functions Φp(x) and Ψp(x) are:

Φp(x) = sinh(αpx0)
cosh(αp(x− xin))

sinh(αp(x0 − xin))
− cosh(αpx)Θ(x),

Ψp(x) = sinh(αpx0)
sinh(αp(x− xin))

sinh(αp(x0 − xin))
− sinh(αpx)Θ(x),

with Θ(x) as the Heaviside step function. With these formulas and noting the re-

lations: Exp = Z0Hyp and Eyp = −Z0Hxp in the straight, all six initial fields are

constructed by setting τ = 0:

Esp(s, x, 0) = 0, (5.13a)

Exp(s, x, 0) = −qZ0cGpλ(s− soff)Φp(x), (5.13b)

Eyp(s, x, 0) = −qZ0cGpλ(s− soff)Ψp(x), (5.13c)

Hsp(s, x, 0) = 0, (5.13d)

Hxp(s, x, 0) = qcGpλ(s− soff)Ψp(x), (5.13e)

Hyp(s, x, 0) = −qcGpλ(s− soff)Φp(x). (5.13f)

5.2.3 Boundary Conditions

We have stated the necessary boundary conditions along the transverse perfectly

conducting walls in section 2.2.2. However, the remaining boundaries at s = smin

75

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

and s = smax, the entrance and exit to the vacuum chamber, need to be open

boundaries allowing for radiation to pass through without reflection. Here, smin is

some distance at which λ(s−soff) is compactly supported in the region smin < s < s0

at τ = 0; thus smin ≤ 2soff = −20σ. Several options exist to emulate this type of

boundary condition; however, we opt to simply increase the length of the domain

in each direction. The reason for this choice is that we are only interested in what

occurs inside the region s0 ≤ s ≤ s6 up to moderate times no longer than a few times

the length of the domain: τ < τmax . 3(s6 − s0). Since the chamber is narrow in

these extensions, the number of elements does not increase substantially.

By adjusting smin and smax we can apply the global boundary condition: n ×

E = 0, i.e. perfectly conducting walls, for all boundaries. We denote the surfaces

s = smin and s = smax to be the s boundaries for the problem. With our given

geometry, source, and initial conditions, smin < min((2s1− τmax)/2, 2soff) and smax >

max((τmax + s6)/2, s6) will ensure that the non-physical reflections produced in the

buffer regions: smin < s < s0 and s6 < s < smax do not enter the domain of interest:

0 ≤ s ≤ s6 for 0 ≤ τ ≤ τmax.

5.2.4 Evolution Procedure

Before we derive a semi-discrete form of (5.9) for numerical evaluation, we must

treat the singularity on the right-hand-side of (5.9a). The following transformation

eliminates the δ(x) term in the source in favor of a Heaviside function:

H̃yp = Hyp − qcGpλ(s− τ − soff)Θ(x). (5.14)

76

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

With this transformation, (5.9) becomes:

1

Z0

∂Esp
∂τ

=
∂H̃yp

∂x
+ αpHxp, (5.15a)

1

Z0

∂Exp
∂τ

= −αpHsp −
1

η

∂H̃yp

∂s
− 1

η
qcGpλ

′(s− τ − soff)Θ(x), (5.15b)

1

Z0

∂Eyp
∂τ

=
1

η

∂Hxp

∂s
− ∂Hsp

∂x
− κ

η
Hsp, (5.15c)

Z0
∂Hsp

∂τ
= αpExp −

∂Eyp
∂x

, (5.15d)

Z0
∂Hxp

∂τ
=

1

η

∂Eyp
∂s
− αpEsp, (5.15e)

Z0
∂H̃yp

∂τ
=
∂Esp
∂x

+
κ

η
Esp −

1

η

∂Exp
∂s

+ qZ0cGpλ
′(s− τ − soff)Θ(x). (5.15f)

This system of equations (5.15) can be discretized in (s, x) and evolved in τ with

a suitable time-stepping method. A useful memory-conservative method is the 4th

order Low-Storage Explicit Runge-Kutta (LSERK) method. At the cost of an ex-

tra function evaluation compared to the classical 4th order Runge-Kutta method,

LSERK requires only 1 residual storage array instead of 4 per field. This memory-

saving feature is invaluable for our simulations by allowing larger numbers of elements

and/or higher order DG polynomials for our computations on a single GPU. The

method for an ordinary differential equation: du/dτ = L(u, τ), is outlined below:

k1 = ∆τL(u(τ), τ), u1 = u(τ) + b1 · k1, (5.16a)

k2 = a2 · k1 + ∆τL(u1, τ + c2 ·∆τ), u2 = u1 + b2 · k2, (5.16b)

k3 = a3 · k2 + ∆τL(u2, τ + c3 ·∆τ), u3 = u2 + b3 · k3, (5.16c)

k4 = a4 · k3 + ∆τL(u3, τ + c4 ·∆τ), u4 = u3 + b4 · k4, (5.16d)

k5 = a5 · k4 + ∆τL(u4, τ + c5 ·∆τ), u(τ + ∆τ) = u4 + b5 · k5. (5.16e)

This algorithm requires 5 function evaluations of the right-hand-side L and one stor-

age variable denoted by k. The subscripts denote the stages but can be overwritten

in memory since ki−1 and ui−1 are no longer needed after ki and ui are computed

77

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

respectively. The constants ai, bi, and ci are listed in the following table:

b1 = 0.149659021999229

a2 = −0.417890474499852 b2 = 0.379210312999627 c2 = 0.149659021999229

a3 = −1.192151694642677 b3 = 0.822955029386982 c3 = 0.370400957364205

a4 = −1.697784692471528 b4 = 0.699450455949122 c4 = 0.622255763134443

a5 = −1.514183444257156 b5 = 0.153057247968152 c5 = 0.958282130674690

5.3 Numerical Methods

In this section we describe the procedures for evaluating the PDEs outlined in the

previous section using a Discontinuous Galerkin method on an unstructured mesh.

We also compare the results to experimental data collected at the CLS and examine

convergence with respect to a high-resolution simulation.

5.3.1 Discontinuous Galerkin Formulation

We begin by truncating the domain in s by placing a numerical boundary at s = smin

and s = smax as described in section 5.2.3. Next, we partition the domain smin ≤

s ≤ smax, xin ≤ x ≤ xout(s) into K triangular elements. The elements with an edge

shared on the outer wall xout(s) on s0 < s < s2 are not conformal since the boundary

is curved. This boundary error will degrade the overall convergence of the scheme

to 1st order; however, since the curvature we consider is very small relative to the

element size, this choice does not limit the accuracy unless we use a coarser mesh

with very high order elements. We have examined the use of curvilinear Gordon–Hall

blended elements; however this significantly increased computational work with no

improvement in accuracy for the parameters tested. More explanation on this fact

78

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

can be found in section 5.3.2.

Each element consists of Np = (N + 1)(N + 2)/2 nodes where N is the order

of the polynomial used to locally represent the solution. The nodal locations on a

particular element k are denoted by (skj , x
k
j) for j = 1, ..., Np.

Along interior edges: edges which are shared by two elements, the field is mul-

tivalued and discontinuous since the elements may have differing values along the

shared edge. For each field component on a particular element Dk, we denote the

approximate solution uk by:

uk(s, x, τ) =

Np∑
i=1

uki (τ)`ki (s, x), (5.17)

where `ki is the Lagrange interpolating polynomial of degree N with the property:

`ki (s
k
j , x

k
j) = δij. As an aside, for each PDE, only 3 fields are coupled; for example, in

(5.15f), only Exp, Esp and H̃yp appear. The residual of each of our linear first-order

PDEs has the form:

R(s, x, τ) :=
∂uk

∂τ
− a(s, x)

∂vk

∂s
− b∂w

k

∂x
− c(s, x)wk − f(s, x, τ). (5.18)

Here, for the example of (5.15f), uk represents H̃yp, v
k represents Exp, and wk rep-

resents Esp. The function forms for the coefficients are: a(s, x) = ±1/η, b = ±1 or

0, and c(s, x) = ±αp or ±κ/η depending on the PDE. The residual DG formulation

can be formed by enforcing: ∫
Dk

R(s, x, τ)`kj (s, x)dsdx = 0, (5.19)

for each j = 1, ..., Np on each element k. Thus we haveNp equations of the form (5.19)

for the Np nodal values in element k. While this system is complete, it decouples

all the elements producing a nonsense algorithm which will not yield a meaningful

solution. To couple the elements to their neighbors along their shared edges, we

79

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

integrate (5.19) by parts:∫
Dk

[
∂ukh
∂τ

`kj + avkh
∂`kj
∂s

+
∂a

∂s
vkh`

k
j + bwkh

∂`kj
∂x
− cwkh`kj − f`kj

]
dsdx

=

∫
∂Dk

n · (avkh, bwkh)>`kjdl. (5.20)

where n denotes the outward normal (ns, nx) along the boundary: ∂Dk. Next, we

adjust the terms on the right-hand-side to incorporate information from elements

neighboring Dk along the shared boundary ∂Dk. We denote these adjustments by

(av)∗ and (bw)∗, commonly known as numerical fluxes. Then, after integrating by

parts again to the form of (5.19), we obtain:∫
Dk

Rh(s, x, τ)`kj (s, x)dsdx = −
∫
∂Dk

n · (avkh − (av)∗, bwkh − (bw)∗)>`kj (s, x)dl.

(5.21)

Since ukh, v
k
h, and wkh, are sums of the same Lagrange polynomials as used in the

residual, it becomes useful to define the mass matrix Mk and stiffness matrices Ss,

Sx of size Np ×Np:

[Mk]ij =

∫
Dk

`ki (s, x)`kj (s, x)dsdx, (5.22)

[Sks]ij =

∫
Dk

`ki (s, x)
∂`kj (s, x)

∂s
dsdx, (5.23)

[Skx]ij =

∫
Dk

`ki (s, x)
∂`kj (s, x)

∂x
dsdx. (5.24)

Next, since each triangle is different, we use a Jacobian matrix Jk to map each

element to a reference element. This conveniently allows for the use of global differen-

tiation matrices Ds =M−1Ss and Dx =M−1Sx which are the same for all elements

k. The caveat for this advantage is that we must commute M−1 with a(s, x); how-

ever, if we align the element interfaces so that κ(s) is constant in each triangle then

this issue is avoided. This is done by enforcing the mesh generating routine to align

elements to have interfaces along s = s0 and s = s2, thus κ = 0 or 1/R depending on

80

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

the element. Combining all these terms, the 6 system of Maxwell’s equations written

in DG semi-discrete form is:

dEsp
dτ

= Z0DxHyp + Z0αpHxp

+
1

2
(JM)−1

(
−Z0nx[[Hyp]]− [[Esp]] + ns (ns[[Esp]] + nx[[Exp]])

)
,

(5.25a)

dExp
dτ

= −Z0αpHsp −
Z0

η
DsHyp −

Z0

η
qcGpλ

′(s− τ)Θ(x)

+
1

2
(JM)−1

(
Z0

η
ns[[Hyp]]− [[Exp]] + nx (ns[[Esp]] + nx[[Exp]])

)
,

(5.25b)

dEyp
dτ

=
Z0

η
DsHxp − Z0DxHsp −

Z0κ

η
Hsp

+
1

2
(JM)−1

(
−Z0

η
ns[[Hxp]] + Z0nx[[Hsp]]− [[Eyp]]

)
,

(5.25c)

dHsp

dτ
= − 1

Z0

DxEyp +
αp
Z0

Exp

+
1

2
(JM)−1

(
1

Z0

nx[[Eyp]]− [[Hsp]] + ns (ns[[Hsp]] + nx[[Hxp]])

)
,

(5.25d)

dHxp

dτ
= −αp

Z0

Esp +
1

Z0η
DsEyp

+
1

2
(JM)−1

(
−1

Z0η
ns[[Eyp]]− [[Hxp]] + nx (ns[[Hsp]] + nx[[Hxp]])

)
,

(5.25e)

dHyp

dτ
=

1

Z0

DxEsp −
1

Z0η
DsExp +

κ

Z0η
Esp + qcGpλ

′(s− τ)Θ(x)

+
1

2
(JM)−1

(
−1

Z0

nx[[Esp]] +
1

Z0η
ns[[Exp]]− [[Hyp]]

)
.

(5.25f)

The [[u]] = u−−u+ operator denotes the jump between interior and exterior values of

the field along an interface between triangles. The J operator denotes the mapping

Jacobian to a reference element which has a special structure for the curvilinear

elements. The ns and nx arrays store the normal components to the interfaces

of the triangles and the products including ns and nx denote Hadamard matrix

multiplication (i.e. element-wise multiplication).

The boundary condition n×E = 0 is imposed on all exterior edges, edges which

are not shared with another element, through the numerical flux. We adopt the

81

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

mirror principle for the boundary condition which has the form:

n× [[E]] = 2n× E− (5.26)

No condition must be imposed on H for a well-posed system since (2.50b) is auto-

matically satisfied for all time if the initial condition on H satisfies (2.50b). The

jump in fields, [[H]], on the global edges is simply set to zero. A full MATLAB im-

plementation of these equations based on J. Hesthaven and T. Warburton’s Nodal

Discontinuous Galerkin Methods [11] is found in Appendix A.

5.3.2 Convergence Test Results

In this section we present convergence tests and solution results for (5.15a)–(5.15f)

with the discontinuous Galerkin formulation of section 5.3.1. We begin with the

convergence tests for the following set of parameters and constants in addition to

those found in (5.1) and (5.4):

smin = −400mm, smax = 2500mm, soff = −200mm, τmax = 200mm,

σ = 20mm, q = 10−12C, c = 2.998 · 108m/s, Z0 = 376.7Ω

We examine the solution for Eyp along the curve s = 0 at τ = 200mm sampled at

500 equally spaced points in x ∈ [−5mm, 50mm]. By using meshes with edge-length

h0 = {25.0, 14.3, 10.0, 7.14, 5.56, 4.55, 3.85, 3.33}mm, for DG polynomial orders N =

2, 4, 6, 8, we calculate the L2 error with respect to a reference solution generated

with h0 = 3.33m and N = 12, see Figure 5.2. For N = 2, 4, 6 the convergence

rate displayed spectral convergence: Error ∝ hN+1
0 . However, for N = 8, the errors

saturated around 1e− 13 likely due to double-precision limitations.

We repeated the convergence tests using curvilinear elements but did not observe

a noticeable difference in errors as the accuracy degradation due to triangular ele-

ments over curvilinear elements was not a limiting factor for our choice of parameters.

82

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

The triangular elements were a very good approximation to the conformal curved

elements, generated by Gordon-Hall blending, due to the curvature of the outer wall

compared to the element size and the modest DG orders we considered: h0 � R,

N ≤ 12.

5.3.3 Physical Results

In this section we discuss the comparisons to physical experimental data taken at the

CLS and presented in [4]. In particular, we examine the structure of the wake-fields

produced by the source (2.46)–(2.47) as it travels through the vacuum chamber. For

our tests, we focus on the electric field at a location near the outer wall just inside

the entrance of the bend known as the “backward port”.

The entrance of the backward port leading to the diode detector in the CLS

is located at approximately (sbp, xbp) = (330mm, 80mm), see Figure 5.3. At this

coordinate, we extract the Exp field for the p = 1 mode only. This sampling is done

using Nth-order polynomial interpolation at (sbp, xbp) at each timestep using the Np

nodal values of the element containing the point.

Next, we take the Fourier transform in τ of Exp at (sbp, xbp) to apply a low-pass

frequency filter to simulate the response of the diode detector at the backward port.

Thus, the filtered field EF
xp is:

Êxp(sbp, xbp, k) =

∫ τmax

0

eikτExp(sbp, xbp, τ)dτ, (5.27)

EF
xp(sbp, xbp, τ) =

1

2π

∫ kmax

−kmax

e−ikτ
1

1 + ik/k0

Êxp(sbp, xbp, k)dk, (5.28)

where τmax is the simulation time which is taken to be large enough so that Exp ∼ 0

for τ > τmax. In our experiments, we use τmax = 5000mm which is long enough to

capture most reflections from the photon absorber and M1 mirror. We apply the

83

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

filter cutoff frequency k0 = 0.0033mm−1 corresponding to a temporal frequency of

1GHz and we consider a maximal frequency kmax = 1mm−1.

Now we compare the plot of |EF
xp(sbp, xbp, τ)|2 to the experimental data output

from [4] shown in Figure 5.4. In both plots, the peaks A–G represent the times when

certain features of CSR, generated in the bend, reflect off the conducting walls and

reach the backward port.

The peaks A and C are attributed to the primary reflections from the photon

absorber and M1 mirror respectively. This is evident by the time delay between

peaks A and C corresponding to twice the difference in light travel time between

the photon absorber and M1 mirror. Next, the peaks B and D–G correspond to the

wake pulses from A and C respectively. The peak intensities and precise positions

vary likely due to the simplified geometry of the model.

Lastly, Figure 5.5 displays contour plots of Exp. These contours further highlight

the complex wake-field structures generated by the geometry. In the top part of

Figure 5.5 we show the Exp field just after the source as exited the domain of interest

(s0 ≤ s ≤ s6) on the right. The reflections of the photon absorber (s ≈ 1.4m)

and M1 mirror (s ≈ 1.8m) are clearly visible and traveling to the left towards the

backward port. In the bottom part of Figure 5.5, we highlight the complex structure

of the wake-field pulse generated from the M1 mirror near the backward port. The

wake-field pulse from the photon absorber is not visible as it has already exited the

domain of interest on the left.

84

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
−14

−12

−10

−8

−6

−4

−2

0
L2 Error for Eyp

log10(h0/mm)

lo
g
1
0
(E

rr
o
r)

h0 N = 2 N = 4 N = 6 N = 8
25.0mm 1.8676e− 02 3.0409e− 04 1.8365e− 06 1.4201e− 08
14.3mm 4.4789e− 03 2.3760e− 05 4.9445e− 08 1.5273e− 10
10.0mm 1.8475e− 03 4.2277e− 06 5.4275e− 09 6.4027e− 12
7.14mm 6.1020e− 04 7.4178e− 07 5.3219e− 10 4.4872e− 13
5.56mm 2.6820e− 04 1.8159e− 07 1.1521e− 10 8.7046e− 14
4.55mm 1.4322e− 04 8.0395e− 08 2.0178e− 11 1.0133e− 13
3.85mm 8.0400e− 05 2.9002e− 08 6.4940e− 12 6.8786e− 14
3.33mm 5.9269e− 05 1.6313e− 08 2.7470e− 12 9.4810e− 14

Rate 2.93 4.95 6.70 6.21

Figure 5.2: L2 error for Eyp along s = 0mm at τ = 200mm for order N = 2 (blue),
N = 4 (green), N = 6 (red), and N = 8 (cyan) elements of approximate size h0. The
optimal rate of N + 1 is achieved for lower orders; however for N = 8, at the higher
resolutions, we conjecture that the saturation in error is caused by double precision
limitations.

85

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

xout

xin

Backward Port

Photon Absorber

M1 Mirror

Figure 5.3: Backward port (red dot) where Exp is sampled at each timestep. The
source at x = 0 (dashed line) travels from left to right. The photon absorber (cyan)
and M1 mirror assembly (magenta) are also shown.

86

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
0

1

2

3

4

5

6

ct (m)

E
x2

(

f
i
l
t
e
r
e
d

)

(
V
/
m
/
p
C
)

2

DC E F GA B

Figure 5.4: (Top) Low-pass filtered E2
xp field for σ = 2mm bunch length source at the

backward port. (Bottom) Experimental RF diode measurements (oscilloscope traces)
for various diode configuration and polarization: (1) [red] backward/horizontal, (2)
[blue] backward/vertical, (3) [black] forward/horizontal. For clarity, the curves have
been separated vertically.

87

Chapter 5. 2D Time Domain Study – Work for the Canadian Light Source

Figure 5.5: (Top) Exp field for σ = 2mm at τ = 2.5m on the entire domain. (Bottom)
Zoom-in view of Exp field at τ = 4.0m at the backward port (red dot).

88

Chapter 6

Full 3D Time Domain Study –

Work presented at ICOSAHOM14

6.1 Introduction

In this chapter, we will examine a new approach to solving the full 3D Maxwell’s

equations in the time-domain in a vacuum chamber with a constant cross-section.

Particularly, we do not apply the Fourier series in y as in Chapters 3 and 5. A full

3D tetrahedral mesh discretization of an entire bend would not be computationally

feasible due to memory limitations with our computing platform. If the electric and

magnetic fields of interest are localized near the source, an attractive option is to use

an adaptive mesh which follows the source.

One option for this adaptive mesh is to generate new meshes and interpolate as the

source travels through the bend. However, this option introduces interpolation steps

and new elements and associated operators which must be reconstructed throughout

the time evolution. We instead adopt a Galilean transformation to model a localized

source in a moving reference frame to restrict the computational domain to a region

89

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

containing the source. This transformation enables us to use a common fixed mesh

which travels with the source. The study and implementation of this method here is

intended as a proof-of-concept and an application of the Galilean transformation.

6.2 Galilean Transformation

The central idea for the Galilean transformation we use is to transform Maxwell’s

equations to a coordinate system moving at speed vg in the +s direction. We define

the Galilean transformation from the Frenet-Serret coordinates r = (s, x, y) by:
s

x

y

t

 =


s̃+ vg t̃

x̃

ỹ

t̃

 (6.1)

with vg > 0 but not necessarily bounded by c and for the moment we consider

no curvature: κ(s) = 0. The reasoning behind this idea is to maintain a well-

defined transformation at vg = c, unlike the Lorentz transformation in which the

scale factor γ := (1 − v2
g/c

2)−1/2 diverges as vg → c. The main advantage of a

Galilean transformation with velocity vg ≥ c is that boundaries at s̃ = constant

become simplified to inflow/outflow boundaries. Considering a field u(s, x, y, t), we

have the transformed field related by:

ũ(s̃, x̃, ỹ, t̃) := u(s̃+ vg t̃, x̃, ỹ, t̃) = u(s, x, y, t) (6.2)

With (6.1)–(6.2), the time derivatives of u(s, x, y, t) in the new coordinates are:

∂u

∂t
=
∂ũ

∂t̃
− vg

∂ũ

∂s̃
(6.3)

∂2u

∂t2
=
∂2ũ

∂t̃2
− 2vg

∂2ũ

∂t̃∂s̃
+ v2

g

∂2ũ

∂s̃2
(6.4)

90

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

while the Frenet-Serret spatial derivatives: ∂/∂s̃, ∂/∂x̃, and ∂/∂ỹ remain unchanged

from (2.36)–(2.40) but are written with the new coordinates (s̃, x̃, ỹ). Thus, a wave

equation in Frenet-Serret coordinates for a vector field U(s, x, y, t), in the new coor-

dinates Ũ(s̃, x̃, ỹ, t̃) ≡ U(s, x, y, t), has the form:

− 1

c2

(∂2Ũ

∂t̃2
− 2vg

∂2Ũ

∂t̃∂s̃
+ v2

g

∂2Ũ

∂s̃2

)
+ ∇2Ũ = S̃(s̃, x̃, ỹ, t̃) ≡ S(s, x, y, t) (6.5)

where we use the ∇2 operator from (2.40). Of particular note, in the case of κ(s) = 0

and vg > c, the ∂2Ũ/∂s̃2 term changes sign. This alters the dynamics in (6.5) to no

waves propagating the in the +s̃ direction. While we do not directly work with the

Maxwell wave equations, we use the wave equation example here to demonstrate the

∂2Ũ/∂s̃2 term sign changing property for vg > c.

Lastly, if we include nonzero curvature κ(s) 6= 0, we must adjust the minimum

vg to ensure the waves do not propagate in the +s̃ direction throughout the domain.

We will discuss this issue further in the next section.

6.3 Statement of the Problem

In this section we derive the initial value problem for Maxwell’s equations with the

Frenet-Serret and Galilean transformations. Recalling Chapter 2, equations (2.41),

we begin with Maxwell’s evolution equations for (E,B) in Frenet-Serret coordinates:

91

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

∂Es
∂t

= c2

(
∂By

∂x
− ∂Bx

∂y

)
− cZ0js(r, t), (6.6a)

∂Ex
∂t

= c2

(
∂Bs

∂y
− 1

η

∂By

∂s

)
− cZ0jx(r, t), (6.6b)

∂Ey
∂t

= c2

(
1

η

∂Bx

∂s
− 1

η

∂(ηBs)

∂x

)
− cZ0jy(r, t), (6.6c)

∂Bs

∂t
= −

(
∂Ey
∂x
− ∂Ex

∂y

)
, (6.6d)

∂Bx

∂t
= −

(
∂Es
∂y
− 1

η

∂Ey
∂s

)
, (6.6e)

∂By

∂t
= −

(
1

η

∂Ex
∂s
− 1

η

∂(ηEs)

∂x

)
. (6.6f)

Next, we apply the Galilean transformation from (6.1) with vg arbitrary for the

moment. For the remainder of this chapter, to avoid confusion, we omit the tilde

symbols ˜ on the x, y, and t variables since (x, y, t) = (x̃, ỹ, t̃). Thus, in the new

variables (s̃, x, y, t) ≡ (s− vgt, x, y, t), the system (6.6) becomes:

∂Es̃
∂t

= c2

(
∂By

∂x
− ∂Bx

∂y

)
− cZ0j̃s̃ + vg

∂Es̃
∂s̃

, (6.7a)

∂Ex
∂t

= c2

(
∂Bs̃

∂y
− 1

η

∂By

∂s̃

)
− cZ0j̃x + vg

∂Ex
∂s̃

, (6.7b)

∂Ey
∂t

= c2

(
1

η

∂Bx

∂s̃
− 1

η

∂(ηBs̃)

∂x

)
− cZ0j̃y + vg

∂Ey
∂s̃

, (6.7c)

∂Bs̃

∂t
= −

(
∂Ey
∂x
− ∂Ex

∂y

)
+ vg

∂Bs̃

∂s̃
, (6.7d)

∂Bx

∂t
= −

(
∂Es̃
∂y
− 1

η

∂Ey
∂s̃

)
+ vg

∂Bx

∂s̃
, (6.7e)

∂By

∂t
= −

(
1

η

∂Ex
∂s̃
− 1

η

∂(ηEs̃)

∂x

)
+ vg

∂By

∂s̃
. (6.7f)

We denote the transformation in (6.7), as the Frenet-Serret–Galilean (FSG) system

of Maxwell’s equations.

For our domain, we consider a box in FSG coordinates Ω = [s̃min, s̃max]× [−a, a]×

[−b, b] with a constant curvature κ = 1/R. In the original Cartesian coordinates, this

92

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

volume Ω corresponds to a curved slab with rectangular cross sectional area 2a× 2b

of arc length (s̃max− s̃min) along the center of the cross section. This volume rotates

about the axis (Z,X) = (0,−R) with angular speed vg/R.

Throughout this section, we consider the equations in (6.7) with vg ≥ vc where vc

is dependent on the spatial extent in x and the curvature κ. Specifically, we require:

vc = max(c/η(s, x)) over the boundary to ensure that along the segments s̃ = s̃max

and s̃ = s̃min the conditions are purely inflow and outflow respectively. Thus for our

domain Ω, we have vc = c/(1 − a/R). Lastly, we only consider cases where a � R

and thus vg ≥ vc & c.

For the boundaries of Ω, we adopt the perfectly conducting boundary conditions

as in (2.50) for the transverse walls of the domain along x = ±a and y = ±b. We

additionally set the inflow boundary at s̃ = s̃max to be zero for all fields.

Next, we must construct a set of initial conditions on (E,B) for the system in

(6.7). We begin by assuming the source has a rigid profile in Frenet-Serret coordinates

and moves in the +s direction at speed c. We take the profile as compactly (or

essentially) supported in Ω for some finite time 0 ≤ t ≤ T . Since vg > c, then any

localized physical source, with speed bounded by c, cannot remain in Ω for all time.

We consider a source charge and current density in FSG coordinates with the form

given in (2.48)–(2.49):

ρ̃(s̃, x, y, t) = qλ(s̃+ (vg − c)t)λ(x)λ(y),

j̃s(s̃, x, y, t) = qcλ(s̃+ (vg − c)t)λ(x)λ(y),
(6.8)

with the distribution λ, as Gaussian with zero mean and variance σ. For this round

distribution, if σ is sufficiently small, then the source is effectively contained in Ω

until t ' s̃min/(v − c). Note, for this source, we take j̃x = j̃y = 0.

Using the method in Chapter 5 for constructing the initial conditions by assuming

a plane-wave steady-state solution with κ = 0. This plane-wave condition assumes

93

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

solutions of (E,B) initially are of the form F(s̃+(vg−c)t, x, y) which cancel all s̃ and

t derivatives in (6.7). By setting the parameter s̃+(vg−c)t→ s̃ to compute the initial

condition, we solve the following Poisson equations, derived from the wave equations

of (6.7), subject to the transverse perfectly conducting boundary conditions:

∂2Es̃
∂x2

+
∂2Es̃
∂y2

= 0, (6.9a)

∂2Ex
∂x2

+
∂2Ex
∂y2

= qZ0cλ(s̃)λ′(x)λ(y), (6.9b)

∂2Ey
∂x2

+
∂2Ey
∂y2

= qZ0cλ(s̃)λ(x)λ′(y), (6.9c)

∂2Bs̃

∂x2
+
∂2Bs̃

∂y2
= 0, (6.9d)

∂2Bx

∂x2
+
∂2Bx

∂y2
= −qZ0λ(s̃)λ(x)λ′(y), (6.9e)

∂2By

∂x2
+
∂2By

∂y2
= qZ0λ(s̃)λ′(x)λ(y). (6.9f)

The transverse boundary conditions follow from (2.50)–(2.51). Along x = ±a and

y = ±b, these conditions are:

Es̃

∣∣∣∣
x=±a

= 0,
∂Ex
∂x

∣∣∣∣
x=±a

= 0, Ey

∣∣∣∣
x=±a

= 0, (6.10a)

∂Bs̃

∂x

∣∣∣∣
x=±a

= 0, Bx

∣∣∣∣
x=±a

= 0,
∂By

∂x

∣∣∣∣
x=±a

= 0, (6.10b)

Es̃

∣∣∣∣
y=±b

= 0, Ex

∣∣∣∣
y=±b

= 0,
∂Ey
∂y

∣∣∣∣
y=±b

= 0, (6.10c)

∂Bs̃

∂y

∣∣∣∣
y=±b

= 0,
∂Bx

∂y

∣∣∣∣
y=±b

= 0, By

∣∣∣∣
y=±b

= 0. (6.10d)

94

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

The solutions to (6.9) are constructed via Fourier series and have the form:

Ex(s̃, x, y, 0) =
∞∑
m=0

∞∑
p=1

Ex
mp(s̃) cos(αm(x− a)) sin(βp(y − b)), (6.11a)

Ey(s̃, x, y, 0) =
∞∑
m=1

∞∑
p=0

Ey
mp(s̃) sin(αm(x− a)) cos(βp(y − b)), (6.11b)

Bx(s̃, x, y, 0) =
∞∑
m=1

∞∑
p=0

Bx
mp(s̃) sin(αm(x− a)) cos(βp(y − b)), (6.11c)

By(s̃, x, y, 0) =
∞∑
m=0

∞∑
p=1

By
mp(s̃) cos(αm(x− a)) sin(βp(y − b)), (6.11d)

while the fields Es̃ and Bs̃, due to homogeneous sources, are zero (we assign the

constant in the solution for Bs̃ to be zero). The Fourier coefficients in (6.11) are

given by the following integrals over the transverse domain Ω2D := [−a, a]× [−b, b]:

Ex
mp(s̃) =

−qZ0cλ(s̃)

abφmp

∫∫
Ω2D

λ′(x)λ(y) cos(αm(x− a)) sin(βp(y − b))dydx,

(6.12a)

Ey
mp(s̃) =

−qZ0cλ(s̃)

abφmp

∫∫
Ω2D

λ(x)λ′(y) sin(αm(x− a)) cos(βp(y − b))dydx,

(6.12b)

Bx
mp(s̃) =

qZ0λ(s̃)

abφmp

∫∫
Ω2D

λ(x)λ′(y) sin(αm(x− a)) cos(βp(y − b))dydx,

(6.12c)

By
mp(s̃) =

−qZ0λ(s̃)

abφmp

∫∫
Ω2D

λ′(x)λ(y) cos(αm(x− a)) sin(βp(y − b))dydx,

(6.12d)

where αm = πm/2a, βp = πp/2b, and φmp = α2
m + β2

p for m, p 6= 0. For the modes

with m or p = 0, then we replace φmp with 2φmp in (6.12). With (6.11)–(6.12) and

Es̃(s̃, x, y, 0) = Bs̃(s̃, x, y, 0) ≡ 0, we have constructed the initial data for (6.7).

In practice, we do not compute the Fourier series given by (6.11)–(6.12) and

instead use a Poisson solver on a 2D DG scheme with triangles and interpolate to

95

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

the 3D DG nodes based on their (x, y) coordinates. We then scale the fields by λ(s̃),

based on their s̃ coordinate. This process will be described in section 6.5.2.

6.4 DG Formulation

In this section we pose the DG implementation to solve (6.7) with the initial and

boundary conditions described in section 6.3. Much of this implementation follows

from the procedures found in Chapter 10 of Nodal Discontinuous Galerkin Methods

by Hesthaven and Warburton [11].

For the construction of an Nth order solution on Ω = [s̃min, s̃max]×[−a, a]×[−b, b],

we begin with considering a single tetrahedral element, denoted by Dk, from the

total number of elements K which partition Ω. For Nth order elements, we require

Np = (N + 1)(N + 2)(N + 3)/6 nodes per element. Using the Np nodes, we define a

local polynomial solution for each field on the element Dk by:

uk(s̃, x, y, t) =

Np∑
i=1

uki (t)`
k
i (s̃, x, y), (6.13)

where `ki is the 3D Lagrange interpolating polynomial of degree N with the property

`ki (s̃
k
j , x

k
j , y

k
j) = δij for each node (s̃kj , x

k
j , y

k
j) in element k.

Now we construct the residuals for (6.7). We will only illustrate the process in

detail for (6.7a); however, the construction for the remaining 5 fields follows in a

similar manner and the results will be presented in the next section. By applying

the expansion in (6.13) to Es̃, Bx, By, and js̃, we obtain the residual:

R(s̃, x, y, t) :=
∂Ek

s̃

∂t
− c2

∂Bk
y

∂x
+ c2∂B

k
x

∂y
+ cZ0j

k
s̃ − vg

∂Ek
s̃

∂s̃
. (6.14)

Next, we desire orthogonality of this residual to the same Lagrange polynomials

96

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

`kj (s̃, x, y) for j = 1, ..., Np:

∫
Dk

R(s̃, x, y, t)`kj (s̃, x, y)ds̃dxdy = 0. (6.15)

The above residual condition (6.15) yields Np equations for the Np unknown nodal

values ∂Ek
s̃i/∂t. These equations are still uncoupled from the global domain; to

couple element k to its neighbors we integrate (6.15) by parts:

∫
Dk

∂Ek
s̃

∂t
`kj − c2Bk

y

∂`kj
∂x

+ c2Bk
x

∂`kj
∂y

+ cZ0j
k
s̃ `
k
j − vgEk

s̃

∂`kj
∂s̃

ds̃dydx

=

∫
∂Dk

n · [−vgEk
s̃ ,−c2Bk

y , c
2Bk

x]`kjdA,

(6.16)

where n := [ns̃, nx, ny] denotes the outward normal of Dk along the boundary. Next,

we adjust the right-hand-side of (6.16) with numerical flux terms which incorporate

information from the neighboring elements of Dk:

∫
Dk

∂Ek
s̃

∂t
`kj − c2Bk

y

∂`kj
∂x

+ c2Bk
x

∂`kj
∂y

+ cZ0j
k
s̃ `
k
j + vgE

k
s̃

∂`kj
∂s̃

ds̃dydx

=

∫
∂Dk

n · [vgE∗s̃ ,−c2B∗y , c
2B∗x]`

k
jdA.

(6.17)

Lastly, integrating by parts again, we return to form of (6.15) but with the adjusted

right-hand-side incorporating the neighboring elements. This is commonly referred

as the strong form:

∫
Dk

R(s̃, x, y, t)`kj (s̃, x, y)ds̃dxdy =

−
∫
∂Dk

n · [vg(Ek
s̃ − E∗s̃),−c2(Bk

y −B∗y), c2(Bk
x −B∗x)]`kj (s̃, x, y)dA.

(6.18)

At this point, we introduce the mass and stiffness matrices Mk, Sks̃ , Skx , and Sky

97

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

which are central to representing (6.18) in semi-discrete form:

[Mk]ij =

∫
Dk

`ki (s̃, x, y)`kj (s̃, x, y)ds̃dxdy, (6.19a)

[Sks̃]ij =

∫
Dk

`ki (s̃, x, y)
∂`kj (s̃, x, y)

∂s̃
ds̃dxdy, (6.19b)

[Skx]ij =

∫
Dk

`ki (s̃, x, y)
∂`kj (s̃, x, y)

∂x
ds̃dxdy, (6.19c)

[Sky]ij =

∫
Dk

`ki (s̃, x, y)
∂`kj (s̃, x, y)

∂y
ds̃dxdy. (6.19d)

We also define the differentiation matrices Dks̃ := (Mk)−1Sks̃ , Dkx := (Mk)−1Skx , and

Dky := (Mk)−1Sky . We now construct the semi-discrete form of (6.7a) as:

dEk
s̃

dt
=c2DkxBk

y − c2DkyBk
x − cZ0j

k
s̃ + vgDks̃Ek

s̃ +
1

2
(Mk)−1

∫
∂Dk

EF
s̃ `

kdA,

(6.20a)

EF
s̃ =c2nx[[By]]− c2ny[[Bx]]

+
(

1 +
vg
c
ns̃

)
[[Es̃]]− ns̃(ns̃[[Es̃]] + nx[[Ex]] + ny[[Ey]]).

(6.20b)

The term EF
s̃ denotes the upwind numerical flux term which incorporates jumps

in values of the fields from neighboring elements with [[u]] = u+ − u− where u− is

the value of the field from within the element k and u+ is the value of the field

from the adjacent element along an interface. The outward normal components: ns̃,

nx, and ny, are defined along the 4 faces of the element k. Lastly, the operator

(Mk)−1
∫
∂Dk `

kdA is the surface-to-volume “LIFT” operator as mentioned in [11].

Imposing the boundary conditions are a bit more involved as the transverse

boundaries x = ±a and y = ±b are perfectly conducting while the boundaries along

s = smax, smin are inflow/outflow. Thus 3 different boundary conditions are required

along the 6 planar boundaries of ∂Ω: the PEC condition, the inflow condition, and

the outflow condition.

For the PEC transverse boundaries we only impose (2.50a). Since (2.50b) is

98

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

satisfied by the initial condition, then it is satisfied for all time and need not be

imposed. The condition in (2.50a) is imposed via the mirror principle so that n ×

[[E]] = −2n × E−. For the inflow boundary, we take all 6 fields as zero upwind.

Specifically, the inflow condition relates the jumps in fields as [[E]] = −E− and

[[B]] = −B−, while the outflow boundary simply requires no condition. More details

on the implementation of these conditions are discussed in section 6.5.3.

6.5 Numerical Implementation

In this section we describe step-by-step the entire process for solving the initial

value problem (6.7) for vg ≥ vc on Ω with initial data satisfying (6.11) and the

perfectly conducting boundary conditions for x = ±a and y = ±b, and inflow/outflow

conditions on s = smax, smin.

6.5.1 Preprocessing Steps

We begin by partitioning the domain Ω = [s̃min, s̃max]×[−a, a]×[−b, b] into K tetrahe-

dral elements. While many mesh generating algorithms exist for this application, we

simply partition Ω into N res
s N res

x N res
y rectangular boxes (typically cubes) and then

subpartition each of the boxes into 6 tetrahedrons generating K = 6N res
s N res

x N res
y

elements. An example of a box and tetrahedron is shown in Figure 6.1.

We proceed by defining the nodal coordinates for the Np nodes within each ele-

ment. These nodes are first generated on a standard reference element: the tetrahe-

dron defined by the vertices (−1,−1,−1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1) and

later linearly mapped to each of the physical elements. We employ Lagrange–Gauss–

Lobatto nodal spacing for better matrix conditioning; these nodes are described in

detail on p407–418 of [11].

99

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

C

G

D

H

B

F

A

E

Figure 6.1: An example cube containing 6 congruent tetrahedral elements denoted by
vertices: ACBE, BEFC, FCGE, DEAC, HCDE, and GEHC. One tetrahedron,
HCDE, is highlighted in red.

Using the nodal coordinates on a standard reference element, we build the differ-

entiation matrices Ds̃, Dx, Dy, and the surface-to-volume integral operator (M)−1E

used in the numerical flux for the reference element. As a note, the operator we

denote (M)−1E is a matrix of size Np× 4Nfp where Nfp = (N + 1)(N + 2)/2 are the

number of nodes along each triangular face of the elements. The purpose of (M)−1E

is to evaluate the surface integral over the element faces as seen on the right-hand-side

of (6.16). A detailed description of these steps are found on p418–425 of [11].

Next, we generate the geometric factors which transform the coordinates between

the reference element and the physical elements. These factors are the terms in the

Jacobian array J of size Np×K which transform the physical element to the reference

100

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

coordinates. Additionally, we generate the face normal arrays ns̃, nx, ny each of size

4Nfp × K which contain the outward normal components for each node along the

element faces. These steps are covered on p425–427 of [11].

With the K tetrahedral elements and their vertices from mesh generation, we

must also build the connectivity maps. These arrays incorporate the information

about which elements are connected to a given element as well as which faces of

the elements are shared. These maps are used to generate the node lists for which

nodes are in contact along an interface. This information is used in constructing the

numerical flux based on the interior and exterior values of an element. It is important

to note that nodes along element edges share faces with more than one other element

and as such appear multiple times in the connectivity maps.

In Figure 6.2, the red nodes lie in the interior of the element, the green nodes

lie on the triangular faces of the element, and the blue nodes lie on the edges and

corners of the element. The numerical flux jumps [[·]] are generated with the boundary

node values (green and blue) based on which face, not edge, they correspond to.

Thus, while the edge nodes (blue) may be shared with many elements, only the

corresponding triangular faces form numerical fluxes. For the example of element

ACBE and the edge nodes along segment EC, only the elements BEFC and DEAC

have faces shared with ACBE. The nodal values of elements FCGE, HCDE, and

GEHC do not contribute to the numerical flux for element ACBE. With the nodes

and connectivity maps complete, we can set up the routine to construct for the initial

conditions for each field.

It is worth clarifying that the edge and corner nodes, where the faces of an

individual element meet, are listed 2 and 3 times respectively in the face node lists.

Recalling a given element has Np = (N+1)(N+2)(N+3)/6 nodes in total, precisely

Np,vol = (N−3)(N−2)(N−1)/6 nodes lie in the interior, Np,faces = 2(N−2)(N−1)

nodes lie strictly on faces but not edges, Np,edges = 6(N−1) nodes lie strictly on edges

101

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

C

G

D

H

B

F

A

E

C

G

D

H

B

F

A

E

C

G

D

H

B

F

A

E

C

G

D

H

B

F

A

E

Figure 6.2: Tetrahedral 6th-order nodes for element ACBE. (Top left) interior volume
nodes in red. (Top right) face nodes only shared with 1 other element in green.
(Bottom left) Edge and corner nodes shared with several other elements in blue.
(Bottom right) all Np = 84 nodes displayed together.

but not corners, and Np,verts = 4 nodes lie on the corner vertices. We therefore have

the decomposition: Np = Np,vol+Np,faces+Np,edges+Np,verts. In Figure 6.2 we display

Np,vol nodes in red, Np,faces nodes in green, and Np,edges+Np,verts nodes in blue. Thus,

the face node list for a single element is of length 4Nfp = Np,faces+2Np,edges+3Np,verts.

6.5.2 Initial Condition Setup

To generate the initial conditions which satisfy (6.9)–(6.10), we use a sparse DG

Poisson solver instead of the Fourier series solutions from (6.11)–(6.12). To build a

102

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

2D solution from (6.9), we first divide out the λ(s̃) dependence as a parameter to solve

for the quantities E2D(x, y) := E(s̃, x, y, 0)/λ(s̃) and B2D(x, y) := B(s̃, x, y, 0)/λ(s̃).

Next, we partition the 2D domain Ω2D := [−a, a] × [−b, b] into K2D triangular,

order N2D elements; the order N2D should be at least the order N used in the 3D

problem. We apply the 2D sparse DG Poisson solver detailed on p275–280 of [11] to

solve for (E2D,B2D) on the set of nodes (x2D, y2D) ∈ Ω2D where the total number of

nodes is Np2D ×K2D where Np2D = (N2D + 1)(N2D + 2)/2.

We next must interpolate the solution of (E2D,B2D), defined on (x2D, y2D) ∈ Ω2D,

to the 3D nodal (s̃, x, y) coordinates. For every 3D node (s̃, x, y), we project the

location onto Ω2D by its (x, y) coordinate. We then locate which triangular 2D

element in Ω2D the point (x, y) is located in. Next, we interpolate the solution of

(E2D,B2D) at (x, y) using its N2D order polynomial solution on that element. If

the point (x, y) lies on an edge or corner in Ω2D, then we take the average of the

interpolated value of (E2D,B2D) at (x, y) among all elements containing (x, y).

Once the solution (E2D,B2D) has been computed for each 3D node’s (x, y) co-

ordinate, we multiply this solution by λ(s̃) to construct the initial condition for the

3D problem which satisfies (6.9)–(6.10). To summarize, we solve for (6.9)–(6.10)

independent of λ(s̃) with a 2D solution in (x, y) and then extend this 2D solution to

3D by multiplication of λ(s̃).

6.5.3 Time Evolution

With the preprocessing steps for constructing the elements, nodes, connectivity maps,

derivative matrices, Jacobian and outward normal arrays, and initial fields, we can

now evolve (6.7) in time. We adopt the same low-storage 4th order Runge-Kutta

scheme as given in (5.16). Following the DG approach used to derive (6.20), we now

list the steps performed at each Runge-Kutta time stage.

103

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

1 - Compute Field Differences

We first compute the jumps between elements of [[Es̃]], [[Ex]], [[Ey]], [[Bs̃]], [[Bx]], and

[[By]]. This entails using the connectivity map to determine which elements are

connected to a given element along each of its 4 faces. For each of the Nfp nodes

along a face, the difference [[u]] = u+ − u− where the − denotes the value of the field

from within the element and + denotes the value of the field at its corresponding

node in the neighboring element along the face. When complete we have generated

[[Es̃]], [[Ex]], [[Ey]], [[Bs̃]], [[Bx]], and [[By]] which are each arrays of size 4Nfp ×K; that

is, the jump in value for each field along each face, at the Nfp nodes on each face,

for all K elements.

Lastly, for the face nodes with no corresponding element along the boundary ∂Ω,

we set the jump to zero for the moment. That is we set u+ ≡ u− if no adjacent

element exists. We will impose the boundary conditions next.

2 - Impose Boundary Conditions

In this step we must impose the 3 different boundary conditions: PEC, inflow, and

outflow along ∂Ω. We begin by imposing the PEC condition. As we note in section

2.2.2, only (2.50a) is required for the perfectly conducting boundary; (2.50b) is auto-

matically imposed with (2.50a) provided the initial condition satisfies (2.50b); which

it does by construction. Thus for face nodes along x = ±a we set: [[Es̃]] = −2E−s̃ and

[[Ey]] = −2E−y , effectively setting the average value for the tangential electric fields

to zero. Similarly, for y = ±b we set: [[Es̃]] = −2E−s̃ and [[Ex]] = −2E−x .

Next, the inflow condition is handled by setting each field’s jump by assuming the

upwind value is zero since no preexisting fields exist ahead of the source. Specifically,

we set [[u]] = −u− for each of the 6 fields along the inflow wall at s̃ = s̃max.

104

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

Lastly, the outflow condition does not need to be imposed as in the case of an

advective transport equation. We simply leave the jumps in the fields along the

outflow boundary, at s̃ = s̃min, as [[u]] = 0 which was done automatically in the

previous step of computing the field differences. Thus, unless otherwise stated in the

PEC or inflow boundary condition, [[u]] = 0 for each field not mentioned along ∂Ω.

3 - Set Up Numerical Fluxes

In this step we generate the flux terms from the field differences computed in step 1 of

the evolution procedure. To begin, we compute the outward normal field components:

n · [[E]] = ns̃[[Es̃]] + nx[[Ex]] + ny[[Ey]], (6.21a)

n · [[B]] = ns̃[[Bs̃]] + nx[[Bx]] + ny[[By]]. (6.21b)

where ns̃, nx, and ny are the outward normal components along the faces computed in

preprocessing. Note, the products on the right-hand-sides of (6.21) denote Hadamard

matrix multiplication (component-wise products) resulting in output arrays of size

4Nfp ×K; the total number of face nodes over all elements.

Now we set up the individual flux terms for each of the fields. Following the

procedure in section 6.4 for Es̃ which led to (6.20), we now list all 6 flux terms:

EF
s̃ = c2nx[[By]]− c2ny[[Bx]] +

(
1 +

vg
c
ns̃

)
[[Es̃]]− ns̃(n · [[E]]), (6.22a)

EF
x = c2ny[[Bs̃]]−

c2

η
ns̃[[By]] +

(
1 +

vg
c
ns̃

)
[[Ex]]− nx(n · [[E]]), (6.22b)

EF
y =

c2

η
ns̃[[Bx]]− c2nx[[Bs̃]] +

(
1 +

vg
c
ns̃

)
[[Ey]]− ny(n · [[E]]), (6.22c)

105

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

BF
s̃ = −nx[[Ey]] + ny[[Ex]] +

(
1 +

vg
c
ns̃

)
[[Bs̃]]− ns̃(n · [[B]]), (6.22d)

BF
x = −ny[[Es̃]] +

1

η
ns̃[[Ey]] +

(
1 +

vg
c
ns̃

)
[[Bx]]− nx(n · [[B]]), (6.22e)

BF
y =
−1

η
ns̃[[Ex]] + nx[[Es̃]] +

(
1 +

vg
c
ns̃

)
[[By]]− ny(n · [[B]]). (6.22f)

Note, the terms (1 + (vg/c)ns̃) denote the incrementation of (vg/c)ns̃ by 1 to each of

the 4Nfp×K components in the array. Also, the factors of η appearing in (6.22) are

also arrays of size 4Nfp × K since they contain the value η(s, x) at each face node

for each element; all multiplication in (6.22) is Hadamard matrix multiplication.

4 - Compute Right-Hand-Side Terms

This step constructs the right-hand-sides of (6.7) incorporating the flux terms as in

(6.20). The numerical flux terms in (6.22) are integrated over the boundary of each

element which is handled by the surface-to-volume LIFT matrix on page 422 of [11].

The discrete right-hand-sides of (6.7) are:

dEs̃
dt

= c2DxBy − c2DyBx − cZ0js̃ + vgDs̃Es̃ + LIFT · (EF
s̃ /(2J)), (6.23a)

dEx
dt

= c2DyBs̃ −
c2

η
Ds̃By − cZ0jx + vgDs̃Ex + LIFT · (EF

x /(2J)), (6.23b)

dEy
dt

=
c2

η
Ds̃Bx − c2DxBs̃ +

c2κ

η
Bs̃ − cZ0jy + vgDs̃Ey + LIFT · (EF

y /(2J)),

(6.23c)

dBs̃

dt
= −DxEy +DyEx + vgDs̃Bs̃ + LIFT · (BF

s̃ /(2J)), (6.23d)

dBx

dt
= −DyEs̃ +

1

η
Ds̃Ey + vgDs̃Bx + LIFT · (BF

x /(2J)), (6.23e)

dBy

dt
=
−1

η
Ds̃Ex +DxEs̃ −

κ

η
Es̃ + vgDs̃By + LIFT · (BF

y /(2J)). (6.23f)

where the products of the derivative matrices with the fields, such as DxEy, are

matrix products per element. One could compute DxEy by building a very large

block diagonal matrix of size NpK×NpK withDx = diag(Dkx), and then subsequently

106

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

multiplying this matrix by Ey reshaped as a NpK × 1 vector where the entries

1, ..., Np correspond to k = 1, and Np + 1, ..., 2Np correspond to k = 2 and so forth.

However, this is an inefficient method; instead we use the reference element maps in

the preprocessing stage to use a matrix Dx for the reference element and compute

the quantity element-by-element with array operations which is detailed on pages

423–425 of [11].

Another note is that the η(s, x) arrays in (6.23) are Hadamard matrix multiplied

and are computed at the 3D nodal values and are of size Np×K. This is in contrast

to the η(s, x) arrays in (6.22), which are of size 4Nfp ×K.

5 - Evaluate RK Step

Once the right-hand-sides in (6.23) have been computed, we apply the low-storage

Runge-Kutta algorithm from (5.16). The timestep for the scheme is determined

by the scale length of the elements and the DG order N . The scale length for an

element is the diameter of the inscribed sphere within a tetrahedral element. For a

good approximation to this, we use the minimal distance between nodes as the scale

size:

dt ≤ 1

2c
·min

k

(
min
i,j, i6=j

√
(s̃ki − s̃kj)2 + (xki − xkj)2 + (yki − ykj)2

)
. (6.24)

The factor of 1/2c is a reasonable CFL constant we have determined experimentally.

With this timestep bound, we compute the necessary number of steps required

to reach a desired final time. We repeat steps 1–4 in each of the 5 stages in the RK

loop given by (5.16) until the final time.

107

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

6.6 Convergence Results

In this last section, we test the convergence of the DG algorithm. We evolve the

fields in a bend in a cube: Ω = [−2m, 2m]3 with vg = 1.05c. Specifically, we use the

following parameters for our tests:

smin = −2m, smax = 2m, a = 2m b = 2m,

κ = 0.02m−1, σ = 0.50m, tmax = 1.0m/c, q = 1pC.

We partition the domain Ω evenly with N res ≡ N res
s = N res

x = N res
y cubes leading

to a total number of K = 6(N res)3 elements for N res = {5, 7, 9, 11} and consider

DG polynomial orders N = {2, 4, 6, 8}. We compare solutions on a sample grid of

400 points: (s̃i, xj, 0) where s̃i = −1/2 + (i− 1)/19 and xj = −1/2 + (j − 1)/19 for

i, j = 1, ..., 20. This sample grid comprises a planar slice of 20×20 equidistant points

in a 1m×1m square in the s̃-x plane. We interpolate all solutions to this sample grid

using their Nth order polynomial solution. For solutions occurring on a boundary

between elements, we take the average of all adjoining element polynomial solutions.

Our reference solution for the tests used K = 10368 elements of order N = 12.

For our initial condition, we solve Poisson’s equation in section 6.5.2 using K2D =

2304 triangles of N2D = 12 order. We then interpolate this 2D solution on (x, y) to

the 3D grid for each (N,K) by multiplying by the factor λ(s̃).

Figure 6.3 shows the N + 1 order spectral convergence of the DG scheme. The

highest order examined N = 8 appears to have a diminished convergence rate at

higher resolutions; we conjecture this is caused by error introduced by the time-

stepping method. Future work will check this. The L2 errors are particularly large by

comparison to our work in other chapters; however, the small 3D source used here was

not well resolved with fewer elements of lower order. We chose a physically unrealistic

source and domain to test our model as a physically accurate and meaningful 3D

108

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

solution would require a larger computing system. All simulation tests here were

computed on our Nvidia GTX Titan using MATLAB scripts partially developed by

[11] in under 4 hours total.

109

Chapter 6. Full 3D Time Domain Study – Work presented at ICOSAHOM14

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
−8

−7

−6

−5

−4

−3

−2

−1

0
L2 Error for Ex

log10(h0/mm)

lo
g
1
0
(E

rr
or
)

K N = 2 N = 4 N = 6 N = 8
384 1.5460e− 01 8.2595e− 03 5.3970e− 04 2.5137e− 05
750 6.7766e− 02 3.7587e− 03 1.5272e− 04 6.7853e− 06
1296 5.1801e− 02 1.4286e− 03 3.9652e− 05 9.8637e− 07
2058 2.9106e− 02 7.3478e− 04 1.5911e− 05 3.8661e− 07
3072 1.8907e− 02 4.5200e− 04 9.4717e− 06 1.7859e− 07
4374 1.3448e− 02 2.3298e− 04 3.2508e− 06 6.2646e− 08
6000 1.0602e− 02 1.6372e− 04 1.9549e− 06 3.9972e− 08
7986 7.4090e− 03 8.2594e− 05 8.6091e− 07 2.7784e− 08
10368 5.7390e− 03 5.6247e− 05 4.6203e− 07 2.2747e− 08

Rate 2.95 4.56 6.37 6.68

Figure 6.3: L2 error for Ex for the 3D common grid at t = 1.0m/c for order N = 2
(blue), N = 4 (green), N = 6 (red), and N = 8 (cyan) and varying number of
elements with a corresponding edge length of h0 = 4(K/6)−1/3m.

110

Chapter 7

Conclusions and Future Work

7.1 Overview of Completed Work

In this final chapter, we discuss the various approaches used to analyze CSR in both

the frequency and time domain. Here we summarize the results of the 4 methods

investigated from Chapters 3–6 with the benefits and drawbacks we encountered.

7.1.1 Chapter 3 – Summary

Here we studied CSR using a 1D frequency-domain simulation with the Fourier

series in y, the Fourier transform in s − ct, and the paraxial approximation. We

have modeled CSR in a rectangular toroidal bend and achieved results similar to

[5] in a fraction of the computation time. This method, using the Fourier series

in y, greatly reduces the computational complexity of the system and results in a

reasonable approximation to the CSR fields using only a few p-modes.

In our tests, both our FD and DG codes performed comparably in efficiency, i.e.

similar errors for similar computation times. The comparison between FD and DG

111

Chapter 7. Conclusions and Future Work

methods enables us to explore newer numerical techniques and make decisions on

future codes based on the different methods.

7.1.2 Chapter 4 – Summary

Next we analyzed CSR using a 2D frequency-domain simulation with the paraxial

approximation but without the Fourier series in y used in Chapter 3. Our primary

intent here was to study the advantages of 2D DG methods over 2D FD methods.

While both our DG and FD results are based on MATLAB codes which are not fully

optimized, we have observed a significant speed-up using our DG method developed

by [11]. This advantage of DG over FD was considerably more pronounced after the

implementation of GPU computing into our MATLAB code. In MATLAB, the GPU

favors the large dense matrix-matrix product computations of our DG scheme but

does not support sparse matrix products used for our FD scheme.

We did not examine higher order finite difference schemes. On rectangular do-

mains, a high order FD method may possibly outperform our DG method. However,

our DG method does handle complex geometry better [11] which would be difficult

to incorporate into FD methods without degrading the accuracy of the method. One

such example is considering a curved domain, where the stair-step boundary contour

approximation for the FD method is particularly limiting.

7.1.3 Chapter 5 – Summary

In this chapter we studied the solution of Maxwell’s equations in the time-domain to

allow for more complex geometries where the paraxial approximation would not be

valid. To reduce the computational work involved in a 3D simulation we adopted the

use of the Fourier series in y as in Chapter 3. One particular advantage examined

112

Chapter 7. Conclusions and Future Work

in the time domain simulations, is the ability to examine the effects of reflected and

scattered waves, unlike in the frequency-domain methods of Chapters 3 and 4.

Importantly, we were able model the larger scale wake field pulses in agreement

with experimental data collected at the CLS [4] using our simplified geometry with

only the p = 1 mode in the Fourier series in y. However, the finer frequency structures

observed in the CLS experimental data were not fully captured by our simplified

model.

7.1.4 Chapter 6 – Summary

Lastly, we analyzed a different approach for solving Maxwell’s equations in the time

domain using a 3D DG method. Here we adopted the Galilean transformation to

essentially form a traveling grid of nodes which follow the source. The idea behind

this approach was to limit the computational domain to a neighborhood of the source

to mimic the concept of the paraxial approximation where the fields and source travel

together in the same direction.

We successfully demonstrated the stability and spectral convergence of this ap-

proach; however, we have not yet examined parameter ranges of interest for acceler-

ator and beam physics. Our goal was to establish a proof of concept for the Galilean

transformation in the Frenet-Serret coordinates using DG.

7.2 Conclusions

In conclusion, we have demonstrated the robustness and efficiency of the nodal DG

methods outlined in [11] when applied to both the frequency and time domain

Maxwell equations in several cases. While we have examined nodal DG methods

113

Chapter 7. Conclusions and Future Work

in comparison to FD, we have not considered other techniques such as continuous

finite element methods or modal DG schemes.

Additionally, we computed CSR fields and impedances consistent with [1, 2, 22,

23]. We achieved our goal of utilizing DG to accurately model CSR in an effort to

promote awareness of these newer numerical techniques to the accelerator and beam

physics community.

7.3 Future Work

In this final section, we outline possible avenues of exploration not addressed in this

thesis. In our work on the various topics covered here, we also list some difficulties

which also could be improved upon in future work.

For our analysis in Chapter 3, we seek to adjust our algorithms to allow for

perturbations in the wall positions xin(s) and xout(s) to more accurately describe

complex vacuum chambers. This adjustment must be made carefully as to not violate

the paraxial approximation. Additionally, we are investigating the use of gauge

transformations on the Schrödinger-type equations for better computational results.

We also could study the construction of the time domain fields using the inverse

Fourier transform in s− ct.

Regarding our studies in Chapter 4, we have only considered rectangular domains

and have not tested the efficiency of higher order finite difference grids. We also have

not implemented GPU compatibility for the finite difference methods since sparse

arrays are not natively supported by MATLAB’s CUDA library from the Parallel

Computing Toolbox at this time. As in the case of Chapter 3, we also have not

explored the time domain wake fields from the inverse Fourier transform.

In Chapter 5, we aim to improve upon our simplified geometry of the problem

114

Chapter 7. Conclusions and Future Work

by including a tunnel for the backward port. Furthermore, we have not studied the

effects of including more p-modes; however, preliminary tests suggest the higher p-

modes do not contribute significantly to the solution away from the reference orbit.

Another topic of study involves transcribing the time domain code used here into a

lower level computing platform such as Fortran or C++ with parallel computing.

Lastly, for Chapter 6 we would like to consider applying the Fourier series in y as

in Chapters 3 and 5 to reduce the 3D problem into 2D while maintaining the Galilean

transformation. While the goal here was to establish a proof-of-concept for Maxwell’s

equations under the Frenet-Serret and Galilean transformations, a full 3D problem

with realistic parameters was not feasible on our single GPU-enabled system due to

memory constraints. In addition to extending our CLS code in Chapter 5 into other

programming languages, we would also like to transcribe our 3D MATLAB code used

in Chapter 6 into a lower level programming language, such as C++ or Fortran, to

allow for the simulation of larger-scale problems.

115

Appendix A

DG Code for CLS

A.1 CLS Algorithm Overview

In this section, we will outline every step in a complete simulation for the PDE system

defined in the CLS chapter. To begin, we must complete a number of preprocessing

routines to generate matrices and operators. Next, the PDEs are evolved in a time-

stepping routine to a desired end point. Lastly, the results can be processed to obtain

specific information. This approach is broken down into the following steps (code

line numbers are in brackets):

1. Preprocessing routines

(a) Define simulation parameters and constants

(b) Mesh generation

i. Generate vertices with mesh generation

ii. Create triangular elements from vertices

(c) Node and operator generation

116

Appendix A. DG Code for CLS

i. Construct Nth order nodal coordinates for reference triangle

ii. Generate Vandermonde matrix from reference nodal coordinates

iii. Create derivative matrices from Vandermonde matrix

iv. Build physical nodes from elements and reference triangle nodes

v. Construct lift matrix for surface integral terms

vi. Generate reference element to physical element maps and normals

vii. Create element-to-element and element-to-face connectivity maps

viii. Locate physical nodes along edges between elements

ix. Build node lists for interior and exterior nodes by element

(d) Initialization of fields and sources

i. Compute stable time-step

ii. Combine matrix factors in PDE operator for faster computation

iii. Construct residual storage arrays for fields

iv. Generate source terms used in PDE

v. Initialize fields using PDE initial conditions

(e) Optional preprocessing

i. Set up curvilinear element operators

ii. Create interpolation matrix to map data to equally spaced nodes

iii. Locate probe elements for time-series data storage

iv. Move all necessary matrices and arrays to GPU

2. Timestepping routines

(a) Main Timestep Loop (LSERK)

i. Calculate current time from step number and RK stage

ii. Compute jump terms along edge nodes

117

Appendix A. DG Code for CLS

iii. Impose boundary conditions on edge nodes along global boundary

iv. Generate n · E and n ·H terms along edges for fluxes

v. Construct numerical flux terms for PDE using upwinding

vi. Compute necessary partial derivatives of fields

vii. Evaluate right-hand-sides for PDE including sources

viii. Update residual storage arrays used for LSERK

ix. Compute fields at next timestep using residual storage arrays

(b) Optional timestepping routines

i. Process curvilinear elements

ii. Extract value of fields at desired probe locations for time-series data

iii. Plot fields every few timesteps for debugging

3. Postprocessing routines

(a) Clean up and save data to workspace file

(b) Optional postprocessing

i. Interpolate fields to equally spaced nodes

ii. Slice fields along contours

iii. Examine frequency content of time-series data

iv. Other plotting methods

Now we will detail each of the itemized routines. We also will explain the MAT-

LAB implementation for each routine some of which are modeled after the work

in Nodal Discontinuous Galerkin Methods by J. Hesthaven and T. Warburton [11].

We have implemented several improvements from those MATLAB codes including:

implementation of GPU array objects, removal of global variable dependencies, de-

composition of structure array objects, and preallocation of memory for faster pre-

processing.

118

Appendix A. DG Code for CLS

A.2 Preprocessing Routines

A.2.1 Parameter Definitions

First, we must define or input the constants and parameters to be used in the simu-

lation. This code block includes all the user specified data and some quick computa-

tions. The mesh geometry details are not included here but are located in a separate

routine. The units of each quantity are listed in the comment blocks in parenthesis.

% Primary input parameters

x_in = -0.032; % (m) Initial distance of source to inner wall

x_out = 0.078; % (m) Initial distance of source to outer wall

x_max = 0.330; % (m) Maximal distance of source to outer wall (est)

s_min = -0.10; % (m) Starting region before bend

s_max = 3.500; % (m) Length of computational domain

h = 0.032; % (m) Height of chamber

R = 7.143; % (m) Radius of curvature

q = 1e-12; % (C) Charge of source (assumed negative)

c = 299792458; % (m/s) Speed of light

Z0 = 376.730313; % (ohms) Impedance of free space

p = 1; % () Mode number for Fourier series in y

alpha = pi*p/h; % (m^-1) Wave number for Fourier series in y

tau_max = 3.500; % (s) Final time of simulation

Here, it is important to note that t max should be no larger than s max to avoid issues

near the boundary. If a longer time is desired, or the geometry produces reflections

sooner, an increased s min and s max may be required. Also, the code is currently

set up to handle a single y Fourier-mode p but if a sum over p is desired, a loop can

be made over p. The caveat however is that a new grid may need to be constructed

119

Appendix A. DG Code for CLS

to resolve higher order p-modes requiring the entire code to be run again.

Next, the source is defined in terms of its longitudinal and vertical distributions in

s and y. We opt to use the simplified formula for Gp if the vertical source distribution

G(y) is very narrow (i.e. σy = 0); this is a good approximation for small p modes;

for this case, Gp is constant. For σy 6= 0 use Gp = (−1)(p−1)/2(2/h) exp(−(αpσy)
2/2).

% Logitudinal source distribution in s

sig_s = 0.002; %(m) Standard deviation of source width in s

t_delay = 0.05; %(s) Temporal delay for source (scalar shift)

f1 = 1/(sig_s*sqrt(2*pi));

f2 = 2*sig_s^2;

f3 = f1/(-sig_s^2);

lambda = @(smt) f1*exp(-(smt+t_delay).^2/f2);

lambdap = @(smt) f3*(smt+t_delay).*exp(-(smt+t_delay).^2/f2);

% Vertical source distribution in y

Gp = 2/h*(-1)^((p-1)/2); %(m^-1) Fourier coefficient for G(y) mode p

The functions lambda and lambdap refer to the longitudinal distributions λ(s) and

λ′(s) respectively (assuming a Gaussian bunch). The temporal delay t delay is

used to offset the source such that it is effectively compactly supported in the region

smin < s < 0; a positive offset must be used and is recommended to be at least twice

the bunch length sig s. The intermediate function stages f1, f2, and f3 are used

to eliminate redundant computations.

Lastly, we include some additional parameters used for the numerical algorithm.

Here we define the order N to be used on all elements and also specify several option

flags such as enabling GPU computing and plotting routines.

120

Appendix A. DG Code for CLS

% Additional code components

h0 = 0.005; % (m) Scaled edge length for resolution

N = 6; % () Order of approximation (for DG method)

Nout = 12; % () Order of output nodes for plotting

Np = (N+1)*(N+2)/2; % () Number of nodes per element

Nfp = N+1; % () Number of nodes per edge

Ntol = 1e-12; % () Tolerance in locating nodes along boundaries

alp = 1; % () Denotes flux type (1 = upwind, 0 = central)

The quantity h0 is used to define a rough element size which should be small enough

to resolve the source bunch length. A safe choice for this parameter for up to moder-

ate orders N . 20 is h0 ≤ N · sig s/5 which ensures the Gaussian source is resolved

well enough. The parameter Nout is used only for plotting; this number can be

greater than N to produce smoother upscaled resolution images.

A.2.2 Mesh Generation

Next in the preprocessing chain is the mesh generation routines. We opt to use the

distmesh subroutines to generate the triangular mesh. These routines were developed

by Per-Olof Persson (UC Berkeley) and Gilbert Strang (MIT) [17]. The desired

output of these routines are: total number of elements K, total number of vertices

Nv, s-coordinates of vertices VS, x-coordinates of vertices VX, and the connectivity

matrix of elements EToV. The usage of the routines for our application is as follows:

% Define boundary corner locations

s1 = 1.832632366508338; x1 = 0.322357941766471;

s2 = 1.882483505139345; x2 = 0.129081490102798;

s3 = 1.942483505139345; x3 = 0.129081490102798;

121

Appendix A. DG Code for CLS

s4 = 1.950922137260992; x4 = 0.322357941766471;

s5 = 2.082038177552993; x5 = 0.322357941766471;

s6 = 2.122502618239870; x6 = 0.015000000000000;

% Define geometry by signed distance function

fd = @(p) max([-((p(:,1) < 1e-12).*x_out + ...

(1e-12 <= p(:,1) & p(:,1) < s1).* ...

((R+x_out)./cos(p(:,1)/R)-R) + ...

(s1 <= p(:,1) & p(:,1) < s2).* ...

((R+x_out)*tan(s1/R)./sin(p(:,1)/R)-R) + ...

(s2 <= p(:,1) & p(:,1) < s3).*x2 + ...

(s3 <= p(:,1) & p(:,1) < s4).* ...

(x3 + (p(:,1)-s3)/tand(2.5)) + ...

(s4 <= p(:,1) & p(:,1) < s5).*x4 + ...

(s5 <= p(:,1) & p(:,1) < s6).* ...

(x5 - (p(:,1)-s5)/tand(7.5)) + ...

(s6 <= p(:,1)).*x6) + ...

p(:,2),s_min-p(:,1),-s_max+p(:,1),x_in-p(:,2)],[],2);

fh = @huniform; %Use uniform vertex spacing weights

bbox = [s_min,x_in;s_max,x_max]; %Define global domain box

Here, fd defines an unnormalized signed distance function (in the format required

for distmesh) from the boundary of the domain which incorporates the complex

outer boundary xout(s) and the buffer regions extending for s < s0 = 0 and s > s6.

While evaluation speed of this function is not optimized for extensive use, in this

preprocessing routine it performs adequately. Next, the function fh defines the

element weighting function for which we choose uniform weights. And lastly, bbox

defines a bounding box for the domain used by distmesh to restrict where to generate

122

Appendix A. DG Code for CLS

elements.

% Specify fixed vertices required for conformal boundary

hline1_s = linspace(s_min,0,ceil(-s_min/h0)+1)’;

hline1_x = 0*ones(size(hline1_s));

hline2_s = linspace(0,s2,ceil(s2/h0)+1)’;

hline2_x = 0*ones(size(hline2_s));

hline3_s = linspace(s2,s_max,ceil((s_max-s2)/h0)+1)’;

hline3_x = 0*ones(size(hline3_s));

vline1m_x = linspace(x_in,0,ceil(-x_in/h0)+2)’;

vline1m_s = 0*ones(size(vline1m_x));

vline1p_x = linspace(0,x_out,ceil(x_out/h0)+3)’;

vline1p_s = 0*ones(size(vline1p_x));

vline2m_x = linspace(x_in,0,ceil(-x_in/h0)+2)’;

vline2m_s = s2*ones(size(vline2m_x));

vline2p_x = linspace(0,x2,ceil(x2/h0)+3)’;

vline2p_s = s2*ones(size(vline2p_x));

ffix = [s_min,x_in;s_min,x_out;s_max,x_in;s_max,x7;...

s1,x1;s2,x2;s3,x3;s4,x4;s5,x5;s7,x7];

ffix = [ffix ;...

hline1_s, hline1_x; hline2_s, hline2_x; hline3_s, hline3_x; ...

vline1m_s, vline1m_x; vline1p_s, vline1p_x; ...

vline2m_s, vline2m_x; vline2p_s, vline2p_x];

This code block defines a list of vertices which must be included in the triangulation

of the domain. The hline vectors define vertices along the source trajectory at

x = 0 while maintaining a node exists at s = 0 and s = s2, vline1 vectors define

vertices along the interface at s = 0, and the vline2 vectors define vertices along

123

Appendix A. DG Code for CLS

the interface at s = s2. The other vertices include all corners of the domain; the

(s1− h0/2, x1− 2h0/3) coordinate pair is an ad hoc method for ensuring that the no

single element contains boundary edges along both 0 < s < s1 and s1 < s < s2. These

are necessary to ensure that the fields in the constructed elements are continuous,

i.e. κ(s) and Θ(x) are constant in each element.

[P,EToV] = distmesh2d(fd,fh,h0,bbox,ffix);

Nv = size(P,1); % Number of vertices

VS = P(:,1)’; % Locations of vertices in s

VX = P(:,2)’; % Locations of vertices in x

K = size(EToV,1); % Number of elements

Lastly, we generate the mesh and extract the required parameters needed to proceed

in the preprocessing chain. The vertices along the outer wall xout(s) may need to be

adjusted slightly to exactly conform to the boundary; distmesh does not guarantee

boundary vertices are located on the exact boundary. To fix this issue, the following

code adjusts the locations:

wall = @(s) x_out.*(s<0) + ...

((R+x_out)./cos(s/R)-R).*((0<=s)&(s<s1)) + ...

((R+x_out)*tan(s1/R)./sin(s/R)-R).*((s1<=s)&(s<s2)) + ...

x2.*(s>=s2);

% Locate vertices along curivilinear edges of domain and move VX locations

vflag = find((VS>=-h0/10 & VS<=(s2+h0/10) & abs(wall(VS)-VX)<h0/10));

VX(vflag) = wall(VS(vflag));

These steps may require up to a few minutes but the 5 quantities: K, Nv, VS,

VX, and EToV, may be saved for future simulations if the mesh doesn’t need to be

124

Appendix A. DG Code for CLS

modified. Additionally, we must treat the curvilinear elements located along the

outer boundary xout(s) for 0 < s < s2 differently to ensure the entire method’s order

of accuracy is not limited by the boundary geometry. Numerical evidence suggests

that this correction does not show an improvement in error unless high orders on

coarse meshes are used or the domain contains more strongly curved boundaries.

These extra steps will be listed in the optional preprocessing section.

A.2.3 DG Operator Setup

The next series of subroutines are inspired by the setup structure given in chapters 3

and 6 of Nodal Discontinuous Galerkin Methods by J. Hesthaven and T. Warburton.

The codes developed in the book use global variables and a large number of function

files. We condense some function files into larger subroutines for efficiency and defer

from using global variables to avoid compatibility issues if our code is nested in

another environment.

The first step is to compute the nodal locations on a reference triangle for the

desired order of the method. This can be accomplished with the function files

Nodes2D.m, xytors.m, Warpfactor.m, JacobiP.m, JacobiGQ.m, and JacobiGL.m

from NUDG.org. We condense these into 4 subroutines since several routines are

only referenced once.

function [r,t] = DG_Nodes(N,Np)

% This subroutine generates the reference element nodal corrdinates given

% the order of the elements to be used. This subroutine is based on

% Nodes2D.m and xytors.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

125

Appendix A. DG Code for CLS

% Np = number of nodes per element (1 x 1)

%

% Outputs:

% r = reference element coordinate 1 (Np x 1)

% t = reference element coordinate 2 (Np x 1)

alpopt = [0.0000 0.0000 1.4152 0.1001 0.2751 0.9800 1.0999 1.2832 ...

1.3648 1.4773 1.4959 1.5743 1.5770 1.6223 1.6258 1.6667];

% Set optimized parameter, alpha, depending on order N

a = alpopt(min(N,16));

% Create equidistributed nodes on an equilateral triangle

L1 = zeros(Np,1); L2 = zeros(Np,1); L3 = zeros(Np,1);

count = 0;

for i = 1:N+1

for j = 1:N+2-i

count = count + 1;

L1(count) = (i-1)/N;

L3(count) = (j-1)/N;

end

end

L2 = 1-L1-L3;

r = -L2+L3; % Undeformed coordinates of x1

t = (-L2-L3+2*L1)/sqrt(3); % Undeformed coordinates of x2

% Compute blending function for each node per edge

b1 = 4*L2.*L3; b2 = 4*L1.*L3; b3 = 4*L1.*L2;

% Compute warping scale factors

126

Appendix A. DG Code for CLS

w1 = Ewarp(N,Np,L3-L2); w2 = Ewarp(N,Np,L1-L3); w3 = Ewarp(N,Np,L2-L1);

% Combine blend and warping

w1 = b1.*w1.*(1 + (a*L1).^2);

w2 = b2.*w2.*(1 + (a*L2).^2);

w3 = b3.*w3.*(1 + (a*L3).^2);

r = r + w1 - w2/2 - w3/2;

t = t + w2*sqrt(3)/2 - w3*sqrt(3)/2;

% Map equilateral triangle to reference triangle

L1 = (sqrt(3)*t+1)/3;

L2 = (-3*r - sqrt(3)*t + 2)/6;

L3 = (3*r - sqrt(3)*t + 2)/6;

r = -L2 + L3 - L1;

t = -L2 - L3 + L1;

end % End of DG_Nodes subroutine

Essentially, our DG Nodes routine merges Nodes2D.m and xytors.m in one com-

bination. The xytors.m part is the mapping the equilateral triangle to the reference

triangle: the triangle generated from the vertices (−1, 1), (−1, 1), and (1,−1). The

Ewarp routine, referenced 3 times in DG Nodes, is defined next.

function [W] = Ewarp(N,Np,r)

%This subroutine computes the 1D warping function for a given edge. This

%subroutine is based on Warpfactor.m from nudg.org.

%

127

Appendix A. DG Code for CLS

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% r = reference element coodinate (Np x 1)

%

% Outputs:

% W = warping function for given blended nodes (Np x 1)

gX = JGL(N); % Function for Gauss-Lobatto quadrature

eqX = linspace(-1,1,N+1)’; % Equidistant nodes on [-1,1]

eqV = zeros(N+1);

P = zeros(N+1,Np);

for i = 1:N+1

eqV(:,i) = JP(eqX(:),0,0,i-1); % Evaluate Jacobi Polynomial

P(i,:) = JP(r(:),0,0,i-1)’;

end

L = eqV’\P; % Lagrange polynomial evaluated at r

W = L’*(gX - eqX); % Warp factor

% Scale the warp factor (remove zeros from scaling)

zf = (abs(r)<1-1e-12); % Index of zeros

sf = 1 - (zf.*r).^2; % Scaling for zeros

W = W./sf + W.*(zf-1); % Rescale warpfactor

end % End of EWarp subroutine

The two routines referenced in Ewarp are JGL and JP which are closely modeled after

JacobiP.m, JacobiGQ.m, and JacobiGL.m. These routines are used to compute

128

Appendix A. DG Code for CLS

Jacobi polynomials P
(α,β)
n (x) and the Gauss-Lobatto node locations. The interior

Gauss-Lobatto nodes are found from the N − 1 roots ri of P
(α+1,β+1)
N−2 (r) = 0; the full

set of nodes includes the two endpoints r1 = −1, rN+1 = 1. This is done in the JGL

and JP routines.

function [x] = JGL(N)

% This subroutine computes the Nth order Legandre-Gauss-Lobatto quadrature

% points associated with the Jacobi polynomial with alpha = beta = 0. This

% subroutine is based on JacobiGL.m and JacobiGQ.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

%

% Outputs:

% x = quadrature point locations in [-1,1] (N+1 x 1)

if N<=2

x = linspace(-1,1,N+1)’; % Equidistant nodes for N <= 2

else

h1 = linspace(2,2*N-4,N-2);

h2 = linspace(1,N-2,N-2);

J = diag(2./(h1+2).*sqrt(h2.*(h2+2).*(h2+1).*(h2+1)./ ...

(h1+1)./(h1+3)),1);

J = J + J’;

[~,D] = eig(J);

x = [-1.0 diag(D)’ 1.0]’; % Compute nodal locations for N > 2

end

129

Appendix A. DG Code for CLS

end % End of JGL subroutine

function [P] = JP(x,a,b,N)

% This subroutine computes the Jacobi polynomial of order N at points x

% with the parameters a and b. The polynomials are orthonormal. This

% subroutine is based on JacobiP.m from nudg.org.

%

% Inputs:

% x = vector of points to evaluate

% a = parameter alpha (1 x 1)

% b = parameter beta (1 x 1)

% N = order of polynomial (1 x 1)

%

% Outputs:

% P = polynomial evaluated at x (length(x) x 1)

if size(x,2) == 1 % Form x into row vector if not already

x = x’;

end

PL = zeros(N+1,length(x));

% First iteration of polynomial

g0 = 2^(a+b+1)/(a+b+1)*gamma(a+1)*gamma(b+1)/gamma(a+b+1);

PL(1,:) = 1/sqrt(g0);

if N == 0

P = PL’;

return

end

130

Appendix A. DG Code for CLS

% Second iteration of polynomial

g1 = (a+1)*(b+1)/(a+b+3)*g0;

PL(2,:) = ((a+b+2)*x/2 + (a-b)/2)/sqrt(g1);

if N == 1

P = PL(2,:)’;

return

end

% Recursive iteration of polynomial

a0 = 2/(2+a+b)*sqrt((a+1)*(b+1)/(a+b+3));

for i = 1:N-1

b0 = 2*i+a+b;

a1 = 2/(b0+2)*sqrt((i+1)*(i+1+a+b)*(i+1+a)*(i+1+b)/((b0+1)*(b0+3)));

b1 = -(a^2-b^2)/(b0*(b0+2));

PL(i+2,:) = 1/a1*(-a0*PL(i,:)+(x-b1).*PL(i+1,:));

a0 = a1;

end

P = PL(N+1,:)’; % Output polynomial

end % End of JP subroutine

Now that the r and t reference coordinates are constructed with DG Nodes the

next step is to generate the Vandermonde matrix. This matrix generates the nodal

weights associated with modal representation of the Jacobi polynomials on the ref-

erence triangle. For the implementation here in the preprocessing, the matrix V is

a square matrix of size Np × Np but this subroutine will be used for interpolation

later which may generate non-square matrices. Our implementation combines the

Vandermonde2D.m, rstoab.m, and Simplex2DP.m routines from NUDG.org.

131

Appendix A. DG Code for CLS

function [V] = DG_Vandermonde(N,Np,r,t)

% This subroutine computes the Vandermonde matrix associated with the LGL

% optimized warped nodes. This subroutine is based on Vandermonde2D.m,

% rstoab.m, and Simplex2DP from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% r = reference element coordinate 1 (Np x 1)

% t = reference element coordinate 2 (Np x 1)

%

% Outputs:

% V = Vandermonde matrix (Np x Np)

V = zeros(length(r),Np);

% Map reference triangle to standard triangle coordinates

a = zeros(length(r),1);

for i = 1:Np

if (t(i) ~= 1)

a(i) = 2*(1+r(i))/(1-t(i))-1;

else

a(i) = -1;

end

end

% Fill-in columns of Vandermonde matrix

count = 0;

for i = 0:N

132

Appendix A. DG Code for CLS

for j = 0:N-i

count = count + 1;

h1 = JP(a,0,0,i);

h2 = JP(t,2*i+1,0,j);

V(:,count) = sqrt(2)*h1.*h2.*(1-t).^i;

end

end

end % End of DG_Vandermonde subroutine

Next we construct the collocation derivative matrices using the reference triangle

nodes and Vandermonde matrix. The matrices Dr and Dt denote the partial deriva-

tive operators along the two reference coordinates r and t. The procedure is modeled

after Dmatrices2D.m, rstoab.m, GradVendermonde2D, and GradSimplex2DP

function [Dr,Dt] = DG_Collocation(N,Np,r,t,V)

% This subroutine computes the collocation derivative matrices from the

% reference element nodes and the Vandermonde matrix. This subroutine is

% based on Dmatrices.m, rstoab.m, GradVandermonde2D.m, and

% GradSimplex2DP.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% r = reference element coordinate 1 (Np x 1)

% t = reference element coordinate 2 (Np x 1)

% V = Vandermonde matrix (Np x Np)

%

% Outputs:

133

Appendix A. DG Code for CLS

% Dr = collocation derivative matrix in r (Np x Np)

% Dt = collocation derivative matrix in s (Np x Np)

Dr = zeros(Np); Dt = zeros(Np);

% Map reference triangle to standard triangle coordinates

a = zeros(length(r),1);

for i = 1:Np

if (t(i) ~= 1)

a(i) = 2*(1+r(i))/(1-t(i))-1;

else

a(i) = -1;

end

end

count = 0;

for i = 0:N

for j = 0:N-i

count = count+1;

h1 = JP(a,0,0,i); dh1 = GJP(a,0,0,i);

h2 = JP(t,2*i+1,0,j); dh2 = GJP(t,2*i+1,0,j);

% Compute modal derivative in r by column

V2Dr = dh1.*h2;

if i > 0;

V2Dr = V2Dr.*((0.5*(1-t)).^(i-1));

end

% Compute modal derivative in t by column

V2Dt = dh1.*(h2.*(0.5*(1+a)));

134

Appendix A. DG Code for CLS

temp = dh2.*((0.5*(1-t)).^i);

if i > 0;

V2Dt = V2Dt.*((0.5*(1-t)).^(i-1));

temp = temp - 0.5*i*h2.*((0.5*(1-t)).^(i-1));

end

V2Dt = V2Dt + h1.*temp;

% Normalize vectors and insert into matrices

Dr(:,count) = 2^(i+0.5)*V2Dr;

Dt(:,count) = 2^(i+0.5)*V2Dt;

end

end

% Invert by Vandermonde matrix to obtain collocation derivative matrices

Dr = Dr/V; Dt = Dt/V;

end % End of DG_Collocation subroutine

The next step is to flag the boundary nodes on each element. This is done by

locating the nodes on each element which are along each edge of the triangle. Each

of the 3 columns of Fm list the local node numbers along each edge. The routine is

based on a small subsection of StartUp2D.m from NUDG.org.

function [Fm] = DG_Mask(r,t,Ntol)

% This subroutine locates edge nodes on each element. This subroutine is

% based on a section of StartUp2D.m from nudg.org.

%

% Inputs:

% r = reference element coordinate 1 (Np x 1)

135

Appendix A. DG Code for CLS

% s = reference element coordinate 2 (Np x 1)

% Ntol = specified tolerance for node locating (1 x 1)

%

% Outputs:

% Fm = element array of edge indices (Nfp x 3)

fm1 = find(abs(t+1) < Ntol)’;

fm2 = find(abs(r+t) < Ntol)’;

fm3 = find(abs(r+1) < Ntol)’;

% Concatenate face node ids

Fm = [fm1;fm2;fm3]’;

end % End of DG_Mask subroutine

Another step is to generate the “lifting” matrix in the DG formulation. This

matrix maps information of an entire element to the edge nodes. This will be used for

the boundary integrals involving the numerical flux and jumps between the elements.

Our routine is the same as the NUDG.org version: Lift2D.

function [Lift] = DG_Lift(N,Np,Nfp,r,t,Fm,V)

% This subroutine computes the area to edge "Lift" operator used in the

% DG formulation. This subroutine is based on Lift2D.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% Nfp = number of nodes per edge (1 x 1)

% r = reference element coordinate 1 (Np x 1)

% t = reference element coordinate 2 (Np x 1)

136

Appendix A. DG Code for CLS

% Fm = element array of face indices (Nfp x 3)

% V = Vandermonde matrix (Np x Np)

%

% Outputs:

% Lift = edge integral Lifting matrix (Np x 3*Nfp)

Emat = zeros(Np,3*Nfp);

% Lift face 1

fr = r(Fm(:,1));

V1D = zeros(length(fr),N+1);

for i = 1:N+1

V1D(:,i) = JP(fr(:),0,0,i-1);

end

Emat(Fm(:,1),1:Nfp) = inv(V1D*V1D’);

% Lift face 2

fr = r(Fm(:,2));

V1D = zeros(length(fr),N+1);

for i = 1:N+1

V1D(:,i) = JP(fr(:),0,0,i-1);

end

Emat(Fm(:,2),Nfp+1:2*Nfp) = inv(V1D*V1D’);

% Lift face 3

fr = t(Fm(:,3));

V1D = zeros(length(fr),N+1);

for i = 1:N+1

V1D(:,i) = JP(fr(:),0,0,i-1);

end

137

Appendix A. DG Code for CLS

Emat(Fm(:,3),2*Nfp+1:3*Nfp) = inv(V1D*V1D’);

% Invert by the 2D mass matrix

Lift = V*(V’*Emat);

end % End of DG_Lift subroutine

Next, we construct the reference to physical element maps which are used to

extend all the single element operations to the global triangulation. Also, we con-

struct the normal vectors which point outward along each edge of the triangles. The

construction combines the routines: GeometricFactors2D.m, Normals2D.m, and a

portion of StartUp2D.m from NUDG.org.

function [rs,rx,ts,tx,J,ns,nx,Fs] = DG_GF2D(s,x,Dr,Dt,Nfp,K,Fm)

% This subroutine generates the metric elements for the local mappings of

% the elements, the outward pointing normals at element faces, and the

% inverse surface metric Fs. This subroutine is based on

% GeometricFactors2D.m, Normals2D.m, and a section of StartUp2D.m from

% nudg.org.

%

% Inputs:

% x = matrix of physical x locations by element (Np x K)

% y = matrix of physical y locations by element (Np x K)

% Dr = collocation derivative matrix in r (Np x Np)

% Dt = collocation derivative matrix in t (Np x Np)

% Nfp = number of nodes per edge (1 x 1)

% K = number of elements (1 x 1)

% Fm = element array of edge indices (Nfp x 3)

%

138

Appendix A. DG Code for CLS

% Outputs:

% rs,rx = metric constants for r along x,y (Np x K)

% ts,tx = metric constants for t along x,y (Np x K)

% J = Jacobian matrix for r,t,s,x (Np x K)

% ns,nx = s,x outward normal components on edges (3*Nfp x K)

% Fs = ratio of edge to area Jacobian (3*Nfp x K)

% Generate collocation partial derivatives

sr = Dr*s; st = Dt*s;

xr = Dr*x; xt = Dt*x;

% Compute Jacobian matrix

J = sr.*xt - st.*xr;

% Invert coordinate mappings

rs = xt./J;

rx = -st./J;

ts = -xr./J;

tx = sr./J;

% Extract only edge node metrics

fsr = sr(Fm,:); fss = st(Fm,:);

fxr = xr(Fm,:); fxs = xt(Fm,:);

% Create reference ids by edges

ns = zeros(3*Nfp,K); nx = zeros(3*Nfp,K);

fid1 = (1:Nfp)’;

fid2 = (Nfp+1:2*Nfp)’;

fid3 = (2*Nfp+1:3*Nfp)’;

139

Appendix A. DG Code for CLS

% Compute normals for edge 1

ns(fid1,:) = fxr(fid1,:);

nx(fid1,:) = -fsr(fid1,:);

% Compute normals for edge 2

ns(fid2,:) = fxs(fid2,:) - fxr(fid2,:);

nx(fid2,:) = fsr(fid2,:) - fss(fid2,:);

% Compute normals for edge 3

ns(fid3,:) = -fxs(fid3,:);

nx(fid3,:) = fss(fid3,:);

% Generate edge to area Jacobian map

sJ = sqrt(ns.*ns+nx.*nx);

ns = ns./sJ; nx = nx./sJ;

Fs = sJ./(J(Fm,:));

end % End of DG_GF2D subroutine

To connect the elements together, we introduce the connectivity matrices EToE

and EToF. The index arrays list the which elements are adjacent to which ele-

ments and which edges correspond to those elements. This routine is modeled after

tiConnect2D.m from NUDG.org.

function [EToE,EToF] = DG_Connect(EToV,Nv,K)

% This subroutine builds the element-to-element and element-to-edge maps to

% be used for numerical fluxes between elements. This subroutine is based

% on tiConnect2D.m from nudg.org.

%

140

Appendix A. DG Code for CLS

% Inputs:

% EToV = element-to-vertex mapping matrix (K x 3)

% Nv = number of vertices (1 x 1)

% K = number of elements (1 x 1)

%

% Outputs:

% EToE = element-to-element mapping matrix (K x 3)

% EToF = element-to-edge mapping matrix (K x 3)

% Extract the edge vertices of each edge of each triangle

fn = [EToV(:,[1,2]);EToV(:,[2,3]);EToV(:,[3,1])];

fn = sort(fn,2)-1;

EToE = (1:K)’*ones(1,3);

EToF = ones(K,1)*(1:3);

id = fn(:,1)*Nv + fn(:,2) + 1;

ntn = [id, (1:3*K)’, EToE(:), EToF(:)];

ntn = sortrows(ntn,1);

% Locate indices of common edges among elements

[ind,~] = find(ntn(1:(end-1),1) == ntn(2:end,1));

L = [ntn(ind,:); ntn(ind+1,:)];

R = [ntn(ind+1,:); ntn(ind,:)];

EToE(L(:,2)) = R(:,3);

EToF(L(:,2)) = R(:,4);

141

Appendix A. DG Code for CLS

end % End of DG_Connect subroutine

The next step is to create node index arrays for each element. These arrays

contain information on which nodes within an element correspond to which nodes

on neighboring elements. The routine also generates a list of the nodes located along

the global boundary. This routine is based on the routine BuildMaps2D.m from

NUDG.org.

function [vM,vP,vB,mB] =DG_Maps(s,x,VS,VX,Fm,EToE,EToF,EToV,Np,Nfp,K,Ntol)

% This subroutine generates the maps identifying local and global boundary

% nodes. This subroutine is based on BuildMaps2D.m from nudg.org.

%

% Inputs:

% s = matrix of physical s locations by element (Np x K)

% x = matrix of physical x locations by element (Np x K)

% VS = vector of s-coordinates of vertices (1 x Nv)

% VX = vector of x-coordinates of vertices (1 x Nv)

% Fm = element array of edge indices (Nfp x 3)

% EToE = element to element mapping matrix (K x 3)

% EToF = element to edge mapping matrix (K x 3)

% EToV = element to vertex mapping matrix (K x 3)

% Np = number of nodes per element (1 x 1)

% Nfp = number of nodes per edge (1 x 1)

% K = number of elements (1 x 1)

% Ntol = specified tolerance for node locating (1 x 1)

%

% Outputs:

% vM = vector of global nodal numbers on edges at interiors (3*K*Nfp x 1)

% vP = vector of global nodal numbers on edges at exteriors (3*K*Nfp x 1)

142

Appendix A. DG Code for CLS

% vB = vector of global nodal numbers on boundary edges

% mB = vector of global edge nodal numbers on boudary edges

id = reshape(1:Np*K,Np,K);

vM = zeros(Nfp,3,K);

vP = zeros(Nfp,3,K);

mM = (1:3*Nfp*K)’;

mP = reshape(mM,Nfp,3,K);

for k1 = 1:K

for n1 = 1:3

vM(:,n1,k1) = id(Fm(:,n1),k1);

end

end

t1 = ones(1,Nfp);

for k1 = 1:K

for n1 = 1:3

% Locate neighboring element

k2 = EToE(k1,n1); n2 = EToF(k1,n1);

v1 = EToV(k1,n1); v2 = EToV(k1,1+mod(n1,3));

rd = sqrt((VS(v1)-VS(v2))^2 + (VX(v1)-VX(v2))^2);

vidM = vM(:,n1,k1); vidP = vM(:,n2,k2);

x1 = s(vidM)*t1; y1 = x(vidM)*t1;

x2 = s(vidP)*t1; y2 = x(vidP)*t1;

% Define distance from interior and exterior nodes

D = (x1-x2’).^2 + (y1-y2’).^2;

143

Appendix A. DG Code for CLS

% Locate nodal coordinates common to multiple elements

[idM,idP] = find(sqrt(abs(D)) < Ntol*rd);

vP(idM,n1,k1) = vidP(idP);

mP(idM,n1,k1) = idP + (n2-1)*Nfp + (k2-1)*3*Nfp;

end

end

% Reshape vM, vP, and mP to be vectors and locate boundary nodes

vM = vM(:); vP = vP(:); mP = mP(:);

mB = find(vP==vM);

vB = vM(mB);

end % End of DG_Maps subroutine

This concludes the section on DG operator construction and nodal generation

from the triangular elements.

A.2.4 Initialization of fields and sources

The first subroutine here calculates a stable timestep and number of timesteps needed

for the simulation by finding the minimal nodal distance among all elements and the

area of the smallest element. The approach follows from dtscale2D.m, JacobiGQ.m,

and a portion of Maxwell2D.m from NUDG.org.

function [Nsteps,dtau] = DG_Timestep(N,r,t,s,x,tau_max,Ntol)

% This subroutine computes the number of timesteps required to maintain a

% stable scheme. This subroutine is based on a section of JacobiGQ.m,

% Maxwell2D.m, and dtscale2D.m from nudg.org.

%

144

Appendix A. DG Code for CLS

% Inputs:

% N = order of elements (1 x 1)

% r,t = reference element coordinate 1,2 (Np x 1)

% s,x = matrix of physical s,x locations by element (Np x K)

% tau_max = final simulation time (1 x 1)

% Ntol = specified tolerance for node locating (1 x 1)

%

% Outputs:

% Nsteps = number of timesteps to complete evolution (1 x 1)

% dtau = s-length per timestep (1 x 1)

% Construct standard nodal coordinates

if N == 0

rGQ = 0;

else

h1 = 2*(0:N-1);

JGQ = diag(2*(1:N).^2./(h1+2)./sqrt((h1+1).*(h1+3)),1);

JGQ(1,1) = 0;

JGQ = JGQ + JGQ’;

[~,D] = eig(JGQ);

rGQ = diag(D);

end

rmin = abs(rGQ(1)-rGQ(2));

% Determine element scale size

vm1 = find(abs(t+r+2)<Ntol);

vm2 = find(abs(r-1)<Ntol);

vm3 = find(abs(t-1)<Ntol);

vm = [vm1,vm2,vm3];

vs = s(vm(:),:); vx = x(vm(:),:);

145

Appendix A. DG Code for CLS

% Find area of triangular element

L1 = sqrt((vs(1,:)-vs(2,:)).^2+(vx(1,:)-vx(2,:)).^2);

L2 = sqrt((vs(2,:)-vs(3,:)).^2+(vx(2,:)-vx(3,:)).^2);

L3 = sqrt((vs(3,:)-vs(1,:)).^2+(vx(3,:)-vx(1,:)).^2);

SP = (L1+L2+L3)/2;

AR = sqrt(SP.*(SP-L1).*(SP-L2).*(SP-L3));

% Determine maximal stable timestep

dts = AR./SP;

dtau = (2/3)*(min(dts(dts ~= 0))*rmin);

% Find number of timesteps and adjust dt for equally spaced timesteps

Nsteps = ceil(tau_max/dtau);

dtau = tau_max/Nsteps;

end % End of DG_Initialize subroutine

Next, we preallocate memory to be used for the fields and their jumps. Each field

only requires one residual storage array (e.g. Esu) since we opt to use LSERK for

our timestepping algorithm. The variables: dEs, dEx, dEy, dHs, dHx, and dHy store

the jumps in the field values along the edges of the elements.

% Preallocate field arrays, residual storage arrays, edge arrays

Es = zeros(Np,K); Esu = zeros(Np,K); dEs = zeros(3*Nfp,K);

Ex = zeros(Np,K); Exu = zeros(Np,K); dEx = zeros(3*Nfp,K);

Ey = zeros(Np,K); Eyu = zeros(Np,K); dEy = zeros(3*Nfp,K);

Hs = zeros(Np,K); Hsu = zeros(Np,K); dHs = zeros(3*Nfp,K);

Hx = zeros(Np,K); Hxu = zeros(Np,K); dHx = zeros(3*Nfp,K);

146

Appendix A. DG Code for CLS

Hy = zeros(Np,K); Hyu = zeros(Np,K); dHy = zeros(3*Nfp,K);

Another step which reduces CPU work during the timestepping routine is to

combine multiplicative factors and evaluate some expressions involving the Heaviside

function. These Heaviside factors are ideal since we have defined our mesh to have

elements where the Heaviside functions evaluate to a constant over an element. We

can also define the low-storage explicit Runge-Kutta (LSERK) coefficients used in

the timestepping loop. This RK method uses 5 stages for a 4th order method but

only requires 1 residual storage array per field in contrast to the classical 4th order

RK method which requires 4 residual storage arrays with 4 stages. Since the field

arrays can be quite large, we opt to use the more memory efficient method.

% Locate elements along x=0 and split them for heaviside

theta_x = repmat(mean(x)>0,Np,1);

% Define function for s-dependant curvature

kap = @(s) (1/R)*((s>=0)&(s<=s2));

kap_s = repmat(kap(mean(s)),Np,1);

% Define additional multiplicative factors

RoxpR = 1./(1+kap_s.*x);

IoxpR = kap_s./(1+kap_s.*x);

RoxpRE = 1./(1+kap(reshape(s(vM),3*Nfp,K)).*reshape(x(vM),3*Nfp,K));

IoZ0 = 1/Z0;

% Generate butcher table of LSERK coefficients

rk4a = [0 ...

-567301805773/1357537059087 ...

-2404267990393/2016746695238 ...

147

Appendix A. DG Code for CLS

-3550918686646/2091501179385 ...

-1275806237668/842570457699];

rk4b = [1432997174477/9575080441755 ...

5161836677717/13612068292357 ...

1720146321549/2090206949498 ...

3134564353537/4481467310338 ...

2277821191437/14882151754819];

rk4c = [0 ...

1432997174477/9575080441755 ...

2526269341429/6820363962896 ...

2006345519317/3224310063776 ...

2802321613138/2924317926251];

The multiplicative factors RoxpR, IoxpR, and IoZ0 are matrix equivalents of 1/(1 +

κx), κ/(1+κx), and 1/Z0 respectively; while the factor RoxpRE is 1/(1+κx) evaluated

along edges only. Next, the source and initial conditions of the fields are given by:

% Define source terms for RHS of Ex and Hy

Hy_S = q*Z0*c*Gp*theta_x;

Ex_S = q*c*Gp*theta_x;

% Define initial condition from analytic solution in straight pipe

Ex_0 = q*Z0*c*Gp*(-sinh(alpha*x_out)*cosh(alpha*(x-x_in))/...

sinh(alpha*(x_out-x_in)) + cosh(alpha*x).*theta_x).*lambda(s);

Ey_0 = q*Z0*c*Gp*(-sinh(alpha*x_out)*sinh(alpha*(x-x_in))/...

sinh(alpha*(x_out-x_in)) + sinh(alpha*x).*theta_x).*lambda(s);

% Set initial conditions for fields

Ex = Ex_0;

Ey = Ey_0;

148

Appendix A. DG Code for CLS

Hy = Ex_0/Z0 - q*c*Gp*lambda(s).*theta_x;

Hx = -Ey_0/Z0;

At this point, we can complete a few optional preprocessing routines or begin the

timestepping loop to evolve the 6 fields.

A.2.5 Optional Preprocessing

The first optional preprocessing focuses on setup of the curvilinear element opera-

tors for the elements along the curved outer wall at xout(s). Next, depending on

the output desired, for example contour plots or time series data slices for Fourier

transforms, we can construct some additional arrays to store this data. We also will

want to generate interpolation matrices to extract data at points which do not lie

exactly on a node.

The first routine will adjust the nodal locations of the elements located along the

boundary by using Gordon-Hall blending. The output of this routine also includes

the list of element numbers along the curved outer boundary.

function [s,x,cKs] = DG_CurveFix(r,t,s,x,VS,vflag,...

Fm,EToV,N,K,R,x_out,s1,s2,x2)

% This subroutine adjusts the s and x coordinates of vertices located

% along the curved outer wall and flags the elements in the cf array.

% This subroutine is based on parts of MakeCylinder2D.m from nudg.org.

%

% Inputs:

% r,t = reference element coordinate 1,2 (Np x 1)

% s,x = matrix of physical s,x locations by element (Np x K)

% VS = vector of s-coordinates of vertices (1 x Nv)

149

Appendix A. DG Code for CLS

% vflag = vector of vertex numbers along curvilinear edges (1 x varies)

% Fm = element array of edge indices (Nfp x 3)

% EToV = element to vertex mapping matrix (K x 3)

% N = order of elements (1 x 1)

% K = number of elements (1 x 1)

% R = radius of curvature (1 x 1)

% x_out = initial distance of source to outer wall (1 x 1)

% s1 = s-coordinate of first corner (1 x 1)

% s2 = s-coordinate of second corner (1 x 1)

% x2 = x-coordinate of second corner (1 x 1)

%

% Outputs:

% s_new = matrix of updated physical s locations by element (Np x K)

% x_new = matrix of updated physical x locations by element (Np x K)

% cKs = vector of element numbers containing curvilinear edges (cK x 1)

% Define outer wall profile function and segmented arclength integrands

wall = @(s) x_out.*(s<0) + ((R+x_out)./cos(s/R)-R).*((0<=s)&(s<s1)) + ...

((R+x_out)*tan(s1/R)./sin(s/R)-R).*((s1<=s)&(s<s2)) + x2.*(s>=s2);

arc1 = @(s) sqrt(1+((R+x_out)/R*sin(s/R)./cos(s/R).^2).^2);

arc2 = @(s) sqrt(1+((R+x_out)/R*tan(s1/R)*cos(s/R)./sin(s/R).^2).^2);

% Locate elements containing curvilinear edges

cKs = []; dKs = [];

for vert = 1:length(vflag)

elems = find((vflag(vert) == EToV)); % Find test elements with vert

for etest = 1:length(elems)

elem = mod(elems(etest),K); % Select a test element of vert

v1 = EToV(elem,1); % Vertex 1 of test element

v2 = EToV(elem,2); % Vertex 2 of test element

150

Appendix A. DG Code for CLS

v3 = EToV(elem,3); % Vertex 3 of test element

if sum(v1 == vflag) && sum(v2 == vflag)

cKs = [cKs;elem]; % Element is part of curved boundary

dKs = [dKs;1]; % Edge 1 of element is curved

elseif sum(v2 == vflag) && sum(v3 == vflag)

cKs = [cKs;elem]; % Element is part of curved boundary

dKs = [dKs;2]; % Edge 2 of element is curved

elseif sum(v3 == vflag) && sum(v1 == vflag)

cKs = [cKs;elem]; % Element is part of curved boundary

dKs = [dKs;3]; % Edge 3 of element is curved

end

end

end

% Deform nodes in triangles along curved boundary

for e = 1:length(cKs)

switch dKs(e)

case 1 % Edge 1 is curved

va = EToV(cKs(e),1);

vb = EToV(cKs(e),2);

vr = r;

ids = find(abs(1-vr)>1e-7); % Node numbers of element interior

bl = -(r(ids)+t(ids))./(1-vr(ids));

case 2 % Edge 2 is curved

va = EToV(cKs(e),2);

vb = EToV(cKs(e),3);

vr = t;

ids = find(abs(1-vr)>1e-7); % Node numbers of element interior

bl = (r(ids)+1)./(1-vr(ids));

case 3 % Edge 3 is curved

151

Appendix A. DG Code for CLS

va = EToV(cKs(e),1);

vb = EToV(cKs(e),3);

vr = t;

ids = find(abs(1-vr)>1e-7); % Node numbers of element interior

bl = -(r(ids)+t(ids))./(1-vr(ids));

end

fnodes = Fm(:,dKs(e)); % Face node numbers

fr = vr(fnodes); % Reference triangle edge nodes

s_new = s(:,cKs(e)); x_new = x(:,cKs(e));

fds = zeros(N+1,1); fdx = zeros(N+1,1);

if min(VS(va),VS(vb)) < s1

arc = arc1; % Triangle is along arc segment 1

else

arc = arc2; % Triangle is along arc segment 2

end

alen = integral(arc,VS(va),VS(vb)); % Arclength of edge

for n = 1:N+1

enode = Fm(n,dKs(e)); % Select node along curved edge

arcint = @(s) integral(arc,VS(va),s)-(fr(n)+1)*alen/2;

s_new(enode) = fzero(arcint,s(enode,cf(e)));

x_new(enode) = wall(s_new(enode));

fds(n) = s_new(enode)-s(enode,cf(e));

fdx(n) = x_new(enode)-x(enode,cf(e));

end

% Blend deformation into all nodes in element

Vf = zeros(length(fr),N+1); Vv = zeros(length(vr),N+1);

for n = 1:N+1

152

Appendix A. DG Code for CLS

Vf(:,n) = JP(fr(:),0,0,n-1);

Vv(:,n) = JP(vr(:),0,0,n-1);

end

Vds = Vv*(Vf\fds);

Vdx = Vv*(Vf\fdx);

s_new(ids) = s_new(ids) + bl.*Vds(ids);

x_new(ids) = x_new(ids) + bl.*Vdx(ids);

% Update element with new node locations

s(:,cKs(e)) = s_new;

x(:,cKs(e)) = x_new;

end

end % End of DG_CurveFix subroutine

The DG CurveFix routine should be run just after the nodes have been assigned

in DG Coordinates but can be run at any point until the curvilinear operators are

needed or the initial conditions are set. The next step in constructing the curvilinear

operators is as follows and uses parts of BuildCurvedOPS2D.m from NUDG.org.

function [cKse,cDs,cDx,gns,gnx,gs,gx,gVM,gVP,glift,eflag] = ...

DG_CurvedOPS(N,Np,V,s,x,cKs,EToE,EToF)

% This subroutine completes the construction of all curvilinear element

% operators. The operators are computed using the cubature nodes. This

% subroutine is based on BuildCurvedOPS.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

153

Appendix A. DG Code for CLS

% V = Vandermonde matrix (Np x Np)

% s,x = matrix of physical s,x locations by element (Np x K)

% cKs = vector of element numbers with curvilinear edges (cK x 1)

% EToE = element to element mapping matrix (K x 3)

% EToF = element to edge mapping matrix (K x 3)

%

% Outputs:

% cKse = list of neighboring element numbers of curved elements (cK x 3)

% cDs = sparse Ds operator of curved element (Np*cK x Np*cK)

% cDx = sparse Dx operator of curved element (Np*cK x Np*cK)

% gns = cell array of ns operator curved element {1x3}(Ni*cK x 1)

% gnx = cell array of nx operator curved element {1x3}(Ni*cK x 1)

% gs = cell array of s coords of curved edge nodes {1x3}(Ni*cK x 1)

% gx = cell array of x coords of curved edge nodes {1x3}(Ni*cK x 1)

% gVM = cell array of sparse curved vM traces {1x3}(Ni*cK x Ni*cK)

% gVP = cell array of sparse curved vP traces {1x3}(Ni*cK x Ni*cK)

% glift = cell array of sparse curved lift matrices {1x3}(Ni*cK x Ni*cK)

% eflag = cell array of face nodes for curved edges {1x3}(varies x 1)

Ninput = 3*N; % Can be adjusted but should be at least 3*N

% Generate cubature nodes and weights

[cr,ct,cw,Nc] = DG_Cubature(Ninput);

% Create interpolation matrix between cubature and LGL nodes

cV = DG_InterpMatrix(N,Np,V,Nc,cr,ct);

% Construct cubature derivative matrices

[cDr,cDt] = DG_Collocation(N,Np,cr,ct,V);

154

Appendix A. DG Code for CLS

% Compute (r,t) Gauss nodes and weights used for 1D integration

J = zeros(Ninput+1); h = 2*(0:Ninput);

J = diag(2./(h(1:Ninput)+2).*sqrt((1:Ninput).^4./ ...

(h(1:Ninput)+1)./(h(1:Ninput)+3)),1);

J(1,1) = 0;

J = J + J’;

[v1,d1] = eig(J); gz = diag(d1);

gw = (v1(1,:)’).^2*2;

% Generate (r,t) Gauss nodes on element

gr = [gz,-gz,-ones(size(gz))];

gt = [-ones(size(gz)),gz,-gz];

% Create Gauss quadrature interpolation and collocation matrices

gV = zeros(length(gz),Np,3);

gDr = zeros(length(gz),Np,3);

gDt = zeros(length(gz),Np,3);

for f1 = 1:3

gV(:,:,f1) = DG_InterpMatrix(N,Np,V,Nc,gr(:,f1),gt(:,f1));

[gDr(:,:,f1),gDt(:,:,f1)] = DG_Collocation(N,Np,gr(:,f1),gt(:,f1),V);

end

% Contruct the curved information sparse and normal arrays

cK = length(cKs);

Ni = Ninput+1;

cKse = zeros(cK,3);

cDs = spalloc(Np*cK,Np*cK,Np*Np*cK);

cDx = spalloc(Np*cK,Np*cK,Np*Np*cK);

gns{1} = zeros(Ni*cK,1);

gns{2} = zeros(Ni*cK,1);

155

Appendix A. DG Code for CLS

gns{3} = zeros(Ni*cK,1);

gnx{1} = zeros(Ni*cK,1);

gnx{2} = zeros(Ni*cK,1);

gnx{3} = zeros(Ni*cK,1);

gs{1} = zeros(Ni*cK,1);

gs{2} = zeros(Ni*cK,1);

gs{3} = zeros(Ni*cK,1);

gx{1} = zeros(Ni*cK,1);

gx{2} = zeros(Ni*cK,1);

gx{3} = zeros(Ni*cK,1);

gVM{1} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

gVM{2} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

gVM{3} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

gVP{1} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

gVP{2} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

gVP{3} = spalloc(Ni*cK,Np*cK,Ni*Np*cK);

glift{1} = spalloc(Np*cK,Ni*cK,Np*Ni*cK);

glift{2} = spalloc(Np*cK,Ni*cK,Np*Ni*cK);

glift{3} = spalloc(Np*cK,Ni*cK,Np*Ni*cK);

eflag{1} = zeros(Ni*cK,1);

eflag{2} = zeros(Ni*cK,1);

eflag{3} = zeros(Ni*cK,1);

for i = 1:cK;

% Extract element number and LGL nodes of element

k1 = cKs(i); s1 = s(:,k1); x1 = x(:,k1);

% Compute geometric factors for curved element

[crs,crx,cts,ctx,cJ,~,~,~] = DG_GF2D(s1,x1,cDr,cDt);

cMM = cV’*diag(cJ.*cw)*cV; %Mass matrix of element

156

Appendix A. DG Code for CLS

% Store Ds and Dx operators by element in sparse array

cDs(1+(i-1)*Np:Np+(i-1)*Np,1+(i-1)*Np:Np+(i-1)*Np) = ...

cMM\(cV’*diag(cJ.*cw)*(diag(crs)*cDr+diag(cts)*cDt));

cDx(1+(i-1)*Np:Np+(i-1)*Np,1+(i-1)*Np:Np+(i-1)*Np) = ...

cMM\(cV’*diag(cJ.*cw)*(diag(crx)*cDr+diag(ctx)*cDt));

for f1 = 1:3

%Extract element and face numbers of adjacent elements

cKse(i,f1) = EToE(k1,f1); f2 = EToF(k1,f1);

%Compute geometric factors of faces

[grs,grx,gts,gtx,gJ,~,~,~] = DG_GF2D(s1,x1,...

gDr(:,:,f1),gDt(:,:,f1));

switch f1

case 1

gnsf = -gts; gnxf = -gtx;

case 2

gnsf = grs+gts; gnxf = grx+gtx;

case 3

gnsf = -grs; gnxf = -grx;

end

%Surface Jacobian and normals for face f1

gsJ = sqrt(gnsf.*gnsf + gnxf.*gnxf);

gnsf = gnsf./gsJ; gnxf = gnxf./gsJ; gsJ = gsJ.*gJ;

gns{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni) = gnsf;

gnx{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni) = gnxf;

157

Appendix A. DG Code for CLS

%Store s and x coordinates for face f1 nodes

gs{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni) = gV(:,:,f1)*s1;

gx{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni) = gV(:,:,f1)*x1;

%Store Vandermonde traces for face f1 and face f2 edges

gVM{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni,1+(i-1)*Np:Np+(i-1)*Np) = ...

gV(:,:,f1);

gVP{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni,1+(i-1)*Np:Np+(i-1)*Np) = ...

gV(end:-1:1,:,f2);

%Store lift operator for curved element

glift{f1}(1+(i-1)*Np:Np+(i-1)*Np,1+(i-1)*Ni:Ni+(i-1)*Ni) = ...

cMM\(gV(:,:,f1)’*diag(gw.*gsJ));

if cKs(i) == cKse(i,f1)

eflag{f1}(1+(i-1)*Ni:Ni+(i-1)*Ni) = 1+(i-1)*Ni:Ni+(i-1)*Ni;

end

end

end

% Delete face numbers of non-boundary faces for indexing

for f1 = 1:3

eflag{f1}(eflag{f1}==0) = [];

end

end % End of DG_CurvedOPS subroutine

The routine DG CurvedOPS uses on two routines not yet defined. The first routine is

158

Appendix A. DG Code for CLS

DG Cubature which is based on Cubature2D.m from NUDG.org which in turn uses

the cubature tables distributed in the Encyclopaedia of Cubature Formulas developed

by R. Cools [8]. The list of tables is extensive thus we only include the table for

Ninput = 6 corresponding to N = 2.

function [cr,ct,cw,Nc] = DG_Cubature(Ninput)

% This subroutine generates the cubature operators used in the curvilinear

% elements. The order of the cubature input is taken as 3 times the

% element order: i.e. Ninput = 3*N. This subroutine is based on

% Cubature2D.m and CubatureData2D.m from nudg.org.

% The tables are obtained from:

%

% Cools, R. "Monomial Cubature Rules Since Stroud: A Compilation-Part 2."

% J. Comput. Appl. Math. 112, 21-27, 1999.

%

% Cools, R. "Encyclopaedia of Cubature Formulas."

% http://www.cs.kuleuven.ac.be/~nines/research/ecf/ecf.html

%

% Inputs:

% Ninput = order of cubature table (generally 3*N) (1 x 1)

%

% Outputs:

% cr = cubature node coordinate 1 (Nc x 1)

% ct = cubature node coordinate 2 (Nc x 1)

% cw = cubature node weights (Nc x 1)

% Nc = number of cubature nodes per element (1 x 1)

if Ninput <= 28

switch Ninput

case 6

159

Appendix A. DG Code for CLS

cub2D = [[-0.501426509658179 -0.501426509658179 0.233572551452759];...

[0.002853019316358 -0.501426509658179 0.233572551452759];...

[-0.501426509658179 0.002853019316358 0.233572551452759];...

[-0.873821971016996 -0.873821971016996 0.101689812740414];...

[0.747643942033991 -0.873821971016996 0.101689812740414];...

[-0.873821971016996 0.747643942033991 0.101689812740414];...

[-0.379295097932431 -0.893709900310366 0.165702151236747];...

[-0.893709900310366 -0.379295097932431 0.165702151236747];...

[0.273004998242797 -0.893709900310366 0.165702151236747];...

[-0.893709900310366 0.273004998242797 0.165702151236747];...

[0.273004998242797 -0.379295097932431 0.165702151236747];...

[-0.379295097932431 0.273004998242797 0.165702151236747]];

end

cr = cub2D(:,1);

ct = cub2D(:,2);

cw = cub2D(:,3);

else % General formula for Ninput > 28

cN = ceil((Ninput+1)/2)-1;

J1 = zeros(cN); h1 = 2*(0:cN);

J1 = diag(2./(h1(1:cN)+2).*sqrt((1:cN).^4./ ...

(h1(1:cN)+1)./(h1(1:cN)+3)),1);

J1(1,1) = 0;

J1 = J1 + J1’;

J2 = zeros(cN); h2 = 2*(0:cN)+1;

J2 = diag(-1/2./(h2+2)./h2) + ...

diag(2./(h2(1:cN)+2).*sqrt((1:cN).^2.*((1:cN)+1).^2./ ...

(h2(1:cN)+1)./(h2(1:cN)+3)),1);

J2 = J2 + J2’;

160

Appendix A. DG Code for CLS

[v1,d1] = eig(J1);

ca = diag(d1);

wa = (v1(1,:)’).^2*2;

[v2,d2] = eig(J2);

cb = diag(d2);

wb = (v2(1,:)’).^2*2;

ca = ones(cN+1,1)*ca’;

cb = cb*ones(1,cN+1);

cr = 0.5*(1+ca).*(1-cb)-1;

ct = cb;

cw = 0.5*wb*(wa’);

cr = cr(:); ct = ct(:); cw = cw(:);

end

Nc = length(cw);

end % End of DG_Cubature subroutine

The other routine required for DG CurvedOPS is DG InterpMatrix which involves

generating an interpolation matrix to map the solution from the LGL nodes to an

equally spaced grid of nodes of an arbitrary order Nout, unless a reference nodal

set rout and tout are given. Generally, it is desired to take Nout > N to resolve the

polynomial on each element for a contour or surface plot. The resultant interpolation

matrix can be multiplied by the fields of size Np×K to map them to an equally spaced

set of nodes; which can later be plotted. Our routine is based off InterpMatrix2D.m

from NUDG.org.

161

Appendix A. DG Code for CLS

function [interp] = DG_InterpMatrix(N,Np,V,Nout,rout,tout)

% This subroutine generates the interpolation matrix between LGL nodes and

% equally spaced nodes. If other nodal spacing is desired, the subroutine

% accepts the extra inputs rout and tout. This subroutine is based on

% InterpMatrix2D.m from nudg.org.

%

% Inputs:

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% V = Vandermonde matrix (Np x Np)

% Nout = order of output nodes (1 x 1)

% rout = input nodal locations coordinate 1 [optional] (Nout x 1)

% tout = input nodal locations coordinate 2 [optional] (Nout x 1)

%

% Outputs:

% interp = interpolation matrix (Npout x Np)

if nargin < 5 % Default to equidistant nodal spacing

% Generate equally spaced reference triangle coordinates

Npout = (Nout+1)*(Nout+2)/2;

rout = zeros(Npout,1); tout = zeros(Npout,1);

sk = 1;

for n=1:Nout+1

for m=1:Nout+2-n

rout(sk) = -1 + 2*(m-1)/Nout;

tout(sk) = -1 + 2*(n-1)/Nout;

sk = sk + 1;

end

end

162

Appendix A. DG Code for CLS

else

Npout = length(rout);

end

% Map reference triangle to standard triangle

V2D = zeros(Npout,Np);

a = zeros(Npout,1);

for n = 1:Npout

if (tout(n) ~= 1)

a(n) = 2*(1+rout(n))/(1-tout(n))-1;

else

a(n) = -1;

end

end

b = tout;

sk = 1;

for i = 0:N

for j = 0:N-i

h1 = JP(a,0,0,i);

h2 = JP(b,2*i+1,0,j);

V2D(:,sk) = sqrt(2)*h1.*h2.*(1-b).^i;

sk = sk + 1;

end

end

% Construct interpolation matrix

interp = V2D*inv(V);

163

Appendix A. DG Code for CLS

end % End of DG_InterpMatrix subroutine

The next step for this interpolation is to create a new triangulation with the

equally spaced nodes generated by multiplying the interpolation matrix to the coor-

dinates. This next routine is based on parts of PlotField2D.m from NUDG.org.

function [tri] = DG_EqualTriangles(Nout,K)

% This subroutine generates an equally spaced triangulation of the domain.

% The triangulation will later be used for plotting using trisurf. This

% subroutine is based on part of PlotField2D.m from nudg.org.

%

% Inputs:

% Nout = order of output nodes (1 x 1)

% K = number of elements (1 x 1)

%

% Outputs:

% tri = triangulation based on order and number of elements (Nt x K)

% (Nt is the number of triangles in one element)

% Generate triangle node numbering matrix

Npout = (Nout+1)*(Nout+2)/2;

tr = zeros(Nout+1);

count = 0;

for i = 1:Nout+1

for j = 1:Nout+2-i

count = count + 1;

tr(i,j) = count;

end

end

164

Appendix A. DG Code for CLS

% Generate triangles for one element

tris = zeros(Nout^2,3);

count = 0;

for i = 1:Nout+1

for j = 1:Nout+1-i

v1 = tr(i,j); v2 = tr(i,j+1);

v3 = tr(i+1,j); v4 = tr(i+1,j+1);

count = count + 1;

tris(count,:) = [v1 v2 v3];

if v4

count = count + 1;

tris(count,:) = [v2 v4 v3];

end

end

end

% Extend triangulation to all elements

tri = zeros(Nout^2*K,3);

for i = 1:K

tri((1+(i-1)*Nout^2):(i*Nout^2),:) = tris + (i-1)*Npout;

end

end % End of DG_EqualTriangles subroutine

The size of this triangulation of sub-elements Kequal = K ×N2
out. Each of these sub-

triangles are used to plot the field using the 3 vertices of the sub-triangle to define

a plane: polynomial of degree 1. The MATLAB command: trisurf can plot these

sub-triangles and interpolate their height and color linearly using those 3 points per

165

Appendix A. DG Code for CLS

triangle.

The next preprocessing step is required only if timeseries data is desired at specific

locations. If a large number of probe points is desired, such as to produce a contour

slice, then it is recommended to pass certain variables through the function which are

the same at all time-steps to save on computations. We outline the general algorithm

here beginning with locating the element containing given points in the probe array

of size 2× nprobe.

function [probeE] = DG_ElementFind(probe,VS,VX,EToV)

% This subroutine locates the elements containing the probe points. The

% method involves locating the nearest vertex to the probes and checking

% adjacent elements for if they contain the probe points.

%

% Inputs:

% probe = array of (s,x) coordinates for probe points (nprobe x 2)

% VS = vector of s-coordinates of vertices (1 x Nv)

% VX = vector of x-coordinates of vertices (1 x Nv)

% EToV = element to vertex mapping matrix (K x 3)

%

% Outputs:

% probeE = vector of element numbers containing probes (nprobe x 1)

nprobe = size(probe,1);

probeE = zeros(nprobe,1);

for p = 1:nprobe

% Location of probe p

ps = probe(p,1); px = probe(p,2);

166

Appendix A. DG Code for CLS

% Locate the vertex nearest probe p

probeD = sqrt((VS-ps).^2+(VX-px).^2);

probeVs = find(probeD == min(probeD));

probeV = probeVs(1); % Select only one vertex if more than one

% Locate the elements containing the vertex nearest probe p

probeEs = find(sum(EToV == probeV,2));

for q = 1:length(probeEs)

% Contruct barycentric coordinates to check if probe is in element

s1 = VS(EToV(probeEs(q),1)); x1 = VX(EToV(probeEs(q),1));

s2 = VS(EToV(probeEs(q),2)); x2 = VX(EToV(probeEs(q),2));

s3 = VS(EToV(probeEs(q),3)); x3 = VX(EToV(probeEs(q),3));

detE = det([s1 - s3, s2 - s3; x1 - x3, x2 - x3]);

lam1 = ((x2-x3)*(ps-s3)+(s3-s2)*(px-x3))/detE;

lam2 = ((x3-x1)*(ps-s3)+(s1-s3)*(px-x3))/detE;

lam3 = 1 - lam1 - lam2;

if (lam1>=0) && (lam2>=0) && (lam3>=0)

probeE(p) = probeEs(q);

break; % Stop once one element is found to contain probe p

end

end

end

% Output warning message if some probe points outside of domain

if sum(probeE==0)

disp(’Warning: one or more probe locations not in domain’);

167

Appendix A. DG Code for CLS

probeE = probeE(probeE~=0); % Omit probes outside domain

end

end % End of DG_ElementFind subroutine

To use these probes in the timestepping routine, we also must include a method of

interpolating the element containing the probes at those points. We include a modi-

fied version of the DG InterpMatrix routine to allow for a more general interpolation

of an element at any specified point.

% This subroutine interpolates the field f(s,x) at (sp,xp) and returns the

% value fp = f(sp,xp) interpolated using the Nth order polynomial defined

% by the f(s,x) points.

%

% Inputs:

% F = field values at (s,x) (Np x 1)

% sp = sample point s-coordinate (1 x 1)

% xp = sample point x-coordinate (1 x 1)

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% V = Vandermonde matrix (Np x Np)

% Vsx = array storing s,x coordinates of vertices (3 x 2)

%

% Outputs:

% fp = Lagrange interpolated value of f(sp,xp) (1 x 1)

% Compute transformation to reference triangle

R = [-Vsx(1,1)+Vsx(2,1), -Vsx(1,1)+Vsx(3,1); ...

-Vsx(1,2)+Vsx(2,2), -Vsx(1,2)+Vsx(3,2)];

R = R\[2*sp-Vsx(2,1)-Vsx(3,1);2*xp-Vsx(2,2)-Vsx(3,2)];

168

Appendix A. DG Code for CLS

% Transform to standard triangle

if R(2) ~= 1

R(1) = 2*(1+R(1))/(1-R(2))-1;

else

R(1) = -1;

end

% Contruct interpolation weights

V2D = zeros(1,Np);

sk = 1;

for i = 0:N

for j = 0:N-i

h1 = JP(R(1),0,0,i);

h2 = JP(R(2),2*i+1,0,j);

V2D(sk) = sqrt(2)*h1.*h2.*(1-R(2)).^i;

sk = sk + 1;

end

end

% Interpolate using Nth order Lagrange polynomial

fp = V2D*(V\f);

end % End of DG_Interp subroutine

The two routines: DG ElementFind and DG Interp can be used at every timestep if

the probe points are not stationary in time but instead move along an arbitrary path.

If a large number of stationary probes are necessary, it is recommended to compute

the quantity V2D*inv(V) in the last line of DG Interp outside of the timestepping

169

Appendix A. DG Code for CLS

loop and multiply the fields directly by that quantity in the timestepping loop.

Lastly, if using an Nvidia CUDA-enabled GPU with double-precision processing

power greater than the CPU (e.g. Nvidia GTX Titan), the following lines can be

added before the timestepping loop to move all necessary workspace variables to the

GPU memory. This instructs MATLAB to use the GPUArray versions of the same

commands such as * and .* which may drastically improve performance if N and

K are large enough for good parallelization. A quick toggle for this option can be

specified in the simulation parameters section by setting the flag GPU flag to be 1

or 0 for “on” or “off”. The short pause command is necessary to force the CPU to

wait until the GPU is finished loading all the variables.

% Move necessary variables to GPU for GPU processing if selected

if GPUflag

Es = gpuArray(Es); Esu = gpuArray(Esu); dEs = gpuArray(dEs);

Ex = gpuArray(Ex); Exu = gpuArray(Exu); dEx = gpuArray(dEx);

Ey = gpuArray(Ey); Eyu = gpuArray(Eyu); dEy = gpuArray(dEy);

Hs = gpuArray(Hs); Hsu = gpuArray(Hsu); dHs = gpuArray(dHs);

Hx = gpuArray(Hx); Hxu = gpuArray(Hxu); dHx = gpuArray(dHx);

Hy = gpuArray(Hy); Hyu = gpuArray(Hyu); dHy = gpuArray(dHy);

Hy_S = gpuArray(Hy_S); Ex_S = gpuArray(Ex_S);

RoxpR = gpuArray(RoxpR); RoxpRE = gpuArray(RoxpRE);

IoxpR = gpuArray(IoxpR); tau = gpuArray(time);

alpha = gpuArray(alpha); theta_x = gpuArray(theta_x);

vM = gpuArray(vM); vP = gpuArray(vP); alp = gpuArray(alp);

mB = gpuArray(mB); vB = gpuArray(vB); dtau = gpuArray(dtau);

ns = gpuArray(ns); nx = gpuArray(nx); rs = gpuArray(rs);

rx = gpuArray(rx); ts = gpuArray(ts); tx = gpuArray(tx);

Dr = gpuArray(Dr); Dt = gpuArray(Dt); IoZ0 = gpuArray(IoZ0);

Z0 = gpuArray(Z0); Fsc = gpuArray(Fsc); Lift = gpuArray(Lift);

170

Appendix A. DG Code for CLS

rk4a = gpuArray(rk4a); rk4b = gpuArray(rk4b); rk4c = gpuArray(rk4c);

pause(0.01)

disp(’ GPU variable transfer complete.’)

end

This concludes the optional preprocessing routines and these may be inserted after

the necessary routines but before the timestepping routines. NOTE: The curvilinear

subroutines do NOT work in conjunction with GPU processing as it is implemented

here. This is due to sparse array restrictions on gpuArray objects and extra mem-

ory transfer overhead. The curvilinear codes here were not developed for parallel

computing and remain un-optimized for large computational use.

171

Appendix A. DG Code for CLS

A.3 Timestepping routines

A.3.1 Main Timestep Loop (LSERK)

With all preprocessing routines completed, then the timestepping loop can begin.

The starting time begins at τ = 0 which is denoted by tau = 0. The individual

stages for the Runge-Kutta method are computed by the rk4c coefficients. We also

use the tic command to use as a stopwatch for processing time estimates. This

begins as:

for tstep = 1:Nsteps % Begin timestep loop

for RK = 1:5 % Begin LSERK loop

% Current time for LSERK step

tau = dtau*(tstep-1+rk4c(RK));

All subsequent lines are inside the Runge-Kutta 5 stage loop until otherwise noted.

We begin the process by computing the jumps along the boundaries between ele-

ments. Recall that vM contains the node list for edges nodes for each element and vP

contains the node list for the adjacent elements’ edges corresponding to the nodes

vM.

% Compute jumps in field

dEs(:) = Es(vM) - Es(vP);

dEx(:) = Ex(vM) - Ex(vP);

dEy(:) = Ey(vM) - Ey(vP);

dHs(:) = Hs(vM) - Hs(vP);

dHx(:) = Hx(vM) - Hx(vP);

dHy(:) = Hy(vM) - Hy(vP);

172

Appendix A. DG Code for CLS

Next, we set the boundary conditions for the global boundary. Since we have

extended the straight segments of the chamber before and after the bend to be long

enough for the simulation not to produce reflections at s = smin or s = smax, we may

set those boundaries with some freedom. We choose all boundaries to be of Dirichlet-

type where we specify the normal components of E and tangential components of B

to be zero. Again, this is effectively setting the entire domain to be enclosed by a

perfectly conducting wall and since we only run the simulation to a time before any

fields reach the end walls in s, the radiative or absorbing boundary condition is not

needed.

The boundary conditions in the DG scheme are implemented by a mirror principle

to enforce n × E = 0. We need not actually impose a condition on H since n ·

H = 0 will be automatically satisfied by setting dHs(mB), dHy(mB) and dHy(mB) to

zero. This is actually done in the previous step since for the nodes along the global

boundary, edges with no adjacent element, the jumps are set to zero, i.e. vM(mB) =

vP(mB).

% Set boundary fluxes to Dirichlet-type for E

dEs(mB) = 2*Es(vB);

dEx(mB) = 2*Ex(vB);

dEy(mB) = 2*Ey(vB);

Next, we compute the normals components of along the edges using the normal

maps and the corresponding fields.

% Construct n*E and n*H normals

ndotdE = ns.*dEs + nx.*dEx;

ndotdH = ns.*dHs + nx.*dHx;

173

Appendix A. DG Code for CLS

These are now used to compute the numerical flux terms from the formulation of the

PDE in strong form. Recall that alp is usually set to 1 for an upwinding scheme.

% Construct DG fluxes for each field

fluxEs = -Z0*nx.*dHy - alp*(dEs - ndotdE.*ns);

fluxEx = Z0*RoxpRE.*ns.*dHy - alp*(dEx - ndotdE.*nx);

fluxEy = -Z0*RoxpRE.*ns.*dHx + Z0*nx.*dHs - alp*dEy;

fluxHs = IoZ0*nx.*dEy - alp*(dHs - ndotdH.*ns);

fluxHx = -IoZ0*RoxpRE.*ns.*dEy - alp*(dHx - ndotdH.*nx);

fluxHy = -IoZ0*nx.*dEs + IoZ0*RoxpRE.*ns.*dEx - alp*dHy;

Another important step is to compute necessary derivatives which will be used

in computing the PDE right-hand-sides. These are computed by use of the chain

rule: calculating the derivative with respect to the reference coordinates r and t and

multiplying by the corresponding Jacobian for s or x derivatives.

% Construct derivatives for necessary fields

DxHy = rx.*(Dr*Hy) + tx.*(Dt*Hy);

DsHy = rs.*(Dr*Hy) + ts.*(Dt*Hy);

DsHx = rs.*(Dr*Hx) + ts.*(Dt*Hx);

DxHs = rx.*(Dr*Hs) + tx.*(Dt*Hs);

DxEy = rx.*(Dr*Ey) + tx.*(Dt*Ey);

DsEy = rs.*(Dr*Ey) + ts.*(Dt*Ey);

DsEx = rs.*(Dr*Ex) + ts.*(Dt*Ex);

DxEs = rx.*(Dr*Es) + tx.*(Dt*Es);

Next, the PDE right-hand-side is combined with the numerical flux in the follow-

ing form:

174

Appendix A. DG Code for CLS

% Evaluate right-hand-sides for LSERK

rhsEs = Z0*(DxHy + alpha*Hx) + ...

Lift*(Fsc.*fluxEs/2);

rhsEx = Z0*(-alpha*Hs - RoxpR.*(DsHy + ...

lambdap(s-tau).*Ex_S)) + Lift*(Fsc.*fluxEx/2);

rhsEy = Z0*(RoxpR.*DsHx - DxHs - IoxpR.*Hs) + ...

Lift*(Fsc.*fluxEy/2);

rhsHs = IoZ0*(-DxEy + alpha*Ex) + ...

Lift*(Fsc.*fluxHs/2);

rhsHx = IoZ0*(-alpha*Es + RoxpR.*DsEy) + ...

Lift*(Fsc.*fluxHx/2);

rhsHy = IoZ0*(DxEs - RoxpR.*DsEx + IoxpR.*Es + ...

lambdap(s-tau).*Hy_S) + Lift*(Fsc.*fluxHy/2);

Next, the temporary RK residual storage arrays are now upated.

% Update residual storage arrays for LSERK

Esu = rk4a(RK)*Esu + dtau*rhsEs;

Exu = rk4a(RK)*Exu + dtau*rhsEx;

Eyu = rk4a(RK)*Eyu + dtau*rhsEy;

Hsu = rk4a(RK)*Hsu + dtau*rhsHs;

Hxu = rk4a(RK)*Hxu + dtau*rhsHx;

Hyu = rk4a(RK)*Hyu + dtau*rhsHy;

And finally, the fields are updated from the residual stages.

% Update fields using LSERK

Es = Es + rk4b(RK)*Esu;

175

Appendix A. DG Code for CLS

Ex = Ex + rk4b(RK)*Exu;

Ey = Ey + rk4b(RK)*Eyu;

Hs = Hs + rk4b(RK)*Hsu;

Hx = Hx + rk4b(RK)*Hxu;

Hy = Hy + rk4b(RK)*Hyu;

end % End of LSERK loop

end % End of timestep loop

This marks the end of the Runge-Kutta loop for a single timestep. After all 5

stages, the fields have been properly evolved one dt in τ and can be either updated

again to the next timestep or used for optional processes in the timestepping loop.

A.3.2 Optional Timestepping Routines

To implement the curvilinear element adjustments in vectorized form for increased

performance, we can insert the following block of code immediately before updating

the residual storage arrays, just after the right-hand-sides are computed. Again, this

is not supported with the gpuArray implementation.

% Fix the curved elements

cEsi = Es(:,cKs);

cExi = Ex(:,cKs);

cEyi = Ey(:,cKs);

cHsi = Hs(:,cKs);

cHxi = Hx(:,cKs);

cHyi = Hy(:,cKs);

lambi = lambdap(s(:,cKs)-tau);

RoxpRi = RoxpR(:,cKs); % Can be placed outside timestep loop

IoxpRi = IoxpR(:,cKs); % Can be placed outside timestep loop

176

Appendix A. DG Code for CLS

crhsEs = Z0*(cDx*cHyi(:) + alpha*cHxi(:));

crhsEx = Z0*(-alpha*cHsi(:) - ...

RoxpRi(:).*(cDs*cHyi(:) + lambi(:).*Ex_Si(:)));

crhsEy = Z0*(RoxpRi(:).*(cDs*cHxi(:)) - ...

cDx*cHsi(:) - IoxpRi(:).*cHsi(:));

crhsHs = (-cDx*cEyi(:) + alpha*cExi(:))/Z0;

crhsHx = (-alpha*cEsi(:) + RoxpRi(:).*(cDs*cEyi(:)))/Z0;

crhsHy = (cDx*cEsi(:) - RoxpRi(:).*(cDs*cExi(:)) + ...

IoxpRi(:).*cEsi(:) + lambi(:).*Hy_Si(:))/Z0;

for f1 = 1:3

cEso = Es(:,cKse(:,f1));

cExo = Ex(:,cKse(:,f1));

cEyo = Ey(:,cKse(:,f1));

cHso = Hs(:,cKse(:,f1));

cHxo = Hx(:,cKse(:,f1));

cHyo = Hy(:,cKse(:,f1));

gdEs = gVM{f1}*cEsi(:) - gVP{f1}*cEso(:);

gdEx = gVM{f1}*cExi(:) - gVP{f1}*cExo(:);

gdEy = gVM{f1}*cEyi(:) - gVP{f1}*cEyo(:);

gdHs = gVM{f1}*cHsi(:) - gVP{f1}*cHso(:);

gdHx = gVM{f1}*cHxi(:) - gVP{f1}*cHxo(:);

gdHy = gVM{f1}*cHyi(:) - gVP{f1}*cHyo(:);

gdEstmp = 2*gVM{f1}*cEsi(:);

gdExtmp = 2*gVM{f1}*cExi(:);

gdEytmp = 2*gVM{f1}*cEyi(:);

177

Appendix A. DG Code for CLS

gdEs(eflag{f1}) = gdEstmp(eflag{f1});

gdEx(eflag{f1}) = gdExtmp(eflag{f1});

gdEy(eflag{f1}) = gdEytmp(eflag{f1});

gdHs(eflag{f1}) = 0*gdHs(eflag{f1});

gdHx(eflag{f1}) = 0*gdHx(eflag{f1});

gdHy(eflag{f1}) = 0*gdHy(eflag{f1});

gndotdE = gns{f1}.*gdEs + gnx{f1}.*gdEx;

gndotdH = gns{f1}.*gdHs + gnx{f1}.*gdHx;

gRoxpRE = R./(R+gx{f1});

gfluxEs = -Z0*gnx{f1}.*gdHy - ...

alp*(gdEs - gndotdE.*gns{f1});

gfluxEx = Z0*gRoxpRE.*gns{f1}.*gdHy - ...

alp*(gdEx - gndotdE.*gnx{f1});

gfluxEy = -Z0*gRoxpRE.*gns{f1}.*gdHx + Z0*gnx{f1}.*gdHs - ...

alp*gdEy;

gfluxHs = gnx{f1}.*gdEy/Z0 - ...

alp*(gdHs - gndotdH.*gns{f1});

gfluxHx = -gRoxpRE.*gns{f1}.*gdEy/Z0 - ...

alp*(gdHx - gndotdH.*gnx{f1});

gfluxHy = -gnx{f1}.*gdEs/Z0 + gRoxpRE.*gns{f1}.*gdEx/Z0 - ...

alp*gdHy;

crhsEs = crhsEs + glift{f1}*gfluxEs/2;

crhsEx = crhsEx + glift{f1}*gfluxEx/2;

crhsEy = crhsEy + glift{f1}*gfluxEy/2;

crhsHs = crhsHs + glift{f1}*gfluxHs/2;

crhsHx = crhsHx + glift{f1}*gfluxHx/2;

crhsHy = crhsHy + glift{f1}*gfluxHy/2;

178

Appendix A. DG Code for CLS

end

rhsEs(:,cKs) = reshape(crhsEs,Np,curv);

rhsEx(:,cKs) = reshape(crhsEx,Np,curv);

rhsEy(:,cKs) = reshape(crhsEy,Np,curv);

rhsHs(:,cKs) = reshape(crhsHs,Np,curv);

rhsHx(:,cKs) = reshape(crhsHx,Np,curv);

rhsHy(:,cKs) = reshape(crhsHy,Np,curv);

It is important to note that these curvilinear adjustments add considerable computa-

tional complexity to each timestep and depending on the number of elements along

the curved boundary. Future developments of this code may optimize this routine

further.

Within the timestepping loop after the fields have been evolved by the RK pro-

cedure, a number of optional preprocessing routines can be run such as extracting

the field at the probe points for time-series data or plotting.

To extract the data at the desired probe locations, we use the list probeE which

contains the list of elements which contain the probe points to selectively extract

data from the GPU for interpolation by use of the gather command. The storage

array probeF, for the E fields, can be defined in the preprocessing section to be of

size (Nsteps + 1)×Nprobes × 3. If the H fields are also desired, the probeF array can

be augmented to size (Nsteps + 1)×Nprobes × 6 to store 3 more fields.

for pr = 1:length(probeE); % Start of probe loop

sp = probe(pr,1); xp = probe(pr,2);

% Collect data from probe’s element

if GPUflag

179

Appendix A. DG Code for CLS

Esi = gather(Es(:,probeE(pr)));

Exi = gather(Ex(:,probeE(pr)));

Eyi = gather(Ey(:,probeE(pr)));

else

Esi = Es(:,probeE(pr));

Exi = Ex(:,probeE(pr));

Eyi = Ey(:,probeE(pr));

end

va = EToV(probeE(pr),1); % Locate vertex 1 of element

vb = EToV(probeE(pr),2); % Locate vertex 2 of element

vc = EToV(probeE(pr),3); % Locate vertex 3 of element

% Find s and x coordinates of element

Vsx = [VS(va) VX(va); VS(vb) VX(vb); VS(vc) VX(vc)];

% Interpolate field at probe point

probeF(tstep+1,pr,1) = DG_Interp(Esi,sp,xp,N,Np,V,Vsx);

probeF(tstep+1,pr,2) = DG_Interp(Exi,sp,xp,N,Np,V,Vsx);

probeF(tstep+1,pr,3) = DG_Interp(Eyi,sp,xp,N,Np,V,Vsx);

end % End of probe loop

Again, if the number of probes: length(probeE) is large, it is useful to preprocess

the interpolation matrix used in DG Interp and the vertex trio for the element Vsx.

However, if only a few probes are needed, this probe loop does not significantly impact

performance. For a probe point which moves in time, the interpolation matrix and

vertex list Vsx cannot be preprocessed. Adjustments must be made if the probe

point lies in a curvilinear element.

180

Appendix A. DG Code for CLS

Next, for debugging purposes, it can be useful to visualize the field as it evolves

in time. This can be done by specifying a stride which indicates to plot the field

every stride number of steps. In the following code example, we plot the Ex field

component every stride steps. In the preprocessing section before the timestep

loop, we must include:

s_i = interp*s; % Interpolate s onto equally spaced grid

x_i = interp*x; % Interpolate x onto equally spaced grid

if figflag % Make empty figure for plotting

figure;

end

These interpolated values of s and x on an equally spaced grid are used in the routine

to plot the output field. This plotting routine can affect performance significantly so

it is recommended that this be used for debugging purposes only and with a large

enough stride.

if ((tstep/stride) == floor(tstep/stride)) || tstep == Nsteps

if figflag % Display trisurf plot of field

Ex_i = interp*gather(Ex);

trisurf(tri,s_i,x_i,Ex_i)

xlim([s_min s_max])

ylim([-s_max/2 s_max/2])

shading interp

caxis([-max(abs(Ex_i(:))) max(abs(Ex_i(:)))])

view(0,90)

pause(0.01)

end

disp([’ Step ’ num2str(tstep) ’ of ’ num2str(Nsteps) ...

181

Appendix A. DG Code for CLS

’ complete, elapsed time = ’ num2str(toc) ’s.’])

end

At this point, all optional routines are completed and the timestepping continues

to evolve τ to its final time τmax in a total of Nsteps. The loop is closed with another

end statement.

A.4 Postprocessing Routines

In this final section, we discuss the closing routines used to save the data and analyze

different aspects. To begin, we collect the necessary data, some of which lies may

lie on the GPU, and save the necessary components to a temporary workspace file

of extension .mat. Note, this will overwrite any previous data so be sure to rename

data files after each run.

A.4.1 Cleanup and Save Data

This part is completed in a few short steps. Once the data is saved, it may be

loaded with the load command for additional postprocessing or plotting. These

extra routines may be part of another script as well.

if GPUflag % Extract needed varibles in GPU memory

Es = gather(Es); Ex = gather(Ex); Ey = gather(Ey);

Hs = gather(Hs); Hx = gather(Hx); Hy = gather(Hy);

Z0 = gather(Z0); s = gather(s); x = gather(x);

alpha = gather(alpha); dt = gather(dt);

theta_x = gather(theta_x);

182

Appendix A. DG Code for CLS

end

% Clear all variables except the following

clearvars -except Es Ex Ey Hs Hx Hy s x alpha beta ...

s_min s_max x_in x_out R x_outf q Z0 c p tau_max Ntol ...

tri interp s_i x_i GPUflag Nv N V Np VS VX EToV ...

K probe probeF dt tmax figflag theta_x lambda

% Save workspace variables to .mat file

save(’DG_recent_data.mat’)

if GPUflag

pause(0.01)

gpuDevice([]); % Reset GPU state and clear its memory

end

A.4.2 Optional Postprocessing

If we opted to generate a mesh of sub-triangles at to upscale the resolution for the

plotting routines. We may plot the fields here using the trisurf command. In the

code example, we plot the field Eyp(s, x, τmax).

if figflag % Display trisurf plot of field

Ey_i = interp*Ey;

figure

trisurf(tri,s_i,x_i,Ey_i)

xlim([s_min s_max])

ylim([-(s_max-s_min)/2 (s_max-s_min)/2])

shading interp

183

Appendix A. DG Code for CLS

caxis([-max(abs(Ex_i(:))) max(abs(Ex_i(:)))])

view(0,90)

end

Another option to consider is to plot a field along a slice. For this example, we

take the data for Eyp and slice it along the line s = sslice specified by the user. The

x coordinates and the field along the slice are computed with the following routine.

function [x_slice,f_slice] = DG_Slice(s_s,xres,s,x,f,...

N,Np,V,VS,VX,EToV,Ntol)

% This subroutine slices the field f at along the x-direction at a

% specific s-value. The routine calls the subroutine DG_ElementFind to

% locate the elements required for interpolation. The routine also

% assumes the domain is convex in x along the slice.

%

% Inputs:

% s_s = slice location in s (1 x 1)

% xres = resolution desired for slice (1 x 1)

% s = LGL node s-coordinates (Np x K)

% x = LGL node x-coordinates (Np x K)

% F = field values at (s,x) (Np x K)

% N = order of elements (1 x 1)

% Np = number of nodes per element (1 x 1)

% V = Vandermonde matrix (Np x Np)

% VS = vector of s-coordinates of vertices (1 x Nv)

% VX = vector of x-coordinates of vertices (1 x Nv)

% EToV = element to vertex mapping matrix (K x 3)

% Ntol = specified tolerance for node locating (1 x 1)

%

% Outputs:

184

Appendix A. DG Code for CLS

% x_slice = vector of x-coordinates at s = s_s (xres x 1)

% f_slice = field values at (s_s,x_slice,t_s) (xres x 1)

if (s_s < min(s(:))) || (s_s > max(s(:)))

disp(’Error: slice located outside domain’)

return

end

f_slice = zeros(xres,1);

% Generate initial x-grid to find x-domain

mwidth = (max(x(:))-min(x(:)))/100;

x_grid = linspace(min(x(:))-mwidth,max(x(:))+mwidth,101)’;

x_probe = [ones(101,1)*s_s x_grid];

% Test each point if in interior/exterior of domain

probeE = DG_ElementFind(x_probe,VS,VX,EToV);

% Approximately locate boundaries in x

Lbound = find(probeE(1:end-1)==0 & probeE(2:end)~=0);

Ubound = find(probeE(1:end-1)~=0 & probeE(2:end)==0);

% Intialize intervals for bisection method boundary refine

x_L1 = x_grid(Lbound);

x_L2 = x_grid(Lbound+1);

x_U1 = x_grid(Ubound-1);

x_U2 = x_grid(Ubound);

% Iteration scheme to find lower boundary

while (x_L2-x_L1) > Ntol

185

Appendix A. DG Code for CLS

midp = (x_L1+x_L2)/2;

test = DG_ElementFind([s_s midp],VS,VX,EToV);

if test == 0

x_L1 = midp;

else

x_L2 = midp;

end

end

x_min = x_L2;

% Iteration scheme to find upper boundary

while (x_U2-x_U1) > Ntol

midp = (x_U1+x_U2)/2;

test = DG_ElementFind([s_s midp],VS,VX,EToV);

if test == 0

x_U1 = midp;

else

x_U2 = midp;

end

end

x_max = x_U1;

% Generate slice domain with correct limits to given tolerance

x_slice = linspace(x_min,x_max,xres)’;

x_probe = [ones(xres,1)*s_s x_slice];

% Find elements containing sample points

probeE = DG_ElementFind(x_probe,VS,VX,EToV);

% Sample fields at given coordinates based on elements which contain them

186

Appendix A. DG Code for CLS

for pr = 1:xres

va = EToV(probeE(q),1);

vb = EToV(probeE(q),2);

vc = EToV(probeE(q),3);

sp = x_probe(pr,1); xp = x_probe(pr,2);

Vsx = [VS(va) VX(va); VS(vb) VX(vb); VS(vc) VX(vc)];

f_slice(pr) = DG_Interp(f(:,probeE(pr)),sp,xp,N,Np,V,Vsx);

end

end % End of DG_Slice subroutine

This long routine will locate which elements lie along the slice line specified and

interpolate the fields at xres number of points in x. The result is two vectors:

x slice which stores the x coordinates along the slice, and f slice which stores the

interpolated values of f(sslice, xslice). This routine is general enough in that it doesn’t

assume knowledge of the domain except that it be convex in x, i.e. xin and xout(s)

be single valued with xin < xout(s).

Next, we can analyze the frequency content of time-series data with Fourier Trans-

forms. In this example, we examine the frequency content of Eyp collected at a probe

point q. This data was stored in the array probeF with the index (:,q,3) which

appeared in the optional timestepping routine; the 3 corresponded to Ey. In the

following example, we examine the frequency structure of Ey for probe number q

= 2 for frequencies k = [0.05, 300]m−1. The Fourier transform of Eyp is stored in

the FTEy variable. Optionally, the interferogram: the inverse Fourier transform of

|FTEy|2 is computed and stored in IGEy.

% Post-processing of time-domain signals

taus = (0:dtau:tau_max)’; % Time-domain of simulation

187

Appendix A. DG Code for CLS

ks = 0.05:0.05:300; % User specified frequency range

pmy = probeF(:,2,3);

FTEy = [];

for kk = 1:ceil(length(ks)/100);

kp = ks(1+(kk-1)*100:min(kk*100,length(ks)));

[Ks,Taus] = meshgrid(kp,ts);

intp = exp(-2*pi*1i*(Ks.*Taus)).*repmat(pmy,1,length(kp));

FTEy = horzcat(FTEy,trapz(taus,intp));

end

IGEy = [];

for tt = 1:ceil(length(ts)/1000);

tp = taus(1+(tt-1)*1000:min(tt*1000,length(taus)));

[Ks,Taus] = meshgrid(ks,tp);

intp = exp(2*pi*1i*(Ks’.*Taus’)).*repmat(abs(FTy’).^2,1,length(tp));

IGEy = horzcat(IGEy,trapz(ks,intp));

end

clear Ks Taus intp

The odd structure in for loops is used for memory limitations. If a large number of

wave numbers were computed simultaneously, a memory overflow may occur as the

arrays become arbitarily large. These loops limit the number of frequencies computed

to 100 at a time. The numerical integration is done with the trapz command which

uses the trapezoidal rule. The vectors FTEy or IGEy may be plotted using the plot

command and ks or taus respectively as the dependent variable.

Lastly, additional plots can be formed with contour for level curves or quiver

for direction fields. An example for ad-hoc plotting of the E direction field can be

done as follows:

188

Appendix A. DG Code for CLS

% Quiver plot of E field

Es_i = interp*Es;

Ex_i = interp*Ex;

NE_i = sqrt(Es_i.^2+Ex_i.^2);

figure

quiver(s_i,x_i,Es_i./NE_i,Ex_i./NE_i,’AutoScaleFactor’,0.05);

axis equal

The AutoScaleFactor can be adjusted, but for clarity, if the factor is too large, the

plot becomes too cluttered with possibly millions of arrows. It is recommended to

only plot desired regions by cropping the arrays for appropriate values of s i and

x i within a range.

A.5 Variable and Routine Dependencies

The entire code can be visually setup as a flowchart which lists the inputs and outputs

of every routine and the chronological hierarchy of routines. Some routines may be

run in parallel to others if they have no mutual dependencies.

A.5.1 List of Variables

We begin with a list of every workspace variable in used in the main code block,

some of which are used within subroutines with the same name to avoid confusion.

The following table lists every variable name used, its array size (if applicable), and

a description with physical or relevant units in parenthesis. Postprocessing and op-

tional variables are omitted; see relevant subroutines for more information.

189

Appendix A. DG Code for CLS

Name Size Description

alp (1× 1) DG Flux parameter (1 = upwinding, 0 = central)

alpha (1× 1) Fourier series y-mode: αp (m−1)

c (1× 1) Speed of light (m/s)

dEs (3Nfp ×K) Jump in Esp along element edges: E−sp − E+
sp (V/m)

dEx (3Nfp ×K) Jump in Exp along element edges: E−xp − E+
xp (V/m)

dEy (3Nfp ×K) Jump in Eyp along element edges: E−yp − E+
yp (V/m)

Dr (Np ×Np) Differentiation matrix along r reference coordinate

dHs (3Nfp ×K) Jump in Hsp along element edges: H−sp −H+
sp (A/m)

dHx (3Nfp ×K) Jump in Hxp along element edges: H−xp −H+
xp (A/m)

dHy (3Nfp ×K) Jump in Hyp along element edges: H−yp −H+
yp (A/m)

DsEx (Np ×K) Matrix product for ∂Exp/∂s (V/m2)

DsEy (Np ×K) Matrix product for ∂Eyp/∂s (V/m2)

DsHx (Np ×K) Matrix product for ∂Hxp/∂s (A/m2)

DsHy (Np ×K) Matrix product for ∂Hyp/∂s (A/m2)

Dt (Np ×Np) Differentiation matrix along t reference coordinate

dtau (1× 1) Stable timestep ∆τ for evolution (m)

DxEs (Np ×K) Matrix product for ∂Esp/∂x (V/m2)

DxEy (Np ×K) Matrix product for ∂Eyp/∂x (V/m2)

DxHs (Np ×K) Matrix product for ∂Hsp/∂x (A/m2)

DxHy (Np ×K) Matrix product for ∂Hyp/∂x (A/m2)

EToE (K × 3) Element-to-element connectivity map

EToF (K × 3) Element-to-face (edge) connectivity map

EToV (K × 3) Element-to-vertex connectivity map

Es (Np ×K) Array storing values Esp at nodes (V/m)

190

Appendix A. DG Code for CLS

Name Size Description

Esu (Np ×K) Residual storage array for Esp (V/m)

Ex (Np ×K) Array storing values Exp at nodes (V/m)

Ex 0 (Np ×K) Initial condition for Exp at τ = 0 at nodes (V/m)

Ex S (Np ×K) Source term for RHS of dExp/dτ (A)

Exu (Np ×K) Residual storage array for Exp (V/m)

Ey (Np ×K) Array storing values Exp at nodes (V/m)

Ey 0 (Np ×K) Initial condition for Eyp at τ = 0 at nodes (V/m)

Eyu (Np ×K) Residual storage array for Eyp (V/m)

f1 (1× 1) Multiplicative factor used in λ(s) (m−1)

f2 (1× 1) Multiplicative factor used in λ(s) and λ′(s) (m2)

f3 (1× 1) Multiplicative factor used in λ′(s) (m−3)

figflag (1× 1) Flag for running option plotting routines (0 or 1)

fluxEs (3Nfp ×K) Numerical flux term for Esp PDE (V/m)

fluxEx (3Nfp ×K) Numerical flux term for Exp PDE (V/m)

fluxEy (3Nfp ×K) Numerical flux term for Eyp PDE (V/m)

fluxHs (3Nfp ×K) Numerical flux term for Hsp PDE (A/m)

fluxHx (3Nfp ×K) Numerical flux term for Hxp PDE (A/m)

fluxHy (3Nfp ×K) Numerical flux term for Hyp PDE (A/m)

Fm (Nfp × 3) Reference element array of edge indices

Fsc (3Nfp ×K) Ratio of edge-to-area Jacobian by element

Gp (1× 1) Fourier coefficient for G(y) mode p (m−1)

GPUflag (1× 1) Flag for using GPU processing (0 or 1)

h (1× 1) Height of vacuum chamber in y (m)

h0 (1× 1) Scaled edge length for mesh generation (m)

191

Appendix A. DG Code for CLS

Name Size Description

Hs (Np ×K) Array storing values Hsp at nodes (A/m)

Hsu (Np ×K) Residual storage array for Hsp (A/m)

Hx (Np ×K) Array storing values Hxp at nodes (A/m)

Hxu (Np ×K) Residual storage array for Hxp (A/m)

Hy (Np ×K) Array storing values Hyp at nodes (A/m)

Hy S (Np ×K) Source term for RHS of dHyp/dτ (V)

Hyu (Np ×K) Residual storage array for Hyp (A/m)

interp (Npout ×Np) Interpolation matrix to Npout equally spaced nodes

IoZ0 (1× 1) Scalar quantity: 1/Z0 (Ω−1)

IoxpR (Np ×K) Array quantity: 1/(x+R) = κ/(1 + κx) (m−1)

K (1× 1) Total number of elements

kap (function) Function handle for curvature: κ(s) (m−1)

kap s (Np ×K) Array evaluation of κ(s) at nodes (m−1)

lambda (function) Function handle for λ(s) distribution (m−1)

lambda (function) Function handle for λ′(s) distribution (m−2)

Lift (Np × 3Nfp) DG surface to volume operator

mB (varies×1) Global edge nodal numbers along boundary

N (1× 1) Polynomial order of elements N

ndotdE (3Nfp ×K) Array quantity n · E jumps along element edges

ndotdH (3Nfp ×K) Array quantity n ·H jumps along element edges

Nfp (1× 1) Number of nodes along faces (edges): Nfp

Nout (1× 1) Output polynomial order for upscaling plots

Np (1× 1) Number of nodes per element: Np

ns (3Nfp ×K) s-component of normal vector n along edges

192

Appendix A. DG Code for CLS

Name Size Description

Nsteps (1× 1) Total number of timesteps: τmax/∆τ

Ntol (1× 1) Tolerance for node locating algorithms

Nv (1× 1) Total number of vertices in mesh: Nv

nx (3Nfp ×K) x-component of normal vector n along edges

p (1× 1) Fourier mode number in y-direction: p

r (Np × 1) Reference triangle node coordinate: r

rhsEs (Np ×K) Array for RHS of dEsp/dτ (V/m/s)

rhsEx (Np ×K) Array for RHS of dExp/dτ (V/m/s)

rhsEy (Np ×K) Array for RHS of dEyp/dτ (V/m/s)

rhsHs (Np ×K) Array for RHS of dHsp/dτ (A/m/s)

rhsHx (Np ×K) Array for RHS of dHxp/dτ (A/m/s)

rhsHy (Np ×K) Array for RHS of dHyp/dτ (A/m/s)

rk4a (1× 5) Vector of LSERK butcher table coefficients a

rk4b (1× 5) Vector of LSERK butcher table coefficients b

rk4c (1× 5) Vector of LSERK butcher table coefficients c

RoxpR (Np ×K) Array quantity: R/(x+R) = 1/(1 + κx)

RoxpRE (3Nfp ×K) Array quantity: R/(x+R) = 1/(1 + κx) along edges

rs (Np ×K) Array for Jacobian metric: ∂r/∂s (m−1)

rx (Np ×K) Array for Jacobian metric: ∂r/∂x (m−1)

s (Np ×K) Array of physical coordinates s at nodes (m)

s max (1× 1) Position of end of vacuum chamber: smax (m)

s min (1× 1) Position of start of vacuum chamber: smin (m)

193

Appendix A. DG Code for CLS

Name Size Description

sig s (1× 1) Bunch length in s: σs (m)

t (Np × 1) Reference triangle node coordinate: t

t delay (1× 1) Shift offset for initial source position (m)

tau (1× 1) Current time in timestepping loop: τ (m)

tau max (1× 1) Reference triangle node coordinate: τmax (m)

theta x (Np ×K) Evaluation of Heaviside function at nodes: Θ(x)

ts (Np ×K) Array for Jacobian metric: ∂t/∂s (m−1)

tx (Np ×K) Array for Jacobian metric: ∂t/∂x (m−1)

V (Np ×Np) Vandermonde matrix for LGL polynomial basis

vB (varies×1) Global nodal numbers along boundary

vM (3Nfp·K×1) Global nodal numbers along interior element edges

vP (3Nfp·K×1) Global nodal numbers along exterior element edges

VS (1×Nv) Vector of s-coordinates of mesh vertices (m)

VX (1×Nv) Vector of x-coordinates of mesh vertices (m)

x (Np ×K) Array of physical coordinates x at nodes (m)

x in (1× 1) Inner wall position of vacuum chamber: xin (m)

x max (1× 1) Maximum of xout(s) in vacuum chamber (m)

x out (1× 1) Initial outer wall position: xout(0) (m)

Z0 (1× 1) Impedance of free space: Z0 (Ω)

194

Appendix A. DG Code for CLS

A.5.2 Flowchart of Routines

In this section we visually outline the hierarchy of the steps outlined in sections 2–3

with optional routines omitted. The variable dependencies can be viewed in the

respective header comments in each routine.

Preprocessing Routines

Input parameters and settings

Generate Mesh DG_Nodes

DG_Vandermonde

DG_Collocation

DG_Coordinates DG_Mask

DG_Lift

DG_GF2D

DG_Connect

DG_Maps DG_Timestep

Construct Initial Conditions and Sources

Timestepping Algorithm

Low Storage Runge-Kutta

Construct Fluxes and

Derivatives

Evaluate PDE

Right-Hand-Sides

Update Residual Arrays

and Fields

Compute Jumps in Fields

Along Edges

Impose Boundary

Conditions

Optional Timestepping

Routines

R
u
n
g
e-K

u
tta L

o
o
p

O
u
ter T

im
estep

 L
o
o
p

195

References

[1] T. Agoh, Dynamics of Coherent Synchrotron Radiation by Paraxial Approxima-
tion, Ph.D. Dissertation, University of Tokyo, December (2004).

[2] T. Agoh and K. Yokoya, “Calculation of coherent synchrotron radiation using
mesh”, Phys. Rev. ST Accel. Beams 7, 054403 (2004).

[3] G. Bassi, J. A. Ellison, K. Heinemann, R. Warnock, “Microbunching Instability
in a Chicane: Two-Dimensional Mean Field Treatment”, Phys. Rev. ST Accel.
Beams 12, 080704 (2009).

[4] B. E. Billinghurst, J. C. Bergstrom, C. Baribeau, T. Batten, L. Dallin,
T. E. May, J. M. Vogt, W. A. Wurtz, R. Warnock, D. A. Bizzozero, and
S. Kramer, “Observation of Wakefields and Resonances in Coherent Synchrotron
Radiation”, Phys. Rev. Lett. 114, 204801 (2015).

[5] D. Bizzozero, J. A. Ellison, K. A. Heinemann, S. R. Lau, “Paraxial Approxima-
tion in CSR Modeling Using the Discontinuous Galerkin Method”, Proceedings
of FEL13, New York, August 2013. Paper available at:
http://accelconf.web.cern.ch/AccelConf/FEL2013/papers/mopso06.pdf

[6] D. Bizzozero, J. A. Ellison, R. Warnock “Modeling CSR in a Vacuum Chamber
by Partial Fourier Analysis and the Discontinuous Galerkin Method”, Proceed-
ings of FEL14, Basel, Switzerland, August 2014. Paper available at:
http://accelconf.web.cern.ch/AccelConf/FEL2014/papers/tup023.pdf

[7] B. Cockburn, “Discontinuous Galerkin Methods”, ZAMM, Journal of Applied
Mathematics and Mechanics, Volume 83, Issue 11, p. 731–754, November (2003).

[8] R. Cools, “Monomial Cubature Rules Since ’Stroud’: a Compilation – Part 2”,
J. Comput. Appl. Math., 112(1-2), 21–27 (1999).

[9] L. Evans, Partial Differential Equations (American Mathematical Society, 2010).

196

References

[10] K. Heinemann, D. Bizzozero, J. A. Ellison, S. R. Lau, G. Bassi, “Rapid
integration over history in self-consistent 2D CSR modeling”, Proceedings
of ICAP2012, Rostock-Warnemunde, Germany, August 2012. See jacow.org
for the paper and slides at TUSDC2, i.e., http://accelconf.web.cern.ch/

AccelConf/ICAP2012/papers/tusdc2.pdf

[11] J. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods (New
York: Springer, 2008).

[12] J. Jackson, Classical Electrodynamics, Third Edition (New York: Wiley, 1998).

[13] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite
Element Method (Mineola N.Y.: Dover, 2009).

[14] A. Klöckner, T. Warburton, J. Bridge, J. S. Hesthaven, “Nodal discontinuous
Galerkin methods on graphics processors”, J. Comput. Phys. 228, Issue 21,
7863–7882 (2009).

[15] A. Klöckner, T. Warburton, J. S. Hesthaven, “High-Order Discontinuous
Galerkin Methods by GPU Metaprogramming” in GPU Solutions to Multi-
scale Problems in Science and Engineering, edited by D. A. Yuen, L. Wang,
X. Chi, L. Johnsson, W. Ge, and Y. Shi (Springer, 2013). Also available as
arXiv:1211.0582 [cs.MS].

[16] R. McOwen Partial Differential Equations – Methods and Applications, (Upper
Saddle River, NJ: Pearson Education, 2003).

[17] P. -O. Persson, G. Strang, “A Simple Mesh Generator in MATLAB”, SIAM
Review, Volume 46 (2), 329–345, (2004).

[18] B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolc
Equations (Philadelphia: SIAM, 2008).

[19] J. Strikwerda, Finite Difference Schemes and Partial Differential Equations (Pa-
cific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software, 1989).

[20] G.V. Stupakov and I.A. Kotelnikov, “Calculation of coherent synchrotron ra-
diation impedance using the mode expansion method”, Phys. Rev. ST Accel.
Beams 12, 104401 (2009).

[21] Y. Xu and C. Shu, “Local Discontinuous Methods for Nonlinear Schrödinger
Equations”, J. Comput. Phys. 205, Issue 1, 72–97 (2005).

197

References

[22] D. Zhou, Coherent Synchrotron Radiation and Microwave Instability in Elec-
tron Storage Rings, Ph.D. Dissertation, The Graduate University for Advanced
Studies, September (2011).

[23] D. Zhou, K. Ohmi, K. Oide, L. Zang, and G. Stupakov, “Calculation of Coher-
ent Synchrotron Radiation Impedance for a Beam Moving in a Curved Trajec-
tory”, Jpn. J. Appl. Phys. 51, 016401 (2012).

198

	University of New Mexico
	UNM Digital Repository
	2-1-2016

	Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method
	David Bizzozero
	Recommended Citation

	tmp.1472765406.pdf.IXlia

