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ABSTRACT 

 

This thesis explores how support constraints and multiple frames affect multi-frame blind 

deconvolution. Previous research in non-blind deconvolution, which seeks to estimate an 

object from a blurred and noisy image, characterized how the use of support constraints 

exploited spatial noise correlations to reduce noise in the estimate of the object. In multi-

frame blind deconvolution, the blurring function is unknown and must be estimated along 

with the object. Applying a support constraint to both the object and the blurring 

functions, when using blind deconvolution, is one way to ensure a unique solution. The 

effects on the estimate of the object as a function of the size of the supports are analyzed. 

Also, the benefit in noise reduction in the estimate of the object from including multiple 

blurred and noisy images is considered. Cramer-Rao Bound theory is employed to 

provide an algorithm-independent metric to analyze the effects from these parameters. 

The Cramer-Rao bound is a lower limit to the variance of any estimate of an unknown 

parameter. In this research, the unknown parameters are the intensities of the object 

which is estimated.
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1. INTRODUCTION 
 

 

The aim of reconstruction in image processing is to restore an object from blurred 

and noisy data. This reconstruction process is useful for many fields such as astronomical 

imaging [1], medical imaging [2,3], remote sensing [4], etc. The classical image 

restoration problem is one of deconvolving a known blurring function with the blurred 

data. In some situations, the blurring function is either known a priori or can be estimated 

accurately from additional measurements.  

 

In many practical imaging situations, however, it is impossible to know or 

estimate the blurring function separately from the object restoration process [5]. At best, 

information about the blurring, such as the support [6], may be available. Thus, a need to 

estimate the object without explicit knowledge of the blurring function is present. Multi-

frame blind deconvolution (MFBD) algorithms exist to solve this problem. The term 

multi-frame refers to the use of multiple blurred and noisy measurements in the 

reconstruction process. The term blind denotes that the blurring function is unknown, as 

opposed to the classical non-blind case in which the blurring function is known. Thus, 

multi-frame blind deconvolution algorithms reconstruct an object by estimating the true 
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intensity from many blurred and noisy measurement frames. Applying a prior knowledge 

constraint, such as a support constraint, is one way for the algorithm to achieve a unique 

solution. Also, a reasonable model for the noise characteristics is required. Below is a 

block representation of the MFBD process. 

 

 

Figure 1. Block diagram of the multi-frame blind deconvolution process 

 

Previous work in non-blind deconvolution presented in [7] explored the benefits 

of applying a support constraint. It was shown that using the tightest support produced 

the best results. Furthermore, the largest noise reduction was always possible at the edges 

of the support.  

 

 

MFBD 

Algorithm 
 

Noise Model 

Prior Knowledge 

Constraints 

(Support) 
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The research for this thesis is an extension to MFBD of the work in non-blind 

deconvolution. The purpose is to understand MFBD as a function of its input parameters. 

In this thesis, the effects on the quality of the reconstruction of an object as a function of 

two parameters are presented. These parameters are the support constraint, for both the 

object and blurring functions, and the use of multiple measurement frames in the 

reconstruction process. The reconstruction quality is measured in terms of the variance of 

the intensities of the restored object. Using variance may seem problematic because 

reconstructions from any two MFBD algorithms may produce different variances for the 

same set of parameters. Therefore, in order to analyze the effects from the parameters 

themselves, and not the effects of specific algorithms, an algorithm-independent metric is 

necessary. The Cramer-Rao inequality has been chosen to provide this algorithm-

independent metric [8]. This inequality expresses the lower limit to the variance of the 

estimate of an unknown parameter as a function of a given set of constraints [9]. In the 

case of this research, the unknown parameters are the object intensity values that are to be 

estimated. Although the Cramer-Rao inequality does not specify the algorithm that 

achieves this lower limit, or does not even specify if the lower limit is achievable, it 

provides a lower bound that can be used for comparisons. In the research for this thesis, 

the Cramer-Rao Bound (CRB) is the metric used to compare the effects from different 

MFBD parameters. 

 

The thesis is divided among the following five chapters. First, a background 

chapter that describes the theory behind the research is presented. Next, a description of 

all the reconstruction parameters common to the results in the research is given. Finally, 
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the results are presented in two chapters, followed by a summary and discussion of the 

conclusions in the last chapter. 

 

The first results chapter is the extension of the work presented in [7] to blind 

deconvolution. Blind deconvolution CRBs as a function of the size of the object support 

constraints are compared to non-blind CRBs using the same constraints. It is shown that 

the blind deconvolution CRBs for the given support are always greater than the non-blind 

CRBs. In addition, the morphologies of blind deconvolution CRBs differ from the 

morphologies of non-blind CRBs. 

 

The second results chapter focuses on the MFBD CRBs from variations of two 

parameters that were not explored in [7]. These parameters are the blurring function 

support constraint and the inclusion of multiple measurement frames. First, the role that 

the size of the blurring function support constraint plays on the blind deconvolution 

CRBs is explored. It is shown that the impact on the CRBs is not as significant as the 

impact from the size of the object support. Second, the decrease in CRBs as a function of 

the number of measurement frames is analyzed. It is shown that as more frames are 

included, the CRBs of the object decrease. Furthermore, the most decrease is seen with 

the inclusion of the first few frames. The magnitude of this decrease is heavily dominated 

by properties of the actual blurring function. As more frames are included, the decrease in 

CRBs conforms to a simple mathematical model. 

 

Parts of the results presented in this thesis were published in [10].
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2. BACKGROUND 

 

 

This chapter seeks to introduce the theory behind the two fundamental concepts 

employed in the research: the imaging model and Cramer-Rao Bound theory. First, the 

imaging model will be explained along with the concepts behind image reconstruction. 

The reconstruction model consists of three components: the point spread function, a noise 

model, and a prior knowledge constraint. These ideas are all explained in further detail. 

Second, the theory of Cramer-Rao Bounds is presented. These bounds provide an 

algorithm-independent lower-limit on the variance of an estimator. The results presented 

in the thesis are based on the CRB calculations for various imaging scenarios. 

 

2.1. Imaging Model 

 

The imaging model used in the rest of the thesis consists of three components and 

is given by the equation,  

      )(xxxx nho=i  ,  (1) 

where i(x) is a blurred and noisy image, x is a two-dimensional vector representing the 

position in image space, o(x) is the true object that is being imaged, and h(x) is the point-

spread function (PSF) that blurs each point in the object. The convolution operator that 
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blurs the PSF with the object is represented by an asterisk. There is also an additive noise 

term included in the imaging model. This noise term is represented by n(x). Further 

details on these components are given below. 

 

2.1.1. Point Spread Function 

 

The point-spread function represents how an object is blurred when being imaged. 

This blurring can be caused by several factors. In this thesis the effects of the atmosphere 

will be modeled in the PSF. The PSF does not simply multiply with the object, but rather 

each point in the object is blurred the same. This is embodied in the equation:  










 2121221121 ),(),(),( dtdtttotxtxhxxi  ,   (2) 

where x1 and x2 are the components of the vector x from Eq. (1). For convenience the 

above convolution operation will be denoted by an asterisk. The convolution model is 

incomplete as it does not include a noise term.  

 

The PSF is represented by simply dividing up the intensities of the PSF over a 

square grid. Each square is known as a pixel and stores the intensity integrated over the 

area of that pixel. This model is typical of how a CCD camera captures an image or how 

a digital image is stored on a computer [11]. This representation is intuitive and allows 

the results to easily be displayed.  
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2.1.2. Noise Model 

 

The imaging model in Eq. (1) includes an additive noise term that represents the 

effects of various types of noise introduced when capturing the image. This additive term 

sufficiently models the noise in CCD cameras. A model for the noise present in CCD 

cameras will be discussed here. It is assumed that the noise is zero-mean and statistically 

independent from pixel to pixel [12]. 

 

A CCD photo-detector is a 2-dimensional array of pixels in which a charge 

accumulates during the exposure interval. The charge value is read out of each pixel from 

a serial register, row by row, until all the pixels are read. CCD cameras exhibit noise and 

further distort the blurred image [13]. 

 

There are several sources of noise inherent when using CCD cameras. However, 

only one of these noise sources is modeled for the research in this thesis. The model is 

known as read noise and is based on the noise that is present when amplifying the output 

of the CCD array before the analog-to-digital conversion. Thus, the characteristics of the 

noise model are independent of the signal at each pixel.  

 

When the information in each capacitor is read, the analog value is converted into 

a digital value. This process inherently introduces noise. Since every pixel in the CCD 

array is transferred, the noise is present at every pixel. The noise does not depend on the 

signal at that pixel. This noise is modeled well with the Gaussian distribution which is 

given by 
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




















2

2

1
exp

2

1
);( 

an
anP  ,     (3) 

where a is the mean and σ is the variance of the Gaussian distribution. Thus, the 

function P gives the probability density function of the read noise. In order to be able to 

simply add the noise term to the imaging model, the mean, a, is set to zero. 

 

2.2. Reconstruction 

 

The forward imaging model presented in Eq. (1) can be inverted to obtain the 

object from the image. This is the basis of image reconstruction. This section will 

introduce the concepts of reconstruction used in the rest of the thesis. First, the Fourier 

representation of the imaging model is described. Next, the simplest method of 

deconvolution without noise is presented. Finally, noise correlations along with various 

prior knowledge constraints are explained. 

 

2.2.1. Fourier Representation 

 

The forward imaging model is represented in the frequency domain by the 

equation: 

)N(+)O()H(=)I( ffff  ,      (4) 

where f is a two-dimensional vector that represents the spatial frequencies, and the upper-

case letters represent the Fourier transforms of the their respective lower-case 

counterparts in Eq. (1). The Fourier transform of the PSF is also known as the optical 

transfer function (OTF) [14]. Note that in the Fourier domain the convolution is 



 9 

substituted by a multiplication operation [15]. This substitution allows us to complete a 

simple reconstruction which is described in the next section. 

 

2.2.2. Deconvolution 

 

Deconvolution is the act of separating the point spread function from the true 

object. This is used to obtain the object estimate. First, deconvolution in the non-blind 

case is considered. Non-blind deconvolution assumes that the PSF of the system is 

known. In the absence of noise, deconvolution can be achieved by simply dividing the 

Fourier transform of the image by the Fourier transform of the known PSF. This is shown 

in by  

)O(=
)H(

)H()O(
=

)H(

)I(
=)(O f

f

ff

f

f
f



 ,     (5) 

where )(f


O  represents the Fourier transform of the object estimate. The underlying 

assumption here is that the Fourier transform of the PSF is invertible. Thus, the original 

object is fully reclaimed if the above assumption is made. To make the problem more 

realistic, the noise term is included. This results in the following equations: 

 )N(+)H()O(=)I( ffff  , 

)H(

)N(
+)O(=

)H(

)N(
+

)H(

)H()O(
=

)H(

)I(
=)(O

f

f
f

f

f

f

ff

f

f
f



 .   (6) 

 

The inverse Fourier transform of Eq. (6) yields the equation, 

)(*)()()( xxxx nhoo inv


       (7) 
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which shows that the original noise term is now convolved with the function, hinv, that 

corresponds to the inverse Fourier transform of the inverse OTF. It was shown in Section 

2.1.2 that the original noise term is spatially-uncorrelated. However, the convolution of 

hinv with the original noise term creates spatial correlations in the noise. It was shown in 

[6] that these correlations are necessary for the reduction of noise in the object estimate. 

 

 In the case of blind deconvolution, the PSF is not known. As a result, the 

deconvolution cannot be carried out explicitly since no closed-form solution exists as in 

the non-blind case. However, deconvolution can be achieved through iterative methods 

[16].  

 

2.2.3. Prior Knowledge 

 

The final component of the MFBD process is a prior knowledge constraint. Prior 

knowledge constraints have been shown to be effective in deconvolution [6,7]. In the 

research, only the support constraint is considered.  

 

A support constraint is utilized by defining an area around the blurred object 

where it is certain that there is no signal outside the region. Thus, any artifacts outside the 

support region must be noise. Since convolving the additive noise term by the inverse of 

the OTF correlates the pixels in the object, knowledge that the signal is zero outside the 

support can be used to remove noise from inside the support. An example is presented in 

Section 2.3.3. 
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2.3. Cramer-Rao Bound 

 

The Cramer-Rao Bound (CRB) expresses a lower limit to the variance of any 

unbiased estimator [18]. An estimator is a mathematical function that seeks to estimate an 

unknown parameter from a set of noisy data. Since the estimator is based on the data 

which is random in nature, the estimator itself is a random variable. Therefore, in order to 

judge the quality of an estimator, the variance of the estimates is calculated. Thus, an 

estimator of a parameter that produces estimates that have lower variance than another 

estimator is said to be better. Again, the CRB computes the lower bound to the variance 

of any estimator. It is important to note that this variance may not necessarily be an 

achievable quantity. Even so, the CRB provides a benchmark to which an actual 

estimator can be compared. 

 

In the case of the imaging problem for the research, the unknown parameters are 

the true object intensities being estimated from the blurred and noisy measurements. The 

results in the thesis are based on the comparison of CRBs for different reconstruction 

parameters, such as the size of the support constraint, and the inclusion of multiple 

measurement frames. Comparing the CRBs allows for comparison of the effects of these 

parameters on the image reconstruction regardless of how a specific estimator algorithm 

implements the reconstruction. 

 

2.3.1. Formulation 
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Since many intensities of the object are estimated, the CRB is calculated for a 

vector of parameters. First, the original imaging equation must be transformed from 

continuous to discrete form. This is presented in the equation: 

)()(*)()(  nohi   ,      (8) 

where α is a two-dimensional array that has replaced the continuous variable x from Eq. 

(1). Also, the convolution integral in Eq. (2) is transformed into a convolution summation 

given by the equation, 

 
t

o(t)t)h(α=i(α)  ,       (9) 

where h is the PSF and o is the object. The summation is performed over all the elements 

in α. 

 

Additionally, Eq. (8) needs to be further modified to vector form. This is 

accomplished by stacking the columns of o(α) and n(α). h(α) and the convolution 

operation also need to be transformed into vector form. Simply stacking the columns of 

h(α) and multiplying by o(α) does not correctly compute the convolution operation. 

Instead, h(α) needs to be transformed into a block circulant matrix. This matrix, when 

multiplied with the stacked columns of o(α) will produce a stacked-column vector 

equivalent to the stacked-column vector of h(α) convolved with o(α). Eq. (8) replaced by 

its vector counterparts is shown below:  

ηθHy   ,        (10) 

where y, θ and η are formed by stacking the columns of i(α) o(α) and n(α), respectively. 

The matrix H is a square matrix with elements given by the elements of the convolution 

operation [17]. 
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2.3.2. Cramer-Rao Inequality 

 

The CRB for a scalar parameter, θ, is given by the following inequality:  

















2

2ln

1
)

θ

θ)p(n;
E

Var(θ  ,      (11) 

where p(n;θ) is a probability density function (PDF) parameterized on the unknown 

variable θ. The operator, E, represents the expected value. According to the above 

equation the variance of the estimate will always be greater than or equal to the inverse of 

the average curvature of the log-likelihood function. Note that the PDF must be known to 

find the CRB of the estimate. All the information is contained in the observed data and 

the PDF for those data [18]. 

 

The CRB inequality can be extended to vector form. Assume the parameters θ = 

[θ1 θ2 … θn] are to be jointly estimated. If the joint PDF is known, then the CRBs for each 

of the unknown parameters are given by the equation 

 
iii FVar )()( 1
θ

  ,       (12) 

where F is the Fisher Information Matrix (FIM) given by 

 

















ji

ij
θθ

θ)p(n;
E=F(θ

ln
)

2

.      (13) 

Thus, the CRBs are located on the diagonals of the inverse of the FIM. 
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As in the scalar case, the joint PDF must be known. For the imaging model given 

in Eq. (1), we see that the PDF depends only on the additive noise model. Therefore, the 

probability density function is given by 

)(p=(p=θ)p(n; Hθyη 
~~

)  ,       (14) 

where 
~

p  is the PDF of the read noise term given in Eq. (3). The PDF of the measurement 

is equal to the PDF of the noise with a non-zero mean equal to the intensity of the blurred 

object. 

 

There exist problems of uniqueness in blind deconvolution when calculated the 

CRBs. One problem is that if the object estimate is multiplied by a constant factor and the 

PSF estimate is multiplied by the inverse of that factor, then the solution without the 

factors is still given. Furthermore, an infinite number of factors exist and therefore, an 

infinite number of solutions exist. This is described in the equation below. 

          

  .
1

,
1

)H()O(=)H(K)O(
K

=)I(

hKo
K

=ho=i

fffff

xxxxx




















    (15) 

where K is a multiplicative factor and the uppercase letters represent the Fourier 

transform of their respective lowercase counterparts. To avoid this degeneracy, instead of 

calculating the CRBs for each element in the object and PSF, one less element in each 

can be calculated. The element not estimated is then given by 

 









1

1

1

1

)(1)(;)()(
N

i

N

i

imNmiobjN hhodco xxxx  ,   (16) 

where xN is the uncalculated element and dcobj is the total intensity of the image.  
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The other uniqueness problem stems from the fact that multiple solutions exist by 

shifting the object estimate within the support in one direction and equally shifting the 

PSF in the opposite direction. This is described in the following equations: 

         

    .

,

)H()O(e)H(e)O(=)I(

ho=ho=i

j2πj2π
fffff

a+xaxxxx

afaf 




    (17) 

where a is a two-dimensional shift vector. If the object and PSF are shifted the same 

distance in opposite directions, the two exponential terms in the Fourier domain equation 

multiply to 1. To avoid this degeneracy, the CRBs were calculated by enforcing perfect 

support on either the object or PSF in all calculations. Since the estimates of the object 

and PSF exist only in the support region, enforcing perfect support on either the object or 

PSF ensures that the estimate cannot be shifted. 

 

2.3.3. Fisher Information Matrix 

 

 The Fisher Information Matrix (FIM) is a measure of the information that an 

observable random variable carries about an unobservable parameter [9]. In the case of 

blind-deconvolution CRBs, we are interested in the estimates of the object and PSF from 

multiple measurement frames. The content of the FIM is based on measurement frame 

data and the applied support. 

 

The purpose of this section is to give the reader necessary detail on how to 

construct the FIM for our problem of interest. This is important in order to understand 

how the parameters, such as support, are implemented in the CRB calculations. A basic 
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example of how the noise correlations are exploited by applying a support constraint is 

presented. Also, the size of the FIM for the blind deconvolution case poses a 

computational problem. The problem is explored in detail in this section. 

 

a. Structure 

As shown in the previous section, the elements of the FIM are given by the 

following equation: 

 

















ji

ij
θθ

)p(n;
E=F(

θ
θ

ln
)

2

 .      (18) 

For simplicity, the FIM structure is given first for the non-blind case, where only the 

object intensities are estimated. The FIM is given by  

























NNN

N

ff

ff

fff

1

2221

11211

..

..

..

objF  ,     (19) 

where N is the number of pixels in the object support. The elements are given by Eq. 

(18). The diagonal elements represent the sensitivity of a parameter to a change in itself, 

while the off-diagonal elements, fij, represent the sensitivity of one parameter, θi, to a 

change in another parameter, θj. 

 

The structure of the FIM is now posed to include M measurement frames.  
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





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F  ,    (20) 

where each Fij represents a block matrix. Specifically, F11 is the block given by Fobj in 

Eq. (19). For each PSF frame, m, included in the reconstruction, three additional blocks 

is added to F. Fmm is added to the diagonal, while F1m and Fm1 are added to the first row 

and first column, respectively. Besides the elements in the first row, first column and the 

diagonal, the other elements of F are zero. The elements in the non-zero blocks, Fi1, F1i, 

and, Fii, are given by the following equations:  

         
 





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NmjmNmkm
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1
211][

x x

xxxxxxxx
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
,  (21) 

   
         
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21ii1


NjNiki
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oohh
, (22) 

 
         

 



x x

xxxxxxxx
F

2ii


NjNk

kj

oooo
, (23) 

where o(x) represents the object elements, hm(x) each PSF frame, and σ2 the read noise 

variance. The subscripts, 1i, i1 and, ii, represent blocks of the FIM, and the subscripts, k 

and j, represent elements of that block. Recall from Section 2.3.2 that in order to avoid 

the scaling degeneracy, one intensity location from the object and each PSF frame is not 

calculated. This intensity location is represented by xN in the equations above. 
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Even for the non-blind case shown in Eq. (19) the FIM can become large. For 

example, an object with (n x n) pixels will result in a stacked vector of n2 elements. The 

FIM will consist of n2 elements on the diagonal, which translates to a FIM of size (n2 x 

n2). This results in a total of n4 elements in the FIM. 

 

Additionally, when estimating the PSFs along with the object, the total number of 

diagonal elements is given by  

21 n)+(=S M  ,        (24) 

where S is the number of diagonal elements, n2 is the number of intensity values in each 

measurement frame and M is the number of frames included. 

 

With typical values for m and n, the size of the FIM is given by the equations: 

,1360430302,

,4505664110

,6410

2

2

,,=S

=)+(=S

=n;=



M

       (25) 

which results in 45056 elements in the diagonal for a total of 2030043136 elements in the 

FIM! Since the matrix must be inverted to obtain the CRBs there is clear motivation to 

reduce the size of the FIM. 

 

b. FIM with Support 

One way to reduce the number of elements in the FIM is to apply a support 

constraint to the object and PSF frames. For elements outside the support region, the 

corresponding rows and columns can be set to zero. However, with zero-elements on the 
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diagonal, a pseudo-inverse of the FIM must be applied. This can be accomplished by 

inverting the non-zero sub-matrix and reinserting into the FIM. 

 

For example, consider a two-pixel object, θ = [θ1, θ2], that is to be estimated. 

Assume that only read noise is present. The noise has a uniform variance of σ2 for both 

pixels. The FIM can be calculated using Eq. (18) and the jointly-normal PDF given by 













 )(nC)(n
ρπσ

=)p(n; T

2
θθθ

1

2 2

1
exp

12

1
 ,   (26) 

where ρ is the correlation coefficient between the two pixels and C is the covariance 

matrix between the two pixels. The covariance matrix is given by  











22

22




C .        (27) 

 

It can be shown that the FIM for the above parameters is equal to just the inverse 

of the covariance matrix. 
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Now, assume that a support constraint is applied such that the θ1 is within the 

support and θ2 is outside. By applying this support, we are affirming that the signal on θ2 

is zero. The support is applied to the FIM by zeroing out row two and column two. The 

resulting FIM is given by  
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
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In order to calculate the CRB of this element, the pseudo-inverse of the FIM is taken by 

inverting only the non-zero sub-matrix. In this case, only the element at (1,1) is inverted 

to give 








 




00

0)1(2
1 

sF    .       (30) 

Therefore, the CRB of θ1 is given by 

ρ)(σ=)(ρσ=)CRB(θ  11 22

1  .      (31) 

 

It is now evident that if the two pixels were perfectly correlated then CRB for θ1 

would be zero. If the two pixels were completely uncorrelated then the CRB for θ1 would 

be the original read-noise variance. The same analysis can be extended to include all the 

parameters of the object and PSF.
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3. IMAGE RECONSTRUCTION PARAMETERS 

 

  

This chapter is dedicated to presenting and explaining all the parameters used in 

the calculations of the CRBs in the thesis. Two different objects are used for the CRB 

calculations and are explained first. Also, two different point-spread functions are used. 

These PSFs are explained next. This is followed by a discussion of the support 

constraints used for both objects and PSFs. Finally, the specifics of the noise model are 

given. 

 

3.1. Object 

 

Two objects were used in the research for this thesis. The first object was used in 

order to compare results with previous work in [7]. The object is a Russian satellite 

named OCNR5 shown below. 
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    (a)                 (b) 

Figure 2. (a) OCNR Satellite. (b) Histogram of (a) 

 

Figure 2 is an image of the OCNR object and its histogram. From the histogram it is 

shown that the image has a good dynamic range. The full range of gray levels is 

represented, meaning that parts of the object have very high intensity values and other 

parts have low intensity values. The intensities in the object represent those of an object 

used in a real-world application. This object will be referred to as “OCNR”.  

 

Another object was also created and used in the CRB calculations to better 

understand certain trends in the CRB morphologies. The object simply consists of two 

circles of different intensities and radii with centers aligned on the x-axis. This object is 

shown below. 
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(a)              (b) 

Figure 3. (a) "twocirc" object.  (b) Histogram of (a) 

 

From the histogram above it is shown that only three intensity levels are present 

in the object. These represent the background (intensity = 0), the larger circle (intensity = 

32) and the smaller circle (intensity = 128) respectively. Note, the image in Figure 3 is 

scaled so that both circles are visible. This object will be referred to as “twocirc.” 

 

The above objects are both digitized and stored in 64x64 arrays so that CRB 

computation-time is manageable.  

 

3.2. Point Spread Function 

 

The PSFs used to blur the object data are described in this section. Two sets of 

PSFs were used in the calculation of the CRBs. The first set was created by modeling real 

atmospheric characteristics. The second set was produced by specifying simple 
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geometrical cross-sections of the PSFs. Both PSF sets are explained in further detail in 

this section. 

 

 The first PSF set was modeled by considering a single point imaged through the 

atmosphere. The parameters used to describe the imaging system are based on the ratio of 

D / r0 , where D is the imaging aperture diameter, and r0 is the Fried seeing parameter. 

The Fried parameter is a measure of the effective diffraction-limited resolution of an 

aperture that is affected by the turbulent atmosphere [19]. In the case of this research, the 

D / r0 ratio used was 8. These PSFs were created by specifying random coefficients for 

the Zernike parameters that correspond with the above D, r0 [20]. 100 different PSFs 

were created in this manner. In order to have a concept of a perfect support region 

required by the discussion in Section 2.3.2, a support constraint that consists of a circle 

with radius 10 pixels was applied. This means that the circle was placed in the middle of 

the PSF array and any values outside the circle were set to 0. The first two PSF frames 

from this set along with their Fourier transforms are shown in Figure 4 and Figure 5. 
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     (a)        (b) 

Figure 4. (a) First frame of “atm” PSF set. (b) Fourier Transform of (a). 

 

  

     (a)        (b) 

Figure 5. (a) Second frame of “atm” PSF set. (b) Fourier transform of (b). 

 

The PSFs in Figure 4 (a) and Figure 5 (a) have varying intensities within the support and 

thus, are not considered to be smooth. Furthermore, the PSFs from frame to frame are not 
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correlated and appear different from one another. These PSFs will be referred to as “atm” 

(for atmospheric) PSFs.  

 

Enforcing the circle support also remedies another problem with the original PSF 

frames. Without the circle support, the PSFs are generally non-invertible in the Fourier 

domain. Applying the circle support in the spatial domain is equivalent to convolving the 

Fourier transform of the original PSF with the Fourier transform of the circle. This is 

shown in the following equation: 
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      (32) 

F{ } represents the Fourier transform, * represents convolution, h is the original PSF, H is 

the OTF and J1 is a Bessel function of the first kind with order = 1. Thus, this 

convolution ensures that the OTF is invertible. 

 

The second set of PSFs was designed to be smooth and have a small, predictable 

change from frame to frame. The contrasting nature of these PSFs and the above PSFs 

allows for a comparison of the effects of the PSF on the CRB calculations. Cross-sections 

of all 10 frames of the PSF set are shown in Figure 6. 
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Figure 6. Horizontal slices through the centers of the 10 "rect2tri" PSF frames. 

 

The first frame consists of ones inside the support and zeros outside. Each consecutive 

frame is a plateau of decreasing height capped with a triangle. These PSFs will be known 

as “rect2tri” PSFs. Note that while the cross-sections of the PSFs have a height of 1, this 

was only true for the creation of the PSFs. During the calculation of the CRBs, the PSFs 

are normalized to a total area of 1. 

 

3.3. Support Regions 
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Support regions for both the objects and PSFs are needed in the CRB calculations. 

These support constraints define the area in which there is no signal outside the support. 

The tightest support for the two objects, called perfect support, is a binary image that 

encapsulates all the locations where the intensities are non-zero. The non-perfect supports 

are then generated by convolving the perfect support with different sized squares. This 

convolution effectively adds extra pixels to the edges of the perfect support region. These 

blurred support regions always encapsulate at least the pixels that contain the true object 

pixels. The supports used for the two objects are shown in the Figure 7.  

 

       (a)             (b)   (c) 

Figure 7. Object supports for the OCNR object. (a) Perfect support region for OCNR. (b) Perfect 

support region convolved with a 2x2 square, known as Blur2. (c) Perfect support region convolved 

with a 7x7 square, known as Blur7. The support regions in (a), (b), and (c) contain 605, 805, and 1476 

pixels, respectively. 

 

 

       (a)             (b)   (c) 

Figure 8. Object supports for the “twocirc” object. (a) Perfect support region for the “twocirc” 

object. (b) Perfect support region convolved with a 2x2 square, known as Blur2. (c) Perfect support 

region convolved with a 7x7 square, known as Blur7. The support regions in (a), (b), and (c) contain 

638, 724, and 1207 pixels, respectively. 
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As shown in Figure 7 and Figure 8, the support regions include an increasing 

number of pixels. In the reconstruction process these extra pixels must also be estimated. 

This increases the time it takes to reconstruct the image and also takes away from 

information that can be used during the reconstruction. Thus, it is always advantageous to 

define the tightest support region (the region that includes the object and the least number 

of pixels around it). 

 

Since both sets of PSFs are contained entirely within a circle with a radius of 10 

pixels, PSF supports can also be defined. The same set of supports is used for both the 

“atm” and “rect2tri” PSFs and consists of circles of varying radii. The perfect support in 

this case is just a circle with a radius of 10 pixels. The PSF supports used in the research 

are shown below. 

 

       (a)             (b)   (c) 

Figure 9. PSF supports. (a) Perfect support, circle of radius 10. (b) Circle of radius 11. (c) Circle of 

radius 20. The support regions in (a), (b), and (c) contain 317, 377 and 1257 pixels, respectively. 
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3.4. Read Noise Characteristics 

 

The read noise model is characterized well by a Gaussian distribution. For all the 

CRB calculations, read noise is always included. As explained in the previous chapter, 

the mean of the distribution is zero. A variance of 100 was chosen since this is a typical 

value for CCD cameras. The PDF for the noise model is given in the equation:  
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where P is the PDF of the read noise. 
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4. COMPARISON TO NON-BLIND DECONVOLUTION 
 

 

In this chapter, the results from previous work in [7] on non-blind deconvolution 

will be compared and contrasted to the results obtained from MFBD. It will be shown 

that the CRBs of the object estimate from MFBD will always be higher than the CRBs 

from non-blind deconvolution. The magnitude of this increase of CRBs is dependent 

upon the PSFs. Also, the morphology of the blind deconvolution CRBs differ from non-

blind CRBs. 

 

Although the results in [7] cover a range of imaging situations from simple to 

realistic, the results in this thesis are based on the simplest situation. This situation is 

characterized by the inclusion of only a read noise model and no regularization. Also, as 

mentioned in the background chapter, the previous work on non-blind deconvolution 

compared the CRBs obtained from using different support constraints to the CRBs 

obtained without using a support constraint. For the research in the thesis, different 

support regions will be compared to each other and compared to respective non-blind 

CRBs. The CRBs for the three object support regions described in Chapter 3 will be 

analyzed in two ways. First, the sum of the CRBs for each support region will be 
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compared in order to gain an overall understanding. Second, the morphology of those 

CRBs across the support region will be analyzed.  

 

4.1. Sum of the CRBs 

 

In this section, the sum of the blind deconvolution CRBs is compared to the sum 

of the non-blind deconvolution CRBs for various supports. The sums are calculated by 

totaling the CRBs over the entire support region. The CRBs using the OCNR object and 

the “rect2tri” PSF, for both blind and non-blind deconvolution are presented first. Table 1 

contains the sums of the CRBs for both the non-blind and blind cases as functions of the 

size of the support constraint. The last column is a ratio of the sum of the CRBs for blind 

deconvolution to the sum of the CRBs for non-blind deconvolution. 

 

Object 
Support Non Blind Blind Ratio 

Perfect 4.96E+08 6.68E+08 1.35 

Blur2 7.55E+08 1.01E+09 1.34 

Blur7 1.86E+09 2.42E+09 1.30 

Table 1. Sum of the CRBs for both non-blind and blind cases using the OCNR object and the 

“rect2tri” PSF set.. 

  

 Two observations can be made from the data in the above table. First, as the size 

of the support region is increased, the CRBs for both non-blind and blind deconvolution 

increase. This is expected since the larger support constraints have larger areas in which 

the CRBs are summed over. However, not only does the size of the support contribute to 

the increase, the CRBs at each pixel are also higher. Second, the sum of the blind 

deconvolution CRBs is a factor of about 35% higher than non-blind CRBs for the case of 

perfect support and a factor of only 30% higher for the case of Blur7 support. This 
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indicates that the sum of the blind deconvolution CRBs increases less than the sum of the 

non-blind CRBs as the support is increased. This phenomenon is not due to MFBD itself, 

but rather, is caused by properties of the PSF. This is evident in Table 2, which contains 

the sums of the CRBs from non-blind and blind deconvolution using the OCNR object 

and the “atm” PSF. 

 

Object 
Support Non Blind Blind 

Ratio 
(Blind/Non) 

Perfect 1.13E+09 1.59E+09 1.41 

Blur2 1.96E+09 2.86E+09 1.46 

Blur7 6.18E+09 1.19E+10 1.93 

Table 2. . Sum of the CRBs for both non-blind and blind cases using the OCNR object and the “atm” 

PSF set.. 

 

Two observations about the sum of the CRBs from the “atm” PSF set are made. 

First, similar to the case using the “rect2tri” PSF, the blind deconvolution CRBs are 

higher than the non-blind CRBs in each case. However, unlike with the “rect2tri” PSF, as 

the size of the object support is increased, the sum of the blind deconvolution CRBs 

increases more than the sum of the non-blind CRBs.  

 

The comparison of CRBs using the “rect2tri” PSF with the CRBs using the “atm” 

PSF reveals two details. First, employing blind deconvolution over non-blind 

deconvolution always increases the object CRBs. Second, the specific PSF governs the 

magnitude of the increase. Research with other PSFs has yielded ratios of blind 

deconvolution CRBs to non-blind CRBs as low as 30% and as high as 200%. Although it 

is not known at this time which characteristics of the PSF cause this behavior, further 

insight can gained by considering the CRBs of the PSF estimates. Since blind 
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deconvolution also estimates the PSF, the CRBs of the PSF estimate can be calculated. 

Figure 10 shows a plot of the PSF CRBs. 
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Figure 10. Plot of the CRBs of the point spread functions. The solid line corresponds to the “atm” 

PSF set and the dashed line corresponds to the “rect2tri” PSF set 

 

 

 

It is shown in Figure 10 that the sum of the CRBs increases much more for the 

“atm” PSF than the “rect2tri” PSF. Although, in general, a strong correlation does not 

exist between the CRBs of the object and the CRBs of the PSF, in this case the increase 

in PSF CRBs for the “atm” gives insight into the increase of the object CRBs. 

 

4.2. Morphology of the CRBs 

 

To better understand how the support constraint impacts MFBD, the distributions 

of the CRBs across the support regions are analyzed. It is well understood that the 

correlations between intensities inside and outside the support contribute to the noise 
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reduction in the reconstruction [7]. Also, a simple example of this phenomenon is given 

in Section 2.3.3. Since the correlations are stronger for pixels closer together the most 

noise reduction takes place toward the edge of the support for the non-blind case. This is 

illustrated in Figure 11 for the case of perfect object support. 

 

 

Figure 11. Morphologies of the CRBs for the following cases: (a) Non-Blind, “atm” PSF; (b) Blind, 

“atm” PSF; (c) Non-Blind, “rect2tri” PSF; (d) Non-Blind, “rect2tri” PSF; Blur1 object support is 

common to all the cases. 

 

It is important to mention that each image is normalized to a maximum value of 

1.0 before being displayed. Hence, only the regions of high CRBs and low CRBs can be 

compared within each image itself and the CRBs cannot be compared between images. 

From Figure 11 it is shown that in all the cases the CRBs are highest in the center and 

decrease toward the edges of the support. For both PSFs, the morphology of the blind 

deconvolution CRBs matches that of the non-blind CRBs. However, it is shown in the 

Figure 12 that this is not the case as the size of the object support is increased.
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         (a)            (b) 

 

 
         (c)             (d) 

 

 

Figure 12. Morphologies of the CRBs for the following cases: (a) Non-Blind, “atm” PSF; (b) Blind, 

“atm” PSF; (c) Non-Blind, “rect2tri” PSF; (d) Non-Blind, “rect2tri” PSF; Blur7 object support is 

common to all the cases. 

 

 

 Figure 12 reveals the differences in morphologies of blind deconvolution CRBs to 

their non-blind counterparts. While generally the CRBs are still higher in the center and 

decrease toward the edges, two other observations can be made. First, it is shown that the 

blind deconvolution CRBs for both PSFs are clustered toward the true object support and 

are not solely a function of the distance to the edge of the applied support as in the non-

blind case. Second, in Figure 12 (b), for the case of the “atm” PSF, it is shown that the 

increase in the ratio of blind deconvolution CRBs to non-blind CRBs from Table 1 is 

present on the edges of the object. These two observations are shown clearer in Figure 

13. 
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Figure 13. Slices of the blind deconvolution (solid line) and non-blind (dashed line) CRBs using the 

“atm” PSF set and Blur7 object support. 

 

In Figure 13, the solid line represents the blind deconvolution CRBs and the 

dashed line represents the non-blind CRBs. The graphic in the upper right-hand corner 

depicts the position of the slice through the support. In order to display both blind and 

non-blind slices on the same axis, the blind deconvolution CRBs were normalized to the 

total of the non-blind CRBs. Notice that the solid line has three distinctive peaks. The 

first two are centered on pixel location 25 and correspond to the wing of the object that 

points in the southwest direction. The second peak is centered on pixel location 40 and 

corresponds to the wing that points in the southeast direction. Also, notice that the blind 

deconvolution CRBs are clustered into a smaller region than the non-blind CRBs. 

 

 In order to gain further insight into how the actual object affects the morphologies 

of the CRBs, the “twocirc” object is used in the CRB calculations. The relatively simple 

makeup of this object permits a clearer understanding of the differences in morphologies 
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of blind and non-blind deconvolution. First, the morphologies of the CRBs, for both blind 

and non-blind deconvolution, using both the PSFs and a perfect object support constraint 

are displayed in Figure 14. 

 
  (a) 

 
   (c) 

 

Figure 14. Morphologies of the CRBs for the following cases: (a) Non-Blind, “atm” PSF; (b) Blind, 

“atm” PSF; Blur1 object support is common to all the cases. 

 

 

 Using the “twocirc” object, it is shown that even with the perfect object support, 

there is exists a dissimilarity between the morphologies of the blind deconvolution CRBs 

and the non-blind CRBs. Figure 14 (a) shows the morphology of the non-blind CRBs. It 

is evident that the CRBs are solely a function of the distance from the edge of the 

support. The CRBs are higher in the center of the larger circle than the in center of the 

smaller circle. However, this is not the case for Figure 14 (b). Using the Blur7 support 

shows same phenomena.
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(a) 

 
(b) 

 

Figure 15. Morphologies of the CRBs for the following cases: (a) Non-Blind, “atm” PSF; (b) Blind, 

“atm” PSF; Blur7 object support is common to all the cases. 

 

 

 Figure 15 shows the morphologies of both the blind deconvolution CRBs and 

non-blind CRBs using the Blur7 support. Again, it is shown from the non-blind case that 

the morphology is a function of the distance from the edges of the support. However, for 

the blind deconvolution CRBs, this is not true. In the smaller circle, it is shown that the 

CRBs are clustered toward the perfect object support and the CRBs are higher at the edge 

of that circle. The morphology of blind deconvolution CRBs does not match the 

morphology of non-blind CRBs and further research needs to be conducted in order to 

understand the cause of this discrepancy. 
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5. ANALYSIS OF MULTI-FRAME BLIND DECONVOLUTION 

PARAMETERS 
 

  

The results presented in this chapter focus on the effects on MFBD from 

parameters that were not explored in previous work in [7]. Particularly, two of these 

parameters will be considered. First, the size of the PSF support is varied. Second, 

multiple measurement frames will be included in the reconstruction process. The effects 

on the CRBs from these parameters will be analyzed. It is shown that adding multiple 

measurement frames always decreases the sum of the CRBs. In particular, the decrease is 

greatest for the first few frames. Properties of the actual PSFs play a dominant role in 

how much the sums of the CRBs actually decrease. It is also shown that as the size of 

PSF support is increased, the sums of the CRBs also increase. The increase, however, is 

minor when considering the increase in CRBs as a result of increasing the size of the 

object support. 

  

5.1. PSF support 

 

 In this section the effects on the CRBs of the object as a function of the size of the 

PSF support are analyzed. These CRBs are calculated using the three PSF support 
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constraints described in Chapter 3. It is shown that increasing the PSF support does not 

have a significant impact on the object CRBs. The sums of the CRBs as a function of the 

PSF support are calculated for both the “atm” and “rect2tri” PSFs. For comparison 

purposes, the tables that contain the sums of the CRBs as a function of the object support 

are also shown. 

 

PSF Support 
Number of Pixels in 

the Support 
Blind Deconvolution 

CRBs 

Circle, radius 10 316 6.68E+08 

Circle, radius 11 376 7.51E+08 

Circle, radius 20 1256 1.70E+09 

Table 3. Blind deconvolution CRBs as a function of the PSF support. The CRBs are calculated using 

the OCNR object and “rect2tri” PSF. 

 

 

Object Support 
Number of Pixels in 

the Support 
Blind Deconvolution 

CRBs 

Perfect 604 6.68E+08 

Blur2 804 1.01E+09 

Blur7 1476 2.42E+09 

Table 4. Blind deconvolution CRBs as a function of the object support. The CRBs are calculated 

using the OCNR object and “rect2tri” PSF. 

 

 

 First, the “rect2tri” PSF is considered. Tables 3 and 4 contain the sum of the 

CRBs using the OCNR object and the “rect2tri” PSF as a result of increasing the size of 

the PSF support and increasing the size of the object support, respectively. The tables 

also contain the number of pixels in each of the supports. There are 4 times as many 

pixels in the largest PSF support compared to the smallest PSF support. Of the object 

supports used, there are 2 times as many pixels in the largest object support than the 

smallest object support. The difference in the sums of the CRBs between the largest PSF 

support and smallest PSF support is approximately a factor of 2.5. However, the 
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difference in the sums of the CRBs between the largest object support and smallest object 

support is a factor of almost 4. As the smoothness properties of the PSF degenerate, this 

separation worsens. 

 

 

 

PSF Support 
Number of Pixels in 

the Support 
Blind Deconvolution 

CRBs 

Circle, radius 10 316 1.59E+09 

Circle, radius 11 376 1.71E+09 

Circle, radius 20 1256 3.39E+09 

Table 5. Blind deconvolution CRBs as a function of the PSF support. The CRBs are calculated using 

the OCNR object and “atm” PSF. 

 

 

Object Support 
Number of Pixels in 

the Support 
Blind Deconvolution 

CRBs 

Perfect 604 1.59E+09 

Blur2 804 2.86E+09 

Blur7 1476 1.19E+10 

Table 6. Blind deconvolution CRBs as a function of the object support. The CRBs are calculated 

using the OCNR object and “atm” PSF. 

 

 

Tables 4 and 5 contain the sum of the CRBs using the OCNR object and the 

“atm” PSF as a result of increasing the size of the PSF support and increasing the size of 

the object support, respectively. Using the largest PSF support compared to the smallest 

increases the object CRBs by a factor of only 2. Conversely, using the larger object 

support compared to the smallest increases the object CRBs by a factor of almost 7! 

Although the actual numbers are dependent on the specific PSF used, they are indicative 

of the impact of the size of object support compared to the size of the PSF support using 
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any arbitrary PSF. Therefore, efforts should be concentrated on finding the tightest object 

support possible.   

 

Furthermore, it is shown that increasing the size of the PSF support does not 

change the morphology of the CRBs. From Chapter 4, recall that increasing the size of 

the object support caused the morphologies to change for the blind deconvolution CRBs. 

This was especially apparent for the “atm” PSF, where CRBs increased the most at the 

edges of the object. Conversely, this is not true when the PSF support is increased. Figure 

16 contains images of the morphologies of the CRBs for the “atm” PSF as a function of 

the PSF support. 

 

  

                                  (a)                                             (b) 

  

 

 

Figure 16. Morphologies of the CRBs using the “atm” PSF. (a) corresponds to a circle PSF 

support of radius 10; (b) corresponds to a circle PSF support of radius 20 



 44 

5.2. Multiple Frames 

 

In this section, the CRBs of the object are analyzed as a function of including 

multiple measurement frames. Including multiple measurement frames is not unique to 

MFBD as they can also be incorporated into non-blind deconvolution estimations. 

However, multiple frames were not considered in [7]. Therefore, the results are presented 

in this chapter rather than the previous. Non-blind CRBs are calculated along with blind 

deconvolution CRBs and the results are compared in this section. First, using the same 

PSF multiple times, with differing noise realizations is considered. For both the non-blind 

and blind deconvolution cases, the decreases in the sums of the CRBs follow a simple 

mathematical model. Next, different PSF functions are used and it is shown that the 

different PSF frames produce different CRBs. Also, the benefit from using just one 

additional frame is studied in detail as a function of the object support. 

 

Including multiple measurement frames always decreases the sum of the CRBs. 

This decrease in CRBs can be modeled from probability theory [21]. Consider two 

random variables that are independent and uncorrelated, X1 and X2, each parameterized 

by the same mean, μ, and variance, σ2. Summing these two variables and dividing by two 

produces a new a random variable, Y. Now, consider extending this example to N random 

variables, each parameterized by the same mean, μ, and variance, σ2. Again, Y is the sum 

of these N variables divided by N. The variance of Y is given by the following equations:  
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     (34) 

where Xi represents a random variable with mean, μ, and variance, σ2 in the equations 

above. Thus, the equations above give the variance for the average of N independent, 

identically distributed random variables. In order to apply this concept to multiple blurred 

and noisy measurement frames, the frames must also by identically distributed and 

independent. To show that the frames are identically distributed two notions are 

considered. First, each pixel in each measurement frame is a random variable. The mean 

of a pixel is given as a function of the convolution of the PSF and the object at that pixel. 

The variance is equal to the variance of the zero-mean noise model discussed in Chapter 

3. Second, each Xi in the equation above represents the sum of the pixels in each frame of 

the object reconstruction. Therefore, Xi is also random variable. The mean of Xi is given 

by summing the means of each pixel. However, the pixels in any given frame are not 

necessarily spatially uncorrelated and therefore, not independent. Consequently, the 

variance of Xi is not just the sum of the variances of each pixel, but is a function of the 

how a specific PSF spatially correlates the noise of the pixels. Therefore, only by using 

the same PSF are the Xi ‘s identically distributed. Even when the same PSF is used, the 

noise realizations of the two frames are different. As a result, using the same PSF, the 

random variable given by the sum of the pixels in one measurement frame is identically 

distributed and independent from the random variable given by the sum of the pixels in 

another measurement frame. This satisfies the criteria for the model in Eq. (34). 
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From the discussion above, it is shown that averaging multiple measurement 

frames should produce CRBs that decrease as 1/N, where N is the number of included 

frames. MFBD CRBs were calculated using the same PSF frame 10 times. Figure 17 

shows the CRBs plotted along with the 1/N curve normalized to the sum of the CRBs of 

the first frame. 

 

Figure 17. Plot of the sum of the blind deconvolution CRBs and 1/N curve normalized to the sum of 

the first frame of the blind deconvolution CRBs. The same PSF frame was used for all 10 frames. 

 

 

Indeed, the sums of the MFBD CRBs follow the 1/N curve. The exact match to 

the 1/N is true regardless of the actual PSF function. The same is also true for non-blind 

deconvolution CRBs.  

 

It is well known that when imaging through the atmosphere, such as with the case 

of speckle imaging, including N measurement frames increases the signal-to-noise ratio 

(SNR) by a factor of the square root of the N [22]. The SNR is calculated by dividing the 
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mean of a frame by the square root of the variance. Thus, an increase by a factor of N  

in the SNR corresponds to a decrease by a factor of N in the CRBs of blind 

deconvolution. Since blind deconvolution is a comparable algorithm to speckle imaging 

[23], it is expected that the sum of the CRBs from including N measurement frames 

decreases according to the 1/N model. However, the results below show that this is not 

the case when only a few frames are included.  

 

10 different PSFs are now used in the CRB calculations. Figure 18 (a) is a plot of 

the sum of the CRBs using the first 10 frames in the “atm” PSF set, along with the 

normalized 1/N curve. Figure 18 (b) is a plot of the sum of the CRBs using the 10 frames 

in the “rect2tri” PSF set, along with the normalized 1/N curve.  
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   (a)                (b) 

 

Figure 18. Plot of the sum of the blind deconvolution CRBs and 1/N curve normalized to the sum of 

the first frame of the blind deconvolution CRBs.  The CRBs were calculated using the “atm” PSF set 

for (a) and the “rect2tri” PSF set for (b). Blur1 object support was common to both. 

 

 

From the plots above it is clearly shown that the curves representing the blind 

deconvolution CRB sums do not follow the 1/N curve exactly. By comparing the slope of 
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the sums of the CRBs between two adjacent frames to the slope of the 1/N curve between 

the same two adjacent frames, the benefit of including a particular frame can be gauged. 

Using this metric and considering Figure 18 (b), it is shown that the most prevalent 

benefits are produced by the inclusion of frames 4 and 5. Frame 2 also provides a greater 

benefit than predicted by the model. This implies that a property specific to the 2nd, 4th, 

and 5th frames of the “atm” PSF set lowers the CRBs more the 1/N model predicts. Now, 

considering the plot in Figure 18 (a), it is shown that including the 2nd frame produces 

CRBs that are higher than those predicted by the 1/N model. Again, this implies that there 

is a property specific to the 2nd frame of the “rect2tri” PSF set that produces higher 

CRBs. In order to verify that specific PSF frames cause this non-predictive behavior, the 

same 10 frames used for the blind deconvolution CRB calculations in Figure 18 (b) are 

used in non-blind CRB calculations. A plot of the sum of the CRBs as a result of 

including each frame is plotted in Figure 19 along with the normalized 1/N curve. It is 

shown that the same specific PSF frames cause the behaviors.  
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Figure 19. Plot of the sum of the non-blind deconvolution CRBs and 1/N  curve normalized to the 

sum of the first frame of the non-blind deconvolution CRBs. The OCNR object and “atm” PSF was 

used in the CRB calculations. 

 

 

 It is shown in Figure 19 that specific frames cause the CRBs to deviate from the 

1/N curve. Particularly, in Figure 18 (b), the inclusion of frames 2, 4 and 5 cause the most 

significant deviations. However, the order in which the frames are included also 

contributes to the deviations. By using the same 10 frames and simply reversing the 

order, such that the 10th frame is used first, the 9th frame second, etc. it is shown that the 

same frames do not cause the CRBs to deviate when included in a different order. Figure 

20 shows the CRBs using the first 10 frames from the “atm” PSFs and the 10 frames 

from the “rect2tri” PSFs in the reverse order.  
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   (a)                (b) 

 

Figure 20. Plot of the sum of the blind deconvolution CRBs and 1/N curve normalized to the sum of 

the first frame of the blind deconvolution CRBs.  The CRBs were calculated using the first 10 frames 

of the “atm” PSF set in reverse order for (a) and the “rect2tri” PSFs in reverse order for (b). Blur1 

object support was common to both. 

 

 

 It is evident from Figure 20 that the properties of specific PSF frames only cause 

deviations of the CRBs from the 1/N curve for the first few frames. As more frames are 

added the specific properties have less of an impact on the CRBs. After including about 8 

frames, the sum of the CRBs closely follow the 1/N curve. This is shown in the plot in 

Figure 21, where 20 frames of the “atm” PSF set are used. Instead of normalizing the 1/N 

curve to the sum of the CRBs in frame 1 as in the previous plots, the curve is normalized 

to frame 9. Therefore, the 1/N curve matches the sum of the CRBs for frame 9. This 

normalization is performed to show that after frame 9 the CRBs match the 1/N curve.  
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Figure 21. Plot of the sums of the CRBs calculated using the first 20 frames of the “atm” PSF set. The 

1/N curve is normalized to the 9th frame. The “atm” PSF set and Blur1 object support were used for 

the CRB calculations. 

 

 

The individual characteristics of the PSFs have less of an impact on the deviation 

of the CRBs from the 1/N curve as more frames are added because the properties of the 

PSFs are averaged out. This is shown for both PSF sets. First, a PSF set consisting of 20 

frames was created by randomly selecting the frames from the “rect2tri” set. Next, these 

randomly selected 20 frames were averaged by adding all the frames and normalizing to a 

height of 1. Finally, the CRBs were calculated using the random PSF set and plotted with 

the CRBs calculated using the average PSF. The CRBs are shown in Figure 22. It is 

important to note that in Figure 22 the CRBs are not normalized. Thus, it is evident that 

the CRBs of the 20 frames closely match the CRBs of the average PSF with the inclusion 

of just 4 frames. 
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Figure 22. Plot of the CRBs of 20 randomly selected PSFs from the “rect2tri” set along with the 

CRBs of the average PSF. 

 

Similarly, the average PSF of the first 20 frames from the “atm” PSF was created. 

The CRBs using the first 20 frames is plotted with the CRBs using the average PSF in 

Figure 23.  
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Figure 23. Plot of the CRBs of the first 20 “atm” PSFs along with the CRBs of the average PSF. 

  

 Although the CRBs using the “atm” PSFs do not match the CRBs of the average 

PSF, the slopes of the two match after frame 5. The discrepancy is caused by an inherent 

property of the “atm” PSF set. When averaging these PSFs, some high spatial frequency 
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information is lost. As a result, the CRBs of the average PSF are higher than the CRBs of 

the actual PSFs. This loss of high spatial frequency content is apparent when comparing 

the Fourier transform of the first “atm” PSF and the average of the 20 “atm” PSFs. These 

functions are displayed in the Figure 24. 

 
   (a)                (b) 

Figure 24. 3-D surface views of the OTFs corresponding to the first frame of the “atm” PSF set in (a) 

and the average of the first 20 frames in (b). 

  

Conversely, averaging the 20 random frames chosen from the “rect2tri” set 

simply produces a PSF that resembles frame 5 of the “rect2tri” set. This is due to the fact 

that the original 10 “rect2tri” PSFs average to frame 5. By displaying the Fourier 

transform of frame 5 of the “rect2tri” set and the Fourier transform of the average of the 

20 random frames, we see that no significant high spatial frequency information is lost. 



 54 

 
   (a)                (b) 

Figure 25. 3-D surface views of the OTFs corresponding to frame 5 of the “rect2tri” PSF set in (a) 

and the average of the 20 randomly selected frames from the “rect2tri” set in (b). 

 

It is not understood at this time which properties of the PSF frames cause 

variations from the 1/N model. However, further insight into this phenomenon is gained 

by considering the role of the support constraints. From Section 5.1 in this chapter, it is 

shown that the variations in the PSF support constraint have minor impact on the object 

CRBs. Therefore, only the object support constraint is considered here. Also, it is shown 

above that as more frames are added the CRBs begin to conform to the 1/N curve. Thus, 

the specific properties of the PSF have the most potential to cause deviation from the 1/N 

curve when applied to the 2nd frame. Therefore, the benefit of the 2nd frame as a function 

of the size of the object support is discussed here. 

 

 In order to quantify the benefit of including the 2nd frame, consider the slope of 

the CRBs between the first two frames to the slope of the 1/N curve between the same 

two frames. The benefit of including the 2nd frame is quantified in the equation,  



 55 

   

 
 

 
 















1

2

1
1

21

12

2

Slope Expected

Slope Actual

FCRB

FCRB
=

FCRB
FCRB

FCRBFCRB
=

=B

 ,       (35) 

where CRB{Fi} represents the sum of the CRBs of a specific frame, i. If including the 2nd 

frame reduces the sum of the CRBs exactly as the 1/N model predicts, then the benefit, B, 

of including that frame is equal to one. If including the frame reduces the sum of the 

CRBs by more than 1/N, then the benefit, B, is a number greater than 1. If including a 

frame reduces the sum of the CRBs by less than 1/N, then the benefit, B, is a number less 

than one. 

 

The benefit of including the 2nd frame was calculated using 50 different 2-frame sets 

picked from the “atm” PSF set. Perfect object support was used for these CRB 

calculations. The histogram in Figure 26 shows the benefits from these sets. 
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Figure 26. Histogram of the benefits calculated using 50 2-frame sets taken from the “atm” PSF set. 

Blur1 object support was used in the CRB calculations. 

 

As shown in the histogram, the benefits are spread between .6 and 1.8. The average of 

these benefits is 1.07. By increasing the object support, the average benefit increases, but 

the shape of the histogram does not significantly change. This is evident from the plot in 

Figure 27 in which Blur7 object support was used. 
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Figure 27. Histogram of the benefits calculated using 50 2-frame sets taken from the “atm” PSF set. 

Blur7 object support was used in the CRB calculations. 
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The average benefit of the same 50 2-frame sets using a Blur7 object support 

constraint is 1.32. The shape of the histogram does not change, but simply shifts to the 

right on the axis. This is due to the fact that the benefit of adding a 2nd frame increases for 

every 2-frame set as the size of the object support is increased. 
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6. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 
 

  

The purpose of the research presented in this thesis was to understand how certain 

input parameters affected multi-frame blind deconvolution. Specifically, the parameters 

that were studied were the object and point-spread function supports and the inclusion of 

multiple measurement frames. The analysis of the object support constraint allowed for 

an extension of previous work in [7] on non-blind deconvolution.  

 

Cramer-Rao Bound theory was utilized as a metric to analyze the effects on 

MFBD from the different parameters. The CRBs provide an algorithm-independent tool 

to gain insight into how different support constraints affect MFBD. Also, these CRBs 

allow for comparison between non-blind deconvolution and MFBD. CRBs for various 

imaging scenarios were calculated and the conclusions are presented here. First, the 

object support was varied and the CRBs were compared to those of non-blind 

deconvolution. Next, the effect on the MFBD CRBs as a function of varying the PSF 

support is given. Finally, the inclusion of multiple measurement frames is discussed. 

 

Several conclusions can be made about the nature of MFBD compared to non-

blind deconvolution.  First, when employing blind deconvolution over non-blind 
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deconvolution, the CRBs for a given support are always higher. This is true of all the 

CRBs inside the support. Second, as the size of the support is increased, the blind 

deconvolution CRBs also increase. Therefore, similar to non-blind deconvolution, using 

the tightest size support will produce the lowest CRBs. Third, the morphology of the 

blind deconvolution CRBs differs from the morphology of the non-blind CRBs. In the 

non-blind case, it is well understood that the morphology of the CRBs is a function of the 

distance from the edge of the support. Hence, the CRBs are highest in the center of the 

support and decrease toward. This is not the case, however, for blind deconvolution. 

Foremost, the morphologies of blind deconvolution CRBs are dependent on the actual 

PSF. In addition, for all PSFs, the high CRBs are generally clustered toward the true 

object support. 

 

The CRBs were also analyzed as a function of the point-spread function supports. 

It was shown that increasing the size of the PSF support did not have a significant impact 

on the object CRBs. This is true of both the sum of the CRBs and of the morphology of 

the CRBs. Although the sum of the object CRBs increase as the size of the PSF support is 

increased, it is relatively small compared to the increase of object CRBs as the size of the 

object support is increased. Also, as the size of the PSF support is increased, the increase 

in object CRBs is distributed fairly uniformly across the support. Thus, the morphology 

of the CRBs does not change. It is more effective to concentrate efforts in providing a 

smaller object support, as opposed to a smaller PSF support. 
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Finally, multiple measurement frames were included in the MFBD process. 

Several conclusions can be made about how these frames affect the MFBD CRBs. First, 

as more measurement frames are included, the CRBs decrease. Thus, it is advantageous 

to include as many measurement frames as possible. The properties of the actual PSFs 

govern the magnitude of decrease in the CRBs for the first few frames. After 

approximately 8 frames are included, the CRBs decrease as a function of 1/N, where N is 

the number of frames. Thus, as more frames are added, the properties of the PSF have 

less of an impact on the magnitude of the decrease of the CRBs. The effects from using 

different supports were also analyzed. As the size of the object support is increased, the 

decrease in the CRBs when adding a particular frame is greater. 

 

The research in this thesis shows that the specific properties of the point spread 

functions have important impacts on two aspects of MFBD. First, the properties of the 

PSF govern the morphology of the object CRBs. As a result, they also govern the 

magnitude of increase of CRBs when employing MFBD over non-blind deconvolution. 

Second, the properties of the PSF dominate the sum of the CRBs when only a few 

measurement frames are included. However, it is not known at this time what specific 

characteristics of these PSFs cause the unexplained phenomena discussed above. 

Therefore, on-going and future work lies in the research of the impact that specific 

properties of the PSF have on MFBD. 

 

Also, in order to move the imaging scenario toward more realistic situations, non-

invertible PSFs must be used. Therefore, the effects on MFBD from applying 
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regularization filters must be studied. Also, a photon noise model should be included in 

the imaging scenario. Further research needs to be conducted to understand the effects of 

including photon noise on MFBD. 
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