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MODELING AND OPTIMIZING IPMC MICROGRIPPERS 

 

By 

 

Justin Simpson 

 

B.S., Mechanical Engineering, University of New Mexico, 2011 

M.S., Mechanical Engineering, University of New Mexico, 2015 

 

 

ABSTRACT 

 

 A FEA (Finite Element Analysis) model was used to determine the 

change in performance that results from varying the size and shape of IPMC 

(Ionic Polymer Metal Composite) fingers.  Using Comsol Multiphysics and 

modeFRONTIER, these fingers were modeled and optimized for both force 

exerted and deflection.  Using the Comsol model, we were able to determine 

the tip deflection and force output of many different IPMC fingers which 

were verified experimentally.  Then, using modeFRONTIER we were able to 

optimize the fingers to determine the best shape and area depending on 

whether a high force or deflection was desired.        
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Chapter 1.  INTRODUCTION 

 

1.1 IPMCs 
 

1.1.1 Discovery of IPMCs and Fabrication 
 

 An Ionic Polymer-Metal Composite (IPMC) is a type of electro-active polymer (EAP) 

that deflects in the presence of an electric field [1].  Electro-activity is the movement of mobile 

ions.   The higher the electro-activity, the higher the tendency for ionic motion inside the IPMCs.  

These materials also produce an electric field when physically bent.  IPMCs are referred to as 

artificial muscles, due to their ability to mimic natural muscles.  These unique abilities have led 

to much interest for using them in many fields, including aerospace and bio-engineering.  Interest 

in IPMC microgrippers is also growing, as these microgrippers are capable of grasping small 

objects without damaging them, due to their large range of deflection and small grasping force. 

 IPMCs typically consist of a synthetic polymer film with ionic properties, such as Nafion, 

that is plated on both sides with a noble metal such as platinum or gold, as seen in Fig. 1. 

 
Figure 1. IPMC Configuration 

 

IPMCs are manufactured using a deposition process to create a thin electrode, usually one to five 

microns thick.  The electrodes are anchored to the polymer by thin dendrites created using this 
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process.  This electrode is not a continuous metal layer; it is instead tightly packed metal grains.  

In the case of platinum, the metal grains are platinum salt deposits, rather than a layer of 

platinum.  The noble metal layers store opposing charges, much like a parallel plate capacitor 

[2].  This depletes the anode of its positive charge and the cathode receives a high positive 

charge.  In response, the cathode expands due to electrostatic charges.  This storage of charge 

also causes ions in the polymer to migrate and collect on one side, also seen in Fig. 1.  This 

migration of ions causes large water molecules held in the IPMC to migrate as well.  The 

migration of the large water molecules to one side of the IPMC causes a swelling effect, while 

the other side is losing a large number of ions, causing a shrinking effect, as seen in Fig. 2 [3]. 

 

 

 
Figure 2. IPMC Water and ion migration 

 Though IPMCs cannot provide substantial force as an actuator, they are flexible, require 

low actuation voltage, conform to the object being grasped, and can operate in a wet 

environment. Depending on the way they are cut, IPMCs typically have a large area with a very 

little thickness.  The area of these microgrippers is usually on the order of square millimeters, 

while the thickness is around hundreds of microns.  The amount of metal on these microgrippers 

is small compared to the amount of polymer, causing the whole microgripper to act more as a 
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polymer than a metal.  This characteristic causes them to be flexible and lightweight.  Due to 

their flexibility and high electro-activity, they are also able to deflect large amounts with a very 

low actuation voltage, i.e., around 1 volt [3].  Also due to their thickness and high degree of 

flexibility, these microgrippers are capable of conforming to the surface of the object they grasp, 

as seen in Fig. 3. 

 

Figure 3. IPMC Conforming to objects 

This is extremely important in micromanipulation of objects, especially cell manipulation.  The 

gripper is able to securely grasp a cell without damaging it.  IPMCs also do not generate high 

forces when grasping objects.  This is a valuable characteristic, as biological cells are easily 

damaged by high forces.   This makes IPMCs better suited for micromanipulation than other 

gripping technologies that are rigid and exert higher forces.  As stated above, IPMCs are able to 

operate in wet environments and also require low actuation voltages.  This allows IPMCs to be 

used in micromanipulation with moist cells that may be in aqueous environments.  The low 

actuation voltage also decreases the chances of damaging the cell, due to voltage differences 

across the cell.  All of these characteristics make them well suited for bio-micromanipulation 

applications in the form of microgrippers.   

 These actuators can be processed into certain geometries and complex shapes needed for 

certain tasks, using an automated laser cutter and CAD software.  This laser operates at a cutting 



4 

 

frequency of 532 nm, which ablates the platinum layers.  This technique is far superior to early 

techniques, in which scissors or a scalpel were used.  Using a laser, we can make complex shapes 

and can cut the IPMC to any size.  This is extremely important when making small actuators for 

micromanipulation.     

1.1.2 IPMC Actuation Abilities 
 

 Although the migration of ions and solvent, due to an induced voltage, is considered to be 

the driving force behind actuation of IPMCs, many are still researching the chemical structure 

and physical mechanisms associated with actuation.  The model most widely used to describe the 

chemical structure of Nafion was introduced by Hsu in 1981.  This model was based on wide-

angle and small-angle x-ray diffraction studies.  When in the hydrated state, Nafion displays 

phase separation and forms two distinct regions, hydrophilic and hydrophobic.  Gierke et al. [4] 

described the hydrophilic regions as 4 nm spherical inverted micellar structures that are 

separated by a distance of 5 nm and connected by 1 nm diameter micro-channels, as seen in Fig. 

4. 

 

 

 
Figure 4. Micelle connected with channel 

These clusters form a cubic grid called the cluster-network morphology.  As can be seen in Fig. 

4, the solvent and cations are contained in the micelle and channel.  In an IPMC, the hydrophobic 

region is made up of the fluorocarbon chains of Nafion. 
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 Hydration level and type of solvents and cations being used have a great effect on IPMC 

actuation [5].  When a voltage is applied to an IPMC, an electric field is set up through the 

thickness of the Nafion, which produces an electrostatic force on the cations.  These cations are 

then driven through the channel, as seen above.  Depending on the level of hydration and type of 

solvent being used, the cations may migrate easily.  A fully hydrated sample will allow more 

migration than a dehydrated sample.  This becomes quite evident on the macroscopic level when 

testing different samples, as only hydrated samples are capable of movement.  Nemat-Nasser and 

Li proposed a model that demonstrated the increase in concentration of cations at the cathode, 

resulting in a fast expansion [6].  Solvent molecules attached to cations also migrate towards the 

cathode.  The combined migration of solvent and cations results in a fast actuation response 

towards the cathode that may last several minutes.  This migration of cations towards the anode 

leaves a depleted region of cations in the anode. These clusters slowly redistribute, causing a 

decrease in actuation, known as back relaxation.  The anions that migrate towards the anode 

during this process repel one another, also causing relaxation.  This relaxation causes a bending 

back towards the anode. 

 The model used in this thesis assumes the actuation of the IPMC is explained by the 

electrostatic interaction between the micellar clusters only, meaning the cations in anode clusters 

migrate to the clusters in the cathode.  The anode will be void of cations, resulting in negatively 

charged clusters, which repel each other.  Likewise, the cathode will be filled with cations, which 

also repel each other.  Although it may seem both sides, anode and cathode, will have positive 

pressure, it will be seen that the force production on the cathode is much higher than that of the 

anode.  This causes actuation towards the cathode. 
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1.1.3 IPMC Sensing Abilities  
 

 While most IPMCs are used as actuators, they can also be used as sensors.  As stated 

above, they produce an electric field when physically bent.  Nemat-Nasser and Li suggest the 

imposed deflection causes production of stress in the backbone polymer which leads to 

displacement of charges in the micelle clusters [6].  When relaxed, the cations and anions in 

either electrode are balanced.  When deformed, the cations are shifted according to the 

magnitude of deformation.  Hydrostatic pressure, caused by the stress in the backbone polymer, 

may also cause the flow of water and cations from high pressure regions to regions of low 

pressure.   Sadeghipour et al. used IPMCs as hydrogen pressure transducers in 1992 to make a 

smart accelerometer in machinery [7].  This transducer was an IPMC held between two 

electrodes that transmitted a voltage when squeezed.  In contrast to actuation, the IPMC can be 

used in sensing abilities whether it is wet or dry.  It was later shown that IPMCs work better as 

sensors when they are dry [8].  

1.1.4 Simultaneous Actuator/Sensor 
 
 Attempts have been made to develop a device that is capable of combining both actuation 

and sensing capabilities in an IPMC.  An IPMC “sandwich” was created in which two IPMC 

fingers were cut to the same dimensions and glued to each other.  The actuator was a 200 micron 

thick finger, while the sensor was 60 microns thick.  This was done as thinner fingers are better 

for sensing capabilities and thicker fingers are better suited for actuation.  When actuated, the 

thicker finger would deflect the thinner finger, which generated a small voltage.  This made it 

possible to track the movement of the “sandwich.”  When actuated, the thicker finger created an 

electromagnetic field which was detected by the sensor.  The voltage created by the actuator was 

much higher than the voltage created by the movement in the sensor, so the readings were 
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incorrect.  A layer of gold leaf connected to ground was then placed in between the sensor and 

actuator, which rid the system of interference, but led to rigidity.  Recently at the University of 

New Mexico, researchers have made a simultaneous sensor/actuator by cutting one surface of the 

IPMC into two electrically separate components, as seen in Fig. 5.   

 

Figure 5. Channel cut by laser 

This finger is capable of actuation, while detecting its displacement.  The channel is created by 

removing small amounts of electrode on either side, leaving the polymer layer intact.  As stated 

above, the electrodes are not solid metal; rather they are tightly packed metallic clusters.  These 

clusters may become more tightly packed or may separate when the polymer bends, which leads 

to a change in the resistance of the electrode surface.  This change in resistance can be measured 

which can then be used to determine the amount of deflection in the IPMC.  This design is far 

superior to the “sandwich,” as only one IPMC finger must be cut, reducing waste of material.  

The channel also does not add rigidity to the entire structure, leading to greater actuation.  The 

size of the channel may also be made very small, reducing waste of actuation abilities.  These 

channels are also easy to cut using the mentioned laser cutting technique.   
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1.2 IPMC Microgrippers 
 

1.2.1 Microgripper and Simultaneous Sensor/Actuator 
 

 A microgripper consists of two IPMC fingers used for actuation that are held together 

with a holder connected to a power supply, as seen in Fig. 6.  The two fingers of matching size 

will be situated with a slight gap in between them.  They are fixed in the holder as cantilever 

beams.  The holder has electrodes that connect at the base of the fingers so a voltage or current 

signal can be applied. 

 

Figure 6. IPMC Microgripper 

As can be seen, the two fingers will actuate towards the middle, as the cations will flow towards 

the cathode.  In most cases, a small negative or positive voltage is applied to one face of the 

electrode, usually 2 volts, as a high voltage may damage the finger, while the other face is 

connected to ground.  When the voltage is applied, the fingers will actuate, closing the gap in 

between them, grasping any object located in this gap. 

 Attempts have also been made to assemble the simultaneous sensor/actuator.  This device 

is much more complex than single finger grippers, as the change in resistance on the surface of 

the electrodes must also be measured.  The current size and shape of the simultaneous 

sensor/actuator can be seen in Fig. 7. 
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Figure 7. Dimensions of Sensor/Actuator 

The bottom half of this finger is considered to be the key.  This key is the area held by our 

custom made holder.  This holder requires careful detail as three wires must be attached to each 

side, as seen in Fig. 8.  The device was made to hold the fingers while ensuring there is good 

contact between the fingers and copper leads that must be attached to the holder.  

 

 
Figure 8. Custom Holder 

 

1.2.2 Manufacturing IPMC Fingers 
 

 Early IPMC research consisted of simply cutting out any IPMC finger and testing it.  This 

cutting was done using scissors or a scalpel.  IPMC material is expensive and this cutting 
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procedure is wasteful.  In order to cut complex and precise geometries and also to cut the channel 

mentioned above, another method had to be installed. This precision was achieved by installing 

an IPMC cutting workstation that is run by accurate motion software and connected to a Nd: 

YAG laser (Signatone 1160) with a green light frequency of wavelength of 532 nm, as seen in 

Fig. 9.  This ablates the noble metal (platinum) leaving the polyelectrolytic membrane intact.  

Nafion does not absorb the green light, allowing the laser to penetrate through both sides of the 

platinum on the IPMC. 

 

Figure 9. Signatone 1160 Laser Cutting Station 

The laser cutting station is equipped with a set of Parker MX80L linear programmable stages, 

seen in Fig. 10.  These stages are connected to a LabVIEW computer that tells the stages where 

to move, as seen in Fig. 11.  The geometry of any IPMC finger can be made in a CAD program 

and can be exported to NI motion software that converts the CAD model into motion profiles 

that will be executed by the stages.  These profiles will be stored in LabVIEW codes, which will 

run the stages and the laser. 
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Figure 10. Parker Microstage 

 

 

 
Figure 11. Cutting Station Connections 

 

This technique is far superior to previous techniques of cutting an IPMC free hand with a scalpel.  

Using this technology, we can cut any size and shape of IPMC desired.  Although the Nafion is 

still intact, we are able to remove the microgripper easily with a scalpel, as the laser leaves 

identifiable channels that are easily traced.  This is also important in increasing quality and 

number of cuts needed, decreasing waste of expensive IPMC material. 

 Because the Nafion stays intact, simultaneous sensor/actuators are possible, as the 

channel can be cut in between the two.  Other features can also be cut into IPMC fingers, such as 

lines, to mimic real hands or fingers.  This may be done by cutting several lines into one IPMC 

piece to make several free fingers that can be actuated individually.  A twisting motion in IPMC 
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fingers may also be accomplished by cutting individual fingers in a larger piece and applying 

different voltages and signals to the individual fingers. 

1.2.3 Microgripper Holders 
 

 As stated above, there must be a way to hold these fingers while making a connection 

with the surface of the electrodes.  This is accomplished using specialized holders, usually made 

in house.  These devices are made using manual techniques, such as rapid prototype processes or 

by modifying electrical components, as seen in Fig. 12 and Fig. 13.    

 

 

 

Figure 12. Finger in electroded holder (Top View) 

 
Figure 13. Finger in electroded holder (Side View) 

These holders are constructed using modified IC test clips with copper plates attached to the 

clamping area on either side of the IPMC finger.  In the beginning, the geometry of these fingers 

was quite simple, so the simple IC clips were sufficient.  These clips are also only capable of 

holding and actuating one finger.  The purpose of these fingers is to be able to grasp an object, 
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meaning two fingers need to be actuated simultaneously.  In the case of the simultaneous 

sensor/actuator, the geometry and connections are very complex, making the holder hard to 

manufacture, also making it expensive.  This holder was created using rapid prototyping 

technology.   

1.2.4 IPMC Control 
 

 In order to control these IPMCs and ensure repeatability, a control system was 

established.  Using the electroded holder seen above and supplying signals output by a computer 

running LabVIEW interfaced with a National Instruments DAQ board, we are able to ensure 

repeatability and control.  As can be seen in Fig. 14, LabVIEW and the DAQ board are used in 

most of the processes.  

 

 

 
Figure 14. Computer Connections 

 

This system is capable of supplying output voltage to the IPMC fingers, as well as taking 

readings given by the vibrometer and force transducer.  These output voltage signals are sent as 

analog signals to the electrodes connected to the IPMC finger, causing actuation.  Multiple 

signals can also be sent to segmented fingers in order to cause twisting or different movements.  

Computer 

•NI Automation 
Explorer 

•NI Motion 
Assistant 

•NI LabView 

Motion 
Interface 

Automated 
Stages 

•NI LabView 
Data 

Acquisition 
Board (DAQ) 
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•Force 
Transducer 

•Multimeter 

•Pylon Viewer Video Camera 
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Current research has been focusing on using a control loop to maintain a certain position, 

accounting for back relaxation.  This control loop actuates the IPMC finger while simultaneously 

taking resistance readings in the finger to determine if the finger is relaxing and will supply 

additional voltage in order to correct for the back relaxation that occurs naturally.  This is 

beneficial as the finger can maintain its position for an extended period of time. 

 Using this equipment, an IPMC microgripper robot was also created.  This IPMC 

microgripper was attached to the moving stages and programmed to move to certain positions, 

actuate, and grasp objects. 

1.3 IPMC Force Model and Force Scanner 
 

1.3.1 Force Scanner Overview 
 

 Recently at UNM, a force scan of multiple IPMC fingers was created.  This scanner was 

used to create topographic maps of various fingers and their gripping strengths at numerous 

positions, as seen in Fig. 15.  These maps were important as they were compared to modeled 

force scans.  As can be seen, the force is very high at 0 mm, where the IPMC is connected to the 

electroded holder, and small towards the end of the IPMC.   

 

 
Figure 15. IPMC Force Scan 
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This scanner was created using the custom holder explained above.  The IPMC finger was 

inserted into the custom holder which is attached to the Parker microstages.  Using an Aurora 

Force Transducer, the force applied by the finger was measured, as seen in Fig. 16. 

 

 

Figure 16. IPMC and Force Transducer 

LabVIEW is used to control the whole system.  Once in place, LabVIEW outputs a voltage 

signal to the finger so it actuates into the force transducer and the transducer outputs a signal to 

LabVIEW giving the force applied.  LabVIEW then outputs a signal to the microstages forcing 

them to move a certain distance, and the process is repeated multiple times, as seen in Fig. 17.  

The forces applied are then plotted in a 3D map, which is shown above.  

  

 
Figure 17. Testing Points 
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1.3.2 IPMC Force Model 
 

 An IPMC Force Model was then created using Comsol Multiphysics and Matlab.  

Comsol is a type of FEA software used for simulations of coupled physical phenomena.  Comsol 

uses CAD modeling to make objects and attributes can be added to the CAD model such as 

structural mechanics and electrical conduction.  This model will be explained in much greater 

detail later, but the impact of the model will be discussed here.  This novel model was used to 

make topographic force maps of several IPMC fingers and was compared to the experimental 

results.  This model was quite accurate when compared to the experimental results.  Although in 

its early stages and somewhat burdensome to run, the model worked.  The results of one test can 

be seen in Fig. 18.  This model is important as it is the first of its kind.  Using this model, any 

IPMC finger can be created and tested to see if is capable of achieving a desired force.  

Simulation is much more beneficial compared to experimentally testing potential designs to see 

if they are suited for the task.  Experimentally testing wastes both time and money, while the 

simulation is relatively fast and does not waste material. 

 

Figure 18. Experimental vs. Simulation 
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 While using this model to experiment with other finger shapes, it was found that different 

sizes and shapes have drastic changes in results.  Most research focuses on simple rectangle 

fingers.  Shapes such as triangles were not of much interest.  Using this model, right triangles 

and isosceles triangles were modeled and then tested experimentally to determine the validity of 

the model.  The results were quite surprising.  Two different tests were used to compare the 

fingers.  First, the finger output vs. size was modeled and tested.  To do the experiments, the 

force measurements were the same as above, except only a single point was measured 2 mm in 

from the tip of the finger.  The deflection measurements have a different process.  Using 

LabVIEW, a square wave signal of 0-2 volts is applied.  Using a Polytec laser Doppler 

vibrometer (Polytec model # OFV-551 & OFV-5000), the deflection of the IPMC is measured.  

The IPMC is held perpendicular to the vibrometer’s sensor head with the electroded holder.  The 

IPMC starts out straight and deflects when the voltage is applied.  The vibrometer measures the 

amount of displacement throughout the process and the total displacement of the IPMC is 

measured.  Two fingers were modeled and tested experimentally.  One was a 7x17 mm 

rectangular finger and the other was an isosceles triangle with the same height and base but half 

the area, as can be seen in Fig. 19.   

 

Figure 19. Rectangle and Triangle Fingers 
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The results can be seen in Table 1.  The error in force and deflection for the rectangle is 23.37% 

and 2.77%, respectively.  The error for the 7x17 mm triangle for force and deflection is 13.3% 

and 4.92%, respectively.  As can be seen, the force output of the triangle is roughly half the force 

produced by the rectangle.  This can be explained by the difference in area.  Decreasing the area 

by half should have a proportional decrease in force produced, as force is a function of the area 

of IPMC fingers.  The deflection for the triangle is smaller than the rectangle, but not quite half.  

Although it has half the area, the triangle has less material than the rectangle and is able to 

deflect easier.   

Table 1. Output vs. Size 

Gripper Dimension  7x17 mm rectangle  7x17 mm triangle  

Experimental Force  2.0 mN  1.16 mN  

Experimental 

Deflection  

1.4 mm  1.13 mm  

Modeled Force  2.6 mN  1.22 mN  

Modeled Deflection  1.44 mm  0.98 mm  

 

Next, the finger output vs. shape was tested.  The same 7x17 mm rectangle was used and new 

14x17 mm isosceles and right triangles were used, as seen in Fig. 20. 

 

Figure 20. Rectangle and Triangle Fingers 
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 The results can be seen in Table 2.  The error in force and deflection for the isosceles 

triangle is 14.38% and 23.5%, respectively.  The error in force and deflection for the right 

triangle is 13.96% and 6.26%, respectively.  As can be seen, the force applied by the isosceles 

triangle is higher than the force exerted by the rectangle, but the force exerted by the right 

triangle finger was similar to the rectangle, while the deflection was higher than the other two.  

These results are very surprising. 

Table 2. Output vs. Shape 

Gripper Dimension  7x17 mm rectangle  14x17 mm Isosceles 

triangle  

14x17 mm Right 

triangle 

Experimental Force  2.0 mN  2.92 mN  2.28 mN 

Experimental 

Deflection  

1.4 mm  1.5 mm  1.85 mm 

Modeled Force  2.6 mN  2.5 mN  2.65 mN 

Modeled Deflection  1.44 mm  1.96 mm  1.735 mm 

 

These tests prove there are many ways to design fingers depending on the design goals.  If a 

large force is desired, an isosceles triangle finger may be better suited, but if deflection is 

needed, a smaller triangle is capable of deflecting a high degree compared to the rectangle finger.  

This lead to the conclusion that an optimization package is needed to better determine the best 

way to design these fingers.  

1.4 Purpose Statement 
 

 Although there have been many advances in IPMC technology, there is still a disconnect 

in modeling and understanding the exact behavior of these IPMC microgrippers [6].  The models 

that do describe an IPMC are insufficient in predicting force output and actuation.  Although 
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they are capable of predicting some behavior, they are not capable of predicting the behavior of 

any arbitrary size and shape of microgripper [8].  A model that predicts the behavior of any 

IPMC is beneficial to create IPMC fingers that meet design goals.  This model also needs to be 

able to determine the best design for a given finger in order to reduce waste.  An optimization 

package incorporated with the current model would be beneficial to research, as a finger can be 

modeled using different parameters.  The current model can determine force applied by the 

finger, but it does not determine the best way to design the finger.  An optimization package 

could test many different ways to design a finger, depending on the desired force, deflection, or 

both.  These can be given as design goals and the model will change according to these goals.  

This will optimize the finger while reducing waste.  The model can also be scaled up or down to 

determine the effects of larger or smaller fingers to determine the relationship between size and 

force or deflection.  The model will also be used to focus on small IPMC fingers, where there is 

no evidence whether they can produce a suitable force with very small dimensions [9].  Using an 

optimization package, this can be done very easily, as the process will be done autonomously as 

long as the model has design goals.  

1.5 Contribution 
 

 This model will be a more cost effective way to predict the force output and deflection of 

any arbitrary microgripper than simply cutting and testing.  Many users currently cut out a 

microgripper before they have any knowledge of its force output or deflection and test it, which 

increases the cost and wastes material if the microgripper does not produce the desired 

characteristics.  The model will eliminate the aspect of guessing if the microgripper is suitable 

and eliminate unnecessary cutting involved in microgripper research, as the microgripper will be 

modeled before it is cut out.  It will also lead to optimization as users will be able to design 



21 

 

microgrippers for certain purposes and determine whether the gripper they designed was the 

easiest and least wasteful way to achieve the actuation force or deflection desired.  This model 

will use Comsol Multiphysics and Matlab to determine the force and deflection of any IPMC 

finger.  The existing model will be simplified into one process.  The existing model takes many 

sub-models to get to the final design.  The new model will be made into one process that is very 

easy to use.  The new model will also incorporate optimization software.  ModeFRONTIER is a 

powerful design package that is capable of optimizing IPMC fingers given many design 

parameters.  Using this model that incorporates all of the steps into one model, we can change 

the width and length of any IPMC finger and determine the effects.  Also, we can limit the area 

of the finger to reduce waste and still meet design goals.  These design goals will be deflection, 

force, and both.  The user will be able to input a desired force or deflection and the model will 

optimize for the smallest area.  The model will also determine the best size and shape to meet 

these design goals.  This process will be easy to use, as the model will have distinct inputs, such 

as length, width, desired force, etc.  This model will be beneficial as many iterations will be run 

to determine the best design, instead of designing an arbitrary finger and testing to see if it meets 

the goals.        
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Chapter 2.  LITERATURE REVIEW 

2.1 Actuation 
 

 Discovered in 1992, the actuation properties of IPMCs have become more understood 

and advanced through the years.  These properties were learned by Oguro et al. in 1992 when 

bending them under applied voltages [10].  Because of this discovery, many others experimented 

to explain the dynamics behind the actuation properties.  Shortly after, dehydration was observed 

by Kanno et al. when the IPMC stopped actuating after a certain amount of time [11].  This led 

to a belief that water molecules with mobile ions were responsible for the electric response in 

IPMCs.  More evidence of this dependence on hydration was observed by Bar-Cohen when an 

IPMC was actuated underwater hundreds of thousands of times with little change in response 

[12]. 

 Greater understanding of the mechanisms behind actuation was continually being 

discovered.  One discovery was that the polymer contained in IPMCs consists of mobile cations 

and water that move when the outer metal layers are charged [3].  These water molecules bond to 

the positively charged cations and migrate towards the cathode.  This migration is responsible for 

some of the actuation in the material, but many believed it did not account for the fast response.  

It was soon discovered that Coulombic forces between the charges in the electrodes were 

responsible for this fast reaction.  These forces caused the migration of hydrated cations towards 

the cathode, causing the IPMC to swell towards the cathode side and shrink on the anode side 

[13].   

 Researchers also experimented with other solvents to determine their effects.  Nemat-

Nasser and Wu demonstrated that sodium ions worked better than lithium and hydrogen atoms 

when using Nafion based IPMC [14].  They used different cations to change the force and 



23 

 

displacement of different IPMCs.  The IPMC containing sodium ions produced a greater force 

than the others.   

 Once researchers began to understand the driving force of IPMCs, they began 

experimenting to improve the material.  Shahinpoor also experimented with many different 

polymers.  One problem with the IPMC material was attaching the polymer in between the two 

electrodes to create the sandwich.  Nafion is commonly used as the polymer, but it was difficult 

to attach as it was non-reactive.  A solution was achieved when chemical etchants were used on 

the Nafion before it was bonded to the metal electrodes.  This etching produced microscopic 

ridges in the Nafion that the metal electrode was able to attach to.  The metal formed dendrites 

that were able to anchor in the Nafion [15].  This also led to an interest into the structure of the 

metal electrodes.  Shahinpoor and Kim studied these metals and their effects on the IPMC [16].  

They observed that the surface morphology of the IPMC is characterized by a granular nano-

roughness of the order of approximately 50 nm.  This characteristic is responsible for producing 

a high level of electrical resistance, yet provides a porous layer that allows water movement in 

and out of the Nafion. 

 Due to their dependence on hydration, IPMCs have some limitations.  Hydrolysis is a 

very common occurrence in IPMCs when the voltage is raised above 1.23 volts [17].  Once it is 

raised above this limit, hydrolysis occurs very quickly causing the IPMC to desiccate, producing 

hydrogen gas at its electrodes, thus losing its actuation capabilities.  Hydrolysis is common in air 

as there is no shielding to contain the hydration once the voltage is high enough.  When the 

IPMC is actuated in water, hydrolysis is not a concern as the IPMC will continue to be hydrated.  

Although hydrolysis occurs at a low actuation voltage, the IPMC is still able to actuate with 
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voltages smaller than 1.23 volts.  This is especially important in micromanipulation, as a high 

voltage may damage cells.   

2.2 Sensing 
 

Sadeghipour et al. learned of the sensing capabilities of IPMCs while using them as 

hydrogen pressure transducers [7].  Due to this, researchers became increasingly interested in 

understanding and explaining the science behind the sensing capability of IPMCs.  This 

capability lies in the presence of the mobile charges contained in the negatively charged 

polymer.  When an IPMC is deformed, one side of the polymer compresses causing the negative 

charges to become more compact.  Due to the compression on one side, the other side 

simultaneously expands, spreading the molecules.  As a result, the mobile cations migrate to the 

expanded side due to a decrease in concentration.  Sampling the electrodes, a voltage difference 

is noticed as cations and water molecules are moving.  Although these characteristics seem 

similar to actuation, it has been proven experimentally that the voltage produced when being 

physically deformed would have to be amplified by two orders of magnitude to actuate the same 

piece to the desired location [9].  Although this signal is smaller in magnitude, it is still very 

useful for sensing.  This may prove useful in biomedical and engineering purposes, as IPMCs 

can be used as a simultaneous sensor/actuator. 

Several design applications have been proposed that utilized the IPMC as simultaneous 

actuator and sensor.  Brunetto et al. [18] have proposed the use of IPMCs in a cantilever 

configuration as a vibration sensor. Their prototype consisted of a system that imposed vibration 

to the base of a cantilever, and used a circuit to measure the tip deflection with respect to the 

base. 

Bonomo et al. [19] presented a prototype of a tactile sensor for biomedical applications 
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that utilized an IPMC as both an actuator and sensor.  Their sensor was able to detect both 

contact force and the relative hardness of the tissue compared to a control sample.  The actuator 

IPMC in their prototype was used to bend the sensor membrane around an object.  When an 

object came into contact with the system, it limited the actuator vibration amplitude which 

resulted in the sensor output signal decreasing.  The actuator vibration amplitude also depended 

on the stiffness of the object.  Stiffer objects allowed for no deflection of the actuator, whereas 

less stiff materials resulted in an amplitude of vibrations that was proportional to the stiffness.  

Although their sensor output signal was affected by noise, the actuator was able to deform 

objects that had a Young’s modulus under 1kPa.  

 As stated above, these IPMCs can be used as simultaneous sensors and actuators.  

Preliminary research consisted of two IPMC grippers glued to each other.  One IPMC was used 

to sense its deflection, while the other actuated.  Although it worked, the extra stiffness of the 

added sensor hindered the actuation of the whole system.  More advanced combinations were 

soon discovered by Kruusamae et al. [20] when they discovered a channel can be cut in the 

IPMC surface creating two separate components.  This led to a microgripper that is capable of 

actuating when given an input voltage, which causes a change in resistance in the outer channel.  

This change in resistance can be used for sensing.  These advances led to a need for better 

understanding and modeling these complex IPMCs.   

 
2.3 Modeling 
 

 Most early models to explain macroscopic qualities were based solely on 

experimentation.  Researchers take the experiments and fit equations around their results to 

obtain their models.  Kanno et al. developed a model that described the relationship between the 

input voltage and the change in current [11].  They were also able to relate the change in current 
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to deformation.  They described the model of an IPMC as having three phases: mechanical, 

electrical, and stress generation.  This model applied a simple circuit that resembled a RLC 

circuit, but this model only described what happened at the initial actuation.  These models are 

accurate in describing the immediate response of the sudden increase in the current, but new 

models aim to predict the effects of transient behavior.  Current theories are trying to describe 

this transient behavior, but it is very complex as it is due to a chemical-electrical-mechanical 

reaction.  These models also do not incorporate the sensing capabilities of this material.  

Although researchers understood actuation was caused by movement of ions, there was no clear 

explanation behind the dynamics of sensing. 

  Many researchers are actively trying to model and understand IPMCs as artificial 

muscles.  Using these models, researchers have discovered many important attributes, including 

material strains, Coulombic forces, current induced, and transportation of ions.  Although these 

models have led to better understanding, there is little knowledge of the interactions between the 

forces inside the IPMC.  This is apparent as there are many different theories as to what causes 

the actuation.  Nemat-Nasser has developed models to understand this behavior using the 

material properties of these IPMCs, including mechanical properties, electrodynamics, and 

chemistry [21].  His models led him to believe that actuation is due to electrostatic forces that 

exist due to the redistribution of charges.  The areas high in cations will swell, while the other 

side with fewer will shrink.  He believes the swelling occurs due to electrostatic interactions 

rather than the migration of cations and water.  Branco and Dente also developed a model using 

electric field distribution and other electromechanical properties [22].  Their work was based on 

Shahinpoor and Nemat-Nasser, but they also neglected hydration and considered actuation to be 
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caused by electrical effects of mobile ions.  Many assumptions are made in these models and 

they only apply to the gripper being tested. 

 For these reasons, most researchers simply use closed loop control of IPMCs to stabilize 

the force output.  Bhat and Kim [23] acknowledge open-loop position and force responses are 

not repeatable.  Therefore this closed-loop control is critical in ensuring repeatability and 

reliability.     

 Currently, many researchers are using finite element methods to predict IPMC behavior.  

Lopes and Branco successfully modeled large, simple IPMCs and compared them to 

experimental results [24].  They used Comsol to determine their displacements when subjected to 

an induced voltage.  Their model bases actuation on the repulsive electrostatic forces that exist 

between anions in the IPMC.  Pugal was also able to successfully model the electrokinetic 

migration of ions in Comsol [25].  This simulation was able to model the tip displacement of an 

oscillating actuator.  Pugal et al. also used Comsol to determine the instantaneous electric current 

induced by a charge in a FEA model using the Ramo-Shockley theorem [26].  They studied the 

effects of ionic motion on electrode voltage and current.  Although the model worked, 

deformation studies were difficult to accomplish, as meshing techniques led to extreme 

computational load. 

 Current methods at UNM are also using finite element models to understand and predict 

the behavior of IPMCs [27].  This method starts with a model that predicts ionic concentration in 

an IPMC given an input voltage.  The concentration is predicted starting in Comsol, where a box 

is modeled with ion transport on the surface due to a given input voltage.  It is then exported into 

Matlab to predict the concentration throughout the whole box which represents an IPMC.  

Matlab is then used to create a grid to encompass any IPMC.  This grid is needed as the model 



28 

 

aims to predict the behavior of any IPMC.  These models are then used to determine the stress 

concentration in the modeled IPMC to use in the distributed force simulation.  This stress 

distribution is then imported into the model, representing the stresses between ions, which cause 

deflection in the IPMC.  Then, a model is created where a force transducer is in contact with an 

IPMC actuator.  This simulation will then predict the force of the IPMC on the transducer.  The 

model is then exported into Matlab where it is programmed to run iteratively to model different 

locations where the transducer may be placed.   

 This model is capable of predicting the force generated by an IPMC on an object.  This 

model has not been used to test very small microgrippers. There is a belief that with very small 

microgrippers there will be a change in behavior.  The current model being used at UNM will be 

expanded upon and simplified in order to predict the behavior of small IPMC microgrippers and 

will be made into a single model that will be much easier to learn and use than the previous 

model currently being used at UNM.  Optimization software, modeFRONTIER, will also be 

added to the model in order to optimize fingers for force or deflection.   
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Chapter 3.  IPMC FORCE MODEL  

3.1 Diagram of Models 
 

 
Figure 21. Smaller models incorporated in complete model 

 

3.2 Approach Overview 
 

 As can be seen in Fig. 21, the current model consists of several different sub-models that 

must be combined to make the complete model.  These models correspond to the coupled 

electrochemomechanical processes that are responsible for the actuation of a cantilevered IPMC 

finger.  The end result will be a computer simulation of the force or deflection of any finger.  The 

complete model that consists of the smaller models will be made into one complete code.  This 

must be done as modeFRONTIER must interface with the code, and this code must have the 

complete model in order to change the model parameters.   

 All the computer models will be made in Comsol Multiphysics and Matlab.  Comsol is a 

type of FEA software used for simulations of coupled physical phenomena.  Comsol uses CAD 

modeling to make objects and attributes can be added to the CAD model such as structural 

mechanics and electrical conduction.  After any model is completed, it can be represented 

graphically in Comsol.  Comsol is also interfaced with Matlab.  Comsol is built to run with 
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Matlab, meaning any model built in Comsol can be saved as an M-file in Matlab and edited.  

These models can be used to run simulations iteratively to allow for greater design capability. 

The complete model will predict the force output and deflection.  It will use the solvers 

mentioned to predict the electrochemomechanical transduction processes that cause the actuator 

to deflect.  The smaller models will consist of a geometrical, voltage, concentration and force 

distribution.  The complete model will be interfaced with modeFRONTIER and many different 

optimization tests will be run.  These optimization tests will include optimizing a finger to 

achieve the highest force, the highest deflection, or the combined highest force and deflection, all 

in different test runs. 

Section 3.3 will cover the process of creating domains, i.e., the IPMC finger.  Section 3.4 

covers the process of meshing domains in Comsol.  Section 3.5 will cover the process of creating 

the smaller models, as seen below.  This will cover the process of using the electrical model and 

using the migration of ions in Comsol to determine the concentration of cations and anions in the 

Nafion when applied with a voltage.  Using the concentration of these ions, the force at any point 

is determined using a novel force equation.  This force inside the finger is then incorporated in 

Comsol and used to determine the behavior of the finger.  Below is a brief outline of the 

complete process. 

 3.5.2 Comsol/Matlab Electrochemical Model 

 This step creates a base model that yields the ionic concentration 

through the thickness of IPMC as a function of input voltage and time.  

This model contains a single line that is easily meshed.  The model 

provides an accurate representation of the migration of ions due to a given 

voltage signal.  
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 3.5.3 Electrical Model 

 This step contains the creation of an electric model that predicts 

the voltage distribution throughout an arbitrarily shaped IPMC finger 

based on the input voltage.  This involves modeling and solving the IPMC 

finger in Comsol and then exporting the solution to Matlab in order to 

extract the voltage at any given point in the finger. 

 3.5.4 Matlab Force Model 

 The results of 3.5.2 and 3.5.3 will be saved as m-files and opened 

in Matlab.  Based on the voltage distribution, the ionic concentration 

distribution is predicted for any IPMC finger.  Given this concentration, 

Matlab is then used to predict the stress field throughout the material.  

Lastly, the stress field is saved as a text file to be imported back into the 

Comsol model. 

 3.5.5 Comsol/Matlab Force and Deflection Simulation 

 Two simulations will then be created in Comsol using the stress 

field predicted by the force model in Matlab.  The first simulation is 

simply the deflection of the finger when modeled as a cantilevered beam.  

The second simulation is a stress strain simulation.  This simulation 

involves the force experienced by a force transducer in contact with the 

IPMC finger.     
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3.3 Geometrical Modeling 
 

 The process begins with the geometrical modeling of any IPMC in Comsol, as can be 

seen in Fig. 22.  This requires the creation of three domains to represent the Nafion polymer and 

two metal electrodes.  Using the modeling tools, any shape desired can be created.  The user can 

choose to model simple blocks using the block function, or can make complex shapes with the 

Bezier polygon tool, depending on the desired shape of their finger.  First, the finger must be 

modeled.  This can be any complex shape, but for this study only rectangles and triangles are 

used.  As mentioned earlier these shapes had quite different results.  An application named 

“Comsol 4.3b with Matlab” can be seen on the Desktop and must first be opened so the two 

programs will communicate with each other and any model can be saved as an m-file and opened 

in Matlab.  Comsol 4.3b is then opened and a 3D space dimension is chosen.  Then the user must 

specify the physics to be used.  To start, the electrical currents (ec) under AC/DC will be used.  

The electrical modeling will be explained later, but it is easier to add physics before the IPMC 

finger is created.  The geometry is then created using a variety of CAD tools.  In the case of the 

rectangle finger, a simple block is used.  As seen in Fig. 22, a 7x17 mm block is created using 

the block geometry and given a thickness.  Two identical blocks will then be created and placed 

on top of the block already created.  This is done in order to model the three layers of an IPMC 

finger.  The three layers must also be offset by the thickness of each layer to make a sandwich.  

As stated above, an IPMC is made of three distinct layers.  In our case, we have two layers of 

platinum and one thicker layer of Nafion.  The IPMC material will then be specified by the user.  

Comsol has a variety of built-in materials in the material library.  The user can also change the 

properties of the material, if desired, as can be seen in Fig. 23. 
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Figure 22. 7x17 mm IPMC finger 

 

Figure 23. 7x17 IPMC Material Properties 

 

Complex shapes are also easily drawn using the CAD tools.  In the case of the triangles, a work 

plane must be created to use the Bezier Polygon tool.  This is easily done using the geometry 

tool, as seen in Fig. 24.  Once the work plane is added, the plane geometry feature is used to 
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create the Bezier Polygon and make a triangle, or any other shape.  The Bezier Polygon must 

then be extruded to the thickness desired and a single triangle is created.  This process can be 

duplicated to create three layers, to make the sandwich, but the work planes must be offset by the 

desired thickness of IPMC layers.  The material is once again specified by the user and the model 

is ready to be used to determine the electric field created throughout the finger when applied a 

given voltage.  When the electric currents physics is specified as the physics to use, Comsol 

determines if all material properties needed to solve the problem are supplied. 

 

 

Figure 24. Work Plane in Comsol 

   

3.4 Meshing IPMC Fingers 
 

 Meshing is one of the most important parts, and one of the most challenging, when 

designing and testing these fingers.  The geometry being modeled must be meshed correctly or 

the model will not give correct results.  The challenge is to mesh the electrical and chemical 
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gradients in such a way that they are represented correctly.  Due to the thickness of IPMC 

fingers, this is hard to do.  These gradients are extremely high and occur through this thickness.  

The thickness of IPMC fingers is usually around 200 microns, while the width and length may be 

10-20 mm.  In order to mesh such thin elements, automatic meshes in Comsol create meshes 

with hundreds of thousands of elements, which most computers are unable to solve.  This is less 

of a problem when using electrical currents, but when predicting force and deflection it proves to 

be a problem.  In order to mesh thin geometries, a couple of methods can be used.  The first 

method involves using a rectangular swept mesh.  This mesh creates a rectangular grid on the 

face of the geometry of interest.  The grid is swept across the geometry to create a mesh with 

solid rectangular elements.  This meshing technique is favorable when the IPMC finger is a 

simple rectangular solid, but does not work well when complex geometries are being used.  In 

the complex cases, the easiest mesh to use is a user-controlled mesh that enables the user to scale 

the mesh in the direction of the thickness of the IPMC finger, as seen in Fig. 25.  This mesh 

creates tetrahedral or triangular elements.  Using a scaling factor, we are able to get as many 

elements throughout the thickness as possible.  This scaling factor depends on the model being 

solved and must be changed according to different models.  The user can choose a predefined 

mesh ranging from extremely coarse to extremely fine and then change the scaling factor to 

choose the best mesh.  Another complication arises when trying to mesh the IPMC finger and the 

force transducer straw that is represented as a small glass cylinder in Comsol.  The area where 

the straw meets the finger must be meshed by using the user-controlled mesh parameters and 

keeping the predefined mesh degree for the finger close to the degree for the transducer, i.e., 

extra fine for the finger and fine for the transducer straw.   
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Figure 25. Meshing IPMC Fingers 

 

3.5 IPMC Force and Deflection Model 

3.5.1 Approach Overview 

 This model is created to predict the deflection and force output of an IPMC finger as a 

function of its electrical, chemical and mechanical properties.  As mentioned above, the process 

is divided into smaller sub-models, as can be seen in Fig. 26.  The process of putting these 

models together can be seen in Fig. 27. 
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Figure 26. Model Diagram 

 

 
Figure 27. Force Modeling Process 

 

 The model starts with an electrochemical model that predicts the distribution of cations 

due to the imposed electrical field (Section 3.5.2).  This model is used in all IPMC models, as 

this is just a representation of the ion movement.  This will be the same in all IPMC fingers.  
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This is done using a concentration distribution modeled in Comsol.  A 180 micron line is 

modeled in Comsol, representing the electroactive Nafion layer.  In this model, the platinum 

layers have been omitted, as we are interested in the distribution of the cations and their 

movement in Nafion.  An input voltage is applied to the model as a function of time and the 

concentration throughout the material is predicted.  The ionic response will be accounted for at 

every possible input value at any given point.  These concentration values will then be used to 

determine the stress values inside the finger.  A separate model is created in Comsol that predicts 

the electric field distribution for any arbitrarily shaped IPMC finger (Section 3.5.3).  The results 

of both of these models will be saved in Matlab where the stresses throughout the material will 

be predicted (Section 3.5.4).  Finally, Comsol and Matlab will be used to simulate the deflection 

and force exerted by the IPMC finger on a transducer (Section 3.5.5).    

3.5.2 Comsol/Matlab Electrochemical Model 

3.5.2.1 Approach Overview  
 

 This model will describe the behavior of an IPMC finger as a function of its electrical, 

chemical, and mechanical properties.  This is started using the electrochemical model that 

describes the redistribution of cations due to an applied voltage.  This model will consist of a 180 

micron line that represents the electroactive Nafion layer.  This model does not contain the 

electrode regions, as we are concerned with capturing the distribution of cations in the Nafion.  

This shape is very easy to mesh as it is simply a line.  This model is chosen, as it is important to 

capture the cation concentration gradient at the two distinct boundary layers that form near the 

electrodes during actuation.  One of the layers will have a very high concentration of cations near 

the cathode and the other is depleted of cations near the anode.  The goal of this model is to 

predict the distribution of cations due to an arbitrary DC signal as a function of time.  Once the 
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model is solved in Comsol, it will be converted into an m-file, where it will be run iteratively.  

This must be done, as the response will be predicted at any voltage less than the input voltage.  

This will be used to simulate the response of the finger at any point, especially points far from 

where the voltage was applied, as the voltage drops.  In our case, the model will involve an input 

signal of 2 volts, so the model will be run iteratively in Matlab to predict the responses for the 

values between 0-2V inputs.  This process captures the ionic response for any possible input 

value experienced by points in the finger.  These responses will be saved as a matrix in Matlab 

and referenced in the force calculations.   

3.5.2.2 Concentration Distribution Theory 
 

 In this section, we are interested in the electro migration of cations under an imposed 

electric field through a porous medium.  This model uses Comsol’s Transport of Diluted Species.  

This physics uses the Nernst-Planck equation for ion transport, to model the flux of cations.  This 

equation contains terms describing fluid velocity, diffusion, and electrophoretic migration for the 

surrounding medium.  Comsol uses the equation: 

     
  

  
                     

3.1  

 

Where R is a reaction term, D is the diffusivity (m
2
/s), c is the concentration (mol/m

3
), z is the 

charge number (unit less),    is the mobility (s*mol/kg), F is Faraday’s constant (C/mol), and u 

is the initial velocity of species (m/s).  cu is zero as the medium containing the cations is not a 

flowing liquid.  The system is also conservative with respect to the number of cations as the 

domain is isolated, meaning R will be zero.  A brief outline is now given to explain the process, 

in order, of how we will create this model. 

 Geometry is created using Comsol’s CAD tools 



40 

 

o  180 micron line is created to represent electroactive layer (Nafion) 

 Physics is added to the model 

o Physics is added to base geometry using application nodes 

o Transport of Diluted Species is added to model to model migration 

of cations through porous medium 

o Electric field is added to model using variables 

 Model is meshed 

o Geometry is meshed using a scaling factor 

 Model is solved and Results are plotted 

o Solver is selected and problem is solved 

o Concentration of ions is plotted 

 Model is exported to Matlab 

o Model is saved as a Model M-File and can be opened in Matlab 

o “Comsol 4.3b with Matlab” icon must be selected to open 

connection with Matlab 

 Variables added in Matlab M-File 

o M-file is converted into a function to allow inputs and return 

outputs 

o Model performs parametric sweeps over many voltages to create 

history of ionic concentrations 

 Ionic Concentration history of IPMC is exported as a text file 
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3.5.2.3 Modeling 
 

 First, the model is created using a single domain representing the electroactive polymer, 

as seen in Fig. 28.  This line is created as explained in Section 3.3.  This method is used to create 

a 180 micron line to represent the Nafion layer.  Physics will then be added to the base model. 

 

Figure 28. Concentration Model 

After the geometry has been created, Transport of Diluted Species application mode is added to 

the model by choosing the physics, as seen in Fig. 29.  This application mode predicts the 

distribution of cations due to an induced electric field.  The electric field will be added as a 

function in the model.  This is necessary for solving the electro migration problem.  This is done 

under Global Definitions>Variables, this can be seen in Fig. 30.  We can add “Van” and “Vcat” 

to correspond to the voltage at the anode and the voltage at the cathode, respectively.  Now, we 

will define the physics. 
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Figure 29. Physics Added 
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Figure 30. Variables Added 

We begin by adding “Diffusion and Migration” to the model.  This is accomplished by right-

clicking “Transport of Diluted Species” and choosing “Diffusion and Migration.”  Under Model 

Inputs, we will add an electric potential, as can be seen in Fig. 31.  This voltage potential will be 

a function of “Vcat” and “Van.”  As stated above, there will be no flux, so we will choose the 

two ends to have a no flux condition.  The model must then be meshed as described in Section 

3.4.  A user-controlled mesh will be used.  Clicking on the size option, we can select a custom 

mesh with a maximum element size of 1e-6 m, as seen in Fig. 32.  This creates an element for 

every micron, or 180 elements.   
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Figure 31. Electric Potential 



45 

 

 

Figure 32. Meshing 

Opening the solver branch, we can see the solver is already configured to be a time dependent 

problem.  The solver configurations branch contains information about the type of analysis, the 

solver settings and the solver being used.  The “Results While Solving” also contains different 

plots that may be represented graphically.  In most cases, the automatic solver is used and the 

results chosen by Comsol are the correct results.  Comsol automatically chooses solvers based on 

the problem type.  After the settings in the solver parameters are chosen, the equal sign in the 

toolbar at the top of the screen is selected and the problem is solved and the results will be 

displayed graphically.  Plotting options are also available, as seen in Fig. 33.  Right-clicking 

“Results,” many different plots can be added to the model.  In this case, Comsol automatically 

plots the concentration of the line, as can be seen in Fig. 34.  Other plot types are available, such 

as slice, sub domain, deformed and boundary plots.  The model is then complete. 
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Figure 33. Solver and Plots 

 

Figure 34. Concentration Plot 
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 Next, we must export the model to Matlab as an m-file.  The completed model will 

include the CAD model, solvers, and plots that were discussed.  Comsol will store everything 

that was discussed in an m-file.  This includes things that may have been deleted or numerous 

plots that may not be needed.  This will be stored in the m-file and can become quite large.  In 

order to save a model that is clean, there is a way to rid the code of anything that has been 

deleted.  Clicking “File” and choosing “Reset History” will clean the model of any unwanted 

code.  The “Save As Model M-File” can then be selected under “File.”  This will produce an m-

file that can be edited and run in Matlab.  In order for Matlab to understand the language used in 

the code, Comsol must be connected to Matlab, as described earlier.   

 Next, we will examine the m-file of the Comsol model.  This file contains many lines of 

code that indicate whether the model contains parameters, data or variables.  The line that 

contains variables can be seen in Appendix A1.  Other processes such as geometry and meshing 

can also be seen.  This code is not in a form where it can accept input variables; instead it is a 

history of what has been done in Comsol.  Using this m-file, we will then create a program to 

yield concentration values for specific voltage inputs.   

 First, a variable containing a vector of solution times is created.  This is used to indicate 

to the solver when solutions are returned.  A voltage variable will also be created in the m-file.  

This will also be a vector that contains an evenly spaced series of numbers from zero to the 

maximum applied voltage.  The last variable will be an empty matrix that is used as space for the 

storage of concentration values and is in the form “Concentration (z, time, voltage).”  The rest of 

the model code is then placed in a for loop whose number of iterations is equal to the number of 

elements in the voltage vector.  Next, the voltage signal will be changed.  The variable 

controlling the voltage vector will be “V.”    This value will be replaced with a variable string.  
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In our case, we want to increment through the voltage vector, so we will change the 

model.variable to model.variable(‘var1’).set(‘Va’, strcat (num2str (V_a)), ‘[V]’).  This will cause 

the voltage to change with each iteration and evolve over time.   

 Next, the code must be able to extract and store the solutions.  This is done using 

mphinterp.  The solution to the model at the end of each iteration will be stored as a FEM.  

Mphinterp will reference the fem for a solution at a given point in time and space.  The format 

will be extracted as “con= mphinterp (fem,’c’,’coord’,’z’,’T’,tf)’.”  The concentration at any 

point is the variable of interest which is shown as ‘c’.  We will place mphinterp into two “for 

loops” to make a concentration profile for the cations through the thickness of the Nafion.  The 

first loop increments by time steps to extract the concentration profile for every solution time.  

The second loop increments by the height in the z-direction, returning the concentration at values 

through the thickness of the finger.  These results are then stored in an array according to the 

voltage, time and z-position.     

3.5.3 Electrical Model 

3.5.3.1 Approach Overview 

 We created the model that is able to predict the distribution of cations through an IPMC 

finger due to an induced voltage in the last section.  Next, the electrical distribution in the IPMC 

will be modeled in Comsol.  This is done as the input voltage will decrease in strength as the 

distance from the application point is increased.  As a result, the actuation of the finger will also 

decrease in strength, as actuation is proportional to input voltage.  The model is created using the 

modeling techniques described in Section 3.3.  The three domains representing the IPMC layers 

will be modeled.  Then, the finger will be meshed and solved.  Lastly, it will be exported to 

Matlab as a fem structure to be incorporated into the force model.  
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3.5.3.2 Electrical Currents Theory 
 

Electrical currents, combines Ohm’s law and Poisson’s equation into one equation, given as: 

                3.2  

where sigma is the conductivity (S/m), V is the voltage (V),    is the externally generated current 

density (A/m
2
), and   is a current source (A).    is zero as the Nafion does not generate any 

current during actuation.  As stated above, the top and bottom domains have electric potential 

boundaries where they contact the electrodes.  So,     .  In the case of the boundary with the 

ground condition,      and the other boundary is equal to the value specified.   

The simulation will be run in Comsol using this theory and the voltage distribution inside the 

IPMC will be predicted, once the mesh has been assigned.  A brief outline is now given to 

explain the process of modeling the voltage distribution. 

 Geometry is created using Comsol’s CAD tools 

o Three domains are created that represent the thick layer of 

Nafion and the two thinner electrodes (Platinum) 

o Layers can be created using the block tool or drawn on 

work planes 

 Physics is added to model 

o Electric Currents is added to model 

 Add boundary conditions and sub domain settings to model 

o Materials are selected for geometry (Nafion and Platinum) 

o Electric Potential and Ground applied to edges 

 Mesh Geometry 

o Geometry is meshed using user-controlled mesh 
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 Model is solved and results are plotted 

o Solver is selected automatically by Comsol 

o Plots can be changed to sub domain or volume to represent 

voltage distribution 

 Solution is exported to Matlab 

o Solution is exported as m-file (Appendix A2) to be called 

as a fem structure into extract function (Appendix A3) 

3.5.3.3 Modeling 

 This model will predict the electric potential in an arbitrarily shaped IPMC finger.  In this 

case, we will model a 7x17 mm rectangle finger.  First, we must model the voltage distribution.  

Starting by clicking on Comsol 4.3b with Matlab, a command window will open that connects 

Matlab to Comsol.  Then, selecting Comsol 4.3b, Comsol opens.  Selecting 3D, AC/DC>Electric 

Currents (ec), Stationary, Finish, the finger is ready to be built.  Any shape can be modeled using 

the Geometry tool.  The three blocks will be built, representing two layers of platinum and one of 

Nafion, as seen in Fig. 35.  This is done by right-clicking geometry and selecting “block.”  The 

block is extruded to the thickness of the first layer of platinum.  This can then be duplicated to 

make two more layers that have the same area, but the Nafion will be thicker. 
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Figure 35. Arbitrary Finger 

The materials must then be assigned to the layers.  Using Materials>MEMS>Metals>Pt and 

assigning to Block 1 and Block 3 and Materials>Built In>Nylon to Block 2.  Although these 

materials already have assigned values, the values for platinum must be changed a little to 

account for the material being platinum salt.  In this case, the electrical conductivity will be 

changed to 1e6.  Now, we must assign the physical properties to the model.  This is 

accomplished by assigning the ground and electric potential to the left top and bottom of the 

finger.  This can be seen in Fig. 36 and Fig. 37.   
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Figure 36. Ground 

 
Figure 37. Electric Potential 

 

Next is the mesh.  Using Mesh>User Controlled>Size>Normal the finger is meshed, as seen in 

Fig. 38.  The model can then be solved.  Comsol automatically chooses the best solvers and plots 



53 

 

the results, as seen in Fig. 39.  The plot can be changed by right-clicking Results>3D Plot Group 

and choosing the type of plot desired.  Once the model is completed it will also be saved as a 

model m-file.  This m-file will not be edited; it will simply be called as a fem in later codes.   

 

Figure 38. Meshing 

 
Figure 39. Results 
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3.5.4 Matlab Force Model 

3.5.4.1 Approach Overview 
 

 As seen in the previous sections, we now have a model capable of predicting the 

concentration distribution through the thickness of the IPMC finger given a voltage input and we 

also have a model capable of predicting the voltage distribution across the surfaces of an 

arbitrarily shaped IPMC finger.  Now, we can create a simulation to determine the force 

distribution throughout an IPMC finger.  The voltage distribution can be used along with the 

concentration tables to determine the local concentration values throughout the IPMC finger.  

This will be accomplished programmatically using Matlab and the results will be converted into 

a distributed force which will be used to drive the IPMC finger during actuation simulations. 

3.5.4.2 Force Model Theory    

 As discussed in Section 1.1.2, the basic structure of Nafion is considered to have two 

regions, hydrophobic and hydrophilic.  These regions contain micellar structures forming a grid.  

When hydrated, the solvent collects in the micelle and the channels that connect them.  When 

actuated, the cations in the micelle are driven towards the cathode.  Cations are added to the 

micelle near the cathode, positively charging the micelle.  Micelle near the cathode will be 

positively charged, forcing a repulsive force between them.  This is also true near the anode, 

where the micelle will be negatively charged.  The force between these two spheres, or two 

points, is calculated using Coulomb’s law given as: 

                 
      

  
 

            
 

  
 

        
 

  
 

 

And           
 

   
 

3.3  
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 This expression states that the force (F) between any two points is proportional to their 

charge (q) times a constant divided by the square of the distance (d) between them.  The next 

expression applies to the case of two nested spheres that have the same charge.  We will use this 

in the case of our IPMC, because the concentration does not vary much.  The third expression 

states the difference between the number of anions and cations is equal to the change in 

concentration since their numbers are initially equal. 

 But, our electrochemical model predicts the concentration of cations in moles per cubic 

meter and equation 3.3 uses the change in concentration of an individual cluster.  An equation 

will be needed to convert the molar cation concentration into cluster concentration. 

This equation is given by: 

    
         

        
 

 

          
  

 
   

3.4  

 

 where        is the molar concentration of cations,    is Avogadro’s number, and          is the 

number of clusters per cubic meter.  The number of clusters is calculated by dividing the total 

number of cations by the number of clusters per cubic meter, assuming the cations are initially 

distributed equally.  Using these equations, equation 3.3 can be simplified to: 

                 
               

             
 

3.5  

  

 But, we want an equation in terms of layers, not clusters.  This is important because the 

repulsion forces between layers causes the actuation in IPMCs.  It has been proven that the force 

in any direction is equal to the force exerted on a plane normal to that direction.  This force only 

depends on the force that the two layers of cluster exert on each other.  This implies each plane 
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experiences the same force as all the other planes, so the force is not increased by adding layers.  

This simplifies equation 3.5 to: 

                                      
   

 
3.6  

 

 Once again, this equation must be adjusted to account for multiple layers, as equation 3.6 

only applies to double layer systems.  This equation will be adjusted to account for the presence 

of multiple layers.  Assuming even separation and a large number of layers, the combined force 

of each additional layer can be approximated as  
 

   with a solution of 
  

 
.  Combining these 

equations, equation 3.6 can be simplified as: 

 

      
  

  
                        

   
 

3.7  

 

Another brief outline will be given to explain the process of the force and deflection model. 

 Voltage distributions extracted from FEM structure 

o FEM Structure contains the voltage distributions of the two 

electrodes produced by the electrical model 

o Voltage is extracted using mphinterp and returns the 

voltage at any position 

 Voltage is used to determine ionic concentration 

o Voltage potentials are used to create concentration matrix 

that defines the distribution of cations. 

  Force Matrix is produced 

o Concentration matrix is converted into matrix of forces 

using force equation 
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o Force matrix is stored in Comsol model to simulate 

actuation. 

 

 

3.5.4.3 Deflection and Force Modeling 
 

 In Section 3.5.3, a FEM structure was exported as an m-file into Matlab.  This FEM 

contained the voltage distribution of an arbitrarily shaped IPMC finger.  This distribution will be 

extracted from the m-file using an extract function (Appendix A3) and stored as a matrix.  Again, 

we will use mphinterp to extract this information, but this time the function will be passed a 

matrix.  This matrix will contain spatial coordinates of the model and at each point in the matrix, 

a voltage will be extracted.  Now, we have a matrix that contains information about the voltage 

and position for the entire actuator.  This will now be applied to the concentration history that 

was solved for in Section 3.5.2.  In this section, we created a model to simulate ionic 

concentration in Nafion.  The results of this model were exported to Matlab as an m-file and 

processed into an array.  These results will be combined to create an array of concentration 

values for the entire finger as a function of time.  The array is in the form Concentration (voltage, 

time) = [z concentration], where z is the thickness being sampled.  This array returns the 

distribution of cations at any point and time.  Now, we will develop a model that uses this 

concentration distribution to describe the stress in the material.  This is quite easy, as all the 

variables are known, as we just developed the concentration matrix.  The force is then calculated 

at every point using Equation 3.7.  This will return another matrix in the form Force = [x y z 

Force].  The force will be calculated and can be saved as a text file which will be returned to 

Comsol.   
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3.5.5 Comsol/Matlab Force and Deflection Modeling 

  
 The force concentration is then uploaded into the Comsol model, using a simple property 

tool.  This is done using an interpolation function that loads the text file acquired earlier into the 

IPMC finger that was modeled in the electrical modeling section.  The text file contains four 

arguments, three spatial coordinates and the force at every coordinate.  By assigning “Force” as 

the interpolation function and its location in the file, Comsol is able to load this into the modeled 

finger.  In this case though, different physics will be used, as we are interested in the deflection 

and force applied by the finger on the glass transducer straw.  The model will once again be 3D 

and the physics used will be Structural Mechanics>Solid Mechanics.  The model must then 

either be rebuilt or simply copied from the electrical model, but in the new model, the IPMC 

finger will simply be one body, instead of three layers.  This is done to avoid three very thin 

layers when meshing.  The three layers will move as one when actuated, so this is a reasonable 

assumption.   

 Starting with a new model and choosing 3D>Structural Mechanics>Solid Mechanics, 

Stationary, Finish, we will finish the process.  This time, only one block is needed.  The block 

will be built and the material assigned.  The material will be Nylon, but the material properties 

will be changed to mimic a composite material of Nafion and Platinum.  The text file will be 

loaded using Global Definitions>Functions>Interpolation.  The data source is a file and can be 

found by browsing the computer files and selecting the desired text file.  The “Function Name” 

will be “Force” and “Position” will be “4.”  The Solid Mechanics section will then be selected 

and the fixed constraint will be assigned on the far left end of the finger, as seen in Fig. 40. 
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Figure 40. Fixed Constraint 

 

The finger will be modeled as a cantilever beam that is fixed at one end where it is held by the 

electroded holder.  A body load must then be added to the model.  This is done using the Solid 

Mechanics option.  Choosing the IPMC finger as the domain, the body load will be recognized as 

“Force,” which was loaded in the text file above, as seen in Fig. 41. 

 

Figure 41. Body Load 

In order to load the body load into the finger, the force must be defined as a body load.  This 

means the inputs must be unitless, so the force is entered as “Force(x [1/m], y [1/m], z [1/m]).  
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The finger must then be meshed.  This is very important in this stage. Once again, the user-

controlled mesh will be used, but this time, an extra fine mesh will be used and the scaling factor 

under Free Tetrahedral>Scale Geometry>z-direction can be used.  The model can then be run.  

The results are then plotted automatically.  The plot desired in the deflection model will be a 

Volume Plot with Total Displacement as the “Expression.”  The finger will actuate due to the 

migration of cations and the force produced inside the IPMC, as seen in Fig. 42.  The total 

displacement can be computed using the Derived Values tool, under point evaluation and 

choosing the far right tip of the finger that deflects, as seen in Fig. 43.  Total displacement is 

already chosen when using this tool.  Under the Solid Mechanics menu in the evaluation window 

is Solid Mechanics>Displacement>Total Displacement, which will give the total displacement of 

the tip of the finger. 

 

Figure 42. Finger Deflection 
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Figure 43. Deflection Measurement 

 

The straw cylinder representing the force transducer can then be modeled in the previous 

deflection model. A cylinder will be modeled in Comsol to represent the straw on the force 

transducer.  The same simulation will be run that predicts the deflection of the IPMC, which will 

deflect into the force transducer.  This will be done in the same way the deflection was 

measured.  The only difference is a cylinder will be modeled to represent the straw on the force 

transducer.  The straw will have a diameter and height of one millimeter.  The cylinder will be 

offset by the thickness of the finger and will be located two mm in from the end of the tip of the 

finger.  This is done in all models to keep the location of the transducer consistent and also to 

avoid having the transducer at the very tip of the finger which causes errors in meshing.  The 

cylinder will be assigned “Silica Glass” material, which is preloaded in Comsol.  The bottom of 

the cylinder will also have a fixed constraint, so it will not move and will be in compression 

when the finger contacts it.  The mesh for the finger will be the same, while the mesh on the 

straw can be “Fine” as it is not as thin.  A fixed constraint must be placed on the bottom of the 

cylinder, as seen in Fig. 45, and the model can be solved.  The force exerted on the load cell will 
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then be predicted by Comsol, once again using the “Derived Values” tool.  Using Derived 

Values>Volume Integration>Solid Mechanics>Reactions>Reaction Force, the force exerted on 

the cylinder will be given in mN.   

 

 

 

Figure 44. IPMC and Cylinder 

 
Figure 45. Cylinder Constraint 
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The force exerted on the cylinder can be computed using the Derived Values>Volume 

Integration, under Expression, as seen in Fig. 46 and Fig. 47. 

 

 

 

Figure 46. Reaction Force on Cylinder 

 

 

 
Figure 47. Reaction Force 

3.6 Results 
 

 In this chapter, we created several sub-models in order to predict the deflection and force 

of an arbitrarily shaped IPMC finger.  The first model was an electrochemical model that 

predicted the distribution of cations due to an induced electric field.  Next, we developed a model 

that predicted the voltage distribution in the IPMC finger.  These models were then combined to 

predict the ionic concentration due to the voltage.  This concentration distribution was then used 
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to determine the electrostatic forces inside the IPMC finger.  Using these models, we then were 

able to model many different fingers and test them experimentally to determine the validity of 

the models. 

 Two fingers with different areas were compared to determine their force and deflection.  

They were modeled and then tested experimentally.  One was a 7x17 mm rectangular finger and 

the other was an isosceles triangle with the same height and base but half the area, as can be seen 

in Fig. 48.   

 

Figure 48. Rectangle and Triangle Fingers 

 

The results can be seen in Table 3.  The error in force and deflection for the rectangle is 23.37% 

and 2.77%, respectively.  The error for the 7x17 mm triangle for force and deflection is 13.3% 

and 4.92%, respectively.   

 

 

 

 

 



65 

 

Table 3. Output vs. Size 

Gripper Dimension  7x17 mm rectangle  7x17 mm triangle  

Experimental Force  2.0 mN  1.16 mN  

Experimental 

Deflection  

1.4 mm  1.13 mm  

Modeled Force  2.6 mN  1.22 mN  

Modeled Deflection  1.44 mm  0.98 mm  

 

The same 7x17 mm rectangle was used and new 14x17 mm isosceles and right triangles were 

used, as seen in Fig. 49. 

 

Figure 49. Rectangle and Triangle Fingers 

 The results can be seen in Table 4.  The error in force and deflection for the isosceles 

triangle is 14.38% and 23.5%, respectively.  The error in force and deflection for the right 

triangle is 13.96% and 6.26%, respectively.   
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Table 4. Output vs. Shape 

Gripper Dimension  7x17 mm rectangle  14x17 mm Isosceles 

triangle  

14x17 mm Right 

triangle 

Experimental Force  2.0 mN  2.92 mN  2.28 mN 

Experimental 

Deflection  

1.4 mm  1.5 mm  1.85 mm 

Modeled Force  2.6 mN  2.5 mN  2.65 mN 

Modeled Deflection  1.44 mm  1.96 mm  1.735 mm 

 

Examining the results, we can see the model is quite accurate when predicting the force and 

deflection.   
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Chapter 4.  OPTIMIZATION in modeFRONTIER 

4.1 Introduction 
 

 The main goal in this thesis is to optimize IPMC fingers for force or deflection.  Comsol 

has an optimization package, but it was not powerful enough to accomplish this goal.  

ModeFRONTIER was suggested as an alternative to optimize these fingers for force or 

deflection.  ModeFRONTIER is a multi-objective optimization and design package designed by 

Esteco SpA.  It is written to couple with computer aided engineering (CAE) software, computer 

aided drafting (CAD) software, finite element structural analysis, and computational fluid 

dynamics (CFD) software.  It is a GUI driven software in which optimization is accomplished by 

modifying the input variables assigned by the user, and analyzing the outputs as they are defined 

as objectives or constraints.  The logic of the optimization is built around a “workflow” structure, 

which is built with interconnected nodes.  ModeFRONTIER is capable of direct integration using 

CAE and CAD nodes or can be used to connect to other external programs using scripting.  It 

uses design of experiments (DOE), robust design tools, and optimization algorithms to achieve 

optimization.  These DOEs consist of random generator sequences, orthogonal and iterative 

techniques, and factorial DOEs.  To achieve robustness analysis, it also includes Monte Carlo 

and Latin hypercube. Monte Carlo is a class of computational algorithms that relies on repeated 

random sampling.  These are run numerous times in order to obtain the probabilistic distribution 

of an unknown entity.  Latin hypercube sampling (LHS) is a statistical method used to generate a 

sample of parameter values from a multidimensional distribution.  These methods are effective 

for single design optimization, but multi-objective problems were also considered.  This was 

accomplished using a non-dominated sorting genetic algorithm (NSGA-II).  NSGA-II generates 

evenly distributed Pareto designs in a fast and efficient manner. 
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4.2 Building a Complete Model 
 

 Using the codes described above and altering them, they can be combined into one large 

code, as seen in Appendix A5.  This is just one sample of the code, as it was done numerous 

times for different shapes.  This code was able to predict the force and deflection of a given 

finger in one complete m-file, instead of going through the process described in Chapter 3.  The 

optimization process focused on three shapes, but any arbitrary shape can be modeled this way.  

This is the first time optimization has been achieved using these codes and the shapes were kept 

basic.  As can be seen in Appendix A5, the code starts the same as the above mentioned codes.  

The electrical modeling is the beginning of the m-file.  The blocks are built according to the size 

and shape desired.  In the new model, a table must be created that calculated the total area of the 

finger being built.  This is important as one of the optimization studies will involve changing 

length and width of the finger while keeping the area constant.  This table is exported as a text 

file that contains the area of the finger.  Once the area is calculated, the voltage is extracted using 

the same extraction function used above.  The concentration and force is again calculated in the 

same way as was calculated in the previous section.  The major difference in this program is the 

deflection and force modeling is then computed in the m-file, rather than using Comsol.  This is 

important as modeFRONTIER is unable to connect to Comsol directly.  Many software packages 

are able to link with modeFRONTIER, but Comsol is not one of them.  But, we are able to input 

an m-file into modeFRONTIER, that modeFRONTIER is able to read and modify.  This file 

contains the entire process explained in the previous chapter, but switching back and forth from 

Comsol to Matlab and running the entire modeling process is not required.  The entire process is 

contained in the m-file.  One code is used for the modeling of the deflection of the finger.  This 

code builds the finger and applies all the physics and meshing.  It will then solve for the 
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deflection of the finger.  A table is created at the end of this code that outputs the deflection of 

the finger.  This is important as modeFRONTIER will be able to read this output and optimize 

for the deflection.  The same goes for the force applied by the finger.  The code contains all of 

the information to build the finger and the force transducer and again solves the model and 

predicts the force generated by the finger on the transducer.  Another text file is output that can 

be read by modeFRONTIER, and once again, modeFRONTIER can optimize for the force 

exerted by the finger.  Finally, a third version of the code was written where a deflection test is 

run and then another force measurement is run in the same code.  The important part of the code 

is the prediction of the stress developed inside the finger.  This is calculated before any 

deflection or force measurements are taken, so the code is able to reuse the stress prediction in 

both the force and deflection modeling.   

 First, the deflection model is run without the force transducer, so the finger is able to 

deflect.  The code, seen in Appendix A5, is used to model the finger and calculate the stresses 

developed inside the IPMC.  The deflection measurement is then run in the same way that was 

run in Chapter 3, except this time it is run using an m-file that is stored in modeFRONTIER.  

The deflection is calculated and output as a text file.  This text file will then be used in 

modeFRONTIER.  modeFRONTIER will take this text file and use it as an output to maximize 

for, therefore maximizing the deflection of the finger.  Then, the force transducer is added to the 

model and the model is solved again.  Appendix A5 will be modified, and the force transducer 

will be added to the model.  The force measurement will once again be measured in the same 

way described in Chapter 3, except this time it is run as an m-file that is stored in 

modeFRONTIER.  The force is again output as a text file that can be read by modeFRONTIER.  

modeFRONTIER will then take this text file and use it as an output to maximize for, again 
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maximizing for the force applied by the finger.  Finally, a third code will be used to model the 

force and deflection of the finger in the same code (Appendix A6).  This is done by again using 

Appendix A5 and adding the force transducer, while keeping the deflection measurement already 

achieved.  The code will have two outputs, the deflection and the force, that are output as text 

files.  modeFRONTIER takes these text files and maximizes for them.  But, although 

modeFRONTIER tries to maximize for both, there will always be a trade off.  It will never be an 

exact optimization of the finger for both force and deflection, it will usually solve for a middle 

ground, where there will be a similar force and deflection.  This is accomplished by solving the 

deflection code first, then restarting the process, solving for the force exerted.  These codes were 

used to optimize rectangles, right triangles, and isosceles triangles for force or deflection.  These 

shapes were chosen due to the interesting experimental data that was discussed above.   

4.3 Optimization in modeFRONTIER 
 

 ModeFRONTIER must be able to access the m-files that represent the entire finger 

model.  This is done using an EasyDriver node in modeFRONTIER.  The EasyDriver node is 

able to create a link between modeFRONTIER and third party software, such as Comsol.  This 

EasyDriver node uses the script or m-file.  This is done by setting up a script and rules to drive 

the process.  In our case, the entire process of optimization is built around the EasyDriver, as it 

will access our m-files, some examples can be seen in Appendix A5 and Appendix A6.  

EasyDriver can be found under Script Nodes and the format of the EasyDriver node can be seen 

in Fig. 50.  Once in this node, the EasyDriver must be edited.  Once in Edit EasyDriver, the m-

file needed can be added by browsing under the “Add” selection and selecting the m-file.  The 

m-file will then be loaded into the EasyDriver, as seen in Fig. 51.  The entire m-file can be seen 

in the EasyDriver window. 
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Figure 50. EasyDriver 

 

 

Figure 51. EasyDriver with M-File 
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Now, modeFRONTIER knows what m-file to use and the inputs, such as base and length, will be 

selected in the m-file in order to optimize the model for deflection (or force).  Next, the inputs 

that will be modified to optimize the model for force or deflection will be parameterized.  The 

optimization process described in this thesis focuses on changing the width and length of an 

IPMC finger, while keeping the area the same.  So, the inputs will simply be the width and 

length of the finger.  The width of the finger is considered the base in modeFRONTIER.  The 

Input File can be found under File Nodes.  Adding two input variables, we will be able to change 

the base and length of the finger, as seen in Fig. 52.  modeFRONTIER needs to know two input 

variables, as it will change these variables in the m-file.  If it does not have two input variables, it 

will simply change one or the other and leave the other the same.  modeFRONTIER works by 

modifying the m-file and changing the variables that are selected by the user.  In our case, we 

wish to change the width (or length) of the finger, but the width and length must be changed in 

the m-file, accordingly.  Width and length are considered to be input variables, but they are 

really modifiers telling modeFRONTIER what to change.  Also, when running the model, we 

will add an expression to either the width or length that expresses it in terms of the other.   

 

Figure 52. Input Nodes 
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These nodes will be connected to the EasyDriver where we can select the base and length in the 

m-file, so modeFRONTIER will change these when optimizing the model for force or deflection.  

Once again, entering Edit EasyDriver and highlighting the base, as shown in Fig. 53, and right-

clicking, a rule can be added.  This is done by first clicking on “Base,” highlighting the base 

parameter in the m-file, and right-clicking, then Add Rule.  Since there are three blocks in the 

model, three bases are selected.  The same process is used to select the length of the finger. 

 

Figure 53. Adding Rules 

Next, modeFRONTIER needs to know what to optimize for, in this case either Force or 

Deflection.  This is accomplished using an output node.  This is needed as the m-file outputs the 

deflection or force of the model as a text file and modeFRONTIER needs to be able to read this 

text file.  The output node will be named accordingly, either Deflection or Force, and will be 
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passed to a design objective node.  This node tells modeFRONTIER that we are maximizing the 

force (or deflection) of this model.  An exit node is placed after the EasyDriver node to tell 

modeFRONTIER the model is complete.  Now, we must add a scheduler node.  This node tells 

modeFRONTIER the specific DOE to use.  In the case of the single objective optimization, 

where we are optimizing for either deflection or force, a SIMPLEX scheduler is used.  This node 

can be opened and the maximum number of designs is specified by the user.  In most cases 60 

designs are enough, as the model usually converges many designs before this.  The scheduler 

node also has a DOE node attached to it.  In our case, the Uniform Latin Hypercube will be the 

best DOE to use.  The number of designs must be specified by the user and the Add DOE 

Sequence must be selected, as seen in Fig. 54. 

 

Figure 54. DOE Properties 
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Earlier, we parameterized the base and length, but they are not yet constrained in terms of one or 

the other.  Seen in the bottom of modeFRONTIER are the input variables.  Clicking on base, we 

can change it from a variable to an expression.  The base can be expressed as a function of 

length, or vice versa, to constrain the area.  In our case, the base will be “1.19E-4/Length” for the 

rectangle as the area of a 7x17 mm rectangle is 119 mm
2
.  Now, the process is complete to 

optimize for a single design goal, such as deflection and was done for a rectangle, isosceles 

triangle, and a right triangle.  In order to optimize for force, we must add a node in which the 

cylinder, representing the force transducer, will move 2 mm in from the tip.  The length of the 

finger will change and the force exerted by the finger must be read at the same position for each 

iteration.  This is accomplished using a calculator node that moves the cylinder depending on the 

length, as seen in Fig. 55.  The cylinder position is selected the same way the base and length 

selections were made in the EasyDriver and can be seen in Fig. 56.  This process was done to 

maximize the force for a rectangle, isosceles triangle, and a right triangle and the results will be 

discussed later. 
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Figure 55. Cylinder Moving 

 
Figure 56. Cylinder in EasyDriver 
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 Next, the process was changed in order to minimize the area, while obtaining a certain 

force or deflection.  A desired force (or deflection) was chosen, such as 2 mN (or 2mm), and the 

area is minimized.  This is done to choose the smallest finger, while still meeting a design goal.  

The process is similar to the previous process, but this time a force (or deflection) constraint will 

be incorporated into modeFRONTIER, while the design objective will be minimizing the area, as 

seen in Fig. 57.  The EasyDriver process will be the same, including selecting the base and 

length.  The only difference is “Area” and “Deflection” will be the output variables, while the 

objective will be to minimize area and deflection will have a constraint on it.  Under “Constraint 

Properties” for deflection, the type can be set to “Equal To” and the limit can be set by the user.  

This process was repeated for all three shapes, for both force and deflection. 

 

Figure 57. Minimizing Area 

 

 A third optimization process was completed, in which force and deflection were both 

optimized.  The m-file was modified so the model was built twice in the same file and both force 
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and deflection were output by the file.  In this case, the process is the same, except “Force” and 

“Deflection” are both design objectives and were both outputs to be maximized, as seen in Fig. 

58.  As stated above, both cannot be maximized, but an optimal finger that achieves an 

intermediate deflection and force can be created.  The scheduler in this case will be the “NSGA-

II.”  Once modeFRONTIER converges on a solution, the results can be seen in the Designs 

Space.  This was again repeated for all three shapes.  

 

 

Figure 58. Maximizing Deflection and Force     
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4.3.1 Early Optimization 
 

 A 7x17 mm rectangle was modeled and input into modeFRONTIER.  ModeFRONTIER 

ran different scenarios with different lengths and widths.  These dimensions were used to 

optimize the fingers for force (or deflection).  This was done manually in Comsol.  This was very 

tedious, but led to some interesting conclusions.   Examining Table 5, we can see a thin base and 

a longer length leads to more deflection, while a wide base and a shorter length leads to more 

force exerted.  Also, choosing the middle ground leads to an intermediate deflection and force.  

This process was repeated to make the fingers smaller, as seen in Table 6 and Table 7.  The 

results again are promising, as a wider base and shorter finger leads to a larger force exerted and 

vice versa for deflection.   

Table 5 Full Rectangle Optimization 

Full Rectangle Optimization (119mm
2
) 

Base (mm) Length (mm) Displacement (mm) Force (mN) 

6.4358 18.49 3.10 2.03 

6.9655 17.084 1.718 2.52 

7.9323 15.002 1.571 3.76 
 

Table 6. Half Rectangle Optimization 

Half Rectangle Optimization (59.5 mm
2
) 

Base (mm) Length (mm) Displacement (mm) Force (mN) 

3.8459 15.471 3.35 1.38 

7.322 8.1262 0.528 2.49 

11.899 5.0 0.055 3.87 

 
 

Table 7. Quarter Rectangle Optimization 

Quarter Rectangle Optimization (29.75 mm
2
) 

Base (mm) Length (mm) Displacement (mm) Force (mN) 

2.086 14.263 1.448 0.859 

2.975 10.0 0.970 0.9813 

14.8 2.0 0.013 1.547 
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4.3.2 Deflection Optimization 
 

 Next, modeFRONTIER was used to optimize the fingers for deflection.  The same setup 

is used for each shape, but the script in the EasyDriver is changed according to the shape, as seen 

in Fig. 59.  As can be seen, the base and length are the two input variables and base is made a 

function of length to keep the area the same.  There are also limits set on the length, which in 

turn limits the base.  These limits are arbitrary and can be set by the user.  In our case, we limited 

the lengths for all shapes between 15 and 20 mm.  As stated, these are arbitrary values and can 

be chosen by the user.  If these limits are not set, modeFRONTIER would never converge on an 

answer and the finger would just become infinitely long by infinitely small.  Gravity is also not 

included in any of these models, but if the finger was infinitely long, at some point gravity would 

overcome the stiffness of the finger and it would not be able to hold itself upright.     

 

Figure 59. Deflection Optimization 
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As seen in Fig. 60, the deflection of a 7x17 mm rectangle was optimized for deflection.  

ModeFRONTIER runs through the optimization process until the best design is acquired.  Limits 

were set in modeFRONTIER to keep the finger under a certain width and length.  As seen in 

Table 8, Design 20 is the best design for the given shape and modeFRONTIER is finished 

optimizing the shape.  This is accomplished with a 5.95 mm by 20 mm finger.  This makes sense 

as a finger with a thin base and a longer length is able to deflect more.  The upper limit for length 

was set to 20 mm.  If the limit were set to a higher value, the finger would continue to grow in 

length until the upper limit was met. 

 

 
Figure 60. Rectangle Deflection 

Table 8. Rectangle Design IDs 

Design ID Base (mm) Length (mm) Deflection (mm) 

0 6.436 18.490 2.806 

1 6.966 17.084 2.082 

2 5.981 19.897 3.459 

3 5.950 20.000 3.505 

4 6.183 19.245 3.065 

5 6.064 19.623 3.242 

6 6.007 19.811 3.404 
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7 5.978 19.906 3.424 

8 5.964 19.953 3.480 

9 5.957 19.976 3.506 

10 5.964 19.953 3.480 

11 5.954 19.988 3.499 

12 5.954 19.988 3.499 

13 5.961 19.965 3.488 

14 5.955 19.982 3.464 

15 5.955 19.982 3.464 

16 5.959 19.971 3.493 

17 5.958 19.973 3.477 

18 5.958 19.973 3.477 

19 5.956 19.979 3.498 

20 5.957 19.978 3.506 
 

The process is then repeated for the isosceles triangle.  As seen in Fig. 61 and Table 9, 

modeFRONTIER again converges to give the best design of an isosceles triangle.  This finger is 

11.9 mm width by 19.96 mm long.  Again the length limit was set to 20 mm, so the optimization 

process chooses the finger that has the longest length.  These results are promising, as we have 

seen a thinner base with a longer length is a better design when deflection is the design goal.   

 

 
Figure 61. Iso Deflection Optimization 
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Table 9. Iso IDs 

Design ID Base (mm) 
Length 
(mm) 

Deflection 
(mm) 

0 12.872 18.490 1.282 

1 13.931 17.084 1.118 

2 11.962 19.897 1.789 

3 11.900 20.000 1.793 

4 12.367 19.245 1.513 

5 12.129 19.623 1.685 

6 12.013 19.811 1.737 

7 11.956 19.906 1.770 

8 11.928 19.953 1.797 

9 11.956 19.906 1.770 

10 11.914 19.976 1.802 

11 11.900 20.000 1.793 

12 11.921 19.965 1.806 

13 11.928 19.953 1.797 

14 11.918 19.971 1.802 

15 11.918 19.971 1.802 

16 11.925 19.959 1.806 

17 11.923 19.962 1.806 
 

 

 

The process is repeated for a right triangle.  Again, seen in Fig. 62 and Table 10, 

modeFRONTIER converges on a design of a thin base and longer length to achieve greater 

deflection.  This finger is 11.9 mm wide by 19.99 mm long.  As can be seen, the two triangles 

have similar dimensions even though they are different shapes.   
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Figure 62. Right Triangle Deflection 

Table 10. Right Design IDs 

Design ID Base (mm) 
Length 
(mm) Deflection (mm) 

0 12.872 18.490 1.417 

1 13.931 17.084 1.223 

2 11.962 19.897 1.896 

3 11.900 20.000 1.925 

4 12.367 19.246 1.727 

5 12.129 19.623 1.834 

6 12.013 19.811 1.893 

7 11.956 19.906 1.919 

8 11.928 19.953 1.924 

9 11.914 19.976 1.910 

10 11.914 19.976 1.910 

11 11.907 19.988 1.900 

12 11.907 19.988 1.900 

13 11.904 19.994 1.912 

14 11.902 19.997 1.925 
 

 

 Now, we will compare the results.  As seen in Fig. 63, the three shapes are compared.  

The rectangle achieves the greatest deflection with the same area as the triangles, due to the 

limits set on the fingers.  This is achieved as the rectangle base becomes very thin and the length 
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is long compared to the base.  The triangles cannot become as thin compared to their base, so 

they cannot deflect as much.  When looking at the ratio of width to length, the rectangle is almost 

a 1:4 ratio, while the triangles are around 1:2.  This means the rectangle becomes very long 

compared to the width, while the triangles do not   If the triangles were able to become much 

longer and meet the same ratio, they too would be able to deflect more.  As stated above, the 

length was limited, and in this case it was limited to 20 mm.  This is an arbitrary number that can 

be changed.  This is set as modeFRONTIER would never converge if there were no limit on the 

length.  The triangles would be able to deflect more given a longer length and shorter base, but a 

limit must be set.  This shows a rectangle may be the best design if a certain length is desired.  If 

the user needs a finger to be less than a certain length, this can be changed in modeFRONTIER.   

 
Figure 63. Shape Comparison 
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4.3.3 Force Optimization 
 

 The force exerted by the three shapes was then optimized in modeFRONTIER, as seen in 

Fig. 64.  The same setup is used for each shape, but the script in the EasyDriver is changed 

according to the shape.  As can be seen, the base and length are the two input variables and base 

is made a function of length to keep the area the same.  There are also limits set on the length, 

which in turn limits the base.  The length limit was again set to 15 to 20 mm.  This again was 

arbitrary and can be changed to anything.  The cylinder moving node is the cylinder that 

represents the force transducer that will always move 2 mm in from the tip of the finger to keep 

the readings consistent.    

 

Figure 64. Force Optimization 
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As seen in Fig. 65 and Table 11, modeFRONTIER converges on a design.  Once again, a limit 

was set at the lower end of the length of the finger at 15 mm.  This was done as 

modeFRONTIER would never converge on a design if there was no limit on the length or width.  

A wider base with a shorter length is the best design to achieve the greatest force.  The rectangle 

finger dimensions are 7.92 mm wide by 15.02 mm long.        

 

 
Figure 65. Rectangle Force Optimization 

Table 11.  Rectangle Design IDs 

Design ID Base (mm) Length (mm) 
Force 
(mN) 

0 6.436 18.490 2.276 

1 5.981 19.897 2.082 

2 6.200 19.193 2.149 

3 6.690 17.787 2.336 

4 6.966 17.084 2.430 

5 7.590 15.678 2.701 

6 7.933 15.000 2.828 

7 7.418 16.042 2.624 

8 7.667 15.521 2.726 

9 7.798 15.261 2.803 

10 7.865 15.130 2.817 

11 7.899 15.065 2.818 

12 7.916 15.033 2.867 
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13 7.899 15.065 2.818 

14 7.925 15.016 2.843 

15 7.908 15.049 2.820 

16 7.920 15.024 2.868 

17 7.925 15.016 2.843 

18 7.918 15.028 2.850 

19 7.918 15.028 2.850 

20 7.923 15.020 2.839 

21 7.919 15.026 2.830 

22 7.919 15.026 2.830 

23 7.922 15.022 2.838 

24 7.921 15.023 2.831 

25 7.921 15.023 2.831 

26 7.920 15.025 2.868 

27 7.920 15.025 2.868 
 

The force exerted by the isosceles triangle was then optimized, as seen in Fig. 66 and Table 12.  

The results are interesting as the triangle base and length are almost the same.  Once again, a 

wider base with a shorter length is the best design goal, as the finger dimensions are 15.86 mm 

wide by 15.01 mm long.  The triangle would continue to become wider and shorter if there was 

no limit.  There must be a limit in order for modeFRONTIER to converge on a solution.   

 
Figure 66. Iso Force Optimization 
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Table 12. Iso Design IDs 

Design 
ID Base (mm) Length (mm) 

Force 
(mN) 

0 12.872 18.490 2.005 

1 13.931 17.084 2.346 

2 15.181 15.678 2.555 

3 15.867 15.000 2.678 

4 14.836 16.042 2.478 

5 15.334 15.521 2.606 

6 15.596 15.261 2.640 

7 15.730 15.130 2.662 

8 15.798 15.065 2.655 

9 15.798 15.065 2.655 

10 15.832 15.033 2.652 

11 15.832 15.033 2.652 

12 15.849 15.016 2.647 

13 15.849 15.016 2.647 

14 15.858 15.008 2.688 

15 15.849 15.016 2.647 

16 15.862 15.004 2.670 

17 15.862 15.004 2.670 

18 15.854 15.012 2.658 

19 15.860 15.006 2.688 
 

The design of the right triangle was then optimized for force, as seen in Fig. 67 and Table 13.  

Again, the base and length are almost the same, and a wider base with a shorter length is desired.  

The dimensions of this finger are 15.85 mm wide by 15.02 mm long.   
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Figure 67. Right Triangle Force Optimization 

Table 13. Right Triangle Design IDs 

Design ID Base (mm) 
Length 
(mm) Force (mN) 

0 12.872 18.490 1.843 

1 13.931 17.084 2.026 

2 15.181 15.678 2.228 

3 15.867 15.000 2.311 

4 14.836 16.042 2.217 

5 15.334 15.521 2.239 

6 15.596 15.261 2.275 

7 15.730 15.130 2.254 

8 15.730 15.130 2.254 

9 15.798 15.065 2.204 

10 15.798 15.065 2.204 

11 15.832 15.033 2.242 

12 15.849 15.016 2.313 

13 15.832 15.033 2.242 

14 15.858 15.008 2.298 

15 15.858 15.008 2.298 

16 15.841 15.024 2.260 

17 15.854 15.012 2.301 

18 15.845 15.020 2.313 

19 15.847 15.018 2.313 
 

The three shapes were then compared, as seen in Fig. 68.  The limit on these shapes plays a role 

in the optimization.  Due to the shape of the triangles, the limits play a greater role than they do 
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on the rectangle.  This can be seen as the rectangle finger can become much smaller in one 

dimension compared to the other, while the triangles dimensions are much closer to each other.  

This is due to the lower limit we set on the triangles.  If we set the limit much lower for the 

length, the force would be much higher.  We can see the triangles are going to the smallest 

possible limit for the length and trying to maximize their base, but this is not possible due to the 

limit.  This can be seen in Table 14, as all fingers approach the limits to maximize either force or 

deflection.       

 
Figure 68. Shape Comparison 
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Table 14. Final Results 

      Final Results       

Shape 
Width 
(mm) 

Length 
(mm) 

Length Limit 
(mm) 

Deflection 
(mm) 

Force 
(mN) 

Area 
(mm2) 

Rectangle 5.957 19.978 15-20 3.506 N/A 119 

Iso Triangle 11.923 19.962 15-20 1.806 N/A 119 
Right 

Triangle 11.902 19.997 15-20 1.925 N/A 119 

Rectangle 7.92 15.025 15-20 N/A 2.868 119 

Iso Triangle 15.86 15.006 15-20 N/A 2.688 119 
Right 

Triangle 15.847 15.018 15-20 N/A 2.313 119 
 

4.3.4 Optimization Factor 
 

 We defined the optimization factor, or the Index of Performance, as the product of the 

force and deflection in order to optimize each shape in terms of both.  This is an arbitrary factor 

that we defined in order to optimize these fingers for both force and deflection, as there are no 

current equations or factors to represent our goal.  This is important as design goals may include 

both the force and deflection.  The setup in modeFRONTIER can be seen in Fig. 69.  In this 

case, the force and deflection are both output variables.  The limit on the length is again set to 

15-20 mm.  As stated earlier, a NSGA-II is used and a maximum number of designs are selected 

in the DOE.  In our case we set the limit to 1000 and this limit was never reached by any 

optimization study.   
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Figure 69. Force and Deflection Optimization 

 

The rectangle optimization of both force and deflection can be seen in Fig. 70 and the Design 

IDs can be seen in Table 15.  In the case of the rectangle, the best design for achieving the 

highest force and deflection is Design 154.  The shape of this finger is 5.95 mm width by 20 mm 

length.   
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Figure 70. Rectangle Combined 

Table 15. Rectangle Combined 

Design 
ID Base (mm) 

Length 
(mm) 

Deflection 
(mm) Force (mN) 

Index of 
Performance 

1 7.908 15.048 1.383 2.820 3.900 

2 7.861 15.139 1.402 2.798 3.924 

3 7.928 15.011 1.386 2.835 3.928 

4 7.933 15.000 1.390 2.828 3.931 

5 7.890 15.083 1.398 2.815 3.935 

6 7.912 15.040 1.390 2.831 3.935 

7 7.899 15.065 1.398 2.818 3.941 

8 7.922 15.022 1.389 2.838 3.943 

9 7.886 15.089 1.402 2.815 3.947 

10 7.931 15.004 1.384 2.855 3.952 

11 7.931 15.004 1.384 2.855 3.952 

12 7.927 15.012 1.387 2.850 3.952 

13 7.929 15.009 1.387 2.853 3.958 

14 7.869 15.122 1.409 2.815 3.966 

15 7.892 15.078 1.406 2.823 3.968 

16 7.932 15.002 1.395 2.846 3.970 

17 7.932 15.002 1.395 2.846 3.970 

18 7.932 15.002 1.395 2.846 3.970 

19 7.894 15.075 1.409 2.820 3.972 

20 7.847 15.165 1.421 2.798 3.974 

21 7.900 15.063 1.410 2.823 3.980 
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22 7.902 15.059 1.414 2.816 3.981 

23 7.902 15.060 1.414 2.816 3.981 

24 7.865 15.130 1.413 2.817 3.982 

25 7.901 15.062 1.414 2.816 3.982 

26 7.930 15.006 1.391 2.864 3.984 

27 7.904 15.056 1.404 2.838 3.986 

28 7.862 15.136 1.415 2.817 3.986 

29 7.849 15.162 1.428 2.804 4.003 

30 7.916 15.033 1.396 2.867 4.003 

31 7.916 15.034 1.396 2.867 4.003 

32 7.806 15.244 1.443 2.776 4.006 

33 7.895 15.073 1.418 2.836 4.020 

34 7.791 15.273 1.453 2.800 4.068 

35 7.753 15.348 1.485 2.752 4.087 

36 7.779 15.298 1.466 2.793 4.096 

37 7.788 15.280 1.473 2.807 4.134 

38 7.618 15.622 1.561 2.703 4.218 

39 7.619 15.620 1.561 2.706 4.225 

40 7.605 15.648 1.573 2.698 4.245 

41 7.609 15.640 1.571 2.705 4.248 

42 7.655 15.545 1.556 2.733 4.253 

43 7.563 15.734 1.603 2.691 4.314 

44 7.584 15.690 1.607 2.712 4.359 

45 7.466 15.940 1.664 2.642 4.396 

46 7.510 15.845 1.643 2.678 4.400 

47 7.471 15.929 1.660 2.656 4.409 

48 7.470 15.931 1.662 2.675 4.446 

49 7.463 15.945 1.675 2.660 4.454 

50 7.437 16.002 1.705 2.638 4.497 

51 7.451 15.972 1.692 2.670 4.517 

52 7.387 16.110 1.719 2.630 4.522 

53 7.352 16.187 1.754 2.595 4.551 

54 7.348 16.195 1.755 2.593 4.551 

55 7.430 16.016 1.718 2.652 4.554 

56 7.338 16.217 1.771 2.579 4.568 

57 7.333 16.228 1.773 2.578 4.570 

58 7.339 16.215 1.763 2.593 4.571 

59 7.339 16.215 1.763 2.593 4.571 

60 7.308 16.284 1.788 2.573 4.601 

61 7.315 16.268 1.797 2.573 4.625 

62 7.314 16.271 1.799 2.578 4.637 
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63 7.255 16.402 1.832 2.574 4.716 

64 7.234 16.450 1.859 2.573 4.783 

65 7.245 16.424 1.857 2.579 4.789 

66 7.157 16.627 1.911 2.516 4.807 

67 7.157 16.627 1.911 2.516 4.807 

68 7.158 16.625 1.909 2.536 4.842 

69 7.133 16.684 1.924 2.518 4.845 

70 7.138 16.671 1.932 2.510 4.849 

71 7.202 16.523 1.899 2.556 4.854 

72 7.099 16.763 1.969 2.499 4.920 

73 7.035 16.914 2.029 2.491 5.054 

74 6.983 17.042 2.068 2.445 5.054 

75 6.969 17.076 2.088 2.435 5.084 

76 7.391 16.101 1.840 2.791 5.136 

77 7.002 16.994 2.077 2.479 5.148 

78 6.998 17.005 2.080 2.476 5.149 

79 7.017 16.960 2.062 2.501 5.157 

80 6.937 17.153 2.124 2.433 5.169 

81 6.910 17.221 2.138 2.421 5.176 

82 6.933 17.164 2.132 2.428 5.177 

83 6.896 17.255 2.161 2.423 5.235 

84 6.903 17.238 2.164 2.443 5.286 

85 6.863 17.340 2.203 2.410 5.310 

86 6.765 17.590 2.303 2.362 5.440 

87 6.775 17.565 2.287 2.387 5.458 

88 6.849 17.376 2.248 2.441 5.487 

89 6.842 17.391 2.266 2.424 5.492 

90 6.614 17.993 2.487 2.285 5.683 

91 6.587 18.066 2.493 2.291 5.710 

92 6.595 18.045 2.490 2.299 5.724 

93 6.631 17.947 2.469 2.331 5.756 

94 6.567 18.121 2.532 2.282 5.779 

95 6.558 18.145 2.530 2.287 5.787 

96 6.644 17.910 2.469 2.350 5.801 

97 6.531 18.222 2.568 2.283 5.863 

98 6.521 18.247 2.587 2.274 5.884 

99 6.525 18.237 2.587 2.275 5.886 

100 6.499 18.312 2.608 2.273 5.929 

101 6.495 18.323 2.622 2.267 5.943 

102 6.450 18.449 2.672 2.248 6.008 

103 6.460 18.421 2.679 2.255 6.040 
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104 6.435 18.494 2.751 2.231 6.137 

105 6.355 18.725 2.805 2.209 6.195 

106 6.366 18.693 2.783 2.239 6.230 

107 6.391 18.621 2.790 2.234 6.233 

108 6.356 18.722 2.819 2.225 6.272 

109 6.350 18.742 2.825 2.237 6.319 

110 6.334 18.788 2.873 2.202 6.326 

111 6.294 18.906 2.984 2.211 6.597 

112 6.268 18.986 2.979 2.227 6.634 

113 6.162 19.311 3.104 2.138 6.636 

114 6.022 19.761 3.311 2.093 6.931 

115 6.042 19.695 3.297 2.103 6.932 

116 6.023 19.757 3.338 2.088 6.970 

117 6.021 19.765 3.351 2.091 7.006 

118 6.015 19.785 3.384 2.092 7.078 

119 6.008 19.806 3.380 2.095 7.082 

120 6.099 19.510 3.264 2.175 7.099 

121 6.089 19.543 3.293 2.157 7.101 

122 6.079 19.576 3.320 2.146 7.124 

123 6.004 19.821 3.396 2.099 7.129 

124 5.994 19.852 3.416 2.093 7.151 

125 5.990 19.868 3.427 2.086 7.151 

126 5.978 19.907 3.424 2.090 7.159 

127 6.003 19.824 3.399 2.106 7.159 

128 5.955 19.984 3.464 2.067 7.160 

129 5.954 19.985 3.457 2.072 7.161 

130 5.998 19.840 3.440 2.082 7.163 

131 6.015 19.783 3.405 2.107 7.174 

132 6.015 19.784 3.405 2.107 7.174 

133 5.996 19.847 3.438 2.093 7.195 

134 5.995 19.850 3.434 2.096 7.196 

135 5.962 19.960 3.465 2.088 7.234 

136 5.962 19.960 3.465 2.088 7.234 

137 5.961 19.961 3.488 2.074 7.234 

138 5.961 19.962 3.488 2.074 7.234 

139 5.966 19.946 3.487 2.077 7.243 

140 5.966 19.946 3.487 2.077 7.243 

141 5.969 19.935 3.478 2.084 7.249 

142 5.968 19.941 3.483 2.083 7.255 

143 5.960 19.966 3.487 2.082 7.258 

144 5.960 19.966 3.487 2.082 7.258 
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145 5.960 19.968 3.487 2.082 7.258 

146 5.959 19.970 3.493 2.083 7.276 

147 5.989 19.869 3.486 2.089 7.281 

148 5.974 19.919 3.532 2.073 7.322 

149 5.974 19.919 3.532 2.073 7.322 

150 5.974 19.918 3.532 2.073 7.322 

151 5.974 19.921 3.532 2.073 7.322 

152 5.967 19.942 3.535 2.076 7.337 

153 5.957 19.976 3.506 2.094 7.340 

154 5.953 19.991 3.511 2.096 7.360 
 

This was repeated for the isosceles triangle, as seen in Fig. 71 and Table 16.  The highest 

optimization factor was accomplished by Design 161.  This finger was 12.1 mm wide by 19.7 

mm long.  As can be seen, the deflection and force are similar values.  If a finger is desired of 

both a higher degree of force and deflection, this is the best design.     

 

 
Figure 71. Iso Combined 
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Table 16. Iso Combined Design IDs 

Design ID Base (mm) 
Length 
(mm) 

Deflection 
(mm) Force (mN) 

Index of 
Performance 

1 15.866 15.000 0.745 2.678 1.994 

2 15.866 15.001 0.745 2.678 1.994 

3 15.865 15.001 0.745 2.678 1.994 

4 15.866 15.001 0.745 2.678 1.994 

5 15.867 15.000 0.745 2.678 1.994 

6 15.862 15.004 0.747 2.670 1.995 

7 15.862 15.004 0.747 2.670 1.995 

8 15.863 15.004 0.747 2.670 1.995 

9 15.798 15.065 0.752 2.655 1.996 

10 15.839 15.026 0.751 2.668 2.002 

11 15.836 15.029 0.751 2.668 2.002 

12 15.837 15.028 0.751 2.668 2.002 

13 15.832 15.033 0.756 2.652 2.004 

14 15.831 15.034 0.756 2.652 2.004 

15 15.831 15.034 0.756 2.652 2.004 

16 15.831 15.034 0.756 2.652 2.004 

17 15.758 15.103 0.760 2.639 2.005 

18 15.759 15.103 0.760 2.639 2.005 

19 15.815 15.049 0.755 2.656 2.006 

20 15.854 15.012 0.757 2.658 2.012 

21 15.735 15.125 0.764 2.638 2.015 

22 15.786 15.077 0.756 2.670 2.018 

23 15.787 15.076 0.756 2.670 2.018 

24 15.788 15.075 0.757 2.667 2.020 

25 15.822 15.042 0.759 2.685 2.039 

26 15.822 15.042 0.759 2.685 2.039 

27 15.824 15.041 0.759 2.685 2.039 

28 15.745 15.116 0.764 2.678 2.047 

29 15.750 15.111 0.770 2.670 2.055 

30 15.680 15.179 0.778 2.649 2.060 

31 15.690 15.169 0.772 2.675 2.065 

32 15.860 15.007 0.768 2.688 2.065 

33 15.860 15.006 0.768 2.688 2.065 

34 15.855 15.011 0.768 2.688 2.065 

35 15.857 15.009 0.768 2.688 2.065 

36 15.860 15.006 0.768 2.688 2.065 
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37 15.861 15.005 0.768 2.688 2.065 

38 15.857 15.009 0.768 2.688 2.065 

39 15.423 15.431 0.809 2.561 2.072 

40 15.723 15.137 0.779 2.660 2.073 

41 15.589 15.267 0.789 2.632 2.078 

42 15.548 15.307 0.792 2.624 2.078 

43 15.595 15.261 0.789 2.658 2.096 

44 15.394 15.460 0.817 2.610 2.134 

45 15.388 15.467 0.822 2.606 2.142 

46 15.210 15.648 0.842 2.569 2.162 

47 15.110 15.752 0.859 2.551 2.191 

48 14.996 15.871 0.874 2.524 2.206 

49 14.995 15.872 0.892 2.519 2.246 

50 15.033 15.831 0.884 2.548 2.251 

51 14.827 16.052 0.912 2.492 2.273 

52 14.829 16.049 0.912 2.492 2.273 

53 14.813 16.067 0.920 2.476 2.277 

54 14.911 15.962 0.901 2.532 2.281 

55 14.880 15.995 0.912 2.523 2.301 

56 14.668 16.226 0.947 2.457 2.326 

57 14.704 16.186 0.951 2.451 2.330 

58 14.475 16.443 0.966 2.436 2.353 

59 14.380 16.551 0.991 2.414 2.391 

60 14.481 16.435 0.983 2.439 2.397 

61 14.314 16.627 1.027 2.383 2.448 

62 14.282 16.665 1.023 2.401 2.455 

63 14.217 16.741 1.032 2.382 2.459 

64 14.210 16.749 1.043 2.370 2.472 

65 14.298 16.645 1.032 2.394 2.472 

66 14.119 16.857 1.069 2.361 2.524 

67 14.071 16.914 1.081 2.341 2.530 

68 13.996 17.004 1.087 2.330 2.532 

69 13.996 17.005 1.091 2.324 2.535 

70 14.141 16.830 1.065 2.388 2.544 

71 13.950 17.061 1.096 2.348 2.574 

72 12.821 18.563 1.299 1.990 2.585 

73 12.805 18.587 1.306 1.987 2.596 

74 13.505 17.624 1.180 2.200 2.597 

75 13.760 17.296 1.130 2.303 2.601 

76 13.976 17.030 1.107 2.350 2.602 

77 12.784 18.617 1.312 1.985 2.604 
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78 12.951 18.377 1.279 2.038 2.607 

79 14.063 16.923 1.098 2.386 2.620 

80 13.926 17.091 1.113 2.368 2.636 

81 13.896 17.127 1.122 2.350 2.637 

82 12.668 18.788 1.345 1.965 2.642 

83 13.770 17.284 1.159 2.288 2.652 

84 13.618 17.477 1.167 2.276 2.656 

85 12.672 18.782 1.361 1.957 2.663 

86 12.638 18.832 1.356 1.964 2.664 

87 13.802 17.244 1.154 2.313 2.668 

88 12.721 18.709 1.339 1.994 2.669 

89 12.561 18.947 1.366 1.954 2.670 

90 13.428 17.724 1.226 2.181 2.673 

91 13.428 17.724 1.226 2.181 2.673 

92 12.712 18.722 1.341 1.996 2.676 

93 12.606 18.880 1.368 1.959 2.680 

94 13.006 18.299 1.293 2.075 2.683 

95 13.667 17.414 1.182 2.289 2.706 

96 13.601 17.499 1.191 2.278 2.713 

97 13.219 18.005 1.279 2.134 2.730 

98 13.224 17.998 1.279 2.134 2.730 

99 13.244 17.970 1.290 2.118 2.731 

100 13.116 18.145 1.301 2.113 2.749 

101 13.057 18.227 1.324 2.081 2.755 

102 13.168 18.075 1.303 2.118 2.759 

103 13.179 18.059 1.306 2.114 2.762 

104 12.543 18.975 1.379 2.004 2.764 

105 13.134 18.121 1.304 2.122 2.768 

106 13.134 18.121 1.304 2.122 2.768 

107 13.050 18.237 1.334 2.084 2.780 

108 13.139 18.114 1.319 2.112 2.785 

109 12.532 18.991 1.447 1.925 2.786 

110 13.105 18.161 1.323 2.124 2.811 

111 12.513 19.021 1.466 1.924 2.820 

112 12.514 19.019 1.466 1.924 2.820 

113 12.433 19.143 1.490 1.926 2.870 

114 12.539 18.981 1.447 1.994 2.884 

115 12.457 19.106 1.456 1.998 2.909 

116 12.232 19.457 1.554 1.885 2.930 

117 12.295 19.357 1.546 1.901 2.939 

118 12.270 19.397 1.543 1.908 2.946 
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119 12.214 19.485 1.570 1.895 2.975 

120 12.153 19.583 1.673 1.861 3.115 

121 12.132 19.618 1.685 1.862 3.137 

122 12.119 19.639 1.698 1.859 3.157 

123 12.072 19.714 1.703 1.859 3.166 

124 12.140 19.605 1.691 1.874 3.169 

125 11.942 19.929 1.753 1.821 3.191 

126 11.939 19.934 1.753 1.821 3.191 

127 12.016 19.806 1.733 1.841 3.191 

128 12.047 19.756 1.718 1.862 3.200 

129 12.045 19.759 1.718 1.862 3.200 

130 11.907 19.989 1.761 1.819 3.204 

131 12.096 19.676 1.722 1.864 3.211 

132 12.031 19.783 1.731 1.860 3.219 

133 12.031 19.783 1.731 1.860 3.219 

134 12.020 19.800 1.738 1.853 3.220 

135 12.021 19.798 1.738 1.853 3.220 

136 11.935 19.941 1.764 1.827 3.222 

137 11.956 19.906 1.770 1.824 3.229 

138 12.052 19.748 1.735 1.863 3.232 

139 12.049 19.753 1.735 1.863 3.232 

140 12.008 19.820 1.762 1.837 3.237 

141 12.007 19.821 1.762 1.837 3.237 

142 11.902 19.996 1.793 1.818 3.260 

143 11.949 19.918 1.785 1.829 3.265 

144 11.970 19.883 1.779 1.835 3.266 

145 11.974 19.876 1.779 1.835 3.266 

146 11.981 19.865 1.771 1.846 3.270 

147 11.977 19.872 1.771 1.846 3.270 

148 11.975 19.875 1.771 1.846 3.270 

149 11.914 19.977 1.802 1.821 3.282 

150 11.911 19.982 1.802 1.821 3.282 

151 11.919 19.969 1.802 1.831 3.299 

152 11.921 19.965 1.802 1.831 3.299 

153 11.918 19.970 1.802 1.831 3.299 

154 11.918 19.970 1.802 1.831 3.299 

155 11.920 19.967 1.802 1.831 3.299 

156 11.917 19.971 1.802 1.831 3.299 

157 11.938 19.937 1.805 1.836 3.314 

158 11.939 19.935 1.805 1.836 3.314 

159 11.937 19.939 1.805 1.836 3.314 
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160 11.927 19.955 1.817 1.830 3.326 

161 12.080 19.701 1.727 1.934 3.340 
 

Finally, the right triangle was optimized for both force and deflection, as seen in Fig. 72 and 

Table 17.  The best optimization factor is achieved by Design 116.  As seen in this case and the 

previous isosceles triangle, a base of around 12 mm and a length of around 19.6 mm give the 

best design in both cases. The dimensions of the right triangle finger are 12.06 mm wide by 

19.73 mm long.  Again, the force and deflection values are similar to the isosceles triangle 

results.  This shows the optimization process is close to choosing the best design in both cases, 

instead of having a one-sided design goal.  The best design chosen was the design with 

intermediate values for both force and deflection.     

 

 

 
Figure 72. Right Combined 

Table 17. Right Triangle Design IDs 
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ID Base (mm) 
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(mm) Force (mN) 

Index of 
Performance 
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2 15.863 15.004 0.840 2.265 1.903 

3 15.857 15.009 0.837 2.298 1.923 

4 15.858 15.009 0.837 2.298 1.923 

5 15.833 15.032 0.858 2.242 1.923 

6 15.831 15.034 0.858 2.242 1.923 

7 15.832 15.033 0.858 2.242 1.923 

8 15.831 15.034 0.858 2.242 1.923 

9 15.831 15.034 0.858 2.242 1.923 

10 15.815 15.049 0.859 2.268 1.948 

11 15.822 15.042 0.865 2.253 1.949 

12 15.867 15.000 0.847 2.311 1.958 

13 15.867 15.000 0.847 2.311 1.958 

14 15.867 15.000 0.847 2.311 1.958 

15 15.865 15.002 0.847 2.311 1.958 

16 15.867 15.000 0.847 2.311 1.958 

17 15.724 15.136 0.870 2.252 1.958 

18 15.746 15.115 0.867 2.266 1.964 

19 15.839 15.027 0.865 2.275 1.967 

20 15.836 15.029 0.865 2.275 1.967 

21 15.838 15.027 0.865 2.275 1.967 

22 15.764 15.098 0.873 2.255 1.968 

23 15.854 15.012 0.856 2.301 1.970 

24 15.788 15.075 0.871 2.264 1.971 

25 15.588 15.268 0.880 2.262 1.991 

26 15.848 15.017 0.864 2.313 1.998 

27 15.592 15.264 0.892 2.262 2.018 

28 15.541 15.314 0.911 2.245 2.047 

29 15.534 15.322 0.902 2.277 2.054 

30 15.377 15.478 0.929 2.255 2.094 

31 15.210 15.648 0.961 2.187 2.102 

32 15.313 15.542 0.940 2.264 2.129 

33 15.143 15.717 0.965 2.230 2.152 

34 15.170 15.689 0.958 2.251 2.156 

35 15.146 15.714 0.968 2.230 2.158 

36 15.126 15.735 0.973 2.229 2.169 

37 15.031 15.834 0.989 2.213 2.189 

38 15.053 15.811 0.997 2.255 2.247 

39 14.549 16.358 1.064 2.196 2.337 

40 14.536 16.373 1.080 2.173 2.346 

41 14.368 16.565 1.114 2.116 2.356 

42 14.535 16.375 1.081 2.194 2.373 
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43 14.462 16.457 1.097 2.167 2.377 

44 14.392 16.537 1.123 2.132 2.394 

45 14.314 16.627 1.127 2.137 2.409 

46 13.509 17.618 1.257 1.927 2.422 

47 13.485 17.650 1.274 1.924 2.450 

48 13.435 17.714 1.286 1.913 2.459 

49 13.740 17.322 1.259 1.961 2.470 

50 14.101 16.878 1.193 2.073 2.472 

51 14.118 16.858 1.187 2.087 2.476 

52 13.931 17.084 1.223 2.026 2.478 

53 13.932 17.083 1.223 2.026 2.478 

54 14.012 16.986 1.183 2.100 2.484 

55 14.044 16.947 1.181 2.131 2.516 

56 13.134 18.121 1.346 1.882 2.533 

57 13.996 17.005 1.213 2.095 2.542 

58 13.959 17.050 1.229 2.076 2.551 

59 13.798 17.249 1.247 2.055 2.563 

60 14.071 16.914 1.195 2.146 2.565 

61 13.920 17.098 1.225 2.103 2.577 

62 13.116 18.145 1.375 1.884 2.591 

63 13.877 17.151 1.232 2.103 2.591 

64 13.013 18.290 1.401 1.857 2.602 

65 13.901 17.121 1.231 2.116 2.606 

66 12.989 18.323 1.397 1.870 2.612 

67 13.033 18.261 1.396 1.886 2.633 

68 12.830 18.551 1.465 1.843 2.700 

69 12.710 18.726 1.566 1.887 2.955 

70 12.712 18.722 1.564 1.908 2.985 

71 12.658 18.802 1.597 1.892 3.022 

72 12.657 18.804 1.597 1.892 3.022 

73 12.668 18.788 1.602 1.890 3.028 

74 12.630 18.845 1.651 1.838 3.033 

75 12.609 18.875 1.633 1.862 3.040 

76 12.601 18.888 1.613 1.916 3.090 

77 12.510 19.025 1.664 1.873 3.116 

78 12.453 19.111 1.658 1.883 3.122 

79 12.484 19.064 1.678 1.878 3.152 

80 12.283 19.377 1.774 1.845 3.272 

81 12.142 19.601 1.793 1.829 3.279 

82 12.130 19.620 1.834 1.810 3.318 

83 12.127 19.626 1.818 1.828 3.323 
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84 12.009 19.818 1.852 1.804 3.341 

85 12.007 19.821 1.852 1.804 3.341 

86 12.096 19.675 1.831 1.828 3.347 

87 11.925 19.958 1.885 1.782 3.357 

88 12.047 19.757 1.848 1.820 3.363 

89 12.058 19.737 1.859 1.812 3.369 

90 11.997 19.838 1.877 1.806 3.389 

91 12.031 19.783 1.872 1.811 3.390 

92 12.031 19.783 1.872 1.811 3.390 

93 12.034 19.778 1.872 1.811 3.390 

94 11.909 19.985 1.900 1.793 3.407 

95 11.914 19.977 1.910 1.786 3.411 

96 11.911 19.981 1.910 1.786 3.411 

97 11.910 19.984 1.910 1.786 3.411 

98 11.991 19.849 1.882 1.813 3.412 

99 11.904 19.993 1.912 1.786 3.415 

100 11.978 19.870 1.889 1.810 3.418 

101 11.926 19.957 1.917 1.786 3.424 

102 11.926 19.956 1.917 1.786 3.424 

103 11.927 19.955 1.917 1.786 3.424 

104 12.040 19.767 1.896 1.808 3.427 

105 11.920 19.966 1.933 1.781 3.442 

106 12.016 19.806 1.872 1.839 3.443 

107 11.900 20.000 1.925 1.792 3.448 

108 11.938 19.937 1.925 1.797 3.459 

109 11.937 19.939 1.925 1.797 3.459 

110 11.938 19.936 1.925 1.797 3.459 

111 11.935 19.941 1.925 1.797 3.459 

112 11.957 19.904 1.896 1.825 3.461 

113 11.961 19.897 1.896 1.825 3.461 

114 11.969 19.884 1.919 1.809 3.471 

115 11.939 19.935 1.923 1.806 3.473 

116 12.063 19.730 1.859 1.877 3.490 
 

4.3.5 Rectangle Deflection and Force Limits 
 

 The deflection and force limits of these three shapes were then optimized.  This was done 

by minimizing the area of the finger while achieving a deflection or force set by the user.  The 

rectangle base was limited to 5 to 10 mm and the length was set to 15 to 20 mm.  This was an 
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arbitrary number set by the user and can be changed.  Because the area of the rectangle is simply 

length times width, the width was kept between 5 and 10 mm to match the area of the triangles.  

In the first case, the desired deflection was set to “Equal to” 2 mm.  The modeFRONTIER setup 

can be seen in Fig. 73.  The limits can be seen in the bottom and the minimize area node can be 

seen in the figure.  This setup will also be used for the force limit optimization study.  The only 

difference is the model will optimize for force instead of deflection.  The limits will be the same 

and the force will be set to equal to 2 mN.    

 

 

Figure 73. Rectangle Deflection Limit 

As seen in Fig. 74, the deflection of a rectangle ranges significantly when changing the shape of 

the finger.  But, as can be seen, a finger with an area of 160 mm
2
 is capable of the most 

deflection.  Also, a finger with an area of 100 mm
2 

is capable of deflecting the same amount as 

fingers with a larger area.  If a deflection of 2 mm or higher is desired, a finger with an area of 90 
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mm
2 
is sufficient. Also, as seen in Fig. 74, many fingers deflect much less than the smaller finger 

and have a larger area.  This shows this optimization process can be very crucial in designing 

fingers, as we can eliminate waste and achieve certain design goals.   

 

 
Figure 74. Rectangle Deflection Limit 

The force limit was then optimized for the rectangle, as seen in Fig. 75.  The limits were again 

the same and the force was set to equal to 2 mN.  Examining the results, we can see a finger with 

an area of 90 mm
2
 is capable of exerting 2 mN of force.  As expected, larger fingers are capable 

of exerting higher forces, but we are interested in exerting a certain force while minimizing the 

area, which modeFRONTIER accomplished.            
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Figure 75. Rectangle Force Limit 

4.3.6 Iso Triangle Deflection and Force Limits 
 

 The same process used to determine the force or deflection limits for the rectangle was 

used to optimize for the isosceles triangle deflection or force limits.  In this case, the base was 

limited to 7 to 14 mm and the length was limited to 15 to 20 mm.  The deflection was set to 

“Equal to” 2 mm again.  The modeFRONTIER setup can be seen in Fig. 76.  The limits can be 

seen in the bottom and the minimize area node can be seen in the figure.  This setup will also be 

used for the force limit optimization study.  The only difference is the model will optimize for 

force instead of deflection.  The limits will be the same and the force will be set to equal to 2 

mN.    
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Figure 76. Iso Triangle Deflection Limit 

As can be seen in Fig. 77, the deflection varies when changing the area.  The important thing to 

notice is a finger with an area of 70 mm
2
 is capable of deflecting up to 2 mm, while fingers with 

a larger area are not able to deflect as much.  This is due to the shape of the finger.  So, if a 

finger with a large deflection is desired, a smaller finger can be used to obtain this deflection.        
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Figure 77. Iso Deflection Limit 

Next, the force was optimized while minimizing the area, as seen in Fig. 78.  A finger with an 

area of 90 mm
2
 is capable of 2 mN of force.  Also, fingers with a higher area are capable of the 

same force, but wastes material.  A finger with a smaller area is achieved with the same force 

production.    

 
Figure 78. Iso Triangle Force Limit 
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4.3.7 Right Triangle Deflection and Force Limits 
 

 The same process was used to optimize for the deflection or force limits of a right 

triangle, using the process stated in Section 4.3.5.  In this case, the base was limited to 7 to 14 

mm and the length was limited to 15 to 20 mm.  The deflection was set to “Equal to” 2 mm 

again.  The modeFRONTIER setup can be seen in Fig. 79.  The limits can be seen in the bottom 

and the minimize area node can be seen in the figure.  This setup will also be used for the force 

limit optimization study.  The only difference is the model will optimize for force instead of 

deflection.  The limits will be the same and the force will be set to equal to 2 mN.   

 

Figure 79. Right Triangle Deflection Limit 
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As can be seen in Fig. 80, the deflection once again varies when changing the area.  The 

important thing to notice is a finger with an area of 100 mm
2
 is capable of deflecting up to 2 mm, 

while fingers with a larger area are not able to deflect as much.  This is due to the shape of the 

finger.  So, if a finger with a large deflection is desired, a smaller finger can be used to obtain 

this deflection.        

 

 
Figure 80. Right Triangle Deflection Limit 

 

Next, the force was optimized while minimizing the area, as seen in Fig. 81.  A finger with an 

area of 110 mm
2
 is capable of 2 mN of force.  Also, fingers with a higher area are capable of the 

same force, but wastes material.  A finger with a smaller area is achieved with the same force 

production.    
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Figure 81. Right Triangle Force Limit 
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Chapter 5.  CONCLUSION 

5.1 Results of the Study 
 

 An IPMC Force Model was coupled with modeFRONTIER in order to optimize fingers 

with respect to deflection, force exerted, both force and deflection, and area minimization, which 

minimizes IPMC cost.  The force model was combined into one large model that is able to run 

many small sub-models that were made to model IPMC fingers.  This model is able to model the 

force and deflection of any finger using one code without going through the entire process of 

modeling a finger and using Matlab and switching back to modeling.  This optimization process 

is needed as early investigations into size and shape of IPMC fingers led to interesting results, as 

different shapes were better suited for certain design goals.  The optimization process was 

capable of modeling many different fingers and predicting the best design depending on the 

desired need, such as force or deflection.  It was also capable of minimizing the area of fingers, 

while still achieving design goals, such as force or deflection.  This is important as the waste of 

material can be minimized and the best design can be achieved. Many different optimization 

processes were run to change the area, while optimizing for the force or deflection.  As seen in 

Chapter 4, we are able to achieve a desired force or deflection, such as 2 mm or 2 mN, while 

minimizing area.  It can be seen that these different shapes each have advantages for certain 

design goals, whether a high force or a high deflection is desired.  The best way to achieve these 

design goals without simply cutting out an arbitrary IPMC finger and testing it is to use an 

optimization package.  This optimization package should be able to predict the best way to 

design a finger, which is what this thesis accomplished. 

 



116 

 

 

5.2 Limitations 
 

 Although modeFRONTIER is able to optimize these fingers for the best design, there are 

some limitations to this study.  Limits must be set on the width and length of the fingers being 

modeled, as modeFRONTIER would never converge on an answer without these limits.  As 

seen, a finger with a thin base and a long length is capable of a high degree of deflection.  This 

deflection will always increase when making the finger longer, but there must be a limit to how 

long the finger can get.  As seen with the triangle fingers, the limits have a greater effect than 

they do with the rectangle, especially when looking at the ratio of the width to the length.  Also, 

a finger with a very wide base and very short length is capable of exerting a high force, but this 

design is impractical, as the finger will not be able to actuate a great amount.  The main objective 

of IPMC fingers is usually to grasp an object.  ModeFRONTIER can make the finger as short as 

possible and will achieve this high force, but this design is impractical as the finger will not be 

able to deflect enough to grasp an object.  This is also a reason the limits are set in 

modeFRONTIER.   

 Meshing is also a concern in this study.  The mesh is not changed in the models when 

modeFRONTIER is predicting the best design.  It was not a problem when running the models 

presented in this thesis, but when making fingers very small or using complex shapes, meshing 

may become a concern when using modeFRONTIER.   

 Back relaxation was also not included in these studies, as we were mainly concerned with 

an instantaneous deflection and force exerted.  These studies did not include a transient study 

that included a back relaxation term.  This was not necessary as we wished to optimize for force 

or deflection for a given finger.  Force and deflection are usually instantaneous measurements 

and back relaxation does not have an effect when these studies are short. 
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5.3 Future Research 
  

 Using modeFRONTIER and the Comsol model, the effects of miniaturization can be 

studied.  This can be done very easily in modeFRONTIER, as the length and base are changed 

according to the area of the finger.  The limits of the base and length may also be changed to 

determine other shapes.  The length limit can be made much larger to see how thin and long a 

finger may get and how much it can deflect.  More complex finger shapes can be created using 

modeFRONTIER and Comsol.  This was the first time modeFRONTIER was used to optimize 

fingers, so the shapes were kept simple.  Transient studies, including back relaxation studies, 

may also be included in the new Comsol models if longer grasping times are desired.  
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APPENDICES 
 

Appendix A 
 

A1. Concentration M-File 
 

 
 %This M-File models the Nafion layer in an IPMC finger.  Once a voltage is 
%applied, the concentration of cations will be modeled.  This model will 
%then be given voltages at every point in the finger and the concentration 
%at any point will be determined. 

  
function out = model 
% 
% concentration.m 
% 
% Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('concentrationdistribution.mph'); 

  
model.modelNode.create('mod1'); 

  
model.geom.create('geom1', 1); 
model.geom('geom1').feature.create('i1', 'Interval'); 
model.geom('geom1').feature('i1').set('p2', '180e-6'); 
model.geom('geom1').run; 

  
model.variable.create('var1'); 
model.variable('var1').set('Van', '2'); 
model.variable('var1').set('Vcat', '0'); 

  
model.physics.create('chds', 'DilutedSpecies', 'geom1'); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('edg1', 'Edge'); 

  
model.variable('var1').name('Variables 1a'); 

  
model.view('view1').axis.set('xmin', '-9.000000318337698E-6'); 
model.view('view1').axis.set('xmax', '1.8899999849963933E-4'); 

  
model.physics('chds').prop('EquationForm').set('form', 'Transient'); 
model.physics('chds').prop('Migration').set('Migration', '1'); 
model.physics('chds').prop('Convection').set('Convection', '0'); 
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model.physics('chds').feature('cdm1').set('V', 'Vcat+((Vcat-Van)/180e-

6)*x[V/m]'); 
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0'; 

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'}); 
model.physics('chds').feature('cdm1').set('z', '1'); 
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]'); 
model.physics('chds').feature('init1').set('c', '1250'); 

  
model.mesh('mesh1').feature('size').set('hmax', '1e-6'); 
model.mesh('mesh1').run; 

  
model.frame('material1').sorder(1); 

  
model.study.create('std1'); 
model.study('std1').feature.create('time', 'Transient'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('t1', 'Time'); 
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('t1').feature.create('d1', 'Direct'); 
model.sol('sol1').feature('t1').feature.remove('fcDef'); 

  
model.result.create('pg1', 'PlotGroup1D'); 
model.result('pg1').set('probetag', 'none'); 
model.result('pg1').feature.create('lngr1', 'LineGraph'); 
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
model.study('std1').feature('time').set('tlist', 'range(0,0.1,5)'); 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent'); 
model.sol('sol1').feature('st1').set('studystep', 'time'); 
model.sol('sol1').feature('v1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)'); 
model.sol('sol1').feature('t1').set('maxorder', '2'); 
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5'); 
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once'); 
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso'); 
model.sol('sol1').runAll; 

  
model.result('pg1').name('Concentration (chds)'); 
model.result('pg1').set('looplevelinput', {'manual'}); 
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'}); 
model.result('pg1').set('looplevel', {'1,31,51'}); 
model.result('pg1').set('xlabel', 'x-coordinate (m)'); 
model.result('pg1').set('ylabel', 'Concentration (mol/m<sup>3</sup>)'); 
model.result('pg1').set('xlabelactive', false); 
model.result('pg1').set('ylabelactive', false); 
model.result('pg1').feature('lngr1').set('xdata', 'expr'); 



120 

 

model.result('pg1').feature('lngr1').set('xdataexpr', 'x'); 
model.result('pg1').feature('lngr1').set('xdataunit', 'm'); 
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate'); 
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
out = model; 
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A2.  7x17 mm Rectangle Fem 
 
%This m-file contains the fem structure that is used to model the finger in 
%three 7x17 mm blocks.  This model contains the voltage distribution that 
%will be used to determine the concentration throughout the IPMC. 

  
function out = model 
% 
% sevenbyseventeen.m 
% 
% Model exported on Apr 17 2013, 07:45 by COMSOL 4.3.0.151. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.modelNode.create('mod1'); 

  
model.geom.create('geom1', 3); 

  
model.mesh.create('mesh1', 'geom1'); 

  
model.physics.create('ec', 'ConductiveMedia', 'geom1'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 
model.study('std1').feature('stat').set('sweeptype', 'sparse'); 
model.study('std1').feature('stat').set('plistarr_vector_start', {}); 
model.study('std1').feature('stat').set('usesol', 'off'); 
model.study('std1').feature('stat').set('constraintgroup', {}); 
model.study('std1').feature('stat').set('plot', 'off'); 
model.study('std1').feature('stat').set('adaption', 'off'); 
model.study('std1').feature('stat').set('notstudy', 'zero'); 
model.study('std1').feature('stat').set('plistarr', {}); 
model.study('std1').feature('stat').set('notsolnum', '1'); 
model.study('std1').feature('stat').set('plistarr_vector_numvalues', {}); 
model.study('std1').feature('stat').set('plist', ''); 
model.study('std1').feature('stat').set('nottimeinterp', 'off'); 
model.study('std1').feature('stat').set('useloadcase', 'off'); 
model.study('std1').feature('stat').set('loadgroup', {}); 
model.study('std1').feature('stat').set('useparam', 'off'); 
model.study('std1').feature('stat').set('plistarr_vector_step', {}); 
model.study('std1').feature('stat').set('plistarr_vector_function', {}); 
model.study('std1').feature('stat').set('notsolmethod', 'init'); 
model.study('std1').feature('stat').set('plistarr_vector_method', {}); 
model.study('std1').feature('stat').set('geometricNonlinearity', false); 
model.study('std1').feature('stat').set('nott', '0'); 
model.study('std1').feature('stat').set('loadgroupweight', {}); 
model.study('std1').feature('stat').set('probesel', 'all'); 
model.study('std1').feature('stat').set('notsolvertype', 'none'); 
model.study('std1').feature('stat').set('loadcase', {}); 
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model.study('std1').feature('stat').set('geometricNonlinearityActive', true); 
model.study('std1').feature('stat').set('plistarr_vector_stop', {}); 
model.study('std1').feature('stat').set('pname', {}); 
model.study('std1').feature('stat').set('showGeometricNonlinearity', 'on'); 
model.study('std1').feature('stat').activate('ec', true); 

  
% IPMC finger is being built 
model.geom('geom1').run; 
model.geom('geom1').feature.create('blk1', 'Block'); 
model.geom('geom1').feature('blk1').setIndex('size', '7e-3', 0); 
model.geom('geom1').feature('blk1').setIndex('size', '17e-3', 1); 
model.geom('geom1').feature('blk1').setIndex('size', '10e-6', 2); 
model.geom('geom1').run('blk1'); 
model.geom('geom1').run('blk1'); 
model.geom('geom1').feature.create('blk2', 'Block'); 
model.geom('geom1').feature('blk2').setIndex('size', '7e-3', 0); 
model.geom('geom1').feature('blk2').setIndex('size', '17e-3', 1); 
model.geom('geom1').feature('blk2').setIndex('size', '180e-6', 2); 
model.geom('geom1').feature('blk2').setIndex('pos', '10e-6', 2); 
model.geom('geom1').run('blk2'); 
model.geom('geom1').run('blk2'); 
model.geom('geom1').feature.create('blk3', 'Block'); 
model.geom('geom1').feature('blk3').setIndex('size', '7e-3', 0); 
model.geom('geom1').feature('blk3').setIndex('size', '17e-3', 1); 
model.geom('geom1').feature('blk3').setIndex('size', '10e-6', 2); 
model.geom('geom1').feature('blk3').setIndex('pos', '190e-6', 2); 
model.geom('geom1').run('blk3'); 
model.geom('geom1').runAll; 
model.geom('geom1').run; 

  
%Materials are being assigned to each domain 
model.material.create('mat1'); 
model.material('mat1').name('Pt'); 
model.material('mat1').set('family', 'custom'); 
model.material('mat1').set('lighting', 'cooktorrance'); 
model.material('mat1').set('specular', 'custom'); 
model.material('mat1').set('customspecular', [0.7843137254901961 1 1]); 
model.material('mat1').set('fresnel', 0.9); 
model.material('mat1').set('roughness', 0.1); 
model.material('mat1').set('shininess', 200); 
model.material('mat1').propertyGroup('def').set('electricconductivity', 

'8.9e6[S/m]'); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, '8.80e-6[1/K]'); 
model.material('mat1').propertyGroup('def').set('heatcapacity', 

'133[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('density', '21450[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

'71.6[W/(m*K)]'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.38'); 
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', 

'168e9[Pa]'); 
model.material('mat1').set('family', 'custom'); 
model.material('mat1').set('lighting', 'cooktorrance'); 
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model.material('mat1').set('specular', 'custom'); 
model.material('mat1').set('customspecular', [0.7843137254901961 1 1]); 
model.material('mat1').set('fresnel', 0.9); 
model.material('mat1').set('roughness', 0.1); 
model.material('mat1').set('shininess', 200); 
model.material.create('mat2'); 
model.material('mat2').name('Nylon'); 
model.material('mat2').set('family', 'custom'); 
model.material('mat2').set('lighting', 'phong'); 
model.material('mat2').set('fresnel', 0.5); 
model.material('mat2').set('roughness', 0.1); 
model.material('mat2').set('specular', 'custom'); 
model.material('mat2').set('customspecular', [0.7843137254901961 

0.7843137254901961 0.7843137254901961]); 
model.material('mat2').set('diffuse', 'custom'); 
model.material('mat2').set('customdiffuse', [0.39215686274509803 

0.39215686274509803 0.9803921568627451]); 
model.material('mat2').set('ambient', 'custom'); 
model.material('mat2').set('customambient', [0.39215686274509803 

0.39215686274509803 0.7843137254901961]); 
model.material('mat2').set('shininess', 500); 
model.material('mat2').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat2').propertyGroup('def').set('relpermittivity', '4'); 
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, '280e-6[1/K]'); 
model.material('mat2').propertyGroup('def').set('density', '1150[kg/m^3]'); 
model.material('mat2').propertyGroup('def').set('thermalconductivity', 

'0.26[W/(m*K)]'); 
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.4'); 
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]'); 
model.material('mat2').set('family', 'custom'); 
model.material('mat2').set('lighting', 'phong'); 
model.material('mat2').set('fresnel', 0.5); 
model.material('mat2').set('roughness', 0.1); 
model.material('mat2').set('specular', 'custom'); 
model.material('mat2').set('customspecular', [0.7843137254901961 

0.7843137254901961 0.7843137254901961]); 
model.material('mat2').set('diffuse', 'custom'); 
model.material('mat2').set('customdiffuse', [0.39215686274509803 

0.39215686274509803 0.9803921568627451]); 
model.material('mat2').set('ambient', 'custom'); 
model.material('mat2').set('customambient', [0.39215686274509803 

0.39215686274509803 0.7843137254901961]); 
model.material('mat2').set('shininess', 500); 
model.material('mat1').selection.set([1 3]); 
model.material('mat2').selection.set([2]); 
model.material('mat1').propertyGroup('def').set('electricconductivity', 

{'1e6[S/m]'}); 
model.material('mat1').propertyGroup('def').set('relpermittivity', 

{'1.000265'}); 
model.material('mat2').propertyGroup('def').set('electricconductivity', 

{'10'}); 

  
%Voltage and ground being assigned.  The voltage can be changed to any 
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%value in the electric potential line.   
model.physics('ec').feature.create('gnd1', 'Ground', 2); 
model.physics('ec').feature('gnd1').selection.set([2]); 
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2); 
model.physics('ec').feature('pot1').selection.set([8]); 
model.physics('ec').feature('pot1').set('V0', 1, '2'); 

  
model.mesh('mesh1').autoMeshSize(6); 
model.mesh('mesh1').run; 
model.mesh('mesh1').autoMeshSize(5); 
model.mesh('mesh1').run; 
model.mesh('mesh1').autoMeshSize(7); 
model.mesh('mesh1').run; 
model.mesh('mesh1').autoMeshSize(5); 
model.mesh('mesh1').run; 
model.mesh('mesh1').autoMeshSize(6); 
model.mesh('mesh1').run; 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature('st1').set('study', 'std1'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative'); 
model.sol('sol1').feature('s1').feature('i1').set('prefuntype', 'left'); 
model.sol('sol1').feature('s1').feature('i1').set('maxlinit', 10000); 
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg'); 
model.sol('sol1').feature('s1').feature('i1').set('rhob', 400); 
model.sol('sol1').feature('s1').feature('fc1').set('linsolver', 'i1'); 
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1', 

'Multigrid'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun', 

'amg'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('iter', 2); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mgcycle', 

'v'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mcasegen', 

'any'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('gmglevels', 

1); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('scale', 2); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('massem', 

true); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mkeep', 

false); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('rmethod', 

'longest'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mglevels', 

5); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('maxcoarsedo

f', 5000); 
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model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('amgauto', 

3); 
model.sol('sol1').feature('s1').feature.remove('fcDef'); 
model.sol('sol1').attach('std1'); 

  
% Plot of the voltage distribution. 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').name('Electric potential'); 
model.result('pg1').set('data', 'dset1'); 
model.result('pg1').set('solrepresentation', 'solnum'); 
model.result('pg1').set('oldanalysistype', 'noneavailable'); 
model.result('pg1').set('data', 'dset1'); 
model.result('pg1').feature.create('mslc1', 'Multislice'); 
model.result('pg1').feature('mslc1').name('Multislice'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum'); 
model.result('pg1').feature('mslc1').set('expr', 'V'); 
model.result('pg1').feature('mslc1').set('unit', 'V'); 
model.result('pg1').feature('mslc1').set('descr', 'V'); 
model.result('pg1').feature('mslc1').set('inheritplot', 'none'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 
model.result('pg1').feature('mslc1').set('expr', 'V'); 
model.result('pg1').feature('mslc1').set('unit', 'V'); 
model.result('pg1').feature('mslc1').set('inheritplot', 'none'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 
model.result('pg1').feature('mslc1').set('expr', 'V'); 
model.result('pg1').feature('mslc1').set('unit', 'V'); 
model.result('pg1').feature('mslc1').set('inheritplot', 'none'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 
model.result('pg1').feature('mslc1').set('expr', 'V'); 
model.result('pg1').feature('mslc1').set('unit', 'V'); 
model.result('pg1').feature('mslc1').set('inheritplot', 'none'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 
model.result('pg1').feature('mslc1').set('expr', 'V'); 
model.result('pg1').feature('mslc1').set('unit', 'V'); 
model.result('pg1').feature('mslc1').set('inheritplot', 'none'); 
model.result('pg1').feature('mslc1').set('data', 'parent'); 

  
model.sol('sol1').runAll; 

  
model.result('pg1').run; 
model.result('pg1').feature.create('vol1', 'Volume'); 
model.result('pg1').run; 

  
model.name('7x17voltage.mph'); 

  
model.result('pg1').run; 

  
model.mesh('mesh1').automatic(false); 
model.mesh('mesh1').feature('size').set('hauto', '2'); 
model.mesh('mesh1').run('size'); 
model.mesh('mesh1').feature('size').set('hauto', '4'); 
model.mesh('mesh1').run; 

  
model.sol('sol1').study('std1'); 
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model.sol('sol1').feature.remove('s1'); 
model.sol('sol1').feature.remove('v1'); 
model.sol('sol1').feature.remove('st1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature('st1').set('study', 'std1'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative'); 
model.sol('sol1').feature('s1').feature('i1').set('prefuntype', 'left'); 
model.sol('sol1').feature('s1').feature('i1').set('maxlinit', 10000); 
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg'); 
model.sol('sol1').feature('s1').feature('i1').set('rhob', 400); 
model.sol('sol1').feature('s1').feature('fc1').set('linsolver', 'i1'); 
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1', 

'Multigrid'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun', 

'amg'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('iter', 2); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mgcycle', 

'v'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mcasegen', 

'any'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('gmglevels', 

1); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('scale', 2); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('massem', 

true); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mkeep', 

false); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('rmethod', 

'longest'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mglevels', 

5); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('maxcoarsedo

f', 5000); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('amgauto', 

3); 
model.sol('sol1').feature('s1').feature.remove('fcDef'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').runAll; 

  
model.result('pg1').run; 
model.result.export.create('tbl1', 'Table'); 
model.result.export.remove('tbl1'); 
model.result.export.create('data1', 'Data'); 
model.result.export.remove('data1'); 
model.result.numerical.create('gev1', 'EvalGlobal'); 
model.result.numerical('gev1').set('expr', 'ec.zref'); 
model.result.numerical('gev1').set('descr', 'Reference impedance'); 
model.result.numerical.remove('gev1'); 
model.result.numerical.create('int1', 'IntVolume'); 
model.result.numerical('int1').selection.all; 
model.result.numerical('int1').selection.set([1 3]); 
model.result.numerical('int1').set('expr', 'ec.Ey'); 
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model.result.numerical('int1').set('descr', 'Electric field, y component'); 
model.result.table.create('tbl1', 'Table'); 
model.result.table('tbl1').comments('Volume Integration 1 (ec.Ey)'); 
model.result.numerical('int1').set('table', 'tbl1'); 
model.result.numerical('int1').setResult; 
model.result.numerical.create('gev1', 'EvalGlobal'); 
model.result.numerical.create('av1', 'AvSurface'); 
model.result.numerical('av1').selection.all; 
model.result.table.create('tbl2', 'Table'); 
model.result.table('tbl2').comments('Surface Average 1 (V)'); 
model.result.numerical('av1').set('table', 'tbl2'); 
model.result.numerical('av1').setResult; 

  
out = model; 
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A3. Extract Voltage 
 
 
function [Voltage_anode,Voltage_cathode] = Extract_voltage_sample(model) 

  

  

  
IPMC_width = 20; 
IPMC_length = 20; 

  
%Create an empty square matrix at z=0 (the anode) that contains the points 
%in the xy plane where the voltage will be sampled. 

  
[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length); 
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1)); 
p = [x(:)'; y(:)'; pz]*(1e-3); 
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3); 

  
%Extract voltage information from electrical model 

  
V_cathode = mphinterp(model,'V','coord',p); 
V_anode = mphinterp(model,'V','coord',p_cat); 

  
Voltage_anode = [x(:) y(:) V_anode']; 
Voltage_cathode = [x(:) y(:) V_cathode']; 

  
Voltage_anode(isnan(Voltage_anode)) = 0; 
Voltage_cathode(isnan(Voltage_cathode)) = 0; 

  
end 
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A4. Force and Concentration M-File 

 
function [Force,Concentration] = 

Echem1Dfinal(Voltage_anode,Voltage_cathode,tf) 
% 
% concentration.m 
% 
% Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('concentrationdistributionclean.mph'); 

  
model.modelNode.create('mod1'); 

  
% length of voltage vector 
[n,~] = size(Voltage_anode); 

  
% vector of z sample points 
z = ((0:180)'*1e-6); 
Concentration = []; 

  

  
model.geom.create('geom1', 1); 
model.geom('geom1').feature.create('i1', 'Interval'); 

  

  
model.variable.create('var1'); 

  
model.physics.create('chds', 'DilutedSpecies', 'geom1'); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('edg1', 'Edge'); 

  

  
model.study.create('std1'); 
model.study('std1').feature.create('time', 'Transient'); 

  
model.sol.create('sol1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('t1', 'Time'); 
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('t1').feature.create('d1', 'Direct'); 
model.sol('sol1').feature('t1').feature.remove('fcDef'); 
model.result.create('pg1', 'PlotGroup1D'); 
model.result('pg1').feature.create('lngr1', 'LineGraph'); 
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for i = 1:n 

  
% extract anode and cathode voltage for element n. 
V_a = Voltage_anode(i,3); 
V_c = Voltage_cathode(i,3); 

     
% vector of x and y sample points 
x = Voltage_anode(i,1)'*ones(181,1); 
y = Voltage_anode(i,2)'*ones(181,1); 

  

  

  
model.geom('geom1').feature('i1').set('p2', '180e-6'); 
model.geom('geom1').run; 

  

  
model.variable('var1').set('Van',strcat(num2str(V_a)),'[V]'), ...); 
model.variable('var1').set('Vcat',strcat(num2str(V_c)),'[V]'); 

  

  

  

  
% model.variable('var1').name('Variables 1a'); 

  
model.view('view1').axis.set('xmin', '-9.000000318337698E-6'); 
model.view('view1').axis.set('xmax', '1.8899999849963933E-4'); 

  
model.physics('chds').prop('EquationForm').set('form', 'Transient'); 
model.physics('chds').prop('Migration').set('Migration', '1'); 
model.physics('chds').prop('Convection').set('Convection', '0'); 
model.physics('chds').feature('cdm1').set('V', 'Vcat+((Vcat-Van)/180e-

6)*x[V/m]'); 
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0'; 

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'}); 
model.physics('chds').feature('cdm1').set('z', '1'); 
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]'); 
model.physics('chds').feature('init1').set('c', '1250'); 

  
model.mesh('mesh1').feature('size').set('hmax', '1e-6'); 
model.mesh('mesh1').run; 

  
model.frame('material1').sorder(1); 

  

  
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 

  

  

  
model.result('pg1').set('probetag', 'none'); 
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model.study('std1').feature('time').set('tlist', 'range(0,1,5)'); 

  
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent'); 
model.sol('sol1').feature('st1').set('studystep', 'time'); 
model.sol('sol1').feature('v1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)'); 
model.sol('sol1').feature('t1').set('maxorder', '2'); 
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5'); 
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once'); 
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso'); 
model.sol('sol1').runAll; 

  
model.result('pg1').name('Concentration (chds)'); 
model.result('pg1').set('looplevelinput', {'manual'}); 
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'}); 
model.result('pg1').set('xlabel', 'x-coordinate (m)'); 
model.result('pg1').set('ylabel', 'Concentration (mol/m<sup>3</sup>)'); 
model.result('pg1').set('xlabelactive', false); 
model.result('pg1').set('ylabelactive', false); 
model.result('pg1').feature('lngr1').set('xdata', 'expr'); 
model.result('pg1').feature('lngr1').set('xdataexpr', 'x'); 
model.result('pg1').feature('lngr1').set('xdataunit', 'm'); 
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate'); 
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
% Save current fem structure for restart purposes 
model0=model; 

  
% extract concentration values at points in vector z 
con = mphinterp(model0,'c','coord',z','T',tf)'; 

  
% Concentration = [x y z c] 

  
Concentration = [Concentration; x y z con]; 

  
end 
% Force equation 

  
Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)]; 
name = input('enter a file name or number = ','s');%prompt user for input 
fname = strcat(name,'.txt'); 

  
% fname = 'temp.csv' ;  
fid = fopen(fname,'w'); 
fprintf(fid,'%%x\ty\tz\tForce\n'); 
fclose(fid); 
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dlmwrite(fname,Force,'precision','%2.6f','delimiter','\t','newline','pc','-

append'); 

  

  

  
end 
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A5. Complete Code used in modeFRONTIER 

 
function out = model 
% 
% sevenbyseventeenvoltage.m 
% 
% Model exported on Jul 6 2012, 15:12 by COMSOL 4.3.0.151. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('7x17voltagedistribution.mph'); 

  
model.modelNode.create('mod1'); 

  
model.geom.create('geom1', 3); 
model.geom('geom1').feature.create('blk1', 'Block'); 
model.geom('geom1').feature.create('blk2', 'Block'); 
model.geom('geom1').feature.create('blk3', 'Block'); 
model.geom('geom1').feature('blk1').set('size', {'7e-3' '17e-3' '10e-6'}); 
model.geom('geom1').feature('blk2').set('pos', {'0' '0' '10e-6'}); 
model.geom('geom1').feature('blk2').set('size', {'7e-3' '17e-3' '180e-6'}); 
model.geom('geom1').feature('blk3').set('pos', {'0' '0' '190e-6'}); 
model.geom('geom1').feature('blk3').set('size', {'7e-3' '17e-3' '10e-6'}); 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat1').selection.set([2]); 
model.material.create('mat2'); 
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat2').selection.set([1 3]); 

  
model.physics.create('ec', 'ConductiveMedia', 'geom1'); 
model.physics('ec').feature.create('gnd1', 'Ground', 2); 
model.physics('ec').feature('gnd1').selection.set([2]); 
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2); 
model.physics('ec').feature('pot1').selection.set([8]); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('ftet1', 'FreeTet'); 

  
model.result.table.create('evl3', 'Table'); 
model.result.table.create('tbl1', 'Table'); 

  

  
model.material('mat1').name('Nylon'); 
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model.material('mat1').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0' 

'0' '0' '4' '0' '0' '0' '4'}); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'}); 
model.material('mat1').propertyGroup('def').set('density', '1150[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'}); 
model.material('mat1').propertyGroup('def').set('electricconductivity', {'10' 

'0' '0' '0' '10' '0' '0' '0' '10'}); 
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.4'); 
model.material('mat2').name('Pt'); 
model.material('mat2').propertyGroup('def').set('electricconductivity', 

{'1e6[S/m]' '0' '0' '0' '1e6[S/m]' '0' '0' '0' '1e6[S/m]'}); 
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]'}); 
model.material('mat2').propertyGroup('def').set('heatcapacity', 

'133[J/(kg*K)]'); 
model.material('mat2').propertyGroup('def').set('density', '21450[kg/m^3]'); 
model.material('mat2').propertyGroup('def').set('thermalconductivity', 

{'71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]'}); 
model.material('mat2').propertyGroup('def').set('relpermittivity', 

{'1.000265' '0' '0' '0' '1.000265' '0' '0' '0' '1.000265'}); 
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', 

'168e9[Pa]'); 
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.38'); 

  
model.physics('ec').feature('pot1').set('V0', '2'); 

  
model.mesh('mesh1').feature('size').set('hauto', 6); 
model.mesh('mesh1').run; 

  
model.result.table('evl3').name('Evaluation 3D'); 
model.result.table('evl3').comments('Interactive 3D values'); 
model.result.table('tbl1').comments('Surface Integration 1 (1)'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative'); 
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1', 

'Multigrid'); 
model.sol('sol1').feature('s1').feature.remove('fcDef'); 

  
model.study('std1').feature('stat').set('initstudyhide', 'on'); 
model.study('std1').feature('stat').set('initsolhide', 'on'); 
model.study('std1').feature('stat').set('notstudyhide', 'on'); 
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model.study('std1').feature('stat').set('notsolhide', 'on'); 

  
model.result.numerical.create('int1', 'IntSurface'); 
model.result.numerical('int1').selection.set([3]); 
model.result.numerical('int1').set('probetag', 'none'); 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').feature.create('mslc1', 'Multislice'); 
model.result('pg1').feature.create('vol1', 'Volume'); 
model.result.export.create('tbl1', 'Table'); 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Stationary'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature('v1').feature('mod1_V').name('mod1.V'); 
model.sol('sol1').feature('s1').set('control', 'stat'); 
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off'); 
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun', 

'amg'); 
model.sol('sol1').runAll; 

  
model.result.numerical('int1').set('unit', 'm^2'); 
model.result.numerical('int1').set('table', 'tbl1'); 
model.result.numerical('int1').set('descr', '1'); 
model.result.numerical('int1').set('expr', '1'); 
model.result.numerical('int1').setResult; 
model.result('pg1').name('Electric potential'); 
model.result('pg1').feature('mslc1').name('Multislice'); 
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum'); 
model.result.export('tbl1').set('table', 'tbl1'); 
model.result.export('tbl1').set('filename', 

'C:\Users\jsimpson\Desktop\area.txt'); 

  
out = model; 

  
IPMC_width = 20; 
IPMC_length = 20; 

  
%Create an empty square matrix at z=0 (the anode) that contains the points 
%in the xy plane where the voltage will be sampled. 

  
[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length); 
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1)); 
p = [x(:)'; y(:)'; pz]*(1e-3); 
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3); 

  
%Extract voltage information from electrical model 

  
V_cathode = mphinterp(model,'V','coord',p); 
V_anode = mphinterp(model,'V','coord',p_cat); 

  
Voltage_anode = [x(:) y(:) V_anode']; 
Voltage_cathode = [x(:) y(:) V_cathode']; 
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Voltage_anode(isnan(Voltage_anode)) = 0; 
Voltage_cathode(isnan(Voltage_cathode)) = 0; 

  
fid = fopen('anode1.txt','w'); 
fprintf(fid,'%%x\ty\tVoltage_anode\r\n'); 
fclose(fid); 
dlmwrite('anode1.txt',Voltage_anode,'precision','%2.6f','delimiter','\t','new

line','pc','-append'); 

  
fid = fopen('cathode1.txt','w'); 
fprintf(fid,'%%x\ty\tVoltage_cathode\r\n'); 
fclose(fid); 
dlmwrite('cathode1.txt',Voltage_cathode,'precision','%2.6f','delimiter','\t',

'newline','pc','-append'); 

  
model.result.export('tbl1').run; 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('concentrationdistributionclean.mph'); 

  
model.modelNode.create('mod1'); 

  
% length of voltage vector 
[n,~] = size(Voltage_anode); 

  
% vector of z sample points 
z = ((0:180)'*1e-6); 
Concentration = []; 

  

  
model.geom.create('geom1', 1); 
model.geom('geom1').feature.create('i1', 'Interval'); 

  

  
model.variable.create('var1'); 

  
model.physics.create('chds', 'DilutedSpecies', 'geom1'); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('edg1', 'Edge'); 

  

  
model.study.create('std1'); 
model.study('std1').feature.create('time', 'Transient'); 

  
model.sol.create('sol1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
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model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('t1', 'Time'); 
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('t1').feature.create('d1', 'Direct'); 
model.sol('sol1').feature('t1').feature.remove('fcDef'); 
model.result.create('pg1', 'PlotGroup1D'); 
model.result('pg1').feature.create('lngr1', 'LineGraph'); 

  

  
for i = 1:n 

  
% extract anode and cathode voltage for element n. 
V_a = Voltage_anode(i,3); 
V_c = Voltage_cathode(i,3); 

     
% vector of x and y sample points 
x = Voltage_anode(i,1)'*ones(181,1); 
y = Voltage_anode(i,2)'*ones(181,1); 

  

  

  
model.geom('geom1').feature('i1').set('p2', '180e-6'); 
model.geom('geom1').run; 

  

  
model.variable('var1').set('Va',strcat(num2str(V_a)),'[V]'), ...); 
model.variable('var1').set('Vc',strcat(num2str(V_c)),'[V]'); 

  

  

  

  
% model.variable('var1').name('Variables 1a'); 

  
model.view('view1').axis.set('xmin', '-9.000000318337698E-6'); 
model.view('view1').axis.set('xmax', '1.8899999849963933E-4'); 

  
model.physics('chds').prop('EquationForm').set('form', 'Transient'); 
model.physics('chds').prop('Migration').set('Migration', '1'); 
model.physics('chds').prop('Convection').set('Convection', '0'); 
model.physics('chds').feature('cdm1').set('V', 'Vc+((Vc-Va)/180e-6)*x[V/m]'); 
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0'; 

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'}); 
model.physics('chds').feature('cdm1').set('z', '1'); 
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]'); 
model.physics('chds').feature('init1').set('c', '1250'); 

  
model.mesh('mesh1').feature('size').set('hmax', '1e-6'); 
model.mesh('mesh1').run; 

  
model.frame('material1').sorder(1); 

  

  
model.sol('sol1').study('std1'); 
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model.sol('sol1').attach('std1'); 

  

  

  
model.result('pg1').set('probetag', 'none'); 

  

  
model.study('std1').feature('time').set('tlist', 'range(0,1,5)'); 

  
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent'); 
model.sol('sol1').feature('st1').set('studystep', 'time'); 
model.sol('sol1').feature('v1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)'); 
model.sol('sol1').feature('t1').set('maxorder', '2'); 
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5'); 
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once'); 
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso'); 
model.sol('sol1').runAll; 

  
model.result('pg1').name('Concentration (chds)'); 
model.result('pg1').set('looplevelinput', {'manual'}); 
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'}); 
model.result('pg1').set('xlabel', 'x-coordinate (m)'); 
model.result('pg1').set('ylabel', 'Concentration (mol/m<sup>3</sup>)'); 
model.result('pg1').set('xlabelactive', false); 
model.result('pg1').set('ylabelactive', false); 
model.result('pg1').feature('lngr1').set('xdata', 'expr'); 
model.result('pg1').feature('lngr1').set('xdataexpr', 'x'); 
model.result('pg1').feature('lngr1').set('xdataunit', 'm'); 
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate'); 
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
% Save current fem structure for restart purposes 
model0=model; 

  
% extract concentration values at points in vector z 
con = mphinterp(model0,'c','coord',z','T',5)'; 

  
% Concentration = [x y z c] 

  
Concentration = [Concentration; x y z con]; 

  
end 

  

  
% Force equation 

  
Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)]; 
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fid = fopen('rectangleforce.txt','w'); 
fprintf(fid,'%%x\ty\tz\tForce\r\n'); 
fclose(fid); 
dlmwrite('rectangleforce.txt',Force,'precision','%2.6f','delimiter','\t','new

line','pc','-append'); 

  
% 
% rectangleoptimized1.m 
% 
% Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('.\'); 

  
model.name('rectangleoptimizeddeflection.mph'); 

  
model.modelNode.create('mod1'); 

  
model.file.create('res3'); 

  
model.func.create('int1', 'Interpolation'); 
model.func('int1').set('sourcetype', 'model'); 
model.func('int1').set('importedstruct', 'Spreadsheet'); 
model.func('int1').set('funcs', {'Force' '4'}); 
model.func('int1').set('importedname', 'rectangleforce.txt'); 
model.func('int1').set('importeddim', '3D'); 
model.func('int1').set('modelres', 'res3'); 

  
model.file('res3').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt'); 

  
model.func('int1').set('nargs', '3'); 
model.func('int1').set('struct', 'spreadsheet'); 

  
model.geom.create('geom1', 3); 
model.geom('geom1').feature.create('BLK1', 'Block'); 
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0'); 
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'}); 
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'}); 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 

  
model.physics.create('smsld', 'SolidMechanics', 'geom1'); 
model.physics('smsld').identifier('smsld'); 
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3); 
model.physics('smsld').feature('lemm2').selection.set([1]); 
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3); 
model.physics('smsld').feature('bl1').selection.set([1]); 
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model.physics('smsld').feature.create('fix1', 'Fixed', 2); 
model.physics('smsld').feature('fix1').selection.set([2]); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('ftet1', 'FreeTet'); 
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3); 
model.mesh('mesh1').feature('ftet1').selection.set([1]); 

  
model.result.table.create('tbl1', 'Table'); 
model.result.table.create('tbl2', 'Table'); 

  

  
model.material('mat1').name('Nylon'); 
model.material('mat1').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0' 

'0' '0' '4' '0' '0' '0' '4'}); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'}); 
model.material('mat1').propertyGroup('def').set('density', '2000[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'}); 
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.49'); 

  
model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('E', '5e8'); 
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nu', '.48'); 
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
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model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('rho', '2000'); 
model.physics('smsld').feature('bl1').set('FperVol', {'0'; 

'Force(x[1/m],y[1/m],z[1/m])'; '0'}); 

  
model.mesh('mesh1').feature('size').set('hauto', 2); 
model.mesh('mesh1').feature('ftet1').set('zscale', '1'); 
model.mesh('mesh1').run; 

  
model.result.table('tbl1').comments('Point Evaluation 1 (smsld.disp)'); 
model.result.table('tbl2').comments('Line Maximum 1 (smsld.disp)'); 

  
model.coordSystem('sys1').set('mastercoordsystcomp', 'manual'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('d1', 'Direct'); 

  
model.study('std1').feature('stat').set('initstudyhide', 'on'); 
model.study('std1').feature('stat').set('initsolhide', 'on'); 
model.study('std1').feature('stat').set('notstudyhide', 'on'); 
model.study('std1').feature('stat').set('notsolhide', 'on'); 

  
model.result.numerical.create('max1', 'MaxLine'); 
model.result.numerical('max1').selection.set([6]); 
model.result.numerical('max1').set('probetag', 'none'); 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').feature.create('vol1', 'Volume'); 
model.result('pg1').feature('vol1').feature.create('def1', 'Deform'); 
model.result.export.create('tbl2', 'Table'); 

  
model.sol('sol1').attach('std1'); 
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model.sol('sol1').feature('st1').name('Compile Equations: Stationary'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('stol', '1.0E-6'); 
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4'); 
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off'); 
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off'); 
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles'); 
model.sol('sol1').runAll; 

  
model.result.numerical('max1').set('unit', 'mm'); 
model.result.numerical('max1').set('table', 'tbl2'); 
model.result.numerical('max1').setResult; 
model.result('pg1').name('Stress (smsld)'); 
model.result('pg1').feature('vol1').set('unit', 'mm'); 
model.result('pg1').feature('vol1').feature('def1').set('scaleactive', true); 
model.result.export('tbl2').set('filename', '.\deflection.txt'); 
model.result.export('tbl2').set('table', 'tbl2'); 

  
model.result.export('tbl2').run; 

  

  

  
quit 
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A6. Combined Deflection and Force 
 
function out = model 
% 
% sevenbyseventeenvoltage.m 
% 
% Model exported on Jul 6 2012, 15:12 by COMSOL 4.3.0.151. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('7x17voltagedistribution.mph'); 

  
model.modelNode.create('mod1'); 

  
model.geom.create('geom1', 3); 
model.geom('geom1').feature.create('blk1', 'Block'); 
model.geom('geom1').feature.create('blk2', 'Block'); 
model.geom('geom1').feature.create('blk3', 'Block'); 
model.geom('geom1').feature('blk1').set('size', {'7e-3' '17e-3' '10e-6'}); 
model.geom('geom1').feature('blk2').set('pos', {'0' '0' '10e-6'}); 
model.geom('geom1').feature('blk2').set('size', {'7e-3' '17e-3' '180e-6'}); 
model.geom('geom1').feature('blk3').set('pos', {'0' '0' '190e-6'}); 
model.geom('geom1').feature('blk3').set('size', {'7e-3' '17e-3' '10e-6'}); 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat1').selection.set([2]); 
model.material.create('mat2'); 
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat2').selection.set([1 3]); 

  
model.physics.create('ec', 'ConductiveMedia', 'geom1'); 
model.physics('ec').feature.create('gnd1', 'Ground', 2); 
model.physics('ec').feature('gnd1').selection.set([2]); 
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2); 
model.physics('ec').feature('pot1').selection.set([8]); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('ftet1', 'FreeTet'); 

  
model.result.table.create('evl3', 'Table'); 
model.result.table.create('tbl1', 'Table'); 

  

  
model.material('mat1').name('Nylon'); 
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model.material('mat1').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0' 

'0' '0' '4' '0' '0' '0' '4'}); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'}); 
model.material('mat1').propertyGroup('def').set('density', '1150[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'}); 
model.material('mat1').propertyGroup('def').set('electricconductivity', {'10' 

'0' '0' '0' '10' '0' '0' '0' '10'}); 
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.4'); 
model.material('mat2').name('Pt'); 
model.material('mat2').propertyGroup('def').set('electricconductivity', 

{'1e6[S/m]' '0' '0' '0' '1e6[S/m]' '0' '0' '0' '1e6[S/m]'}); 
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]'}); 
model.material('mat2').propertyGroup('def').set('heatcapacity', 

'133[J/(kg*K)]'); 
model.material('mat2').propertyGroup('def').set('density', '21450[kg/m^3]'); 
model.material('mat2').propertyGroup('def').set('thermalconductivity', 

{'71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]'}); 
model.material('mat2').propertyGroup('def').set('relpermittivity', 

{'1.000265' '0' '0' '0' '1.000265' '0' '0' '0' '1.000265'}); 
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', 

'168e9[Pa]'); 
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.38'); 

  
model.physics('ec').feature('pot1').set('V0', '2'); 

  
model.mesh('mesh1').feature('size').set('hauto', 6); 
model.mesh('mesh1').run; 

  
model.result.table('evl3').name('Evaluation 3D'); 
model.result.table('evl3').comments('Interactive 3D values'); 
model.result.table('tbl1').comments('Surface Integration 1 (1)'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative'); 
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1', 

'Multigrid'); 
model.sol('sol1').feature('s1').feature.remove('fcDef'); 

  
model.study('std1').feature('stat').set('initstudyhide', 'on'); 
model.study('std1').feature('stat').set('initsolhide', 'on'); 
model.study('std1').feature('stat').set('notstudyhide', 'on'); 
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model.study('std1').feature('stat').set('notsolhide', 'on'); 

  
model.result.numerical.create('int1', 'IntSurface'); 
model.result.numerical('int1').selection.set([3]); 
model.result.numerical('int1').set('probetag', 'none'); 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').feature.create('mslc1', 'Multislice'); 
model.result('pg1').feature.create('vol1', 'Volume'); 
model.result.export.create('tbl1', 'Table'); 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Stationary'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature('v1').feature('mod1_V').name('mod1.V'); 
model.sol('sol1').feature('s1').set('control', 'stat'); 
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off'); 
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg'); 
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun', 

'amg'); 
model.sol('sol1').runAll; 

  
model.result.numerical('int1').set('unit', 'm^2'); 
model.result.numerical('int1').set('table', 'tbl1'); 
model.result.numerical('int1').set('descr', '1'); 
model.result.numerical('int1').set('expr', '1'); 
model.result.numerical('int1').setResult; 
model.result('pg1').name('Electric potential'); 
model.result('pg1').feature('mslc1').name('Multislice'); 
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum'); 
model.result.export('tbl1').set('table', 'tbl1'); 
model.result.export('tbl1').set('filename', 

'C:\Users\jsimpson\Desktop\area.txt'); 

  
out = model; 

  
IPMC_width = 20; 
IPMC_length = 20; 

  
%Create an empty square matrix at z=0 (the anode) that contains the points 
%in the xy plane where the voltage will be sampled. 

  
[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length); 
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1)); 
p = [x(:)'; y(:)'; pz]*(1e-3); 
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3); 

  
%Extract voltage information from electrical model 

  
V_cathode = mphinterp(model,'V','coord',p); 
V_anode = mphinterp(model,'V','coord',p_cat); 

  
Voltage_anode = [x(:) y(:) V_anode']; 
Voltage_cathode = [x(:) y(:) V_cathode']; 
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Voltage_anode(isnan(Voltage_anode)) = 0; 
Voltage_cathode(isnan(Voltage_cathode)) = 0; 

  
fid = fopen('anode1.txt','w'); 
fprintf(fid,'%%x\ty\tVoltage_anode\r\n'); 
fclose(fid); 
dlmwrite('anode1.txt',Voltage_anode,'precision','%2.6f','delimiter','\t','new

line','pc','-append'); 

  
fid = fopen('cathode1.txt','w'); 
fprintf(fid,'%%x\ty\tVoltage_cathode\r\n'); 
fclose(fid); 
dlmwrite('cathode1.txt',Voltage_cathode,'precision','%2.6f','delimiter','\t',

'newline','pc','-append'); 

  
model.result.export('tbl1').run; 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('C:\Users\Justin\Desktop\Comsol Models'); 

  
model.name('concentrationdistributionclean.mph'); 

  
model.modelNode.create('mod1'); 

  
% length of voltage vector 
[n,~] = size(Voltage_anode); 

  
% vector of z sample points 
z = ((0:180)'*1e-6); 
Concentration = []; 

  

  
model.geom.create('geom1', 1); 
model.geom('geom1').feature.create('i1', 'Interval'); 

  

  
model.variable.create('var1'); 

  
model.physics.create('chds', 'DilutedSpecies', 'geom1'); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('edg1', 'Edge'); 

  

  
model.study.create('std1'); 
model.study('std1').feature.create('time', 'Transient'); 

  
model.sol.create('sol1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
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model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('t1', 'Time'); 
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('t1').feature.create('d1', 'Direct'); 
model.sol('sol1').feature('t1').feature.remove('fcDef'); 
model.result.create('pg1', 'PlotGroup1D'); 
model.result('pg1').feature.create('lngr1', 'LineGraph'); 

  

  
for i = 1:n 

  
% extract anode and cathode voltage for element n. 
V_a = Voltage_anode(i,3); 
V_c = Voltage_cathode(i,3); 

     
% vector of x and y sample points 
x = Voltage_anode(i,1)'*ones(181,1); 
y = Voltage_anode(i,2)'*ones(181,1); 

  

  

  
model.geom('geom1').feature('i1').set('p2', '180e-6'); 
model.geom('geom1').run; 

  

  
model.variable('var1').set('Va',strcat(num2str(V_a)),'[V]'), ...); 
model.variable('var1').set('Vc',strcat(num2str(V_c)),'[V]'); 

  

  

  

  
% model.variable('var1').name('Variables 1a'); 

  
model.view('view1').axis.set('xmin', '-9.000000318337698E-6'); 
model.view('view1').axis.set('xmax', '1.8899999849963933E-4'); 

  
model.physics('chds').prop('EquationForm').set('form', 'Transient'); 
model.physics('chds').prop('Migration').set('Migration', '1'); 
model.physics('chds').prop('Convection').set('Convection', '0'); 
model.physics('chds').feature('cdm1').set('V', 'Vc+((Vc-Va)/180e-6)*x[V/m]'); 
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0'; 

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'}); 
model.physics('chds').feature('cdm1').set('z', '1'); 
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]'); 
model.physics('chds').feature('init1').set('c', '1250'); 

  
model.mesh('mesh1').feature('size').set('hmax', '1e-6'); 
model.mesh('mesh1').run; 

  
model.frame('material1').sorder(1); 

  

  
model.sol('sol1').study('std1'); 
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model.sol('sol1').attach('std1'); 

  

  

  
model.result('pg1').set('probetag', 'none'); 

  

  
model.study('std1').feature('time').set('tlist', 'range(0,1,5)'); 

  
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent'); 
model.sol('sol1').feature('st1').set('studystep', 'time'); 
model.sol('sol1').feature('v1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('control', 'time'); 
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)'); 
model.sol('sol1').feature('t1').set('maxorder', '2'); 
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5'); 
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once'); 
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso'); 
model.sol('sol1').runAll; 

  
model.result('pg1').name('Concentration (chds)'); 
model.result('pg1').set('looplevelinput', {'manual'}); 
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'}); 
model.result('pg1').set('xlabel', 'x-coordinate (m)'); 
model.result('pg1').set('ylabel', 'Concentration (mol/m<sup>3</sup>)'); 
model.result('pg1').set('xlabelactive', false); 
model.result('pg1').set('ylabelactive', false); 
model.result('pg1').feature('lngr1').set('xdata', 'expr'); 
model.result('pg1').feature('lngr1').set('xdataexpr', 'x'); 
model.result('pg1').feature('lngr1').set('xdataunit', 'm'); 
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate'); 
model.result('pg1').feature('lngr1').selection.all; 
model.result('pg1').feature('lngr1').selection.all; 

  
% Save current fem structure for restart purposes 
model0=model; 

  
% extract concentration values at points in vector z 
con = mphinterp(model0,'c','coord',z','T',5)'; 

  
% Concentration = [x y z c] 

  
Concentration = [Concentration; x y z con]; 

  
end 

  

  
% Force equation 

  
Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)]; 
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fid = fopen('rectangleforce.txt','w'); 
fprintf(fid,'%%x\ty\tz\tForce\r\n'); 
fclose(fid); 
dlmwrite('rectangleforce.txt',Force,'precision','%2.6f','delimiter','\t','new

line','pc','-append'); 

  
% 
% rectangleoptimized1.m 
% 
% Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164. 

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('.\'); 

  
model.name('rectangleoptimizeddeflection.mph'); 

  
model.modelNode.create('mod1'); 

  
model.file.create('res3'); 

  
model.func.create('int1', 'Interpolation'); 
model.func('int1').set('sourcetype', 'model'); 
model.func('int1').set('importedstruct', 'Spreadsheet'); 
model.func('int1').set('funcs', {'Force' '4'}); 
model.func('int1').set('importedname', 'rectangleforce.txt'); 
model.func('int1').set('importeddim', '3D'); 
model.func('int1').set('modelres', 'res3'); 

  
model.file('res3').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt'); 

  
model.func('int1').set('nargs', '3'); 
model.func('int1').set('struct', 'spreadsheet'); 

  
model.geom.create('geom1', 3); 
model.geom('geom1').feature.create('BLK1', 'Block'); 
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0'); 
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'}); 
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'}); 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 

  
model.physics.create('smsld', 'SolidMechanics', 'geom1'); 
model.physics('smsld').identifier('smsld'); 
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3); 
model.physics('smsld').feature('lemm2').selection.set([1]); 
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3); 
model.physics('smsld').feature('bl1').selection.set([1]); 
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model.physics('smsld').feature.create('fix1', 'Fixed', 2); 
model.physics('smsld').feature('fix1').selection.set([2]); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('ftet1', 'FreeTet'); 
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3); 
model.mesh('mesh1').feature('ftet1').selection.set([1]); 

  
model.result.table.create('tbl1', 'Table'); 
model.result.table.create('tbl2', 'Table'); 

  

  
model.material('mat1').name('Nylon'); 
model.material('mat1').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0' 

'0' '0' '4' '0' '0' '0' '4'}); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'}); 
model.material('mat1').propertyGroup('def').set('density', '2000[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'}); 
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.49'); 

  
model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('E', '5e8'); 
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nu', '.48'); 
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
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model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('rho', '2000'); 
model.physics('smsld').feature('bl1').set('FperVol', {'0'; 

'Force(x[1/m],y[1/m],z[1/m])'; '0'}); 

  
model.mesh('mesh1').feature('size').set('hauto', 2); 
model.mesh('mesh1').feature('ftet1').set('zscale', '1'); 
model.mesh('mesh1').run; 

  
model.result.table('tbl1').comments('Point Evaluation 1 (smsld.disp)'); 
model.result.table('tbl2').comments('Line Maximum 1 (smsld.disp)'); 

  
model.coordSystem('sys1').set('mastercoordsystcomp', 'manual'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('d1', 'Direct'); 

  
model.study('std1').feature('stat').set('initstudyhide', 'on'); 
model.study('std1').feature('stat').set('initsolhide', 'on'); 
model.study('std1').feature('stat').set('notstudyhide', 'on'); 
model.study('std1').feature('stat').set('notsolhide', 'on'); 

  
model.result.numerical.create('max1', 'MaxLine'); 
model.result.numerical('max1').selection.set([6]); 
model.result.numerical('max1').set('probetag', 'none'); 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').feature.create('vol1', 'Volume'); 
model.result('pg1').feature('vol1').feature.create('def1', 'Deform'); 
model.result.export.create('tbl2', 'Table'); 

  
model.sol('sol1').attach('std1'); 
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model.sol('sol1').feature('st1').name('Compile Equations: Stationary'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('stol', '1.0E-6'); 
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4'); 
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off'); 
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off'); 
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles'); 
model.sol('sol1').runAll; 

  
model.result.numerical('max1').set('unit', 'mm'); 
model.result.numerical('max1').set('table', 'tbl2'); 
model.result.numerical('max1').setResult; 
model.result('pg1').name('Stress (smsld)'); 
model.result('pg1').feature('vol1').set('unit', 'mm'); 
model.result('pg1').feature('vol1').feature('def1').set('scaleactive', true); 
model.result.export('tbl2').set('filename', '.\deflection.txt'); 
model.result.export('tbl2').set('table', 'tbl2'); 

  
model.result.export('tbl2').run; 

  

  

  
import com.comsol.model.* 
import com.comsol.model.util.* 

  
model = ModelUtil.create('Model'); 

  
model.modelPath('.\'); 

  
model.name('1.2included7x17newest.mph'); 

  
model.modelNode.create('mod1'); 

  
model.file.create('res2'); 

  
model.func.create('int1', 'Interpolation'); 
model.func('int1').set('importedname', 'rectangleforce.txt'); 
model.func('int1').set('funcs', {'Force' '4'}); 
model.func('int1').set('modelres', 'res2'); 
model.func('int1').set('importedstruct', 'Spreadsheet'); 
model.func('int1').set('importeddim', '3D'); 
model.func('int1').set('sourcetype', 'model'); 

  
model.file('res2').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt'); 

  
model.func('int1').set('nargs', '3'); 
model.func('int1').set('struct', 'spreadsheet'); 

  
model.geom.create('geom1', 3); 
model.geom('geom1').feature.create('BLK1', 'Block'); 
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model.geom('geom1').feature.create('CYL1', 'Cylinder'); 
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0'); 
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'}); 
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'}); 
model.geom('geom1').feature('CYL1').set('axis', {'0' '0' '1'}); 
model.geom('geom1').feature('CYL1').set('r', '5.0E-4'); 
model.geom('geom1').feature('CYL1').set('pos', {'0.0035' '0.015' '1.8e-4'}); 
model.geom('geom1').feature('CYL1').set('h', '0.0010'); 
model.geom('geom1').run; 

  
model.material.create('mat1'); 
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat1').propertyGroup.create('RefractiveIndex', 'Refractive 

index'); 
model.material('mat1').selection.set([2]); 
model.material.create('mat2'); 
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and 

Poisson''s ratio'); 
model.material('mat2').selection.set([1]); 

  
model.physics.create('smsld', 'SolidMechanics', 'geom1'); 
model.physics('smsld').identifier('smsld'); 
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3); 
model.physics('smsld').feature('lemm2').selection.set([1]); 
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3); 
model.physics('smsld').feature('bl1').selection.set([1]); 
model.physics('smsld').feature.create('fix1', 'Fixed', 2); 
model.physics('smsld').feature('fix1').selection.set([2 9]); 

  
model.mesh.create('mesh1', 'geom1'); 
model.mesh('mesh1').feature.create('ftet1', 'FreeTet'); 
model.mesh('mesh1').feature.create('ftet2', 'FreeTet'); 
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3); 
model.mesh('mesh1').feature('ftet1').selection.set([1]); 
model.mesh('mesh1').feature('ftet2').selection.geom('geom1', 3); 
model.mesh('mesh1').feature('ftet2').selection.set([2]); 
model.mesh('mesh1').feature('ftet2').feature.create('size1', 'Size'); 

  
model.result.table.create('tbl1', 'Table'); 

  
model.material('mat1').name('Silica glass'); 
model.material('mat1').propertyGroup('def').set('heatcapacity', 

'703[J/(kg*K)]'); 
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'0.55e-6[1/K]' '0' '0' '0' '0.55e-6[1/K]' '0' '0' '0' '0.55e-6[1/K]'}); 
model.material('mat1').propertyGroup('def').set('relpermittivity', {'2.09' 

'0' '0' '0' '2.09' '0' '0' '0' '2.09'}); 
model.material('mat1').propertyGroup('def').set('thermalconductivity', 

{'1.38[W/(m*K)]' '0' '0' '0' '1.38[W/(m*K)]' '0' '0' '0' '1.38[W/(m*K)]'}); 
model.material('mat1').propertyGroup('def').set('relpermeability', {'1' '0' 

'0' '0' '1' '0' '0' '0' '1'}); 
model.material('mat1').propertyGroup('def').set('density', '2203[kg/m^3]'); 
model.material('mat1').propertyGroup('def').set('electricconductivity', {'1e-

14[S/m]' '0' '0' '0' '1e-14[S/m]' '0' '0' '0' '1e-14[S/m]'}); 
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model.material('mat1').propertyGroup('Enu').set('youngsmodulus', 

'73.1e9[Pa]'); 
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.17'); 
model.material('mat1').propertyGroup('RefractiveIndex').set('n', ''); 
model.material('mat1').propertyGroup('RefractiveIndex').set('ki', ''); 
model.material('mat1').propertyGroup('RefractiveIndex').set('n', {'1.45' '0' 

'0' '0' '1.45' '0' '0' '0' '1.45'}); 
model.material('mat1').propertyGroup('RefractiveIndex').set('ki', {'0' '0' 

'0' '0' '0' '0' '0' '0' '0'}); 
model.material('mat2').name('Nylon'); 
model.material('mat2').propertyGroup('def').set('heatcapacity', 

'1700[J/(kg*K)]'); 
model.material('mat2').propertyGroup('def').set('relpermittivity', {'4' '0' 

'0' '0' '4' '0' '0' '0' '4'}); 
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'}); 
model.material('mat2').propertyGroup('def').set('density', '2000[kg/m^3]'); 
model.material('mat2').propertyGroup('def').set('thermalconductivity', 

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'}); 
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]'); 
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.49'); 

  
model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef'); 
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('E', '5e8'); 
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nu', '.48'); 
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11'; 

'2.0e11'}); 
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33'; 

'0.33'}); 
model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10'; 

'7.52e10'}); 
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef'); 
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model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; 

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0';  ... 
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0'; 

'0';  ... 
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0'; 

'2.0e11/((1+0.33)*2)'; '0';  ... 
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'}); 
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef'); 
model.physics('smsld').feature('lemm2').set('rho', '2000'); 
model.physics('smsld').feature('bl1').set('FperVol', {'0'; 

'Force(x[1/m],y[1/m],z[1/m])'; '0'}); 

  
model.mesh('mesh1').feature('size').set('hauto', 2); 
model.mesh('mesh1').feature('ftet2').feature('size1').set('hauto', 4); 
model.mesh('mesh1').run; 

  
model.result.table('tbl1').comments('Volume Integration 1 (smsld.RFz)'); 

  
model.coordSystem('sys1').set('mastercoordsystcomp', 'manual'); 

  
model.study.create('std1'); 
model.study('std1').feature.create('stat', 'Stationary'); 

  
model.sol.create('sol1'); 
model.sol('sol1').study('std1'); 
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature.create('st1', 'StudyStep'); 
model.sol('sol1').feature.create('v1', 'Variables'); 
model.sol('sol1').feature.create('s1', 'Stationary'); 
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled'); 
model.sol('sol1').feature('s1').feature.create('d1', 'Direct'); 

  
model.study('std1').feature('stat').set('initstudyhide', 'on'); 
model.study('std1').feature('stat').set('initsolhide', 'on'); 
model.study('std1').feature('stat').set('notstudyhide', 'on'); 
model.study('std1').feature('stat').set('notsolhide', 'on'); 

  
model.result.numerical.create('int1', 'IntVolume'); 
model.result.numerical('int1').selection.set([2]); 
model.result.numerical('int1').set('probetag', 'none'); 
model.result.create('pg1', 'PlotGroup3D'); 
model.result('pg1').feature.create('surf1', 'Surface'); 
model.result('pg1').feature('surf1').feature.create('def', 'Deform'); 
model.result.export.create('tbl1', 'Table'); 

  
model.sol('sol1').attach('std1'); 
model.sol('sol1').feature('st1').name('Compile Equations: Stationary'); 
model.sol('sol1').feature('st1').set('studystep', 'stat'); 
model.sol('sol1').feature('v1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('control', 'stat'); 
model.sol('sol1').feature('s1').set('stol', '1.0E-6'); 
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model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off'); 
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0'); 
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4'); 
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles'); 
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off'); 
model.sol('sol1').runAll; 

  
model.result.numerical('int1').set('expr', 'smsld.RFz'); 
model.result.numerical('int1').set('unit', 'mN'); 
model.result.numerical('int1').set('descr', 'Reaction force, z component'); 
model.result.numerical('int1').set('table', 'tbl1'); 
model.result.numerical('int1').setResult; 
model.result('pg1').name('Stress (smsld)'); 
model.result('pg1').feature('surf1').set('expr', 'smsld.mises'); 
model.result('pg1').feature('surf1').set('unit', 'N/m^2'); 
model.result('pg1').feature('surf1').set('descr', 'von Mises stress'); 
model.result('pg1').feature('surf1').feature('def').set('scale', 

'75.6551305019355'); 
model.result('pg1').feature('surf1').feature('def').set('scaleactive', 

false); 
model.result.export('tbl1').set('filename', '.\rectangleforcefinal.txt'); 
model.result.export('tbl1').set('table', 'tbl1'); 

  
model.result.export('tbl1').run; 

  

  

  
quit 
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