
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

6-26-2015

Modeling and Optimizing IPMC Microgrippers
Justin Simpson

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Simpson, Justin. "Modeling and Optimizing IPMC Microgrippers." (2015). https://digitalrepository.unm.edu/me_etds/92

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/92?utm_source=digitalrepository.unm.edu%2Fme_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

i

Justin Simpson
Candidate

Mechanical Engineering
Department

This thesis is approved, and it is acceptable in quality

and form for publication:

Approved by the Thesis Committee:

Dr. Ronald Lumia , Chairperson

Dr. Tariq Khraishi

Dr. Juan Heinrich

ii

Modeling and Optimizing IPMC Microgrippers

BY

Justin Simpson

Bachelor of Science Mechanical Engineering

THESIS

Submitted in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

May, 2015

iii

ACKNOWLEDGMENTS

 I heartily acknowledge Dr. Ronald Lumia, my advisor and dissertation

chair, for allowing me the opportunity to learn and use the research methods

developed in his research laboratory. Also, I would like to thank him for

encouraging me and pushing me to produce quality work. His teachings and

guidance will remain with me as I continue my career.

 I also thank my committee members, Dr. Juan Heinrich and Dr. Tariq

Khraishi, for their recommendations pertaining to this study.

 To my friend, Manuel Martinez, who helped me throughout this entire

process and taught me a great deal in this area which helped me in completing

this thesis.

 And finally to my family, who gave me immeasurable support over the

years and pushed me to do my best.

iv

MODELING AND OPTIMIZING IPMC MICROGRIPPERS

By

Justin Simpson

B.S., Mechanical Engineering, University of New Mexico, 2011

M.S., Mechanical Engineering, University of New Mexico, 2015

ABSTRACT

 A FEA (Finite Element Analysis) model was used to determine the

change in performance that results from varying the size and shape of IPMC

(Ionic Polymer Metal Composite) fingers. Using Comsol Multiphysics and

modeFRONTIER, these fingers were modeled and optimized for both force

exerted and deflection. Using the Comsol model, we were able to determine

the tip deflection and force output of many different IPMC fingers which

were verified experimentally. Then, using modeFRONTIER we were able to

optimize the fingers to determine the best shape and area depending on

whether a high force or deflection was desired.

v

Table of Contents
Chapter 1. INTRODUCTION ... 1

1.1 IPMCs... 1

1.1.1 Discovery of IPMCs and Fabrication .. 1

1.1.2 IPMC Actuation Abilities .. 4

1.1.3 IPMC Sensing Abilities ... 6

1.1.4 Simultaneous Actuator/Sensor ... 6

1.2 IPMC Microgrippers .. 8

1.2.1 Microgripper and Simultaneous Sensor/Actuator .. 8

1.2.2 Manufacturing IPMC Fingers .. 9

1.2.3 Microgripper Holders... 12

1.2.4 IPMC Control... 13

1.3 IPMC Force Model and Force Scanner .. 14

1.3.1 Force Scanner Overview .. 14

1.3.2 IPMC Force Model .. 16

1.4 Purpose Statement .. 19

1.5 Contribution ... 20

Chapter 2. LITERATURE REVIEW .. 22

2.1 Actuation ... 22

2.2 Sensing .. 24

2.3 Modeling ... 25

Chapter 3. IPMC FORCE MODEL ... 29

3.1 Diagram of Models ... 29

3.2 Approach Overview .. 29

3.3 Geometrical Modeling .. 32

3.4 Meshing IPMC Fingers ... 34

3.5 IPMC Force and Deflection Model ... 36

3.5.1 Approach Overview ... 36

3.5.2 Comsol/Matlab Electrochemical Model .. 38

3.5.3 Electrical Model ... 48

3.5.4 Matlab Force Model ... 54

3.5.5 Comsol/Matlab Force and Deflection Modeling ... 58

3.6 Results ... 63

Chapter 4. OPTIMIZATION in modeFRONTIER ... 67

vi

4.1 Introduction ... 67

4.2 Building a Complete Model .. 68

4.3 Optimization in modeFRONTIER .. 70

4.3.1 Early Optimization ... 79

4.3.2 Deflection Optimization... 80

4.3.3 Force Optimization .. 86

4.3.4 Optimization Factor ... 92

4.3.5 Rectangle Deflection and Force Limits ... 106

4.3.6 Iso Triangle Deflection and Force Limits .. 109

4.3.7 Right Triangle Deflection and Force Limits .. 112

Chapter 5. CONCLUSION .. 115

5.1 Results of the Study .. 115

5.2 Limitations .. 116

5.3 Future Research .. 117

APPENDICES .. 118

Appendix A ... 118

A1. Concentration M-File ... 118

A2. 7x17 mm Rectangle Fem .. 121

A3. Extract Voltage .. 128

A4. Force and Concentration M-File .. 129

A5. Complete Code used in modeFRONTIER ... 133

A6. Combined Deflection and Force .. 143

REFERENCES ... 157

vii

LIST OF FIGURES

Figure 1. IPMC Configuration .. 1
Figure 2. IPMC Water and ion migration ... 2
Figure 3. IPMC Conforming to objects .. 3

Figure 4. Micelle connected with channel .. 4
Figure 5. Channel cut by laser .. 7
Figure 6. IPMC Microgripper ... 8
Figure 7. Dimensions of Sensor/Actuator ... 9
Figure 8. Custom Holder... 9

Figure 9. Signatone 1160 Laser Cutting Station ... 10
Figure 10. Parker Microstage .. 11
Figure 11. Cutting Station Connections .. 11
Figure 12. Finger in electroded holder (Top View) .. 12

Figure 13. Finger in electroded holder (Side View) ... 12
Figure 14. Computer Connections .. 13

Figure 15. IPMC Force Scan .. 14
Figure 16. IPMC and Force Transducer ... 15

Figure 17. Testing Points .. 15
Figure 18. Experimental vs. Simulation ... 16
Figure 19. Rectangle and Triangle Fingers ... 17

Figure 20. Rectangle and Triangle Fingers ... 18
Figure 21. Smaller models incorporated in complete model .. 29

Figure 22. 7x17 mm IPMC finger... 33
Figure 23. 7x17 IPMC Material Properties... 33
Figure 24. Work Plane in Comsol... 34

Figure 25. Meshing IPMC Fingers ... 36

Figure 26. Model Diagram .. 37
Figure 27. Force Modeling Process .. 37
Figure 28. Concentration Model ... 41

Figure 29. Physics Added ... 42
Figure 30. Variables Added .. 43

Figure 31. Electric Potential ... 44
Figure 32. Meshing ... 45

Figure 33. Solver and Plots ... 46
Figure 34. Concentration Plot ... 46
Figure 35. Arbitrary Finger ... 51
Figure 36. Ground ... 52
Figure 37. Electric Potential ... 52

Figure 38. Meshing ... 53
Figure 39. Results ... 53

Figure 40. Fixed Constraint .. 59
Figure 41. Body Load ... 59
Figure 42. Finger Deflection ... 60
Figure 43. Deflection Measurement ... 61
Figure 44. IPMC and Cylinder.. 62
Figure 45. Cylinder Constraint ... 62

viii

Figure 46. Reaction Force on Cylinder ... 63

Figure 47. Reaction Force ... 63
Figure 48. Rectangle and Triangle Fingers ... 64
Figure 49. Rectangle and Triangle Fingers ... 65

Figure 50. EasyDriver ... 71
Figure 51. EasyDriver with M-File ... 71
Figure 52. Input Nodes ... 72
Figure 53. Adding Rules ... 73
Figure 54. DOE Properties .. 74

Figure 55. Cylinder Moving ... 76
Figure 56. Cylinder in EasyDriver .. 76
Figure 57. Minimizing Area ... 77
Figure 58. Maximizing Deflection and Force ... 78

Figure 59. Deflection Optimization .. 80
Figure 60. Rectangle Deflection ... 81

Figure 61. Iso Deflection Optimization .. 82
Figure 62. Right Triangle Deflection .. 84

Figure 63. Shape Comparison ... 85
Figure 64. Force Optimization .. 86
Figure 65. Rectangle Force Optimization ... 87

Figure 66. Iso Force Optimization .. 88
Figure 67. Right Triangle Force Optimization ... 90

Figure 68. Shape Comparison ... 91
Figure 69. Force and Deflection Optimization ... 93
Figure 70. Rectangle Combined ... 94

Figure 71. Iso Combined... 98

Figure 72. Right Combined... 103
Figure 73. Rectangle Deflection Limit ... 107
Figure 74. Rectangle Deflection Limit ... 108

Figure 75. Rectangle Force Limit ... 109
Figure 76. Iso Triangle Deflection Limit .. 110

Figure 77. Iso Deflection Limit .. 111
Figure 78. Iso Triangle Force Limit .. 111

Figure 79. Right Triangle Deflection Limit .. 112
Figure 80. Right Triangle Deflection Limit .. 113
Figure 81. Right Triangle Force Limit .. 114

ix

LIST OF TABLES

Table 1. Output vs. Size .. 18
Table 2. Output vs. Shape ... 19
Table 3. Output vs. Size .. 65

Table 4. Output vs. Shape ... 66
Table 5 Full Rectangle Optimization .. 79
Table 6. Half Rectangle Optimization .. 79
Table 7. Quarter Rectangle Optimization ... 79
Table 8. Rectangle Design IDs ... 81

Table 9. Iso IDs ... 83
Table 10. Right Design IDs .. 84
Table 11. Rectangle Design IDs .. 87
Table 12. Iso Design IDs .. 89

Table 13. Right Triangle Design IDs .. 90
Table 14. Final Results ... 92

Table 15. Rectangle Combined ... 94
Table 16. Iso Combined Design IDs ... 99

Table 17. Right Triangle Design IDs .. 103

1

Chapter 1. INTRODUCTION

1.1 IPMCs

1.1.1 Discovery of IPMCs and Fabrication

 An Ionic Polymer-Metal Composite (IPMC) is a type of electro-active polymer (EAP)

that deflects in the presence of an electric field [1]. Electro-activity is the movement of mobile

ions. The higher the electro-activity, the higher the tendency for ionic motion inside the IPMCs.

These materials also produce an electric field when physically bent. IPMCs are referred to as

artificial muscles, due to their ability to mimic natural muscles. These unique abilities have led

to much interest for using them in many fields, including aerospace and bio-engineering. Interest

in IPMC microgrippers is also growing, as these microgrippers are capable of grasping small

objects without damaging them, due to their large range of deflection and small grasping force.

 IPMCs typically consist of a synthetic polymer film with ionic properties, such as Nafion,

that is plated on both sides with a noble metal such as platinum or gold, as seen in Fig. 1.

Figure 1. IPMC Configuration

IPMCs are manufactured using a deposition process to create a thin electrode, usually one to five

microns thick. The electrodes are anchored to the polymer by thin dendrites created using this

2

process. This electrode is not a continuous metal layer; it is instead tightly packed metal grains.

In the case of platinum, the metal grains are platinum salt deposits, rather than a layer of

platinum. The noble metal layers store opposing charges, much like a parallel plate capacitor

[2]. This depletes the anode of its positive charge and the cathode receives a high positive

charge. In response, the cathode expands due to electrostatic charges. This storage of charge

also causes ions in the polymer to migrate and collect on one side, also seen in Fig. 1. This

migration of ions causes large water molecules held in the IPMC to migrate as well. The

migration of the large water molecules to one side of the IPMC causes a swelling effect, while

the other side is losing a large number of ions, causing a shrinking effect, as seen in Fig. 2 [3].

Figure 2. IPMC Water and ion migration

 Though IPMCs cannot provide substantial force as an actuator, they are flexible, require

low actuation voltage, conform to the object being grasped, and can operate in a wet

environment. Depending on the way they are cut, IPMCs typically have a large area with a very

little thickness. The area of these microgrippers is usually on the order of square millimeters,

while the thickness is around hundreds of microns. The amount of metal on these microgrippers

is small compared to the amount of polymer, causing the whole microgripper to act more as a

3

polymer than a metal. This characteristic causes them to be flexible and lightweight. Due to

their flexibility and high electro-activity, they are also able to deflect large amounts with a very

low actuation voltage, i.e., around 1 volt [3]. Also due to their thickness and high degree of

flexibility, these microgrippers are capable of conforming to the surface of the object they grasp,

as seen in Fig. 3.

Figure 3. IPMC Conforming to objects

This is extremely important in micromanipulation of objects, especially cell manipulation. The

gripper is able to securely grasp a cell without damaging it. IPMCs also do not generate high

forces when grasping objects. This is a valuable characteristic, as biological cells are easily

damaged by high forces. This makes IPMCs better suited for micromanipulation than other

gripping technologies that are rigid and exert higher forces. As stated above, IPMCs are able to

operate in wet environments and also require low actuation voltages. This allows IPMCs to be

used in micromanipulation with moist cells that may be in aqueous environments. The low

actuation voltage also decreases the chances of damaging the cell, due to voltage differences

across the cell. All of these characteristics make them well suited for bio-micromanipulation

applications in the form of microgrippers.

 These actuators can be processed into certain geometries and complex shapes needed for

certain tasks, using an automated laser cutter and CAD software. This laser operates at a cutting

4

frequency of 532 nm, which ablates the platinum layers. This technique is far superior to early

techniques, in which scissors or a scalpel were used. Using a laser, we can make complex shapes

and can cut the IPMC to any size. This is extremely important when making small actuators for

micromanipulation.

1.1.2 IPMC Actuation Abilities

 Although the migration of ions and solvent, due to an induced voltage, is considered to be

the driving force behind actuation of IPMCs, many are still researching the chemical structure

and physical mechanisms associated with actuation. The model most widely used to describe the

chemical structure of Nafion was introduced by Hsu in 1981. This model was based on wide-

angle and small-angle x-ray diffraction studies. When in the hydrated state, Nafion displays

phase separation and forms two distinct regions, hydrophilic and hydrophobic. Gierke et al. [4]

described the hydrophilic regions as 4 nm spherical inverted micellar structures that are

separated by a distance of 5 nm and connected by 1 nm diameter micro-channels, as seen in Fig.

4.

Figure 4. Micelle connected with channel

These clusters form a cubic grid called the cluster-network morphology. As can be seen in Fig.

4, the solvent and cations are contained in the micelle and channel. In an IPMC, the hydrophobic

region is made up of the fluorocarbon chains of Nafion.

5

 Hydration level and type of solvents and cations being used have a great effect on IPMC

actuation [5]. When a voltage is applied to an IPMC, an electric field is set up through the

thickness of the Nafion, which produces an electrostatic force on the cations. These cations are

then driven through the channel, as seen above. Depending on the level of hydration and type of

solvent being used, the cations may migrate easily. A fully hydrated sample will allow more

migration than a dehydrated sample. This becomes quite evident on the macroscopic level when

testing different samples, as only hydrated samples are capable of movement. Nemat-Nasser and

Li proposed a model that demonstrated the increase in concentration of cations at the cathode,

resulting in a fast expansion [6]. Solvent molecules attached to cations also migrate towards the

cathode. The combined migration of solvent and cations results in a fast actuation response

towards the cathode that may last several minutes. This migration of cations towards the anode

leaves a depleted region of cations in the anode. These clusters slowly redistribute, causing a

decrease in actuation, known as back relaxation. The anions that migrate towards the anode

during this process repel one another, also causing relaxation. This relaxation causes a bending

back towards the anode.

 The model used in this thesis assumes the actuation of the IPMC is explained by the

electrostatic interaction between the micellar clusters only, meaning the cations in anode clusters

migrate to the clusters in the cathode. The anode will be void of cations, resulting in negatively

charged clusters, which repel each other. Likewise, the cathode will be filled with cations, which

also repel each other. Although it may seem both sides, anode and cathode, will have positive

pressure, it will be seen that the force production on the cathode is much higher than that of the

anode. This causes actuation towards the cathode.

6

1.1.3 IPMC Sensing Abilities

 While most IPMCs are used as actuators, they can also be used as sensors. As stated

above, they produce an electric field when physically bent. Nemat-Nasser and Li suggest the

imposed deflection causes production of stress in the backbone polymer which leads to

displacement of charges in the micelle clusters [6]. When relaxed, the cations and anions in

either electrode are balanced. When deformed, the cations are shifted according to the

magnitude of deformation. Hydrostatic pressure, caused by the stress in the backbone polymer,

may also cause the flow of water and cations from high pressure regions to regions of low

pressure. Sadeghipour et al. used IPMCs as hydrogen pressure transducers in 1992 to make a

smart accelerometer in machinery [7]. This transducer was an IPMC held between two

electrodes that transmitted a voltage when squeezed. In contrast to actuation, the IPMC can be

used in sensing abilities whether it is wet or dry. It was later shown that IPMCs work better as

sensors when they are dry [8].

1.1.4 Simultaneous Actuator/Sensor

 Attempts have been made to develop a device that is capable of combining both actuation

and sensing capabilities in an IPMC. An IPMC “sandwich” was created in which two IPMC

fingers were cut to the same dimensions and glued to each other. The actuator was a 200 micron

thick finger, while the sensor was 60 microns thick. This was done as thinner fingers are better

for sensing capabilities and thicker fingers are better suited for actuation. When actuated, the

thicker finger would deflect the thinner finger, which generated a small voltage. This made it

possible to track the movement of the “sandwich.” When actuated, the thicker finger created an

electromagnetic field which was detected by the sensor. The voltage created by the actuator was

much higher than the voltage created by the movement in the sensor, so the readings were

7

incorrect. A layer of gold leaf connected to ground was then placed in between the sensor and

actuator, which rid the system of interference, but led to rigidity. Recently at the University of

New Mexico, researchers have made a simultaneous sensor/actuator by cutting one surface of the

IPMC into two electrically separate components, as seen in Fig. 5.

Figure 5. Channel cut by laser

This finger is capable of actuation, while detecting its displacement. The channel is created by

removing small amounts of electrode on either side, leaving the polymer layer intact. As stated

above, the electrodes are not solid metal; rather they are tightly packed metallic clusters. These

clusters may become more tightly packed or may separate when the polymer bends, which leads

to a change in the resistance of the electrode surface. This change in resistance can be measured

which can then be used to determine the amount of deflection in the IPMC. This design is far

superior to the “sandwich,” as only one IPMC finger must be cut, reducing waste of material.

The channel also does not add rigidity to the entire structure, leading to greater actuation. The

size of the channel may also be made very small, reducing waste of actuation abilities. These

channels are also easy to cut using the mentioned laser cutting technique.

8

1.2 IPMC Microgrippers

1.2.1 Microgripper and Simultaneous Sensor/Actuator

 A microgripper consists of two IPMC fingers used for actuation that are held together

with a holder connected to a power supply, as seen in Fig. 6. The two fingers of matching size

will be situated with a slight gap in between them. They are fixed in the holder as cantilever

beams. The holder has electrodes that connect at the base of the fingers so a voltage or current

signal can be applied.

Figure 6. IPMC Microgripper

As can be seen, the two fingers will actuate towards the middle, as the cations will flow towards

the cathode. In most cases, a small negative or positive voltage is applied to one face of the

electrode, usually 2 volts, as a high voltage may damage the finger, while the other face is

connected to ground. When the voltage is applied, the fingers will actuate, closing the gap in

between them, grasping any object located in this gap.

 Attempts have also been made to assemble the simultaneous sensor/actuator. This device

is much more complex than single finger grippers, as the change in resistance on the surface of

the electrodes must also be measured. The current size and shape of the simultaneous

sensor/actuator can be seen in Fig. 7.

9

Figure 7. Dimensions of Sensor/Actuator

The bottom half of this finger is considered to be the key. This key is the area held by our

custom made holder. This holder requires careful detail as three wires must be attached to each

side, as seen in Fig. 8. The device was made to hold the fingers while ensuring there is good

contact between the fingers and copper leads that must be attached to the holder.

Figure 8. Custom Holder

1.2.2 Manufacturing IPMC Fingers

 Early IPMC research consisted of simply cutting out any IPMC finger and testing it. This

cutting was done using scissors or a scalpel. IPMC material is expensive and this cutting

10

procedure is wasteful. In order to cut complex and precise geometries and also to cut the channel

mentioned above, another method had to be installed. This precision was achieved by installing

an IPMC cutting workstation that is run by accurate motion software and connected to a Nd:

YAG laser (Signatone 1160) with a green light frequency of wavelength of 532 nm, as seen in

Fig. 9. This ablates the noble metal (platinum) leaving the polyelectrolytic membrane intact.

Nafion does not absorb the green light, allowing the laser to penetrate through both sides of the

platinum on the IPMC.

Figure 9. Signatone 1160 Laser Cutting Station

The laser cutting station is equipped with a set of Parker MX80L linear programmable stages,

seen in Fig. 10. These stages are connected to a LabVIEW computer that tells the stages where

to move, as seen in Fig. 11. The geometry of any IPMC finger can be made in a CAD program

and can be exported to NI motion software that converts the CAD model into motion profiles

that will be executed by the stages. These profiles will be stored in LabVIEW codes, which will

run the stages and the laser.

11

Figure 10. Parker Microstage

Figure 11. Cutting Station Connections

This technique is far superior to previous techniques of cutting an IPMC free hand with a scalpel.

Using this technology, we can cut any size and shape of IPMC desired. Although the Nafion is

still intact, we are able to remove the microgripper easily with a scalpel, as the laser leaves

identifiable channels that are easily traced. This is also important in increasing quality and

number of cuts needed, decreasing waste of expensive IPMC material.

 Because the Nafion stays intact, simultaneous sensor/actuators are possible, as the

channel can be cut in between the two. Other features can also be cut into IPMC fingers, such as

lines, to mimic real hands or fingers. This may be done by cutting several lines into one IPMC

piece to make several free fingers that can be actuated individually. A twisting motion in IPMC

12

fingers may also be accomplished by cutting individual fingers in a larger piece and applying

different voltages and signals to the individual fingers.

1.2.3 Microgripper Holders

 As stated above, there must be a way to hold these fingers while making a connection

with the surface of the electrodes. This is accomplished using specialized holders, usually made

in house. These devices are made using manual techniques, such as rapid prototype processes or

by modifying electrical components, as seen in Fig. 12 and Fig. 13.

Figure 12. Finger in electroded holder (Top View)

Figure 13. Finger in electroded holder (Side View)

These holders are constructed using modified IC test clips with copper plates attached to the

clamping area on either side of the IPMC finger. In the beginning, the geometry of these fingers

was quite simple, so the simple IC clips were sufficient. These clips are also only capable of

holding and actuating one finger. The purpose of these fingers is to be able to grasp an object,

13

meaning two fingers need to be actuated simultaneously. In the case of the simultaneous

sensor/actuator, the geometry and connections are very complex, making the holder hard to

manufacture, also making it expensive. This holder was created using rapid prototyping

technology.

1.2.4 IPMC Control

 In order to control these IPMCs and ensure repeatability, a control system was

established. Using the electroded holder seen above and supplying signals output by a computer

running LabVIEW interfaced with a National Instruments DAQ board, we are able to ensure

repeatability and control. As can be seen in Fig. 14, LabVIEW and the DAQ board are used in

most of the processes.

Figure 14. Computer Connections

This system is capable of supplying output voltage to the IPMC fingers, as well as taking

readings given by the vibrometer and force transducer. These output voltage signals are sent as

analog signals to the electrodes connected to the IPMC finger, causing actuation. Multiple

signals can also be sent to segmented fingers in order to cause twisting or different movements.

Computer

•NI Automation
Explorer

•NI Motion
Assistant

•NI LabView

Motion
Interface

Automated
Stages

•NI LabView
Data

Acquisition
Board (DAQ)

•Vibrometer

•Amplifier

•Force
Transducer

•Multimeter

•Pylon Viewer Video Camera

14

Current research has been focusing on using a control loop to maintain a certain position,

accounting for back relaxation. This control loop actuates the IPMC finger while simultaneously

taking resistance readings in the finger to determine if the finger is relaxing and will supply

additional voltage in order to correct for the back relaxation that occurs naturally. This is

beneficial as the finger can maintain its position for an extended period of time.

 Using this equipment, an IPMC microgripper robot was also created. This IPMC

microgripper was attached to the moving stages and programmed to move to certain positions,

actuate, and grasp objects.

1.3 IPMC Force Model and Force Scanner

1.3.1 Force Scanner Overview

 Recently at UNM, a force scan of multiple IPMC fingers was created. This scanner was

used to create topographic maps of various fingers and their gripping strengths at numerous

positions, as seen in Fig. 15. These maps were important as they were compared to modeled

force scans. As can be seen, the force is very high at 0 mm, where the IPMC is connected to the

electroded holder, and small towards the end of the IPMC.

Figure 15. IPMC Force Scan

15

This scanner was created using the custom holder explained above. The IPMC finger was

inserted into the custom holder which is attached to the Parker microstages. Using an Aurora

Force Transducer, the force applied by the finger was measured, as seen in Fig. 16.

Figure 16. IPMC and Force Transducer

LabVIEW is used to control the whole system. Once in place, LabVIEW outputs a voltage

signal to the finger so it actuates into the force transducer and the transducer outputs a signal to

LabVIEW giving the force applied. LabVIEW then outputs a signal to the microstages forcing

them to move a certain distance, and the process is repeated multiple times, as seen in Fig. 17.

The forces applied are then plotted in a 3D map, which is shown above.

Figure 17. Testing Points

16

1.3.2 IPMC Force Model

 An IPMC Force Model was then created using Comsol Multiphysics and Matlab.

Comsol is a type of FEA software used for simulations of coupled physical phenomena. Comsol

uses CAD modeling to make objects and attributes can be added to the CAD model such as

structural mechanics and electrical conduction. This model will be explained in much greater

detail later, but the impact of the model will be discussed here. This novel model was used to

make topographic force maps of several IPMC fingers and was compared to the experimental

results. This model was quite accurate when compared to the experimental results. Although in

its early stages and somewhat burdensome to run, the model worked. The results of one test can

be seen in Fig. 18. This model is important as it is the first of its kind. Using this model, any

IPMC finger can be created and tested to see if is capable of achieving a desired force.

Simulation is much more beneficial compared to experimentally testing potential designs to see

if they are suited for the task. Experimentally testing wastes both time and money, while the

simulation is relatively fast and does not waste material.

Figure 18. Experimental vs. Simulation

17

 While using this model to experiment with other finger shapes, it was found that different

sizes and shapes have drastic changes in results. Most research focuses on simple rectangle

fingers. Shapes such as triangles were not of much interest. Using this model, right triangles

and isosceles triangles were modeled and then tested experimentally to determine the validity of

the model. The results were quite surprising. Two different tests were used to compare the

fingers. First, the finger output vs. size was modeled and tested. To do the experiments, the

force measurements were the same as above, except only a single point was measured 2 mm in

from the tip of the finger. The deflection measurements have a different process. Using

LabVIEW, a square wave signal of 0-2 volts is applied. Using a Polytec laser Doppler

vibrometer (Polytec model # OFV-551 & OFV-5000), the deflection of the IPMC is measured.

The IPMC is held perpendicular to the vibrometer’s sensor head with the electroded holder. The

IPMC starts out straight and deflects when the voltage is applied. The vibrometer measures the

amount of displacement throughout the process and the total displacement of the IPMC is

measured. Two fingers were modeled and tested experimentally. One was a 7x17 mm

rectangular finger and the other was an isosceles triangle with the same height and base but half

the area, as can be seen in Fig. 19.

Figure 19. Rectangle and Triangle Fingers

18

The results can be seen in Table 1. The error in force and deflection for the rectangle is 23.37%

and 2.77%, respectively. The error for the 7x17 mm triangle for force and deflection is 13.3%

and 4.92%, respectively. As can be seen, the force output of the triangle is roughly half the force

produced by the rectangle. This can be explained by the difference in area. Decreasing the area

by half should have a proportional decrease in force produced, as force is a function of the area

of IPMC fingers. The deflection for the triangle is smaller than the rectangle, but not quite half.

Although it has half the area, the triangle has less material than the rectangle and is able to

deflect easier.

Table 1. Output vs. Size

Gripper Dimension 7x17 mm rectangle 7x17 mm triangle

Experimental Force 2.0 mN 1.16 mN

Experimental

Deflection

1.4 mm 1.13 mm

Modeled Force 2.6 mN 1.22 mN

Modeled Deflection 1.44 mm 0.98 mm

Next, the finger output vs. shape was tested. The same 7x17 mm rectangle was used and new

14x17 mm isosceles and right triangles were used, as seen in Fig. 20.

Figure 20. Rectangle and Triangle Fingers

19

 The results can be seen in Table 2. The error in force and deflection for the isosceles

triangle is 14.38% and 23.5%, respectively. The error in force and deflection for the right

triangle is 13.96% and 6.26%, respectively. As can be seen, the force applied by the isosceles

triangle is higher than the force exerted by the rectangle, but the force exerted by the right

triangle finger was similar to the rectangle, while the deflection was higher than the other two.

These results are very surprising.

Table 2. Output vs. Shape

Gripper Dimension 7x17 mm rectangle 14x17 mm Isosceles

triangle

14x17 mm Right

triangle

Experimental Force 2.0 mN 2.92 mN 2.28 mN

Experimental

Deflection

1.4 mm 1.5 mm 1.85 mm

Modeled Force 2.6 mN 2.5 mN 2.65 mN

Modeled Deflection 1.44 mm 1.96 mm 1.735 mm

These tests prove there are many ways to design fingers depending on the design goals. If a

large force is desired, an isosceles triangle finger may be better suited, but if deflection is

needed, a smaller triangle is capable of deflecting a high degree compared to the rectangle finger.

This lead to the conclusion that an optimization package is needed to better determine the best

way to design these fingers.

1.4 Purpose Statement

 Although there have been many advances in IPMC technology, there is still a disconnect

in modeling and understanding the exact behavior of these IPMC microgrippers [6]. The models

that do describe an IPMC are insufficient in predicting force output and actuation. Although

20

they are capable of predicting some behavior, they are not capable of predicting the behavior of

any arbitrary size and shape of microgripper [8]. A model that predicts the behavior of any

IPMC is beneficial to create IPMC fingers that meet design goals. This model also needs to be

able to determine the best design for a given finger in order to reduce waste. An optimization

package incorporated with the current model would be beneficial to research, as a finger can be

modeled using different parameters. The current model can determine force applied by the

finger, but it does not determine the best way to design the finger. An optimization package

could test many different ways to design a finger, depending on the desired force, deflection, or

both. These can be given as design goals and the model will change according to these goals.

This will optimize the finger while reducing waste. The model can also be scaled up or down to

determine the effects of larger or smaller fingers to determine the relationship between size and

force or deflection. The model will also be used to focus on small IPMC fingers, where there is

no evidence whether they can produce a suitable force with very small dimensions [9]. Using an

optimization package, this can be done very easily, as the process will be done autonomously as

long as the model has design goals.

1.5 Contribution

 This model will be a more cost effective way to predict the force output and deflection of

any arbitrary microgripper than simply cutting and testing. Many users currently cut out a

microgripper before they have any knowledge of its force output or deflection and test it, which

increases the cost and wastes material if the microgripper does not produce the desired

characteristics. The model will eliminate the aspect of guessing if the microgripper is suitable

and eliminate unnecessary cutting involved in microgripper research, as the microgripper will be

modeled before it is cut out. It will also lead to optimization as users will be able to design

21

microgrippers for certain purposes and determine whether the gripper they designed was the

easiest and least wasteful way to achieve the actuation force or deflection desired. This model

will use Comsol Multiphysics and Matlab to determine the force and deflection of any IPMC

finger. The existing model will be simplified into one process. The existing model takes many

sub-models to get to the final design. The new model will be made into one process that is very

easy to use. The new model will also incorporate optimization software. ModeFRONTIER is a

powerful design package that is capable of optimizing IPMC fingers given many design

parameters. Using this model that incorporates all of the steps into one model, we can change

the width and length of any IPMC finger and determine the effects. Also, we can limit the area

of the finger to reduce waste and still meet design goals. These design goals will be deflection,

force, and both. The user will be able to input a desired force or deflection and the model will

optimize for the smallest area. The model will also determine the best size and shape to meet

these design goals. This process will be easy to use, as the model will have distinct inputs, such

as length, width, desired force, etc. This model will be beneficial as many iterations will be run

to determine the best design, instead of designing an arbitrary finger and testing to see if it meets

the goals.

22

Chapter 2. LITERATURE REVIEW

2.1 Actuation

 Discovered in 1992, the actuation properties of IPMCs have become more understood

and advanced through the years. These properties were learned by Oguro et al. in 1992 when

bending them under applied voltages [10]. Because of this discovery, many others experimented

to explain the dynamics behind the actuation properties. Shortly after, dehydration was observed

by Kanno et al. when the IPMC stopped actuating after a certain amount of time [11]. This led

to a belief that water molecules with mobile ions were responsible for the electric response in

IPMCs. More evidence of this dependence on hydration was observed by Bar-Cohen when an

IPMC was actuated underwater hundreds of thousands of times with little change in response

[12].

 Greater understanding of the mechanisms behind actuation was continually being

discovered. One discovery was that the polymer contained in IPMCs consists of mobile cations

and water that move when the outer metal layers are charged [3]. These water molecules bond to

the positively charged cations and migrate towards the cathode. This migration is responsible for

some of the actuation in the material, but many believed it did not account for the fast response.

It was soon discovered that Coulombic forces between the charges in the electrodes were

responsible for this fast reaction. These forces caused the migration of hydrated cations towards

the cathode, causing the IPMC to swell towards the cathode side and shrink on the anode side

[13].

 Researchers also experimented with other solvents to determine their effects. Nemat-

Nasser and Wu demonstrated that sodium ions worked better than lithium and hydrogen atoms

when using Nafion based IPMC [14]. They used different cations to change the force and

23

displacement of different IPMCs. The IPMC containing sodium ions produced a greater force

than the others.

 Once researchers began to understand the driving force of IPMCs, they began

experimenting to improve the material. Shahinpoor also experimented with many different

polymers. One problem with the IPMC material was attaching the polymer in between the two

electrodes to create the sandwich. Nafion is commonly used as the polymer, but it was difficult

to attach as it was non-reactive. A solution was achieved when chemical etchants were used on

the Nafion before it was bonded to the metal electrodes. This etching produced microscopic

ridges in the Nafion that the metal electrode was able to attach to. The metal formed dendrites

that were able to anchor in the Nafion [15]. This also led to an interest into the structure of the

metal electrodes. Shahinpoor and Kim studied these metals and their effects on the IPMC [16].

They observed that the surface morphology of the IPMC is characterized by a granular nano-

roughness of the order of approximately 50 nm. This characteristic is responsible for producing

a high level of electrical resistance, yet provides a porous layer that allows water movement in

and out of the Nafion.

 Due to their dependence on hydration, IPMCs have some limitations. Hydrolysis is a

very common occurrence in IPMCs when the voltage is raised above 1.23 volts [17]. Once it is

raised above this limit, hydrolysis occurs very quickly causing the IPMC to desiccate, producing

hydrogen gas at its electrodes, thus losing its actuation capabilities. Hydrolysis is common in air

as there is no shielding to contain the hydration once the voltage is high enough. When the

IPMC is actuated in water, hydrolysis is not a concern as the IPMC will continue to be hydrated.

Although hydrolysis occurs at a low actuation voltage, the IPMC is still able to actuate with

24

voltages smaller than 1.23 volts. This is especially important in micromanipulation, as a high

voltage may damage cells.

2.2 Sensing

Sadeghipour et al. learned of the sensing capabilities of IPMCs while using them as

hydrogen pressure transducers [7]. Due to this, researchers became increasingly interested in

understanding and explaining the science behind the sensing capability of IPMCs. This

capability lies in the presence of the mobile charges contained in the negatively charged

polymer. When an IPMC is deformed, one side of the polymer compresses causing the negative

charges to become more compact. Due to the compression on one side, the other side

simultaneously expands, spreading the molecules. As a result, the mobile cations migrate to the

expanded side due to a decrease in concentration. Sampling the electrodes, a voltage difference

is noticed as cations and water molecules are moving. Although these characteristics seem

similar to actuation, it has been proven experimentally that the voltage produced when being

physically deformed would have to be amplified by two orders of magnitude to actuate the same

piece to the desired location [9]. Although this signal is smaller in magnitude, it is still very

useful for sensing. This may prove useful in biomedical and engineering purposes, as IPMCs

can be used as a simultaneous sensor/actuator.

Several design applications have been proposed that utilized the IPMC as simultaneous

actuator and sensor. Brunetto et al. [18] have proposed the use of IPMCs in a cantilever

configuration as a vibration sensor. Their prototype consisted of a system that imposed vibration

to the base of a cantilever, and used a circuit to measure the tip deflection with respect to the

base.

Bonomo et al. [19] presented a prototype of a tactile sensor for biomedical applications

25

that utilized an IPMC as both an actuator and sensor. Their sensor was able to detect both

contact force and the relative hardness of the tissue compared to a control sample. The actuator

IPMC in their prototype was used to bend the sensor membrane around an object. When an

object came into contact with the system, it limited the actuator vibration amplitude which

resulted in the sensor output signal decreasing. The actuator vibration amplitude also depended

on the stiffness of the object. Stiffer objects allowed for no deflection of the actuator, whereas

less stiff materials resulted in an amplitude of vibrations that was proportional to the stiffness.

Although their sensor output signal was affected by noise, the actuator was able to deform

objects that had a Young’s modulus under 1kPa.

 As stated above, these IPMCs can be used as simultaneous sensors and actuators.

Preliminary research consisted of two IPMC grippers glued to each other. One IPMC was used

to sense its deflection, while the other actuated. Although it worked, the extra stiffness of the

added sensor hindered the actuation of the whole system. More advanced combinations were

soon discovered by Kruusamae et al. [20] when they discovered a channel can be cut in the

IPMC surface creating two separate components. This led to a microgripper that is capable of

actuating when given an input voltage, which causes a change in resistance in the outer channel.

This change in resistance can be used for sensing. These advances led to a need for better

understanding and modeling these complex IPMCs.

2.3 Modeling

 Most early models to explain macroscopic qualities were based solely on

experimentation. Researchers take the experiments and fit equations around their results to

obtain their models. Kanno et al. developed a model that described the relationship between the

input voltage and the change in current [11]. They were also able to relate the change in current

26

to deformation. They described the model of an IPMC as having three phases: mechanical,

electrical, and stress generation. This model applied a simple circuit that resembled a RLC

circuit, but this model only described what happened at the initial actuation. These models are

accurate in describing the immediate response of the sudden increase in the current, but new

models aim to predict the effects of transient behavior. Current theories are trying to describe

this transient behavior, but it is very complex as it is due to a chemical-electrical-mechanical

reaction. These models also do not incorporate the sensing capabilities of this material.

Although researchers understood actuation was caused by movement of ions, there was no clear

explanation behind the dynamics of sensing.

 Many researchers are actively trying to model and understand IPMCs as artificial

muscles. Using these models, researchers have discovered many important attributes, including

material strains, Coulombic forces, current induced, and transportation of ions. Although these

models have led to better understanding, there is little knowledge of the interactions between the

forces inside the IPMC. This is apparent as there are many different theories as to what causes

the actuation. Nemat-Nasser has developed models to understand this behavior using the

material properties of these IPMCs, including mechanical properties, electrodynamics, and

chemistry [21]. His models led him to believe that actuation is due to electrostatic forces that

exist due to the redistribution of charges. The areas high in cations will swell, while the other

side with fewer will shrink. He believes the swelling occurs due to electrostatic interactions

rather than the migration of cations and water. Branco and Dente also developed a model using

electric field distribution and other electromechanical properties [22]. Their work was based on

Shahinpoor and Nemat-Nasser, but they also neglected hydration and considered actuation to be

27

caused by electrical effects of mobile ions. Many assumptions are made in these models and

they only apply to the gripper being tested.

 For these reasons, most researchers simply use closed loop control of IPMCs to stabilize

the force output. Bhat and Kim [23] acknowledge open-loop position and force responses are

not repeatable. Therefore this closed-loop control is critical in ensuring repeatability and

reliability.

 Currently, many researchers are using finite element methods to predict IPMC behavior.

Lopes and Branco successfully modeled large, simple IPMCs and compared them to

experimental results [24]. They used Comsol to determine their displacements when subjected to

an induced voltage. Their model bases actuation on the repulsive electrostatic forces that exist

between anions in the IPMC. Pugal was also able to successfully model the electrokinetic

migration of ions in Comsol [25]. This simulation was able to model the tip displacement of an

oscillating actuator. Pugal et al. also used Comsol to determine the instantaneous electric current

induced by a charge in a FEA model using the Ramo-Shockley theorem [26]. They studied the

effects of ionic motion on electrode voltage and current. Although the model worked,

deformation studies were difficult to accomplish, as meshing techniques led to extreme

computational load.

 Current methods at UNM are also using finite element models to understand and predict

the behavior of IPMCs [27]. This method starts with a model that predicts ionic concentration in

an IPMC given an input voltage. The concentration is predicted starting in Comsol, where a box

is modeled with ion transport on the surface due to a given input voltage. It is then exported into

Matlab to predict the concentration throughout the whole box which represents an IPMC.

Matlab is then used to create a grid to encompass any IPMC. This grid is needed as the model

28

aims to predict the behavior of any IPMC. These models are then used to determine the stress

concentration in the modeled IPMC to use in the distributed force simulation. This stress

distribution is then imported into the model, representing the stresses between ions, which cause

deflection in the IPMC. Then, a model is created where a force transducer is in contact with an

IPMC actuator. This simulation will then predict the force of the IPMC on the transducer. The

model is then exported into Matlab where it is programmed to run iteratively to model different

locations where the transducer may be placed.

 This model is capable of predicting the force generated by an IPMC on an object. This

model has not been used to test very small microgrippers. There is a belief that with very small

microgrippers there will be a change in behavior. The current model being used at UNM will be

expanded upon and simplified in order to predict the behavior of small IPMC microgrippers and

will be made into a single model that will be much easier to learn and use than the previous

model currently being used at UNM. Optimization software, modeFRONTIER, will also be

added to the model in order to optimize fingers for force or deflection.

29

Chapter 3. IPMC FORCE MODEL

3.1 Diagram of Models

Figure 21. Smaller models incorporated in complete model

3.2 Approach Overview

 As can be seen in Fig. 21, the current model consists of several different sub-models that

must be combined to make the complete model. These models correspond to the coupled

electrochemomechanical processes that are responsible for the actuation of a cantilevered IPMC

finger. The end result will be a computer simulation of the force or deflection of any finger. The

complete model that consists of the smaller models will be made into one complete code. This

must be done as modeFRONTIER must interface with the code, and this code must have the

complete model in order to change the model parameters.

 All the computer models will be made in Comsol Multiphysics and Matlab. Comsol is a

type of FEA software used for simulations of coupled physical phenomena. Comsol uses CAD

modeling to make objects and attributes can be added to the CAD model such as structural

mechanics and electrical conduction. After any model is completed, it can be represented

graphically in Comsol. Comsol is also interfaced with Matlab. Comsol is built to run with

30

Matlab, meaning any model built in Comsol can be saved as an M-file in Matlab and edited.

These models can be used to run simulations iteratively to allow for greater design capability.

The complete model will predict the force output and deflection. It will use the solvers

mentioned to predict the electrochemomechanical transduction processes that cause the actuator

to deflect. The smaller models will consist of a geometrical, voltage, concentration and force

distribution. The complete model will be interfaced with modeFRONTIER and many different

optimization tests will be run. These optimization tests will include optimizing a finger to

achieve the highest force, the highest deflection, or the combined highest force and deflection, all

in different test runs.

Section 3.3 will cover the process of creating domains, i.e., the IPMC finger. Section 3.4

covers the process of meshing domains in Comsol. Section 3.5 will cover the process of creating

the smaller models, as seen below. This will cover the process of using the electrical model and

using the migration of ions in Comsol to determine the concentration of cations and anions in the

Nafion when applied with a voltage. Using the concentration of these ions, the force at any point

is determined using a novel force equation. This force inside the finger is then incorporated in

Comsol and used to determine the behavior of the finger. Below is a brief outline of the

complete process.

 3.5.2 Comsol/Matlab Electrochemical Model

 This step creates a base model that yields the ionic concentration

through the thickness of IPMC as a function of input voltage and time.

This model contains a single line that is easily meshed. The model

provides an accurate representation of the migration of ions due to a given

voltage signal.

31

 3.5.3 Electrical Model

 This step contains the creation of an electric model that predicts

the voltage distribution throughout an arbitrarily shaped IPMC finger

based on the input voltage. This involves modeling and solving the IPMC

finger in Comsol and then exporting the solution to Matlab in order to

extract the voltage at any given point in the finger.

 3.5.4 Matlab Force Model

 The results of 3.5.2 and 3.5.3 will be saved as m-files and opened

in Matlab. Based on the voltage distribution, the ionic concentration

distribution is predicted for any IPMC finger. Given this concentration,

Matlab is then used to predict the stress field throughout the material.

Lastly, the stress field is saved as a text file to be imported back into the

Comsol model.

 3.5.5 Comsol/Matlab Force and Deflection Simulation

 Two simulations will then be created in Comsol using the stress

field predicted by the force model in Matlab. The first simulation is

simply the deflection of the finger when modeled as a cantilevered beam.

The second simulation is a stress strain simulation. This simulation

involves the force experienced by a force transducer in contact with the

IPMC finger.

32

3.3 Geometrical Modeling

 The process begins with the geometrical modeling of any IPMC in Comsol, as can be

seen in Fig. 22. This requires the creation of three domains to represent the Nafion polymer and

two metal electrodes. Using the modeling tools, any shape desired can be created. The user can

choose to model simple blocks using the block function, or can make complex shapes with the

Bezier polygon tool, depending on the desired shape of their finger. First, the finger must be

modeled. This can be any complex shape, but for this study only rectangles and triangles are

used. As mentioned earlier these shapes had quite different results. An application named

“Comsol 4.3b with Matlab” can be seen on the Desktop and must first be opened so the two

programs will communicate with each other and any model can be saved as an m-file and opened

in Matlab. Comsol 4.3b is then opened and a 3D space dimension is chosen. Then the user must

specify the physics to be used. To start, the electrical currents (ec) under AC/DC will be used.

The electrical modeling will be explained later, but it is easier to add physics before the IPMC

finger is created. The geometry is then created using a variety of CAD tools. In the case of the

rectangle finger, a simple block is used. As seen in Fig. 22, a 7x17 mm block is created using

the block geometry and given a thickness. Two identical blocks will then be created and placed

on top of the block already created. This is done in order to model the three layers of an IPMC

finger. The three layers must also be offset by the thickness of each layer to make a sandwich.

As stated above, an IPMC is made of three distinct layers. In our case, we have two layers of

platinum and one thicker layer of Nafion. The IPMC material will then be specified by the user.

Comsol has a variety of built-in materials in the material library. The user can also change the

properties of the material, if desired, as can be seen in Fig. 23.

33

Figure 22. 7x17 mm IPMC finger

Figure 23. 7x17 IPMC Material Properties

Complex shapes are also easily drawn using the CAD tools. In the case of the triangles, a work

plane must be created to use the Bezier Polygon tool. This is easily done using the geometry

tool, as seen in Fig. 24. Once the work plane is added, the plane geometry feature is used to

34

create the Bezier Polygon and make a triangle, or any other shape. The Bezier Polygon must

then be extruded to the thickness desired and a single triangle is created. This process can be

duplicated to create three layers, to make the sandwich, but the work planes must be offset by the

desired thickness of IPMC layers. The material is once again specified by the user and the model

is ready to be used to determine the electric field created throughout the finger when applied a

given voltage. When the electric currents physics is specified as the physics to use, Comsol

determines if all material properties needed to solve the problem are supplied.

Figure 24. Work Plane in Comsol

3.4 Meshing IPMC Fingers

 Meshing is one of the most important parts, and one of the most challenging, when

designing and testing these fingers. The geometry being modeled must be meshed correctly or

the model will not give correct results. The challenge is to mesh the electrical and chemical

35

gradients in such a way that they are represented correctly. Due to the thickness of IPMC

fingers, this is hard to do. These gradients are extremely high and occur through this thickness.

The thickness of IPMC fingers is usually around 200 microns, while the width and length may be

10-20 mm. In order to mesh such thin elements, automatic meshes in Comsol create meshes

with hundreds of thousands of elements, which most computers are unable to solve. This is less

of a problem when using electrical currents, but when predicting force and deflection it proves to

be a problem. In order to mesh thin geometries, a couple of methods can be used. The first

method involves using a rectangular swept mesh. This mesh creates a rectangular grid on the

face of the geometry of interest. The grid is swept across the geometry to create a mesh with

solid rectangular elements. This meshing technique is favorable when the IPMC finger is a

simple rectangular solid, but does not work well when complex geometries are being used. In

the complex cases, the easiest mesh to use is a user-controlled mesh that enables the user to scale

the mesh in the direction of the thickness of the IPMC finger, as seen in Fig. 25. This mesh

creates tetrahedral or triangular elements. Using a scaling factor, we are able to get as many

elements throughout the thickness as possible. This scaling factor depends on the model being

solved and must be changed according to different models. The user can choose a predefined

mesh ranging from extremely coarse to extremely fine and then change the scaling factor to

choose the best mesh. Another complication arises when trying to mesh the IPMC finger and the

force transducer straw that is represented as a small glass cylinder in Comsol. The area where

the straw meets the finger must be meshed by using the user-controlled mesh parameters and

keeping the predefined mesh degree for the finger close to the degree for the transducer, i.e.,

extra fine for the finger and fine for the transducer straw.

36

Figure 25. Meshing IPMC Fingers

3.5 IPMC Force and Deflection Model

3.5.1 Approach Overview

 This model is created to predict the deflection and force output of an IPMC finger as a

function of its electrical, chemical and mechanical properties. As mentioned above, the process

is divided into smaller sub-models, as can be seen in Fig. 26. The process of putting these

models together can be seen in Fig. 27.

37

Figure 26. Model Diagram

Figure 27. Force Modeling Process

 The model starts with an electrochemical model that predicts the distribution of cations

due to the imposed electrical field (Section 3.5.2). This model is used in all IPMC models, as

this is just a representation of the ion movement. This will be the same in all IPMC fingers.

38

This is done using a concentration distribution modeled in Comsol. A 180 micron line is

modeled in Comsol, representing the electroactive Nafion layer. In this model, the platinum

layers have been omitted, as we are interested in the distribution of the cations and their

movement in Nafion. An input voltage is applied to the model as a function of time and the

concentration throughout the material is predicted. The ionic response will be accounted for at

every possible input value at any given point. These concentration values will then be used to

determine the stress values inside the finger. A separate model is created in Comsol that predicts

the electric field distribution for any arbitrarily shaped IPMC finger (Section 3.5.3). The results

of both of these models will be saved in Matlab where the stresses throughout the material will

be predicted (Section 3.5.4). Finally, Comsol and Matlab will be used to simulate the deflection

and force exerted by the IPMC finger on a transducer (Section 3.5.5).

3.5.2 Comsol/Matlab Electrochemical Model

3.5.2.1 Approach Overview

 This model will describe the behavior of an IPMC finger as a function of its electrical,

chemical, and mechanical properties. This is started using the electrochemical model that

describes the redistribution of cations due to an applied voltage. This model will consist of a 180

micron line that represents the electroactive Nafion layer. This model does not contain the

electrode regions, as we are concerned with capturing the distribution of cations in the Nafion.

This shape is very easy to mesh as it is simply a line. This model is chosen, as it is important to

capture the cation concentration gradient at the two distinct boundary layers that form near the

electrodes during actuation. One of the layers will have a very high concentration of cations near

the cathode and the other is depleted of cations near the anode. The goal of this model is to

predict the distribution of cations due to an arbitrary DC signal as a function of time. Once the

39

model is solved in Comsol, it will be converted into an m-file, where it will be run iteratively.

This must be done, as the response will be predicted at any voltage less than the input voltage.

This will be used to simulate the response of the finger at any point, especially points far from

where the voltage was applied, as the voltage drops. In our case, the model will involve an input

signal of 2 volts, so the model will be run iteratively in Matlab to predict the responses for the

values between 0-2V inputs. This process captures the ionic response for any possible input

value experienced by points in the finger. These responses will be saved as a matrix in Matlab

and referenced in the force calculations.

3.5.2.2 Concentration Distribution Theory

 In this section, we are interested in the electro migration of cations under an imposed

electric field through a porous medium. This model uses Comsol’s Transport of Diluted Species.

This physics uses the Nernst-Planck equation for ion transport, to model the flux of cations. This

equation contains terms describing fluid velocity, diffusion, and electrophoretic migration for the

surrounding medium. Comsol uses the equation:

3.1

Where R is a reaction term, D is the diffusivity (m
2
/s), c is the concentration (mol/m

3
), z is the

charge number (unit less), is the mobility (s*mol/kg), F is Faraday’s constant (C/mol), and u

is the initial velocity of species (m/s). cu is zero as the medium containing the cations is not a

flowing liquid. The system is also conservative with respect to the number of cations as the

domain is isolated, meaning R will be zero. A brief outline is now given to explain the process,

in order, of how we will create this model.

 Geometry is created using Comsol’s CAD tools

40

o 180 micron line is created to represent electroactive layer (Nafion)

 Physics is added to the model

o Physics is added to base geometry using application nodes

o Transport of Diluted Species is added to model to model migration

of cations through porous medium

o Electric field is added to model using variables

 Model is meshed

o Geometry is meshed using a scaling factor

 Model is solved and Results are plotted

o Solver is selected and problem is solved

o Concentration of ions is plotted

 Model is exported to Matlab

o Model is saved as a Model M-File and can be opened in Matlab

o “Comsol 4.3b with Matlab” icon must be selected to open

connection with Matlab

 Variables added in Matlab M-File

o M-file is converted into a function to allow inputs and return

outputs

o Model performs parametric sweeps over many voltages to create

history of ionic concentrations

 Ionic Concentration history of IPMC is exported as a text file

41

3.5.2.3 Modeling

 First, the model is created using a single domain representing the electroactive polymer,

as seen in Fig. 28. This line is created as explained in Section 3.3. This method is used to create

a 180 micron line to represent the Nafion layer. Physics will then be added to the base model.

Figure 28. Concentration Model

After the geometry has been created, Transport of Diluted Species application mode is added to

the model by choosing the physics, as seen in Fig. 29. This application mode predicts the

distribution of cations due to an induced electric field. The electric field will be added as a

function in the model. This is necessary for solving the electro migration problem. This is done

under Global Definitions>Variables, this can be seen in Fig. 30. We can add “Van” and “Vcat”

to correspond to the voltage at the anode and the voltage at the cathode, respectively. Now, we

will define the physics.

42

Figure 29. Physics Added

43

Figure 30. Variables Added

We begin by adding “Diffusion and Migration” to the model. This is accomplished by right-

clicking “Transport of Diluted Species” and choosing “Diffusion and Migration.” Under Model

Inputs, we will add an electric potential, as can be seen in Fig. 31. This voltage potential will be

a function of “Vcat” and “Van.” As stated above, there will be no flux, so we will choose the

two ends to have a no flux condition. The model must then be meshed as described in Section

3.4. A user-controlled mesh will be used. Clicking on the size option, we can select a custom

mesh with a maximum element size of 1e-6 m, as seen in Fig. 32. This creates an element for

every micron, or 180 elements.

44

Figure 31. Electric Potential

45

Figure 32. Meshing

Opening the solver branch, we can see the solver is already configured to be a time dependent

problem. The solver configurations branch contains information about the type of analysis, the

solver settings and the solver being used. The “Results While Solving” also contains different

plots that may be represented graphically. In most cases, the automatic solver is used and the

results chosen by Comsol are the correct results. Comsol automatically chooses solvers based on

the problem type. After the settings in the solver parameters are chosen, the equal sign in the

toolbar at the top of the screen is selected and the problem is solved and the results will be

displayed graphically. Plotting options are also available, as seen in Fig. 33. Right-clicking

“Results,” many different plots can be added to the model. In this case, Comsol automatically

plots the concentration of the line, as can be seen in Fig. 34. Other plot types are available, such

as slice, sub domain, deformed and boundary plots. The model is then complete.

46

Figure 33. Solver and Plots

Figure 34. Concentration Plot

47

 Next, we must export the model to Matlab as an m-file. The completed model will

include the CAD model, solvers, and plots that were discussed. Comsol will store everything

that was discussed in an m-file. This includes things that may have been deleted or numerous

plots that may not be needed. This will be stored in the m-file and can become quite large. In

order to save a model that is clean, there is a way to rid the code of anything that has been

deleted. Clicking “File” and choosing “Reset History” will clean the model of any unwanted

code. The “Save As Model M-File” can then be selected under “File.” This will produce an m-

file that can be edited and run in Matlab. In order for Matlab to understand the language used in

the code, Comsol must be connected to Matlab, as described earlier.

 Next, we will examine the m-file of the Comsol model. This file contains many lines of

code that indicate whether the model contains parameters, data or variables. The line that

contains variables can be seen in Appendix A1. Other processes such as geometry and meshing

can also be seen. This code is not in a form where it can accept input variables; instead it is a

history of what has been done in Comsol. Using this m-file, we will then create a program to

yield concentration values for specific voltage inputs.

 First, a variable containing a vector of solution times is created. This is used to indicate

to the solver when solutions are returned. A voltage variable will also be created in the m-file.

This will also be a vector that contains an evenly spaced series of numbers from zero to the

maximum applied voltage. The last variable will be an empty matrix that is used as space for the

storage of concentration values and is in the form “Concentration (z, time, voltage).” The rest of

the model code is then placed in a for loop whose number of iterations is equal to the number of

elements in the voltage vector. Next, the voltage signal will be changed. The variable

controlling the voltage vector will be “V.” This value will be replaced with a variable string.

48

In our case, we want to increment through the voltage vector, so we will change the

model.variable to model.variable(‘var1’).set(‘Va’, strcat (num2str (V_a)), ‘[V]’). This will cause

the voltage to change with each iteration and evolve over time.

 Next, the code must be able to extract and store the solutions. This is done using

mphinterp. The solution to the model at the end of each iteration will be stored as a FEM.

Mphinterp will reference the fem for a solution at a given point in time and space. The format

will be extracted as “con= mphinterp (fem,’c’,’coord’,’z’,’T’,tf)’.” The concentration at any

point is the variable of interest which is shown as ‘c’. We will place mphinterp into two “for

loops” to make a concentration profile for the cations through the thickness of the Nafion. The

first loop increments by time steps to extract the concentration profile for every solution time.

The second loop increments by the height in the z-direction, returning the concentration at values

through the thickness of the finger. These results are then stored in an array according to the

voltage, time and z-position.

3.5.3 Electrical Model

3.5.3.1 Approach Overview

 We created the model that is able to predict the distribution of cations through an IPMC

finger due to an induced voltage in the last section. Next, the electrical distribution in the IPMC

will be modeled in Comsol. This is done as the input voltage will decrease in strength as the

distance from the application point is increased. As a result, the actuation of the finger will also

decrease in strength, as actuation is proportional to input voltage. The model is created using the

modeling techniques described in Section 3.3. The three domains representing the IPMC layers

will be modeled. Then, the finger will be meshed and solved. Lastly, it will be exported to

Matlab as a fem structure to be incorporated into the force model.

49

3.5.3.2 Electrical Currents Theory

Electrical currents, combines Ohm’s law and Poisson’s equation into one equation, given as:

 3.2

where sigma is the conductivity (S/m), V is the voltage (V), is the externally generated current

density (A/m
2
), and is a current source (A). is zero as the Nafion does not generate any

current during actuation. As stated above, the top and bottom domains have electric potential

boundaries where they contact the electrodes. So, . In the case of the boundary with the

ground condition, and the other boundary is equal to the value specified.

The simulation will be run in Comsol using this theory and the voltage distribution inside the

IPMC will be predicted, once the mesh has been assigned. A brief outline is now given to

explain the process of modeling the voltage distribution.

 Geometry is created using Comsol’s CAD tools

o Three domains are created that represent the thick layer of

Nafion and the two thinner electrodes (Platinum)

o Layers can be created using the block tool or drawn on

work planes

 Physics is added to model

o Electric Currents is added to model

 Add boundary conditions and sub domain settings to model

o Materials are selected for geometry (Nafion and Platinum)

o Electric Potential and Ground applied to edges

 Mesh Geometry

o Geometry is meshed using user-controlled mesh

50

 Model is solved and results are plotted

o Solver is selected automatically by Comsol

o Plots can be changed to sub domain or volume to represent

voltage distribution

 Solution is exported to Matlab

o Solution is exported as m-file (Appendix A2) to be called

as a fem structure into extract function (Appendix A3)

3.5.3.3 Modeling

 This model will predict the electric potential in an arbitrarily shaped IPMC finger. In this

case, we will model a 7x17 mm rectangle finger. First, we must model the voltage distribution.

Starting by clicking on Comsol 4.3b with Matlab, a command window will open that connects

Matlab to Comsol. Then, selecting Comsol 4.3b, Comsol opens. Selecting 3D, AC/DC>Electric

Currents (ec), Stationary, Finish, the finger is ready to be built. Any shape can be modeled using

the Geometry tool. The three blocks will be built, representing two layers of platinum and one of

Nafion, as seen in Fig. 35. This is done by right-clicking geometry and selecting “block.” The

block is extruded to the thickness of the first layer of platinum. This can then be duplicated to

make two more layers that have the same area, but the Nafion will be thicker.

51

Figure 35. Arbitrary Finger

The materials must then be assigned to the layers. Using Materials>MEMS>Metals>Pt and

assigning to Block 1 and Block 3 and Materials>Built In>Nylon to Block 2. Although these

materials already have assigned values, the values for platinum must be changed a little to

account for the material being platinum salt. In this case, the electrical conductivity will be

changed to 1e6. Now, we must assign the physical properties to the model. This is

accomplished by assigning the ground and electric potential to the left top and bottom of the

finger. This can be seen in Fig. 36 and Fig. 37.

52

Figure 36. Ground

Figure 37. Electric Potential

Next is the mesh. Using Mesh>User Controlled>Size>Normal the finger is meshed, as seen in

Fig. 38. The model can then be solved. Comsol automatically chooses the best solvers and plots

53

the results, as seen in Fig. 39. The plot can be changed by right-clicking Results>3D Plot Group

and choosing the type of plot desired. Once the model is completed it will also be saved as a

model m-file. This m-file will not be edited; it will simply be called as a fem in later codes.

Figure 38. Meshing

Figure 39. Results

54

3.5.4 Matlab Force Model

3.5.4.1 Approach Overview

 As seen in the previous sections, we now have a model capable of predicting the

concentration distribution through the thickness of the IPMC finger given a voltage input and we

also have a model capable of predicting the voltage distribution across the surfaces of an

arbitrarily shaped IPMC finger. Now, we can create a simulation to determine the force

distribution throughout an IPMC finger. The voltage distribution can be used along with the

concentration tables to determine the local concentration values throughout the IPMC finger.

This will be accomplished programmatically using Matlab and the results will be converted into

a distributed force which will be used to drive the IPMC finger during actuation simulations.

3.5.4.2 Force Model Theory

 As discussed in Section 1.1.2, the basic structure of Nafion is considered to have two

regions, hydrophobic and hydrophilic. These regions contain micellar structures forming a grid.

When hydrated, the solvent collects in the micelle and the channels that connect them. When

actuated, the cations in the micelle are driven towards the cathode. Cations are added to the

micelle near the cathode, positively charging the micelle. Micelle near the cathode will be

positively charged, forcing a repulsive force between them. This is also true near the anode,

where the micelle will be negatively charged. The force between these two spheres, or two

points, is calculated using Coulomb’s law given as:

And

3.3

55

 This expression states that the force (F) between any two points is proportional to their

charge (q) times a constant divided by the square of the distance (d) between them. The next

expression applies to the case of two nested spheres that have the same charge. We will use this

in the case of our IPMC, because the concentration does not vary much. The third expression

states the difference between the number of anions and cations is equal to the change in

concentration since their numbers are initially equal.

 But, our electrochemical model predicts the concentration of cations in moles per cubic

meter and equation 3.3 uses the change in concentration of an individual cluster. An equation

will be needed to convert the molar cation concentration into cluster concentration.

This equation is given by:

3.4

 where is the molar concentration of cations, is Avogadro’s number, and is the

number of clusters per cubic meter. The number of clusters is calculated by dividing the total

number of cations by the number of clusters per cubic meter, assuming the cations are initially

distributed equally. Using these equations, equation 3.3 can be simplified to:

3.5

 But, we want an equation in terms of layers, not clusters. This is important because the

repulsion forces between layers causes the actuation in IPMCs. It has been proven that the force

in any direction is equal to the force exerted on a plane normal to that direction. This force only

depends on the force that the two layers of cluster exert on each other. This implies each plane

56

experiences the same force as all the other planes, so the force is not increased by adding layers.

This simplifies equation 3.5 to:

3.6

 Once again, this equation must be adjusted to account for multiple layers, as equation 3.6

only applies to double layer systems. This equation will be adjusted to account for the presence

of multiple layers. Assuming even separation and a large number of layers, the combined force

of each additional layer can be approximated as

 with a solution of

. Combining these

equations, equation 3.6 can be simplified as:

3.7

Another brief outline will be given to explain the process of the force and deflection model.

 Voltage distributions extracted from FEM structure

o FEM Structure contains the voltage distributions of the two

electrodes produced by the electrical model

o Voltage is extracted using mphinterp and returns the

voltage at any position

 Voltage is used to determine ionic concentration

o Voltage potentials are used to create concentration matrix

that defines the distribution of cations.

 Force Matrix is produced

o Concentration matrix is converted into matrix of forces

using force equation

57

o Force matrix is stored in Comsol model to simulate

actuation.

3.5.4.3 Deflection and Force Modeling

 In Section 3.5.3, a FEM structure was exported as an m-file into Matlab. This FEM

contained the voltage distribution of an arbitrarily shaped IPMC finger. This distribution will be

extracted from the m-file using an extract function (Appendix A3) and stored as a matrix. Again,

we will use mphinterp to extract this information, but this time the function will be passed a

matrix. This matrix will contain spatial coordinates of the model and at each point in the matrix,

a voltage will be extracted. Now, we have a matrix that contains information about the voltage

and position for the entire actuator. This will now be applied to the concentration history that

was solved for in Section 3.5.2. In this section, we created a model to simulate ionic

concentration in Nafion. The results of this model were exported to Matlab as an m-file and

processed into an array. These results will be combined to create an array of concentration

values for the entire finger as a function of time. The array is in the form Concentration (voltage,

time) = [z concentration], where z is the thickness being sampled. This array returns the

distribution of cations at any point and time. Now, we will develop a model that uses this

concentration distribution to describe the stress in the material. This is quite easy, as all the

variables are known, as we just developed the concentration matrix. The force is then calculated

at every point using Equation 3.7. This will return another matrix in the form Force = [x y z

Force]. The force will be calculated and can be saved as a text file which will be returned to

Comsol.

58

3.5.5 Comsol/Matlab Force and Deflection Modeling

 The force concentration is then uploaded into the Comsol model, using a simple property

tool. This is done using an interpolation function that loads the text file acquired earlier into the

IPMC finger that was modeled in the electrical modeling section. The text file contains four

arguments, three spatial coordinates and the force at every coordinate. By assigning “Force” as

the interpolation function and its location in the file, Comsol is able to load this into the modeled

finger. In this case though, different physics will be used, as we are interested in the deflection

and force applied by the finger on the glass transducer straw. The model will once again be 3D

and the physics used will be Structural Mechanics>Solid Mechanics. The model must then

either be rebuilt or simply copied from the electrical model, but in the new model, the IPMC

finger will simply be one body, instead of three layers. This is done to avoid three very thin

layers when meshing. The three layers will move as one when actuated, so this is a reasonable

assumption.

 Starting with a new model and choosing 3D>Structural Mechanics>Solid Mechanics,

Stationary, Finish, we will finish the process. This time, only one block is needed. The block

will be built and the material assigned. The material will be Nylon, but the material properties

will be changed to mimic a composite material of Nafion and Platinum. The text file will be

loaded using Global Definitions>Functions>Interpolation. The data source is a file and can be

found by browsing the computer files and selecting the desired text file. The “Function Name”

will be “Force” and “Position” will be “4.” The Solid Mechanics section will then be selected

and the fixed constraint will be assigned on the far left end of the finger, as seen in Fig. 40.

59

Figure 40. Fixed Constraint

The finger will be modeled as a cantilever beam that is fixed at one end where it is held by the

electroded holder. A body load must then be added to the model. This is done using the Solid

Mechanics option. Choosing the IPMC finger as the domain, the body load will be recognized as

“Force,” which was loaded in the text file above, as seen in Fig. 41.

Figure 41. Body Load

In order to load the body load into the finger, the force must be defined as a body load. This

means the inputs must be unitless, so the force is entered as “Force(x [1/m], y [1/m], z [1/m]).

60

The finger must then be meshed. This is very important in this stage. Once again, the user-

controlled mesh will be used, but this time, an extra fine mesh will be used and the scaling factor

under Free Tetrahedral>Scale Geometry>z-direction can be used. The model can then be run.

The results are then plotted automatically. The plot desired in the deflection model will be a

Volume Plot with Total Displacement as the “Expression.” The finger will actuate due to the

migration of cations and the force produced inside the IPMC, as seen in Fig. 42. The total

displacement can be computed using the Derived Values tool, under point evaluation and

choosing the far right tip of the finger that deflects, as seen in Fig. 43. Total displacement is

already chosen when using this tool. Under the Solid Mechanics menu in the evaluation window

is Solid Mechanics>Displacement>Total Displacement, which will give the total displacement of

the tip of the finger.

Figure 42. Finger Deflection

61

Figure 43. Deflection Measurement

The straw cylinder representing the force transducer can then be modeled in the previous

deflection model. A cylinder will be modeled in Comsol to represent the straw on the force

transducer. The same simulation will be run that predicts the deflection of the IPMC, which will

deflect into the force transducer. This will be done in the same way the deflection was

measured. The only difference is a cylinder will be modeled to represent the straw on the force

transducer. The straw will have a diameter and height of one millimeter. The cylinder will be

offset by the thickness of the finger and will be located two mm in from the end of the tip of the

finger. This is done in all models to keep the location of the transducer consistent and also to

avoid having the transducer at the very tip of the finger which causes errors in meshing. The

cylinder will be assigned “Silica Glass” material, which is preloaded in Comsol. The bottom of

the cylinder will also have a fixed constraint, so it will not move and will be in compression

when the finger contacts it. The mesh for the finger will be the same, while the mesh on the

straw can be “Fine” as it is not as thin. A fixed constraint must be placed on the bottom of the

cylinder, as seen in Fig. 45, and the model can be solved. The force exerted on the load cell will

62

then be predicted by Comsol, once again using the “Derived Values” tool. Using Derived

Values>Volume Integration>Solid Mechanics>Reactions>Reaction Force, the force exerted on

the cylinder will be given in mN.

Figure 44. IPMC and Cylinder

Figure 45. Cylinder Constraint

63

The force exerted on the cylinder can be computed using the Derived Values>Volume

Integration, under Expression, as seen in Fig. 46 and Fig. 47.

Figure 46. Reaction Force on Cylinder

Figure 47. Reaction Force

3.6 Results

 In this chapter, we created several sub-models in order to predict the deflection and force

of an arbitrarily shaped IPMC finger. The first model was an electrochemical model that

predicted the distribution of cations due to an induced electric field. Next, we developed a model

that predicted the voltage distribution in the IPMC finger. These models were then combined to

predict the ionic concentration due to the voltage. This concentration distribution was then used

64

to determine the electrostatic forces inside the IPMC finger. Using these models, we then were

able to model many different fingers and test them experimentally to determine the validity of

the models.

 Two fingers with different areas were compared to determine their force and deflection.

They were modeled and then tested experimentally. One was a 7x17 mm rectangular finger and

the other was an isosceles triangle with the same height and base but half the area, as can be seen

in Fig. 48.

Figure 48. Rectangle and Triangle Fingers

The results can be seen in Table 3. The error in force and deflection for the rectangle is 23.37%

and 2.77%, respectively. The error for the 7x17 mm triangle for force and deflection is 13.3%

and 4.92%, respectively.

65

Table 3. Output vs. Size

Gripper Dimension 7x17 mm rectangle 7x17 mm triangle

Experimental Force 2.0 mN 1.16 mN

Experimental

Deflection

1.4 mm 1.13 mm

Modeled Force 2.6 mN 1.22 mN

Modeled Deflection 1.44 mm 0.98 mm

The same 7x17 mm rectangle was used and new 14x17 mm isosceles and right triangles were

used, as seen in Fig. 49.

Figure 49. Rectangle and Triangle Fingers

 The results can be seen in Table 4. The error in force and deflection for the isosceles

triangle is 14.38% and 23.5%, respectively. The error in force and deflection for the right

triangle is 13.96% and 6.26%, respectively.

66

Table 4. Output vs. Shape

Gripper Dimension 7x17 mm rectangle 14x17 mm Isosceles

triangle

14x17 mm Right

triangle

Experimental Force 2.0 mN 2.92 mN 2.28 mN

Experimental

Deflection

1.4 mm 1.5 mm 1.85 mm

Modeled Force 2.6 mN 2.5 mN 2.65 mN

Modeled Deflection 1.44 mm 1.96 mm 1.735 mm

Examining the results, we can see the model is quite accurate when predicting the force and

deflection.

67

Chapter 4. OPTIMIZATION in modeFRONTIER

4.1 Introduction

 The main goal in this thesis is to optimize IPMC fingers for force or deflection. Comsol

has an optimization package, but it was not powerful enough to accomplish this goal.

ModeFRONTIER was suggested as an alternative to optimize these fingers for force or

deflection. ModeFRONTIER is a multi-objective optimization and design package designed by

Esteco SpA. It is written to couple with computer aided engineering (CAE) software, computer

aided drafting (CAD) software, finite element structural analysis, and computational fluid

dynamics (CFD) software. It is a GUI driven software in which optimization is accomplished by

modifying the input variables assigned by the user, and analyzing the outputs as they are defined

as objectives or constraints. The logic of the optimization is built around a “workflow” structure,

which is built with interconnected nodes. ModeFRONTIER is capable of direct integration using

CAE and CAD nodes or can be used to connect to other external programs using scripting. It

uses design of experiments (DOE), robust design tools, and optimization algorithms to achieve

optimization. These DOEs consist of random generator sequences, orthogonal and iterative

techniques, and factorial DOEs. To achieve robustness analysis, it also includes Monte Carlo

and Latin hypercube. Monte Carlo is a class of computational algorithms that relies on repeated

random sampling. These are run numerous times in order to obtain the probabilistic distribution

of an unknown entity. Latin hypercube sampling (LHS) is a statistical method used to generate a

sample of parameter values from a multidimensional distribution. These methods are effective

for single design optimization, but multi-objective problems were also considered. This was

accomplished using a non-dominated sorting genetic algorithm (NSGA-II). NSGA-II generates

evenly distributed Pareto designs in a fast and efficient manner.

68

4.2 Building a Complete Model

 Using the codes described above and altering them, they can be combined into one large

code, as seen in Appendix A5. This is just one sample of the code, as it was done numerous

times for different shapes. This code was able to predict the force and deflection of a given

finger in one complete m-file, instead of going through the process described in Chapter 3. The

optimization process focused on three shapes, but any arbitrary shape can be modeled this way.

This is the first time optimization has been achieved using these codes and the shapes were kept

basic. As can be seen in Appendix A5, the code starts the same as the above mentioned codes.

The electrical modeling is the beginning of the m-file. The blocks are built according to the size

and shape desired. In the new model, a table must be created that calculated the total area of the

finger being built. This is important as one of the optimization studies will involve changing

length and width of the finger while keeping the area constant. This table is exported as a text

file that contains the area of the finger. Once the area is calculated, the voltage is extracted using

the same extraction function used above. The concentration and force is again calculated in the

same way as was calculated in the previous section. The major difference in this program is the

deflection and force modeling is then computed in the m-file, rather than using Comsol. This is

important as modeFRONTIER is unable to connect to Comsol directly. Many software packages

are able to link with modeFRONTIER, but Comsol is not one of them. But, we are able to input

an m-file into modeFRONTIER, that modeFRONTIER is able to read and modify. This file

contains the entire process explained in the previous chapter, but switching back and forth from

Comsol to Matlab and running the entire modeling process is not required. The entire process is

contained in the m-file. One code is used for the modeling of the deflection of the finger. This

code builds the finger and applies all the physics and meshing. It will then solve for the

69

deflection of the finger. A table is created at the end of this code that outputs the deflection of

the finger. This is important as modeFRONTIER will be able to read this output and optimize

for the deflection. The same goes for the force applied by the finger. The code contains all of

the information to build the finger and the force transducer and again solves the model and

predicts the force generated by the finger on the transducer. Another text file is output that can

be read by modeFRONTIER, and once again, modeFRONTIER can optimize for the force

exerted by the finger. Finally, a third version of the code was written where a deflection test is

run and then another force measurement is run in the same code. The important part of the code

is the prediction of the stress developed inside the finger. This is calculated before any

deflection or force measurements are taken, so the code is able to reuse the stress prediction in

both the force and deflection modeling.

 First, the deflection model is run without the force transducer, so the finger is able to

deflect. The code, seen in Appendix A5, is used to model the finger and calculate the stresses

developed inside the IPMC. The deflection measurement is then run in the same way that was

run in Chapter 3, except this time it is run using an m-file that is stored in modeFRONTIER.

The deflection is calculated and output as a text file. This text file will then be used in

modeFRONTIER. modeFRONTIER will take this text file and use it as an output to maximize

for, therefore maximizing the deflection of the finger. Then, the force transducer is added to the

model and the model is solved again. Appendix A5 will be modified, and the force transducer

will be added to the model. The force measurement will once again be measured in the same

way described in Chapter 3, except this time it is run as an m-file that is stored in

modeFRONTIER. The force is again output as a text file that can be read by modeFRONTIER.

modeFRONTIER will then take this text file and use it as an output to maximize for, again

70

maximizing for the force applied by the finger. Finally, a third code will be used to model the

force and deflection of the finger in the same code (Appendix A6). This is done by again using

Appendix A5 and adding the force transducer, while keeping the deflection measurement already

achieved. The code will have two outputs, the deflection and the force, that are output as text

files. modeFRONTIER takes these text files and maximizes for them. But, although

modeFRONTIER tries to maximize for both, there will always be a trade off. It will never be an

exact optimization of the finger for both force and deflection, it will usually solve for a middle

ground, where there will be a similar force and deflection. This is accomplished by solving the

deflection code first, then restarting the process, solving for the force exerted. These codes were

used to optimize rectangles, right triangles, and isosceles triangles for force or deflection. These

shapes were chosen due to the interesting experimental data that was discussed above.

4.3 Optimization in modeFRONTIER

 ModeFRONTIER must be able to access the m-files that represent the entire finger

model. This is done using an EasyDriver node in modeFRONTIER. The EasyDriver node is

able to create a link between modeFRONTIER and third party software, such as Comsol. This

EasyDriver node uses the script or m-file. This is done by setting up a script and rules to drive

the process. In our case, the entire process of optimization is built around the EasyDriver, as it

will access our m-files, some examples can be seen in Appendix A5 and Appendix A6.

EasyDriver can be found under Script Nodes and the format of the EasyDriver node can be seen

in Fig. 50. Once in this node, the EasyDriver must be edited. Once in Edit EasyDriver, the m-

file needed can be added by browsing under the “Add” selection and selecting the m-file. The

m-file will then be loaded into the EasyDriver, as seen in Fig. 51. The entire m-file can be seen

in the EasyDriver window.

71

Figure 50. EasyDriver

Figure 51. EasyDriver with M-File

72

Now, modeFRONTIER knows what m-file to use and the inputs, such as base and length, will be

selected in the m-file in order to optimize the model for deflection (or force). Next, the inputs

that will be modified to optimize the model for force or deflection will be parameterized. The

optimization process described in this thesis focuses on changing the width and length of an

IPMC finger, while keeping the area the same. So, the inputs will simply be the width and

length of the finger. The width of the finger is considered the base in modeFRONTIER. The

Input File can be found under File Nodes. Adding two input variables, we will be able to change

the base and length of the finger, as seen in Fig. 52. modeFRONTIER needs to know two input

variables, as it will change these variables in the m-file. If it does not have two input variables, it

will simply change one or the other and leave the other the same. modeFRONTIER works by

modifying the m-file and changing the variables that are selected by the user. In our case, we

wish to change the width (or length) of the finger, but the width and length must be changed in

the m-file, accordingly. Width and length are considered to be input variables, but they are

really modifiers telling modeFRONTIER what to change. Also, when running the model, we

will add an expression to either the width or length that expresses it in terms of the other.

Figure 52. Input Nodes

73

These nodes will be connected to the EasyDriver where we can select the base and length in the

m-file, so modeFRONTIER will change these when optimizing the model for force or deflection.

Once again, entering Edit EasyDriver and highlighting the base, as shown in Fig. 53, and right-

clicking, a rule can be added. This is done by first clicking on “Base,” highlighting the base

parameter in the m-file, and right-clicking, then Add Rule. Since there are three blocks in the

model, three bases are selected. The same process is used to select the length of the finger.

Figure 53. Adding Rules

Next, modeFRONTIER needs to know what to optimize for, in this case either Force or

Deflection. This is accomplished using an output node. This is needed as the m-file outputs the

deflection or force of the model as a text file and modeFRONTIER needs to be able to read this

text file. The output node will be named accordingly, either Deflection or Force, and will be

74

passed to a design objective node. This node tells modeFRONTIER that we are maximizing the

force (or deflection) of this model. An exit node is placed after the EasyDriver node to tell

modeFRONTIER the model is complete. Now, we must add a scheduler node. This node tells

modeFRONTIER the specific DOE to use. In the case of the single objective optimization,

where we are optimizing for either deflection or force, a SIMPLEX scheduler is used. This node

can be opened and the maximum number of designs is specified by the user. In most cases 60

designs are enough, as the model usually converges many designs before this. The scheduler

node also has a DOE node attached to it. In our case, the Uniform Latin Hypercube will be the

best DOE to use. The number of designs must be specified by the user and the Add DOE

Sequence must be selected, as seen in Fig. 54.

Figure 54. DOE Properties

75

Earlier, we parameterized the base and length, but they are not yet constrained in terms of one or

the other. Seen in the bottom of modeFRONTIER are the input variables. Clicking on base, we

can change it from a variable to an expression. The base can be expressed as a function of

length, or vice versa, to constrain the area. In our case, the base will be “1.19E-4/Length” for the

rectangle as the area of a 7x17 mm rectangle is 119 mm
2
. Now, the process is complete to

optimize for a single design goal, such as deflection and was done for a rectangle, isosceles

triangle, and a right triangle. In order to optimize for force, we must add a node in which the

cylinder, representing the force transducer, will move 2 mm in from the tip. The length of the

finger will change and the force exerted by the finger must be read at the same position for each

iteration. This is accomplished using a calculator node that moves the cylinder depending on the

length, as seen in Fig. 55. The cylinder position is selected the same way the base and length

selections were made in the EasyDriver and can be seen in Fig. 56. This process was done to

maximize the force for a rectangle, isosceles triangle, and a right triangle and the results will be

discussed later.

76

Figure 55. Cylinder Moving

Figure 56. Cylinder in EasyDriver

77

 Next, the process was changed in order to minimize the area, while obtaining a certain

force or deflection. A desired force (or deflection) was chosen, such as 2 mN (or 2mm), and the

area is minimized. This is done to choose the smallest finger, while still meeting a design goal.

The process is similar to the previous process, but this time a force (or deflection) constraint will

be incorporated into modeFRONTIER, while the design objective will be minimizing the area, as

seen in Fig. 57. The EasyDriver process will be the same, including selecting the base and

length. The only difference is “Area” and “Deflection” will be the output variables, while the

objective will be to minimize area and deflection will have a constraint on it. Under “Constraint

Properties” for deflection, the type can be set to “Equal To” and the limit can be set by the user.

This process was repeated for all three shapes, for both force and deflection.

Figure 57. Minimizing Area

 A third optimization process was completed, in which force and deflection were both

optimized. The m-file was modified so the model was built twice in the same file and both force

78

and deflection were output by the file. In this case, the process is the same, except “Force” and

“Deflection” are both design objectives and were both outputs to be maximized, as seen in Fig.

58. As stated above, both cannot be maximized, but an optimal finger that achieves an

intermediate deflection and force can be created. The scheduler in this case will be the “NSGA-

II.” Once modeFRONTIER converges on a solution, the results can be seen in the Designs

Space. This was again repeated for all three shapes.

Figure 58. Maximizing Deflection and Force

79

4.3.1 Early Optimization

 A 7x17 mm rectangle was modeled and input into modeFRONTIER. ModeFRONTIER

ran different scenarios with different lengths and widths. These dimensions were used to

optimize the fingers for force (or deflection). This was done manually in Comsol. This was very

tedious, but led to some interesting conclusions. Examining Table 5, we can see a thin base and

a longer length leads to more deflection, while a wide base and a shorter length leads to more

force exerted. Also, choosing the middle ground leads to an intermediate deflection and force.

This process was repeated to make the fingers smaller, as seen in Table 6 and Table 7. The

results again are promising, as a wider base and shorter finger leads to a larger force exerted and

vice versa for deflection.

Table 5 Full Rectangle Optimization

Full Rectangle Optimization (119mm
2
)

Base (mm) Length (mm) Displacement (mm) Force (mN)

6.4358 18.49 3.10 2.03

6.9655 17.084 1.718 2.52

7.9323 15.002 1.571 3.76

Table 6. Half Rectangle Optimization

Half Rectangle Optimization (59.5 mm
2
)

Base (mm) Length (mm) Displacement (mm) Force (mN)

3.8459 15.471 3.35 1.38

7.322 8.1262 0.528 2.49

11.899 5.0 0.055 3.87

Table 7. Quarter Rectangle Optimization

Quarter Rectangle Optimization (29.75 mm
2
)

Base (mm) Length (mm) Displacement (mm) Force (mN)

2.086 14.263 1.448 0.859

2.975 10.0 0.970 0.9813

14.8 2.0 0.013 1.547

80

4.3.2 Deflection Optimization

 Next, modeFRONTIER was used to optimize the fingers for deflection. The same setup

is used for each shape, but the script in the EasyDriver is changed according to the shape, as seen

in Fig. 59. As can be seen, the base and length are the two input variables and base is made a

function of length to keep the area the same. There are also limits set on the length, which in

turn limits the base. These limits are arbitrary and can be set by the user. In our case, we limited

the lengths for all shapes between 15 and 20 mm. As stated, these are arbitrary values and can

be chosen by the user. If these limits are not set, modeFRONTIER would never converge on an

answer and the finger would just become infinitely long by infinitely small. Gravity is also not

included in any of these models, but if the finger was infinitely long, at some point gravity would

overcome the stiffness of the finger and it would not be able to hold itself upright.

Figure 59. Deflection Optimization

81

As seen in Fig. 60, the deflection of a 7x17 mm rectangle was optimized for deflection.

ModeFRONTIER runs through the optimization process until the best design is acquired. Limits

were set in modeFRONTIER to keep the finger under a certain width and length. As seen in

Table 8, Design 20 is the best design for the given shape and modeFRONTIER is finished

optimizing the shape. This is accomplished with a 5.95 mm by 20 mm finger. This makes sense

as a finger with a thin base and a longer length is able to deflect more. The upper limit for length

was set to 20 mm. If the limit were set to a higher value, the finger would continue to grow in

length until the upper limit was met.

Figure 60. Rectangle Deflection

Table 8. Rectangle Design IDs

Design ID Base (mm) Length (mm) Deflection (mm)

0 6.436 18.490 2.806

1 6.966 17.084 2.082

2 5.981 19.897 3.459

3 5.950 20.000 3.505

4 6.183 19.245 3.065

5 6.064 19.623 3.242

6 6.007 19.811 3.404

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25

D
e

fl
e

ct
io

n
 (

m
m

)

Design ID

Rectangle Deflection Optimization

Rectangle Deflection
Optimization

82

7 5.978 19.906 3.424

8 5.964 19.953 3.480

9 5.957 19.976 3.506

10 5.964 19.953 3.480

11 5.954 19.988 3.499

12 5.954 19.988 3.499

13 5.961 19.965 3.488

14 5.955 19.982 3.464

15 5.955 19.982 3.464

16 5.959 19.971 3.493

17 5.958 19.973 3.477

18 5.958 19.973 3.477

19 5.956 19.979 3.498

20 5.957 19.978 3.506

The process is then repeated for the isosceles triangle. As seen in Fig. 61 and Table 9,

modeFRONTIER again converges to give the best design of an isosceles triangle. This finger is

11.9 mm width by 19.96 mm long. Again the length limit was set to 20 mm, so the optimization

process chooses the finger that has the longest length. These results are promising, as we have

seen a thinner base with a longer length is a better design when deflection is the design goal.

Figure 61. Iso Deflection Optimization

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 5 10 15 20

D
e

fl
e

ct
io

n
 (

m
m

)

Design ID

Iso Deflection Optimization

Iso Deflection Optimization

83

Table 9. Iso IDs

Design ID Base (mm)
Length
(mm)

Deflection
(mm)

0 12.872 18.490 1.282

1 13.931 17.084 1.118

2 11.962 19.897 1.789

3 11.900 20.000 1.793

4 12.367 19.245 1.513

5 12.129 19.623 1.685

6 12.013 19.811 1.737

7 11.956 19.906 1.770

8 11.928 19.953 1.797

9 11.956 19.906 1.770

10 11.914 19.976 1.802

11 11.900 20.000 1.793

12 11.921 19.965 1.806

13 11.928 19.953 1.797

14 11.918 19.971 1.802

15 11.918 19.971 1.802

16 11.925 19.959 1.806

17 11.923 19.962 1.806

The process is repeated for a right triangle. Again, seen in Fig. 62 and Table 10,

modeFRONTIER converges on a design of a thin base and longer length to achieve greater

deflection. This finger is 11.9 mm wide by 19.99 mm long. As can be seen, the two triangles

have similar dimensions even though they are different shapes.

84

Figure 62. Right Triangle Deflection

Table 10. Right Design IDs

Design ID Base (mm)
Length
(mm) Deflection (mm)

0 12.872 18.490 1.417

1 13.931 17.084 1.223

2 11.962 19.897 1.896

3 11.900 20.000 1.925

4 12.367 19.246 1.727

5 12.129 19.623 1.834

6 12.013 19.811 1.893

7 11.956 19.906 1.919

8 11.928 19.953 1.924

9 11.914 19.976 1.910

10 11.914 19.976 1.910

11 11.907 19.988 1.900

12 11.907 19.988 1.900

13 11.904 19.994 1.912

14 11.902 19.997 1.925

 Now, we will compare the results. As seen in Fig. 63, the three shapes are compared.

The rectangle achieves the greatest deflection with the same area as the triangles, due to the

limits set on the fingers. This is achieved as the rectangle base becomes very thin and the length

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 5 10 15

D
e

fl
e

ct
io

n
 (

m
m

)

Design ID

Right Triangle Deflection Optimization

Right Triangle Deflection
Optimization

85

is long compared to the base. The triangles cannot become as thin compared to their base, so

they cannot deflect as much. When looking at the ratio of width to length, the rectangle is almost

a 1:4 ratio, while the triangles are around 1:2. This means the rectangle becomes very long

compared to the width, while the triangles do not If the triangles were able to become much

longer and meet the same ratio, they too would be able to deflect more. As stated above, the

length was limited, and in this case it was limited to 20 mm. This is an arbitrary number that can

be changed. This is set as modeFRONTIER would never converge if there were no limit on the

length. The triangles would be able to deflect more given a longer length and shorter base, but a

limit must be set. This shows a rectangle may be the best design if a certain length is desired. If

the user needs a finger to be less than a certain length, this can be changed in modeFRONTIER.

Figure 63. Shape Comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

D
e

fl
e

ct
io

n
 (

m
m

)

Design ID

Deflection Comparison

Rectangle Deflection Optimization

Iso Deflection Optimization

Right Triangle Deflection
Optimization

86

4.3.3 Force Optimization

 The force exerted by the three shapes was then optimized in modeFRONTIER, as seen in

Fig. 64. The same setup is used for each shape, but the script in the EasyDriver is changed

according to the shape. As can be seen, the base and length are the two input variables and base

is made a function of length to keep the area the same. There are also limits set on the length,

which in turn limits the base. The length limit was again set to 15 to 20 mm. This again was

arbitrary and can be changed to anything. The cylinder moving node is the cylinder that

represents the force transducer that will always move 2 mm in from the tip of the finger to keep

the readings consistent.

Figure 64. Force Optimization

87

As seen in Fig. 65 and Table 11, modeFRONTIER converges on a design. Once again, a limit

was set at the lower end of the length of the finger at 15 mm. This was done as

modeFRONTIER would never converge on a design if there was no limit on the length or width.

A wider base with a shorter length is the best design to achieve the greatest force. The rectangle

finger dimensions are 7.92 mm wide by 15.02 mm long.

Figure 65. Rectangle Force Optimization

Table 11. Rectangle Design IDs

Design ID Base (mm) Length (mm)
Force
(mN)

0 6.436 18.490 2.276

1 5.981 19.897 2.082

2 6.200 19.193 2.149

3 6.690 17.787 2.336

4 6.966 17.084 2.430

5 7.590 15.678 2.701

6 7.933 15.000 2.828

7 7.418 16.042 2.624

8 7.667 15.521 2.726

9 7.798 15.261 2.803

10 7.865 15.130 2.817

11 7.899 15.065 2.818

12 7.916 15.033 2.867

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

0 10 20 30 40

Fo
rc

e
 (

m
N

)

Design ID

Rectangle Force Optimization

Rectangle Force
Optimization

88

13 7.899 15.065 2.818

14 7.925 15.016 2.843

15 7.908 15.049 2.820

16 7.920 15.024 2.868

17 7.925 15.016 2.843

18 7.918 15.028 2.850

19 7.918 15.028 2.850

20 7.923 15.020 2.839

21 7.919 15.026 2.830

22 7.919 15.026 2.830

23 7.922 15.022 2.838

24 7.921 15.023 2.831

25 7.921 15.023 2.831

26 7.920 15.025 2.868

27 7.920 15.025 2.868

The force exerted by the isosceles triangle was then optimized, as seen in Fig. 66 and Table 12.

The results are interesting as the triangle base and length are almost the same. Once again, a

wider base with a shorter length is the best design goal, as the finger dimensions are 15.86 mm

wide by 15.01 mm long. The triangle would continue to become wider and shorter if there was

no limit. There must be a limit in order for modeFRONTIER to converge on a solution.

Figure 66. Iso Force Optimization

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Fo
rc

e
 (

m
N

)

Design ID

Iso Force Optimization

Iso Force Optimization

89

Table 12. Iso Design IDs

Design
ID Base (mm) Length (mm)

Force
(mN)

0 12.872 18.490 2.005

1 13.931 17.084 2.346

2 15.181 15.678 2.555

3 15.867 15.000 2.678

4 14.836 16.042 2.478

5 15.334 15.521 2.606

6 15.596 15.261 2.640

7 15.730 15.130 2.662

8 15.798 15.065 2.655

9 15.798 15.065 2.655

10 15.832 15.033 2.652

11 15.832 15.033 2.652

12 15.849 15.016 2.647

13 15.849 15.016 2.647

14 15.858 15.008 2.688

15 15.849 15.016 2.647

16 15.862 15.004 2.670

17 15.862 15.004 2.670

18 15.854 15.012 2.658

19 15.860 15.006 2.688

The design of the right triangle was then optimized for force, as seen in Fig. 67 and Table 13.

Again, the base and length are almost the same, and a wider base with a shorter length is desired.

The dimensions of this finger are 15.85 mm wide by 15.02 mm long.

90

Figure 67. Right Triangle Force Optimization

Table 13. Right Triangle Design IDs

Design ID Base (mm)
Length
(mm) Force (mN)

0 12.872 18.490 1.843

1 13.931 17.084 2.026

2 15.181 15.678 2.228

3 15.867 15.000 2.311

4 14.836 16.042 2.217

5 15.334 15.521 2.239

6 15.596 15.261 2.275

7 15.730 15.130 2.254

8 15.730 15.130 2.254

9 15.798 15.065 2.204

10 15.798 15.065 2.204

11 15.832 15.033 2.242

12 15.849 15.016 2.313

13 15.832 15.033 2.242

14 15.858 15.008 2.298

15 15.858 15.008 2.298

16 15.841 15.024 2.260

17 15.854 15.012 2.301

18 15.845 15.020 2.313

19 15.847 15.018 2.313

The three shapes were then compared, as seen in Fig. 68. The limit on these shapes plays a role

in the optimization. Due to the shape of the triangles, the limits play a greater role than they do

1.5

1.7

1.9

2.1

2.3

2.5

0 5 10 15 20

Fo
rc

e
 (

m
N

)

Design ID

Right Force Optimization

Right Force Optimization

91

on the rectangle. This can be seen as the rectangle finger can become much smaller in one

dimension compared to the other, while the triangles dimensions are much closer to each other.

This is due to the lower limit we set on the triangles. If we set the limit much lower for the

length, the force would be much higher. We can see the triangles are going to the smallest

possible limit for the length and trying to maximize their base, but this is not possible due to the

limit. This can be seen in Table 14, as all fingers approach the limits to maximize either force or

deflection.

Figure 68. Shape Comparison

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

0 5 10 15 20 25 30 35

Fo
rc

e
 (

m
N

)

Design ID

Force Comparison

Rectangle Force Optimization

Iso Force Optimization

Right Force Optimization

92

Table 14. Final Results

 Final Results

Shape
Width
(mm)

Length
(mm)

Length Limit
(mm)

Deflection
(mm)

Force
(mN)

Area
(mm2)

Rectangle 5.957 19.978 15-20 3.506 N/A 119

Iso Triangle 11.923 19.962 15-20 1.806 N/A 119
Right

Triangle 11.902 19.997 15-20 1.925 N/A 119

Rectangle 7.92 15.025 15-20 N/A 2.868 119

Iso Triangle 15.86 15.006 15-20 N/A 2.688 119
Right

Triangle 15.847 15.018 15-20 N/A 2.313 119

4.3.4 Optimization Factor

 We defined the optimization factor, or the Index of Performance, as the product of the

force and deflection in order to optimize each shape in terms of both. This is an arbitrary factor

that we defined in order to optimize these fingers for both force and deflection, as there are no

current equations or factors to represent our goal. This is important as design goals may include

both the force and deflection. The setup in modeFRONTIER can be seen in Fig. 69. In this

case, the force and deflection are both output variables. The limit on the length is again set to

15-20 mm. As stated earlier, a NSGA-II is used and a maximum number of designs are selected

in the DOE. In our case we set the limit to 1000 and this limit was never reached by any

optimization study.

93

Figure 69. Force and Deflection Optimization

The rectangle optimization of both force and deflection can be seen in Fig. 70 and the Design

IDs can be seen in Table 15. In the case of the rectangle, the best design for achieving the

highest force and deflection is Design 154. The shape of this finger is 5.95 mm width by 20 mm

length.

94

Figure 70. Rectangle Combined

Table 15. Rectangle Combined

Design
ID Base (mm)

Length
(mm)

Deflection
(mm) Force (mN)

Index of
Performance

1 7.908 15.048 1.383 2.820 3.900

2 7.861 15.139 1.402 2.798 3.924

3 7.928 15.011 1.386 2.835 3.928

4 7.933 15.000 1.390 2.828 3.931

5 7.890 15.083 1.398 2.815 3.935

6 7.912 15.040 1.390 2.831 3.935

7 7.899 15.065 1.398 2.818 3.941

8 7.922 15.022 1.389 2.838 3.943

9 7.886 15.089 1.402 2.815 3.947

10 7.931 15.004 1.384 2.855 3.952

11 7.931 15.004 1.384 2.855 3.952

12 7.927 15.012 1.387 2.850 3.952

13 7.929 15.009 1.387 2.853 3.958

14 7.869 15.122 1.409 2.815 3.966

15 7.892 15.078 1.406 2.823 3.968

16 7.932 15.002 1.395 2.846 3.970

17 7.932 15.002 1.395 2.846 3.970

18 7.932 15.002 1.395 2.846 3.970

19 7.894 15.075 1.409 2.820 3.972

20 7.847 15.165 1.421 2.798 3.974

21 7.900 15.063 1.410 2.823 3.980

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

0 50 100 150

O
p

ti
m

iz
at

io
n

 F
ac

to
r

Design ID

Rectangle Combined

Rectangle Combined

95

22 7.902 15.059 1.414 2.816 3.981

23 7.902 15.060 1.414 2.816 3.981

24 7.865 15.130 1.413 2.817 3.982

25 7.901 15.062 1.414 2.816 3.982

26 7.930 15.006 1.391 2.864 3.984

27 7.904 15.056 1.404 2.838 3.986

28 7.862 15.136 1.415 2.817 3.986

29 7.849 15.162 1.428 2.804 4.003

30 7.916 15.033 1.396 2.867 4.003

31 7.916 15.034 1.396 2.867 4.003

32 7.806 15.244 1.443 2.776 4.006

33 7.895 15.073 1.418 2.836 4.020

34 7.791 15.273 1.453 2.800 4.068

35 7.753 15.348 1.485 2.752 4.087

36 7.779 15.298 1.466 2.793 4.096

37 7.788 15.280 1.473 2.807 4.134

38 7.618 15.622 1.561 2.703 4.218

39 7.619 15.620 1.561 2.706 4.225

40 7.605 15.648 1.573 2.698 4.245

41 7.609 15.640 1.571 2.705 4.248

42 7.655 15.545 1.556 2.733 4.253

43 7.563 15.734 1.603 2.691 4.314

44 7.584 15.690 1.607 2.712 4.359

45 7.466 15.940 1.664 2.642 4.396

46 7.510 15.845 1.643 2.678 4.400

47 7.471 15.929 1.660 2.656 4.409

48 7.470 15.931 1.662 2.675 4.446

49 7.463 15.945 1.675 2.660 4.454

50 7.437 16.002 1.705 2.638 4.497

51 7.451 15.972 1.692 2.670 4.517

52 7.387 16.110 1.719 2.630 4.522

53 7.352 16.187 1.754 2.595 4.551

54 7.348 16.195 1.755 2.593 4.551

55 7.430 16.016 1.718 2.652 4.554

56 7.338 16.217 1.771 2.579 4.568

57 7.333 16.228 1.773 2.578 4.570

58 7.339 16.215 1.763 2.593 4.571

59 7.339 16.215 1.763 2.593 4.571

60 7.308 16.284 1.788 2.573 4.601

61 7.315 16.268 1.797 2.573 4.625

62 7.314 16.271 1.799 2.578 4.637

96

63 7.255 16.402 1.832 2.574 4.716

64 7.234 16.450 1.859 2.573 4.783

65 7.245 16.424 1.857 2.579 4.789

66 7.157 16.627 1.911 2.516 4.807

67 7.157 16.627 1.911 2.516 4.807

68 7.158 16.625 1.909 2.536 4.842

69 7.133 16.684 1.924 2.518 4.845

70 7.138 16.671 1.932 2.510 4.849

71 7.202 16.523 1.899 2.556 4.854

72 7.099 16.763 1.969 2.499 4.920

73 7.035 16.914 2.029 2.491 5.054

74 6.983 17.042 2.068 2.445 5.054

75 6.969 17.076 2.088 2.435 5.084

76 7.391 16.101 1.840 2.791 5.136

77 7.002 16.994 2.077 2.479 5.148

78 6.998 17.005 2.080 2.476 5.149

79 7.017 16.960 2.062 2.501 5.157

80 6.937 17.153 2.124 2.433 5.169

81 6.910 17.221 2.138 2.421 5.176

82 6.933 17.164 2.132 2.428 5.177

83 6.896 17.255 2.161 2.423 5.235

84 6.903 17.238 2.164 2.443 5.286

85 6.863 17.340 2.203 2.410 5.310

86 6.765 17.590 2.303 2.362 5.440

87 6.775 17.565 2.287 2.387 5.458

88 6.849 17.376 2.248 2.441 5.487

89 6.842 17.391 2.266 2.424 5.492

90 6.614 17.993 2.487 2.285 5.683

91 6.587 18.066 2.493 2.291 5.710

92 6.595 18.045 2.490 2.299 5.724

93 6.631 17.947 2.469 2.331 5.756

94 6.567 18.121 2.532 2.282 5.779

95 6.558 18.145 2.530 2.287 5.787

96 6.644 17.910 2.469 2.350 5.801

97 6.531 18.222 2.568 2.283 5.863

98 6.521 18.247 2.587 2.274 5.884

99 6.525 18.237 2.587 2.275 5.886

100 6.499 18.312 2.608 2.273 5.929

101 6.495 18.323 2.622 2.267 5.943

102 6.450 18.449 2.672 2.248 6.008

103 6.460 18.421 2.679 2.255 6.040

97

104 6.435 18.494 2.751 2.231 6.137

105 6.355 18.725 2.805 2.209 6.195

106 6.366 18.693 2.783 2.239 6.230

107 6.391 18.621 2.790 2.234 6.233

108 6.356 18.722 2.819 2.225 6.272

109 6.350 18.742 2.825 2.237 6.319

110 6.334 18.788 2.873 2.202 6.326

111 6.294 18.906 2.984 2.211 6.597

112 6.268 18.986 2.979 2.227 6.634

113 6.162 19.311 3.104 2.138 6.636

114 6.022 19.761 3.311 2.093 6.931

115 6.042 19.695 3.297 2.103 6.932

116 6.023 19.757 3.338 2.088 6.970

117 6.021 19.765 3.351 2.091 7.006

118 6.015 19.785 3.384 2.092 7.078

119 6.008 19.806 3.380 2.095 7.082

120 6.099 19.510 3.264 2.175 7.099

121 6.089 19.543 3.293 2.157 7.101

122 6.079 19.576 3.320 2.146 7.124

123 6.004 19.821 3.396 2.099 7.129

124 5.994 19.852 3.416 2.093 7.151

125 5.990 19.868 3.427 2.086 7.151

126 5.978 19.907 3.424 2.090 7.159

127 6.003 19.824 3.399 2.106 7.159

128 5.955 19.984 3.464 2.067 7.160

129 5.954 19.985 3.457 2.072 7.161

130 5.998 19.840 3.440 2.082 7.163

131 6.015 19.783 3.405 2.107 7.174

132 6.015 19.784 3.405 2.107 7.174

133 5.996 19.847 3.438 2.093 7.195

134 5.995 19.850 3.434 2.096 7.196

135 5.962 19.960 3.465 2.088 7.234

136 5.962 19.960 3.465 2.088 7.234

137 5.961 19.961 3.488 2.074 7.234

138 5.961 19.962 3.488 2.074 7.234

139 5.966 19.946 3.487 2.077 7.243

140 5.966 19.946 3.487 2.077 7.243

141 5.969 19.935 3.478 2.084 7.249

142 5.968 19.941 3.483 2.083 7.255

143 5.960 19.966 3.487 2.082 7.258

144 5.960 19.966 3.487 2.082 7.258

98

145 5.960 19.968 3.487 2.082 7.258

146 5.959 19.970 3.493 2.083 7.276

147 5.989 19.869 3.486 2.089 7.281

148 5.974 19.919 3.532 2.073 7.322

149 5.974 19.919 3.532 2.073 7.322

150 5.974 19.918 3.532 2.073 7.322

151 5.974 19.921 3.532 2.073 7.322

152 5.967 19.942 3.535 2.076 7.337

153 5.957 19.976 3.506 2.094 7.340

154 5.953 19.991 3.511 2.096 7.360

This was repeated for the isosceles triangle, as seen in Fig. 71 and Table 16. The highest

optimization factor was accomplished by Design 161. This finger was 12.1 mm wide by 19.7

mm long. As can be seen, the deflection and force are similar values. If a finger is desired of

both a higher degree of force and deflection, this is the best design.

Figure 71. Iso Combined

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

0 50 100 150

O
p

ti
m

iz
at

io
n

 F
ac

to
r

Design ID

Iso Combined

Iso Combined

99

Table 16. Iso Combined Design IDs

Design ID Base (mm)
Length
(mm)

Deflection
(mm) Force (mN)

Index of
Performance

1 15.866 15.000 0.745 2.678 1.994

2 15.866 15.001 0.745 2.678 1.994

3 15.865 15.001 0.745 2.678 1.994

4 15.866 15.001 0.745 2.678 1.994

5 15.867 15.000 0.745 2.678 1.994

6 15.862 15.004 0.747 2.670 1.995

7 15.862 15.004 0.747 2.670 1.995

8 15.863 15.004 0.747 2.670 1.995

9 15.798 15.065 0.752 2.655 1.996

10 15.839 15.026 0.751 2.668 2.002

11 15.836 15.029 0.751 2.668 2.002

12 15.837 15.028 0.751 2.668 2.002

13 15.832 15.033 0.756 2.652 2.004

14 15.831 15.034 0.756 2.652 2.004

15 15.831 15.034 0.756 2.652 2.004

16 15.831 15.034 0.756 2.652 2.004

17 15.758 15.103 0.760 2.639 2.005

18 15.759 15.103 0.760 2.639 2.005

19 15.815 15.049 0.755 2.656 2.006

20 15.854 15.012 0.757 2.658 2.012

21 15.735 15.125 0.764 2.638 2.015

22 15.786 15.077 0.756 2.670 2.018

23 15.787 15.076 0.756 2.670 2.018

24 15.788 15.075 0.757 2.667 2.020

25 15.822 15.042 0.759 2.685 2.039

26 15.822 15.042 0.759 2.685 2.039

27 15.824 15.041 0.759 2.685 2.039

28 15.745 15.116 0.764 2.678 2.047

29 15.750 15.111 0.770 2.670 2.055

30 15.680 15.179 0.778 2.649 2.060

31 15.690 15.169 0.772 2.675 2.065

32 15.860 15.007 0.768 2.688 2.065

33 15.860 15.006 0.768 2.688 2.065

34 15.855 15.011 0.768 2.688 2.065

35 15.857 15.009 0.768 2.688 2.065

36 15.860 15.006 0.768 2.688 2.065

100

37 15.861 15.005 0.768 2.688 2.065

38 15.857 15.009 0.768 2.688 2.065

39 15.423 15.431 0.809 2.561 2.072

40 15.723 15.137 0.779 2.660 2.073

41 15.589 15.267 0.789 2.632 2.078

42 15.548 15.307 0.792 2.624 2.078

43 15.595 15.261 0.789 2.658 2.096

44 15.394 15.460 0.817 2.610 2.134

45 15.388 15.467 0.822 2.606 2.142

46 15.210 15.648 0.842 2.569 2.162

47 15.110 15.752 0.859 2.551 2.191

48 14.996 15.871 0.874 2.524 2.206

49 14.995 15.872 0.892 2.519 2.246

50 15.033 15.831 0.884 2.548 2.251

51 14.827 16.052 0.912 2.492 2.273

52 14.829 16.049 0.912 2.492 2.273

53 14.813 16.067 0.920 2.476 2.277

54 14.911 15.962 0.901 2.532 2.281

55 14.880 15.995 0.912 2.523 2.301

56 14.668 16.226 0.947 2.457 2.326

57 14.704 16.186 0.951 2.451 2.330

58 14.475 16.443 0.966 2.436 2.353

59 14.380 16.551 0.991 2.414 2.391

60 14.481 16.435 0.983 2.439 2.397

61 14.314 16.627 1.027 2.383 2.448

62 14.282 16.665 1.023 2.401 2.455

63 14.217 16.741 1.032 2.382 2.459

64 14.210 16.749 1.043 2.370 2.472

65 14.298 16.645 1.032 2.394 2.472

66 14.119 16.857 1.069 2.361 2.524

67 14.071 16.914 1.081 2.341 2.530

68 13.996 17.004 1.087 2.330 2.532

69 13.996 17.005 1.091 2.324 2.535

70 14.141 16.830 1.065 2.388 2.544

71 13.950 17.061 1.096 2.348 2.574

72 12.821 18.563 1.299 1.990 2.585

73 12.805 18.587 1.306 1.987 2.596

74 13.505 17.624 1.180 2.200 2.597

75 13.760 17.296 1.130 2.303 2.601

76 13.976 17.030 1.107 2.350 2.602

77 12.784 18.617 1.312 1.985 2.604

101

78 12.951 18.377 1.279 2.038 2.607

79 14.063 16.923 1.098 2.386 2.620

80 13.926 17.091 1.113 2.368 2.636

81 13.896 17.127 1.122 2.350 2.637

82 12.668 18.788 1.345 1.965 2.642

83 13.770 17.284 1.159 2.288 2.652

84 13.618 17.477 1.167 2.276 2.656

85 12.672 18.782 1.361 1.957 2.663

86 12.638 18.832 1.356 1.964 2.664

87 13.802 17.244 1.154 2.313 2.668

88 12.721 18.709 1.339 1.994 2.669

89 12.561 18.947 1.366 1.954 2.670

90 13.428 17.724 1.226 2.181 2.673

91 13.428 17.724 1.226 2.181 2.673

92 12.712 18.722 1.341 1.996 2.676

93 12.606 18.880 1.368 1.959 2.680

94 13.006 18.299 1.293 2.075 2.683

95 13.667 17.414 1.182 2.289 2.706

96 13.601 17.499 1.191 2.278 2.713

97 13.219 18.005 1.279 2.134 2.730

98 13.224 17.998 1.279 2.134 2.730

99 13.244 17.970 1.290 2.118 2.731

100 13.116 18.145 1.301 2.113 2.749

101 13.057 18.227 1.324 2.081 2.755

102 13.168 18.075 1.303 2.118 2.759

103 13.179 18.059 1.306 2.114 2.762

104 12.543 18.975 1.379 2.004 2.764

105 13.134 18.121 1.304 2.122 2.768

106 13.134 18.121 1.304 2.122 2.768

107 13.050 18.237 1.334 2.084 2.780

108 13.139 18.114 1.319 2.112 2.785

109 12.532 18.991 1.447 1.925 2.786

110 13.105 18.161 1.323 2.124 2.811

111 12.513 19.021 1.466 1.924 2.820

112 12.514 19.019 1.466 1.924 2.820

113 12.433 19.143 1.490 1.926 2.870

114 12.539 18.981 1.447 1.994 2.884

115 12.457 19.106 1.456 1.998 2.909

116 12.232 19.457 1.554 1.885 2.930

117 12.295 19.357 1.546 1.901 2.939

118 12.270 19.397 1.543 1.908 2.946

102

119 12.214 19.485 1.570 1.895 2.975

120 12.153 19.583 1.673 1.861 3.115

121 12.132 19.618 1.685 1.862 3.137

122 12.119 19.639 1.698 1.859 3.157

123 12.072 19.714 1.703 1.859 3.166

124 12.140 19.605 1.691 1.874 3.169

125 11.942 19.929 1.753 1.821 3.191

126 11.939 19.934 1.753 1.821 3.191

127 12.016 19.806 1.733 1.841 3.191

128 12.047 19.756 1.718 1.862 3.200

129 12.045 19.759 1.718 1.862 3.200

130 11.907 19.989 1.761 1.819 3.204

131 12.096 19.676 1.722 1.864 3.211

132 12.031 19.783 1.731 1.860 3.219

133 12.031 19.783 1.731 1.860 3.219

134 12.020 19.800 1.738 1.853 3.220

135 12.021 19.798 1.738 1.853 3.220

136 11.935 19.941 1.764 1.827 3.222

137 11.956 19.906 1.770 1.824 3.229

138 12.052 19.748 1.735 1.863 3.232

139 12.049 19.753 1.735 1.863 3.232

140 12.008 19.820 1.762 1.837 3.237

141 12.007 19.821 1.762 1.837 3.237

142 11.902 19.996 1.793 1.818 3.260

143 11.949 19.918 1.785 1.829 3.265

144 11.970 19.883 1.779 1.835 3.266

145 11.974 19.876 1.779 1.835 3.266

146 11.981 19.865 1.771 1.846 3.270

147 11.977 19.872 1.771 1.846 3.270

148 11.975 19.875 1.771 1.846 3.270

149 11.914 19.977 1.802 1.821 3.282

150 11.911 19.982 1.802 1.821 3.282

151 11.919 19.969 1.802 1.831 3.299

152 11.921 19.965 1.802 1.831 3.299

153 11.918 19.970 1.802 1.831 3.299

154 11.918 19.970 1.802 1.831 3.299

155 11.920 19.967 1.802 1.831 3.299

156 11.917 19.971 1.802 1.831 3.299

157 11.938 19.937 1.805 1.836 3.314

158 11.939 19.935 1.805 1.836 3.314

159 11.937 19.939 1.805 1.836 3.314

103

160 11.927 19.955 1.817 1.830 3.326

161 12.080 19.701 1.727 1.934 3.340

Finally, the right triangle was optimized for both force and deflection, as seen in Fig. 72 and

Table 17. The best optimization factor is achieved by Design 116. As seen in this case and the

previous isosceles triangle, a base of around 12 mm and a length of around 19.6 mm give the

best design in both cases. The dimensions of the right triangle finger are 12.06 mm wide by

19.73 mm long. Again, the force and deflection values are similar to the isosceles triangle

results. This shows the optimization process is close to choosing the best design in both cases,

instead of having a one-sided design goal. The best design chosen was the design with

intermediate values for both force and deflection.

Figure 72. Right Combined

Table 17. Right Triangle Design IDs

Design
ID Base (mm)

Length
(mm)

Deflection
(mm) Force (mN)

Index of
Performance

1 15.863 15.004 0.840 2.265 1.903

1.5

2.0

2.5

3.0

3.5

4.0

0 20 40 60 80 100 120

O
p

ti
m

iz
at

io
n

 F
ac

to
r

Design ID

Right Combined

Right Combined

104

2 15.863 15.004 0.840 2.265 1.903

3 15.857 15.009 0.837 2.298 1.923

4 15.858 15.009 0.837 2.298 1.923

5 15.833 15.032 0.858 2.242 1.923

6 15.831 15.034 0.858 2.242 1.923

7 15.832 15.033 0.858 2.242 1.923

8 15.831 15.034 0.858 2.242 1.923

9 15.831 15.034 0.858 2.242 1.923

10 15.815 15.049 0.859 2.268 1.948

11 15.822 15.042 0.865 2.253 1.949

12 15.867 15.000 0.847 2.311 1.958

13 15.867 15.000 0.847 2.311 1.958

14 15.867 15.000 0.847 2.311 1.958

15 15.865 15.002 0.847 2.311 1.958

16 15.867 15.000 0.847 2.311 1.958

17 15.724 15.136 0.870 2.252 1.958

18 15.746 15.115 0.867 2.266 1.964

19 15.839 15.027 0.865 2.275 1.967

20 15.836 15.029 0.865 2.275 1.967

21 15.838 15.027 0.865 2.275 1.967

22 15.764 15.098 0.873 2.255 1.968

23 15.854 15.012 0.856 2.301 1.970

24 15.788 15.075 0.871 2.264 1.971

25 15.588 15.268 0.880 2.262 1.991

26 15.848 15.017 0.864 2.313 1.998

27 15.592 15.264 0.892 2.262 2.018

28 15.541 15.314 0.911 2.245 2.047

29 15.534 15.322 0.902 2.277 2.054

30 15.377 15.478 0.929 2.255 2.094

31 15.210 15.648 0.961 2.187 2.102

32 15.313 15.542 0.940 2.264 2.129

33 15.143 15.717 0.965 2.230 2.152

34 15.170 15.689 0.958 2.251 2.156

35 15.146 15.714 0.968 2.230 2.158

36 15.126 15.735 0.973 2.229 2.169

37 15.031 15.834 0.989 2.213 2.189

38 15.053 15.811 0.997 2.255 2.247

39 14.549 16.358 1.064 2.196 2.337

40 14.536 16.373 1.080 2.173 2.346

41 14.368 16.565 1.114 2.116 2.356

42 14.535 16.375 1.081 2.194 2.373

105

43 14.462 16.457 1.097 2.167 2.377

44 14.392 16.537 1.123 2.132 2.394

45 14.314 16.627 1.127 2.137 2.409

46 13.509 17.618 1.257 1.927 2.422

47 13.485 17.650 1.274 1.924 2.450

48 13.435 17.714 1.286 1.913 2.459

49 13.740 17.322 1.259 1.961 2.470

50 14.101 16.878 1.193 2.073 2.472

51 14.118 16.858 1.187 2.087 2.476

52 13.931 17.084 1.223 2.026 2.478

53 13.932 17.083 1.223 2.026 2.478

54 14.012 16.986 1.183 2.100 2.484

55 14.044 16.947 1.181 2.131 2.516

56 13.134 18.121 1.346 1.882 2.533

57 13.996 17.005 1.213 2.095 2.542

58 13.959 17.050 1.229 2.076 2.551

59 13.798 17.249 1.247 2.055 2.563

60 14.071 16.914 1.195 2.146 2.565

61 13.920 17.098 1.225 2.103 2.577

62 13.116 18.145 1.375 1.884 2.591

63 13.877 17.151 1.232 2.103 2.591

64 13.013 18.290 1.401 1.857 2.602

65 13.901 17.121 1.231 2.116 2.606

66 12.989 18.323 1.397 1.870 2.612

67 13.033 18.261 1.396 1.886 2.633

68 12.830 18.551 1.465 1.843 2.700

69 12.710 18.726 1.566 1.887 2.955

70 12.712 18.722 1.564 1.908 2.985

71 12.658 18.802 1.597 1.892 3.022

72 12.657 18.804 1.597 1.892 3.022

73 12.668 18.788 1.602 1.890 3.028

74 12.630 18.845 1.651 1.838 3.033

75 12.609 18.875 1.633 1.862 3.040

76 12.601 18.888 1.613 1.916 3.090

77 12.510 19.025 1.664 1.873 3.116

78 12.453 19.111 1.658 1.883 3.122

79 12.484 19.064 1.678 1.878 3.152

80 12.283 19.377 1.774 1.845 3.272

81 12.142 19.601 1.793 1.829 3.279

82 12.130 19.620 1.834 1.810 3.318

83 12.127 19.626 1.818 1.828 3.323

106

84 12.009 19.818 1.852 1.804 3.341

85 12.007 19.821 1.852 1.804 3.341

86 12.096 19.675 1.831 1.828 3.347

87 11.925 19.958 1.885 1.782 3.357

88 12.047 19.757 1.848 1.820 3.363

89 12.058 19.737 1.859 1.812 3.369

90 11.997 19.838 1.877 1.806 3.389

91 12.031 19.783 1.872 1.811 3.390

92 12.031 19.783 1.872 1.811 3.390

93 12.034 19.778 1.872 1.811 3.390

94 11.909 19.985 1.900 1.793 3.407

95 11.914 19.977 1.910 1.786 3.411

96 11.911 19.981 1.910 1.786 3.411

97 11.910 19.984 1.910 1.786 3.411

98 11.991 19.849 1.882 1.813 3.412

99 11.904 19.993 1.912 1.786 3.415

100 11.978 19.870 1.889 1.810 3.418

101 11.926 19.957 1.917 1.786 3.424

102 11.926 19.956 1.917 1.786 3.424

103 11.927 19.955 1.917 1.786 3.424

104 12.040 19.767 1.896 1.808 3.427

105 11.920 19.966 1.933 1.781 3.442

106 12.016 19.806 1.872 1.839 3.443

107 11.900 20.000 1.925 1.792 3.448

108 11.938 19.937 1.925 1.797 3.459

109 11.937 19.939 1.925 1.797 3.459

110 11.938 19.936 1.925 1.797 3.459

111 11.935 19.941 1.925 1.797 3.459

112 11.957 19.904 1.896 1.825 3.461

113 11.961 19.897 1.896 1.825 3.461

114 11.969 19.884 1.919 1.809 3.471

115 11.939 19.935 1.923 1.806 3.473

116 12.063 19.730 1.859 1.877 3.490

4.3.5 Rectangle Deflection and Force Limits

 The deflection and force limits of these three shapes were then optimized. This was done

by minimizing the area of the finger while achieving a deflection or force set by the user. The

rectangle base was limited to 5 to 10 mm and the length was set to 15 to 20 mm. This was an

107

arbitrary number set by the user and can be changed. Because the area of the rectangle is simply

length times width, the width was kept between 5 and 10 mm to match the area of the triangles.

In the first case, the desired deflection was set to “Equal to” 2 mm. The modeFRONTIER setup

can be seen in Fig. 73. The limits can be seen in the bottom and the minimize area node can be

seen in the figure. This setup will also be used for the force limit optimization study. The only

difference is the model will optimize for force instead of deflection. The limits will be the same

and the force will be set to equal to 2 mN.

Figure 73. Rectangle Deflection Limit

As seen in Fig. 74, the deflection of a rectangle ranges significantly when changing the shape of

the finger. But, as can be seen, a finger with an area of 160 mm
2
 is capable of the most

deflection. Also, a finger with an area of 100 mm
2

is capable of deflecting the same amount as

fingers with a larger area. If a deflection of 2 mm or higher is desired, a finger with an area of 90

108

mm
2
is sufficient. Also, as seen in Fig. 74, many fingers deflect much less than the smaller finger

and have a larger area. This shows this optimization process can be very crucial in designing

fingers, as we can eliminate waste and achieve certain design goals.

Figure 74. Rectangle Deflection Limit

The force limit was then optimized for the rectangle, as seen in Fig. 75. The limits were again

the same and the force was set to equal to 2 mN. Examining the results, we can see a finger with

an area of 90 mm
2
 is capable of exerting 2 mN of force. As expected, larger fingers are capable

of exerting higher forces, but we are interested in exerting a certain force while minimizing the

area, which modeFRONTIER accomplished.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

50 70 90 110 130 150 170

D
e

fl
e

ct
io

n
 (

m
m

)

Area (mm2)

Rectangle Deflection Limit

Rectangle Deflection Limit

109

Figure 75. Rectangle Force Limit

4.3.6 Iso Triangle Deflection and Force Limits

 The same process used to determine the force or deflection limits for the rectangle was

used to optimize for the isosceles triangle deflection or force limits. In this case, the base was

limited to 7 to 14 mm and the length was limited to 15 to 20 mm. The deflection was set to

“Equal to” 2 mm again. The modeFRONTIER setup can be seen in Fig. 76. The limits can be

seen in the bottom and the minimize area node can be seen in the figure. This setup will also be

used for the force limit optimization study. The only difference is the model will optimize for

force instead of deflection. The limits will be the same and the force will be set to equal to 2

mN.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

50 100 150 200

Fo
rc

e
 (

m
N

)

Area (mm2)

Rectangle Force Limit

Rectangle Force Limit

110

Figure 76. Iso Triangle Deflection Limit

As can be seen in Fig. 77, the deflection varies when changing the area. The important thing to

notice is a finger with an area of 70 mm
2
 is capable of deflecting up to 2 mm, while fingers with

a larger area are not able to deflect as much. This is due to the shape of the finger. So, if a

finger with a large deflection is desired, a smaller finger can be used to obtain this deflection.

111

Figure 77. Iso Deflection Limit

Next, the force was optimized while minimizing the area, as seen in Fig. 78. A finger with an

area of 90 mm
2
 is capable of 2 mN of force. Also, fingers with a higher area are capable of the

same force, but wastes material. A finger with a smaller area is achieved with the same force

production.

Figure 78. Iso Triangle Force Limit

0.0

0.5

1.0

1.5

2.0

2.5

50 70 90 110 130 150

D
e

fl
e

ct
io

n
 (

m
m

)

Area (mm2)

Deflection Limit Iso

Deflection Limit Iso

0.000

0.500

1.000

1.500

2.000

2.500

3.000

50 70 90 110 130 150

Fo
rc

e
 (

m
N

)

Area (mm2)

Iso Force Limit

Iso Force Limit

112

4.3.7 Right Triangle Deflection and Force Limits

 The same process was used to optimize for the deflection or force limits of a right

triangle, using the process stated in Section 4.3.5. In this case, the base was limited to 7 to 14

mm and the length was limited to 15 to 20 mm. The deflection was set to “Equal to” 2 mm

again. The modeFRONTIER setup can be seen in Fig. 79. The limits can be seen in the bottom

and the minimize area node can be seen in the figure. This setup will also be used for the force

limit optimization study. The only difference is the model will optimize for force instead of

deflection. The limits will be the same and the force will be set to equal to 2 mN.

Figure 79. Right Triangle Deflection Limit

113

As can be seen in Fig. 80, the deflection once again varies when changing the area. The

important thing to notice is a finger with an area of 100 mm
2
 is capable of deflecting up to 2 mm,

while fingers with a larger area are not able to deflect as much. This is due to the shape of the

finger. So, if a finger with a large deflection is desired, a smaller finger can be used to obtain

this deflection.

Figure 80. Right Triangle Deflection Limit

Next, the force was optimized while minimizing the area, as seen in Fig. 81. A finger with an

area of 110 mm
2
 is capable of 2 mN of force. Also, fingers with a higher area are capable of the

same force, but wastes material. A finger with a smaller area is achieved with the same force

production.

0.0

0.5

1.0

1.5

2.0

2.5

50 70 90 110 130 150

D
e

fl
e

ct
io

n
 (

m
m

)

Area (mm2)

Right Triangle Deflection Limit

Right Triangle Deflection
Limit

114

Figure 81. Right Triangle Force Limit

0.000

0.500

1.000

1.500

2.000

2.500

50 70 90 110 130 150

Fo
rc

e
 (

m
N

)

Area (mm2)

Force Limit Right Triangle

Force Limit Right Triangle

115

Chapter 5. CONCLUSION

5.1 Results of the Study

 An IPMC Force Model was coupled with modeFRONTIER in order to optimize fingers

with respect to deflection, force exerted, both force and deflection, and area minimization, which

minimizes IPMC cost. The force model was combined into one large model that is able to run

many small sub-models that were made to model IPMC fingers. This model is able to model the

force and deflection of any finger using one code without going through the entire process of

modeling a finger and using Matlab and switching back to modeling. This optimization process

is needed as early investigations into size and shape of IPMC fingers led to interesting results, as

different shapes were better suited for certain design goals. The optimization process was

capable of modeling many different fingers and predicting the best design depending on the

desired need, such as force or deflection. It was also capable of minimizing the area of fingers,

while still achieving design goals, such as force or deflection. This is important as the waste of

material can be minimized and the best design can be achieved. Many different optimization

processes were run to change the area, while optimizing for the force or deflection. As seen in

Chapter 4, we are able to achieve a desired force or deflection, such as 2 mm or 2 mN, while

minimizing area. It can be seen that these different shapes each have advantages for certain

design goals, whether a high force or a high deflection is desired. The best way to achieve these

design goals without simply cutting out an arbitrary IPMC finger and testing it is to use an

optimization package. This optimization package should be able to predict the best way to

design a finger, which is what this thesis accomplished.

116

5.2 Limitations

 Although modeFRONTIER is able to optimize these fingers for the best design, there are

some limitations to this study. Limits must be set on the width and length of the fingers being

modeled, as modeFRONTIER would never converge on an answer without these limits. As

seen, a finger with a thin base and a long length is capable of a high degree of deflection. This

deflection will always increase when making the finger longer, but there must be a limit to how

long the finger can get. As seen with the triangle fingers, the limits have a greater effect than

they do with the rectangle, especially when looking at the ratio of the width to the length. Also,

a finger with a very wide base and very short length is capable of exerting a high force, but this

design is impractical, as the finger will not be able to actuate a great amount. The main objective

of IPMC fingers is usually to grasp an object. ModeFRONTIER can make the finger as short as

possible and will achieve this high force, but this design is impractical as the finger will not be

able to deflect enough to grasp an object. This is also a reason the limits are set in

modeFRONTIER.

 Meshing is also a concern in this study. The mesh is not changed in the models when

modeFRONTIER is predicting the best design. It was not a problem when running the models

presented in this thesis, but when making fingers very small or using complex shapes, meshing

may become a concern when using modeFRONTIER.

 Back relaxation was also not included in these studies, as we were mainly concerned with

an instantaneous deflection and force exerted. These studies did not include a transient study

that included a back relaxation term. This was not necessary as we wished to optimize for force

or deflection for a given finger. Force and deflection are usually instantaneous measurements

and back relaxation does not have an effect when these studies are short.

117

5.3 Future Research

 Using modeFRONTIER and the Comsol model, the effects of miniaturization can be

studied. This can be done very easily in modeFRONTIER, as the length and base are changed

according to the area of the finger. The limits of the base and length may also be changed to

determine other shapes. The length limit can be made much larger to see how thin and long a

finger may get and how much it can deflect. More complex finger shapes can be created using

modeFRONTIER and Comsol. This was the first time modeFRONTIER was used to optimize

fingers, so the shapes were kept simple. Transient studies, including back relaxation studies,

may also be included in the new Comsol models if longer grasping times are desired.

118

APPENDICES

Appendix A

A1. Concentration M-File

 %This M-File models the Nafion layer in an IPMC finger. Once a voltage is
%applied, the concentration of cations will be modeled. This model will
%then be given voltages at every point in the finger and the concentration
%at any point will be determined.

function out = model
%
% concentration.m
%
% Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('concentrationdistribution.mph');

model.modelNode.create('mod1');

model.geom.create('geom1', 1);
model.geom('geom1').feature.create('i1', 'Interval');
model.geom('geom1').feature('i1').set('p2', '180e-6');
model.geom('geom1').run;

model.variable.create('var1');
model.variable('var1').set('Van', '2');
model.variable('var1').set('Vcat', '0');

model.physics.create('chds', 'DilutedSpecies', 'geom1');

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('edg1', 'Edge');

model.variable('var1').name('Variables 1a');

model.view('view1').axis.set('xmin', '-9.000000318337698E-6');
model.view('view1').axis.set('xmax', '1.8899999849963933E-4');

model.physics('chds').prop('EquationForm').set('form', 'Transient');
model.physics('chds').prop('Migration').set('Migration', '1');
model.physics('chds').prop('Convection').set('Convection', '0');

119

model.physics('chds').feature('cdm1').set('V', 'Vcat+((Vcat-Van)/180e-

6)*x[V/m]');
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0';

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'});
model.physics('chds').feature('cdm1').set('z', '1');
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]');
model.physics('chds').feature('init1').set('c', '1250');

model.mesh('mesh1').feature('size').set('hmax', '1e-6');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.study.create('std1');
model.study('std1').feature.create('time', 'Transient');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('t1', 'Time');
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('t1').feature.create('d1', 'Direct');
model.sol('sol1').feature('t1').feature.remove('fcDef');

model.result.create('pg1', 'PlotGroup1D');
model.result('pg1').set('probetag', 'none');
model.result('pg1').feature.create('lngr1', 'LineGraph');
model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

model.study('std1').feature('time').set('tlist', 'range(0,0.1,5)');

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent');
model.sol('sol1').feature('st1').set('studystep', 'time');
model.sol('sol1').feature('v1').set('control', 'time');
model.sol('sol1').feature('t1').set('control', 'time');
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)');
model.sol('sol1').feature('t1').set('maxorder', '2');
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5');
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once');
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso');
model.sol('sol1').runAll;

model.result('pg1').name('Concentration (chds)');
model.result('pg1').set('looplevelinput', {'manual'});
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'});
model.result('pg1').set('looplevel', {'1,31,51'});
model.result('pg1').set('xlabel', 'x-coordinate (m)');
model.result('pg1').set('ylabel', 'Concentration (mol/m³)');
model.result('pg1').set('xlabelactive', false);
model.result('pg1').set('ylabelactive', false);
model.result('pg1').feature('lngr1').set('xdata', 'expr');

120

model.result('pg1').feature('lngr1').set('xdataexpr', 'x');
model.result('pg1').feature('lngr1').set('xdataunit', 'm');
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate');
model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

out = model;

121

A2. 7x17 mm Rectangle Fem

%This m-file contains the fem structure that is used to model the finger in
%three 7x17 mm blocks. This model contains the voltage distribution that
%will be used to determine the concentration throughout the IPMC.

function out = model
%
% sevenbyseventeen.m
%
% Model exported on Apr 17 2013, 07:45 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.modelNode.create('mod1');

model.geom.create('geom1', 3);

model.mesh.create('mesh1', 'geom1');

model.physics.create('ec', 'ConductiveMedia', 'geom1');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');
model.study('std1').feature('stat').set('sweeptype', 'sparse');
model.study('std1').feature('stat').set('plistarr_vector_start', {});
model.study('std1').feature('stat').set('usesol', 'off');
model.study('std1').feature('stat').set('constraintgroup', {});
model.study('std1').feature('stat').set('plot', 'off');
model.study('std1').feature('stat').set('adaption', 'off');
model.study('std1').feature('stat').set('notstudy', 'zero');
model.study('std1').feature('stat').set('plistarr', {});
model.study('std1').feature('stat').set('notsolnum', '1');
model.study('std1').feature('stat').set('plistarr_vector_numvalues', {});
model.study('std1').feature('stat').set('plist', '');
model.study('std1').feature('stat').set('nottimeinterp', 'off');
model.study('std1').feature('stat').set('useloadcase', 'off');
model.study('std1').feature('stat').set('loadgroup', {});
model.study('std1').feature('stat').set('useparam', 'off');
model.study('std1').feature('stat').set('plistarr_vector_step', {});
model.study('std1').feature('stat').set('plistarr_vector_function', {});
model.study('std1').feature('stat').set('notsolmethod', 'init');
model.study('std1').feature('stat').set('plistarr_vector_method', {});
model.study('std1').feature('stat').set('geometricNonlinearity', false);
model.study('std1').feature('stat').set('nott', '0');
model.study('std1').feature('stat').set('loadgroupweight', {});
model.study('std1').feature('stat').set('probesel', 'all');
model.study('std1').feature('stat').set('notsolvertype', 'none');
model.study('std1').feature('stat').set('loadcase', {});

122

model.study('std1').feature('stat').set('geometricNonlinearityActive', true);
model.study('std1').feature('stat').set('plistarr_vector_stop', {});
model.study('std1').feature('stat').set('pname', {});
model.study('std1').feature('stat').set('showGeometricNonlinearity', 'on');
model.study('std1').feature('stat').activate('ec', true);

% IPMC finger is being built
model.geom('geom1').run;
model.geom('geom1').feature.create('blk1', 'Block');
model.geom('geom1').feature('blk1').setIndex('size', '7e-3', 0);
model.geom('geom1').feature('blk1').setIndex('size', '17e-3', 1);
model.geom('geom1').feature('blk1').setIndex('size', '10e-6', 2);
model.geom('geom1').run('blk1');
model.geom('geom1').run('blk1');
model.geom('geom1').feature.create('blk2', 'Block');
model.geom('geom1').feature('blk2').setIndex('size', '7e-3', 0);
model.geom('geom1').feature('blk2').setIndex('size', '17e-3', 1);
model.geom('geom1').feature('blk2').setIndex('size', '180e-6', 2);
model.geom('geom1').feature('blk2').setIndex('pos', '10e-6', 2);
model.geom('geom1').run('blk2');
model.geom('geom1').run('blk2');
model.geom('geom1').feature.create('blk3', 'Block');
model.geom('geom1').feature('blk3').setIndex('size', '7e-3', 0);
model.geom('geom1').feature('blk3').setIndex('size', '17e-3', 1);
model.geom('geom1').feature('blk3').setIndex('size', '10e-6', 2);
model.geom('geom1').feature('blk3').setIndex('pos', '190e-6', 2);
model.geom('geom1').run('blk3');
model.geom('geom1').runAll;
model.geom('geom1').run;

%Materials are being assigned to each domain
model.material.create('mat1');
model.material('mat1').name('Pt');
model.material('mat1').set('family', 'custom');
model.material('mat1').set('lighting', 'cooktorrance');
model.material('mat1').set('specular', 'custom');
model.material('mat1').set('customspecular', [0.7843137254901961 1 1]);
model.material('mat1').set('fresnel', 0.9);
model.material('mat1').set('roughness', 0.1);
model.material('mat1').set('shininess', 200);
model.material('mat1').propertyGroup('def').set('electricconductivity',

'8.9e6[S/m]');
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, '8.80e-6[1/K]');
model.material('mat1').propertyGroup('def').set('heatcapacity',

'133[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('density', '21450[kg/m^3]');
model.material('mat1').propertyGroup('def').set('thermalconductivity',

'71.6[W/(m*K)]');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.38');
model.material('mat1').propertyGroup('Enu').set('youngsmodulus',

'168e9[Pa]');
model.material('mat1').set('family', 'custom');
model.material('mat1').set('lighting', 'cooktorrance');

123

model.material('mat1').set('specular', 'custom');
model.material('mat1').set('customspecular', [0.7843137254901961 1 1]);
model.material('mat1').set('fresnel', 0.9);
model.material('mat1').set('roughness', 0.1);
model.material('mat1').set('shininess', 200);
model.material.create('mat2');
model.material('mat2').name('Nylon');
model.material('mat2').set('family', 'custom');
model.material('mat2').set('lighting', 'phong');
model.material('mat2').set('fresnel', 0.5);
model.material('mat2').set('roughness', 0.1);
model.material('mat2').set('specular', 'custom');
model.material('mat2').set('customspecular', [0.7843137254901961

0.7843137254901961 0.7843137254901961]);
model.material('mat2').set('diffuse', 'custom');
model.material('mat2').set('customdiffuse', [0.39215686274509803

0.39215686274509803 0.9803921568627451]);
model.material('mat2').set('ambient', 'custom');
model.material('mat2').set('customambient', [0.39215686274509803

0.39215686274509803 0.7843137254901961]);
model.material('mat2').set('shininess', 500);
model.material('mat2').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat2').propertyGroup('def').set('relpermittivity', '4');
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, '280e-6[1/K]');
model.material('mat2').propertyGroup('def').set('density', '1150[kg/m^3]');
model.material('mat2').propertyGroup('def').set('thermalconductivity',

'0.26[W/(m*K)]');
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.4');
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]');
model.material('mat2').set('family', 'custom');
model.material('mat2').set('lighting', 'phong');
model.material('mat2').set('fresnel', 0.5);
model.material('mat2').set('roughness', 0.1);
model.material('mat2').set('specular', 'custom');
model.material('mat2').set('customspecular', [0.7843137254901961

0.7843137254901961 0.7843137254901961]);
model.material('mat2').set('diffuse', 'custom');
model.material('mat2').set('customdiffuse', [0.39215686274509803

0.39215686274509803 0.9803921568627451]);
model.material('mat2').set('ambient', 'custom');
model.material('mat2').set('customambient', [0.39215686274509803

0.39215686274509803 0.7843137254901961]);
model.material('mat2').set('shininess', 500);
model.material('mat1').selection.set([1 3]);
model.material('mat2').selection.set([2]);
model.material('mat1').propertyGroup('def').set('electricconductivity',

{'1e6[S/m]'});
model.material('mat1').propertyGroup('def').set('relpermittivity',

{'1.000265'});
model.material('mat2').propertyGroup('def').set('electricconductivity',

{'10'});

%Voltage and ground being assigned. The voltage can be changed to any

124

%value in the electric potential line.
model.physics('ec').feature.create('gnd1', 'Ground', 2);
model.physics('ec').feature('gnd1').selection.set([2]);
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2);
model.physics('ec').feature('pot1').selection.set([8]);
model.physics('ec').feature('pot1').set('V0', 1, '2');

model.mesh('mesh1').autoMeshSize(6);
model.mesh('mesh1').run;
model.mesh('mesh1').autoMeshSize(5);
model.mesh('mesh1').run;
model.mesh('mesh1').autoMeshSize(7);
model.mesh('mesh1').run;
model.mesh('mesh1').autoMeshSize(5);
model.mesh('mesh1').run;
model.mesh('mesh1').autoMeshSize(6);
model.mesh('mesh1').run;

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature('st1').set('study', 'std1');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative');
model.sol('sol1').feature('s1').feature('i1').set('prefuntype', 'left');
model.sol('sol1').feature('s1').feature('i1').set('maxlinit', 10000);
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg');
model.sol('sol1').feature('s1').feature('i1').set('rhob', 400);
model.sol('sol1').feature('s1').feature('fc1').set('linsolver', 'i1');
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1',

'Multigrid');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun',

'amg');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('iter', 2);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mgcycle',

'v');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mcasegen',

'any');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('gmglevels',

1);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('scale', 2);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('massem',

true);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mkeep',

false);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('rmethod',

'longest');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mglevels',

5);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('maxcoarsedo

f', 5000);

125

model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('amgauto',

3);
model.sol('sol1').feature('s1').feature.remove('fcDef');
model.sol('sol1').attach('std1');

% Plot of the voltage distribution.
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').name('Electric potential');
model.result('pg1').set('data', 'dset1');
model.result('pg1').set('solrepresentation', 'solnum');
model.result('pg1').set('oldanalysistype', 'noneavailable');
model.result('pg1').set('data', 'dset1');
model.result('pg1').feature.create('mslc1', 'Multislice');
model.result('pg1').feature('mslc1').name('Multislice');
model.result('pg1').feature('mslc1').set('data', 'parent');
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum');
model.result('pg1').feature('mslc1').set('expr', 'V');
model.result('pg1').feature('mslc1').set('unit', 'V');
model.result('pg1').feature('mslc1').set('descr', 'V');
model.result('pg1').feature('mslc1').set('inheritplot', 'none');
model.result('pg1').feature('mslc1').set('data', 'parent');
model.result('pg1').feature('mslc1').set('expr', 'V');
model.result('pg1').feature('mslc1').set('unit', 'V');
model.result('pg1').feature('mslc1').set('inheritplot', 'none');
model.result('pg1').feature('mslc1').set('data', 'parent');
model.result('pg1').feature('mslc1').set('expr', 'V');
model.result('pg1').feature('mslc1').set('unit', 'V');
model.result('pg1').feature('mslc1').set('inheritplot', 'none');
model.result('pg1').feature('mslc1').set('data', 'parent');
model.result('pg1').feature('mslc1').set('expr', 'V');
model.result('pg1').feature('mslc1').set('unit', 'V');
model.result('pg1').feature('mslc1').set('inheritplot', 'none');
model.result('pg1').feature('mslc1').set('data', 'parent');
model.result('pg1').feature('mslc1').set('expr', 'V');
model.result('pg1').feature('mslc1').set('unit', 'V');
model.result('pg1').feature('mslc1').set('inheritplot', 'none');
model.result('pg1').feature('mslc1').set('data', 'parent');

model.sol('sol1').runAll;

model.result('pg1').run;
model.result('pg1').feature.create('vol1', 'Volume');
model.result('pg1').run;

model.name('7x17voltage.mph');

model.result('pg1').run;

model.mesh('mesh1').automatic(false);
model.mesh('mesh1').feature('size').set('hauto', '2');
model.mesh('mesh1').run('size');
model.mesh('mesh1').feature('size').set('hauto', '4');
model.mesh('mesh1').run;

model.sol('sol1').study('std1');

126

model.sol('sol1').feature.remove('s1');
model.sol('sol1').feature.remove('v1');
model.sol('sol1').feature.remove('st1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature('st1').set('study', 'std1');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative');
model.sol('sol1').feature('s1').feature('i1').set('prefuntype', 'left');
model.sol('sol1').feature('s1').feature('i1').set('maxlinit', 10000);
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg');
model.sol('sol1').feature('s1').feature('i1').set('rhob', 400);
model.sol('sol1').feature('s1').feature('fc1').set('linsolver', 'i1');
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1',

'Multigrid');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun',

'amg');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('iter', 2);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mgcycle',

'v');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mcasegen',

'any');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('gmglevels',

1);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('scale', 2);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('massem',

true);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mkeep',

false);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('rmethod',

'longest');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('mglevels',

5);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('maxcoarsedo

f', 5000);
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('amgauto',

3);
model.sol('sol1').feature('s1').feature.remove('fcDef');
model.sol('sol1').attach('std1');
model.sol('sol1').runAll;

model.result('pg1').run;
model.result.export.create('tbl1', 'Table');
model.result.export.remove('tbl1');
model.result.export.create('data1', 'Data');
model.result.export.remove('data1');
model.result.numerical.create('gev1', 'EvalGlobal');
model.result.numerical('gev1').set('expr', 'ec.zref');
model.result.numerical('gev1').set('descr', 'Reference impedance');
model.result.numerical.remove('gev1');
model.result.numerical.create('int1', 'IntVolume');
model.result.numerical('int1').selection.all;
model.result.numerical('int1').selection.set([1 3]);
model.result.numerical('int1').set('expr', 'ec.Ey');

127

model.result.numerical('int1').set('descr', 'Electric field, y component');
model.result.table.create('tbl1', 'Table');
model.result.table('tbl1').comments('Volume Integration 1 (ec.Ey)');
model.result.numerical('int1').set('table', 'tbl1');
model.result.numerical('int1').setResult;
model.result.numerical.create('gev1', 'EvalGlobal');
model.result.numerical.create('av1', 'AvSurface');
model.result.numerical('av1').selection.all;
model.result.table.create('tbl2', 'Table');
model.result.table('tbl2').comments('Surface Average 1 (V)');
model.result.numerical('av1').set('table', 'tbl2');
model.result.numerical('av1').setResult;

out = model;

128

A3. Extract Voltage

function [Voltage_anode,Voltage_cathode] = Extract_voltage_sample(model)

IPMC_width = 20;
IPMC_length = 20;

%Create an empty square matrix at z=0 (the anode) that contains the points
%in the xy plane where the voltage will be sampled.

[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length);
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1));
p = [x(:)'; y(:)'; pz]*(1e-3);
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3);

%Extract voltage information from electrical model

V_cathode = mphinterp(model,'V','coord',p);
V_anode = mphinterp(model,'V','coord',p_cat);

Voltage_anode = [x(:) y(:) V_anode'];
Voltage_cathode = [x(:) y(:) V_cathode'];

Voltage_anode(isnan(Voltage_anode)) = 0;
Voltage_cathode(isnan(Voltage_cathode)) = 0;

end

129

A4. Force and Concentration M-File

function [Force,Concentration] =

Echem1Dfinal(Voltage_anode,Voltage_cathode,tf)
%
% concentration.m
%
% Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('concentrationdistributionclean.mph');

model.modelNode.create('mod1');

% length of voltage vector
[n,~] = size(Voltage_anode);

% vector of z sample points
z = ((0:180)'*1e-6);
Concentration = [];

model.geom.create('geom1', 1);
model.geom('geom1').feature.create('i1', 'Interval');

model.variable.create('var1');

model.physics.create('chds', 'DilutedSpecies', 'geom1');

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('edg1', 'Edge');

model.study.create('std1');
model.study('std1').feature.create('time', 'Transient');

model.sol.create('sol1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('t1', 'Time');
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('t1').feature.create('d1', 'Direct');
model.sol('sol1').feature('t1').feature.remove('fcDef');
model.result.create('pg1', 'PlotGroup1D');
model.result('pg1').feature.create('lngr1', 'LineGraph');

130

for i = 1:n

% extract anode and cathode voltage for element n.
V_a = Voltage_anode(i,3);
V_c = Voltage_cathode(i,3);

% vector of x and y sample points
x = Voltage_anode(i,1)'*ones(181,1);
y = Voltage_anode(i,2)'*ones(181,1);

model.geom('geom1').feature('i1').set('p2', '180e-6');
model.geom('geom1').run;

model.variable('var1').set('Van',strcat(num2str(V_a)),'[V]'), ...);
model.variable('var1').set('Vcat',strcat(num2str(V_c)),'[V]');

% model.variable('var1').name('Variables 1a');

model.view('view1').axis.set('xmin', '-9.000000318337698E-6');
model.view('view1').axis.set('xmax', '1.8899999849963933E-4');

model.physics('chds').prop('EquationForm').set('form', 'Transient');
model.physics('chds').prop('Migration').set('Migration', '1');
model.physics('chds').prop('Convection').set('Convection', '0');
model.physics('chds').feature('cdm1').set('V', 'Vcat+((Vcat-Van)/180e-

6)*x[V/m]');
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0';

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'});
model.physics('chds').feature('cdm1').set('z', '1');
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]');
model.physics('chds').feature('init1').set('c', '1250');

model.mesh('mesh1').feature('size').set('hmax', '1e-6');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');

model.result('pg1').set('probetag', 'none');

131

model.study('std1').feature('time').set('tlist', 'range(0,1,5)');

model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent');
model.sol('sol1').feature('st1').set('studystep', 'time');
model.sol('sol1').feature('v1').set('control', 'time');
model.sol('sol1').feature('t1').set('control', 'time');
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)');
model.sol('sol1').feature('t1').set('maxorder', '2');
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5');
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once');
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso');
model.sol('sol1').runAll;

model.result('pg1').name('Concentration (chds)');
model.result('pg1').set('looplevelinput', {'manual'});
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'});
model.result('pg1').set('xlabel', 'x-coordinate (m)');
model.result('pg1').set('ylabel', 'Concentration (mol/m³)');
model.result('pg1').set('xlabelactive', false);
model.result('pg1').set('ylabelactive', false);
model.result('pg1').feature('lngr1').set('xdata', 'expr');
model.result('pg1').feature('lngr1').set('xdataexpr', 'x');
model.result('pg1').feature('lngr1').set('xdataunit', 'm');
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate');
model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

% Save current fem structure for restart purposes
model0=model;

% extract concentration values at points in vector z
con = mphinterp(model0,'c','coord',z','T',tf)';

% Concentration = [x y z c]

Concentration = [Concentration; x y z con];

end
% Force equation

Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)];
name = input('enter a file name or number = ','s');%prompt user for input
fname = strcat(name,'.txt');

% fname = 'temp.csv' ;
fid = fopen(fname,'w');
fprintf(fid,'%%x\ty\tz\tForce\n');
fclose(fid);

132

dlmwrite(fname,Force,'precision','%2.6f','delimiter','\t','newline','pc','-

append');

end

133

A5. Complete Code used in modeFRONTIER

function out = model
%
% sevenbyseventeenvoltage.m
%
% Model exported on Jul 6 2012, 15:12 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('7x17voltagedistribution.mph');

model.modelNode.create('mod1');

model.geom.create('geom1', 3);
model.geom('geom1').feature.create('blk1', 'Block');
model.geom('geom1').feature.create('blk2', 'Block');
model.geom('geom1').feature.create('blk3', 'Block');
model.geom('geom1').feature('blk1').set('size', {'7e-3' '17e-3' '10e-6'});
model.geom('geom1').feature('blk2').set('pos', {'0' '0' '10e-6'});
model.geom('geom1').feature('blk2').set('size', {'7e-3' '17e-3' '180e-6'});
model.geom('geom1').feature('blk3').set('pos', {'0' '0' '190e-6'});
model.geom('geom1').feature('blk3').set('size', {'7e-3' '17e-3' '10e-6'});
model.geom('geom1').run;

model.material.create('mat1');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat1').selection.set([2]);
model.material.create('mat2');
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat2').selection.set([1 3]);

model.physics.create('ec', 'ConductiveMedia', 'geom1');
model.physics('ec').feature.create('gnd1', 'Ground', 2);
model.physics('ec').feature('gnd1').selection.set([2]);
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2);
model.physics('ec').feature('pot1').selection.set([8]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('ftet1', 'FreeTet');

model.result.table.create('evl3', 'Table');
model.result.table.create('tbl1', 'Table');

model.material('mat1').name('Nylon');

134

model.material('mat1').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0'

'0' '0' '4' '0' '0' '0' '4'});
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'});
model.material('mat1').propertyGroup('def').set('density', '1150[kg/m^3]');
model.material('mat1').propertyGroup('def').set('thermalconductivity',

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'});
model.material('mat1').propertyGroup('def').set('electricconductivity', {'10'

'0' '0' '0' '10' '0' '0' '0' '10'});
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.4');
model.material('mat2').name('Pt');
model.material('mat2').propertyGroup('def').set('electricconductivity',

{'1e6[S/m]' '0' '0' '0' '1e6[S/m]' '0' '0' '0' '1e6[S/m]'});
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]'});
model.material('mat2').propertyGroup('def').set('heatcapacity',

'133[J/(kg*K)]');
model.material('mat2').propertyGroup('def').set('density', '21450[kg/m^3]');
model.material('mat2').propertyGroup('def').set('thermalconductivity',

{'71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]'});
model.material('mat2').propertyGroup('def').set('relpermittivity',

{'1.000265' '0' '0' '0' '1.000265' '0' '0' '0' '1.000265'});
model.material('mat2').propertyGroup('Enu').set('youngsmodulus',

'168e9[Pa]');
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.38');

model.physics('ec').feature('pot1').set('V0', '2');

model.mesh('mesh1').feature('size').set('hauto', 6);
model.mesh('mesh1').run;

model.result.table('evl3').name('Evaluation 3D');
model.result.table('evl3').comments('Interactive 3D values');
model.result.table('tbl1').comments('Surface Integration 1 (1)');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative');
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1',

'Multigrid');
model.sol('sol1').feature('s1').feature.remove('fcDef');

model.study('std1').feature('stat').set('initstudyhide', 'on');
model.study('std1').feature('stat').set('initsolhide', 'on');
model.study('std1').feature('stat').set('notstudyhide', 'on');

135

model.study('std1').feature('stat').set('notsolhide', 'on');

model.result.numerical.create('int1', 'IntSurface');
model.result.numerical('int1').selection.set([3]);
model.result.numerical('int1').set('probetag', 'none');
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').feature.create('mslc1', 'Multislice');
model.result('pg1').feature.create('vol1', 'Volume');
model.result.export.create('tbl1', 'Table');

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Stationary');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature('v1').feature('mod1_V').name('mod1.V');
model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off');
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun',

'amg');
model.sol('sol1').runAll;

model.result.numerical('int1').set('unit', 'm^2');
model.result.numerical('int1').set('table', 'tbl1');
model.result.numerical('int1').set('descr', '1');
model.result.numerical('int1').set('expr', '1');
model.result.numerical('int1').setResult;
model.result('pg1').name('Electric potential');
model.result('pg1').feature('mslc1').name('Multislice');
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum');
model.result.export('tbl1').set('table', 'tbl1');
model.result.export('tbl1').set('filename',

'C:\Users\jsimpson\Desktop\area.txt');

out = model;

IPMC_width = 20;
IPMC_length = 20;

%Create an empty square matrix at z=0 (the anode) that contains the points
%in the xy plane where the voltage will be sampled.

[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length);
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1));
p = [x(:)'; y(:)'; pz]*(1e-3);
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3);

%Extract voltage information from electrical model

V_cathode = mphinterp(model,'V','coord',p);
V_anode = mphinterp(model,'V','coord',p_cat);

Voltage_anode = [x(:) y(:) V_anode'];
Voltage_cathode = [x(:) y(:) V_cathode'];

136

Voltage_anode(isnan(Voltage_anode)) = 0;
Voltage_cathode(isnan(Voltage_cathode)) = 0;

fid = fopen('anode1.txt','w');
fprintf(fid,'%%x\ty\tVoltage_anode\r\n');
fclose(fid);
dlmwrite('anode1.txt',Voltage_anode,'precision','%2.6f','delimiter','\t','new

line','pc','-append');

fid = fopen('cathode1.txt','w');
fprintf(fid,'%%x\ty\tVoltage_cathode\r\n');
fclose(fid);
dlmwrite('cathode1.txt',Voltage_cathode,'precision','%2.6f','delimiter','\t',

'newline','pc','-append');

model.result.export('tbl1').run;

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('concentrationdistributionclean.mph');

model.modelNode.create('mod1');

% length of voltage vector
[n,~] = size(Voltage_anode);

% vector of z sample points
z = ((0:180)'*1e-6);
Concentration = [];

model.geom.create('geom1', 1);
model.geom('geom1').feature.create('i1', 'Interval');

model.variable.create('var1');

model.physics.create('chds', 'DilutedSpecies', 'geom1');

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('edg1', 'Edge');

model.study.create('std1');
model.study('std1').feature.create('time', 'Transient');

model.sol.create('sol1');
model.sol('sol1').feature.create('st1', 'StudyStep');

137

model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('t1', 'Time');
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('t1').feature.create('d1', 'Direct');
model.sol('sol1').feature('t1').feature.remove('fcDef');
model.result.create('pg1', 'PlotGroup1D');
model.result('pg1').feature.create('lngr1', 'LineGraph');

for i = 1:n

% extract anode and cathode voltage for element n.
V_a = Voltage_anode(i,3);
V_c = Voltage_cathode(i,3);

% vector of x and y sample points
x = Voltage_anode(i,1)'*ones(181,1);
y = Voltage_anode(i,2)'*ones(181,1);

model.geom('geom1').feature('i1').set('p2', '180e-6');
model.geom('geom1').run;

model.variable('var1').set('Va',strcat(num2str(V_a)),'[V]'), ...);
model.variable('var1').set('Vc',strcat(num2str(V_c)),'[V]');

% model.variable('var1').name('Variables 1a');

model.view('view1').axis.set('xmin', '-9.000000318337698E-6');
model.view('view1').axis.set('xmax', '1.8899999849963933E-4');

model.physics('chds').prop('EquationForm').set('form', 'Transient');
model.physics('chds').prop('Migration').set('Migration', '1');
model.physics('chds').prop('Convection').set('Convection', '0');
model.physics('chds').feature('cdm1').set('V', 'Vc+((Vc-Va)/180e-6)*x[V/m]');
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0';

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'});
model.physics('chds').feature('cdm1').set('z', '1');
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]');
model.physics('chds').feature('init1').set('c', '1250');

model.mesh('mesh1').feature('size').set('hmax', '1e-6');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.sol('sol1').study('std1');

138

model.sol('sol1').attach('std1');

model.result('pg1').set('probetag', 'none');

model.study('std1').feature('time').set('tlist', 'range(0,1,5)');

model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent');
model.sol('sol1').feature('st1').set('studystep', 'time');
model.sol('sol1').feature('v1').set('control', 'time');
model.sol('sol1').feature('t1').set('control', 'time');
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)');
model.sol('sol1').feature('t1').set('maxorder', '2');
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5');
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once');
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso');
model.sol('sol1').runAll;

model.result('pg1').name('Concentration (chds)');
model.result('pg1').set('looplevelinput', {'manual'});
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'});
model.result('pg1').set('xlabel', 'x-coordinate (m)');
model.result('pg1').set('ylabel', 'Concentration (mol/m³)');
model.result('pg1').set('xlabelactive', false);
model.result('pg1').set('ylabelactive', false);
model.result('pg1').feature('lngr1').set('xdata', 'expr');
model.result('pg1').feature('lngr1').set('xdataexpr', 'x');
model.result('pg1').feature('lngr1').set('xdataunit', 'm');
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate');
model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

% Save current fem structure for restart purposes
model0=model;

% extract concentration values at points in vector z
con = mphinterp(model0,'c','coord',z','T',5)';

% Concentration = [x y z c]

Concentration = [Concentration; x y z con];

end

% Force equation

Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)];

139

fid = fopen('rectangleforce.txt','w');
fprintf(fid,'%%x\ty\tz\tForce\r\n');
fclose(fid);
dlmwrite('rectangleforce.txt',Force,'precision','%2.6f','delimiter','\t','new

line','pc','-append');

%
% rectangleoptimized1.m
%
% Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('.\');

model.name('rectangleoptimizeddeflection.mph');

model.modelNode.create('mod1');

model.file.create('res3');

model.func.create('int1', 'Interpolation');
model.func('int1').set('sourcetype', 'model');
model.func('int1').set('importedstruct', 'Spreadsheet');
model.func('int1').set('funcs', {'Force' '4'});
model.func('int1').set('importedname', 'rectangleforce.txt');
model.func('int1').set('importeddim', '3D');
model.func('int1').set('modelres', 'res3');

model.file('res3').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt');

model.func('int1').set('nargs', '3');
model.func('int1').set('struct', 'spreadsheet');

model.geom.create('geom1', 3);
model.geom('geom1').feature.create('BLK1', 'Block');
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0');
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'});
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'});
model.geom('geom1').run;

model.material.create('mat1');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');

model.physics.create('smsld', 'SolidMechanics', 'geom1');
model.physics('smsld').identifier('smsld');
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3);
model.physics('smsld').feature('lemm2').selection.set([1]);
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3);
model.physics('smsld').feature('bl1').selection.set([1]);

140

model.physics('smsld').feature.create('fix1', 'Fixed', 2);
model.physics('smsld').feature('fix1').selection.set([2]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('ftet1', 'FreeTet');
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3);
model.mesh('mesh1').feature('ftet1').selection.set([1]);

model.result.table.create('tbl1', 'Table');
model.result.table.create('tbl2', 'Table');

model.material('mat1').name('Nylon');
model.material('mat1').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0'

'0' '0' '4' '0' '0' '0' '4'});
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'});
model.material('mat1').propertyGroup('def').set('density', '2000[kg/m^3]');
model.material('mat1').propertyGroup('def').set('thermalconductivity',

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'});
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.49');

model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33';

'0.33'});
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('E', '5e8');
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nu', '.48');
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33';

'0.33'});

141

model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('rho', '2000');
model.physics('smsld').feature('bl1').set('FperVol', {'0';

'Force(x[1/m],y[1/m],z[1/m])'; '0'});

model.mesh('mesh1').feature('size').set('hauto', 2);
model.mesh('mesh1').feature('ftet1').set('zscale', '1');
model.mesh('mesh1').run;

model.result.table('tbl1').comments('Point Evaluation 1 (smsld.disp)');
model.result.table('tbl2').comments('Line Maximum 1 (smsld.disp)');

model.coordSystem('sys1').set('mastercoordsystcomp', 'manual');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('d1', 'Direct');

model.study('std1').feature('stat').set('initstudyhide', 'on');
model.study('std1').feature('stat').set('initsolhide', 'on');
model.study('std1').feature('stat').set('notstudyhide', 'on');
model.study('std1').feature('stat').set('notsolhide', 'on');

model.result.numerical.create('max1', 'MaxLine');
model.result.numerical('max1').selection.set([6]);
model.result.numerical('max1').set('probetag', 'none');
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').feature.create('vol1', 'Volume');
model.result('pg1').feature('vol1').feature.create('def1', 'Deform');
model.result.export.create('tbl2', 'Table');

model.sol('sol1').attach('std1');

142

model.sol('sol1').feature('st1').name('Compile Equations: Stationary');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').feature('s1').set('stol', '1.0E-6');
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0');
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0');
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4');
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off');
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off');
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles');
model.sol('sol1').runAll;

model.result.numerical('max1').set('unit', 'mm');
model.result.numerical('max1').set('table', 'tbl2');
model.result.numerical('max1').setResult;
model.result('pg1').name('Stress (smsld)');
model.result('pg1').feature('vol1').set('unit', 'mm');
model.result('pg1').feature('vol1').feature('def1').set('scaleactive', true);
model.result.export('tbl2').set('filename', '.\deflection.txt');
model.result.export('tbl2').set('table', 'tbl2');

model.result.export('tbl2').run;

quit

143

A6. Combined Deflection and Force

function out = model
%
% sevenbyseventeenvoltage.m
%
% Model exported on Jul 6 2012, 15:12 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('7x17voltagedistribution.mph');

model.modelNode.create('mod1');

model.geom.create('geom1', 3);
model.geom('geom1').feature.create('blk1', 'Block');
model.geom('geom1').feature.create('blk2', 'Block');
model.geom('geom1').feature.create('blk3', 'Block');
model.geom('geom1').feature('blk1').set('size', {'7e-3' '17e-3' '10e-6'});
model.geom('geom1').feature('blk2').set('pos', {'0' '0' '10e-6'});
model.geom('geom1').feature('blk2').set('size', {'7e-3' '17e-3' '180e-6'});
model.geom('geom1').feature('blk3').set('pos', {'0' '0' '190e-6'});
model.geom('geom1').feature('blk3').set('size', {'7e-3' '17e-3' '10e-6'});
model.geom('geom1').run;

model.material.create('mat1');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat1').selection.set([2]);
model.material.create('mat2');
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat2').selection.set([1 3]);

model.physics.create('ec', 'ConductiveMedia', 'geom1');
model.physics('ec').feature.create('gnd1', 'Ground', 2);
model.physics('ec').feature('gnd1').selection.set([2]);
model.physics('ec').feature.create('pot1', 'ElectricPotential', 2);
model.physics('ec').feature('pot1').selection.set([8]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('ftet1', 'FreeTet');

model.result.table.create('evl3', 'Table');
model.result.table.create('tbl1', 'Table');

model.material('mat1').name('Nylon');

144

model.material('mat1').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0'

'0' '0' '4' '0' '0' '0' '4'});
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'});
model.material('mat1').propertyGroup('def').set('density', '1150[kg/m^3]');
model.material('mat1').propertyGroup('def').set('thermalconductivity',

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'});
model.material('mat1').propertyGroup('def').set('electricconductivity', {'10'

'0' '0' '0' '10' '0' '0' '0' '10'});
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '2e9[Pa]');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.4');
model.material('mat2').name('Pt');
model.material('mat2').propertyGroup('def').set('electricconductivity',

{'1e6[S/m]' '0' '0' '0' '1e6[S/m]' '0' '0' '0' '1e6[S/m]'});
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]' '0' '0' '0' '8.80e-6[1/K]'});
model.material('mat2').propertyGroup('def').set('heatcapacity',

'133[J/(kg*K)]');
model.material('mat2').propertyGroup('def').set('density', '21450[kg/m^3]');
model.material('mat2').propertyGroup('def').set('thermalconductivity',

{'71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]' '0' '0' '0' '71.6[W/(m*K)]'});
model.material('mat2').propertyGroup('def').set('relpermittivity',

{'1.000265' '0' '0' '0' '1.000265' '0' '0' '0' '1.000265'});
model.material('mat2').propertyGroup('Enu').set('youngsmodulus',

'168e9[Pa]');
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.38');

model.physics('ec').feature('pot1').set('V0', '2');

model.mesh('mesh1').feature('size').set('hauto', 6);
model.mesh('mesh1').run;

model.result.table('evl3').name('Evaluation 3D');
model.result.table('evl3').comments('Interactive 3D values');
model.result.table('tbl1').comments('Surface Integration 1 (1)');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('i1', 'Iterative');
model.sol('sol1').feature('s1').feature('i1').feature.create('mg1',

'Multigrid');
model.sol('sol1').feature('s1').feature.remove('fcDef');

model.study('std1').feature('stat').set('initstudyhide', 'on');
model.study('std1').feature('stat').set('initsolhide', 'on');
model.study('std1').feature('stat').set('notstudyhide', 'on');

145

model.study('std1').feature('stat').set('notsolhide', 'on');

model.result.numerical.create('int1', 'IntSurface');
model.result.numerical('int1').selection.set([3]);
model.result.numerical('int1').set('probetag', 'none');
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').feature.create('mslc1', 'Multislice');
model.result('pg1').feature.create('vol1', 'Volume');
model.result.export.create('tbl1', 'Table');

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Stationary');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature('v1').feature('mod1_V').name('mod1.V');
model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off');
model.sol('sol1').feature('s1').feature('i1').set('linsolver', 'cg');
model.sol('sol1').feature('s1').feature('i1').feature('mg1').set('prefun',

'amg');
model.sol('sol1').runAll;

model.result.numerical('int1').set('unit', 'm^2');
model.result.numerical('int1').set('table', 'tbl1');
model.result.numerical('int1').set('descr', '1');
model.result.numerical('int1').set('expr', '1');
model.result.numerical('int1').setResult;
model.result('pg1').name('Electric potential');
model.result('pg1').feature('mslc1').name('Multislice');
model.result('pg1').feature('mslc1').set('solrepresentation', 'solnum');
model.result.export('tbl1').set('table', 'tbl1');
model.result.export('tbl1').set('filename',

'C:\Users\jsimpson\Desktop\area.txt');

out = model;

IPMC_width = 20;
IPMC_length = 20;

%Create an empty square matrix at z=0 (the anode) that contains the points
%in the xy plane where the voltage will be sampled.

[x,y] = meshgrid(0:IPMC_width, 0:IPMC_length);
pz = zeros(1,(IPMC_width+1)*(IPMC_length+1));
p = [x(:)'; y(:)'; pz]*(1e-3);
p_cat = [x(:)'; y(:)'; pz+(190e-3)]*(1e-3);

%Extract voltage information from electrical model

V_cathode = mphinterp(model,'V','coord',p);
V_anode = mphinterp(model,'V','coord',p_cat);

Voltage_anode = [x(:) y(:) V_anode'];
Voltage_cathode = [x(:) y(:) V_cathode'];

146

Voltage_anode(isnan(Voltage_anode)) = 0;
Voltage_cathode(isnan(Voltage_cathode)) = 0;

fid = fopen('anode1.txt','w');
fprintf(fid,'%%x\ty\tVoltage_anode\r\n');
fclose(fid);
dlmwrite('anode1.txt',Voltage_anode,'precision','%2.6f','delimiter','\t','new

line','pc','-append');

fid = fopen('cathode1.txt','w');
fprintf(fid,'%%x\ty\tVoltage_cathode\r\n');
fclose(fid);
dlmwrite('cathode1.txt',Voltage_cathode,'precision','%2.6f','delimiter','\t',

'newline','pc','-append');

model.result.export('tbl1').run;

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('C:\Users\Justin\Desktop\Comsol Models');

model.name('concentrationdistributionclean.mph');

model.modelNode.create('mod1');

% length of voltage vector
[n,~] = size(Voltage_anode);

% vector of z sample points
z = ((0:180)'*1e-6);
Concentration = [];

model.geom.create('geom1', 1);
model.geom('geom1').feature.create('i1', 'Interval');

model.variable.create('var1');

model.physics.create('chds', 'DilutedSpecies', 'geom1');

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('edg1', 'Edge');

model.study.create('std1');
model.study('std1').feature.create('time', 'Transient');

model.sol.create('sol1');
model.sol('sol1').feature.create('st1', 'StudyStep');

147

model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('t1', 'Time');
model.sol('sol1').feature('t1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('t1').feature.create('d1', 'Direct');
model.sol('sol1').feature('t1').feature.remove('fcDef');
model.result.create('pg1', 'PlotGroup1D');
model.result('pg1').feature.create('lngr1', 'LineGraph');

for i = 1:n

% extract anode and cathode voltage for element n.
V_a = Voltage_anode(i,3);
V_c = Voltage_cathode(i,3);

% vector of x and y sample points
x = Voltage_anode(i,1)'*ones(181,1);
y = Voltage_anode(i,2)'*ones(181,1);

model.geom('geom1').feature('i1').set('p2', '180e-6');
model.geom('geom1').run;

model.variable('var1').set('Va',strcat(num2str(V_a)),'[V]'), ...);
model.variable('var1').set('Vc',strcat(num2str(V_c)),'[V]');

% model.variable('var1').name('Variables 1a');

model.view('view1').axis.set('xmin', '-9.000000318337698E-6');
model.view('view1').axis.set('xmax', '1.8899999849963933E-4');

model.physics('chds').prop('EquationForm').set('form', 'Transient');
model.physics('chds').prop('Migration').set('Migration', '1');
model.physics('chds').prop('Convection').set('Convection', '0');
model.physics('chds').feature('cdm1').set('V', 'Vc+((Vc-Va)/180e-6)*x[V/m]');
model.physics('chds').feature('cdm1').set('D_0', {'6e-12[m^2/s]'; '0'; '0';

'0'; '6e-12[m^2/s]'; '0'; '0'; '0'; '6e-12[m^2/s]'});
model.physics('chds').feature('cdm1').set('z', '1');
model.physics('chds').feature('cdm1').set('um', '2.4630522e-15[s*mol/kg]');
model.physics('chds').feature('init1').set('c', '1250');

model.mesh('mesh1').feature('size').set('hmax', '1e-6');
model.mesh('mesh1').run;

model.frame('material1').sorder(1);

model.sol('sol1').study('std1');

148

model.sol('sol1').attach('std1');

model.result('pg1').set('probetag', 'none');

model.study('std1').feature('time').set('tlist', 'range(0,1,5)');

model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Time Dependent');
model.sol('sol1').feature('st1').set('studystep', 'time');
model.sol('sol1').feature('v1').set('control', 'time');
model.sol('sol1').feature('t1').set('control', 'time');
model.sol('sol1').feature('t1').set('tlist', 'range(0,1,5)');
model.sol('sol1').feature('t1').set('maxorder', '2');
model.sol('sol1').feature('t1').feature('fc1').set('maxiter', '5');
model.sol('sol1').feature('t1').feature('fc1').set('jtech', 'once');
model.sol('sol1').feature('t1').feature('d1').set('linsolver', 'pardiso');
model.sol('sol1').runAll;

model.result('pg1').name('Concentration (chds)');
model.result('pg1').set('looplevelinput', {'manual'});
model.result('pg1').set('showlooplevel', {'on' 'off' 'off'});
model.result('pg1').set('xlabel', 'x-coordinate (m)');
model.result('pg1').set('ylabel', 'Concentration (mol/m³)');
model.result('pg1').set('xlabelactive', false);
model.result('pg1').set('ylabelactive', false);
model.result('pg1').feature('lngr1').set('xdata', 'expr');
model.result('pg1').feature('lngr1').set('xdataexpr', 'x');
model.result('pg1').feature('lngr1').set('xdataunit', 'm');
model.result('pg1').feature('lngr1').set('xdatadescr', 'x-coordinate');
model.result('pg1').feature('lngr1').selection.all;
model.result('pg1').feature('lngr1').selection.all;

% Save current fem structure for restart purposes
model0=model;

% extract concentration values at points in vector z
con = mphinterp(model0,'c','coord',z','T',5)';

% Concentration = [x y z c]

Concentration = [Concentration; x y z con];

end

% Force equation

Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250).^2)];

149

fid = fopen('rectangleforce.txt','w');
fprintf(fid,'%%x\ty\tz\tForce\r\n');
fclose(fid);
dlmwrite('rectangleforce.txt',Force,'precision','%2.6f','delimiter','\t','new

line','pc','-append');

%
% rectangleoptimized1.m
%
% Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('.\');

model.name('rectangleoptimizeddeflection.mph');

model.modelNode.create('mod1');

model.file.create('res3');

model.func.create('int1', 'Interpolation');
model.func('int1').set('sourcetype', 'model');
model.func('int1').set('importedstruct', 'Spreadsheet');
model.func('int1').set('funcs', {'Force' '4'});
model.func('int1').set('importedname', 'rectangleforce.txt');
model.func('int1').set('importeddim', '3D');
model.func('int1').set('modelres', 'res3');

model.file('res3').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt');

model.func('int1').set('nargs', '3');
model.func('int1').set('struct', 'spreadsheet');

model.geom.create('geom1', 3);
model.geom('geom1').feature.create('BLK1', 'Block');
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0');
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'});
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'});
model.geom('geom1').run;

model.material.create('mat1');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');

model.physics.create('smsld', 'SolidMechanics', 'geom1');
model.physics('smsld').identifier('smsld');
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3);
model.physics('smsld').feature('lemm2').selection.set([1]);
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3);
model.physics('smsld').feature('bl1').selection.set([1]);

150

model.physics('smsld').feature.create('fix1', 'Fixed', 2);
model.physics('smsld').feature('fix1').selection.set([2]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('ftet1', 'FreeTet');
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3);
model.mesh('mesh1').feature('ftet1').selection.set([1]);

model.result.table.create('tbl1', 'Table');
model.result.table.create('tbl2', 'Table');

model.material('mat1').name('Nylon');
model.material('mat1').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('relpermittivity', {'4' '0'

'0' '0' '4' '0' '0' '0' '4'});
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'});
model.material('mat1').propertyGroup('def').set('density', '2000[kg/m^3]');
model.material('mat1').propertyGroup('def').set('thermalconductivity',

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'});
model.material('mat1').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.49');

model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33';

'0.33'});
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('E', '5e8');
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nu', '.48');
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33';

'0.33'});

151

model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('rho', '2000');
model.physics('smsld').feature('bl1').set('FperVol', {'0';

'Force(x[1/m],y[1/m],z[1/m])'; '0'});

model.mesh('mesh1').feature('size').set('hauto', 2);
model.mesh('mesh1').feature('ftet1').set('zscale', '1');
model.mesh('mesh1').run;

model.result.table('tbl1').comments('Point Evaluation 1 (smsld.disp)');
model.result.table('tbl2').comments('Line Maximum 1 (smsld.disp)');

model.coordSystem('sys1').set('mastercoordsystcomp', 'manual');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('d1', 'Direct');

model.study('std1').feature('stat').set('initstudyhide', 'on');
model.study('std1').feature('stat').set('initsolhide', 'on');
model.study('std1').feature('stat').set('notstudyhide', 'on');
model.study('std1').feature('stat').set('notsolhide', 'on');

model.result.numerical.create('max1', 'MaxLine');
model.result.numerical('max1').selection.set([6]);
model.result.numerical('max1').set('probetag', 'none');
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').feature.create('vol1', 'Volume');
model.result('pg1').feature('vol1').feature.create('def1', 'Deform');
model.result.export.create('tbl2', 'Table');

model.sol('sol1').attach('std1');

152

model.sol('sol1').feature('st1').name('Compile Equations: Stationary');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').feature('s1').set('stol', '1.0E-6');
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0');
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0');
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4');
model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off');
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off');
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles');
model.sol('sol1').runAll;

model.result.numerical('max1').set('unit', 'mm');
model.result.numerical('max1').set('table', 'tbl2');
model.result.numerical('max1').setResult;
model.result('pg1').name('Stress (smsld)');
model.result('pg1').feature('vol1').set('unit', 'mm');
model.result('pg1').feature('vol1').feature('def1').set('scaleactive', true);
model.result.export('tbl2').set('filename', '.\deflection.txt');
model.result.export('tbl2').set('table', 'tbl2');

model.result.export('tbl2').run;

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath('.\');

model.name('1.2included7x17newest.mph');

model.modelNode.create('mod1');

model.file.create('res2');

model.func.create('int1', 'Interpolation');
model.func('int1').set('importedname', 'rectangleforce.txt');
model.func('int1').set('funcs', {'Force' '4'});
model.func('int1').set('modelres', 'res2');
model.func('int1').set('importedstruct', 'Spreadsheet');
model.func('int1').set('importeddim', '3D');
model.func('int1').set('sourcetype', 'model');

model.file('res2').resource('C:\Users\jsimpson\Desktop\rectangleforce.txt');

model.func('int1').set('nargs', '3');
model.func('int1').set('struct', 'spreadsheet');

model.geom.create('geom1', 3);
model.geom('geom1').feature.create('BLK1', 'Block');

153

model.geom('geom1').feature.create('CYL1', 'Cylinder');
model.geom('geom1').feature('BLK1').set('pos', '0.0,0.0,0.0');
model.geom('geom1').feature('BLK1').set('size', {'0.0070' '0.017' '1.8E-4'});
model.geom('geom1').feature('BLK1').set('axis', {'0' '0' '1'});
model.geom('geom1').feature('CYL1').set('axis', {'0' '0' '1'});
model.geom('geom1').feature('CYL1').set('r', '5.0E-4');
model.geom('geom1').feature('CYL1').set('pos', {'0.0035' '0.015' '1.8e-4'});
model.geom('geom1').feature('CYL1').set('h', '0.0010');
model.geom('geom1').run;

model.material.create('mat1');
model.material('mat1').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat1').propertyGroup.create('RefractiveIndex', 'Refractive

index');
model.material('mat1').selection.set([2]);
model.material.create('mat2');
model.material('mat2').propertyGroup.create('Enu', 'Young''s modulus and

Poisson''s ratio');
model.material('mat2').selection.set([1]);

model.physics.create('smsld', 'SolidMechanics', 'geom1');
model.physics('smsld').identifier('smsld');
model.physics('smsld').feature.create('lemm2', 'LinearElasticModel', 3);
model.physics('smsld').feature('lemm2').selection.set([1]);
model.physics('smsld').feature.create('bl1', 'BodyLoad', 3);
model.physics('smsld').feature('bl1').selection.set([1]);
model.physics('smsld').feature.create('fix1', 'Fixed', 2);
model.physics('smsld').feature('fix1').selection.set([2 9]);

model.mesh.create('mesh1', 'geom1');
model.mesh('mesh1').feature.create('ftet1', 'FreeTet');
model.mesh('mesh1').feature.create('ftet2', 'FreeTet');
model.mesh('mesh1').feature('ftet1').selection.geom('geom1', 3);
model.mesh('mesh1').feature('ftet1').selection.set([1]);
model.mesh('mesh1').feature('ftet2').selection.geom('geom1', 3);
model.mesh('mesh1').feature('ftet2').selection.set([2]);
model.mesh('mesh1').feature('ftet2').feature.create('size1', 'Size');

model.result.table.create('tbl1', 'Table');

model.material('mat1').name('Silica glass');
model.material('mat1').propertyGroup('def').set('heatcapacity',

'703[J/(kg*K)]');
model.material('mat1').propertyGroup('def').set('thermalexpansioncoefficient'

, {'0.55e-6[1/K]' '0' '0' '0' '0.55e-6[1/K]' '0' '0' '0' '0.55e-6[1/K]'});
model.material('mat1').propertyGroup('def').set('relpermittivity', {'2.09'

'0' '0' '0' '2.09' '0' '0' '0' '2.09'});
model.material('mat1').propertyGroup('def').set('thermalconductivity',

{'1.38[W/(m*K)]' '0' '0' '0' '1.38[W/(m*K)]' '0' '0' '0' '1.38[W/(m*K)]'});
model.material('mat1').propertyGroup('def').set('relpermeability', {'1' '0'

'0' '0' '1' '0' '0' '0' '1'});
model.material('mat1').propertyGroup('def').set('density', '2203[kg/m^3]');
model.material('mat1').propertyGroup('def').set('electricconductivity', {'1e-

14[S/m]' '0' '0' '0' '1e-14[S/m]' '0' '0' '0' '1e-14[S/m]'});

154

model.material('mat1').propertyGroup('Enu').set('youngsmodulus',

'73.1e9[Pa]');
model.material('mat1').propertyGroup('Enu').set('poissonsratio', '0.17');
model.material('mat1').propertyGroup('RefractiveIndex').set('n', '');
model.material('mat1').propertyGroup('RefractiveIndex').set('ki', '');
model.material('mat1').propertyGroup('RefractiveIndex').set('n', {'1.45' '0'

'0' '0' '1.45' '0' '0' '0' '1.45'});
model.material('mat1').propertyGroup('RefractiveIndex').set('ki', {'0' '0'

'0' '0' '0' '0' '0' '0' '0'});
model.material('mat2').name('Nylon');
model.material('mat2').propertyGroup('def').set('heatcapacity',

'1700[J/(kg*K)]');
model.material('mat2').propertyGroup('def').set('relpermittivity', {'4' '0'

'0' '0' '4' '0' '0' '0' '4'});
model.material('mat2').propertyGroup('def').set('thermalexpansioncoefficient'

, {'280e-6[1/K]' '0' '0' '0' '280e-6[1/K]' '0' '0' '0' '280e-6[1/K]'});
model.material('mat2').propertyGroup('def').set('density', '2000[kg/m^3]');
model.material('mat2').propertyGroup('def').set('thermalconductivity',

{'0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]' '0' '0' '0' '0.26[W/(m*K)]'});
model.material('mat2').propertyGroup('Enu').set('youngsmodulus', '5e8[Pa]');
model.material('mat2').propertyGroup('Enu').set('poissonsratio', '0.49');

model.physics('smsld').feature('lemm1').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm1').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('nuvector', {'0.33'; '0.33';

'0.33'});
model.physics('smsld').feature('lemm1').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm1').set('D_mat', 'userdef');
model.physics('smsld').feature('lemm1').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('E_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('E', '5e8');
model.physics('smsld').feature('lemm2').set('nu_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nu', '.48');
model.physics('smsld').feature('lemm2').set('Evector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Evector', {'2.0e11'; '2.0e11';

'2.0e11'});
model.physics('smsld').feature('lemm2').set('nuvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('nuvector', {'0.33'; '0.33';

'0.33'});
model.physics('smsld').feature('lemm2').set('Gvector_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('Gvector', {'7.52e10'; '7.52e10';

'7.52e10'});
model.physics('smsld').feature('lemm2').set('D_mat', 'userdef');

155

model.physics('smsld').feature('lemm2').set('D', {'2.0e11/((1+0.33)*(1-

2*0.33))*(1-0.33)'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; '0'; '0'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)';

'2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '0'; ...
'0'; '0'; '2.0e11/((1+0.33)*(1-2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-

2*0.33))*0.33'; '2.0e11/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';

'0'; ...
'0'; '2.0e11/((1+0.33)*2)'; '0'; '0'; '0'; '0'; '0'; '0';

'2.0e11/((1+0.33)*2)'; '0'; ...
'0'; '0'; '0'; '0'; '0'; '2.0e11/((1+0.33)*2)'});
model.physics('smsld').feature('lemm2').set('rho_mat', 'userdef');
model.physics('smsld').feature('lemm2').set('rho', '2000');
model.physics('smsld').feature('bl1').set('FperVol', {'0';

'Force(x[1/m],y[1/m],z[1/m])'; '0'});

model.mesh('mesh1').feature('size').set('hauto', 2);
model.mesh('mesh1').feature('ftet2').feature('size1').set('hauto', 4);
model.mesh('mesh1').run;

model.result.table('tbl1').comments('Volume Integration 1 (smsld.RFz)');

model.coordSystem('sys1').set('mastercoordsystcomp', 'manual');

model.study.create('std1');
model.study('std1').feature.create('stat', 'Stationary');

model.sol.create('sol1');
model.sol('sol1').study('std1');
model.sol('sol1').attach('std1');
model.sol('sol1').feature.create('st1', 'StudyStep');
model.sol('sol1').feature.create('v1', 'Variables');
model.sol('sol1').feature.create('s1', 'Stationary');
model.sol('sol1').feature('s1').feature.create('fc1', 'FullyCoupled');
model.sol('sol1').feature('s1').feature.create('d1', 'Direct');

model.study('std1').feature('stat').set('initstudyhide', 'on');
model.study('std1').feature('stat').set('initsolhide', 'on');
model.study('std1').feature('stat').set('notstudyhide', 'on');
model.study('std1').feature('stat').set('notsolhide', 'on');

model.result.numerical.create('int1', 'IntVolume');
model.result.numerical('int1').selection.set([2]);
model.result.numerical('int1').set('probetag', 'none');
model.result.create('pg1', 'PlotGroup3D');
model.result('pg1').feature.create('surf1', 'Surface');
model.result('pg1').feature('surf1').feature.create('def', 'Deform');
model.result.export.create('tbl1', 'Table');

model.sol('sol1').attach('std1');
model.sol('sol1').feature('st1').name('Compile Equations: Stationary');
model.sol('sol1').feature('st1').set('studystep', 'stat');
model.sol('sol1').feature('v1').set('control', 'stat');
model.sol('sol1').feature('s1').set('control', 'stat');
model.sol('sol1').feature('s1').set('stol', '1.0E-6');

156

model.sol('sol1').feature('s1').feature('fc1').set('termonres', 'off');
model.sol('sol1').feature('s1').feature('fc1').set('rstep', '10.0');
model.sol('sol1').feature('s1').feature('fc1').set('initstep', '1.0');
model.sol('sol1').feature('s1').feature('fc1').set('minstep', '1.0e-4');
model.sol('sol1').feature('s1').feature('d1').set('linsolver', 'spooles');
model.sol('sol1').feature('s1').feature('d1').set('errorchk', 'off');
model.sol('sol1').runAll;

model.result.numerical('int1').set('expr', 'smsld.RFz');
model.result.numerical('int1').set('unit', 'mN');
model.result.numerical('int1').set('descr', 'Reaction force, z component');
model.result.numerical('int1').set('table', 'tbl1');
model.result.numerical('int1').setResult;
model.result('pg1').name('Stress (smsld)');
model.result('pg1').feature('surf1').set('expr', 'smsld.mises');
model.result('pg1').feature('surf1').set('unit', 'N/m^2');
model.result('pg1').feature('surf1').set('descr', 'von Mises stress');
model.result('pg1').feature('surf1').feature('def').set('scale',

'75.6551305019355');
model.result('pg1').feature('surf1').feature('def').set('scaleactive',

false);
model.result.export('tbl1').set('filename', '.\rectangleforcefinal.txt');
model.result.export('tbl1').set('table', 'tbl1');

model.result.export('tbl1').run;

quit

157

REFERENCES

[1] Bar-Cohen,Y., Electric flex. IEEE Spectrum, Vol. 41, pp. 29-33, 2004.

[2] Bonomo, C., Fortuna, L., Graziani, S., Mazza, D., A circuit to model an Ionic Polymer-
Metal Composite as actuator. 2004 IEEE International Symposium on Circuits and Systems,
2004, IEEE: Vancouver, BC, Canada. p. IV-864-7.

[3] Shahinpoor, M., Kim, K., Ionic Polymer Metal Composites-I. Fundamentals. Smart
Materials and Structures, 2001. 10: p. 819-33.

[4] Gierke, T., Munn, G., Wilson, F., The morphology in nafion perfluorinated membrane
products, as determined by wide- and small-angle x-ray studies. Journal of Polymer Science,
1981.19(11): p. 1687-1704.

[5] Nemat-Nasser, S., and Shahram, Z., Modeling of the electrochemomechanical response
of ionic polymer-metal composites with various solvents. Journal of Applied Physics, 2006. p.
064310.

[6] Nemat-Nasser, S., Li, J.Y., Electromechanical response of ionic polymer-metal
composites. Journal of Applied Physics, 2000.87(7): p. 3321-31.

[7] Sadeghipour, K., Salomon R., and Neogi, S., Development of a Novel Electrochemically
Active Membrane and ‘Smart’ Material Based Vibration Sensor/Damper. Smart
Materials and Structures, (1992) 172-179.

[8] Bonomo, C., Fortuna, L., Giannone, P., Graziani, S., Strazzeri, S., A model for ionic
polymer metal composites as sensors. Smart Materials and Structures, 2006.15(3): p. 749-58.

[9] Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J., Ionic polymer-metal composites
(IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Materials and
Structures, 1998.7(6): p. R15-30.

[10] Oguro, K., Kawami, Y. andTakenaka, H., Bending of an Ion-Conducting Polymer Film-
Electrode Composite by an Electric Stimulus at Low Voltage. Trans. Journal of
MicromachineSociety, Vol. 5, (1992) pp. 27-30.

[11] Kanno, R., Kurata, A., Hattori, M., Tadokoro, S., Takamori, T., Oguro, K., Characteristics
and modeling of ICPF actuator. Proceedings of Japan-USA Symposium on Flexible Automation,
1994, Inst. Syst. Control & Inf. Eng: Kobe, Japan. p. 691-8.

[12] Bar-Cohen, Y., Electroactive Polymers as Artificial Muscles – Realities and Challenges.
Proceedings of the 42nd AIAA, 2001. 2001-1492.

158

[13] Shahinpoor, M., Kim, K., Ionic polymer-metal composites: III. Modeling and Simulation as
biomimetic sensors, actuators, transducers, and artificial muscles. Smart Materials and
Structures, Vol. 13, 2004. 1362

[14] Nemat-Nasser, S., Wu, Y., Tailoring the actuation of ionic polymer-metal composites.
Smart Materials and Structures, 2006.15(4): p. 909-23.

[15] Kim, K.J., Shahinpoor, M., Ionic Polymer-Metal Composites: II. Manufacturing
Techniques. Smart Materials and Structures, 2003.12(2003): p. 65-79.

[16] Shahinpoor, M., Kim, K.J., The effect of surface-electrode resistance on the performance
of ionic polymer-metal composite (IPMC) artificial muscles. Smart Materials and Structures,
2000.9(4): p. 543-51.

[17] Bar-Cohen,Y., Electroactive Polymer (EAP) Actuators as Artificial Muscles. SPIE Press,
Washington, 2001.

[18] Brunetto, P., Fortuna, L., Giannone, P., Graziani, S., Strazzeri, S., IPMCs as Vibration
Sensors. IEEE International Instrumentation and Measurement Technology Conference, 2008.

[19] Bonomo, C., Brunetto, P., Fortuna, L., Giannone, P., Graziani, S., Strazzeri, S., A Tactile
Sensor for Biomedical Applications Based on IPMCs. IEEE Sensors Journal Vol. 8, No 8. August
2008

[20] Kruusamae, K., Brunetto, P., Graziani, S., Punning, A., Di Pasquale, G., Aabloo, A., Self-
sensing ionic polymer–metal composite actuating device with patterned surface electrodes.
Polymer International, Vol. 59, 2010.300–4.

[21] Nemat-Nasser, S., Micromechanics of actuation of ionic polymer-metal composites.
Journal of Applied Physics, 2002.92(5): p. 2899-915.

[22] Branco, PJ, Dente, JA., Derivation of a continuum model and its electric equivalent-circuit
representation for ionic polymer-metal composite (IPMC) electromechanics. Smart Materials
and Structures, 2006. 15: (2006) 378-392.

[23] Bhat, N., Kim, W.J., Precision force and position control of an ionic polymer metal
composite. Proceedings of IMechE, 2004. Vol. 218: p. 421-31.

[24] Lopes, B., Branco, P., Electromechanical characterization of non-uniform charged IPMC
devices. Journal of Physics: Conference Series 127, 2008.

[25] Pugal, D., Model of self-oscillating ionic polymer-metal composite bending actuator.
Thesis. Tartu University, 2009.

159

[26] Pugal, D., Aabloo, A., Kim, K., Modeling IPMC material with dynamic surface
characteristics. Proceedings of Smart Materials, Adaptive Structures and Intelligent Systems,
2009.

[27] Martinez, M., Lumia, R., Distributed force simulation for arbitrarily shaped IPMC
actuators. Smart Materials and Structures, Vol. 22.

	University of New Mexico
	UNM Digital Repository
	6-26-2015

	Modeling and Optimizing IPMC Microgrippers
	Justin Simpson
	Recommended Citation

	tmp.1472077812.pdf.A0qZ3

