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MODELING AND OPTIMIZING IPMC MICROGRIPPERS

By

Justin Simpson

B.S., Mechanical Engineering, University of New Mexico, 2011
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ABSTRACT

A FEA (Finite Element Analysis) model was used to determine the
change in performance that results from varying the size and shape of IPMC
(lonic Polymer Metal Composite) fingers. Using Comsol Multiphysics and
modeFRONTIER, these fingers were modeled and optimized for both force
exerted and deflection. Using the Comsol model, we were able to determine
the tip deflection and force output of many different IPMC fingers which
were verified experimentally. Then, using modeFRONTIER we were able to
optimize the fingers to determine the best shape and area depending on

whether a high force or deflection was desired.
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Chapter 1. INTRODUCTION

1.1 IPMCs

1.1.1 Discovery of IPMCs and Fabrication

An lonic Polymer-Metal Composite (IPMC) is a type of electro-active polymer (EAP)
that deflects in the presence of an electric field [1]. Electro-activity is the movement of mobile
ions. The higher the electro-activity, the higher the tendency for ionic motion inside the IPMCs.
These materials also produce an electric field when physically bent. IPMCs are referred to as
artificial muscles, due to their ability to mimic natural muscles. These unique abilities have led
to much interest for using them in many fields, including aerospace and bio-engineering. Interest
in IPMC microgrippers is also growing, as these microgrippers are capable of grasping small
objects without damaging them, due to their large range of deflection and small grasping force.

IPMCs typically consist of a synthetic polymer film with ionic properties, such as Nafion,

that is plated on both sides with a noble metal such as platinum or gold, as seen in Fig. 1.

b5 " )
S @ﬁr

- electrode

+ electrode

Figure 1. IPMC Configuration

IPMCs are manufactured using a deposition process to create a thin electrode, usually one to five

microns thick. The electrodes are anchored to the polymer by thin dendrites created using this



process. This electrode is not a continuous metal layer; it is instead tightly packed metal grains.
In the case of platinum, the metal grains are platinum salt deposits, rather than a layer of
platinum. The noble metal layers store opposing charges, much like a parallel plate capacitor
[2]. This depletes the anode of its positive charge and the cathode receives a high positive
charge. In response, the cathode expands due to electrostatic charges. This storage of charge
also causes ions in the polymer to migrate and collect on one side, also seen in Fig. 1. This
migration of ions causes large water molecules held in the IPMC to migrate as well. The
migration of the large water molecules to one side of the IPMC causes a swelling effect, while

the other side is losing a large number of ions, causing a shrinking effect, as seen in Fig. 2 [3].

Electrodes
Polymers
> o7 N

N

Figure 2. IPMC Water and ion migration

Though IPMCs cannot provide substantial force as an actuator, they are flexible, require
low actuation voltage, conform to the object being grasped, and can operate in a wet
environment. Depending on the way they are cut, IPMCs typically have a large area with a very
little thickness. The area of these microgrippers is usually on the order of square millimeters,
while the thickness is around hundreds of microns. The amount of metal on these microgrippers

is small compared to the amount of polymer, causing the whole microgripper to act more as a



polymer than a metal. This characteristic causes them to be flexible and lightweight. Due to
their flexibility and high electro-activity, they are also able to deflect large amounts with a very
low actuation voltage, i.e., around 1 volt [3]. Also due to their thickness and high degree of
flexibility, these microgrippers are capable of conforming to the surface of the object they grasp,

as seen in Fig. 3.

Figure 3. IPMC Conforming to objects

This is extremely important in micromanipulation of objects, especially cell manipulation. The
gripper is able to securely grasp a cell without damaging it. IPMCs also do not generate high
forces when grasping objects. This is a valuable characteristic, as biological cells are easily
damaged by high forces. This makes IPMCs better suited for micromanipulation than other
gripping technologies that are rigid and exert higher forces. As stated above, IPMCs are able to
operate in wet environments and also require low actuation voltages. This allows IPMCs to be
used in micromanipulation with moist cells that may be in aqueous environments. The low
actuation voltage also decreases the chances of damaging the cell, due to voltage differences
across the cell. All of these characteristics make them well suited for bio-micromanipulation
applications in the form of microgrippers.

These actuators can be processed into certain geometries and complex shapes needed for

certain tasks, using an automated laser cutter and CAD software. This laser operates at a cutting



frequency of 532 nm, which ablates the platinum layers. This technique is far superior to early
techniques, in which scissors or a scalpel were used. Using a laser, we can make complex shapes
and can cut the IPMC to any size. This is extremely important when making small actuators for

micromanipulation.

1.1.2 IPMC Actuation Abilities

Although the migration of ions and solvent, due to an induced voltage, is considered to be
the driving force behind actuation of IPMCs, many are still researching the chemical structure
and physical mechanisms associated with actuation. The model most widely used to describe the
chemical structure of Nafion was introduced by Hsu in 1981. This model was based on wide-
angle and small-angle x-ray diffraction studies. When in the hydrated state, Nafion displays
phase separation and forms two distinct regions, hydrophilic and hydrophobic. Gierke et al. [4]
described the hydrophilic regions as 4 nm spherical inverted micellar structures that are
separated by a distance of 5 nm and connected by 1 nm diameter micro-channels, as seen in Fig.

4.

eS8 L Re.
¢ el

4nm

Figure 4. Micelle connected with channel

These clusters form a cubic grid called the cluster-network morphology. As can be seen in Fig.
4, the solvent and cations are contained in the micelle and channel. In an IPMC, the hydrophobic

region is made up of the fluorocarbon chains of Nafion.



Hydration level and type of solvents and cations being used have a great effect on IPMC
actuation [5]. When a voltage is applied to an IPMC, an electric field is set up through the
thickness of the Nafion, which produces an electrostatic force on the cations. These cations are
then driven through the channel, as seen above. Depending on the level of hydration and type of
solvent being used, the cations may migrate easily. A fully hydrated sample will allow more
migration than a dehydrated sample. This becomes quite evident on the macroscopic level when
testing different samples, as only hydrated samples are capable of movement. Nemat-Nasser and
Li proposed a model that demonstrated the increase in concentration of cations at the cathode,
resulting in a fast expansion [6]. Solvent molecules attached to cations also migrate towards the
cathode. The combined migration of solvent and cations results in a fast actuation response
towards the cathode that may last several minutes. This migration of cations towards the anode
leaves a depleted region of cations in the anode. These clusters slowly redistribute, causing a
decrease in actuation, known as back relaxation. The anions that migrate towards the anode
during this process repel one another, also causing relaxation. This relaxation causes a bending
back towards the anode.

The model used in this thesis assumes the actuation of the IPMC is explained by the
electrostatic interaction between the micellar clusters only, meaning the cations in anode clusters
migrate to the clusters in the cathode. The anode will be void of cations, resulting in negatively
charged clusters, which repel each other. Likewise, the cathode will be filled with cations, which
also repel each other. Although it may seem both sides, anode and cathode, will have positive
pressure, it will be seen that the force production on the cathode is much higher than that of the

anode. This causes actuation towards the cathode.



1.1.3 IPMC Sensing Abilities

While most IPMCs are used as actuators, they can also be used as sensors. As stated
above, they produce an electric field when physically bent. Nemat-Nasser and Li suggest the
imposed deflection causes production of stress in the backbone polymer which leads to
displacement of charges in the micelle clusters [6]. When relaxed, the cations and anions in
either electrode are balanced. When deformed, the cations are shifted according to the
magnitude of deformation. Hydrostatic pressure, caused by the stress in the backbone polymer,
may also cause the flow of water and cations from high pressure regions to regions of low
pressure. Sadeghipour et al. used IPMCs as hydrogen pressure transducers in 1992 to make a
smart accelerometer in machinery [7]. This transducer was an IPMC held between two
electrodes that transmitted a voltage when squeezed. In contrast to actuation, the IPMC can be
used in sensing abilities whether it is wet or dry. It was later shown that IPMCs work better as

sensors when they are dry [8].

1.1.4 Simultaneous Actuator/Sensor

Attempts have been made to develop a device that is capable of combining both actuation
and sensing capabilities in an [IPMC. An IPMC “sandwich” was created in which two [IPMC
fingers were cut to the same dimensions and glued to each other. The actuator was a 200 micron
thick finger, while the sensor was 60 microns thick. This was done as thinner fingers are better
for sensing capabilities and thicker fingers are better suited for actuation. When actuated, the
thicker finger would deflect the thinner finger, which generated a small voltage. This made it
possible to track the movement of the “sandwich.” When actuated, the thicker finger created an
electromagnetic field which was detected by the sensor. The voltage created by the actuator was

much higher than the voltage created by the movement in the sensor, so the readings were



incorrect. A layer of gold leaf connected to ground was then placed in between the sensor and
actuator, which rid the system of interference, but led to rigidity. Recently at the University of
New Mexico, researchers have made a simultaneous sensor/actuator by cutting one surface of the

IPMC into two electrically separate components, as seen in Fig. 5.

Figure 5. Channel cut by laser

This finger is capable of actuation, while detecting its displacement. The channel is created by
removing small amounts of electrode on either side, leaving the polymer layer intact. As stated
above, the electrodes are not solid metal; rather they are tightly packed metallic clusters. These
clusters may become more tightly packed or may separate when the polymer bends, which leads
to a change in the resistance of the electrode surface. This change in resistance can be measured
which can then be used to determine the amount of deflection in the IPMC. This design is far
superior to the “sandwich,” as only one IPMC finger must be cut, reducing waste of material.
The channel also does not add rigidity to the entire structure, leading to greater actuation. The
size of the channel may also be made very small, reducing waste of actuation abilities. These

channels are also easy to cut using the mentioned laser cutting technique.



1.2 IPMC Microgrippers

1.2.1 Microgripper and Simultaneous Sensor/Actuator

A microgripper consists of two IPMC fingers used for actuation that are held together
with a holder connected to a power supply, as seen in Fig. 6. The two fingers of matching size
will be situated with a slight gap in between them. They are fixed in the holder as cantilever
beams. The holder has electrodes that connect at the base of the fingers so a voltage or current

signal can be applied.

Flectrodes

\ \~ \B

1PMC Fingers

Figure 6. IPMC Microgripper

As can be seen, the two fingers will actuate towards the middle, as the cations will flow towards
the cathode. In most cases, a small negative or positive voltage is applied to one face of the
electrode, usually 2 volts, as a high voltage may damage the finger, while the other face is
connected to ground. When the voltage is applied, the fingers will actuate, closing the gap in
between them, grasping any object located in this gap.

Attempts have also been made to assemble the simultaneous sensor/actuator. This device
is much more complex than single finger grippers, as the change in resistance on the surface of
the electrodes must also be measured. The current size and shape of the simultaneous

sensor/actuator can be seen in Fig. 7.
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Figure 7. Dimensions of Sensor/Actuator

The bottom half of this finger is considered to be the key. This key is the area held by our
custom made holder. This holder requires careful detail as three wires must be attached to each
side, as seen in Fig. 8. The device was made to hold the fingers while ensuring there is good

contact between the fingers and copper leads that must be attached to the holder.

Figure 8. Custom Holder

1.2.2 Manufacturing IPMC Fingers

Early IPMC research consisted of simply cutting out any IPMC finger and testing it. This

cutting was done using scissors or a scalpel. IPMC material is expensive and this cutting



procedure is wasteful. In order to cut complex and precise geometries and also to cut the channel
mentioned above, another method had to be installed. This precision was achieved by installing
an IPMC cutting workstation that is run by accurate motion software and connected to a Nd:
YAG laser (Signatone 1160) with a green light frequency of wavelength of 532 nm, as seen in
Fig. 9. This ablates the noble metal (platinum) leaving the polyelectrolytic membrane intact.
Nafion does not absorb the green light, allowing the laser to penetrate through both sides of the

platinum on the IPMC.

Figure 9. Signatone 1160 Laser Cutting Station

The laser cutting station is equipped with a set of Parker MX80L linear programmable stages,
seen in Fig. 10. These stages are connected to a LabVIEW computer that tells the stages where
to move, as seen in Fig. 11. The geometry of any IPMC finger can be made in a CAD program
and can be exported to NI motion software that converts the CAD model into motion profiles
that will be executed by the stages. These profiles will be stored in LabVIEW codes, which will

run the stages and the laser.
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Figure 11. Cutting Station Connections

This technique is far superior to previous techniques of cutting an IPMC free hand with a scalpel.
Using this technology, we can cut any size and shape of IPMC desired. Although the Nafion is
still intact, we are able to remove the microgripper easily with a scalpel, as the laser leaves
identifiable channels that are easily traced. This is also important in increasing quality and
number of cuts needed, decreasing waste of expensive IPMC material.

Because the Nafion stays intact, simultaneous sensor/actuators are possible, as the
channel can be cut in between the two. Other features can also be cut into IPMC fingers, such as
lines, to mimic real hands or fingers. This may be done by cutting several lines into one IPMC

piece to make several free fingers that can be actuated individually. A twisting motion in IPMC
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fingers may also be accomplished by cutting individual fingers in a larger piece and applying

different voltages and signals to the individual fingers.

1.2.3 Microgripper Holders

As stated above, there must be a way to hold these fingers while making a connection
with the surface of the electrodes. This is accomplished using specialized holders, usually made
in house. These devices are made using manual techniques, such as rapid prototype processes or

by modifying electrical components, as seen in Fig. 12 and Fig. 13.

Figure 13. Finger in electroded holder (Side View)

These holders are constructed using modified IC test clips with copper plates attached to the
clamping area on either side of the IPMC finger. In the beginning, the geometry of these fingers
was quite simple, so the simple IC clips were sufficient. These clips are also only capable of

holding and actuating one finger. The purpose of these fingers is to be able to grasp an object,
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meaning two fingers need to be actuated simultaneously. In the case of the simultaneous
sensor/actuator, the geometry and connections are very complex, making the holder hard to
manufacture, also making it expensive. This holder was created using rapid prototyping

technology.

1.2.4 IPMC Control

In order to control these IPMCs and ensure repeatability, a control system was
established. Using the electroded holder seen above and supplying signals output by a computer
running LabVIEW interfaced with a National Instruments DAQ board, we are able to ensure
repeatability and control. As can be seen in Fig. 14, LabVIEW and the DAQ board are used in

most of the processes.
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Explorer Motion Automated
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Data
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oNIl LabView [ Acquisition
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Transducer

eMultimeter
*Pylon Viewer [eued Video Camera

Figure 14. Computer Connections

This system is capable of supplying output voltage to the IPMC fingers, as well as taking
readings given by the vibrometer and force transducer. These output voltage signals are sent as
analog signals to the electrodes connected to the IPMC finger, causing actuation. Multiple

signals can also be sent to segmented fingers in order to cause twisting or different movements.
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Current research has been focusing on using a control loop to maintain a certain position,
accounting for back relaxation. This control loop actuates the IPMC finger while simultaneously
taking resistance readings in the finger to determine if the finger is relaxing and will supply
additional voltage in order to correct for the back relaxation that occurs naturally. This is
beneficial as the finger can maintain its position for an extended period of time.

Using this equipment, an IPMC microgripper robot was also created. This IPMC
microgripper was attached to the moving stages and programmed to move to certain positions,

actuate, and grasp objects.
1.3 IPMC Force Model and Force Scanner

1.3.1 Force Scanner Overview

Recently at UNM, a force scan of multiple IPMC fingers was created. This scanner was
used to create topographic maps of various fingers and their gripping strengths at numerous
positions, as seen in Fig. 15. These maps were important as they were compared to modeled
force scans. As can be seen, the force is very high at 0 mm, where the IPMC is connected to the

electroded holder, and small towards the end of the IPMC.
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Figure 15. IPMC Force Scan
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This scanner was created using the custom holder explained above. The IPMC finger was
inserted into the custom holder which is attached to the Parker microstages. Using an Aurora

Force Transducer, the force applied by the finger was measured, as seen in Fig. 16.

Electroded
IPMC Holder

Force Transducer

Figure 16. IPMC and Force Transducer

LabVIEW is used to control the whole system. Once in place, LabVIEW outputs a voltage
signal to the finger so it actuates into the force transducer and the transducer outputs a signal to
LabVIEW giving the force applied. LabVIEW then outputs a signal to the microstages forcing
them to move a certain distance, and the process is repeated multiple times, as seen in Fig. 17.

The forces applied are then plotted in a 3D map, which is shown above.

Figure 17. Testing Points
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1.3.2 IPMC Force Model

An IPMC Force Model was then created using Comsol Multiphysics and Matlab.
Comsol is a type of FEA software used for simulations of coupled physical phenomena. Comsol
uses CAD modeling to make objects and attributes can be added to the CAD model such as
structural mechanics and electrical conduction. This model will be explained in much greater
detail later, but the impact of the model will be discussed here. This novel model was used to
make topographic force maps of several IPMC fingers and was compared to the experimental
results. This model was quite accurate when compared to the experimental results. Although in
its early stages and somewhat burdensome to run, the model worked. The results of one test can
be seen in Fig. 18. This model is important as it is the first of its kind. Using this model, any
IPMC finger can be created and tested to see if is capable of achieving a desired force.
Simulation is much more beneficial compared to experimentally testing potential designs to see
if they are suited for the task. Experimentally testing wastes both time and money, while the

simulation is relatively fast and does not waste material.

Experimental Simulation

IPMC Shark Fin Force Measurement (mN)

Force Distribution for Fin Shaped IPMC-
2 Volt Sine with a Period of 45

Figure 18. Experimental vs. Simulation
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While using this model to experiment with other finger shapes, it was found that different
sizes and shapes have drastic changes in results. Most research focuses on simple rectangle
fingers. Shapes such as triangles were not of much interest. Using this model, right triangles
and isosceles triangles were modeled and then tested experimentally to determine the validity of
the model. The results were quite surprising. Two different tests were used to compare the
fingers. First, the finger output vs. size was modeled and tested. To do the experiments, the
force measurements were the same as above, except only a single point was measured 2 mm in
from the tip of the finger. The deflection measurements have a different process. Using
LabVIEW, a square wave signal of 0-2 volts is applied. Using a Polytec laser Doppler
vibrometer (Polytec model # OFV-551 & OFV-5000), the deflection of the IPMC is measured.
The IPMC is held perpendicular to the vibrometer’s sensor head with the electroded holder. The
IPMC starts out straight and deflects when the voltage is applied. The vibrometer measures the
amount of displacement throughout the process and the total displacement of the IPMC is
measured. Two fingers were modeled and tested experimentally. One was a 7x17 mm
rectangular finger and the other was an isosceles triangle with the same height and base but half

the area, as can be seen in Fig. 19.

Figure 19. Rectangle and Triangle Fingers
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The results can be seen in Table 1. The error in force and deflection for the rectangle is 23.37%
and 2.77%, respectively. The error for the 7x17 mm triangle for force and deflection is 13.3%
and 4.92%, respectively. As can be seen, the force output of the triangle is roughly half the force
produced by the rectangle. This can be explained by the difference in area. Decreasing the area
by half should have a proportional decrease in force produced, as force is a function of the area
of IPMC fingers. The deflection for the triangle is smaller than the rectangle, but not quite half.
Although it has half the area, the triangle has less material than the rectangle and is able to

deflect easier.

Table 1. Output vs. Size

Gripper Dimension 7x17 mm rectangle 7x17 mm triangle

Experimental Force 2.0 mN 1.16 mN
Experimental 1.4 mm 1.13 mm
Deflection

Modeled Force 2.6 mN 1.22 mN
Modeled Deflection 1.44 mm 0.98 mm

Next, the finger output vs. shape was tested. The same 7x17 mm rectangle was used and new

14x17 mm isosceles and right triangles were used, as seen in Fig. 20.

Figure 20. Rectangle and Triangle Fingers
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The results can be seen in Table 2. The error in force and deflection for the isosceles
triangle is 14.38% and 23.5%, respectively. The error in force and deflection for the right
triangle is 13.96% and 6.26%, respectively. As can be seen, the force applied by the isosceles
triangle is higher than the force exerted by the rectangle, but the force exerted by the right
triangle finger was similar to the rectangle, while the deflection was higher than the other two.

These results are very surprising.

Table 2. Output vs. Shape

Gripper Dimension | 7x17 mm rectangle | 14x17 mm Isosceles [14x17 mm Right
triangle triangle

Experimental Force 2.0 mN 2.92 mN 2.28 mN
Experimental 1.4 mm 1.5 mm 1.85 mm
Deflection

Modeled Force 2.6 mN 2.5 mN 2.65 mN
Modeled Deflection 1.44 mm 1.96 mm 1.735 mm

These tests prove there are many ways to design fingers depending on the design goals. If a
large force is desired, an isosceles triangle finger may be better suited, but if deflection is
needed, a smaller triangle is capable of deflecting a high degree compared to the rectangle finger.
This lead to the conclusion that an optimization package is needed to better determine the best

way to design these fingers.

1.4 Purpose Statement
Although there have been many advances in IPMC technology, there is still a disconnect
in modeling and understanding the exact behavior of these IPMC microgrippers [6]. The models

that do describe an IPMC are insufficient in predicting force output and actuation. Although
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they are capable of predicting some behavior, they are not capable of predicting the behavior of
any arbitrary size and shape of microgripper [8]. A model that predicts the behavior of any
IPMC is beneficial to create IPMC fingers that meet design goals. This model also needs to be
able to determine the best design for a given finger in order to reduce waste. An optimization
package incorporated with the current model would be beneficial to research, as a finger can be
modeled using different parameters. The current model can determine force applied by the
finger, but it does not determine the best way to design the finger. An optimization package
could test many different ways to design a finger, depending on the desired force, deflection, or
both. These can be given as design goals and the model will change according to these goals.
This will optimize the finger while reducing waste. The model can also be scaled up or down to
determine the effects of larger or smaller fingers to determine the relationship between size and
force or deflection. The model will also be used to focus on small IPMC fingers, where there is
no evidence whether they can produce a suitable force with very small dimensions [9]. Using an
optimization package, this can be done very easily, as the process will be done autonomously as

long as the model has design goals.

1.5 Contribution

This model will be a more cost effective way to predict the force output and deflection of
any arbitrary microgripper than simply cutting and testing. Many users currently cut out a
microgripper before they have any knowledge of its force output or deflection and test it, which
increases the cost and wastes material if the microgripper does not produce the desired
characteristics. The model will eliminate the aspect of guessing if the microgripper is suitable
and eliminate unnecessary cutting involved in microgripper research, as the microgripper will be

modeled before it is cut out. It will also lead to optimization as users will be able to design
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microgrippers for certain purposes and determine whether the gripper they designed was the
easiest and least wasteful way to achieve the actuation force or deflection desired. This model
will use Comsol Multiphysics and Matlab to determine the force and deflection of any IPMC
finger. The existing model will be simplified into one process. The existing model takes many
sub-models to get to the final design. The new model will be made into one process that is very
easy to use. The new model will also incorporate optimization software. ModeFRONTIER is a
powerful design package that is capable of optimizing IPMC fingers given many design
parameters. Using this model that incorporates all of the steps into one model, we can change
the width and length of any IPMC finger and determine the effects. Also, we can limit the area
of the finger to reduce waste and still meet design goals. These design goals will be deflection,
force, and both. The user will be able to input a desired force or deflection and the model will
optimize for the smallest area. The model will also determine the best size and shape to meet
these design goals. This process will be easy to use, as the model will have distinct inputs, such
as length, width, desired force, etc. This model will be beneficial as many iterations will be run
to determine the best design, instead of designing an arbitrary finger and testing to see if it meets

the goals.
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Chapter 2. LITERATURE REVIEW

2.1 Actuation

Discovered in 1992, the actuation properties of IPMCs have become more understood
and advanced through the years. These properties were learned by Oguro et al. in 1992 when
bending them under applied voltages [10]. Because of this discovery, many others experimented
to explain the dynamics behind the actuation properties. Shortly after, dehydration was observed
by Kanno et al. when the IPMC stopped actuating after a certain amount of time [11]. This led
to a belief that water molecules with mobile ions were responsible for the electric response in
IPMCs. More evidence of this dependence on hydration was observed by Bar-Cohen when an
IPMC was actuated underwater hundreds of thousands of times with little change in response
[12].

Greater understanding of the mechanisms behind actuation was continually being
discovered. One discovery was that the polymer contained in IPMCs consists of mobile cations
and water that move when the outer metal layers are charged [3]. These water molecules bond to
the positively charged cations and migrate towards the cathode. This migration is responsible for
some of the actuation in the material, but many believed it did not account for the fast response.
It was soon discovered that Coulombic forces between the charges in the electrodes were
responsible for this fast reaction. These forces caused the migration of hydrated cations towards
the cathode, causing the IPMC to swell towards the cathode side and shrink on the anode side
[13].

Researchers also experimented with other solvents to determine their effects. Nemat-
Nasser and Wu demonstrated that sodium ions worked better than lithium and hydrogen atoms

when using Nafion based IPMC [14]. They used different cations to change the force and
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displacement of different IPMCs. The IPMC containing sodium ions produced a greater force
than the others.

Once researchers began to understand the driving force of IPMCs, they began
experimenting to improve the material. Shahinpoor also experimented with many different
polymers. One problem with the IPMC material was attaching the polymer in between the two
electrodes to create the sandwich. Nafion is commonly used as the polymer, but it was difficult
to attach as it was non-reactive. A solution was achieved when chemical etchants were used on
the Nafion before it was bonded to the metal electrodes. This etching produced microscopic
ridges in the Nafion that the metal electrode was able to attach to. The metal formed dendrites
that were able to anchor in the Nafion [15]. This also led to an interest into the structure of the
metal electrodes. Shahinpoor and Kim studied these metals and their effects on the IPMC [16].
They observed that the surface morphology of the IPMC is characterized by a granular nano-
roughness of the order of approximately 50 nm. This characteristic is responsible for producing
a high level of electrical resistance, yet provides a porous layer that allows water movement in
and out of the Nafion.

Due to their dependence on hydration, IPMCs have some limitations. Hydrolysis is a
very common occurrence in IPMCs when the voltage is raised above 1.23 volts [17]. Once itis
raised above this limit, hydrolysis occurs very quickly causing the IPMC to desiccate, producing
hydrogen gas at its electrodes, thus losing its actuation capabilities. Hydrolysis is common in air
as there is no shielding to contain the hydration once the voltage is high enough. When the
IPMC is actuated in water, hydrolysis is not a concern as the IPMC will continue to be hydrated.

Although hydrolysis occurs at a low actuation voltage, the IPMC is still able to actuate with
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voltages smaller than 1.23 volts. This is especially important in micromanipulation, as a high

voltage may damage cells.

2.2 Sensing

Sadeghipour et al. learned of the sensing capabilities of IPMCs while using them as
hydrogen pressure transducers [7]. Due to this, researchers became increasingly interested in
understanding and explaining the science behind the sensing capability of IPMCs. This
capability lies in the presence of the mobile charges contained in the negatively charged
polymer. When an IPMC is deformed, one side of the polymer compresses causing the negative
charges to become more compact. Due to the compression on one side, the other side
simultaneously expands, spreading the molecules. As a result, the mobile cations migrate to the
expanded side due to a decrease in concentration. Sampling the electrodes, a voltage difference
is noticed as cations and water molecules are moving. Although these characteristics seem
similar to actuation, it has been proven experimentally that the voltage produced when being
physically deformed would have to be amplified by two orders of magnitude to actuate the same
piece to the desired location [9]. Although this signal is smaller in magnitude, it is still very
useful for sensing. This may prove useful in biomedical and engineering purposes, as IPMCs
can be used as a simultaneous sensor/actuator.

Several design applications have been proposed that utilized the IPMC as simultaneous
actuator and sensor. Brunetto et al. [18] have proposed the use of IPMCs in a cantilever
configuration as a vibration sensor. Their prototype consisted of a system that imposed vibration
to the base of a cantilever, and used a circuit to measure the tip deflection with respect to the
base.

Bonomo et al. [19] presented a prototype of a tactile sensor for biomedical applications
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that utilized an IPMC as both an actuator and sensor. Their sensor was able to detect both
contact force and the relative hardness of the tissue compared to a control sample. The actuator
IPMC in their prototype was used to bend the sensor membrane around an object. When an
object came into contact with the system, it limited the actuator vibration amplitude which
resulted in the sensor output signal decreasing. The actuator vibration amplitude also depended
on the stiffness of the object. Stiffer objects allowed for no deflection of the actuator, whereas
less stiff materials resulted in an amplitude of vibrations that was proportional to the stiffness.
Although their sensor output signal was affected by noise, the actuator was able to deform
objects that had a Young’s modulus under 1kPa.

As stated above, these IPMCs can be used as simultaneous sensors and actuators.
Preliminary research consisted of two IPMC grippers glued to each other. One IPMC was used
to sense its deflection, while the other actuated. Although it worked, the extra stiffness of the
added sensor hindered the actuation of the whole system. More advanced combinations were
soon discovered by Kruusamae et al. [20] when they discovered a channel can be cut in the
IPMC surface creating two separate components. This led to a microgripper that is capable of
actuating when given an input voltage, which causes a change in resistance in the outer channel.
This change in resistance can be used for sensing. These advances led to a need for better

understanding and modeling these complex IPMCs.

2.3 Modeling

Most early models to explain macroscopic qualities were based solely on
experimentation. Researchers take the experiments and fit equations around their results to
obtain their models. Kanno et al. developed a model that described the relationship between the

input voltage and the change in current [11]. They were also able to relate the change in current
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to deformation. They described the model of an IPMC as having three phases: mechanical,
electrical, and stress generation. This model applied a simple circuit that resembled a RLC
circuit, but this model only described what happened at the initial actuation. These models are
accurate in describing the immediate response of the sudden increase in the current, but new
models aim to predict the effects of transient behavior. Current theories are trying to describe
this transient behavior, but it is very complex as it is due to a chemical-electrical-mechanical
reaction. These models also do not incorporate the sensing capabilities of this material.
Although researchers understood actuation was caused by movement of ions, there was no clear
explanation behind the dynamics of sensing.

Many researchers are actively trying to model and understand IPMCs as artificial
muscles. Using these models, researchers have discovered many important attributes, including
material strains, Coulombic forces, current induced, and transportation of ions. Although these
models have led to better understanding, there is little knowledge of the interactions between the
forces inside the IPMC. This is apparent as there are many different theories as to what causes
the actuation. Nemat-Nasser has developed models to understand this behavior using the
material properties of these IPMCs, including mechanical properties, electrodynamics, and
chemistry [21]. His models led him to believe that actuation is due to electrostatic forces that
exist due to the redistribution of charges. The areas high in cations will swell, while the other
side with fewer will shrink. He believes the swelling occurs due to electrostatic interactions
rather than the migration of cations and water. Branco and Dente also developed a model using
electric field distribution and other electromechanical properties [22]. Their work was based on

Shahinpoor and Nemat-Nasser, but they also neglected hydration and considered actuation to be
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caused by electrical effects of mobile ions. Many assumptions are made in these models and
they only apply to the gripper being tested.

For these reasons, most researchers simply use closed loop control of IPMCs to stabilize
the force output. Bhat and Kim [23] acknowledge open-loop position and force responses are
not repeatable. Therefore this closed-loop control is critical in ensuring repeatability and
reliability.

Currently, many researchers are using finite element methods to predict IPMC behavior.
Lopes and Branco successfully modeled large, simple IPMCs and compared them to
experimental results [24]. They used Comsol to determine their displacements when subjected to
an induced voltage. Their model bases actuation on the repulsive electrostatic forces that exist
between anions in the IPMC. Pugal was also able to successfully model the electrokinetic
migration of ions in Comsol [25]. This simulation was able to model the tip displacement of an
oscillating actuator. Pugal et al. also used Comsol to determine the instantaneous electric current
induced by a charge in a FEA model using the Ramo-Shockley theorem [26]. They studied the
effects of ionic motion on electrode voltage and current. Although the model worked,
deformation studies were difficult to accomplish, as meshing techniques led to extreme
computational load.

Current methods at UNM are also using finite element models to understand and predict
the behavior of IPMCs [27]. This method starts with a model that predicts ionic concentration in
an IPMC given an input voltage. The concentration is predicted starting in Comsol, where a box
is modeled with ion transport on the surface due to a given input voltage. It is then exported into
Matlab to predict the concentration throughout the whole box which represents an IPMC.

Matlab is then used to create a grid to encompass any IPMC. This grid is needed as the model
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aims to predict the behavior of any IPMC. These models are then used to determine the stress
concentration in the modeled IPMC to use in the distributed force simulation. This stress
distribution is then imported into the model, representing the stresses between ions, which cause
deflection in the IPMC. Then, a model is created where a force transducer is in contact with an
IPMC actuator. This simulation will then predict the force of the IPMC on the transducer. The
model is then exported into Matlab where it is programmed to run iteratively to model different
locations where the transducer may be placed.

This model is capable of predicting the force generated by an IPMC on an object. This
model has not been used to test very small microgrippers. There is a belief that with very small
microgrippers there will be a change in behavior. The current model being used at UNM will be
expanded upon and simplified in order to predict the behavior of small IPMC microgrippers and
will be made into a single model that will be much easier to learn and use than the previous
model currently being used at UNM. Optimization software, modeFRONTIER, will also be

added to the model in order to optimize fingers for force or deflection.
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Chapter 3. IPMC FORCE MODEL

3.1 Diagram of Models
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Figure 21. Smaller models incorporated in complete model

3.2 Approach Overview

As can be seen in Fig. 21, the current model consists of several different sub-models that
must be combined to make the complete model. These models correspond to the coupled
electrochemomechanical processes that are responsible for the actuation of a cantilevered IPMC
finger. The end result will be a computer simulation of the force or deflection of any finger. The
complete model that consists of the smaller models will be made into one complete code. This
must be done as modeFRONTIER must interface with the code, and this code must have the
complete model in order to change the model parameters.

All the computer models will be made in Comsol Multiphysics and Matlab. Comsol is a
type of FEA software used for simulations of coupled physical phenomena. Comsol uses CAD
modeling to make objects and attributes can be added to the CAD model such as structural
mechanics and electrical conduction. After any model is completed, it can be represented

graphically in Comsol. Comsol is also interfaced with Matlab. Comsol is built to run with

29



Matlab, meaning any model built in Comsol can be saved as an M-file in Matlab and edited.
These models can be used to run simulations iteratively to allow for greater design capability.

The complete model will predict the force output and deflection. It will use the solvers
mentioned to predict the electrochemomechanical transduction processes that cause the actuator
to deflect. The smaller models will consist of a geometrical, voltage, concentration and force
distribution. The complete model will be interfaced with modeFRONTIER and many different
optimization tests will be run. These optimization tests will include optimizing a finger to
achieve the highest force, the highest deflection, or the combined highest force and deflection, all
in different test runs.

Section 3.3 will cover the process of creating domains, i.e., the IPMC finger. Section 3.4
covers the process of meshing domains in Comsol. Section 3.5 will cover the process of creating
the smaller models, as seen below. This will cover the process of using the electrical model and
using the migration of ions in Comsol to determine the concentration of cations and anions in the
Nafion when applied with a voltage. Using the concentration of these ions, the force at any point
is determined using a novel force equation. This force inside the finger is then incorporated in
Comsol and used to determine the behavior of the finger. Below is a brief outline of the
complete process.

e 3.5.2 Comsol/Matlab Electrochemical Model
This step creates a base model that yields the ionic concentration
through the thickness of IPMC as a function of input voltage and time.
This model contains a single line that is easily meshed. The model
provides an accurate representation of the migration of ions due to a given

voltage signal.
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e 3.5.3 Electrical Model
This step contains the creation of an electric model that predicts
the voltage distribution throughout an arbitrarily shaped IPMC finger
based on the input voltage. This involves modeling and solving the IPMC
finger in Comsol and then exporting the solution to Matlab in order to
extract the voltage at any given point in the finger.
e 3.5.4 Matlab Force Model
The results of 3.5.2 and 3.5.3 will be saved as m-files and opened
in Matlab. Based on the voltage distribution, the ionic concentration
distribution is predicted for any IPMC finger. Given this concentration,
Matlab is then used to predict the stress field throughout the material.
Lastly, the stress field is saved as a text file to be imported back into the
Comsol model.
e 3.5.5 Comsol/Matlab Force and Deflection Simulation
Two simulations will then be created in Comsol using the stress
field predicted by the force model in Matlab. The first simulation is
simply the deflection of the finger when modeled as a cantilevered beam.
The second simulation is a stress strain simulation. This simulation
involves the force experienced by a force transducer in contact with the

IPMC finger.
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3.3 Geometrical Modeling

The process begins with the geometrical modeling of any IPMC in Comsol, as can be
seen in Fig. 22. This requires the creation of three domains to represent the Nafion polymer and
two metal electrodes. Using the modeling tools, any shape desired can be created. The user can
choose to model simple blocks using the block function, or can make complex shapes with the
Bezier polygon tool, depending on the desired shape of their finger. First, the finger must be
modeled. This can be any complex shape, but for this study only rectangles and triangles are
used. As mentioned earlier these shapes had quite different results. An application named
“Comsol 4.3b with Matlab” can be seen on the Desktop and must first be opened so the two
programs will communicate with each other and any model can be saved as an m-file and opened
in Matlab. Comsol 4.3b is then opened and a 3D space dimension is chosen. Then the user must
specify the physics to be used. To start, the electrical currents (ec) under AC/DC will be used.
The electrical modeling will be explained later, but it is easier to add physics before the IPMC
finger is created. The geometry is then created using a variety of CAD tools. In the case of the
rectangle finger, a simple block is used. As seen in Fig. 22, a 7x17 mm block is created using
the block geometry and given a thickness. Two identical blocks will then be created and placed
on top of the block already created. This is done in order to model the three layers of an IPMC
finger. The three layers must also be offset by the thickness of each layer to make a sandwich.
As stated above, an IPMC is made of three distinct layers. In our case, we have two layers of
platinum and one thicker layer of Nafion. The IPMC material will then be specified by the user.
Comsol has a variety of built-in materials in the material library. The user can also change the

properties of the material, if desired, as can be seen in Fig. 23.

32



3 Untitled.mph - COMSOL Multiphysics
File Edit View Options Help

=208 ¢ D@ (&~

[T Madel Builder = O | Block [ Model meﬂ = O/ eb Graphics =t
& o= {8 Build Selected ] Build Al @ B | m
4 ¥ Untitled.mph (roct) >
~ Object Type
£ Global Definitions et e ¥
4 U Model 1 fmod?) Type: [Salid -
4 = Definitions
14 Boundary System 1 (sys2) ~ Size and Shape
2 views Widtht  Te-3 m
4§\ Geometry 1
Block 1(blk1) Depth:  17e-3 m
w4, Farra Unian (fin) Haights 108-8 ™
& Materials
4 . Electric Currents (eg) ~ Position 107 &
£ Current Conservation 1
P8 Electric Insulation 1 Base: | Cormer hS
£ Initial Values 1 T m
5 Mash 1
& [ Results v m
= 0 m
- Axis
s type: | z-axis -
~ Rotation Angle:
Rotation: 0 deg
» Layers
= Selections of Resulting Entities
[ Create selections
z
y\t/x
[0 Messages £ = Pragress|[] Log| 2 Table| =t

Figure 22. 7x17 mm IPMC finger
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Complex shapes are also easily drawn using the CAD tools. In the case of the triangles, a work
plane must be created to use the Bezier Polygon tool. This is easily done using the geometry

tool, as seen in Fig. 24. Once the work plane is added, the plane geometry feature is used to
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create the Bezier Polygon and make a triangle, or any other shape. The Bezier Polygon must

then be extruded to the thickness desired and a single triangle is created. This process can be

duplicated to create three layers, to make the sandwich, but the work planes must be offset by the

desired thickness of IPMC layers. The material is once again specified by the user and the model

is ready to be used to determine the electric field created throughout the finger when applied a

given voltage. When the electric currents physics is specified as the physics to use, Comsol

determines if all material properties needed to solve the problem are supplied.
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Figure 24. Work Plane in Comsol

3.4 Meshing IPMC Fingers
Meshing is one of the most important parts, and one of the most challenging, when
designing and testing these fingers. The geometry being modeled must be meshed correctly or

the model will not give correct results. The challenge is to mesh the electrical and chemical
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gradients in such a way that they are represented correctly. Due to the thickness of IPMC
fingers, this is hard to do. These gradients are extremely high and occur through this thickness.
The thickness of IPMC fingers is usually around 200 microns, while the width and length may be
10-20 mm. In order to mesh such thin elements, automatic meshes in Comsol create meshes
with hundreds of thousands of elements, which most computers are unable to solve. This is less
of a problem when using electrical currents, but when predicting force and deflection it proves to
be a problem. In order to mesh thin geometries, a couple of methods can be used. The first
method involves using a rectangular swept mesh. This mesh creates a rectangular grid on the
face of the geometry of interest. The grid is swept across the geometry to create a mesh with
solid rectangular elements. This meshing technique is favorable when the IPMC finger is a
simple rectangular solid, but does not work well when complex geometries are being used. In
the complex cases, the easiest mesh to use is a user-controlled mesh that enables the user to scale
the mesh in the direction of the thickness of the IPMC finger, as seen in Fig. 25. This mesh
creates tetrahedral or triangular elements. Using a scaling factor, we are able to get as many
elements throughout the thickness as possible. This scaling factor depends on the model being
solved and must be changed according to different models. The user can choose a predefined
mesh ranging from extremely coarse to extremely fine and then change the scaling factor to
choose the best mesh. Another complication arises when trying to mesh the IPMC finger and the
force transducer straw that is represented as a small glass cylinder in Comsol. The area where
the straw meets the finger must be meshed by using the user-controlled mesh parameters and
keeping the predefined mesh degree for the finger close to the degree for the transducer, i.e.,

extra fine for the finger and fine for the transducer straw.
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Figure 25. Meshing IPMC Fingers
3.5 IPMC Force and Deflection Model
3.5.1 Approach Overview

This model is created to predict the deflection and force output of an IPMC finger as a

function of its electrical, chemical and mechanical properties. As mentioned above, the process

is divided into smaller sub-models, as can be seen in Fig. 26. The process of putting these
models together can be seen in Fig. 27.
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The model starts with an electrochemical model that predicts the distribution of cations
due to the imposed electrical field (Section 3.5.2). This model is used in all IPMC models, as

this is just a representation of the ion movement. This will be the same in all IPMC fingers.
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This is done using a concentration distribution modeled in Comsol. A 180 micron line is
modeled in Comsol, representing the electroactive Nafion layer. In this model, the platinum
layers have been omitted, as we are interested in the distribution of the cations and their
movement in Nafion. An input voltage is applied to the model as a function of time and the
concentration throughout the material is predicted. The ionic response will be accounted for at
every possible input value at any given point. These concentration values will then be used to
determine the stress values inside the finger. A separate model is created in Comsol that predicts
the electric field distribution for any arbitrarily shaped IPMC finger (Section 3.5.3). The results
of both of these models will be saved in Matlab where the stresses throughout the material will
be predicted (Section 3.5.4). Finally, Comsol and Matlab will be used to simulate the deflection

and force exerted by the IPMC finger on a transducer (Section 3.5.5).

3.5.2 Comsol/Matlab Electrochemical Model

3.5.2.1 Approach Overview

This model will describe the behavior of an IPMC finger as a function of its electrical,
chemical, and mechanical properties. This is started using the electrochemical model that
describes the redistribution of cations due to an applied voltage. This model will consist of a 180
micron line that represents the electroactive Nafion layer. This model does not contain the
electrode regions, as we are concerned with capturing the distribution of cations in the Nafion.
This shape is very easy to mesh as it is simply a line. This model is chosen, as it is important to
capture the cation concentration gradient at the two distinct boundary layers that form near the
electrodes during actuation. One of the layers will have a very high concentration of cations near
the cathode and the other is depleted of cations near the anode. The goal of this model is to

predict the distribution of cations due to an arbitrary DC signal as a function of time. Once the
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model is solved in Comsol, it will be converted into an m-file, where it will be run iteratively.
This must be done, as the response will be predicted at any voltage less than the input voltage.
This will be used to simulate the response of the finger at any point, especially points far from
where the voltage was applied, as the voltage drops. In our case, the model will involve an input
signal of 2 volts, so the model will be run iteratively in Matlab to predict the responses for the
values between 0-2V inputs. This process captures the ionic response for any possible input
value experienced by points in the finger. These responses will be saved as a matrix in Matlab

and referenced in the force calculations.

3.5.2.2 Concentration Distribution Theory

In this section, we are interested in the electro migration of cations under an imposed
electric field through a porous medium. This model uses Comsol’s Transport of Diluted Species.
This physics uses the Nernst-Planck equation for ion transport, to model the flux of cations. This
equation contains terms describing fluid velocity, diffusion, and electrophoretic migration for the
surrounding medium. Comsol uses the equation:

R =8t 34V (=DVe — zup FEWV + cu) 31

Where R is a reaction term, D is the diffusivity (m?/s), ¢ is the concentration (mol/m?), z is the
charge number (unit less), u,, is the mobility (s*mol/kg), F is Faraday’s constant (C/mol), and u
is the initial velocity of species (m/s). cu is zero as the medium containing the cations is not a
flowing liquid. The system is also conservative with respect to the number of cations as the
domain is isolated, meaning R will be zero. A brief outline is now given to explain the process,
in order, of how we will create this model.

e Geometry is created using Comsol’s CAD tools
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o 180 micron line is created to represent electroactive layer (Nafion)
Physics is added to the model
o Physics is added to base geometry using application nodes
o Transport of Diluted Species is added to model to model migration
of cations through porous medium
o Electric field is added to model using variables
Model is meshed
o Geometry is meshed using a scaling factor
Model is solved and Results are plotted
o Solver is selected and problem is solved
o Concentration of ions is plotted
Model is exported to Matlab
o Model is saved as a Model M-File and can be opened in Matlab
o “Comsol 4.3b with Matlab” icon must be selected to open
connection with Matlab
Variables added in Matlab M-File
o M-file is converted into a function to allow inputs and return
outputs
o Model performs parametric sweeps over many voltages to create
history of ionic concentrations

lonic Concentration history of IPMC is exported as a text file
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3.5.2.3 Modeling
First, the model is created using a single domain representing the electroactive polymer,
as seen in Fig. 28. This line is created as explained in Section 3.3. This method is used to create

a 180 micron line to represent the Nafion layer. Physics will then be added to the base model.

Figure 28. Concentration Model

After the geometry has been created, Transport of Diluted Species application mode is added to
the model by choosing the physics, as seen in Fig. 29. This application mode predicts the
distribution of cations due to an induced electric field. The electric field will be added as a
function in the model. This is necessary for solving the electro migration problem. This is done
under Global Definitions>Variables, this can be seen in Fig. 30. We can add “Van” and “Vcat”
to correspond to the voltage at the anode and the voltage at the cathode, respectively. Now, we

will define the physics.
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We begin by adding “Diffusion and Migration” to the model. This is accomplished by right-
clicking “Transport of Diluted Species” and choosing “Diffusion and Migration.” Under Model
Inputs, we will add an electric potential, as can be seen in Fig. 31. This voltage potential will be
a function of “Vcat” and “Van.” As stated above, there will be no flux, so we will choose the
two ends to have a no flux condition. The model must then be meshed as described in Section
3.4. A user-controlled mesh will be used. Clicking on the size option, we can select a custom

mesh with a maximum element size of 1e-6 m, as seen in Fig. 32. This creates an element for

every micron, or 180 elements.
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Opening the solver branch, we can see the solver is already configured to be a time dependent
problem. The solver configurations branch contains information about the type of analysis, the
solver settings and the solver being used. The “Results While Solving” also contains different
plots that may be represented graphically. In most cases, the automatic solver is used and the
results chosen by Comsol are the correct results. Comsol automatically chooses solvers based on
the problem type. After the settings in the solver parameters are chosen, the equal sign in the
toolbar at the top of the screen is selected and the problem is solved and the results will be
displayed graphically. Plotting options are also available, as seen in Fig. 33. Right-clicking
“Results,” many different plots can be added to the model. In this case, Comsol automatically
plots the concentration of the line, as can be seen in Fig. 34. Other plot types are available, such

as slice, sub domain, deformed and boundary plots. The model is then complete.
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Next, we must export the model to Matlab as an m-file. The completed model will
include the CAD model, solvers, and plots that were discussed. Comsol will store everything
that was discussed in an m-file. This includes things that may have been deleted or numerous
plots that may not be needed. This will be stored in the m-file and can become quite large. In
order to save a model that is clean, there is a way to rid the code of anything that has been
deleted. Clicking “File” and choosing “Reset History” will clean the model of any unwanted
code. The “Save As Model M-File” can then be selected under “File.” This will produce an m-
file that can be edited and run in Matlab. In order for Matlab to understand the language used in
the code, Comsol must be connected to Matlab, as described earlier.

Next, we will examine the m-file of the Comsol model. This file contains many lines of
code that indicate whether the model contains parameters, data or variables. The line that
contains variables can be seen in Appendix Al. Other processes such as geometry and meshing
can also be seen. This code is not in a form where it can accept input variables; instead it is a
history of what has been done in Comsol. Using this m-file, we will then create a program to
yield concentration values for specific voltage inputs.

First, a variable containing a vector of solution times is created. This is used to indicate
to the solver when solutions are returned. A voltage variable will also be created in the m-file.
This will also be a vector that contains an evenly spaced series of numbers from zero to the
maximum applied voltage. The last variable will be an empty matrix that is used as space for the
storage of concentration values and is in the form “Concentration (z, time, voltage).” The rest of
the model code is then placed in a for loop whose number of iterations is equal to the number of
elements in the voltage vector. Next, the voltage signal will be changed. The variable

controlling the voltage vector will be “V.”  This value will be replaced with a variable string.
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In our case, we want to increment through the voltage vector, so we will change the
model.variable to model.variable(‘varl’).set(‘Va’, strcat (num2str (V_a)), ‘[V]’). This will cause
the voltage to change with each iteration and evolve over time.

Next, the code must be able to extract and store the solutions. This is done using
mphinterp. The solution to the model at the end of each iteration will be stored as a FEM.
Mphinterp will reference the fem for a solution at a given point in time and space. The format
will be extracted as “con= mphinterp (fem,’c’,’coord’,’z’,”T’,tf)’.” The concentration at any
point is the variable of interest which is shown as ‘c’. We will place mphinterp into two “for
loops” to make a concentration profile for the cations through the thickness of the Nafion. The
first loop increments by time steps to extract the concentration profile for every solution time.
The second loop increments by the height in the z-direction, returning the concentration at values
through the thickness of the finger. These results are then stored in an array according to the

voltage, time and z-position.

3.5.3 Electrical Model

3.5.3.1 Approach Overview

We created the model that is able to predict the distribution of cations through an IPMC
finger due to an induced voltage in the last section. Next, the electrical distribution in the IPMC
will be modeled in Comsol. This is done as the input voltage will decrease in strength as the
distance from the application point is increased. As a result, the actuation of the finger will also
decrease in strength, as actuation is proportional to input voltage. The model is created using the
modeling techniques described in Section 3.3. The three domains representing the IPMC layers
will be modeled. Then, the finger will be meshed and solved. Lastly, it will be exported to
Matlab as a fem structure to be incorporated into the force model.
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3.5.3.2 Electrical Currents Theory
Electrical currents, combines Ohm’s law and Poisson’s equation into one equation, given as:
—V-(cAV —]®) = Q; 3.2
where sigma is the conductivity (S/m), V is the voltage (V), J¢is the externally generated current
density (A/m?), and Qjis a current source (A). Q;is zero as the Nafion does not generate any
current during actuation. As stated above, the top and bottom domains have electric potential
boundaries where they contact the electrodes. So, V = V. In the case of the boundary with the
ground condition, V, = 0 and the other boundary is equal to the value specified.
The simulation will be run in Comsol using this theory and the voltage distribution inside the
IPMC will be predicted, once the mesh has been assigned. A brief outline is now given to
explain the process of modeling the voltage distribution.
e Geometry is created using Comsol’s CAD tools
o Three domains are created that represent the thick layer of
Nafion and the two thinner electrodes (Platinum)
o Layers can be created using the block tool or drawn on
work planes
e Physics is added to model
o Electric Currents is added to model
e Add boundary conditions and sub domain settings to model
o Materials are selected for geometry (Nafion and Platinum)
o Electric Potential and Ground applied to edges
e Mesh Geometry

o Geometry is meshed using user-controlled mesh
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e Model is solved and results are plotted
o Solver is selected automatically by Comsol
o Plots can be changed to sub domain or volume to represent
voltage distribution
e Solution is exported to Matlab
o Solution is exported as m-file (Appendix A2) to be called

as a fem structure into extract function (Appendix A3)

3.5.3.3 Modeling

This model will predict the electric potential in an arbitrarily shaped IPMC finger. In this
case, we will model a 7x17 mm rectangle finger. First, we must model the voltage distribution.
Starting by clicking on Comsol 4.3b with Matlab, a command window will open that connects
Matlab to Comsol. Then, selecting Comsol 4.3b, Comsol opens. Selecting 3D, AC/DC>Electric
Currents (ec), Stationary, Finish, the finger is ready to be built. Any shape can be modeled using
the Geometry tool. The three blocks will be built, representing two layers of platinum and one of
Nafion, as seen in Fig. 35. This is done by right-clicking geometry and selecting “block.” The
block is extruded to the thickness of the first layer of platinum. This can then be duplicated to

make two more layers that have the same area, but the Nafion will be thicker.
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Figure 35. Arbitrary Finger

The materials must then be assigned to the layers. Using Materials>MEMS>Metals>Pt and
assigning to Block 1 and Block 3 and Materials>Built In>Nylon to Block 2. Although these
materials already have assigned values, the values for platinum must be changed a little to
account for the material being platinum salt. In this case, the electrical conductivity will be
changed to 1e6. Now, we must assign the physical properties to the model. This is

accomplished by assigning the ground and electric potential to the left top and bottom of the

finger. This can be seen in Fig. 36 and Fig. 37.
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Next is the mesh. Using Mesh>User Controlled>Size>Normal the finger is meshed, as seen in

Fig. 38. The model can then be solved. Comsol automatically chooses the best solvers and plots
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the results, as seen in Fig. 39. The plot can be changed by right-clicking Results>3D Plot Group
and choosing the type of plot desired. Once the model is completed it will also be saved as a

model m-file. This m-file will not be edited; it will simply be called as a fem in later codes.
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3.5.4 Matlab Force Model

3.5.4.1 Approach Overview

As seen in the previous sections, we now have a model capable of predicting the
concentration distribution through the thickness of the IPMC finger given a voltage input and we
also have a model capable of predicting the voltage distribution across the surfaces of an
arbitrarily shaped IPMC finger. Now, we can create a simulation to determine the force
distribution throughout an IPMC finger. The voltage distribution can be used along with the
concentration tables to determine the local concentration values throughout the IPMC finger.
This will be accomplished programmatically using Matlab and the results will be converted into

a distributed force which will be used to drive the IPMC finger during actuation simulations.

3.5.4.2 Force Model Theory

As discussed in Section 1.1.2, the basic structure of Nafion is considered to have two
regions, hydrophobic and hydrophilic. These regions contain micellar structures forming a grid.
When hydrated, the solvent collects in the micelle and the channels that connect them. When
actuated, the cations in the micelle are driven towards the cathode. Cations are added to the
micelle near the cathode, positively charging the micelle. Micelle near the cathode will be
positively charged, forcing a repulsive force between them. This is also true near the anode,
where the micelle will be negatively charged. The force between these two spheres, or two

points, is calculated using Coulomb’s law given as:

2
_keqiqy ke(e(cy —c2)) B k,(eAc,)?
Feruster—cluster = dz 42 = pE 3.3

And ke =—
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This expression states that the force (F) between any two points is proportional to their
charge (q) times a constant divided by the square of the distance (d) between them. The next
expression applies to the case of two nested spheres that have the same charge. We will use this
in the case of our IPMC, because the concentration does not vary much. The third expression
states the difference between the number of anions and cations is equal to the change in
concentration since their numbers are initially equal.

But, our electrochemical model predicts the concentration of cations in moles per cubic
meter and equation 3.3 uses the change in concentration of an individual cluster. An equation
will be needed to convert the molar cation concentration into cluster concentration.

This equation is given by:

Acy * Ny

Ac, = ——
* Ncluster 34

1im
Nepyster = (T

)3

where Acy is the molar concentration of cations, N4 is Avogadro’s number, and N s¢er 1S the
number of clusters per cubic meter. The number of clusters is calculated by dividing the total
number of cations by the number of clusters per cubic meter, assuming the cations are initially
distributed equally. Using these equations, equation 3.3 can be simplified to:
Feuster—cluster = ke(eATCN 1) 3
(Nctuster d)?

But, we want an equation in terms of layers, not clusters. This is important because the
repulsion forces between layers causes the actuation in IPMCs. It has been proven that the force
in any direction is equal to the force exerted on a plane normal to that direction. This force only

depends on the force that the two layers of cluster exert on each other. This implies each plane
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experiences the same force as all the other planes, so the force is not increased by adding layers.
This simplifies equation 3.5 to:

2/3 3.6

cluster—cluster * Ncluster

Flayer—layer

Once again, this equation must be adjusted to account for multiple layers, as equation 3.6
only applies to double layer systems. This equation will be adjusted to account for the presence

of multiple layers. Assuming even separation and a large number of layers, the combined force

2
of each additional layer can be approximated as xiz with a solution of % Combining these

equations, equation 3.6 can be simplified as:

Fipmc = :_ZFcluster—clusterNCZI{Ztgr 37
Another brief outline will be given to explain the process of the force and deflection model.
e Voltage distributions extracted from FEM structure
o FEM Structure contains the voltage distributions of the two
electrodes produced by the electrical model
o Voltage is extracted using mphinterp and returns the
voltage at any position
e Voltage is used to determine ionic concentration
o Voltage potentials are used to create concentration matrix
that defines the distribution of cations.
e Force Matrix is produced
o Concentration matrix is converted into matrix of forces

using force equation
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o Force matrix is stored in Comsol model to simulate

actuation.

3.5.4.3 Deflection and Force Modeling

In Section 3.5.3, a FEM structure was exported as an m-file into Matlab. This FEM
contained the voltage distribution of an arbitrarily shaped IPMC finger. This distribution will be
extracted from the m-file using an extract function (Appendix A3) and stored as a matrix. Again,
we will use mphinterp to extract this information, but this time the function will be passed a
matrix. This matrix will contain spatial coordinates of the model and at each point in the matrix,
a voltage will be extracted. Now, we have a matrix that contains information about the voltage
and position for the entire actuator. This will now be applied to the concentration history that
was solved for in Section 3.5.2. In this section, we created a model to simulate ionic
concentration in Nafion. The results of this model were exported to Matlab as an m-file and
processed into an array. These results will be combined to create an array of concentration
values for the entire finger as a function of time. The array is in the form Concentration (voltage,
time) = [z concentration], where z is the thickness being sampled. This array returns the
distribution of cations at any point and time. Now, we will develop a model that uses this
concentration distribution to describe the stress in the material. This is quite easy, as all the
variables are known, as we just developed the concentration matrix. The force is then calculated
at every point using Equation 3.7. This will return another matrix in the form Force = [x y z
Force]. The force will be calculated and can be saved as a text file which will be returned to

Comsol.
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3.5.5 Comsol/Matlab Force and Deflection Modeling

The force concentration is then uploaded into the Comsol model, using a simple property
tool. This is done using an interpolation function that loads the text file acquired earlier into the
IPMC finger that was modeled in the electrical modeling section. The text file contains four
arguments, three spatial coordinates and the force at every coordinate. By assigning “Force” as
the interpolation function and its location in the file, Comsol is able to load this into the modeled
finger. In this case though, different physics will be used, as we are interested in the deflection
and force applied by the finger on the glass transducer straw. The model will once again be 3D
and the physics used will be Structural Mechanics>Solid Mechanics. The model must then
either be rebuilt or simply copied from the electrical model, but in the new model, the IPMC
finger will simply be one body, instead of three layers. This is done to avoid three very thin
layers when meshing. The three layers will move as one when actuated, so this is a reasonable
assumption.

Starting with a new model and choosing 3D>Structural Mechanics>Solid Mechanics,
Stationary, Finish, we will finish the process. This time, only one block is needed. The block
will be built and the material assigned. The material will be Nylon, but the material properties
will be changed to mimic a composite material of Nafion and Platinum. The text file will be
loaded using Global Definitions>Functions>Interpolation. The data source is a file and can be
found by browsing the computer files and selecting the desired text file. The “Function Name”
will be “Force” and “Position” will be “4.” The Solid Mechanics section will then be selected

and the fixed constraint will be assigned on the far left end of the finger, as seen in Fig. 40.
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Figure 40. Fixed Constraint

The finger will be modeled as a cantilever beam that is fixed at one end where it is held by the

electroded holder. A body load must then be added to the model. This is done using the Solid

Mechanics option. Choosing the IPMC finger as the domain, the body load will be recognized as

“Force,” which was loaded in the text file above, as seen in Fig. 41.
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Figure 41. Body Load

In order to load the body load into the finger, the force must be defined as a body load. This

means the inputs must be unitless, so the force is entered as “Force(x [1/m], y [1/m], z [1/m]).
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The finger must then be meshed. This is very important in this stage. Once again, the user-
controlled mesh will be used, but this time, an extra fine mesh will be used and the scaling factor
under Free Tetrahedral>Scale Geometry>z-direction can be used. The model can then be run.
The results are then plotted automatically. The plot desired in the deflection model will be a
Volume Plot with Total Displacement as the “Expression.” The finger will actuate due to the
migration of cations and the force produced inside the IPMC, as seen in Fig. 42. The total
displacement can be computed using the Derived Values tool, under point evaluation and
choosing the far right tip of the finger that deflects, as seen in Fig. 43. Total displacement is
already chosen when using this tool. Under the Solid Mechanics menu in the evaluation window
is Solid Mechanics>Displacement>Total Displacement, which will give the total displacement of

the tip of the finger.

Figure 42. Finger Deflection
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Figure 43. Deflection Measurement

The straw cylinder representing the force transducer can then be modeled in the previous
deflection model. A cylinder will be modeled in Comsol to represent the straw on the force
transducer. The same simulation will be run that predicts the deflection of the IPMC, which will
deflect into the force transducer. This will be done in the same way the deflection was
measured. The only difference is a cylinder will be modeled to represent the straw on the force
transducer. The straw will have a diameter and height of one millimeter. The cylinder will be
offset by the thickness of the finger and will be located two mm in from the end of the tip of the
finger. This is done in all models to keep the location of the transducer consistent and also to
avoid having the transducer at the very tip of the finger which causes errors in meshing. The
cylinder will be assigned “Silica Glass” material, which is preloaded in Comsol. The bottom of
the cylinder will also have a fixed constraint, so it will not move and will be in compression
when the finger contacts it. The mesh for the finger will be the same, while the mesh on the
straw can be “Fine” as it is not as thin. A fixed constraint must be placed on the bottom of the

cylinder, as seen in Fig. 45, and the model can be solved. The force exerted on the load cell will
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then be predicted by Comsol, once again using the “Derived Values” tool. Using Derived

Values>Volume Integration>Solid Mechanics>Reactions>Reaction Force, the force exerted on

the cylinder will be given in mN.
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The force exerted on the cylinder can be computed using the Derived Values>Volume

Integration, under Expression, as seen in Fig. 46 and Fig. 47.
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3.6 Results

In this chapter, we created several sub-models in order to predict the deflection and force
of an arbitrarily shaped IPMC finger. The first model was an electrochemical model that
predicted the distribution of cations due to an induced electric field. Next, we developed a model
that predicted the voltage distribution in the IPMC finger. These models were then combined to

predict the ionic concentration due to the voltage. This concentration distribution was then used
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to determine the electrostatic forces inside the IPMC finger. Using these models, we then were
able to model many different fingers and test them experimentally to determine the validity of
the models.

Two fingers with different areas were compared to determine their force and deflection.
They were modeled and then tested experimentally. One was a 7x17 mm rectangular finger and
the other was an isosceles triangle with the same height and base but half the area, as can be seen

in Fig. 48.

Figure 48. Rectangle and Triangle Fingers

The results can be seen in Table 3. The error in force and deflection for the rectangle is 23.37%
and 2.77%, respectively. The error for the 7x17 mm triangle for force and deflection is 13.3%

and 4.92%, respectively.
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Table 3. Output vs. Size

Gripper Dimension 7x17 mm rectangle 7x17 mm triangle

Experimental Force 2.0 mN 1.16 mN
Experimental 1.4 mm 1.13 mm
Deflection

Modeled Force 2.6 mN 1.22 mN
Modeled Deflection 1.44 mm 0.98 mm

The same 7x17 mm rectangle was used and new 14x17 mm isosceles and right triangles were

used, as seen in Fig. 49.

Figure 49. Rectangle and Triangle Fingers

The results can be seen in Table 4. The error in force and deflection for the isosceles
triangle is 14.38% and 23.5%, respectively. The error in force and deflection for the right

triangle is 13.96% and 6.26%, respectively.
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Table 4. Output vs. Shape

Gripper Dimension | 7x17 mm rectangle 14x17 mm Isosceles [14x17 mm Right
triangle triangle

Experimental Force 2.0 mN 2.92 mN 2.28 mN
Experimental 1.4 mm 1.5 mm 1.85 mm
Deflection

Modeled Force 2.6 mN 2.5 mN 2.65 mN
Modeled Deflection 1.44 mm 1.96 mm 1.735 mm

Examining the results, we can see the model is quite accurate when predicting the force and

deflection.
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Chapter 4. OPTIMIZATION in modeFRONTIER

4.1 Introduction

The main goal in this thesis is to optimize IPMC fingers for force or deflection. Comsol
has an optimization package, but it was not powerful enough to accomplish this goal.
ModeFRONTIER was suggested as an alternative to optimize these fingers for force or
deflection. ModeFRONTIER is a multi-objective optimization and design package designed by
Esteco SpA. It is written to couple with computer aided engineering (CAE) software, computer
aided drafting (CAD) software, finite element structural analysis, and computational fluid
dynamics (CFD) software. Itis a GUI driven software in which optimization is accomplished by
modifying the input variables assigned by the user, and analyzing the outputs as they are defined
as objectives or constraints. The logic of the optimization is built around a “workflow” structure,
which is built with interconnected nodes. ModeFRONTIER is capable of direct integration using
CAE and CAD nodes or can be used to connect to other external programs using scripting. It
uses design of experiments (DOE), robust design tools, and optimization algorithms to achieve
optimization. These DOEs consist of random generator sequences, orthogonal and iterative
techniques, and factorial DOEs. To achieve robustness analysis, it also includes Monte Carlo
and Latin hypercube. Monte Carlo is a class of computational algorithms that relies on repeated
random sampling. These are run numerous times in order to obtain the probabilistic distribution
of an unknown entity. Latin hypercube sampling (LHS) is a statistical method used to generate a
sample of parameter values from a multidimensional distribution. These methods are effective
for single design optimization, but multi-objective problems were also considered. This was
accomplished using a non-dominated sorting genetic algorithm (NSGA-I1). NSGA-II generates

evenly distributed Pareto designs in a fast and efficient manner.
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4.2 Building a Complete Model

Using the codes described above and altering them, they can be combined into one large
code, as seen in Appendix A5. This is just one sample of the code, as it was done numerous
times for different shapes. This code was able to predict the force and deflection of a given
finger in one complete m-file, instead of going through the process described in Chapter 3. The
optimization process focused on three shapes, but any arbitrary shape can be modeled this way.
This is the first time optimization has been achieved using these codes and the shapes were kept
basic. As can be seen in Appendix A5, the code starts the same as the above mentioned codes.
The electrical modeling is the beginning of the m-file. The blocks are built according to the size
and shape desired. In the new model, a table must be created that calculated the total area of the
finger being built. This is important as one of the optimization studies will involve changing
length and width of the finger while keeping the area constant. This table is exported as a text
file that contains the area of the finger. Once the area is calculated, the voltage is extracted using
the same extraction function used above. The concentration and force is again calculated in the
same way as was calculated in the previous section. The major difference in this program is the
deflection and force modeling is then computed in the m-file, rather than using Comsol. This is
important as modeFRONTIER is unable to connect to Comsol directly. Many software packages
are able to link with modeFRONTIER, but Comsol is not one of them. But, we are able to input
an m-file into modeFRONTIER, that modeFRONTIER is able to read and modify. This file
contains the entire process explained in the previous chapter, but switching back and forth from
Comsol to Matlab and running the entire modeling process is not required. The entire process is
contained in the m-file. One code is used for the modeling of the deflection of the finger. This

code builds the finger and applies all the physics and meshing. It will then solve for the
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deflection of the finger. A table is created at the end of this code that outputs the deflection of
the finger. This is important as modeFRONTIER will be able to read this output and optimize
for the deflection. The same goes for the force applied by the finger. The code contains all of
the information to build the finger and the force transducer and again solves the model and
predicts the force generated by the finger on the transducer. Another text file is output that can
be read by modeFRONTIER, and once again, modeFRONTIER can optimize for the force
exerted by the finger. Finally, a third version of the code was written where a deflection test is
run and then another force measurement is run in the same code. The important part of the code
is the prediction of the stress developed inside the finger. This is calculated before any
deflection or force measurements are taken, so the code is able to reuse the stress prediction in
both the force and deflection modeling.

First, the deflection model is run without the force transducer, so the finger is able to
deflect. The code, seen in Appendix A5, is used to model the finger and calculate the stresses
developed inside the IPMC. The deflection measurement is then run in the same way that was
run in Chapter 3, except this time it is run using an m-file that is stored in modeFRONTIER.
The deflection is calculated and output as a text file. This text file will then be used in
modeFRONTIER. modeFRONTIER will take this text file and use it as an output to maximize
for, therefore maximizing the deflection of the finger. Then, the force transducer is added to the
model and the model is solved again. Appendix A5 will be modified, and the force transducer
will be added to the model. The force measurement will once again be measured in the same
way described in Chapter 3, except this time it is run as an m-file that is stored in
modeFRONTIER. The force is again output as a text file that can be read by modeFRONTIER.

modeFRONTIER will then take this text file and use it as an output to maximize for, again
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maximizing for the force applied by the finger. Finally, a third code will be used to model the
force and deflection of the finger in the same code (Appendix A6). This is done by again using
Appendix A5 and adding the force transducer, while keeping the deflection measurement already
achieved. The code will have two outputs, the deflection and the force, that are output as text
files. modeFRONTIER takes these text files and maximizes for them. But, although
modeFRONTIER tries to maximize for both, there will always be a trade off. It will never be an
exact optimization of the finger for both force and deflection, it will usually solve for a middle
ground, where there will be a similar force and deflection. This is accomplished by solving the
deflection code first, then restarting the process, solving for the force exerted. These codes were
used to optimize rectangles, right triangles, and isosceles triangles for force or deflection. These

shapes were chosen due to the interesting experimental data that was discussed above.

4.3 Optimization in modeFRONTIER

ModeFRONTIER must be able to access the m-files that represent the entire finger
model. This is done using an EasyDriver node in modeFRONTIER. The EasyDriver node is
able to create a link between modeFRONTIER and third party software, such as Comsol. This
EasyDriver node uses the script or m-file. This is done by setting up a script and rules to drive
the process. In our case, the entire process of optimization is built around the EasyDriver, as it
will access our m-files, some examples can be seen in Appendix A5 and Appendix A6.
EasyDriver can be found under Script Nodes and the format of the EasyDriver node can be seen
in Fig. 50. Once in this node, the EasyDriver must be edited. Once in Edit EasyDriver, the m-
file needed can be added by browsing under the “Add” selection and selecting the m-file. The
m-file will then be loaded into the EasyDriver, as seen in Fig. 51. The entire m-file can be seen

in the EasyDriver window.
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Now, modeFRONTIER knows what m-file to use and the inputs, such as base and length, will be
selected in the m-file in order to optimize the model for deflection (or force). Next, the inputs
that will be modified to optimize the model for force or deflection will be parameterized. The
optimization process described in this thesis focuses on changing the width and length of an
IPMC finger, while keeping the area the same. So, the inputs will simply be the width and
length of the finger. The width of the finger is considered the base in modeFRONTIER. The
Input File can be found under File Nodes. Adding two input variables, we will be able to change
the base and length of the finger, as seen in Fig. 52. modeFRONTIER needs to know two input
variables, as it will change these variables in the m-file. If it does not have two input variables, it
will simply change one or the other and leave the other the same. modeFRONTIER works by
modifying the m-file and changing the variables that are selected by the user. In our case, we
wish to change the width (or length) of the finger, but the width and length must be changed in
the m-file, accordingly. Width and length are considered to be input variables, but they are
really modifiers telling modeFRONTIER what to change. Also, when running the model, we

will add an expression to either the width or length that expresses it in terms of the other.

Length

EasyCitver s %r
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Figure 52. Input Nodes
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These nodes will be connected to the EasyDriver where we can select the base and length in the

m-file, so modeFRONTIER will change these when optimizing the model for force or deflection.

Once again, entering Edit EasyDriver and highlighting the base, as shown in Fig. 53, and right-

clicking, a rule can be added. This is done by first clicking on “Base,” highlighting the base

parameter in the m-file, and right-clicking, then Add Rule. Since there are three blocks in the

model, three bases are selected. The same process is used to select the length of the finger.
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Figure 53. Adding Rules

Next, modeFRONTIER needs to know what to optimize for, in this case either Force or

Deflection. This is accomplished using an output node. This is needed as the m-file outputs the

deflection or force of the model as a text file and modeFRONTIER needs to be able to read this

text file. The output node will be named accordingly, either Deflection or Force, and will be
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passed to a design objective node. This node tells modeFRONTIER that we are maximizing the
force (or deflection) of this model. An exit node is placed after the EasyDriver node to tell
modeFRONTIER the model is complete. Now, we must add a scheduler node. This node tells
modeFRONTIER the specific DOE to use. In the case of the single objective optimization,
where we are optimizing for either deflection or force, a SIMPLEX scheduler is used. This node
can be opened and the maximum number of designs is specified by the user. In most cases 60
designs are enough, as the model usually converges many designs before this. The scheduler
node also has a DOE node attached to it. In our case, the Uniform Latin Hypercube will be the
best DOE to use. The number of designs must be specified by the user and the Add DOE

Sequence must be selected, as seen in Fig. 54.
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Earlier, we parameterized the base and length, but they are not yet constrained in terms of one or
the other. Seen in the bottom of modeFRONTIER are the input variables. Clicking on base, we
can change it from a variable to an expression. The base can be expressed as a function of
length, or vice versa, to constrain the area. In our case, the base will be “1.19E-4/Length” for the
rectangle as the area of a 7x17 mm rectangle is 119 mm?. Now, the process is complete to
optimize for a single design goal, such as deflection and was done for a rectangle, isosceles
triangle, and a right triangle. In order to optimize for force, we must add a node in which the
cylinder, representing the force transducer, will move 2 mm in from the tip. The length of the
finger will change and the force exerted by the finger must be read at the same position for each
iteration. This is accomplished using a calculator node that moves the cylinder depending on the
length, as seen in Fig. 55. The cylinder position is selected the same way the base and length
selections were made in the EasyDriver and can be seen in Fig. 56. This process was done to
maximize the force for a rectangle, isosceles triangle, and a right triangle and the results will be

discussed later.
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Next, the process was changed in order to minimize the area, while obtaining a certain
force or deflection. A desired force (or deflection) was chosen, such as 2 mN (or 2mm), and the
area is minimized. This is done to choose the smallest finger, while still meeting a design goal.
The process is similar to the previous process, but this time a force (or deflection) constraint will
be incorporated into modeFRONTIER, while the design objective will be minimizing the area, as
seen in Fig. 57. The EasyDriver process will be the same, including selecting the base and
length. The only difference is “Area” and “Deflection” will be the output variables, while the
objective will be to minimize area and deflection will have a constraint on it. Under “Constraint
Properties” for deflection, the type can be set to “Equal To” and the limit can be set by the user.

This process was repeated for all three shapes, for both force and deflection.
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Figure 57. Minimizing Area

A third optimization process was completed, in which force and deflection were both

optimized. The m-file was modified so the model was built twice in the same file and both force
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and deflection were output by the file. In this case, the process is the same, except “Force” and
“Deflection” are both design objectives and were both outputs to be maximized, as seen in Fig.
58. As stated above, both cannot be maximized, but an optimal finger that achieves an
intermediate deflection and force can be created. The scheduler in this case will be the “NSGA-
I.” Once modeFRONTIER converges on a solution, the results can be seen in the Designs

Space. This was again repeated for all three shapes.
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Figure 58. Maximizing Deflection and Force
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4.3.1 Early Optimization

A 7x17 mm rectangle was modeled and input into modeFRONTIER. ModeFRONTIER
ran different scenarios with different lengths and widths. These dimensions were used to
optimize the fingers for force (or deflection). This was done manually in Comsol. This was very
tedious, but led to some interesting conclusions. Examining Table 5, we can see a thin base and
a longer length leads to more deflection, while a wide base and a shorter length leads to more
force exerted. Also, choosing the middle ground leads to an intermediate deflection and force.
This process was repeated to make the fingers smaller, as seen in Table 6 and Table 7. The

results again are promising, as a wider base and shorter finger leads to a larger force exerted and

vice versa for deflection.

Table 5 Full Rectangle Optimization

Full Rectangle Optimization (119mm?)

Base (mm) Length (mm) Displacement (mm) Force (mN)
6.4358 18.49 3.10 2.03
6.9655 17.084 1.718 2.52
7.9323 15.002 1571 3.76

Table 6. Half Rectangle Optimization
Half Rectangle Optimization (59.5 mm?)

Base (mm) Length (mm) Displacement (mm) Force (mN)
3.8459 15.471 3.35 1.38
7.322 8.1262 0.528 2.49
11.899 5.0 0.055 3.87

Table 7. Quarter Rectangle Optimization
Quarter Rectangle Optimization (29.75 mm?)

Base (mm) Length (mm) Displacement (mm) Force (mN)
2.086 14.263 1.448 0.859
2.975 10.0 0.970 0.9813

14.8 2.0 0.013 1.547
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4.3.2 Deflection Optimization

Next, modeFRONTIER was used to optimize the fingers for deflection. The same setup
is used for each shape, but the script in the EasyDriver is changed according to the shape, as seen
in Fig. 59. As can be seen, the base and length are the two input variables and base is made a
function of length to keep the area the same. There are also limits set on the length, which in
turn limits the base. These limits are arbitrary and can be set by the user. In our case, we limited
the lengths for all shapes between 15 and 20 mm. As stated, these are arbitrary values and can
be chosen by the user. If these limits are not set, modeFRONTIER would never converge on an
answer and the finger would just become infinitely long by infinitely small. Gravity is also not
included in any of these models, but if the finger was infinitely long, at some point gravity would

overcome the stiffness of the finger and it would not be able to hold itself upright.
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Figure 59. Deflection Optimization
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As seen in Fig. 60, the deflection of a 7x17 mm rectangle was optimized for deflection.

ModeFRONTIER runs through the optimization process until the best design is acquired. Limits

were set in modeFRONTIER to keep the finger under a certain width and length. As seen in

Table 8, Design 20 is the best design for the given shape and modeFRONTIER is finished

optimizing the shape. This is accomplished with a 5.95 mm by 20 mm finger. This makes sense

as a finger with a thin base and a longer length is able to deflect more. The upper limit for length

was set to 20 mm. If the limit were set to a higher value, the finger would continue to grow in

length until the upper limit was met.
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Figure 60. Rectangle Deflection
Table 8. Rectangle Design IDs
Design ID Base (mm) Length (mm) Deflection (mm)
0 6.436 18.490 2.806
1 6.966 17.084 2.082
2 5.981 19.897 3.459
3 5.950 20.000 3.505
4 6.183 19.245 3.065
5 6.064 19.623 3.242
6 6.007 19.811 3.404
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7 5.978 19.906 3.424
8 5.964 19.953 3.480
9 5.957 19.976 3.506
10 5.964 19.953 3.480
11 5.954 19.988 3.499
12 5.954 19.988 3.499
13 5.961 19.965 3.488
14 5.955 19.982 3.464
15 5.955 19.982 3.464
16 5.959 19.971 3.493
17 5.958 19.973 3.477
18 5.958 19.973 3.477
19 5.956 19.979 3.498
20 5.957 19.978 3.506

The process is then repeated for the isosceles triangle. As seen in Fig. 61 and Table 9,
modeFRONTIER again converges to give the best design of an isosceles triangle. This finger is
11.9 mm width by 19.96 mm long. Again the length limit was set to 20 mm, so the optimization
process chooses the finger that has the longest length. These results are promising, as we have

seen a thinner base with a longer length is a better design when deflection is the design goal.
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Figure 61. Iso Deflection Optimization
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Table 9. Iso IDs

Length Deflection
Design ID | Base (mm) (mm) (mm)
0 12.872 18.490 1.282
1 13931 17.084 1.118
2 11.962 19.897 1.789
3 11.900 20.000 1.793
4 12.367 19.245 1.513
5 12.129 19.623 1.685
6 12.013 19.811 1.737
7 11.956 19.906 1.770
8 11.928 19.953 1.797
9 11.956 19.906 1.770
10 11.914 19.976 1.802
11 11.900 20.000 1.793
12 11.921 19.965 1.806
13 11.928 19.953 1.797
14 11.918 19.971 1.802
15 11.918 19.971 1.802
16 11.925 19.959 1.806
17 11.923 19.962 1.806

The process is repeated for a right triangle. Again, seen in Fig. 62 and Table 10,
modeFRONTIER converges on a design of a thin base and longer length to achieve greater
deflection. This finger is 11.9 mm wide by 19.99 mm long. As can be seen, the two triangles

have similar dimensions even though they are different shapes.

83



Right Triangle Deflection Optimization

2
19 694200000 "
1.8 L
T 17 L
E 16
§ 15
314 ¢ @ Right Triangle Deflection
‘g 1.3 Optimization
12 ®
11
1
0 5 10 15
Design ID
Figure 62. Right Triangle Deflection
Table 10. Right Design 1Ds
Length
Design ID Base (mm) (mm) Deflection (mm)
0 12.872 18.490 1.417
1 13.931 17.084 1.223
2 11.962 19.897 1.896
3 11.900 20.000 1.925
4 12.367 19.246 1.727
5 12.129 19.623 1.834
6 12.013 19.811 1.893
7 11.956 19.906 1.919
8 11.928 19.953 1.924
9 11.914 19.976 1.910
10 11.914 19.976 1.910
11 11.907 19.988 1.900
12 11.907 19.988 1.900
13 11.904 19.994 1.912
14 11.902 19.997 1.925

Now, we will compare the results. As seen in Fig. 63, the three shapes are compared.
The rectangle achieves the greatest deflection with the same area as the triangles, due to the

limits set on the fingers. This is achieved as the rectangle base becomes very thin and the length
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is long compared to the base. The triangles cannot become as thin compared to their base, so
they cannot deflect as much. When looking at the ratio of width to length, the rectangle is almost
a 1:4 ratio, while the triangles are around 1:2. This means the rectangle becomes very long
compared to the width, while the triangles do not If the triangles were able to become much
longer and meet the same ratio, they too would be able to deflect more. As stated above, the
length was limited, and in this case it was limited to 20 mm. This is an arbitrary number that can
be changed. This is set as modeFRONTIER would never converge if there were no limit on the
length. The triangles would be able to deflect more given a longer length and shorter base, but a
limit must be set. This shows a rectangle may be the best design if a certain length is desired. If

the user needs a finger to be less than a certain length, this can be changed in modeFRONTIER.
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Figure 63. Shape Comparison
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4.3.3 Force Optimization

The force exerted by the three shapes was then optimized in modeFRONTIER, as seen in
Fig. 64. The same setup is used for each shape, but the script in the EasyDriver is changed
according to the shape. As can be seen, the base and length are the two input variables and base
is made a function of length to keep the area the same. There are also limits set on the length,
which in turn limits the base. The length limit was again set to 15 to 20 mm. This again was
arbitrary and can be changed to anything. The cylinder moving node is the cylinder that
represents the force transducer that will always move 2 mm in from the tip of the finger to keep

the readings consistent.
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Figure 64. Force Optimization
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As seen in Fig. 65 and Table 11, modeFRONTIER converges on a design. Once again, a limit
was set at the lower end of the length of the finger at 15 mm. This was done as
modeFRONTIER would never converge on a design if there was no limit on the length or width.
A wider base with a shorter length is the best design to achieve the greatest force. The rectangle

finger dimensions are 7.92 mm wide by 15.02 mm long.
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Figure 65. Rectangle Force Optimization
Table 11. Rectangle Design IDs
Force
Design ID Base (mm) | Length (mm) (mN)
0 6.436 18.490 2.276
1 5.981 19.897 2.082
2 6.200 19.193 2.149
3 6.690 17.787 2.336
4 6.966 17.084 2.430
5 7.590 15.678 2.701
6 7.933 15.000 2.828
7 7.418 16.042 2.624
8 7.667 15.521 2.726
9 7.798 15.261 2.803
10 7.865 15.130 2.817
11 7.899 15.065 2.818
12 7.916 15.033 2.867
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13 7.899 15.065 2.818
14 7.925 15.016 2.843
15 7.908 15.049 2.820
16 7.920 15.024 2.868
17 7.925 15.016 2.843
18 7.918 15.028 2.850
19 7.918 15.028 2.850
20 7.923 15.020 2.839
21 7.919 15.026 2.830
22 7.919 15.026 2.830
23 7.922 15.022 2.838
24 7.921 15.023 2.831
25 7.921 15.023 2.831
26 7.920 15.025 2.868
27 7.920 15.025 2.868

The force exerted by the isosceles triangle was then optimized, as seen in Fig. 66 and Table 12.
The results are interesting as the triangle base and length are almost the same. Once again, a

wider base with a shorter length is the best design goal, as the finger dimensions are 15.86 mm
wide by 15.01 mm long. The triangle would continue to become wider and shorter if there was

no limit. There must be a limit in order for modeFRONTIER to converge on a solution.
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Figure 66. Iso Force Optimization
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Table 12. Iso Design IDs

Design Force
ID Base (mm) | Length (mm) (mN)
0 12.872 18.490 2.005
1 13.931 17.084 2.346
2 15.181 15.678 2.555
3 15.867 15.000 2.678
4 14.836 16.042 2.478
5 15.334 15.521 2.606
6 15.596 15.261 2.640
7 15.730 15.130 2.662
8 15.798 15.065 2.655
9 15.798 15.065 2.655
10 15.832 15.033 2.652
11 15.832 15.033 2.652
12 15.849 15.016 2.647
13 15.849 15.016 2.647
14 15.858 15.008 2.688
15 15.849 15.016 2.647
16 15.862 15.004 2.670
17 15.862 15.004 2.670
18 15.854 15.012 2.658
19 15.860 15.006 2.688

The design of the right triangle was then optimized for force, as seen in Fig. 67 and Table 13.
Again, the base and length are almost the same, and a wider base with a shorter length is desired.

The dimensions of this finger are 15.85 mm wide by 15.02 mm long.
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Figure 67. Right Triangle Force Optimization
Table 13. Right Triangle Design IDs
Length
Design ID Base (mm) (mm) Force (mN)
0 12.872 18.490 1.843
1 13.931 17.084 2.026
2 15.181 15.678 2.228
3 15.867 15.000 2.311
4 14.836 16.042 2.217
5 15.334 15.521 2.239
6 15.596 15.261 2.275
7 15.730 15.130 2.254
8 15.730 15.130 2.254
9 15.798 15.065 2.204
10 15.798 15.065 2.204
11 15.832 15.033 2.242
12 15.849 15.016 2.313
13 15.832 15.033 2.242
14 15.858 15.008 2.298
15 15.858 15.008 2.298
16 15.841 15.024 2.260
17 15.854 15.012 2.301
18 15.845 15.020 2.313
19 15.847 15.018 2.313

The three shapes were then compared, as seen in Fig. 68. The limit on these shapes plays a role

in the optimization. Due to the shape of the triangles, the limits play a greater role than they do
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on the rectangle. This can be seen as the rectangle finger can become much smaller in one
dimension compared to the other, while the triangles dimensions are much closer to each other.
This is due to the lower limit we set on the triangles. If we set the limit much lower for the
length, the force would be much higher. We can see the triangles are going to the smallest
possible limit for the length and trying to maximize their base, but this is not possible due to the

limit. This can be seen in Table 14, as all fingers approach the limits to maximize either force or

deflection.
Force Comparison
3.1
2.9
O oo b oA
27 — m N
o
—~ 2.5
E [ |
o 2.3 .—‘.—.—‘—00—0“ M Rectangle Force Optimization
2 | Iso Force Optimization
21 —m
|‘ @ Right Force Optimization
1.9
*
1.7
1.5
0 5 10 15 20 25 30 35

Design ID

Figure 68. Shape Comparison
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Table 14. Final Results

Final Results
Width Length Length Limit Deflection Force Area
Shape (mm) (mm) (mm) (mm) (mN) (mm?)
Rectangle 5.957 19.978 15-20 3.506 N/A 119
Iso Triangle 11.923 19.962 15-20 1.806 N/A 119
Right
Triangle 11.902 19.997 15-20 1.925 N/A 119
Rectangle 7.92 15.025 15-20 N/A 2.868 119
Iso Triangle 15.86 15.006 15-20 N/A 2.688 119
Right
Triangle 15.847 15.018 15-20 N/A 2.313 119

4.3.4 Optimization Factor

We defined the optimization factor, or the Index of Performance, as the product of the

force and deflection in order to optimize each shape in terms of both. This is an arbitrary factor

that we defined in order to optimize these fingers for both force and deflection, as there are no

current equations or factors to represent our goal. This is important as design goals may include

both the force and deflection. The setup in modeFRONTIER can be seen in Fig. 69. In this

case, the force and deflection are both output variables. The limit on the length is again set to

15-20 mm. As stated earlier, a NSGA-II is used and a maximum number of designs are selected

in the DOE. In our case we set the limit to 1000 and this limit was never reached by any

optimization study.
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Figure 69. Force and Deflection Optimization

The rectangle optimization of both force and deflection can be seen in Fig. 70 and the Design
IDs can be seen in Table 15. In the case of the rectangle, the best design for achieving the

highest force and deflection is Design 154. The shape of this finger is 5.95 mm width by 20 mm

length.
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Figure 70. Rectangle Combined
Table 15. Rectangle Combined
Design Length Deflection Index of
ID Base (mm) (mm) (mm) Force (mN) Performance
1 7.908 15.048 1.383 2.820 3.900
2 7.861 15.139 1.402 2.798 3.924
3 7.928 15.011 1.386 2.835 3.928
4 7.933 15.000 1.390 2.828 3.931
5 7.890 15.083 1.398 2.815 3.935
6 7.912 15.040 1.390 2.831 3.935
7 7.899 15.065 1.398 2.818 3.941
8 7.922 15.022 1.389 2.838 3.943
9 7.886 15.089 1.402 2.815 3.947
10 7.931 15.004 1.384 2.855 3.952
11 7.931 15.004 1.384 2.855 3.952
12 7.927 15.012 1.387 2.850 3.952
13 7.929 15.009 1.387 2.853 3.958
14 7.869 15.122 1.409 2.815 3.966
15 7.892 15.078 1.406 2.823 3.968
16 7.932 15.002 1.395 2.846 3.970
17 7.932 15.002 1.395 2.846 3.970
18 7.932 15.002 1.395 2.846 3.970
19 7.894 15.075 1.409 2.820 3.972
20 7.847 15.165 1.421 2.798 3.974
21 7.900 15.063 1.410 2.823 3.980
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22 7.902 15.059 1.414 2.816 3.981
23 7.902 15.060 1.414 2.816 3.981
24 7.865 15.130 1.413 2.817 3.982
25 7.901 15.062 1.414 2.816 3.982
26 7.930 15.006 1.391 2.864 3.984
27 7.904 15.056 1.404 2.838 3.986
28 7.862 15.136 1.415 2.817 3.986
29 7.849 15.162 1.428 2.804 4.003
30 7.916 15.033 1.396 2.867 4.003
31 7.916 15.034 1.396 2.867 4.003
32 7.806 15.244 1.443 2.776 4.006
33 7.895 15.073 1.418 2.836 4.020
34 7.791 15.273 1.453 2.800 4.068
35 7.753 15.348 1.485 2.752 4.087
36 7.779 15.298 1.466 2.793 4.096
37 7.788 15.280 1.473 2.807 4.134
38 7.618 15.622 1.561 2.703 4.218
39 7.619 15.620 1.561 2.706 4.225
40 7.605 15.648 1.573 2.698 4.245
41 7.609 15.640 1.571 2.705 4.248
42 7.655 15.545 1.556 2.733 4.253
43 7.563 15.734 1.603 2.691 4.314
44 7.584 15.690 1.607 2.712 4.359
45 7.466 15.940 1.664 2.642 4.396
46 7.510 15.845 1.643 2.678 4.400
47 7.471 15.929 1.660 2.656 4.409
48 7.470 15.931 1.662 2.675 4.446
49 7.463 15.945 1.675 2.660 4.454
50 7.437 16.002 1.705 2.638 4.497
51 7.451 15.972 1.692 2.670 4.517
52 7.387 16.110 1.719 2.630 4.522
53 7.352 16.187 1.754 2.595 4.551
54 7.348 16.195 1.755 2.593 4,551
55 7.430 16.016 1.718 2.652 4.554
56 7.338 16.217 1.771 2.579 4.568
57 7.333 16.228 1.773 2.578 4.570
58 7.339 16.215 1.763 2.593 4.571
59 7.339 16.215 1.763 2.593 4.571
60 7.308 16.284 1.788 2.573 4.601
61 7.315 16.268 1.797 2.573 4.625
62 7.314 16.271 1.799 2.578 4.637
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63 7.255 16.402 1.832 2.574 4.716
64 7.234 16.450 1.859 2.573 4.783
65 7.245 16.424 1.857 2.579 4.789
66 7.157 16.627 1.911 2.516 4.807
67 7.157 16.627 1.911 2.516 4.807
68 7.158 16.625 1.909 2.536 4.842
69 7.133 16.684 1.924 2.518 4.845
70 7.138 16.671 1.932 2.510 4.849
71 7.202 16.523 1.899 2.556 4.854
72 7.099 16.763 1.969 2.499 4.920
73 7.035 16.914 2.029 2.491 5.054
74 6.983 17.042 2.068 2.445 5.054
75 6.969 17.076 2.088 2.435 5.084
76 7.391 16.101 1.840 2.791 5.136
77 7.002 16.994 2.077 2.479 5.148
78 6.998 17.005 2.080 2.476 5.149
79 7.017 16.960 2.062 2.501 5.157
80 6.937 17.153 2.124 2.433 5.169
81 6.910 17.221 2.138 2.421 5.176
82 6.933 17.164 2.132 2.428 5.177
83 6.896 17.255 2.161 2.423 5.235
84 6.903 17.238 2.164 2.443 5.286
85 6.863 17.340 2.203 2.410 5.310
86 6.765 17.590 2.303 2.362 5.440
87 6.775 17.565 2.287 2.387 5.458
88 6.849 17.376 2.248 2.441 5.487
89 6.842 17.391 2.266 2.424 5.492
90 6.614 17.993 2.487 2.285 5.683
91 6.587 18.066 2.493 2.291 5.710
92 6.595 18.045 2.490 2.299 5.724
93 6.631 17.947 2.469 2.331 5.756
94 6.567 18.121 2.532 2.282 5.779
95 6.558 18.145 2.530 2.287 5.787
96 6.644 17.910 2.469 2.350 5.801
97 6.531 18.222 2.568 2.283 5.863
98 6.521 18.247 2.587 2.274 5.884
99 6.525 18.237 2.587 2.275 5.886
100 6.499 18.312 2.608 2.273 5.929
101 6.495 18.323 2.622 2.267 5.943
102 6.450 18.449 2.672 2.248 6.008
103 6.460 18.421 2.679 2.255 6.040
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104 6.435 18.494 2.751 2.231 6.137
105 6.355 18.725 2.805 2.209 6.195
106 6.366 18.693 2.783 2.239 6.230
107 6.391 18.621 2.790 2.234 6.233
108 6.356 18.722 2.819 2.225 6.272
109 6.350 18.742 2.825 2.237 6.319
110 6.334 18.788 2.873 2.202 6.326
111 6.294 18.906 2.984 2.211 6.597
112 6.268 18.986 2.979 2.227 6.634
113 6.162 19.311 3.104 2.138 6.636
114 6.022 19.761 3.311 2.093 6.931
115 6.042 19.695 3.297 2.103 6.932
116 6.023 19.757 3.338 2.088 6.970
117 6.021 19.765 3.351 2.091 7.006
118 6.015 19.785 3.384 2.092 7.078
119 6.008 19.806 3.380 2.095 7.082
120 6.099 19.510 3.264 2.175 7.099
121 6.089 19.543 3.293 2.157 7.101
122 6.079 19.576 3.320 2.146 7.124
123 6.004 19.821 3.396 2.099 7.129
124 5.994 19.852 3.416 2.093 7.151
125 5.990 19.868 3.427 2.086 7.151
126 5.978 19.907 3.424 2.090 7.159
127 6.003 19.824 3.399 2.106 7.159
128 5.955 19.984 3.464 2.067 7.160
129 5.954 19.985 3.457 2.072 7.161
130 5.998 19.840 3.440 2.082 7.163
131 6.015 19.783 3.405 2.107 7.174
132 6.015 19.784 3.405 2.107 7.174
133 5.996 19.847 3.438 2.093 7.195
134 5.995 19.850 3.434 2.096 7.196
135 5.962 19.960 3.465 2.088 7.234
136 5.962 19.960 3.465 2.088 7.234
137 5.961 19.961 3.488 2.074 7.234
138 5.961 19.962 3.488 2.074 7.234
139 5.966 19.946 3.487 2.077 7.243
140 5.966 19.946 3.487 2.077 7.243
141 5.969 19.935 3.478 2.084 7.249
142 5.968 19.941 3.483 2.083 7.255
143 5.960 19.966 3.487 2.082 7.258
144 5.960 19.966 3.487 2.082 7.258
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145 5.960 19.968 3.487 2.082 7.258
146 5.959 19.970 3.493 2.083 7.276
147 5.989 19.869 3.486 2.089 7.281
148 5.974 19.919 3.532 2.073 7.322
149 5.974 19.919 3.532 2.073 7.322
150 5.974 19.918 3.532 2.073 7.322
151 5.974 19.921 3.532 2.073 7.322
152 5.967 19.942 3.535 2.076 7.337
153 5.957 19.976 3.506 2.094 7.340
154 5.953 19.991 3.511 2.096 7.360

This was repeated for the isosceles triangle, as seen in Fig. 71 and Table 16. The highest
optimization factor was accomplished by Design 161. This finger was 12.1 mm wide by 19.7
mm long. As can be seen, the deflection and force are similar values. If a finger is desired of

both a higher degree of force and deflection, this is the best design.
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Figure 71. Iso Combined
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Table 16. Iso Combined Design IDs

Length Deflection Index of
Design ID | Base (mm) (mm) (mm) Force (mN) Performance
1 15.866 15.000 0.745 2.678 1.994
2 15.866 15.001 0.745 2.678 1.994
3 15.865 15.001 0.745 2.678 1.994
4 15.866 15.001 0.745 2.678 1.994
5 15.867 15.000 0.745 2.678 1.994
6 15.862 15.004 0.747 2.670 1.995
7 15.862 15.004 0.747 2.670 1.995
8 15.863 15.004 0.747 2.670 1.995
9 15.798 15.065 0.752 2.655 1.996
10 15.839 15.026 0.751 2.668 2.002
11 15.836 15.029 0.751 2.668 2.002
12 15.837 15.028 0.751 2.668 2.002
13 15.832 15.033 0.756 2.652 2.004
14 15.831 15.034 0.756 2.652 2.004
15 15.831 15.034 0.756 2.652 2.004
16 15.831 15.034 0.756 2.652 2.004
17 15.758 15.103 0.760 2.639 2.005
18 15.759 15.103 0.760 2.639 2.005
19 15.815 15.049 0.755 2.656 2.006
20 15.854 15.012 0.757 2.658 2.012
21 15.735 15.125 0.764 2.638 2.015
22 15.786 15.077 0.756 2.670 2.018
23 15.787 15.076 0.756 2.670 2.018
24 15.788 15.075 0.757 2.667 2.020
25 15.822 15.042 0.759 2.685 2.039
26 15.822 15.042 0.759 2.685 2.039
27 15.824 15.041 0.759 2.685 2.039
28 15.745 15.116 0.764 2.678 2.047
29 15.750 15.111 0.770 2.670 2.055
30 15.680 15.179 0.778 2.649 2.060
31 15.690 15.169 0.772 2.675 2.065
32 15.860 15.007 0.768 2.688 2.065
33 15.860 15.006 0.768 2.688 2.065
34 15.855 15.011 0.768 2.688 2.065
35 15.857 15.009 0.768 2.688 2.065
36 15.860 15.006 0.768 2.688 2.065
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37 15.861 15.005 0.768 2.688 2.065
38 15.857 15.009 0.768 2.688 2.065
39 15.423 15.431 0.809 2.561 2.072
40 15.723 15.137 0.779 2.660 2.073
41 15.589 15.267 0.789 2.632 2.078
42 15.548 15.307 0.792 2.624 2.078
43 15.595 15.261 0.789 2.658 2.096
44 15.394 15.460 0.817 2.610 2.134
45 15.388 15.467 0.822 2.606 2.142
46 15.210 15.648 0.842 2.569 2.162
47 15.110 15.752 0.859 2.551 2.191
48 14.996 15.871 0.874 2.524 2.206
49 14.995 15.872 0.892 2.519 2.246
50 15.033 15.831 0.884 2.548 2.251
51 14.827 16.052 0.912 2.492 2.273
52 14.829 16.049 0.912 2.492 2.273
53 14.813 16.067 0.920 2.476 2.277
54 14.911 15.962 0.901 2.532 2.281
55 14.880 15.995 0.912 2.523 2.301
56 14.668 16.226 0.947 2.457 2.326
57 14.704 16.186 0.951 2.451 2.330
58 14.475 16.443 0.966 2.436 2.353
59 14.380 16.551 0.991 2.414 2.391
60 14.481 16.435 0.983 2.439 2.397
61 14.314 16.627 1.027 2.383 2.448
62 14.282 16.665 1.023 2.401 2.455
63 14.217 16.741 1.032 2.382 2.459
64 14.210 16.749 1.043 2.370 2.472
65 14.298 16.645 1.032 2.394 2.472
66 14.119 16.857 1.069 2.361 2.524
67 14.071 16.914 1.081 2.341 2.530
68 13.996 17.004 1.087 2.330 2.532
69 13.996 17.005 1.091 2.324 2.535
70 14.141 16.830 1.065 2.388 2.544
71 13.950 17.061 1.096 2.348 2.574
72 12.821 18.563 1.299 1.990 2.585
73 12.805 18.587 1.306 1.987 2.596
74 13.505 17.624 1.180 2.200 2.597
75 13.760 17.296 1.130 2.303 2.601
76 13.976 17.030 1.107 2.350 2.602
77 12.784 18.617 1.312 1.985 2.604
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78 12.951 18.377 1.279 2.038 2.607
79 14.063 16.923 1.098 2.386 2.620
80 13.926 17.091 1.113 2.368 2.636
81 13.896 17.127 1.122 2.350 2.637
82 12.668 18.788 1.345 1.965 2.642
83 13.770 17.284 1.159 2.288 2.652
84 13.618 17.477 1.167 2.276 2.656
85 12.672 18.782 1.361 1.957 2.663
86 12.638 18.832 1.356 1.964 2.664
87 13.802 17.244 1.154 2.313 2.668
88 12.721 18.709 1.339 1.994 2.669
89 12.561 18.947 1.366 1.954 2.670
90 13.428 17.724 1.226 2.181 2.673
91 13.428 17.724 1.226 2.181 2.673
92 12.712 18.722 1.341 1.996 2.676
93 12.606 18.880 1.368 1.959 2.680
94 13.006 18.299 1.293 2.075 2.683
95 13.667 17.414 1.182 2.289 2.706
96 13.601 17.499 1.191 2.278 2.713
97 13.219 18.005 1.279 2.134 2.730
98 13.224 17.998 1.279 2.134 2.730
99 13.244 17.970 1.290 2.118 2.731
100 13.116 18.145 1.301 2.113 2.749
101 13.057 18.227 1.324 2.081 2.755
102 13.168 18.075 1.303 2.118 2.759
103 13.179 18.059 1.306 2.114 2.762
104 12.543 18.975 1.379 2.004 2.764
105 13.134 18.121 1.304 2.122 2.768
106 13.134 18.121 1.304 2.122 2.768
107 13.050 18.237 1.334 2.084 2.780
108 13.139 18.114 1.319 2.112 2.785
109 12.532 18.991 1.447 1.925 2.786
110 13.105 18.161 1.323 2.124 2.811
111 12.513 19.021 1.466 1.924 2.820
112 12.514 19.019 1.466 1.924 2.820
113 12.433 19.143 1.490 1.926 2.870
114 12.539 18.981 1.447 1.994 2.884
115 12.457 19.106 1.456 1.998 2.909
116 12.232 19.457 1.554 1.885 2.930
117 12.295 19.357 1.546 1.901 2.939
118 12.270 19.397 1.543 1.908 2.946
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119 12.214 19.485 1.570 1.895 2.975
120 12.153 19.583 1.673 1.861 3.115
121 12.132 19.618 1.685 1.862 3.137
122 12.119 19.639 1.698 1.859 3.157
123 12.072 19.714 1.703 1.859 3.166
124 12.140 19.605 1.691 1.874 3.169
125 11.942 19.929 1.753 1.821 3.191
126 11.939 19.934 1.753 1.821 3.191
127 12.016 19.806 1.733 1.841 3.191
128 12.047 19.756 1.718 1.862 3.200
129 12.045 19.759 1.718 1.862 3.200
130 11.907 19.989 1.761 1.819 3.204
131 12.096 19.676 1.722 1.864 3.211
132 12.031 19.783 1.731 1.860 3.219
133 12.031 19.783 1.731 1.860 3.219
134 12.020 19.800 1.738 1.853 3.220
135 12.021 19.798 1.738 1.853 3.220
136 11.935 19.941 1.764 1.827 3.222
137 11.956 19.906 1.770 1.824 3.229
138 12.052 19.748 1.735 1.863 3.232
139 12.049 19.753 1.735 1.863 3.232
140 12.008 19.820 1.762 1.837 3.237
141 12.007 19.821 1.762 1.837 3.237
142 11.902 19.996 1.793 1.818 3.260
143 11.949 19.918 1.785 1.829 3.265
144 11.970 19.883 1.779 1.835 3.266
145 11.974 19.876 1.779 1.835 3.266
146 11.981 19.865 1.771 1.846 3.270
147 11.977 19.872 1.771 1.846 3.270
148 11.975 19.875 1.771 1.846 3.270
149 11.914 19.977 1.802 1.821 3.282
150 11.911 19.982 1.802 1.821 3.282
151 11.919 19.969 1.802 1.831 3.299
152 11.921 19.965 1.802 1.831 3.299
153 11.918 19.970 1.802 1.831 3.299
154 11.918 19.970 1.802 1.831 3.299
155 11.920 19.967 1.802 1.831 3.299
156 11.917 19.971 1.802 1.831 3.299
157 11.938 19.937 1.805 1.836 3.314
158 11.939 19.935 1.805 1.836 3.314
159 11.937 19.939 1.805 1.836 3.314
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160

11.927

19.955

1.817

1.830

3.326

161

12.080

19.701

1.727

1.934

3.340

Finally, the right triangle was optimized for both force and deflection, as seen in Fig. 72 and

Table 17. The best optimization factor is achieved by Design 116. As seen in this case and the

previous isosceles triangle, a base of around 12 mm and a length of around 19.6 mm give the

best design in both cases. The dimensions of the right triangle finger are 12.06 mm wide by

19.73 mm long. Again, the force and deflection values are similar to the isosceles triangle

results. This shows the optimization process is close to choosing the best design in both cases,

instead of having a one-sided design goal. The best design chosen was the design with

intermediate values for both force and deflection.
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Figure 72. Right Combined
Table 17. Right Triangle Design IDs
Design Length Deflection Index of
ID Base (mm) (mm) (mm) Force (mN) Performance
1 15.863 15.004 0.840 2.265 1.903

103



2 15.863 15.004 0.840 2.265 1.903
3 15.857 15.009 0.837 2.298 1.923
4 15.858 15.009 0.837 2.298 1.923
5 15.833 15.032 0.858 2.242 1.923
6 15.831 15.034 0.858 2.242 1.923
7 15.832 15.033 0.858 2.242 1.923
8 15.831 15.034 0.858 2.242 1.923
9 15.831 15.034 0.858 2.242 1.923
10 15.815 15.049 0.859 2.268 1.948
11 15.822 15.042 0.865 2.253 1.949
12 15.867 15.000 0.847 2.311 1.958
13 15.867 15.000 0.847 2.311 1.958
14 15.867 15.000 0.847 2.311 1.958
15 15.865 15.002 0.847 2.311 1.958
16 15.867 15.000 0.847 2.311 1.958
17 15.724 15.136 0.870 2.252 1.958
18 15.746 15.115 0.867 2.266 1.964
19 15.839 15.027 0.865 2.275 1.967
20 15.836 15.029 0.865 2.275 1.967
21 15.838 15.027 0.865 2.275 1.967
22 15.764 15.098 0.873 2.255 1.968
23 15.854 15.012 0.856 2.301 1.970
24 15.788 15.075 0.871 2.264 1.971
25 15.588 15.268 0.880 2.262 1.991
26 15.848 15.017 0.864 2.313 1.998
27 15.592 15.264 0.892 2.262 2.018
28 15.541 15.314 0.911 2.245 2.047
29 15.534 15.322 0.902 2.277 2.054
30 15.377 15.478 0.929 2.255 2.094
31 15.210 15.648 0.961 2.187 2.102
32 15.313 15.542 0.940 2.264 2.129
33 15.143 15.717 0.965 2.230 2.152
34 15.170 15.689 0.958 2.251 2.156
35 15.146 15.714 0.968 2.230 2.158
36 15.126 15.735 0.973 2.229 2.169
37 15.031 15.834 0.989 2.213 2.189
38 15.053 15.811 0.997 2.255 2.247
39 14.549 16.358 1.064 2.196 2.337
40 14.536 16.373 1.080 2.173 2.346
41 14.368 16.565 1.114 2.116 2.356
42 14.535 16.375 1.081 2.194 2.373
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43 14.462 16.457 1.097 2.167 2.377
44 14.392 16.537 1.123 2.132 2.394
45 14.314 16.627 1.127 2.137 2.409
46 13.509 17.618 1.257 1.927 2.422
47 13.485 17.650 1.274 1.924 2.450
48 13.435 17.714 1.286 1.913 2.459
49 13.740 17.322 1.259 1.961 2.470
50 14.101 16.878 1.193 2.073 2.472
51 14.118 16.858 1.187 2.087 2.476
52 13.931 17.084 1.223 2.026 2.478
53 13.932 17.083 1.223 2.026 2.478
54 14.012 16.986 1.183 2.100 2.484
55 14.044 16.947 1.181 2.131 2.516
56 13.134 18.121 1.346 1.882 2.533
57 13.996 17.005 1.213 2.095 2.542
58 13.959 17.050 1.229 2.076 2.551
59 13.798 17.249 1.247 2.055 2.563
60 14.071 16.914 1.195 2.146 2.565
61 13.920 17.098 1.225 2.103 2.577
62 13.116 18.145 1.375 1.884 2.591
63 13.877 17.151 1.232 2.103 2.591
64 13.013 18.290 1.401 1.857 2.602
65 13.901 17.121 1.231 2.116 2.606
66 12.989 18.323 1.397 1.870 2.612
67 13.033 18.261 1.396 1.886 2.633
68 12.830 18.551 1.465 1.843 2.700
69 12.710 18.726 1.566 1.887 2.955
70 12.712 18.722 1.564 1.908 2.985
71 12.658 18.802 1.597 1.892 3.022
72 12.657 18.804 1.597 1.892 3.022
73 12.668 18.788 1.602 1.890 3.028
74 12.630 18.845 1.651 1.838 3.033
75 12.609 18.875 1.633 1.862 3.040
76 12.601 18.888 1.613 1.916 3.090
77 12.510 19.025 1.664 1.873 3.116
78 12.453 19.111 1.658 1.883 3.122
79 12.484 19.064 1.678 1.878 3.152
80 12.283 19.377 1.774 1.845 3.272
81 12.142 19.601 1.793 1.829 3.279
82 12.130 19.620 1.834 1.810 3.318
83 12.127 19.626 1.818 1.828 3.323
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84 12.009 19.818 1.852 1.804 3.341
85 12.007 19.821 1.852 1.804 3.341
86 12.096 19.675 1.831 1.828 3.347
87 11.925 19.958 1.885 1.782 3.357
88 12.047 19.757 1.848 1.820 3.363
89 12.058 19.737 1.859 1.812 3.369
90 11.997 19.838 1.877 1.806 3.389
91 12.031 19.783 1.872 1.811 3.390
92 12.031 19.783 1.872 1.811 3.390
93 12.034 19.778 1.872 1.811 3.390
94 11.909 19.985 1.900 1.793 3.407
95 11.914 19.977 1.910 1.786 3.411
96 11.911 19.981 1.910 1.786 3.411
97 11.910 19.984 1.910 1.786 3.411
98 11.991 19.849 1.882 1.813 3.412
99 11.904 19.993 1.912 1.786 3.415
100 11.978 19.870 1.889 1.810 3.418
101 11.926 19.957 1.917 1.786 3.424
102 11.926 19.956 1.917 1.786 3.424
103 11.927 19.955 1.917 1.786 3.424
104 12.040 19.767 1.896 1.808 3.427
105 11.920 19.966 1.933 1.781 3.442
106 12.016 19.806 1.872 1.839 3.443
107 11.900 20.000 1.925 1.792 3.448
108 11.938 19.937 1.925 1.797 3.459
109 11.937 19.939 1.925 1.797 3.459
110 11.938 19.936 1.925 1.797 3.459
111 11.935 19.941 1.925 1.797 3.459
112 11.957 19.904 1.896 1.825 3.461
113 11.961 19.897 1.896 1.825 3.461
114 11.969 19.884 1.919 1.809 3.471
115 11.939 19.935 1.923 1.806 3.473
116 12.063 19.730 1.859 1.877 3.490

4.3.5 Rectangle Deflection and Force Limits
The deflection and force limits of these three shapes were then optimized. This was done
by minimizing the area of the finger while achieving a deflection or force set by the user. The

rectangle base was limited to 5 to 10 mm and the length was set to 15 to 20 mm. This was an
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arbitrary number set by the user and can be changed. Because the area of the rectangle is simply
length times width, the width was kept between 5 and 10 mm to match the area of the triangles.
In the first case, the desired deflection was set to “Equal to” 2 mm. The modeFRONTIER setup
can be seen in Fig. 73. The limits can be seen in the bottom and the minimize area node can be
seen in the figure. This setup will also be used for the force limit optimization study. The only
difference is the model will optimize for force instead of deflection. The limits will be the same

and the force will be set to equal to 2 mN.
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Figure 73. Rectangle Deflection Limit

As seen in Fig. 74, the deflection of a rectangle ranges significantly when changing the shape of
the finger. But, as can be seen, a finger with an area of 160 mm? is capable of the most
deflection. Also, a finger with an area of 100 mm?is capable of deflecting the same amount as

fingers with a larger area. If a deflection of 2 mm or higher is desired, a finger with an area of 90
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mm? s sufficient. Also, as seen in Fig. 74, many fingers deflect much less than the smaller finger
and have a larger area. This shows this optimization process can be very crucial in designing

fingers, as we can eliminate waste and achieve certain design goals.
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Figure 74. Rectangle Deflection Limit

The force limit was then optimized for the rectangle, as seen in Fig. 75. The limits were again
the same and the force was set to equal to 2 mN. Examining the results, we can see a finger with
an area of 90 mm? is capable of exerting 2 mN of force. As expected, larger fingers are capable
of exerting higher forces, but we are interested in exerting a certain force while minimizing the

area, which modeFRONTIER accomplished.
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Figure 75. Rectangle Force Limit

4.3.6 Iso Triangle Deflection and Force Limits

The same process used to determine the force or deflection limits for the rectangle was
used to optimize for the isosceles triangle deflection or force limits. In this case, the base was
limited to 7 to 14 mm and the length was limited to 15 to 20 mm. The deflection was set to
“Equal to” 2 mm again. The modeFRONTIER setup can be seen in Fig. 76. The limits can be
seen in the bottom and the minimize area node can be seen in the figure. This setup will also be
used for the force limit optimization study. The only difference is the model will optimize for
force instead of deflection. The limits will be the same and the force will be set to equal to 2

mN.
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Figure 76. Iso Triangle Deflection Limit

As can be seen in Fig. 77, the deflection varies when changing the area. The important thing to

notice is a finger with an area of 70 mm? is capable of deflecting up to 2 mm, while fingers with

a larger area are not able to deflect as much. This is due to the shape of the finger. So, if a

finger with a large deflection is desired, a smaller finger can be used to obtain this deflection.
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Next, the force was optimized while minimizing the area, as seen in Fig. 78. A finger with an
area of 90 mm? is capable of 2 mN of force. Also, fingers with a higher area are capable of the
same force, but wastes material. A finger with a smaller area is achieved with the same force

production.
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Figure 78. Iso Triangle Force Limit
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4.3.7 Right Triangle Deflection and Force Limits

The same process was used to optimize for the deflection or force limits of a right
triangle, using the process stated in Section 4.3.5. In this case, the base was limited to 7 to 14
mm and the length was limited to 15 to 20 mm. The deflection was set to “Equal to” 2 mm
again. The modeFRONTIER setup can be seen in Fig. 79. The limits can be seen in the bottom
and the minimize area node can be seen in the figure. This setup will also be used for the force
limit optimization study. The only difference is the model will optimize for force instead of

deflection. The limits will be the same and the force will be set to equal to 2 mN.
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Figure 79. Right Triangle Deflection Limit
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As can be seen in Fig. 80, the deflection once again varies when changing the area. The
important thing to notice is a finger with an area of 100 mm? is capable of deflecting up to 2 mm,
while fingers with a larger area are not able to deflect as much. This is due to the shape of the

finger. So, if a finger with a large deflection is desired, a smaller finger can be used to obtain

this deflection.
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Figure 80. Right Triangle Deflection Limit

Next, the force was optimized while minimizing the area, as seen in Fig. 81. A finger with an
area of 110 mm? is capable of 2 mN of force. Also, fingers with a higher area are capable of the

same force, but wastes material. A finger with a smaller area is achieved with the same force

production.
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Chapter 5. CONCLUSION
5.1 Results of the Study

An IPMC Force Model was coupled with modeFRONTIER in order to optimize fingers
with respect to deflection, force exerted, both force and deflection, and area minimization, which
minimizes IPMC cost. The force model was combined into one large model that is able to run
many small sub-models that were made to model IPMC fingers. This model is able to model the
force and deflection of any finger using one code without going through the entire process of
modeling a finger and using Matlab and switching back to modeling. This optimization process
is needed as early investigations into size and shape of IPMC fingers led to interesting results, as
different shapes were better suited for certain design goals. The optimization process was
capable of modeling many different fingers and predicting the best design depending on the
desired need, such as force or deflection. It was also capable of minimizing the area of fingers,
while still achieving design goals, such as force or deflection. This is important as the waste of
material can be minimized and the best design can be achieved. Many different optimization
processes were run to change the area, while optimizing for the force or deflection. As seen in
Chapter 4, we are able to achieve a desired force or deflection, such as 2 mm or 2 mN, while
minimizing area. It can be seen that these different shapes each have advantages for certain
design goals, whether a high force or a high deflection is desired. The best way to achieve these
design goals without simply cutting out an arbitrary IPMC finger and testing it is to use an
optimization package. This optimization package should be able to predict the best way to

design a finger, which is what this thesis accomplished.
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5.2 Limitations

Although modeFRONTIER is able to optimize these fingers for the best design, there are
some limitations to this study. Limits must be set on the width and length of the fingers being
modeled, as modeFRONTIER would never converge on an answer without these limits. As
seen, a finger with a thin base and a long length is capable of a high degree of deflection. This
deflection will always increase when making the finger longer, but there must be a limit to how
long the finger can get. As seen with the triangle fingers, the limits have a greater effect than
they do with the rectangle, especially when looking at the ratio of the width to the length. Also,
a finger with a very wide base and very short length is capable of exerting a high force, but this
design is impractical, as the finger will not be able to actuate a great amount. The main objective
of IPMC fingers is usually to grasp an object. ModeFRONTIER can make the finger as short as
possible and will achieve this high force, but this design is impractical as the finger will not be
able to deflect enough to grasp an object. This is also a reason the limits are set in
modeFRONTIER.

Meshing is also a concern in this study. The mesh is not changed in the models when
modeFRONTIER is predicting the best design. It was not a problem when running the models
presented in this thesis, but when making fingers very small or using complex shapes, meshing
may become a concern when using modeFRONTIER.

Back relaxation was also not included in these studies, as we were mainly concerned with
an instantaneous deflection and force exerted. These studies did not include a transient study
that included a back relaxation term. This was not necessary as we wished to optimize for force
or deflection for a given finger. Force and deflection are usually instantaneous measurements

and back relaxation does not have an effect when these studies are short.
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5.3 Future Research

Using modeFRONTIER and the Comsol model, the effects of miniaturization can be
studied. This can be done very easily in modeFRONTIER, as the length and base are changed
according to the area of the finger. The limits of the base and length may also be changed to
determine other shapes. The length limit can be made much larger to see how thin and long a
finger may get and how much it can deflect. More complex finger shapes can be created using
modeFRONTIER and Comsol. This was the first time modeFRONTIER was used to optimize
fingers, so the shapes were kept simple. Transient studies, including back relaxation studies,

may also be included in the new Comsol models if longer grasping times are desired.
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APPENDICES
Appendix A
A1l. Concentration M-File

%$This M-File models the Nafion layer in an IPMC finger. Once a voltage is
%applied, the concentration of cations will be modeled. This model will
%then be given voltages at every point in the finger and the concentration
%at any point will be determined.

function out = model

o\

oe

concentration.m

oe

oe

Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath ('C:\Users\Justin\Desktop\Comsol Models');
model.name ('concentrationdistribution.mph') ;
model.modelNode.create ('modl"') ;

model.geom.create('geoml', 1);

model.geom('geoml ') .feature.create('il', 'Interval');
model.geom('geoml') .feature('il').set('p2', '180e-6");
model.geom('geoml') .run;

model .variable.create ('varl');
model.variable('varl').set ('Van', '2'");
model.variable('varl') .set ('Vcat', '0");

model.physics.create('chds', 'DilutedSpecies', 'geoml');

model .mesh.create('meshl', 'geoml');
model.mesh ('meshl') .feature.create('edgl', 'Edge');

model.variable ('varl') .name ('Variables la');

model.view('viewl') .axis.set ('xmin', '-9.000000318337698E-6");
model.view('viewl') .axis.set ('xmax', '1.8899999849963933E-4");

model.physics ('chds') .prop('EquationForm') .set ('form', 'Transient');
model .physics ('chds') .prop('Migration') .set ('Migration', '1");
model.physics ('chds') .prop('Convection') .set ('Convection', '0'");
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model

.physics('chds'") .feature('cdml') .set ('V', 'Vcat+ ((Vcat-Van)/180e-

6)*x[V/m]");

model
IOI;
model
model
model

model
model

model.

model

model.

model.
model.
model.
model.
model.
model.
model.
model.
model.

model
model

model.
model.
model.

model.

model.
model.
model.
model.
model.

model

model.
model.
model.
model.
model.

model

model.
model.

model
model
model

model.
model.

model

.physics('chds") .feature('cdml') .set('D 0", {'6e 12[m"~2/s]'; '0'; '0';

'6e-12[m"2/s]'; '0'; '0'; '0'; '6e-12[m"2/s]'})

.physics('chds') .feature('cdml') .set('z"', '1' ),

.physics('chds') .feature('cdml') .set ('um', '2.4630522e-15[s*mol/kg]"');
(

.physics('chds') .feature('initl'") .set('c', '1250");
.mesh ('meshl') .feature('size').set('hmax', 'le-6");
.mesh ('meshl'") .run;

frame ('materiall') .sorder (1) ;

.study.create('stdl"');
study ('stdl'") .feature.create('time', 'Transient');

sol.create('soll'");

sol('soll').study('stdl");

sol('soll').attach('stdl");

sol('soll'").feature.create('stl', 'StudyStep');
sol('soll'").feature.create('vl', 'Variables');
sol('soll'").feature.create('tl', 'Time');
sol('soll'").feature('tl').feature.create('fcl', 'FullyCoupled');
sol('soll'").feature('tl').feature.create('dl', 'Direct');
sol('soll'") .feature('tl') .feature.remove ('fchef'");

.result.create('pgl', 'PlotGrouplD');

.result('pgl') .set('probetag', 'none');

result ('pgl') .feature.create('lngrl', 'LineGraph');

result ('pgl') .feature('lngrl') .selection.all;

result ('pgl') .feature('lngrl') .selection.all;

study ('stdl') .feature('time') .set ('tlist', 'range(0,0.1,5)");
sol('soll'").attach('stdl");

sol('soll').feature('stl') .name('Compile Equations: Time Dependent');
sol('soll'").feature (' stl') set ('studystep', 'time');
sol('soll'").feature('vl').set('control', 'time');
sol('soll').feature('tl').set('control', 'time');
.sol('soll').feature('tl') set('tlist', 'range(0,1,5)");
sol('soll'").feature('tl') .set ('maxorder', '2");

sol('soll'") .feature('tl') .feature('fcl') .set('maxiter', '5");
sol('soll'").feature('tl"').feature('fcl').set('jtech', 'once');
sol('soll').feature('tl').feature('dl"').set('linsolver', 'pardiso');
sol('soll'") .runAll;

.result ('pgl') .name ('Concentration (chds)"');

result ('pgl') .set('looplevelinput', {'manual'}l);

result ('pgl') .set('showlooplevel', {'on' 'off' 'off'});

.result (' pgl').set('looplevel' {'1,31,51"'});
.result('pgl').set('xlabel', 'x-coordinate (m)"');
.result('pgl').set('ylabel', 'Concentration (mol/m<sup>3</sup>)");
result ('pgl') .set('xlabelactive', false);

result ('pgl') .set('ylabelactive', false);

.result('pgl') .feature('lngrl') .set('xdata', 'expr');
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model.
model.
model.
model.
model.

out =

result
result
result
result
result

model;

(
(
(
(
(

pgl’

pgl!

.feature
.feature
. feature
. feature
.feature

(
(
(
(
(

'Ingrl’
'Ingrl’
'Ingrl’
'Ingrl’
'Ingrl’

) .
) .
) .
) .
) .

set ('xdataexpr',
set ('xdataunit',
set ('xdatadescr',
selection.all;
selection.all;
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A2. 7x17 mm Rectangle Fem

%$This m-file contains the fem structure that is used to model the finger in
$three 7x17 mm blocks. This model contains the voltage distribution that
3will be used to determine the concentration throughout the IPMC.

function out = model

o

o\

sevenbyseventeen.m

o\

o\

Model exported on Apr 17 2013, 07:45 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model.modelPath ('C:\Users\Justin\Desktop\Comsol Models');
model.modelNode.create ('modl"') ;
model.geom.create('geoml', 3);

model .mesh.create('meshl', 'geoml');
model.physics.create('ec', 'ConductiveMedia', 'geoml');

model.study.create('stdl"');

model.study ('stdl'") .feature.create('stat', 'Stationary');

model.study ('stdl") .feature('stat') .set ('sweeptype', 'sparse');
model.study('stdl') .feature('stat').set('plistarr vector start', {});
model.study('stdl') .feature('stat') .set('usesol', 'off'");
model.study('stdl') .feature('stat') .set('constraintgroup', {});
model.study ('stdl") .feature('stat') .set('plot', 'off'");

model.study ('stdl"').feature('stat') .set('adaption', 'off');
model.study ('stdl") .feature('stat') .set ('notstudy', 'zero');
model.study('stdl') .feature('stat') .set('plistarr', {});
model.study('stdl') .feature('stat') .set('notsolnum', '1");
model.study('stdl') .feature('stat').set('plistarr vector numvalues', {});
model.study ('stdl'") .feature('stat') .set('plist', '");
model.study('stdl'") .feature('stat') .set('nottimeinterp', 'off');
model.study('stdl') .feature('stat') .set('useloadcase', 'off');
model.study('stdl') .feature('stat') .set('loadgroup', {});
model.study ('stdl") .feature('stat') .set ('useparam', 'off');
model.study('stdl'") .feature('stat').set('plistarr vector step', {});
model.study('stdl'") .feature('stat').set('plistarr vector function', {});
model.study ('stdl'") .feature('stat') .set('notsolmethod', 'init');
model.study('stdl') .feature('stat').set('plistarr vector method', {});
model.study ('stdl'") .feature('stat') .set('geometricNonlinearity', false);
model.study ('stdl'") .feature('stat') .set('nott', '0'");

model.study ('stdl").feature('stat') .set ('loadgroupweight', {});
model.study ('stdl') .feature('stat') .set ('probesel', 'all');
model.study ('stdl'") .feature('stat').set('notsolvertype', 'none');
model.study ('stdl"') .feature('stat') .set('loadcase', {});
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model.study ('stdl'").feature('stat') .set('geometricNonlinearityActive', true);
model.study('stdl') .feature('stat').set('plistarr vector stop', {});
model.study ('stdl'") .feature('stat') .set ('pname', {});

model.study ('stdl').feature('stat') .set ('showGeometricNonlinearity', 'on');
model.study ('stdl'") .feature('stat') .activate('ec', true);

o)

% IPMC finger is being built
model.geom('geoml') .run;

model.geom('geoml') .feature.create('blkl', 'Block');
model.geom('geoml'") .feature('blkl"') .setIndex('size', '7e-3"', 0);
model.geom('geoml') .feature('blkl'") .setIndex('size', '17e-3', 1);
model.geom('geoml') .feature('blkl'") .setIndex('size', 'l0e-6', 2);
model.geom('geoml") .run('blkl");
model.geom('geoml"') .run('blkl");
model.geom('geoml') .feature.create('blk2', 'Block');
model.geom('geoml') .feature('blk2'") .setIndex('size', '7e-3', 0);
model.geom('geoml') .feature('blk2") .setIndex('size', '17e-3', 1);
model.geom('geoml') .feature('blk2") .setIndex('size', '180e-6', 2);
)_ (l .

( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
model.geom('geoml') .feature('blk2") .setIndex('pos', 'l0e-6', 2);
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )

model.geom('geoml') .run('blk2");

model.geom('geoml') .run('blk2");

model.geom('geoml') .feature.create('blk3"', 'Block');
model.geom('geoml') .feature('blk3") .setIndex('size', '7e-3', 0);
model.geom('geoml') .feature('blk3") .setIndex('size', '17e-3', 1);
model.geom('geoml ') .feature('blk3") .setIndex('size', '1l0e-6', 2);
model.geom('geoml ') .feature('blk3") .setIndex('pos', '190e-6', 2);
model.geom('geoml') .run('blk3");

model .geom('geoml') .runAll;

model.geom('geoml') .run;

$Materials are being assigned to each domain
model.material.create('matl');

model . .material ('matl') .name ('Pt'");

model.material ('matl') .set('family', 'custom');
model.material ('matl').set('lighting', 'cooktorrance');
model.material ('matl') .set ('specular', 'custom');

( )
( )
( ) (
( ) (
model.material ('matl') .set ('customspecular', [0.7843137254901961 1 1]);
( ) (
( ) (
( )
( )

model .material ('matl') .set('fresnel', 0.9);

model.material ('matl') .set ('roughness', 0.1);

model.material ('matl') .set ('shininess', 200);

model.material ('matl') .propertyGroup('def') .set('electricconductivity’',
'8.9e6[S/m]");

model.material ('matl') .propertyGroup('def') .set ('thermalexpansioncoefficient’
, '8.80e-6[1/K]");

model.material ('matl') .propertyGroup('def') .set ('heatcapacity"',

'"133[J/ (kg*K)1");

model.material ('matl') .propertyGroup ('def') .set ('density', '21450[kg/m"3]");
model.material ('matl') .propertyGroup('def') .set ('thermalconductivity',
'71.6[W/ (m*K)1");

model.material ('matl') .propertyGroup.create('Enu', 'Young''s modulus and
Poisson''s ratio');

model.material ('matl') .propertyGroup ('Enu') .set ('poissonsratio', '0.38");
model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus',
'168e9[Pal'");

model.material ('matl') .set('family', 'custom');

model.material ('matl').set('lighting', 'cooktorrance');
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model.material
model.material

( ) t ('specular', 'custom');

( ) t
model.material ('matl') .set

( ) t

( )

(
('customspecular', [0.7843137254901961 1 11);
('fresnel', 0.9);

model .material ('roughness', 0.1);

model .material .set ('shininess', 200);

model .material.create('mat2');

model .material ('mat2') .name ('Nylon');

model.material ('mat2') .set('family', 'custom');
model.material ('mat2') .set('lighting', 'phong');
model.material ('mat2') .set ('fresnel', 0.5);

model .material ('mat2') .set ('roughness', 0.1);

model .material ('mat2') .set ('specular', 'custom');
model.material ('mat2') .set ('customspecular', [0.7843137254901961
0.7843137254901961 0.78431372549019611]) ;
model.material ('mat2') .set ('diffuse', 'custom');
model.material ('mat2') .set ('customdiffuse', [0.39215686274509803
0.39215686274509803 0.98039215686274511]) ;
model.material ('mat2') .set ('ambient', 'custom');

model .material ('mat2') .set ('customambient', [0.39215686274509803
0.39215686274509803 0.784313725490190611]) ;
model.material ('mat2') .set('shininess', 500);

model.material ('mat2') .propertyGroup('def') .set ('heatcapacity"',

"1700[J/ (kg*K)1"');

model.material ('mat2') .propertyGroup('def') .set('relpermittivity', "'"4");
model.material ('mat2') .propertyGroup ('def') .set ('thermalexpansioncoefficient’
, '280e-6[1/K]");
model .material ('ma
model.material ('ma
'0.26[W/ (m*K) ]");
model.material ('mat2') .propertyGroup.create ('Enu', 'Young''s modulus and
Poisson''s ratio');
model .material ('mat2'
model.material ('mat2’
model.material
model .material

') .propertyGroup ('def').set ('density', '1150[kg/m*3]");

t2
t2'") .propertyGroup ('def') .set ('thermalconductivity"',

) .propertyGroup ('Enu') .set ('poissonsratio', '0.4");
( ) .propertyGroup ('Enu') .set ('youngsmodulus', '2e9[Pal');
( ) .set('family', 'custom');
('mat2') .set('lighting', 'phong');
model.material ('mat2"')
( )
( )

(
.set ('fresnel', 0.5);
model.material ('mat2') .set ('roughness', 0.1);
model.material ('mat2') .set ('specular', 'custom');

model.material ('mat2') .set('customspecular', [0.7843137254901961
0.7843137254901961 0.78431372549019611]) ;
model.material ('mat2') .set('diffuse', 'custom');
model.material ('mat2') .set('customdiffuse', [0.39215686274509803
0.39215686274509803 0.9803921568627451]) ;

model . .material ('mat2') .set ('ambient', 'custom');
model.material ('mat2') .set ('customambient', [0.39215686274509803
0.39215686274509803 0.78431372549019611]) ;

model.material ('mat2') .set('shininess', 500);

) .
model . .material ('matl').selection.set([1 3]);
model . .material ('mat2') .selection.set([2]);
model . .material ('matl') .propertyGroup('def') .set('electricconductivity',
{'le6[S/m]"'});
model.material ('matl') .propertyGroup('def') .set('relpermittivity’',
{'1.000265"});
model.material ('mat2') .propertyGroup('def').set('electricconductivity',
{'10"});

%Voltage and ground being assigned. The voltage can be changed to any
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%$value in the electric potential line.

model
model
model
model
model

ecC
tac!

.physics ('
(
('ec'
(
(

.physics
.physics
.physics
.physics

'ec'

'ec

.mesh
.mesh
.mesh
.mesh
.mesh
.mesh
.mesh
.mesh
.mesh
.mesh

model
model
model
model
model
model
model
model
model
model

'meshl'’

(

(
('meshl'
('meshl'
('meshl'
('meshl'
('meshl'
('meshl'
(

(

'meshl'’

model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.sol ('soll'
'Multigrid');

sol.create (
sol
sol
sol
sol

'soll'
'soll'
'soll'

sol
sol

sol
sol
sol

(
(
(
(
(
(
(
(
(
(
(
(
(
(

model.sol ('soll")
'amg') ;
model.sol ('soll'")
model.sol ('soll'")
'v');

model.sol ('soll")
'any');
model.sol ('soll'")
1);

model.sol ('soll'")
model.sol ('soll")
true);

model.sol ('soll'")
false) ;

model.sol ('soll'")
'longest');
model.sol ('soll")
5);

model.sol ('soll'")
£', 5000);
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') .feature.create('gndl', 'Ground', 2);

) .feature('gndl') .selection.set ([2]);

) . feature.create('potl', 'ElectricPotential', 2);

) . feature ('potl') .selection.set ([8]);

) . feature ('potl').set('VO', 1, '2");

) .autoMeshSize (6) ;

) .run;

) .autoMeshSize (5);

) .run;

) .autoMeshSize (7);

) .run;

) .autoMeshSize (5);

) .run;

) .autoMeshSize (6) ;

) .run;

'soll'");

.study ('stdl");

.feature.create('stl', 'StudyStep');
.feature('stl') .set ('study', 'stdl');

.feature('stl') .set ('studystep' 'stat');
.feature.create('vl', 'Variables');

.feature('vl') .set('control', 'stat');
.feature.create('sl', 'Stationary');

.feature('sl') .feature.create('fcl', 'FullyCoupled');
.feature('sl') .feature.create('il', 'Iterative');
.feature('sl').feature('il"') .set ('prefuntype’ 'left');
.feature('sl') .feature (' 11' .set('maxlinit', 10000);
.feature('sl'") .feature (' 'Y.set('linsolver' 'cg');
.feature('sl') .feature (' 11') set ('rhob', 400);

.feature('sl') .feature('fcl') .set('linsolver' i1y ;
.feature('sl').feature('il"') .feature.create('mgl’',
.feature('sl') .feature('il') .feature('mgl') .set ('prefun'
.feature('sl').feature('il').feature('mgl') .set('iter', 2);
.feature('sl').feature('il"').feature('mgl') .set('mgcycle’
.feature('sl') .feature('il') .feature('mgl') .set ('mcasegen’
.feature('sl').feature('il"').feature('mgl') .set('gmglevels'
.feature('sl').feature('il"').feature('mgl') .set('scale', 2);
.feature('sl') .feature('il') .feature('mgl') .set ('massem’',
.feature('sl').feature('il').feature('mgl') .set ('mkeep"',
.feature('sl').feature('il"').feature('mgl') .set ('rmethod"',
.feature('sl').feature('il') .feature('mgl') .set('mglevels’
.feature('sl').feature('il"').feature('mgl') .set ('maxcoarsedo



model.sol('soll').feature('sl').feature('il"').feature('mgl') .set ('amgauto"',

3);
model.sol('soll'").feature('sl').feature.remove ('fcDef'");
model.sol('soll').attach('stdl'");

o)

% Plot of the voltage distribution.
model.result.create('pgl', 'PlotGroup3D');
model.result ('pgl') .name ('Electric potential');

('
model.result('pgl') .set('data', 'dsetl');
model.result ('pgl') .set('solrepresentation', 'solnum');
model.result ('pgl') .set('oldanalysistype', 'noneavailable');
model.result('pgl') .set('data', 'dsetl');
model.result ('pgl') .feature.create('mslcl', 'Multislice');
model.result ('pgl') .feature('mslcl') .name('Multislice");
model.result ('pgl') .feature('mslcl').set('data', 'parent');
model.result ('pgl').feature('mslcl') .set('solrepresentation', 'solnum');
model.result('pgl') .feature('mslcl') .set('expr', 'V');
model.result ('pgl').feature('mslcl') .set('unit', 'V');
model.result ('pgl') .feature('mslcl') .set('descr', 'V');
model.result ('pgl') .feature('mslcl').set('inheritplot', 'none');
model.result('pgl') .feature('mslcl').set('data', 'parent');
model.result('pgl') .feature('mslcl').set('expr', 'V');
model.result ('pgl').feature('mslcl') .set('unit', 'V');
model.result ('pgl').feature('mslcl') .set('inheritplot', 'none');
model.result('pgl') .feature('mslcl').set('data', 'parent');
model.result('pgl') .feature('mslcl').set('expr', 'V');
model.result ('pgl').feature('mslcl') .set ('unit', 'V');
model.result ('pgl').feature('mslcl') .set('inheritplot', 'none');
model.result ('pgl') .feature('mslcl') .set('data', 'parent');
model.result('pgl') .feature('mslcl').set('expr', 'V');
model.result ('pgl').feature('mslcl') .set ('unit', 'V');
model.result('pgl') .feature('mslcl').set('inheritplot', 'none');
model.result ('pgl') .feature('mslcl') .set('data', 'parent');
model.result ('pgl') .feature('mslcl') .set('expr', 'V');
model.result ('pgl').feature('mslcl') .set ('unit', 'V');
model.result ('pgl') .feature('mslcl').set('inheritplot', 'none');
model.result('pgl') .feature('mslcl').set('data', 'parent');
model.sol('soll'").runAll;
model.result('pgl') .run;
model.result ('pgl') .feature.create('voll', 'Volume');
model.result('pgl') .run;
model .name (' 7x17voltage.mph') ;
model.result ('pgl') .run;
model.mesh ('meshl') .automatic (false) ;
model.mesh ('meshl') .feature('size') .set ('hauto', '2'");
model.mesh('meshl') .run('size'");
model.mesh ('meshl') .feature('size') .set ('hauto', '4');
model.mesh ('meshl') .run;

model.sol ('soll'").study('stdl'");
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model.sol('soll'").feature.remove ('sl');
model.sol('soll'").feature.remove('vl'");

model.sol ('soll'").feature.remove('stl'");
model.sol('soll'").feature.create('stl', 'StudyStep'):;

model.sol ('soll'").feature('stl') .set('study', 'stdl');

model.sol ('soll'").feature('stl').set('studystep', 'stat');

model.sol ('soll').feature.create('vl', 'Variables');
model.sol('soll'").feature('vl') .set('control', 'stat');

model.sol ('soll').feature.create('sl', 'Stationary');

model.sol ('soll'").feature('sl').feature.create('fcl', 'FullyCoupled');
model.sol ('soll') .feature('sl').feature.create('il', 'Iterative');

model.sol ('soll') .feature('sl').feature('il') .set ('prefuntype', 'left');
model.sol('soll'").feature('sl').feature('il').set('maxlinit', 10000);
model.sol ('soll').feature('sl').feature('il').set('linsolver', 'cg');
model.sol ('soll'") .feature('sl').feature('il') .set ('rhob', 400);

model.sol ('soll'") .feature('sl').feature('fcl').set('linsolver', 'il');
model.sol ('soll') .feature('sl') .feature('il') .feature.create('mgl’,
'Multigrid');

model.sol ('soll').feature('sl').feature('il"').feature('mgl') .set('prefun’',
lamgl)’.

model.sol ('soll') .feature('sl').feature('il') .feature('mgl').set('iter', 2);
model.sol ('soll').feature('sl').feature('il').feature('mgl').set('mgcycle’,
'v');

model.sol ('soll').feature('sl').feature('il').feature('mgl') .set('mcasegen’,
lanyl)’.

model.sol ('soll') .feature('sl').feature('il') .feature('mgl') .set('gmglevels’',
1);

model.sol ('soll').feature('sl').feature('il"').feature('mgl').set('scale', 2);
model.sol ('soll').feature('sl').feature('il"').feature('mgl') .set('massem',
true);

model.sol ('soll') .feature('sl').feature('il').feature('mgl') .set ('mkeep’,
false);
model.sol('soll').feature('sl').feature('il"').feature('mgl') .set('rmethod"',
'longest');

model.sol ('soll') .feature('sl') .feature('il") .feature('mgl') .set('mglevels’,
5);

model.sol ('soll') .feature('sl') .feature('il') .feature('mgl') .set('maxcoarsedo
£', 5000);

model.sol ('soll').feature('sl').feature('il"').feature('mgl') .set('amgauto',
3);

model.sol('soll') .feature('sl') .feature.remove ('fchef');
model.sol ('soll') .attach('stdl");

model.sol('soll'").runAll;

model.result('pgl') .run;

model.result.export.create('tbll', 'Table');
model.result.export.remove ('tbll");

model.result.export.create('datal', 'Data');

model.result.export.remove ('datal');

model.result.numerical.create('gevl', 'EvalGlobal');

model.result.numerical ('gevl').set('expr', 'ec.zref');
model.result.numerical ('gevl').set('descr', 'Reference impedance');
model.result.numerical.remove ('gevl');

model.result.numerical.create('intl', 'IntVolume');
model.result.numerical ('intl') .selection.all;

model.result.numerical ('intl"').selection.set([1 3]);
model.result.numerical ('intl') .set('expr', 'ec.Ey');
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model.result.numerical ('intl') .set('descr', 'Electric field, y component');
model.result.table.create('tbll', 'Table');

model.result.table('tbll') .comments ('Volume Integration 1 (ec.Ey)"');
model.result.numerical ('"intl') .set('table', 'tbll'");
model.result.numerical ('intl') .setResult;

model.result.numerical.create('gevl', 'EvalGlobal');
model.result.numerical.create('avl', 'AvSurface');
model.result.numerical ('avl') .selection.all;
model.result.table.create('tbl2', 'Table');
model.result.table('tbl2"') .comments ('Surface Average 1 (V)');
model.result.numerical ('avl') .set ('table', 'tbl2');
model.result.numerical ('avl') .setResult;

out = model;
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A3. Extract Voltage

function [Voltage anode,Voltage cathode] = Extract voltage sample (model)

IPMC width = 20;
IPMC length = 20;

%$Create an empty square matrix at z=0 (the anode) that contains the points
%in the xy plane where the voltage will be sampled.

[x,y] = meshgrid(0:IPMC width, 0:IPMC_length);
pz = zeros (l, (IPMC width+1l) * (IPMC length+1l));
p = [x(:)"; y(:)'; pzl*(le-3);

p_cat = [x(:)'; y(:)'; pz+(190e-3)]1*(1le-3);

%$Extract voltage information from electrical model

V_cathode = mphinterp (model, 'V', 'coord',p);
V_anode = mphinterp (model, 'V', 'coord',p cat);

Voltage anode = [x(:) y(:) V_anode'];
Voltage cathode = [x(:) y(:) V_cathode'];

Voltage anode (isnan(Voltage anode)) = 0;
)

Voltage cathode (isnan(Voltage cathode)) = 0;

end
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A4. Force and Concentration M-File

function [Force,Concentration] =
EchemlDfinal (Voltage anode,Voltage cathode, tf)

o)

o o° o\

o\

concentration.m

Model exported on Jun 27 2012, 14:50 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model

model

model

model

= ModelUtil.create ('Model');
.modelPath ('C:\Users\Justin\Desktop\Comsol Models');
.name ('concentrationdistributionclean.mph');

.modelNode.create('modl") ;

length of voltage wvector

[n,~]

= size(Voltage anode);

% vector of z sample points

Z

(

(0:180) '*1le-0) ;

Concentration = [];

model.geom.create('geoml', 1);
model.geom('geoml ') .feature.create('il', 'Interval');

model .variable.create ('varl');

model.physics.create('chds', 'DilutedSpecies', 'geoml');

model .mesh.create('meshl', 'geoml');

model.mesh ('meshl'") .feature.create('edgl', 'Edge');
model.study.create('stdl"');
model.study ('stdl'") .feature.create('time', 'Transient');
model.sol.create('soll'");
model.sol('soll').feature.create('stl', 'StudyStep');
model.sol('soll').feature.create('vl', 'Variables');
model.sol('soll'") .feature.create('tl', 'Time');

model.sol ('soll') .feature('tl') .feature.create('fcl', 'FullyCoupled');
model.sol('soll') .feature('tl') .feature.create('dl', 'Direct');
model.sol('soll'").feature('tl') .feature.remove ('fchef');
model.result.create('pgl', 'PlotGrouplD'");
model.result ('pgl') .feature.create('lngrl', 'LineGraph');
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for i

= 1l:n

% extract anode and cathode voltage for element n.

< <

_a
c =

OX o

model
model

model
model

Voltage anode (i, 3);
Voltage cathode (i, 3);

vector of x and y sample points
= Voltage anode(i, 1) '*ones (181,1);
Voltage anode(i,2) '*ones(181,1);

A
variable('varl').set ('Vcat', strcat (num2str(Vv_c)), "' [V]

geom('geoml') .feature('il'").set('p2', '180e-6");
.geom('geoml') .run;
variable('varl').set('Van',strcat (num2str(V_a)) )

"[Vlh)

) ;

% model.variable('varl') .name ('Variables la');

model.view('viewl') .axis.set('xmin', '-9.000000318337698E-6");
model.view('viewl') .axis.set ('xmax', '1.8899999849963933E-4");
model.physics ('chds'") .prop ('EquationForm') .set ('form', 'Transient');
model.physics ('chds') .prop('Migration') .set('Migration', '1");
model.physics ('chds') .prop('Convection') .set ('Convection', '0');
model.physics('chds') .feature('cdml') .set ('V', 'Vcat+((Vcat-Van)/180e-

6)*x[V/m]"');
model.physics('chds').feature('cdml').set('D 0', {'6e-12[m"2/s]'; '0"'; '0';
'6e-12[m*2/s]1'});

IOI;
model
model
model

model
model

model.

model.
model.

model.

'6e-12[m"2/s]'; '0'; '0';
.physics('chds') .feature

'O';

.physics('chds') .feature('initl'").set('c",
.mesh ('meshl').feature('size') .set ('hmax',
.mesh('meshl'") .run;

frame ('materiall') .sorder (1) ;

sol('soll'").study('stdl");
sol('soll'").attach('stdl");

result ('pgl') .set ('probetag',

('"cdml').set('z",
.physics('chds') .feature('cdml') .set ('um',
(

'none') ;
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lll);
'2.4630522e-15[s*mol/kgl");
'1250") ;

'le-6");



model.study('stdl'") .feature('time') .set('tlist', 'range(0,1,5)");

model.result ('pgl') .feature('lngrl') .selection.all;

model.result ('pgl') .feature('lngrl') .selection.all;

model.sol ('soll'").attach('stdl"');
model.sol('soll'").feature('stl').name('Compile Equations: Time Dependent');
model.sol ('soll').feature('stl').set('studystep', 'time');

model.sol ('soll'").feature('vl' set ('control', 'time');
model.sol('soll'").feature('tl' set ('control', 'time');

( )

( )

( ) (

( ) ( ) -

( ) ( ) -
model.sol('soll').feature('tl').set('tlist', 'range(0,1,5)");

( ) ('tl'") .set ('maxorder', '2");

( ) ( ) -

( ) ( ) -

( ) ( ) -

( )

model.sol('soll'").feature

model.sol('soll').feature('tl"') .feature('fcl').set('maxiter', '5");
model.sol ('soll'") .feature('tl"' feature('fcl').set('jtech', 'once');
model.sol ('soll'") .feature('tl"' feature('dl').set('linsolver', 'pardiso');
model.sol ('soll'") .runAll;

model.result ('pgl') .name ('Concentration (chds)');
model.result ('pgl') .set('looplevelinput', {'manual'});
model.result('pgl') .set('showlooplevel', {'on' 'off' 'off'});
model.result ('pgl') .set('xlabel', 'x-coordinate (m)"');
model.result ('pgl') .set('ylabel', 'Concentration (mol/m<sup>3</sup>)"'):;
model.result('pgl') .set('xlabelactive', false);

model.result('pgl') .set('ylabelactive', false);

model.result('pgl') .feature('lngrl').set('xdata', 'expr');

model.result ('pgl') .feature('lngrl') .set('xdataexpr', 'x");
model.result ('pgl').feature('lngrl') .set('xdataunit', 'm');
model.result ('pgl').feature('lngrl') .set ('xdatadescr', 'x-coordinate');
model.result ('pgl').feature('lngrl') .selection.all;

model.result ('pgl').feature('lngrl') .selection.all;

o)

% Save current fem structure for restart purposes
modelO=model;

o)

% extract concentration values at points in vector z
con = mphinterp (modelQ, 'c', 'coord',z','T',tf)";

% Concentration = [x y z C]
Concentration = [Concentration; x y z conl;
end

[

% Force equation

Force = [Concentration(:,1:3) (9e2/1.2)*((Concentration(:,4)-1250)."2)1;
name = input('enter a file name or number = ','s');%prompt user for input
fname = strcat (name,'.txt');

% fname = 'temp.csv' ;

fid = fopen (fname, 'w');
fprintf (fid, "$%$x\ty\tz\tForce\n'");
fclose (fid);

131



dlmwrite (fname, Force, 'precision', '$2.6f"', 'delimiter', '"\t', 'newline', 'pc', '-
append') ;

end
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A5. Complete Code used in modeFRONTIER

function out = model

[

o o° o

o

sevenbyseventeenvoltage.m

Model exported on Jul 6 2012, 15:12 by COMSOL 4.3.0.151.

import com.comsol.model.*
import com.comsol.model.util.*

model

model

model

model

model
model
model
model
model
model
model
model
model
model

model
model

model
model
model

model

model
model
model
model
model

model
model

model
model

model

= ModelUtil.create('Model');
.modelPath ('C:\Users\Justin\Desktop\Comsol Models');
.name ('7x17voltagedistribution.mph') ;

.modelNode.create ('modl") ;

'10e-6"'1});
'180e-6"1});

'10e-6"'});

.geom.create('geoml', 3);

.geom('geoml') .feature.create('blkl', 'Block');

.geom('geoml') .feature.create('blk2', 'Block');

.geom('geoml') .feature.create('blk3"', 'Block');

.geom('geoml') .feature('blkl'") .set('size', {'7e-3' '17e-3"
.geom('geoml') .feature('blk2") .set('pos', {'0' '0' '10e-6"'1});
.geom('geoml') .feature('blk2'") .set('size', {'7e-3' '17e-3"
.geom('geoml') .feature('blk3").set('pos', {'0" '0" '190e-6"1});
.geom('geoml') .feature('blk3").set('size', {'7e-3'" "17e-3"
.geom('geoml') .run;

.material.create('matl");

.material ('matl') .propertyGroup.create ('Enu', 'Young''s modulus and
Poisson''s ratio');

.material ('matl') .selection.set([2]);
.material.create('mat2'");

.material ('mat2'") .propertyGroup.create('Enu', 'Young''s modulus and
Poisson''s ratio');

.material ('mat2') .selection.set ([1 3]);

.physics.create('ec', 'ConductiveMedia', 'geoml');

.physics('ec') .feature.create('gndl', 'Ground', 2);
.physics('ec') .feature('gndl') .selection.set ([2]);
.physics('ec').feature.create('potl', 'ElectricPotential',
.physics('ec').feature('potl') .selection.set ([8]);

.mesh.create('meshl', 'geoml');
.mesh ('meshl').feature.create('ftetl', 'FreeTet');

.result.table.create('evl3', 'Table');
.result.table.create('tbll', 'Table');

.material ('matl') .name ('Nylon'");
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model.material ('matl') .propertyGroup('def') .set('heatcapacity',

'1700[J/ (kg*K)1");

model.material ('matl') .propertyGroup('def') .set('relpermittivity', {'4' '0"'
lol lol 141 lol lol lol 141});

model.material ('matl') .propertyGroup('def') .set('thermalexpansioncoefficient’
, {'280e-6[1/K]" '0" '0O" '0O' '280e-6[1/K]" '0O' 'O' 'O' '280e-6[1/K]1'});
model.material ('matl') .propertyGroup('def') .set('density', '1150[kg/m"3]1");
model.material ('matl') .propertyGroup('def') .set ('thermalconductivity',
{'0.26[W/ (m*K)]" '0' '0O" '0" '0.26[W/(m*K)]" 'O' '0O"' '0O"' '0.26[W/(m*K)]"});
model.material ('matl') .propertyGroup('def') .set('electricconductivity', {'10'
lOl lOl lOl llol lOl lOl lOl '10'});

model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus', '2e9[Pal');
model.material ('matl') .propertyGroup('Enu') .set('poissonsratio’, '0.4");
model.material ('mat2') .name ('Pt");

model.material ('mat2') .propertyGroup ('def') .set('electricconductivity',
{'"1e6[S/m]" '0" 'O' '0' 'le6[S/m]" 'O'" 'O' 'O' 'le6[S/m]'});

model.material ('mat2') .propertyGroup ('def') .set ('thermalexpansioncoefficient’
, {'8.80e-6[1/K]" '0' '0O" 'O"'" '8.80e-6[1/K]" '0' '0O' 'O"' '8.80e-6[1/K]"});
model.material ('mat2') .propertyGroup('def') .set ('heatcapacity"',
'"133[J3/(kg*K)1");

model.material ('mat2') .propertyGroup ('def') .set ('density', '21450[kg/m"3]");
model.material ('mat2') .propertyGroup ('def') .set ('thermalconductivity',
{'71.6[W/ (m*K)]" '0" '0O" '0" '"71.6[W/(m*K)]" 'O' '0O"' '0"' '71.6[W/(m*K)]"'});
model.material ('mat2') .propertyGroup('def').set('relpermittivity"',

{'1.000265" 'O"'" 'O' 'O'" '1.000265" 'O"' 'O' 'O' '1.000265'});
model.material ('mat2') .propertyGroup ('Enu') .set ('youngsmodulus',
'168e9[Pal'");

model.material ('mat2') .propertyGroup ('Enu') .set ('poissonsratio', '0.38");

model.physics('ec') .feature('potl').set ('VO', '2");

model.mesh ('meshl') .feature('size') .set ('hauto', 6);
model.mesh ('meshl') .run;

model.result.table('evl3') .name ('Evaluation 3D");
model.result.table('evl3') .comments ('Interactive 3D values');
model.result.table('tbll'") .comments ('Surface Integration 1 (1)'");

model.study.create('stdl'");
model.study ('stdl'") .feature.create('stat', 'Stationary');

model.sol.create('soll");

model.sol('soll').study('stdl");

model.sol ('soll') .attach('stdl");

model.sol ('soll').feature.create('stl', 'StudyStep');

model.sol ('soll'").feature.create('vl', 'Variables');
model.sol('soll').feature.create('sl', 'Stationary');
model.sol('soll'").feature('sl') .feature.create('fcl', 'FullyCoupled');
model.sol ('soll'").feature('sl').feature.create('il', 'Iterative');
model.sol('soll'").feature('sl').feature('il') .feature.create('mgl’,
'Multigrid');

model.sol('soll'").feature('sl') .feature.remove ('fchef');

model.study ('stdl'").feature('stat') .set('initstudyhide', 'on'");
model.study ('stdl"') .feature('stat') .set('initsolhide', 'on');
model.study ('stdl'") .feature('stat') .set ('notstudyhide', 'on'");
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model

model.
model.

model

model.
model.
model.

model

model.
model.
model.
model.
model.
model.
model.
model.
model.

amg')

model.

model.
model.
model.
model.
model.
model.
model.
model.
model.

model

.study('stdl') .feature('stat') .set('notsolhide', 'on');

result.numerical.create('intl', 'IntSurface');

result.numerical ('intl') .selection.set ([3]);
.result.numerical ('intl'") .set ('probetag',

result.create('pgl', 'PlotGroup3D');

'none') ;

result ('pgl') .feature.create('mslcl', 'Multislice');
result ('pgl') .feature.create('voll', 'Volume');

.result.export.create('tbll', 'Table'");

sol('soll'").attach('stdl");
sol('soll').feature('stl') .name ('Compile Equations: Stationary');
sol('soll').feature('stl').set('studystep', 'stat');
sol('soll'").feature('vl') .set ('control', 'stat');
sol('soll').feature('vl'") .feature('modl V') .name('modl.V");
sol('soll'").feature('sl').set('control', 'stat');

sol('soll'") .feature('sl') .feature('fcl') .set('termonres', 'off');
sol('soll').feature('sl').feature('il').set('linsolver', 'cg');
sol('soll').feature('sl').feature('il"').feature('mgl') .set('prefun’',
sol('soll'") .runAll;

result.numerical ('intl') .set ('unit', 'm"2");
result.numerical ('intl') .set('table', 'tbll');

result.numerical ('intl').set('descr', '1'");
result.numerical ('intl') .set ('expr', '1");
result.numerical ('intl') .setResult;

result ('pgl') .name ('Electric potential');

result ('pgl') .feature('mslcl') .name('Multislice");
result ('pgl') .feature('mslcl') .set('solrepresentation', 'solnum');

result.export ('tbll'").set('table', 'tbll'");
.result.export ('tbll').set('filename',

'C:\Users\jsimpson\Desktop\area.txt");

o

ut =

model;

IPMC width = 20;
IPMC length = 20;

%Create an empty square matrix at z=0

(the anode)

that contains the points

%in the xy plane where the voltage will be sampled.

T 'O T —

$Extract voltage information from electrical model

%, Y]
z = z
= [X

_cat

= meshgrid (0:IPMC width, 0:IPMC length);
eros (1, (IPMC width+1) * (IPMC length+l));
(2)'; y(:)'"; pzl*(le-3);

= [x(:)'; yv(:)'; pz+t(190e-3)1*(le-3);

V_cathode = mphinterp(model,'V', 'coord',p);
V_anode = mphinterp(model,'V', 'coord',p cat);

Voltage anode = [x(:) y(:) V_anode'];
Voltage cathode = [x(:) y(:) V_cathode'];
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Voltage anode (isnan(Voltage anode)) = 0;
Voltage cathode (isnan(Voltage cathode)) = 0;

fid = fopen('anodel.txt','w');

fprintf (fid, '$%x\ty\tVoltage anode\r\n');

fclose (fid);

dlmwrite ('anodel.txt',Voltage anode, 'precision','%2.6f', 'delimiter','\t", 'new
line', 'pc', '-append') ;

fid = fopen('cathodel.txt','w');

fprintf (fid, '$%x\ty\tVoltage cathode\r\n');

fclose (fid) ;

dlmwrite ('cathodel.txt',Voltage cathode, 'precision', '%2.6f', 'delimiter', "\t"',
'newline', 'pc', '-append') ;

model.result.export ('tbll") .run;

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model .modelPath ('C:\Users\Justin\Desktop\Comsol Models');
model .name ('concentrationdistributionclean.mph') ;

model .modelNode.create ('modl") ;

% length of voltage vector
[n,~] = size(Voltage anode);

% vector of z sample points
z ((0:180) '*1le-6);
Concentration = [];

model.geom.create('geoml', 1);
model.geom('geoml ') .feature.create('il', 'Interval');
model.variable.create('varl');
model.physics.create('chds', 'DilutedSpecies', 'geoml');
model .mesh.create('meshl', 'geoml');

model .mesh ('meshl') .feature.create('edgl', 'Edge');
model.study.create('stdl'");

model.study ('stdl"') .feature.create('time', 'Transient');

model.sol.create('soll");
model.sol ('soll').feature.create('stl', 'StudyStep');
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model.sol('soll').feature.create('vl', 'Variables');
model.sol('soll').feature.create('tl', 'Time');

model.sol ('soll').feature('tl').feature.create('fcl', 'FullyCoupled');
model.sol('soll'").feature('tl').feature.create('dl', 'Direct');
model.sol ('soll'").feature('tl') .feature.remove ('fchef');
model.result.create('pgl', 'PlotGrouplD');
model.result ('pgl') .feature.create('lngrl', 'LineGraph');

for i = 1:n

% extract anode and cathode voltage for element n.
= Voltage anode (i, 3);
= Voltage cathode (i, 3);

< <

_a
C

oe

vector of x and y sample points
= Voltage anode (i, 1) '*ones(181,1);
Voltage anode(i,2) '*ones(181,1);

X
Il

model.geom('geoml') .feature('il'") .set ('p2', '180e-6"');
model.geom('geoml ") .run;

model.variable('varl').set('Va',strcat (num2str(v_a)),'[V]'), ...);
model.variable('varl').set('Vc',strcat (num2str(vVv_c)),"'[V]");

[

$ model.variable('varl') .name ('Variables 1la');

model.view('viewl') .axis.set ('xmin', '-9.000000318337698E-6");
model.view('viewl') .axis.set ('xmax', '1.8899999849963933E-4");

model.physics ('chds') .prop ('EquationForm') .set ('form', 'Transient');
model.physics('chds') .prop('Migration') .set('Migration', '1');
model.physics ('chds') .prop('Convection') .set ('Convection', '0');

(

model .physics ('chds') .feature('cdml').set ('V', 'Vc+ ((Vc-Va)/180e-6)*x[V/m]");
model.physics('chds').feature('cdml').set('D 0', {'6e-12[m"2/s]'; '0"'; '0';
'0'; '6e-12[m"2/s]'; '0'; '0'; '0'; '6e-12[m™2/s]1'});

model.physics('chds') .feature('cdml') .set('z"'", '1");

model.physics('chds') .feature('cdml') .set ('um', '2.4630522e-15[s*mol/kg]");
model .physics ('chds'") .feature('initl').set('c', '1250");

model.mesh ('meshl') .feature('size') .set('hmax', 'le-6");
model.mesh ('meshl') .run;
model.frame ('materiall') .sorder (1) ;

model.sol ('soll'").study('stdl'");
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model.sol('soll'").attach('stdl"');

model.result ('pgl') .set ('probetag', 'none');

model.study('stdl') .feature('time') .set('tlist', 'range(0,1,5)");

model.result ('pgl').feature('lngrl') .selection.all;

model.result ('pgl').feature('lngrl') .selection.all;
model.sol('soll').attach('stdl'");
model.sol('soll'").feature('stl').name('Compile Equations: Time Dependent');
model.sol ('soll').feature('stl').set('studystep', 'time');

model.sol ('soll'").feature('vl').set('control', 'time');
model.sol('soll'").feature('tl').set('control', 'time');
model.sol('soll').feature('tl').set('tlist', 'range(0,1,5)");
model.sol('soll'").feature('tl') .set ('maxorder', '2'");

model.sol ('soll'") .feature('tl"').feature('fcl').set ('maxiter', '5");
model.sol ('soll') .feature('tl') .feature('fcl').set('jtech', 'once');
model.sol ('soll').feature('tl').feature('dl').set('linsolver', 'pardiso');
model.sol('soll'").runAll;

model.result ('pgl') .name ('Concentration (chds)"'");

model.result ('pgl') .set('looplevelinput', {'manual'});

model.result('pgl') .set('showlooplevel', {'on' 'off' 'off'});

model.result ('pgl') .set('xlabel', 'x-coordinate (m)"');
model.result('pgl').set('ylabel', 'Concentration (mol/m<sup>3</sup>)"');
model.result ('pgl') .set('xlabelactive', false);

( )
( )
( )
( )
( )
( )
model.result ('pgl') .set('ylabelactive', false);
( )
( )
( )
( )
( )
( )

X
m
1

model.result ('pgl').feature('lngrl') .set('xdata', 'expr'
model.result ('pgl') .feature('lngrl') .set('xdataexpr', '
model.result ('pgl') .feature('lngrl') .set ('xdataunit', '
model.result('pgl') .feature('lngrl') .set ('xdatadescr',
model.result ('pgl').feature('lngrl') .selection.all;
model.result ('pgl') .feature('lngrl') .selection.all;

o)

% Save current fem structure for restart purposes
modelO=model;

o)

% extract concentration values at points in vector z
con = mphinterp (modelO, 'c', 'coord',z','T',5)";

% Concentration = [x y z C]
Concentration = [Concentration; x y z con];
end

[

% Force equation

] .
’

x—-coordinate') ;

Force = [Concentration(:,1:3) (9e2/1.2)* ((Concentration(:,4)-1250)."2)1;
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fid = fopen('rectangleforce.txt','w');

fprintf (fid, "$%x\ty\tz\tForce\r\n'") ;

fclose (fid);

dlmwrite ('rectangleforce.txt',Force, 'precision', '$2.6f','delimiter’', '"\t"', "new

line', 'pc', '—append');

o

o\

rectangleoptimizedl.m

o\

o\

Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model .modelPath('.\");

model.name ('rectangleoptimizeddeflection.mph');
model.modelNode.create ('modl"') ;
model.file.create('res3");

model.func.create('intl', 'Interpolation');

model.func('intl').set ('sourcetype', 'model');

model.func('intl') .set('importedstruct', 'Spreadsheet');
model.func('intl') .set ('funcs', {'Force' '"4'});
model.func('intl') .set ('importedname', 'rectangleforce.txt');
model.func('intl').set('importeddim', '3D'");
model.func('intl') .set ('modelres', 'res3');

model.file('res3') .resource('C:\Users\jsimpson\Desktop\rectangleforce.txt");

model. func('intl') .set('nargs', '3");
model.func('intl').set('struct', 'spreadsheet');

model.geom.create('geoml', 3);

model.geom('geoml ") .feature.create('BLK1', 'Block');
model.geom('geoml') .feature ('BLK1") .set ('pos', '0.0,0.0,0.0");
model.geom('geoml') .feature ('BLK1'") .set('size', {'0.0070" '0.017"' '"1.8E-4"'});
model.geom('geoml') .feature('BLK1") .set('axis', {'0" '0" "1'});
model.geom('geoml ") .run;

model.material.create('matl');
model.material ('matl') .propertyGroup.create('Enu’', 'Young''s modulus and
Poisson''s ratio'):;

model .physics.create('smsld', 'SolidMechanics', 'geoml');
model.physics ('smsld') .identifier ('smsld');

model.physics ('smsld') .feature.create('lemm2', 'LinearElasticModel', 3);
model .physics ('smsld")
(
(

.feature('lemm2') .selection.set ([1]);
model.physics ('smsld') .feature.create('bll', 'BodyLoad', 3);
model.physics ('smsld') .feature('bll').selection.set ([1]);
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model.physics(
model .physics(

'smsld')
'smsld')

model
model
model
model

.mesh.create (
.mesh ('meshl")
.mesh ('meshl")
.mesh ('meshl")

model.
model.

model . .material ('matl’')
model . .material ('matl’')
'"1700[J/ (kg*K)1"');

model.material ('matl') .propertyGroup('def') .set('relpermittivity', {'4' '0'
IOI IOI l4l IOI IOI IOI l4l});

model.material ('matl') .propertyGroup ('def') .set('thermalexpansioncoefficient’
, {'280e-6[1/K] 0" '0" 'O0' '280e-6[1/K]" 'O' 'O' '0' '280e-6[1/K]1'});
model.material ('matl') .propertyGroup('def').set('density', '2000[kg/m"3]");
model.material ('matl') .propertyGroup('def') .set ('thermalconductivity’',
{'0.26[W/ (m*K)]" '0" '0O" '0O" '0.26[W/(m*K)]" 'O' 'O' 'O"' '0.26[W/(m*K)]"});
model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus', '5e8[Pa]l]');
model.material ('matl') .propertyGroup ('Enu') .set ('poissonsratio’ '0.49");
model.physics ('smsld') .feature('lemml') .set ('Evector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set('Evector', {'2.0ell'; '2.0ell";
'2.0ell'})

model.physics ('smsld') .feature('lemml') .set('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemml'") .set ('nuvector', {'0.33'; '0.33';
'0.33"});

model.physics ('smsld') .feature('lemml') .set ('Gvector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set ('Gvector', {'7.52el0'; '7.52el0';
'7.52e10"});

model.physics ('smsld') .feature('lemml').set('D mat', 'userdef');

model .physics ('smsld') .feature('lemml').set ('D', {'2.0ell/((1+0.33)* (1-
2*0.33))*(1-0.33)"'; '2.0ell/((1+0.33)*(1-2*%0.33))*0.33"';
'2.0e11/((1+0.33)*(1-2*%0.33))*0.33"'; '0'; '0'; '0'; '2.0ell/((1+0.33)*(1-
2*%0.33))*0.33"'; '2.0ell/((1+0.33)*(1-2*%0.33))*(1-0.33)"
'2.0el11/((1+0.33)*(1-2*0.33))*0.33"'; '0'; ...

'0'; '0'; '2.0ell/((14+0.33)*(1-2*0.33))*0. 33" '2.0ell/ ((1+0.33)*(1-
2*0.33))*0.33'; '2.0el11l/((1+40.33)*(1-2*0.33))*(1-0.33)"'; '0'; '0'; '0'; '0';
'o'; ...

'0'; '2.0ell/((1+0.33)*2)'; '0'; '0'; 'O'; '0'; '0'; 'O';
'2.0el11/((1+0.33)*2)'; '0'; .

'o'; '0'; '0'; 'Oy 'O o '2. Oell/((l+0 33)*%2)"});

model .physics ('smsld') .feature('lemm2' ).set('E ~mat', 'userdef');

model .physics ('smsld') .feature('lemm2').set('E', '5e8");

model.physics ('smsld'). feature('lemm2').set('nu mat' 'userdef');

model .physics ('smsld') .feature('lemm2') .set('nu’', .48") ;

model.physics ('smsld') .feature('lemm2') .set ('Evector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('Evector', {'2.0ell'; '2.0ell"';
12.0el1'});

model.physics ('smsld') .feature('lemm2') .set ('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('nuvector', {'0.33'; '0.33';

'0.33'})

'meshl’',

result.table.create (
result.table.create (

.feature.create('fix1"',
.feature ('fix1l")

'geoml') ;

.feature.create('ftetl"',
.feature('ftetl")
.feature('ftetl")

"tbhl1l',
"thl2',

.name ('Nylon') ;
.propertyGroup (

.selection.set ([2

.selection.geom('geoml’,
.selection.set ([1]);

'Table!
'Table!

'def')

'Fixed', 2);
1)

'FreeTet'") ;
3);

)7
)7

.set ('heatcapacity',
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model.physics ('smsld') .feature('lemm2') .set ('Gvector mat', 'userdef');

model .physics ('smsld') .feature('lemm2') .set ('Gvector', {'7.52el0'; '7.52el0"';
'7.52e10'}) ;

model.physics ('smsld') .feature('lemm2') .set('D mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set('D', {'2.0ell/ ((1+0.33)* (1-
2*0.33))*(1-0.33)"'; '2.0ell/((1+0.33)*(1-2%0.33))*0.33";
'2.0el1/((1+0.33)*(1-2*0.33))*0.33"; '0'; '0'; '0'; '2.0ell/ ((1+0.33)*(1-
2*0.33))*0.33'; '2.0ell/((1+0.33)*(1-2*%0.33))*(1-0.33)"';
'2.0e11/((140.33)*(1-2*0.33))*0.33"'; '0'; ..

'0'; '0'; '2.0el11l/((140.33)*(1-2*%0.33))*0.33"; '2.0ell/((1+0.33)*(1-
2*¥0.33))*0.33"; '2.0ell/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';
'O'; ..

lol; 'Z.Oell/((l+0-33)*2)'; lol; lol; lol; VOV; VOV; VOV;
'2.0el11/((140.33)*2)'; '0'; e

'0'; '0'; 'O'; 'O'; '0'; '2.0ell/((140.33)*2)'});

model.physics ('smsld') .feature('lemm2') .set('rho mat', 'userdef');
model.physics ('smsld') .feature('lemm2'") .set('rho', '2000");

model.physics ('smsld') .feature('bll"').set('Fpervol', {'0";
'Force(x[1/m],y[1/m],z[1/m])"'; '0'});

model.mesh ('meshl') .feature('size') .set ('hauto', 2);
model . .mesh ('meshl'") .feature('ftetl') .set('zscale', '1");
model.mesh ('meshl') .run;

model.result.table('tbll'") .comments ('Point Evaluation 1 (smsld.disp)');
model.result.table('tbl2"') .comments ('Line Maximum 1 (smsld.disp)"');

model.coordSystem('sysl') .set('mastercoordsystcomp', 'manual');

model.study.create('stdl'");
model.study('stdl') .feature.create('stat', 'Stationary');

model.sol.create('soll'");

model.sol ('soll'").study('stdl'");

model.sol ( ) .attach('stdl'");

model.sol ( ) .feature.create('stl', 'StudyStep');
model.sol('soll').feature.create('vl', 'Variables');

model.sol ( ) . feature.create('sl', 'Stationary');

model.sol ( ) .feature('sl') .feature.create('fcl', 'FullyCoupled');
model.sol ( ) .feature('sl') .feature.create('dl', 'Direct');

model.study('stdl') .feature('stat') .set('initstudyhide', 'on');
model.study('stdl') .feature('stat').set('initsolhide', 'on');
model.study ('stdl'") .feature('stat') .set ('notstudyhide', 'on'");
model.study('stdl'") .feature('stat') .set('notsolhide', 'on');

model.result.numerical.create('maxl', 'MaxLine');
model.result.numerical ('maxl').selection.set([6]);
model.result.numerical ('maxl') .set ('probetag', 'none');
model.result.create('pgl', 'PlotGroup3D');
model.result ('pgl') .feature.create('voll', 'Volume');

model.result ('pgl').feature('voll'") .feature.create('defl', 'Deform');
model.result.export.create('tbl2', 'Table');

model.sol('soll'").attach('stdl"');
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model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.

model.
model.
model.
model.
model.
model.
model.
model.

model.

quit

sol('soll'").feature('stl') .name ('Compile Equations: Stationary');
sol('soll'").feature('stl') .set ('studystep', 'stat');
sol('soll'").feature('vl').set('control', 'stat');
sol('soll'").feature('sl') .set('control', 'stat');
sol('soll'").feature('sl').set('stol', '1.0E-6");
sol('soll').feature('sl').feature('fcl').set('initstep', '1.0");
sol('soll'").feature('sl') .feature('fcl').set('rstep', '10.0");
sol('soll'").feature('sl').feature('fcl').set('minstep', '1.0e-4");
sol('soll'").feature('sl').feature('fcl').set('termonres', 'off');
sol('soll'") .feature('sl') .feature('dl"') .set('errorchk', 'off');
sol('soll').feature('sl').feature('dl"').set('linsolver', 'spooles');
sol('soll'").runAll;

result.numerical ('maxl"').set('unit', 'mm');
result.numerical ('maxl') .set('table', 'tbl2');
result.numerical ('max1l') .setResult;

result ('pgl') .name ('Stress (smsld)"');

result ('pgl') .feature('voll') .set ('unit', 'mm');

result ('pgl') .feature('voll') .feature('defl').set('scaleactive', true);

result.export ('tbhl2').set('filename', '.\deflection.txt');
result.export ('tbl2'") .set ('table', 'tbl2");

result.export ('tbl2") .run;
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A6. Combined Deflection and Force

function out =

o° o o°

o\

model

sevenbyseventeenvoltage.m

Model exported on Jul 6 2012,

import com.comsol.model.*
import com.comsol.model.util.*

.name ('7x17voltagedistribution.mph') ;

3);

.feature.create('blkl"',
.feature.create('blk2"',
.feature.create('blk3",

15:12 by COMSOL 4.3.0.151.

.modelPath ('C:\Users\Justin\Desktop\Comsol Models');

'Block'");
'Block'");
'Block"'");

('blkl'") .set('size', {'7e-3"'" '17e-3' '10e-6"});
("blk2'") .set('pos', {'0" '0"'" "10e-6"});
('blk2'") .set('size', {'7e-3" '17e-3' '180e-6"});
('blk3").set('pos', {'0" '0"'" '"190e-6"'1});
('blk3'") .set('size', {'7e-3"'" '17e-3' '10e-6"});

model = ModelUtil.create('Model');
model

model

model .modelNode.create ('modl ") ;
model .geom.create ('geoml',
model.geom('geoml")
model.geom('geoml")
model.geom('geoml')
model.geom('geoml') .feature
model.geom('geoml') .feature
model.geom('geoml ') .feature
model.geom('geoml ') .feature
model.geom('geoml') .feature
model.geom('geoml') .run;

model .material.create('matl');
model

Poisson''s ratio');
model.material ('matl') .selection.set ([2]);
model.material.create('mat2');

model.material ('mat2') .propertyGroup.create ('Enu',

.material ('matl') .propertyGroup.create('Enu',

Poisson''s ratio');

model.material ('mat2') .selection.set ([1 3]);

model.physics.create('ec', 'ConductiveMedia', 'geoml');
model.physics('ec') .feature.create('gndl', 'Ground',6 2);
model.physics('ec') .feature('gndl') .selection.set ([2]);

model .physics('ec') .feature.create('potl', 'ElectricPotential',
model.physics('ec') .feature('potl') .selection.set ([8]);

model . .mesh.create('meshl', 'geoml');

model.mesh ('meshl') .feature.create('ftetl', 'FreeTet');
model.result.table.create('evl3', 'Table');
model.result.table.create('tbll', 'Table');
model.material ('matl') .name ('Nylon');
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model.material ('matl') .propertyGroup('def') .set('heatcapacity',

'1700[J/ (kg*K)1");

model.material ('matl') .propertyGroup('def') .set('relpermittivity', {'4' '0"'
lol lol 141 lol lol lol 141});

model.material ('matl') .propertyGroup('def') .set('thermalexpansioncoefficient’
, {'280e-6[1/K]" '0" '0O" '0O' '280e-6[1/K]" '0O' 'O' 'O' '280e-6[1/K]1'});
model.material ('matl') .propertyGroup('def') .set('density', '1150[kg/m"3]1");
model.material ('matl') .propertyGroup('def') .set ('thermalconductivity',
{'0.26[W/ (m*K)]" '0' '0O" '0" '0.26[W/(m*K)]" 'O' '0O"' '0O"' '0.26[W/(m*K)]"});
model.material ('matl') .propertyGroup('def') .set('electricconductivity', {'10'
lOl lOl lOl llol lOl lOl lOl '10'});

model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus', '2e9[Pal');
model.material ('matl') .propertyGroup('Enu') .set('poissonsratio’, '0.4");
model.material ('mat2') .name ('Pt");

model.material ('mat2') .propertyGroup ('def') .set('electricconductivity',
{'"1e6[S/m]" '0" 'O' '0' 'le6[S/m]" 'O'" 'O' 'O' 'le6[S/m]'});

model.material ('mat2') .propertyGroup ('def') .set ('thermalexpansioncoefficient’
, {'8.80e-6[1/K]" '0' '0O" 'O"'" '8.80e-6[1/K]" '0' '0O' 'O"' '8.80e-6[1/K]"});
model.material ('mat2') .propertyGroup('def') .set ('heatcapacity"',
'"133[J3/(kg*K)1");

model.material ('mat2') .propertyGroup ('def') .set ('density', '21450[kg/m"3]");
model.material ('mat2') .propertyGroup ('def') .set ('thermalconductivity',
{'71.6[W/ (m*K)]" '0" '0O" '0" '"71.6[W/(m*K)]" 'O' '0O"' '0"' '71.6[W/(m*K)]"'});
model.material ('mat2') .propertyGroup('def').set('relpermittivity"',

{'1.000265" 'O"'" 'O' 'O'" '1.000265" 'O"' 'O' 'O' '1.000265'});
model.material ('mat2') .propertyGroup ('Enu') .set ('youngsmodulus',
'168e9[Pal'");

model.material ('mat2') .propertyGroup ('Enu') .set ('poissonsratio', '0.38");

model.physics('ec') .feature('potl').set ('VO', '2");

model.mesh ('meshl') .feature('size') .set ('hauto', 6);
model.mesh ('meshl') .run;

model.result.table('evl3') .name ('Evaluation 3D");
model.result.table('evl3') .comments ('Interactive 3D values');
model.result.table('tbll'") .comments ('Surface Integration 1 (1)'");

model.study.create('stdl'");
model.study ('stdl'") .feature.create('stat', 'Stationary');

model.sol.create('soll");

model.sol('soll').study('stdl");

model.sol ('soll') .attach('stdl");

model.sol ('soll').feature.create('stl', 'StudyStep');

model.sol ('soll'").feature.create('vl', 'Variables');
model.sol('soll').feature.create('sl', 'Stationary');
model.sol('soll'").feature('sl') .feature.create('fcl', 'FullyCoupled');
model.sol ('soll'").feature('sl').feature.create('il', 'Iterative');
model.sol('soll'").feature('sl').feature('il') .feature.create('mgl’,
'Multigrid');

model.sol('soll'").feature('sl') .feature.remove ('fchef');

model.study ('stdl'") .feature('stat') .set('initstudyhide', 'on'");
model.study ('stdl"') .feature('stat') .set('initsolhide', 'on');
model.study ('stdl'") .feature('stat') .set ('notstudyhide', 'on'");

144



model

model.
model.

model

model.
model.
model.

model

model.
model.
model.
model.
model.
model.
model.
model.
model.

amg')

model.

model.
model.
model.
model.
model.
model.
model.
model.
model.

model

.study('stdl') .feature('stat') .set('notsolhide', 'on');

result.numerical.create('intl', 'IntSurface');

result.numerical ('intl') .selection.set ([3]);
.result.numerical ('intl'") .set ('probetag',

result.create('pgl', 'PlotGroup3D');

'none') ;

result ('pgl') .feature.create('mslcl', 'Multislice');
result ('pgl') .feature.create('voll', 'Volume');

.result.export.create('tbll', 'Table'");

sol('soll'").attach('stdl");
sol('soll').feature('stl') .name ('Compile Equations: Stationary');
sol('soll').feature('stl').set('studystep', 'stat');
sol('soll'").feature('vl') .set ('control', 'stat');
sol('soll').feature('vl'") .feature('modl V') .name('modl.V");
sol('soll'").feature('sl').set('control', 'stat');

sol('soll'") .feature('sl') .feature('fcl') .set('termonres', 'off');
sol('soll').feature('sl').feature('il').set('linsolver', 'cg');
sol('soll').feature('sl').feature('il"').feature('mgl') .set('prefun’',
sol('soll'") .runAll;

result.numerical ('intl') .set ('unit', 'm"2");
result.numerical ('intl') .set('table', 'tbll');

result.numerical ('intl').set('descr', '1'");
result.numerical ('intl') .set ('expr', '1");
result.numerical ('intl') .setResult;

result ('pgl') .name ('Electric potential');

result ('pgl') .feature('mslcl') .name('Multislice");
result ('pgl') .feature('mslcl') .set('solrepresentation', 'solnum');

result.export ('tbll'").set('table', 'tbll'");
.result.export ('tbll').set('filename',

'C:\Users\jsimpson\Desktop\area.txt");

o

ut =

model;

IPMC width = 20;
IPMC length = 20;

%Create an empty square matrix at z=0

(the anode)

that contains the points

%in the xy plane where the voltage will be sampled.

T 'O T —

$Extract voltage information from electrical model

%, Y]
z = z
= [X

_cat

= meshgrid (0:IPMC width, 0:IPMC length);
eros (1, (IPMC width+1) * (IPMC length+l));
(2)'; y(:)'"; pzl*(le-3);

= [x(:)'; yv(:)'; pz+t(190e-3)1*(le-3);

V_cathode = mphinterp(model,'V', 'coord',p);
V_anode = mphinterp(model,'V', 'coord',p cat);

Voltage anode = [x(:) y(:) V_anode'];
Voltage cathode = [x(:) y(:) V_cathode'];
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Voltage anode (isnan(Voltage anode)) = 0;
Voltage cathode (isnan(Voltage cathode)) = 0;

fid = fopen('anodel.txt','w');

fprintf (fid, '$%x\ty\tVoltage anode\r\n');

fclose (fid);

dlmwrite ('anodel.txt',Voltage anode, 'precision','%2.6f', 'delimiter','\t", 'new
line', 'pc', '-append') ;

fid = fopen('cathodel.txt','w');

fprintf (fid, '$%x\ty\tVoltage cathode\r\n');

fclose (fid) ;

dlmwrite ('cathodel.txt',Voltage cathode, 'precision', '%2.6f', 'delimiter', "\t"',
'newline', 'pc', '-append') ;

model.result.export ('tbll") .run;

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model .modelPath ('C:\Users\Justin\Desktop\Comsol Models');
model .name ('concentrationdistributionclean.mph') ;

model .modelNode.create ('modl") ;

% length of voltage vector
[n,~] = size(Voltage anode);

% vector of z sample points
z ((0:180) '*1le-6);
Concentration = [];

model.geom.create('geoml', 1);
model.geom('geoml ') .feature.create('il', 'Interval');
model.variable.create('varl');
model.physics.create('chds', 'DilutedSpecies', 'geoml');
model .mesh.create('meshl', 'geoml');

model .mesh ('meshl') .feature.create('edgl', 'Edge');
model.study.create('stdl'");

model.study ('stdl"') .feature.create('time', 'Transient');

model.sol.create('soll");
model.sol ('soll').feature.create('stl', 'StudyStep');
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model.sol('soll').feature.create('vl', 'Variables');
model.sol('soll').feature.create('tl', 'Time');

model.sol ('soll').feature('tl').feature.create('fcl', 'FullyCoupled');
model.sol('soll'").feature('tl').feature.create('dl', 'Direct');
model.sol ('soll'").feature('tl') .feature.remove ('fchef');
model.result.create('pgl', 'PlotGrouplD');
model.result ('pgl') .feature.create('lngrl', 'LineGraph');

for i = 1:n

% extract anode and cathode voltage for element n.
= Voltage anode (i, 3);
= Voltage cathode (i, 3);

< <

_a
C

oe

vector of x and y sample points
= Voltage anode (i, 1) '*ones(181,1);
Voltage anode(i,2) '*ones(181,1);

X
Il

model.geom('geoml') .feature('il'") .set ('p2', '180e-6"');
model.geom('geoml ") .run;

model.variable('varl').set('Va',strcat (num2str(v_a)),'[V]'), ...);
model.variable('varl').set('Vc',strcat (num2str(vVv_c)),"'[V]");

[

$ model.variable('varl') .name ('Variables 1la');

model.view('viewl') .axis.set ('xmin', '-9.000000318337698E-6");
model.view('viewl') .axis.set ('xmax', '1.8899999849963933E-4");

model.physics ('chds') .prop ('EquationForm') .set ('form', 'Transient');
model.physics('chds') .prop('Migration') .set('Migration', '1');
model.physics ('chds') .prop('Convection') .set ('Convection', '0');

(

model .physics ('chds') .feature('cdml').set ('V', 'Vc+ ((Vc-Va)/180e-6)*x[V/m]");
model.physics('chds').feature('cdml').set('D 0', {'6e-12[m"2/s]'; '0"'; '0';
'0'; '6e-12[m"2/s]'; '0'; '0'; '0'; '6e-12[m™2/s]1'});

model.physics('chds') .feature('cdml') .set('z"'", '1");

model.physics('chds') .feature('cdml') .set ('um', '2.4630522e-15[s*mol/kg]");
model .physics ('chds'") .feature('initl').set('c', '1250");

model.mesh ('meshl') .feature('size') .set('hmax', 'le-6");
model.mesh ('meshl') .run;
model.frame ('materiall') .sorder (1) ;

model.sol ('soll'").study('stdl'");

147



model.sol('soll'").attach('stdl"');

model.result ('pgl') .set ('probetag', 'none');

model.study('stdl') .feature('time') .set('tlist', 'range(0,1,5)");

model.result ('pgl').feature('lngrl') .selection.all;

model.result ('pgl').feature('lngrl') .selection.all;
model.sol('soll').attach('stdl'");
model.sol('soll'").feature('stl').name('Compile Equations: Time Dependent');
model.sol ('soll').feature('stl').set('studystep', 'time');

model.sol ('soll'").feature('vl').set('control', 'time');
model.sol('soll'").feature('tl').set('control', 'time');
model.sol('soll').feature('tl').set('tlist', 'range(0,1,5)");
model.sol('soll'").feature('tl') .set ('maxorder', '2'");

model.sol ('soll'") .feature('tl"').feature('fcl').set ('maxiter', '5");
model.sol ('soll') .feature('tl') .feature('fcl').set('jtech', 'once');
model.sol ('soll').feature('tl').feature('dl').set('linsolver', 'pardiso');
model.sol('soll'").runAll;

model.result ('pgl') .name ('Concentration (chds)"'");

model.result ('pgl') .set('looplevelinput', {'manual'});

model.result('pgl') .set('showlooplevel', {'on' 'off' 'off'});

model.result ('pgl') .set('xlabel', 'x-coordinate (m)"');
model.result('pgl').set('ylabel', 'Concentration (mol/m<sup>3</sup>)"');
model.result ('pgl') .set('xlabelactive', false);

( )
( )
( )
( )
( )
( )
model.result ('pgl') .set('ylabelactive', false);
( )
( )
( )
( )
( )
( )

X
m
1

model.result ('pgl').feature('lngrl') .set('xdata', 'expr'
model.result ('pgl') .feature('lngrl') .set('xdataexpr', '
model.result ('pgl') .feature('lngrl') .set ('xdataunit', '
model.result('pgl') .feature('lngrl') .set ('xdatadescr',
model.result ('pgl').feature('lngrl') .selection.all;
model.result ('pgl') .feature('lngrl') .selection.all;

o)

% Save current fem structure for restart purposes
modelO=model;

o)

% extract concentration values at points in vector z
con = mphinterp (modelO, 'c', 'coord',z','T',5)";

% Concentration = [x y z cC]
Concentration = [Concentration; x y z con];
end

[

% Force equation

] .
’

x—-coordinate') ;

Force = [Concentration(:,1:3) (9e2/1.2)* ((Concentration(:,4)-1250)."2)1;
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fid = fopen('rectangleforce.txt','w');

fprintf (fid, "$%x\ty\tz\tForce\r\n'") ;

fclose (fid);

dlmwrite ('rectangleforce.txt',Force, 'precision', '$2.6f','delimiter’', '"\t"', "new

line', 'pc', '—append');

o

o\

rectangleoptimizedl.m

o\

o\

Model exported on Jul 12 2013, 13:23 by COMSOL 4.3.2.164.

import com.comsol.model.*
import com.comsol.model.util.*

model = ModelUtil.create('Model');

model .modelPath('.\");

model.name ('rectangleoptimizeddeflection.mph');
model.modelNode.create ('modl"') ;
model.file.create('res3");

model.func.create('intl', 'Interpolation');

model.func('intl').set ('sourcetype', 'model');

model.func('intl') .set('importedstruct', 'Spreadsheet');
model.func('intl') .set ('funcs', {'Force' '"4'});
model.func('intl') .set ('importedname', 'rectangleforce.txt');
model.func('intl').set('importeddim', '3D'");
model.func('intl') .set ('modelres', 'res3');

model.file('res3') .resource('C:\Users\jsimpson\Desktop\rectangleforce.txt");

model. func('intl') .set('nargs', '3");
model.func('intl').set('struct', 'spreadsheet');

model.geom.create('geoml', 3);

model.geom('geoml ") .feature.create('BLK1', 'Block');
model.geom('geoml') .feature ('BLK1") .set ('pos', '0.0,0.0,0.0");
model.geom('geoml') .feature ('BLK1'") .set('size', {'0.0070" '0.017"' '"1.8E-4"'});
model.geom('geoml') .feature('BLK1") .set('axis', {'0" '0" "1'});
model.geom('geoml ") .run;

model.material.create('matl');
model.material ('matl') .propertyGroup.create('Enu’', 'Young''s modulus and
Poisson''s ratio'):;

model .physics.create('smsld', 'SolidMechanics', 'geoml');
model.physics ('smsld') .identifier ('smsld');

model.physics ('smsld') .feature.create('lemm2', 'LinearElasticModel', 3);
model .physics ('smsld")
(
(

.feature('lemm2') .selection.set ([1]);
model.physics ('smsld') .feature.create('bll', 'BodyLoad', 3);
model.physics ('smsld') .feature('bll').selection.set ([1]);
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model.physics(
model .physics(

'smsld')
'smsld')

model
model
model
model

.mesh.create (
.mesh ('meshl")
.mesh ('meshl")
.mesh ('meshl")

model.
model.

model . .material ('matl’')
model . .material ('matl’')
'"1700[J/ (kg*K)1"');

model.material ('matl') .propertyGroup('def') .set('relpermittivity', {'4' '0'
IOI IOI l4l IOI IOI IOI l4l});

model.material ('matl') .propertyGroup ('def') .set('thermalexpansioncoefficient’
, {'280e-6[1/K] 0" '0" 'O0' '280e-6[1/K]" 'O' 'O' '0' '280e-6[1/K]1'});
model.material ('matl') .propertyGroup('def').set('density', '2000[kg/m"3]");
model.material ('matl') .propertyGroup('def') .set ('thermalconductivity’',
{'0.26[W/ (m*K)]" '0" '0O" '0O" '0.26[W/(m*K)]" 'O' 'O' 'O"' '0.26[W/(m*K)]"});
model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus', '5e8[Pa]l]');
model.material ('matl') .propertyGroup ('Enu') .set ('poissonsratio’ '0.49");
model.physics ('smsld') .feature('lemml') .set ('Evector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set('Evector', {'2.0ell'; '2.0ell";
'2.0ell'})

model.physics ('smsld') .feature('lemml') .set('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemml'") .set ('nuvector', {'0.33'; '0.33';
'0.33"});

model.physics ('smsld') .feature('lemml') .set ('Gvector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set ('Gvector', {'7.52el0'; '7.52el0';
'7.52e10"});

model.physics ('smsld') .feature('lemml').set('D mat', 'userdef');

model .physics ('smsld') .feature('lemml').set ('D', {'2.0ell/((1+0.33)* (1-
2*0.33))*(1-0.33)"'; '2.0ell/((1+0.33)*(1-2*%0.33))*0.33"';
'2.0e11/((1+0.33)*(1-2*%0.33))*0.33"'; '0'; '0'; '0'; '2.0ell/((1+0.33)*(1-
2%0.33))*0.33"'; '2.0ell/((1+0.33)*(1-2*%0.33))*(1-0.33)"
'2.0el11/((1+0.33)*(1-2*0.33))*0.33"'; '0'; ...

'0'; '0'; '2.0ell/((14+0.33)*(1-2*0.33))*0. 33" '2.0ell/ ((1+0.33)*(1-
2*0.33))*0.33'; '2.0el11l/((1+40.33)*(1-2*0.33))*(1-0.33)"'; '0'; '0'; '0'; '0';
'o'; ...

'0'; '2.0ell/((1+0.33)*2)'; '0'; '0'; 'O'; '0'; '0'; 'O';
'2.0el11/((1+0.33)*2)'; '0'; .

'o'; '0'; '0'; 'Oy 'O o '2. Oell/((l+0 33)*%2)"});

model .physics ('smsld') .feature('lemm2' ).set('E ~mat', 'userdef');

model .physics ('smsld') .feature('lemm2').set('E', '5e8");

model.physics ('smsld'). feature('lemm2').set('nu mat' 'userdef');

model .physics ('smsld') .feature('lemm2') .set('nu’', .48") ;

model.physics ('smsld') .feature('lemm2') .set ('Evector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('Evector', {'2.0ell'; '2.0ell"';
12.0el1'});

model.physics ('smsld') .feature('lemm2') .set ('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('nuvector', {'0.33'; '0.33';

'0.33'})

'meshl’',

result.table.create (
result.table.create (

.feature.create('fix1"',
.feature ('fix1l")

'geoml') ;

.feature.create('ftetl"',
.feature('ftetl")
.feature('ftetl")

"tbhl1l',
"thl2',

.name ('Nylon') ;
.propertyGroup (

.selection.set ([2

.selection.geom('geoml’,
.selection.set ([1]);

'Table!
'Table!

'def')

'Fixed', 2);
1)

'FreeTet'") ;
3);

)7
)7

.set ('heatcapacity',
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model.physics ('smsld') .feature('lemm2') .set ('Gvector mat', 'userdef');

model .physics ('smsld') .feature('lemm2') .set ('Gvector', {'7.52el0'; '7.52el0"';
'7.52e10'}) ;

model.physics ('smsld') .feature('lemm2') .set('D mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set('D', {'2.0ell/ ((1+0.33)* (1-
2*0.33))*(1-0.33)"'; '2.0ell/((1+0.33)*(1-2%0.33))*0.33";
'2.0el1/((1+0.33)*(1-2*0.33))*0.33"; '0'; '0'; '0'; '2.0ell/ ((1+0.33)*(1-
2*0.33))*0.33'; '2.0ell/((1+0.33)*(1-2*%0.33))*(1-0.33)"';
'2.0e11/((140.33)*(1-2*0.33))*0.33"'; '0'; ..

'0'; '0'; '2.0el11l/((140.33)*(1-2*%0.33))*0.33"; '2.0ell/((1+0.33)*(1-
2*¥0.33))*0.33"; '2.0ell/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';
'O'; ..

lol; 'Z.Oell/((l+0-33)*2)'; lol; lol; lol; VOV; VOV; VOV;
'2.0el11/((140.33)*2)'; '0'; e

'0'; '0'; 'O'; 'O'; '0'; '2.0ell/((140.33)*2)'});

model.physics ('smsld') .feature('lemm2') .set('rho mat', 'userdef');
model.physics ('smsld') .feature('lemm2'") .set('rho', '2000");

model.physics ('smsld') .feature('bll"').set('Fpervol', {'0";
'Force(x[1/m],y[1/m],z[1/m])"'; '0'});

model.mesh ('meshl') .feature('size') .set ('hauto', 2);
model . .mesh ('meshl'") .feature('ftetl') .set('zscale', '1");
model.mesh ('meshl') .run;

model.result.table('tbll'") .comments ('Point Evaluation 1 (smsld.disp)');
model.result.table('tbl2"') .comments ('Line Maximum 1 (smsld.disp)"');

model.coordSystem('sysl') .set('mastercoordsystcomp', 'manual');

model.study.create('stdl'");
model.study('stdl') .feature.create('stat', 'Stationary');

model.sol.create('soll'");

model.sol ('soll'").study('stdl'");

model.sol ( ) .attach('stdl'");

model.sol ( ) .feature.create('stl', 'StudyStep');
model.sol('soll').feature.create('vl', 'Variables');

model.sol ( ) . feature.create('sl', 'Stationary');

model.sol ( ) .feature('sl') .feature.create('fcl', 'FullyCoupled');
model.sol ( ) .feature('sl') .feature.create('dl', 'Direct');

model.study('stdl') .feature('stat') .set('initstudyhide', 'on');
model.study('stdl') .feature('stat').set('initsolhide', 'on');
model.study ('stdl'") .feature('stat') .set ('notstudyhide', 'on'");
model.study('stdl'") .feature('stat') .set('notsolhide', 'on');

model.result.numerical.create('maxl', 'MaxLine');
model.result.numerical ('maxl').selection.set([6]);
model.result.numerical ('maxl') .set ('probetag', 'none');
model.result.create('pgl', 'PlotGroup3D');
model.result ('pgl') .feature.create('voll', 'Volume');

model.result ('pgl').feature('voll'") .feature.create('defl', 'Deform');
model.result.export.create('tbl2', 'Table');

model.sol('soll'").attach('stdl"');
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model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.

model.
model.
model.

model

model.
model.
.result.export ('tbl2").set('filename', '.\deflection.txt');
.result.export ('tbl2').set('table', 'tbl2'");

model
model

model

sol('soll'").feature('stl') .name ('Compile Equations: Stationary');
sol('soll'").feature('stl') .set ('studystep', 'stat');
sol('soll'").feature('vl').set('control', 'stat');
sol('soll'").feature('sl') .set('control', 'stat');
sol('soll'").feature('sl').set('stol', '1.0E-6");
sol('soll').feature('sl').feature('fcl').set('initstep', '1.0");
sol('soll'").feature('sl') .feature('fcl').set('rstep', '10.0");
sol('soll'").feature('sl').feature('fcl').set('minstep', '1.0e-4");
sol('soll'").feature('sl').feature('fcl').set('termonres', 'off');
sol('soll'") .feature('sl') .feature('dl"') .set('errorchk', 'off');
sol('soll').feature('sl').feature('dl"').set('linsolver', 'spooles');
sol('soll'").runAll;

result.numerical ('maxl"').set('unit', 'mm');
result.numerical ('maxl') .set('table', 'tbl2');
result.numerical ('max1l') .setResult;

.result ('pgl') .name ('Stress (smsld)");

result ('pgl') .feature('voll') .set ('unit', 'mm');
result ('pgl') .feature('voll') .feature('defl') .set('scaleactive', true);

.result.export ('tbl2'").run;

import com.comsol.model.*
import com.comsol.model.util.*

model

model

model

model

model.

model.
model.
model.
model.
model.
model.
model.

model.

model.
model.

model

= ModelUtil.create ('Model');

.modelPath('.\");

.name ('l.2included7xl7newest.mph');

.modelNode.create ('modl") ;

file.create('res2');

func.create('intl', 'Interpolation');

func('intl') .set ('importedname', 'rectangleforce.txt');
func('intl'") .set ('funcs', {'Force' '4'});

func('intl') .set ('modelres', 'res2');
func('intl') .set ('importedstruct', 'Spreadsheet');
func('intl') .set ('importeddim', '3D'");

func('intl') .set ('sourcetype', 'model');

file('res2') .resource ('C:\Users\jsimpson\Desktop\rectangleforce.txt');
func('intl') .set('nargs', '3");

func('intl').set('struct', 'spreadsheet');

.geom.create('geoml', 3);
model.

geom('geoml'") .feature.create('BLK1', 'Block');
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model.geom('geoml') .feature.create('CYL1', 'Cylinder'");
model.geom('geoml') .feature ('BLK1'") .set ('pos', '0.0,0.0,0.0");
model.geom('geoml') .feature ('BLK1") .set ('size', {'0.0070" '0.017' "'"1.8E-4"});
model.geom('geoml') .feature ('BLK1") .set ('axis', {'0"' '0" '1'});
model.geom('geoml'") .feature ('CYL1") .set('axis', {'0" '0" "1"});
model.geom('geoml') .feature('CYL1") .set('r', '5.0E-4");
model.geom('geoml') .feature ('CYL1") .set('pos', {'0.0035" '"0.015" "1.8e-4"'});
model.geom('geoml') .feature('CYL1").set('h', '0.0010");
model.geom('geoml') .run;

model .material.create('matl');
model.material ('matl') .propertyGroup.create('Enu', 'Young''s modulus and
Poisson''s ratio');

model.material ('matl') .propertyGroup.create ('Refractivelndex', 'Refractive
index"') ;

model.material ('matl') .selection.set ([2]);

model .material.create('mat2'");
model.material ('mat2') .propertyGroup.create ('Enu', 'Young''s modulus and
Poisson''s ratio');

model.material ('mat2') .selection.set ([1]);

model.physics.create('smsld', 'SolidMechanics', 'geoml');

model.physics ('smsld') .identifier('smsld');

model.physics ('smsld') .feature.create('lemm2', 'LinearElasticModel', 3);
model.physics ('smsld') .feature('lemm2') .selection.set ([1]);

(

( ) .

( ) .
model.physics ('smsld') .feature.create('bll', 'BodyLoad', 3);
( ) -

( ) .

( ) .

model.physics ('smsld') .feature('bll'") .selection.set ([1]);
model .physics ('smsld' feature.create('fixl', 'Fixed', 2);
model.physics ('smsld') .feature('fixl"').selection.set ([2 9]);

model .mesh.create('meshl', 'geoml');

model.mesh ('meshl') .feature.create('ftetl', 'FreeTet');

model .mesh ( ) .feature.create ('ftet2', 'FreeTet');

model.mesh ( ) .feature('ftetl') .selection.geom('geoml', 3);

model.mesh ('meshl') .feature
( ) .
( ) .
( ) .

'meshl'’

(

("ftetl').selection.set ([1]);
model.mesh ('meshl') .feature('ftet2').selection.geom('geoml', 3);
model.mesh ('meshl') .feature('ftet2') .selection.set([2]);
model.mesh ('meshl') .feature('ftet2').feature.create('sizel', 'Size');

model.result.table.create('tbll', 'Table');

model.material ('matl') .name('Silica glass');

model.material ('matl') .propertyGroup('def') .set ('heatcapacity',

"703[J/ (kg*K)1");

model.material ('matl') .propertyGroup ('def') .set ('thermalexpansioncoefficient’
, {'0.55e-6[1/K]" '0" 'O'" '0O' '0.55e-6[1/K]" 'O' 'O"'" 'O' '0.55e-6[1/K]1"'}):

model.material ('matl') .propertyGroup('def') .set('relpermittivity', {'2.09"'
lol lol lol 12'091 lol IOI IOI l2.09l});

model.material ('matl') .propertyGroup ('def') .set ('thermalconductivity',
{'1.38[W/ (m*K)]" '0" '0O" 'O"'" '1.38[W/(m*K)]" 'O' 'O0O' 'O"' '1.38[W/(m*K)]"'});
model.material ('matl') .propertyGroup ('def') .set('relpermeability', {'1' '0'
lol lol lll lol lol lol lll});

model.material ('matl') .propertyGroup('def') .set('density', '2203[kg/m"3]");
model . .material ('matl') .propertyGroup ('def') .set('electricconductivity', {'le-
14[S/m]"'" '0' '0" '0'" 'le-14[S/m]"'" '0' '0O"' '0'" '"le-14[S/m]'}):
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model.material ('matl') .propertyGroup ('Enu') .set ('youngsmodulus',
'73.1e9[Pal');

model.material ('matl') .propertyGroup('Enu') .set ('poissonsratio', '0.17");
model.material ('matl') .propertyGroup ('Refractivelndex') .set('n', ''
model .material ('matl') .propertyGroup('Refractivelndex') .set('ki', ' ;
model.material ('matl') .propertyGroup ('RefractivelIndex').set('n', {'1.45"'" '0'
IOI IOI |1.45| IOI IOI IOI l1'45l}),

model.material ('matl') .propertyGroup ('Refractivelndex') .set('ki', {'0" '0"
vov vov vov vov vov vov vov});

model .material ('mat2') .name ('Nylon');

model.material ('mat2') .propertyGroup('def') .set ('heatcapacity',

'1700[J/ (kg*K) 1");

model.material ('mat2') .propertyGroup('def') .set('relpermittivity', {'4' '0"'
lol lol 141 lol lol lol 141}).
model.material ('mat2'") .propertyGroup
, {'280e-6[1/K]" '0" '0" '0' '280e-6
model.material ('mat2') .propertyGroup ('def') .set('density', '2000[kg/m"3]");
model.material ('mat2') .propertyGroup('def') .set ('thermalconductivity',

('"def') .set('thermalexpansioncoefficient'
[
(' ) -
(' ) .
{'0.26[W/ (m*K)]1" '0O" '0" '0" '"0.26[W/ (m*K)]" 'O"'" 'O" 'O' '0.26[W/ (m*K)]"}
(' ) - al
( ) -

1/K]' '0' '0' '0' '280e-6[1/K]'});

)
model.material ('mat2') .propertyGroup ('Enu') .set ('youngsmodulus', '5e8[Pa]l]');
model.material ('mat2') .propertyGroup ('Enu set ('poissonsratio', '0.49'");

model.physics ('smsld') .feature('lemml') .set ('Evector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set ('Evector', {'2.0ell'; '2.0ell’;
12.0ell'})

model.physics ('smsld') .feature('lemml') .set('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set ('nuvector', {'0.33"'; '0.33";
'0.33"});

model.physics ('smsld') .feature('lemml') .set ('Gvector mat', 'userdef');
model.physics ('smsld') .feature('lemml') .set ('Gvector', {'7.52el0'; '7.52el0';
'7.52e10'})

model.physics ('smsld') .feature('lemml').set('D mat', 'userdef');

model .physics ('smsld') .feature('lemml') .set ('D', {'2.0ell/ ((1+0.33)* (1-
2%0.33))*(1-0.33)"'; '2.0ell/((1+0.33)*(1-2%0.33))*0.33";
'2.0e11/((140.33)*(1-2*0.33))*0.33"'; '0'; '0'; '0'; '2.0ell/((140.33)*(1-
2*0.33))*0.33"'; '2.0el11l/((140.33)*(1-2*%0.33))*(1-0.33)"
'2.0e11/((140.33)*(1-2*0.33))*0.33"'; '0'; ..

'0'; '0'; '2.0el1/((1+0.33)*(1-2*0.33))*0. 33'- '2.0el11/ ((1+0.33) * (1-
2*¥0.33))*0.33"; '2.0ell/((1+0.33)*(1-2*0.33))*(1-0.33)'; '0'; '0'; '0'; '0';
'0'; e

'0'; '2.0el1/((140.33)*2)'; '0'; 'O0'; '0'; '0'; '0'; '0';

'2.0ell/ ((140.33)*2)" '0';

'o'; '0'; 'O'; 'O'; 'O, 2. Oell/((l+0 33) Y'Y,

model.physics ('smsld') .feature('lemm2' ).set('Eimat', 'userdef');
model.physics ('smsld') .feature('lemm2').set('E', '5e8");

model.physics ('smsld') .feature('lemm2') .set('nu mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set('nu', '.48");

model.physics ('smsld') .feature('lemm2') .set ('Evector mat', 'userdef');
model .physics ('smsld') .feature('lemm2') .set ('Evector', {'2.0ell'; '2.0ell’';

12.0el1'});

model.physics ('smsld') .feature('lemm2') .set('nuvector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('nuvector', {'0.33"'"; '0.33";
'0.33"})

model.physics ('smsld') .feature('lemm2') .set('Gvector mat', 'userdef');
model.physics ('smsld') .feature('lemm2') .set ('Gvector', {'7.52el10'; '7.52el0';
'7.52e10'});

model.physics ('smsld') .feature('lemm2').set('D mat', 'userdef');
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model.physics ('smsld') .feature('lemm2') .set('D', {'2.0ell/ ((1+0.33)* (1~
2%0.33))*(1-0.33)"; '2.0ell/((140.33)*(1-2%0.33))*0.33";
'2.0e11/((14+40.33)*(1-2*0.33))*0.33"'; '0'; '0'; '0'; '2.0ell/((1+0.33)*(1-
2%0.33))*0.33'; '2.0ell/((1+0.33)*(1-2*%0.33))*(1-0.33)";
'2.0e11/((140.33)*(1-2*%0.33))*0.33"'; '0'; ...

'0'; '0'; '2.0ell/((1+0.33)*(1-2*0.33))*0.33"; '2.0ell/((140.33)*(1-
2*0.33))*0.33"'; '2.0ell/((1+0.33)*(1-2*0.33))*(1-0.33)"'; '0'; '0'; '0'; '0';
'o'; ..

lol; 'Z.Oell/((l+o.33)*2)'; lol; lol; lol; VOV; VOV; VOV;
'2.0el11/((14+0.33)*2)'; '0'; ...

'0'; '0'; 'O0'; 'O'; 'O'; '2.0ell/((140.33)*2)'});

model.physics ('smsld') .feature('lemm2') .set('rho mat', 'userdef');
model.physics ('smsld') .feature('lemm2').set('rho', '2000");

model.physics ('smsld') .feature('bll"').set('Fpervol', {'0";

'"Force (x[1/m],y[1/m],z[1/m])"'; '0'});

model.mesh ('meshl') .feature('size') .set ('hauto', 2);
model.mesh ('meshl') .feature('ftet2').feature('sizel').set ('hauto', 4);
model.mesh ('meshl') .run;

model.result.table('tbll"').comments ('Volume Integration 1 (smsld.RFz)"');
model.coordSystem('sysl') .set('mastercoordsystcomp', 'manual');

model.study.create('stdl'");
model.study('stdl') .feature.create('stat', 'Stationary');

model.sol.create('soll'");

model.sol ('soll').study('stdl'");
model.sol ('soll') .attach('stdl");

model.sol ('soll') .feature.create('stl', 'StudyStep'):;
model.sol('soll'").feature.create('vl', 'Variables');

model.sol ('soll').feature.create('sl', 'Stationary');

model.sol ('soll') .feature('sl').feature.create('fcl', 'FullyCoupled');
model.sol('soll'") .feature('sl').feature.create('dl', 'Direct');
model.study('stdl') .feature('stat') .set('initstudyhide', 'on');
model.study('stdl') .feature('stat').set('initsolhide', 'on');
model.study ('stdl'") .feature('stat') .set ('notstudyhide', 'on'");
model.study ('stdl'") .feature('stat') .set('notsolhide', 'on');

model.result.numerical.create('intl', 'IntVolume');
model.result.numerical ('intl"').selection.set([2]);
model.result.numerical ('intl') .set ('probetag', 'none');
model.result.create('pgl', 'PlotGroup3D'");
model.result ('pgl') .feature.create('surfl', 'Surface');

model.result ('pgl').feature('surfl').feature.create('def', 'Deform');
model.result.export.create('tbll', 'Table');

model.sol ('soll'").attach('stdl"');

model.sol ('soll').feature('stl') .name ('Compile Equations: Stationary');
model.sol('soll'").feature('stl').set('studystep', 'stat');
model.sol('soll'").feature('vl').set('control', 'stat');
model.sol('soll'") .feature('sl') .set('control', 'stat');
model.sol('soll'").feature('sl').set('stol', "1.0E-6");
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model.sol('soll'").feature('sl').feature('fcl') .set('termonres', 'off');
model.sol('soll'").feature('sl') .feature('fcl').set('rstep', '10.0");
model.sol ('soll').feature('sl').feature('fcl').set('initstep', '1.0");
model.sol('soll'").feature('sl').feature('fcl').set('minstep', '1.0e-4");
model.sol('soll').feature('sl').feature('dl"').set('linsolver', 'spooles');
model.sol('soll'").feature('sl') .feature('dl'").set('errorchk', 'off');
model.sol('soll'").runAll;

model.result.numerical ('intl') .set('expr', 'smsld.RFz');

( (
model.result.numerical ('intl"').set ('unit', 'mN'");

( (

(

).
).
) -
) -

model.result.numerical ('intl') .set('descr', 'Reaction force, z component');
model.result.numerical ('intl"').set ('table', 'tbll'");
model.result.numerical ('intl') .setResult;
model.result ('pgl') .name ('Stress (smsld)"');

model.result ('pgl') .feature('surfl').set('expr', 'smsld.mises');
model.result ('pgl').feature('surfl').set('unit', 'N/m"2");

model.result ('pgl') .feature('surfl').set('descr', 'von Mises stress');
model.result ('pgl') .feature('surfl').feature('def') .set('scale',
'75.6551305019355") ;

model.result ('pgl').feature('surfl') .feature('def').set('scaleactive',
false);

model.result.export ('thll').set('filename', '.\rectangleforcefinal.txt');

model.result.export ('tbll"').set('table', 'tbll");

model.result.export ('tbll"') .run;

quit
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