
University of New Mexico
UNM Digital Repository

Mechanical Engineering ETDs Engineering ETDs

9-12-2014

Verification of Statistical Turbulence Models in
Aerodynamic Flows
Sebastian Gomez

Follow this and additional works at: https://digitalrepository.unm.edu/me_etds

This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Mechanical Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.

Recommended Citation
Gomez, Sebastian. "Verification of Statistical Turbulence Models in Aerodynamic Flows." (2014). https://digitalrepository.unm.edu/
me_etds/84

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/84?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/me_etds/84?utm_source=digitalrepository.unm.edu%2Fme_etds%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 i

 Sebastian Gomez
 Candidate

 Mechanical Engineering

 Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 Dr. Svetlana V. Poroseva, Chairperson

 Dr. Charles R. Truman

 Dr. Peter Vorobieff

 ii

VERIFICATION OF STATISTICAL TURBULENCE MODELS IN
AERODYNAMIC FLOWS

by

SEBASTIAN GOMEZ

B.S., MECHANICAL ENGINEERING, UNIVERSITY OF NEW
MEXICO, 2012

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mechanical Engineering

The University of New Mexico

Albuquerque, New Mexico

July 2014

©2014, Sebastian Gomez

 iii

ACKNOWLEDGEMENTS

I would like to thank my academic advisor, Dr. Svetlana Poroseva and Elsa
Maria Castillo, at the School of Engineering, for their support. The completion of my
studies would not have been possible with out their help. I would also like to
acknowledge my friends and family for being patient and understanding during the
last couple years. Most importantly, I want to thank Sweet Baby Jesus for enabling
me to complete this masterpiece.

 iv

VERIFICATION OF STATISTICAL TURBULENCE MODELS IN AERODYNAMIC

FLOWS

by

Sebastian Gomez

B.S., Mechanical Engineering, University of New Mexico, 2012
M.S., Mechanical Engineering, University of New Mexico, 2014

ABSTRACT

Computational fluid dynamics (CFD) is a tool that is commonly used in

industry and academia. Engineers and scientists are sometimes apprehensive about

the use of CFD due to inconsistencies and/or errors in results obtained with

different software packages for the same flow cases. As a result, efforts are being

made to ensure that there is uniformity among results of flow simulations produced

by the computer programs.

The current research makes a contribution to the verification of an open-

source CFD toolbox known as OpenFOAM. In doing so, flow results for two

benchmark flow cases obtained with OpenFOAM are compared with the results

obtained with high-accuracy NASA CFD codes CFL3D and FUN3D. The benchmark

cases are the zero pressure gradient boundary layer of flow over a flat plate and a

two-dimensional bump in a channel. A number of flow profiles obtained with

NASA’s definitions of “standard” versions of the Spalart-Allmaras, Shear Stress

Transport, and k-ω turbulence models are compared with their CFL3D and FUN3D

 v

counterparts. A grid convergence study is performed to measure the change in the

results as a function of element size, specifically for the finest meshes.

The flows’ mean velocity, skin friction coefficient, and turbulent variable

profiles obtained with OpenFOAM are in agreement with NASA’s profiles for both

cases. The grid convergence studies show that the differences between OpenFOAM

and NASA results are found to be of less than 5% for all variables on the finest

meshes in both benchmark cases. OpenFOAM’s capability to produce accurate

results for the benchmark cases is confirmed.

 vi

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES viii

I. INTRODUCTION

a. Turbulence Modeling 3
b. Literature Review 13

II. SIMULATION PARAMETERS
a. OpenFOAM 18
b. Turbulence Models in OpenFOAM 19

 Spalart-Allmaras 19
 Shear Stress Transport 22
 k-ω 24

 Launder-Reece-Rodi 27
c. Numerical Methods 29
d. Computational Domain 36

 Zero Pressure Gradient Flat Plate 37
 2D Bump-In-Channel 37

e. Boundary Conditions 39
 Zero Pressure Gradient Flat Plate 39
 2D Bump-In-Channel 40

III. RESULTS & DISCUSSION
 a. Zero Pressure Gradient Flat Plate 42
 Spalart-Allmaras 42
 Shear Stress Transport 43
 k-ω 45
 Launder-Reece-Rodi 46

b. 2D Bump-In-Channel 48
 Spalart-Allmaras 48
 Shear Stress Transport 50
 k-ω 53

IV. CONCLUSION 55

V. REFERENCES 76

VI. APPENDIX
 A. Pleiades Information 82
 B. Turbulence Model Source Code 83

C. OpenFOAM Case Files 149

 vii

LIST OF FIGURES

Figure 1: OpenFOAM case structure 57

Figure 2: Flat plate mesh (69X49) 57

Figure 3: Enlarged view of bump profile 58

Figure 4: Bump mesh (177X81) 59

Figure 5: Boundary conditions for flat plate 60

Figure 6: Boundary conditions for bump 61

Figure 7: Flow profiles for flat plate (Spalart-Allmaras) 62

Figure 8: Convergence results for flat plate (Spalart-Allmaras) 62

Figure 9: Flow profiles for flat plate (SST) 63

Figure 10: Convergence results for flat plate (SST) 64

Figure 11: Flow profiles for flat plate (k-ω) 65

Figure 12: Convergence results for flat plate (k-ω) 66

Figure 13: Flow profiles for flat plate (LRR) 67

Figure 14: Flow profiles for bump (Spalart-Allmaras) 68

Figure 15: Convergence results for bump(Spalart-Allmaras) 69

Figure 16: Flow profiles for bump (SST, 1409x641 mesh) 70

Figure 17: Flow profiles for bump (SST, 705x321 mesh) 71

Figure 18: Convergence results for bump (SST) 72

Figure 19: Flow profiles for bump (k-ω, 1409x641 mesh) 73

Figure 20: Flow profiles for bump (k-ω, 705x321 mesh) 74

Figure 21: Convergence results for bump (k-ω) 75

 viii

LIST OF TABLES

Table 1: Spalart-Allmaras model coefficients 21

Table 2: SST model coefficients 23

Table 3: k-ω model coefficients 26

Table 4: LRR model coefficients 28

Table 5: Keywords for fvSchemes dictionary 35

Table 6: Flow variables for LRR simulation 47

 1

I. Introduction

The advance of computers has led to an increase in the use of computational

predictions of turbulent fluid behavior in engineering. Computers are used to solve

the Navier-Stokes equations, which describe the motion of a fluid. Despite of the

computing improvement that has occurred over the past couple of decades, the

equations describing the flow field in engineering applications cannot be solved

exactly in a computer. The reason for this is that the random fluctuations associated

with turbulent flows in engineering applications vary over a large range of time and

space scales, which make obtaining an exact numerical solution a very

computationally demanding task. A few applications of interest include turbulent

flows around vehicles, inside of turbines or in manufacturing methods.

Researchers and engineers are still expected to provide estimations related

to fluid flow in a timely manner with the computational resources that are currently

available. A popular alternative approach to solving the exact Navier-Stokes

equations is to use turbulence models, which predict the effects of turbulence by

making simplifying assumptions. Turbulence models can produce reasonable

solutions to flow problems but there is not a single turbulence model is capable of

predicting all features for any type of flow. Specific turbulence models are often

tailored for a certain type of flow (i.e.: external aerodynamics, internal, high rotation,

etc.). As a result, CFD users must rely on the correct implementation of turbulence

models in the computational software being used to solve a certain type of flow

problem. One would hope that if the same turbulence model were used in two

different computational packages, the solutions obtained would converge to the

 2

same result but that is often not the case [1][2]. To gain confidence in a turbulence

model’s implementation, the user may want to “verify” it. Verification consists on

the use of reference solutions obtained with highly accurate numerical methods on

benchmark problems. The goal of this work is to verify a number of turbulence

models using the Open Field Operation and Manipulation (OpenFOAM)

computational toolbox [3].

This work will provide a brief overview on Reynolds-averaged Navier-Stokes

(RANS) turbulence modeling. Previous research pertinent to the topic treated in

Sections II-III will be discussed after. The simulation parameters and a description

of the flow geometry for each flow case will be presented in Section II. The

simulation results obtained with OpenFOAM using standard versions of RANS

models will be presented in Section III. The validity of the results obtained with

OpenFOAM will be verified by comparing them with reference results obtained with

NASA’s high-order codes, CFL3D [4] and FUN3D [5], direct numerical simulation

data, and experimental measurements. To finalize this document, some concluding

remarks will be provided in Section IV.

 3

a. Turbulence Modeling

***This section contains information from [6] and [7].

The equations describing fluid flow are known as the Navier-Stokes

equations. They are composed of conservation of momentum and continuity

equations. The incompressible version of these equations is as follows:

where represents the kinematic viscosity, defined as , and the subscript i

represents each component of the corresponding variable. Unless specified

otherwise, summation over repeated indices is implied.

In the RANS approach, the flow velocity, ui , is decomposed into a time-

averaged velocity and an instantaneous velocity fluctuation through the use of

Reynolds decomposition:

 ̅

where the time-averaged or mean velocity component of a steady flow is defined as

 ̅
 ∞

∫

In the equation above, T is the averaging interval, which has to be large with respect

to the time scale of the velocity fluctuations.

Applying Reynolds averaging to the incompressible continuity equation

yields

 ̅

 4

Averaging the left hand side of Eq. 1, we get

̅̅ ̅̅ ̅

 ̅

 ̅̅ ̅̅ ̅

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅̅ ̅̅ ̅̅

Employing Eq.3, Eq. 4 becomes

̅̅ ̅̅ ̅

 ̅

 ̅

 ̅

 ̅̅ ̅̅ ̅̅

Taking Eq.5 into account and averaging each term the momentum equation yields

 ̅

 ̅

 ̅

 ̅

 ̅

 ̅̅ ̅̅ ̅̅

For Newtonian fluids, the second to last term in Eq.6 is represented as a viscous

stress tensor, defined as

where is the strain-rate tensor

(
 ̅

 ̅

)

Substituting Eq.7 into Eq.6 and multiplying by the fluid’s density, , yields

 (
 ̅

 ̅

 ̅

)

 ̅

(

 ̅̅ ̅̅ ̅̅)

The combination of Eq.3 and Eq.8 is known as the Reynolds-Averaged Navier-Stokes

(RANS) equations.

The quantity

 ̅̅ ̅̅ ̅̅ in Eq.8 is known as the Reynolds stress tensor. The

specific Reynolds stress tensor is

 ̅̅ ̅̅ ̅̅ , but it is often referred to as the Reynolds

stress tensor as well. The Reynolds stress tensor is symmetric, which means that

only six out of its nine components are independent. The unknown variables for a

 5

three-dimensional flow are: pressure, three velocity components and the six

independent components of the Reynolds stress tensor, which makes a total of ten

unknowns. The system is composed of only four equations, continuity and

momentum conservation in each direction, which is six less than what is needed to

close the system. The absence of the additional equations necessary to close the

mathematical system is referred to as the turbulence closure problem. The closure

problem is caused by the inclusion of

 ̅̅ ̅̅ ̅̅ in the equations. To compute all mean-

flow properties of the turbulent flow, a prescription for computing

 ̅̅ ̅̅ ̅̅ is needed

[6].

Types of Models

Eddy Viscosity Models

A very popular way to model the Reynolds stresses known as the Boussinesq

eddy viscosity approximation was introduced by Joseph Boussinesq in 1887.

Boussinesq postulated that the momentum transfer caused by turbulent eddies can

be modeled with an eddy viscosity [8]. The eddy viscosity, also known as turbulent

viscosity, is always positive and is computed from a mixing length that depends on

the flow that is being analyzed. The use of an eddy viscosity, , assumes flow

isotropy, which can sometimes lead to excessive diffusion [9]. In incompressible

flows, the turbulent viscosity can be divided by the fluid’s density, after which it is

represented by . As will be shown in Section II, the definition of eddy viscosity

varies from model to model. The Boussinesq approximation relates the Reynolds

 6

stress term found in the momentum equation to the eddy viscosity, the rate of strain,

and the turbulent kinetic energy, k, in the following way:

 ̅̅ ̅̅ ̅̅

The second term in Eq.9 is present to assure that the sum of the normal stresses is

equal to 2k [10][6], which is necessary due to the way that turbulence kinetic energy

is defined:

 ̅̅ ̅̅ ̅̅

Turbulence models that employ the Boussinesq eddy viscosity

approximation are often referred to as eddy viscosity models, or EVMs. Two types of

EVMs are one-equation models and two-equation models. One-equation models

solve an additional transport equation for a turbulent variable, usually turbulent

kinetic energy, whereas two-equation models solve equations for k and a turbulence

length scale, or an equivalent variable. An example of a turbulence scale of interest

in two-equation models is the specific turbulence dissipation, denoted by . The

specific turbulence dissipation represents the rate at which turbulence kinetic

energy is converted into thermal internal energy per unit volume and time.

Sometimes the specific turbulent dissipation is referred to as the mean frequency of

the turbulence; the coining of this term is mainly based on dimensional analysis

because has units of s-1 [11].

The transport equation for turbulent kinetic energy is obtained from the

momentum equation by multiplying it by , averaging, and performing basic

mathematical manipulations. The derivation of the exact transport equation for

 7

turbulent kinetic energy is covered in most textbooks, so only the final result is

shown:

 ̅

(

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅ ̅̅ ̅)
⏟

 ̅̅ ̅̅ ̅̅
 ̅

 ⏟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⏟

The unsteady and convective terms on the left hand side of Eq.10 represent the

overall change in k. On the right hand side, the first term, denoted by , is known as

the diffusive transport. The components of represent different mechanisms for

turbulence kinetic energy transport and they are known as: molecular diffusion,

which represents diffusion by the fluid’s natural molecular transport process,

pressure diffusion, which represents diffusion via pressure–velocity fluctuations,

and the triple velocity correlation, known as the turbulent transport term, which is

related to transport via turbulent fluctuations. The second term, on the right hand

side of Eq.10, denoted by , is known as the production, and it represents the rate

at which kinetic energy is transferred from the mean flow to turbulence. The last

term, represented by , is known as dissipation and it is the rate at which kinetic

energy is converted into thermal internal energy [6]. In order to close Eq.10, the

Reynolds stresses, dissipation, turbulent transport, and pressure diffusion have to

be specified.

The Reynolds stress tensor is modeled through the use of the Boussinesq

approximation and it is defined in the following way:

 ̅̅ ̅̅ ̅̅

 8

The dissipation model varies from model to model. The author in Ref.12 suggested

that the dissipation be defined as

where is a closure coefficient that ranges between 0.07 and 0.09 [6] and is a

turbulence length scale that depends on the type of flow that is being modeled.

Both of the diffusive terms are usually modeled as a single term, in the following

way:

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅ ̅̅ ̅

In the equation above, is the eddy viscosity and is a closure coefficient known

as the turbulent Prandtl number, which is usually assumed to be constant and on

the order of one.

The combination of Eqs.10-13 yields the modeled version of the turbulent

kinetic energy equation:

 ̅

((

)

)

 ̅

The modeling that has been implemented to close the system leads to a significant

loss of detail, but it makes the system solvable.

Reynolds Stress Transport Models

Reynolds Stress Models (RSM), or Reynolds Stress Transport (RST) Models,

are a more elaborate category of turbulence models. The method of closure

employed in RSM models is called a second-order closure. Second-order closure

 9

evades the use of an isotropic eddy viscosity because it calculates the Reynolds

stresses from transport equations for each component. Calculating the components

of the Reynolds stress tensor is beneficial because doing so accounts for directional

effects of the Reynolds stress fields such as streamline curvature, sudden changes in

strain rate, secondary motions, etc.[6]. Although it may seem obvious to use an RST

model to simulate a given flow, an engineer must consider the expense of the

increase in accuracy. Instead of only solving one or two equations, like in EVMs,

transport equations must be solved for each of the six independent components of

the Reynolds stress tensor and for turbulent dissipation, increasing the total

number of equations to 7. A reason for choosing second-moment closures is that

turbulent shear flows are not in any general sense describable by a model based on

a linear eddy viscosity model [13].

The transport equation for the Reynolds stresses is defined as

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅

 ̅

 ̅̅ ̅̅ ̅̅

*

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅ ̅̅ ̅+
⏟

 (

 ̅̅ ̅̅ ̅̅
 ̅

 ̅̅ ̅̅ ̅̅
 ̅

)

⏟

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⏟

(

̅̅ ̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅̅
)

⏟

The components of Eq.15 are very similar to those found in Eq.10. Terms on the left

account for unsteady and convective changes in the Reynolds stress. The right hand

side terms are the diffusion, , production, , dissipation, , and fluctuating

pressure, , related to the transport of Reynolds stresses. In order to close Eq.15,

the diffusion, dissipation, and fluctuating pressure tensors have to be specified. The

 10

viscous term in the diffusion component can be obtained directly. The triple product,

previously referred to as turbulent transport, is modeled through the use of the

generalized gradient diffusion hypothesis (GGDH) developed by Daly and

Harlow[14]. The GGDH approximation takes the following form:

 ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅

where is a model constant and has a value of 0.2.

It is common practice to adopt an isotropic relation for and to absorb any

departure from isotropy in the dissipation processes into the turbulent parts of

[13][15]. The typical isotropic approximation of the dissipation tensor is defined as

where is determined from its own transport equation.

The fluctuating pressure term is usually decomposed into two parts [13]:

(

̅̅ ̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅̅
)

⏟

(

 (

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
⏟

 (

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⏟

The first component in Eq.18 is known as the pressure diffusion and is denoted by

 . It accounts for the diffusion of the Reynolds stresses via pressure fluctuations

and is often included in the diffusive component, , of Eq.15. The second

component is the pressure-rate-of-strain tensor, , which is considered to be the

most challenging task in second-moment closure and is modeled differently across

different RST models [13]. No explicit model for
 has been proposed [13].

 11

There exist many different ways to represent the pressure-rate-of-strain

tensor. In this document, will be decomposed into four components:

 (

)

The first term, , represents the return to isotropy of non-isotropic turbulence,

and is often referred to as the “slow” or Rotta term [16]. This term is traceless,

which promotes return to isotropy and is defined as

(

 ̅̅ ̅̅ ̅̅

)

The model constant, , has a value of 1.8. The second term, , represents the

isotropization of strain production and is referred to as the “rapid” term [17]. The

mathematical definition of the rapid term is

 (

)

where is the Reynolds stress production tensor and the model constant, , has a

value of 0.6. The third and fourth components of are meant to account for near-

wall effects. The first term,
 , was developed in [18] and the second term,

 ,

was developed in [19]. Their definitions are

[

 ̅̅ ̅̅ ̅

(

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅)]

and

[

()]

respectively. In Eqs.21 and 22, the model coefficients,
 and

 , have values of 0.3,

 represents the metric tensor, and n represents the direction normal to the wall.

 12

Summation over repeated n indices is not implied in Eqs.21 and 22. Both wall terms

are multiplied by , a damping function defined as

where is the distance normal to the wall [20].

This concludes the general description of some of the approaches used to

model the Reynolds stresses in RANS turbulence models.

 13

b. Literature Review

The flows discussed in this document have been studied in great detail by

multiple researchers. Reviewing every publication related to flow over a flat plate

and a two dimensional bump in a channel would require an extensive amount of

space and time, so only a small number of experimental and computational

references will be mentioned.

Schwarz conducted experiments of flow over a flat plate and measured flow

variables such as pressure, velocities, skin friction coefficient and Reynolds stresses

to address concerns related to turbulence modeling [21]. DeGraaff and Eaton

performed an experiment to verify Reynolds number scaling of a zero-pressure-

gradient boundary layer over a flat plate. It was found that the log law provides a

reasonably accurate universal profile for the mean velocity in the inner region of the

boundary layer [22]. Experimental results for a flat plate boundary layer near a free

surface in Ref.23 matched benchmark results closely. Castillo and Johansson

conducted an experiment and a similarity analysis of the RANS equations on a zero

pressure gradient flow over a flat plate to investigate the effect of local Reynolds

number and upstream conditions on the development of the mean flow and

turbulent quantities [24].

 Many studies have been performed to evaluate the accuracy of different

turbulence models, boundary layer structure and sensitivity to mesh size in

computations. For example, researchers at NASA computed accurate numerical

solutions using two-equation models for selected flows and compared them to

experimental values [25]. In the study, the models’ overall performance was ranked

 14

from best to worst in the following order: SST, Spalart-Allmaras, and Wilcox’s 1988

version of k-ω. The authors deemed the Spalart-Allmaras model the best in terms of

numerical performance, followed by the SST model and k-ω. The evaluation was

based on the grid spacing required for accurate solutions and the maximum y+

allowable at the first grid point off the wall. Simulation results obtained by Chan et

al. using Wilcox’s 2006 version of k-ω showed good agreement with experimental

and theoretical results for flow over a 2D flat plate [26]. A comparison between the

results obtained with the k-ω and SST models for flow over a flat plate showed that

the SST model predicted a mean velocity profile that was very similar to that

obtained with k-ω in [27]. A two-equation turbulence model developed and verified

by Xu et al. showed excellent agreement with experimental values for a zero

pressure gradient turbulent boundary layer on a flat plate in [28]. The

computational studies mentioned so far verify the accuracy of the results by

comparing them with experimental data. However, DNS results can be considered to

be as good measurements obtained from experiments. As a result, they are often

used to evaluate the accuracy of turbulence models. Spalart [29], Wu and Moin [30],

and Sillero et al. [31] have produced some of the most widely accepted DNS results

for flow over a flat plate.

A smaller amount of research has been done on flow over the 2D bump-in-

channel. Computations have been performed for flow over the bump geometry and

the results were used to determine the performance of RANS models with respect to

large eddy simulation (LES), detached eddy simulation (DES), DNS, and

experimental results. Osusky et al. used a novel solution algorithm to obtain results

 15

with RANS models that matched those obtained by NASA for flow over the bump-in-

channel [32]. Furbo conducted simulations for flow over a bump using the default

RANS turbulence models in OpenFOAM [7]. The results were compared to

experimental and LES data and it was noticed that most of the RANS models tested

didn’t predict a separation zone downstream of the bump. Bensow et al. also

described the difficulties of obtaining flow details using RANS instead of LES and

DES for flow over the bump geometry [33]. CFD results predicted the separation

location correctly, but not the reattachment location for flow over a bump in [34]. It

was also found that the results obtained with the SST model showed discrepancies

between detachment and reattachment locations. Disagreements between results

for the pressure coefficient obtained with RANS models and experimental results

were noted in [35]. However, DNS predictions were shown to have good agreement

with experiments for flow over a bump in [36]. Experimental results for similar

bump geometries can be found in [37], [38], [39], [40], [41], and in the European

Research Community on Flow, Turbulence and Combustion Database (ERCOFTAC)

[42]. An extensive list of previous research related to this specific flow geometry can

also be found in the Case 3 section of [43]. The discrepancies related to RANS results

that were described in literature were different from one study to the next, even

when the same turbulence model was being used. As a result, the simulation results

for the flow over a bump will only be compared with results obtained with NASA’s

high-accuracy codes and not with experiments.

 The difference between results obtained with RANS and other sources has to

be addressed. One way to approach the issue is to compare highly accurate

 16

numerical results to a benchmark flow problem with results obtained with lower

order CFD packages. The aforementioned approach of comparing results obtained

with highly accurate codes to those obtained with lower order codes is typically

used to verify the numerical models or components of the lower order codes.

Verification is defined as the process of determining that a model implementation

accurately represents the developer’s conceptual description of the model and the

solution to the model [44]. Verification is important and necessary because it is used

to assess the accuracy and errors in numerical modeling and solution of flow

problems. Rizzi and Vos include a thorough discussion on the importance of

establishing credibility in CFD simulations through verification in [45]. Roache

provides a background discussion and some of the definitions and descriptions that

are necessary for the verification of codes and calculations in [46]. The main

conclusion to be drawn from [45] and [46] is that the verification of the components

in CFD toolboxes is essential to address the types and sources of error from

conducting simulations.

 Two studies that emphasize the need for turbulence model verification in

CFD toolboxes will be mentioned briefly. First, is a study performed by Vassberg et

al. in which simulations with the “same” turbulence model implemented in different

CFD packages gave varying results [47]. Wilcox performed the second study and he

showed that slightly different versions of the k-ε model produce significantly

different results for boundary layer flows [48]. Inconsistencies of this type can make

engineers and researchers apprehensive about believing CFD results. According to

Rumsey, it is often difficult to draw firm conclusions about turbulence model

 17

accuracy when performing multi-code CFD studies ostensibly using the same model

because of inconsistencies in model formulation or implementation in different

codes [49].

 In an effort to improve consistency, verification, and validation of turbulence

models within the aerospace community, NASA has established a website to provide

a central location for the documentation of RANS turbulence models [50]. The

website is called the Turbulence Modeling Resource (TMR) and it is a collaboration

between NASA’s Langley Research Center and the Turbulence Model Benchmarking

Working Group (TMBWG) [51], a working group of the Fluid Dynamics Technical

Committee [52] of the American Institute of Aeronautics and Astronautics (AIAA)

[53]. The objective of the TMR website is to provide a resource for CFD developers

to:

 Obtain accurate and up-to-date information on widely used RANS turbulence

models.

 Verify that models are implemented correctly.

Correct implementation of models can be confirmed through verification cases

provided on the TMR website.

 18

II. Simulation Parameters

a. OpenFOAM

The flow simulations that will be discussed in Section III were conducted on

NASA’s Pleiades Supercomputer [54] using OpenFOAM. Details about Pleiades can

be found in Appendix A.

OpenFOAM is a free, open source CFD software package, licensed and

distributed by the OpenFOAM Foundation [55] and developed by OpenCFD Ltd[56].

OpenFOAM is used in academia and industry to solve problems ranging from

complex fluid flows involving chemical reactions, turbulence, and heat transfer, to

solid dynamics and electromagnetics. Almost all of the operations in OpenFOAM are

capable of running in parallel, which enables users to take advantage of parallel

computing. OpenFOAM is an object oriented code based on C++ and its open source

nature gives users the freedom to customize and expand the existing libraries [57].

The Repository Release version of OpenFOAM (2.2.x) was used during this study

[58].

An OpenFOAM simulation is defined by a group of subdirectories, each

containing specific files, as shown in Fig.1. The file structure of an OpenFOAM case is

composed of a system directory, where parameters associated with the solution

procedure are defined, a constant directory, which contains mesh information and

physical properties for the case, and the time directories, where initial/boundary

conditions and results for each recorded time step are saved.

 19

b. Turbulence Models in OpenFOAM

This subsection will describe the turbulence models that were used in this

study. The transport equations for three different EVMs and an RST model

implemented in OpenFOAM will be presented. The EVMs are the Spalart-Allmaras

(SA) model [59], the Menter Shear Stress Transport (SST) model [60], Wilcox’s 2006

version of the k-ω model [6], and the RST model is a version of the Launder-Reece-

Rodi isotropization of production (LRR-IP) model [61]. The turbulence model

equations for all EVMs that were originally implemented in OpenFOAM did not

match the “standard” definitions found on NASA’s Turbulence Modeling Resource

website [51]. As a result, all model equations in OpenFOAM were modified to

represent the exact definitions found on NASA’s Turbulence Modeling Resource

website. A brief description of the changes made to each model is included at the

end of the model’s subsection. The LRR turbulence model in OpenFOAM was

modified to include the models that were described in Section I. Source code for all

of the turbulence models can be found in Appendix B.

Spalart-Allmaras Model

A popular one-equation EVM is the Spalart-Allmaras model, which solves a

transport equation for an eddy-viscosity-like variable, ̃. According to [62], the

standard version of the transport equation for ̃ is

 ̃

 ̅

 ̃

 ̃ ̃ *

 + (
 ̃

)

[

(̃

 ̃

)

 ̃

 ̃

]

 20

The closure functions are defined as

 ̃

 ̃
 ̃

 √

(
 ̅

 ̅

)

 *

 +

 [
 ̃

 ̃
]

where d is the distance from the field point to the nearest wall.

The eddy viscosity is computed from

 ̃

The values for the model coefficients can be found in Table 1.

 21

0.1355 0.622 0.41

1.2 0.5 2

Table 1: Spalart-Allmaras model coefficients

Changes to the SpalartAllmaras model in OpenFOAM were the following:

 Modified OpenFOAM’s definition of the function to be in accordance with

NASA’s.

 Eliminated function and coefficient found in OpenFOAM.

 Added , , and as described in the equations and table above.

 Modified ̃ definition to take into account changes listed above.

 Modified ̃ transport equation to take into account changes listed above.

 22

Menter Shear Stress Transport Model

The SST model is a two-equation EVM model that solves transport equations

for k and . According to [63], the standard version of the incompressible transport

equation for turbulent kinetic energy is

 ̅

*

+

Transport of the specific turbulence dissipation rate is described by

 ̅

*

+

with model functions defined as

 ̅

(
 ̅

 ̅

)

 √

(
 ̅

 ̅

)

 (
√

)

 23

 * (
√

)

+

 (

)

where the variable d is the distance from the field point to the nearest wall. The

constants in the transport equations that don’t have a number as part of the

subscript are obtained through a blending function of the following form:

where is the value of the constant without a number in the subscript and and

 represent constants 1 and 2. For example, is defined as

Values for the constant coefficients can be found in Table 2 and the remaining model

coefficients are defined as

√

√

0.85 1 0.5 0.856 0.075 0.0828 0.41 0.31

Table 2: Menter SST model coefficients

Changes to the kOmegaSST model in OpenFOAM were the following:

 Modified OpenFOAM’s definition of the , and functions to be

in accordance with NASA’s.

 Eliminated and functions found in OpenFOAM.

 Modified definition to be in accordance with NASA’s.

 24

 Modified

 term and the sign of the last term in the transport equation

to be in accordance with NASA.

 Substituted in k transport equation with as defined above.

 25

Wilcox 2006 version of k-ω

Another turbulence model used in this study is Wilcox’s 2006 version of k-ω.

Similarly to SST, Wilcox’s k-ω, which will be referred to as k-ω for the remainder of

this document, is a two-equation model that also solves for k and ω. According to

[64], the incompressible transport equations for k and ω are

 ̅

*(

)

+

and

 ̅

*(

)

+

where

 ̅

(
 ̅

 ̅

)

 ̃

 ̃ [√

]

The constant model coefficient values can be found in Table 3. Additional

relationships are defined as

 |

|

(
 ̅

 ̅

)

 26

{

It should be noted that to model 2-D flows, Pope’s correction, denoted by , should

be set equal to zero. This concludes the description of one- and two-equation

models that were considered in this study.

0.6 0.5 0.09

Table 3: k-ω model coefficients

Changes to the kOmega model in OpenFOAM were the following:

 Modified definition to make it a variable constant.

 Changed value of model coefficient from 0.5 to 0.6.

 Added and definitions as listed above.

 Modified definition to include ̃ as defined by NASA.

 Added as the last term in the transport equation.

 27

Launder-Reece-Rodi Isotropization of Production Model

The transport equations for the LRR-IP model are composed of 7 equations: a

transport equation for each of the six independent Reynolds stresses, and a

transport equation for the scalar dissipation. All of the Reynolds stress equations

have the same form so only a generic indexed equation will be presented. Different

Reynolds stress components can be obtained by changing the value of the indices.

Substituting the models discussed in Section I, the Reynolds stress transport

equation implemented in OpenFOAM takes the following form:

 ̅̅ ̅̅ ̅̅

 ̅

 ̅̅ ̅̅ ̅̅

*

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅

̅̅ ̅̅ ̅̅ ̅
+

⏟

 (

 ̅̅ ̅̅ ̅̅
 ̅

 ̅̅ ̅̅ ̅̅
 ̅

)

⏟

 (

 ̅̅ ̅̅ ̅̅

)
⏟

 ((

))⏟

where the components of are defined as

(

 ̅̅ ̅̅ ̅̅

)

 (

)

[

 ̅̅ ̅̅ ̅

(

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅)]

[

()]

An extra term has been added to the component to account for near wall effects

[20]. The term was included to eliminate the necessity of using wall functions in

OpenFOAM.

 28

The transport equation for dissipation is

 ̅

*(

 ̅̅ ̅̅ ̅̅)

+

where

 ̅̅ ̅̅ ̅̅
 ̅

 [(

)

]

 *

+

 √

Similarly to the Reynolds stress equation, the last term in the dissipation

equation is present to account for near wall effects [20]. Model coefficients for the

LRR-IP model can be found in Table 4.

0.2 1.8 0.6 0.3 0.3 0.15 1.44 1.92

Table 4: LRR-IP model coefficients

Changes to the LRR model in OpenFOAM were the following:

 Incorporated function to calculate normal distance to nearest wall.

 Added wall term to dissipation tensor definition and to dissipation equation.

 Added wall reflection terms to Reynolds stress equation.

 Implemented
 definition.

 Added calculation of wall proximity functions , and as well as .

 29

c. Numerical Methods

OpenFOAM uses the finite volume method (FVM) to obtain a numerical

solution for flow problems. In FVM, the solution to the partial differential equations

that describe the flow behavior is approximated by subdividing the computational

domain into a finite number of control volume elements and applying conservation

laws to each of them.

The process of subdividing continua into finite, or discrete, quantities is

known as discretization. A general flow problem is generally composed of three

types of discretization: spatial, temporal, and equation. Spatial discretization defines

the solution space by specifying a set of points that bound the region in which the

problem is solved. Temporal discretization is related to transient problems and it

describes how the length of the time that spans the problem is divided into a finite

number of smaller time steps. Equation discretization describes the way in which

conservation laws are represented through a finite set of algebraic equations at

specific locations defined by spatial discretization.

After a finite number of equations describing conservation laws are

generated, they must be solved to find the values of the variables of interest for a

given flow. Due to the nature of the partial differential equations that describe the

fluid’s behavior, a set of non-linear coupled equations is usually obtained. These

complications make obtaining a solution to the system impossible unless iterative

solution methods are employed.

 30

Due to the immense amount of research that has been done in discretization

and solution algorithms, an attempt to discuss each of them in detail in a single

document is futile. Only the information pertinent to the flow cases treated in this

study will be presented in the following subsections. The details of all discretization

and solution methods available in OpenFOAM can be found Chapters 2 and 4 of [65],

and [66], respectively.

Discretization

Spatial Discretization

The author did not perform spatial discretization in OpenFOAM. Instead,

discretized representations of the flow geometries, discussed in detail in Section II,

were obtained from NASA’s Turbulence Modeling Resource website [50].

Temporal Discretization

The velocity of the flows treated in this study does not vary with time. Since

the flows are steady, temporal discretization is not necessary. However, a pseudo-

time is introduced in the OpenFOAM simulations for two reasons: i) to control the

amount of iterations performed by the solver and ii) to specify the frequency of the

output of the solution to the computers hard disk. OpenFOAM’s controlDict

dictionary, found in the case’s system directory, is used to control the

aforementioned i) and ii). This is achieved through the definition of values for the

endTime, deltaT, writeControl, and writeInterval options in controlDict. A sample of

controlDict has been included in Appendix C.

 31

Equation Discretization

In OpenFOAM, discretization schemes used to approximate components of

the conservation and turbulence model equations are specified through the

fvSchemes dictionary found in the case’s system directory. A brief explanation of

the main keywords used in fvSchemes can be found in Table 5. A specific numerical

scheme can be set as the default setting for all terms belonging to a certain category

of the equations. For example, the transient term in all equations can be discretized

using the Crank-Nicholson method. Additionally, specific components of each

equation can be assigned a specific numerical scheme for

discretization/interpolation, which gives the user full control over the

computational representation of the flow equations. Using different discretization

scheme settings for specific equation components can have an effect on the stability

and accuracy of the solution.

The flow cases studied are steady, so the temporal derivatives in all

equations are not taken into account. The second-order Gaussian integration

scheme is used for every term in momentum and turbulence model equations that

involves a derivative. Since OpenFOAM calculates values at each element’s center,

values have to be interpolated from cell to face centers. The central difference

interpolation is used for all gradient terms. Upwind differencing is used for

convective terms in all equations, but the scheme’s order of accuracy varies between

the momentum and turbulence transport equations: the second-order scheme is

applied to the terms in the momentum equations and the first-order scheme is used

in the turbulence transport equations. The central difference interpolation scheme

 32

is used for the diffusion coefficient in all diffusive terms, and an explicit second-

order non-orthogonal correction method is employed for surface-normal gradients

Gaussian integration is the only choice of discretization for integration in

OpenFOAM and it is specified as Gauss for all terms that require integration. The

central difference interpolation scheme used for gradients is referred to as linear in

OpenFOAM. Similarly, second- and first- order interpolation schemes used for the

convective terms are referred to as linearUpwind, and upwind, respectively. The

non-orthogonal correction method used in surface-normal gradients is defined as

corrected. More details on the numerical schemes implemented in OpenFOAM can

be found in Chapter 4 of [66]. A copy of fvSchemes has been included in Appendix C.

Solution Method

As was previously mentioned, the solution of the resulting set of discretized

equations describing flow behavior requires iterative methods. A popular iterative

method for solving incompressible steady-state problems in CFD is the Semi-

Implicit Method for Pressure Linked Equations (SIMPLE)[67].

The iterative procedure in the SIMPLE algorithm consists of approximating

the velocity field by solving momentum equations using pressure values from a

previous iteration or initial conditions. The velocities that are obtained from the

momentum equations do not satisfy the continuity equation unless the pressure

field is corrected. The pressure field is corrected by solving a Poisson equation for

pressure. Updating the pressure field causes the velocity and pressure fields to obey

continuity but not momentum. Velocity values are then recalculated using the

 33

corrected pressure values to satisfy the momentum equations. The procedure

described above is repeated until the velocity and pressure fields obey the

continuity and momentum equations. A basic outline of the algorithm will be

presented next but an in-depth discussion of the philosophy of pressure correction

methods and the SIMPLE algorithm are available in [67] and in Chapter 6 of [68].

The steps in the SIMPLE algorithm can be outlined in the following way [69]:

1. Set the boundary conditions.

2. Compute the gradients of velocity and pressure.

3. Solve the discretized momentum equation to compute the intermediate

velocity field.

4. Compute the uncorrected mass fluxes at cell faces.

5. Solve the pressure correction equation to produce new/corrected pressure

values.

6. Update the pressure field using an under-relaxation factor.

7. Update the boundary values using the pressure corrections.

8. Correct the face mass fluxes.

9. Calculate corrected cell velocities using the pressure gradient of the pressure

corrections.

The SIMPLE algorithm was used to obtain the results discussed in Section III.

OpenFOAM’s incompressible version of SIMPLE is called simpleFoam. The settings

for simpleFoam are specified through the fvSolution dictionary, located in the case’s

system directory. The first simpleFoam setting, located below the SIMPLE header

 34

in fvSolution, is defined by the keyword nNonOrthogonalCorrectors. The

nNonOrthogonalCorrectors setting accounts for non-orthogonality in the mesh and

its use is not necessary in this work because the meshes, described in detail in

Section II, are orthogonal. Under-relaxation is used to improve the numerical

stability of a computation by limiting the amount by which a variable can change

from one iteration to the next. Under-relaxation factors vary from 0 to 1, with 1

corresponding to no under-relaxation. In the fvSolution dictionary, the keyword

relaxationFactors is used to define under-relaxation factors for each flow variable.

The relaxationFactors value for the pressure field varies from 0.2 to 0.3. For the

velocity and turbulence equations, the under-relaxation values range from 0.3 to 0.7.

The under-relaxation value used for the flow variables depended on simulation

factors such as flow geometry, mesh quality, accuracy of numerical schemes, and

turbulence model.

The type of linear solvers and solver tolerances used for each flow variable

are also defined in fvSolution. The solver category specifies the type of linear-solver

used to solve the set of linear equations for each discretized equation. A

preconditioned bi-conjugate gradient (PBiCG) solver was used for all variables with

the exception of pressure, for which a preconditioned conjugate gradient (PCG)

solver was used. PBiCG is used to solve asymmetric matrices while PCG is used for

symmetric matrices. The use of a preconditioned solver requires the specification of

a preconditioner. The faster diagonal incomplete-Cholesky (FDIC) preconditioner

was selected for all flow variables.

 35

Due to the iterative nature of the linear solvers specified in solver, the

reduction of the solution error from one iteration to the next has to be evaluated in

order to establish the accuracy of the current solution. In OpenFOAM, the linear

solver will stop iterating if the measure of the solution error, also known as the

residual, satisfies a limit imposed by the user. OpenFOAM offers three options to

stop the linear solver, all of which are defined in fvSolution. The three available

options are:

1. The residual falls below the solver tolerance, defined as tolerance.

2. The ratio of current to initial residuals falls below the solver relative

tolerance, defined as relTol.

3. The number of iterations exceeds a maximum number of iterations, defined

as maxIter (optional).

The results presented in Section III were obtained by setting the tolerance value as

 and the relTol value as 0. A copy of the fvSolution file has been included in

Appendix C.

Table 5: fvSchemes keywords [66]

 36

d. Computational Domain

The geometry for two benchmark flow cases will be discussed in this section.

A description of the computational domain for the two-dimensional flow over a flat

plate with zero pressure gradient will be presented first. A description of the

geometry for a two-dimensional bump in a channel will follow after.

A number of structured 2-D grids obtained from NASA’s Turbulence

Modeling Resource website [50] were used to perform the flow simulations for both

flow cases. OpenFOAM solves flow equations in all three spatial dimensions. To

model the flow cases as 2-D in OpenFOAM, the two-dimensional grid must be

extended one unit in the third dimension, which creates extra domain boundaries.

For clarity, these extra boundaries will be referred to as front and back.

OpenFOAM’s empty boundary condition is assigned to front and back. As a result,

the values of flow variables and their corresponding fluxes in the front-to-back

direction are set equal to zero.

The meshes used in this study are nested, meaning that each coarser grid is

exactly every-other-point of the finer grid [50]. The naming convention for the

meshes consists of the amount of nodes in the x- and y- directions. Note that the

computational domains are not defined in terms of meters, or feet, but in terms of

dimensionless units. All meshes are available for download in PLOT3D format.

Additional information about PLOT3D can be found at [70]. OpenFOAM’s

plot3dToFoam mesh conversion utility was used to import the PLOT3D mesh files

into OpenFOAM.

 37

2D Zero pressure gradient flat plate

The computational domain for the flat plate was 2.331 units in the x- and y-

directions. The flat plate wall boundary starts at x = 0 and ends at x = 2. The plate is

positioned at . The top boundary of the computational domain is located at y =

1. The grids used for the flat plate have vertex dimensions of 3525, 6949, 13797,

273193, and 545385 in the x- and y-directions, respectively. An image of the

6949 grid can be found in Figure 2. Figure 2 shows that mesh biasing is used in the

wall-normal direction and near the plate leading edge. The finest grid has a

minimum wall spacing of 510-7, giving an average value of about 0.07. The

coarsest mesh has a minimum wall spacing of 8.3210-6, which gives an average

 value of about 1.7. The variable is a non-dimensional wall distance used in

wall-bounded flows to describe the regions of a boundary layer in a generalized

manner applicable to different flows. The mathematical representation of is

where represents the friction velocity, y represents the distance from the wall,

and represents the kinematic viscosity of the fluid.

2D Bump-in-channel

The bump-in-channel case is similar to the flat plate case that was previously

mentioned, except wall curvature is present. The curvature present in the geometry

causes pressure gradients. The computational domain measures 51.55 units in the

x- and y-directions. The wall boundary starts at location x = 0 and y = 0. The bump

 38

starts at x = 0.3, and y = 0. The top of the bump is at x = 0.75 and y = 0.05. The bump

is symmetrical. The wall downstream of the bump ends at x = 1.5. The bump profile,

shown in Figure 3, is defined by

 {
 ((

))

The upstream and downstream farfields extend 25 units from the viscous wall. The

upstream boundary is located at x = -25 and the downstream boundary is located at

x = 26.5. The top boundary of the computational domain is located at y = 5. The grids

for the bump-in-channel flow have vertex dimensions of 8941, 17781, 353161,

705321, and 1409641 in the x- and y-directions, respectively. An image of the

viscous wall section of the computational domain for the 17781 grid can be found

in Figure 4. Similarly to the flat plate case, mesh biasing is used in the wall-normal

direction and near the leading and trailing edges of the wall region. The finest grid

has a minimum wall spacing of 510-7, giving an average value of about 0.07. The

coarsest mesh has a minimum wall spacing of 8.1410-6, which gives an average

 value of about 0.95.

 39

e. Boundary Conditions

 The flow cases were run at a Mach number of 0.2. As is noted in [50], the

Mach number of the flow is below 0.3, which allows for incompressible treatment.

However, the cases’ intended use is compressible code verification. According to

[50], using an incompressible code may yield results that are close, but not quite the

same as the grid is refined.

In an OpenFOAM simulation, the boundary and initial conditions for each

flow variable are specified in the case’s 0 time directory.

2D Zero pressure gradient flat plate

The flat plate case was run at a Reynolds number (based on a reference

length of 1) of 5 million. Figure 5 shows the boundary conditions suggested by NASA

for the flat plate flow case. A fixed velocity value of 69.3 m/s, corresponding to a

Mach number of 0.2, is used as the inlet boundary condition. For the pressure at the

inlet and plate boundaries, OpenFOAM’s Neumann-type boundary condition, known

as zeroGradient, is assigned. A no-slip boundary condition is used on the adiabatic

plate surface for the velocity. The outlet is assigned the zeroGradient condition for

the velocity and OpenFOAM’s Dirichlet-type boundary condition, fixedValue, for

pressure (1 atm). The symmetry boundary condition is applied at x < 0 for all

variables. The zeroGradient boundary condition is assigned as to the top boundary

for all variables. Temperature boundary conditions are not necessary because the

simulation is run as incompressible. Boundary conditions for turbulence variables

 40

are model-specific and will be discussed in detail in Section III for each turbulence

model.

2D Bump-in-channel

The bump-in-channel case was run at a Reynolds number (based on a

reference length of 1) of 3 million. Figure 6 shows the boundary conditions

suggested by NASA for the bump-in-channel flow case. A fixed velocity value of 69.3

m/s, corresponding to a Mach number of 0.2, is used as the inlet boundary condition.

For the pressure at the inlet and wall boundaries zeroGradient is assigned. A no-slip

boundary condition is used on the adiabatic wall surface for the velocity. The outlet

is assigned the zeroGradient condition for the velocity and fixedValue for pressure

(1 atm). The symmetry boundary condition is applied at x < 0 and x > 1.5 for all

variables. The zeroGradient boundary condition is assigned as to the top boundary

for all variables.

 41

III. Results & Discussion

Results of the OpenFOAM simulations will be presented in this section. The

results obtained with the incompressible EVMs will be compared with those

obtained by NASA with their CFL3D and FUN3D CFD codes. The results from CFL3D

and FUN3D, available on the Turbulence Modeling Resource website [50],

correspond to compressible simulations. The LRR-IP model will be compared with

DNS [31] and experimental [22] data. Results for the zero pressure gradient flat

plate case will be presented first and the 2D bump-in-channel will follow after. Some

of the plots in this section have been nondimensionalized to be in accordance with

the source of the data used for comparison.

Flow variable profiles obtained with CFL3D and FUN3D are only available for

the finest mesh in each flow case: 545x385 for the flat plate and 1409x641 for the

2D bump. Friction coefficient values obtained from different mesh sizes were

analyzed to verify grid convergence of the solution and to determine how

OpenFOAM results compared to those obtained with CFL3D and FUN3D. Grid

convergence of the solution can be determined by studying the change in the value

of the friction coefficient profile at a given point between meshes. The friction

coefficient value was obtained near the middle of the flat plate at and at the top of

the bump. The corresponding data sampling locations for the flat plate and bump

are , and , respectively. The friction coefficient profile across the

entire solid wall region of each flow case was also compared between meshes.

 42

a. Zero Pressure Gradient Flat Plate

Spalart-Allmaras

In addition to the specification of the initial and boundary conditions for the

velocity and pressure fields, the SA model requires a definition of the turbulent

viscosity, , and the Spalart-Allmaras variable, ̃. The and ̃ values used for the

initial and boundary conditions at the farfield and wall regions were calculated as

suggested by NASA in [62]:

 ̃

 ̃ ̃

 ̃

where

 ̃

The values calculated above were used for the SST and k-ω cases.

Flow profiles for the eddy viscosity, mean velocity, and friction coefficient are

shown in Figures 7a-d. Some of these plots have been nondimensionalized to be in

accordance with NASA’s website. Figure 7a shows the mean velocity profile

nondimensionalized by the freestream velocity value as a function of distance

normal to the plate. The dimensionless flow velocity, , is plotted as a function of

the nondimensional wall distance, , in Figure 7b. The nondimensional velocity is

defined as

 43

where u is the mean value of the flow velocity and is the friction velocity. Figure

7c shows the eddy viscosity profile as a function of the distance normal to the wall.

Figure 7d shows the skin friction coefficient profile across the entire plate.

OpenFOAM results for flow over a flat plate that were obtained with the SA model

are in agreement with CFL3D and FUN3D for all of the profiles.

Figure 8a shows the value of obtained at with the SA model for

all of the meshes. Each marker on Figure 8a represents a mesh. On the horizontal

axis of Figure 8a, the variable h represents the characteristic mesh length and N is

the number of elements in the mesh. For the finest mesh, there is a 1.0% difference

between the friction coefficient value calculated with OpenFOAM’s incompressible

solver and those calculated with CFL3D’s and FUN3D’s compressible solvers.

However, when incompressible solver results are compared, the difference between

OpenFOAM and FUN3D is only 0.16%. The friction coefficient profiles across the

entire plate for each mesh, depicted in Figure 8b, show that the variation of the

profile obtained with the SA model from mesh to mesh is negligible for the flat plate

case.

SST

In addition to the specification of the initial and boundary conditions for the

velocity and pressure fields, the SST model requires a definition of the turbulent

viscosity, , turbulence kinetic energy, k, and specific dissipation rate, . The initial

and boundary condition values for the turbulence kinetic energy and specific

 44

dissipation rate at the farfield and wall regions were calculated in accordance with

[63]:

In Eqs.23-25 a represents the local speed of sound, represents the fluid’s density,

 represents the fluid’s dynamic viscosity, represents the fluid’s kinematic

viscosity, is a model constant with a value of 0.075, and represents the

distance from the wall to the nearest grid point.

Flow profiles for the mean velocity, eddy viscosity, skin friction coefficient,

turbulence kinetic energy, and specific dissipation rate are shown in Figures 9a-f.

Figures 9a-d are arranged in the same order as they were for the SA results.

Nondimensional flow profiles for the turbulent kinetic energy and specific

dissipation rate are shown in Figures 9e,f. Similarly to the SA results, OpenFOAM

results obtained with the SST model are in agreement with CFL3D and FUN3D for all

of the profiles. There is a small discrepancy between results obtained with

OpenFOAM and CFL3D/FUN3D for values of k+ and ω very close to the wall. The

variable k+ represents nondimensional turbulent kinetic energy and it is defined as

 45

In the specific dissipation rate profile, shown in Figure 9f, the OpenFOAM result is in

better agreement with CFL3D than FUN3D.

Figure 10a shows the value of obtained at with the SST model for

all of the meshes. For the finest mesh, there is a 1.3% difference between the results

obtained with OpenFOAM’s incompressible solver and those obtained with CFL3D’s

and FUN3D’s compressible solvers. The difference between results obtained with

OpenFOAM’s and FUN3D’s incompressible solvers is 0.27%. A comparison of the

friction coefficient profile for each mesh can be found in Figure 10b, which shows

that the variation of the profile obtained with the SST model much more

pronounced than for the SA model.

k-ω

The initial and boundary values for the turbulence variables for the k-ω

simulation were the same as those used in the SST case. Flow profiles for the mean

velocity, eddy viscosity, skin friction coefficient, turbulence kinetic energy, and

specific dissipation rate and are shown in Figure 11a-f. The flow profiles are

arranged in the same order as they were in the SST results. Results obtained with

the k-ω model in OpenFOAM are in agreement with CFL3D and FUN3D for all of the

profiles. Similarly to the SST results, a small discrepancy is seen between

OpenFOAM and CFL3D/FUN3D for values of k+ and ω very close to the wall.

Contrary to the SST case, the OpenFOAM solution is in better agreement with the

near wall results obtained with FUN3D for the specific dissipation rate plot shown

in Figure 11f.

 46

Figure 12a shows the value of obtained at with the k-ω model for

all of the meshes. Only results calculated with CFL3D’s and FUN3D’s compressible

solvers were available for the k-ω model. On the finest mesh, there is a 1.0%

difference between OpenFOAM’s incompressible and CFL3D/FUN3D compressible

results. The incompressible results obtained with OpenFOAM’s k-ω should

presumably be within a fraction of a percent of FUN3D’s incompressible solution, if

provided. The reason supporting this claim is that a percentage difference of about

1.0% was seen between CFL3D/FUN3D compressible results and OpenFOAM’s

incompressible results for the SA and SST cases, but the difference between

incompressible solvers was on the order of a fraction of a percent. A comparison of

the friction coefficient profiles for all meshes is shown in Figure 12b. The variation

of the profile obtained with the k-ω model from mesh to mesh is very similar to that

corresponding to SST.

LRR-IP

As was previously mentioned, data for the LRR-IP model was not available on

NASA’s Turbulence Modeling Resource website. As a result, OpenFOAM results were

compared to DNS [31] and experimental [22] data. The DNS and experiment were

carried out at a momentum-thickness-based Reynolds number of 5200. Using the

Reynolds number and values of measured flow variables found in [22], the flow

variable values for the OpenFOAM simulation were calculated using the following

relationships (See Table 6 for values):

 47

 ∞

(∞)

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅

where I is the turbulence intensity and l is a characteristic length scale. The values of

I and l depend on the wind tunnel where the experiment was conducted.

 ∞

 ̅̅ ̅̅ ̅̅

 18.95

Table 6: Flow variable values for LRR-IP simulation

Figures 13a-f compare results obtained with OpenFOAM against those

published in [22] (shown as Exp) and [31] (shown as DNS). All profiles have been

nondimensionalized to enable the inclusion of the DNS data because the DNS was

performed at a mean flow velocity that was much smaller than the experiment and

OpenFOAM cases (see [22] for details). There is close agreement between

OpenFOAM and experimental/DNS data for the velocity profiles shown in Figure

13a. However, there is a noticeable disagreement between OpenFOAM and the

experimental/DNS data in the rest of the plots. For example, Figure 13b shows that

OpenFOAM results have much lower values than the experimental/DNS data in

the wake region of the boundary layer. Each of the Reynolds stress profiles in

Figures 13c-f were nondimensionalized by the value of
 corresponding to each

flow case. OpenFOAM doesn’t seem to be able to produce the peaks seen in Figures

 48

13c,f, which could be a cause of the results’ disagreement. The

 ̅̅ ̅̅ ̅̅
and

 ̅̅ ̅̅ ̅̅

profiles obtained with OpenFOAM show close agreement with the experimental and

DNS data with the exception of the absence of the large peaks. Data for

 ̅̅ ̅̅ ̅̅
was

only available for the DNS. The author of this document believes that the main

contributor to the discrepancy is OpenFOAM’s overestimation of

 ̅̅ ̅̅ ̅̅
 very close to

the wall, which can be seen in Figure 13e. This error propagates to

 ̅̅ ̅̅ ̅̅
, shown in

Figure 13d, which is closely related to the wall shear stress used to define . The

overestimation of

 ̅̅ ̅̅ ̅̅
 causes the value of to be larger than it should, which

leads to the aforementioned deficit. The reason for the overestimation of

 ̅̅ ̅̅ ̅̅
seems to be inherent to OpenFOAM’s LRR turbulence model because similar

results are obtained when the default model is used, even if wall functions are used.

The cause for the difference in the results is not fully understood.

 49

b. 2D Bump-In-Channel

Spalart-Allmaras

An approach similar to that of the flat plate was used to define initial and

boundary conditions for the bump. The value of some of the flow variables is slightly

different because the bump simulation was performed at a length based Reynolds

number of 3 million instead of the 5 million value used for the plate. The farfield and

wall values of and ̃ were calculated as suggested by NASA in [62]:

 ̃

 ̃ ̃

 ̃

where

 ̃

The values calculated above were used for the SST and k-ω cases.

Profiles for the mean velocity, eddy viscosity, and skin friction coefficient are

shown in Figures 14a-d. Results for all profiles were obtained at . An

additional velocity profile at an x-location of is also used to assess the

accuracy of OpenFOAM’s results. The velocity profiles shown in Figures 14a,b are in

close agreement with CFL3D and FUN3D results. On Figure 14a, the variable yo on

the vertical axis represents the height of the bump. The results for the eddy viscosity

and skin friction coefficient profiles, shown in Figures 14c,d, are slightly different at

the maximum value of both profiles. OpenFOAM overestimates the eddy viscosity by

1.9%. Figure 14d shows oscillations at and an over prediction of the

 50

friction coefficient on the downstream side of the bump. Comparing the skin friction

coefficient results obtained on the 1409x641 with what was obtained on the

705x321 mesh, shown in Figure 14e, it can be concluded that the over prediction

downstream of the bump appears to be inherent to the 1409x641 mesh. The

oscillations seen at the top of the bump are also reduced in the profile obtained on

the 705x321 mesh.

Figure 15a shows the value of that was obtained with the SA model for all

of the meshes. Each marker on Figure 15a represents the value obtained at

 for each mesh. On the finest mesh, there is a 1.4% difference between

OpenFOAM and CFL3D and FUN3D compressible results. Incompressible results

were not available for CFL3D and FUN3D so they could not be compared with

OpenFOAM. The large percent difference between the finest mesh can be attributed

to the oscillations seen at the top of the bump on Figure 14d. The difference

between the value obtained with OpenFOAM and CFL3D/FUN3D on the 705x321

mesh is 0.45%, which is significantly less than the difference for the 1409x641

result. The evolution of the skin friction coefficient profile as the mesh is refined is

shown in Figure 15b. The SA model’s results for flow over the 2D bump shows

greater sensitivity of to the mesh size than it did for the flat plate.

SST

The farfield and wall turbulence kinetic energy and specific dissipation rate

values were calculated in accordance with [63]:

 51

In Eqs.26-28 a represents the local speed of sound, represents the fluid’s density,

 represents the fluid’s dynamic viscosity, represents the fluid’s kinematic

viscosity, is a model constant with a value of 0.075, and represents the

distance from the wall to the nearest grid point.

Flow profiles for the mean velocity, eddy viscosity, skin friction coefficient,

turbulence kinetic energy, and specific dissipation rate are shown in Figures 16 a-f.

The overall trends in the OpenFOAM results obtained with the SST model on the

1409x641 mesh are in agreement with CFL3D and FUN3D for all of the profiles.

However, the values in Figures 16b-d are not exactly the same as the ones obtained

with NASA’s software. The velocity profile downstream of the bump, shown on

Figure 16b, has the same shape as the one obtained with CFL3D but it seems to be

shifted to the right. The eddy viscosity shape is in agreement with CFL3D and

FUN3D but OpenFOAM under predicts the values on this mesh. The difference in the

eddy viscosity value between OpenFOAM and CFL3D/FUN3D on the 1409x641

mesh is 4.6%. A similar over-predictive behavior downstream of the bump observed

in the SA skin friction coefficient results is also present in SST results. The

oscillations seen at the top of the bump on the skin friction coefficient plot for the SA

 52

model are almost nonexistent for SST but the value is over estimated. There is a

small discrepancy between OpenFOAM and CFL3D/FUN3D for values of k+ very

close to the wall. In the specific dissipation profile, shown in Figure 16f, the

OpenFOAM solution is in better agreement with NASA’s codes near the wall for the

bump than it was for the flat plate. The same profiles shown in Figure 16 are shown

in Figure 17 for the 705x321 mesh. The difference in eddy viscosity value for this

mesh is 1.0%, which is considerably less than the difference corresponding to the

result obtained on the 1409x641 mesh. Based on the agreement between

OpenFOAM and NASA’s codes shown in Figure 17, it has been determined that the

discrepancy between results shown in Figure 16 may be caused by solver

limitations in OpenFOAM. Personal communication with the NASA employee in

charge of the TMR website revealed that a similar problem has been encountered by

other researchers on the 1409x641 mesh.

Figure 18a shows the value of that was obtained with the SST model for all

of the meshes. Each marker on Figure 18a represents the value obtained at

 for each mesh. On the finest mesh, the results show a 1.3% difference

between OpenFOAM’s incompressible solver and CFL3D’s and FUN3D’s

compressible solvers. The large percent difference between the finest mesh can be

attributed to the over prediction of the skin friction coefficient value seen at the top

of the bump on Figure 16d. The difference between the values obtained with

OpenFOAM and CFL3D/FUN3D on the 705x321 mesh is 0.88%, which is less than

the difference for the 1409x641 result. The evolution of the skin friction coefficient

profile with mesh size is shown in Figure 18b. Similar sensitivity to mesh size on the

 53

friction coefficient profile was seen for flows over the flat plate and the bump when

using the SST model.

k-ω

The initial and boundary values for the turbulence variables for the k-ω

simulation were the same as those used in the SST case. The same profiles shown in

the previous section are shown in Figure 19 for the 1409x641 mesh. The velocity

profiles obtained with OpenFOAM using the k-ω model, shown in Figures 19a,b, are

in agreement with CFL3D and FUN3D. There is an over prediction of 1.7% in the

eddy viscosity profile shown in Figure 19c. The skin friction coefficient profile for

the k-ω model is shown in Figure 19d. The oscillations seen at the top of the bump

for the skin friction coefficient in the SA and SST results aren’t present in the results

obtained with k-ω. The over prediction of the skin friction coefficient downstream of

the bump is reduced when using the k-ω model, but it is not eliminated completely.

The k+ values near the wall in the profile shown in Figure 19e deviate from CFL3D

and FUN3D results as they did for the SST case. The specific dissipation rate profile

shown in Figure 19f matches CFL3D and FUN3D very closely. Profiles obtained on

the 705x341 mesh have also been provided for comparison in Figure 20. The main

difference between the results obtained on the 705x341 and the 1409x641 meshes

is seen in the eddy viscosity plot on Figure 20c. The result corresponding to the

705x341 mesh is over predicted by 3.5%, which makes the error about twice as

large as what was obtained on the 1409x641 mesh. Similarly to the SA and SST

results, the skin friction coefficient profile calculated on the 705x341 mesh, shown

 54

in Figure 20d, does not show an over prediction downstream of the bump. Profiles

for k+ and ω shown in Figures 20e,f] match CFL3D and FUN3D results.

Figure 21a shows the value of that was obtained with the k-ω model for all

of the meshes. Each marker on Figure 21a represents the value obtained at

 for each mesh. There is a 0.97% difference between results obtained with

OpenFOAM’s incompressible solver and CFL3D’s and FUN3D’s compressible solvers

on the 1409x641 mesh. The percent difference corresponding to the k-ω results is

less those corresponding to SA and SST results. The difference between the

values obtained with OpenFOAM and CFL3D/FUN3D on the 705x321 mesh is 0.92%.

The evolution of the skin friction coefficient profile with mesh size is shown in

Figure 21b. The sensitivity to mesh coarseness is greater for the k-ω model than for

SA and SST results. Comparing the change in the friction coefficient profile between

the coarsest and finest mesh for each model verifies the previous claim.

 55

IV. Conclusion

 Computational fluid dynamics simulations were performed with OpenFOAM

for two different benchmark flow cases developed by the TBMWG and NASA. The

flow cases were a zero pressure gradient boundary layer over a flat plate and flow

over a two-dimensional bump in a channel. Five nested meshes for each flow case

were obtained from NASA’s Turbulence Modeling Resource website. The results

obtained with OpenFOAM were compared with those obtained with high-fidelity

NASA codes CFL3D and FUN3D.

Flow simulations for the zero pressure gradient flat plate were run with the

Spalart-Allmaras, SST, k-ω, and LRR-IP turbulence models. Only the SA, SST, and k-ω

results were available for comparison on NASA’s TMR website. Mean velocity, eddy

viscosity, skin friction coefficient, turbulent kinetic energy, and specific dissipation

profiles that were obtained with OpenFOAM for incompressible flow over the zero

pressure gradient on the 545x385 mesh were in agreement with NASA’s

compressible results. Mesh convergence results showed that the largest difference

in skin friction coefficient that was observed between OpenFOAM’s incompressible

results and NASA’s compressible results corresponded to the SST simulation and it

was 1.3%. The difference for the SA and k-ω models was of 1%. The difference in

incompressible-to-incompressible results for the SA and SST models was of 0.16%,

and 0.27%, respectively. Results obtained with the LRR-IP model in OpenFOAM

were compared with experimental and DNS data. The velocity profile was in

agreement with experimental and DNS results but discrepancies were observed in

the y+-u+ profile and in all Reynolds stress profiles. The cause of the discrepancies is

 56

still not fully understood but it appears to be inherent to OpenFOAM’s default LRR

turbulence model.

Flow simulations for the 2D bump-in-channel were run with the Spalart-

Allmaras, SST, and k-ω turbulence models. Only compressible results were available

for this case on NASA’s TMR website. The overall trends for the mean velocity, eddy

viscosity, skin friction coefficient, turbulent kinetic energy, and specific dissipation

profiles that were obtained with OpenFOAM were in agreement with NASA.

However, an over prediction of the skin friction coefficient was seen on the top and

downstream regions of the bump for all models on the 1409x641 mesh. The

difference in the skin friction coefficient value for the SA, SST, and k-ω models

obtained using the finest mesh was 1.4%, 1.3%, and 0.97%, respectively. On the

705x321 mesh the difference in skin friction coefficient values decreased to 0.45%,

0.88%, and 0.92% for the SA, SST, and k-ω models. It was concluded that the

difference on the 1409x641 mesh was caused by OpenFOAM’s solver limitations. A

slight inconsistency was also observed in the eddy viscosity profile for all

turbulence models.

The inconsistencies that were documented for both flow cases are small and

could be attributed to slight differences in simulation parameter values (explicit

values were not provided by NASA), differences in solver algorithms, and most

importantly, due to the fact that incompressible results obtained with OpenFOAM

are being compared to compressible results obtained with CFL3D and FUN3D. The

agreement between OpenFOAM results and NASA results confirm OpenFOAM’s

capability to produce accurate results for benchmark flows.

 57

Figures

Figure 1: OpenFOAM case directory structure [66]

Figure 2: Zero pressure gradient flat plate mesh (69x49) [71]

 58

Figure 3: Enlarged view of bump profile [74]

 59

Figure 4: 2D bump-in-channel mesh (177x81) [73]

 60

Figure 5: Boundary conditions for ZPG flat plate [72]

 61

Figure 6: Boundary conditions for 2D bump-in-channel [74]

 62

a) b)

Figure 8: Grid convergence results in a ZPG flat plate flow for the SA model:

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

a) b)

c) d)

Figure 7: Results of the ZPG flat plate flow simulations with the Spalart-Allmaras turbulence model for

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red) at x=0.97:
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin

friction coefficient profile

 63

a) b)

c) d)

e) f)

Figure 9: Results of the ZPG flat plate flow simulations with the SST turbulence model for OpenFOAM (blue),

CFL3D (dashed green) and FUN3D (dashed red) at x=0.97:
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin

friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation rate profile

 64

a) b)

Figure 10: Grid convergence results in a ZPG flat plate flow for the SST model:

 a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

 65

a) b)

c) d)

e) f)

Figure 11: Results of the ZPG flat plate flow simulations with the k-ω turbulence model for OpenFOAM (blue),

CFL3D (dashed green) and FUN3D (dashed red) at x=0.97:
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin

friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation rate profile

 66

a) b)

Figure 12: Grid convergence results in a ZPG flat plate flow for the k-ω model:

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

 67

a) b)

c) d)

e) f)

Figure 13: OpenFOAM (blue) results of the ZPG flat plate flow simulations with the LRR turbulence model

compared with DNS[31] (dashed red) and experimental results[22] (green circles) at x=0.97:

a) mean velocity profile, b) dimensionless velocity profile, c) 𝑢
 𝑢

 ̅̅ ̅̅ ̅̅
profile, d) 𝑢

 𝑢
 ̅̅ ̅̅ ̅̅

profile, e) 𝑢
 𝑢

 ̅̅ ̅̅ ̅̅
profile,

f) 𝑢
 𝑢

 ̅̅ ̅̅ ̅̅
profile

 68

a) b)

c) d)

e)

Figure 14: Results of the 2D bump-in-channel simulation with the SA turbulence model for OpenFOAM (blue),

CFL3D (dashed green) and FUN3D (dashed red):
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile,

d) skin friction coefficient profile for 1409x641 mesh, e) skin friction coefficient profile for 705x321 mesh

 69

a) b)

Figure 15: Grid convergence results of the 2D bump-in-channel simulation with the SA model:

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

 70

a) b)

c) d)

e) f)

Figure 16: Results of the 2D bump-in-channel with the SST turbulence model on the 1409x641 mesh for

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red):
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile,

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation
profile

 71

a) b)

c) d)

e) f)

Figure 17: Results of the 2D bump-in-channel with the SST turbulence model on the 705x321 mesh for

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red):
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile,

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation
profile

 72

a) b)

Figure 18: Grid convergence results of the 2D bump-in-channel simulation with the SST model:

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

 73

a) b)

c) d)

e) f)

Figure 19: Results of the 2D bump-in-channel with the k-ω turbulence model on the 1409x641 mesh for

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red):
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile,

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation
profile

 74

a) b)

c) d)

e) f)

Figure 20: Results of the 2D bump-in-channel with the k-ω turbulence model on the 705x341 mesh for

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red):
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile,

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation
profile

 75

a) b)

Figure 21: Grid convergence results of the 2D bump-in-channel simulation with the k-ω model:

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes

 76

V. References

[1] Freitas, C. J. "Perspective: selected benchmarks from commercial CFD codes."
Journal of Fluids Engineering 117.2 (1995): 208-218.

[2] Iaccarino, G. "Predictions of a turbulent separated flow using commercial CFD
codes." Journal of Fluids Engineering 123.4 (2001): 819-828.

[3] OpenFOAM, Open Field Operation and Manipulation, Software Package,
www.openfoam.com/

[4] Rumsey, C. (2013, March 29). CFL3D Home Page. Retrieved from
http://cfl3d.larc.nasa.gov/

[5] Carpenter, M. (2014, June 27). FUN3D Home Page. Retrieved from
http://fun3d.larc.nasa.gov/

[6] Wilcox, D. C. (2006). Turbulence modeling for CFD (Vol. 3, pp. 40, 90, 109-112,
125-126, 322). La Canada, CA: DCW industries.

[7] Furbo, E. (2010). “Evaluation of RANS turbulence models for flow problems with
significant impact of boundary layers”. Master’s thesis, Swedish Defense Research
Agency, FOI. December 2010.

[8] CFD Online. (2012, January 3). Boussinesq Eddy Viscosity Assumption. Retrieved
from http://www.cfd-online.com/Wiki/Boussinesq_eddy_viscosity_assumption

[9] Rumsey, C. L., Rubinstein, R., Salas, M. D., Thomas, J. L., “Turbulence Modeling
Workshop”, NASA/CR-2001-210841, ICASE Interim Report No. 37.

[10] Celik, I. B.. Introductory Turbulence Modeling. 1999 Lecture Notes, West
Virginia University, Morgantown, WV.

[11] CFD Online. (2011, June 13). Specific Turbulence Dissipation Rate. Retrieved
from http://www.cfd-online.com/Wiki/Specific_turbulence_dissipation_rate

[12] Prandtl, L, “Übe rein neues Formelsystem fur die ausgebilldete Turbulenz,”
Nacr. Akad. Wiss. Göttingen, Math-Phys. Kl., (1945) pp. 6-19.

[13] Hanjalić, K., & Launder, B. (2011). Modelling turbulence in engineering and the
environment: second-moment routes to closure (Vol. 1, pp. 5, 25, 63, 75, 95, 195).
Cambridge University Press. Cambridge, UK.

[14] Daly, B.J. and Harlow, F. H., “Transport equations in turbulence”, Phys. Fluids 13,
(1970) 2634-2649.

http://www.openfoam.com/
http://cfl3d.larc.nasa.gov/
http://fun3d.larc.nasa.gov/
http://www.cfd-online.com/Wiki/Boussinesq_eddy_viscosity_assumption
http://www.cfd-online.com/Wiki/Specific_turbulence_dissipation_rate

 77

[15] Lumley, J. L., “Computational modeling of turbulent flows”, Adv. Appl. Mech. 18,
(1978) 123-176.

[16] Rotta, J. C., “Statistische Theorie nichthomogener Turbulenz”, Z. Phys. 129,
(1951) 547-572, 131, 51-77.

[17] Naot, D., Shavit, A. and Wolfshtein, M., “Interactions between components of the
turbulent correlation tensor”, Isr. J. Technol. 8, (1970) 259-269.

[18] Shir, C. C., “A preliminary numerical study of atmospheric turbulent flows in the
idealized turbulent boundary layer”. J. Atmos. Sci. 30, (1973) 1327-1339.

[19] Gibson, M. M. and Launder, B. E., “Ground effects on pressure fluctuations in the
atmospheric boundary layer”, J. Fluid Mech. 86, (1978) 491-511.

[20] Kurbatskii, A. F., & Poroseva, S. V., “Modeling turbulent diffusion in a rotating
cylindrical pipe flow”. International journal of heat and fluid flow, 20(3), (1999) 341-
348.

[21] Schwarz, W. R., (1992). “Experiment and Modeling of a Three-dimensional
turbulent boundary layer in a 30 degree bend”, Dissertation, Stanford University.

[22] DeGraaff, D. B., Eaton, J. K., “Reynolds-number scaling of the flat-plate turbulent
boundary layer,” J. Fluid Mech., Vol. 422, 2000, pp. 319-346.

[23] Longo, J., Huang, H. P., & Stern, F.,“Solid/free-surface juncture boundary layer
and wake”. Experiments in fluids, 25(4), (1998) 283-297.

[24] Castillo, L., & Johansson, T. G., “The effects of the upstream conditions on a low
Reynolds number turbulent boundary layer with zero pressure gradient”. Journal of
Turbulence, 3(31), (2002) 1-19.

[25] Bardina, J. E., Huang, P. G., Coakley, T. J., “Turbulence Modeling Validation,
Testing, and Development”, NASA Technical Memorandum 110446, April 1997.

[26] Chan, W. Y. K., Jacobs, P. A., & Mee, D. J., “Suitability of the k–ω turbulence model
for scramjet flowfield simulations”. International Journal for Numerical Methods in
Fluids, 70(4), (2012) 493-514.

[27] Collie, S., Gerritsen, M., & Jackson, P. “Performance of two-equation turbulence
models for flat plate flows with leading edge bubbles”. Journal of Fluids Engineering,
130(2),(2008) 021201.

[28] Xu, L., Rusak, Z., & Castillo, L., “A Reduced-Order Model of the Mean Properties
of a Turbulent Wall Boundary Layer at a Zero Pressure Gradient”. Journal of Fluids
Engineering, 136(3), (2014) 031103.

 78

[29] Spalart, P. R., “Direct simulation of a turbulent boundary layer up to Rθ= 1410”.
Journal of Fluid Mechanics, 187, (1988) 61-98.

[30] Wu, X., & Moin, P., “Direct numerical simulation of turbulence in a nominally
zero-pressure-gradient flat-plate boundary layer”. Journal of Fluid Mechanics, 630,
(2009) 5-41.

[31] Sillero, J. A., Jimenez, J. Moser, R. D., “One-point statistics for turbulent wall-
bounded flows at Reynolds numbers of up to δ+=2000”, Phys. Fluids, 25, (2013)
105102.

[32] Osusky, M., Boom, P. D., & Zingg, D. W., “Results from the Fifth AIAA Drag
Prediction Workshop obtained with a parallel Newton-Krylov-Schur flow solver
discretized using summation-by-parts operators”. 31st AIAA Applied Aerodynamics
Conference, June 24-27, 2013.

[33] Persson, T., Liefvendahl, M., Bensow, R. E., & Fureby, C., “Numerical
investigation of the flow over an axisymmetric hill using LES, DES, and RANS”.
Journal of Turbulence, 7, (2006).

[34] Rumsey, C. L.,“Summary of the 2004 CFD validation workshop on synthetic jets
and turbulent separation control” (2004).

[35] Morgan, P. E., Rizzetta, D. P., Visbal, M. R., “High-order numerical simulation of
turbulent flow over a wall-mounted hump”, AIAA journal, 44(2), (2006) 239-251.

[36] Postl, D., & Fasel, H. F., “Direct numerical simulation of turbulent flow
separation from a wall-mounted hump”. AIAA journal, 44(2), (2006) 263-272.

[37] Seifert, A., & Pack, L. G., “Active flow separation control on wall-mounted hump
at high Reynolds numbers”. AIAA journal, 40(7), (2002) 1363-1372.

[38] Greenblatt, D., Paschal, K. B., Yao, C. S., Harris, J., Schaeffler, N. W., & Washburn,
A. E., “A separation control CFD validation test case, Part 1: baseline and steady
suction”. AIAA paper, 2220, (2004).

[39] Rumsey, C. (2004, March 29). CFD Validation of Synthetic Jets and Turbulence
Separation Control. Retrieved from http://cfdval2004.larc.nasa.gov/case3.html

[40] Kim, H. G., Lee, C. M., Lim, H. C., & Kyong, N. H., “An experimental and numerical
study on the flow over two-dimensional hills”. Journal of Wind Engineering and
Industrial Aerodynamics, 66(1), (1997) 17-33.

http://cfdval2004.larc.nasa.gov/case3.html

 79

[41] Cao, S., & Tamura, T., “Experimental study on roughness effects on turbulent
boundary layer flow over a two-dimensional steep hill”. Journal of wind engineering
and industrial aerodynamics, 94(1), (2006) 1-19.

[42] European Research Community on Flow, Turbulence and Combustion Database.
(No publication date available). ERCOFTAC Classic Database. Retrieved from
http://cfd.mace.manchester.ac.uk/ercoftac/index.html

[43] Gatski, T., Rumsey, C. (2004, March 29). Summary of Results from the Workshop
and List of Publications. Retrieved from
http://cfdval2004.larc.nasa.gov/results.html

[44] Zikanov, O. (2010). Essential computational fluid dynamics. John Wiley & Sons.
Pg.290.

[45] Rizzi, A., & Vos, J., “Toward establishing credibility in computational fluid
dynamics simulations”. AIAA journal, 36(5), (1998) 668-675.

[46] Roache, P. J., “Verification of codes and calculations”. AIAA journal, 36(5),
(1998) 696-702.

[47] Vassberg, J. C., Tinoco, E. N., Mani, M., Levy, D., Zickuhr, T., Mavriplis, D. J.,
Murayama, M., “Comparison of NTF experimental data with CFD predictions from
the third AIAA CFD drag prediction workshop”. AIAA paper, 6918, (2008).

[48] Wilcox, D. C., “Comparison of two-equation turbulence models for boundary
layers with pressure gradient”. AIAA journal, 31(8), (1993) 1414-1421.

[49] Rumsey, C. L., “Consistency, Verification, and Validation of Turbulence Models
for Reynolds-Averaged Navier-Stokes Applications”, Paper EUCASS2009-7, 3rd
European Conference for Aerospace Sciences, 2009.

[50] Rumsey, C. (2014, April 7). Turbulence Modeling Resource: Purpose. Retrieved
from http://turbmodels.larc.nasa.gov/

[51] Smith, B., Rumsey, C., Huang, G., (2014, June 27). Turbulence Model
Benchmarking Working Group. Retrieved from
http://turbmodels.larc.nasa.gov/tmbwg.html

[52] Williams, D. (No publication date available) AIAA Fluid Dynamics Technical
Committee. Retrieved from https://info.aiaa.org/tac/ASG/FDTC/default.aspx

[53] American Institute of Aeronautics and Astronautics. Home Page. Retrieved from
http://www.aiaa.org/

http://cfd.mace.manchester.ac.uk/ercoftac/index.html
http://cfdval2004.larc.nasa.gov/results.html
http://turbmodels.larc.nasa.gov/
http://turbmodels.larc.nasa.gov/tmbwg.html
https://info.aiaa.org/tac/ASG/FDTC/default.aspx
http://www.aiaa.org/

 80

[54] Thigpen, W. (2014, May 16). Pleiades Supercomputer Homepage. Retrieved from
http://www.nas.nasa.gov/hecc/resources/pleiades.html

[55] OpenFOAM Foundation. (No publication date available). The OpenFOAM
Foundation. Retrieved from http://www.openfoam.org/

[56] OpenCFD Ltd. (No publication date available). The open source CFD toolbox.
Retrieved from http://www.openfoam.com/about/

[57] OpenFOAM Foundation. (No publication date available). Features of OpenFOAM.
Retrieved from http://www.openfoam.org/features/

[58] GitHub. (No publication date available). OpenFOAM-2.2.x. Retrieved from
https://github.com/OpenFOAM/OpenFOAM-2.2.x

[59] Spalart, P. R. and Allmaras, S. R., "A One-Equation Turbulence Model for
Aerodynamic Flows," Recherche Aerospatiale, No. 1, (1994) pp. 5-21.

[60] Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for
Engineering Applications," AIAA Journal, Vol. 32, No. 8, (1994) pp. 1598-1605.

[61] Launder, B. E., Reece, G. J., Rodi, W., “Progress in the development of a Reynolds
Stress turbulence closure,” J. Fluid Mech., Vol. 68, (1975) pp.537-566.

[62] Rumsey, C. (2014, June 16). The Spalart-Allmaras Turbulence Model. Retrieved
from http://turbmodels.larc.nasa.gov/spalart.html

[63] Rumsey, C. (2013, August 29). The Menter Shear Stress Transport Turbulence
Model. Retrieved from http://turbmodels.larc.nasa.gov/sst.html

[64] Rumsey, C. (2014, April 2). The Wilcox k-omega Turbulence Model. Retrieved
from http://turbmodels.larc.nasa.gov/wilcox.html

[65] OpenFOAM Programmer’s Guide, Chapter 2.

[66] OpenFOAM User’s Guide, Figure 4.1: Case directory structure, pg.U103, Table
4.5, Chapter 4.

[67] Patankar, S. V. and Spalding, D.B.,"A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows", Int. J. of Heat and Mass
Transfer, Volume 15, Issue 10, (1972) pp.1787-1806.

[68] Anderson, John D. Computational fluid dynamics. Vol. 2. New York: McGraw-Hill,
1995. Chapter 6.

http://www.nas.nasa.gov/hecc/resources/pleiades.html
http://www.openfoam.org/
http://www.openfoam.com/about/
http://www.openfoam.org/features/
https://github.com/OpenFOAM/OpenFOAM-2.2.x
http://turbmodels.larc.nasa.gov/spalart.html
http://turbmodels.larc.nasa.gov/sst.html
http://turbmodels.larc.nasa.gov/wilcox.html

 81

[69] CFD Online. (2011, December 28). SIMPLE Algorithm. Retrieved from
http://www.cfd-online.com/Wiki/SIMPLE_algorithm

[70] Biegel, B. (2012, September 14). NASA Advanced Supercomputing Division.
Retrieved from https://www.nas.nasa.gov/cgi-bin/software/start

[71] Rumsey, C. (2013, March 13). Grids 2D Zero Pressure Gradient Flate Plate
Verification Case. Retrieved from
http://turbmodels.larc.nasa.gov/flatplate_grids.html

[72] Rumsey, C. (2014, April 30). 2D Zero Pressure Gradient Flate Plate Verification
Case – Intro Page. Retrieved from http://turbmodels.larc.nasa.gov/flatplate.html

[73] Rumsey, C. (2013, March 13). Grids 2D Bump-in-channel Verification Case.
Retrieved from http://turbmodels.larc.nasa.gov/bump_grids.html

[74] Rumsey, C. (2013, March 13). 2D Bump-in-channel Verification Case – Intro Page.
Retrieved from http://turbmodels.larc.nasa.gov/bump.html

http://www.cfd-online.com/Wiki/SIMPLE_algorithm
https://www.nas.nasa.gov/cgi-bin/software/start
http://turbmodels.larc.nasa.gov/flatplate_grids.html
http://turbmodels.larc.nasa.gov/flatplate.html
http://turbmodels.larc.nasa.gov/bump_grids.html
http://turbmodels.larc.nasa.gov/bump.html

 82

VI. Appendix

A. Pleiades Information
Pleiades is named after an astronomical open star cluster and it is one of the

world’s most powerful supercomputers. The system is a distributed-memory SGI

ICE cluster connected with InfiniBand® in a dual-plane hypercube technology. The

system contains the following types of Intel® Xeon® processors: E5-2680v2 (Ivy

Bridge), E5-2670 (Sandy Bridge), and X5670 (Westmere). The cluster’s information

is as follows:

 System Architecture

o Manufacturer: SGI
o 163 racks (11,176 nodes)
o 3.59 Pflop/s peak cluster
o 1.54 Pflop/s LINPACK rating (November 2013)
o 2 racks enhanced with NVIDIA graphics processing unit
o Total cores: 184,800
o Total memory: 502 TB

 Interconnects
o Internode: InfiniBand®, with all nodes connected in partial hypercube

topology
o Two independent InfiniBand® fabrics
o Infiniband® DDR, QDR and FDR
o Gigabit Ethernet management network

 Storage
o SGI® InfiniteStorege NEXIS 9000 home filesystem
o 15 PB of RAID disk storage configured over several cluster-wide Listre

filesystems
 Operating Environment

o Operating system: SUSE® Linux®
o Job scheduler: PBS®
o Compilters: Intel and GNU C, C++ and Fortran
o MPI SGI MPT, MVAPICH2, Intel MPI

The information presented above was obtained from NASA’s Advanced Super

Computer Division website [54]. More details on the specifics of each subcomponent

are available at the same location.

 83

B. Turbulence Model Source Code
Spalart-Allmaras Model
SA Source file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "MySpalartAllmaras.H"
#include "addToRunTimeSelectionTable.H"

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(MySpalartAllmaras, 0);
addToRunTimeSelectionTable(RASModel, MySpalartAllmaras, dictionary);

// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

tmp<volScalarField> MySpalartAllmaras::chi() const
{
 return nuTilda_/nu();
}

http://www.gnu.org/licenses/

 84

tmp<volScalarField> MySpalartAllmaras::fv1(const volScalarField& chi) const
{
 const volScalarField chi3(pow3(chi));
 return chi3/(chi3 + pow3(Cv1_));
}

//OpenFOAM definition of fv2 doesn't match NASA's
/*tmp<volScalarField> MySpalartAllmaras::fv2
(
 const volScalarField& chi,
 const volScalarField& fv1
) const
{
 return 1.0/pow3(scalar(1) + chi/Cv2_);
}*/

//NASA's definition:
tmp<volScalarField> MySpalartAllmaras::fv2
(
 const volScalarField& chi,
 const volScalarField& fv1
) const
{
 return 1.0 - chi/(1.0+chi*fv1);
}

//There is no fv3 in NASA's equations (Trip term mentioned?)
/*tmp<volScalarField> MySpalartAllmaras::fv3
(
 const volScalarField& chi,
 const volScalarField& fv1
) const
{
 const volScalarField chiByCv2((1/Cv2_)*chi);

 return
 (scalar(1) + chi*fv1)
 *(1/Cv2_)
 (3(scalar(1) + chiByCv2) + sqr(chiByCv2))
 /pow3(scalar(1) + chiByCv2);
}*/

tmp<volScalarField> MySpalartAllmaras::fw(const volScalarField& Stilda) const
{
 volScalarField r
 (
 min
 (
 nuTilda_ /

 85

 (
 max(Stilda,dimensionedScalar("SMALL", Stilda.dimensions(), SMALL))
 *sqr(kappa_*d_)
),
 scalar(10.0)
)
);
 r.boundaryField() == 0.0;

 const volScalarField g(r + Cw2_*(pow6(r) - r));

 return g*pow((1.0 + pow6(Cw3_))/(pow6(g) + pow6(Cw3_)), 1.0/6.0);
}

//******************************START ADDITIONS**********************************
tmp<volScalarField> MySpalartAllmaras::ft2(const volScalarField& chi) const
{
 const volScalarField chi2(pow(chi,2));
 return Ct3_*exp(-1.0*Ct4_*chi2);
}
//******************************END ADDITIONS************************************

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

MySpalartAllmaras::MySpalartAllmaras
(
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName,
 const word& modelName
)
:
 RASModel(modelName, U, phi, transport, turbulenceModelName),

 sigmaNut_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "sigmaNut",
 coeffDict_,
 0.66666
)
),
 kappa_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "kappa",
 coeffDict_,

 86

 0.41
)
),
 Cb1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cb1",
 coeffDict_,
 0.1355
)
),
 Cb2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cb2",
 coeffDict_,
 0.622
)
),
 Cw1_(Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_),
 Cw2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cw2",
 coeffDict_,
 0.3
)
),
 Cw3_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cw3",
 coeffDict_,
 2.0
)
),
 Cv1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cv1",
 coeffDict_,
 7.1
)
),
//No Cv2 in NASA's equations
 /*Cv2_

 87

 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cv2",
 coeffDict_,
 5.0
)
),*/
//**************************START ADDITIONS***************************************
 Ct3_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Ct3",
 coeffDict_,
 1.2
)
),
 Ct4_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Ct4",
 coeffDict_,
 0.5
)
),
//**************************END ADDITIONS***

 nuTilda_
 (
 IOobject
 (
 "nuTilda",
 runTime_.timeName(),
 mesh_,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh_
),

 nut_
 (
 IOobject
 (
 "nut",
 runTime_.timeName(),
 mesh_,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE

 88

),
 mesh_
),

 d_(mesh_)
{
 printCoeffs();
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volScalarField> MySpalartAllmaras::DnuTildaEff() const
{
 return tmp<volScalarField>
 (
 new volScalarField("DnuTildaEff", (nuTilda_ + nu())/sigmaNut_)
);
}

tmp<volScalarField> MySpalartAllmaras::k() const
{
 WarningIn("tmp<volScalarField> MySpalartAllmaras::k() const")
 << "Turbulence kinetic energy not defined for Spalart-Allmaras model. "
 << "Returning zero field" << endl;

 return tmp<volScalarField>
 (
 new volScalarField
 (
 IOobject
 (
 "k",
 runTime_.timeName(),
 mesh_
),
 mesh_,
 dimensionedScalar("0", dimensionSet(0, 2, -2, 0, 0), 0)
)
);
}

tmp<volScalarField> MySpalartAllmaras::epsilon() const
{
 WarningIn("tmp<volScalarField> MySpalartAllmaras::epsilon() const")
 << "Turbulence kinetic energy dissipation rate not defined for "
 << "Spalart-Allmaras model. Returning zero field"
 << endl;

 return tmp<volScalarField>

 89

 (
 new volScalarField
 (
 IOobject
 (
 "epsilon",
 runTime_.timeName(),
 mesh_
),
 mesh_,
 dimensionedScalar("0", dimensionSet(0, 2, -3, 0, 0), 0)
)
);
}

tmp<volSymmTensorField> MySpalartAllmaras::R() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "R",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 ((2.0/3.0)*I)*k() - nut()*twoSymm(fvc::grad(U_))
)
);
}

tmp<volSymmTensorField> MySpalartAllmaras::devReff() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "devRhoReff",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 -nuEff()*dev(twoSymm(fvc::grad(U_)))

 90

)
);
}

tmp<fvVectorMatrix> MySpalartAllmaras::divDevReff(volVectorField& U) const
{
 const volScalarField nuEff_(nuEff());

 return
 (
 - fvm::laplacian(nuEff_, U)
 - fvc::div(nuEff_*dev(T(fvc::grad(U))))
);
}

tmp<fvVectorMatrix> MySpalartAllmaras::divDevRhoReff
(
 const volScalarField& rho,
 volVectorField& U
) const
{
 volScalarField muEff("muEff", rho*nuEff());

 return
 (
 - fvm::laplacian(muEff, U)
 - fvc::div(muEff*dev(T(fvc::grad(U))))
);
}

bool MySpalartAllmaras::read()
{
 if (RASModel::read())
 {
 sigmaNut_.readIfPresent(coeffDict());
 kappa_.readIfPresent(coeffDict());

 Cb1_.readIfPresent(coeffDict());
 Cb2_.readIfPresent(coeffDict());
 Cw1_ = Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_;
 Cw2_.readIfPresent(coeffDict());
 Cw3_.readIfPresent(coeffDict());
 Cv1_.readIfPresent(coeffDict());
 //Cv2_.readIfPresent(coeffDict()); Not Used
//****************START ADDITIONS*************************************
 Ct3_.readIfPresent(coeffDict());
 Ct4_.readIfPresent(coeffDict());
//****************END ADDITIONS***************************************

 91

 return true;
 }
 else
 {
 return false;
 }
}

void MySpalartAllmaras::correct()
{
 RASModel::correct();

 if (!turbulence_)
 {
 // Re-calculate viscosity
 nut_ = nuTilda_*fv1(this->chi());
 nut_.correctBoundaryConditions();

 return;
 }

 if (mesh_.changing())
 {
 d_.correct();
 }

 const volScalarField chi(this->chi());
 const volScalarField fv1(this->fv1(chi));

// Stilda had to be modified
 const volScalarField Stilda
 (
 sqrt(2.0)*mag(skew(fvc::grad(U_)))
 + fv2(chi, fv1)*nuTilda_/sqr(kappa_*d_)
);

// nuTilda equation had to be modified to include ft2 terms
 tmp<fvScalarMatrix> nuTildaEqn
 (
 fvm::ddt(nuTilda_)
 + fvm::div(phi_, nuTilda_)
 - fvm::laplacian(DnuTildaEff(), nuTilda_)
 - Cb2_/sigmaNut_*magSqr(fvc::grad(nuTilda_))
 ==
 Cb1_*(1.0-ft2(chi))*Stilda*nuTilda_
 - fvm::Sp((Cw1_*fw(Stilda)*nuTilda_ - Cb1_*ft2(chi)*nuTilda_/sqr(kappa_))/sqr(d_),
nuTilda_)
);

 nuTildaEqn().relax();
 solve(nuTildaEqn);

 92

 bound(nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0));
 nuTilda_.correctBoundaryConditions();

 // Re-calculate viscosity
 nut_.internalField() = fv1*nuTilda_.internalField();
 nut_.correctBoundaryConditions();
}

// * //

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// *** //

 93

SA Header file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::incompressible::RASModels::MySpalartAllmaras

Group
 grpIcoRASTurbulence

Description
 Spalart-Allmaras 1-eqn mixing-length model for incompressible external
 flows.

 References:
 \verbatim
 "A One-Equation Turbulence Model for Aerodynamic Flows"
 P.R. Spalart,
 S.R. Allmaras,
 La Recherche Aerospatiale, No. 1, 1994, pp. 5-21.

 Extended according to:

 "An Unstructured Grid Generation and Adaptive Solution Technique
 for High Reynolds Number Compressible Flows"
 G.A. Ashford,
 Ph.D. thesis, University of Michigan, 1996.
 \endverbatim

 The default model coefficients correspond to the following:
 \verbatim

http://www.gnu.org/licenses/

 94

 MySpalartAllmarasCoeffs
 {
 Cb1 0.1355;
 Cb2 0.622;
 Cw2 0.3;
 Cw3 2.0;
 Cv1 7.1;
 Cv2 5.0;
 sigmaNut 0.66666;
 kappa 0.41;
 }
 \endverbatim

SourceFiles
 MySpalartAllmaras.C

---/

#ifndef MySpalartAllmaras_H
#define MySpalartAllmaras_H

#include "RASModel.H"
#include "wallDist.H"

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

/*---*\
 Class MySpalartAllmaras Declaration
---/

class MySpalartAllmaras
:
 public RASModel
{

protected:

 // Protected data

 // Model coefficients
 dimensionedScalar sigmaNut_;
 dimensionedScalar kappa_;
 dimensionedScalar Cb1_;
 dimensionedScalar Cb2_;

 95

 dimensionedScalar Cw1_;
 dimensionedScalar Cw2_;
 dimensionedScalar Cw3_;
 dimensionedScalar Cv1_;
 //dimensionedScalar Cv2_; NOT IN NASA's model
//******************START ADDITIONS***
 dimensionedScalar Ct3_;
 dimensionedScalar Ct4_;
//******************END ADDITIONS***

 // Fields
 volScalarField nuTilda_;
 volScalarField nut_;
 wallDist d_;

 // Protected Member Functions
 tmp<volScalarField> chi() const;

 tmp<volScalarField> fv1(const volScalarField& chi) const;

 tmp<volScalarField> fv2
 (
 const volScalarField& chi,
 const volScalarField& fv1
) const;

 /*tmp<volScalarField> fv3
 (
 const volScalarField& chi,
 const volScalarField& fv1
) const;
 */
 tmp<volScalarField> fw(const volScalarField& Stilda) const;

//*****************START ADDITIONS***
tmp<volScalarField> ft2(const volScalarField& chi) const;
//*****************END ADDITIONS***

public:

 //- Runtime type information
 TypeName("MySpalartAllmaras");

 // Constructors

 //- Construct from components
 MySpalartAllmaras
 (
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,

 96

 const word& turbulenceModelName = turbulenceModel::typeName,
 const word& modelName = typeName
);

 //- Destructor
 virtual ~MySpalartAllmaras()
 {}

 // Member Functions
 //- Return the turbulence viscosity
 virtual tmp<volScalarField> nut() const
 {
 return nut_;
 }

 //- Return the effective diffusivity for nuTilda
 tmp<volScalarField> DnuTildaEff() const;

 //- Return the turbulence kinetic energy
 virtual tmp<volScalarField> k() const;

 //- Return the turbulence kinetic energy dissipation rate
 virtual tmp<volScalarField> epsilon() const;

 //- Return the Reynolds stress tensor
 virtual tmp<volSymmTensorField> R() const;

 //- Return the effective stress tensor including the laminar stress
 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevRhoReff
 (
 const volScalarField& rho,
 volVectorField& U
) const;

 //- Solve the turbulence equations and correct the turbulence viscosity
 virtual void correct();

 //- Read RASProperties dictionary
 virtual bool read();
};

// * //

 97

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// * //

#endif

// *** //

 98

SST Model
SST Source file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "MySSTStd.H"
#include "addToRunTimeSelectionTable.H"

#include "backwardsCompatibilityWallFunctions.H"

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

defineTypeNameAndDebug(MySSTStd, 0);
addToRunTimeSelectionTable(RASModel, MySSTStd, dictionary);

// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //

tmp<volScalarField> MySSTStd::F1(const volScalarField& CDkOmega) const
{
 tmp<volScalarField> CDkOmegaPlus = max //limiter, what is defined as CD_kOmega

http://www.gnu.org/licenses/

 99

(NASA)
 (
 CDkOmega,
 dimensionedScalar("1.0e-21", dimless/sqr(dimTime), 1.0e-21)
);

 tmp<volScalarField> arg1 = min
 (
 max
 (
 (scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_),
 scalar(500)*nu()/(sqr(y_)*omega_)
),
 (4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))
);

 return tanh(pow4(arg1));
}

tmp<volScalarField> MySSTStd::F2() const
{
 tmp<volScalarField> arg2 =
 max
 (
 (scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),
 scalar(500)*nu()/(sqr(y_)*omega_)

);

 return tanh(sqr(arg2));
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

MySSTStd::MySSTStd
(
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName,
 const word& modelName
)
:
 RASModel(modelName, U, phi, transport, turbulenceModelName),

 alphaK1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (

 100

 "alphaK1",
 coeffDict_,
 0.85
)
),
 alphaK2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alphaK2",
 coeffDict_,
 1.0
)
),
 alphaOmega1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alphaOmega1",
 coeffDict_,
 0.5
)
),
 alphaOmega2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alphaOmega2",
 coeffDict_,
 0.856
)
),
 gamma1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "gamma1",
 coeffDict_,
 0.55316666
)
),
 gamma2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "gamma2",
 coeffDict_,
 0.44035466
)
),
 beta1_

 101

 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "beta1",
 coeffDict_,
 0.075
)
),
 beta2_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "beta2",
 coeffDict_,
 0.0828
)
),
 betaStar_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "betaStar",
 coeffDict_,
 0.09
)
),
 a1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "a1",
 coeffDict_,
 0.31
)
),
 b1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "b1",
 coeffDict_,
 1.0
)
),
 c1_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "c1",
 coeffDict_,
 10.0

 102

)
),

 y_(mesh_),

 k_
 (
 IOobject
 (
 "k",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateK("k", mesh_)
),
 omega_
 (
 IOobject
 (
 "omega",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateOmega("omega", mesh_)
),
 nut_
 (
 IOobject
 (
 "nut",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateNut("nut", mesh_)
)
{
 bound(k_, kMin_);
 bound(omega_, omegaMin_);

 nut_ =
 (
 a1_*k_
 / max
 (
 a1_*omega_,

 103

 b1_*F2()*sqrt(2.0)*mag(skew(fvc::grad(U_)))
)
);
 nut_.correctBoundaryConditions();

 printCoeffs();
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volSymmTensorField> MySSTStd::R() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "R",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 ((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)),
 k_.boundaryField().types()
)
);
}

tmp<volSymmTensorField> MySSTStd::devReff() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "devRhoReff",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 -nuEff()*dev(twoSymm(fvc::grad(U_)))
)
);
}

 104

tmp<fvVectorMatrix> MySSTStd::divDevReff(volVectorField& U) const
{
 return
 (
 - fvm::laplacian(nuEff(), U)
 - fvc::div(nuEff()*dev(T(fvc::grad(U))))
);
}

tmp<fvVectorMatrix> MySSTStd::divDevRhoReff
(
 const volScalarField& rho,
 volVectorField& U
) const
{
 volScalarField muEff("muEff", rho*nuEff());

 return
 (
 - fvm::laplacian(muEff, U)
 - fvc::div(muEff*dev(T(fvc::grad(U))))
);
}

bool MySSTStd::read()
{
 if (RASModel::read())
 {
 alphaK1_.readIfPresent(coeffDict());
 alphaK2_.readIfPresent(coeffDict());
 alphaOmega1_.readIfPresent(coeffDict());
 alphaOmega2_.readIfPresent(coeffDict());
 gamma1_.readIfPresent(coeffDict());
 gamma2_.readIfPresent(coeffDict());
 beta1_.readIfPresent(coeffDict());
 beta2_.readIfPresent(coeffDict());
 betaStar_.readIfPresent(coeffDict());
 a1_.readIfPresent(coeffDict());
 b1_.readIfPresent(coeffDict());
 c1_.readIfPresent(coeffDict());

 return true;
 }
 else
 {
 return false;
 }
}

 105

void MySSTStd::correct()
{
 RASModel::correct();

 if (!turbulence_)
 {
 return;
 }

 if (mesh_.changing())
 {
 y_.correct();
 }

 const volScalarField S2(2*magSqr(symm(fvc::grad(U_))));
 volScalarField G(type() + ".G", nut_*S2);
 //volScalarField G(GName(), nut_*2*magSqr(symm(fvc::grad(U_)))); for newer OF
versions
 volScalarField G2(type() + ".G", min(G,scalar(20.0)*betaStar_*omega_*k_));
//****CHANGED

 // Update omega and G at the wall
 omega_.boundaryField().updateCoeffs();

 const volScalarField CDkOmega
 (
 (2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_
);

 const volScalarField F1(this->F1(CDkOmega));

 // Turbulent frequency equation
 tmp<fvScalarMatrix> omegaEqn
 (
 fvm::ddt(omega_)
 + fvm::div(phi_, omega_)
 - fvm::laplacian(DomegaEff(F1), omega_)
 ==
 gamma(F1)*G/nut_ //*************DIFFERENT FROM STANDARD MODEL
 - fvm::Sp(beta(F1)*omega_, omega_)
 + fvm::Sp //changed this (see above)
 (
 (scalar(1)-F1)*CDkOmega/omega_,
 omega_
)
);

 omegaEqn().relax();

 omegaEqn().boundaryManipulate(omega_.boundaryField());

 106

 solve(omegaEqn);
 bound(omega_, omegaMin_);

 // Turbulent kinetic energy equation ADDED LIMITER G2 (NASA)
 tmp<fvScalarMatrix> kEqn
 (
 fvm::ddt(k_)
 + fvm::div(phi_, k_)
 - fvm::laplacian(DkEff(F1), k_)
 ==
 G2 //************************DIFFERENT FROM STANDARD MODEL
 - fvm::Sp(betaStar_*omega_, k_)
);

 kEqn().relax();
 solve(kEqn);
 bound(k_, kMin_);

 // Re-calculate viscosity
 nut_ = a1_*k_/max(a1_*omega_, b1_*F2()*sqrt(2.0)*mag(skew(fvc::grad(U_))));
 nut_.correctBoundaryConditions();
}

// * //

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// *** //

 107

SST Header file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::incompressible::RASModels::MySSTStd

Description
 Implementation of the k-omega-SST turbulence model for incompressible
 flows.

 Turbulence model described in:
 \verbatim
 Menter, F., Esch, T.,
 "Elements of Industrial Heat Transfer Prediction",
 16th Brazilian Congress of Mechanical Engineering (COBEM),
 Nov. 2001.
 \endverbatim

 with the addition of the optional F3 term for rough walls from
 \verbatim
 Hellsten, A.
 "Some Improvements in Menter’s k-omega-SST turbulence model"
 29th AIAA Fluid Dynamics Conference,
 AIAA-98-2554,
 June 1998.
 \endverbatim

 Note that this implementation is written in terms of alpha diffusion
 coefficients rather than the more traditional sigma (alpha = 1/sigma) so
 that the blending can be applied to all coefficuients in a consistent

http://www.gnu.org/licenses/

 108

 manner. The paper suggests that sigma is blended but this would not be
 consistent with the blending of the k-epsilon and k-omega models.

 Also note that the error in the last term of equation (2) relating to
 sigma has been corrected.

 Wall-functions are applied in this implementation by using equations (14)
 to specify the near-wall omega as appropriate.

 The blending functions (15) and (16) are not currently used because of the
 uncertainty in their origin, range of applicability and that is y+ becomes
 sufficiently small blending u_tau in this manner clearly becomes nonsense.

 The default model coefficients correspond to the following:
 \verbatim
 MySSTStdCoeffs
 {
 alphaK1 0.85034;
 alphaK2 1.0;
 alphaOmega1 0.5;
 alphaOmega2 0.85616;
 beta1 0.075;
 beta2 0.0828;
 betaStar 0.09;
 gamma1 0.5532;
 gamma2 0.4403;
 a1 0.31;
 b1 1.0;
 c1 10.0;
 F3 no;
 }
 \endverbatim

SourceFiles
 MySSTStd.C

---/

#ifndef MySSTStd_H
#define MySSTStd_H

#include "RASModel.H"
#include "wallDist.H"

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels

 109

{

/*---*\
 Class MySSTStd Declaration
---/

class MySSTStd
:
 public RASModel
{

protected:

 // Protected data:
 // Model coefficients
 dimensionedScalar alphaK1_;
 dimensionedScalar alphaK2_;
 dimensionedScalar alphaOmega1_;
 dimensionedScalar alphaOmega2_;
 dimensionedScalar gamma1_;
 dimensionedScalar gamma2_;
 dimensionedScalar beta1_;
 dimensionedScalar beta2_;
 dimensionedScalar betaStar_;
 dimensionedScalar a1_;
 dimensionedScalar b1_;
 dimensionedScalar c1_;
 Switch F3_;

 //- Wall distance field
 // Note: different to wall distance in parent RASModel
 wallDist y_;

 // Fields
 volScalarField k_;
 volScalarField omega_;
 volScalarField nut_;

 // Protected Member Functions
 tmp<volScalarField> F1(const volScalarField& CDkOmega) const;
 tmp<volScalarField> F2() const;
 tmp<volScalarField> F3() const;
 tmp<volScalarField> F23() const;

 tmp<volScalarField> blend
 (
 const volScalarField& F1,
 const dimensionedScalar& psi1,
 const dimensionedScalar& psi2
) const
 {

 110

 return F1*(psi1 - psi2) + psi2;
 }

 tmp<volScalarField> alphaK(const volScalarField& F1) const
 {
 return blend(F1, alphaK1_, alphaK2_);
 }

 tmp<volScalarField> alphaOmega(const volScalarField& F1) const
 {
 return blend(F1, alphaOmega1_, alphaOmega2_);
 }

 tmp<volScalarField> beta(const volScalarField& F1) const
 {
 return blend(F1, beta1_, beta2_);
 }

 tmp<volScalarField> gamma(const volScalarField& F1) const
 {
 return blend(F1, gamma1_, gamma2_);
 }

public:
 //- Runtime type information
 TypeName("MySSTStd");

 // Constructors
 //- Construct from components
 MySSTStd
 (
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName = turbulenceModel::typeName,
 const word& modelName = typeName
);

 //- Destructor
 virtual ~MySSTStd()
 {}

 // Member Functions

 //- Return the turbulence viscosity
 virtual tmp<volScalarField> nut() const
 {
 return nut_;
 }

 //- Return the effective diffusivity for k

 111

 tmp<volScalarField> DkEff(const volScalarField& F1) const
 {
 return tmp<volScalarField>
 (
 new volScalarField("DkEff", alphaK(F1)*nut_ + nu())
);
 }

 //- Return the effective diffusivity for omega
 tmp<volScalarField> DomegaEff(const volScalarField& F1) const
 {
 return tmp<volScalarField>
 (
 new volScalarField("DomegaEff", alphaOmega(F1)*nut_ + nu())
);
 }

 //- Return the turbulence kinetic energy
 virtual tmp<volScalarField> k() const
 {
 return k_;
 }

 //- Return the turbulence specific dissipation rate
 virtual tmp<volScalarField> omega() const
 {
 return omega_;
 }

 //- Return the turbulence kinetic energy dissipation rate
 virtual tmp<volScalarField> epsilon() const
 {
 return tmp<volScalarField>
 (
 new volScalarField
 (
 IOobject
 (
 "epsilon",
 mesh_.time().timeName(),
 mesh_
),
 betaStar_*k_*omega_,
 omega_.boundaryField().types()
)
);
 }

 //- Return the Reynolds stress tensor
 virtual tmp<volSymmTensorField> R() const;

 112

 //- Return the effective stress tensor including the laminar stress
 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevRhoReff
 (
 const volScalarField& rho,
 volVectorField& U
) const;

 //- Solve the turbulence equations and correct the turbulence viscosity
 virtual void correct();

 //- Read RASProperties dictionary
 virtual bool read();
};

// * //

} // End namespace RASModels
} // namespace incompressible
} // End namespace Foam

// * //

#endif

// *** //

 113

k-ω Model
k-ω Source file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
---/

#include "kOmega20062D.H"
#include "addToRunTimeSelectionTable.H"

#include "backwardsCompatibilityWallFunctions.H"

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

defineTypeNameAndDebug(kOmega20062D, 0);
addToRunTimeSelectionTable(RASModel, kOmega20062D, dictionary);

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

kOmega20062D::kOmega20062D
(
 const volVectorField& U,
 const surfaceScalarField& phi,

http://www.gnu.org/licenses/

 114

 transportModel& transport,
 const word& turbulenceModelName,
 const word& modelName
)
:
 RASModel(modelName, U, phi, transport, turbulenceModelName),

 Cmu_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "betaStar",
 coeffDict_,
 0.09 //Beta=9/100 in 2006
)
),
 /*beta_ ORIGINAL beta DEFINITION
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "beta",
 coeffDict_,
 0.0708 //(changed from 0.072)
)
),*/
 alpha_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alpha",
 coeffDict_,
 0.52 //alpha=13/25 in 2006
)
),
 alphaK_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alphaK",
 coeffDict_,
 0.6 //sigma*=3/5 in 2006
)
),
 alphaOmega_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "alphaOmega",
 coeffDict_,
 0.5 //sigma=1/2 in 2006
)

 115

),
 Clim_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Clim",
 coeffDict_,
 0.875 //Clim=7/8
)
),
 k_
 (
 IOobject
 (
 "k",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateK("k", mesh_)
),
 omega_
 (
 IOobject
 (
 "omega",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateOmega("omega", mesh_)
),
 nut_
 (
 IOobject
 (
 "nut",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateNut("nut", mesh_)
),
 fBeta_
 (
 IOobject
 (
 "fBeta",

 116

 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_,
 dimless
),
 Chi_
 (
 IOobject
 (
 "Chi",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_, dimless
),
 absChi_
 (
 IOobject
 (
 "absChi",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_, dimless
),
 beta_
 (
 IOobject
 (
 "beta",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_,
 dimless
),
 alphad_
 (
 IOobject
 (
 "alphad",
 runTime_.timeName(),

 117

 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_, dimensionedScalar("zero", dimless, 0.125)
)
{
 bound(k_, kMin_);
 bound(omega_, omegaMin_);

 //nut_ = k_/omega_; //Standard OpenFOAM definition
 nut_ = k_/ max(omega_, Clim_*sqrt(2.0/0.09*magSqr(symm(fvc::grad(U_)))));;
 nut_.correctBoundaryConditions();

 printCoeffs();
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volSymmTensorField> kOmega20062D::R() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "R",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 ((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)),
 k_.boundaryField().types()
)
);
}

tmp<volSymmTensorField> kOmega20062D::devReff() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 "devRhoReff",
 runTime_.timeName(),
 mesh_,

 118

 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 -nuEff()*dev(twoSymm(fvc::grad(U_)))
)
);
}

tmp<fvVectorMatrix> kOmega20062D::divDevReff(volVectorField& U) const
{
 return
 (
 - fvm::laplacian(nuEff(), U)
 - fvc::div(nuEff()*dev(T(fvc::grad(U))))
);
}

tmp<fvVectorMatrix> kOmega20062D::divDevRhoReff
(
 const volScalarField& rho,
 volVectorField& U
) const
{
 volScalarField muEff("muEff", rho*nuEff());

 return
 (
 - fvm::laplacian(muEff, U)
 - fvc::div(muEff*dev(T(fvc::grad(U))))
);
}

bool kOmega20062D::read()
{
 if (RASModel::read())
 {
 Cmu_.readIfPresent(coeffDict());
 //beta_.readIfPresent(coeffDict()); Must be commented for blending function
 alphaK_.readIfPresent(coeffDict());
 alphaOmega_.readIfPresent(coeffDict());

 return true;
 }
 else
 {
 return false;
 }
}

void kOmega20062D::correct()

 119

{
 RASModel::correct();

 if (!turbulence_)
 {
 return;
 }

 volTensorField GradU(fvc::grad(U_));
 volSymmTensorField Sij(symm(GradU));
 volTensorField Omij(-skew(GradU));
 volScalarField StressLim(Clim_*sqrt(2.0/Cmu_)*mag(Sij));
 volSymmTensorField tauij(2.0*nut_*Sij-((2.0/3.0)*I)*k_);
 volVectorField Gradk(fvc::grad(k_));
 volVectorField Gradomega(fvc::grad(omega_));
 volScalarField G(type() + ".G", tauij && GradU);
 //volScalarField G(GName(), tauij && GradU); //for newer OF versions

 // Update omega and G at the wall
 omega_.boundaryField().updateCoeffs();

//START ADDITIONS FOR 2006 VERSION.....................................

volScalarField alphadCheck_(Gradk & Gradomega); //condition to change alphad_

forAll(alphad_,celli)
{
 if (alphadCheck_[celli] <= 0.0001)
 {
 alphad_[celli]=scalar(0);
 }else
 {
 alphad_[celli]=scalar(0.125);
 }
}

volScalarField CDkOmega(alphad_/omega_*(Gradk & Gradomega)); //last term in NASA
equations

Chi_ = (Omij & Omij) && Sij /pow((Cmu_*omega_),3);
absChi_ = mag(Chi_);
fBeta_ = 1.0; //This term should be (1.0+85.0*absChi_)/(1.0+100.0*absChi_); for 3D
beta_ = 0.0708*fBeta_;

 // Turbulence specific dissipation rate equation
 tmp<fvScalarMatrix> omegaEqn
 (
 fvm::ddt(omega_)
 + fvm::div(phi_, omega_)
 - fvm::laplacian(DomegaEff(), omega_)
 ==

 120

 alpha_*G*omega_/k_
 - fvm::Sp(beta_*omega_, omega_)
 + CDkOmega //Crossflow diffusion term to match 2006
);

 omegaEqn().relax();

 omegaEqn().boundaryManipulate(omega_.boundaryField());

 solve(omegaEqn);
 bound(omega_, omegaMin_);

 // Turbulent kinetic energy equation
 tmp<fvScalarMatrix> kEqn
 (
 fvm::ddt(k_)
 + fvm::div(phi_, k_)
 - fvm::laplacian(DkEff(), k_)
 ==
 G
 - fvm::Sp(Cmu_*omega_, k_)
);

 kEqn().relax();
 solve(kEqn);
 bound(k_, kMin_);

 // Re-calculate viscosity
 //nut_ = k_/omega_; //Standard OpenFOAM definition
 nut_ = k_/ max(omega_, Clim_*sqrt(2.0/0.09*magSqr(symm(fvc::grad(U_)))));;
 nut_.correctBoundaryConditions();
}

// * //

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// *** //

 121

k-ω Header file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::incompressible::RASModels::kOmega20062DC2

Group
 grpIcoRASTurbulence

Description
 Standard high Reynolds-number k-omega turbulence model for
 incompressible flows.

 References:
 http://turbmodels.larc.nasa.gov/wilcox.html

 Turbulence Modeling for CFD (3rd Edition), David C. Wilcox, 2006

SourceFiles
 kOmega20062D.C

---/

#ifndef kOmega20062D_H
#define kOmega20062D_H

#include "RASModel.H"

// * //

http://www.gnu.org/licenses/
http://turbmodels.larc.nasa.gov/wilcox.html

 122

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

/*---*\
 Class kOmega20062DC2 Declaration
---/

class kOmega20062D
:
 public RASModel
{

protected:

 // Protected data

 // Model coefficients
 dimensionedScalar Cmu_;
 //dimensionedScalar beta_; commented for blending function
 dimensionedScalar alpha_;
 dimensionedScalar alphaK_;
 dimensionedScalar alphaOmega_;
 dimensionedScalar Clim_;

 // Fields
 volScalarField k_;
 volScalarField omega_;
 volScalarField nut_;
 volScalarField fBeta_;
 volScalarField Chi_;
 volScalarField absChi_;
 volScalarField beta_;
 volScalarField alphad_;

public:

 //- Runtime type information
 TypeName("kOmega20062D");

 // Constructors
 //- Construct from components
 kOmega20062D
 (
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName = turbulenceModel::typeName,

 123

 const word& modelName = typeName
);

 //- Destructor
 virtual ~kOmega20062D()
 {}

 // Member Functions

 //- Return the turbulence viscosity
 virtual tmp<volScalarField> nut() const
 {
 return nut_;
 }

 //- Return the effective diffusivity for k
 tmp<volScalarField> DkEff() const
 {
 return tmp<volScalarField>
 (
 //new volScalarField("DkEff", alphaK_*nut_ + nu())
 new volScalarField("DkEff", alphaK_*k_/omega_ + nu())
);
 }

 //- Return the effective diffusivity for omega
 tmp<volScalarField> DomegaEff() const
 {
 return tmp<volScalarField>
 (
 //new volScalarField("DomegaEff", alphaOmega_*nut_ + nu())
 new volScalarField("DomegaEff", alphaOmega_*k_/omega_ + nu())
);
 }

 //- Return the turbulence kinetic energy
 virtual tmp<volScalarField> k() const
 {
 return k_;
 }

 //- Return the turbulence specific dissipation rate
 virtual tmp<volScalarField> omega() const
 {
 return omega_;
 }

 //- Return the turbulence kinetic energy dissipation rate
 virtual tmp<volScalarField> epsilon() const
 {
 return tmp<volScalarField>

 124

 (
 new volScalarField
 (
 IOobject
 (
 "epsilon",
 mesh_.time().timeName(),
 mesh_
),
 Cmu_*k_*omega_,
 omega_.boundaryField().types()
)
);
 }

 //- Return the Reynolds stress tensor
 virtual tmp<volSymmTensorField> R() const;

 //- Return the effective stress tensor including the laminar stress
 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevRhoReff
 (
 const volScalarField& rho,
 volVectorField& U
) const;

 //- Solve the turbulence equations and correct the turbulence viscosity
 virtual void correct();

 //- Read RASProperties dictionary
 virtual bool read();
};

// * //

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// * //

#endif

// *** //

 125

LRR-IP Model
LRR-IP Source file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "SPLRRIP.H"
#include "addToRunTimeSelectionTable.H"
#include "wallFvPatch.H"
#include "backwardsCompatibilityWallFunctions.H"
#include "wallDist.H"
// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

defineTypeNameAndDebug(SPLRRIP, 0);
addToRunTimeSelectionTable(RASModel, SPLRRIP, dictionary);

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

SPLRRIP::SPLRRIP
(
 const volVectorField& U,

http://www.gnu.org/licenses/

 126

 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName,
 const word& modelName
)
:
 RASModel(modelName, U, phi, transport, turbulenceModelName),

 Cmu_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cmu",
 coeffDict_,
 0.09
)
),
 Clrr1_ //Rotta's constant
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Clrr1",
 coeffDict_,
 1.8
)
),
 Clrr2_ //Used in rapid term
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Clrr2",
 coeffDict_,
 0.6
)
),
 C1_ //First epsilon coefficient
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "C1",
 coeffDict_,
 1.35 //1.44
)
),
 C2_ //Second epsilon coefficient
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "C2",
 coeffDict_,
 1.92

 127

)
),
 Cs_ //Used in Daly&Harlow GGDH correlation for u_i u_j u_k
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Cs",
 coeffDict_,
 0.22 //used to be 0.25.
)
),
 Ceps_ //Third epsilon coefficient
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "Ceps",
 coeffDict_,
 0.15
)
),
 sigmaEps_ //Used in effective diffusivity of epsilon (See .H file)
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "sigmaEps",
 coeffDict_,
 1.3
)
),
 couplingFactor_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "couplingFactor",
 coeffDict_,
 0.0
)
),
 R_
 (
 IOobject
 (
 "R",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateR("R", mesh_)
),
 k_

 128

 (
 IOobject
 (
 "k",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateK("k", mesh_)
),
 epsilon_
 (
 IOobject
 (
 "epsilon",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateEpsilon("epsilon", mesh_)
),
 nut_
 (
 IOobject
 (
 "nut",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 autoCreateNut("nut", mesh_)
),
 xn
 (
 IOobject
 (
 "xn",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("xn", dimLength, SMALL)
),
 utauw
 (
 IOobject

 129

 (
 "utauw",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("utauw", U_.dimensions(), 0.0)
),
 utau
 (
 IOobject
 (
 "utau",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("utau", U_.dimensions(), 0.0)
),
 utauFaces
 (
 IOobject
 (
 "utauFaces",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("utauFaces", U_.dimensions(), 0.0)
),
 f1
 (
 IOobject
 (
 "f1",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("f1", dimless, 0.0)
),
 argf2
 (

 130

 IOobject
 (
 "argf2",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("argf2", dimless, 0.0)
),
 f2
 (
 IOobject
 (
 "f2",
 runTime_.timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh_,
 dimensionedScalar("f2", dimless, 1.0)
),
 yr_(mesh_),
 C1Ref_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "C1Ref",
 coeffDict_,
 0.3
)
),
 C2Ref_
 (
 dimensioned<scalar>::lookupOrAddToDict
 (
 "C2Ref",
 coeffDict_,
 0.3
)
)

{
 if (couplingFactor_.value() < 0.0 || couplingFactor_.value() > 1.0)
 {
 FatalErrorIn
 (
 "MyLRRIP::MyLRRIP"
 "(const volVectorField& U, const surfaceScalarField& phi,"

 131

 "transportModel& transport)"
) << "couplingFactor = " << couplingFactor_
 << " is not in range 0 - 1" << nl
 << exit(FatalError);
 }

 bound(k_, kMin_);
 bound(epsilon_, epsilonMin_);

 nut_ = Cmu_*sqr(k_)/epsilon_;
 nut_.correctBoundaryConditions();

 printCoeffs();
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

tmp<volSymmTensorField> SPLRRIP::devReff() const
{
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField
 (
 IOobject
 (
 runTime_.timeName(),
 "devRhoReff",
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 R_ - nu()*dev(twoSymm(fvc::grad(U_)))
)
);
}

tmp<fvVectorMatrix> SPLRRIP::divDevReff(volVectorField& U) const
{
 if (couplingFactor_.value() > 0.0)
 {
 return
 (
 fvc::div(R_ + couplingFactor_*nut_*fvc::grad(U), "div(R)")
 + fvc::laplacian
 (
 (1.0 - couplingFactor_)*nut_,
 U,
 "laplacian(nuEff,U)"
)

 132

 - fvm::laplacian(nuEff(), U)
);
 }
 else
 {
 return
 (
 fvc::div(R_)
 + fvc::laplacian(nut_, U, "laplacian(nuEff,U)")
 - fvm::laplacian(nuEff(), U)
);
 }
}

tmp<fvVectorMatrix> SPLRRIP::divDevRhoReff
(
 const volScalarField& rho,
 volVectorField& U
) const
{
 volScalarField muEff("muEff", rho*nuEff());

 if (couplingFactor_.value() > 0.0)
 {
 return
 (
 fvc::div
 (
 rho*R_ + couplingFactor_*(rho*nut_)*fvc::grad(U),
 "div((rho*R))"
)
 + fvc::laplacian
 (
 (1.0 - couplingFactor_)*rho*nut_,
 U,
 "laplacian(muEff,U)"
)
 - fvm::laplacian(muEff, U)
);
 }
 else
 {
 return
 (
 fvc::div(rho*R_)
 + fvc::laplacian(rho*nut_, U, "laplacian(muEff,U)")
 - fvm::laplacian(muEff, U)
);
 }
}

 133

bool SPLRRIP::read()
{
 if (RASModel::read())
 {
 Cmu_.readIfPresent(coeffDict());
 Clrr1_.readIfPresent(coeffDict());
 Clrr2_.readIfPresent(coeffDict());
 C1_.readIfPresent(coeffDict());
 C2_.readIfPresent(coeffDict());
 Cs_.readIfPresent(coeffDict());
 Ceps_.readIfPresent(coeffDict());
 sigmaEps_.readIfPresent(coeffDict());
 C1Ref_.readIfPresent(coeffDict());
 C2Ref_.readIfPresent(coeffDict());
 couplingFactor_.readIfPresent(coeffDict());

 if (couplingFactor_.value() < 0.0 || couplingFactor_.value() > 1.0)
 {
 FatalErrorIn("SPLRRIP::read()")
 << "couplingFactor = " << couplingFactor_
 << " is not in range 0 - 1"
 << exit(FatalError);
 }

 return true;
 }
 else
 {
 return false;
 }
}

void SPLRRIP::correct()
{
 RASModel::correct();

 if (!turbulence_)
 {
 return;
 }
 if (mesh_.changing())
 {
 yr_.correct();
 }

 volSymmTensorField P(-twoSymm(R_ & fvc::grad(U_))); //P_ij
 volScalarField G(type() + ".G", 0.5*mag(tr(P))); //P
 //volScalarField G(GName(), 0.5*mag(tr(P))); //for newer OF versions

//*******************************ADDITIONS TO
LRRIP**

 134

 xn = wallDist(mesh_).y(); //Normal distance to wall

 const fvPatchList& Boundaries = mesh_.boundary();
 forAll(Boundaries, patchi) //loops through boundaries, patchi is the index
 {
 const fvPatch& currPatch = Boundaries[patchi]; //indexed boundary definition
(current patch)
 if (isType<wallFvPatch>(currPatch))
 {
 utauw.boundaryField()[patchi] =
 sqrt
 (
 nu()*mag(U_.boundaryField()[patchi].snGrad())
);
 forAll(currPatch, facei)
 {
 label faceCelli = currPatch.faceCells()[facei]; //indexed face in current patch
 // Assign utau[on indexed cell face] value from utauw[on boundary][at each
boundary face]
 utauFaces[faceCelli] = utauw.boundaryField()[patchi][facei];
 //utau[faceCelli] = utauw.boundaryField()[patchi][facei];

 forAll(utau, celli) //assigns value of utau[at face] to utau[cells]
 {
 utau[celli] = 0.727; //value from experimental paper (should be fixed for
looping)
 }
 }
 }
 }

//Damping wall functions:
const scalarField& nuCells=nu()().internalField();
forAll(f1,celli)
{
 if (utau[celli] == 0.0)
 {
 f1[celli]= scalar(0.0);
 }else
 {f1[celli] = exp(-0.5*xn[celli]*utau[celli]/nuCells[celli]);}
}

argf2= sqr(k_)/(6.0*nu()*epsilon_);
f2 = 1-2.0/9.0*Foam::exp(-1.0*sqr(argf2));
//*******************************END ADDITIONS TO
LRRIP**

 // Update epsilon and G at the wall
 epsilon_.boundaryField().updateCoeffs();

 135

 // Dissipation equation
 tmp<fvScalarMatrix> epsEqn
 (
 fvm::ddt(epsilon_) //change in time
 + fvm::div(phi_, epsilon_) //convective term
 //- fvm::laplacian(DepsilonEff(), epsilon_)
 - fvm::laplacian(DissDest(), epsilon_) //NEW LINE
 //- fvm::laplacian(Ceps_*(k_/epsilon_)*R_, epsilon_) ^^DissDestruction of dissip(pg 11
of RST Doc)
 -fvm::laplacian(nu(), epsilon_) // Molecular part of DepsilonEff
 ==
 C1_*G*epsilon_/k_ //Production of dissipation
 - fvm::Sp(C2_*f2*epsilon_/k_, epsilon_) //ADDED f2 TO
LRRIP****************************
 -2.0/sqr(xn)*nu()*epsilon_*f1 // ADDITION TO
LRRIP*************************************
);

 epsEqn().relax();
 epsEqn().boundaryManipulate(epsilon_.boundaryField());

 solve(epsEqn);
 bound(epsilon_, epsilonMin_);

 // Reynolds stress equation
 const fvPatchList& patches = mesh_.boundary();

 forAll(patches, patchi)
 {
 const fvPatch& curPatch = patches[patchi];

 if (isA<wallFvPatch>(curPatch))
 {
 forAll(curPatch, facei)
 {
 label faceCelli = curPatch.faceCells()[facei];
 P[faceCelli] *= min
 (
 G[faceCelli]/(0.5*mag(tr(P[faceCelli])) + SMALL),
 1.0
);
 }
 }
 }

//Reflection Equation................................
 const volSymmTensorField reflect
 (
 C1Ref_*epsilon_/k_*R_ - C2Ref_*Clrr2_*dev(P)
);
//...

 136

 tmp<fvSymmTensorMatrix> REqn
 (
 fvm::ddt(R_)
 + fvm::div(phi_, R_)
 - fvm::laplacian(DandH(), R_) //Daly & Harlow
 //- fvm::laplacian(Cs_*(k_/epsilon_)*R_, R_) // ^^^Daly & Harlow
 - fvm::laplacian(nu(), R_) // Molecular component of DREff()
 //- fvm::laplacian(DREff(), R_)
 + fvm::Sp(Clrr1_*epsilon_/k_, R_)
 ==
 P
 +(2.0/3.0*(Clrr1_)*I)*epsilon_ //Rotta's Term (Split OpenFOAM term into two)
 -(2.0/3.0*I)*epsilon_
 - Clrr2_*dev(P) //Second term in -IP
 -2.0/sqr(xn)*nu()*R_ // Second part of Dissipation tensor definition****

//wall reflection terms ...
 + symm
 (
 I*((yr_.n() & reflect) & yr_.n())
 - 1.5*(yr_.n()*(reflect & yr_.n())
 + (yr_.n() & reflect)*yr_.n())
)*0.2*pow(k_, 1.5)/(yr_*epsilon_)
//...
);

 REqn().relax();
 solve(REqn);

 R_.max
 (
 dimensionedSymmTensor
 (
 "zero",
 R_.dimensions(),
 symmTensor
 (
 kMin_.value(), -GREAT, -GREAT,
 kMin_.value(), -GREAT,
 kMin_.value()
)
)
);

 k_ = 0.5*tr(R_); //Matches
 bound(k_, kMin_);

 // Re-calculate viscosity
 nut_ = Cmu_*sqr(k_)/epsilon_;
 nut_.correctBoundaryConditions();

 137

 // Correct wall shear stresses
 forAll(patches, patchi)
 {
 const fvPatch& curPatch = patches[patchi];

 if (isA<wallFvPatch>(curPatch))
 {
 symmTensorField& Rw = R_.boundaryField()[patchi];

 const scalarField& nutw = nut_.boundaryField()[patchi];

 const vectorField snGradU(U_.boundaryField()[patchi].snGrad());

 const vectorField& faceAreas
 = mesh_.Sf().boundaryField()[patchi];

 const scalarField& magFaceAreas
 = mesh_.magSf().boundaryField()[patchi];

 forAll(curPatch, facei)
 {
 // Calculate near-wall velocity gradient
 tensor gradUw
 = (faceAreas[facei]/magFaceAreas[facei])*snGradU[facei];

 // Calculate near-wall shear-stress tensor
 tensor tauw = -nutw[facei]*2*symm(gradUw);

 // Reset the shear components of the stress tensor
 Rw[facei].xy() = tauw.xy();
 Rw[facei].xz() = tauw.xz();
 Rw[facei].yz() = tauw.yz();
 }
 }
 }
}

// * //

} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// *** //

 138

LRR-IP Header file:
/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::incompressible::RASModels::SPLRRIP

Group
 grpIcoRASTurbulence

Description
 Launder, Reece and Rodi Reynolds-stress turbulence model for
 incompressible flows.

 The default model coefficients correspond to the following:
 \verbatim
 SPLRRIPCoeffs
 {
 Cmu 0.09;
 Clrr1 1.8;
 Clrr2 0.6;
 C1 1.44;
 C2 1.92;
 Cs 0.25;
 Ceps 0.15;
 sigmaEps 1.3;
 couplingFactor 0.0; // only for incompressible
 }
 \endverbatim

SourceFiles

http://www.gnu.org/licenses/

 139

 SPLRRIP.C

---/

#ifndef SPLRRIP_H
#define SPLRRIP_H

#include "RASModel.H"
#include "wallDist.H" //ADDED ***
#include "wallDistReflection.H"//ADDED ***

// * //

namespace Foam
{
namespace incompressible
{
namespace RASModels
{

/*---*\
 Class SPLRRIP Declaration
---/

class SPLRRIP
:
 public RASModel
{

protected:

 // Protected data

 // Model coefficients
 dimensionedScalar Cmu_;
 dimensionedScalar Clrr1_;
 dimensionedScalar Clrr2_;
 dimensionedScalar C1_;
 dimensionedScalar C2_;
 dimensionedScalar Cs_;
 dimensionedScalar Ceps_;
 dimensionedScalar sigmaEps_;
 dimensionedScalar couplingFactor_;

 // Fields
 volSymmTensorField R_;
 volScalarField k_;
 volScalarField epsilon_;
 volScalarField nut_;
//*********ADDITIONS TO SPLRRIP******************************
 volScalarField xn;

 140

 volScalarField utauw;
 volScalarField utau;
 volScalarField utauFaces;
 volScalarField f1;
 volScalarField argf2;
 volScalarField f2;
 wallDistReflection yr_; // ADDED
 dimensionedScalar C1Ref_;// ADDED
 dimensionedScalar C2Ref_;// ADDED
//*************END ADDITIONS TO SPLRRIP**********************

public:
 //- Runtime type information
 TypeName("SPLRRIP");

 // Constructors
 //- Construct from components
 SPLRRIP
 (
 const volVectorField& U,
 const surfaceScalarField& phi,
 transportModel& transport,
 const word& turbulenceModelName = turbulenceModel::typeName,
 const word& modelName = typeName
);

 //- Destructor
 virtual ~SPLRRIP()
 {}

 // Member Functions

 //- Return the turbulence viscosity
 virtual tmp<volScalarField> nut() const
 {
 return nut_;
 }

 //- Return the effective diffusivity for R
 tmp<volScalarField> DREff() const
 {
 return tmp<volScalarField>
 (
 new volScalarField("DREff", nut_ + nu())
);
 }

 //- Return the effective diffusivity for epsilon
 tmp<volScalarField> DepsilonEff() const
 {
 return tmp<volScalarField>

 141

 (
 new volScalarField("DepsilonEff", nut_/sigmaEps_ + nu())
);
 }

 //- Return the turbulence kinetic energy
 virtual tmp<volScalarField> k() const
 {
 return k_;
 }

 //- Return the turbulence kinetic energy dissipation rate
 virtual tmp<volScalarField> epsilon() const
 {
 return epsilon_;
 }

 //- Return the Reynolds stress tensor
 virtual tmp<volSymmTensorField> R() const
 {
 return R_;
 }

 //- Return the effective stress tensor including the laminar stress
 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

 //- Return the source term for the momentum equation
 virtual tmp<fvVectorMatrix> divDevRhoReff
 (
 const volScalarField& rho,
 volVectorField& U
) const;

//**************START ADDITIONS***************************
 //- Return term for Dissipation equation (destruction term on line 352)
 tmp<volSymmTensorField> DissDest() const
 {
 return tmp<volSymmTensorField>
 (
 new volSymmTensorField("DissDest", Ceps_*(k_/epsilon_)*R_)
);
 }

 //- Return term for Daly & Harlow Term in R equation (line 395)
 tmp<volSymmTensorField> DandH() const
 {
 return tmp<volSymmTensorField>
 (

 142

 new volSymmTensorField("DandH", Cs_*(k_/epsilon_)*R_)
);
 }
//*******************END ADDITIONS************************

 //- Solve the turbulence equations and correct the turbulence viscosity
 virtual void correct();

 //- Read RASProperties dictionary
 virtual bool read();
};

// * //
} // End namespace RASModels
} // End namespace incompressible
} // End namespace Foam

// * //
#endif
// ** //

 143

C. OpenFOAM Case Files (located in system)
controlDict

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.2.0
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object controlDict;
}
// * //

application simpleFoam;
startFrom latestTime;
startTime 0;
stopAt endTime;
endTime 1;
deltaT .00001;
writeControl timeStep;
writeInterval 10000;
purgeWrite 0;
writeFormat ascii;
writePrecision 6;
writeCompression off;
timeFormat general;
timePrecision 6;
runTimeModifiable true;
libs ("libmyIncompressibleRASModels.so");
// *** //

 144

fvSchemes

/*--------------------------------*- C++ -*--------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.1.1
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object fvSchemes;
}
// ** //

ddtSchemes
{
 default steadyState;
}

gradSchemes
{
 default Gauss linear;
 grad(p) Gauss linear;
 grad(U) Gauss linear;
}

divSchemes
{
 default none;
 div(phi,U) bounded Gauss linearUpwind grad(U);
 div(phi,epsilon) bounded Gauss upwind;
 div(phi,omega) bounded Gauss upwind;
 div(phi,k) bounded Gauss upwind;
 div(phi,R) bounded Gauss upwind;
 div(R) Gauss linear;
 div((nuEff*dev(T(grad(U))))) Gauss linear;
 div(DomegaEff,omega) bounded Gauss upwind;

}

laplacianSchemes
{
 default none;
 laplacian(nuEff,U) Gauss linear corrected;
 laplacian((1|A(U)),p) Gauss linear corrected;
 laplacian(DkEff,k) Gauss linear corrected;

 145

 laplacian(DepsilonEff,epsilon) Gauss linear corrected;
 laplacian(DREff,R) Gauss linear corrected;
 laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
 laplacian(DomegaEff,omega) Gauss linear corrected;
 laplacian(phi,omega) Gauss linear corrected;
}

interpolationSchemes
{
 default linear;
 interpolate(U) linear;
}

snGradSchemes
{
 default corrected;
}

fluxRequired
{
 default no;
 p ;
}
//*** //

 146

fvSolution

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.1.1
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "system";
 object fvSolution;
}
// * //
solvers
{
 p
 {
 solver PCG;
 preconditioner FDIC;
 tolerance 1e-16;
 relTol 0;
 }
 U
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
 k
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
 epsilon
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
 R
 {
 solver PBiCG;

 147

 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
 nuTilda
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
 omega
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-16;
 relTol 0;
 }
}

SIMPLE
{
 nNonOrthogonalCorrectors 0;
}
relaxationFactors
{
 fields
 {
 p 0.3;
 }
 equations
 {
 U 0.7;
 k 0.7;
 epsilon 0.7;
 R 0.7;
 nuTilda 0.7;
 omega 0.7;
 }
}
//** //

	University of New Mexico
	UNM Digital Repository
	9-12-2014

	Verification of Statistical Turbulence Models in Aerodynamic Flows
	Sebastian Gomez
	Recommended Citation

	tmp.1472077812.pdf.LHX8V

