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ABSTRACT 
 

Computational fluid dynamics (CFD) is a tool that is commonly used in 

industry and academia. Engineers and scientists are sometimes apprehensive about 

the use of CFD due to inconsistencies and/or errors in results obtained with 

different software packages for the same flow cases. As a result, efforts are being 

made to ensure that there is uniformity among results of flow simulations produced 

by the computer programs. 

The current research makes a contribution to the verification of an open-

source CFD toolbox known as OpenFOAM. In doing so, flow results for two 

benchmark flow cases obtained with OpenFOAM are compared with the results 

obtained with high-accuracy NASA CFD codes CFL3D and FUN3D. The benchmark 

cases are the zero pressure gradient boundary layer of flow over a flat plate and a 

two-dimensional bump in a channel. A number of flow profiles obtained with 

NASA’s definitions of “standard” versions of the Spalart-Allmaras, Shear Stress 

Transport, and k-ω turbulence models are compared with their CFL3D and FUN3D 



 v 

counterparts. A grid convergence study is performed to measure the change in the 

results as a function of element size, specifically for the finest meshes. 

The flows’ mean velocity, skin friction coefficient, and turbulent variable 

profiles obtained with OpenFOAM are in agreement with NASA’s profiles for both 

cases. The grid convergence studies show that the differences between OpenFOAM 

and NASA results are found to be of less than 5% for all variables on the finest 

meshes in both benchmark cases. OpenFOAM’s capability to produce accurate 

results for the benchmark cases is confirmed. 
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I. Introduction 

The advance of computers has led to an increase in the use of computational 

predictions of turbulent fluid behavior in engineering. Computers are used to solve 

the Navier-Stokes equations, which describe the motion of a fluid. Despite of the 

computing improvement that has occurred over the past couple of decades, the 

equations describing the flow field in engineering applications cannot be solved 

exactly in a computer. The reason for this is that the random fluctuations associated 

with turbulent flows in engineering applications vary over a large range of time and 

space scales, which make obtaining an exact numerical solution a very 

computationally demanding task. A few applications of interest include turbulent 

flows around vehicles, inside of turbines or in manufacturing methods. 

Researchers and engineers are still expected to provide estimations related 

to fluid flow in a timely manner with the computational resources that are currently 

available. A popular alternative approach to solving the exact Navier-Stokes 

equations is to use turbulence models, which predict the effects of turbulence by 

making simplifying assumptions. Turbulence models can produce reasonable 

solutions to flow problems but there is not a single turbulence model is capable of 

predicting all features for any type of flow. Specific turbulence models are often 

tailored for a certain type of flow (i.e.: external aerodynamics, internal, high rotation, 

etc.). As a result, CFD users must rely on the correct implementation of turbulence 

models in the computational software being used to solve a certain type of flow 

problem. One would hope that if the same turbulence model were used in two 

different computational packages, the solutions obtained would converge to the 
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same result but that is often not the case [1][2]. To gain confidence in a turbulence 

model’s implementation, the user may want to “verify” it. Verification consists on 

the use of reference solutions obtained with highly accurate numerical methods on 

benchmark problems. The goal of this work is to verify a number of turbulence 

models using the Open Field Operation and Manipulation (OpenFOAM) 

computational toolbox [3]. 

This work will provide a brief overview on Reynolds-averaged Navier-Stokes 

(RANS) turbulence modeling. Previous research pertinent to the topic treated in 

Sections II-III will be discussed after. The simulation parameters and a description 

of the flow geometry for each flow case will be presented in Section II. The 

simulation results obtained with OpenFOAM using standard versions of RANS 

models will be presented in Section III. The validity of the results obtained with 

OpenFOAM will be verified by comparing them with reference results obtained with 

NASA’s high-order codes, CFL3D [4] and FUN3D [5], direct numerical simulation 

data, and experimental measurements. To finalize this document, some concluding 

remarks will be provided in Section IV. 
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a. Turbulence Modeling 

***This section contains information from [6] and [7]. 

The equations describing fluid flow are known as the Navier-Stokes 

equations. They are composed of conservation of momentum and continuity 

equations. The incompressible version of these equations is as follows: 

   

  
 

   

  
   

   

   
  

 

 

  

   
  

    

      
                                      

   

   
                                                                         

where   represents the kinematic viscosity, defined as      , and the subscript i 

represents each component of the corresponding variable. Unless specified 

otherwise, summation over repeated indices is implied. 

In the RANS approach, the flow velocity, ui , is decomposed into a time-

averaged velocity and an instantaneous velocity fluctuation through the use of 

Reynolds decomposition: 
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where the time-averaged or mean velocity component of a steady flow is defined as 
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In the equation above, T is the averaging interval, which has to be large with respect 

to the time scale of the velocity fluctuations. 

Applying Reynolds averaging to the incompressible continuity equation 

yields 
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Averaging the left hand side of Eq. 1, we get 
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Employing Eq.3, Eq. 4  becomes 
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Taking Eq.5 into account and averaging each term the momentum equation yields 
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For Newtonian fluids, the second to last term in Eq.6 is represented as a viscous 

stress tensor, defined as 

                                                                             

where     is the strain-rate tensor 
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Substituting Eq.7 into Eq.6 and multiplying by the fluid’s density,  , yields 
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The combination of Eq.3 and Eq.8 is known as the Reynolds-Averaged Navier-Stokes 

(RANS) equations. 

The quantity     
   

 ̅̅ ̅̅ ̅̅  in Eq.8 is known as the Reynolds stress tensor. The 

specific Reynolds stress tensor is    
   

 ̅̅ ̅̅ ̅̅ , but it is often referred to as the Reynolds 

stress tensor as well. The Reynolds stress tensor is symmetric, which means that 

only six out of its nine components are independent. The unknown variables for a 



 5 

three-dimensional flow are: pressure, three velocity components and the six 

independent components of the Reynolds stress tensor, which makes a total of ten 

unknowns. The system is composed of only four equations, continuity and 

momentum conservation in each direction, which is six less than what is needed to 

close the system. The absence of the additional equations necessary to close the 

mathematical system is referred to as the turbulence closure problem. The closure 

problem is caused by the inclusion of   
   

 ̅̅ ̅̅ ̅̅  in the equations. To compute all mean-

flow properties of the turbulent flow, a prescription for computing   
   

 ̅̅ ̅̅ ̅̅  is needed 

[6]. 

 

Types of Models 

Eddy Viscosity Models 

A very popular way to model the Reynolds stresses known as the Boussinesq 

eddy viscosity approximation was introduced by Joseph Boussinesq in 1887. 

Boussinesq postulated that the momentum transfer caused by turbulent eddies can 

be modeled with an eddy viscosity [8]. The eddy viscosity, also known as turbulent 

viscosity, is always positive and is computed from a mixing length that depends on 

the flow that is being analyzed. The use of an eddy viscosity,   , assumes flow 

isotropy, which can sometimes lead to excessive diffusion [9]. In incompressible 

flows, the turbulent viscosity can be divided by the fluid’s density, after which it is 

represented by   .  As will be shown in Section II, the definition of eddy viscosity 

varies from model to model. The Boussinesq approximation relates the Reynolds 
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stress term found in the momentum equation to the eddy viscosity, the rate of strain, 

and the turbulent kinetic energy, k, in the following way: 

    
   

 ̅̅ ̅̅ ̅̅         
 

 
                                                             

The second term in Eq.9 is present to assure that the sum of the normal stresses is 

equal to 2k [10][6], which is necessary due to the way that turbulence kinetic energy 

is defined: 
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Turbulence models that employ the Boussinesq eddy viscosity 

approximation are often referred to as eddy viscosity models, or EVMs. Two types of 

EVMs are one-equation models and two-equation models. One-equation models 

solve an additional transport equation for a turbulent variable, usually turbulent 

kinetic energy, whereas two-equation models solve equations for k and a turbulence 

length scale, or an equivalent variable. An example of a turbulence scale of interest 

in two-equation models is the specific turbulence dissipation, denoted by  . The 

specific turbulence dissipation represents the rate at which turbulence kinetic 

energy is converted into thermal internal energy per unit volume and time. 

Sometimes the specific turbulent dissipation is referred to as the mean frequency of 

the turbulence; the coining of this term is mainly based on dimensional analysis 

because   has units of s-1 [11]. 

The transport equation for turbulent kinetic energy is obtained from the 

momentum equation by multiplying it by   , averaging, and performing basic 

mathematical manipulations. The derivation of the exact transport equation for 
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turbulent kinetic energy is covered in most textbooks, so only the final result is 

shown: 
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The unsteady and convective terms on the left hand side of Eq.10 represent the 

overall change in k. On the right hand side, the first term, denoted by   , is known as 

the diffusive transport. The components of    represent different mechanisms for 

turbulence kinetic energy transport and they are known as: molecular diffusion, 

which represents diffusion by the fluid’s natural molecular transport process, 

pressure diffusion, which represents diffusion via pressure–velocity fluctuations, 

and the triple velocity correlation, known as the turbulent transport term, which is 

related to transport via turbulent fluctuations. The second term, on the right hand 

side of Eq.10, denoted by   , is known as the production, and it represents the rate 

at which kinetic energy is transferred from the mean flow to turbulence. The last 

term, represented by  , is known as dissipation and it is the rate at which kinetic 

energy is converted into thermal internal energy [6]. In order to close Eq.10, the 

Reynolds stresses, dissipation, turbulent transport, and pressure diffusion have to 

be specified. 

The Reynolds stress tensor is modeled through the use of the Boussinesq 

approximation and it is defined in the following way: 
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The dissipation model varies from model to model. The author in Ref.12 suggested 

that the dissipation be defined as 

    

    

 
                                                                     

where    is a closure coefficient that ranges between 0.07 and 0.09 [6] and   is a 

turbulence length scale that depends on the type of flow that is being modeled. 

Both of the diffusive terms are usually modeled as a single term, in the following 

way: 
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In the equation above,    is the eddy viscosity and    is a closure coefficient known 

as the turbulent Prandtl number, which is usually assumed to be constant and on 

the order of one. 

The combination of Eqs.10-13 yields the modeled version of the turbulent 

kinetic energy equation: 
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The modeling that has been implemented to close the system leads to a significant 

loss of detail, but it makes the system solvable. 

 

Reynolds Stress Transport Models 

Reynolds Stress Models (RSM), or Reynolds Stress Transport (RST) Models, 

are a more elaborate category of turbulence models. The method of closure 

employed in RSM models is called a second-order closure. Second-order closure 
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evades the use of an isotropic eddy viscosity because it calculates the Reynolds 

stresses from transport equations for each component. Calculating the components 

of the Reynolds stress tensor is beneficial because doing so accounts for directional 

effects of the Reynolds stress fields such as streamline curvature, sudden changes in 

strain rate, secondary motions, etc.[6]. Although it may seem obvious to use an RST 

model to simulate a given flow, an engineer must consider the expense of the 

increase in accuracy. Instead of only solving one or two equations, like in EVMs, 

transport equations must be solved for each of the six independent components of 

the Reynolds stress tensor and for turbulent dissipation, increasing the total 

number of equations to 7. A reason for choosing second-moment closures is that 

turbulent shear flows are not in any general sense describable by a model based on 

a linear eddy viscosity model [13]. 

The transport equation for the Reynolds stresses is defined as 
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The components of Eq.15 are very similar to those found in Eq.10. Terms on the left 

account for unsteady and convective changes in the Reynolds stress. The right hand 

side terms are the diffusion,    , production,    , dissipation,    , and fluctuating 

pressure,    , related to the transport of Reynolds stresses. In order to close Eq.15, 

the diffusion, dissipation, and fluctuating pressure tensors have to be specified. The 
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viscous term in the diffusion component can be obtained directly. The triple product, 

previously referred to as turbulent transport, is modeled through the use of the 

generalized gradient diffusion hypothesis (GGDH) developed by Daly and 

Harlow[14]. The GGDH approximation takes the following form: 
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where    is a model constant and has a value of 0.2. 

It is common practice to adopt an isotropic relation for     and to absorb any 

departure from isotropy in the dissipation processes into the turbulent parts of     

[13][15]. The typical isotropic approximation of the dissipation tensor is defined as 

    
 

 
                                                                       

where   is determined from its own transport equation. 

The fluctuating pressure term is usually decomposed into two parts [13]: 
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The first component in Eq.18 is known as the pressure diffusion and is denoted by 

   
 . It accounts for the diffusion of the Reynolds stresses via pressure fluctuations 

and is often included in the diffusive component,    , of Eq.15. The second 

component is the pressure-rate-of-strain tensor,    , which is considered to be the 

most challenging task in second-moment closure and is modeled differently across 

different RST models [13]. No explicit model for    
  has been proposed [13]. 
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There exist many different ways to represent the pressure-rate-of-strain 

tensor. In this document,     will be decomposed into four components: 

              (   
      

  )        

The first term,     , represents the return to isotropy of non-isotropic turbulence, 

and is often referred to as the “slow” or Rotta term [16]. This term is traceless, 

which promotes return to isotropy and is defined as 
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The model constant,   , has a value of 1.8. The second term,     , represents the 

isotropization of strain production and is referred to as the “rapid” term [17]. The 

mathematical definition of the rapid term is 

        (    
 

 
      )                                                

where     is the Reynolds stress production tensor and the model constant,   , has a 

value of 0.6. The third and fourth components of     are meant to account for near-

wall effects.  The first term,    
  , was developed in [18] and the second term,    

  , 

was developed in [19]. Their definitions are 
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respectively. In Eqs.21 and 22, the model coefficients,   
  and   

 , have values of 0.3, 

    represents the metric tensor, and n represents the direction normal to the wall. 
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Summation over repeated n indices is not implied in Eqs.21 and 22. Both wall terms 

are multiplied by      , a damping function defined as 

  
 

 

    

   
   

where    is the distance normal to the wall [20]. 

This concludes the general description of some of the approaches used to 

model the Reynolds stresses in RANS turbulence models. 
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b. Literature Review 

The flows discussed in this document have been studied in great detail by 

multiple researchers. Reviewing every publication related to flow over a flat plate 

and a two dimensional bump in a channel would require an extensive amount of 

space and time, so only a small number of experimental and computational 

references will be mentioned.  

Schwarz conducted experiments of flow over a flat plate and measured flow 

variables such as pressure, velocities, skin friction coefficient and Reynolds stresses 

to address concerns related to turbulence modeling [21]. DeGraaff and Eaton 

performed an experiment to verify Reynolds number scaling of a zero-pressure-

gradient boundary layer over a flat plate. It was found that the log law provides a 

reasonably accurate universal profile for the mean velocity in the inner region of the 

boundary layer [22]. Experimental results for a flat plate boundary layer near a free 

surface in Ref.23 matched benchmark results closely. Castillo and Johansson 

conducted an experiment and a similarity analysis of the RANS equations on a zero 

pressure gradient flow over a flat plate to investigate the effect of local Reynolds 

number and upstream conditions on the development of the mean flow and 

turbulent quantities [24]. 

  Many studies have been performed to evaluate the accuracy of different 

turbulence models, boundary layer structure and sensitivity to mesh size in 

computations. For example, researchers at NASA computed accurate numerical 

solutions using two-equation models for selected flows and compared them to 

experimental values [25]. In the study, the models’ overall performance was ranked 
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from best to worst in the following order: SST, Spalart-Allmaras, and Wilcox’s 1988 

version of k-ω. The authors deemed the Spalart-Allmaras model the best in terms of 

numerical performance, followed by the SST model and k-ω. The evaluation was 

based on the grid spacing required for accurate solutions and the maximum y+ 

allowable at the first grid point off the wall. Simulation results obtained by Chan et 

al. using Wilcox’s 2006 version of k-ω showed good agreement with experimental 

and theoretical results for flow over a 2D flat plate [26]. A comparison between the 

results obtained with the k-ω and SST models for flow over a flat plate showed that 

the SST model predicted a mean velocity profile that was very similar to that 

obtained with k-ω in [27]. A two-equation turbulence model developed and verified 

by Xu et al. showed excellent agreement with experimental values for a zero 

pressure gradient turbulent boundary layer on a flat plate in [28]. The 

computational studies mentioned so far verify the accuracy of the results by 

comparing them with experimental data. However, DNS results can be considered to 

be as good measurements obtained from experiments. As a result, they are often 

used to evaluate the accuracy of turbulence models. Spalart [29], Wu and Moin [30], 

and Sillero et al. [31] have produced some of the most widely accepted DNS results 

for flow over a flat plate. 

A smaller amount of research has been done on flow over the 2D bump-in-

channel. Computations have been performed for flow over the bump geometry and 

the results were used to determine the performance of RANS models with respect to 

large eddy simulation (LES), detached eddy simulation (DES), DNS, and 

experimental results. Osusky et al. used a novel solution algorithm to obtain results 
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with RANS models that matched those obtained by NASA for flow over the bump-in-

channel [32]. Furbo conducted simulations for flow over a bump using the default 

RANS turbulence models in OpenFOAM [7]. The results were compared to 

experimental and LES data and it was noticed that most of the RANS models tested 

didn’t predict a separation zone downstream of the bump. Bensow et al. also 

described the difficulties of obtaining flow details using RANS instead of LES and 

DES for flow over the bump geometry [33]. CFD results predicted the separation 

location correctly, but not the reattachment location for flow over a bump in [34]. It 

was also found that the results obtained with the SST model showed discrepancies 

between detachment and reattachment locations. Disagreements between results 

for the pressure coefficient obtained with RANS models and experimental results 

were noted in [35]. However, DNS predictions were shown to have good agreement 

with experiments for flow over a bump in [36]. Experimental results for similar 

bump geometries can be found in [37], [38], [39], [40], [41], and in the European 

Research Community on Flow, Turbulence and Combustion Database (ERCOFTAC) 

[42]. An extensive list of previous research related to this specific flow geometry can 

also be found in the Case 3 section of [43]. The discrepancies related to RANS results 

that were described in literature were different from one study to the next, even 

when the same turbulence model was being used. As a result, the simulation results 

for the flow over a bump will only be compared with results obtained with NASA’s 

high-accuracy codes and not with experiments. 

  The difference between results obtained with RANS and other sources has to 

be addressed. One way to approach the issue is to compare highly accurate 
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numerical results to a benchmark flow problem with results obtained with lower 

order CFD packages. The aforementioned approach of comparing results obtained 

with highly accurate codes to those obtained with lower order codes is typically 

used to verify the numerical models or components of the lower order codes. 

Verification is defined as the process of determining that a model implementation 

accurately represents the developer’s conceptual description of the model and the 

solution to the model [44]. Verification is important and necessary because it is used 

to assess the accuracy and errors in numerical modeling and solution of flow 

problems. Rizzi and Vos include a thorough discussion on the importance of 

establishing credibility in CFD simulations through verification in [45]. Roache 

provides a background discussion and some of the definitions and descriptions that 

are necessary for the verification of codes and calculations in [46]. The main 

conclusion to be drawn from [45] and [46] is that the verification of the components 

in CFD toolboxes is essential to address the types and sources of error from 

conducting simulations. 

  Two studies that emphasize the need for turbulence model verification in 

CFD toolboxes will be mentioned briefly. First, is a study performed by Vassberg et 

al. in which simulations with the “same” turbulence model implemented in different 

CFD packages gave varying results [47]. Wilcox performed the second study and he 

showed that slightly different versions of the k-ε model produce significantly 

different results for boundary layer flows [48]. Inconsistencies of this type can make 

engineers and researchers apprehensive about believing CFD results. According to 

Rumsey, it is often difficult to draw firm conclusions about turbulence model 
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accuracy when performing multi-code CFD studies ostensibly using the same model 

because of inconsistencies in model formulation or implementation in different 

codes [49].  

  In an effort to improve consistency, verification, and validation of turbulence 

models within the aerospace community, NASA has established a website to provide 

a central location for the documentation of RANS turbulence models [50]. The 

website is called the Turbulence Modeling Resource (TMR) and it is a collaboration 

between NASA’s Langley Research Center and the Turbulence Model Benchmarking 

Working Group (TMBWG) [51], a working group of the Fluid Dynamics Technical 

Committee [52] of the American Institute of Aeronautics and Astronautics (AIAA) 

[53]. The objective of the TMR website is to provide a resource for CFD developers 

to: 

 Obtain accurate and up-to-date information on widely used RANS turbulence 

models. 

 Verify that models are implemented correctly. 

 
Correct implementation of models can be confirmed through verification cases 

provided on the TMR website.  
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II. Simulation Parameters 
 
a. OpenFOAM 
 

The flow simulations that will be discussed in Section III were conducted on 

NASA’s Pleiades Supercomputer [54] using OpenFOAM. Details about Pleiades can 

be found in Appendix A. 

OpenFOAM is a free, open source CFD software package, licensed and 

distributed by the OpenFOAM Foundation [55] and developed by OpenCFD Ltd[56]. 

OpenFOAM is used in academia and industry to solve problems ranging from 

complex fluid flows involving chemical reactions, turbulence, and heat transfer, to 

solid dynamics and electromagnetics. Almost all of the operations in OpenFOAM are 

capable of running in parallel, which enables users to take advantage of parallel 

computing. OpenFOAM is an object oriented code based on C++ and its open source 

nature gives users the freedom to customize and expand the existing libraries [57]. 

The Repository Release version of OpenFOAM (2.2.x) was used during this study 

[58]. 

An OpenFOAM simulation is defined by a group of subdirectories, each 

containing specific files, as shown in Fig.1. The file structure of an OpenFOAM case is 

composed of a system directory, where parameters associated with the solution 

procedure are defined, a constant directory, which contains mesh information and 

physical properties for the case, and the time directories, where initial/boundary 

conditions and results for each recorded time step are saved. 



 19 

b. Turbulence Models in OpenFOAM 

This subsection will describe the turbulence models that were used in this 

study. The transport equations for three different EVMs and an RST model 

implemented in OpenFOAM will be presented. The EVMs are the Spalart-Allmaras 

(SA) model [59], the Menter Shear Stress Transport (SST) model [60], Wilcox’s 2006 

version of the k-ω model [6], and the RST model is a version of the Launder-Reece-

Rodi isotropization of production (LRR-IP) model [61]. The turbulence model 

equations for all EVMs that were originally implemented in OpenFOAM did not 

match the “standard” definitions found on NASA’s Turbulence Modeling Resource 

website [51]. As a result, all model equations in OpenFOAM were modified to 

represent the exact definitions found on NASA’s Turbulence Modeling Resource 

website. A brief description of the changes made to each model is included at the 

end of the model’s subsection. The LRR turbulence model in OpenFOAM was 

modified to include the models that were described in Section I. Source code for all 

of the turbulence models can be found in Appendix B. 

 

Spalart-Allmaras Model 

A popular one-equation EVM is the Spalart-Allmaras model, which solves a 

transport equation for an eddy-viscosity-like variable,  ̃. According to [62], the 

standard version of the transport equation for  ̃ is  
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The closure functions are defined as 
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where d is the distance from the field point to the nearest wall.  

The eddy viscosity is computed from 

    ̃     

The values for the model coefficients can be found in Table 1.  
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0.1355 0.622 0.41  

 
 

1.2 0.5     2 

Table 1: Spalart-Allmaras model coefficients 

Changes to the SpalartAllmaras model in OpenFOAM were the following: 

 Modified OpenFOAM’s definition of the     function to be in accordance with 

NASA’s. 

 Eliminated     function and     coefficient found in OpenFOAM. 

 Added    ,    , and     as described in the equations and table above. 

 Modified  ̃ definition to take into account changes listed above. 

 Modified  ̃ transport equation to take into account changes listed above. 
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Menter Shear Stress Transport Model 

The SST model is a two-equation EVM model that solves transport equations 

for k and  . According to [63], the standard version of the incompressible transport 

equation for turbulent kinetic energy is  

  

  
  ̅ 

  

   
         

 

   
*        

  

   
+  

Transport of the specific turbulence dissipation rate is described by 
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where the variable d is the distance from the field point to the nearest wall. The 

constants in the transport equations that don’t have a number as part of the 

subscript are obtained through a blending function of the following form: 

                

where   is the value of the constant without a number in the subscript and    and 

   represent constants 1 and 2. For example,    is defined as  

                   

Values for the constant coefficients can be found in Table 2 and the remaining model 

coefficients are defined as 
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0.85 1 0.5 0.856 0.075 0.0828      0.41 0.31 

Table 2: Menter SST model coefficients 

Changes to the kOmegaSST model in OpenFOAM were the following: 

 Modified OpenFOAM’s definition of the     ,      and      functions to be 

in accordance with NASA’s. 

 Eliminated    and    functions found in OpenFOAM. 

 Modified    definition to be in accordance with NASA’s. 
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 Modified 
  

  
  term and the sign of the last term in the   transport equation 

to be in accordance with NASA.  

 Substituted   in k transport equation with    as defined above. 
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Wilcox 2006 version of k-ω 

Another turbulence model used in this study is Wilcox’s 2006 version of k-ω. 

Similarly to SST, Wilcox’s k-ω, which will be referred to as k-ω for the remainder of 

this document, is a two-equation model that also solves for k and ω. According to 

[64], the incompressible transport equations for k and ω are  
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The constant model coefficient values can be found in Table 3. Additional 

relationships are defined as 
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It should be noted that to model 2-D flows, Pope’s correction, denoted by   , should 

be set equal to zero. This concludes the description of one- and two-equation 

models that were considered in this study.  

                     

0.6 0.5 0.09   

  
 

 

 
 

            

Table 3: k-ω model coefficients 

Changes to the kOmega model in OpenFOAM were the following: 

 Modified   definition to make it a variable constant. 

 Changed value of model coefficient    from 0.5 to 0.6. 

 Added       and    definitions as listed above. 

 Modified    definition to include  ̃ as defined by NASA. 

 Added      as the last term in the   transport equation. 



 27 

Launder-Reece-Rodi Isotropization of Production Model 

The transport equations for the LRR-IP model are composed of 7 equations: a 

transport equation for each of the six independent Reynolds stresses, and a 

transport equation for the scalar dissipation. All of the Reynolds stress equations 

have the same form so only a generic indexed equation will be presented. Different 

Reynolds stress components can be obtained by changing the value of the indices. 

Substituting the models discussed in Section I, the Reynolds stress transport 

equation implemented in OpenFOAM takes the following form: 
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where the components of     are defined as 
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An extra term has been added to the     component to account for near wall effects 

[20]. The term was included to eliminate the necessity of using wall functions in 

OpenFOAM.  
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The transport equation for dissipation is  
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Similarly to the Reynolds stress equation, the last term in the dissipation 

equation is present to account for near wall effects [20]. Model coefficients for the 

LRR-IP model can be found in Table 4. 

 
           

    
             

0.2 1.8 0.6 0.3 0.3 0.15 1.44 1.92 

Table 4: LRR-IP model coefficients 

Changes to the LRR model in OpenFOAM were the following: 

 Incorporated function to calculate normal distance to nearest wall. 

 Added wall term to dissipation tensor definition and to dissipation equation. 

 Added wall reflection terms to Reynolds stress equation. 

 Implemented     
  definition. 

 Added calculation of wall proximity functions  ,    and    as well as   . 



 29 

c. Numerical Methods 

OpenFOAM uses the finite volume method (FVM) to obtain a numerical 

solution for flow problems. In FVM, the solution to the partial differential equations 

that describe the flow behavior is approximated by subdividing the computational 

domain into a finite number of control volume elements and applying conservation 

laws to each of them.  

The process of subdividing continua into finite, or discrete, quantities is 

known as discretization. A general flow problem is generally composed of three 

types of discretization: spatial, temporal, and equation. Spatial discretization defines 

the solution space by specifying a set of points that bound the region in which the 

problem is solved. Temporal discretization is related to transient problems and it 

describes how the length of the time that spans the problem is divided into a finite 

number of smaller time steps. Equation discretization describes the way in which 

conservation laws are represented through a finite set of algebraic equations at 

specific locations defined by spatial discretization.  

After a finite number of equations describing conservation laws are 

generated, they must be solved to find the values of the variables of interest for a 

given flow. Due to the nature of the partial differential equations that describe the 

fluid’s behavior, a set of non-linear coupled equations is usually obtained. These 

complications make obtaining a solution to the system impossible unless iterative 

solution methods are employed. 
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Due to the immense amount of research that has been done in discretization 

and solution algorithms, an attempt to discuss each of them in detail in a single 

document is futile. Only the information pertinent to the flow cases treated in this 

study will be presented in the following subsections. The details of all discretization 

and solution methods available in OpenFOAM can be found Chapters 2 and 4 of [65], 

and [66], respectively. 

 

Discretization 

Spatial Discretization 

The author did not perform spatial discretization in OpenFOAM. Instead, 

discretized representations of the flow geometries, discussed in detail in Section II, 

were obtained from NASA’s Turbulence Modeling Resource website [50].  

Temporal Discretization 

The velocity of the flows treated in this study does not vary with time. Since 

the flows are steady, temporal discretization is not necessary. However, a pseudo-

time is introduced in the OpenFOAM simulations for two reasons: i) to control the 

amount of iterations performed by the solver and ii) to specify the frequency of the 

output of the solution to the computers hard disk. OpenFOAM’s controlDict 

dictionary, found in the case’s system directory, is used to control the 

aforementioned i) and ii). This is achieved through the definition of values for the 

endTime, deltaT, writeControl, and writeInterval options in controlDict. A sample of 

controlDict has been included in Appendix C. 
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Equation Discretization 

In OpenFOAM, discretization schemes used to approximate components of 

the conservation and turbulence model equations are specified through the 

fvSchemes dictionary found in the case’s system directory. A brief explanation of 

the main keywords used in fvSchemes can be found in Table 5. A specific numerical 

scheme can be set as the default setting for all terms belonging to a certain category 

of the equations. For example, the transient term in all equations can be discretized 

using the Crank-Nicholson method. Additionally, specific components of each 

equation can be assigned a specific numerical scheme for 

discretization/interpolation, which gives the user full control over the 

computational representation of the flow equations. Using different discretization 

scheme settings for specific equation components can have an effect on the stability 

and accuracy of the solution. 

The flow cases studied are steady, so the temporal derivatives in all 

equations are not taken into account. The second-order Gaussian integration 

scheme is used for every term in momentum and turbulence model equations that 

involves a derivative. Since OpenFOAM calculates values at each element’s center, 

values have to be interpolated from cell to face centers. The central difference 

interpolation is used for all gradient terms. Upwind differencing is used for 

convective terms in all equations, but the scheme’s order of accuracy varies between 

the momentum and turbulence transport equations: the second-order scheme is 

applied to the terms in the momentum equations and the first-order scheme is used 

in the turbulence transport equations. The central difference interpolation scheme 
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is used for the diffusion coefficient in all diffusive terms, and an explicit second-

order non-orthogonal correction method is employed for surface-normal gradients 

Gaussian integration is the only choice of discretization for integration in 

OpenFOAM and it is specified as Gauss for all terms that require integration. The 

central difference interpolation scheme used for gradients is referred to as linear in 

OpenFOAM. Similarly, second- and first- order interpolation schemes used for the 

convective terms are referred to as linearUpwind, and upwind, respectively. The 

non-orthogonal correction method used in surface-normal gradients is defined as 

corrected. More details on the numerical schemes implemented in OpenFOAM can 

be found in Chapter 4 of [66]. A copy of fvSchemes has been included in Appendix C. 

 

Solution Method 

As was previously mentioned, the solution of the resulting set of discretized 

equations describing flow behavior requires iterative methods. A popular iterative 

method for solving incompressible steady-state problems in CFD is the Semi-

Implicit Method for Pressure Linked Equations (SIMPLE)[67].  

The iterative procedure in the SIMPLE algorithm consists of approximating 

the velocity field by solving momentum equations using pressure values from a 

previous iteration or initial conditions. The velocities that are obtained from the 

momentum equations do not satisfy the continuity equation unless the pressure 

field is corrected. The pressure field is corrected by solving a Poisson equation for 

pressure. Updating the pressure field causes the velocity and pressure fields to obey 

continuity but not momentum. Velocity values are then recalculated using the 
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corrected pressure values to satisfy the momentum equations. The procedure 

described above is repeated until the velocity and pressure fields obey the 

continuity and momentum equations. A basic outline of the algorithm will be 

presented next but an in-depth discussion of the philosophy of pressure correction 

methods and the SIMPLE algorithm are available in [67] and in Chapter 6 of [68].  

The steps in the SIMPLE algorithm can be outlined in the following way [69]: 

1. Set the boundary conditions. 

2. Compute the gradients of velocity and pressure. 

3. Solve the discretized momentum equation to compute the intermediate 

velocity field. 

4. Compute the uncorrected mass fluxes at cell faces. 

5. Solve the pressure correction equation to produce new/corrected pressure 

values. 

6. Update the pressure field using an under-relaxation factor. 

7. Update the boundary values using the pressure corrections. 

8. Correct the face mass fluxes. 

9. Calculate corrected cell velocities using the pressure gradient of the pressure 

corrections. 

 

The SIMPLE algorithm was used to obtain the results discussed in Section III. 

OpenFOAM’s incompressible version of SIMPLE is called simpleFoam. The settings 

for simpleFoam are specified through the fvSolution dictionary, located in the case’s 

system directory. The first simpleFoam setting, located below the SIMPLE header 
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in fvSolution, is defined by the keyword nNonOrthogonalCorrectors. The 

nNonOrthogonalCorrectors setting accounts for non-orthogonality in the mesh and 

its use is not necessary in this work because the meshes, described in detail in 

Section II, are orthogonal. Under-relaxation is used to improve the numerical 

stability of a computation by limiting the amount by which a variable can change 

from one iteration to the next. Under-relaxation factors vary from 0 to 1, with 1 

corresponding to no under-relaxation. In the fvSolution dictionary, the keyword 

relaxationFactors is used to define under-relaxation factors for each flow variable. 

The relaxationFactors value for the pressure field varies from 0.2 to 0.3. For the 

velocity and turbulence equations, the under-relaxation values range from 0.3 to 0.7. 

The under-relaxation value used for the flow variables depended on simulation 

factors such as flow geometry, mesh quality, accuracy of numerical schemes, and 

turbulence model. 

The type of linear solvers and solver tolerances used for each flow variable 

are also defined in fvSolution. The solver category specifies the type of linear-solver 

used to solve the set of linear equations for each discretized equation. A 

preconditioned bi-conjugate gradient (PBiCG) solver was used for all variables with 

the exception of pressure, for which a preconditioned conjugate gradient (PCG) 

solver was used. PBiCG is used to solve asymmetric matrices while PCG is used for 

symmetric matrices. The use of a preconditioned solver requires the specification of 

a preconditioner. The faster diagonal incomplete-Cholesky (FDIC) preconditioner 

was selected for all flow variables.  
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Due to the iterative nature of the linear solvers specified in solver, the 

reduction of the solution error from one iteration to the next has to be evaluated in 

order to establish the accuracy of the current solution. In OpenFOAM, the linear 

solver will stop iterating if the measure of the solution error, also known as the 

residual, satisfies a limit imposed by the user. OpenFOAM offers three options to 

stop the linear solver, all of which are defined in fvSolution. The three available 

options are: 

1. The residual falls below the solver tolerance, defined as tolerance. 

2. The ratio of current to initial residuals falls below the solver relative 

tolerance, defined as relTol. 

3. The number of iterations exceeds a maximum number of iterations, defined 

as maxIter (optional). 

 

The results presented in Section III were obtained by setting the tolerance value as 

        and the relTol value as 0. A copy of the fvSolution file has been included in 

Appendix C. 

 

 
Table 5: fvSchemes keywords [66] 
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d. Computational Domain  
 

The geometry for two benchmark flow cases will be discussed in this section. 

A description of the computational domain for the two-dimensional flow over a flat 

plate with zero pressure gradient will be presented first. A description of the 

geometry for a two-dimensional bump in a channel will follow after.  

A number of structured 2-D grids obtained from NASA’s Turbulence 

Modeling Resource website [50] were used to perform the flow simulations for both 

flow cases. OpenFOAM solves flow equations in all three spatial dimensions. To 

model the flow cases as 2-D in OpenFOAM, the two-dimensional grid must be 

extended one unit in the third dimension, which creates extra domain boundaries. 

For clarity, these extra boundaries will be referred to as front and back. 

OpenFOAM’s empty boundary condition is assigned to front and back. As a result, 

the values of flow variables and their corresponding fluxes in the front-to-back 

direction are set equal to zero.  

The meshes used in this study are nested, meaning that each coarser grid is 

exactly every-other-point of the finer grid [50]. The naming convention for the 

meshes consists of the amount of nodes in the x- and y- directions. Note that the 

computational domains are not defined in terms of meters, or feet, but in terms of 

dimensionless units. All meshes are available for download in PLOT3D format. 

Additional information about PLOT3D can be found at [70]. OpenFOAM’s 

plot3dToFoam mesh conversion utility was used to import the PLOT3D mesh files 

into OpenFOAM. 
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2D Zero pressure gradient flat plate 

The computational domain for the flat plate was 2.331 units in the x- and y-

directions. The flat plate wall boundary starts at x = 0 and ends at x = 2.  The plate is 

positioned at    . The top boundary of the computational domain is located at y = 

1. The grids used for the flat plate have vertex dimensions of 3525, 6949, 13797, 

273193, and 545385 in the x- and y-directions, respectively. An image of the 

6949 grid can be found in Figure 2. Figure 2 shows that mesh biasing is used in the 

wall-normal direction and near the plate leading edge. The finest grid has a 

minimum wall spacing of 510-7, giving an average   value of about 0.07. The 

coarsest mesh has a minimum wall spacing of 8.3210-6, which gives an average 

  value of about 1.7. The variable    is a non-dimensional wall distance used in 

wall-bounded flows to describe the regions of a boundary layer in a generalized 

manner applicable to different flows. The mathematical representation of    is 

   
   

 
   

where    represents the friction velocity, y represents the distance from the wall, 

and   represents the kinematic viscosity of the fluid.  

 

2D Bump-in-channel 

The bump-in-channel case is similar to the flat plate case that was previously 

mentioned, except wall curvature is present. The curvature present in the geometry 

causes pressure gradients. The computational domain measures 51.55 units in the 

x- and y-directions. The wall boundary starts at location x = 0 and y = 0. The bump 
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starts at x = 0.3, and y = 0. The top of the bump is at x = 0.75 and y = 0.05. The bump 

is symmetrical. The wall downstream of the bump ends at x = 1.5. The bump profile, 

shown in Figure 3, is defined by 

  {
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))

 

             

                                           
    

The upstream and downstream farfields extend 25 units from the viscous wall. The 

upstream boundary is located at x = -25 and the downstream boundary is located at 

x = 26.5. The top boundary of the computational domain is located at y = 5. The grids 

for the bump-in-channel flow have vertex dimensions of 8941, 17781, 353161, 

705321, and 1409641 in the x- and y-directions, respectively. An image of the 

viscous wall section of the computational domain for the 17781 grid can be found 

in Figure 4. Similarly to the flat plate case, mesh biasing is used in the wall-normal 

direction and near the leading and trailing edges of the wall region. The finest grid 

has a minimum wall spacing of 510-7, giving an average   value of about 0.07. The 

coarsest mesh has a minimum wall spacing of 8.1410-6, which gives an average 

  value of about 0.95. 
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e. Boundary Conditions 

 The flow cases were run at a Mach number of 0.2. As is noted in [50], the 

Mach number of the flow is below 0.3, which allows for incompressible treatment. 

However, the cases’ intended use is compressible code verification. According to 

[50], using an incompressible code may yield results that are close, but not quite the 

same as the grid is refined. 

In an OpenFOAM simulation, the boundary and initial conditions for each 

flow variable are specified in the case’s 0 time directory. 

 

2D Zero pressure gradient flat plate 

The flat plate case was run at a Reynolds number (based on a reference 

length of 1) of 5 million. Figure 5 shows the boundary conditions suggested by NASA 

for the flat plate flow case. A fixed velocity value of 69.3 m/s, corresponding to a 

Mach number of 0.2, is used as the inlet boundary condition. For the pressure at the 

inlet and plate boundaries, OpenFOAM’s Neumann-type boundary condition, known 

as zeroGradient, is assigned. A no-slip boundary condition is used on the adiabatic 

plate surface for the velocity. The outlet is assigned the zeroGradient condition for 

the velocity and OpenFOAM’s Dirichlet-type boundary condition, fixedValue, for 

pressure (1 atm). The symmetry boundary condition is applied at x < 0 for all 

variables. The zeroGradient boundary condition is assigned as to the top boundary 

for all variables. Temperature boundary conditions are not necessary because the 

simulation is run as incompressible. Boundary conditions for turbulence variables 
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are model-specific and will be discussed in detail in Section III for each turbulence 

model. 

 

2D Bump-in-channel 

The bump-in-channel case was run at a Reynolds number (based on a 

reference length of 1) of 3 million. Figure 6 shows the boundary conditions 

suggested by NASA for the bump-in-channel flow case. A fixed velocity value of 69.3 

m/s, corresponding to a Mach number of 0.2, is used as the inlet boundary condition. 

For the pressure at the inlet and wall boundaries zeroGradient is assigned. A no-slip 

boundary condition is used on the adiabatic wall surface for the velocity. The outlet 

is assigned the zeroGradient condition for the velocity and fixedValue for pressure 

(1 atm). The symmetry boundary condition is applied at x < 0 and x > 1.5 for all 

variables. The zeroGradient boundary condition is assigned as to the top boundary 

for all variables.  
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III. Results & Discussion 

Results of the OpenFOAM simulations will be presented in this section. The 

results obtained with the incompressible EVMs will be compared with those 

obtained by NASA with their CFL3D and FUN3D CFD codes. The results from CFL3D 

and FUN3D, available on the Turbulence Modeling Resource website [50], 

correspond to compressible simulations. The LRR-IP model will be compared with 

DNS [31] and experimental [22] data. Results for the zero pressure gradient flat 

plate case will be presented first and the 2D bump-in-channel will follow after. Some 

of the plots in this section have been nondimensionalized to be in accordance with 

the source of the data used for comparison. 

Flow variable profiles obtained with CFL3D and FUN3D are only available for 

the finest mesh in each flow case: 545x385 for the flat plate and 1409x641 for the 

2D bump. Friction coefficient values obtained from different mesh sizes were 

analyzed to verify grid convergence of the solution and to determine how 

OpenFOAM results compared to those obtained with CFL3D and FUN3D. Grid 

convergence of the solution can be determined by studying the change in the value 

of the friction coefficient profile at a given point between meshes. The friction 

coefficient value was obtained near the middle of the flat plate at and at the top of 

the bump. The corresponding data sampling locations for the flat plate and bump 

are       , and       , respectively. The friction coefficient profile across the 

entire solid wall region of each flow case was also compared between meshes.  



 42 

a. Zero Pressure Gradient Flat Plate 

Spalart-Allmaras 

In addition to the specification of the initial and boundary conditions for the 

velocity and pressure fields, the SA model requires a definition of the turbulent 

viscosity,   , and the Spalart-Allmaras variable,  ̃. The    and  ̃ values used for the 

initial and boundary conditions at the farfield and wall regions were calculated as 

suggested by NASA in [62]:  

 ̃                    

    ̃     ̃
  

      
                 

 ̃                    

where 

  
 ̃

 
   

The    values calculated above were used for the SST and k-ω cases. 

Flow profiles for the eddy viscosity, mean velocity, and friction coefficient are 

shown in Figures 7a-d. Some of these plots have been nondimensionalized to be in 

accordance with NASA’s website. Figure 7a shows the mean velocity profile 

nondimensionalized by the freestream velocity value as a function of distance 

normal to the plate. The dimensionless flow velocity,   , is plotted as a function of 

the nondimensional wall distance,   , in Figure 7b. The nondimensional velocity is 

defined as  
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where u is the mean value of the flow velocity and    is the friction velocity. Figure 

7c shows the eddy viscosity profile as a function of the distance normal to the wall. 

Figure 7d shows the skin friction coefficient profile across the entire plate. 

OpenFOAM results for flow over a flat plate that were obtained with the SA model 

are in agreement with CFL3D and FUN3D for all of the profiles.  

 

Figure 8a shows the value of    obtained at        with the SA model for 

all of the meshes. Each marker on Figure 8a represents a mesh. On the horizontal 

axis of Figure 8a, the variable h represents the characteristic mesh length and N is 

the number of elements in the mesh. For the finest mesh, there is a 1.0% difference 

between the friction coefficient value calculated with OpenFOAM’s incompressible 

solver and those calculated with CFL3D’s and FUN3D’s compressible solvers. 

However, when incompressible solver results are compared, the difference between 

OpenFOAM and FUN3D is only 0.16%. The friction coefficient profiles across the 

entire plate for each mesh, depicted in Figure 8b, show that the variation of the 

profile obtained with the SA model from mesh to mesh is negligible for the flat plate 

case.  

 

SST 

In addition to the specification of the initial and boundary conditions for the 

velocity and pressure fields, the SST model requires a definition of the turbulent 

viscosity,   , turbulence kinetic energy, k, and specific dissipation rate,  . The initial 

and boundary condition values for the turbulence kinetic energy and specific 
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dissipation rate at the farfield and wall regions were calculated in accordance with 

[63]: 

                            
  

  
                                  

              

                
   

 

 
                                            

        
  

        
                                                

In Eqs.23-25 a represents the local speed of sound,    represents the fluid’s density, 

   represents the fluid’s dynamic viscosity,   represents the fluid’s kinematic 

viscosity,    is a model constant with a value of 0.075, and     represents the 

distance from the wall to the nearest grid point. 

Flow profiles for the mean velocity, eddy viscosity, skin friction coefficient, 

turbulence kinetic energy, and specific dissipation rate are shown in Figures 9a-f. 

Figures 9a-d are arranged in the same order as they were for the SA results. 

Nondimensional flow profiles for the turbulent kinetic energy and specific 

dissipation rate are shown in Figures 9e,f. Similarly to the SA results, OpenFOAM 

results obtained with the SST model are in agreement with CFL3D and FUN3D for all 

of the profiles. There is a small discrepancy between results obtained with 

OpenFOAM and CFL3D/FUN3D for values of k+ and ω very close to the wall. The 

variable k+ represents nondimensional turbulent kinetic energy and it is defined as  
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In the specific dissipation rate profile, shown in Figure 9f, the OpenFOAM result is in 

better agreement with CFL3D than FUN3D. 

Figure 10a shows the value of    obtained at        with the SST model for 

all of the meshes. For the finest mesh, there is a 1.3% difference between the results 

obtained with OpenFOAM’s incompressible solver and those obtained with CFL3D’s 

and FUN3D’s compressible solvers. The difference between results obtained with 

OpenFOAM’s and FUN3D’s incompressible solvers is 0.27%. A comparison of the 

friction coefficient profile for each mesh can be found in Figure 10b, which shows 

that the variation of the profile obtained with the SST model much more 

pronounced than for the SA model.  

 

k-ω 

The initial and boundary values for the turbulence variables for the k-ω 

simulation were the same as those used in the SST case. Flow profiles for the mean 

velocity, eddy viscosity, skin friction coefficient, turbulence kinetic energy, and 

specific dissipation rate and are shown in Figure 11a-f. The flow profiles are 

arranged in the same order as they were in the SST results. Results obtained with 

the k-ω model in OpenFOAM are in agreement with CFL3D and FUN3D for all of the 

profiles. Similarly to the SST results, a small discrepancy is seen between 

OpenFOAM and CFL3D/FUN3D for values of k+ and ω very close to the wall. 

Contrary to the SST case, the OpenFOAM solution is in better agreement with the 

near wall results obtained with FUN3D for the specific dissipation rate plot shown 

in Figure 11f.   
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Figure 12a shows the value of    obtained at        with the k-ω model for 

all of the meshes. Only results calculated with CFL3D’s and FUN3D’s compressible 

solvers were available for the k-ω model. On the finest mesh, there is a 1.0% 

difference between OpenFOAM’s incompressible and CFL3D/FUN3D compressible 

results. The incompressible results obtained with OpenFOAM’s k-ω should 

presumably be within a fraction of a percent of FUN3D’s incompressible solution, if 

provided. The reason supporting this claim is that a percentage difference of about 

1.0% was seen between CFL3D/FUN3D compressible results and OpenFOAM’s 

incompressible results for the SA and SST cases, but the difference between 

incompressible solvers was on the order of a fraction of a percent. A comparison of 

the friction coefficient profiles for all meshes is shown in Figure 12b. The variation 

of the profile obtained with the k-ω model from mesh to mesh is very similar to that 

corresponding to SST.  

 

LRR-IP 

As was previously mentioned, data for the LRR-IP model was not available on 

NASA’s Turbulence Modeling Resource website. As a result, OpenFOAM results were 

compared to DNS [31] and experimental [22] data. The DNS and experiment were 

carried out at a momentum-thickness-based Reynolds number of 5200. Using the 

Reynolds number and values of measured flow variables found in [22], the flow 

variable values for the OpenFOAM simulation were calculated using the following 

relationships (See Table 6 for values): 



 47 

  
  ∞

   
 

  
 

 
( ∞ )

 

 

  
   

   

 
 

  
   

 ̅̅ ̅̅ ̅̅   
 

 
        

   
 ̅̅ ̅̅ ̅̅    

where I is the turbulence intensity and l is a characteristic length scale. The values of 

I and l depend on the wind tunnel where the experiment was conducted. 

                    ∞                             
   

 ̅̅ ̅̅ ̅̅          

    
      

     18.95     
      

                

Table 6: Flow variable values for LRR-IP simulation 

Figures 13a-f compare results obtained with OpenFOAM against those 

published in [22] (shown as Exp) and [31] (shown as DNS). All profiles have been 

nondimensionalized to enable the inclusion of the DNS data because the DNS was 

performed at a mean flow velocity that was much smaller than the experiment and 

OpenFOAM cases (see [22] for details). There is close agreement between 

OpenFOAM and experimental/DNS data for the velocity profiles shown in Figure 

13a. However, there is a noticeable disagreement between OpenFOAM and the 

experimental/DNS data in the rest of the plots. For example, Figure 13b shows that 

OpenFOAM results have much lower    values than the experimental/DNS data in 

the wake region of the boundary layer. Each of the Reynolds stress profiles in 

Figures 13c-f were nondimensionalized by the value of   
  corresponding to each 

flow case. OpenFOAM doesn’t seem to be able to produce the peaks seen in Figures 
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13c,f, which could be a cause of the results’ disagreement. The   
   

 ̅̅ ̅̅ ̅̅  
and   

   
 ̅̅ ̅̅ ̅̅  

 

profiles obtained with OpenFOAM show close agreement with the experimental and 

DNS data with the exception of the absence of the large peaks. Data for   
   

 ̅̅ ̅̅ ̅̅  
was 

only available for the DNS. The author of this document believes that the main 

contributor to the discrepancy is OpenFOAM’s overestimation of   
   

 ̅̅ ̅̅ ̅̅  
 very close to 

the wall, which can be seen in Figure 13e. This error propagates to   
   

 ̅̅ ̅̅ ̅̅  
, shown in 

Figure 13d, which is closely related to the wall shear stress used to define   . The 

overestimation of   
   

 ̅̅ ̅̅ ̅̅  
 causes the value of    to be larger than it should, which 

leads to the aforementioned   deficit. The reason for the overestimation of 

  
   

 ̅̅ ̅̅ ̅̅  
seems to be inherent to OpenFOAM’s LRR turbulence model because similar 

results are obtained when the default model is used, even if wall functions are used. 

The cause for the difference in the results is not fully understood. 
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b. 2D Bump-In-Channel 
 
Spalart-Allmaras 

An approach similar to that of the flat plate was used to define initial and 

boundary conditions for the bump. The value of some of the flow variables is slightly 

different because the bump simulation was performed at a length based Reynolds 

number of 3 million instead of the 5 million value used for the plate. The farfield and 

wall values of    and  ̃ were calculated as suggested by NASA in [62]:  

 ̃                    

    ̃     ̃
  

      
                 

 ̃                    

where  

  
 ̃

 
   

The    values calculated above were used for the SST and k-ω cases. 

Profiles for the mean velocity, eddy viscosity, and skin friction coefficient are 

shown in Figures 14a-d. Results for all profiles were obtained at       . An 

additional velocity profile at an x-location of         is also used to assess the 

accuracy of OpenFOAM’s results. The velocity profiles shown in Figures 14a,b are in 

close agreement with CFL3D and FUN3D results. On Figure 14a, the variable yo on 

the vertical axis represents the height of the bump. The results for the eddy viscosity 

and skin friction coefficient profiles, shown in Figures 14c,d, are slightly different at 

the maximum value of both profiles. OpenFOAM overestimates the eddy viscosity by 

1.9%. Figure 14d shows oscillations at        and an over prediction of the 
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friction coefficient on the downstream side of the bump. Comparing the skin friction 

coefficient results obtained on the 1409x641 with what was obtained on the 

705x321 mesh, shown in Figure 14e, it can be concluded that the over prediction 

downstream of the bump appears to be inherent to the 1409x641 mesh. The 

oscillations seen at the top of the bump are also reduced in the profile obtained on 

the 705x321 mesh. 

Figure 15a shows the value of    that was obtained with the SA model for all 

of the meshes. Each marker on Figure 15a represents the    value obtained at 

       for each mesh. On the finest mesh, there is a 1.4% difference between 

OpenFOAM and CFL3D and FUN3D compressible results. Incompressible results 

were not available for CFL3D and FUN3D so they could not be compared with 

OpenFOAM. The large percent difference between the finest mesh can be attributed 

to the oscillations seen at the top of the bump on Figure 14d. The difference 

between the    value obtained with OpenFOAM and CFL3D/FUN3D on the 705x321 

mesh is 0.45%, which is significantly less than the difference for the 1409x641 

result. The evolution of the skin friction coefficient profile as the mesh is refined is 

shown in Figure 15b. The SA model’s results for flow over the 2D bump shows 

greater sensitivity of to the mesh size than it did for the flat plate. 

 

SST 

The farfield and wall turbulence kinetic energy and specific dissipation rate 

values were calculated in accordance with [63]: 
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In Eqs.26-28 a represents the local speed of sound,    represents the fluid’s density, 

   represents the fluid’s dynamic viscosity,   represents the fluid’s kinematic 

viscosity,    is a model constant with a value of 0.075, and     represents the 

distance from the wall to the nearest grid point. 

Flow profiles for the mean velocity, eddy viscosity, skin friction coefficient, 

turbulence kinetic energy, and specific dissipation rate are shown in Figures 16 a-f. 

The overall trends in the OpenFOAM results obtained with the SST model on the 

1409x641 mesh are in agreement with CFL3D and FUN3D for all of the profiles. 

However, the values in Figures 16b-d are not exactly the same as the ones obtained 

with NASA’s software. The velocity profile downstream of the bump, shown on 

Figure 16b, has the same shape as the one obtained with CFL3D but it seems to be 

shifted to the right. The eddy viscosity shape is in agreement with CFL3D and 

FUN3D but OpenFOAM under predicts the values on this mesh. The difference in the 

eddy viscosity value between OpenFOAM and CFL3D/FUN3D on the 1409x641 

mesh is 4.6%. A similar over-predictive behavior downstream of the bump observed 

in the SA skin friction coefficient results is also present in SST results. The 

oscillations seen at the top of the bump on the skin friction coefficient plot for the SA 
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model are almost nonexistent for SST but the value is over estimated. There is a 

small discrepancy between OpenFOAM and CFL3D/FUN3D for values of k+ very 

close to the wall. In the specific dissipation profile, shown in Figure 16f, the 

OpenFOAM solution is in better agreement with NASA’s codes near the wall for the 

bump than it was for the flat plate. The same profiles shown in Figure 16 are shown 

in Figure 17 for the 705x321 mesh. The difference in eddy viscosity value for this 

mesh is 1.0%, which is considerably less than the difference corresponding to the 

result obtained on the 1409x641 mesh. Based on the agreement between 

OpenFOAM and NASA’s codes shown in Figure 17, it has been determined that the 

discrepancy between results shown in Figure 16 may be caused by solver 

limitations in OpenFOAM. Personal communication with the NASA employee in 

charge of the TMR website revealed that a similar problem has been encountered by 

other researchers on the 1409x641 mesh.  

Figure 18a shows the value of    that was obtained with the SST model for all 

of the meshes. Each marker on Figure 18a represents the    value obtained at 

       for each mesh. On the finest mesh, the results show a 1.3% difference 

between OpenFOAM’s incompressible solver and CFL3D’s and FUN3D’s 

compressible solvers. The large percent difference between the finest mesh can be 

attributed to the over prediction of the skin friction coefficient value seen at the top 

of the bump on Figure 16d. The difference between the    values obtained with 

OpenFOAM and CFL3D/FUN3D on the 705x321 mesh is 0.88%, which is less than 

the difference for the 1409x641 result. The evolution of the skin friction coefficient 

profile with mesh size is shown in Figure 18b. Similar sensitivity to mesh size on the 
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friction coefficient profile was seen for flows over the flat plate and the bump when 

using the SST model.  

 

k-ω 

The initial and boundary values for the turbulence variables for the k-ω 

simulation were the same as those used in the SST case. The same profiles shown in 

the previous section are shown in Figure 19 for the 1409x641 mesh. The velocity 

profiles obtained with OpenFOAM using the k-ω model, shown in Figures 19a,b, are 

in agreement with CFL3D and FUN3D. There is an over prediction of 1.7% in the 

eddy viscosity profile shown in Figure 19c. The skin friction coefficient profile for 

the k-ω model is shown in Figure 19d. The oscillations seen at the top of the bump 

for the skin friction coefficient in the SA and SST results aren’t present in the results 

obtained with k-ω. The over prediction of the skin friction coefficient downstream of 

the bump is reduced when using the k-ω model, but it is not eliminated completely. 

The k+ values near the wall in the profile shown in Figure 19e deviate from CFL3D 

and FUN3D results as they did for the SST case. The specific dissipation rate profile 

shown in Figure 19f matches CFL3D and FUN3D very closely. Profiles obtained on 

the 705x341 mesh have also been provided for comparison in Figure 20. The main 

difference between the results obtained on the 705x341 and the 1409x641 meshes 

is seen in the eddy viscosity plot on Figure 20c. The result corresponding to the 

705x341 mesh is over predicted by 3.5%, which makes the error about twice as 

large as what was obtained on the 1409x641 mesh. Similarly to the SA and SST 

results, the skin friction coefficient profile calculated on the 705x341 mesh, shown 
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in Figure 20d, does not show an over prediction downstream of the bump. Profiles 

for k+ and ω shown in Figures 20e,f] match CFL3D and FUN3D results. 

Figure 21a shows the value of    that was obtained with the k-ω model for all 

of the meshes. Each marker on Figure 21a represents the    value obtained at 

       for each mesh. There is a 0.97% difference between results obtained with 

OpenFOAM’s incompressible solver and CFL3D’s and FUN3D’s compressible solvers 

on the 1409x641 mesh. The percent difference corresponding to the k-ω results is 

less those corresponding to SA and SST results. The difference between the    

values obtained with OpenFOAM and CFL3D/FUN3D on the 705x321 mesh is 0.92%. 

The evolution of the skin friction coefficient profile with mesh size is shown in 

Figure 21b. The sensitivity to mesh coarseness is greater for the k-ω model than for 

SA and SST results. Comparing the change in the friction coefficient profile between 

the coarsest and finest mesh for each model verifies the previous claim. 
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IV. Conclusion 

 Computational fluid dynamics simulations were performed with OpenFOAM 

for two different benchmark flow cases developed by the TBMWG and NASA. The 

flow cases were a zero pressure gradient boundary layer over a flat plate and flow 

over a two-dimensional bump in a channel. Five nested meshes for each flow case 

were obtained from NASA’s Turbulence Modeling Resource website. The results 

obtained with OpenFOAM were compared with those obtained with high-fidelity 

NASA codes CFL3D and FUN3D. 

Flow simulations for the zero pressure gradient flat plate were run with the 

Spalart-Allmaras, SST, k-ω, and LRR-IP turbulence models. Only the SA, SST, and k-ω 

results were available for comparison on NASA’s TMR website. Mean velocity, eddy 

viscosity, skin friction coefficient, turbulent kinetic energy, and specific dissipation 

profiles that were obtained with OpenFOAM for incompressible flow over the zero 

pressure gradient on the 545x385 mesh were in agreement with NASA’s 

compressible results. Mesh convergence results showed that the largest difference 

in skin friction coefficient that was observed between OpenFOAM’s incompressible 

results and NASA’s compressible results corresponded to the SST simulation and it 

was 1.3%. The difference for the SA and k-ω models was of 1%. The difference in 

incompressible-to-incompressible results for the SA and SST models was of 0.16%, 

and 0.27%, respectively. Results obtained with the LRR-IP model in OpenFOAM 

were compared with experimental and DNS data. The velocity profile was in 

agreement with experimental and DNS results but discrepancies were observed in 

the y+-u+ profile and in all Reynolds stress profiles. The cause of the discrepancies is 
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still not fully understood but it appears to be inherent to OpenFOAM’s default LRR 

turbulence model. 

Flow simulations for the 2D bump-in-channel were run with the Spalart-

Allmaras, SST, and k-ω turbulence models. Only compressible results were available 

for this case on NASA’s TMR website. The overall trends for the mean velocity, eddy 

viscosity, skin friction coefficient, turbulent kinetic energy, and specific dissipation 

profiles that were obtained with OpenFOAM were in agreement with NASA. 

However, an over prediction of the skin friction coefficient was seen on the top and 

downstream regions of the bump for all models on the 1409x641 mesh. The 

difference in the skin friction coefficient value for the SA, SST, and k-ω models 

obtained using the finest mesh was 1.4%, 1.3%, and 0.97%, respectively. On the 

705x321 mesh the difference in skin friction coefficient values decreased to 0.45%, 

0.88%, and 0.92% for the SA, SST, and k-ω models. It was concluded that the 

difference on the 1409x641 mesh was caused by OpenFOAM’s solver limitations. A 

slight inconsistency was also observed in the eddy viscosity profile for all 

turbulence models.  

The inconsistencies that were documented for both flow cases are small and 

could be attributed to slight differences in simulation parameter values (explicit 

values were not provided by NASA), differences in solver algorithms, and most 

importantly, due to the fact that incompressible results obtained with OpenFOAM 

are being compared to compressible results obtained with CFL3D and FUN3D. The 

agreement between OpenFOAM results and NASA results confirm OpenFOAM’s 

capability to produce accurate results for benchmark flows. 
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Figures 

 
Figure 1: OpenFOAM case directory structure [66] 

 

 
Figure 2: Zero pressure gradient flat plate mesh (69x49) [71] 
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Figure 3: Enlarged view of bump profile [74] 
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Figure 4: 2D bump-in-channel mesh (177x81) [73] 
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Figure 5: Boundary conditions for ZPG flat plate [72] 
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Figure 6: Boundary conditions for 2D bump-in-channel [74] 
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a) b) 

 
Figure 8: Grid convergence results in a ZPG flat plate flow for the SA model:  

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97,  
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 

 

                
a)        b)                                                                     

                   
c)       d) 

 
Figure 7: Results of the ZPG flat plate flow simulations with the Spalart-Allmaras turbulence model for 

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red) at x=0.97: 
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin 

friction coefficient profile 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 9: Results of the ZPG flat plate flow simulations with the SST turbulence model for OpenFOAM (blue), 

CFL3D (dashed green) and FUN3D (dashed red) at x=0.97:  
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin 

friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation rate profile 
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a)                                                                                          b) 

 
Figure 10: Grid convergence results in a ZPG flat plate flow for the SST model: 

 a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97,  
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 11: Results of the ZPG flat plate flow simulations with the k-ω turbulence model for OpenFOAM (blue), 

CFL3D (dashed green) and FUN3D (dashed red) at x=0.97:  
a) mean velocity profile, b) dimensionless velocity profile, c) dimensionless eddy viscosity profile, d) skin 

friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation rate profile 
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a)                                                                                          b) 

 
Figure 12: Grid convergence results in a ZPG flat plate flow for the k-ω model: 

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.97, 
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 13: OpenFOAM (blue) results of the ZPG flat plate flow simulations with the LRR turbulence model 

compared with DNS[31] (dashed red) and experimental results[22] (green circles) at x=0.97:  

a) mean velocity profile, b) dimensionless velocity profile, c) 𝑢 
 𝑢 

 ̅̅ ̅̅ ̅̅  
profile, d) 𝑢 

 𝑢 
 ̅̅ ̅̅ ̅̅  

profile, e) 𝑢 
 𝑢 

 ̅̅ ̅̅ ̅̅  
profile,  

f) 𝑢 
 𝑢 

 ̅̅ ̅̅ ̅̅  
profile 
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a)        b)                                                                     

                   
c)       d) 

 
 

e) 
 
Figure 14: Results of the 2D bump-in-channel simulation with the SA turbulence model for OpenFOAM (blue), 

CFL3D (dashed green) and FUN3D (dashed red): 
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile, 

d) skin friction coefficient profile for 1409x641 mesh, e) skin friction coefficient profile for 705x321 mesh 
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a)                                                                                          b) 

 
Figure 15: Grid convergence results of the 2D bump-in-channel simulation with the SA model:  

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,  
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 16: Results of the 2D bump-in-channel with the SST turbulence model on the 1409x641 mesh for 

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red): 
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile, 

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation 
profile 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 17: Results of the 2D bump-in-channel with the SST turbulence model on the 705x321 mesh for 

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red): 
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile, 

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation 
profile 
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a)       b) 

 
Figure 18: Grid convergence results of the 2D bump-in-channel simulation with the SST model:  

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,  
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 19: Results of the 2D bump-in-channel with the k-ω turbulence model on the 1409x641 mesh for 

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red): 
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile, 

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation 
profile 
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a)        b)                                                                     

                   
c)       d) 

 

                   
e)       f) 

 
Figure 20: Results of the 2D bump-in-channel with the k-ω turbulence model on the 705x341 mesh for 

OpenFOAM (blue), CFL3D (dashed green) and FUN3D (dashed red): 
a) mean velocity profile (x=0.75), b) mean velocity profile (x=1.20148), c) dimensionless eddy viscosity profile, 

d) skin friction coefficient profile, e) dimensionless turbulent kinetic energy profile, f) specific dissipation 
profile 
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a)                                                                                          b) 

 
Figure 21: Grid convergence results of the 2D bump-in-channel simulation with the k-ω model: 

a) skin friction coefficient comparison between OpenFOAM (blue) and NASA codes (red, green) at x=0.75,  
b) skin friction coefficient profiles obtained with OpenFOAM for all meshes 
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VI. Appendix 

A. Pleiades Information 
Pleiades is named after an astronomical open star cluster and it is one of the 

world’s most powerful supercomputers. The system is a distributed-memory SGI 

ICE cluster connected with InfiniBand® in a dual-plane hypercube technology. The 

system contains the following types of Intel® Xeon® processors: E5-2680v2 (Ivy 

Bridge), E5-2670 (Sandy Bridge), and X5670 (Westmere). The cluster’s information 

is as follows: 

 
 System Architecture 

o Manufacturer: SGI 
o 163 racks (11,176 nodes) 
o 3.59 Pflop/s peak cluster 
o 1.54 Pflop/s LINPACK rating (November 2013) 
o 2 racks enhanced with NVIDIA graphics processing unit 
o Total cores: 184,800 
o Total memory: 502 TB 

 Interconnects 
o Internode: InfiniBand®, with all nodes connected in partial hypercube 

topology 
o Two independent InfiniBand® fabrics 
o Infiniband® DDR, QDR and FDR 
o Gigabit Ethernet management network 

 Storage 
o SGI® InfiniteStorege NEXIS 9000 home filesystem 
o 15 PB of RAID disk storage configured over several cluster-wide Listre 

filesystems 
 Operating Environment 

o Operating system: SUSE® Linux® 
o Job scheduler: PBS® 
o Compilters: Intel and GNU C, C++ and Fortran 
o MPI SGI MPT, MVAPICH2, Intel MPI 

 
The information presented above was obtained from NASA’s Advanced Super 

Computer Division website [54]. More details on the specifics of each subcomponent 

are available at the same location. 
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B. Turbulence Model Source Code 
Spalart-Allmaras Model 
SA Source file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "MySpalartAllmaras.H" 
#include "addToRunTimeSelectionTable.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
defineTypeNameAndDebug(MySpalartAllmaras, 0); 
addToRunTimeSelectionTable(RASModel, MySpalartAllmaras, dictionary); 
 
// * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 
 
tmp<volScalarField> MySpalartAllmaras::chi() const 
{ 
    return nuTilda_/nu(); 
} 

http://www.gnu.org/licenses/
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tmp<volScalarField> MySpalartAllmaras::fv1(const volScalarField& chi) const 
{ 
    const volScalarField chi3(pow3(chi)); 
    return chi3/(chi3 + pow3(Cv1_)); 
} 
 
//OpenFOAM definition of fv2 doesn't match NASA's 
/*tmp<volScalarField> MySpalartAllmaras::fv2 
( 
    const volScalarField& chi, 
    const volScalarField& fv1 
) const 
{ 
    return 1.0/pow3(scalar(1) + chi/Cv2_); 
}*/ 
 
 
//NASA's definition: 
tmp<volScalarField> MySpalartAllmaras::fv2 
( 
    const volScalarField& chi, 
    const volScalarField& fv1 
) const 
{ 
    return 1.0 - chi/(1.0+chi*fv1); 
} 
 
//There is no fv3 in NASA's equations (Trip term mentioned?) 
/*tmp<volScalarField> MySpalartAllmaras::fv3 
( 
    const volScalarField& chi, 
    const volScalarField& fv1 
) const 
{ 
    const volScalarField chiByCv2((1/Cv2_)*chi); 
 
    return 
        (scalar(1) + chi*fv1) 
       *(1/Cv2_) 
       *(3*(scalar(1) + chiByCv2) + sqr(chiByCv2)) 
       /pow3(scalar(1) + chiByCv2); 
}*/ 
 
tmp<volScalarField> MySpalartAllmaras::fw(const volScalarField& Stilda) const 
{ 
    volScalarField r 
    ( 
        min 
        ( 
            nuTilda_ /  
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     ( 
  max(Stilda,dimensionedScalar("SMALL", Stilda.dimensions(), SMALL)) 
              *sqr(kappa_*d_) 
            ), 
            scalar(10.0) 
        ) 
    ); 
    r.boundaryField() == 0.0;  
 
    const volScalarField g(r + Cw2_*(pow6(r) - r)); 
 
    return g*pow((1.0 + pow6(Cw3_))/(pow6(g) + pow6(Cw3_)), 1.0/6.0); 
} 
 
//******************************START ADDITIONS********************************** 
tmp<volScalarField> MySpalartAllmaras::ft2(const volScalarField& chi) const 
{ 
    const volScalarField chi2(pow(chi,2)); 
    return Ct3_*exp(-1.0*Ct4_*chi2); 
} 
//******************************END ADDITIONS************************************ 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
MySpalartAllmaras::MySpalartAllmaras 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    sigmaNut_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmaNut", 
            coeffDict_, 
            0.66666 
        ) 
    ), 
    kappa_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "kappa", 
            coeffDict_, 
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            0.41 
        ) 
    ), 
    Cb1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cb1", 
            coeffDict_, 
            0.1355 
        ) 
    ), 
    Cb2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cb2", 
            coeffDict_, 
            0.622 
        ) 
    ), 
    Cw1_(Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_), 
    Cw2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cw2", 
            coeffDict_, 
            0.3 
        ) 
    ), 
    Cw3_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cw3", 
            coeffDict_, 
            2.0 
        ) 
    ), 
    Cv1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cv1", 
            coeffDict_, 
            7.1 
        ) 
    ), 
//No Cv2 in NASA's equations 
    /*Cv2_ 
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    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cv2", 
            coeffDict_, 
            5.0 
        ) 
    ),*/ 
//**************************START ADDITIONS*************************************** 
    Ct3_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Ct3", 
            coeffDict_, 
            1.2 
        ) 
    ), 
    Ct4_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Ct4", 
            coeffDict_, 
            0.5 
        ) 
    ), 
//**************************END ADDITIONS***************************************** 
 
    nuTilda_ 
    ( 
        IOobject 
        ( 
            "nuTilda", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 
        ), 
        mesh_ 
    ), 
 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::MUST_READ, 
            IOobject::AUTO_WRITE 



 88 

        ), 
        mesh_ 
    ), 
 
    d_(mesh_) 
{ 
    printCoeffs(); 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volScalarField> MySpalartAllmaras::DnuTildaEff() const 
{ 
    return tmp<volScalarField> 
    ( 
        new volScalarField("DnuTildaEff", (nuTilda_ + nu())/sigmaNut_) 
    ); 
} 
 
tmp<volScalarField> MySpalartAllmaras::k() const 
{ 
    WarningIn("tmp<volScalarField> MySpalartAllmaras::k() const") 
        << "Turbulence kinetic energy not defined for Spalart-Allmaras model. " 
        << "Returning zero field" << endl; 
 
    return tmp<volScalarField> 
    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "k", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -2, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volScalarField> MySpalartAllmaras::epsilon() const 
{ 
    WarningIn("tmp<volScalarField> MySpalartAllmaras::epsilon() const") 
        << "Turbulence kinetic energy dissipation rate not defined for " 
        << "Spalart-Allmaras model. Returning zero field" 
        << endl; 
 
    return tmp<volScalarField> 
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    ( 
        new volScalarField 
        ( 
            IOobject 
            ( 
                "epsilon", 
                runTime_.timeName(), 
                mesh_ 
            ), 
            mesh_, 
            dimensionedScalar("0", dimensionSet(0, 2, -3, 0, 0), 0) 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> MySpalartAllmaras::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k() - nut()*twoSymm(fvc::grad(U_)) 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> MySpalartAllmaras::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 
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        ) 
    ); 
} 
 
 
tmp<fvVectorMatrix> MySpalartAllmaras::divDevReff(volVectorField& U) const 
{ 
    const volScalarField nuEff_(nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(nuEff_, U) 
      - fvc::div(nuEff_*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> MySpalartAllmaras::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
bool MySpalartAllmaras::read() 
{ 
    if (RASModel::read()) 
    { 
        sigmaNut_.readIfPresent(coeffDict()); 
        kappa_.readIfPresent(coeffDict()); 
 
        Cb1_.readIfPresent(coeffDict()); 
        Cb2_.readIfPresent(coeffDict()); 
        Cw1_ = Cb1_/sqr(kappa_) + (1.0 + Cb2_)/sigmaNut_; 
        Cw2_.readIfPresent(coeffDict()); 
        Cw3_.readIfPresent(coeffDict()); 
        Cv1_.readIfPresent(coeffDict()); 
        //Cv2_.readIfPresent(coeffDict()); Not Used 
//****************START ADDITIONS************************************* 
 Ct3_.readIfPresent(coeffDict()); 
 Ct4_.readIfPresent(coeffDict()); 
//****************END ADDITIONS*************************************** 
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        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
void MySpalartAllmaras::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        // Re-calculate viscosity 
        nut_ = nuTilda_*fv1(this->chi()); 
        nut_.correctBoundaryConditions(); 
 
        return; 
    } 
 
    if (mesh_.changing()) 
    { 
        d_.correct(); 
    } 
 
    const volScalarField chi(this->chi()); 
    const volScalarField fv1(this->fv1(chi)); 
 
// Stilda had to be modified 
  const volScalarField Stilda 
    ( 
        sqrt(2.0)*mag(skew(fvc::grad(U_))) 
      + fv2(chi, fv1)*nuTilda_/sqr(kappa_*d_) 
    ); 
 
// nuTilda equation had to be modified to include ft2 terms 
    tmp<fvScalarMatrix> nuTildaEqn 
    ( 
        fvm::ddt(nuTilda_) 
      + fvm::div(phi_, nuTilda_) 
      - fvm::laplacian(DnuTildaEff(), nuTilda_) 
      - Cb2_/sigmaNut_*magSqr(fvc::grad(nuTilda_)) 
     == 
        Cb1_*(1.0-ft2(chi))*Stilda*nuTilda_ 
      - fvm::Sp((Cw1_*fw(Stilda)*nuTilda_ - Cb1_*ft2(chi)*nuTilda_/sqr(kappa_))/sqr(d_), 
nuTilda_) 
    ); 
 
    nuTildaEqn().relax(); 
    solve(nuTildaEqn); 
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    bound(nuTilda_, dimensionedScalar("0", nuTilda_.dimensions(), 0.0)); 
    nuTilda_.correctBoundaryConditions(); 
 
    // Re-calculate viscosity 
    nut_.internalField() = fv1*nuTilda_.internalField(); 
    nut_.correctBoundaryConditions(); 
} 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
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SA Header file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::MySpalartAllmaras 
 
Group 
    grpIcoRASTurbulence 
 
Description 
    Spalart-Allmaras 1-eqn mixing-length model for incompressible external 
    flows. 
 
    References: 
    \verbatim 
        "A One-Equation Turbulence Model for Aerodynamic Flows" 
        P.R. Spalart, 
        S.R. Allmaras, 
        La Recherche Aerospatiale, No. 1, 1994, pp. 5-21. 
 
        Extended according to: 
 
        "An Unstructured Grid Generation and Adaptive Solution Technique 
        for High Reynolds Number Compressible Flows" 
        G.A. Ashford, 
        Ph.D. thesis, University of Michigan, 1996. 
    \endverbatim 
 
    The default model coefficients correspond to the following: 
    \verbatim 

http://www.gnu.org/licenses/
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        MySpalartAllmarasCoeffs 
        { 
            Cb1         0.1355; 
            Cb2         0.622; 
            Cw2         0.3; 
            Cw3         2.0; 
            Cv1         7.1; 
            Cv2         5.0; 
            sigmaNut    0.66666; 
            kappa       0.41; 
        } 
    \endverbatim 
 
SourceFiles 
    MySpalartAllmaras.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef MySpalartAllmaras_H 
#define MySpalartAllmaras_H 
 
#include "RASModel.H" 
#include "wallDist.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*---------------------------------------------------------------------------*\ 
                           Class MySpalartAllmaras Declaration 
\*---------------------------------------------------------------------------*/ 
 
class MySpalartAllmaras 
: 
    public RASModel 
{ 
 
protected: 
 
    // Protected data 
 
        // Model coefficients 
            dimensionedScalar sigmaNut_; 
            dimensionedScalar kappa_; 
            dimensionedScalar Cb1_; 
            dimensionedScalar Cb2_; 
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            dimensionedScalar Cw1_; 
            dimensionedScalar Cw2_; 
            dimensionedScalar Cw3_; 
            dimensionedScalar Cv1_; 
            //dimensionedScalar Cv2_; NOT IN NASA's model 
//******************START ADDITIONS********************************************* 
     dimensionedScalar Ct3_; 
     dimensionedScalar Ct4_; 
//******************END ADDITIONS*********************************************** 
 
        // Fields 
            volScalarField nuTilda_; 
            volScalarField nut_; 
            wallDist d_; 
 
    // Protected Member Functions 
        tmp<volScalarField> chi() const; 
 
        tmp<volScalarField> fv1(const volScalarField& chi) const; 
 
        tmp<volScalarField> fv2 
        ( 
            const volScalarField& chi, 
            const volScalarField& fv1 
        ) const; 
  
        /*tmp<volScalarField> fv3 
        ( 
            const volScalarField& chi, 
            const volScalarField& fv1 
        ) const; 
 */ 
        tmp<volScalarField> fw(const volScalarField& Stilda) const; 
  
//*****************START ADDITIONS***************************************** 
tmp<volScalarField> ft2(const volScalarField& chi) const; 
//*****************END ADDITIONS******************************************* 
 
public: 
 
    //- Runtime type information 
    TypeName("MySpalartAllmaras"); 
 
    // Constructors 
 
        //- Construct from components 
        MySpalartAllmaras 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
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            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 
 
 
    //- Destructor 
    virtual ~MySpalartAllmaras() 
    {} 
 
    // Member Functions 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for nuTilda 
        tmp<volScalarField> DnuTildaEff() const; 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const; 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const; 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
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} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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SST Model 
SST Source file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "MySSTStd.H" 
#include "addToRunTimeSelectionTable.H" 
 
#include "backwardsCompatibilityWallFunctions.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(MySSTStd, 0); 
addToRunTimeSelectionTable(RASModel, MySSTStd, dictionary); 
 
// * * * * * * * * * * * * Private Member Functions  * * * * * * * * * * * * // 
 
tmp<volScalarField> MySSTStd::F1(const volScalarField& CDkOmega) const 
{ 
    tmp<volScalarField> CDkOmegaPlus = max //limiter, what is defined as CD_kOmega 

http://www.gnu.org/licenses/
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(NASA) 
    ( 
        CDkOmega, 
        dimensionedScalar("1.0e-21", dimless/sqr(dimTime), 1.0e-21) 
    ); 
 
    tmp<volScalarField> arg1 = min 
    ( 
            max 
            ( 
                (scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_), 
                scalar(500)*nu()/(sqr(y_)*omega_) 
            ), 
            (4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_)) 
    ); 
 
    return tanh(pow4(arg1)); 
} 
 
 
tmp<volScalarField> MySSTStd::F2() const 
{ 
    tmp<volScalarField> arg2 =  
        max 
        ( 
            (scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_), 
            scalar(500)*nu()/(sqr(y_)*omega_) 
 
    ); 
 
    return tanh(sqr(arg2)); 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
MySSTStd::MySSTStd 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    alphaK1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
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            "alphaK1", 
            coeffDict_, 
            0.85 
        ) 
    ), 
    alphaK2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alphaK2", 
            coeffDict_, 
            1.0 
        ) 
    ), 
    alphaOmega1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alphaOmega1", 
            coeffDict_, 
            0.5 
        ) 
    ), 
    alphaOmega2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alphaOmega2", 
            coeffDict_, 
            0.856 
        ) 
    ), 
    gamma1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "gamma1", 
            coeffDict_, 
            0.55316666 
        ) 
    ), 
    gamma2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "gamma2", 
            coeffDict_, 
            0.44035466 
        ) 
    ), 
    beta1_ 
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    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "beta1", 
            coeffDict_, 
            0.075 
        ) 
    ), 
    beta2_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "beta2", 
            coeffDict_, 
            0.0828 
        ) 
    ), 
    betaStar_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "betaStar", 
            coeffDict_, 
            0.09 
        ) 
    ), 
    a1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "a1", 
            coeffDict_, 
            0.31 
        ) 
    ), 
    b1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "b1", 
            coeffDict_, 
            1.0 
        ) 
    ), 
    c1_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "c1", 
            coeffDict_, 
            10.0 
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        ) 
    ), 
 
    y_(mesh_), 
 
    k_ 
    ( 
        IOobject 
        ( 
            "k", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateK("k", mesh_) 
    ), 
    omega_ 
    ( 
        IOobject 
        ( 
            "omega", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateOmega("omega", mesh_) 
    ), 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateNut("nut", mesh_) 
    ) 
{ 
    bound(k_, kMin_); 
    bound(omega_, omegaMin_); 
 
    nut_ = 
    ( 
        a1_*k_ 
      / max 
        ( 
            a1_*omega_, 
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            b1_*F2()*sqrt(2.0)*mag(skew(fvc::grad(U_))) 
        ) 
    ); 
    nut_.correctBoundaryConditions(); 
 
    printCoeffs(); 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volSymmTensorField> MySSTStd::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)), 
            k_.boundaryField().types() 
        ) 
    ); 
} 
 
 
tmp<volSymmTensorField> MySSTStd::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 
        ) 
    ); 
} 
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tmp<fvVectorMatrix> MySSTStd::divDevReff(volVectorField& U) const 
{ 
    return 
    ( 
      - fvm::laplacian(nuEff(), U) 
      - fvc::div(nuEff()*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> MySSTStd::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
bool MySSTStd::read() 
{ 
    if (RASModel::read()) 
    { 
        alphaK1_.readIfPresent(coeffDict()); 
        alphaK2_.readIfPresent(coeffDict()); 
        alphaOmega1_.readIfPresent(coeffDict()); 
        alphaOmega2_.readIfPresent(coeffDict()); 
        gamma1_.readIfPresent(coeffDict()); 
        gamma2_.readIfPresent(coeffDict()); 
        beta1_.readIfPresent(coeffDict()); 
        beta2_.readIfPresent(coeffDict()); 
        betaStar_.readIfPresent(coeffDict()); 
        a1_.readIfPresent(coeffDict()); 
        b1_.readIfPresent(coeffDict()); 
        c1_.readIfPresent(coeffDict()); 
 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
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void MySSTStd::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        return; 
    } 
 
    if (mesh_.changing()) 
    { 
        y_.correct(); 
    } 
 
    const volScalarField S2(2*magSqr(symm(fvc::grad(U_)))); 
    volScalarField G(type() + ".G", nut_*S2);  
    //volScalarField G(GName(), nut_*2*magSqr(symm(fvc::grad(U_)))); for newer OF 
versions 
    volScalarField G2(type() + ".G", min(G,scalar(20.0)*betaStar_*omega_*k_)); 
//****CHANGED 
 
    // Update omega and G at the wall 
    omega_.boundaryField().updateCoeffs(); 
 
    const volScalarField CDkOmega 
    ( 
        (2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_ 
    ); 
 
    const volScalarField F1(this->F1(CDkOmega)); 
 
    // Turbulent frequency equation 
    tmp<fvScalarMatrix> omegaEqn 
    ( 
        fvm::ddt(omega_) 
      + fvm::div(phi_, omega_) 
      - fvm::laplacian(DomegaEff(F1), omega_) 
     == 
        gamma(F1)*G/nut_  //*************DIFFERENT FROM STANDARD MODEL 
      - fvm::Sp(beta(F1)*omega_, omega_) 
      + fvm::Sp //changed this (see above) 
        ( 
            (scalar(1)-F1)*CDkOmega/omega_,  
            omega_ 
        ) 
    ); 
 
    omegaEqn().relax(); 
 
    omegaEqn().boundaryManipulate(omega_.boundaryField()); 
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    solve(omegaEqn); 
    bound(omega_, omegaMin_); 
 
 
    // Turbulent kinetic energy equation ADDED LIMITER G2 (NASA) 
    tmp<fvScalarMatrix> kEqn 
    ( 
        fvm::ddt(k_) 
      + fvm::div(phi_, k_) 
      - fvm::laplacian(DkEff(F1), k_) 
     == 
        G2   //************************DIFFERENT FROM STANDARD MODEL 
      - fvm::Sp(betaStar_*omega_, k_) 
    ); 
 
    kEqn().relax(); 
    solve(kEqn); 
    bound(k_, kMin_); 
 
    // Re-calculate viscosity 
    nut_ = a1_*k_/max(a1_*omega_, b1_*F2()*sqrt(2.0)*mag(skew(fvc::grad(U_)))); 
    nut_.correctBoundaryConditions(); 
} 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
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SST Header file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::MySSTStd 
 
Description 
    Implementation of the k-omega-SST turbulence model for incompressible 
    flows. 
 
    Turbulence model described in: 
    \verbatim 
        Menter, F., Esch, T., 
        "Elements of Industrial Heat Transfer Prediction", 
        16th Brazilian Congress of Mechanical Engineering (COBEM), 
        Nov. 2001. 
    \endverbatim 
 
    with the addition of the optional F3 term for rough walls from 
    \verbatim 
        Hellsten, A. 
        "Some Improvements in Menter’s k-omega-SST turbulence model" 
        29th AIAA Fluid Dynamics Conference, 
        AIAA-98-2554, 
        June 1998. 
    \endverbatim 
 
    Note that this implementation is written in terms of alpha diffusion 
    coefficients rather than the more traditional sigma (alpha = 1/sigma) so 
    that the blending can be applied to all coefficuients in a consistent 

http://www.gnu.org/licenses/
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    manner.  The paper suggests that sigma is blended but this would not be 
    consistent with the blending of the k-epsilon and k-omega models. 
 
    Also note that the error in the last term of equation (2) relating to 
    sigma has been corrected. 
 
    Wall-functions are applied in this implementation by using equations (14) 
    to specify the near-wall omega as appropriate. 
 
    The blending functions (15) and (16) are not currently used because of the 
    uncertainty in their origin, range of applicability and that is y+ becomes 
    sufficiently small blending u_tau in this manner clearly becomes nonsense. 
 
    The default model coefficients correspond to the following: 
    \verbatim 
        MySSTStdCoeffs 
        { 
            alphaK1     0.85034; 
            alphaK2     1.0; 
            alphaOmega1 0.5; 
            alphaOmega2 0.85616; 
            beta1       0.075; 
            beta2       0.0828; 
            betaStar    0.09; 
            gamma1      0.5532; 
            gamma2      0.4403; 
            a1          0.31; 
            b1          1.0; 
            c1          10.0; 
            F3          no; 
        } 
    \endverbatim 
 
SourceFiles 
    MySSTStd.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef MySSTStd_H 
#define MySSTStd_H 
 
#include "RASModel.H" 
#include "wallDist.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
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{ 
 
/*---------------------------------------------------------------------------*\ 
                          Class MySSTStd Declaration 
\*---------------------------------------------------------------------------*/ 
 
class MySSTStd 
: 
    public RASModel 
{ 
 
protected: 
 
    // Protected data: 
        // Model coefficients 
            dimensionedScalar alphaK1_; 
            dimensionedScalar alphaK2_; 
            dimensionedScalar alphaOmega1_; 
            dimensionedScalar alphaOmega2_; 
            dimensionedScalar gamma1_; 
            dimensionedScalar gamma2_; 
            dimensionedScalar beta1_; 
            dimensionedScalar beta2_; 
            dimensionedScalar betaStar_; 
            dimensionedScalar a1_; 
            dimensionedScalar b1_; 
            dimensionedScalar c1_; 
            Switch F3_; 
 
        //- Wall distance field 
        //  Note: different to wall distance in parent RASModel 
        wallDist y_; 
 
        // Fields 
            volScalarField k_; 
            volScalarField omega_; 
            volScalarField nut_; 
 
    // Protected Member Functions 
        tmp<volScalarField> F1(const volScalarField& CDkOmega) const; 
        tmp<volScalarField> F2() const; 
        tmp<volScalarField> F3() const; 
        tmp<volScalarField> F23() const; 
 
        tmp<volScalarField> blend 
        ( 
            const volScalarField& F1, 
            const dimensionedScalar& psi1, 
            const dimensionedScalar& psi2 
        ) const 
        { 
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            return F1*(psi1 - psi2) + psi2; 
        } 
 
        tmp<volScalarField> alphaK(const volScalarField& F1) const 
        { 
            return blend(F1, alphaK1_, alphaK2_); 
        } 
 
        tmp<volScalarField> alphaOmega(const volScalarField& F1) const 
        { 
            return blend(F1, alphaOmega1_, alphaOmega2_); 
        } 
 
        tmp<volScalarField> beta(const volScalarField& F1) const 
        { 
            return blend(F1, beta1_, beta2_); 
        } 
 
        tmp<volScalarField> gamma(const volScalarField& F1) const 
        { 
            return blend(F1, gamma1_, gamma2_); 
        } 
 
public: 
    //- Runtime type information 
    TypeName("MySSTStd"); 
 
    // Constructors 
        //- Construct from components 
        MySSTStd 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 
 
    //- Destructor 
    virtual ~MySSTStd() 
    {} 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for k 
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        tmp<volScalarField> DkEff(const volScalarField& F1) const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField("DkEff", alphaK(F1)*nut_ + nu()) 
            ); 
        } 
 
        //- Return the effective diffusivity for omega 
        tmp<volScalarField> DomegaEff(const volScalarField& F1) const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField("DomegaEff", alphaOmega(F1)*nut_ + nu()) 
            ); 
        } 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const 
        { 
            return k_; 
        } 
 
        //- Return the turbulence specific dissipation rate 
        virtual tmp<volScalarField> omega() const 
        { 
            return omega_; 
        } 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField 
                ( 
                    IOobject 
                    ( 
                        "epsilon", 
                        mesh_.time().timeName(), 
                        mesh_ 
                    ), 
                    betaStar_*k_*omega_, 
                    omega_.boundaryField().types() 
                ) 
            ); 
        } 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
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        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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k-ω Model 
k-ω Source file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
\*---------------------------------------------------------------------------*/ 
 
#include "kOmega20062D.H" 
#include "addToRunTimeSelectionTable.H" 
 
#include "backwardsCompatibilityWallFunctions.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(kOmega20062D, 0); 
addToRunTimeSelectionTable(RASModel, kOmega20062D, dictionary); 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
kOmega20062D::kOmega20062D 
( 
    const volVectorField& U, 
    const surfaceScalarField& phi, 

http://www.gnu.org/licenses/
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    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    Cmu_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "betaStar", 
            coeffDict_, 
            0.09 //Beta=9/100 in 2006 
        ) 
    ), 
    /*beta_    ORIGINAL beta DEFINITION  
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "beta", 
            coeffDict_, 
            0.0708 //(changed from 0.072)  
        ) 
    ),*/ 
    alpha_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alpha", 
            coeffDict_, 
            0.52 //alpha=13/25 in 2006 
        ) 
    ), 
    alphaK_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alphaK", 
            coeffDict_, 
            0.6 //sigma*=3/5 in 2006 
        ) 
    ), 
    alphaOmega_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "alphaOmega", 
            coeffDict_, 
            0.5 //sigma=1/2 in 2006 
        ) 
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    ), 
    Clim_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Clim", 
            coeffDict_, 
            0.875 //Clim=7/8 
        ) 
    ), 
    k_ 
    ( 
        IOobject 
        ( 
            "k", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateK("k", mesh_) 
    ), 
    omega_ 
    ( 
        IOobject 
        ( 
            "omega", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateOmega("omega", mesh_) 
    ), 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateNut("nut", mesh_) 
    ), 
   fBeta_ 
    ( 
        IOobject 
        ( 
            "fBeta", 



 116 

            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::NO_WRITE 
        ), 
        mesh_, 
        dimless 
    ), 
   Chi_ 
    ( 
        IOobject 
        ( 
            "Chi", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::NO_WRITE 
        ), 
        mesh_, dimless 
    ), 
   absChi_ 
    ( 
        IOobject 
        ( 
            "absChi", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::NO_WRITE 
        ), 
        mesh_, dimless 
    ), 
   beta_ 
    ( 
        IOobject 
        ( 
            "beta", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::NO_WRITE 
        ), 
        mesh_, 
        dimless 
    ), 
   alphad_ 
    ( 
        IOobject 
        ( 
            "alphad", 
            runTime_.timeName(), 
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            mesh_, 
            IOobject::NO_READ, 
            IOobject::NO_WRITE 
        ), 
        mesh_, dimensionedScalar("zero", dimless, 0.125) 
    ) 
{ 
    bound(k_, kMin_); 
    bound(omega_, omegaMin_); 
 
   //nut_ = k_/omega_; //Standard OpenFOAM definition 
    nut_ = k_/ max(omega_, Clim_*sqrt(2.0/0.09*magSqr(symm(fvc::grad(U_)))));;  
    nut_.correctBoundaryConditions(); 
     
                
    printCoeffs(); 
} 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volSymmTensorField> kOmega20062D::R() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "R", 
                runTime_.timeName(), 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            ((2.0/3.0)*I)*k_ - nut_*twoSymm(fvc::grad(U_)), 
            k_.boundaryField().types() 
        ) 
    ); 
} 
 
tmp<volSymmTensorField> kOmega20062D::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                "devRhoReff", 
                runTime_.timeName(), 
                mesh_, 
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                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
           -nuEff()*dev(twoSymm(fvc::grad(U_))) 
        ) 
    ); 
} 
 
tmp<fvVectorMatrix> kOmega20062D::divDevReff(volVectorField& U) const 
{ 
    return 
    ( 
      - fvm::laplacian(nuEff(), U) 
      - fvc::div(nuEff()*dev(T(fvc::grad(U)))) 
    ); 
} 
 
 
tmp<fvVectorMatrix> kOmega20062D::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    return 
    ( 
      - fvm::laplacian(muEff, U) 
      - fvc::div(muEff*dev(T(fvc::grad(U)))) 
    ); 
} 
 
bool kOmega20062D::read() 
{ 
    if (RASModel::read()) 
    { 
        Cmu_.readIfPresent(coeffDict()); 
        //beta_.readIfPresent(coeffDict());  Must be commented for blending function 
        alphaK_.readIfPresent(coeffDict()); 
        alphaOmega_.readIfPresent(coeffDict()); 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
void kOmega20062D::correct() 
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{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        return; 
    } 
 
    volTensorField GradU(fvc::grad(U_)); 
    volSymmTensorField Sij(symm(GradU)); 
    volTensorField Omij(-skew(GradU));  
    volScalarField StressLim(Clim_*sqrt(2.0/Cmu_)*mag(Sij)); 
    volSymmTensorField tauij(2.0*nut_*Sij-((2.0/3.0)*I)*k_); 
    volVectorField Gradk(fvc::grad(k_)); 
    volVectorField Gradomega(fvc::grad(omega_)); 
    volScalarField G(type() + ".G", tauij && GradU); 
    //volScalarField G(GName(), tauij && GradU); //for newer OF versions 
 
    // Update omega and G at the wall 
    omega_.boundaryField().updateCoeffs(); 
 
//START ADDITIONS FOR 2006 VERSION..................................... 
 
volScalarField alphadCheck_(Gradk & Gradomega);  //condition to change alphad_ 
 
forAll(alphad_,celli) 
{  
 if (alphadCheck_[celli] <= 0.0001)  
 { 
 alphad_[celli]=scalar(0); 
 }else  
 { 
 alphad_[celli]=scalar(0.125); 
 } 
} 
 
volScalarField CDkOmega(alphad_/omega_*(Gradk & Gradomega)); //last term in NASA 
equations 
 
Chi_ = (Omij & Omij) && Sij /pow((Cmu_*omega_),3);   
absChi_ = mag(Chi_);  
fBeta_ = 1.0; //This term should be (1.0+85.0*absChi_)/(1.0+100.0*absChi_); for 3D 
beta_ = 0.0708*fBeta_;  
  
    // Turbulence specific dissipation rate equation 
    tmp<fvScalarMatrix> omegaEqn 
    ( 
        fvm::ddt(omega_) 
      + fvm::div(phi_, omega_) 
      - fvm::laplacian(DomegaEff(), omega_) 
     == 
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        alpha_*G*omega_/k_ 
      - fvm::Sp(beta_*omega_, omega_) 
      + CDkOmega //Crossflow diffusion term to match 2006 
    ); 
 
    omegaEqn().relax(); 
 
    omegaEqn().boundaryManipulate(omega_.boundaryField()); 
 
    solve(omegaEqn); 
    bound(omega_, omegaMin_); 
 
 
    // Turbulent kinetic energy equation 
    tmp<fvScalarMatrix> kEqn 
    ( 
        fvm::ddt(k_) 
      + fvm::div(phi_, k_) 
      - fvm::laplacian(DkEff(), k_) 
     == 
        G 
      - fvm::Sp(Cmu_*omega_, k_) 
    ); 
 
    kEqn().relax(); 
    solve(kEqn); 
    bound(k_, kMin_); 
 
 
    // Re-calculate viscosity 
    //nut_ = k_/omega_; //Standard OpenFOAM definition 
    nut_ = k_/ max(omega_, Clim_*sqrt(2.0/0.09*magSqr(symm(fvc::grad(U_)))));;  
    nut_.correctBoundaryConditions(); 
} 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
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k-ω Header file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::kOmega20062DC2 
 
Group 
    grpIcoRASTurbulence 
 
Description 
    Standard high Reynolds-number k-omega turbulence model for 
    incompressible flows. 
 
    References: 
 http://turbmodels.larc.nasa.gov/wilcox.html 
 
 Turbulence Modeling for CFD (3rd Edition), David C. Wilcox, 2006 
 
SourceFiles 
    kOmega20062D.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef kOmega20062D_H 
#define kOmega20062D_H 
 
#include "RASModel.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 

http://www.gnu.org/licenses/
http://turbmodels.larc.nasa.gov/wilcox.html
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namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*---------------------------------------------------------------------------*\ 
                           Class kOmega20062DC2 Declaration 
\*---------------------------------------------------------------------------*/ 
 
class kOmega20062D 
: 
    public RASModel 
{ 
 
protected: 
 
    // Protected data 
 
        // Model coefficients 
            dimensionedScalar Cmu_; 
            //dimensionedScalar beta_;  commented for blending function 
            dimensionedScalar alpha_; 
            dimensionedScalar alphaK_; 
            dimensionedScalar alphaOmega_; 
     dimensionedScalar Clim_;  
             
        // Fields 
            volScalarField k_; 
            volScalarField omega_; 
            volScalarField nut_; 
     volScalarField fBeta_; 
     volScalarField Chi_; 
     volScalarField absChi_; 
     volScalarField beta_; 
            volScalarField alphad_; 
 
public: 
 
    //- Runtime type information 
    TypeName("kOmega20062D"); 
 
    // Constructors 
        //- Construct from components 
        kOmega20062D 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
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            const word& modelName = typeName 
        ); 
 
    //- Destructor 
    virtual ~kOmega20062D() 
    {} 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for k 
        tmp<volScalarField> DkEff() const 
        { 
            return tmp<volScalarField> 
            ( 
                //new volScalarField("DkEff", alphaK_*nut_ + nu()) 
  new volScalarField("DkEff", alphaK_*k_/omega_ + nu()) 
            ); 
        } 
 
        //- Return the effective diffusivity for omega 
        tmp<volScalarField> DomegaEff() const 
        { 
            return tmp<volScalarField> 
            ( 
                //new volScalarField("DomegaEff", alphaOmega_*nut_ + nu()) 
  new volScalarField("DomegaEff", alphaOmega_*k_/omega_ + nu()) 
            ); 
        } 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const 
        { 
            return k_; 
        } 
 
        //- Return the turbulence specific dissipation rate 
        virtual tmp<volScalarField> omega() const 
        { 
            return omega_; 
        } 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const 
        { 
            return tmp<volScalarField> 
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            ( 
                new volScalarField 
                ( 
                    IOobject 
                    ( 
                        "epsilon", 
                        mesh_.time().timeName(), 
                        mesh_ 
                    ), 
                    Cmu_*k_*omega_, 
                    omega_.boundaryField().types() 
                ) 
            ); 
        } 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const; 
 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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LRR-IP Model 
LRR-IP Source file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "SPLRRIP.H" 
#include "addToRunTimeSelectionTable.H" 
#include "wallFvPatch.H" 
#include "backwardsCompatibilityWallFunctions.H" 
#include "wallDist.H" 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
defineTypeNameAndDebug(SPLRRIP, 0); 
addToRunTimeSelectionTable(RASModel, SPLRRIP, dictionary); 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
SPLRRIP::SPLRRIP 
( 
    const volVectorField& U, 

http://www.gnu.org/licenses/
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    const surfaceScalarField& phi, 
    transportModel& transport, 
    const word& turbulenceModelName, 
    const word& modelName 
) 
: 
    RASModel(modelName, U, phi, transport, turbulenceModelName), 
 
    Cmu_  
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cmu", 
            coeffDict_, 
            0.09 
        ) 
    ), 
    Clrr1_ //Rotta's constant 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Clrr1", 
            coeffDict_, 
            1.8 
        ) 
    ), 
    Clrr2_ //Used in rapid term 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Clrr2", 
            coeffDict_, 
            0.6 
        ) 
    ), 
    C1_ //First epsilon coefficient 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C1", 
            coeffDict_, 
            1.35 //1.44 
        ) 
    ), 
    C2_ //Second epsilon coefficient 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C2", 
            coeffDict_, 
            1.92 
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        ) 
    ), 
    Cs_ //Used in Daly&Harlow GGDH correlation for u_i u_j u_k  
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Cs", 
            coeffDict_, 
            0.22 //used to be 0.25.  
        ) 
    ), 
    Ceps_ //Third epsilon coefficient 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "Ceps", 
            coeffDict_, 
            0.15 
        ) 
    ), 
    sigmaEps_ //Used in effective diffusivity of epsilon (See .H file) 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "sigmaEps", 
            coeffDict_, 
            1.3 
        ) 
    ), 
    couplingFactor_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "couplingFactor", 
            coeffDict_, 
            0.0 
        ) 
    ), 
    R_ 
    ( 
        IOobject 
        ( 
            "R", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateR("R", mesh_) 
    ), 
    k_ 
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    ( 
        IOobject 
        ( 
            "k", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateK("k", mesh_) 
    ), 
    epsilon_ 
    ( 
        IOobject 
        ( 
            "epsilon", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateEpsilon("epsilon", mesh_) 
    ), 
    nut_ 
    ( 
        IOobject 
        ( 
            "nut", 
            runTime_.timeName(), 
            mesh_, 
            IOobject::NO_READ, 
            IOobject::AUTO_WRITE 
        ), 
        autoCreateNut("nut", mesh_) 
     ), 
 xn 
 (  
  IOobject 
  ( 
   "xn", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("xn", dimLength, SMALL) 
 ), 
 utauw 
 ( 
  IOobject 
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  ( 
   "utauw", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("utauw", U_.dimensions(), 0.0) 
 ),  
 utau 
 ( 
  IOobject 
  ( 
   "utau", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("utau", U_.dimensions(), 0.0) 
 ), 
 utauFaces 
 ( 
  IOobject 
  ( 
   "utauFaces", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("utauFaces", U_.dimensions(), 0.0) 
 ), 
 f1 
 ( 
  IOobject 
  ( 
   "f1", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("f1", dimless, 0.0) 
 ), 
 argf2 
 ( 
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  IOobject 
  ( 
   "argf2", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("argf2", dimless, 0.0) 
 ), 
 f2 
 ( 
  IOobject 
  ( 
   "f2", 
   runTime_.timeName(), 
   mesh_, 
   IOobject::NO_READ, 
   IOobject::AUTO_WRITE 
  ), 
  mesh_, 
  dimensionedScalar("f2", dimless, 1.0) 
 ),     
 yr_(mesh_), 
    C1Ref_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C1Ref", 
            coeffDict_, 
            0.3 
        ) 
    ), 
    C2Ref_ 
    ( 
        dimensioned<scalar>::lookupOrAddToDict 
        ( 
            "C2Ref", 
            coeffDict_, 
            0.3 
        ) 
     ) 
  
{ 
    if (couplingFactor_.value() < 0.0 || couplingFactor_.value() > 1.0) 
    { 
        FatalErrorIn 
        ( 
            "MyLRRIP::MyLRRIP" 
            "(const volVectorField& U, const surfaceScalarField& phi," 
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            "transportModel& transport)" 
        )   << "couplingFactor = " << couplingFactor_ 
            << " is not in range 0 - 1" << nl 
            << exit(FatalError); 
    } 
 
    bound(k_, kMin_); 
    bound(epsilon_, epsilonMin_); 
 
    nut_ = Cmu_*sqr(k_)/epsilon_; 
    nut_.correctBoundaryConditions(); 
 
    printCoeffs(); 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
tmp<volSymmTensorField> SPLRRIP::devReff() const 
{ 
    return tmp<volSymmTensorField> 
    ( 
        new volSymmTensorField 
        ( 
            IOobject 
            ( 
                runTime_.timeName(), 
                "devRhoReff", 
                mesh_, 
                IOobject::NO_READ, 
                IOobject::NO_WRITE 
            ), 
            R_ - nu()*dev(twoSymm(fvc::grad(U_)))  
        )  
    );  
} 
 
 
tmp<fvVectorMatrix> SPLRRIP::divDevReff(volVectorField& U) const 
{ 
    if (couplingFactor_.value() > 0.0) 
    { 
        return 
        ( 
            fvc::div(R_ + couplingFactor_*nut_*fvc::grad(U), "div(R)") 
          + fvc::laplacian 
            ( 
                 (1.0 - couplingFactor_)*nut_, 
                 U, 
                 "laplacian(nuEff,U)" 
            ) 
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          - fvm::laplacian(nuEff(), U) 
        ); 
    } 
    else 
    { 
        return 
        ( 
            fvc::div(R_) 
          + fvc::laplacian(nut_, U, "laplacian(nuEff,U)") 
          - fvm::laplacian(nuEff(), U) 
        ); 
    } 
} 
 
tmp<fvVectorMatrix> SPLRRIP::divDevRhoReff 
( 
    const volScalarField& rho, 
    volVectorField& U 
) const 
{ 
    volScalarField muEff("muEff", rho*nuEff()); 
 
    if (couplingFactor_.value() > 0.0) 
    { 
        return 
        ( 
            fvc::div 
            ( 
                rho*R_ + couplingFactor_*(rho*nut_)*fvc::grad(U), 
                "div((rho*R))" 
            ) 
          + fvc::laplacian 
            ( 
                (1.0 - couplingFactor_)*rho*nut_, 
                U, 
                "laplacian(muEff,U)" 
            ) 
          - fvm::laplacian(muEff, U) 
        ); 
    } 
    else 
    { 
        return 
        ( 
            fvc::div(rho*R_) 
          + fvc::laplacian(rho*nut_, U, "laplacian(muEff,U)") 
          - fvm::laplacian(muEff, U) 
        ); 
    } 
} 
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bool SPLRRIP::read() 
{ 
    if (RASModel::read()) 
    { 
        Cmu_.readIfPresent(coeffDict()); 
        Clrr1_.readIfPresent(coeffDict()); 
        Clrr2_.readIfPresent(coeffDict()); 
        C1_.readIfPresent(coeffDict()); 
        C2_.readIfPresent(coeffDict()); 
        Cs_.readIfPresent(coeffDict()); 
        Ceps_.readIfPresent(coeffDict()); 
        sigmaEps_.readIfPresent(coeffDict()); 
        C1Ref_.readIfPresent(coeffDict()); 
        C2Ref_.readIfPresent(coeffDict()); 
        couplingFactor_.readIfPresent(coeffDict()); 
 
        if (couplingFactor_.value() < 0.0 || couplingFactor_.value() > 1.0) 
        { 
            FatalErrorIn("SPLRRIP::read()") 
                << "couplingFactor = " << couplingFactor_ 
                << " is not in range 0 - 1" 
                << exit(FatalError); 
        } 
 
        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
void SPLRRIP::correct() 
{ 
    RASModel::correct(); 
 
    if (!turbulence_) 
    { 
        return; 
    } 
    if (mesh_.changing()) 
    { 
        yr_.correct(); 
    } 
 
    volSymmTensorField P(-twoSymm(R_ & fvc::grad(U_))); //P_ij 
    volScalarField G(type() + ".G", 0.5*mag(tr(P))); //P 
    //volScalarField G(GName(), 0.5*mag(tr(P))); //for newer OF versions 
 
//*******************************ADDITIONS TO 
LRRIP********************************************** 
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 xn = wallDist(mesh_).y(); //Normal distance to wall     
 
  const fvPatchList& Boundaries = mesh_.boundary(); 
    forAll(Boundaries, patchi) //loops through boundaries, patchi is the index 
    { 
        const fvPatch& currPatch = Boundaries[patchi]; //indexed boundary definition 
(current patch) 
        if (isType<wallFvPatch>(currPatch)) 
        { 
            utauw.boundaryField()[patchi] =  
   sqrt 
                        ( 
                            nu()*mag(U_.boundaryField()[patchi].snGrad()) 
                        ); 
            forAll(currPatch, facei) 
            { 
                label faceCelli = currPatch.faceCells()[facei]; //indexed face in current patch 
                // Assign utau[on indexed cell face] value from utauw[on boundary][at each 
boundary    face] 
                utauFaces[faceCelli] = utauw.boundaryField()[patchi][facei]; 
  //utau[faceCelli] = utauw.boundaryField()[patchi][facei]; 
 
         forAll(utau, celli) //assigns value of utau[at face] to utau[cells] 
  { 
      utau[celli] = 0.727; //value from experimental paper (should be fixed for 
looping) 
         } 
            } 
         }  
     } 
 
 
//Damping wall functions: 
const scalarField& nuCells=nu()().internalField(); 
forAll(f1,celli)   
{ 
 if (utau[celli] == 0.0)  
 { 
 f1[celli]= scalar(0.0); 
 }else 
 {f1[celli] = exp(-0.5*xn[celli]*utau[celli]/nuCells[celli]);} 
} 
 
argf2= sqr(k_)/(6.0*nu()*epsilon_); 
f2 = 1-2.0/9.0*Foam::exp(-1.0*sqr(argf2)); 
//*******************************END ADDITIONS TO 
LRRIP****************************************** 
 
    // Update epsilon and G at the wall 
    epsilon_.boundaryField().updateCoeffs(); 
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    // Dissipation equation 
    tmp<fvScalarMatrix> epsEqn 
    ( 
        fvm::ddt(epsilon_)  //change in time 
      + fvm::div(phi_, epsilon_) //convective term 
      //- fvm::laplacian(DepsilonEff(), epsilon_) 
      - fvm::laplacian(DissDest(), epsilon_) //NEW LINE  
    //- fvm::laplacian(Ceps_*(k_/epsilon_)*R_, epsilon_) ^^DissDestruction of dissip(pg 11 
of RST Doc) 
      -fvm::laplacian(nu(), epsilon_) // Molecular part of DepsilonEff 
      == 
        C1_*G*epsilon_/k_ //Production of dissipation  
      - fvm::Sp(C2_*f2*epsilon_/k_, epsilon_) //ADDED f2 TO 
LRRIP**************************** 
      -2.0/sqr(xn)*nu()*epsilon_*f1 // ADDITION TO 
LRRIP************************************* 
    ); 
 
    epsEqn().relax(); 
    epsEqn().boundaryManipulate(epsilon_.boundaryField()); 
 
    solve(epsEqn); 
    bound(epsilon_, epsilonMin_); 
 
    // Reynolds stress equation 
    const fvPatchList& patches = mesh_.boundary(); 
 
    forAll(patches, patchi) 
    { 
        const fvPatch& curPatch = patches[patchi]; 
 
        if (isA<wallFvPatch>(curPatch)) 
        { 
            forAll(curPatch, facei) 
            { 
                label faceCelli = curPatch.faceCells()[facei]; 
                P[faceCelli] *= min 
                ( 
                    G[faceCelli]/(0.5*mag(tr(P[faceCelli])) + SMALL), 
                    1.0 
                ); 
            } 
        } 
    } 
 
//Reflection Equation................................ 
    const volSymmTensorField reflect 
    ( 
        C1Ref_*epsilon_/k_*R_ - C2Ref_*Clrr2_*dev(P) 
    ); 
//................................................... 
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    tmp<fvSymmTensorMatrix> REqn 
    ( 
        fvm::ddt(R_) 
      + fvm::div(phi_, R_) 
      - fvm::laplacian(DandH(), R_) //Daly & Harlow 
      //- fvm::laplacian(Cs_*(k_/epsilon_)*R_, R_) // ^^^Daly & Harlow 
      - fvm::laplacian(nu(), R_) // Molecular component of DREff() 
      //- fvm::laplacian(DREff(), R_) 
      + fvm::Sp(Clrr1_*epsilon_/k_, R_) 
      == 
        P 
      +(2.0/3.0*(Clrr1_)*I)*epsilon_ //Rotta's Term  (Split OpenFOAM term into two) 
      -(2.0/3.0*I)*epsilon_ 
      - Clrr2_*dev(P) //Second term in -IP 
      -2.0/sqr(xn)*nu()*R_ // Second part of Dissipation tensor definition**** 
 
//wall reflection terms .........................................      
 + symm 
        ( 
            I*((yr_.n() & reflect) & yr_.n()) 
          - 1.5*(yr_.n()*(reflect & yr_.n()) 
          + (yr_.n() & reflect)*yr_.n()) 
         )*0.2*pow(k_, 1.5)/(yr_*epsilon_) 
//.................................................................    
    ); 
 
    REqn().relax(); 
    solve(REqn); 
 
    R_.max 
    ( 
        dimensionedSymmTensor 
        ( 
            "zero", 
            R_.dimensions(), 
            symmTensor 
            ( 
                kMin_.value(), -GREAT, -GREAT, 
                kMin_.value(), -GREAT, 
                kMin_.value() 
            ) 
        ) 
    ); 
 
    k_ = 0.5*tr(R_); //Matches 
    bound(k_, kMin_); 
 
    // Re-calculate viscosity 
    nut_ = Cmu_*sqr(k_)/epsilon_; 
    nut_.correctBoundaryConditions(); 



 137 

 
    // Correct wall shear stresses 
    forAll(patches, patchi) 
    { 
        const fvPatch& curPatch = patches[patchi]; 
 
        if (isA<wallFvPatch>(curPatch)) 
        { 
            symmTensorField& Rw = R_.boundaryField()[patchi]; 
 
            const scalarField& nutw = nut_.boundaryField()[patchi]; 
 
            const vectorField snGradU(U_.boundaryField()[patchi].snGrad()); 
 
            const vectorField& faceAreas 
                = mesh_.Sf().boundaryField()[patchi]; 
 
            const scalarField& magFaceAreas 
                = mesh_.magSf().boundaryField()[patchi]; 
 
            forAll(curPatch, facei) 
            { 
                // Calculate near-wall velocity gradient 
                tensor gradUw 
                    = (faceAreas[facei]/magFaceAreas[facei])*snGradU[facei]; 
 
                // Calculate near-wall shear-stress tensor 
                tensor tauw = -nutw[facei]*2*symm(gradUw); 
 
                // Reset the shear components of the stress tensor 
                Rw[facei].xy() = tauw.xy(); 
                Rw[facei].xz() = tauw.xz(); 
                Rw[facei].yz() = tauw.yz(); 
            } 
        } 
    } 
} 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// ************************************************************************* // 
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LRR-IP Header file: 
/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM.  If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::incompressible::RASModels::SPLRRIP 
 
Group 
    grpIcoRASTurbulence 
 
Description 
    Launder, Reece and Rodi Reynolds-stress turbulence model for 
    incompressible flows. 
 
    The default model coefficients correspond to the following: 
    \verbatim 
        SPLRRIPCoeffs 
        { 
            Cmu         0.09; 
            Clrr1       1.8; 
            Clrr2       0.6; 
            C1          1.44; 
            C2          1.92; 
            Cs          0.25; 
            Ceps        0.15; 
            sigmaEps    1.3; 
            couplingFactor  0.0;    // only for incompressible 
        } 
    \endverbatim 
 
SourceFiles 

http://www.gnu.org/licenses/
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    SPLRRIP.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef SPLRRIP_H 
#define SPLRRIP_H 
 
#include "RASModel.H" 
#include "wallDist.H" //ADDED ******************************************* 
#include "wallDistReflection.H"//ADDED ******************************************* 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
namespace incompressible 
{ 
namespace RASModels 
{ 
 
/*-------------------------------------------------------------*\ 
                           Class SPLRRIP Declaration 
\*-------------------------------------------------------------*/ 
 
class SPLRRIP 
: 
    public RASModel 
{ 
 
protected: 
 
    // Protected data 
 
        // Model coefficients 
            dimensionedScalar Cmu_; 
            dimensionedScalar Clrr1_; 
            dimensionedScalar Clrr2_; 
            dimensionedScalar C1_; 
            dimensionedScalar C2_; 
            dimensionedScalar Cs_; 
            dimensionedScalar Ceps_; 
            dimensionedScalar sigmaEps_; 
            dimensionedScalar couplingFactor_; 
 
        // Fields 
            volSymmTensorField R_; 
            volScalarField k_; 
            volScalarField epsilon_; 
            volScalarField nut_; 
//*********ADDITIONS TO SPLRRIP****************************** 
  volScalarField xn; 
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  volScalarField utauw; 
  volScalarField utau; 
  volScalarField utauFaces; 
  volScalarField f1; 
  volScalarField argf2; 
  volScalarField f2; 
  wallDistReflection yr_; // ADDED 
                dimensionedScalar C1Ref_;// ADDED 
                dimensionedScalar C2Ref_;// ADDED 
//*************END ADDITIONS TO SPLRRIP**********************      
 
public: 
    //- Runtime type information 
    TypeName("SPLRRIP"); 
 
    // Constructors 
        //- Construct from components 
        SPLRRIP 
        ( 
            const volVectorField& U, 
            const surfaceScalarField& phi, 
            transportModel& transport, 
            const word& turbulenceModelName = turbulenceModel::typeName, 
            const word& modelName = typeName 
        ); 
 
    //- Destructor 
    virtual ~SPLRRIP() 
    {} 
 
    // Member Functions 
 
        //- Return the turbulence viscosity 
        virtual tmp<volScalarField> nut() const 
        { 
            return nut_; 
        } 
 
        //- Return the effective diffusivity for R 
        tmp<volScalarField> DREff() const 
        { 
            return tmp<volScalarField> 
            ( 
                new volScalarField("DREff", nut_ + nu()) 
            ); 
        } 
 
        //- Return the effective diffusivity for epsilon 
        tmp<volScalarField> DepsilonEff() const 
        { 
            return tmp<volScalarField> 
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            ( 
                new volScalarField("DepsilonEff", nut_/sigmaEps_ + nu()) 
            ); 
        } 
 
        //- Return the turbulence kinetic energy 
        virtual tmp<volScalarField> k() const 
        { 
            return k_; 
        } 
 
        //- Return the turbulence kinetic energy dissipation rate 
        virtual tmp<volScalarField> epsilon() const 
        { 
            return epsilon_; 
        } 
 
        //- Return the Reynolds stress tensor 
        virtual tmp<volSymmTensorField> R() const 
        { 
            return R_; 
        } 
 
        //- Return the effective stress tensor including the laminar stress 
        virtual tmp<volSymmTensorField> devReff() const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const; 
 
        //- Return the source term for the momentum equation 
        virtual tmp<fvVectorMatrix> divDevRhoReff 
        ( 
            const volScalarField& rho, 
            volVectorField& U 
        ) const; 
 
//**************START ADDITIONS*************************** 
        //- Return term for Dissipation equation (destruction term on line 352) 
        tmp<volSymmTensorField> DissDest() const 
        { 
            return tmp<volSymmTensorField> 
            ( 
                new volSymmTensorField("DissDest", Ceps_*(k_/epsilon_)*R_) 
            ); 
        } 
 
        //- Return term for Daly & Harlow Term in R equation (line 395) 
        tmp<volSymmTensorField> DandH() const 
        { 
            return tmp<volSymmTensorField> 
            ( 
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                new volSymmTensorField("DandH", Cs_*(k_/epsilon_)*R_) 
            ); 
        } 
//*******************END ADDITIONS************************ 
 
        //- Solve the turbulence equations and correct the turbulence viscosity 
        virtual void correct(); 
 
        //- Read RASProperties dictionary 
        virtual bool read(); 
}; 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * // 
} // End namespace RASModels 
} // End namespace incompressible 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
#endif 
// **************************************************** // 
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C. OpenFOAM Case Files (located in system) 
controlDict 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.2.0                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      controlDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
application     simpleFoam; 
startFrom       latestTime; 
startTime       0; 
stopAt          endTime; 
endTime         1; 
deltaT          .00001; 
writeControl    timeStep; 
writeInterval   10000; 
purgeWrite      0; 
writeFormat     ascii; 
writePrecision  6; 
writeCompression off; 
timeFormat      general; 
timePrecision   6; 
runTimeModifiable true; 
libs ("libmyIncompressibleRASModels.so"); 
// ************************************************************************* // 
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fvSchemes 

/*--------------------------------*- C++ -*--------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.1.1                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*-------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** // 
 
ddtSchemes 
{ 
    default         steadyState; 
} 
 
gradSchemes 
{ 
    default         Gauss linear; 
    grad(p)         Gauss linear; 
    grad(U)         Gauss linear; 
} 
 
divSchemes 
{ 
    default         none; 
    div(phi,U)      bounded Gauss linearUpwind grad(U); 
    div(phi,epsilon)  bounded Gauss upwind; 
    div(phi,omega)  bounded Gauss upwind; 
    div(phi,k)      bounded Gauss upwind; 
    div(phi,R)      bounded Gauss upwind; 
    div(R)          Gauss linear; 
    div((nuEff*dev(T(grad(U))))) Gauss linear; 
    div(DomegaEff,omega) bounded Gauss upwind; 
        
} 
 
laplacianSchemes 
{ 
    default         none; 
    laplacian(nuEff,U) Gauss linear corrected; 
    laplacian((1|A(U)),p) Gauss linear corrected; 
    laplacian(DkEff,k) Gauss linear corrected; 
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    laplacian(DepsilonEff,epsilon) Gauss linear corrected; 
    laplacian(DREff,R) Gauss linear corrected; 
    laplacian(DnuTildaEff,nuTilda) Gauss linear corrected; 
    laplacian(DomegaEff,omega) Gauss linear corrected; 
    laplacian(phi,omega) Gauss linear corrected; 
} 
 
interpolationSchemes 
{ 
    default         linear; 
    interpolate(U)  linear; 
} 
 
snGradSchemes 
{ 
    default         corrected; 
} 
 
fluxRequired 
{ 
    default         no; 
    p               ; 
} 
//*********************************************************** // 
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fvSolution 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.1.1                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "system"; 
    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
solvers 
{ 
    p 
    { 
        solver          PCG; 
        preconditioner  FDIC; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    U 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    k 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    epsilon 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    R 
    { 
        solver          PBiCG; 
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        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    nuTilda 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
    omega 
    { 
        solver          PBiCG; 
        preconditioner  DILU; 
        tolerance       1e-16; 
        relTol          0; 
    } 
} 
 
SIMPLE 
{ 
    nNonOrthogonalCorrectors 0; 
} 
relaxationFactors 
{ 
    fields 
    { 
        p               0.3; 
    } 
    equations 
    { 
        U               0.7; 
        k               0.7; 
        epsilon         0.7; 
        R               0.7; 
        nuTilda         0.7; 
        omega  0.7; 
    } 
} 
//************************************************************ // 
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