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M.S., Mechanical Engineering, University of New Mexico, 2014

Abstract

This thesis presents an experimental study of droplet acceleration in a shock-driven

two-phase flow. The study serves to identify the characteristics of the boundary layer

growth behind a normal moving shock wave in a shock tunnel. Liquid propylene glycol

droplets are pre-mixed with air, and slowly injected into the test section of the shock

tunnel. Two test sections are evaluated during the course of this study. Each test

section is constructed of square, transparent polycarbonate with internal cross section

of 7.62 cm. The first test section contains features on the upper and lower surfaces

of the test section, consistent with the holes used for the injection system during

earlier Richtmyer-Meshkov Instability studies. The second test section has no surface

features interfering with the flow, with smooth interfaces. The quiescent air seeded

with propylene glycol droplets (diameter 0.5-3µm) is impulsively accelerated with a

planar shock wave. A cross-section of the flow is illuminated with multiple pulses

from Nd:YAG lasers, producing time-resolved visualizations of the seeded volume.

The illuminated images are analyzed to quantify droplet velocity and vorticity from
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time of shock passage to 400µs after shock. Velocity of the shock wave varies between

Mach number 1.67 and 2.0. Based on Particle Image Velocimetry interrogation and

analysis, a comparison is made between the velocity and vorticity fields in these two

test sections..
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Chapter 1

Introduction

1.1 Background of Shock Waves

A traveling wave is caused by a disturbance in a medium which propagates through

its neighboring molecules [1]. The strength of the wave is defined by the amplitude

of the disturbance. Strong waves with large amplitudes create large changes in the

properties of the elastic medium the wave travels through. If the change in properties

results in supersonic flow, the wave is categorized as a shock wave [1]. A shock

wave is defined by John and Keith [2] as an infinitesimally thin region in a flow with

discontinuous changes in fluid properties. The thickness of a shock wave is on the

order of a mean molecular free path, roughly 10−5cm. In this region, a large change in

entropy occurs, largely due to the irreversibilities of friction between molecules of the

medium [1]. The discontinuous, near immediate shift of a shock wave cause significant

changes in fluid properties, i.e. pressure, velocity, temperature, flow direction, etc.

[1, 2]. The instantaneous change in properties results from a transfer of kinetic and/or

internal energy.
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Chapter 1. Introduction

The orientation and motion of shock waves varies depending on the conditions

of the upstream and downstream flow. Shock waves can occur both as traveling

waves, and as standing waves. If the shock wave is not confined to a given space in

the medium, it will transfer energy from one particle to another and move to areas of

lower energy density [1, 2]. This pattern continues until the shock wave encounters

an area of equal energy, commonly from another shock wave or a boundary with a

different medium. This type of motion is a traveling wave. Conversely, if the energy

of the medium upstream and downstream of the shock wave are equal, the shock wave

remains stationary and is referred to as a standing wave [1].

Figure 1.1: A stationary shock wave forms on the wing of an aircraft, causing large
flow deceleration and subsequent vapor condensation [3].

Typically for traveling waves, shock waves travel unidirectionally, from their

source, either radially (in the case of high energy detonation caused by explosives

[4]) or longitudinally if confined by an inelastic medium (as seen in shock tubes and

supersonic wind tunnels [2]). Shock waves are not limited to a particular direction,

and occur in many forms. Normal shock waves are defined as a shock wave acting

perpendicular to the flow of the medium [1, 2]. However, if a shock wave is confronted

by an inelastic medium or obstruction, the direction of the shock wave will reflect

2



Chapter 1. Introduction

and change. Shock waves which act at an angle to the flow of the medium are called

oblique shocks [1].

Austrian physicist and philosopher Ernst Mach is credited as being the first

scientist to recognize and document the reflection phenomena of shock waves, with

documentation as early as 1878 [5]. Mach recorded two types of shock wave reflection

configurations. His initial observation, a two shock wave configuration, is commonly

called a regular reflection. Mach‘s second observation, a three-wave configuration,

bears his name and is referred to as a Mach Reflection [5]. The focus of this thesis

will be on singular, traveling normal shock waves.

Shock waves are of particular interest in a variety of fields. Such studies in-

clude, but are not limited to , detonation phenomena [4], transonic, supersonic and

hypersonic vehicles and objects [6, 7], impulsively accelerated/decelerated flows [8],

combustion characterization [4], and hypersonic air inlets [9].

1.2 Background on Boundary Layers

When considering real, practical fluid flow, fluid stress and viscosity must be given

particular attention. Early attempts at defining fluid motion were first made by Swiss

mathematician and physicist Leonhard Euler in 1757 [10]. In his article, General

Principles of Fluid Motion, Euler published the general form of the continuity and

momentum equations of fluid motion. These early equations are referred to today as

the Euler inviscid equations of motion, as they do not define the transfer of stress

between fluid particles. This simplified approach, although novel and groundbreaking

for its time, could not determine cases of compressible, viscous fluid motion [10].

Viscosity plays an integral function in fluid motion and the phenomena asso-

3



Chapter 1. Introduction

ciated with it, particularly at the interface conditions of a fluid-solid boundary. On a

quantum level, every particle or molecule of a fluid flow will have numerous collisions

with other particles/molecules and with the solid boundary. These collisions will

cause exchanges in kinetic and thermal energy, either from one particle to another,

or from the particle to the surface. At the level of the surface, it is assumed that a

fluid loses all of its momentum (e.g. velocity→0) in the interaction between the two,

and that the fluid will exchange all thermal energy such that the temperature of the

fluid and the surface will be the same [11].

The assumption that the velocity of the fluid relative to the surface is zero is

often called the no-slip condition [11, 1, 2, 10]. This assumption defines the surface

as a sink for fluid momentum. Far from the surface, the fluid velocity is considered

free-stream, where the velocity is greatest. The transition area from zero velocity at

the surface to 99 percent of free stream velocity is defined as δ, the boundary layer

height [11].

Figure 1.2: Boundary-layer profile of a fluid flow over a flat plate. The image also
depicts the regions of viscous and inviscid flow [12].

In the 19th Century, French physicist Claude-Louis Navier and Irish physicist

Sir George Stokes continued with Euler‘s early approximation by applying Newtons

4



Chapter 1. Introduction

second law of physics to fluid motion, along with the assumption that fluid stress

is the summation of a diffusive viscous term and a pressure term [10]. These ad-

ditions complemented Euler‘s early work, and allowed for the direct calculation of

compressible and viscous fluid motion. These complete solutions are known as the

Navier-Stokes equations [10].

Although the Navier-Stokes equations completely defined fluid motion, they

were mostly left unused for half a century. These equations are nonlinear, partial

differential equations, which are difficult to compute even by modern standards. For

this reason, early application of the Navier-Stokes equations led to great simplifi-

cations to ease computation, which practically reversed them to the initial inviscid

Euler equations. With simplification of the Navier-Stokes equations, the order of the

system is reduced from second to first order. When solving the first order system,

only one boundary condition could be imposed either the boundary layer to solid

surface interface, where fluid velocity with respect to the surface velocity are equal, or

the boundary layer to free stream velocity, which must also be equal. Neglecting the

no-slip condition led to zero wall shear stress, and the Eulerian inviscid flow analysis

[10].

In 1904, German engineer Ludwig Prandtl reasoned that flows of high Reynolds

number would result in a thin region of fluid flow near the surface where viscous effects

would act. This region of high variation between free stream and zero relative velocity

would produce large gradients and significant shear forces, due to Stokes relation of

shear stress to fluid viscosity and velocity gradient [11, 10]. Although the region

was significantly smaller than the volume of total flow, it could not be ignored since

all transfer of heat and momentum occurs within the region. Prandtl reasoned that

flow outside the boundary layer area behaved as an inviscid fluid. To attain this

numerically, Prandtl separated the two regions for computational purposes. Since
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Chapter 1. Introduction

the outer region behaved without viscous effects, Prandtl used the inviscid Euler

equations. The inner boundary layer region followed the Navier-Stokes equations

with simplifications assumed. Prandtl is credited with the modern interpretation of

the boundary layer concept for his computational work with the Euler and Navier-

Stokes equations [10].

1.3 Governing Equations

1.3.1 Normal Shock Waves

The behavior and characteristics of a standing shock wave are defined from Zucker

and Biblarz [1]. Starting with the equation of continuity and substituting density for

the ideal gas equation of state as well as the velocity yields:

p1M1√
T1

=
p2M2√
T2

(1.1)

Following a similar method, an energy (enthalpy) balance can be created. However,

since it is assumed that gas at relatively low pressure and high temperature behaves

as an ideal gas, enthalpy is simplified to be a function of temperature. Treating the

specific heat of air to be constant under these conditions yields:

T1

(
1 +

γ − 1

2
M2

1

)
= T2

(
1 +

γ − 1

2
M2

2

)
(1.2)

Substituting density and velocity of a perfect gas into the momentum equation for

an arbitrary fluid yields:

P1

(
1 + γM2

1

)
= P2

(
1 + γM2

2

)
(1.3)

Where p, M, T are the state variables of pressure, Mach number and Temperature,

and γ is the ideal specific heat ratio. It should be noted that the above equations were

6



Chapter 1. Introduction

derived for standing normal waves. The extent of this study will focus on traveling

normal waves. To this end, a uniform velocity must be superimposed to use the steady

flow equations. Since these equations are used to evaluate the thermodynamic state

of the medium before and after a shock, they are not concerned with the transience

associated with the transfer of energy from the shock. The velocity superposition does

not affect the static thermodynamic state, but does alter the stagnation pressure,

which will not be considered in this study.

Manipulation of equations (1.1-1.3) gives the pressure ratio in terms of the

specific heat and the Mach Numbers before and after shock passage:

p1
p2

=
1 + γM2

2

1 + γM2
1

(1.4)

Further substitution of equations (1.1-1.3) into (1.4) yields the post-shock Mach Num-

ber in terms of the preshock Mach number and the specific heat ratio:

M2
2 =

M2
1 +

2

γ − 1
2γ

γ − 1
M2

1 − 1
(1.5)

Equation (1.5) above is solely dependent on the pre-shock Mach Number and the

specific heat ratio. Using this relationship and substituting it into equation (1.4)

disassociates the dependence of the pressure ratio on M2.

p2
p1

=
2γ

γ + 1
M2

1 −
γ − 1

γ + 1
(1.6)

Similarly, combining the previous two equations forms the density ratio, which is also

dependent on M1 and γ:

ρ2
ρ1

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

(1.7)

To reiterate, the equations derived above are applicable only to perfect (ideal) gases.

Although the pressure ratio and temperature range of the experiments is such that

7



Chapter 1. Introduction

the quiescent air undergoing shock acceleration can be considered a perfect gas, the

addition of liquid glycol droplets as tracer particles cannot be considered ideal.

As the glycol particles transition from near-zero velocity suspension in the sta-

tionary air to an accelerated state after shock passage, the particles are large and dense

enough to affect the flow characteristics of the air around them, and subsequently,

the boundary layer growth behind the shock wave. Elghobashi studied this particular

transport phenomena, the dispersion of particles in turbulent shear flows [13]. The

characterization of the phenomena requires the understanding of two-way nonlinear

coupling. In one respect, the particles are reacting to the turbulent fluid flow around

them. On the other hand, the particle acceleration requires enough energy from the

flow, such that the particle motion affects the frequency of the turbulence [13].

Elghobashi quantified this coupling motion through computational dynamic

simulation [13]. His results showed that the coupling, and thus the effect of the

seeded tracer particles on a fluid flow, is directly proportional to the size and mass of

the particles, and the volume fraction the particles encompass (also referred to as the

state of suspension). Dilute suspensions define a low, or diluted, volume fraction of the

particle concentration, while dense suspensions define a flow with heavily concentrated

particles. To describe this dependence, Elghobashi created varying states of coupling.

One-way coupling defines the state where the particle motion is dependent on the

turbulence of the fluid flow, but with little to no effect of the particles disturbing

the turbulent structures. Two-way coupling denotes the relationship where particle

concentration tends to affect the fluid flow. In four-way coupling, the volume fraction

has reached a state of dense suspension, enough to cause particle-particle collisions

[13]. The effects of particle concentration on the experiments conducted in this study

will be evaluated further in Chapter 4.

8



Chapter 1. Introduction

1.3.2 Boundary Layers

As mentioned previously in Section 1.1, Ludwig Prandtl is recognized for his analytical

work on defining the governing equations for a boundary layer [10]. Starting with

the two dimensional, incompressible Navier-Stokes equations, and introducing scaled

variables U =
u

U∞
, V =

v

V∞
, X =

x

L
, Y =

y

L
, P =

p

ρrefU2
∞

, and µ =
u

µref
:

∂U

∂X
+
∂V

∂Y
= 0 (1.8)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

1

Re

(
∂2U

∂X2
+
∂2U

∂Y 2

)
(1.9)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

1

Re

(
∂2V

∂X2
+
∂2V

∂Y 2

)
(1.10)

Where

Re = ρrefU∞
L

µref
(1.11)

For large velocities in the U direction, the Reynolds number increases, thus driving

the right hand terms to become negligible. Consequently, the viscosity disappears

from the system (resulting in zero momentum and thermal energy transfer to the

boundary), and the system order is reduced by one. The result of the solution to this

oversimplification is a singular required boundary condition, rather than two. The

no-slip condition in the boundary layer and the continuity between the boundary

layer and the free stream flow cannot be held simultaneously.

Prandtl evaluated the system of equations as the highest order derivative ap-

proaches zero by introducing a second order model problem, similar to a spring-mass-

damper system.

m
d2x

dt2
+ a

dx

dt
+ cx = 0 (1.12)

with exact solution

x(t) = C1e
λ1t + C2e

λ2t (1.13)

9



Chapter 1. Introduction

where λ1,2 are the eigenvalues of the solution and have discrete solutions of

λ1,2 =
−a±

√
a24mc

2m
(1.14)

As the m coefficient approaches zero, the solution of x(t) becomes

x(t) = C2e
−
c

a
t

(1.15)

Similarly, if a new independent variable ζ = t/m is introduced to the spring-mass

damper system, the equation becomes

d2x

dζ2
+ a

dx

dζ
+mcx = 0 (1.16)

By introducing ζ, the transformation effectively stretches the thin boundary layer

region near t = 0, where rapid changes in x(t) can occur for relatively small values of

m. As m approaches zero, the system remains a second order system, enabling the

use of two boundary conditions. The solution to the two regions of the flow are:

xinner(t) =
m

a

(
1− e

−
a

m
t

)
xouter(t) =

m

a
e
−
c

a
t

(1.17)

Following the same variable stretching to the normal coordinate Y and velocity V

to the Navier Stokes Equation, and imposing the no-slip and continuity boundary

conditions on the scaled normal coordinate (y∗(0) = 0, y∗(∞) ⇒ ∞). The resulting

Navier-Stokes equations for a boundary layer are:

∂u

∂x
+
∂v

∂y
= 0 (1.18)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(1.19)

∂p

∂y
≈ 0 (1.20)

Note the significance of the third equation, which states that the pressure differential

in the normal direction to flow is zero. This complements Prandtl‘s assumption, that

for a boundary layer the pressure across the boundary and into the fully developed

flow is constant [10].
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1.4 Shock Wave-Boundary Layer Interaction

Given the nature of this study, the effect of a shock wave on a boundary layer should

be given considerable thought. A shock wave-boundary layer interaction (SBLI) can

occur on internal and external flows, with a vast variety of structure complexity. At

the instant of interaction, the boundary layer is subject to an instantaneous step in

entropy from the shock wave, introducing an adverse pressure gradient. Initially, the

higher pressure can compress the boundary layer, causing it to shrink. Afterward,

however, the boundary layer profile becomes distorted, causing it to become less full.

Ultimately, the boundary layer expands, influencing the neighboring inviscid flow

to the point of complete flow separation. Alternatively, the shock must react to a

multilayered viscous and inviscid flow structure [7].

Shock wave-boundary layer interactions occur when a shock wave converges

with a boundary layer. In a transonic flow and larger, such interactions are common-

place. As a result, SBLIs are a principal topic of research in a multitude of areas,

experimentally and computationally. Common areas of SBLI research are transonic,

supersonic and hypersonic wings and air inlets, fuel-air mixing in scramjet combus-

tion, gas-turbine engines, etc.. Weiss and Oliver [9], and Chyu, Rimlinger and Shih

[14] have performed studies on shock wave-boundary layer interaction, specifically on

controlling the onset of flow separation through the use of bleeds and normal slot

suction. The physical characteristics of the bleed and normal slot mimic the experi-

mental setup used in this study, which will be discussed in Chapter 3. Both studies

proved that the calculated use of bleeds and normal suction slots can reduce the onset

of flow separation, enough to cause the collapse of an oblique shock train into a single

normal shock [9] or to maintain a uniform boundary layer after shock passage [14].

However useful SBLIs are in a wide array of studies, they will not be useful for
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this particular study. The defining characteristic of SBLI research is the onset of a

shock wave to a pre-existing boundary layer. A pre-existing boundary layer requires

an initial flow to cause a no-slip condition near the fluid-solid border. For this study,

a volume of air premixed with glycol droplets as tracer particles is initially at rest,

then accelerated from a normal shock passage. Since the volume is initially at rest,

there is no velocity gradient, and therefore no initial boundary layer. The focus of

this study will be the growth of the boundary layer after time of shock passage.

1.5 Goals of Study

The objective of the work presented in this study is to quantitatively assess the bound-

ary layer growth rate behind a traveling normal shock. Recent work by Anderson [15],

White [16], and Olmstead et al. [17] in the study of Richtmyer-Meshkov Instability

growth of a seeded dense gas column interface with normal and oblique traveling

shock waves has illuminated certain flow behavior within the boundary layer at the

upper and lower boundaries of the shock tube. Although some theories exist which

could explain the flow behavior, no quantitative experiments have been conducted

as of yet to fully ascertain the source for these behaviors. It is the intention of this

study to conclusively provide the reason for this phenomenon.
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Early Work on Shock

Wave-Boundary Layer Interaction

The study of boundary layer growth behind a shock wave has been limited to normal

shock waves occuring within a shock tube. Early work in this area began in the 1950s,

and has expanded over the past 60 years. The focus of early studies was primarily lim-

ited to experimental investigations. However, the advent of computers and decreased

computation time since this period has generated more numerical investigations into

shock wave boundary layer interaction. The experiments explained in this thesis have

been performed in a shock tube for an initially unperturbed, quiescent volume of air.

2.1 Boundary Layer growth behind Traveling

Normal Shock Wave

Following World War II, the topic of supersonic fluid interactions became of particular

interest. First, a supersonic shock following an atomic explosion and the effects
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of the shock were of particular interest. Second, the advent of high speed rockets

following the war necessitated a knowledge of supersonic aerodynamics, in particular,

supersonic boundary layers. A pioneer in this field of study was Harold Mirels, who

conducted a majority of the studies reviewed herein.

In 1955, Mirels produced his early analytical work [18] on the growth of a

boundary layer behind a shock wave at the Lewis Flight Propulsion Laboratory in

Ohio for the National Advisory Committee for Aeronautics (NACA). Early publi-

cations provided equations for the growth of laminar and turbulent boundary layers

behind a traveling shock wave. Mirels assumed the shock wave traveled with constant

velocity into a stationary fluid. For the turbulent boundary layer, integral methods

were used by extending empirical data obtained for a semi-infinite flat plate. For

simplicity, a 1
7

power law was used for the velocity profile relative to the wall [18, 19].

Mirels’s equations can be found in Appendices A and B. To use Mirels’s equations

for turbulent flows, an expression for the skin friction must be imposed. Mirels used

the Blasius relation, which is defined for incompressible flow. The Blasius relation

was extended to compressible flow using a mean temperature Tm to define the aver-

age fluid properties, shown in Appendix B [18, 19]. Since Mirels published NACA

TN-3712, many studies have been conducted which validate his general approach to

laminar and turbulent boundary layers [20, 21, 22, 23].

In 1957, Mirels published another document on boundary layers, NACA TN

1333 [24]. In the report, Mirels explains the 4 regions of a shock tube during an

experiment in stationary air, and the effect of the boundary layer on attenuation of

the traveling shock. At the onset of an experiment, when the driver gas is released

(typically via diaphragm rupture) into the stationary driven gas, a shock wave prop-

agates into region 1, while an expansion wave propagates into region 4 [24]. Region

1 consists of the stationary air, before acceleration due to the shock front, and is
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separated from region 2 by the normal shock wave. Region 2 is the accelerated air

behind the shock front, where a boundary layer forms due to viscous effects at the

walls of the shock tube. Region 2 is separated from region 3 by the ’contact surface’,

which is the contact between the driven gas (air) and the driver gas (in Mirels’ experi-

ments, compressed air). Region 3 consists of the driver gas (compressed air) traveling

downstream behind the contact surface and accelerated air. Region 3 travels slower

than the normal shock wave, and slower than the accelerated air in region 2. For this

reason, the boundary layer height in region 3 is smaller than the boundary layer in

region 2. Region 4 is also compressed air, but has not started to expand downstream

and therefore has no velocity. Regions 3 and 4 are separated by expansion waves.

Mirels derived equations to express the generation of waves by unsteady boundary

layer action, which occur as either compression or expansion waves normal to the ve-

locity profile. In region 2, the boundary layer growth induces expansion waves, which

attenuate the initial normal shock, while the boundary layer in region 3 induces com-

pression waves, which accelerate the shock. Mirels conducted experiments in a 1
6

by

1
8

foot rectangular cross section high-pressure air-air shock tube, and confirmed his

analytical theory [24].

In 1964, Mirels provided an analytical investigation of test time limitation

due to premature arrival of contact surface for wholly-turbulent boundary layers [25].

Contrary to his previous work, Mirels argued that the traveling shock wave in a shock

tube does not travel at constant velocity. Rather, he claimed that viscous effects cause

the shock wave to slow and the contact surface to accelerate, resulting in reduction of

separation distance between the interfaces of regions 1-2 and 2-3. At the limit of this

reduction of separation distance, contact surface and shock move at the same velocity.

Mirels numerically quantified that the limiting separation distance is met when mass

flow entering the shock equals the boundary layer mass flow moving past the contact

surface. Mirels concluded that the separating distance of turbulent boundary layers
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is less sensitive to variations in diameter and pressure than laminar cases [25].

Using Mirels’ laminar [26] and turbulent [27] approximations for boundary

layer growth, the following graphs were made.

Figure 2.1: The image on the left shows the laminar growth profile according to
Mirels. On the right is the turbulent growth profile according to Mirels.

For good measure, the Reynolds number was also plotted for Mach numbers

1.67 and 2.0 vs time over a semi-infinite plate. As the shock moves downstream, the

length of the plate ’grows’, causing a change in the characteristic length, and thus

increasing the Reynolds number linearly.
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Figure 2.2: Reynolds Number vs Time for flow over semi-infinite flat plate

In 1977, Raymond Brun et al. [8] conducted experiments to characterize the

transition from laminar to turbulent flow in a shock tube wall boundary layer. Em-

pirical measurements were made with 5 thin film platinum gauges deposited on glass

and flush mounted at the wall surface. From the gauges, wall temperature and corre-

sponding heat flux were measured and deduced. The variation in the gauge resistance

with a constant current source led to oscilloscope readings with clear indication of the

shock passage through the driven gas (argon), the transition of the boundary layer,

the contact surface of the driver gas (nitrogen, helium and hydrogen) and eventually

the reflected shock wave. It was determined that the stability regime is a function of

the shock Mach number, and the initial pressure. The measurements of Brun et al.

correspond to previous results of Mirels [25], where the boundary layer is stable for

values of the product of initial pressure and hydraulic diameter less than 0.5 in.cm

Hg. It was also determined that the creation of pertubations occur at consistent

time intervals, and that any perturbation is transported in the boundary layer with

a velocity nearly equal to that of the free stream [8].

In 1996, V.M. Boiko et al. [28] produced an experimental and theoretical

investigation of shock wave propagation into a two-phase region. Their research
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consisted of a controlled deposition of varying types of particles, (acrylic, 80± 300µ m,

ρ =1.2g/cm3; bronze, 80± 130µ m, ρ =8.6g/cm3), with varying deposition densities

(0.2% and 3%) and shock velocities (Ma = 1.5 - 4.5) [28]. Particle deposition was

carried out by two methods. First, an electromagnetic propulsion device on the lower

wall of the shock tube measurement section accelerated the particles upwards to a

required height, whereupon the passing shock front would pass through the particles

at a precise time. Second, a vibrating grid on the upper lid of the measurement

section would create a uniform cascading vertical flow of free falling particles over the

cross section. Visualization was performed by multiframe shadow visualization and

scattered laser light methods. Results indicated that particles become separated by

size following shock acceleration due to faster acceleration of smaller particles than

larger particles. Particle acceleration also differed by a factor of 2 from concentrations

varying between 0.1% and 1%. The wave structure of the reflected shocks of each

particle overlap more frequently for higher concentrations of particle clouds, and form

a collective leading shock. This realization concurs with the work of Elghobashi et al.

[13], and his description of two-way and four-way coupling. Boiko et al. [28] concluded

that a compression wave arises in the cloud of particles due to the deceleration of the

gas, and the compression wave is transformed into a shock wave which moves toward

the gas flow. This shock wave leaves the cloud of particles, accelerating the gas flow

[28].

In 2003, Petersen and Hanson [19] revisited Mirels’ original analytical work [18]

on the boundary layer growth behind a normal shock. Petersen and Hanson used the

same boundary layer equations as Mirels proposed in 1955, but did not complete the

model with the Blasius wall friction expression. Since the Blasius friction expression

was originally for incompressible flow and then expanded to include compressible flow

by using a mean temperature to define average fluid properties, the Spalding Chi

and Van Driest II skin friction correlations were used for comparison. For turbulent
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flows, the Blasius skin friction correlation is much smaller smaller (50-100%) than

either the Van Driest II or Spalding Chi correlations. The Spalding Chi and Van

Driest II converge for highly turbulent flows (Re = 108), with the Spalding-Chi skin

friction being smaller for laminar flows. The new model for boundary layer growth is

nearly identical for low pressure (P = 1atm), but varies by 30% and 66% for 50atm

and 500atm, respectively. The new model is particularly useful in high pressure

shock tubes where larger Reynolds numbers lead to early boundary-layer transition

to turbulence. Overall, it was concluded that nonidealities caused by viscous effects

are expected to be greater in high-pressure shock tubes [19].

In 2005, Suzuki et al. [29] conducted shock tube experiments to clarify the

mechanism responsible for dust entrainment behind a planar shock wave. Their ex-

periments used pressurized air to inject a single particle (0.3-5.57mm) into the test

section before diaphragm rupture. The planar shock wave reached the particle at the

apogee of particle flight (vy = 0), while the particle was positioned in the center of the

shock tube. Drag Coefficient measurements of the accelerating spherical particle were

deduced from mean velocity and acceleration. Suzuki et al. also conducted a second

experiment where the particle was placed at rest on the bottom of the test section,

and the test section surface roughness was varied [29]. Translational velocity and

rotational speeds of the second experiment were measured to quantify mechanisms

of entrainment. Suzuki et al. found that the drag coefficients of the particles were

roughly 20% higher than those derived from standard drag curve, and that floor con-

ditions affect linear velocity and rotational speed of particles. It was concluded that

particle rotation is not an effective mechanism for particle lift-up and entrainment

in a passing flow. Rather, it was speculated that the upward forces on particles are

due to shock reflections on floor, with higher surface roughness causing more oblique

shock reflections [29].
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In 2012, Wagner et al. [30] at Sandia National Laboratories reassessed the

historical drag coefficient data for spherical particles in shock-induced flows from a

traveling normal shock wave, similar to the work previously mentioned by Suzuki et

al. in 2005 [29]. Their study tracked the trajectories of 1-mm spheres at varying

Mach numbers, specifically Ma=1.68, 1.93, and 2.04 through a Schlieren imaging

system and particle tracking velocimetry (PTV). Wall boundary layer growth and

particle-particle interactions were eliminated through their particle injection system,

which utilized a linear motor and push rods to precisely deposit a limited number

of 1mm spheres into the test section. The planar shock wave reached the particles

as they fell due to gravity through the test section, with careful timing to ensure

the particle(s) remained outside the wall boundary layer. Their research confirmed

the work of Suzuki et al., where drag increases with increased Mach number, and

also exceeded values predicted by incompressible drag models. Compressible drag

models of Loth [31] and Parmar et al. [32] coincide very closely to experimental

results of Wagner et al.. The results of Wagner et al. indicate unsteadiness should

not be expected to contribute to drag increase over long time scales of experiments,

rather their observations suggest elevated particle drag coefficients are quasi-steady

phenomena attributed to increased compressibility rather than true flow unsteadiness

[30].

2.2 Post Shock Boundary Layer growth of steady

fluid flows

Although this particular thesis does not focus on steady (constant) fluid flows, much

information can be derived from their area of study, particularly in the area of reflected

shock wave interaction with a boundary layer.

20



Chapter 2. Early Work on Shock Wave-Boundary Layer Interaction

In 1995, Chyu et al. [14] conducted a numerical investigation of bleed ef-

fectiveness in controlling shock wave-boundary layer interaction on flat plate. The

numerical processes utilized in their study included fully compressible Navier-Stokes

equations closed by a Baldwin-Lomax model with solutions obtained by implicit finite

volume method on an overlapping grid. Particular attention was paid to the effects of

bleed-hole angle, the presence of upstream and downstream bleed holes, and pressure

ratio across bleed holes effects on the structure of a barrier shock, surface pressure

distribution, and bleed rate. Their computations included bleed holes, very similar

to the injection holes used in this thesis, with varying angles between 30◦ and 90◦

to flow. Their study found that the interaction of the passing normal shock and the

bleed holes caused two different types of barrier shocks; Prandtl-Meyer expansion

waves at the leading (upstream) edge of the bleed hole, and a reflected barrier shock

at the trailing (downstream) edge [14]. The presence of these two barrier shocks affect

the boundary layer growth, causing the fluid velocity after the bleed site to decrease

significantly, as shown in figure 2.3. This decrease in flow velocity causes a significant

increase in the boundary layer height.

Figure 2.3: The image on the left shows Chyu’s et al. [14] study on the development
of expansion waves and barrier shocks from the redirection of flow out of a bleed. The
image on the right shows the resulting Mach number contours from the redirection of
flow. Note the rapid growth of the boundary layer after the bleed slot in the image
on the right.
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In 2011, Weiss and Olivier [9] conducted experiments to quantify the behavior

of a shock train with a normal suction slot in a diverging half angle (1.5◦) shock

tube. The Reynolds numbers of the flow were varied; and the structure and pressure

recovery within the shock train was analyzed by means of Schlieren images and wall

pressure measurements with boundary layer measurements taken from a pitot probe.

Their results discovered when pressure in the suction slot is smaller or equal to the

static pressure of the incoming supersonic flow, the pressure gradient across the pri-

mary shock is sufficient to push some part of the near wall boundary layer through

the suction slot. Due to the suction stabilized primary shock foot, the back pressure

of the shock train can be increased until the shock train gradually changes into a

single normal shock. From further manipulation of the pressure in the suction slot,

the single normal shock could be moved up and downstream, resulting in a standing

normal shock at a desired location [9].

2.3 Previous Work at the University of

New Mexico

Since 2007, the University of New Mexico shock tube facility has studied fluid insta-

bilities induced by transonic and supersonic shock accelerated flows. In particular, the

focus at UNM has been on Richtmyer-Meshkov Instabilty (RMI), Kelvin-Helmholtz

Instability (KHI), and particle lag instability (PLI) from supersonic shock accelera-

tion. The research conducted in these areas has spurned some questions regarding

the results discovered, and it is the intention of this thesis to study and characterize

certain behaviors witnessed.

In 2011, White [16]conducted an experimental study on Richtmyer-Meshkov

instability due to an oblique interaction of a cylindrical gas column seeded with
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glycol droplets. A column of Sulfer Hexafluoride (SF6) seeded with glycol droplets

was injected into the test section of the UNM shock tube by means of an injection

hole through the test section. The gas flow was stabilized through a co-flow of air

around the column and the oblique shock interaction was created by inclining the

shock tube to 15◦, while the SF6 remained vertical. Experiments were conducted

with a shock Mach number of 1.67. Visualization was achieved by 532nm Nd:YAG

lasers, and image capture from an Apogee Alta U42 high performance cooled CCD

camera. Visualization of the accelerated gas column was conducted in the horizontal

and vertical plane,as shown in Figure 2.4. The study investigated the morphology of

the Richtmyer-Meshkov instability and particle lag instability, with attention to the

effect of the injection holes through the test section on instability growth [16].

Figure 2.4: PLIF images of a column of SF6 gas accelerated by an oblique shock over
time [16, 15]. As time after shock increases, the column accelerates to piston velocity,
and deforms in the process. The column velocity slows at the fluid-solid interfaces at
the upper and lower bounds of the time series images, shown by the curvature of the
column in these locations.

Figure 2.4 shows interesting features of the boundary layer. As expected,

the gas column accelerates in the streamwise direction following shock impact, with
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viscous effects slowing the acceleration at the upper and lower bounds of the test

section. It is assumed the areas near the upper and lower bounds where the column

has slowed is the boundary layer, where flow velocity is less than 99% of free stream

velocity. A boundary layer is to be expected in a flow such as this; however the

magnitude of the boundary layer is much higher than anticipated. According to

Mirels [18], the boundary layer height for early timings such as these should be near

1mm. For the 76.2mm test section used in these experiments, the boundary layer is

nearly 10mm, a full order of magnitude higher than Mirels predicted.

Also in 2011 at the University of New Mexico, Anderson [15] conducted an

experimental and numerical investigation of instabilities formed by the interaction of

a planar shock wave and a cylindrical column of SF6 gas seeded with glycol droplets.

The investigation followed the work of White [16], and was intended to draw conclu-

sions between experimental observations and numerical analysis. Numerical analy-

sis was performed using the Eulerian hydrodynamics code SHAMRC (Second-order

Hydrodynamic Automatic Mesh Refinement Code). The numerical results closely

coincided with those witnessed experimentally, shown in Figure 2.5 [15], although the

boundary layer height is much smaller than found experimentally.
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Figure 2.5: Computational modeling of a shock accelerated gas column from Ander-
son’s dissertation [15]. The column lags at the fluid-solid interface, consistent with
experimental analyses, although significantly less.

Anderson also questioned the impact of injection holes in the test section on

the flow at the wall boundaries [15]. Included in his numerical study was the planar

shock interaction with a gas column, but with the injection holes removed from the

model. As this is only possible to do numerically and maintain a perfect column of

gas, the experimental study cannot be reproduced.
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Figure 2.6: Computational modeling of a shock accelerated gas column performed
without the effects of the injection holes [15].

Shown in Figure 2.6, the top of the column remains nearly straight, with a

very small instability that forms at 175 µs. At the bottom of the shock tube, the

column bends in the opposite direction as observed in Figure 2.6 for the multi-phase

instability. Anderson postulated the bend is caused by the variation in the density

near the bottom of the column, a feature that is not present in the multi-phase case.

When the holes are included in the calculation, this variation in density cancels out

the deceleration caused by the locally lower shock pressure. The result is a column

that appears to have a both a backward and forward bend at later times [15].

In 2013 at the American Physical Society Division of Fluid Dynamics Annual

Meeting, Olmstead et al. [17] from the University of New Mexico presented on the

three-dimensional features of RMI caused by shock-driven mixing flow. Their research

increased the breadth of previous works of White [16] and Anderson [15] for a range

of an oblique shock wave Mach numbers (1.2 to 2.0) across a cylindrical column of

SF6 in air. Image capturing was performed using Planar Laser Induced Fluorescence

(PLIF) rather than visible laser exposure previously utilized. Images were obtained
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in multiple planes along and across the RMI-perturbed column for horizontal, 15◦

and 30◦ oblique shocks by inclining the shock tube while the gas column remained

vertical. The main subject of the investigation was the effect of the angle between the

cylinder and the shock front in the formation and evolution of the three-dimensional

features in the flow [17].

Figure 2.7: Olmstead et al. image of Oblique Shock Interaction with Gas Column
[17].

2.4 Motivation for Study

The intention of this thesis is to quantitatively analyze the boundary layer growth of a

multiphase flow (air and glycol droplets) in the UNM shock tube facility. The results

witnessed from the previously mentioned work [16, 15, 17] indicate the boundary layer

growth for the shock accelerated gas column is much higher than predicted by Mirels

[18, 25].

In this thesis, the boundary layer growth will be analyzed for a smooth test

section, devoid of the injection holes used for the RMI accelerated gas column studies,
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for Mach numbers 1.67 and 2.0 from time of shock passage to 400µs after shock. Flow

visualization will be performed by depositing glycol droplets inside the test section,

and exposing the test section with 2 532nm Nd:YAG double pulsed lasers. The test

section will then be removed, and replaced with the same test section used in the

accelerated gas column studies with the 90◦ injection holes at the upper and lower

surfaces. Camera placement will remain over the hole for all images.
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Experiment Setup

The experimental data presented in this thesis was gathered using the University of

New Mexico (UNM) shock tube facility. The facility was constructed in 2007-2009

with funding provided by the Defense Threat Reduction Agency (DTRA). Since com-

pletion, the facility has continued to be funded by DTRA, the National Nuclear Se-

curity Administration (NNSA) and National Science Foundation (NSF). The UNM

shock tube facility (aka laboratory) has been used to gather experimental data to

better understand fluid dynamic instabilities and phenomena, including but not lim-

ited to Kelvin-Helmholtz Instability (KHI), Richtmyer-Meshkov Instability (RMI),

and boundary layer growth behind normal and oblique shock waves. This particu-

lar study focuses on the boundary layer growth behind a normal shock wave in the

absence and presence of a flow diverting feature. The following chapter provides a

synopsis of the facility and equipment used to gather the data used in this study.
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3.1 Shock Tube

The shock tube at the University of New Mexico consists of four modular sections: the

driver, the driven, the test, and the run-off sections, as shown in Fig. 3.1. The driver

section is separated from the driven section initially, allowing for the driver section to

be pressurized independent of the other three sections. During an experimental test,

or run, the separating diaphragm is ruptured, allowing the pressurized driver gas to

travel downstream through the driven, test, and runoff sections. During supersonic

flows, a shock wave forms in front of the driver gas within the driven section, which

propagates into the test section and causes the initial conditions in the test section

to be exposed to an adverse pressure gradient. This pressure gradient accelerates

the initial conditions, and is captured through high speed photography and light

exposure.

Figure 3.1: Schematic of UNM Shock Tube.

The mounting orientation of the shock tube assembly is inclinable, varying from

the horizontal position at 0 degrees to an inclined 45 degree position with infinite

settings in between. Historically, data gathered in the inclined position has been

at 15 and 30 degrees [15, 17], and not until recently has an incline of 45 degrees

been achievable. The purpose of inclining the test section is to produce oblique shock

waves with respect to the initial conditions. In the horizontal configuration, the shock

tube produces a normal shock wave. As the inclination increases, oblique shocks are

obtained. The entirety of the data gathered in this study was at the horizontal
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configuration, therefore the shock wave produced during an experiment is normal to

the initial conditions.

Figure 3.2: Image of UNM Shock Tube [15].

The driver, driven and run-off sections are all manufactured from 6061-T6

aluminum with modular mounting flanges used to attach the sections. The driver

section is 1.22m in total length, and is composed of circular 101.6mm outer diameter

extruded tube with 12.7mm wall thickness, for an inner diameter of 76.2mm. Its

robust design allows for a maximum pressure corresponding to a test experiment at a

velocity of Mach 4.0, however the tests conducting in this study were for Mach 1.67

and 2.0. The driver sections circular construction alleviates stress concentrations

during pressurization [16]. Typically, the pressurizing gas used during an experiment

is Helium, for its abundance and relative inexpense. Separating the driver and driven

sections is a polypropylene diaphragm. Diaphragms vary based on the desired Mach

number for the experiment, but are typically CG5000 and CG6000 transparencies

manufactured by 3M for Ma = 1.67 and Ma=2.0, respectively. Multiple transparencies
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are commonly layered to achieve higher pressures of Helium. Alternatively, paper

diaphragms can be used during testing for low Mach numbers, near 1.22 [15].

At the time of an experiment, the test tube operator first must install the

required diaphragm(s) between the driver and driven sections. The operator then

initiates pressurization of the driver section via an electric solenoid and switch con-

nected to the driver gas bottle, regulated to a pressure of 80psi and 180psi for Ma=

1.67 and Ma = 2.0, respectively. Driver section pressure is monitored with a pressure

transducer and digital readout. When the pressure reaches a certain limit, the oper-

ator ceases pressurization. Due to the polypropylene construction of the diaphragms,

stretching occurs at high pressure. The operator must allow the diaphragms to reach

equilibrium, and continue pressurization until the desired limit is met. This manual

operation of the pressurization process allows the operator to account for variations

in temperature and barometric pressure, as opposed to manufactured burst discs used

in other experiments which auto rupture based on stress [30]. Feedback is provided

to the operator after an experiment is conducted, based on the velocity of the shock

wave, given by diagnostic equipment discussed in a later section.

Once the desired pressure of the driver section is obtained and has stabilized,

the operator ruptures the diaphragms with a linearly actuated puncture head. Con-

centrically mounted inside the driver section is the controlled rupture mechanism. The

mechanism consists of a shaft mounted on linear bearings, which moves via a linear

electronic solenoid. Near the diaphragm end of the driver section, a puncture head,

Figure 3.3, is mounted on the shaft. The puncture head pierces the diaphragms, re-

moving the boundary between the driver and driven section, allowing the pressurized

helium to expand downstream and form a normal shock wave. Use of the puncture

head creates consistent diaphragm ruptures, shown in the data acquisition section of

this chapter.
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Figure 3.3: Image of the puncture head used to rupture diaphragms between the
driver and driven sections of the shock tube.

The driven section is constructed from 3.2m long, 101.6mm square tubing with

12.7mm wall thickness for a 76.2mm (3inch) square inner dimension. Although the

pressurized gas (and shock wave) escaping the driver section must transition from

a round to square cross section, the length of the driven section allows the flow

to normalize and form a planar normal shock wave. Atop the driven section are

two Omega pressure transducers separated at a distance of 2.59m. The pressure

transducers relay information to the operators control console for data logging, and

transmit a signal used for image collection. Following the flow downstream, the next

section attached to the driven section is the test section. For brevity sake, details

of the test sections used in this study are elaborated on in more detail in Section

3.2. Immediately following the test section is the runoff section, constructed of 6061-

T6 aluminum with same dimensions as the driven section, less overall length. The

length of the runoff section is 0.61m, and was designed to limit any interference from

reflected shock.
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3.2 Test Sections

Transparent polycarbonate test sections are used to visualize the initial conditions

within the shock tube. The initial conditions vary from each study conducted at

the UNM shock tube facility. With varying initial conditions, the test sections are

often varied accordingly. This particular thesis studies the differences in boundary

layer growth behind the normal shock for two test sections. The subsections below

elaborate on the uses for each test section, and how the test section geometries differ.

3.2.1 Injection Test Section

As mentioned in Section 2.3, the University of New Mexico has a long lineage of studies

conducted to better understand Richtmyer-Meshkov Instability (RMI). Particularly,

the works of Anderson [15], White [16], and Olmstead et al. [17] focus on RMI growth

and transition to turbulence of a cylindrical gas column. In their experiments, Sulfur

Hexafluoride(SF6) is bubbled through acetone in a graduated cylinder, causing the

SF6 to evaporate and transport minute acetone droplets to a 75L settling tank above

the test section. The multiphase initial conditions were injected into the test section

as a cylindrical column via a 6.35mm stainless steel tube within a 15.875mm plastic

tube. The concentric tube arrangement allows a co-flow of air around the column

of SF6 and acetone, preserving the laminar state of the column. The velocity of the

seeded gas column and co-flow of air is roughly 10cm/s [15], 3 orders of magnitude

less than the velocity of the shock wave experienced during the test.
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Figure 3.4: Schematic of the test section used by Anderson [15], White [16], and
Olmstead et al. [17], on the left, and a schematic of the test section used for the
studies in this thesis on the right.

During their tests, the seeded gas and co-flow of air must remain perfectly cylin-

drical before the shock wave imposes its pressure gradient on the initial conditions.

To meet this requirement, the initial conditions flow from the settling tank above the

test section, through a hole in the top of the test section, through the internal cross

section, and out through the bottom of the test section. This is achieved by drilling

two 15.875mm holes through the top and bottom of the test section. Discussed in

Sections 2.3 and 2.4, the boundary layer growth of the accelerated gas column appears

much larger than the anticipated values from Mirels [18, 25]. This thesis evaluates the

boundary layer growth specifically by utilizing particle image velocimetry (PIV) to

visualize the flow at the lower boundary of the test section for flows of Mach number

1.67 and 2.0. To directly measure the boundary layer growth seen in Anderson [15],

White [16], and Olmstead et al. [17], the same polycarbonate test section with the

injection holes for the gas column is evaluated.
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3.2.2 Baseline Test Section

The boundary layer growth phenomena witnessed in the work of Anderson [15], White

[16], and Olmstead et al. [17] is believed to be caused by the injection holes from the

seeded cylindrical gas column. As a baseline, a geometrically similar test section is

also used during this study to evaluate the boundary layer growth behind a shock,

with one distinguishing difference. The second test section used in this series of

experiments, see Fig 3.5, does not have the injection holes drilled through the test

section. By installing a test section without the holes, the flow has no source of

redirection.

Figure 3.5: Schematic of the baseline test section used for the studies in this thesis.

3.3 Particle Seeding

To visualize the behavior of the accelerated flow after shock passage, the quiescent air

is seeded with liquid glycol droplets acting as tracer particles. The size of the glycol

droplets vary between 0.5-3µm. Comparatively, the glycol droplets are much larger

than the acetone droplets used for visualization in the RMI studies, which causes

them to significantly lag behind the shock. This lag is documented in Chapter 4, as

is the volume fraction of the glycol particles.

Seeding is attained by a recreational fog (smoke) machine. Liquid glycol is
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deposited in the fog machine‘s internal reservoir. Operation of the device is managed

with a momentary switch, which injects the liquid glycol onto a heating element

within the machine. The glycol vaporizes, and leaves the machine as a fog, common

for holiday theatrics and disc jockeys.

Heating the glycol causes two issues. One, directly mixing the stationary air

with the heated glycol affects the state characteristics of the air, which is detrimental

to the experiment. Two, the heated droplets tend to be less dense than air. The

buoyancy of the heated glycol vapor causes the glycol to rise, also detrimental to the

experiment. The data acquisition and imaging is setup to gather an image close to

the lower boundary of the test section. Heated glycol rises out of the frame of the

image, resulting in zero exposure of the flow field within the test section. The glycol

vapor must be cooled before mixing with the air in the test section to mitigate the

buoyancy effects.

Figure 3.6: Heated glycol droplets are suspended in the test section and accelerated as
the shock wave travels downstream. Chilled glycol droplets fall out of suspension when
exposed to cooler atmospheric conditions underneath the injection hole, resulting in
a void of glycol seeds for visualization of the flow. The region of the passing shock
wave is outlined in blue.

Cooling and mixing of the glycol occurs in a 75-liter settling tank above the
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test section. Heated glycol vapor leaves the fog machine and is deposited into the

settling tank. The glycol stream is directed into a vessel filled with ice. The ice

cools the glycol, while a miniature computer fan fed by a 12V power source mixes

the chilled glycol with air inside the settling tank. Once the glycol is fully mixed and

chilled, it is plumbed through the downstream end of the runoff section, into the test

section, and deposited.

It is worth noting the glycol seeding process is not straight forward. As heating

caused issue with the glycol vapor rising, cooling causes a similar issue. Cooling the

glycol too much allows the glycol to condense beyond the vapor state, and become a

liquid within the test section. The liquid glycol clings to the sides of the transparent

polycarbonate test section and clouds the visibility of the camera through the test

section walls. The clouding effect can render experiments ineffectual if the test section

is not cleansed of deposited glycol.

There is also a key balance between too much and too little glycol seeding.

The DaVis software used to analyze the images prefers heavy, dense seeding of the

glycol for best visualization results of the particle image velocimetry (PIV), which is

discussed in greater length in Chapter 4. However, dense seeding leads to four-way

coupling, as discussed in Chapter 1 [13]. This four-way coupling has an negative effect

on the accelerated flow within the test section, causing the particles to unnaturally

alter the turbulent behavior of the boundary layer. Glycol seeding requires a keen eye

and steady hand for striking a balance between too much and too little, for optimal

flow visualization results.
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3.4 Data Acquisition

Data acquisition for the UNM shock tube facility is separated into three sections:

shock wave velocity measurement, test section illumination, and test section imaging.

Velocity measurement occurs in the driven section, when the normal shock wave

passes over two Omega pressure transducers. The pressure transducers relay data via

a National Instruments PXI-1002 board with a digital oscilloscope, and ultimately

to a computer for storage. A sample of the stored data is shown in Figure 3.7, a

readout of pressure vs. time. Post processing and analysis is performed on each of

these sample data records to obtain the shock velocity. The pressure transducers are

mounted atop the driven section and separated by a distance of 2.59m. Dividing this

distance by the time between the rise in pressure from the upstream and downstream

transducers yields the average velocity of the shock.

Figure 3.7: Example of data readout from pressure transducers 1 and 2. Pressure rise
in each transducer indicates shock passage. Time between pressure rise of transducers
1 and 2 is used to verify shock velocity.
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The downstream pressure transducer also serves the function of initiating the

illumination of the test section. The signal from transducer 2 is fed into two Stanford

Research DG-535 digital delay generators. The delay generators delay the trigger

signal by a value set by the operator, and forwards the signal to the illumination

system. Illumination of the test section is provided by two New Wave Gemini double-

pulsed Nd:YAG lasers. Each laser pulse is triggered by an individual signal from one

of the two DG-535 delay generators [15].

Two double-pulsed Nd:YAG lasers allows for 4 exposure sequences per exper-

iment, each with a duration of 5ns. Laser pulses are emitted 500ns apart at 532nm

with an optical energy of roughly 0.2J per pulse. Lasers are mounted on a tripod aside

the shock tube with a cylindrical and a spherical lens, which expand the laser beam

into a sheet. For the study presented in this thesis, the sheet is directed downward

through a mirror and held vertical with respect to the horizontal test section.

Figure 3.8: Apogee Alta U42 Camera used to gather images during experiments.

Imaging of the illuminated test section is provided by an Alta U42, an Apogee

high performance 4-megapixel cooled CCD camera, which is ideal for exposure at

532nm due to its mid-band coating having the highest peak in the visible wavelength

range [16]. Camera position adjustment comes from a tripod mount alongside the
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test section, and the camera is mounted upright to capture the horizontal flow within

the test section, shown in Figure 3.8. The camera is positioned at the lower level of

the test section to capture the lower 2cm of the flow field. This area of focus produces

the best resolution of the boundary layer growth behind the shock. The camera is

capable of moving further downstream, but for the extend of this study, the camera

remains in the same postion to capture the velocity field and vorticity of the flow at

the injector site. Previous experiments in the UNM shock tube facility by Anderson

[15], White [16], and Olmstead et al. [17] have reversed the positioning of the camera

and lasers to capture the horizontal rather than the vertical plane, but the focus of

this study will be on the vertical plane.

Figure 3.9: Schematic of Camera Positioning relative to test section. The camera is
perpendicular to the test section, and focused at the lower boundary of the accelerated
flow.

Image capture for an experiment consists of two images; one background image

before the propylene glycol/air mixture is deposited in the test section, and one image

of the flow field. The illumination of the flow field images varies from time of shock

passage to 400µs after shock. Details of the image processing are given in Chapter 4.
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Image Processing

The need to measure fluid flows has followed scientists, researchers, and engineers

alike, due to the widespread use of fluid dynamics in a variety of disciplines. While

computerized simulations have drastically decreased research time and effort, exper-

imentation continues to be a necessity for validating computer models. This chapter

will focus on explaining laser velocimetry, the specific PIV analysis software used in

this study, and the processing of each image for data collection.

4.1 Pulsed Laser Velocimetry

Fluid flows vary in size and complexity, ranging from convective flows of air or gas,

to laminar flows over aircraft wings, to highly developed turbulent flows in mixing

devices. Each type of flow has its own optimal imaging technique, including but

not limited to thermal anemometers, volumetric flow measurements through orifice

meters and Venturi tubes, direct injection flow visualization, optical systems such as

Shadowgraph and Schlieren, and laser velocimetry [33].
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The concept of laser velocimetry was first discovered by Cummins et al. [34]

while measuring the motion of particles suspended in an aqueous solution. During the

course of their experiments, they noticed the random movement of particles through

diffusion. While measureing the broadening of the laser light spectrum due to the

random particle motion, they observed a shift in the light frequency. The shift in

frequency was due to convective currents causing particle motion [34]. The concept

of measuring particle motion by light scattering came to be known as laser-Doppler

velocimetry (LDV).

The basic phenomenon of laser-Doppler velocimetry is the Doppler shift in light

from seeded particles in the flow [33]. The shift in the frequency of the particles can be

measured, and directly correlated to a change in distance, time, or both with correct

scaling. LDV eventually gave rise to pulsed laser velocimetry (PLV), which is similar

yet different to LDV. While LDV uses a Doppler shift to measure the frequency of

the light scattering in an image field to infer distance between particles, PLV takes a

direct measurement of the location of light peaks created during the illumination of

tracer particles [35]. The distance between the peaks is the distance between particles.

PLV takes many forms, including laser speckle velocimetry, particle image velocimetry

(PIV), particle image displacement velocimetry (PIDV), pulsed laser velocimetry, and

particle tracking velocimetry (PTV) [33]. Depending on the light source, most PLVs

measure 2D flow fields, although 3D flow fields are possible using approaches such

as nuclear magnetic resonance [36]. All PLVs follow the same basic setup; marker

particles (1-20µm) are deposited in a flow, illuminated with a light source over a

finite time, and captured using still-frame or video photography. The distance of

each particle movement is determined by measuring the distance between peaks in the

light scattering over a finite time, correlating to a velocity measurement. From these

measurements, fundamental fluid-dynamic quantities such as vorticity, deformation

tensor, and the pressure field can be obtained.
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Each of the specific types of PLVs mentioned in the previous paragraph are

suited for particular types of flow measurements. Their differences arise from slight

alterations in their measurement setups, or in their image processing. A PLV utilizes

a pulsed light source for illumination. Typical for 2D measurements, a light source

is directed into a thin sheet. The light source varies with each PLV, but common

examples are flash lamps or strobes, argon lasers, pulsed ruby lasers, or Nd:YAG

lasers. Ideally, lasers are used for their high timing accuracy (∼10ns) and finite

timing capabilities (± 1µm)[33]. During the illumination, image(s) of the fluid flow

are captured with the embedded marker particles. The light illuminates the markers,

making them visible, for an instant, then illuminates the flow again. The first light

pulse captures the original position of the particles, while the second captures the

particles in a different region. Through data processing, the particle displacement

can be measured.

The concentration of the marker particles has a large impact on the quality

of data gathered from PLV experiments. Low particle seeding (low concentration)

causes large distances between particles, with little overlap. This is beneficial for

data processing, since there is little overlap in the scattered light from one particle

to another nearby. High particle seeding (high concentration) can cause frequent

overlapping of the scattered light, causing noise in the data which may be difficult to

interpret. In the extreme case, very high particle seeding can cause ’speckle’, where

the data processing software cannot discern one particle from another, resulting in a

useless image [33].

Data processing relies on the probability of light peaks within an interrogation

area (or window)[35]. The image(s) gathered from the experiments are broken into

smaller areas (typically 128x128 pixels or smaller) for processing. A Fourier transform

is performed on the image squares. This transform breaks the individual interrogation
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area into a pattern of light/dark Young’s Fringes [33]. Particle locations are shown

as bright areas, resulting in a peak in the light pattern. The distance between peaks

is measured, and thus the distance between particles is obtained.

The data extracted depends on the probability of matching light peaks within

an interrogation window. With low density particle seeding, there is a smaller proba-

bility of two particles [33] (or the same particle illuminated twice) being in the same

interrogation window, depending on the size of the window and time step between

light pulses. The smaller probability causes a higher incidence of bad data vectors

from the processing software. Higher density seeding has the opposite effect; higher

probability of multiple particles in an interrogation window, and better resulting data

vectors [33]. Higher density seeding does involve a more complex image analysis. For

the best results, the interrogation window size must be adjusted accordingly.

PIV requires two (or more) illumination periods over a finite time to gather

locations of particles. However, these multiple periods can be over multiple images.

Auto-correlation PIV uses one image exposure, with multiple illumination sequences

taken over a long exposure time. The result is an image with particle ’trains’, where

the particles seem to follow each other. This sequence is one particle traveling over

time. The benefit of auto-correlation lies in the equipment used; a single-exposure

camera is readily available, and can have high image resolution. The alternative to

auto-correlation is cross-correlation where multiple images are taken, each with one

illumination period, and the images are processed in sequence. The benefit of cross-

correlation is the ability to track particles (PTV) over a sequence of images, thus

removing any ambiguity of the direction of the particle motion [35].
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4.2 Vector Field Processing

This section will focus on the image processing used in this thesis, and how the vector

field was obtained from raw images.

4.2.1 Image Preprocessing

During the individual experiments (or shots) conducted in this study, two images are

gathered per experiment. The first image is a background image of the empty test

section, void of any glycol tracer droplets. The second image is the image gathered

of the tracer particles embedded in the flow. The purpose of this is to eliminate any

possible sources of noise in the PIV interrogation. Although there are no droplets

to cause light scattering, other features of the test section cause light scattering or

’noise’. Notably, test sections used in the study in this thesis were constructed of 4

pieces of clear polycarbonate. The floor and sidewalls were cut to dimension, and

glued together. The rough edge of the cuts, and the bubbles encased in the glue

create features which are illuminated by the laser, and create a false peak during the

PIV interrogation. Figure 4.1 also shows light reflection around the injection hole in

the injection test section.
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Figure 4.1: Sample image of the empty test section before an experiment. Notice the
light coming from the bottom of the test section at the injection hole, and the seam
between the side and bottom.

Each image background is subtracted from the experimental image to remove

any light scattering emitted from anything other than the tracer particles. A com-

parison of an image before and after background subtraction is shown below in figure

4.2.

Figure 4.2: The image on the left shows an unmodified experimental image. The
image on the right shows the same image, with the background subtracted. Notice
the lack of light saturation at the bottom of the subtracted image

Before an image can be processed for PIV, the image orientation must be

modified to achieve the desired flow direction. Images gathered from the Apogee

Alta U42 arrive with the flow moving from bottom to top. Each image must be
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rotated 90◦ and mirrored about the vertical axis so that the flow direction is from left

to right, shown in Figure 4.3.

Figure 4.3: The image on the left shows an unmodified experimental image. The
image in the middle shows the rotated image, and on the right is the final rotated
and mirrored image.

4.2.2 PIV Interrogation

All PIV interrogation used in this thesis was done so with LaVision DaVis Flow-

master software [37]. Each image was processed as a ’double frame’ image using

auto-correlation. Although the image contains multiple light exposures (3-4), the

double-frame processing technique was needed for auto-correlation. The effect of us-

ing more light exposures per image with the double-frame technique has yet to be

determined.

Each image was processed using a multi-pass interrogation, starting with an

estimated shift of 8 pixels. Based on the scaling of the image window, and the

velocity of the flow, 8 pixels was the average anticipated particle shift. Defining an

initial direction with PIV sets a guideline for the interrogation software to follow

when establishing fluid flow patterns. Without the initial pixel shift definition, the

direction of fluid flow would not be discernible.
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Initial processing passes began with 96 pixel oval windows with 2x greater

length than height, since the flow direction is horizontal. Defining a window with

these dimensions increases the probability of multiple particles per window, resulting

in better data. Each pass ran 50% overlap with decreasing window size, concluding

with 32 pixel oval windows. Between each pass, a median filter is implemented. The

median filter was setup to remove vectors if the vectors difference to the average vector

was greater than 2 times the root mean square of its neighboring vectors. Also, the

median filter will re-insert vectors if the difference to average is less than 3 times the

root mean square of the neighbors.

Post-processing of vector fields is critical to data clarity. Post processing has

multiple steps, beginning with an allowable vector range. Since the velocity of the

accelerated flow and the image scale is known, the approximate pixel shift is known

for a flow field. The allowable vector range of 12±12 pixels was set in the Vx direction,

and 0±7 pixels in the Vy direction. Uneven particle seeding in images was common

in this study, resulting in vector fields with empty voids. An interpolation feature in

DaVis allowed to fill all voids based on the neighboring vectors. After interpolation,

a 3x3 smoothing algorithm was implemented, followed by the allowable vector range

again.
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Figure 4.4: The image on the left shows an experimental image before PIV interro-
gation. The image on the right is the vector field produced by DaVis

Figure 4.4 shows an experimental image of the shock wave passing over the

injection hole at Mach 2.0. Flow direction is from left to right. Although the tracer

particles are stationary on the right side of the hole, the DaVis auto-correlation finds

the stationary particles and interrogates them to believe there is motion.

Figure 4.5: The image on the left shows an experimental image with a void of tracer
particles in the upper corners. The image on the right is the vector field produced by
DaVis. Note the green ’low velocity’ areas in the vector field

Figure 4.5 shows the effects of poor particle seeding. Tracer particles must
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be evenly dispersed to obtain a quality vector field. If voids exists, a ’fill-all’ and

smoothing post processing are imposed; the PIV software will attempt to fill and

smooth the void, though with poor consequences. The large green areas in the vector

field show where no particles existed in the image, and were smoothed through post

processing. Similar behavior can be seen due to ’streaking’ in the mirror. ’Streaking’

is when a feature exists on the mirror, which prohibits the reflection of the laser sheet

into the test section. Commonly, the overuse of a laser will burn a hole through the

mirror, which needs frequent replacing. The result of this is an illumination sheet

with voids, which do not illuminate particles in the empty light area, as shown in

Figure 4.6. However, smoothing has added benefit, as shown below in Figure 4.7.

Figure 4.6: The vertical streaks present in the center of the image are artifacts of the
mirror not reflecting the laser sheet into the test section completely.
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Figure 4.7: The image on the left shows a vector field before the smoothing operation.
The image on the right is after the smoothing process. Voids/streaks created by the
laser are visibly reduced to remove outliers from the flow field.
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Results

This chapter will present the results from experiments conducted at Mach 1.67 and

Mach 2.0 for two test sections, one with an injection hole present, and one without

the injection hole, referred to as the baseline test section. A study of the effects of

the injection hole test section on the velocity components of the flow, the boundary

layer profile, boundary layer growth, and vorticity was performed. From this study,

a better understanding of the boundary layer growth within each test section was

gathered.

Chapter 5 is separated into 4 areas. First, the velocity in the streamwise di-

rection is analyzed for Mach 1.67 and Mach 2.0 with each test section, for varying

experimental times starting with time of shock passage over the injection site, and

progressing to 300µs after shock passage. Second, the velocity in the spanwise direc-

tion was measured starting with 100µs after shock passage, and continuing to 300µs

after shock passage. Third, vorticity for each combination of Mach number and test

section was measured for timing 100µs after shock passage, and continuing to 300µs

after shock passage. Fourth and finally, a boundary layer analysis for the test sections

was conducted to explicitly measure the boundary layer growth in each test section

53



Chapter 5. Results

for varying timings and Mach Numbers. All images in this chapter show the flow

direction from left to right.

5.1 Streamwise Velocity

Velocity measurements in the streamwise direction are evaluated in this section. The

streamwise direction follows the flow downstream through the test section, and is

given as the ’x’ direction in the images depicted in this chapter. The purpose of

the streamwise velocity measurements is to define the boundary layer height. As

mentioned in Chapters 1 and 2, the boundary layer height is the height of the viscous

sublayer of fluid flow near the fluid-solid boundary, and is defined as 99% of the free

stream velocity in the inviscid layer above.

5.1.1 Mach 1.67

Figure 5.1 captures the shock passage over the injection site for Mach 1.67. On the

left is the test section with the injection hole, on the right is the baseline test section.

Both images clearly show the shock front, and the region of accelerated tracer particles

behind (left) of the shock front. An even distribution of accelerated flow behind the

shock is depicted in red-orange, while slower regions are shown in green. It is worth

noting that although the green regions are shown as having a velocity profile, they

are not moving. Previously mentioned in Chapter 4, the auto-correlation function

used for PIV interrogation cannot easily discern a field of stationary particles vs.

a field of slow moving particles. The interrogation software then attempts to find

patterns within the suspended tracer particles, and assign a velocity value to them.

This assignment is false, as it is not from a single particle at one time vs. another,
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but rather a pair of particles at the same time.

Although Figure 5.1 clearly shows the shock front for each test section, it is not

a beneficial image for the purpose of evaluating differences between the test sections.

A planar shock front is clearly shown in each image, but the lower field of the image

is clouded with noise. This noise makes definition of the boundary layer difficult.

However, for such an early timing it is expected that the boundary layer is zero at

time of shock passage, and grows with distance (and time) from the shock front. The

lack of definition of the shock profile at the lower boundary in both images is worth

noting.

Figure 5.1: Both images show the streamwise component of accelerated flow at time
of shock passage over the injection hole for Mach 1.67. On the left is the test section
with the injection hole, on the right is the baseline test section. The shock wave is
located at x = -7mm in both images. Higher displacement (subsequently, velocity)
areas are denoted in red-orange, with lower velocities in yellow-green, shown on the
scale on the right.

As distance from the shock front increases with time of shock passage, more

interesting behavior can be discerned from each test section. In Figure 5.2, each image

shows definitive characteristics. On the left image (with the injection hole), the flow

enters the field of view at an expected high velocity, denoted in red. As the flow

passes over the injection hole (situated on the floor between -12mm and +3mm), the
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streamwise velocity component slows, shown in green. This behavior is not limited

to the floor, and grows in the spanwise direction over the injection hole.

On the right image in Figure 5.2, the baseline test section does not share the

same behavior with its injection test section counterpart. The flow is shown to have

an even distribution at high velocity. In the lower region of the image at the fluid-solid

boundary, a definitive area of slowed flow is shown in yellow. This area is assumed to

be the boundary layer. The boundary layer of the flow, caused from frictional effects

with the wall, has a height of approximately 1mm, which is roughly similar to Mirels’

approximation for turbulent flow.

Figure 5.2: The images show the streamwise component of accelerated flow over the
injection hole for Mach 1.67. Both images show the flow at time of 100 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

Further increasing the time after shock passage yields similar results to Figure

5.3. The streamwise velocity component is shown to stagnate above and downstream

of the test section with the injection hole, while the boundary layer in the baseline

test section grows in height as Mirels predicted.
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Figure 5.3: The images show the streamwise component of accelerated flow over the
injection hole for Mach 1.67. Both images show the flow at time of 200 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

By 300µs after shock passage shown in Figure 5.4, the stagnation area down-

stream of the injection hole is fully defined. Closely examining the velocity above

the injection hole (-12mm to roughly +3mm) shows the velocity field has a nearly

linear distribution. Below this line (approximately 45◦ to the horizontal), the flow is

stagnated and slowed compared to the upstream velocity. Moving downstream, the

stagnation area grows. Above this line, the flow is nearing free stream velocity.

Figure 5.4: The images show the streamwise component of accelerated flow at over
the injection hole for Mach 1.67. Both images show the flow at time of 300 µs after
shock passage over the injection hole. On the left is the test section with the injection
hole, on the right is the baseline test section.
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5.1.2 Mach 2.0

Figure 5.5 captures the shock passage over the injection site for Mach 2.0. On the left

is the test section with the injection hole, on the right is the baseline test section. In

the injection test section, the injection hole is located between -13mm and +2.85mm.

Clearly visible in each image is the shock front, similar to Figure 5.1. On the right

image, the upper portion of the image with ’slowed’ flow should be disregarded. This

was a region of uneven particle seeding, which resulted in zero tracer particles in

the area. On the left image, the shock front bears resemblance to the planar shock

front shown in the Mach 1.67 images. However, the lower region of the shock nearing

the fluid-solid interface is more clearly defined in this image. Rather than remaining

planar as expected, the image shows two distinct ’steps’ in the shock. The lower step

occurs at the wall surface near the leading edge of the injection hole, and has a low

angle of inclination. At -4mm (centered over the hole), the second step in the shock

wave profile is seen, with a high angle of inclination. These steps are not witnessed

in the baseline test section.

Figure 5.5: The images show the streamwise component of accelerated flow over the
injection hole for Mach 2.0. Both images show the flow at time of shock passage over
the injection hole. On the left is the test section with the injection hole, on the right
is the baseline test section.

Consistent with the behavior witnessed with the Mach 1.67 data, Figure 5.2,
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a region of slowed flow starts at the leading edge of the injection hole, and con-

tinues downstream as shown in Figure 5.6. This growth appears to be linear, and

causes a relatively large region of stagnation after the injection site. On the right

image, the baseline test section has no features. It appears the flow field is evenly

distributed, with a small boundary layer at the fluid-solid boundary. This image de-

picts the boundary layer thickness as being ≈0.5mm in height, consistent with Mirels’

approximation for turbulent flow at Mach 2.0.

Figure 5.6: The images show the streamwise component of accelerated flow over the
injection hole for Mach 2.0 Both images show the flow at time of 100 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

Data gathered for Mach 2.0 with the injection test section has proven difficult

to analyze. High shock velocities coupled with the difficulties associated with particle

seeding has made gathering data at times larger than 300µs difficult. For the few

particles that could be processed, (shown in regions of red in Figure 5.7), the flow

seems to follow the same stagnation pattern previously mentioned. Prior to the

injection site, the high velocity flow reaches nearly to the fluid-solid boundary. After

the injection site, the nearest region of free stream flow is located at a spanwise height

of 12mm (-7mm to +5mm). For the baseline test section, flow remains constant

throughout the test section, with a finite boundary layer of ≈1mm.
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Figure 5.7: The images show the streamwise component of accelerated flow over the
injection hole for Mach 2.0. Both images show the flow at time of 300 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

5.2 Spanwise Velocity

Velocity measurements in the spanwise direction are evaluated in this section. The

spanwise direction is defined as the normal direction to the the flow, or normal to the

streamwise direction. The spanwise direction is given on the ’y’ axis in the images

shown in this chapter. The intention of analyzing data in the of the spanwise direction

is to determine if the flow is turning relative to the free stream velocity. Analyses

in the spanwise direction were made starting with 100µs after shock passage. Initial

measurements were made at time of shock passage, but no discernible data could be

recovered from such measurements.
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5.2.1 Mach 1.67

Figure 5.8 shows the spanwise velocity component for Mach 1.67 with the injection

test section (left) and the baseline test section (right). As expected with the injection

test section, a large region of spanwise flow is shown over the injection site. The high

energy, pressurized flow within the test section is redirected through the injection

hole, and out to lower energy atmospheric conditions. In the baseline test section, no

patterns of spanwise flow are seen.

Figure 5.8: The images show the spanwise component of accelerated flow over the
injection hole for Mach 1.67. Both images show the flow at time of 100 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

Increasing time to 200µs after shock passage as shown in Figure 5.3, shows

similar features to timings at 100µs after shock. The region of spanwise flow for

200µs appears to have the same size and magnitude as 100µs after shock. Again, no

spanwise flow is shown with the baseline test section.
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Figure 5.9: The images show the spanwise component of accelerated flow over the
injection hole for Mach 1.67. Both images show the flow at time of 200 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

Further increasing time to 300µs in Figure 5.10 shows nearly identical results.

The magnitude and location of the spanwise velocity has not varied with time, and the

baseline test section has not shown any features of spanwise flow. From the spanwise

measurements, it is believed the redirection of the flow from streamwise to spanwise

out through the injection hole is the source of the stagnation region downstream of

the injection site. As the high energy, accelerated flow encounters an area open to

low pressure atmospheric conditions, the flow is redirected through the injection hole.

The majority of the flow near the wall is turned in the spanwise direction, resulting in

little momentum in the streamwise direction. The lower momentum flow downstream

of the injection hole creates a region of stagnation, which was shown in the streamwise

measurements in section 5.1.
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Figure 5.10: The images show the spanwise component of accelerated flow over the
injection hole for Mach 1.67. Both images show the flow at time of 300 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

5.2.2 Mach 2.0

Continuing the spanwise measurements to Mach 2.0 shows similar results to the anal-

ysis shown in Section 5.2.1 with Mach 1.67. A large region of spanwise flow occurs

directly above the injection hole site, with no discernible patterns in spanwise flow

for the baseline test section. It is worth noting that the size of the spanwise region

of flow is smaller for Mach 2.0 than for Mach 1.67. It is speculated this is due to the

Mach 2.0 flow having more streamwise momentum than the 1.67 prior to the injec-

tion site, resulting in less flow redirected to the spanwise direction and out through

the injection site. This, in turn, results in a slightly smaller stagnation area in the

streamwise direction for Mach 2.0 (shown in Figure 5.6) than for Mach 1.67 (shown

in Figure 5.2).
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Figure 5.11: The images show the spanwise component of accelerated flow over the
injection hole for Mach 2.0. Both images show the flow at time of 100 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

Figure 5.12: The images show the spanwise component of accelerated flow over the
injection hole for Mach 2.0. Both images show the flow at time of 300 µs after shock
passage over the injection hole. On the left is the test section with the injection hole,
on the right is the baseline test section.

5.3 Vorticity

Vorticity is a measure of the turning component of a fluid flow and is obtained by

taking a derivative of the velocity vector. Primarily, vorticity is used as an indication

of where the redirection of a flow occurs. While it is beneficial, there is inherent error
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with vorticity studies since analyses involving derivatives can be quite noisy.

5.3.1 Mach 1.67

Shown in Figure 5.13 below, the vorticity fields of the injection test section (left)

and the baseline test section (right) are shown. Previously mentioned in section 5.2,

vorticity is expected in the injection test section, since it had a significant amount of

spanwise velocity vectors.

Figure 5.13: The images show the vorticity of accelerated flow over the injection hole
for Mach 1.67. Both images show the flow at time of 100 µs after shock passage over
the injection hole. On the left is the test section with the injection hole, on the right
is the baseline test section.

Figure 5.13 indicates there is a turning component of the flow directly above

the injection area, but also that the turning component begins shortly before the

leading edge of the injection site. The baseline test section on the right shows a

random pattern of low vorticity across the vector field, with some turning components

located at the fluid-solid boundary.
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Figure 5.14: The images show the vorticity of accelerated flow over the injection hole
for Mach 1.67. Both images show the flow at time of 200 µs after shock passage over
the injection hole. On the left is the test section with the injection hole, on the right
is the baseline test section.

Increasing the time to 200µs after shock passage shows similar results. Vortic-

ity develops shortly before the leading edge of the injection site (x = -13mm), and

continues over the injection site. The magnitude and size of the vorticity is consis-

tent with 100µs after shock, showing no signs of significant growth over time. In

the baseline test section, a layer of vorticity is seen at the fluid-solid boundary. It is

speculated that this is the viscous sublayer, and that the flow is turbulent due to the

random rotational components within the boundary layer.

Figure 5.15: The images show the vorticity of accelerated flow over the injection hole
for Mach 1.67. Both images show the flow at time of 300 µs after shock passage over
the injection hole. On the left is the test section with the injection hole, on the right
is the baseline test section.
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Figure 5.15 at 300µs shows similar characteristics to earlier timings of Mach

1.67, with no noticeable growth in the vorticity magnitude or region for the injection

test section.

5.3.2 Mach 2.0

Continuing the vorticity analysis to Mach 2.0 shows similar yet different behavior to

Mach 1.67. The region of vorticity occurs in the same streamwise location as Mach

1.67 (-13mm to -2mm) but extends to a larger spanwise height, as shown in Figure

5.16. The baseline test section follows the same profile as its 1.67 counterparts, with

a turbulent boundary layer visible at the fluid-solid interface.

Figure 5.16: The images show the vorticity of accelerated flow over the injection hole
for Mach 2.0. Both images show the flow at time of 100 µs after shock passage over
the injection hole. On the left is the test section with the injection hole, on the right
is the baseline test section.

5.4 Boundary Layer Analysis

To compare the injection section and baseline test section, a study was conducted

on the boundary layer velocity profiles for various images over multiple timings and

Mach numbers. The study was performed by exporting the streamwise vector fields
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of the images from DaVis to MatLab, and using MatLab to average the streamwise

velocity vectors based on spanwise height. Each image is broken into a vector field

with dimensions 128x128 vectors. The fields were then averaged in the streamwise

direction, resulting in an average velocity for a given height, which was then normal-

ized with respect to the maximum average velocity. This data was plotted for each

test section and shock velocity vs. time.

5.4.1 Raw Data

The averaged streamwise velocity profiles for Mach 1.67 are shown below in Figure

5.17. On the left is the injection test section data, and the right is the baseline test

section data. The data shows a definitive pattern, although with a significant amount

of noise. By locating the crossover point where the fluid velocity reaches 99% of the

free stream velocity, the boundary layer height is the height of the region whose flow

velocity is less than 99%. Figure 5.17 does however, show that the boundary layer is

slightly larger for the injection test section compared to the baseline test section. As

timing after shock passage is increased (denoted by the multiple curves on each plot,

see legend), this boundary layer height is shown to also increase.
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Figure 5.17: On the left is the boundary layer profile data for the test section with the
injection hole, on the right is the baseline test section. Note that apparent fluctuations
in the freestream are due to vectors in poorly seeded areas.

The averaged streamwise velocity profiles for Mach 2.0 are shown in Figure

5.18 below. The injection test section produced much less consistent data for Mach

2.0.

Figure 5.18: On the left is the boundary layer profile data for the test section with
the injection hole, on the right is the baseline test section.

5.4.2 Curve Fitting

Due to the noise associated with the raw data, curve fitting was performed on the

data for ease of comprehension. The curve fits were performed using a general second
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power exponential equation with the form y = aebx + cedx with 95% confidence.

Figure 5.19 above shows the curve fits for Mach 1.67 at various times after shock

passage for the injection test section (left) and baseline test section (right). The

boundary layer height for the injection test section is consistently larger than that

of the baseline test section. To evaluate the boundary layer height, the slope of the

curve fit near the fluid-solid interface must be expanded linearly until it reaches the

right boundary, where the velocity relative to the free stream velocity is 1. The height

of this intersection point is the height of the boundary layer.
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Figure 5.19: On the left is the boundary layer profile curve fit for the test section
with the injection hole, on the right is the baseline test section.

Figure 5.20 below shows the curve fit for Mach 2.0 for the injection test section

(left) and baseline test section (right). Consistent with the Mach 1.67 data, the

injection test section boundary layer height is consistently larger than the baseline

test section.

Figure 5.20: On the left is the boundary layer profile curve fit for the test section
with the injection hole, on the right is the baseline test section.

It is worth noting that the data from the boundary layer analysis conducted in

this section should not be considered exact. The purpose of the study was simply to

evaluate trends between the two test sections. The method of averaging the stream-

wise vectors for the injection test sections has error associated with it. Specifically,
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the stagnation regions shown in Figures 5.2 and 5.6 in Section 5.1 explain the source

of the error. The free stream velocity upstream of the injection site extends nearly to

the fluid-solid interface. After passing the injection site, there is a linear growth in

the streamwise stagnation region. As a result of the method used for the boundary

layer analysis, high velocity regions and low velocity regions of flow are averaged at

the same spanwise height. Therefore, the boundary layer height is not consistent

across the entire field of view.
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Conclusion

This thesis presents experimental results for boundary layer growth generated by

impulsive acceleration of a quiescent flow by a normal shock wave in two different

test sections, one with an injection hole with diameter 15.875mm and one without

the injection hole, at Mach number 1.67 and Mach 2.0. In both cases, stationary air

was seeded with glycol droplets used as visualization tracers. All work was performed

at the University of New Mexico shock tube facility. The experimental images were

obtained by illuminating the seeded flow in the vertical plane in the center of each

test section. By varying exposure timing, images were gathered from time of shock

passage to 400µs after shock passage for each test section. Images gathered were

analyzed using particle image velocimetry (PIV) to obtain flow fields for each data

set. Two cases were examined; first, a test section used by Anderson [15], White

[16], and Olmstead et al. [17] in their study of Richtmyer-Meshkov instability was

analyzed for boundary layer growth in the presence of an injection site at the upper

and lower boundaries of the test section. Second, the boundary layer growth of a

baseline test section devoid of the injection holes was analyzed. It was found the

boundary layer growth of each test section differs drastically.
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In the case of the injection test section, analysis of the streamwise velocity

component (Vx) showed a large stagnation area immediately after the injection site.

The stagnation was found to begin at the lower boundary of the test section near the

center of the injection site, and grow linearly in the downstream direction. This type

of flow field has previously been recognized by Chyu et al. [14] in the study of shock

wave-boundary layer interaction with a bleed slot. In the work by Chyu et al., it was

found that weak expansion waves at the leading edge of the bleed hole, and a barrier

shock at the downstream edge caused the rapid change in boundary layer height.

Analysis of the streamwise velocity component in the baseline test section

showed no distinguishing features of disturbed flow, as expected. The traveling normal

shock wave accelerated the air within the test section, and a boundary layer was found

to grow behind the shock. The height of the boundary layer, along with the growth

rate, closely corresponds to the work performed by Mirels [18, 24, 25, 26, 27] for

turbulent boundary layer growth.

Evaluation of the spanwise velocity component yielded similar results for both

Mach 1.67 and Mach 2.0. No significant change in spanwise velocity was observed

for the baseline test section at either shock velocity. For both shock velocities in

the injection test section, a large region of spanwise flow was observed at the lower

boundary of the test section, slightly before the injection site and continuing after the

injection site. This indicates a large redirection of flow from the streamwise direction

upstream of the injection site to the spanwise direction and out through the injection

hole. This redirection of flow out of the injection hole results in a stalled region of

streamwise flow downstream of the injection site, causing a rapid change in boundary

layer height.

Vorticity computations were made for each test section. For the injection test

section, vorticity pockets develop at the leading edge of the injection hole, and cease
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at the trailing edge. These regions of developed vorticity prove the flow is redirected

from the streamwise direction to the spanwise direction, and out through the injection

hole. For the case of the baseline test section, vorticity was observed at the fluid-solid

interface at the lower wall of the test section. This vorticity was not as consistent

in location (streamwise) or magnitude in the injection section. The randomness of

the vorticity in location, direction, and magnitude, is attributed to the turbulent

boundary layer. The height of the regions of vorticity in the baseline test section

correspond to the height of the boundary layer in the streamwise evaluations for

similar timings.

Having compared the baseline boundary layer growth to the injection hole

test section, it is concluded that the injection site is the primary cause of the rapid

boundary layer growth in the injection test section, as compared to a test section

with no flow disturbing features. However, the exact reason for the rapid growth

has yet to be determined. From evaluation of Olmstead’s et al. [17] data from the

American Physical Society, Division of Fluid Dynamics Annual Meeting in 2013, it

can be ascertained the growth is due to a non-normal shock acceleration of the initial

conditions. Olmstead et al. presents an oblique shock interaction with a gas column

interface, as shown in Figure 2.7. The observed phenomenon is known as Richtmyer-

Meshkov Instability, which is caused by a misalignment of the density and pressure

gradients in a shock accelerated flow. The vorticity we see in Figure 2.7 suggests

that either the gas column has been rotated to alter the orientation of the density

gradient (impossible, since the column remains at a constant location relative to the

test section), or the shock is distorted and no longer perfectly planar. In the work of

Chyu et al. [14], small expansion waves were shown to exist at the leading edge of

the bleed slot, with a barrier shock forming at the trailing edge as seen in Figure 2.3.

Near the injection hole, a regular planar shock structure is significantly distorted, as

Figure 5.5 confirms.
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6.1 Future Work

In addition to the work conducted in this study, the data already collected will be

improved by conditional averaging and other post-processing techniques to form the

basis for a paper to be submitted to Experiments in Fluids.

To conclusively prove the cause of the rapid boundary layer growth in the test

section, the author recommends three new studies be performed. First, the study

conducted herein should be repeated using a high-speed multiframe camera in con-

junction with the LaVision DaVis image processing software with cross-correlation.

The noise introduced from the auto-correlation used in this study resulted in a large

amount of unusable data, which was rejected from the study. Cross-correlation would

reduce the noise, as well as introduce the capability of particle tracking velocimetry

(PTV).

Second, a similar study to the one conducted herein should be pursued for

downstream data. The focus of this thesis gathered data at the location of the

injection site for the injection test section and at the same downstream distance for

the baseline test section. This has enabled this thesis to focus on the effects directly at

the injection site, but has limited the study to that region. It is proposed to conduct

the same study at various regions downstream of the injection site to quantify the

boundary layer growth aft of the injection hole.

Finally, the author recommends Schlieren/shadowgraph imaging be performed

at the injection site. Schlieren/shadowgraph images allow for illumination and imag-

ing of density gradients in the flow. To this end, the passing shock wave over the

injection site could be imaged. Imaging of the shock wave orientation would allow for

broader understanding of the boundary layer growth at and after the injection site.
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Appendix A

Mirels’ Laminar Boundary Layer

Approximation

Mirels’ approximation [38] starts with the equations of mass, momentum and energy

conservation and applies the following boundary conditions:

u(x, 0) = −ūs (A.1)

v(x, 0) = 0 (A.2)

T (x, 0) = Tw (A.3)

u(x,∞) = ue (A.4)

T (x,∞) = Te (A.5)

Holding Tw constant, and transforming the mass, momentum and energy con-

servation equations into a system of ordinary differential equations, from continuity

there exists a stream function ψ where

∂ψ

∂y
=
ρu

ρw
(A.6)
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−∂ψ
∂x

=
ρv

ρw
(A.7)

A similarity parameter η is defined as

η =

√
1

2

ue
xνw

∫ y

0

Tw
T
dy (A.8)

and the stream function becomes

ψ =
√

2uexνwf(n) (A.9)

Note, that f ′ =
u

ue
. Assuming viscosity varies linearly with temperature,

µ =

(
µw
Tw

)
T (A.10)

and applying to momentum yields the Blasius Differential Equation

f ′′′ + ff ′′ = 0 (A.11)

Applying the following boundary conditions:

f(0) = 0 (A.12)

f ′(0) =
uw
ue

(A.13)

f ′(∞) = 1 (A.14)

Assuming the Prandtl number σ is constant, and temperature as a function of η, the

energy equation becomes:

T ′′ + σfT ′ = −σ(γ − 1)M2(f ′′)2 (A.15)

The general solution for T can be expressed as the linear superposition for adiabatic

conditions plus the effects of heat transfer;
T

Te
is then:

T

Te
= 1 +

γ − 1

2

[(
uw
ue
− 1

)
M

]2
r(η)+[(

Tw
Te
− 1

)
− γ − 1

2

[(
uw
ue
− 1

)
M

]2
r(0)

]
s(η) (A.16)
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where r(η) satisfies

r′′ + σfr′ =
−2σ
uw
ue
− 1

2

(f ′′)2 (A.17)

r(∞) = r′(0) = 0 (A.18)

and s(η) satisfies

s′′ + σfs′ = 0 (A.19)

s(0) = 1 (A.20)

s(∞) = 0 (A.21)

s(η) resolves to zero for insulated walls. The relative wall temperature then becomes:

Tw,i
Te

= 1 +
γ − 1

2

[(
uw
ue
− 1

)
M

]2
r(0) (A.22)

In terms of Tw,i the equation becomes

T

Te
= 1 +

γ − 1

2

[(
uw
ue
− 1

)
M

]2
r(η) +

(
Tw
Te
− Tw,i

Te

)
sη (A.23)

r(0) is a recovery factor based on the Mach number of the external flow relative

to the wall. Expressing the equations for r and s in quadrature form yields:

r =
2σ

uw
ue
− 1

2 ∫ ∞
η

[f ′′(ξ)]
σ
dξ

∫ ξ

0

[f ′′(θ)]
2−σ

dθ (A.24)

s =

∫∞
η

[f ′′(ξ)]σ dξ∫∞
0

[f ′′(ξ)]σ dξ
(A.25)

For Prandtl number σ = 1

r = 1−


uw
ue
− f ′

uw
ue
− 1


2

(A.26)
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s =
f ′ − 1
uw
ue
− 1

(A.27)

For x constant, the relationship between y and η is as follows:

y

√
1

2

ue
xνw

=

∫ η

0

T

Tw
dη (A.28)

Combining (A.23) yields:

y

√
1

2

ue
xνw

=
Te
Tw

[
u+

γ − 1

2

[(
uw
ue
− 1

)
M

]2 ∫ η

0

rdη +
Tw − Tw,i

Te

∫ η

0

sdη

]
(A.29)

Defining the boundary layer to be
u

ue
= 0.99, the laminar boundary layer thickness is

δ =

√√√√ 2

1− u

ue

√
µmT

µTm

√
ν(ueτ − ξ)

ue2.89

√
1− u

ue√
1.413− u

ue

+
γ − 1

2
M2

∫ ∞
0

rdη −
(
Tr
Te
− Tw
Te

)∫ ∞
0

sdη

 (A.30)

81



Appendix B

Mirels’ Turbulent Boundary Layer

Approximation

Mirels’ approximation [18] starts with the integral form of the momentum equation,

τw
ρeu2e

=
d

dx

∫ ∞
0

ρu

ρeue

(
1− u

ue

)
dy =

dθ

dx
(B.1)

where
u

ue
represents the average velocity. The boundary-layer thickness is defined by

δ̃, and a similarity parameter ζT is created to express
u

ue
as a function of ζT . The

similarity function is ζT =
y

δ̃
. Mirels assumed the relationship between the average

velocity and the similarity parameter ζT was
u

ue
= ζ

1
7
T based on studies of the turbulent

boundary layer on a semi-infinite flat plate.

for 0 ≤ ζT ≤ 1,

| u− uw
ue − uw

| = ζ
1
7
T (B.2)

for 1 ≤ ζT

| u− uw
ue − uw

| = 1 (B.3)
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Expressing the relative temperature as a function of density yields for 0 ≤

ζT ≤ 1,

ρe
ρ

=
T

Te
=
Tw
Te

(
1 + bζ

1
7
T − cζ

2
7
T

)
(B.4)

for 1 ≤ ζT

ρe
ρ

=
T

Te
= 1 (B.5)

where

b =
Tr
Te
− 1 (B.6)

c =

(
Tr
Te
− 1

)
Te
Tw

(B.7)

The boundary-layer momentum thickness and displacement are expressed as

θ

δ̃
= 7

Te
Tw

(
1− uw

ue

)[
uw
ue
I6 +

(
1− 2

uw
ue

)
I7 −

(
1− uw

ue

)
I8

]
(B.8)

δ∗
δ̃

= 1− 7
Te
Tw

[
uw
ue
I6 +

(
1− uw

ue

)
I7

]
(B.9)

where I6, I7, andI8 are functions of b and c given by

IN =

∫ 1

0

zNdz

1 + bz − cz2
(B.10)

and N = 6, 7, or8. Assuming constant wall temperature, and knowing
θ

δ̃
is indepen-

dent of x, the integral form of the momentum equation becomes

τw
ρeu2e

=
θ

δ̃

dδ̃

dx
(B.11)

The Blasius relation for incompressible flow over a semi-infinite plate is

τw
ρeu2e

= 0.0225

(
νe

ueδ̃

) 1
4

(B.12)
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Appendix B. Mirels’ Turbulent Boundary Layer Approximation

Evaluating the fluid properties at a mean temperature allows for expansion of the

Blasius relation to compressible flow.

τw
ρeu2e

= 0.0225φ

(
νe

ueδ̃

) 1
4

(B.13)

where φ is defined as

φ =

(
µm
me

) 1
4
(
Tm
Te

) 3
4

(B.14)

Mirels found a reasonable estimate for the mean temperature to be

Tm = 0.5(Tw + Te) + 0.22(Tr − Te) (B.15)

For a moving reference frame, where the wall is in motion, the relative velocity is

imposed on the compressible flow expression, resulting in

τw
ρeu2e

= 0.0225φ

(
1− uw

ue

)
|1− uw

ue
|
3
4

(
νe

ueδ̃

) 1
4

(B.16)

Substituting (B.16) into (B.11) allows for integration. For a constant Tw with adia-

batic conditions, the boundary layer thickness is found to be

δ̃ = 0.0574

φ1− uw
ue
θ

δ̃


4
5

|1− uw
ue
|
3
5

(
νe
uex

) 1
4

x (B.17)
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