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EFFECT OF AIR ON VIBRATION OF STRUCTURES 

 

TONG XIA 

B.E., Bridge Engineering, Chang An University, 2007 

M.S., Civil Engineering, University of New Mexico, 2010 

 

ABSTRACT 

 

This research primarily studies the effect of air on vibration of structures. 

Theoretical solutions based on various physics are derived and compared with 

experimental results to determine how air modifies the vibrational behavior of 

structures. This work may help in determining the characteristics of structural 

vibrations – from acoustic behavior to earthquake response - in practical buildings. 

The work consists of several primary components: derivation of theories that 

predict the effect of air on structural vibrations and vice-versa, design of experiments, 

and determination of the importance of air in structural vibrations and the 

applicability of different physics under various vibrational frequencies. 

Two types of physics - acoustic theory and fluid dynamics theory - are applied 

to derive solutions for damping ratios of air. Experiments such as an unbaffled plate 

experiment, a pendulum experiment and a baffled plate experiment are designed and 

conducted to observe the damping effect of air. Experimental results illustrate the 

applicability of the theories. Finite element analysis is performed to provide a 
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computational basis with which to compare the observed vibrational frequencies.  

The main question in this research is whether air has a great effect on structural 

vibrations. The results show that air has a damping effect on vibrating buildings that 

can be important under certain conditions. The results also reveal that when 

calculating the damping effects due to air, different physics should be applied under 

different vibrational conditions. A dimensionless factor is derived to determine under 

which regimes acoustic theory is applicable, and under which regimes fluid dynamics 

theory is applicable. 
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CHAPTER 1. 

INTRODUCTION 

 

1.1  General 

Acoustic-structure interaction problems include sound generated from vibrating 

structures and the effects of sound on adjacent structures and buildings. The 

applications of these problems include noise control, military detection, and industrial 

design. In this field, acoustic theory is commonly used.  

On the other hand, the discipline of fluid-structure interaction models the 

behavior of structures which are surrounded by a fluid medium, such as air or water. 

The applications of this field include ship design, aeronautical design and so on. Fluid 

dynamics theory is commonly used to solve fluid-structure interaction problems. 

In practice, most structures are exposed to both sound and air. As a result the 

rigorous analysis of structures requires that structural dynamics, acoustic theory and 

fluid dynamics theory be applied simultaneously. According to Ross [2004], a 

medium such as air which is a fluid capable of transmitting sound is called an acoustic 

fluid, and this field is called acoustic fluid-structure interaction.  

The study and application of acoustic fluid-structure interaction problems is 

limited due to its extreme complexity. It is possible that under specific acoustic 

frequencies, a harmonic frequency of a structure could be excited, leading to 

large-scale vibration and even failure of the structure. An example is a lady who sings 
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at a certain pitch, causing a wine glass to break. Meanwhile, the air inside and outside 

of the structure could affect the vibrational modes and natural frequencies of the 

structure. During earthquakes, the air surrounding a building could have a damping 

effect upon the vibration; on the other hand, it could also intensify the vibration under 

certain vibrational frequencies. Structural safety concerns lead us to inquire whether 

the presence of air will affect vibrational behaviors, possibly leading to structural 

failure. As a result, it is interesting to study acoustic fluid-structure interaction 

problems to better understand the effects of air and sound upon structural vibrations. 

This thesis presents a study of acoustic fluid-structure interaction problems by 

comparing theoretical solutions based on different types of physics to designed 

experimental results. 

1.2 Background 

The Electrical & Computer Engineering Department and the Civil Engineering 

Department at the University of New Mexico are collaborating on research to use 

synthetic aperture radar to monitor activities within buildings. The main target of this 

research project is to determine the characteristics of the machinery inside a building 

whose vibrations are being monitored. As part of this collaborative research project, 

this thesis follows and extends the research conducted previously by Lee [2006] and 

Ortega [2008].  

Lee [2006] determined how air affects the response of a given structure 

theoretically and experimentally. He demonstrated finite element software’s 

capability to calculate a structure’s natural frequencies. Ortega [2008] presented a 
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detailed study of a fluid-structure interaction problem in both an analytical and an 

experimental manner. Solutions for gas-solid interaction problems were developed. It 

was also discovered by using finite element software that the presence of air within an 

enclosed structure introduces extra vibrational modes beyond those found in the 

structure without enclosed air.  

The discoveries of Ortega [2008] are also confirmed by the current research. By 

using the finite element software, ANSYS, two separate structures are modeled. One 

structure representing an airless room in vacuum is compared with another one with 

enclosed air. The natural frequencies of the rooms are calculated and vibrational mode 

shapes are generated. It is confirmed that the presence of air can affect the modes of a 

given structure. Air also introduces extra vibrational modes in addition to the 

vibrational modes in the air-absent model.  

An experimental approach is also developed to demonstrate the applicability of 

the 1D gas-solid interaction solution derived by Ortega [2008]. The solution correctly 

predicts the natural frequencies of the system.  

In this thesis, analytical and experimental approaches are developed in an effort 

to better understand the characteristics of acoustic fluid-structure interaction. Two 

types of physics are employed: acoustic theory and fluid dynamics theory. Note that 

both acoustic theory and fluid dynamics theory are extensive fields. However in this 

thesis when mentioning acoustic theory, it refers to small-deformation, irrotational 

flow, linear vibration of a fluid; on the other hand, when mentioning fluid dynamics 

theory, it refers to more-or-less steady fluid flow past a solid body. Fluid dynamics 
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theory includes irrotational flows and turbulence, but not the high-frequency 

vibrations usually called “acoustics”. 

1.3 Motivation 

This thesis is motivated by the desire to answer the following questions: 

(1) Under what conditions does air affect the vibration of a building structure? 

(2) How important is the effect of air on a vibrating building structure? Should 

we consider air in analyzing buildings? 

(3) Under what conditions does a building structure’s vibration cause sound and 

related acoustic effects in air? 

(4) What type of physics should be used in determining structural damping due 

to air resistance? 

(5) When is acoustic theory appropriate, and when is fluid dynamics theory 

appropriate? 

(6) Can we develop simple formulas that predict the damping effect of air on 

buildings? 

The objectives and scope of this thesis are presented next. 

1.4  Objectives and Scope 

Chapter 2 describes literature related to this thesis. These published works 

include studies of acoustic-structure interaction and fluid-structure interaction. This 

literature review shows that researchers have mostly attempted to solve specific 

problems. No experimental approaches appear to have focused on the applicability of 

different physical regimes of behavior. 
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To study the damping effect of air based on acoustic theory, we need to 

understand acoustic theory first. Chapter 3 presents analytical solutions for the 

acoustic energy radiated from pulsating and oscillating spheres.  

Chapter 4 relates the acoustic theory in chapter 3 to the analytical solutions for 

the damping ratio of a vibrating structure. An expression for the damping effect of air 

based on acoustic theory is obtained. 

To study the damping effect of air based on fluid dynamics theory, chapter 5 

presents the analysis of drag and lift forces due to fluid flow. The work done by these 

forces is related to the energy dissipated from a vibrating structure. The derivation of 

the equivalent damping ratio of air based on dissipated fluid energy is presented. 

For comparison purposes, the effect of air upon a baffled vibrating piston is next 

studied in chapter 6, which presents the derivation of the solution called the Rayleigh 

Integral, which calculates the farfield pressure due to a vibrating baffled piston. 

Chapter 7 presents a vibrating unbaffled plate experiment to verify the 

applicability of the equation derived in chapter 3. Acceleration data is acquired and 

the damping ratio is calculated based on test data. 

Chapter 8 presents a pendulum experiment to verify the applicability of the 

equation derived in chapter 5. Displacement data is acquired and the damping ratio is 

calculated based on test data. 

Chapter 9 presents a baffled vibrating elastic plate experiment to verify the 

applicability of the equation derived in chapter 6. Pressure and acceleration data is 

acquired. The result is compared with the Rayleigh Integral solution. 
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Chapter 10 analyzes the experimental results. A dimensionless variable is 

proposed to determine the applicability of acoustic theory and fluid dynamics theory. 

Chapter 11 presents the conclusions and recommends future research directions.  

The next chapter describes the literature relevant to this research. 
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CHAPTER 2. 

LITERATURE REVIEW 

 

2.1 General 

Research in both the field of fluid-structure interaction and the field of 

acoustic-structure interaction has been extensive. In the acoustic-structure interaction 

field, it is assumed that a sound wave propagates through a fluid by interacting with 

particles (molecules or atoms). The particle motions are assumed to be very small 

compared to the wave length. Various theoretical approaches such as classical 

mechanical solutions and finite element solutions have been developed to describe the 

behaviors of both the fluid and the structure.  

On the other hand, fluid-structure interaction uses classical fluid dynamics 

theory to determine the behavior of the fluid. Within the scope of this thesis, fluid 

dynamics theory assumes constant speed fluid flow in which the particle motions are 

large, compared to acoustic theory. Lift and drag coefficients are used to predict the 

interaction between the fluid and the adjacent structure.  

As stated before, structures are exposed to both sound and air. It is then 

reasonable to study the case when both acoustic and fluid dynamics theories are 

applied simultaneously, which is referred to as acoustic fluid-structure interaction. 

However, literature in this field is very limited. This thesis is a continuation study of a 

research project studying a structure’s mechanical vibration due to machinery; 
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therefore previous research conducted by three former graduate students from the 

University of New Mexico is presented next. 

Mareddy [2006] presented an experiment measuring vibration data gathered 

from an existing utility building at the University of New Mexico to see if types of 

machinery use can be determined from vibration data. Acceleration data was acquired 

at various locations on the roof of the building. A Matlab code called VIBVIS was 

developed for interpreting and visualizing the acquired data. A modal analysis of the 

building was performed using finite element software SAP2000 to compare with the 

experimentally measured vibrations. Results showed that it is possible to determine 

whether there is machinery being operated within a building by measuring roof 

accelerations. However it remains difficult to determine which type of machine is 

being used. 

An experiment was developed by Lee [2006] studying the interaction of air with 

a single degree of freedom structure. The vibration data of the structure was collected 

under both maximum and minimum air resistance cases. Damping ratios were 

calculated for both cases when the structure is built with various stiffnesses. Results 

showed a clear difference between the maximum and the minimum air resistance 

cases. A finite element model was also developed in SAP 2000, and modal analysis 

was performed. Results showed good agreement between the tested natural 

frequencies and the computer generated natural frequencies. 

As a continuation of this research, Ortega [2008] presented a study on an 

essential dynamic gas-solid interaction problem. Both an analytical solution and a 
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finite element discrete solution for the problem were developed. A one-dimensional 

gas-solid interaction experiment was designed to verify the solutions. The finite 

element software ANSYS was also applied to simulate the complicated 

two-dimensional gas-solid interaction. Results showed that the presence of air 

adjacent to a vibrating structure introduces extra modes. 

To continue with this project, this thesis is devoted to study acoustic 

fluid-structure interaction. A review of related research is presented next. 

2.2 Papers from Research Journals 

Kozien and Wiciak [2005] studied the acoustic radiation emitted from a specific 

vibrating folded plate. The acoustic pressure level at a certain control point was 

simulated using finite element software. The results showed that finite element 

software facilitates the analysis of the pressure field at a given point, but a complete 

description of mechanical and acoustical aspects of the problem is computationally 

expensive. No experimental approach was reported. The analysis is restricted to the 

high-frequency range. No low-frequency vibrations were considered. 

Osaka [2007] presented an experiment with a rectangular aluminum plate 

vibrating under harmonic excitations. Plastic coatings were attached to the plate to 

provide internal damping effects. By changing the coatings, different damping effects 

were produced. Both experimental and finite element analyse were performed to study 

the influence of internal damping on vibration and acoustic radiation characteristics. 

The results showed that the internal damping from coatings does not affect the natural 

frequencies of the system; however it introduces both the changing of mode shapes 
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and the amplitude of displacement. The researcher ignores the effect of the 

surrounding air. 

Decultot, Lietard and Chati [2008] presented an experiment measuring the 

energy radiated from an immersed vibrating plate in water. Vibrational modes were 

identified and comparisons were made between finite element software results and 

experimental results. Under a sinusoidal driving force, the radiated pressure was 

measured. Good agreement was found between the experimental radiated pressure 

peaks and the theoretical results. A finite element model also calculated the expected 

modes and natural frequencies. It was demonstrated that it is possible to measure the 

acoustic radiation using a hydrophone.   

Hasheminejad and Azarpeyvand [2003] studied the acoustic radiation emitted 

from an oscillating sphere within a fluid. Numerical results showed the effects of 

vibrational frequency and mode of vibration on the farfield pressures. They also 

showed the relationship between the properties of the fluid and the farfield acoustic 

pressure amplitude. The theoretical solution and computer-based simulations showed 

that the farfield acoustic pressure is frequency-sensitive. However no experiments 

were developed. 

Research in acoustic fluid-structure interaction tends to be very specific and 

practical because any variable change could lead to a basic change in applicability of 

theories. Thus, to understand the fundamentals of the problem, the basic theories are 

studied next. 
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2.3  Textbooks 

Structures and buildings often vibrate in two modes which can be thought of as 

either a radially pulsating sphere or a transversely oscillating sphere. Due to the 

simplification provided by spherical coordinates, the spherical model is broadly used 

to simplify the derivation of acoustic power radiated from vibrating structures.  

Pierce [1989] provided a solution for the acoustic power radiated from a radially 

pulsating sphere. A velocity potential was employed to express the fluid velocity and 

pressure of a spherically symmetric wave. A transient solution for the acoustic field 

radiated by a sphere was derived. The time-averaged power radiated from the 

pulsating sphere was derived from the solution when the sphere is pulsating at a 

constant frequency. The time average of the acoustic power radiated from a 

transversely oscillating sphere was also derived.  

Blackstock [2000] reached the expression for the energy radiated from a 

pulsating sphere using an alternative path by using the concept of impedance. The 

mechanical power radiated from an oscillating body was first related to acoustic 

density, which could be expressed in terms of impedance. The impedance was then 

expressed in either Cartesian coordinates or polar coordinates in terms of fluid 

pressure and velocity. Finally, the power radiated from the pulsating sphere was 

expressed in terms of fluid properties and vibrational properties. 

Blackstock [2000] also derived the solution for farfield pressure amplitude of a 

vibrating target. This solution was first derived by Lord Rayleigh [1842-1919]. A 

model of a baffled circular piston was used to derive the pressure distribution in the 
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farfield beyond the distance called the Rayleigh Distance. Details of this derivation 

are discussed in chapter 6. 

The fluid dynamics theory used in this thesis is from Roberson and Crowe 

[1975], who derived the expression for the drag force and lift force caused by fluid 

flows. The drag coefficient is used to predict the fluid-induced forces acting upon 

structures with various shapes. More details of this derivation are discussed in chapter 

5. 

The next chapter presents the derivation of the three-dimensional acoustic 

governing differential equation. The expressions for the acoustic energy radiated from 

a pulsating sphere and an oscillating sphere are also presented. 
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CHAPTER 3. 

ACOUSTIC THEORY AND ENERGY RADIATED FROM 

PULSATING AND OSCILLATING SPHERES 

 

To study the effect of air on the vibration of structures, we need to build 

mathematical models. A radially pulsating sphere and a transversely oscillating sphere 

are the two simple analytical models we choose to apply to study structural vibrations. 

The vibrations and their resulting sound radiations are described using spherical 

coordinates for convenience. Therefore, the main purpose of this chapter is to derive 

expressions for the sound power radiated from a pulsating sphere and an oscillating 

sphere. In chapter 4, the expressions will be used to approximate damping behavior of 

a vibrating structure.  

To derive expressions for the acoustic radiation from pulsating and oscillating 

spheres, let us start with the derivation of the three-dimensional acoustic governing 

differential equation, which is commonly called the wave equation.  

3.1 Basic Theory of Acoustics 

Blackstock [2000] presents a detailed derivation of the three-dimensional wave 

equation in spherical coordinates. This process is summarized in this section. 

3.1.1 Conservation of Mass 

Consider the flow of fluid through a differential volume, 𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧, fixed 

in space, shown in Fig. 3.1. 

 



14 
 

 

 

 

 

 

 

 

 

 
Fig. 3.1: Flow of Mass through a Fixed Volume Element 

 

In Fig. 3.1, 𝑢, 𝑣 and 𝑤 are the velocity components of the flow and 𝜌 is the 

density of the fluid.  

According to Antoine Lavoisier [1711-1765], who first outlined the law of 

conservation of mass, the mass of the isolated system remains unchanged as a result 

of processes acting upon the system. Therefore, for the fixed block in Fig. 3.1, it is 

required that the time rate of increase of mass inside the volume 𝑑𝑉 is equal to the 

net mass inflow through surface of 𝑑𝑉. In mathematical form,  

𝜕

𝜕𝑡
 𝜌𝑑𝑥𝑑𝑦𝑑𝑧 = 𝜌𝑑𝑦𝑑𝑧  𝑢 −  𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥   

+𝜌𝑑𝑧𝑑𝑥  𝑣 −  𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦                                        

+𝜌𝑑𝑥𝑑𝑦  𝑤 −  𝑤 +
𝜕𝑤

𝜕𝑧
𝑑𝑧    .              (𝐸𝑞. 3.1) 

After simplification, Eq. 3.1 is written as: 

𝜌  𝑤 +
𝜕𝑤

𝜕𝑧
𝑑𝑧 𝑑𝑥𝑑𝑦 

𝜌(𝑤)𝑑𝑥𝑑𝑦 

𝜌(𝑢)𝑑𝑦𝑑𝑧 

𝜌(𝑣)𝑑𝑥𝑑𝑧 

𝜌  𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥 𝑑𝑦𝑑𝑧 

𝜌  𝑣 +
𝜕𝑣

𝜕𝑦
𝑑𝑦 𝑑𝑥𝑑𝑧 

𝑥 

𝑧 

𝑦 

http://en.wikipedia.org/wiki/Antoine_Lavoisier
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𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕 𝜌𝑤 

𝜕𝑧
= 0  ,                       (𝐸𝑞. 3.2) 

or 

𝜕𝜌

𝜕𝑡
+ 𝛁 ∙  𝜌𝐮 = 0  ,                                         (𝐸𝑞. 3.3) 

where 𝐮 is the fluid velocity vector and 𝐮 = 𝐢𝑢 + 𝐣𝑣 + 𝐤𝑤. 𝛁 is the divergence 

operator, which is defined as: 

𝛁 ∙ 𝐮 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 

Eq. 3.3 is the equation of conservation of mass. 

3.1.2 Conservation of Momentum 

Consider the spatially-fixed reference volume, 𝑉, shown in Fig. 3.2. According 

to Newton's second law, the rate of change of the momentum of the volume is 

proportional to the resultant forces acting on the volume. Here the resultant forces are 

momentum inflow through the surface area S and the sum of the exterior forces. 

 

 

 

 

Fig. 3.2: Momentum Flow through an Arbitrary Volume, V 
 

Assume the fluid is inviscid (no shear stresses). The exterior forces consist of 

two parts, the surface force 𝑭𝒔  and body force 𝑩 . Here the surface force is 

considered as pressure due to the adjacent air. The body force is considered as the 

force due to gravity. Thus, 

𝐸𝑥𝑡𝑒𝑟𝑜𝑟 𝑓𝑜𝑟𝑐𝑒𝑠 = 𝑩 + 𝑭𝒔 =  𝑩𝜌𝑑𝑉
𝑉

−  𝑃𝑑𝑺
𝑆

  .               (𝐸𝑞. 3.4) 

𝑑𝑆 

𝜌𝐮 
𝑉 

𝑆 

http://en.wikipedia.org/wiki/Newton%27s_second_law
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The minus sign of the surface force indicates that the pressure, 𝑃, is inward 

pointing normal to the surface S.  

The quantity  𝜌𝐮 [𝐮 ∙  −𝑑𝑺 ] is the momentum per unit time carried by the 

inflowing fluid into the volume 𝑉 through the infinitessimal element with area, 𝑑𝑆. 

The total momentum inflow into 𝑉 is obtained by integrating over the surface, 𝑆. 

Thus, the mathematical form of conservation of momentum is expressed as: 

𝜕

𝜕𝑡
 𝜌𝐮𝑑𝑉 =  𝑩𝜌𝑑𝑉 −  𝑃𝑑𝑺

𝑆

−   𝜌𝐮 (𝐮 ∙ 𝑑𝑺)
𝑆

  .         (𝐸𝑞. 3.5)
𝑉𝑉

 

According to Gauss’s divergence theorem, the surface integrals can be 

converted to volume integrals: 

 𝑃𝑑𝑺
𝑆

=  𝛁𝑃𝑑𝑉   ;
𝑉

 

  𝜌𝐮 (𝐮 ∙ 𝑑𝑺)
𝑆

=  𝛁  𝜌𝐮 ∙ 𝐮 𝑑𝑉
𝑉

   . 

Substituting the converted integrals above into Eq. 3.5, the momentum equation 

can be rewritten as: 

𝜕

𝜕𝑡
 𝜌𝐮𝑑𝑉 =  𝑩𝜌𝑑𝑉 −  𝛁𝑃𝑑𝑉

𝑉

−  𝛁  𝜌𝐮 ∙ 𝐮 𝑑𝑉
𝑉

  .       (𝐸𝑞. 3.6)
𝑉𝑉

 

Bringing the time derivative operation inside the integral and rearranging, we 

obtain 

 (𝜌𝐮)𝑡𝑑𝑉 −  𝜌𝑩𝑑𝑉 +  𝛁𝑃𝑑𝑉
𝑉

+  𝛁  𝜌𝐮 ∙ 𝐮 𝑑𝑉
𝑉

= 0  .
𝑉𝑉

 

Collecting terms: 

   𝜌𝐮 𝑡 + 𝛁  𝜌𝐮 ∙ 𝐮 + 𝛁𝑃 − 𝜌𝑩 𝑑𝑉 = 0  .                (𝐸𝑞. 3.7)
𝑉
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Assuming the volume 𝑉 is arbitrary, then 

 𝜌𝐮 𝑡 + 𝛁  𝜌𝐮 ∙ 𝐮 + 𝛁𝑃 = 𝜌𝑩  .                              (𝐸𝑞. 3.8) 

Ignoring the force due to gravity, the body force on the right side vanishes. 

Expanding the first two terms, we obtain: 

𝜌𝑡𝐮 + 𝜌𝐮𝑡 +  𝛁 ∙  𝜌𝐮  𝐮 +  𝛁 ∙ 𝐮  𝜌𝐮 + 𝛁𝑃 = 0 . 

According to the equation of conservation of mass (Eq. 3.3), the first and the 

third term of the above equation vanish. We obtain the three-dimensional momentum 

equation as 

𝜌 𝐮𝑡 +  𝛁 ∙ 𝐮 𝐮 + 𝛁𝑃 = 0  .                                  (𝐸𝑞. 3.9) 

The material derivative of a vector is defined as 

𝐷𝐮

𝐷𝑡
=

𝜕𝐮

𝜕𝑡
+ 𝐮 𝛁 ∙ 𝐮   .                                    (𝐸𝑞. 3.10) 

Thus Eq. 3.9 can be written as: 

𝜌
𝐷𝐮

𝐷𝑡
+ 𝛁𝑃 = 0  .                                        (𝐸𝑞. 3.11) 

Eq. 3.11 is the vector form of the equation of conservation of momentum. 

3.2   Three-Dimensional Wave Equation 

Assuming 𝜌 ≅ 𝜌0, which is the steady state of density, the linear form of    

Eq. 3.3 is: 

𝛿𝜌𝑡 + 𝜌0𝛁 ∙ 𝐮 = 0  ,                                          𝐸𝑞. 3.12  

where the function 𝛿𝜌 is defined as the excess density: 

𝛿𝜌 ≡ 𝜌 − 𝜌0  .                                            (𝐸𝑞. 3.13) 

According to Pierce [1989], the static properties of a fluid, such as static density, 

𝜌0 and static pressure, 𝑝0, refer to the density and pressure of the fluid in which 
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acoustic perturbation is absent. 

The linear from of Eq. 3.11 is: 

𝜌0𝐮𝑡 + 𝛁𝑃 = 0  .                                        (𝐸𝑞. 3.14) 

Introducing the velocity potential, 𝜙, which is defined by 

𝐮 = 𝛁𝜙  ,                                                  (𝐸𝑞. 3.15) 

and substituting Eq. 3.15 into Eq. 3.14, we obtain: 

𝜌0𝛁𝜙𝑡 + 𝛁𝑃 = 0  .                                        (𝐸𝑞. 3.16) 

Integrating Eq. 3.16, we obtain 

𝑃 = −𝜌0𝜙𝑡 + 𝐶  ,                                          𝐸𝑞. 3.17  

where 𝐶 is a constant and can be neglected. The isentropic equation of state in an 

acoustic field is given as: 

𝑃 = 𝑐0𝛿𝜌  .                                                 (𝐸𝑞. 3.18) 

where 𝛿𝜌 ≡ 𝜌 − 𝜌0, and 𝑐0 is the speed of sound in a static fluid. Combining the 

equation of continuity (Eq. 3.3), the momentum equation (Eq. 3.1), the velocity 

potential (Eq. 3.15) and the equation of state (Eq. 3.18), we obtain: 

∇2𝜙 −
1

𝑐0
2
𝜙𝑡𝑡 = 0                                           (𝐸𝑞. 3.19) 

Solving Eq. 3.19 gives the velocity potential 𝜙, thus the pressure and particle 

velocity can be found from Eq. 3.15 and Eq. 3.17. The velocity potential is a 

convenient way to describe an acoustic field in terms of a single scalar function from 

which other quantities can be derived. 

3.2.1 Solutions for One-Dimensional Waves 

The three one-dimensional forms of Eq. 3.19 are: 
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Plane waves: 

𝜙𝑥𝑥 −
1

𝑐0
2 𝜙𝑡𝑡 = 0  .                                     (𝐸𝑞. 3.20) 

Cylindrical waves: 

𝜙𝑟𝑟 +
1

𝑟
𝜙𝑟 −

1

𝑐0
2 𝜙𝑡𝑡 = 0  .                             (𝐸𝑞. 3.21) 

Spherical waves: 

𝜙𝑟𝑟 +
2

𝑟
𝜙𝑟 −

1

𝑐0
2 𝜙𝑡𝑡 = 0  .                             (𝐸𝑞. 3.22) 

For a spherical wave, the general wave form is obtained from Eq. 22 as follows. 

Multiplying both sides of Eq. 3.22 by 𝑟 : 

2𝜙𝑟 + 𝑟𝜙𝑟𝑟 −
1

𝑐0
2
 𝑟𝜙 𝑡𝑡 = 0  , 

𝜙𝑟 + 𝜙𝑟 + 𝑟𝜙𝑟𝑟 −
1

𝑐0
2
 𝑟𝜙 𝑡𝑡 = 0  , 

(𝜙 + 𝑟𝜙𝑟)𝑟 −
1

𝑐0
2

(𝑟𝜙)𝑡𝑡 = 0  , 

∇2 𝑟𝜙 −
1

𝑐0
2

(𝑟𝜙)𝑡𝑡 = 0  .                               (𝐸𝑞. 3.23) 

The general solution of the plane wave equation 𝑐2∇2𝑢 − 𝑢𝑡𝑡 = 0 is in the 

form: 

𝑢 = 𝑓 𝑥 − 𝑐𝑡 + 𝑔 𝑥 + 𝑐𝑡   .                             (𝐸𝑞. 3.24) 

Since Eq. 3.23 has the same form as the plane wave equation, their solutions 

should have the same form. Thus the general solution for Eq. 3.23 is  

𝑟𝜙 = 𝑓 𝑟 − 𝑐0𝑡 + 𝑔 𝑟 + 𝑐0𝑡   ,                          (𝐸𝑞. 3.25) 

or 

𝜙 =
𝑓 𝑟 − 𝑐0𝑡 

𝑟
+

𝑔 𝑟 + 𝑐0𝑡 

𝑟
   ,                       (𝐸𝑞. 3.26) 

where the first term represents an outgoing wave while the second term represents an 

incoming wave. Another form of solution is also available. In certain cases this form 
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of solution will simplify calculations.  

𝜙 =
𝐹 𝑡 − 𝑟/𝑐0 

𝑟
+

𝐺 𝑡 + 𝑟/𝑐0 

𝑟
   .                       (𝐸𝑞. 3.27) 

This form of the solution will be used in the next section. 

3.2.2 Solutions for Waves from Pulsating Sphere 

To determine the wave motion in the fluid field in which there is a pulsating 

sphere, assume the radius of the sphere is 𝑟0, and the vibrational frequency of the 

sphere is 𝜔. The boundary conditions are: 

(1) The velocity potential, 𝜙 varies sinusoidally in a form of 𝜙 = 𝐴 sin 𝜔𝑡 at 

the surface of the sphere, 𝑟 = 𝑟0.  

(2) When 𝑟 > 𝑟0 , that is, when it is in the fluid field, reflections and 

absorptions from the farfield are neglected. Thus there are no incoming 

waves and the second term of Eq. 3.27 vanishes. 

From boundary condition (1) and Eq. 3.27, we obtain 

𝜙 = 𝐴 sin 𝜔𝑡 =
𝐹 𝑡 − 𝑟0/𝑐0 

𝑟0
   .                         (𝐸𝑞. 3.28) 

Now 𝐹(𝑡) is solved by replacing 𝑡 − 𝑟/𝑐0 as 𝑡: 

𝐹 𝑡 = 𝑟0𝐴 sin 𝜔  𝑡 +
𝑟0

𝑐0
   .                            (𝐸𝑞. 3.29) 

The final solution is in the form: 

𝜙 =
𝐹 𝑡 − 𝑟/𝑐0 

𝑟
=

𝑟0𝐴

𝑟
sin 𝜔  𝑡 −

𝑟

𝑐0
+

𝑟0

𝑐0
   .              (𝐸𝑞. 3.30) 

Define wave number, 𝑘 = 𝜔/𝑐0  = 2𝜋/𝜆  , where 𝜆  is the wave length,     

Eq. 3.30 can be finally written as 

𝜙 =
𝐴𝑟0

𝑟
sin[𝜔𝑡 − 𝑘 𝑟 − 𝑟0 ]  .                             (𝐸𝑞. 3.31) 

This is the velocity potential solution for waves from a pulsating sphere. 
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3.3 Radiation from a Pulsating Sphere 

The fluid velocity vector 𝐮 has been defined in Section 3.1.1. In spherical 

coordinates, from Eq. 3.31, the velocity vector is written as: 

𝐮 = 𝜙𝑟 = −
𝐴𝑟0

𝑟2
sin[𝜔𝑡 − 𝑘 𝑟 − 𝑟0 ] −

𝑘𝐴𝑟0

𝑟
cos 𝜔𝑡 − 𝑘 𝑟 − 𝑟0    . 

(𝐸𝑞. 3.32) 

The pressure is related to 𝜙𝑟  through Eq. 3.17. Thus, in spherical coordinates: 

𝑃 = −𝜌0𝜙𝑡 = −
𝜔𝜌0𝐴𝑟0

𝑟
cos 𝜔𝑡 − 𝑘 𝑟 − 𝑟0    .                (𝐸𝑞. 3.33) 

When 𝑟 = 𝑟0, the velocity at the surface of the sphere is 

𝐮(r0) = −
𝐴𝑟0

𝑟0
2

sin[𝜔𝑡 − 𝑘 𝑟0 − 𝑟0 ] −
𝑘𝐴𝑟0

𝑟0
cos 𝜔𝑡 − 𝑘 𝑟0 − 𝑟0   

                  = −
𝐴

𝑟0
sin 𝜔𝑡 − 𝑘𝐴 cos 𝜔𝑡  

= −
𝐴

𝑟0

 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡   ;                                                (𝐸𝑞. 3.34) 

and when 𝑟 = 𝑟0, the pressure at the surface of the sphere is 

𝑃 𝑟0 = −
𝜔𝜌0𝐴𝑟0

𝑟0
cos 𝜔𝑡 − 𝑘 𝑟0 − 𝑟0   

= −𝜔𝜌0𝐴 cos 𝜔𝑡   .                                               (𝐸𝑞. 3.35) 

Now consider the work done by the sphere’s surface. Consider an infinitesimal 

piece of sphere surface with an area of 𝑑𝑆. During a time period of 𝑑𝑡, the work 

done by the movement of 𝑑𝑆 is: 

𝑑𝑊 =  𝑃 𝑟0 × 𝑑𝑆 ×  u 𝑟0 × 𝑑𝑡   .                        (𝐸𝑞. 3.36) 

This is also the energy dissipated 𝑑𝐸  from the same surface. Thus the 

instantaneous power radiated from a radially pulsating sphere is: 

 

 



22 
 

Π =  
𝑑𝐸

𝑑𝑡𝑆

=  
 𝑃 𝑟0 × 𝑑𝑆 ×  u 𝑟0 × 𝑑𝑡 

𝑑𝑡𝑆

 

=  𝑃 𝑟0 × u 𝑟0 
𝑑𝑆

𝑑𝑆  .                                  (𝐸𝑞. 3.37) 

Substituting Eq. 3.34 and Eq. 3.35 into Eq. 3.37, we obtain 

Π =  [−𝜔𝜌0𝐴 cos 𝜔𝑡 ] × {−
𝐴

𝑟0

 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡  }
𝑑𝑆

𝑑𝑆 

             =  4𝜋𝑟0
2 

𝐴2𝜔𝜌0

𝑟0
cos 𝜔𝑡 [ sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡 ] 

= 4𝜋𝜌0𝑟0𝐴
2𝜔 cos 𝜔𝑡 [ sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡 ]  .                      (𝐸𝑞. 3.38) 

The time-averaged power radiated from the radially pulsating sphere is 

Π𝑎𝑣𝑒 =
 Π
𝑇

𝑑𝑡

𝑇
  .                                         (𝐸𝑞. 3.39) 

Substituting Eq. 3.38 into Eq. 3.39, we obtain 

Π𝑎𝑣𝑒 = ( 4𝜋𝜌0𝑟0𝐴
2𝜔 cos 𝜔𝑡 [ sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡 ]

𝑇

𝑑𝑡)/𝑇 

=
  4𝜋𝜌0𝑟0𝐴

2𝜔   cos 𝜔𝑡 sin 𝜔𝑡 
𝑇

𝑑𝑡 + 𝑘𝑟0  cos2 𝜔𝑡 𝑑𝑡
𝑇

  

𝑇
  .   

(𝐸𝑞. 3.40) 

The following trigonometric relationships will be used: 

1

𝑇
 𝑠𝑖𝑛2

𝑇

0

𝜔𝑡𝑑𝑡  ; 

=
1

𝑇𝜔
 

1 − cos 2 𝜔𝑡 

2
𝑑 𝜔𝑡 

𝑇

0

  ;                                      

=
1

𝑇𝜔
[ 

1

2
𝑑 𝜔𝑡 −

1

4
 cos 2 𝜔𝑡 𝑑2(𝜔𝑡)]

𝑇

0

𝑇

0

   ;          

=
1

𝑇𝜔
 
1

2
𝜔𝑇 +

1

4
sin 2 𝜔𝑇    ;                                           
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=
1

𝑇𝜔
[
1

2
𝜔𝑇 +

1

4
sin 2(𝜔

2𝜋

𝜔
)]  ;                                        

=
𝜔𝑇

2𝑇𝜔
=

1

2
  .                                                  (𝐸𝑞. 3.41 𝑎) 

Other relationships include: 

1

𝑇
 cos2 𝜔𝑡 𝑑𝑡 =

1

2
  ;                               (𝐸𝑞. 3.41 𝑏)

𝑇

0

 

1

𝑇
 sin 𝜔𝑡 cos(𝜔𝑡) 𝑑𝑡 = 0

𝑇

0

 .                   (𝐸𝑞. 3.41 𝑐) 

Substituting Eq. 3.41-b and Eq. 3.41-c into Eq. 3.40 and simplifying, we obtain 

Π𝑎𝑣𝑒 =  4𝜋𝜌0𝑟0𝐴
2𝜔 

𝑘𝑟0

2
= 2𝜋𝑘𝜌0𝑟0

2𝐴2𝜔  .              (𝐸𝑞. 3.42) 

Note the wave number, 𝑘 = 𝜔/𝑐. Eq. 3.42 is written as 

Π𝑎𝑣𝑒 = 2𝜋𝑘2𝑟0
2𝜌0𝑐0𝐴

2  .                               (𝐸𝑞. 3.43) 

The velocity at the surface of the pulsating sphere is given by Eq. 3.34, repeated 

here: 

𝐮 r0 = −
𝐴

𝑟0

 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡   . 

Since the sphere is vibrating harmonically, the amplitude of the velocity at the 

surface is basically a sinusoidal function, 𝐮 r0 = 𝑢0 sin(𝜔𝑡 + 𝜑). Hence, 

𝐮 r0 = −
𝐴

𝑟0

 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡  = 𝑢0 sin 𝜔𝑡 + 𝜑   . 

That is, 

−𝐴 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡  = 𝑢0𝑟0 sin 𝜔𝑡 cos 𝜑 + cos 𝜔𝑡 sin 𝜑   . 

By comparing the left side and right side, the amplitude is: 

𝐴 = −𝑢0𝑟0 cos 𝜑   ;                                  (𝐸𝑞. 3.44 𝑎) 

and 

𝐴𝑘𝑟0 = −𝑢0𝑟0 sin 𝜑   .                               (𝐸𝑞. 3.44 𝑏) 
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Squaring both Eq. 3.44-a and Eq. 3.44-b, 

𝐴2 =  𝑢0𝑟0 
2 cos2 𝜑  ,                               (𝐸𝑞. 3.45 𝑎) 

𝐴2(𝑘𝑟0)2 = (𝑢0𝑟0)2 sin2 𝜑   .                        (𝐸𝑞. 3.45 𝑏) 

Adding Eq. 3.45-a and Eq. 3.45-b together, we obtain 

𝐴2 1 +  𝑘𝑟0 
2 =  𝑢0𝑟0 

2  . 

Solving for 𝐴2, 

𝐴2 =
 𝑢0𝑟0 

2

 1 +  𝑘𝑟0 2 
  .                                    (𝐸𝑞. 3.46) 

Substituting Eq. 3.46 into Eq. 3.43 and simplifying, we have the final 

expression for the time-averaged power radiated from a pulsating sphere: 

Π𝑎𝑣𝑒 = 2𝜋𝑟0
2𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                      (𝐸𝑞. 3.47) 

In Eq. 3.47, when 𝑘𝑟0 ≫ 1, the vibrational frequency is relatively high and the 

wave length is much smaller that the dimension of the sphere. The power radiated per 

unit surface area is 1

2
𝑢0

2𝜌0𝑐0. This is the same expression as for radiation to one side 

from a rigid plate with a vibrational velocity amplitude, 𝑢0.  

When 𝑘𝑟0 ≪ 1, the vibrational frequency is relatively low and the wave length 

is much larger than the dimension of the sphere. The expression gets close to zero, 

which means for a vibrating target with a dimension much smaller than the wave 

length, the efficiency of radiation is low; there is hardly any radiation from the 

vibrating source. This is referred to as small source vibration, according to Blackstock 

[2000]. 

3.4 Radiation from an Oscillating Sphere 

Also, according to literature (ANSOL, Advanced Numerical Solutions), the 
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time-averaged power radiated from a transversely oscillating sphere is derived as: 

Π𝑎𝑣𝑒 =
2𝜋

3
𝑟0

2𝑢0
2𝜌0𝑐0

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                      (𝐸𝑞. 3.48) 

3.5 Radiation Efficiency 

Eq. 3.47 shows that the radiated power is low when the vibrational frequency is 

very low (𝑘𝑟0 ≪ 1), and the radiated power is high when the vibrational frequency is 

very high (𝑘𝑟0 ≫ 1). To understand this idea, the following study is performed. 

The pressure at the surface of the sphere is given by Eq. 3.35, repeated here: 

𝑃 𝑟0 = −𝜔𝜌0𝐴 cos 𝜔𝑡   ,                               (𝐸𝑞. 3.35) 

where 𝐴 is given by Eq. 3.45(a), repeated here: 

𝐴2 =  𝑢0𝑟0 
2 cos2 𝜑  ,                               (𝐸𝑞. 3.45 𝑎) 

Substituting Eq. 3.45(a) into Eq. 3.35, the pressure at the surface of a pulsating 

sphere can be written as: 

𝑃 𝑟0 = −𝜔𝜌0𝑢0𝑟0cos𝜑 cos 𝜔𝑡   .                       (𝐸𝑞. 3.49) 

The velocity at the surface of the sphere is given by Eq. 3.34, repeated here: 

𝐮 r0 = −
𝐴

𝑟0

 sin 𝜔𝑡 + 𝑘𝑟0 cos 𝜔𝑡    .                     (𝐸𝑞. 3.34) 

The displacement at the surface of the sphere is obtained by integrating Eq. 3.34 

over time, 𝑡: 

d r0 = −
cos𝜑

𝑟0
 −

1

𝜔
cos 𝜔𝑡 +

𝑘𝑟0

𝜔
sin 𝜔𝑡    .             (𝐸𝑞. 3.50) 

In Eq. 3.49 and Eq. 3.50, 𝑟0 is the radius of the sphere, 𝑢0 is the amplitude of 

vibrational speed, and 𝜌0 is the density of air.  

From Eq. 3.45 (a) and Eq. 3.45 (b), we can solve for 𝜑 as: 

𝜑 = tan−1(±
1

𝑘𝑟0
)  ,                                      (𝐸𝑞. 3.51) 
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thus when 

𝑘𝑟0 ≫ 1, 𝜑 ≈ tan−1 0 = 0  ; 

cos 𝜑 = 1  ;                                              (𝐸𝑞. 3.52) 

when 

𝑘𝑟0 ≪ 1, 𝜑 ≈ tan−1 ∞ =
𝜋

2
  ; 

cos 𝜑 = 0  .                                               (𝐸𝑞. 3.53) 

Since the energy radiated from the pulsating sphere approximately equals to the 

work done by the moving of the surface of the sphere, that is, 

𝐸 ≈
1

𝑇
 𝑃 𝑟0 × d r0 
𝑇

𝑑𝑡  .                              (𝐸𝑞. 3.54) 

Substituting Eq. 3.52 into Eq. 3.54, when the frequency is high, the energy 

dissipated from the sphere is:  

                      𝐸 ≈
1

𝑇
 𝑃 𝑟0 × d r0 
𝑇

𝑑𝑡 

=
1

𝑇
  −𝜔𝜌0𝑢0𝑟0 cos 𝜔𝑡  ×  −

1

𝑟0
 −

1

𝜔
cos 𝜔𝑡 +

𝑘𝑟0

𝜔
sin 𝜔𝑡   𝑑𝑡

𝑇

 

                          ≠ 0  . 

On the other hand, substituting Eq. 3.53 into Eq. 3.54, when the frequency is 

low, the energy dissipated from the sphere is: 

                𝐸 ≈
1

𝑇
 𝑃 𝑟0 × d r0 
𝑇

𝑑𝑡 

≈
1

𝑇
  −𝜔𝜌0𝑢0𝑟0(0) cos 𝜔𝑡  ×  −

0

𝑟0
 −

1

𝜔
cos 𝜔𝑡 +

𝑘𝑟0

𝜔
sin 𝜔𝑡   𝑑𝑡

𝑇

 

                    = 0  . 

This explains why the acoustic energy radiation is low at low frequencies. 
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In this chapter we have derived the expression for acoustic radiation from a 

pulsating sphere and an oscillating sphere. A study was performed to help us 

understand why acoustic radiation is low under low frequencies, and why it is high 

under high frequencies. Eq. 3.47 and Eq. 3.48 will be related to damping based on 

energy radiation in the next chapter. In the next chapter, an equivalent damping ratio 

will be derived based upon the radiated acoustic energy from a vibrating target. 
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CHAPTER 4. 

ACOUSTIC DAMPING OF SPHERES 

 

4.1 General 

Buildings and elements of buildings are immersed in air, and this air has an 

effect upon the vibrations, especially upon the transmission of vibrational energy from 

machinery to a building’s walls and roofs. The interaction between the solid structure 

and the air may need to be taken into consideration in modeling building vibrations. 

There is a fundamental difference between the vibrational character of air 

enclosed within a structure and the vibrational character of air surrounding the 

structure. Ortega [2008] has shown in previous work that the enclosed air has the 

effect of altering structural modes of vibration and even adding new modes of 

vibration. Although air has an intrinsic damping effect in which acoustic energy is 

converted to heat, this effect is minor and thus the damping effect of the enclosed air 

is ignored in this thesis. 

On the other hand, air surrounding the building radiates vibrational energy away 

from the structure, and this radiated energy is lost from the building system. To 

understand the damping effect of this radiated energy, we conduct the following study. 

4.2 Equivalent Damping Coefficient based on Pulsating Sphere 

A simple system is shown in Fig. 4.1. A pulsating sphere is modeled as a 

spring-mass system with enclosed and surrounding air. The pulsating surface of the 

sphere can be modeled as an infinite number of infinitesimal spring-mass systems. 
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Each of the infinitesimal spring mass systems has a vibrating mass, 𝑚0, and a spring 

stiffness, 𝑘0. For the whole system, we assume the total lumped mass, 𝑚, includes 

inside air, and the total spring stiffness is 𝑘. The effect of inside air on the mass is 

also included in the spring stiffness. After an initial displacement, ∆0, the whole 

system undergoes free vibration without damping (except by interaction with the air), 

and energy is lost from the spring-mass system as vibrational energy is dissipated into 

the surrounding air.  

 
Fig. 4.1: A Spring-Mass System Simulating the Behavior of a Pulsating Sphere 

 

The total initial potential energy, 𝐸0, of the system is: 

𝐸0 =
1

2
𝑘𝛥0

2   .                                             (𝐸𝑞. 4.1) 

Assuming the damping of the air is below critical, the displacement, 𝛥, and 

velocity, 𝑢, are approximately: 

         𝛥 ≃ 𝛥0 cos 𝜔𝑡                                              (𝐸𝑞. 4.2)                          

𝛥0 

𝑘0 

𝑚0 

 𝑘0 = 𝑘 

 𝑚0 = 𝑚 
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𝑢 ≃ −𝛥0ω sin 𝜔𝑡                                           (𝐸𝑞. 4.3)    

Eq. 3.47 has shown that the time-averaged power radiated from a pulsating 

sphere is given as: 

Π𝑎𝑣𝑒 = 2𝜋𝑟0
2𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                       (𝐸𝑞. 4.4) 

where 2𝜋𝑟0
2 can be written as 𝐴 2 , which is half of the surface area of the sphere. 

Thus, Eq. 4.4 can be written as: 

Π𝑎𝑣𝑒 =
𝐴

2
𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                         (𝐸𝑞. 4.5) 

The energy dissipated per cycle due to acoustic radiation is obtained by 

multiplying Eq. 4.5 by the period, 𝑇: 

𝐸𝑐𝑦𝑐𝑙𝑒 =
𝐴

2
𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
𝑇  .                       (𝐸𝑞. 4.6) 

The model in Fig. 4.1 is assumed to be undergoing free vibration without 

damping. Only acoustic energy radiation is present. Now we find the equivalent 

damping coefficient in this system by looking at an equivalent viscously damped 

system, as shown in Fig. 4.2. 

 

 
Fig. 4.2: Air-Damped System is Equated to a System with Damper, 𝐜. 

 

Chopra [2007] has shown that for a system with viscous damping, the energy 

dissipated from time 0 to time 𝑡 is : 

𝑚0 

𝑚0 

𝑘0 𝑘0 𝑐 
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𝐸𝐷 =  𝑓𝐷𝑑∆=  (𝑐
𝑡

0

𝑢)𝑢𝑑𝑡 =  𝑐𝑢2𝑑𝑡
𝑡

0

  .                (𝐸𝑞. 4.7) 

where 𝑐  is the damping coefficient, 𝑢  is the velocity function and 𝑓𝐷  is the 

damping force. Substituting the speed function Eq. 4.3 into Eq. 4.7, the total energy 

dissipated due to damping is approximately: 

𝐸𝐷 =  𝑐 −𝛥0ω sin ωt  2𝑑𝑡
𝑡

0

  .                           (𝐸𝑞. 4.8) 

For one full vibration cycle, 𝑡 =  𝑇, the energy dissipated due to damping over 

one time period 𝑇 is: 

𝐸𝐷 =  𝑐 −𝛥0ω sin ωt  2𝑑𝑡
𝑇

0

 

                                                         = 𝑐(𝛥0𝜔)2  sin2 ωt
𝑇

0

𝑑𝑡 

=
1

2
𝑐 𝛥0𝜔 2𝑇  .                                                     (𝐸𝑞. 4.9) 

Eq. 4.9 is approximately the energy dissipated per cycle of the system under 

free vibration with viscous damping. To find the equivalent damping coefficient for 

the air-damped system, let Eq. 4.9 equal Eq. 4.6: 

𝐸𝐷 = 𝐸𝑐𝑦𝑐𝑙𝑒   . 

That is, 

𝐸𝐷 =
1

2
𝑐 𝛥0𝜔 2𝑇 =

𝐴

2
𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
𝑇 = 𝐸𝑐𝑦𝑐𝑙𝑒   .    (𝐸𝑞. 4.10) 

Note that 𝑐0  is the sound speed while 𝑐 is the damping coefficient for a 

viscously damped system. We may want to write the damping coefficient, 𝑐, as 𝑐𝑒𝑞  

because it is the equivalent damping coefficient for the air-damped system.  

Thus Eq. 4.10 becomes: 
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𝐸𝐷 =
1

2
𝑐𝑒𝑞  𝛥0𝜔 2𝑇 =

𝐴

2
𝑢0

2𝜌0𝑐0

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
𝑇 = 𝐸𝑐𝑦𝑐𝑙𝑒   . (𝐸𝑞. 4.11) 

Solving Eq. 4.11 for 𝑐𝑒𝑞 : 

𝑐𝑒𝑞 = 𝜌0𝑐0𝐴 
 𝑘𝑟0 

2

1 +  𝑘𝑟0 2
 .                              (𝐸𝑞. 4.12) 

This is the form of the equivalent damping coefficient for a pulsating sphere. 

The critical damping coefficient 𝑐𝑐𝑟  is defined by 𝑐𝑐𝑟 = 2 𝑘𝑚 = 2𝜔𝑚. Based on 

Eq. 4.12, the equivalent damping ratio is found to be: 

𝜉𝑒𝑞 =
𝑐𝑒𝑞

𝑐𝑐𝑟
=

𝜌0𝑐0𝐴

2𝜔𝑚

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                        (𝐸𝑞. 4.13) 

This is the expression for the equivalent damping coefficient due to radiated 

acoustic energy from a pulsating sphere.  

4.3 Equivalent Damping Coefficient Based on Oscillating Sphere 

Eq. 3.48 has shown that the time-averaged power radiated from a transversely 

oscillating sphere is given as: 

Π′𝑎𝑣𝑒 =
2𝜋

3
𝑟0

2𝑢0
2𝜌0𝑐0

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                      (𝐸𝑞. 4.14) 

Going through the same procedure as in section 4.2, the equivalent damping 

coefficient due to radiated acoustic energy from an oscillating sphere is found to be: 

𝜉′𝑒𝑞 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                           (𝐸𝑞. 4.15) 

The differences between Eq. 4.13 and Eq. 4.15 are: 

(1) A pulsating sphere is approximately equivalent to a baffled piston. Thus,  

Eq. 4.13 can be applied to a baffled vibrating plate to calculate its damping 

ratio because it assumes the propagation of acoustic wave is radial, which is 

close to the acoustic wave from a pulsating sphere, at least in the far-field. 

(2) An oscillating sphere is approximately equivalent to an un-baffled piston. 
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Thus, Eq. 4.15 can be applied to an un-baffled vibrating plate to calculate 

its damping ratio because the propagation of acoustic wave is non-radial, 

which is close to the acoustic wave from an oscillating sphere. 

Eq. 4.13 and Eq. 4.15 will be used later to predict the damping ratios of several 

experimental devices. The results will be compared with test results. 

In summary, using acoustic theory, we have determined the expressions for 

damping ratios based on both a pulsating and an oscillating sphere. We will use these 

expressions to make approximate models of vibrating buildings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

CHAPTER 5. 

ENERGY DISSIPATION : FLUID DYNAMICS THEORY 

 

5.1  General 

In chapter 4 the damping effect of a system due to acoustic radiation was 

calculated. This calculation assumes the energy lost is purely caused by acoustic 

power radiation. As stated in chapter 2, acoustic theory assumes that the fluid in 

which the vibrating target is immersed has small particle motions. On the other hand, 

the fluid dynamics theory used in this thesis assumes that the fluid has large particle 

displacements, and the fluid has a steady flow velocity. For a vibrating target, the air 

flow around it is not steady. However it can be assumed to be steady when the 

vibrational frequency is low and the particle displacement is much larger than the 

dimension of the target.  

 

 

 

 

 

 

Fig. 5.1: Pressure and Shear Stress on a Wing 
 

Fluid dynamics theory assumes that structures immersed in a flowing fluid like 

air are under both pressure and viscous forces from the fluid. The sum of the pressure 

Free Stream Direction 

Negative 
pressure 

Positive pressure 

Shear stress 
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and the viscous force is divided into two parts. The force that acts normal to the 

free-stream direction is the lift; the force that acts parallel to the free-stream direction 

is the drag. This concept is shown in Fig. 5.1. The high speed of flow over the top of 

the airfoil causes a negative pressure on the top surface. On the bottom surface, the 

low speed of flow causes a positive pressure. The negative pressure over the top and 

the positive pressure under the bottom contribute to the lift. The shear stress which is 

parallel to the surface contributes largely to the drag. 

For a uniform vibrating target, the air flow around the target causes the drag 

force. The work done by the drag force could cause energy to be lost. In this chapter, 

analytical solutions for energy lost due to drag force will be derived to compare with 

the energy lost due to acoustic radiation.  

5.2  Drag of Bodies 

The general analytical solution for lift and drag can be derived by looking at a 

differential area on the bottom surface of the airfoil shown in Fig. 5.2.  

 

 

 

 

 

 

 

 
Fig. 5.2: Pressure and Viscous Forces on a Differential Area 

𝑑𝐹𝑣 = 𝜏𝑑𝐴 
−𝜏𝑑𝐴 cos 𝜃 

𝜏𝑑𝐴 sin 𝜃 

𝑑𝐹𝑝 = 𝑝𝑑𝐴 
−𝑝𝑑𝐴 sin 𝜃 

−𝑝𝑑𝐴 cos 𝜃 

𝐹𝐷  

𝐹𝐿 

𝜃 

Flow Direction 
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In Fig. 5.2, the magnitude of pressure force is 𝑑𝐹𝑝 = 𝑝𝑑𝐴 and the magnitude of 

viscous force is 𝑑𝐹𝑣 = 𝜏𝑑𝐴 . 𝐹𝐿  and 𝐹𝐷  are the lift and drag. Thus, from 

trigonometric relationships, we have 

𝑑𝐹𝐿 = −𝑝𝑑𝐴 sin 𝜃 − 𝜏𝑑𝐴 cos 𝜃   ,                           (𝐸𝑞. 5.1) 

and 

𝑑𝐹𝐷 = −𝑝𝑑𝐴 cos 𝜃 + 𝜏𝑑𝐴 sin 𝜃   .                          (𝐸𝑞. 5.2) 

Integrating Eq. 5.1 and Eq. 5.2 over the entire surface of the air foil 𝐴, we 

obtain the total lift force and drag as:  

𝐹𝐿 =   −𝑝𝑑𝐴 sin 𝜃 − 𝜏𝑑𝐴 cos 𝜃 𝑑𝐴   ,                     (𝐸𝑞. 5.3) 

and  

𝐹𝐷 =  (−𝑝𝑑𝐴 cos 𝜃 + 𝜏𝑑𝐴 sin 𝜃) 𝑑𝐴  .                     (𝐸𝑞. 5.4) 

5.3  Drag of Thin Plate 

Consider a thin plate that is placed normal to a fluid flow, shown in Fig. 5.3. 

The plate has dimensions of 𝐵 × 𝑙; the thickness is neglected. 

 

 

 

 

 

 

 

Fig. 5.3: Plate Normal to Air Flow 
 

𝐵 
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+ 

+ 

+ 
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When the plate is normal to the flow, the viscous forces act symmetrically about 

the centerline of the plate and are in opposite directions. Thus they do not contribute 

to either lift or drag. Only the pressure force contributes to the drag. Eq. 5.4 is then 

written as: 

𝐹𝐷 =  (−𝑝𝑑𝐴 cos 𝜃) 𝑑𝐴  .                                (𝐸𝑞. 5.5) 

Roberson and Crowe [1975] showed that, with certain assumptions, the pressure 

on the rear side of the plate is constant and is given as 

𝑝 = 𝑝0 − 1.2𝜌
𝑉0

2

2
  .                                      (𝐸𝑞. 5.6) 

where 𝑝0 is the free-stream pressure, 𝜌 is the density of the fluid, and 𝑉0 is the 

free-stream speed. According to Fig. 5.2, 𝜃  is the angle from the free-stream 

direction to the pressure force direction. For the rear side, 𝜃 = 0. The contribution to 

drag for the rear side is 

𝐹𝐷,𝑟𝑒𝑎𝑟 = − 𝑝0 − 1.2𝜌
𝑉0

2

2
 𝐵𝑙  .                          (𝐸𝑞. 5.7) 

For the front side, 𝜃 = 𝜋. 

𝐹𝐷,𝑓𝑟𝑜𝑛𝑡 =   𝑝0 + 𝐶𝑝𝜌
𝑉0

2

2
 𝑙

𝐵/2

−𝐵/2

𝑑𝑦  .                    (𝐸𝑞. 5.8) 

where 𝐶𝑝  is the average pressure coefficient over the front side. The total drag is the 

summation of drag on both rear side and front side. After simplification, we obtain: 

𝐹𝐷 = 𝐹𝐷,𝑟𝑒𝑎𝑟 + 𝐹𝐷,𝑓𝑟𝑜𝑛𝑡 = 𝜌
𝑉0

2

2
𝑙   𝐶𝑝𝑑𝑦

𝐵
2

−
𝐵
2

+ 1.2𝐵   .    (𝐸𝑞. 5.9) 

where  𝐶𝑝𝑑𝑦
𝐵

2

−
𝐵

2

 is given as 0.8𝐵 for a thin plate. Thus Eq. 5.9 is simplified as 

𝐹𝐷 = 2𝜌𝑉0
2𝑙𝐵  .                                           (𝐸𝑞. 5.10) 
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According to Roberson and Crowe [1975], the parameter in the parenthesis in 

Eq. 5.9 varies with different shapes. Thus it is redefined as 𝐶𝐷, which is called the 

coefficient of drag. Eq. 5.9 is rewritten in a more general manner: 

𝐹𝐷 = 𝐶𝐷𝐴𝑝𝜌
𝑉0

2

2
  .                                     (𝐸𝑞. 5.11) 

where 𝐴𝑝  is the projected area of the body. 

For example, for a specific rectangular plate with 𝑙/𝐵 = 1, 𝐶𝐷 = 1.18. Thus 

we obtain the drag force for a square plate placed normal to the fluid flow as 

𝐹𝐷 = 0.59𝐴𝑝𝜌𝑉0
2  .                                     (𝐸𝑞. 5.12) 

5.4  Power Dissipated Due to Drag 

Consider a target vibrating with such a low frequency that the air flowing 

around the target is assumed to have a steady flow velocity, and we assume that fluid 

dynamics theory applies. Remember that for a vibrating target, the displacement and 

velocity are given in Eq. 4.2 and Eq. 4.3 as 

        𝛥 ≃ 𝛥0 cos ωt   ,                                             (𝐸𝑞. 4.2)                          

u ≃ −𝛥0ω sin ωt   .                                          (𝐸𝑞. 4.3)  

For one cycle, the work done by drag is: 

𝑊𝐷 =  (𝐹𝐷) u dt
𝑇

0

= −4   𝐶𝐷𝐴𝑝𝜌
𝑉0

2

2
  𝛥0ω sin ωt  dt

𝑇
4

0

  .  (𝐸𝑞. 5.13) 

If we assume the speed of the vibrating target is time-averaged: 

𝑉0 =  
1

𝑇
 𝑢

𝑇

0

𝑑𝑡 =  
1

𝑇
  −Δ0ω sin ωt  

𝑇

0

𝑑𝑡 =
𝛥0

𝑇
  .         (𝐸𝑞. 5.14) 

Substituting Eq. 5.14 into Eq. 5.13 and simplifying, the work done by drag in 

one cycle is: 
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𝑊𝐷 = 2𝐶𝐷𝐴𝑝𝜌
𝛥0

3

𝑇2
  .                                   (𝐸𝑞. 5.15) 

Eq. 5.15 is the energy lost in one cycle of vibration. Now according to Eq. 4.13, 

the energy dissipated due to viscous damping, 𝑐, is given by: 

𝐸𝑑𝑎𝑚𝑝 =
1

2
𝑐𝑒𝑞  𝛥0𝜔 2𝑇  .                               (𝐸𝑞. 5.16) 

To find the equivalent damping coefficient for drag, let Eq. 5.15 equal Eq. 5.16. 

Thus, 

2𝐶𝐷𝐴𝑝𝜌
𝛥0

3

𝑇2
=

1

2
𝑐𝑒𝑞  𝛥0𝜔 2𝑇  . 

Solving for 𝑐𝑒𝑞  and simplifying, we obtain: 

𝑐𝑒𝑞 =
1

𝜋2
𝐶𝐷𝐴𝑝𝜌𝛥0𝑓  .                                     (𝐸𝑞. 5.17) 

where 𝑓 is the vibrational frequency with a unit of hertz. 

Writing the density of air as 𝜌0, and the area of the vibrating target as 𝐴, the 

damping ratio for a vibrating plate based on drag is then: 

𝜉′′𝑒𝑞 =
𝑐𝑒𝑞

𝑐𝑐𝑟
=

1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
  ,                                    (𝐸𝑞. 5.18) 

where 𝑐𝑐𝑟  has been previously defined as the critical damping coefficient, 

𝑐𝑐𝑟 = 2𝜔𝑚, where 𝑚 is the mass of the vibrating target. This equation will be used 

later to calculate the damping ratio based on experimental devices. The result will 

then be compared with test results. 

Now we have related the energy dissipation based on fluid dynamic theory to 

the damping effect upon a structure. Eq. 5.18 is derived by equalizing the energy lost 

from a viscously damped system to the work done by the drag force caused by a 

steady fluid flow. However, the vibrational frequency range should be low enough for 

the structure’s average vibrational speed to be approximated by the steady fluid flow 



40 
 

speed, which generates the viscous forces acting symmetrically about the central line 

of the plate (shown in Fig. 5.3). The fluid flow shown in Fig. 5.3 causes fluid 

transportation from one side of the plate to the other, which is called fluid convection. 

If the vibrational frequency is so high that there is not enough time for the fluid to be 

transported back and forth, then drag cannot be generated, and rotational flow cannot 

emerge and the vibrating structure generates plane waves. In this case fluid dynamics 

theory no longer applies. Therefore, we expect Eq. 5.18 is applicable to 

low-frequency oscillatory vibration.  

On the other hand, the equivalent damping ratio based on acoustic theory (Eq. 

4.15, Eq. 4.17) was derived by equalizing the energy lost from a viscously damped 

system to the acoustic power radiated from either a pulsating sphere or an oscillating 

sphere. To apply these two equations, we expect the vibrational frequency should be 

high enough for structures to generate sound so that acoustic radiation exists.  

The question of when fluid dynamics theory governs behavior and when 

acoustic theory governs behavior is deferred to chapter 10. 

The next chapter presents theoretical acoustic solutions for a baffled piston.  
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CHAPTER 6. 

A BAFFLED PISTON : RAYLEIGH INTEGRAL SOLUTION 

 

6.1  General 

To this point, we have studied the acoustic air-damping effect of a pulsating 

sphere and an oscillating sphere; the equivalent damping ratio can also be calculated 

using Eq. 5.18, which is based on fluid dynamics theory. All these equations are 

repeated here. 

𝜉𝑒𝑞 =
𝜌0𝑐0𝐴

2𝜔𝑚

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
 ;                                    (𝐸𝑞. 4.13) 

𝜉′𝑒𝑞 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  ;                                   (𝐸𝑞. 4.15) 

𝜉′′𝑒𝑞 =
1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
 ,                                      (𝐸𝑞. 5.18) 

We have looked at two opposite extremes where either high-frequency vibration 

(which generates acoustic radiation) or low-frequency vibration (which generates 

rotational fluid convection) applies, respectively. To understand how important the 

fluid flow’s influence is, we are now interested in the behavior of a vibrating structure 

with little fluid convection, as a comparison. For such a study, we now consider the 

vibration of a baffled piston.  

A baffled piston is an infinite plane (the baffle) except for a section (the piston), 

which vibrates normal to the plane. The purpose of the baffle is to restrict the sound 

field to only one direction. In this chapter, we will derive the analytical solution for the 

baffled piston, which is called the Rayleigh Integral. The solution will be compared 

with experimental results in subsequent chapters.  
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6.2  Analytical Solution for Rayleigh Integral 

 

 

 

 

 

Fig. 6.1: Baffled Piston of Arbitrary Shape 

Fig. 6.1 shows the concept of radiation from a baffled piston of arbitrary shape. 

Blackstock [2000] has shown in his book Fundamentals of Physical Acoustics that the 

pressure field produced by a vibrating piston mounted in a baffle is given as: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 = 𝜌0  
𝑢 𝑝  𝑥′ , 𝑦′ ; 𝑡 −

𝑅
𝑐0

 

2𝜋𝑅
𝑑𝑆

𝑆

 .                   (𝐸𝑞. 6.1) 

where 𝜌0 is the static density of medium around the vibrating source, and 𝑐0 is the 

speed of sound in that medium. 𝑥′  and 𝑦′ are the coordinates of the source point on 

the piston, 𝑢 𝑝  is the piston’s acceleration, and S is the area of the vibrating piston. R 

is the distance from (𝑥′ , 𝑦′) on the piston to the point (𝑥, 𝑦, 𝑧) of interest, and is 

written as:  

𝑅 =  (𝑥 − 𝑥′ )2 + (𝑦 − 𝑦′ )2 + 𝑧2   .                            (𝐸𝑞. 6.2) 

Now assuming the piston vibration is harmonic, the speed of the vibrating piston 

is in the form: 

𝑢𝑝 = 𝑢0𝑒
𝑗𝜔𝑡   .                                            (𝐸𝑞. 6.3) 

where 𝑢0 is the amplitude of particle velocity, and 𝑗 is  −1. Eq. 6.3 is basically a 

trigonometric function which is written in complex form for convenience. The 

piston 
y,y’ 

z 

x,x’ 

𝑑𝑆(𝑥′ , 𝑦′ , 0) 

R 

𝐿(𝑥, 𝑦, 𝑧) 
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numerator in the integral of Eq. 6.1 can be rewritten as: 

𝑢 𝑝  𝑥′ , 𝑦′ ; 𝑡 −
𝑅

𝑐0
  

=
𝑑

𝑑𝑡
 𝑢0𝑒

𝑗𝜔  𝑡− 
𝑅
𝑐0

 
  

=
𝑑

𝑑𝑡
 𝑢0𝑒

𝑗𝜔𝑡 − 
𝑗𝜔𝑅
𝑐0   

= 𝑗𝜔𝑢0𝑒
𝑗𝜔𝑡 − 

𝑗𝜔𝑅
𝑐0   .                                             (𝐸𝑞. 6.4) 

Substituting Eq. 6.4 into Eq. 6.1, the pressure is rewritten as: 

𝑝(𝑥, 𝑦, 𝑧; 𝑡) = 𝜌0  
𝑗𝜔𝑢0𝑒

𝑗𝜔𝑡 − 
𝑗𝜔𝑅
𝑐0

2𝜋𝑅
𝑑𝑆

𝑆

 

=
𝜌0𝑗𝜔𝑢0𝑒𝑗𝜔𝑡

2𝜋
 

𝑒
−𝑗

𝜔
𝑐0

𝑅

𝑅
𝑑𝑆

𝑆

  .                   (𝐸𝑞. 6.5) 

Defining the wave number 𝑘 as: 

𝑘 =
𝜔

𝑐0
  , 

Eq. 6.5 becomes: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝜌0𝑗𝜔𝑢0𝑒

𝑗𝜔𝑡

2𝜋
 

𝑒
−𝑗

𝜔
𝑐0

𝑅

𝑅
𝑑𝑆

𝑆

 

=
𝑗𝑘𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

2𝜋
 

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑆

𝑆

  .                   (𝐸𝑞. 6.6) 

This is the general expression for the pressure field caused by a vibrating baffled 

piston. 

6.3  Ring Piston Example 

Two examples are cited to illustrate the use of Eq. 6.6. Consider a ring piston 

having an average radius, 𝑎, and a thickness, 𝑤, as shown in Fig. 6.2. 
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Fig. 6.2:  Ring Piston 

With reference to Fig. 6.2, 𝑟 is the vector from the center point O to point L. 

Assume L is located in the x-z plane.Thus, 

𝑟 = 𝑖𝑥 + 𝑗0 + 𝑘𝑧 = 𝑖𝑟sin𝜃 + 𝑘𝑟cos𝜃  . 

Letting r’ be the vector from the center O to point B, similarly: 

𝑟′ = 𝑖𝑥′ + 𝑗𝑦′ + 𝑘0 = 𝑖𝑎cos𝜓 + 𝑗𝑎sin𝜓  , 

and the distance R becomes: 

𝑅 =  𝑟 − 𝑟′  =  𝑟2 + 𝑎2 − 2𝑟𝑎sin𝜃cos𝜓  .                  (𝐸𝑞. 6.7) 

In the same manner, another point B’ mirrored through the x-axis has the same 

distance R to the field point L. The two elements at B’ and B has a combined area of: 

𝑑𝑆 = 2𝑎𝑤𝑑𝜓  .                                                 (𝐸𝑞. 6.8) 

Substituting Eq. 6.8 into Eq. 6.6, for the ring piston, we obtain: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

𝜋
 

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝜓

𝜋

0

  .                  (𝐸𝑞. 6.9) 

When considering the pressure at far field (𝑟 ≫ 𝑎), Eq. 6.7 is written in the form: 

L 

O 

𝜓 

a 

R 

r’ 

A 

𝜃 

r 

y 

z 

x 

B 

B’ 
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𝑅 = 𝑟  1 −  
𝑎

𝑟
 sin𝜃cos𝜓 + 0  

𝑎

𝑟
 

2

  .                    (𝐸𝑞. 6.10) 

Neglecting the higher-order term, we obtain: 

𝑅 = 𝑟 − 𝑎sin𝜃cos𝜓  .                                     (𝐸𝑞. 6.11) 

Substituting Eq. 6.11 into Eq. 6.9, and assuming 𝑅 in the denominator equals 𝑟, 

we obtain: 

                              𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

𝜋
 

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝜓

𝜋

0

 

                                                    =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

𝜋𝑟
 𝑒−𝑗𝑘𝑅 𝑑𝜓

𝜋

0

 

                                                    =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

𝜋𝑟
 𝑒−𝑗𝑘 (𝑟−𝑎sin 𝜃cos 𝜓)𝑑𝜓

𝜋

0

 

 =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟

𝑟

1

𝜋
 𝑒𝑗𝑘𝑎 sin 𝜃cos 𝜓𝑑𝜓

𝜋

0

  . (𝐸𝑞. 6.12) 

A directional function 𝐽𝑚 (𝑥) is defined as follows (Bessel Function): 

𝐽𝑚  𝑥 =
𝑗−𝑚

𝜋
 𝑒𝑗𝑥 cos 𝛼cos𝑚𝛼𝑑𝛼

𝜋

0

  . 

Thus the integration term in Eq. 6. 12 can be expressed as: 

1

𝜋
 𝑒𝑗𝑘𝑎 sin 𝜃cos 𝜓𝑑𝜓

𝜋

0

 

                                                     =
j−0

π
 𝑒𝑗𝑘𝑎 sin 𝜃cos 𝜓cos(0𝜓)𝑑𝜓

𝜋

0

 

= 𝐽0 𝑘𝑎sin𝜃   .                                                         (𝐸𝑞. 6.13) 

Substituting Eq. 6.13 into Eq. 6.12 and rewriting: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝑗𝑘𝑎𝑤𝜌0𝑐0𝑢0

𝑟
𝐽0 𝑘𝑎sin𝜃 𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟   .             (𝐸𝑞. 6.14) 

This is the approximate expression for calculating the farfield pressure of a 

baffled ring piston.  
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6.4  Circular Piston Example 

Now, to apply Eq. 6.14 to a circular disk, first, the average ring radius 𝑎 

becomes a variable 𝜍, and the thickness becomes 𝑑𝜍. Thus, the expression in Eq. 6.8 

becomes: 

𝑑𝑆 = 2𝜍𝑑𝜍𝑑𝜓  .                                          (𝐸𝑞. 6.15) 

Substituting Eq. 6.15 into Eq. 6.6, we have the general expression for the 

pressure field of a circular disk: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝑗𝑘𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

2𝜋
 

𝑒−𝑗𝑘𝑅

𝑅
𝑑𝑆

𝑆

 

                                                              =
𝑗𝑘𝜌0𝑐0𝑢0𝑒

𝑗𝜔𝑡

𝜋
 

𝑒−𝑗𝑘𝑅

𝑅
𝜍𝑑𝜍𝑑𝜓

𝑆

 

=
𝑗𝑘𝜌0𝑐0𝑢0𝑒𝑗𝜔𝑡

𝜋
 𝑑𝜓

𝜋

0

 
𝑒−𝑗𝑘𝑅

𝑅
𝜍𝑑𝜍

𝑎

0

  .                         

 (𝐸𝑞. 6.16) 

𝑅 is now given by Eq. 6.7, with 𝑎 replaced by 𝜍. That is: 

𝑅 =  𝑟2 + 𝜍2 − 2𝑟𝜍sin𝜃cos𝜓  .                          (𝐸𝑞. 6.17) 

To calculate the farfield radiation, replace a and w by 𝜍 and 𝑑𝜍 in Eq. 6.14: 

𝑝 𝑥, 𝑦, 𝑧; 𝑡 =
𝑗𝑘𝜍𝑑𝜍𝜌0𝑐0𝑢0

𝑟
𝐽0 𝑘𝜍sin𝜃 𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  

Integrating over 𝜍: 

𝑝 =
𝑗𝑘𝜌0𝑐0𝑢0

𝑟
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  𝜍𝐽0 𝑘𝜍sin𝜃 𝑑𝜍

𝑎

0

  .               (𝐸𝑞. 6.18) 

Letting 𝑘𝜍sin𝜃 = 𝜇, the integration in Eq. 6.18 becomes: 

 𝜍𝐽0 𝑘𝜍sin𝜃 𝑑𝜍
𝑎

0

 

                                                         =  
𝜇

𝑘sin𝜃
𝐽0 𝜇 𝑑

𝜇

𝑘sin𝜃

𝑘𝑎sin 𝜃

0
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=
1

(𝑘sin𝜃)2
 𝜇𝐽0 𝜇 𝑑𝜇

𝑘𝑎sin 𝜃

0

  .                        (𝐸𝑞. 6.19) 

Given another Bessel Function: 

𝑑

𝑑𝑥
 𝑥𝑚 𝐽𝑚  𝑥  = 𝑥𝑚 𝐽𝑚−1 𝑥   .                          (𝐸𝑞. 6.20) 

When m=1, Eq. 6.20 becomes: 

𝑑

𝑑𝑥
 𝑥𝐽1 𝑥  = 𝑥𝐽0 𝑥  . 

Thus, replacing x with 𝜇: 

𝜇𝐽0 𝜇 =  
𝑑

𝑑𝜇
 𝜇𝐽1 𝜇    .                                   (𝐸𝑞. 6.21) 

Substituting Eq. 6.21 into Eq. 6.19, the original integration is simplified as: 

1

 𝑘sin𝜃 2
 𝜇𝐽0 𝜇 𝑑𝜇

𝑘𝑎sin 𝜃

0

 

                                                  =
1

 𝑘sin𝜃 2
 

𝑑

𝑑𝜇
 𝜇𝐽1 𝜇  𝑑𝜇

𝑘𝑎sin 𝜃

0

 

=
𝑘𝑎sin𝜃𝐽1 𝜇 

 𝑘sin𝜃 2
=

𝑎

𝑘𝑠𝑖𝑛𝜃
𝐽1 𝑘𝑎sin𝜃  .                    (𝐸𝑞. 6.22) 

Substituting Eq. 6.22 into Eq. 6.18: 

𝑝 =
𝑗𝑘𝜌0𝑐0𝑢0

𝑟
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  𝜍𝐽0 𝑘𝜍sin𝜃 𝑑𝜍

𝑎

0

 

=
𝑗𝑘𝜌0𝑐0𝑢0

𝑟
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟

𝑎

𝑘sin𝜃
𝐽1(𝑘𝑎sin𝜃) 

=
𝑗𝜌0𝑐0𝑢0𝑎

𝑟
 
𝐽1 𝑘𝑎sin𝜃 

sin𝜃
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟   .                                (𝐸𝑞. 6.23) 

This is the expression to calculate approximate the far-field pressure distribution 

of a baffled vibrating circular piston. 

6.5  Pressure on Central Axis 

Now we have derived the expression for farfield pressure due to a vibrating 

baffled circular disk. We are interested in the pressure value on the central axis normal 

to the disk surface.  
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The Bessel Function was previously defined as: 

𝐽𝑚  𝑥 =
𝑗−𝑚

𝜋
 𝑒𝑗𝑥 cos 𝛼cos𝑚𝛼𝑑𝛼

𝜋

0

  .                         (𝐸𝑞. 6.24) 

Thus, when m=0, and x = 𝑘𝑎sin𝜃 

𝐽0 𝑥 =
1

𝜋
 𝑒𝑗𝑘𝑎 sin 𝜃cos 𝛼cos(0)𝑑𝛼

𝜋

0

 

To evaluate the pressure field on central axis, we evaluate the expression when 

𝜃 = 0: 

𝐽0 𝑘𝑎sin 0  = 𝐽0 0 =
1

𝜋
 𝑒0𝑑𝛼

𝜋

0

= 1  .                   (Eq. 6.25) 

Using Eq. 6.20, and letting m=1: 

𝑑

𝑑𝑥
 𝑥𝑚 𝐽𝑚  𝑥  = 𝑥𝑚 𝐽𝑚−1 𝑥   , 

and 

𝑑

𝑑𝑥
 𝑥𝐽1 𝑥  = 𝑥𝐽0 𝑥  . 

Using the result of Eq. 6.25: 

𝑑

𝑑𝑥
 𝑥𝐽1 𝑥  = 𝑥 

𝑥𝐽1 𝑥 =
𝑥2

2
 

𝐽1 𝑥 =
𝑥

2
=

𝑘𝑎sin𝜃

2
  .                           (𝐸𝑞. 6.26) 

Substituting Eq. 6.26 into Eq. 6.23, Eq. 6.23 is simplified as: 

𝑗𝜌0𝑐0𝑢0𝑎

𝑟
 
𝐽1 𝑘𝑎sin𝜃 

sin𝜃
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  

=
𝑗𝜌0𝑐0𝑢0𝑎

𝑟
 
𝑘𝑎

2
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟   .                              (𝐸𝑞. 6.27) 

Note that this is an evaluation of Eq. 6.23 when 𝜃 = 0, which is the pressure 

field on central axis normal to the disk surface. 

The amplitude directivity factor D is defined as the pressure at distance 𝑅 at 

any angle 𝜃 relative to that at 𝜃 = 0. Thus: 



49 
 

𝐷(𝜃) =
𝑝(𝑟, 𝜃; 𝑡)

𝑝(𝑟, 0; 𝑡)
 

                                                                          =
𝐸𝑞. 23 

𝐸𝑞. 27
 

                                                                          =
2𝐽1 𝑘𝑎sin𝜃  

𝑘𝑎sin𝜃
 

Now Eq. 6.23 can be taken in the simpler form: 

𝑗𝜌0𝑐0𝑢0𝑎

𝑟
 
𝐽1 𝑘𝑎sin𝜃 

sin𝜃
𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  

=
𝑗𝜌0𝑐0𝑢0𝑎

2𝑟
𝐷 𝜃 𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  .                             (𝐸𝑞. 6.28) 

The Rayleigh distance is defined in general by 

𝑅0 = 𝑆/𝜆 

According to Pierce [1989], 𝑆 is the piston area and the piston need not necessarily 

be circular. 𝜆 is the wavelength. For the circular piston, 𝑆/𝜆 = 𝜋𝑎2/ 𝜆. Noticing that 

𝑘 = 2𝜋/𝜆, 𝑅0 is written as: 

𝑅0 = 𝑘𝑎2/2 

Defining 𝑃0 = 𝜌0𝑐0𝑢0, Eq. 6.28 is written as: 

𝑝 = 𝑗
𝑃0𝑅0

𝑟
𝐷 𝜃 𝑒𝑗𝜔𝑡 −𝑗𝑘𝑟  .                              (𝐸𝑞. 6.29) 

When only the pressure on axis normal to the piston surface is considered, 

𝐷(𝜃) =
𝑝(𝑟, 𝜃; 𝑡)

𝑝(𝑟, 0; 𝑡)
 

                                                                   =
𝐸𝑞. 23 

𝐸𝑞. 27
 

                                                                   =
2𝐽1 𝑘𝑎sin𝜃  

𝑘𝑎sin𝜃
 

                                                                   =
2

𝑘𝑎sin𝜃
2

 

𝑘𝑎sin𝜃
= 1 

Thus, the expression for the amplitude of pressure is written as: 

𝑝 =
𝑃0𝑅0

𝑟
 .                                                 (𝐸𝑞. 6.30) 

This is the final expression for the farfield pressure amplitude along the central 
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axis normal to the piston surface. 𝑃0  is related to the properties of air and the 

vibrational speed of the piston, and 𝑅0 is related to the vibrational frequency and the 

area of the piston.  

 

We have derived the solutions for equivalent damping ratio based on acoustic 

radiation from both a pulsating sphere and an oscillating sphere; equivalent damping 

ratio based on fluid dynamics theory; and the solution for the pressure field caused by 

a baffled circular piston. To evaluate the limitations of applicability of these equations, 

a series of experiments are conducted. The results of these experiments will be 

compared with the theoretical solutions. The next three chapters describe the 

experimental procedures and results. 
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CHAPTER 7. 

UNBAFFLED PLATE EXPERIMENT 

 

7.1  General 

In chapter 4 we have derived the expressions for damping ratio of a vibrating 

target based on theories of acoustic radiation from a pulsating sphere and from an 

oscillating sphere. Lee [2006] has presented an experiment in which the acceleration 

histories of a vibrating plate under maximum and minimum air resistance cases are 

studied. Fig. 7.1 and Fig. 7.2 show the experimental apparatus. The damping ratios of 

two cases were calculated based on experimental results. The results showed a clear 

difference between the maximum air resistance case and the minimum air resistance 

case.  

To verify this experiment, in this chapter, a similar vibrating plate experiment 

will be presented. Since the vibrating plate is unbaffled, the results of the experiment 

will be compared with damping ratio derived from acoustic theory based on the 

acoustic radiation from an oscillating sphere, given by Eq. 4.15. 

7.2  Experimental Setup – Test 1 (𝒇𝟏 = 𝟒. 𝟕𝟖𝑯𝒛) 

To observe the difference between a plate vibrating with larger air damping 

effect and smaller air damping effect, an aluminum plate target supported by a frame 

consisting of four threaded steel rods is developed, shown in Fig. 7.1. An 

accelerometer attached to the plate monitors horizontal acceleration. The acceleration 

response history is processed using the software Labview, in which the Fourier 
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Transform is computed to help determine the natural frequency. 

 
 

Fig. 7.1: Plate Target with Frame Support 
 

The four threaded steel rods are bolted to a steel I-beam as a base support. Two 

square aluminum plates are attached to the steel rods, with one of the plates oriented 

either horizontally or vertically, as shown in Fig. 7.2. First we start the vibration with 

the two plates oriented perpendicular to each other. The vertical plate causes a large 

air damping effect. Then we attach both plates horizontally so that the air damping 

effect is smaller. Assuming the mass of the aluminum plates is lumped, the structure 

is approximately a single degree-of-freedom vibrational system. 

The weights of the system are shown in Table. 7.1.  

Item Weight (lb) Total Weight (lb) 

Plates 11.163 14.678 

Rod Total 3.515 

 
Table 7.1 : Weights of the System 
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The dimensions of the system are shown in Fig. 7.2 (a) and Fig. 7.2 (b) 
 

 

 

 

 

 

 

 

(a): Two Plates Fixed Parallel to Each Other   (b): Two Plates Fixed Normal to Each Other 

Fig. 7.2 : Dimensions of the System 
 

To calculate the natural theoretical natural frequency of the system, assuming 

the top plate is rigid, the stiffness of a single rod is: 

𝑘𝑖 =
12𝐸𝐼

3
  , 

where 𝐼 is the moment of inertia of the steel rods: 

𝐼 =
𝜋𝑑4

64
=

(3.14)(0.3 𝑖𝑛)4

64
= 3.974 × 10−4 𝑖𝑛4 

Thus, 

𝑘𝑖 =
12 29000𝑘𝑠𝑖 (3.974 × 10−4𝑖𝑛4)

(27𝑖𝑛)3
= 7.026

𝑙𝑏

𝑖𝑛
= 1230.433

𝑁

𝑚
 . 

The stiffness of the whole system is then: 

𝐾1 = 4𝑘𝑖 = 28.104
𝑙𝑏

𝑖𝑛
= 337.248

𝑙𝑏

𝑓𝑡
= 4921.732

𝑁

𝑚
 . 

Since the bottom parts of the rods are fixed to the I-beam and these parts do not 

participate in vibration, assume approximately 14 lb of the system is included in the 

vibration. The mass of the system is: 

𝐴 = 1 𝑓𝑡2 

𝐿 = 27 𝑖𝑛 ∅ = 0.3 𝑖𝑛 

PLATE 1 

PLATE 2 
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𝑚1 =
14 𝑙𝑏

32.2 𝑓𝑡/𝑠2
= 0.435 𝑙𝑏 ∙

𝑠2

𝑓𝑡
= 6.355 𝑘𝑔 

The natural frequency of the system is then found to be: 

𝜔1 =  
𝐾1

𝑚1
=  

337.248 𝑙𝑏/𝑓𝑡

0.435 
𝑙𝑏 ⋅ 𝑠2

𝑓𝑡

= 27.844
𝑟𝑎𝑑

𝑠
 

𝑓 = 27.844
𝑟𝑎𝑑

𝑠
= 4.434 𝐻𝑧 

7.3  Acceleration Measurement and Test Results – Test 1 (𝒇𝟏 = 𝟒. 𝟕𝟖𝑯𝒛) 

An accelerometer is attached to the plate to measure the plate’s horizontal 

acceleration. The acceleration response histories for large damping and small 

damping are measured separately. For each case, an initial displacement is applied. 

Then the plate is released, causing free vibration. The initial displacements are 

measured as 0.125 inch and 0.25 inch, respectively.  

Fig. 7.3 shows the large damping case. Fig. 7.4 shows the small air-damping 

case. 

 
 

Fig. 7.3 : Vibrational System With Plates Fixed Normal to Each Other. 
 Assuming Large Air-Damping Effect. 
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Fig. 7.4 : Vibrational System With Plates Fixed Parallel to Each Other. 

 Assuming Small Air-Damping Effect. 
 

The results from the test are plotted and shown in Figs. 7.5 and Fig. 7.6. The 

tested natural frequency is 4.78 Hz, which is close to the theoretical value of 4.43 Hz.  

 
Fig. 7.5 : Acceleration History For Large Air Damping Under both 0.125 Inch and 0.25 Inch 

Initial Displacement 
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 Fig. 7.6 : Acceleration History For Small Air Damping Under both 0.125 Inch And 0.25 Inch 
Initial Displacement 

 

Fig. 7.5 and Fig. 7.6 show the difference between different initial displacements 

under the same damping condition. From Fig. 7.5, the large-air damping condition, 

we observe that for the system to be damped out to the same level, the number of 

cycles it takes for the 0.25 inch initial displacement case is less than for the 0.125 

inch initial displacement case. This means for the same damping condition, a larger 

initial displacement results in a larger damping effect. Fig. 7.6 shows the same result 

for the small-air damping condition. Also in Fig. 7.6 (small damping case), we 

observe that the number of cycles needed for the system to be damped out is more 

than it is in Fig. 7.5 (large damping case), confirming the damping effect of air.  

The damping ratio is calculated based on the experimental acceleration using 

the equation (approximated but accurate for 𝜉 ≪ 20%) given by Chopra [2008]: 



57 
 

𝜉 =
1

2𝜋𝑗
ln

𝑢𝑖 

𝑢𝑖+𝑗 
  .                                         (𝐸𝑞. 7.3) 

where 𝑗 is the number of cycles. 𝑢𝑖  is the acceleration amplitude at cycle 𝑖, 𝑢𝑖+𝑗  is 

the acceleration amplitude after 𝑗 cycles. Using Eq. 7.3, the damping ratios for the 

different cases are calculated. 

𝜉1 = 0.13% for small-air damping with 0.125 inch initial displacement; 

𝜉2 = 0.15% for large-air damping with 0.125 inch initial displacement; 

𝜉1′ = 0.16% for small-air damping with 0.25 inch initial displacement; 

𝜉2′ = 0.2%  for large-air damping with 0.25 inch initial displacement; 

Note that these damping ratios are the sum of mechanical damping (internal 

damping) and air-damping together. Thus, to find the approximate damping effect due 

to air only, subtract 𝜉1 from 𝜉2, and subtract 𝜉1′ from 𝜉2′.  

As a comparison, the damping ratio based on radiation from an oscillating 

sphere is calculated using Eq. 4.15, rewritten here. 

𝜉′𝑒𝑞1 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                              (𝐸𝑞. 4.15) 

The area of the aluminum plate 𝐴 = 1 𝑓𝑡2 = 0.093 𝑚2 ,  𝑟0 = 0.5 𝑓𝑡 =

0.1524 𝑚, 𝑘 =
𝜔

𝑐0
. Therefore, the equivalent damping ratio can be calculated as: 

𝜉′
𝑒𝑞1

≅ 1.85 × 10−8%  .                                      (𝐸𝑞. 7.1) 

The experimental results and theoretical results are shown in Table 7.2. 

Damping 
Ratio 

 for Air 

0.125 inch  
Initial 

displacement 

0.25 inch  
Initial 

displacement 

Oscillating  
Sphere 

     𝜉 0.02% 0.04% 1.85 × 10−8% 
 

Table 7.2 : Damping Ratio for Air Under Different Initial Displacements 
Test 1 
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From Table 7.2 we find that the theoretical damping ratio based on an 

oscillating sphere is much smaller than test results. We next increase the natural 

frequency of the system. 

7.4  Experimental Setup – Test 2 (𝒇𝟐 = 𝟗. 𝟓𝟔𝑯𝒛) 

To increase the natural frequency, the length of rods are shortened to 19 𝑖𝑛𝑐𝑒𝑠. 

For this system, the stiffness of a single rod is: 

𝑘𝑖 =
12𝐸𝐼

3
=

12 29000𝑘𝑠𝑖 (3.974 × 10−4𝑖𝑛4)

(19𝑖𝑛)3
= 20.142

𝑙𝑏

𝑖𝑛
= 3527.46

𝑁

𝑚
 , 

The stiffness of the whole system is then: 

𝐾2 = 4𝑘𝑖 = 80.568
𝑙𝑏

𝑖𝑛
= 996.816

𝑙𝑏

𝑓𝑡
= 14109.84

𝑁

𝑚
 . 

Assume 12 lb of the system is included in the vibration.  

𝑚2 =
12 𝑙𝑏

32.2 𝑓𝑡/𝑠2
= 0.373 𝑙𝑏 ∙

𝑠2

𝑓𝑡
= 5.444 𝑘𝑔 

The natural frequency of the system is then found to be: 

𝜔2 =  
𝐾2

𝑚2
=  

996.816 𝑙𝑏/𝑓𝑡

0.373 
𝑙𝑏 ⋅ 𝑠2

𝑓𝑡

= 51.7
𝑟𝑎𝑑

𝑠
 

𝑓 = 51.7
𝑟𝑎𝑑

𝑠
= 8.23 𝐻𝑧 

7.5  Acceleration Measurement and Test Results – Test 2 (𝒇𝟐 = 𝟗. 𝟓𝟔𝑯𝒛) 

The initial displacements are reduced to 0.125 inch and 0.0625 inch because the 

increased stiffness has made it difficult to apply a large displacement without yielding 

the steel rods. Fig. 7.7 and Fig. 7.8 show the test results. The tested natural frequency 

is 9.56 Hz, which is close to the theoretical natural frequency of 8.23 Hz. 
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Fig. 7.7 : Acceleration History For Large-Air Damping Under both 0.125 Inch And 0.0625 

Inch Initial Displacement 

 
 Fig. 7.8 : Acceleration History For Small-Air Damping Under both 0.125 Inch  

And 0.0625 Inch Initial Displacement 
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The tested damping ratio is calculated using Eq. 7.3, repeated here: 

𝜉 =
1

2𝜋𝑗
ln

𝑢𝑖 

𝑢𝑖+𝑗 
  .                                         (𝐸𝑞. 7.3) 

𝜉1 = 0.14% for small-air damping with 0.125 inch initial displacement; 

𝜉2 = 0.17% for large-air damping with 0.125 inch initial displacement; 

𝜉1′ = 0.13% for small-air damping with 0.0625 inch initial displacement; 

𝜉2′ = 0.16%  for large-air damping with 0.0625 inch initial displacement; 

Note that these damping ratios are the sum of mechanical damping (internal 

damping) and air-damping together. Thus, to find the damping effect of air only, 

subtract 𝜉1 from 𝜉2, and subtract 𝜉1′ from 𝜉2′. 

Again, the equivalent damping coefficients of air based on radiation from an 

oscillating sphere is calculated using Eq. 4.15.  

𝜉′𝑒𝑞2 ≅ 6.5 × 10−7%  .                                       (𝐸𝑞. 7.5) 

The experimental results and theoretical results are shown in Table 7.3. 

 
Damping 

Ratio 
 for Air 

0.125 inch  
Initial 

displacement 

0.0625 inch  
Initial 

displacement 

Oscillating 
Sphere 

    𝜉 0.03% 0.03% 6.5 × 10−7% 
 

Table 7.3 : Damping Ratio for Air Under Different Initial Displacements 
Test 2 

 

From Table 7.3 we again find that the theoretical damping ratio for air based on 

an oscillating sphere is much smaller than that obtained from the experimental results, 

even at the higher frequency. 
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7.6  Applying Fluid Dynamics Theory 

In chapter 5 we have derived the expression for damping ratio of a vibrating 

plate based on fluid dynamics theory. We are now interested in applying Eq. 5.18 to 

the vibrating plate experiment to see if the fluid dynamics theory applies. 

Given that Eq. 5.18 is: 

𝜉𝑒𝑞 =
𝑐𝑒𝑞

𝑐𝑐𝑟
=

1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
  .                               (𝐸𝑞. 5.18) 

For the vibrating plate experiment,  

𝐴 = 1 𝑓𝑡2 = 0.093 𝑚2; 

𝜌0 = 1.204 𝑘𝑔/𝑚3 ; 

𝑘1 = 4921.732 𝑁/𝑚 and 𝑘2 = 14109.84 𝑁/𝑚 respectively; 

𝑚1 = 6.355 𝑘𝑔 and 𝑚2 = 5.444 𝑘𝑔 respectively; 

According to Roberson and Crowe [1975], for a specific rectangular plate with 

𝑙/𝐵 = 1, the drag coefficient 𝐶𝐷 = 1.18. 

Let 𝛥0 = 0.125 𝑖𝑛𝑐 = 3.175 × 10−3 𝑚  for both experiments, applying    

Eq. 5.18, two damping ratios are calculated for two systems with different frequencies, 

but with the same initial displacement. 

𝜉′′
𝑒𝑞1

=
1

4𝜋3

(1.18) 0.093 𝑚2  1.204
𝑘𝑔
𝑚3  3.175 × 10−3 𝑚 

6.355 𝑘𝑔
 

                              = 0.000053%  . 

𝜉′′
𝑒𝑞2

=
1

16𝜋3

(1.18) 0.093 𝑚2  1.204
𝑘𝑔
𝑚3  3.175 × 10−3 𝑚 

5.444 𝑘𝑔
 

                              = 0.000062%  . 

The results show that for frequencies of 4.78 Hz and 9.56 Hz, Eq. 5.18 based on 
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fluid dynamics theory also gives a much lower theoretical damping ratio than the 

experimental results. We now wonder if this frequency is too high to apply fluid 

dynamics theory. For this reason, a pendulum experiment is designed and presented in 

next chapter. The experiment, consisting of a plastic ball hanging from the ceiling, 

will help us look into a much lower frequency range. 

7.7  Summary 

In this chapter we have demonstrated that the theoretical damping ratio based on 

acoustic radiation from an oscillating sphere does not apply when the frequency is 

low at around 5 Hz and 10 Hz. For the specific experiment with a natural frequency of 

4.78 Hz shown in this chapter, the theoretical damping ratio based on acoustic 

radiation from an oscillating sphere is calculated as 1.85 × 10−8%, compared with 

the experimental results of 0.02% and 0.04% for different initial displacements. For 

the other experiment with a natural frequency of 9.56 Hz, the theoretical damping 

ratio based on acoustic radiation from an oscillating sphere is calculated as     

6.5 × 10−7%, compared with the experimental results of 0.03% for different initial 

displacements. We have also found that for this experiment, fluid dynamics theory 

does not apply in the frequency range of 5-10 Hz.  

The next chapter presents a pendulum experiment consisting of a rigid sphere 

oscillating at a much lower frequency. We will study the frequency range in which the 

damping ratio based on fluid dynamics theory is expected to apply. 
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CHAPTER 8. 

PENDULUM EXPERIMENT 

 

8.1  General 

In chapter 7, a vibrating plate experiment was presented. We have discovered 

that the theoretical damping ratio of this vibrating target based on either acoustic 

radiation from an oscillating sphere or fluid dynamics theory for a plate does not 

predict the observed damping due to air. In this chapter, a pendulum experiment is 

presented. The results of the experiment are compared with Eq. 5.18 to investigate the 

applicability of fluid dynamics theory under very low frequencies. 

8.2  Experimental Setup – Test 1 (𝒇𝟏 = 𝟎. 𝟐𝟎𝟓 𝑯𝒛) 

A light-weight plastic ball hanging from the ceiling using a fishing-line makes a 

simple pendulum system. By changing the length of the fishing-line, the vibrational 

frequency of the pendulum can be adjusted. The system is shown in Fig. 8.1. 

 

 

 

 

 
 
 

Fig. 8.1: Pendulum System Dimensions 
 

According to literature, the vibrational period of a pendulum is: 

𝑟 = 4.5 𝑖𝑛 

𝐿 
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𝑇 = 2𝜋 
𝐿

𝑔
  .                                               (𝐸𝑞. 8.1) 

where 𝑔 is the acceleration of gravity and 𝑔 = 9.8 𝑚/𝑠2. For this experiment, the 

length of the fishing-line 𝐿1 = 17.5 𝑓𝑡 = 5.334 𝑚. Thus we have 

𝑇1 = 2𝜋 
5.334 𝑚

9.8 
𝑚
𝑠2

= 4.633 𝑠  . 

The theoretical natural frequency is then: 

𝑓1 =
1

𝑇1
=

1

4.633 𝑠
= 0.216 𝐻𝑧  . 

An initial horizontal displacement of 5 𝑓𝑡 is applied to the pendulum. The 

plastic ball goes under free vibration after it is released. The horizontal displacements 

for each cycle are recorded using a tape measure. The damping ratio is calculated for 

each cycle based on displacement history using the equation given by Chopra [2008]: 

𝜉 =
1

2𝜋𝑗
ln

𝑢𝑖

𝑢𝑖+𝑗
  .                                         (𝐸𝑞. 8.2) 

where 𝑗 is the number of cycles. 𝑢𝑖  now is the displacement amplitude at cycle 𝑖, 

𝑢𝑖+𝑗  is the displacement amplitude after 𝑗 cycles. 

8.3  Test Results – Test 1 (𝒇𝟏 = 𝟎. 𝟐𝟎𝟓 𝑯𝒛) 

The actual natural frequency is calculated by using a stopwatch recording the 

time period for each cycle and averaging all the data recorded. The natural frequency 

is approximately 0.205 𝐻𝑧 , compared to the theoretical natural frequency of 

0.216 𝐻𝑧. 

A plot of displacement history for the experiment with a natural frequency of 

𝑓1 = 0.205 𝐻𝑧 is shown in Fig. 8.2.  
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Fig. 8.2: Displacement History of Test 1 (𝒇𝟏 = 𝟎. 𝟐𝟎𝟓 𝑯𝒛) 

 

From Fig. 8.2 we can see that the displacement amplitude decreases very 

rapidly during the first several cycles. Only 20 cycles were recorded because after 20 

cycles the decreasing of displacement amplitude for each cycle is hardly 

distinguishable using the tape measure. The damping ratio for each cycle is calculated 

using Eq. 8.2. The final damping ratio for the system is calculated by averaging the 

damping ratios for each cycle. The result is summarized in Table 8.1. 

 
TEST 1 

Theoretical Frequency 𝑓 0.216 Hz 
Tested Frequency 𝑓 0.205 Hz 

Tested Damping Ratio 𝜉 2.22% 
 

Table 8.1: Damping Ratio of Test 1 (𝒇𝟏 = 𝟎. 𝟐𝟎𝟓 𝑯𝒛) 
 

8.4  Analytical Solution 

In chapter 5 we have shown with Eq. 5.18, the equivalent damping ratio based 

on fluid dynamics theory is: 
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𝜉′′𝑒𝑞 =
𝑐𝑒𝑞

𝑐𝑐𝑟
=

1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
  .                          (𝐸𝑞. 5.18) 

where 𝐶𝐷 is the coefficient of drag, 𝐴 is the projected area of the body, 𝜌0 is the 

density of the fluid, 𝛥0 is the vibrational amplitude. 

The coefficient of drag for a sphere depends on the Reynolds number, which is 

given as: 

𝑅𝑒 =
𝑉𝐷𝜌

𝜇
  .                                           (𝐸𝑞. 8.3) 

where 𝑉 is the mean fluid velocity, 𝐷 is the diameter of the sphere, 𝐷 = 9 𝑖𝑛 =

0.2286 𝑚,  𝜌 is the density of the fluid where the sphere is in, 𝜇 is the viscosity of 

the fluid. For normal atmospheric pressure and a room temperature of 20℃ , 

𝜇 = 1.79 × 10−5 𝑁 ∙ 𝑠/𝑚2 . To find the mean fluid velocity, we take the 

time-averaged speed of each cycle and calculate the average speed, thus 𝑉 =

0.313 𝑚/𝑠. Now the Reynolds number is calculated as: 

𝑅𝑒 =
𝑉𝐷𝜌

𝜇
=

0.313
𝑚
𝑠

× 0.2286 𝑚 × 1.204 𝑘𝑔/𝑚3

1.79 × 10−5 𝑁 ∙ 𝑠/𝑚2
= 4812.75 

According to Hemmati [2009], the coefficient of drag for a sphere is given as: 

𝐶𝐷 ≈
24

𝑅𝑒
+

6

1 +  𝑅𝑒
+ 0.4  .                              (𝐸𝑞. 8.4) 

For 𝑅𝑒 = 4812.75, the coefficient of drag is: 

𝐶𝐷 ≈
24

4812.75
+

6

1 +  4812.75
+ 0.4 ≈ 0.5  . 

Substituting 𝐶𝐷 = 0.5 into Eq. 5.18, the damping ratio for a vibrating sphere 

based on drag is: 

𝜉′′𝑒𝑞 =
1

4𝜋3

(0.5)𝐴𝜌0𝛥0

𝑚
= 0.004

𝐴𝜌0𝛥0

𝑚
  .           (𝐸𝑞. 8.5) 

The damping ratio for each cycle is thus calculated using Eq. 8.5 and averaged. 

Substituting the weight of the rubber ball, 𝑚 = 9.146 × 10−3𝑘𝑔; the density of air 
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𝜌0 = 1.204 𝑘𝑔/𝑚3; the projected area of the ball 𝐴 = 0.041 𝑚2, and displacement 

amplitudes for each cycle into Eq. 8.5, the averaged equivalent damping ratio is 

𝜉′′𝑒𝑞1 ≅ 1%  . 

The theoretical damping ratio is of the right order of magnitude, which is close 

to the experimental result, which is 𝜉𝑒𝑞 = 2.22%. A difference exists because for the 

first several cycles of vibration, the displacements are too large for the sphere to be 

considered as a transversely oscillating sphere. 

8.5  Experimental Setup – Test 2 (𝒇𝟐 = 𝟎. 𝟐𝟔𝟓 𝑯𝒛) 

By shortening the length of the line from 17.5 𝑓𝑡 to 10.75 𝑓𝑡 = 3.277 𝑚, the 

natural frequency of the pendulum can be adjusted. The same process to calculate the 

theoretical natural frequency can be performed as in section 8.2. 

The vibration period of the pendulum is calculated as: 

𝑇2 = 2𝜋 
3.277 𝑚

9.8 
𝑚
𝑠2

= 3.631 𝑠  . 

The natural frequency is then: 

𝑓2 =
1

𝑇2
=

1

3.631 𝑠
= 0.275 𝐻𝑧  . 

8.6  Test Results – Test 2 (𝒇𝟐 = 𝟎. 𝟐𝟔𝟓 𝑯𝒛) 

The actual natural frequency is calculated by using a stopwatch recording the 

time period for each cycle and averaging all the data recorded. The natural frequency 

is approximately 0.265 𝐻𝑧 , compared to the theoretical natural frequency of 

0.275 𝐻𝑧. 

A plot of displacement history for the experiment with a natural frequency of 

𝑓1 = 0.265 𝐻𝑧 is shown in Fig. 8.3.  
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Fig. 8.3: Displacement History of Test 1 (𝒇𝟐 = 𝟎. 𝟐𝟔𝟓 𝑯𝒛) 

 

The damping ratio for each cycle is calculated using Eq. 8.2. The final damping 

ratio for the system is calculated by averaging the damping ratios for each cycle. The 

result is shown in Table 8.2. 

 
TEST 2 

Theoretical Frequency 𝑓 0.275 Hz 
Tested Frequency 𝑓 0.265 Hz 

Tested Damping Ratio 𝜉 2.32% 
 

Table 8.2: Damping Ratio of Test 2 (𝒇𝟐 = 𝟎. 𝟐𝟔𝟓 𝑯𝒛) 
 

8.7  Analytical Solution 

Given the damping ratio for a vibrating plate based on drag is: 

𝜉′′𝑒𝑞 = 0.004
𝐴𝑝𝜌𝛥0

𝑚
  .                                     (𝐸𝑞. 8.5) 

The damping ratio for each cycle is thus calculated using Eq. 8.5 and averaged. 

Again, substituting 𝑚 = 9.146 × 10−3𝑘𝑔, 𝜌 = 1.204 𝑘𝑔/𝑚3, 𝐴𝑝 = 0.041 𝑚2 and 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d
is

p
la

ce
m

e
n

t 
(i

n
)

cycles



69 
 

displacement amplitudes for each cycle into Eq. 8.5, the averaged equivalent damping 

ratio is 

𝜉′′𝑒𝑞2 ≅ 1 %  . 

The theoretical damping ratio is of the same order of magnitude as experimental 

result, which is 𝜉𝑒𝑞 = 2.15%.  

8.8  Damping Ratio Based on Acoustic Radiation from an Oscillating Sphere 

In chapter 4, Eq. 4.15 gives the solution to the equivalent damping ratio based 

on acoustic radiation from an oscillating sphere. 

𝜉′𝑒𝑞 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                             (𝐸𝑞. 4.15) 

To study the applicability of Eq. 4.15 under low frequency, we apply Eq. 4.15 

to the pendulum experiment. Substituting the weight of the rubber ball, 𝑚 = 9.146 ×

10−3𝑘𝑔 ; the density of air 𝜌 = 1.204 𝑘𝑔/𝑚3 ; the projective area of the ball 

𝐴𝑝 = 0.041 𝑚2, the speed of sound 𝑐0 = 340 𝑚/𝑠, and the vibrational frequencies 

𝑓1 = 0.205 𝐻𝑧 and 𝑓2 = 0.265 𝐻𝑧 into Eq. 4.15, we obtain the equivalent damping 

ratios based on acoustic radiation from an oscillating sphere: 

𝜉′𝑒𝑞1 =
 1.204

𝑘𝑔
𝑚3  340

𝑚
𝑠  (0.041 𝑚2)

12𝜋 9.146 × 10−3𝑘𝑔 (0.205 𝐻𝑧)

 0.00043 4

4 +  0.00043 4
≅ 6.2 × 10−10  %  , 

𝜉′𝑒𝑞2 =
 1.204

𝑘𝑔
𝑚3  340

𝑚
𝑠  (0.041 𝑚2)

12𝜋 9.146 × 10−3𝑘𝑔 (0.265 𝐻𝑧)

 0.00056 4

4 +  0.00056 4
≅ 3.4 × 10−9%  .  

The results based on radiation from an oscillating sphere totally disagree with 

experimental results. This is expected since the frequency is too low for Eq. 4.15 to 

be applicable. 
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8.9  Experimental Result Analysis 

Table 8.3 summarizes the results of two experiments together. 

 
 TEST 1 TEST 2 

Theoretical 𝑓 0.216 Hz 0.275 Hz 
Tested 𝑓 0.205 Hz 0.265 Hz 

Theoretical 𝜉𝑒𝑞  
(Fluid Dynamics) 

1% 1% 

Theoretical 𝜉𝑒𝑞  
(Oscillating Sphere) 

6.2 × 10−10% 3.4 × 10−9% 

Tested 𝜉𝑒𝑞  2.22% 2.32% 
 

Table 8.3: Comparison between Test 1 and Test 2 
 

From Table 8.3, we see that the fluid dynamics theory gives a reasonable 

solution for the damping ratio at frequencies of less than 1 Hz. Some approximations 

and assumptions should be noted: 

1. We have assumed the swinging motion of the pendulum is the same as that 

of a transversely oscillating sphere. This assumption works only when the 

rotation angle is small enough to be neglected. For the two experiments 

performed above, even large rotation angles were taken into account in the 

calculations.  

2. An approximation is that we have used the time-averaged speed in Eq. 8.3 

when obtaining the Reynolds number. However according to Roberson and 

Crowe [1975], using the actual speed function will not lead to a big 

difference in the coefficient of drag, because the coefficient of drag stays 

approximately at the same value with regard to a large range of Reynolds 

Number. 
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Through the vibration plate experiment and the pendulum experiment, we have 

studied the applicability of acoustic theory based on acoustic radiation from an 

oscillating sphere and fluid dynamics theory at two frequency ranges. The 

experimental results show that the acoustic theory does not apply for low frequency 

vibrations. We believe that the acoustic theory is only valid for high-frequency 

vibrations. The fluid dynamics theory applies reasonably well for low frequency range 

that we used in the pendulum experiment.  

In the next chapter a baffled plate experiment will be presented, testing the 

applicability of acoustic theory at higher frequency. 
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CHAPTER 9. 

BAFFLED PISTON EXPERIMENT 

 

9.1  General 

We have performed an unbaffled oscillating plate experiment and a pendulum 

(oscillating sphere) experiment to determine the applicability of acoustic theory and 

fluid dynamics theory under various frequency ranges. In chapter 7, based on the 

oscillating plate experiment, we showed that neither acoustic theory based on radiation 

from an oscillating sphere nor fluid dynamics theory accurately predicts the energy 

loss from a vibrating plate with a frequency range from 5 Hz to10 Hz. We expect that 

acoustic theory based on acoustic radiation from an oscillating sphere may work at 

high vibrational frequencies. However, at high frequencies, it would be difficult to 

keep the plate rigid. In chapter 8 we showed that fluid dynamics theory reasonably 

predicts the energy loss from a vibrating pendulum with a frequency of around 0.2 Hz. 

In this chapter, to study the applicability of acoustic theory at higher frequencies, 

a baffled piston experiment is described. As stated in chapter 6, a baffled piston is an 

infinite plane (the baffle) except for a section (the piston) that vibrates normal to the 

surface. We have derived the theoretical solution for the acoustic field produced by the 

vibration of a baffled piston using the Rayleigh Integral (Blackstock [2000]). In this 

chapter, a vibrating plate experiment is designed to act like a baffled piston. 

Experimental results are compared with the theoretical Rayleigh Integral solution to 

verify the applicability of acoustic theory at high frequency. 
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9.2  Experimental Setup 

 

 

 

 

 
   
 
 
 
 

  Fig. 9.1: Sketch of Experimental Setup 
 

A plate of glass is fixed to a wood box, as shown in Fig. 9.1. The wood box with 

one face open is used to act as a rigid baffle. Note this is an approximation because the 

wood box is not an infinite plane. The glass plate is mounted using aluminum strips on 

the edges of the open face of the box.  

A speaker placed inside the wood box generates harmonic excitations. The 

frequencies generated by the speaker are controlled by Matlab. Different vibrational 

modes of the glass are excited by various harmonic frequencies. For example, Fig. 9.1 

shows the first vibrational mode of the glass. At this mode the glass vibrates up and 

down as shown. An accelerometer attached to the glass collects acceleration data. An 

acoustic pressure transducer is placed at various distances from the glass to acquire 

pressure data. Styrofoam pieces with thickness of 0.5 inch are placed inside of the box 

to damp out vibrations of the sides of the box. 

The speaker is a Boston Acoustics® BA265™ Speaker. The diameter is 3 in, 

Concrete floor Concrete floor 

ACCELEROMETER 

WOOD BOX 
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with an output power of 92 decibels and frequency response in the range of 100 to 

20,000 Hertz. The Matlab code that controls the speaker was written by Ortega [2008] 

and is shown in Fig. 9.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.2: Matlab Code For Speaker Control 
 

 

function input_file = inputs 

% 

% 

%This program generates the vector of the sound variation. Also plays 

this 

%sound vector at any desired frequencies and with any desired 

duration. 

% 

%Input Frequency Range 

freqs = [151:1:155]; 

n_freq = size(freqs,2); 

p_time = 10;%%Time in seconds the sound is going to be played 

n_cyc_req = p_time*freqs; 

%Generate the required number of cycles of Sinusoidal Excitation 

steps_per_cycle = 100; 

y_s = zeros(n_freq,(n_cyc_req(1,n_freq))*steps_per_cycle + 1); 

T =   zeros(n_freq,(n_cyc_req(1,n_freq))*steps_per_cycle + 1); 

sample_step = 2*pi/steps_per_cycle; 

for i = 1:n_freq 

    cn = 0; 

    for t = 0:sample_step:2*pi*n_cyc_req(1,i) 

        cn = cn + 1; 

        y_s(i,cn) = sin(t); 

        T(i,cn) = t; 

    end 

end 

for j = 1:n_freq 

Fs = freqs(1,j)*steps_per_cycle; 

y = y_s(j,1:n_cyc_req(1,j)*steps_per_cycle + 1); 

wavplay(y,Fs) 

end 

return 
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Fig. 9.3 shows a photograph of the experiment. 

 
 

Fig. 9.3:  Photo of Experimental Devices 
 

The properties of the wood box and glass are shown in Fig. 9.4(a) and       

Fig. 9.4(b). The plywood has a thickness of 0.5 inch. All edges of the box are framed 

with 2 𝑖𝑛 × 2 𝑖𝑛 and 2 𝑖𝑛 × 4 𝑖𝑛 dimension lumber. 

 

 

 

 

 

 

 

 
 

 (a):  Box and Hole Dimensions 
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 (b):  Glass Dimensions 

 
Fig. 9.4:  Experimental Setup and Device Dimensions 

 

The physical properties of the glass are obtained from the literature as: 

Young’s Modulus of glass: 𝐸 = 70 𝐺𝑃𝑎, 

Density of glass: 𝜌 = 2500 𝑘𝑔/𝑚3 

Poisson’s Ratio of glass: 𝜈 = 0.17 

9.3  Finite Element Modeling 

The finite element software SAP 2000 is used to compute the modal behavior of 

the glass plate. The plate is assumed to be clamped at all edges. A modal analysis is 

completed in SAP 2000 and a series of harmonic frequencies is calculated. The 

corresponding mode shapes are also generated. The first two modes’ natural 

frequencies are given in Fig. 9.5(a) and Fig. 9.5(b), which are 301.67 Hz for the first 

mode and 400.66 Hz for the second mode. 

The results generated from the finite element software will be compared with the 

experimental results to verify the natural frequencies of the glass. Fig. 9.5 also shows 

the mode shapes generated by SAP 2000.  

0.5 inch 

20 inch 

38 inch 
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(a) First Mode (301.67 Hz)                (b) Second Mode (400.66 Hz) 

 
Fig. 9.5  Mode Shapes and Natural Frequencies from SAP 2000 

 

9.4  Experimental Result (Acceleration) 

To verify the finite element results, the acceleration response history from the 

attached accelerometer under various driving frequencies is plotted in Fig. 9.6. The 

driving frequencies are increased from 50 Hz to 450 Hz, with a step of 1 Hz. The 

acceleration data is acquired from a data acquisition toolbox using the software 

Labview. The frequency response is recorded and processed using Microsoft Excel.  

The acceleration response history in Fig. 9.6 shows that there are two major 

peaks where the acceleration amplitude is high and distinguishable. These are the 

acceleration peaks at the harmonic frequencies of the glass. They are at 299 Hz and 

393 Hz, respectively. 
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 Fig. 9.6:  Acceleration Response History vs. Driving Frequencies 

 

 Note that in Fig. 9.6 we can see some minor peaks exist. These peaks could be 

due to vibrational modes of the wood box. 

A comparison of computer modeling and experimental results are shown in 

Table 9.1: 

 
 Modeling Result (Hz) Experiment Result (Hz) 
Mode 1 301.67 299 
Mode 2 400.66 393 

 
Table 9.1: Computer and Experimental Result Comparison 

 

We can see that minor differences exist. For example in the second mode, the 

experiment result (393 Hz) has a difference of 7 Hz compared to the computer 

modeling result (400.66 Hz). This could be due to the imperfect modeling of boundary 

conditions. However we are interested only in the first mode because its mode shape is 

closer to a uniformly vibrating baffled piston.  
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From the acceleration response history we can see the finite element software 

SAP 2000 has successfully calculated the natural frequencies of the glass. Now we are 

interested in the acoustic field when the glass is vibrating in its first mode.  

9.5  Experimental Result (Pressure) 

In chapter 6 we derived Eq. 6.30 for the farfield pressure along the central axis 

normal to the baffled piston surface. To verify the equation, the acoustic pressure 

transducer is placed pointing toward the center of the glass, at various distances above 

the center of the glass plate. The distance is increased from 1 inch to 60 inches with a 

step of 1 inch. The speaker driving frequency is fixed at 299 Hz, which is the 

frequency of the 1st vibrational mode of the glass. For each distance step, pressure data 

is collected and processed to acquire an average peak value. The pressure amplitude is 

plotted versus distance in Fig. 9.7. 

 
 

Fig. 9.7:  Pressure Amplitude vs. Distance 
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From Fig. 9.7, we see that at a distance of 3 inches, the pressure amplitude 

reaches its peak value of 1.0293 Pascal. Then it decreases with increasing distance. 

9.5.1  Theoretical Pressure Based on Experimental Devices 

Eq. 6.30 gives the expression for farfield pressure amplitude along the central 

axis normal to the baffled piston surface, rewritten here: 

𝑝 =
𝑃0𝑅0

𝑟
 .                                               (𝐸𝑞. 6.30) 

where the Rayleigh distance 𝑅0 is defined by the ratio of the piston area to the wave 

length: 

𝑅0 =
𝑆

𝜆
 ,                                                    (𝐸𝑞. 9.1) 

and 𝑃0 is defined as: 

𝑃0 = 𝜌0𝑐0𝑢0  .                                             (𝐸𝑞. 9.2) 

where 𝜌0 is the density of air, 𝑐0 is the speed of sound in the same air media. 𝑢0 is 

the vibrational speed amplitude of the piston. 

To evaluate the theoretical value for the experiment, let us take the properties of 

air and the glass in to the expression, with 𝜌0 = 1.204 𝑘𝑔/𝑚3  and 𝑐0 = 340 𝑚/𝑠 . 

To calculate the vibrational speed amplitude, 𝑢  , the peak acceleration 

amplitude is read from the acceleration data, which is 4.1 m/s2. The acceleration, 𝑢 , 

is expressed as a cosine function: 

𝑢 = 𝑢0 cos𝜔𝑡 

Integrating the acceleration over t, we get the expression for velocity, 𝑢: 

𝑢 =  𝑢 𝑑𝑡 =
𝑢0 

𝜔
sin𝜔𝑡  . 

The amplitude of the velocity is: 
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𝑢0 =
4.1𝑚/𝑠2 

𝜔
=

4.1𝑚/𝑠2

2𝜋 × 299 𝐻𝑧
= 0.00218

𝑚

𝑠
 . 

For the rectangular glass plate, the Rayleigh distance is: 

𝑅0 =
𝑆

𝜆
=

𝑏

𝜆
  . 

The wave length is: 

𝜆 =
𝑐0

𝑓
=

340 𝑚/𝑠

299 𝐻𝑧
= 1.137 𝑚  . 

Substituting 

𝑏 = 20 𝑖𝑛𝑐 = 0.508 𝑚  , 

 = 38 𝑖𝑛𝑐 = 0.965 𝑚  , 

the Rayleigh distance is calculated as: 

𝑅0 =
𝑏

𝜆
=

0.508𝑚 × 0.965𝑚

1.137 𝑚
= 0.4312 𝑚 = 16.97 𝑖𝑛  . 

𝑃0 is calculated as: 

𝑃0 = 𝜌0𝑐0𝑢0 = 1.204
𝑘𝑔

𝑚3
× 340

𝑚

𝑠
× 0.00218

𝑚

𝑠
= 0.8924

𝑘𝑔

𝑚 × 𝑠2
  , 

or: 

𝑃0 = 0.8924
𝑘𝑔

𝑚 × 𝑠2
= 0.8924

𝑁

𝑚2
= 0.8924 𝑃𝑎  . 

The expression of pressure amplitude at different distances from the plate 

surface is then: 

𝑝 =
𝑃0𝑅0

𝑟
=

0.8924 𝑃𝑎 × 16.97 𝑖𝑛

𝑟
=

15.14

𝑟
  𝑃𝑎                   (𝐸𝑞. 9.3) 

9.6  Comparison of Experiment and Theory 

Based on Eq. 9.3, theoretical pressure 𝑝 is plotted against various distances 𝑟 

(1 − 60 𝑖𝑛𝑐) in Fig. 9.8. The experiment result is also plotted in the same figure.  



82 
 

 
 

Fig. 9.8:  Theoretical and Experimental Results Comparison 
 

9.6.1  Farfield Pressure 

From Fig. 9.8, theoretical pressure amplitude doesn’t match with test pressure 

amplitude until the field point is approximately 17 inches away from the glass surface. 

After the distance of 17 inch, the two matches each other closely. According to the 

calculation, the Rayleigh Distance 𝑅0 = 16.97 𝑖𝑛, this result is close to the distance 

(around 17 inch) at which the farfield theoretical pressure and experimental pressure 

match each other. 

 Blackstock [2000] suggests in his book Fundamentals of Physical Acoustics 

that the Rayleigh Distance 𝑅0  can be loosely interpreted as the cutoff distance 

between nearfield and farfield. This means the piston radiation starts out as a 

collimated plane wave form. Beyond the distance of 𝑅0 = 16.97 𝑖𝑛, the wave spreads 

spherically. This idea is shown in Fig. 9.9. 
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Fig. 9.9:  Geometrical demonstration of Rayleigh Distance and wave shape 

 

The result matches our expectation because the Rayleigh Integral solution, Eq. 

9.3 gives only the farfield solution along the central axis normal to the piston surface. 

Thus, it is not surprising that the theoretical pressure in Fig. 9.8 doesn’t match with 

test result until the distance exceeds the Rayleigh Distance 𝑅0. Then what is the 

theoretical pressure in the nearfield? 

9.6.2  Nearfield Pressure 

Blackstock [2000] suggests that the nearfield pressure on the central axis normal 

to the piston can be calculated using the following equation: 

𝑝 = 𝑗2𝑃0 sin   
𝑘

2
   𝑟2 + 𝑎2 − 𝑟  𝑒𝑗  𝜔𝑡−𝑘𝑟−𝜉  .              (𝐸𝑞. 9.4) 

where 𝜉 is defined as: 

𝜉 = 𝑘( 𝑟2 + 𝑎2 − 𝑟) 

However, since 𝑒𝑗 (𝜔𝑡−𝑘𝑟−𝜉) is basically a sine function, we can focus on the 

amplitude of the pressure. That is,  

𝑝′ = 2𝑃0 sin   
𝑘

2
   𝑟2 + 𝑎2 − 𝑟    .                      (𝐸𝑞. 9.5) 

where some of the variables have been calculated previously: 

O 

R0 

r piston 
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𝑃0 = 𝜌0𝑐0𝑢0 = 0.8924
𝑘𝑔

𝑚 × 𝑠2
  , 

and 

𝑘 =
𝜔

𝑐
=

2𝜋𝑓

𝑐
=

6.28 × 299 𝐻𝑧

340 𝑚/𝑠
= 5.52 

1

𝑚
  . 

In Eq. 9.5, the amplitude of nearfield pressure 𝑝′ is then a function of distance 

𝑟, which is the distance from the piston surface to the field point on central axis. Note 

the limit of 𝑟  is that 𝑟 < 𝑅0 = 16.97 𝑖𝑛𝑐  for nearfield analysis. A figure of 

theoretical nearfield pressure is plotted in Fig. 9.10. 

 
 

Fig. 9.10:  Theoretical nearfield amplitude along the central axis 
 

In Fig. 9.10, the distance 𝑟 varies from 0 to 17 inch, which is within the range 

of the Rayleigh distance. Fig. 9.10 shows a smooth decrease of pressure amplitude 

within the nearfield.  

9.6.3  Combination of Nearfield and Farfield Pressures 

Finally, let us combine the theoretical pressure of both nearfield and farfield, 

then compare the theoretical predictions with the test result. The comparison is plotted 
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in Fig. 9.12. 

 
 

Fig. 9.12:  Final Result Comparison 
 

From Fig. 9.12, we see that within Rayleigh distance, theoretical nearfield 

pressure value is greater than the test result. Once the distance gets into farfield, the 

theoretical farfield pressure shows a better match with the test result.  

9.7  Discussion 

In conclusion, the test result matches with the theoretical result as closely as can 

be expected. Some differences appear in the nearfield. The differences can be 

explained as follows: 

(a)    The theoretical nearfield solution assumes the piston is oscillating as a 

rigid body. However within the Rayleigh distance, when the pressure transducer 

is relatively close to the vibrating glass, the glass is apparently vibrating 

non-uniformly because the boundaries are fixed to the wood box. This means the 
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effective piston size is smaller than what we used in nearfield pressure 

calculation. If we substitute a dimension smaller than the actual glass size into 

the numerical study, we could find that the nearfield curve gets somewhat closer 

to the test result. This result is plotted in Fig. 9.13.  

Fig. 9.13:  Theoretical pressure with various piston sizes vs. test result 

 

From Fig. 9.13, within nearfield, we see when a piston with radius of 0.45 m is 

assumed, the nearfield and farfield pressure shows a smoother transition. This is 2.28 

inches smaller in radius than what we used for theoretical nearfield pressure 

calculation. However, there still exists a difference between the theoretical result and 

experimental result. 

(b) As stated earlier, the geometry of the wood box does not satisfy the ideal 

assumption of a baffle, which is an infinite plane. 

(c)    Other reasons may include environmental effects such as noise during the 
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experiment and so on. 

9.8  Theoretical Damping Ratio 

The baffled piston’s behavior can be modeled as one-half of a pulsating sphere. 

Thus the expression for the damping ratio based on radiation from a pulsating sphere 

can be used to calculate the theoretical damping ratio. In chapter 4, we derived the 

expressions for equivalent damping ratios based on acoustic radiation from a 

pulsating sphere, repeated here: 

𝜉𝑒𝑞 =
𝜌0𝑐0𝐴

2𝜔𝑚

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                               (𝐸𝑞. 9.6) 

For the baffled plate experiment, 

 𝜌0 = 1.204 
𝑘𝑔

𝑚3  , 

 𝑐0 = 340
𝑚

𝑠
  , 

 𝐴 = 0.508𝑚 × 0.965𝑚 = 0.49 𝑚2  , 

 𝑚 = 15.6 𝑘𝑔  , 

 𝜔 = 2𝜋𝑓 = 2𝜋 299 𝐻𝑧 = 1877.72
𝑟𝑎𝑑

𝑠
  , 

 𝑘𝑟0 =  5.52 
1

𝑚
  0.508 𝑚 = 2.8  . 

Thus, the theoretical damping ratio due to acoustic radiation for a rigid vibrating 

glass plate is: 

𝜉𝑒𝑞 =
 1.204 

𝑘𝑔
𝑚3  340

𝑚
𝑠  (0.49 𝑚2)

2  1877.72
𝑟𝑎𝑑
𝑠  (15.6 𝑘𝑔)

 2.8 2

1 +  2.8 2
≅ 0.3%  . 

This theoretical result seems reasonable. Unfortunately, because of the weight 

and size of the glass plate, it is very difficult to use the glass plate to make a rigid 

vibrating system at high frequency. The data processing capacity requirement for a 
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computer will also be much higher. 

We have shown that the Rayleigh Integral works well to predict the acoustic 

pressure caused by the baffled piston at a frequency of around 300 Hz. Thus the 

damping ratio would be expected to be reasonably well predicted. The next chapter 

presents analysis and discussion of all the experiments. 
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CHAPTER 10. 

ANALYSIS AND DISCUSSION 

 

10.1  Theoretical Equations and Test Results 

In chapter 4, we derived the expressions for equivalent damping ratios based on 

acoustic radiation from a pulsating sphere and an oscillating sphere. In chapter 5, we 

derived the expression for equivalent damping ratio of an oscillating rigid plate based 

on fluid dynamics theory. In chapter 6, we derived the Rayleigh Integral which solves 

for the farfield pressure of a baffled piston, which is identical to the problem of a 

pulsating sphere. All these equations are rewritten here for comparison. 

The damping ratio based on acoustic radiation from a pulsating sphere is: 

𝜉𝑒𝑞 =
𝜌0𝑐0𝐴

2𝜔𝑚

 𝑘𝑟0 
2

1 +  𝑘𝑟0 2
  .                           (𝐸𝑞. 10.1) 

The damping ratio based on acoustic radiation from an oscillating sphere is: 

𝜉′𝑒𝑞 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                           (𝐸𝑞. 10.2) 

The damping ratio of an oscillating plate based on fluid dynamics theory is: 

𝜉′′𝑒𝑞 =
1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
  .                                (𝐸𝑞. 10.3) 

The expression for the farfield amplitude of acoustic pressure of a baffled piston 

is: 

𝑝 =
𝑃0𝑅0

𝑟
sin 𝜔𝑡 − 𝑘𝑟  .                               (𝐸𝑞. 10.4) 

Several experiments were designed to determine the applicability of these 

equations. The experimental methods and results are summarized in Table 10.1.  
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PROBLEM  TEST RESULTS  THEORY  

Pendulum 

Tests Oscillating Sphere Fluid Dynamics 

2.22% 6.2 × 10−10% 1% 

2.32% 3.4 × 10−9% 1% 

Unbaffled Plate 

Tests Oscillating Sphere Fluid Dynamics 

0.02% 3.58% 0.0000532% 

0.03% 2.63% 0.000062% 

Baffled Plate 
Tests Pulsating Sphere 

N/A 0.34% 
 

Table 10.1: Damping Ratio Results 
 

From Table 10.1, several observations are made: 

1. The unbaffled plate experiment shows that neither acoustic theory nor fluid 

dynamics theory predicts damping ratio accurately at the given frequency 

of 5-10 Hz. We suspect that the unbaffled plate’s vibrational frequency is 

too low for acoustic theory to be applied; on the other hand, it is too high 

for fluid dynamics theory to be applied. Therefore there may exist a 

frequency range in which neither acoustic theory nor fluid dynamics theory 

is applicable. 

2. The pendulum experiment shows that fluid dynamics theory reasonably 

predicts the damping ratio of the system at low frequency vibration (around 

0.2 Hz), but acoustic theory does not apply at this low frequency.  

3. The baffled piston experiment shows acoustic theory (Rayleigh Integral) 

accurately predicts the farfield pressure of a clamped vibrating plate at a 

frequency of around 300 Hz. Acoustic theory works well for this 
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experiment. A theoretical damping ratio of the baffled plate is calculated, 

which seems to be reasonable. However within the scope of this project, it 

is too difficult to design an experiment to verify this result. 

Thus it seems that fluid dynamics theory and acoustic theory work in two 

regimes when the frequency is very low and very high, respectively. Also there may 

exist a frequency range in which neither acoustic theory nor fluid dynamics theory is 

applicable individually. This naturally makes us wonder where the boundary between 

the two theories is. That is to say, can we find a dimensionless parameter that 

determines when to apply which theory? 

10.2  Derivation of Dimensionless Parameter 𝚪 for Vibrating Plate 

The expression for the time-averaged acoustic power radiated from a pulsating 

sphere is derived in chapter 3, rewritten here: 

Π𝑎𝑣𝑒 = 2𝜋𝑟0
2𝑢0

2𝜌0𝑐0

 𝑘𝑟0 2

1 +  𝑘𝑟0 2
  .                 (𝐸𝑞. 10.5) 

When 𝑘𝑟0 ≫ 1, the vibrational frequency is high and the wave length is much 

smaller that the dimension of the sphere. The power radiated per unit surface area due 

to acoustic energy lost is: 

𝑊 =
Π𝑎𝑣𝑒

4𝜋𝑟0
2

|𝑘𝑟0≫1 =
1

2
𝑢0

2𝜌0𝑐0  .                    (𝐸𝑞. 10.6) 

This is the same expression as for radiation to one side from a rigid plate with a 

vibrational velocity amplitude, 𝑢0. Now consider a vibrating plate with an infinite 

length, and a finite width, 𝐿 . The vibrational amplitude is in the function of 

Δ = Δ0 sin 𝜔𝑡, shown in Fig. 10.1(a). 
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(a)                                 (b) 
 

Fig. 10.1: A Vibrating Plate with Infinite Length, and Width L 
 

Fig. 10.1(b) shows the cross section of the plate, looking in the negative 𝑧 

direction. When the plate is vibrating with an amplitude 𝛥0, the air in the volume of 

Δ0𝐿𝑑𝑧 may flow back and forth from one side of the plate to the other. For each half 

cycle with a period of 𝑇/2, the infinitesimal air volume Δ0𝑑𝑦𝑑𝑧 moves a distance 

of 𝐿/2. Thus the average velocity of the air volume is: 

𝑣 =
𝐿/2

𝑇/2
=

𝐿

𝑇
=

𝜔𝐿

2𝜋
  .                                  (𝐸𝑞. 10.7) 

The kinetic energy of the infinitesimal air volume is: 

𝐸 =
1

2
𝑚𝑣2 =  

1

2
𝜌0Δ0𝑑𝑦𝑑𝑧

𝐿
2

−
𝐿
2

(
𝜔𝐿

2𝜋
)2𝑑𝑦 =

𝜌0Δ0𝜔
2𝐿3

8𝜋2
𝑑𝑧  .       (𝐸𝑞. 10.8) 

Assuming all the kinetic energy is dissipated (as heat) within each half cycle, 

the power lost to heat is then: 

𝑧 

𝐿 

Δ = Δ0 sin 𝜔𝑡 

𝑥 

𝑦 

𝑑𝑧 

𝐿 

Δ0 

𝑥 

𝑦 

𝑑𝑦 
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𝑊𝑓𝑙𝑜𝑤 =
𝐸

𝑇
=

𝜌0Δ0𝜔
2𝐿3

8𝜋2 𝑑𝑧

𝑇
2

=
𝜌0Δ0𝜔

3𝐿3

8𝜋3
𝑑𝑧  .                  (𝐸𝑞. 10.9) 

Since Eq. 10.6 is the power radiated per unit surface area, for the same 

infinitesimal air volume, the power radiated is: 

𝑊𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 =
1

2
𝑢0

2𝜌0𝑐0 𝐿𝑑𝑧  .                             (𝐸𝑞. 10.10) 

Comparing Eq. 10.9 and Eq. 10.10, if 𝑊𝑓𝑙𝑜𝑤 > 𝑊𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐  , which means the 

energy of acoustic radiation is less than the energy of fluid convection. In this case 

acoustic theory applies. Otherwise the energy dissipated due to air convection 

dominates and fluid dynamics theory applies. In mathematical form, 

𝑊𝑓𝑙𝑜𝑤 =
𝜌0Δ0𝜔

3𝐿3

8𝜋3
𝑑𝑧 >

1

2
𝑢0

2𝜌0𝑐0 𝐿𝑑𝑧 = 𝑊𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐   .       (𝐸𝑞. 10.11) 

In chapter 4, we have derived that the amplitude of velocity is given by: 

𝑢0 = Δ0𝜔  . 

Substituting this relationship into Eq. 10.11 and simplifying, we obtain, 

𝑊𝑓𝑙𝑜𝑤 =
𝜔𝐿2

4𝜋3
> Δ0𝑐0 = 𝑊𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐   ,                       (𝐸𝑞. 10.12) 

or when 

Γ =
4𝜋3Δ0𝑐0

𝜔𝐿2
< 1  ,                                   (𝐸𝑞. 10.13) 

acoustic theory applies. In Eq. 10.13, Δ0 is the amplitude of vibration, 𝑐0 is sound 

speed, 𝜔 is the vibrational frequency and 𝐿 is width of the plate. The proposed 

dimensionless parameter Γ approximately determines the limitation of applicability 

of acoustic theory and fluid dynamics theory. 

10.3  Effect of Air upon Building Structures 

In practice, most building structures’ fundamental mode shapes can be thought 
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of as vibrating transversely. Thus the solutions for the damping ratio based on 

acoustic radiation from an oscillating sphere or fluid dynamics theory can be applied 

to calculate the damping ratio of a building structure. This idea is shown in Fig. 10.2. 

 

 

 

 

 

 

 

 
Fig. 10.2: General Multi-story Building Example 

 

As shown in Fig. 10.2, a multi-story building structure can be approximated as a 

transversely oscillating sphere. Both of them have a vibrational amplitude, ∆0; a 

projected area, 𝐴; a vibrational frequency, 𝜔, and a mass, 𝑚.  

If the building is vibrating transversely, the equivalent damping coefficient for 

this building can be calculated using Eq. 10.2 and Eq. 10.3, repeated here: 

𝜉𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑛𝑔 =
𝜌0𝑐0𝐴

6𝜔𝑚

 𝑘𝑟0 
4

4 +  𝑘𝑟0 4
  .                       (𝐸𝑞. 10.14) 

𝜉𝑓𝑙𝑢𝑖𝑑 =
1

4𝜋3

𝐶𝐷𝐴𝜌0𝛥0

𝑚
  .                             (𝐸𝑞. 10.15) 

Which equation should be used depends on the dimensionless factor, Γ . 

We are interested in how much air damping contributes to the total damping of a 

structure when different construction materials are used. Specific building examples 

are studied to find the equivalent damping ratios based on assumed building 

≈ 

∆0 

∆0 

𝑚, 𝜔 
𝑚, 𝜔 Area=𝐴 

Area=𝐴 
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properties. The examples assume the construction material is uniform reinforced 

concrete. The results are shown in table 10.2.  

 

Building Type A (m2) 
f 

(hertz) 
m (ton) Δ (m) Γ Theory ξ (%) 

1 story 50 15 2000 0.01 0.447 Acoustic 0.000098  

5 stories 500 3 10000 0.05 5.587 FD 0.0000041  

20 stories 5000 0.5 40000 0.2 53.636 FD 0.0000413  

50 stories 25000 0.2 100000 0.5 167.61 FD 0.0002063  

 
Table 10.2: Damping Ratios of Specific Steel Building Examples  

 

Based on assumed building properties, different values of Γ are calculated to 

determine whether acoustic theory or fluid dynamics theory (indicated as FD in table 

10.2) should be applied. The results show that for normal reinforced concrete 

buildings (usually with large mass values), the damping effect due to air is not 

significant. 

The results can also be predicted by looking at Eq. 10.14 and Eq. 10.15. The 

major difference between applying these equations into practical buildings and into 

experiments is when studying the air damping effect upon buildings, the mass is 

usually large, leading to a small damping ratio; while the experimental devices we 

have developed are mostly light-weighted. 
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CHAPTER 11. 

CONCLUSION 

 

11.1  Summary and Significance 

In previous chapters, detailed expressions for equivalent damping ratios based 

on acoustic radiation from a pulsating sphere and an oscillating sphere are presented. 

The equivalent damping ratio based on fluid dynamics theory is also presented. A 

solution to the farfield pressure amplitude of a baffled piston is derived. Experimental 

results and theoretical results have answered the questions we brought up in chapter 1. 

(1) Under what conditions does air affect the vibration of a building structure? 

Air enclosed in buildings introduces extra vibrational modes beyond to 

those have already existed when the building is in vacuum. The surrounding 

air has a small damping effect upon buildings.  

(2) How important is the effect of air on a vibrating building structure? Shall 

we consider air in analyzing buildings?  

Theoretical building examples shown in chapter 10 demonstrate that when 

designing buildings vibrating at low frequencies, the damping effect of air 

upon structures is not significantly considerable. 

(3) Under what conditions does a building structure’s vibration cause sound 

and related acoustic impacts in air? 
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A building structure’s vibration causes acoustic radiation when the 

building’s vibrational frequency is very high (Γ < 1 , 𝑘𝑟0 ≫ 1) and the wave 

length is much smaller than the building’s dimensions. 

(4) What type of physics should be used in determining structural damping? 

Two types of physics are applied: acoustic theory and fluid dynamics theory. 

An unbaffled plate experiment and a pendulum experiment are designed to 

determine the applicability of the theoretical solutions to damping ratios. 

The results show that the solution to damping ratio based on acoustic works 

in high frequency vibrations only; the solution to damping ratio based on 

fluid dynamics theory works in the opposite low frequency vibrations. A 

baffled plate experiment is designed to test the Rayleigh Integral solution at 

relatively higher vibrational frequency. The theoretical solution matches 

well with the experimental results, verifying the applicability of acoustic 

theory in high frequency range. There might be a frequency range in which 

both acoustic theory and fluid dynamics theory should be applied 

simultaneously; it is also possible that neither these two theories are 

applicable in this frequency range. This range is a transition from the 

frequency range in which fluid dynamics theory applies only, to the 

frequency range in which acoustic theory applies only. 

(5) When is acoustic theory appropriate, and when is fluid dynamics theory 

appropriate? 
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A dimensionless factor, Γ, is proposed to determine what physics should be 

applied in determining structural damping due to air. It determines whether 

acoustic theory or fluid dynamics theory should be applied based on 

vibrating structure’s size, vibrational frequency, and vibrational amplitude. 

When Γ > 1 and the drag force are generated and fluid dynamics theory 

should be applied; when Γ < 1, acoustic theory should be applied. Further 

experiments are expected to verify this conclusion. 

(6) Can we develop simple formulas that predict the damping effect of air on 

buildings? 

The fluid dynamics theory can be applied directly to predict the damping 

effect of air on low-frequency vibration (Γ > 1, 𝑘𝑟0 ≪ 1) buildings. For 

high-frequency vibration ( Γ < 1, 𝑘𝑟0 ≫ 1)  buildings, acoustic theory 

should be applied to calculate the damping effect of air. We derived 

formulas to predict the damping effect of air on buildings.  

11.2  Future Research 

The conclusions of this thesis should be regarded as tentative until more 

experiments are conducted. Future possible experiments may include: 

(1) Designing of high frequency vibration device for the purpose of 

determining the applicability of damping ratio based on acoustic theory 

experimentally.  

(2) Designing devices including an unbaffled plate and a baffled plate vibrating 

at very high frequencies. It is favorable to have the frequency adjustable.  
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(3) Designing an oscillating rigid sphere whose vibrational frequency can be 

adjusted from very low to very high.  

(4) Developing a theory which applies at the transition frequency range 

between fluid dynamics theory and acoustic theory (Γ ≅ 1).  

(5) More computational simulation including fluid-structure interaction and 

acoustic-structure interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

REFERENCES 

 

ANSOL, Advanced Numerical Solutions:  

ansol.us/Products/Coustyx/Validation/MultiDomain/Radiation/Sphere/Oscillat

ingSphere/Downloads/dataset_description.pdf 

Anker, Jan Christian, 2005. “An Interpretation of the Physics of Fluid-Structure 

Interaction in the Frequency Domain”,  23rd CADFEM User’s Metting 2005, 

International Congress on FEM Technology with ANSYS CFX & ICEM CFD 

Conference. November, 2005. Germany. 

Blackstock, David T., 2000. “Fundamentals of Physical Acoustics”, 2000, John Wiley 

& Sons, Inc. 

Chopra, Anil K.  2008. “Dynamics of Structures, Theory and Applications to 

Earthquake Engineering”, 2008, 3rd Edition, Prentice-Hall Inc (Pearson 

Education Inc.). 

Decultot, D., Lietard R., Chati F.. 2008. “Acoustic Radiation of Low Frequency 

Flexural Vibration Modes in a Submerged Plate”, Acoustics’08 meeting, Paris, 

France, June 29- July 4, 2008. 

Fahy, Frank; Gardonio Paolo, 2007. “Sound and Structural Vibration”, 2nd Edition, 

Elsevier. 

Gurgoze, M., 1999. “Receptance Matrices of Viscously Damped Systems Subject to 

Several Constraint Equations”, Journal of Sound and Vibration, Volume 230, 

issue 5, pp 1185-1190. 



101 
 

Hasheminejad, Seyyed M., Azarpeyvand Mahdi, 2003. “Electricity Effects on 

Acoustic Radiation from a Spherical Source Suspended Within a 

Thermoviscous Fluid Sphere”, IEEE Transaction on Ultrasonics, 

Ferroelectrics, and Frequency Control. Volume 50, No.11, pp 1444-1454. 

Hemmati, A.M. 2009. “Drag Measurement on an Oscillating Sphere in Helium II”, 

Journal of Low Temperature Physics 2009, Volume 156, pp 71-83. 

Hong, K. L., Kim, J. 1995. “Analysis of Free Vibration of Structural-Acoustic 

Coupled Systems, Part I: Development and Verification of the Procedure”, 

Journal of Sound and Vibration, Volume 188, issue 4, pp 561-575. 

Hong, K. L., Kim, J. 1996. “New Analysis Method for General Acoustic-Structural 

Coupled Systems”, Journal of Sound and Vibration, Volume 192, issue 2, pp 

465-480. 

Jacobson Mark F., Singh Rajendra, 1996. “Acoustic Radiation Efficiency Models of a 

Simple Gearbox”, NASA Technical Memorandum 107226. Seventh 

International Power Transmission and Gearing Conference. 

Kozien, Marek S., Wiciak Jerzy, 2005. “Acoustic Radiation by set of L-joined 

Vibrating Plates”, Journal of Molecular and Quantum Acoustics, Volume 26 

pp 183-190. 

Lee, Y. 2006. “The Effect of Air on Structural Vibrations”. Master of Science in Civil 

Engineering Project, Department of Civil Engineering, University of New 

Mexico. 



102 
 

Mareddy, Shilpa. 2006. “An Analysis of Service Level Vibrations in A Utility 

Building”, Master of Science in Civil Engineering Project, Department of 

Civil Engineering, University of New Mexico. 

Ngai K.W., Ng C.F., 2001. “Structure-Borne Noise and Vibration of Concrete Box 

Structure and Rail Viaduct”, Journal of Sound and Vibration, Volume 255, 

issue 2, pp 281-297. 

Ortega, Rodriguez Carlos O., 2008. “Dynamic Gas-Solid Interaction”, Master of 

Science in Civil Engineering Thesis, Department of Civil Engineering, 

University of New Mexico. 

Osaka, Yoshihiro, 2007. “Influence of Internal Damping on Vibration and Acoustic 

Radiation Characteristics of Rectangular Plate”, Proceedings of School of 

Engineering, Tokai University, Series E, July 2007. 

Pierce, Allan D. 1989. “Acoustics, an Introduction to Its Physical Principles and 

Applications”, 1989 Edition, Acoustical Society of America. 

Roberson, John A., Crowe Clayton T., 1975. “Engineering Fluid Mechanics”, 1975, 

Houghton Mifflin Company. 

Ross, Mike R., 2004. “Coupling and Simulation of Acoustic Fluid-Structure 

Interaction System Using Localized Lagrange Multipliers”, 2004, Department 

of Aerospace Engineering Science, University of Colorado. 

Oneline Sources: 

Wikipedia, http://en.wikipedia.org/wiki/Density 

Wikipedia, http://en.wikipedia.org/wiki/Wave_equation 

http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Wave_equation


103 
 

Wikipedia, http://en.wikipedia.org/wiki/Barometric_formula 

Wikipedia, http://en.wikipedia.org/wiki/Bulk_modulus 

Wikipedia, http://en.wikipedia.org/wiki/Conservation_of_mass 

Wikipedia, http://en.wikipedia.org/wiki/Material_derivative 

Wikipedia, http://en.wikipedia.org/wiki/Wave 

Wikipedia, http://en.wikipedia.org/wiki/Pendulum 

Wikipedia, http://en.wikipedia.org/wiki/Phase_(waves) 

Wikipedia, http://en.wikipedia.org/wiki/Interference_(wave_propagation) 

http://en.wikipedia.org/wiki/Bulk_modulus
http://en.wikipedia.org/wiki/Conservation_of_mass
http://en.wikipedia.org/wiki/Material_derivative
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Pendulum
http://en.wikipedia.org/wiki/Phase_(waves)
http://en.wikipedia.org/wiki/Interference_(wave_propagation)

	University of New Mexico
	UNM Digital Repository
	9-10-2010

	Effect of air on vibration of structures
	Tong Xia
	Recommended Citation


	tmp.1472059087.pdf.cnmfm

