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ABSTRACT 

Structural health monitoring (SHM) is a research field that targets detecting and locating 

damage in structures. The main objective of SHM is to detect damage at its onset and 

inform authorities about the type, nature and location of the damage in the structure. 

Successful SHM requires deploying optimal sensor networks. We present a probabilistic 

approach to identify optimal location of sensors based on a priori knowledge on damage 

locations while considering the need for redundancy in sensor networks. The optimal 

number of sensors is identified using a multi-objective optimization approach 

incorporating information entropy and cost of the sensor network. As the size of the 

structure grows, the advantage of the optimal sensor network in damage detection 

becomes obvious.  

We also present an innovative field application of SHM using Field Programmable Gate 

Array (FPGA) and wireless communication technologies. The new SHM system was 
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installed to monitor a reinforced concrete (RC) bridge on interstate I-40 in Tucumcari, 

New Mexico. The new monitoring system is powered with renewable solar energy. The 

integration of FPGA and photovoltaic technologies make it possible to remotely monitor 

infrastructure with limited access to power. Using calibrated finite element (FE) model of 

the bridge with real data collected from the sensors installed on the bridge, we establish 

fuzzy sets describing different damage states of the bridge. Unknown states of the bridge 

performance are then identified using degree of similarity between these fuzzy sets. The 

proposed SHM system will reduce human intervention significantly and can save 

millions of dollars currently spent on prescheduled inspection by enabling performance 

based monitoring.       
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Chapter 1. Introduction 

1

CHAPTER 1 INTRODUCTION 

1.1 Introduction      

 A recent report in USA Today (July 25, 2008) shared with the public the current state 

of the nation’s infrastructure. USA Today’s report stated “Billions needed to shore up 

bridges”. The current status of the nation’s infrastructure reflects the need for reliable and 

efficient monitoring strategies and techniques. Deploying efficient monitoring systems on 

bridges can provide early warning about potential damage. Moreover, continuous 

monitoring of bridges and critical infrastructure may enable us to move from the current 

schedule-based maintenance to condition-based maintenance. This should save millions 

of dollars and allow for the focusing of resources. Furthermore, by using new advances in 

sensing technology and wireless communication systems, remote monitoring of the 

nation’s infrastructure will become a reality. 

 Structural health monitoring (SHM) is the field of study that targets detecting and 

locating damage in structures. The main aim of SHM is to enhance safety and reliability 

in mechanical, civil and aerospace infrastructure by recognizing damage before it 

becomes perilous. SHM is divided into four main subjects: data acquisition including 

identifying effective sensor type and network, damage feature extraction, which aims at 

selecting a feature that is sensitive to presence of damage based on sensor observations, 

statistical modeling and pattern recognition that allows the realization of damage severity 
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based on known healthy performance (reference) and damage conditions, and finally 

damage prognosis where the remaining life of the structure can be estimated. In the past 

decade, most research efforts were directed to damage feature extraction through signal 

processing, while little effort had been directed toward designing sensor networks.  

 Deploying different kinds of sensors including accelerometers, strain gages, fiber 

optic sensors and piezoelectric sensors, etc., most current SHM systems measure the 

dynamic response of structures. Vibration-based SHM is developed with the assumption 

that if stiffness reduction of the structure takes place as a result of damage occurrence, the 

vibration response of the structure will be significantly altered. Structural dynamic 

signals can be used to compute damage metrics such as energy of signals, mode shapes, 

curvature of mode shapes and natural frequency components in time domain, frequency 

domain or wavelet domain. Using proper domain for different damage metrics, 

researchers have shown that one can differentiate between healthy and damage status of 

bridges. The damage state of the structure can then be identified by considering theory of 

probability or other information theories for classifying these damage features. The use of 

reference performance to classify the structural health proved helpful to determine the 

need for maintenance or repair of bridges. 

 Advances in sensing technology have enabled the use of large numbers of sensors for 

structural health monitoring; therefore, designing efficient sensor networks becomes 

necessary. Design of the sensor network includes identifying the number, location and 

types of sensors. Moreover, reliability, economy, robustness and redundancy of the 

sensor network are major requirements that should be taken into account. An efficient 

sensor network should help detecting all possible damages and their locations in a 
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reliable and economical manner and should maintain system stability and effectiveness if 

one or more sensors in the network fail. Due to uncertainties that exist in damage 

locations and damage severities, finding a robust sensor network that can provide useful 

information to identify possible damage locations and severities of damage is a 

challenging task.  

 Most of previous methods in the literature relied heavily on theoretical frameworks 

and did not address critical issues such as sensor network robustness. These methods also 

relied heavily on assumptions directly related to the damage feature used for detecting 

damage. For example, many methods depend on detecting damage using mode shape 

changes. This limits the usefulness of these methods if such damage feature can not be 

used for detecting damage in other structures. 

1.2 Dissertation Contributions 

This dissertation introduces three major contributions to existing SHM knowledge: 

(1) A methodology to identify optimal locations of a given number of sensors for sensor 

networks using probabilistic assumptions is introduced. The proposed method also 

considers redundancy in sensor networks that will result in designing robust sensor 

networks. The efficiency of the proposed method is examined based on the definition of 

probability of detection (POD) and is verified by example implementation of a 

prestressed concrete bridge. 

(2) Using principles of information entropy along with probabilistic assumptions, an 

innovative method is introduced to identify the optimal number and location of sensors in 

any sensor network. Redundancy of the sensor network to achieve network robustness is 
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also included. The proposed method is based on solving a multi-objective optimization 

problem with different constraints. The efficiency of the proposed method in enhancing 

the damage detection process is examined and verified on a cable-stayed bridge passing 

over the Mississippi River. As the size of the structure grows, the advantage of the 

proposed method becomes obvious. 

(3) Finally, a field implementation of Field Programmable Gate Array (FPGA) 

technology for monitoring the performance of a reinforced concrete (RC) bridge at 

Interstate 40 (I-40) near the city of Tucumcari, New Mexico is developed and presented. 

Integrating this technology with wireless communication, a robust and effective SHM 

system was designed and installed. The new SHM system allows continuous remote 

monitoring of a critical infrastructure that is 200 miles away from the monitoring office. 

Moreover, using solar panels as a power supplier for the SHM system, the system can be 

deployed on infrastructure with limited access to sources of power. By implementing 

such a SHM system on any aged infrastructure, artificial intelligence can be added to the 

monitoring systems that will reduce the human intervention. This automation process not 

only can save millions of dollars currently spend on prescheduled inspection, but will 

also lead to performance based monitoring.    

1.3 Dissertation Layout 

 After the introduction chapter, Chapter 2 presents a literature review on SHM 

systems. Work done by different researchers in different categories of SHM is discussed. 

The necessity of the investigation made in this dissertation is also presented. 
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In Chapter 3, a method to identify the optimal sensor network is presented. This 

method determines the optimal location of a given number of sensors to enhance the 

damage detection process. The proposed method is based on a probabilistic approach to 

identify the optimal sensor network. We establish the probability distribution functions 

(PDFs) that describe the importance of each sensor. These PDFs are established based on 

the weights extracted from training an artificial neural network (ANN).  To evaluate a 

sensor network, the probability of detection (POD) is evaluated. Furthermore, an 

approach based on leave one sensor out analysis is introduced to evaluate sensor network 

redundancy. A prestressed concrete bridge is chosen as a case study and the optimal 

sensor network is determined and the network ability to identify damage is evaluated.  

 In Chapter 4, an entropy-based method to find the optimal number of sensors using 

information entropy is introduced. A case study using the Luling Bridge, a cable-stayed 

bridge over the Mississippi River, demonstrates the ability of the proposed method to 

successfully identify the optimal number and location of sensors necessary to effectively 

monitor the bridge. An entropy-based probabilistic method can address the uncertainties 

existing in sensor allocation without the need to prior assumptions on the damage feature. 

The proposed methodology and approach paves the road for design of robust sensor 

networks for efficient SHM. While in Chapter 3, the optimal location of sensors for any 

given number of sensors is identified, in this chapter both the optimal number and 

location of sensors are identified. This extension allows implementation of optimal sensor 

network on medium and long-span bridges. 

 In Chapter 5, an innovative SHM system using FPGA technology with minimum 

human intervention is described. The SHM system was calibrated on a model bridge in 



Chapter 1. Introduction 

6

the SHM laboratory at the University of New Mexico (UNM). The SHM system was then 

installed and tested to monitor a RC bridge on I-40 passing through the City of 

Tucumcari in New Mexico. The system operates wirelessly and is powered with a solar 

system. System efficiency to detect damage is verified.  

 Finally, in Chapter 6, the conclusions of this work are summarized and 

recommendations for future work are suggested.  
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CHAPTER 2 LITERATURE REVIEW  

2.1 Introduction      

 Structural health monitoring (SHM) is the term used to describe the technical 

activities necessary to keep an eye on infrastructures. SHM incorporates the necessary 

work to deploy sensors on the structures and to communicate and analyze data acquired 

by these sensors to detect damage and provide reliable and efficient strategies for 

structural maintenance and repair. In the past three decades, many researchers have 

examined aspects of SHM. These efforts originated from the need to lengthen the service 

life of critical infrastructure such as bridges, dams, pipelines, airplanes and space shuttles 

by providing efficient means of maintenance. Safety and reliability of these structures 

were examined to realize that how long these structures can stay in service. Many recent 

reports examine the status of the nation’s infrastructure and the subsequent need for 

investment upgrades to the current system. An article in USA Today (July 25, 2008) 

stated, “Billions needed to shore up bridges”. This cost covers not only the shoring up of 

bridges, but also includes keeping a watchful eye on bridges with degrading performance, 

thereby helping the U.S. Departments of Transportation (DOTs) to make efficient 

decisions on future maintenance, repair or full replacement of the nation’s bridge 

infrastructure. Mufti (2004) indicated that only in the United States, there are more than 
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200,000 deficient bridges that are needed to be taken care of immediately due to 

inadequate maintenance, excessive loading in addition to natural and man made adverse 

environmental conditions. A similar estimate was also given by Wang et al. (1997) who 

indicated that Federal Highway Administration (FHWA) estimated that almost 35% of all 

bridges in the United States (236,000 out of 576,000) are either structurally or 

functionally deficient. In this regard, Helmicki et al. (1999) stated that the U.S. DOT 

needs around $100 billion for bridge repair and concluded the great opportunities to 

implement SHM systems to civil infrastructures are now open for researchers. It became 

obvious to the public that if simple monitoring system was installed on I-35 Bridge in 

Minneapolis, the significance of the disaster of total failure of this bridge would have 

been lessened or prevented.    

 Deploying efficient SHM systems on bridges can provide early warning about 

potential damage. Moreover, continuous monitoring of bridges might enable the DOTs to 

move from the current classical schedule-based maintenance to condition-based 

maintenance where maintenance is tied to structural performance which can result in 

saving millions of dollars (Adams 2007). On the other hand, a great number of civil 

infrastructures under construction can incorporate SHM systems. During its construction, 

Li et al. (2006) implemented a SHM system on a cable-stayed bridge in Shandong 

Province in China called Binzhou Yellow River Highway Bridge. The system consists of 

a sensor module, a data acquisition module, a wired and wireless data transmitted 

module, a structural analysis module, a database module and a warning module. Such 

system can monitor the structure from its birth to observe its degradation. 
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The basic components of SHM include data acquisition, data processing, damage 

detection, damage pattern recognition and structural prognosis to evaluate the remaining 

structural life. One important aspect in data processing is the need for efficient signal de-

noising technique. While many researchers have described SHM systems in the context 

of anomaly detection (Bukkapatnam et al. 1999, Worden and Dulieu-Barton 2004), major 

SHM research was focused on feature extraction and pattern recognition. A hierarchical 

structure of SHM systems was described by Worden and Dulieu-Barton (2004). 

Moreover, Farrar et al (2004) provided in-depth analysis of the status and needs for 

damage prognosis as an estimate of a system’s remaining useful life. Essential damage 

prognosis research demonstrated that a critical issue to sensing and data acquisition is the 

need to capture response on varying length and time scales. A detailed analysis tying 

damage prognosis to bridge maintenance strategy has been suggested by Frangopol et al. 

(2004).   

 While defining damage is a challenging task, researchers agreed that damage cannot 

be measured but its influence on the structure’s response might be sensed/observed 

(Lemaitre and Desmorat 2002). Farrar et al. (2005) defined damage as “Intentional or 

unintentional changes to the boundary conditions and system connectivity, which 

adversely affect the current or future performance of that system.” Other definitions of 

damage considering other view points including stiffness, crack growth and strain 

thresholds exist in the literature (Broek 1986, Worden and Dulieu-Barton 2004 and 

Lemaitre and Desmorat 2002). 

 Much effort has been done to probe damage in a structure, before it reaches a critical 

state. Damage reduces the structure stiffness and hence affects the performance of the 



Chapter 2. Literature Review 

 10

structure. Identifying a proper feature that can be observed to realize changes that occur 

in the structural response due to presence of damage has been the focus of most research 

efforts. Most current damage features rely on dynamic characteristics of the structure 

such as natural frequency, modes shapes, etc., because vibration characteristics 

demonstrate the degradation in stiffness and are relatively easy to measure in the time 

domain (Neild et al. 2003). Using vibration signals, it has been shown that some damage 

features can be identified in the frequency domain or the wavelet domain (Chang and 

Chen 2004 and Reda Taha et al. 2004). However, damage location detection proved to be 

more challenging than damage occurrence detection due to the complex interaction 

between the different parts of the structure and their influence on the dynamic response 

(Staszewski et al. 2003). The size and complexity of civil infrastructure play a major role 

in developing efficient SHM systems. For some structures, the measurements of interest 

might not be limited to strain and vibration measurements (Ansari 2004). For instance, in 

cable-stayed bridges, measuring force and the condition of strands are a major focus in 

monitoring the health of the cables. In pipeline structures, corrosion of pipelines is of 

major interest for its health monitoring (Thien 2006).  Four important questions need to 

be considered in SHM: First, is there any damage existing in the structure? This issue is 

related to damage detection. Second, what is the level of this damage? Is the structure 

severely damaged or just a little damaged? Third, where are the locations of damage in 

the structure? Fourth and finally, how long will the structure remain intact before it 

requires maintenance? The fourth question addresses what is called damage prognosis. 

 In recent years, a change in the direction of SHM research has lead to designing smart 

structures. Smart structure is a term used to describe structures that can sense changes in 
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their environment and respond accordingly (Staszewski et al. 2003). This issue contains 

the integration of sensors, actuators, controllers and signal processors. The performance 

of smart structures basically relies on the quality of information that can be extracted 

from the sensed data. This quality depends on type, number and location of sensors 

chosen for the structure. In most cases, intuition and engineering judgment are the basis 

of sensor location selection (Parker et al. 2006); however, recently, analytically based 

judgment to identify optimal sensor networks has gained good interest (Raich and Liszkai 

2003, Swann and Chattopadhyay 2005 and Guratzsch and Mahadevan 2005). The need 

for optimization method is associated with gathering reliable and useful information from 

a robust sensor network while constrained by economical issues. In the past few years, 

different methods have been suggested by researchers when considering sensor networks 

to achieve optimal sensor placement. 

 It should be noted that there are two types of SHM systems: Active SHM system that 

has the sensors with the capability of both emitting waves and sensing waves and Passive 

SHM system where sensors are only used for data acquisition. In passive SHM system 

useful information from a sensor can only be guaranteed when the signal to noise ratio is 

above a certain threshold. A classical classification of SHM systems is to separate 

between active and passive monitoring. In active monitoring, the structural response due 

to an active (a priori known) force applied to the structure is determined. Active 

monitoring is typically used with seismic evaluation (Adams 2007). In such case, the 

monitoring system tries to solve the inverse problem and determine the structural 

stiffness matrix. Damage can then be identified by detecting losses in the stiffness matrix 

elements (Zhu and Law 2007). However, the more dominant class of SHM is the passive 
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monitoring system where monitoring is performed to structural response under random 

loadings without measuring the applied load (Giurgiutiu 2007).  

 Chang and Markmiller (2006) introduced probability of detection (POD) as a general 

measurement for quantifying the reliability of a sensor network. They showed that sensor 

functionality, number and location of sensors, which are case dependent, can significantly 

influence the POD. It is important that the sensor configuration can achieve an acceptable 

POD. The problem was defined to determine the sensor network and validate its 

performance for a specific structure, whose configuration, materials and design limit 

loads were known. The objective was to find the sensor network that reaches the target 

probability of detection. A simulation model or experimental data can generate the data 

necessary for calibration. A composite plate was used as the case study and the method 

was implemented for a certain number of sensors. The locations that resulted in the 

maximum POD was found by using genetic algorithms (GA) (Baker 1987). 

 Similarly, Rus et al. (2006) established an optimization criterion for optimal sensor 

networks using GA and based on minimizing an objective function that was established 

considering the residual error between experimental data and modeling data. To establish 

this objective function (f), a metric to describe the state of structure Φ is defined as 

 Φ = −ψ ψ
ψ

0

0RMS( )
 (2-1)

In this Equation ψ 0 is a measurement vector (e.g. acceleration or strain vector) for the 

undamaged state to help calibration of data and RMS is root mean square of 



Chapter 2. Literature Review 

 13

measurements and ψ is the measurement vector of synthetic damaged case. The vector 

of residuals (γ) is defined as                                    

 γ = −Φ Φ* (2.2) 

Where Φ and Φ* are computed using Equation (2.1). Φ* denotes the metric for the 

structural state based on experimental data and Φ  denotes for the structural state based on 

simulation data. The objective function f can then be established as 

 f
Ni

i
i

Ni

= =
=
∑1

2
1
2

12 2

1

γ γ  (2.3)                                                     

where Ni is the size of γ vector. The goal was to minimize the objective function. Then, 

the variation of the objective function due to damage with a magnitude of damage p

(defined as damage area and extent) is calculated as 

 f f
p

f p f
pp

p
, lim ( , ) ( , )= = −

→

∂
∂ ∆ ∆0

0 0 0  (2.4) 

Considering ∆p = p - 0 then ∆p = p. In this Equation f(p,0) describes the objective 

function based on damage p without noise in measurements and f(0,0) describes objective 

function for undamaged case without noise in measurements. Now, the rate of the 

variation of the objective function due to p can be calculated by considering second 

derivative as 

 f f
p

f p f
ppp

p
, lim ( , ) ( , )= = −

→

∂
∂

2

2 2
0

0 0 0  (2.5) 

 Similarly, the objective function can be differentiated with respect to noise effects σn

were thus f,nn can be computed as 



Chapter 2. Literature Review 

 14

f f f f
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In both Equations (2.5) and (2.6) the variation without defect and without noise 

( )0,0(, pf and )0,0(,nf ) is assumed to be zero for being evaluated for a healthy case. 

Thus, the ratio between two objective functions can be calculated as 

 f
f

f
f p

n

p
nn

pp

n≈








,

,

σ
2

(2.7) 

Now the POD can be defined as the probability that the change of the objective function 

due to noise is less than the change of objective function due to damage and can be 

described as 

 POD P f
f

n

p= ≤( )1  (2.8) 

The optimization process targeted maximizing POD. The method was applied 

successfully to a steel plate under impact loads and the goal was to enhance the damage 

detection probability.  

 Parker et al. (2006) developed another optimization algorithm that used essential 

elements of linear, finite dimensional, time invariant dynamical systems to find the 

optimal locations of the sensors. In other words, while damage develops in the structure, 

the algorithm targeted maximizing the change in the output signal. The suggested method 

was applied to a wing spar structure that was 1.7 m long by 101 mm wide by 203 mm 

thick. The spar was modeled using shell elements with 22128 degrees of freedom (DOF). 

The model was reduced to 29 DOFs to be simulated on personal computer for modal 
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analysis. It is obvious that such assumption could greatly affect the simulation results. 

The work by Parker et al. (2006) showed the importance of considering Finite Element 

(FE) model resolution as a factor in the analysis. Moreover, Schulte et al. (2006) 

examined the use of the information content in measurement data. One method aimed at 

maximizing the determinant of the Fisher information matrix. The Fisher information 

matrix relies on the eigenvectors of the sensitivity matrix derived by work by Fritzen and 

Bihle (2001). The partial derivatives of the mode shapes can be used to indicate how 

sensitive a particular element of the mode shape φji is to damage, where j represents the 

jth element in the ith mode shape. Damage was discussed using parameter xl that is used 

to represent percentage of reduction in member stiffness matrix ∆K as 

∆ ∆K K xl
l

k

l=
=
∑

1

. (2.9) 

Where Κ is the stiffness matrix, ∆K is the reduction in stiffness matrix due to damage. 

Based on Taylor series, the changes in natural frequency ω and mode shapes φ can be 

described as a function of the damage parameter (xl)

∆ω ∆i
i

il

k

lx
x2

2

1

=
=
∑ ∂ω

∂
and    ∆φ ∆ji

ji

ll

k

lx
x=

=
∑

∂φ

∂1

(2.10) 

 Now, the sensitivity matrix can be written as 
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The Fisher information matrix (F) can be established by considering the sensitivity 

matrix (S φ and a diagonal covariance matrix Σ that has the variances and covariances of 

the measurement channels, which can be considered as σ2 I with σ2 are the variances of 

the channel measurements and I is the identity matrix. The Fisher information matrix F

can be describes as Equation (2.12) 

 F = S φ
TΣ-1S φ (2.12) 

The objective of the sensor placement in this method was to find those rows of the 

sensitivity matrix that maximize the Fisher information matrix determinant. The 

determinant maximization of the Fisher information matrix is an indicator of reduction of 

uncertainty. Because of the computational expenses to solve this optimization problem, a 

new forward-backward selection algorithm for locating sensors was used to determine the 

optimal sensor positions. Fisher information matrix was also used by Kwon et al. (2003). 

They used maximum likelihood approach as a mathematical basis formulating Fisher 

information matrix in terms of mode shape sensitivity with respect to structural 

parameters to design an optimal accelerometer layout for a two-span multi-girder bridge.    

Furthermore, the use of information-entropy for sensor networks was introduced by 
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Papadimitriou et al. (2000). Information entropy is a measurement of uncertainty based 

on probability theory. Ntotsios et al. (2006) selected the information entropy norm to 

measure the performance of a sensor set-up. It was argued that the information entropy 

norm is a measure that corresponds to uncertainty in the model parameter estimation. It 

was demonstrated that using the information entropy enabled comparing between sensor 

configurations with different number of sensors. Two empirical methods were used to 

identify the optimal sensor location. Both methods were implemented on a 180 m long, 

13 m wide and four-span bridge located at Kavala (Greece) to identify the optimal 

locations of accelerometer sensors (Papadimitriou  2004 and Metallidis et al. 2003). 

While both methods were less computationally expensive compared to classical 

optimization, they did not guarantee finding an optimal sensor configuration. 

Nevertheless, it was shown that upper and lower bounds of the information entropy can 

be identified as a function of sensor numbers. Guratzsch and Mahadevan (2006) defined a 

methodology to design optimum sensor layout in SHM systems under uncertainty. The 

optimal sensor locations of SHM sensors were defined to maximize the probability of 

damage detection.   

 Numerous methods are suggested to monitor structures including monitoring 

structural deformations and strains. Cardini and Dewolf (2009) used strain data from a 

multi-girder composite steel bridge in the state of Connecticut for long-term monitoring. 

The strain data were collected from normal truck traffic with known loads and a finite 

element analysis was maid to verify the field data. Using strain data seemed to be 

appealing in other researchers work. Chacon et al. (2009) used strain measurements taken 

with conventional pre-wired gauges and compared them to a newly developed wirelessly 
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connected strain-measuring system. A hybrid steel plate girder subjected to concentrated 

loads at the end of an unstiffened panel to produce a typical reaction of the piers while 

launching steel girders in bridges was considered as experimental setup for this work. 

Using strain measurements as a metric for long-term monitoring of bridges under heavy 

vehicle traffic was also reported by Liu et al. (2009). However, significant limitations of 

using strain measurements have been reported (Shrive et al. 2009). The significantly low 

strains under service loads make strain measurements due to traffic very small as 

compared to strain measurements due to environmental effects (e.g. temperature 

variation). Also, noise effects in signals play a major role in relatively low measurements 

of strain. Kim and Paik (1997) used fiber-optic strain gauges for monitoring bridges and 

stated that Fabry-Perot optical fiber sensors showed a high resolution of approximately 

0.12 microstrain. Todd et al. (2000) also developed a strain sensing system for a clamped 

plate where damage is induced by loosening the clamping bolts. They used fiber bragg 

grating (FBG) sensors to measure strains at 16 locations to provide high resolution and 

low-noise data. Iranmanesh et al. (2009) also used fiber optic Bragg grating (FBG) 

sensors to monitor the column curvature of a bridge and took advantage of high 

resolution and high signal to noise ratio of this kind of sensors. As mentioned by Ansari 

(2007) shifting in the central wavelength of the Bragg gratings is the strain transduction 

mechanism in FBG sensors. Recently, fiber Bragg grating (FBG) accelerometers were 

used for structural health monitoring of bridges. Talebinejad et al. (2009) describe a 

methodology to develop a fiber optic accelerometer based on the shift in wavelength of 

FBG as a result of change in acceleration and utilized a low frequency version of this 
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accelerometer to monitor a reinforced concrete (RC) bridge located at western suburb of 

Chicago.     

 However, significant efforts have been directed to examining vibration-based damage 

detection methods in bridges. The premise of vibration-based SHM is that dynamic 

characteristics of a structure are a function of its mechanical properties. Thus changes in 

these mechanical properties as a result of localized structural damage will result in 

observable changes in the dynamic characteristics vibrations of the structure. Research on 

vibration-based damage identification goes back to the late 1970s in the study of offshore 

oil and gas platforms, as well as in the aerospace industry. A review of vibration-based 

SHM techniques for damage detection can be found elsewhere (Doebling et al. 1998, 

Yong 2002).   

 Acoustic monitoring is an alternative approach from vibration-based damage detection 

that was introduced to the SHM community (Ohtsu et al. 1996).  Tozser and Elliott 

(2000) showed the possible use of this method to monitor cable stayed bridges and post-

tensioning cables in bridges and also in high rise buildings. The concept is that fracture of 

these cables result in acoustic events that can be monitored. Assessment of the rate of 

detecting acoustic events can provide an efficient health monitoring devices. Damage 

detection using acoustic emission has been suggested by many researchers. For instance, 

Carpinteri et al. (2005 and 2009) showed the use of acoustic emission for structural 

damage detection and prognosis of historical masonry structures.  
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2.2 Vibration-based SHM 

 Several damage metrics (sometimes also referred to as damage features) have been 

suggested by many researchers for vibration-based SHM. These metrics included natural 

frequency (Natke and Cempel 1997, Zak et al. 1999 and Williams and Messina 1999), 

mode shapes (Stanbridge et al. 1997, Doebling and Farrar 1996 and Ahmadian et al. 

1997) and curvature of mode shapes (Maeck and De Roeck 1999, Ho and Ewins 2000, 

and Chandrashekhar and Gangul 2009). These damage metrics can be extracted by 

performing digital signal processing of acceleration signals received from the bridge 

structure (Neild et al. 2003, Reda Taha et al. 2004). Time and frequency analysis methods 

have been the most dominant techniques. In frequency analysis Fast Fourier Transform 

(FFT) is usually used to identify the major frequency components and the major mode 

shapes and observe changes in these components as damage happens in the structure. 

More information on FFT can be found elsewhere (Agneni et al. 2000 and Humar 2002). 

A time representation of an acceleration signal observed using accelerometers installed 

on a reinforced concrete bridge is shown in Figure  2-1. The high acceleration amplitude 

at 40 seconds is attributed to a heavy truck passing over the bridge at that time.  
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Figure  2-1 Acceleration of reinforced concrete (RC) bridge in the time domain. 

 

Figure  2-2 shows the frequency analysis of the same signal shown in Figure  2-1. The 

figure signal shows the ability of frequency based analysis to identify basic frequency 

components. However, it is obvious that the frequency analysis completely misses all 

time information.  

Figure  2-2 Acceleration of RC bridge observed in the frequency domain. 
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Modal analysis has been also suggested by researchers for identifying damage. 

Damage detection algorithms from modal analysis depend on observing signals from 

sensors distributed over the structure and developing accurate structural models (e.g. 

finite element (FE) models) to identify observable mode shapes. Problems associated 

with FE modeling such as discretization, configuration errors and modeling errors, as 

discussed by Yang et al. (2003), proved that modal testing might not be sufficiently 

practical. Moreover, experimental verification of damage detection algorithms using 

modal data from relatively large structures showed that modal characteristics might be 

insensitive to localized damage (Friswell and Penny 1997). Zhang et al. (1998) utilized 

modal strain energy as a structural damage identification method which uses mode shapes 

and modal frequencies from both damaged and undamaged structures to locate damage. 

To locate and quantify damage within a space truss model, Carrasco et al. (1997) 

proposed using changes in modal strain energy. Kim et al. (2003) suggested using modal 

strain energy to estimate the severity of damage and pointed out that changes in the 

natural frequencies are difficult to measure due to the limited change in frequencies 

caused by the uneven mass distribution in large structures. Using changes in modal strain 

energy is also used in the work done by Choi and Stubbs (1997). Ren and De Roeck 

(2002) examined the effect of noise on the reliability of damage identification from 

modal analysis and reported that the effect of noise is highly dependent on damage 

severity such that limited damage states will be more challenging to detect at high levels 

of noise than severe ones. 

 Critique was directed to frequency based methods for being heavily dependent on the 

structural mass (Shrive et al. 2003 and 2009). While many laboratory experiments 
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showed the ability of frequency metrics to detect damage in small lightweight structures 

in laboratory settings, field experiments showed very little success in detecting damage in 

large reinforced concrete bridges using frequency based metrics. The inability to replicate 

laboratory experiments to field observations for SHM systems is a major challenge in 

SHM design due to the significant effect of scale on structural response (Shrive et al. 

2009). Despite all the facts that natural frequencies could be insensitive to local and small 

parameter variations (damages) in the structure, the frequency shift based is used as a 

popular structural damage detection method in field applications. Jiang and Wang (2009) 

attempted to address this problem in frequency shift methods by developing the concept 

of sensitivity-enhancing control using eigenstructure (dual eigenvalue-eigenvector) 

assignment-based approach.  

 Such challenge suggested the use of alternative signal analysis methods such as Short 

Time Fast Fourier Transform (STFT), wavelets (Hubbard 1998) and principal component 

analysis (PCA) (Browne et al. 2002) for analysis of structural dynamics observations. 

STFT showed the ability to provide good time and frequency localization as STFT 

utilizes a window function that is multiplied by the input signal before computing the 

FFT (Robertson et al. 1996). Although STFT provides a time-frequency representation of 

a signal, there is a major drawback with respect to utilizing STFT in SHM applications; 

namely that the width of the window is fixed. Thus, there remains a need for multiple 

resolution analysis that can provide fine time resolution for long duration signals and fine 

frequency resolution for high frequency signals (Strang and Nguyen 1997). A thorough 

review of various time-frequency techniques for structural vibration analysis is provided 

by Neild et al. (2003). Strengths and weakness of each technique were examined through 
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examining a group of synthetic signals representing possible structural dynamics. 

Although the review did not address the issue of damage diagnosis it shed light on 

similarities between these techniques. 

 On the other hand, wavelet transform (WT) was suggested as an efficient method for 

digital signal processing that can provide time and frequency information. WT can be 

used to obtain vibration signal wavelet coefficients establishing what is known as the 

wavelet scalogram. Moreover, wavelet multi-resolution analysis (WMRA) can be used to 

decompose the structural vibration signal into its basic component signals. We discuss 

both methods here for our major use of these methods in SHM. The structural 

acceleration signal presented in Figure  2-1 is analyzed here first using WT.  

Figure  2-3 presents typical scalograms of the wavelet transform of the dynamic response 

acceleration signal of the bridge.  

Figure  2-3 Acceleration of RC Bridge observed in the wavelet domain. 
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The WT is performed using the Morlet mother wavelet showing the variation of the 

amplitude of wavelet coefficients as variation of the gray color intensities with respect to 

both time and scale. It is obvious that Figure  2-3 is more capable of describing the 

changes in the system dynamics in both time and frequency domains than Figure  2-1 and 

Figure  2-2 individually. While a peak acceleration in the structural response is indicated 

close to 40 seconds, this peak intensifies at relatively high scale values (relatively 

stretched wavelets) indicating the existence of high frequency components at that time. 

 Figure  2-4 demonstrates a schematic representation of the wavelet multi-resolution 

decomposition of a signal. An example analysis of the acceleration signal using WMRA 

is shown in Figure  2-5. The dynamic response of the reinforced concrete (RC) bridge that 

was previously shown in Figure  2-1 is decomposed here using the Morlet wavelet at three 

decomposition levels. Figure  2-5 presents the components that constitute this 

decomposition, including the third level approximation (A3) and the first, second, and 

third level details (D1, D2 and D3). This process of decomposition can be useful for de-

noising or for damage detection in SHM systems. However, this analysis in not limited to 

one form of WT technology.  
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Figure  2-4 Schematic representation of wavelet multi-resolution analysis (WMRA) 

of a signal. 

 

It is important to note that wavelet analysis of the acceleration signal can make use of 

the wavelet packet decomposition. Figure  2-6 demonstrates a schematic representation of 

the wavelet packet decomposition of a signal. Figure  2-7 presents the wavelet packet 

decomposition of the same structural dynamic signal presented in Figure  2-1 using the 

Daubechies wavelet and not the Morlet wavelet with WMRA at three levels of 

decomposition. The flexibility of wavelet analysis avails itself to the more general use of 

structural damage detection in the civil infrastructure. 
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Figure  2-5 Example decomposition of the acceleration signal using WMRA. 

 

Figure  2-6 Schematic representation of wavelet packet transformation of a signal. 
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Figure  2-7 Wavelet packet analysis of the acceleration signal shown in Figure  2-1. 

As discussed above, wavelets provide an excellent tool for signal processing for 

damage detection of civil infrastructure. The choice of the wavelet function is an 

interesting challenge. Many methods have been suggested in the literature to tackle this 

challenge. Entropy-based criterion has been nominated by a few researchers to be the 
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most successful method for selecting the optimal wavelet function for efficient damage 

diagnosis (Browne et al. 2002b). Bukkapatnam et al. (1999) explained the basic 

principles of using entropy-based analysis for signal processing. An entropy-based 

criterion would try to establish a crisp division between systematic signals and noise 

using means of Shannon’s information theory (Coifman and Wickerhauser 1992). Horton 

et al. (2005) suggested that the most optimal wavelet function is the one that closely 

resembles the shape features of the acceleration signals. 

 Liew and Wang (1998) showed that crack identification of a non-propagating crack in 

structural systems such as simply supported beams using WT is much more efficient than 

using PCA. Douka et al. (2003) used WT to determine the location and size of the crack 

in a beam using the fundamental mode of vibration. The size of the crack was related to 

the wavelet coefficients. Similar work was also reported by Gentile and Messina (2003) 

who showed that the WT can detect damage location and crack size from both noisy and 

clean data. It was argued that damage of machinery parts can be predicted by observing 

the changes in the wavelet coefficients of the wavelet-transformed vibration signal 

(Moria et al. 1996 and Masuda et al. 1995). Instead of working in the time domain, the 

spatial wavelet based approach replaces the time variable with a spatial coordinate 

allowing for the detection and the positioning of a crack.  

 Experimental and theoretical investigations by Reda Taha et al. (2004), Horton et al. 

(2005) and McCuskey et al. (2006) showed the possible use of WMRA for damage 

detection of bridges. It was suggested that the energy of the third approximation signal 

decomposed using wavelets can be used as the damage feature (Reda Taha et al. 2004). 

Other researchers also showed that the energy spectrum in the wavelet packet can be used 
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to detect small structural damage (Yan and Yam 2004).  This method is further explained 

in Chapter 5 of this dissertation and is used for damage detection in the RC frame bridge 

in Tucumcari. 

2.3 SHM for Structural Composites Including FRP 

 On the other hand, damage detection in FRP composite laminates have been suggested 

by many researchers (Zhao and Sim 2002, Liang et al. 2004, Yu et al. 2007, Kostopoulos 

et al. 2009). Guan and Karbhari (2006) implemented a health monitoring system utilizing 

wireless technology on the Kings Stormwater Channel Bridge located on a major state 

highway in California. This bridge consists of fiber reinforced polymer (FRP) composite 

girders and deck panels (Seible et al. 1999). The data collected by different types of 

sensors are transmitted wirelessly and processed in real-time remotely. A friendly web 

user interface was made to present the information in a clear and useful manner. The 

development of the easy to use web interface for this work can be found elsewhere 

(Karbhari et al. 2003a, 2003b). Strain measurements were considered the most dominant 

methods for damage detection of FRP. Strain measurement using electrical strain gauges 

were reported to be useful in detecting fiber debonding (Mehrani et al. 2009). However, 

methods using fiber optical sensors have gained considerable interest in detecting damage 

in FRP (Read et al. 2002). Significant efforts have been directed for damage detection 

using Fiber Bragg Grating (FBG) sensors. The concept of FBG is simple, represented by 

the change of light reflected wavelength when the fibers are strained. Comparison of 

FBG wavelength of unstrained fibers provides the needed information to calculate the 

strain by determining the wavelength shift.  Due to its relatively small size, fiber optic 
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sensors have become the most commonly adopted sensing technology for damage 

detection of FRP composites. New data integration modules can allow recording data 

from a large number of sensors. FBG sensors can be mounted on the surface of FRP 

composites used to strengthen RC structures. Using multiplexed FBG provides a profile 

of strain changes along the FRP plates. FBG sensors have also been reported efficient in 

field monitoring of FRP (Mehrani et al. 2009, Shrive et al. 2003). Rizkalla et al. (2000) 

proposed a method to use FBG sensors to directly measure temperature to calculate 

thermally induced strains in bridges in order to separate thermally induced strains from 

the strains caused by possible damage in fiber reinforced polymer reinforcements. 

Canceling the effects of thermally induced strains in FBG sensors was also recognized by 

Moerman et al. (1999). Further details on developing FBG thermal strain sensors can be 

found elsewhere (Foedinger et al. 1999). Taljsten (2005) used optical fiber sensors as 

well as LVDT crack gauges for monitoring a 400 m long prestressed box bridge called 

Grondal Bridge in Sweden. This bridge was also strengthened using carbon fiber 

reinforced polymer (CFRP) laminates to limit the size of cracks that some of them 

exceeded more than 0.5 mm. Mosallam et al. (2009) also used the concept of optical fiber 

sensing for wireless monitoring of a composite bridge. In this work, a Diagnostic 

Prognostic (DPS) Fiber Sensor Interrogator (FSI) system is used to acquire real-time 

strain and temperature data from an array of multiple FBG sensors along a single 

channel.       

 Many researchers have suggested monitoring FRP composites using acoustic sensors. 

Ultrasonic damage identification methods are common to check damage in composites in 

the aerospace industry (Gros et al. 1998). On the other hand, acoustic emission (AE) 
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sensors have been proposed by many researchers (Qi et al. 1997 and Prosser 1996). The 

concept in using AE sensors is based on the realization of the energy released of a 

material upon fracture. The scale of damage recognized by the AE techniques is 

dependent on their sensitivity to energy (Kessler 2002). Advances in micro fabrication of 

micro-electro-mechanical systems (MEMS) enabled the manufacturing of AE sensors 

that can be embedded in the material (Schoess and Zook 1998). A group of new 

investigations suggested that optical fiber sensors can be sensitive to AE (Lee and Tsuda 

2005). Other efforts examined Rayleigh, shear and lamb waves, with the latter being the 

most successful (Wang and Yuan 2005 and Su et al. 2002). Significant effort is currently 

performed by researchers worldwide to detect damage location and severity using lamb 

waves and piezoelectric sensor networks (Aberg and Gudmundson 1998). Kessler (2002) 

suggested the use of piezoelectric sensors to identify AE energies in materials. 

Furthermore, researchers also showed the ability of AE sensors or surface acoustic sensor 

to identify damage locations by employing large sensor networks (Zhou and Sim 2002). 

A major challenge in using AE surface acoustic and piezoelectric sensors for damage 

detection in composite laminates is the need for complex analysis of the received signals 

to realize damage occurrence. Using time reversal acoustics (TRA) concept and 

extending this concept to guided wave propagation within the CFRP strengthened 

reinforced concrete beam, Kim et al. (2007) proposed a method to continuously monitor 

the debonding of CFRP from the host structure in real time.    
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2.4 Damage Diagnosis and Prognosis 

 Researchers have shown that using proper domain of each damage metrics can 

differentiate between healthy and damaged cases of bridges (Mehrani et al. 2009). The 

damage state of the structure can be identified by considering effective damage features 

and by the use of probabilistic methods for classifying these damage features. The use of 

reference performance to classify the structural health has proven helpful in determining 

the need for maintenance repair of bridges. 

 Researchers have combined all the above methods to provide damage diagnosis and 

prognosis of structures. While damage diagnosis means providing information for 

damage reasoning, location and severity, damage prognosis is using this former 

information to predict the service life of the structure (Frangopol et al. 2004).  

 Statistical methods have been attractive tools for damage diagnosis. For instance, 

Staszewski (1998) discussed two approaches for applying statistical pattern recognition in 

SHM. The first method considered classifying all operating modes of the structures and 

recognizing any structural response as one of the pre-classified modes. The second 

method compared any unknown structural response to a priori-known healthy response, 

subsequently, to distinguish the difference between the two responses. While almost all 

SHM methods utilize one of these two approaches, two major differences between these 

methods can be recognized. The first is the choice of the feature for building the patterns, 

and the second is the approach used to aid the damage detection analysis.  

 Significant research has utilized artificial intelligence (AI) combined with modal 

analysis to develop the response patterns and to perform efficient feature extraction using 
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artificial neural networks (ANNs) (Barai and Pandey 1995, Pandy et al. 1991). Browne et 

al. (2002) demonstrated that cracking introduces a discontinuity to curvatures and 

deformation time history. Reda Taha and Lucero (2005) introduced the use of Bayesian 

analysis to establish unknown health patterns in bridges. Yan et al. (2004) examined the 

use of statistical methods for extracting the modal parameters of the structure response 

for detecting structural damage.  

 Many researchers combined wavelets and neural networks for damage detection and 

damage pattern recognition. For instance, crack growth in structural concrete was 

detected using neural networks and was used to provide information about the structural 

health and the residual service life of the structure. Su and Ye (2004) integrated artficail 

neural network (ANN) and signal processing to extract what is named as “Digital 

Damage Fingerprints (DDF)” of the structure. This method was successfully used to 

detect delamination damage in composite structures.  

 Other researchers have shown the possible use of fuzzy set theory and possibility 

theory for damage pattern recognition in structures (Reda Taha et al. 2006, Altunok et al. 

2007, Carden and Brownjohn 2008). The use of statistical information to establish fuzzy 

damage sets for a reinforced concrete structure is shown in Figure  2-8. It was found that a 

fuzzy damage metric can be developed to detect the severity of damage in the reinforced 

concrete structure. 
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Figure  2-8 Fuzzy damage sets relating the change in damage features to the severity 

of damage in the structure (Reda Taha et al. 2006). 

 

Moreover, possibility theory was also shown capable of detecting damage when applied 

to a model bridge and to a pipeline structure. Possibility distributions for damage 

detection of a model bridge are shown after Altunok et al. (2007) in Figure  2-9.  

Figure  2-9 Possibility distribution of the damage feature observed in a model bridge 

(Altunok et al. 2007). 
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The use of evidence and possibility theory has shown an excellent ability to consider 

non-statistical uncertainty in damage detection. Consideration of uncertainty allowed for 

establishing damage sets using principles of minimum entropy (Azarbayejani et al. 2008). 

We discuss this method in Chapter 5 to keep establishing the damage states and to 

identify the level of damage in the structure. A schematic representation of damage sets 

in the ASCE benchmark structure (ASCE 2006) is shown in Figure  2-10. The figure also 

shows how the different severity of damage observations will be located with respect to 

the damage sets established based on principles of minimum uncertainty. 

Figure  2-10 Damage fuzzy sets as observed in the ASCE benchmark structure 

(Azarbayejani et al. 2008). 

2.5 Conclusion 

 This chapter provides a short review of structural health monitoring with focus on the 

areas pertaining to this dissertation. New advances in sensing technology and wireless 

communication systems have directed SHM systems to remotely monitor infrastructure. 
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By deploying different kinds of sensors including accelerometers, strain gauges and 

thermocouples, most current SHM systems are capable of measuring the response of 

structures. While classical strain gauges can provide a reasonable set of information for 

structural composites, most recent research suggests the use of FBG fiber optical sensors 

or acoustic emission for damage detection of FRP composites. Methods to analyze this 

data for damage feature extraction and to establish domains for damage pattern 

recognition are also discussed. The findings in the literature relate to the methods used in 

Chapters 3 and 4 and also are implemented in designing the SHM system to monitor the 

FRP strengthened RC bridge in Tucumcari, New Mexico.  
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CHAPTER 3 A PROBABILISTIC APPROACH FOR 

OPTMAL PLACEMENT OF SENSORS IN SHM SYSTEMS 

3.1 Introduction 

 In this chapter, we describe a probabilistic approach to identify optimal location of 

any given number of sensors for different structures. Our method aims at identifying 

optimal locations of sensors in the sensor network such that probability of detection 

(POD) maximizes all possible combinations of damage locations and damage severities. 

We define a finite set of damage locations and severities such that damage at any location 

on the structure can be described as Xi
j where  i = 1, 2, …, K and j = 1, 2, …, D; K

denotes the number of possible damage locations and D denotes the number of possible 

damage severities. We also define the finite element (FE) modeling resolution (r) as the 

minimum distance between finite element nodes.  

3.1.1 Establishing Probability Distribution Functions 

 FE analyses of the structure are performed assuming sensors can be located at FE 

model nodes with predefined resolution (r). The nodes are uniformly placed throughout 

the structure. Based on a priori knowledge of critical damage locations in the structure, 

damage is induced for various levels of damage severity in the structural model. The 

dynamic response of the structure is obtained from the structural analyses for both 
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healthy and damaged cases. It is important to note that our intention is to create FE 

models that incorporate all possible combinations of damage locations and damage 

levels. The number of FE models required Nm can be calculated as 

 dN
Lm NN = (3.1) 

where Nd and NL = numbers of damage locations and damage levels considered in the FE 

analysis.  

 As obvious from Equation (3.1), the total number of FE models Nm required can be 

significantly high. Therefore, it is important to recognize the fundamental structural 

behaviors and primary practical issues to obtain the best number of damage locations (Nd)

with high possibility of occurrence and a limited number of damage severities (NL) with 

significant difference between them. The dynamic response of the structure obtained 

from each FE model are used to investigate the possible damage features, which is 

necessary to explain the damage state in the structure in each model. The number of 

damage feature (Nn) is a function of the number of FE models Nm and the modeling 

resolution r. The selected damage feature shall be able to differentiate between healthy 

and damaged cases. It is assumed that a specific value of the damage feature can be 

calculated at each sensor. In this proposed approach, the damage features obtained from 

FE analyses are used as inputs to an artificial neural network (ANN) with no hidden 

layers, which is called perceptron (Haykin 1998), and the corresponding damage 

locations are considered as ANN outputs. The neural network is thus trained to predict 

damage location by observing the damage feature values at all sensors. Cybenko (1989), 

Haykin (1998), Bishop (2000) showed that ANN can learn and generalize from example 

data sets. Ross (2004) demonstrated that ANN could produce reasonable outputs after a 
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limited training from inputs that were not observed during the training process. In Figure 

 3-1, the proposed neural network is schematically represented to show system inputs and 

outputs.  

Figure  3-1 Artificial neural network used for extracting weights. 

 

In Figure  3-1 Γ1 to Γn are the damage features used as inputs to the neural network 

while L1 to Lm are the damage locations considered as outputs of the neural network. 

Moreover, w1 to wn are the network weights determined during network training and f(.) 

is the transfer function. The ANN suggested in this process does not have any hidden 

layers and is used just to make a nonlinear mapping between inputs and outputs. A

nonlinear transfer function shall be used. Here we suggest the hyperbolic tangent sigmoid 

function to be used as the transfer function (Ross 2004). The whole process aims at 
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detecting the weights necessary to relate the damage features and the damage locations. It 

should be noted that this neural network is just trained as a tool to make the nonlinear 

mapping between damage features and the locations of damage. The backward error 

propagation also known as the backpropagation (BP) is used as a learning rule. 

3.1.2. Identify Optimal Sensor Location 

 After the neural network is trained for selected combination of damage locations (Nd)

and damage levels (NL) with a prescribed resolution of sensors (r), the weights of the 

neural network (w1 to wn) can be used to represent the importance of these sensors in the 

damage detection process.  A vector of all these weights h(k) can be constructed as 

 kwkh =)( k = 1, 2… N (3.2) 

where kw is the absolute value of the kth weight of ANN associated with the kth sensor 

and N is the number of sensors distributed uniformly through the structure with certain 

spacing between them. If more sensors with less spacing are used for sampling, the above 

formula shall be modified to give the sensor weight vector for any other resolution as 

 



=

NN
khkh
/'

)()(' τ k = 1, 2 … 'N (3.3) 

where 'N is any arbitrary number of sensors with a resolution less than r. τ is the Finite 

Impulse Response (FIR) interpolation function used for the discrete nature of the data. 

Given that the sensors importance weights are determined using Equations (3.2) and (3.3) 

a discrete probability density function (PDF) can be computed. This PDF represents the 

probability of the sensor ability to detect damage and thus its probability of being 

included in the optimal sensor network.  To establish the discrete probability distribution 
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function f(n) at the locations on the structure n, which is a multiplier of prescribed sensor 

resolution, )(' kh needs to be normalized as:  

 ∑
∑=
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−=
'

1
'

1

)(

)('

)(')(
N

k
N

m

krn

mh

khnf δ (3.4)  

In Equation (3.4), δ is a discrete impulse function used to construct the PDF. The PDF 

represents the sensor probability distribution along the structure assuming the problem is 

one-dimensional. Based on the discrete PDF, a continuous PDF can be constructed by 

refining the resolution. 

 It is important to point out that the above formulation can be developed for a two-

dimensional analysis without much complexity with the continuous PDF. Once the 

continuous PDF is established, it can be sampled for any number of sensors to identify 

optimal sensor locations. A flow chart explaining the methodology to find the continuous 

PDF is shown in Figure  3-2. 

Figure  3-2 Flowchart of establishing continuous PDF on the structure. 
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3.1.3. Validating Optimal Sensor Location 

 For a given number of sensors, the method allocates the sensors to places that have the 

highest probability to detect damage in the structure. Distributing any given number of 

sensors based on sampling of the PDF shall be repeated for large number of iterations (K

iterations) to ensure considering the effect of randomness on the sampling process (here 

we consider K=1000 iterations). Such large number of sampling iterations will also 

guarantee the repeatability of the final output (sensors’ distribution). The ability of the 

proposed method to allocate sensors in optimal locations for damage detection can be 

demonstrated by defining an absolute metric for damage detection efficiency known as 

the probability of detection (POD). POD is a representation of the probability that a 

specific flaw in a given structure can be detected by a given monitoring system 

(Achenbach 2007 and Beard et al. 2007). We define POD as the frequency of the sensor 

network to identify a specific level of damage accurately. To evaluate POD, we first 

identify the threshold value ( αΓ ) for a given damage level (α). To identify  αΓ , we first 

extract the damage feature Γ at all sensor locations for the healthy case. The probability 

distribution function that fits the damage feature data for the healthy case can be 

identified (Ang and Tang 2006). We suggest here using the normal (Gaussian) 

probability distribution function for simplicity based on the mean ( HΓ ) and the standard 

deviation ( Hσ ) of the damage feature values for the healthy case. The probability that 

the damage feature is less than the damage threshold ( αΓ≤Γ ) can be calculated as  
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αΓ is the threshold value that is a function of damage severity level and the probability 

density function for the damage feature based on the healthy case. Figure  3-3 

schematically illustrate the change of αΓ for moderate and severe damage levels 

expressed by a probability of damage of 50 and 90% respectively. It is obvious from the 

figures that the damage feature threshold αΓ will be higher for a severe damage case, 

compared to a case with little damage in the structure. 

(a) 

(b) 
Figure  3-3 Normal distribution of the damage feature based on healthy performance 

showing (a) damage threshold Γ90 for a severe damage represented by 90% 

probability and (b) damage threshold Γ50 for a moderate damage represented by 

50% probability (Azarbayejani et al. 2008).  
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The efficiency of the proposed method in detecting different damage levels can be 

evaluated by computing the frequency of correct classification of the damage level. 

Correct classification can be identified by using the mean damage features for all sensor 

locations greater than or equal to the damage threshold ( αΓ ) for that damage level. We 

thus define the POD as 

 
total

mean
N

N
POD

)( αΓ≥Γ
= (3.6) 

Where )( αΓ≥ΓmeanN is the number of simulations where the sensor network using the 

proposed sensor allocation was capable of identifying the damage class of the structure 

correctly (i.e. with a mean damage feature higher than the damage threshold). Ntotal is the 

total number of simulations performed. Figure  3-4 represents a flowchart explaining the 

above methodology. 

Figure  3-4 Flowchart of calculating POD. 
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3.1.4. Redundancy of Sensor Networks 

 Finally, an interesting problem in sensor network is to address the issue of network 

robustness once an optimal network is identified. The objective is to keep the SHM 

system operating efficiently even if one or more sensors fail or malfunction. This goal 

can be achieved if additional sensors are used as redundant sensors at the locations of 

critical sensors. Thus, these locations of critical sensors shall be identified. We suggest 

such critical locations can be identified after determining the optimal sensor network by 

performing “leave one sensor out” analysis. Such analysis is well known for examining 

sensitivity (Saltelli 2000). We thus can compute the significance factor (Si) for each 

sensor as  

100×
−

=
total

iopt
i N

PODPOD
S (3.7) 

PODopt is the probability of detection for optimal placement of the sensor network while 

all sensors work properly and PODi is the probability of detection of the sensor network 

when sensor i stops working. Sensors with high magnitude of Si can be considered critical 

sensors where redundancy of the monitoring process is needed. 

3.2 Case Study 

 To demonstrate the possible enhancement of damage detection efficiency by optimally 

allocating the sensors across the structure, a case study to determine the optimal sensor 

network on a prestressed concrete bridge is considered. A FE model is used to simulate 

the structural response of the prestressed concrete bridge under healthy and damage 

conditions. In the absence of experimental data, the use of simulation data for 
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demonstrating the efficiency of new algorithms is a typical methodology that has been 

widely used by other researchers (Ren and De Roeck 2002 and Sun and Chang 2002). 

3.2.1. Description of the Case Study  

 A three-dimensional (3D) FE model of a two span 57m (27m and 30m spans) 

prestressed concrete bridge was developed. The FE model included four parallel I-girders 

modeled as frame elements and the concrete bridge deck slab modeled as shell elements. 

A schematic representation of the FE model and the different elements used are shown in 

Figure  3-5. Schematic representation of cross section of the bridge showing the traffic 

lanes is shown in Figure  3-6.  

Figure  3-5 Finite element model of bridge showing damage locations. 
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Figure  3-6 Cross section of the prestressed concrete bridge with the location of 

accelerometers and traffic lanes. 

 

Each bridge girder was assumed to be 1.5 m deep with a distributed mass per unit length 

of 4800 kg/m. The bridge girders are spaced at 3.3 m as shown in Figure  3-6. The four 

girders are denoted G1, G2, G3 and G4 respectively, as schematically presented in Figure 

 3-5 and Figure  3-6. The concrete has a characteristic compressive strength of 50 MPa and 

a modulus of elasticity of 37000 GPa. The bridge was loaded using a time-history loading 

function representing two HL-93 AASHTO (2006) trucks crossing over the bridge from 

opposite directions at two different speeds (35 km/hr and 50 km/hr) as shown in Figure 

 3-5. Each girder was modeled using a number of discrete frame elements, each of 3 m in 

length requiring a total of 19 beam elements per girder. Accelerometers were assumed to 

be located at the nodes. The beam elements connected 19 nodes, each having three 

degrees of freedom (DOF). These DOFs included the lateral translations along the 

longitudinal axis (x axis), the vertical axis (z axis) and rotation about the lateral axis (y 
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axis). Three nodes per girder were used to represent the three support (bridge bearing) 

locations for each girder creating the 27 m and 30 m spans. The two translations were 

restrained at bridge bearing locations. The torsion rigidities of both the deck slab and the 

girders were considered to allow proper load transfer between the girders. End 

diaphragms were assumed at the bridge bearing lines along the bridge and are also shown 

in Figure  3-5. The diaphragms were 500 mm wide and 1000 mm deep. The analysis 

assumed linear elastic behavior of the prestressed concrete, which is usually accepted 

under service loads (Allbright et al. 1994 and Cai and Shahaway 2004). All the loading 

and modeling details are represented in Figure  3-5 and Figure  3-6.  

 The FE modeling process was performed using a group of 19 accelerometers that were 

assumed to be distributed over each bridge girder and spaced uniformly 3 m to monitor 

the bridge accelerations due to traffic loading. The accelerometers were assumed to be 

located on the web of the girders as shown in Figure  3-6. Given this configuration, the 

bridge vertical accelerations due to the two opposite moving trucks were extracted from 

the finite element analysis as the z-axis accelerations. The dynamic effect of the traffic 

loads was measured during the time period when the trucks crossed the bridge. 

Irregularities in the asphalt layer above the bridge deck slab were randomly distributed 

along the bridge span and were introduced to the model. A dynamic load effect using a 

trapezoidal time-step function was used to simulate the load dynamics. Figure  3-7 shows 

an example acceleration signal for healthy structure. The bridge response due to the 

dynamic loading was recorded and was then noised with a random signal to simulate the 

effect of sensing and communication noise. It is worth noting that noise always exists in 
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real sensor networks. That noise can significantly affect the efficiency of an SHM 

system. In this study, we considered a 5% constant noise-to-signal ratio in the analysis.  

Figure  3-7 Acceleration signal at sensor located at 15 m from South support of 

Girder G2 for healthy state. 

3.2.2. Damage feature extraction  

 A damage feature Γ based on observing the energy of the monitored acceleration 

signal was developed. The use of acceleration signal energy has been reported by other 

researchers to be a feature sensitive to damage (Reda Taha et al. 2004 and Kumara et al. 

1999). This energy can be calculated as 

 [ ] [ ])()( 22 tata zizii εε +=Γ (3.8) 

where Γi is the damage feature representing the energy of the ith accelerometer, azi(t) is 

the acceleration measured at the ith accelerometer in the z-axis direction and ε is the 

expected value. Other damage features such as the curvature of mode shapes can be used. 
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The only restriction is that it will be possible to evaluate the damage feature value at each 

sensor location. 

3.2.3. Allocating the optimal sensor locations  

 We start by using a priori knowledge on location of critical damage places in the 

structure. Three locations (L1, L2 and L3) on Girder 2 (G2) were selected as the critical 

locations on this girder. These three locations are corresponding to the locations of 

maximum tensile stresses due to combined dead loads and live loads. These locations are 

thus more prone to cracking and damage as shown in Figure  3-5. Five different levels of 

damage, D1, D2, D3, D4 and D5 representing 10, 20, 30, 40 and 50 percent loss in stiffness 

of the girder were considered. These levels of damage severity can be assumed to 

correspond to a gradually increased probability of damage P(Γ) ranging between 50% for 

D1 and 90% for D5. The suggested values of the probability of damage values realize the 

fact that increasing the level of damage severity shall result in increase in the probability 

of damage and thus the damage feature threshold Γα.

FE models considering all possible combinations of damage locations and damage 

severities (53 = 125 models) were developed. The damage feature Γi was evaluated at 

each sensor for each model. The damage features and their locations were used to train 

the ANN. The training process was repeated 10 times to obtain non-biased weights. The 

weights were normalized and the continuous PDF was developed as discussed before. A 

time period of 10 minutes were necessary for performing the 10 training iterations of the 

ANN on PC with 1.8 GHz processor and 1GB memory. After the continuous PDF was 

established, the PDF was sampled for any number of sensors distributed over each girder. 

It is obvious that as the number of sensors for each girder increases, POD will increase. 
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Hence, the number of sensors that provides acceptable POD can be considered as the 

optimal number of sensors (Chang et al. 2006). Other considerations such as cost, 

uncertainty and practical constraints should be taken into account to find the optimal 

number of sensors that are beyond the scope of this chapter. We demonstrate here the 

results for distributing 15 to 20 sensors. Once an optimal number is chosen, a sensitivity 

analysis of significance of the optimal sensors was performed using Equation (3.7) to 

determine sensor redundancy requirements. 

3.3 Results and Discussion 

 Figure  3-8, Figure  3-9, Figure  3-10 and Figure  3-11 illustrate the process from 

obtaining the NN weights based on 3 m spacing between sensors, interpolating weights 

for 1 m spacing between sensors, normalizing weights to get a discrete PDF and finally 

establishing a continuous PDF of sensor importance in detecting damage along the 

structure respectively. It is important to note that the values shown on these figures have 

been randomized by running the training process enough times (10 times) to avoid any 

bias in the training process. We used Levenberg-Marquardt backpropagation as an 

optimization algorithm for the NN to map between damage features (energy of 

acceleration signals) and three damage locations. It is noted that the continuous PDF 

established here is highly dependent on the locations and levels of damage assumed a

priori. We argue that this knowledge is almost available for all practical applications for 

structures using simple structural analysis and the FE modeling. 
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Figure  3-8 Weights of sensors as extracted from artificial neural network (ANN). 

Figure  3-9 Weights of sensors based on prescribed resolution. 
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Figure  3-10 Discrete probability density function (PDF) generated along the bridge 

length. 

Figure  3-11 Continuous probability density function (PDF). 
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Table  3-1 shows the variability of the damage feature (energy of acceleration signal) 

values calculated at optimal locations for 20 sensors using 5 sampling iterations for the 

damage location L1 and for damage severity D1.

Table  3-1 Damage features evaluated for 20 sensors allocated using five sampling 

iterations for damage case L1 and damage severity D1.

Sensor # Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

1 4.64 3.1 1.8 4.64 3.1 

2 9.89 11.55 14.26 9.89 11.55 

3 11.55 13.03 15.01 11.55 13.03 

4 13.03 15.07 15.07 13.03 15.07 

5 15.00 13.38 13.38 15.01 13.38 

6 13.38 9.04 12.08 13.38 9.04 

7 10.61 4.45 10.61 10.61 4.45 

8 9.04 3.14 4.45 9.04 3.14 

9 5.90 5.95 2.04 5.90 5.95 

10 3.18 9.05 7.49 3.18 9.05 

11 5.95 10.58 9.05 5.95 10.57 

22 12.00 12.00 10.58 12.00 12.00 

13 13.26 13.26 12.00 13.26 13.26 

14 14.31 14.31 13.26 14.31 14.31 

15 15.55 15.08 14.31 15.55 15.08 

16 15.49 14.05 15.08 15.49 14.05 

17 14.93 9.83 15.69 14.93 9.83 

18 9.83 8.10 9.83 9.83 8.10 

19 6.35 6.35 1.81 6.35 6.35 

20 1.81 0.83 0.83 1.81 1.81 

mean 10.285 9.6075 9.9315 10.2855 9.656 
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It is important to note that even though the five sampling iterations were randomly and 

independently performed, the values of the damage feature in many sensors are similar 

and the mean damage feature values for the whole structure for the five simulations is 

very close, confirming the ability of the proposed approach to reach a consistent and 

repeatable solution even when considering random sampling.  

 Table  3-2 presents the optimal sensor locations for 15, 16, 17, 18, 19 and 20 sensors, 

as they shall be distributed over the structure. It is interesting to note that the areas of 

concentration of the sensors do not change dramatically as the number of sensors increase 

from 15 to 20, as most sensors are located at the areas of high damage probability as 

indicated by the continuous PDF. Moreover, to demonstrate the higher efficiency of 

damage detection when distributing the sensors using the optimal allocation approach 

with a uniform distribution of the sensors over the structure, we compare the POD for the 

five levels of damage using 15, 17 and 20 sensors. The comparison can be performed for 

any other number of sensors.  
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Table  3-2 Optimal locations (m) of 15, 16, 17, 18, 19 and 20 sensors using the 

proposed probabilistic approach. 

Total number of sensors 

Sensor # 
15 16 17 18 19 20 

1 7 3 3 3 4 9

2 12 14 7 11 9 10 

3 13 15 12 16 12 12 

4 14 16 13 18 13 14 

5 15 19 14 19 15 16 

6 18 34 15 23 16 17 

7 19 37 16 30 17 19 

8 20 38 18 33 20 30 

9 36 40 19 34 22 32 

10 38 41 36 37 24 34 

11 43 43 37 39 32 35 

12 45 44 38 40 33 37 

13 46 45 39 42 34 38 

14 48 46 40 43 35 39 

15 54 47 43 47 36 40 

16 --- 54 48 48 39 41 

17 --- --- 51 53 41 45 

18 --- --- --- 54 43 46 

19 --- --- --- --- 45 47 

20 --- --- --- --- --- 48 
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We calculated the POD for the five levels of damage assuming a probability of 

damage threshold of P(Γα) = 50, 60, 70, 80 and 90% to correspond to damage levels D1,

D2, D3, D4 and D5 respectively. The results of the comparison between the optimal and 

uniform sensor allocation are presented in Figure  3-12 for 15, 17 and 20 sensors 

respectively. It is obvious that the optimal sensor allocation using the suggested 

probabilistic approach always resulted in a POD higher than what can be achieved by 

uniform allocation of the sensors. It is also interesting that this observation was not 

affected by changing the number of sensors between 15 and 20 sensors. It is therefore 

evident that a probabilistic allocation of sensors can result in enhancing the efficiency of 

the SHM system represented here by its POD.  

 Moreover, to ensure the robustness of the proposed method against noise, we 

examined the significance of 1, 5 and 10% noise-to-signal ratios for the case of 17 

sensors noise-to-signal ratio on POD. The POD for the three levels of noise at the 5 

damage levels is shown in Figure  3-13. It can be observed that no significant change in 

POD took place as the noise to signal ratio changed from 1% to 10%. 
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(a) 

(b) 

(c) 
Figure  3-12 Probability of detection (POD) versus damage level when the threshold 

changes from 50% to 90% for five different levels of damage. Comparison between 

optimal and uniform sensor allocation. All damage assumed at location L1 shown on 

Figure  3-5 Finite element model of bridge showing damage locations.  (a) 15 sensors 

(b) 17 sensors and (c) 20 sensors (Azarbayejani et al. 2008). 
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Figure  3-13 Probability of detection (POD) of 17 sensors versus damage level for 

different noise to signal ratios (Azarbayejani et al. 2008). 

 

Finally, the significance of each of the sensors in the sensor networks was examined 

by means of “leave one sensor out” analysis. Figure  3-14 illustrate the significance of 

each sensor for cases of 15, 17 and 20 sensors respectively.  For instance, for the case of 

17 sensors, it can be concluded from this figure that sensors 4, 12 and 13 are the critical 

sensors for the damage detection process and it is prudent to consider more than one 

sensor in these locations. It should be noted that by adding more sensors at critical 

locations, the POD will increase due to the increase in number of sensors. The analysis 

also showed for this number of sensors, that sensor number 17 is insensitive to the 

damage process and will have minimal effect on the sensor network performance if 

failure occurs. It can also be observed that such sensitivity changes as the number of 

sensors change. For example, for the case of 15 sensors, sensors 2, 10, 11 and 12 are 

critical sensors while sensor number 15 does not play a significant role. In addition, for 

the case of 20 sensors, it is obvious that sensors 3, 4, 15 and 16 are critical sensors and 
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sensor number 8 will have minimal effect on the sensor network performance if failure 

occurs. 

 Finally, we point out the fact that experimental verification of the above SHM method 

is essential to prove its suitability for practical SHM applications. We limit our discussion 

here to the numerical verification of the proposed method using the finite element 

method.  
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(a) 

(b) 

(c) 

Figure  3-14 Significance factor of each sensor for 15, 17 and 20 sensors distributed 

on the structure using the proposed probabilistic approach. 
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3.4 Conclusion 

 A new method for optimal sensor allocation was developed using probabilistic 

assumptions that utilize a priori knowledge of damage locations in the structure. The 

proposed method utilizes the weights of an ANN trained to detect damage with different 

severities at damage locations assumed a priori. ANN weights were used to generate a 

probability distribution function that is sampled to determine optimal sensor locations. 

The proposed method does not neglect the fact that damage at any location of the 

structure is possible.  The efficiency of the proposed method was demonstrated on a 

simulation case study representing a prestressed concrete bridge modeled using the FE 

method. It is shown that the optimal sensor locations can be identified. We showed that 

distributing 15 to 20 sensors using the proposed probabilistic approach resulted always in 

PODs higher than uniform distribution of these sensors. The identified sensor locations 

were proved more capable of detecting variable damage levels compared with uniform 

distribution of sensors on the entire structure. Moreover, the robustness of the sensor 

network was examined for the optimal sensor network by performing “leave one sensor 

out” analysis. Robustness of the sensor network can be assured by placing more sensors 

at critical locations.  
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CHAPTER 4 ENTROPY-BASED OPTIMAL SENSOR 

NETWORK IN SHM WITH EXAMPLE APPLICATION TO 

A CABLE STAYED BRIDGE  

4.1 Introduction 

 Using structural health monitoring (SHM) systems on long span cable-stayed bridges 

represents a technical challenge where a large number of sensors shall be deployed. To 

design an efficient, reliable and economical sensor network, the type, number and 

location of sensors needs to be identified. The type of sensors is directly related to the 

damage feature that differentiates between healthy and damaged cases. In the past, many 

researchers used vibration-based damage features to detect damage occurrence in bridges. 

Most methods suggested in the literature for determining optimal sensor network rely 

heavily on assumptions directly related to the damage feature used for detecting damage. 

This limits the usefulness of these methods if such damage feature cannot be used for 

detecting damage in other structures. An optimal sensor allocation method that is 

independent of the damage feature is needed by the SHM community.      

 In this chapter, we introduce an entropy-based method for identifying optimal sensor 

allocation. A case study for monitoring the Luling Bridge, a cable-stayed bridge over the 
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Mississippi River, demonstrates the ability of the proposed method to successfully 

identify the optimal number and location of sensors necessary to effectively monitor the 

bridge. An entropy-based probabilistic method can address the uncertainties existing in 

sensor allocation without the need to prior assumptions on the damage feature. 

4.2 Methods 

 We suggest an integrated probabilistic and entropy-based technique to identify both 

the optimal sensor locations and number of sensors in the sensor network. We first 

explain a probabilistic approach to optimally allocate any number of sensors. We then 

demonstrate how the optimal number of sensors can be identified through multi-objective 

optimization. We start by defining a finite set of damage locations and severities such 

that damage at any location of the structure can be described as ξij where i = 1,2, …, m 

and j =1,2, …, n where m, n represent number of possible damage locations and severities 

respectively.  

 Similar to the method explained in Chapter 3, a set of Finite Element (FE) models can 

thus be created to include all possible combinations of damage locations and severities. 

The vibration response obtained from each FE model of the structure can be used to 

calculate the damage feature(s). The selected damage feature can be calculated at each 

sensor assumed at each FE node location. The damage feature shall be able to 

differentiate between healthy and damage states of the structure. The damage features 

computed at each node of the FE models are used to compute the weights of an artificial 

neural network (ANN). ANN inputs include damage feature values while its outputs are 

the priori known damage locations. ANN is trained therefore to pattern damage features 
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and damage locations as shown in Figure  3-1 in the previous chapter. The weights of the 

trained ANN are used to demonstrate the relative importance of each sensor in the 

damage detection process. Normalizing the ANN weights can be used to establish the 

discrete probability distribution function (PDF), g(n) as 

 ∑
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g(n) is the PDF calculated at n locations of the structure, δ is a discrete impulse function 

and γ(k) is the absolute value of the kth weight of ANN, N is the number of sensors 

distributed throughout the structure and r is the finite element resolution. The continuous 

PDF can be constructed by interpolation. Since the continuous PDF demonstrates the 

importance of sensors as a function of structure dimension, by sampling the continuous 

PDF for any given number of sensors, the optimal locations of sensors can be identified. 

4.2.1 Optimal number of sensors 

 The above approach will allow allocating N number of sensors to enhance the damage 

detection success rate. However, the above approach does not provide a tool for 

identifying the optimal (minimum) number of sensors. While minimizing the total 

number of sensors is of less interest in the case of monitoring relatively short bridges (25-

100 m long), such number is important for significantly long bridges (e.g. cable-stayed 

bridges of 200 to1000 m long).  

 We suggest here that the optimal number of sensors can be identified using multi-

objective optimization system. Two objective functions can be realized in formulating the 
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problem. First: the cost of sensors and their deployment and Second: the uncertainty 

associated with the sensor measurements. The optimal number of sensors shall enable 

reducing both objective functions simultaneously. While the cost function can be easily 

formulated, we suggest that the uncertainty can be quantified using principles of 

information entropy.  

 Information entropy was suggested as a scalar to quantify uncertainty in probabilistic 

based information systems (Ross 2004). The principles of information entropy introduced 

by Shannon (1948) can be used to quantify the uncertainty in damage features computed 

from a different number of sensor distributions. We suggest using Shannon entropy to 

quantify uncertainty in sensor measurements for a specific sensor distribution. 

Considering the fact that minimum uncertainty in damage detection can be associated 

with the case where sensors are allocated at all nodes, the difference between damage 

feature values of the case of interest and the case where sensors are allocated at all nodes 

of the FE model can be used as a measure of uncertainty in the monitoring system. Then 

the uncertainty objective function based on Shannon entropy can be calculated as 
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In Equation (4.2), Nmax is the maximum number of sensors where sensors are allocated in 

all nodes of the FE model and this number is governed by the resolution of the FE model 

and N is the number of sensors for that specific sensor allocation. iΦ , jΦ are damage 

features computed at nodes i, j respectively. As the number of sensors increase, 

information entropy will decrease and thus monitoring uncertainty will decrease. On the 

other hand, the number of sensors is strongly correlated to the cost of the sensor network. 
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However, it is realized that the cost of the sensor network does not increase linearly with 

the number of sensors because sensor installation and implementation represents part of 

the sensor network cost. Installation cost does not change significantly as the number of 

sensors exceeds a specific threshold. The sensor network cost function “CN” is defined as 

 c N1 N N≤ 1

CN = (4.3) 

 c N c N N1 2 1+ −( )  N N> 1

N is the number of sensors considered for the sensor network, N1 is the number of sensors 

beyond which installation cost does not significantly increase. The function constants c1,

c2, N1 can be determined from field data. By defining the two objective functions: entropy 

function “E” and sensor network cost function “CN”, a multi-objective optimization 

approach can be used to determine the optimal number of sensors. 

 In multi-objective optimization, the design variable can be determined by establishing 

the Pareto front (Pareto 1971, Osyczka 1984 and Miettinen 1999). The Pareto front 

allows realizing the tradeoffs between different objective functions. All the points on the 

Pareto front are non-dominated set of solutions that are selected based on optimizing 

different objective functions. To find a single optimal solution from the optimal non-

dominated set of solutions, a number of methods were discussed in the literature to 

perform such optimization by rank ordering the objective functions and performing the 

optimization in a hierarchical fashion or by defining a global objective function that 

combines both functions with varying weights (Osyczka 1984). The weighted sum 

method scalarizes a set of objective functions into a single objective function by pre-
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multiplying such objective function with a user-supplied weight. We consider here equal 

weighted objective functions. Weighted sum method is the most widely used classical 

method for solving multi objective optimization problems. Another classical approach to 

solve this multi-objective problem is called ε-constraint method. In this approach which 

is very similar to weighted sum method, we reformulate the problem by just keeping one 

of the objective functions and restricting the rest objective functions within user-specified 

values. This approach will alleviate the difficulties that weighted sum method faced in 

solving problems with nonconvex objective spaces. Since both of the objective functions 

in this problem are convex functions, there is no advantage between these two methods 

and the weighted sum method when used to solve this optimization problem. In the above 

optimization problem, the optimal number of sensors (N) is the design variable. The 

optimization constraints include the maximum number of sensors (Nmax) which is related 

to the number of finite element nodes and is governed by the FE model resolution. Once 

the optimal number of sensors (N) in the sensor network is determined, the probabilistic 

approach explained above for allocating these sensors can be implemented. 

4.2.2 Redundancy of sensor network 

 The challenge with optimal sensor networks is the need to ensure network robustness. 

A robust sensor network shall operate efficiently even after losing one or more sensors. 

This goal can be achieved by identifying the location of the critical sensors. Redundant 

sensors shall be used at these critical locations. Here we suggest using ‘leave one sensor 

out analysis’ to examine sensor network sensitivity after Satelli et al. (2000). In this 

analysis, the critical sensor location is related to the significance factor (ψi) defined as  
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Where Φopt is the mean value of the damage feature computed for the optimal sensor 

network with the minimum required number of sensors and Φi is the mean value of the 

damage feature computed for optimal sensor network after removing the ith sensor from 

the network. The critical sensors are those with the maximum significance in the network 

performance compared with its original performance. 

4.2.3 Validation of the proposed method 

 To demonstrate the ability of the proposed method in enhancing damage detection, the 

probability of detection (POD) is defined as a probability that specific damage can be 

detected by the sensor network in the structure. We define a threshold value αΦ for a 

given damage level (α). The damage feature is assumed to be normally distributed, thus 

the probability that the damage feature is less than the damage threshold ( αΦ≤Φ ) can 

be described as  
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Where ΦH and σH are the mean and the standard deviation for the healthy damage feature 

values and αΦ is the threshold value that is a function of damage severity (α) level as 

shown in Figure  4-1 .  



Chapter 4. Entropy-Based Optimal Sensor Network in SHM with Example application to a Cable Stayed 
Bridge 

 71

Figure  4-1 Normal distribution of the damage feature showing the damage 

threshold. 

 

Using the above approach, a damage feature threshold ( αΦ ) for a specific level of 

damage can be computed. To validate the efficiency of the proposed optimal sensor 

network, the POD is defined as 

 
total

mean
N

N
POD

)( αΦ≥Φ
= (4.6) 

Where )( αΦ≥ΦmeanN is the number of simulations where the sensor network was 

capable of identifying the damage in the structure correctly (i.e. with a mean damage 

feature higher than the damage threshold). Ntotal is the total number of simulations 

performed.   
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4.3 Case Study 

 The proposed method is applied to identify the optimal number of sensors and their 

locations to monitor the Luling Bridge located over the Mississippi River in St. Charles 

Parish near New Orleans in Louisiana. The Luling Bridge has been in service since 1984. 

This bridge was selected to demonstrate the efficiency of such approach for long span 

cable-stayed bridges that would require large numbers of sensors for structural health 

monitoring. As-built drawings of the bridge were used to establish the FE model. The 

cable-stayed spans of the bridge, including three spans 151 m, 372 m and 155 m were 

modeled for the design of a SHM system. The bridge is 23 m wide. The bridge cross-

section consists of two steel box girders that are 2.5 m high, 7 m and 3 m wide at top and 

bottom flanges respectively. The thickness of the web is 12 mm and the thickness of 

flanges is 20 mm. A concrete deck (200 mm) is cast on the top of cross section to allow 

composite action. To hold the main 372 m span, 72 cables, attached to the top of two 122 

m high towers, were installed. Each cable is a 7 (6.35 mm) wire strand cable with each 

wire developing an ultimate strength of 1665 MPa. Figure  4-2 shows Luling Bridge 

during construction. Figure  4-3 illustrates the structural configuration of Luling Bridge 

showing longitudinal and cross sections. 
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Figure  4-2 Luling Bridge during construction. 

(a) 

(b) 

Figure  4-3 Luling Bridge (a) configuration and (b) cross section. 
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A FE model of the cable-stayed spans of the bridge was developed. The FE model 

includes 226 frame elements, each 3 m long. The frame elements were used to model 

each girder. Shell elements were used to model the bridge deck. Finally, cable elements 

were used to model the cables in the bridge. Figure  4-4 shows the 3D FE model of the 

Luling Bridge.  

 

Figure  4-4 FE model of the Luling Bridge with damage locations. 

 

A time history loading function with trapezoidal time-step shape that has 0.15 seconds 

duration was used to model the traffic loading on the bridge. The trapezoidal loading 

function simulates two HL-93 trucks according to the American Association of State 

Highway and Transportation Officials (AASHTO 2006) moving with 35 km/h and 45 

km/h in opposite directions on the bridge. The FE model was developed in SAP2000®.
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The acceleration signals at the structural nodes in z-direction were evaluated using the FE 

model. The energy of the acceleration signal released at the nodes (assumed to be the 

sensor location) was calculated. This energy has been shown by Reda Taha et al. (2004) 

and Kumara et al. (1999) to be related to the structural damage and thus can be used as a 

damage feature for damage detection. The energy of the acceleration signal can be 

calculated as 

 [ ] [ ]Φ i
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In Equation (4.7), Φi is the energy of the ith accelerometer, azi(t) is the z-axis direction 

acceleration measured at accelerometer i, ε is the expected value, t is time instant and T is 

the time window width. 5% noise was added to the FE simulation data to simulate field 

data. Three damage locations (L1, L2 and L3) on the first Girder illustrated in Figure  4-4 

were considered as possible locations of damage on the bridge based on the maximum 

stress due to maximum bending moment. Two different levels of damage, D1 and D2

representing 40% and 50% loss in stiffness of the girder were considered at each damage 

location. Due to the size of the bridge considered in the case study, relatively large loss of 

stiffness of the first girder is required to enable damage detection using the sensor 

network. To train the ANN, the damage features Φi and the three associated locations for 

damage level D2 were considered. The training process was repeated 10 times to obtain 

non-biased ANN weights. Non-normalized weights of ANN are shown in Figure  4-5. The 

ANN weights were normalized to establish the discrete PDF. The continuous PDF was 

established by considering interpolation function. Figure  4-6 illustrates the continuous 
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PDF. The POD for the optimally allocated sensors is computed and compared to 

uniformly distributing these sensors. 

Figure  4-5 Weights of each sensor obtained from ANN. 

Figure  4-6 Continuous probability distribution function (PDF). 
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4.4 Results and Discussion 

 By sampling the continuous PDF shown in Figure  4-6 for any given number of 

sensors, the optimal sensor locations on the first girder of the bridge can be identified. 

Table  4-1 presents the optimal sensor locations for 100 sensors (number arbitrarily 

chosen) distributed over the first girder. Distribution of 50, 100, 150 and 200 total sensors 

were calculated. Only the distribution of 100 sensors is presented here for space 

limitation. 

Table  4-1 Optimal locations of 100 sensors on the first girder of the Luling Bridge 

identified using the probabilistic method 

Sensor Number Sensor Location (m) 

S1-S10 3 6 9 15 27 30 33 36 45 48 

S11-S20 54 60 63 75 78 81 84 87 114 117 

S21-S30 123 126 132 135 138 141 144 156 159 162 

S31-S40 165 168 174 177 186 195 210 213 216 225 

S41-S50 246 255 264 282 285 291 294 303 324 336 

S51-S60 345 351 369 375 381 405 408 411 414 420 

S61-S70 423 450 453 459 465 468 474 477 492 501 

S71-S80 507 510 513 516 519 522 525 528 531 537 

S81-S90 540 570 573 576 579 582 585 588 594 597 

S91-S100 606 609 618 621 627 630 639 645 654 666 
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Figure  4-7 represents the POD values for detecting severe damage for 50, 100, 150 and 

200 sensors compared to uniform distribution of sensors. It is evident that the proposed 

method always achieved a higher POD than uniform distribution of sensors.   

Figure  4-7 Probability of detection (POD) versus number of sensors for optimal 

versus uniform distribution of sensors (Azarbayejani et al. 2009). 

 

The two objective functions for the information entropy and the sensor network cost were 

evaluated. Weighted sum method, as described earlier in this chapter, was used to solve 

this multi-objective optimization problem. Two objective functions were weighted 

equally to establish the global objective function. Here we used derivative-based 

optimization methods to find the optimal number of sensors. Levenberg-Marquardt which 

is one of the modified Newton’s methods was used to find the optimal number of sensors 

by minimizing the global objective function. The Pareto front of the two objective 
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functions is shown in Figure  4-8. An optimal solution that satisfies both functions lies at 

the zone indicated in Figure  4-8. The optimal solutions in the Pareto front achieve the 

balance between the two objective functions. It can be concluded from Figure  4-8 that 85 

sensors will be able to monitor the bridge efficiently while minimizing the sensor 

network cost and monitoring uncertainty.  

 

Figure  4-8 Information entropy versus sensor network cost functions showing the 

Pareto optimal solutions in the marked area (Azarbayejani et al. 2009). 

 

Sampling the continuous PDF with 85 sensors, the optimal locations of 85 sensors are 

presented in Table  4-2. We repeated the process by slightly changing the damage level 

from 50% to 40% and by considering a constant noise to the signal ratio. These changes 

did not affect the results of the optimization process.  
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Table  4-2 Optimal locations of 85 sensors on the first girder of the Luling Bridge 

identified using the above proposed method 

Sensor Number Sensor Location (m) 

S1-S10 6 12 21 33 36 39 42 84 87 93 

S11-S20 96 99 105 108 126 129 132 135 138 153 

S21-S30 165 180 183 201 204 219 222 225 231 240 

S31-S40 246 270 273 276 291 297 300 318 327 333 

S41-S50 336 339 342 348 354 357 363 366 369 378 

S51-S60 381 399 417 423 438 447 450 471 474 480 

S61-S70 483 489 492 513 516 528 537 543 546 549 

S71-S80 552 555 558 564 567 588 591 594 597 624 

S81-S85 636 645 654 663 669      

Finally, the critical sensor locations can be identified by calculating the significance 

factor using Equation (4.4). Figure  4-9 illustrates the significance factor for the 85 

optimal sensors. It can be observed that sensors 43-45 and 55-60 seem to be the most 

critical sensors. It is also evident that sensors 11, 12, 13 and 65 seem to have minimal 

effect of the sensor network robustness. It is worth noting that redundant sensors shall be 

used in the locations of significant sensors. 
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Figure  4-9 Significance factor for each sensor of the sensor network shows critical 

sensors for sensor network robustness with high significance (Azarbayejani et al. 

2009). 

4.5 Conclusion 

 In this chapter, we introduced an entropy-based multi-objective optimization approach 

to identify the optimal number of sensors for large sensor networks for SHM. The multi-

objective optimization approach combines an entropy-based objective function to 

represent monitoring uncertainty and a sensor network cost function for cost limitations. 

The optimal number of sensors can be distributed on the structure using a probabilistic 

approach that is based on identifying location importance using knowledge on common 

damage locations. The proposed approach utilizes an artificial neural network which is 
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trained based on a priori knowledge about damage locations and severities and selected 

damage features. Unlike other methods described in the literature, the proposed method 

does not rely on a specific damage feature and is also able to address the redundancy of 

the sensor networks. The proposed method was applied to find the optimal sensor 

network for the Luling Bridge, a long cable-stayed bridge over the Mississippi river. The 

optimal number of sensors and their locations are identified. The significance of sensors 

was also examined using ‘leave one sensor out’ analysis. 

 Identifying optimal number and location of sensors in a sensor network, this chapter 

completes the previous chapter which only considered optimal location of a given 

number of sensors. In the next chapter, a complete SHM system is designed and 

implemented on a field application of an RC bridge located at Tucumcari, New Mexico.  
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CHAPTER 5 DESIGN AND FIELD APPLICATION OF AN 

INNOVATIVE SHM SYSTEM FOR MONITORING OF RC 

BRDIGES ON INTERSTATE 40 AT TUCUMCARI, NEW 

MEXICO 

5.1 Introduction 

 The purpose of this chapter is to report on the design of an innovative structural health 

monitoring (SHM) system designed to provide continuous monitoring of the reinforced 

concrete (RC) bridge, Bridge 7937, in Tucumcari, New Mexico. Bridge 7937 was first 

strengthened with carbon fiber reinforced polymer (CFRP) laminates at one weak area on 

the bridge as a showcase strengthening project. The detailed design of CFRP sheets are 

also mentioned in this chapter using a 2D finite element (FE) model of the girder which 

CFRP sheets are attached to it. The effectiveness of the CFRP laminates was tested by a 

field test. The SHM system was designed to monitor the structural performance of the 

bridge. The proposed monitoring system’s calibration and effectiveness in detecting 

damage is examined on a prototype truss bridge built in the Structural Engineering 

Laboratory at University of New Mexico (UNM). Moreover, a 3D FE model of the 

bridge was developed and calibrated using the static field test data. The vibration data 

measured from the bridge after installing the SHM system was compared with that 

predicted using the FE model.  
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Using principles of inductive reasoning and fuzzy set theory, fuzzy damaged sets were 

established. That included the known healthy state of the bridge and the damaged states 

of the bridge using data extracted from the 3D FE model. Unknown states of the bridge 

based on different datasets from field measurements could then be classified using 

principles of fuzzy pattern recognition. The following sections describe all the details of 

the proposed monitoring system and the calibration process. 

5.2 Bridge description and design of CFRP sheets  

 Bridge 7937 on Interstate 40 (I-40) in the city of Tucumcari, New Mexico was 

selected for implementation of the monitoring system. As shown in Figure  5-1 and Figure 

 5-2 , the bridge consists of five reinforced concrete K-Frame girders. The K-Frames form 

three spans; 42 ft, 104 ft and 42 ft. Each K-frame has a rectangular reinforced concrete 

cross-section whose depth varies along the length of the bridge. This RC bridge has been 

conveying a large amount of traffic from New Mexico to Texas and vice versa for more 

than twenty years. Asphalt overlay is used on the top of Bridge 7937. Moreover, the 

longitudinal and transverse reinforcements vary along the length of the bridge. Figure  5-3 

illustrates the cross section and the longitudinal and transverse reinforcements of this 

bridge.  
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Figure  5-1 Bridge 7937 at Tucumcari. 

 

Figure  5-2 K-Frames of Bridge 7937. 
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Figure  5-3  Schematic of as built structural drawing of Bridge 7937. 

During the last two decades since the bridge was constructed, the size and weight of 

trucks passing over I-40 have increased dramatically. Based on AASHTO 2006 

(AASHTO 2006), it is expected that the moment and shear demand of the current traffic 

load might exceed bridge capacity. Four different types of New Mexico legal trucks were 

used in the FE analysis, in addition to a design truck by AASHTO and tandem load. 

These four trucks included New Mexico Department of Transportation (NMDOT) two-

axle legal load truck, NMDOT three-axle legal load truck, NMDOT five-axle legal load 
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truck, and NMDOT permit truck P327-B. Characteristics of each truck including axle 

loading are presented in Figure  5-4. Moreover, the distance between the two 145,000N 

axles in the AASHTO design truck was used as a variable from 4.3 m to 9.0 m as 

specified in AASHTO (2006). 

Variable

(a) Design truck by AASHTO

(b) Tandem

110 kN 110 kN

(c) NMDOT Two-axle legal load truck

4.27 m

54 kN 96 kN

(d) NMDOT Three-axle legal load truck

(e) NMDOT Five-axle legal load truck

(f) NMDOT PermitTruck P327-B

4.57 m

53.6kN 76.2kN76.2kN

1.22 m

53.6kN 76.2kN76.2kN 76.2kN76.2kN

3.96 m
1.22 m

9,14 m
1.22 m

127.8kN 110 kN110 kN 110 kN110 kN 110 kN110 kN 110 kN110 kN 110 kN110 kN 110 kN110 kN

4.88 m 4.27 m

1.22 m

4.27 m

1.22 m

4.27 m

1.22 m

4.27 m

1.22 m

4.27 m

1.22 m

4.27 m

1.22 m

Figure  5-4 Characteristics of the trucks used in FE analysis. 

 

Furthermore, a 9.3 kN/m, uniformly distributed design lane load in the longitudinal 

direction was also considered as specified by AASHTO (2006). The dynamic load 
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allowance was computed to be (1.33) and was applied to the truck and tandem loads to 

consider the dynamic effect of traffic load. Finally, dead loads including self weight of 

the K-frames, concrete deck weight, rail load and asphalt weight were also included in 

the FE analysis. In computing the total load on each K-frame of the bridge, since a 2D FE 

model was used, traffic load distribution between the frames needed to be calculated. The 

load distribution factors of the exterior and interior frames were computed separately. For 

exterior K-Frames the load distribution factor was considered one based on number of 

lanes, which were two for this bridge. For interior K-Frames the load distribution factor is 

different, but because CFRP laminates were designed only for the exterior frame, the 

interior load distribution factors were not calculated.    

5.2.1 Finite Element (FE) analysis 

 Static structural analysis was performed for the exterior K-frame of Bridge 7937. 

Considering the diaphragm action of bridges due to transverse beams and deck, each K-

frame was analyzed as a separate frame instead of using entire bridge model. Then, the 

load distribution between each frame was considered by using load distribution factors. 

In general, bridge structures are analyzed assuming linear elastic behavior unless 

cracking was evident. No indication of cracks in the K-frames indicated the need for 

cracked/non-linear analysis. Therefore, according to AASHTO, the elastic material 

behavior was assumed in the FE analysis and the stiffness of the girder was calculated 

using uncracked cross-section. Moving load analysis for live load was considered to 

identify the maximum effect of all moving loads considered in the analysis. Figure  5-5 

shows the FE model used in SAP 2000®. 58 nodes and 12 nodes were used to model the 

girder and inclined columns respectively. Also 57 and 12 frame elements were used to 
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model the girder and inclined columns respectively. The girders and the columns were 

assumed to be monolithic and therefore enabling moment transfer. At each node, the FE 

model has the same depth of real K-frames shown in drawing.  
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Figure  5-5 FE model showing nodes and frame elements. 
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The final shear and moment effects from all load cases were obtained from SAP 2000®.

These values need to be combined to represent the final straining action affecting the 

bridge structure. Based on AASHTO (2006), several load combinations were considered. 

This includes Strength I and Strength II load combinations which can be described as 

Strength I

Factored load = 0.9*(Self weight of girder and deck load) + 0.65*(Asphalt and railing) + 

1.75*Maximum moving loads and design lane load      (5.1a) 

Strength II

Factored load = 0.9*(Self weight of girder and deck load) + 0.65*(Asphalt and railing) + 

1.35*Maximum moving loads and design lane load      (5.1b) 

Here, “maximum moving loads and design lane load” was defined as the maximum 

moment (or shear) of moving trucks and tandem plus design lane load. According to 

AASHTO, Strength I and II combinations include the basic load combination relating to 

the normal vehicular use of the bridges without wind and load combination relating to the 

use of the bridge by owner-specified special design vehicles, evaluation permit trucks, or 

both without wind. Therefore, in Strength I, AASHTO design truck and tandem load 

were considered in calculation of  “maximum moving loads and design lane load” while 

in Strength II, in addition to AASHTO design truck and tandem load, NMDOT legal 

trucks (two-axle legal load truck, NMDOT three-axle legal load truck, NMDOT five-axle 

legal load truck, NMDOT permit truck P327-B) were considered. Figure  5-6 and Figure 

 5-7 show the moment and shear distribution of an exterior beam of Bridge 7937 for 
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several sources of loading: self weight of girders, deck, design truck by AASHTO, 

tandem, and NMDOT permit truck P327-B. 

 

Figure  5-6 Moment distribution of an exterior beam of Bridge 7937. 
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Figure  5-7 Shear distribution of an exterior beam of Bridge 7937. 

 

5.2.2 Design of CFRP sheets 

According to the results of FE analyses performed, it was found that the exterior girders 

of Bridge 7937 showed shortage in negative moment capacity around the K-frame 

connections. Therefore, it was therefore recommended to strengthen this bridge using 
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Fiber Reinforced Polymer (FRP). More details about calculating the shortage in negative 

moment capacity can be found in Reda Taha et al. (2007) report. The moment resistance 

to be provided by FRP is calculated as 

 frpnu MMM φφ ≤− (5.2) 

where: uM = factored applied moment, nM = nominal moment-carrying capacity  

 and φ is the moment reduction factor. 

In ACI 440 (2002), frpMφ is evaluated as 

 jdEAM fefffrpfrp ⋅= εφϕφ (5.3) 

where: frpϕ = additional reduction factor (=0.85), fA = area of FRP reinforcement 

feε = effective ultimate strain developing at FRP, fE = Young’s modulus of FRP 

jd = length of moment arm. 

The ACI 440 (2002) design method for FRP strengthened sections is basically similar to 

ACI 318 design method, which is based on strain-compatibility and equivalent concrete 

stress block (refer to Figure  5-8). In this design, it is assumed that the existing strain is 

negligible compared with ultimate design strains. Moreover, considering the fact that no 

tension cracks were observed in the top of the K-frame in the field inspection before 

strengthening, the existing service strains can be considered negligible. Therefore, the 

effective strain of FRP at ultimate state is defined as 
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Figure  5-8 Stress and strain distribution of the concrete beam strengthened by FRP. 
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where: fd = effective depth for FRP reinforcement, c = depth of compression zone 

mκ = bond-dependent coefficient for flexure (=0.9 for CFRP based on ACI 440 (2002)) 

fuε = design rupture strain of the FRP reinforcement. 

According to the results of FE analysis for the exterior girder of Bridge 7937 the 

maximum shortage of negative moment capacity ( cu MM φ− ) is 3,788 kN.m at the 

connection (x = 17 m) as shown in Figure  5-9. Moreover, Appendix A presents the 

factored moment and shear demand and the corresponding factored cross sectional 

capacity each 1 m along the bridge length for this bridge. 



Chapter 5. Design and Field Application of an Innovative SHM System for Monitoring of RC Bridges on 
Interstate 40 at Tucumcari, New Mexico 

 95

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

0 10 20 30 40 50 60

Location (m)

M
om

en
t(

kN
m

)
Positive Moment-Strength I Positive Moment-Strength II

Positive Moment-Capacity Negative Moment-Strength I

Negative Moment-Strength II Negative Moment-Capacity

 

Figure  5-9 Factored moment and capacity of exterior beam of bridge 7937. 

 

From Equations (5.3) and (5.4), the required amount of FRP reinforcement can be 

evaluated as: 

217891000
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φ (5.5) 

Here, we use CFRP for its enhanced strength and durability with a Young’s modulus 

of MPaE f 000,150= and an ultimate strain capacity of 0134.0=fuε . Moreover, it is 

assumed that the moment arm after application of FRP is jd to be d85.0 . Based on the 

calculation, CFRP needs to be applied between x = 16.2 m (53 inch) and 20.1 m (66 inch) 

from the west side of the bridge. The required area of CFRP reinforcement shall be used 

for each K-Frame at both connections. Here, in strengthening Bridge 7937, we will 

reinforce one K-joint on one K-Frame only for the proof of method efficiency. NMDOT 

will strengthen the full bridge at a later time when more funding becomes available. The 
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amount of CFRP reinforcement area required for strengthening one K-frame at the K-

connection on Bridge 7937 can be provided by means of 4 strips of CFRP plates, whose 

cross-section of CFRP strips is 1.52 mm thick (0.06 inch) and 305 mm (1 feet) wide. 

Since FRP strips are not manufactured in 11 foot lengths to cover the entire application 

zone, it was decided to overlap the FRP strips using two 1.83 m (6 feet) FRP strips. The 

CFRP strips are therefore lap spliced to cover the entire strengthening zone. To ensure 

the performance of spliced FRP strips, the lap splice location was alternated along the 

strengthening area such that no single section has more than two lap splices. The 

schematic layout of CFRP strips designed for the exterior girder of Bridge 7937 at 

Tucumcari is shown in Figure  5-10. 
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Figure  5-10 Schematic figure shows the layout of four CFRP strips for 

strengthening the exterior girder of Bridge 7937. 
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5.2.3 Installation of CFRP plates on Bridge 7937 

The application of FRP strips to an exterior girder of Bridge 7937 as an example case for 

FRP strengthening application was performed by the UNM team with cooperation of 

NMDOT in Tucumcari. It is worth noting that in the strengthening work of the bridge 

using FRP strips, several different types of materials were used: putty, epoxy and FRP. 

Therefore, the manufacturers’ specifications of each material were considered in this 

installation. Moreover, the different material specifications were checked with the 

AASHTO and ACI code requirements for FRP materials.  

• Step 1: Concrete surface milling 

As the bridge deck surface of the exterior girder of Bridge 7937 is concrete, it needed to 

be milled to enable application of the CFRP strips. The milling process is shown in 

Figure  5-11. The strengthening zone was marked first and then milled by a concrete 

milling machine attached to a wheel loader. The milled area was cleaned using air 

blowers and construction vacuum as shown in Figure  5-12. To obtain a surface with 

equal milling, the milling process was repeated twice.  

Figure  5-11 Concrete surface milling showing the process of marking the zone and 

milling. 
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Figure  5-12 Concrete surface cleaning. 

 

• Step 2: Concrete surface preparation 

The second step was to prepare the concrete surface. We started by establishing an even 

surface with thickness differences less than 4 mm (ACI 440, 2002 and CEB-FIP, 2001). 

Moreover, surface cracks formed due to the milling process were filled with putty 

materials and the surface was made even. An even surface is essential to enable good 

bond between concrete substrate and the FRP strips. To obtain an acceptable level of 

surface evenness, the concrete surface was first covered with a putty material in 

accordance with ACI 440 and AASHTO recommendations. The putty was applied to the 

application locations as shown in Figure  5-13 and then left to dry and bond to the 

concrete surface. It took one week for the putty to dry before applying the CFRP strips. 

Putty drying normally takes around two weeks, but it took less time because of the hot 

temperature on the bridge deck (around 100 oF). Moreover, at the locations where putty 

application was found to be too thick, the redundant putty was removed by grinding 

before FRP application.   
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Figure  5-13 Application of putty material to obtain even concrete surface. 

 

• Step 3: Implementing FRP strips on Bridge 7937 

After the concrete surface was readied for implementing FRP strips, the epoxy composed 

of resin and hardener was mixed in order to obtain the required bond strength. The 

specific mixing ratio (5 to 1) of resin and hardener was used according to the 

specification of the materials as shown in Figure  5-14. After mixing the resin and 

hardener to 80% of the allowable working time (pot life), the FRP plates were attached 

on the deck surface. The pot life for the epoxy used was 20 to 25 minutes which 

represented enough time to lay down the FRP strips on the locations identified on the 

bridge deck slab. Moreover, it is important to note that the epoxy hardening time is also a 

function of the temperature at time of mixing. Manufacture’s specifications need to be 

considered carefully. It is also noted that during the hardening process (chemical 
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reaction), epoxy becomes extremely hot, requiring special care from those applying it to 

the concrete surface.  

Figure  5-14 Mixing resin and hardener according to specific mixing ratio. 

 

Immediately after applying epoxy to the concrete surface, the CFRP strips were applied 

considering the locations marked and the lap splice alternating arrangement as shown in 

Figure  5-15. Because of the short pot life of the epoxy, it is recommended to mix enough 

resin and hardener to facilitate the application of one line of FRP strips at a time. 

Figure  5-15 FRP strips attached to the concrete surface. 
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After applying the FRP strips, as shown in Figure  5-16, additional pressure was applied 

on FRP sheets for better attachment to the concrete surface. This pressure was also used 

to protect the location of the applied FRP strips against the significant wind currents at 

the top of the bridge deck.  

Figure  5-16 Applying pressure for better attachment of FRP strips. 

 

• Step 4: Curing and finishing 

After applying CFRP, the construction site was properly covered by plastic sheets to 

prevent exposure of the CFRP to rain and water. When the epoxy was fully hardened 

(two weeks after attaching CFRP sheets to the concrete surface), the construction site was 

covered by a cold dry asphalt mix. The use of a dry asphalt mix was to prevent FRP 

direct exposure to moisture, rain or traffic. This will also enable accessibility of the FRP 

surface during the next phase of the project, which entailed field testing and the 

installation of monitoring sensors.  
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5.2.4 Field testing and examining FRP effectiveness 

 To validate the analytical prediction by the FE model, a field load test was performed 

before and after the application of CFRP strips. First, the concrete strain of the top of the 

exterior girder was monitored when subjected to a test truck with pre-determined weight 

of 50 Kips as shown in Figure  5-17. Moreover, after the application of CFRP strips, the 

strain on the top of the CFRP strips was monitored using the same test truck and weight. 

The ability of the CFRP strips to attain strain values close to those observed at the 

concrete surface prior to strengthening ensured that the CFRP strips were properly 

attached to the concrete surface based on strain compatibility at the same location. Figure 

 5-18 shows the FE model of the exterior girder subjected to the truck load and the 

moment distribution obtained from the FE analysis. It is noted that in this analysis the 

bridge deck was taken into account in the calculation of effective width of the girder 

assuming elastic behavior during the loading test. This can be justified by the fact that the 

load of the test truck was significantly lower than the load carrying capacity of the bridge 

and thus the bridge behavior can be considered to follow linear elastic behavior. To 

compensate for the temperature effect, orthogonal strain gauges were placed as dummy 

gauges. The longitudinal gauges were used to measure the load effect and the dummy 

strain gauges were used to compensate temperature effects. Figure  5-19 shows the strain 

gauges attached to the concrete surface as well as to the FRP strips. Figure  5-20 presents 

a schematic location of strain gauges on FRP strips. 
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Figure  5-17 Mack 10 yard dump truck as test truck with weight of 50 Kips. Truck 

weight was determined at the day of field test. 
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Figure  5-18 FE model based on the truck position and the maximum moment 

distribution of the exterior girder. 
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Figure  5-19 Strain gauges attached to the concrete surface and FRP strips. 
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Figure  5-20 Schematic drawing showing the location of strain gauges on FRP strips. 
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Here, we compare the strain measurements observed at spot S1 in Figure  5-20 with the 

ones predicted by the calibrated FE model. The strain measurements on the concrete 

surface prior to strengthening are shown in Figure  5-21. It can be observed that under the 

designated test truck, 21.7 µε (µε = micro strain) was recorded as the maximum strain on 

the concrete surface. This number is very close to the maximum predicted strain on 

concrete surface of 23.2 µε predicted by the FE analysis. This confirms that the FE model 

is calibrated properly based on the strain field measurements of the RC structure. 

 

Figure  5-21 Strain measurements at spot S1 on concrete surface using the test 

truck. 
 

After calibrating the FE model with the strain field measurements data, the 

effectiveness of FRP sheets in carrying the live load from the bridge is examined by 

comparing the strain measurements at four different locations shown schematically on 

Figure  5-20 with those predicted by the calibrated FE model. Figure  5-22, Figure  5-23, 

Figure  5-24 and Figure  5-25 illustrate the strains calculated from FE model and from the 
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field tests at strain gauges S1, S2, S3 and S4 respectively. From these figures, it can be 

concluded that the strains calculated from the FE model, which represents the strains at 

the concrete surface, are similar to the strains collected from field tests as the truck 

moving. Based on the strain compatibility at the concrete surface and FRP strips, the 

similarity between these strains proves the efficiency of FRP strips in carrying the live 

load from the concrete surface. It also confirms complete bond between concrete surface 

and FRP strips. This confirms that FRP strips enhance the bridge girder capacity.  
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Figure  5-22 Strains calculated from FE model and field test at strain gauge S1 on 

FRP strips. 
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Figure  5-23 Strains calculated from FE model and field test at strain gauge S2 on 

FRP strips. 
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Figure  5-24 Strains calculated from FE model and field test at strain gauge S3 on 

FRP strips. 
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Figure  5-25 Strains calculated from FE model and field test at strain gauge S4 on 

FRP strips. 

 

5.3 Design of SHM system to monitor Bridge 7937 

 A structural health monitoring (SHM) system consists of a number of sensors that 

observe structural response, such as accelerations or strains, to acquire and integrate the 

observations using a data acquisition system. The data collected from data acquisition can 

then be processed to extract proper monitoring features and patterns that identify 

structural performance. These patterns can be used at a later time to detect damage 

occurrence in structures.  

 The SHM system to monitor Bridge 7937 includes accelerometers and strain gauges

along with thermocouples. Twenty accelerometers were used to extract structural 
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dynamic information at different locations on the bridge. The acceleration data was used 

to extract damage feature(s) which can differentiate between healthy and damage 

conditions and enable warnings when the bridge is damaged. 

 To find acceleration on different locations of the bridge, model 333B50 accelerometer

from PCB, Inc. was utilized. This model is a piezoelectric accelerometer that has a 

frequency range of 0.5 to 3 kHz and operates with 1000 mV/g sensitivity, which means 

an accelerometer produces 1000 milli volt (1 volt) for the acceleration of gravity (g =9.8 

m/sec2 or 32.2 ft/sec2). Moreover, these accelerometers are stud mounted, which makes 

them stable on the bridge. Figure  5-26 illustrates a schematic for the accelerometer used 

in monitoring accelerations of Bridge 7937. 

Figure  5-26 Schematic representation of accelerometer used on Bridge 7937. 

 

Accelerometers were mounted at the bottom slab of the bridge, close to each girder. 

Accelerometers are shown with their placement location in Figure  5-27. As shown in the 

figure, four accelerometers are installed on each girder of the bridge. Accelerometer 

placement is determined based on locations of maximum bending moment and those 

locations more prone to cracking. Exact accelerometer locations are provided in Table 
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5-1.

Figure  5-27 Location of sensors used on Bridge 7937. 

 

Table  5-1 Sensor Locations on Bridge 7937 

Girder Sensor Location Sensor Location Sensor Location Sensor Location

G1 Acc 0 30 Acc 1 48 Acc 2 100 Acc 3 175 

G2 Acc 4 20 Acc 5 80 Acc 6 140 Acc 7 180 

G3 Acc 8 25 Acc 9 35 Acc 10 95 Acc 11 165 

G4 Acc 12 20 Acc 13 80 Acc 14 140 Acc 15 180 

G5 Acc 16 30 Acc 17 48 Acc 18 100 Acc 19 175 

All locations are measured on each girder from west side. 
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To monitor the effectiveness of FRP sheets, strain gauges are also distributed over the 

FRP application zone. By comparing the strain data of FRP sheets to strains on the 

concrete surface, the maximum strain due to the traffic and environmental loadings on 

FRP sheets can be monitored. While it is anticipated that traffic loading will produce very 

little strain in FRP sheets (in the range of 20-30 microstrains), as observed under load test 

and as shown in previous section, it is believed that the very low measurements will 

change if FRP debonding takes place on the bridge surface. Therefore, the FRP strains 

are basically used to detect possible FRP debonding.  

 Another possible option was to use fiber bragg grating technology with optical fibers 

to accurately determine the strains in the FRP plates. However, dramatic cost increases 

prevented us to use this option due to the difficulty to integrate Fiber Optic Sensing 

(FOS) technology with Field Programmable Gate Array (FPGA) technology. It was 

therefore determined to use electrical strain gauges to monitor possible FRP debonding. 

 Moreover, thermocouples are placed on the top and bottom surfaces of the bridge at 

several locations in order to find the temperature gradient on the bridge and thus monitor 

strain changes due to temperature change. It is well known that most of the cracks on the 

bridge deck are induced because of temperature gradient effects and thus correlating 

changes in behavior to thermal effects is of great interest. Figure  5-28 shows schematic 

locations of strain gauges and thermocouples on FRP sheets. 
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Figure  5-28 Schematic locations of strain gauges and thermocouples on FRP sheets. 

 

All sensors are connected by wires to a smart data acquisition (SDA) system as described 

in the next section of this chapter. The SDA system has the ability to connect the data to 

the office using a wireless system. The data can then be downloaded using HTTP or FTP 

internet protocols. A schematic representation of the SHM system and all of its 

components used in Bridge 7937 is represented in Figure  5-29.   
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Figure  5-29 Schematic representation of SHM system shows all its components as 

designed for Bridge 7937. 

5.4 Smart Data Acquisition (SDA) System 

 A new data acquisition system for acquiring data from all the sensors is developed to 

be used on Bridge 7937. The new data acquisition system utilizes a data acquisition 

platform that consists of two different parts: 1) a real-time controller that has volatile 

memory and nonvolatile memory for data storage. The real-time controller also 

encompasses an Ethernet port with built-in file servers allowing access by HTTP and 

FTP, and 2) a multi-slot reconfigurable chassis that contains FPGAs and a Peripheral 
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Component Interface (PCI) bus interface that connects between the FPGA and the real-

time controller. This built-in data transfer protocol is used to communicate data to the 

controller where post processing, data logging and communication to a host computer can 

take place. The FPGA chip connects directly to the analogue input modules using FPGA 

functions. Different types of sensors can be connected to different types of analogue 

modules. We denote the system here as Smart Data Acquisition (SDA) system for its 

ability to incorporate programmable logic on the hardware. Figure  5-30 shows this SDA 

system, including the controller and eight slot chassis where different modules connect to 

the chassis. The SDA system has a commercial brand name (Compact Rio®) produced by 

National Instruments (NI), Inc. 

Figure  5-30 SDA system showing the analogue modules integrated on the SDA 

system by National Instrument. 
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The SDA system replaces the conventional data loggers and computer modules that 

have been long used for SHM systems. This is achieved by integrating both data 

acquisition and computational logic gates on the same hardware. The SDA system also 

has the ability to connect to the worldwide web using wireless modems. Field 

implementation of the SDA system will enable establishing smart wireless SHM where 

damage feature extraction protocols can be processed at the bridge site. Therefore, the 

SDA system enables a unique opportunity for establishing SHM where data transfer can 

be limited to take place only when needed. Limitation of data transfer not only helps 

reduce the cost of the SHM system, but it also prevents data overflow reported by many 

researchers where the SHM system becomes a burden rather than an aide for engineers 

(Shrive et al. 2003). Moreover, the use of FPGA technology and real-time controllers 

enables synchronizing signals received from different sensors in real-time as well as the 

ability for remote hardware reconfigurability. This overcomes a fundamental challenge 

met by many conventional data loggers. 

 Developing data acquisition applications to operate on the SDA requires building a 

system that consists of three different modules, each operating at a different level. Figure 

 5-31 shows schematic representation of three modules and how they connect with each 

other.  Figure  5-32 illustrates the hierarchy of these modules on a project and how they 

connect to a host computer through worldwide Internet.  
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Figure  5-31 SDA system components and how they connect with each other. 

 

Figure  5-32 Hierarchy of different components of a SDA system. 
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The modules shown in Figure  5-31 and Figure  5-32  include: 

1. FPGA module This module is a low level program coded on FPGA. FPGA is a 

semiconductor device that can be reconfigured. An FPGA consists of logic blocks, I/O 

blocks and interconnection wires and switches (Brown and Vranesic 2009). 

Interconnection wires are organized in horizontal and vertical routing channels running 

between the logic blocks.  The routing channels contain wires and switches that allow for 

a variety of combinations of logic circuits. In most cases logic blocks are look-up tables 

(LUTs) which contain storage cells that are used to implement small logic function. 

Hardware description language (HDL) is used to describe the desired hardware 

specification that will be later synthesized. There are many HDL languages some are 

proprietary while others are not.  The two main HDL languages that are officially 

endorsed by IEEE are Very High Speed Integrated Circuit Hardware Description 

Language (VHDL) (IEEE Std. 1076, IEEE Std. 1374) and Verilog HDL (Hemmert and 

Underwood 2005). As density and speed of new FPGAs are improved they are now able 

to support double-precision floating point arithmetic making them more capable when 

implementing sophisticated algorithms. There are several available floating point kernels 

that performed fairly well on FPGAs (Hemmert and Underwood 2005 and Underwood 

and Hemmert 2004). Such advances increase the promise and the effectiveness of highly 

configurable hardware and increase the applications that they can be used for. 

2. Real-time module This module is a program coded on the controller of SDA. The 

controller receives the data from the FPGA module and keeps it in the nonvolatile 

memory of the SDA system. Using FPGA read/write control function through the PCI 

bus, real time module gets connected with the FPGA module. To transfer data from 
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FPGA module directly to the SDA real time controller, Direct Memory Access First In 

First Out (DMA FIFO) buffers are used where the first data item written to memory is the 

first item read and removed from memory. Each FIFO consists of two parts: the write 

part used by the FPGA module to record the sensors data on FIFO and the read part used 

by the real-time module to read data from FIFO. The FPGA module operates using a 

nanosecond clock while the real time module operates on microsecond clock. Therefore, 

the writing process on FIFO runs faster than the reading process. That can result in data 

loss. To avoid losing data and make complete synchronization between FPGA and real- 

time modules, interrupt functions are implemented to send a trigger from the FPGA 

module to the real time host. An interrupt notifies the real-time module about the time 

when data is ready or when the task finishes and makes it possible for the real-time 

module to read all the data recorded by the FPGA module.  

 3. Windows™ host module This module runs on the host computer. This is Windows™ 

based software, coded in any language, where simple graphical user interface and user 

friendly options can be developed. The Windows™ module communicates with the SDA 

system through wireless link and the data is transmitted via the worldwide web. Shared 

variables are used to communicate between real-time and Windows™ modules.  

 To make a complete embedded (self-contained) SHM system that communicates the 

data wirelessly, the FPGA module communicates the data to the real-time module via the 

DMA FIFO. The data is then saved on the SDA nonvolatile memory in the real-time 

module. In the next step, the data is transferred through a FTP to the host computer where 

the Windows™ module operates at the host computer. Figure  5-33 illustrates a block 

diagram describing the program implemented at the FPGA module for the Bridge 7937 
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monitoring. Part I of the FPGA module enables to recognize all the analogue modules on 

FPGA level and how to identify data rates for different modules. Parts II and III show 

how the configuration of strain modules is identified and how to define the interrupt 

function to synchronize the FPGA, and the real-time modules as explained above. Part IV 

in the block diagram also shows how the binary data is written on the DMA FIFO.  

 It is important to note that the above details are a fundamental part of the SHM code 

necessary for data acquisition of sensors’ data. These codes need to be established and 

tested to meet specific needs for each monitoring project. 

 

Figure  5-33 Block diagram of the FPGA module showing data acquisition from 

different analogue modules (Part I), interruption functions for synchronizing FPGA 

and Real-Time modules (Parts II and III) and the read and write process to DMA 

FIFO (Part IV). 

Part IVPart II, IIIPart I
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5.5 Model bridge for testing and calibrating the SHM system 

 To test and calibrate the designed SHM system and the SDA system, a model steel 

bridge was constructed and tested in the Structural Laboratory at UNM. This model 

bridge used for calibrating the SHM system is shown in Figure  5-34. The model bridge is 

3.1 m long and 1.1 m wide; it consists of two structural steel trusses. The bridge is 

divided into three longitudinal traffic lanes spaced at 250 mm each. Underneath the 

bridge, lateral transverse elements have been used to connect the bottom chord of two 

trusses. The trucks and their weights to simulate the random traffic on the model bridge 

are shown in Figure  5-35. 

 

Figure  5-34 Model bridge constructed at UNM structural laboratory. 
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Figure  5-35 Model trucks with their weights. 

 

The cross-section of connecting members is a 25 mm hollow steel rectangular tube with 

1.5 mm thickness. Three 18 mm thick pieces of Plexiglass were used as the bridge deck. 

Three model trucks made of plastic with rubber wheels were used to model the traffic 

loading on the bridge. The model trucks have three different weights and weight 

distributions to realistically simulate traffic as shown in Figure  5-35. Weights of the 

trucks were controlled using lead beads of known weights. Additional weights are added 

to each vehicle by adding bags of lead shot of predetermined weight. Moreover, a CFRP 

sheet was attached to the bridge deck. Strain gauges were attached to the CFRP sheet to 

simulate CFRP strengthening that has been used to strengthen the original bridge. The 

CFRP strip installed on the model bridge with its strain gauge is shown in Figure  5-36. 

 

W1 = 1865 gm

W2 = 2753 gm 

W3 = 3262 gm 
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Figure  5-36 CFRP strip installed on the model bridge deck with strain gauges 

installed on the CFRP. 

 

To avoid direct contact between the model truck and the Plexiglass deck, a 5 mm thick 

piece of carpet was attached on top of the Plexiglass deck. The carpet enables damping of 

the high frequency spikes produced by direct interaction of truck tires and Plexiglass 

material. This mimics the interaction between the asphalt layer of real bridges and tires. 

Using polyvinyl chloride (PVC) tubes, three equally spaced lanes were created on the 

deck of the model bridge. Moreover, two pieces of wood bolted into the Plexiglass bridge 

deck were used to attach the accelerometers to top of the bridge. Twenty accelerometers 

were installed on the prototype bridge. These are the same twenty accelerometers to be 

installed on Bridge 7937 in Tucumcari. A stainless plate was designed to enable easy 

installation and replacement of the accelerometers. The same plate will be used to mount 

the accelerometers on Bridge 7937. The design of the steel plate ensures that there is no 
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vibration at the plate location and excellent fixation to the structure. The accelerometer 

connection with the steel plate is shown in Figure  5-37.  

Figure  5-37 Stainless steel plate to mount accelerometer on the model and real 

bridge. 

 

The acceleration data was acquired from the model bridge under simulated traffic 

using the SDA system. Figure  5-38 shows a snap shot of the real-time program 

displaying the acceleration data in real time while monitoring. A display program was 

developed to present all the monitored accelerations. Figure  5-39 presents snap shots of 

the acceleration data measured at four locations on the model bridge while being 

monitored. 



Chapter 5. Design and Field Application of an Innovative SHM System for Monitoring of RC Bridges on 
Interstate 40 at Tucumcari, New Mexico 

 125

Figure  5-38 Real-time acceleration signals obtained from the SDA system. 

 

Figure  5-39 Acceleration signals from four different locations on the model bridge. 
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5.5.1 Damage Detection on the Model Bridge 

 The structural vibration of the model bridge was monitored by recording the 

accelerations from the twenty accelerometers and strain gauges installed on the bridge. 

To detect damage occurrence on the bridge, a damage feature will be extracted from the 

observed acceleration data. This damage feature can then be patterned and damage can be 

directly related to departure from this pattern. Here, the Wavelet method is used for 

digital signal processing of the acceleration signals. While Fourier transform provides 

information on the signal in frequency domain, wavelet has the ability to provide 

information in both time and frequency domains. Using Wavelet Multi Resolution 

Analysis (WMRA), the original signal can be decomposed to its original components.  

 Using wavelets, the acceleration signal is decomposed into approximation and detail 

signals with low and high frequency components respectively. The wavelet 

decomposition provides means to break down the signals into groups of signals at 

different frequency levels. The decomposed signal of )(' nx at level p can be computed as 
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where )(' nx is the decomposed signal. Moreover, )(, nkpφ and )(, nkjϕ are the scaling and 

wavelet basic functions respectively. The decomposition of the acceleration signal into a 

group of approximation and details signals is shown schematically in Figure  5-40. In this 

SHM system for Bridge 7937, the scaling and wavelet functions are selected for the 

Daubechies db4 mother wavelet. The approximation coefficients kpa , and the detail 

coefficients kpd , are calculated as 
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Figure  5-40 Schematic representation of WMRA decomposition of the acceleration 

signal. 

 

After decomposing the signal, the third approximation signal (denoted A3 in Figure 

 5-40) is used to extract the damage feature. The third approximation signal is computed 

for each accelerometer signal and then the approximation signal is down sized to 500 Hz. 

The model bridge was tested by performing traffic load simulation while acquiring data 

from the bridge using the SDA system to calibrate the SHM system before installation on 

Bridge 7937 in Tucumcari. Acceleration data was collected for 6 seconds by moving 

model trucks on the bridge so 3000 data points were extracted for each experiment.  

Figure  5-41 illustrates an example of original acceleration signal obtained from one of the 

accelerometers along with its third approximation signal denoted A3.
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Figure  5-41 Original acceleration signal (Blue) along with its approximation 3 signal 

(Red) showing the ability of wavelet decomposition to smoothen the observed signal. 

 

Figure  5-41 shows that WMRA is capable of removing the noise and all high frequency 

components from the signal and then down sample the sampling rate without changing 

the original signal. The third resized approximation A3R of the acceleration signal is then 

used to compute the damage feature as shown in Equation (5.9). 

 2
,3 )( k

k
a∑=λ (5.9) 

The damage feature (metric) λ represents the energy of the third approximation signal 

computed over a time window. Experimental and analytical investigations (Reda Taha et 

al. 2004, Horton et al. 2005, McCuskey et al. 2006 and Azarbayejani et al. 2008) have 

proven the ability of the proposed damage metric λ to detect and quantify damage 

occurrence on bridge structures. 
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To examine the efficiency of the proposed monitoring system, the energy of the third 

resized approximation signal A3R derived from the acceleration signal at two arbitrary 

accelerometers at different sides of the bridge was computed for healthy and damage 

cases. The healthy case is assumed to be the case where all members are attached to each 

other with completely fixed bolts installed at a specific torque. Damage in the bridge was 

simulated by removing two diagonal members, one from the first bay of one side and the 

other from the third bay of the other side. Model trucks were loaded and allowed to move 

over the bridge simulating traffic in random loading sequence for both the healthy and 

damage cases. Acceleration signals were recorded for 5 seconds. The signal was divided 

into thirty time windows, each 166 millisecond wide. The damage metric λ representing 

the energy of the third resized approximation signal A3R within each time window was 

computed following Equation (5.9).  

 A total number of twenty tests for both cases of healthy and damage were performed 

and thirty values for the damage feature were computed for each test. To be able to 

compare the healthy and damage performances, the mean value and the standard 

deviation of the 300 damage feature values collected from two sensors at ten different 

tests were computed. Assuming that the damage feature (energy of the third resized 

approximation signal) follows normal probability distribution, the probability of damage 

feature was computed. Figure  5-42 illustrates the probability of damage feature for 

healthy and damage scenarios computed at two accelerometers.      
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(a) (b) 
Figure  5-42 Probability of damage feature used to realize cases of healthy and 

damage performances at two different sensors installed on the prototype bridge. 

 

It can be observed in this figure that the proposed monitoring system using wavelet 

domain can easily differentiate between cases of healthy and damage on the prototype 

bridge. Damage pattern recognition methods (Reda Taha and Lucero 2005) can then be 

used to classify the level of damage in the bridge. The damage feature extraction and 

pattern recognition algorithms can be used at the host computer level to enable smart 

SHM. After testing all sensors, the proposed SDA and all sensors were decided to be 

working as designed. Experiments were also performed for data communication over the 

worldwide web for all sensor data. Snapshots of the SHM web-based software developed 

for data control and data transfer of the model bridge is shown in Figure  5-43. Moreover, 

a webpage for enabling data observation and data transfer via file transfer protocols 

(FTP) was developed. A snapshot of this webpage is shown in Figure  5-44. The web page 

and the FTP system were tested and proved capable of communicating the data observed 

from the model bridge.  
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(a) (b) 
Figure  5-43 Web tools developed for (a) Data transfer from the model bridge and 

(b) Data rate and sensor selection control on the SDA. 

 

Figure  5-44 Snapshot of the webpage developed for efficient data transfer for the 

model bridge using the worldwide web. 
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5.5 Design of photovoltaic power system for smart SHM 

Installation of an SHM system at a remote location such as Bridge 7937 in Tucumcari 

necessitated the development of an innovative method to power the system. After careful 

investigation, it was found that there was no electrical power availability at the bridge 

site. Therefore, we decided that a photovoltaic (PV) system would need to be designed in 

order to provide the power energy required to enable efficient SHM. The graphical 

position of the city of Tucumcari, New Mexico was defined at Latitude: 35° 10' 18" N 

and Longitude:  103° 43' 27" W. The PV system design consists of estimating the energy 

load required followed by an estimate of autonomy system requirements for backup. The 

location of PV system is shown in Figure  5-45. Finally, a layout analysis of the proposed 

PV system and the structural system to support the solar panels are presented in 

Appendix B. 

 

Solar Panel

Morning shadow

Figure  5-45 Location of the PV system designed for Tucumcari Bridge 
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5.6 Installation of SHM system on Bridge 7937  

 After testing and calibrating all the components of SHM system on a model truss 

bridge in UNM laboratory and ensuring system ability to detect damage, the SHM system 

was brought to the bridge location in Tucumcari and was installed on Bridge 7937. 

Installation of the SHM system was performed by UNM SHM research group and 3B 

Builders who are a certified electrical contractors operating in New Mexico. 

 The first step was to install a steel box for housing all the data acquisition, wireless 

modem and other electronic devices such as power inverter and solar panel batteries. The 

steel box is outdoor rated enclosure (Nema 4) that has two holes on top to connect all the 

wires into the system. Figure  5-46 and Figure  5-47 show the installation process as well 

as a photograph of the inside of the steel box before installation of the SHM components. 

As shown in Figure  5-46 the steel box was installed on the third K-Frame underneath the 

bridge.  

Figure  5-46 Installing of the steel box to house all electrical components at the 

bottom of Bridge 7937. 
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Figure  5-47 Steel box used for housing the data acquisition system and all SHM 

components. 

After installation of the steel box on the bridge, hangers were drilled into the bridge and 

attached using tapcon screws to make a path for accelerometer cables into the steel box as 

shown in Figure  5-48.  

(a) (b) 

Figure  5-48 Installation of hangers underneath the girders of the bridge using 

tapcon bolts. 
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By putting enough hangers on each girder of the bridge and connecting wires through 

the hangers, accelerometers were installed using stainless steel plates that were specially 

designed and tested before installation in the UNM Structures Laboratory as described 

earlier. The stainless steel plates were anchored to the bottom of the bridge deck in very 

close proximity to the girders, and then the accelerometers were attached to the steel 

plates. After the accelerometers were attached to the stainless plates, a silicon insulator 

was installed over the sensor and the stainless steel plate to produce a silicon dome over 

the accelerometer to environmentally protect the sensor against dust and all other harsh 

environmental effects. Figure  5-49 illustrates the original stainless steel plates and the 

accelerometers before installation on the bridge and the protected accelerometers with 

silicon dome after being installed on the bridge with the stainless steel plate. Figure  5-50 

shows a view of the bridge where after all the accelerometers were installed and wired to 

the steel box. In this figure, the wireless antenna can be observed.  
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(a) 

(b) 

 

Figure  5-49 (a) Accelerometer attached to stainless steel plate before installation.  

(b) An accelerometer attached to the bridge slab using a stainless steel plate. 
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(a) 

(b) 

 

Figure  5-50 (a) View of the bridge after installation of all accelerometers. (b) All 

accelerometers wiring going to the Box. Figure also shows the wireless antenna. 

 

Two conduits with two small electrical boxes were made, one to pass the cables from 

the solar panel to the steel box housing all the data acquisition system to power the SDA, 
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and the other to pass the cables from strain gauges attached on the FRP zone on top of the 

bridge to the data acquisition (DAQ) box at the bottom. Figure  5-51 shows these conduits 

and the electrical box made to house the electrical cables from the solar panels. 

Figure  5-51 Electrical boxes and conduits to pass power to the SDA using the solar 

panels. 

 

After installing all the accelerometers and attaching them to the SDA system, the 

strain gauges were installed on the FRP sheets to monitor debonding of FRP sheets from 

the concrete surface. All strain gauges were covered and the wires from them were 

attached to the cables which transmit the signals from the strain gauges through the 

aforementioned conduit, to the SDA system located in the steel box. Environmentally 

protected strain gauges produced by Vishay, Inc. were used. The strain gauges were 

installed following standard installation techniques considering all cleaning and bonding 

requirements. Special epoxies were used to attach the strain gauges to the FRP sheets. 

Dead weights were put on top of the installed strain gauges to produce the required 
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pressure to ensure the gauges were bonded. The strain gauges were left for 24 hours 

before connecting to the SDA. Figure  5-52 shows the weights applied on top of each 

strain gauge to make sure they are attached completely to the FRP sheets. Figure  5-53 

shows one strain gauges after being covered by the rubber protection. Figure  5-54 shows 

all strain gauges attached to the FRP sheets. Figure  5-55 shows concrete casting above 

the strain gauges and the area strengthened with FRP after being batched with concrete 

and the sensor connections to the monitoring box.  

Figure  5-52 Weights applied on top of each installed strain gauge. 

Figure  5-53 Covered strain gauges attached to the FRP sheets. 
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Figure  5-54 All the strain gauges after being installed on the FRP sheets and 

connected to the wires transmitting the strain signals to the DAQ device. 

 

(a) (b) 

Figure  5-55 (a) Concrete casting over area of bridge deck strengthened with FRP 

and (b) Top of bridge deck after concrete casting showing the connection of the 

sensors to the monitoring box under the bridge. 
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Moreover, four thermocouples were installed on the top surface and the underside of the 

bridge to measure the bridge temperature at both these points. Figure  5-56 shows one of 

the thermocouple sensors attached to the web of the bridge girder. 

Figure  5-56 One thermocouple sensor attached to the web of the bridge girder. 

 

Upon completion of the installation of all sensors on the bridge surface, they were 

connected through their cables to the SDA system housed in the steel box and located 

underneath the bridge. The SDA was connected wirelessly to the Worldwide Web.  

Figure  5-57 shows the inside of the steel box with the SDA system and the wireless 

modem attached. The figure also shows the rechargeable battery for the solar cell, the 

digital timer and the power inverter that is required to switch the DC power obtained 

from solar panels through rechargeable batteries to the AC power that can be used by the 

SDA. The digital timer is programmed to schedule operation time. While the system can 

acquire data all the time, data transmission using wireless protocol has to be limited for 

wireless cost and for power limitations associated with using solar panels. The system is 

designed to operate for 8 hours daily. 
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Figure  5-57 Data acquisition system, rechargeable batteries, power inverter, digital 

timer switch and the wireless modem located at the steel box. 

 

The solar power was also successfully installed and is timed to work 8 hours every 

day. Special time for data download during low wireless activity is also scheduled. Figure 

 5-58 and Figure  5-59 show the solar power panels installed to provide clean renewable 

energy to the monitoring system and their connection to the monitoring system. In these 

figures the structural design is also shown. Steel chords used for hanging the solar panels 

to the bridge have been designed to prevent overturning of solar panels against the wind 

turbulence. 
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Figure  5-58 Solar power system installed on Bridge 7937 to provide clean renewable 

energy for the SHM system. 

 

Figure  5-59 Solar power system installed on Bridge 7937 to provide clean renewable 

energy for the SHM system. 
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5.7 User interface to monitor Bridge 7937 in Tucumcari, New Mexico  

 With the SDA system and wireless modem, the user can monitor the bridge wirelessly 

through the World Wide Web. The SDA system is programmed in such a way that gives 

the user an easy graphical interface to monitor the bridge and obtain data from all the 

sensors installed on the bridge. Moreover, the graphical interface gives the user the 

ability to control the SDA remotely by choosing the data and timeframe to be saved on 

the SDA device. The user can also observe live data from each sensor at any time 

remotely. Figure  5-60 shows the graphical interface that needs to be set up by the end 

user to remotely observe the bridge data. 

Figure  5-60 Graphical user interface shows the “Configuration” of modules. 

 

On the left side of Figure  5-60, under the tab called “Configuration”, the end user can 

change the rate of acquiring data from accelerometer and strain gauge modules from  

2000 samples/sec to 50,000 samples/sec. Moreover, the end user has the ability to change 

the “Excitation Voltage” needed for strain gauge modules and the “Configuration” of 

strain gauges in Wheatstone bridge from “Half-Bridge” to “Full Bridge”. Two strain 
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gauges are used on each spot of the FRP zone that compensates for temperature effect, 

producing what is known as Half-Bridge strain gauges.  

 Figure  5-61 shows the next tab of the above figure. This new view is called “File 

Setup” and shows how the files are time stamped based on the exact date, hour, minute 

and second they are acquired along with the base name of the file. File Setup can also 

give the user the ability to save the file automatically on the SDA for desired time 

duration and desired gaps between the files or save manually using a control switch. 

Figure  5-61 Graphical user interface shows “File Setup”. 

 

As shown in Figure  5-61, the base file name is Accel 0-9 which saves data from the 

first ten accelerometers. Saving data in three different categories (Accel 0-9, Accel 10-19, 

Strain) limits the size of each file to allow transfer of the file using FTP protocol 

wirelessly.  It has been observed that one second duration of the saved file along with 

logging every five seconds are suitable numbers to acquire data from random traffic 

passing over the bridge. When the user puts the logging control on manual, no data is 
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saved on the SDA device until the logging switch which is located on the “Live Data” 

tab, as shown in Figure  5-62, is turned on. When the logging switch turns on, the user can 

save data on the SDA device for as long as the switch is on. Manually saving data is not 

recommended since different sizes of data will be saved on the SDA system that might be 

so large that sending it wirelessly won’t be feasible. “File Setup 2” and “File Setup 3” 

tabs shown in Figure  5-62 are exactly the same as “File Setup” except they are designed 

for accelerometers 10-19 and strain gauges respectively. The user can observe live data 

from each sensor. Temperature data from all thermocouples can also be observed in 

Celsius Degree in the “Live Data” tab. 

Figure  5-62 Graphical user interface shows “Live Data”. 

 

To use the graphical interface discussed above, the user needs to login to the web 

address given below in Internet Explore (IE). 

http:// tucumcari-project.dyndns.org:9999/
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The website is specifically made for the Tucumcari Bridge using dynamic DNS 

(dyndns.org) website. After using the web address given above, the user needs to put the 

following address in IE. 

http:// tucumcari-project.dyndns.org:9999/SHM.html

Please note that the web address is case sensitive. A snapshot of this web address viewing 

live data from Bridge 7937 is shown in Figure  5-63. 

If data recording is planned, it is important to realize that the data will be stamped based 

on the sensors (accelerometers and strain gauges) at the exact time it was acquired. The 

user then needs to use FTP protocol to transfer the data to a personal computer (PC). The 

webpage the user needs in order to get the data is 

ftp://tucumcari-project.dyndns.org/

The user should allocate a data folder and copy the data and paste it into the folder on the 

PC. Figure  5-64 shows what will appear to the user after accessing the above address in 

IE. 
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(a) 

(b) 

Figure  5-63 Live data from the web address to view Bridge 7937 recorded on June 

26, 2009 (a) Acc 1 & (b) Acc 9 . 
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Figure  5-64 FTP graphical interface for transferring the data from SDA. 

 

It is important to note that all the data saving and data-user interface protocols designed 

specifically by the author for the above monitoring project. 

5.8 Data analysis for damage detection of Bridge 7937 

 The files that are saved on the SDA device and transferred through FTP protocol have 

TDMS file format which is a format readable by special software for data acquisition. 

Special software is developed for reading and analyzing this data. The software called 

SMART-SHM is composed of two executable files that are designed to run on typical 

PC. The first file is called SMART-SHM-START.EXE which allows the user to view the 

data files downloaded from the bridge as “raw data” and to save them for further analysis. 
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The second file called SMART-SHM-DAMAGE.EXE, is designed for damage detection. 

On the first software SMART-SHM-START, the user has the ability to view all the 

sensors on the bridge and to display the synchronized data from the bridge for up to 4 

sensors at the same time. Figure  5-65 provides a snap shot of SMART-SHM-START 

software. The temperature data is shown at the bottom of the Software in degree Celsius. 

SMART-SHM-START also allows the user to perform basic analysis of the data. Four 

types of analysis are available. In addition to time domain data discussed above, fast 

Fourier transform and Wavelet transform can be performed and displayed. The software 

also allows the user to view a down-sampled wavelet transform of any desired sensor as 

shown in Figure  5-65. In Figure  5-65, it is shown that while the data was acquired from 

the bridge using 2 kHz sampling rate, the Wavelet transform smoothes the signals and the 

high frequency components of signals are eliminated from the original signal. The down-

sampled Wavelet transform will have a sampling frequency of 400 Hz. 

 

.
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Figure  5-65 SMART-SHM-START software shows raw data, Fourier transform, 

Wavelet transform and decimated Wavelet signals collected from Sensor 2 (Acc.1) 

installed on the bridge. The bottom row shows the temperature at four locations on 

the bridge. 

 

To detect damage on the bridge, another executable software was coded and produced. 

The second software, called “SHM-SMART-DAMAGE”, was designed to perform 

damage feature extraction using wavelets and fast Fourier transform and to display the 

history of the bridge damage feature. SHM-SMART-DAMAGE starts by loading the 

training files, to train the software based on available data gathered during a period of 

time when the bridge has been monitored. Since the data gathered wirelessly and 
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randomly from the bridge is a large dataset, it is needed for the training process. The 

training dataset is used to establish the boundaries of the damage feature (being Wavelet 

or Fourier). The boundaries were established at 99.7% probability. After the training data 

is loaded, a new dataset can be loaded. Here, two different methods are used for detecting 

damage on the bridge:  

First, Fast Fourier Transform (FFT), which transforms the raw data from the bridge in the 

time domain to the frequency domain, is used. When damage occurs to the bridge, the 

main frequency components of the bridge might change and therefore the maximum 

frequency of acceleration signals will change. Since the bridge has very large stiffness 

and mass, the little damage would not be able to change the major frequency components 

of the bridge.  The maximum signal frequency was limited to 45 Hz since the signals 

with higher frequencies usually represent noise. In the training part of this method, the 

maximum frequency of signals at each sensor is computed for each training dataset and 

the mean value of all datasets is used for the training process. The upper and lower limits 

for the healthy state of the bridge are calculated based on 99.7% probabilities not to 

exceed the mean (i.e. +3σ). This is represented graphically in the software. For any new 

dataset, the software will display its location on the chart with respect to the mean 

boundaries. It should be noted that lack of enough training of the datasets may result in 

false alarms. 

Second, the energy of signals calculated in the wavelet domain is used as a damage 

feature to differentiate between healthy and damage states of the bridge. The acceleration 

signal is decomposed into approximation and detail signals with low and high frequency 
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components respectively using Wavelet transform as presented before in Equations 5-6 to 

5-9.  

 Using the energy of the wavelet decomposed signals; the training datasets were 

computed. The mean value and 99.7% boundaries were established. For any new dataset 

obtained from the bridge, if the energy of signals calculated in the wavelet domain at the 

location of each sensor passes the established boundaries, the bridge might be 

experiencing damage near the location of that sensor. It should be noted again that to not 

get false alarms about damage on the bridge, the training process should be done for a 

large number of datasets gathered from the bridge at different times. It is also worth 

mentioning that the damage features, discussed above, are calculated at the location of 

each sensor and in this case each sensor has independent damage value from the other 

sensors. Figure  5-66 represents a snapshot of the SMART-SHM-Damage software 

showing the mean and boundaries of the Fourier transform damage feature at sensor 3 

(Acc 2). It can be observed in the snapshot that 10 datasets were used to establish the 

damage boundaries.  

 It is again important to emphasize that all these algorithms and software have been 

developed by the candidate as part of the SHM research field implementation. 
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Figure  5-66 Snapshot of SMART-SHM-Damage shows the history of the frequency 

damage feature at Sensor 3 as extracted from Bridge 7937. 

 

As it is obvious from Figure  5-66, the frequency mean value of all training datasets is 

around 20 Hz while the lower and upper limits will be between 0 and 40 Hz. Moreover, it 

is apparent that all the frequencies are within the established range that confirms the 

healthy state of the bridge. Figure  5-67 represents a snapshot of the SMART-SHM-

Damage software showing the mean and boundaries of the wavelet transform damage 

feature at Sensor 8. 
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Figure  5-67 Snapshot of SMART-SHM-Damage shows the history of the wavelet 

damage feature at Sensor 8 as extracted from Bridge 7937. 

 

As shown in Figure  5-67, the mean value of energy of signals calculated in the Wavelet 

domain at Sensor 8 is around 0.01 while the lower and upper limits calculated from the 

mean value plus or minus three times of the standard deviation calculated at the location 

of sensor 8 are 0 and 0.33 respectively. It can also be concluded that for 17 different 

datasets obtained at different times, no damage has occurred near Sensor 8 since all the 

results are located within the established healthy limits.  

 It should also be mentioned that the SMART-SHM-DAMAGE software made for this 

project has the ability to show up to 20 different datasets obtained from the bridge at 
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different times in order to give the user a sense of the history of the bridge. Finally, the 

user is capable of saving the configuration of all the files obtained from the bridge to 

compare to new datasets at a later date. Moreover, the user can also save the 

configuration of the files used for training of the program and use different datasets as 

training files.   

5.9 Damage detection of the bridge 

 The fact that the bridge is healthy hinders realistic damage detection in the bridge. 

Therefore, virtual damage needs to be made and checked the ability of the proposed 

method to detect damage in the bridge upon occurrence. Therefore, a 3D FE model of the 

bridge, using SAP 2000®, is made to simulate the structural behavior of the bridge under 

traffic loading. This model simulated the variable cross section of girders and their 

attachments to the concrete slab accurately. The model was first calibrated based on the 

field test done by a truck with known weight as mentioned earlier in this chapter. The 

calibration process was based on modifying the bridge cross sectional stiffness such that 

the strains calculated from the first girder of the 3D FE model to meet the strains 

measured by strain gauges at the same locations on the bridge with the known test truck 

(speed and the weight of the truck were known in the field test). Figure  5-68 and Figure 

 5-69 show the calibration process based on the location of strain gauges shown in Figure 

 5-20. 
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Figure  5-68 Strains calculated from FE model and field test at Strain Gauge 3 as 

shown in Figure  5-20 to calibrate the FE model. 

Figure  5-69 Strains calculated from FE model and field test at Strain Gauge 4 as 

shown in Figure  5-20 to calibrate the FE model. 
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The FE model consists of five K-frame girders with variable cross section based on as 

built drawings of the Tucumcari Bridge. Fifty-seven frame elements are used to model 

each girder of the bridge with 1m projectile length on longitudinal axis of the bridge 

along with shell elements to model the concrete bridge deck slab as shown in Figure 

 5-70. Different cars and trucks with the speed limit of 75 mph as posted on the bridge are 

used to simulate the traffic on the bridge. Because of the random traffic passing across 

the bridge, each monitored file relates to one of these unknown traffic loading scenarios. 

A time history analysis has been done for several random traffic loadings to identify the 

acceleration at each node of the calibrated FE model.        

Figure  5-70 3D FE model of Tucumcari Bridge. 

 

By calibrating the FE model with the data obtained from static field test, the FE model 

can be used to correlate the acceleration data from the accelerometers on the bridge with 

the accelerations computed from FE model at the same location of accelerometers. Since 
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each dataset measured from the bridge is from an unknown traffic loading, we changed 

the magnitude and the axles of trucks and cars used to simulate traffic loadings on the FE 

model to match the field test. The main hurdle to match acceleration datasets other than 

the unknown type of loading is the challenge to model damping characteristics of the real 

bridge. This issue can make irregularities in an exact match of signals in the time the 

signal is damped or reaches its peak. In this FE model, the damping ratio changed from 

different range of 1% to 50% to correlate acceleration signals. Figure  5-71 illustrates an 

acceleration signal computed from the FE model at the location of Acc 9 as shown in 

Figure  5-27 and Table  5-1. This acceleration signal computed from the calibrated FE 

model of a two axle truck weighing 32 kN passing through the bridge with 75 mph speed. 

Moreover, Figure  5-72 and Figure  5-73 represent the signals measured from different 

accelerometers on the bridge and the ones computed from the calibrated FE model at the 

same locations. As shown in these figures, the calibrated FE model is able to compute 

acceleration signals similar to that observed from the bridge using distributed 

accelerometers.  

Figure  5-71 Snapshot of an acceleration signal computed from the FE model at the 

location of Acc 9. 
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Figure  5-72 Acceleration signals measured from Acc 0 and Acc 1 on the bridge at 

19:09:03 June 26, 2009 from the Tucumcari bridge compared with the signals 

computed from the calibrated FE model at the same location of accelerometers.   
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Figure  5-73 Acceleration signals measured from Acc 8 and Acc 9 on the bridge at 

19:09:03 June 26, 2009 from the Tucumcari bridge compared with the signals 

computed from the calibrated FE model at the same location of accelerometers. 
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As shown in Figure  5-72 and Figure  5-73, high correlation between the acceleration 

signals measured from accelerometers on the real bridge and that simulated by the 

calibrated FE model can be observed. This means that the FE model can be used to 

examine the ability to detect damage in the bridge using acceleration signals.  

5.10 An inductive fuzzy damage classification method applied to the 

Tucumcari Bridge 

 In this section, different states of the Tucumcari Bridge are identified. Most SHM 

research defined damage states using statistical methods such as Bayesian updating for 

damage accumulation (Shiao 2005), support vector classifiers (Jonker et al. 1999) and 

non-linear system identification (Adams and Farrar 2002, Yu 2005) that considers 

uncertainty due to randomness in measurements (Ross 2004). In these methods, other 

types of uncertainty such as fuzziness and ambiguity due to the lack of information (e.g. 

lack of crisp boundaries defining damage states) are neglected because these methods 

rely on probability theory (Klir and Yuan 1995). Integrated approaches to address 

aleatoric and epistemic uncertainties in structural safety and reliability have been of 

interest recently to the research community (Hung et al. 2003, Elms 2004).  

In this section, damage features are represented using fuzzy set theory. Different damage 

states in structures are described by a group of fuzzy sets that are established by 

principles of inductive reasoning. The vagueness and uncertainties associated with 

damage definition and the significant overlap between different damage states in 

structures makes damage-state description amenable to fuzzy definitions and fuzzy 

pattern recognition. Inductive reasoning or inductive inference is the process of extracting 
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general rules from limited and specific sets of information (Feeney and Heit 2007). 

Inductive reasoning is considered a cognitive activity that integrates probabilistic and 

non-probabilistic uncertainty for approximate reasoning of observations (Feeney and Heit 

2007). The damage definition process is always based on limited and uncertain 

information. Damage detection and damage pattern recognition is therefore a fertile field 

for utilizing principles of inductive reasoning (Tenenbaum et al. 2006).  

 Our method aims at classifying damage states in the structure by establishing fuzzy 

sets. Since different damage states in the structure have significant overlap and vague 

boundaries, fuzzy sets are used to describe these damage states. Using fuzzy set theory, 

the two kinds of uncertainties (i.e. aleatoric and epistemic) associated with defining 

damage states in structures is considered. 

5.10.1 Establishing Inductive Fuzzy Damage Sets 

 The use of inductive reasoning for classification is based on the fact that the process of 

induction is associated with minimum uncertainty. Claude Shannon (1948) introduced 

entropy as a measure of disorder in classifying data in 1948 to describe uncertainty or to 

quantify the information content in a dataset.  The uncertainty associated with the value 

of a discrete random variable (ζ) can be measured by the entropy (S) as 

 ( ) ( ) ( )∑
∈

−=
Z

ppS
ζ

ζζζ log  (5.10) 

where p(ζ) is the probability of the occurrence of ζ. In order to minimize uncertainty, the 

entropy S(ζ) should be minimized. The value of (ζ) corresponding to the minimum 

entropy S(ζ) is an induced threshold value that will partition the domain into two classes 



Chapter 5. Design and Field Application of an Innovative SHM System for Monitoring of RC Bridges on 
Interstate 40 at Tucumcari, New Mexico 

 164

(Kim and Russell 1991, Ross 2004). This entropy can be used as a reasoning basis to 

obtain generalized classes for a specific set of limited observations. Fuzzy categories are 

formulated based on the premise of an argument regardless of the fact that such 

categories are not certain (Applebaum 2003).  

 In order to establish fuzzy sets to describe damage states of the structure, the threshold 

values defining the boundaries of these fuzzy sets need to be identified. First, two fuzzy 

sets can be established as a two class partitioning problem, then other fuzzy sets 

describing other damage states of the structure can be established by generating 

subclasses for each individual class. Based on inductive reasoning principles the first 

threshold partitions a domain into two classes. This point (x0) that minimizes entropy in 

the interval [x1, x2] can be used to partition this domain. The entropy of point (x0) on the 

damage feature domain (x) can divide the interval [x1, x2] into two intervals [x1, x0] and 

[x0, x2]. The entropy S can be calculated as 

 ∑=
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where pj
i(x) is a conditional probability that the class j sample is in the region [xi, xi+x]

and [xi+x, xi+1] and pi(x) are probabilities that all samples are in the region [xi, xi+x] and 

[xi+x, xi+1]. The values pj
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n
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where nj
i(x) is the number of class j samples located in ith interval [xi, xi+x], ni(x) is the 

total number of samples located in ith interval and n is the total number of samples in the 

interval [xi, xi+1].  

By choosing the type of membership function (MF) (triangular, bell shape and etc), fuzzy 

sets are established in the damage feature domain. To consider the fuzziness in the 

damage detection process, some degree of overlapping between two adjacent fuzzy sets 

needs to be achieved. To establish secondary fuzzy sets accounting for other damage 

states of the structure, the secondary threshold values are obtained based on the primary 

threshold value. In other words, the damage feature with the highest membership value in 

an intermediate fuzzy set corresponds to the minimum membership value in the two 

neighbouring fuzzy sets. That enables a significant overlap between the damage fuzzy 

sets which directly correlates to the level of fuzziness (uncertainty) in the damage states 

(Klir and Yuan 1995). The software code to find these points is presented in Appendix C. 

For Tucumcari Bridge, one primary threshold value and two secondary threshold values 

were identified to establish three fuzzy sets describing three damage states in the bridge: 

healthy, medium damage and severe damage. It is important to note the importance of 

correlating that fuzzy level of damage to mechanical damage in the structure. A few 

methods have been recently proposed for establishing such correlation (Zhang et al. 2008, 

Sheyka et al. 2008).  
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5.10.2 Fuzzy Pattern Recognition 

 The process of classifying an unknown fuzzy vector/set based on known fuzzy sets is 

called fuzzy pattern recognition. As the fuzzy damage sets are established as explained 

above, using fuzzy pattern recognition, datasets of damage feature can be classified to 

one of the damage classes already defined by fuzzy sets on the damage feature domain. 

Such classification can be developed using the degree of similarity approach (Ross 2004). 

The degree of damage similarity (DM) between two fuzzy damage vectors 
~

iD and 
~

jD is 

defined as 

 )()(
~~~~

jiji DDDDDM ⊕∧= o (5.15)

where )(
~~

ji DD o is the inner product of the two fuzzy vectors 
~

iD ,
~

jD and )(
~~

ji DD ⊕ is 

the complement of the outer product of the two vectors. When the value of DM 

approaches 1, the two fuzzy vectors are similar and when DM approaches 0, the two 

fuzzy vectors are dissimilar.  

5.10.3 Identify different states of Tucumcari Bridge 

To identify different states of Tucumcari Bridge using the proposed SHM system as 

installing in the field and the calibrated FE model, the energy of the third approximation 

of the acceleration signal in wavelet domain, as described in Equation (5.9), is computed 

at the location of each sensor to be used as damage feature. Assuming the current state of 

the bridge as healthy, all of the acceleration data obtained from the bridge using installed 

sensors can be used to calculate the energy of the third approximation of signal as a 

damage feature for healthy state. Since high correlation was observed between signals 
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obtained from the calibrated FE model and the signals from accelerometers on the bridge, 

the FE model can be used to generate acceleration signals for different damaged states of 

the bridge. The damage is defined on the FE model as reduction in stiffness of the frame 

elements in the locations that are more prone to be cracked. For this reason three 

elements located on the joint of K-frame on Girder 3 of the FE model are selected as 

damaged elements. These elements are located at location of maximum negative moment. 

The designated damaged location is shown in Figure  5-74. 

Figure  5-74 Location of damaged elements on the FE model. 

 

By reducing the stiffness of the three damaged elements from 10% to 50% of the original 

stiffness used in the calibrated FE model, the energy of the acceleration signal in the 

wavelet domain is calculated at the location of Acc 8. Acc 8 is the closest accelerometer 

to the damage location. This energy denoted as λ8 is shown in Table  5-2.  
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Table  5-2 Energy of acceleration signal calculated in wavelet domain for healthy 

and damaged cases. 

Events λ8 Healthy λ8 Damaged 

1 0.019813 0.216293 

2 0.026606 0.194609 

3 0.602788 0.195518 

4 0.041646 0.19808 

5 0.074756 0.199828 

6 0.059328 0.221345 

7 0.024501 0.276584 

8 0.031539  

9 0.043087  

10 0.04846  

Using principles of inductive reasoning, the energy of signals shown in Table  5-2 were 

used to establish two fuzzy sets indicating healthy and damaged states of the Tucumcari 

Bridge. A bell function is used to describe each membership functions of fuzzy sets. A 

generalized bell function is specified by three parameters a, b and c as: 

 
b

a
cx

xf
2

1

1)(
−+

= (5.16) 
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where the parameters a, c are used to vary the center and width of MF and parameter b is 

used to control the slopes. Information entropy (S) is evaluated and the minimum entropy 

is assured to occur at the intersection point of the two fuzzy sets using Equations (5.10) to 

(5.14). The intersection point, which makes the information entropy function minimum, 

is used to classify the damage metrics into two classes and will have 0.5 membership 

value at each class. Figure  5-75 illustrates the two initial fuzzy sets for healthy 
~
H and 

damaged 
~
D states using bell function as described in Equation (5.16) to establish 

membership functions and the datasets from Table  5-2. The segmentation process is 

repeated to find secondary threshold values that make three fuzzy damage states in the 

structure: healthy (
~
H ), medium damage (

~
MD ) and severe damage (

~
SD ) as shown in 

Figure  5-76. 

Figure  5-75 Fuzzy sets representing healthy and damaged states of Tucumcari 

Bridge. The dashed line represents the entropy function (S). 
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Figure  5-76 Fuzzy sets representing healthy, medium damage and severe damage 

states of the Tucumcari Bridge. 

 

The process of finding secondary threshold values is based on minimization of entropy 

function within each class. The secondary threshold values have 0.5 membership value at 

each new class. This segmentation process can be repeated within each subclass to make 

even more classes. For Tucumcari Bridge, we stop the segmentation process at this level 

which classifies the damage feature calculated at the location of Acc.8 into three classes 

of healthy, medium damage and severe damage.   

5.10.4 Damage detection 

After the fuzzy sets representing healthy, medium damage and severe damage states are 

established, two unknown sets of data which are the energy of accelerometer signals in 

wavelet domain computed from the measurements obtained from Acc 8 on the Tucumcari 

Bridge are used to confirm the efficiency of the proposed method in identifying unknown 
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states of the bridge. The first unknown dataset is calculated from the measurements 

obtained from Acc 8 installed on the Tucumcari Bridge in June 26, 2009 and the second 

unknown dataset obtained in May 21, 2009. The energy of acceleration signals calculated 

from these measurements is shown in Table  5-3. Two other energies of acceleration 

signal at the location of Acc 8 were generated using the FE model were the bridge was 

damaged at the previously identified location. Two damage datasets represent stiffness 

reduction of the 35% and 65% respectively. Also, a new set of data from different trucks 

passing across the bridge for the stiffness reduction of 40% by adding noise to increase 

the data set at the previously identified damaged location was considered. All these 

unknown events are presented in Table  5-3. 

 

Table  5-3 Energy of acceleration signal calculated in wavelet domain for unknown 

datasets obtained from Acc 8 installed on Tucumcari bridge. 

Events λ8 Unknown 1 λ8 Unknown 2 λ8 Unknown 3 λ8 Unknown 4 λ8 Unknown 5

1 0.028751 0.038998 0.197615 0.470238 0.183345 

2 0.05824 0.001956   0.234567 

3 0.031468 0.052005   0.14563 

4 0.051837 0.035061   0.175681 

5 0.024029 0.019538   0.178943 

6 0.063529 0.004446   0.28675 

7 0.055835 0.000894   0.21879 

8 0.058512 0.019005   0.168976 

9 0.047665 0.01922   0.195576 

10 0.025344 0.011854   0.265642 
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By calculating the mean value and standard deviation of the unknown datasets presented 

in Table  5-3 and using “bell shape function” defined in Equation (5.16), the membership 

function of these unknown datasets can be calculated at any damage feature. Figure  5-77 

and Figure  5-78 represent the unknown dataset 1 denoted as 
~
A and unknown dataset 2 

denoted as 
~
B and how they compare to the three fuzzy sets indicating different damage 

states of the Tucumcari Bridge. Moreover, Figure  5-79 shows the unknown single 

damage features denoted as 
~
C and

~
D , and how they compare to the established fuzzy 

sets.  Figure  5-80 illustrates the unknown dataset 5 denoted as
~
E along with established 

fuzzy sets. 

Figure  5-77 Unknown fuzzy set 
~
A among the known damage states of the 

Tucumcari Bridge. 



Chapter 5. Design and Field Application of an Innovative SHM System for Monitoring of RC Bridges on 
Interstate 40 at Tucumcari, New Mexico 

 173

Figure  5-78 Unknown fuzzy set 
~
B among the known damage states of the 

Tucumcari Bridge. 

Figure  5-79 Unknown fuzzy sets 
~
C and 

~
D among the known damage states of the 

Tucumcari Bridge. 
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Figure  5-80 Unknown fuzzy set 
~
E among the known damage states of the 

Tucumcari Bridge. 

 

Using the similarity degree (DM) described by Equation (5.15), the similarity between 

unknown datasets and established fuzzy damage states of the Tucumcari Bridge can be 

calculated by the means of fuzzy pattern recognition. Table  5-4 represents the results of 

the similarity calculation.  

 



Chapter 5. Design and Field Application of an Innovative SHM System for Monitoring of RC Bridges on 
Interstate 40 at Tucumcari, New Mexico 

 175

Table  5-4 Degree of similarity between unknown fuzzy sets and known damage 

states in Tucumcari bridge. 

 ~
H

~
MD  

~
SD  

~
A 0.95 0.33 0 

~
B 0.98 0.24 0 

~
C 0.04 0.97 0

~
D 0 0.22 0.85

~
E 0.27 0.97 0.08 

Based on the classification presented in Table  5-4, both unknown datasets 
~
A and 

~
B

indicate healthy cases, which is a validation of the ability of the proposed method to 

classify damage successfully. Both datasets were extracted from the measurements 

acquired from Tucumcari Bridge in two different dates. The bridge is in its healthy state 

now; therefore, the proposed approach can classify damage efficiently in the Tucumcari 

Bridge. Unknown cases
~
C ,

~
D and 

~
E selected from damaged cases in FE model also, 

validate the ability of the proposed method in classification unknown cases.  

Tucumcari Bridge represents the ability of the inductive reasoning method to establish 

fuzzy classification of the damage states. The proposed approach enables the use of 

limited observation SHM data with considerable uncertainty. While the precise damage 
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identification of critical infrastructure is useful, in most cases a warning on departure of 

normal/acceptable performance is what is needed. The proposed system can be definitely 

used in providing such warning. A classification of structural performance in the 

moderate damage category will inform the responsible authorities of the need to conduct 

maintenance inspection and safety analysis. The proposed method also has the advantage 

of being independent of the damage feature and not based on a probabilistic assumption 

and thus does not require specific knowledge about probabilistic characteristics of the 

damage feature. This enables the use of the proposed approach in many SHM systems.  

5.11 Conclusions 

 In this chapter, an innovative SHM system using Field Programmable Gate Array 

(FPGA) technology was designed and implemented on a reinforced concrete bridge 

located at Interstate 40 in New Mexico. This bridge was previously strengthened with 

Carbon Fiber Reinforced Polymer (CFRP) sheets on one girder at the location of 

maximum negative moment. The design and necessity of putting CFRP sheets along with 

field application of the sheets are also shown and validated with a 2D FE model. 

 The smart SHM system is able to acquire data from different types of sensors 

including accelerometers, strain gauges and thermocouples installed on the bridge and 

communicate this data wirelessly via the worldwide web. A friendly web user-interface 

was designed to give a remote end user control over acquiring data and some essential 

controls over saving data. The data saved on the smart SHM unit can then be sent to the 

office using FTP protocol. Two executable graphical user interfaces were made; one to 

show the raw data from different sensors in time, frequency and wavelet domains and the 
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other to do data analysis using fast Fourier transform and energy of acceleration signals 

calculated in wavelet domain. Using training datasets, a new dataset can be compared to 

the acceptable range of data defined by the mean value plus or minus three times of the 

standard deviation of the training datasets. Also, the end user is able to compare up to 

twenty new datasets together to realize changes in the structural performance. 

 Finally, a 3D FE model was developed and calibrated based on the static field test 

data. High correlation of acceleration signals between field test and the FE model validate 

the efficiency of FE model as a good representation of the real bridge. Data measured 

from sensors installed on the bridge along with data from calibrated and validated FE 

model were used to calculate the damage features at each sensor. Using the principles of 

inductive reasoning and information entropy, different fuzzy sets were established to 

describe different healthy and damaged states of the bridge. After establishing fuzzy sets 

to describe different states of the bridge, four unknown datasets obtained from 

accelerometers installed on the bridge were used for calculating damage features and 

these damage features were compared to the established fuzzy set damage features using 

fuzzy pattern recognition. The efficiency of the proposed method was confirmed by 

successfully classifying the unknown datasets.   
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CHAPTER 6 CONCLUSIONS 

 In this work, different methodologies were investigated to enhance the use of current 

structural health monitoring (SHM) systems in damage detection process by identifying 

the optimal sensor networks. Moreover, an innovative SHM system was designed and 

implemented on a field application of a reinforced concrete (RC) bridge paving the road 

for field implementation of SHM systems. 

 To identify the optimal locations of sensors in a sensor network designed for a 

structure, a probabilistic based method using artificial neural networks (ANN) was 

developed to enhance the probability of detection (POD) of damage occurrence in a 

structure. The proposed method was able to efficiently increase the POD compared with 

uniform distribution of sensors for a prestressed concrete bridge that was damaged in 

several locations with different damage severities. The finite element (FE) model of the 

bridge was used as a representation of the real bridge. Since the proposed method has a 

mathematical concept in allocating sensors on a structure, it can be used with different 

types of structures, independent of the damage feature. Moreover, the proposed method 

considers the robustness in designing sensor networks by considering network 

redundancy. This shall enhance the network performance in field applications. The 

redundant sensors were added at the location of critical sensors which were identified 

based on “leave one sensor out” analysis.  
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The proposed probabilistic method can be used for a priori known number of sensors. 

For small structures the total number of sensors can be easily identified, but as the size of 

structure grows, determining the optimal number of sensors for a sensor network 

becomes challenging. To overcome this challenge, a multi-objective optimization 

problem was formulated by considering information entropy as the first objective 

function while using the cost of the sensor network as the second objective function. The 

efficiency of combining the probabilistic method with information entropy and solving 

the multi-objective optimization problem was validated on the Luling Bridge, a cable 

stayed bridge passing over the Mississippi River. The FE model of this large 

infrastructure was developed. Considering redundancy to the optimal sensor network, 

concluded in the design of robust sensor networks for different structures.  

 Finally, the last part of this dissertation was devoted to design and implementation of 

an innovative SHM system for monitoring a RC Bridge in Tucumcari, New Mexico. The 

new SHM system is designed to reduce human intervention and provide continuous 

monitoring of the structure. This RC bridge was strengthened with carbon fiber 

reinforced polymer (CFRP) sheets. The design and implementation of the CFRP 

strengthening system on the bridge was delivered. Part of the monitoring system was to 

monitor the effectiveness of the CFRP strengthening system. Field Programmable Gate 

Array (FPGA) technology was used as a major component of the new SHM system. 

Using FPGA technology, smart data acquisition (SDA) system was developed to obtain 

the real time data from the structure. Moreover, the SDA system allows communicating 

the data wirelessly. System design and programming of the SDA system was developed 

and the effectiveness of the monitoring system was verified on a model truss bridge at the 
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structural health monitoring laboratory at University of New Mexico. The monitoring 

system was then implemented on the RC bridge in the city of Tucumcari at I-40 about 

200 miles east of Albuquerque, New Mexico. The process of installing the monitoring 

system on the bridge was discussed in detail. Solar panels were designed and used to 

power the SHM system. The use of solar panels and wireless technology enable the use 

of such SHM system in remote locations where access to power or the worldwide web is 

not possible. Design and installation of the solar panel system is explained in details. 

 The monitoring system was able to send different signals acquired from different 

sensors such as accelerometers, environmental strain gauges and thermocouples installed 

on the bridge remotely to the office through the wireless network. The energy of 

acceleration signals calculated in the wavelet domain was selected as the damage metric 

and its effectiveness in differentiating between healthy and damaged states of the 

structure was also validated on the model truss bridge. A web user interface was designed 

to give the user the ability to view live data from all the sensors installed on the bridge 

and to control the saving process of data acquired from different sensors. Moreover, two 

types of software were developed for data analysis: one to visualize the raw data in time, 

frequency and wavelet domains and the other to perform for damage analysis of the data 

acquired from the bridge using wavelet and frequency analysis.  

 To validate the effectiveness of the monitoring system in damage detection of I-40 

Bridge, a 3D FE model of the bridge was developed. The 3D model was calibrated using 

field strain measurements obtained from a field test performed on the bridge. The signals 

gathered from the calibrated FE model and the signals obtained from sensors installed on 

the bridge were correlated well. Using principles of inductive reasoning, fuzzy sets 
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describing different states of the bridge structural health were established based on the 

data obtained from the real bridge and the calibrated FE model. The effectiveness of the 

monitoring system in detecting damage in the bridge was verified by recognizing 

unknown cases of healthy and damage performance correctly.  
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Future Research 

• To compare the efficiency of the proposed method in determining optimal 

sensor location with other methods such as particle filtering that control placing 

of sensors actively while using large numbers of sensors on the structure.   

• To develop an SHM system that can integrate signals from fiber bragg grating 

(FBG) strain gauge and FBG accelerometer modules with regular electrical 

strain gauge and piezoelectric accelerometer analogue modules using FPGA 

technology. Up to now, the FBG sensors need their own data acquisition system 

that does not take advantage of FPGA technology which makes it possible to 

program the hardware of the acquisition device. 

• Improving the FPGA technology to allow enable performing the data analysis at 

the bridge site for efficient use of the SHM system and limited data 

communication. 

• To perform prognostic analysis using the data gathered from the bridge. That 

shall enable establishing rules for performance based maintenance of the bridge 

instead of prescheduled inspection. 

• To develop the proposed FPGA system on other civil and mechanical 

infrastructures such as pipelines, wind turbines, airplanes, satellites, as well as 

etc. considering different types of sensors and analogue modules and integrate 

them into one smart data acquisition system. 
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• To verify different effective damage features for different monitoring 

applications and to add the damage feature calculations to the smart data 

acquisition hardware, so instead of acquiring raw data, end user can receive the 

processed damage features from the monitoring system. 



184

REFERNCES 

AASHTO (2006). LRFD Bridge Design Specifications, Manual for Condition Evaluation 
of Bridges, 2nd Edn, American Association of State Highway and Transportation 
Officials, Washington, D.C. 

 

Aberg, M. and Gudmundson, P. (1998). “Optimization of multi-wavelength interdigital 
dielectrometry instrumentation and algorithms”, IEEE Transaction on Dielectrics and 
Electrical Insulation, V. 5, pp. 408–420. 

 

Achenbach, J.D. (2007). “On the Road from Schedule-Based Nondestructive Inspection 
to Structural Health Monitoring”, Proc. of the 6th International Workshop on Structural 
Health Monitoring, Stanford University, Stanford, CA, DEStech Publications, pp. 16–28. 

 

ACI 440 Committee (2002). “Guide for the design and construction of externally bonded 
FRP systems for strengthened concrete structures”, ACI 440.2R-02, American Concrete 
Institutes, Farmington Hills, Michigan. 

 

Adams, D.E. (2007). Health Monitoring of Structural Materials and Components, West 
Sussex, England, John Wiley & Sons.  

 

Adams, D. E., Farrar, C. R. (2002). “Classifying linear and non-linear structural damage 
using frequency domain ARX Models”, Smart Systems and Structures, Vol.1, No.2, pp. 
185-201. 

 

Agneni, A., Crema, L.B. and Mastroddi, F. (2000). “Damage Detection from Truncated 
Frequency Response Functions”, European COST F3 Conference on System 
Identification and Structural Health Monitoring, Madrid, Spain, pp. 137–146.   

 

Ahmadian, H., Mottershead, J.E. and Friswell, M.I. (1997). “Substructure Modes for 
Damage Detection”, Structural Damage Assessment Using Advanced Signal Processing 
Procedures, Proceedings of DAMAS ’97, University of Sheffield, UK, pp. 257–268. 



185

Allbright, K., Parekh, K., Miller, R. and Baseheart, T.M. (1994). “Modal verification of a 
destructive test of a damaged prestressed concrete beam”, Experimental Mechanics, 
V. 24(4), pp. 389–396. 

 

Altunok, E., Reda Taha, M.M. and Ross, T.J. (2007). “A Possibilistic Approach for 
Damage Detection in Structural Health Monitoring”, ASCE Journal of Structural 
Engineering, V. 133(9), pp. 1247–1256. 

 

Ang, A.H.-S. and Tang, W.H. (2006). Probability Concepts in Engineering: Emphasis on 
Applications to Civil and Environmental Engineering, Hoboken, NJ: Wiley.  

 

Ansari, F. (2004). Sensing Issues in Civil Structural Health Monitoring, Edited by Farhad 
Ansari, Dordrecht, The Netherlands, Springer. 

 

Ansari, F. (2007). “Practical implementation of optical fiber sensors in civil structural 
health monitoring”, J.,Intel. Mat. Syst. Str., V. 18, pp. 879–889. 

 

Applebaum, D. (2003). Probability and Information: An Integrated Approach,
Cambridge University Press, NY, USA. 

 

Azarbayejani, M., El-Osery, A., Choi, K.–K. and Reda Taha, M.M. (2008). “Probabilistic 
approach for optimal sensor allocation in structural health monitoring”, Smart Materials 
and Structures, V. 17(5), paper # 055019, 2008. 

 

Azarbayejani, M., El-Osery, A. and Reda Taha, M.M. (2009). “Entropy-based optimal 
sensor networks for structural health monitoring of a cable-stayed bridge”, Smart 
Structures and Systems, V. 5(4), pp. 369–379. 

 

Azarbayejani, M., Reda Taha, M.M. and Ross, T.J. (2008). “An inductive fuzzy damage 
classification approach for structural health monitoring”, Int. J. Materials and Structural 
Integrity, V. 2(3), pp. 193–206.   

 

Baker J. (1987). “Reducing bias and inefficiency in the selection algorithm in Genetic 
Algorithms and Their Applications.”, Proceedings of the 2nd Intl. Conf., Ed. J.J. 
Grefenstette, LEA, Cambridge, MA, pp. 14–21. 

 



186

Barai, S.V. and Pandey, P.C. (1995). “Vibration Signature Analysis Using Artificial 
Neural Networks”, ASCE Journal of Computing in Civil Engineering, V. 9(4),  
pp. 259–265. 

 

Beard, S., Liu, B., Qing, P. and Zhang, D. (2007). “Challenges in Implementation of 
SHM”, Proc. of the 6th International Workshop on Structural Health Monitoring, 
Stanford University, Stanford, CA, DEStech Publications, pp. 65–81. 

 

Bishop, C.M., (2000). Neural Networks for Pattern Recognition, New York: Oxford 
University Press. 

 
Broek D. (1986). Elementary engineering fracture mechanics. Dordrecht: Martinus 
Nijhoff Publishers. 

 

Brown, S. and Vranesic, Z. (2009). Fundamentals of Digital Logic with VHDL Design, 
3/e, McGraw Hill, Boston. 

 

Browne, M., Shiry, S., Don, M. and Ouellette, R. (2002). “Visual Feature Extraction Via 
PCA-based Parameterization of Wavelet Density Functions”, In Proceedings of the Third 
International Symposium on Robots and Automation, Toluca, Mexico, pp. 398–402. 

 

Browne, M., Dorn, M., Ouellette, R., Christaller, T. and Shiry, S. (2002b). “Wavelet 
Entropy-based Feature Extraction for Crack Detection in Sewer Pipes”, In Proceedings of 
the 6th International Conference on Mechatronics Technology, Kitakyushu, Japan,  
pp. 202–206. 

 

Bukkapatnam, S.T.S., Kumara S.R.V.T. and Lakhtakia, A. (1999). “Analysis of acoustic 
emission signals in machining”, ASME Journal of Manufacturing Science and 
Engineering, V. 121, pp. 568–576. 

 

Cai, C.S. and Shahawy, M. (2004). “Predicted and measured performance of prestressed 
concrete bridges”, ASCE Journal of Bridge Engineering, V. 9(1), pp. 4–13. 

 

Carden, E.P. and Brownjohn, J.M.W. (2008). “Fuzzy Clustering of Stability Diagrams for 
Vibration-Based Structural Health Monitoring”, Computer-Aided Civil and Infrastructure 
Engineering, V. 23, pp. 360–372. 

 



187

Cardini, A.J. and DeWolf J.T. (2009). “Long-term Structural Health Monitoring of a 
Multi-girder Steel Composite Bridge Using Strain Data”, Structural Health Monitoring, 
V. 8(1), pp. 47-58. 

 

Carpinteri, A., Lacidogna, G. and Pugno N. (2005). “Structural damage diagnosis and 
life-time assessment by acoustic emission monitoring”, Engineering Fracture Mechanics,
V. 74, pp. 273–289. 

 

Carpinteri, A., Cardone, F. and Lacidogna G. (2009). “Energy emissions from failure 
phenomena: Mechanical, Electromagnetic, Nuclear”, SEM Annual Conference and 
Exposition on Experimental and Applied Mechanics, Albuquerque, New Mexico. 

 

Carrasco, C., Osegueda, R., Ferregut, C. and Grygier, M. (1997). “Localization and 
Quantification of Damage in a Space Truss Model Using Modal Strain Energy”, Smart 
Systems for Bridges, Structures, and Highways, Proceedings of SPIE, 3043, pp. 181–192. 

 

CEB-FIP (2001). Externally Bonded FRP Reinforcement for RC Structures, Technical 
Report Bulletin 14. p. 124. 

 

Chacón, R., Guzmán, F., Mirambell, E., Real, E. and Oñate, E. (2009). “Wireless Sensor 
Networks for Strain Monitoring during Steel Bridges Launching”, Structural Health 
Monitoring, V. 8(3), pp. 195–205.  

 

Chandrashekhar, M. and Gangul, R. (2009). “Structural Damage Detection Using Modal 
Curvature and Fuzzy Logic”, Structural Health Monitoring, V. 8(4), pp. 267–282.  

 

Chang, C.-C. and Chen, L.-W. (2004). “Damage Detection of Cracked Thick Rotating 
Blades by a Spatial Wavelet Based Approach”, Applied Acoustics, V. 65, pp. 1095–1111. 

 

Chang, F.-K. and Markmiller, J.F.C., (2006). “A New Look in Design of Intelligent 
Structures with SHM”, Proceedings of the Third European Workshop: Structural Health 
Monitoring, DEStech Publications, pp.5–20. 

 

Choi, S. and Stubbs, N. (1997). “Nondestructive Damage Detection Algorithms for 2D 
Plates”, Smart Systems for Bridges, Structures and Highways, Proceedings of SPIE, 
3043, pp. 193–204. 

 



188

Coifman, R. and Wickerhauser, M.V. (1992). “Entropy-based Algorithms for Best Basis 
Selection”, IEEE Transaction on Information Theory. V. 38, pp. 713–718. 

 

Cybenko, G. (1989). “Approximation by superpositions of a sigmoidal function”, 
Mathematics of Control, Signals and Systems, V. 2, pp. 303-314. 
Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998). “A Summary Review of Vibration-
based Damage Identification Methods”, The Shock and Vibration Digest, V. 30(2),  
pp. 91–105. 

 

Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996). “Damage 
Identification and Health Monitoring of Structural and Mechanical Systems from 
Changes in their Vibration Characteristics: A Literature Review”, Los Alamos National 
Laboratory Report LA-13070-MS. 

 

Douka, E., Loutridis, S. and Trochidis, A. (2003). “Crack Identification in Beams Using 
Wavelet Analysis,” International Journal of Solids and Structures, V.40(13-14),  
pp. 3557-3569. 

 

Elms, D. G. (2004). “Structural safety issues and progress”, Progress in Structural 
Engineering and Materials, Vol. 6, No. 2, pp. 116-126. 

 

Farrar, C.R., Sohn, H., Hemez, F.M., Anderson, M.C., Bement, M.T., Cornwell, P.J., 
Doebling, S.W., Lieven, N., Robertson, A.N. and Schultze, J.F. (2004). Damage 
Prognosis: Current Status and Future Needs, Los Alamos National Lab Report, LA-
14051-MS. 

 

Farrar, C.R.., Lieven, N.A.J. and Bement, M.T. (2005). An Introduction to Damage          
Prognosis. Damage Prognosis for Aerospace, civil and Mechanical Systems, Edited      
by D.J.Inman, C.R. Farrar, V.Lopes, Jr. and V. Steffen, Jr., John Wiley and Sons Ltd, 
West Sussex, England. 

 

Feeney A. and Heit, E. (2007). “Inductive Reasoning: Experimental, Developmental and 
Computational Approach”, Cambridge University Press, UK. 

 

Foedinger, R., Rea, D., Sirkis, J., Grande R. and Vandiver, T.L. (1999). “Structural 
Health Monitoring and Impact Damage Detection for Filament Wound Composite 
Pressure Vessels”, Structural Health Monitoring, Stanford University, Palo Alto, 
California, pp. 159–169.  

 



189

Frangopol, D.M., Neves, L.C. and Petcherdchoo, A. (2004). “Health and safety of civil 
infrastructures: A unified approach”, In Proceedings of the 2nd International Workshop 
on Structural Health Monitoring of Innovative Civil Structures, Winnipeg, Canada, 
Mufti, A., and Ansari, F. Eds., pp. 253–264. 

 

Friswell, M.I. and Penny, J.E.T. (1997). “Is Damage Location Using Vibration 
Measurements Practical?”, In  Proceedings of the International Workshop: DAMAS 97, 
Structural Damage Assessment Using Advanced Signal Processing Procedures,
Sheffield, UK. 

 

Fritzen C.-P. and Bohle, K. (2001). “Application of Model-Based Damage Identification 
to a Seismically Loaded Structure”, Smart Materials and Structures, V. 10, pp. 452–458. 

Gentile, A. and Messina, A. (2003). “On the Continuous Wavelet Transforms Applied to 
Discrete Vibrational Data for Detecting Open Cracks in Damaged Beams”, Int. Journal 
of Solids and Structures, V. 40(2): 295–315. 

 

Giurgiutiu, V. (2007). Structural Health Monitoring: With Piezoelectric Wafer Active 
Sensors. Academic Press. 

 

Gros, X.E., Ogi, K. and Takahashi, K. (1998) “Strain and Damage Monitoring of CFRP 
Laminates by Means of Electrical Resistance Measurement”, Journal of Reinforced 
Plastics and Composites, V. 17(5), pp. 389–405.  

 

Guan, H. and Karbhari, V.M. (2006). “Web-Based Structural Health Monitoring of an 
FRP Composite Bridge”, Computer-Aided Civil and Infrastructure Engineering, V. 21, 
pp. 39–56. 

 

Guratzsch, R.F. and Mahadevan, S. (2005). “SHM Sensor Placement Under 
Uncertainty”, Proceedings of the 5th International Workshop on Structural Health 
Monitoring, Ed. Fu-Kuo Chang, DEStech Publications, pp.1343–1352. 

 

Guratzsch, R.F. and Mahadevan, S. (2006). “Sensor Placement Design for SHM under 
Uncertainty”, Proceedings of the Third European Workshop: Structural Health 
Monitoring, DEStech Publications, pp.1168–1175. 

 

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation, 2nd Edition, Prentice 
Hall. 

 



190

Helmicki, A., Hunt, V., Shell, M., Lenett, M., Turer, A., Dala, V. and Aktan, A. (1999). 
“Multidimensional Performance Monitoring of a Recently Constructed Steel-Stringer 
Bridge”, Proceedings of the 2nd International Workshop on Structural Health Monitoring,
Stanford University, Palo Alto, California, pp. 408–416. 

 

Hemmert, K.S., and Underwood, K.D. (2005). “An analysis of the double-precision 
floating-point FFT on FPGAs”, In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA, April 2005. 

 

Ho, Y.K. and Ewins, D.J. (2000). “On the Structural Damage Identification with Mode 
Shapes”, European COST F3 Conference on System Identification and Structural Health 
Monitoring, Madrid, Spain, pp. 677–686. 

 

Horton, S., Reda Taha, M.M. and Baca, T. J. (2005). "A Neural-Wavelet Damage 
Detection Module for Structural Health Monitoring", Proceedings of International 
Workshop on Structural Health Monitoring, Stanford, USA, Chang, Fu-Kuo, Ed.,  
pp. 556–564. 

 

Hubbard, B. (1998). The World According to Wavelets: The Story of a Mathematical 
Technique in the Making, AK Peters, Ltd., Second Revised Edition, Wellesley, 
Massachusetts, USA.   

 

Humar, J. (2002). Dynamics of Structures. 2nd Edition, Balkema Publishers, Rotterdam, 
The Netherlands. 

 

Hung, T.-W, Fang, S.-C., and Nuttle, H. L. W . (2003). “A two-phase approach to fuzzy 
system identification”, Journal of Systems Science and Systems Engineering, Vol. 12, No. 
4, pp. 408-423. 

 

IEEE Std. 1076 VHDL Language Reference Manual, IEEE VHDL Analysis and 
Standarization Group. 

 

IEEE Std. 1374 Verilog hardware description language, IEEE Verilog Standarizatino 
Group.  

 

Iranmanesh, A., Bassam, A. and Ansari, F. (2009). “Post earthquake performance 
monitoring of a typical highway overpass bridge”, Smart Structures and Systems, V. 5(4), 
pp. 495 –505. 



191

Jiang, L.J. and Wang, K.W. (2009). “An experiment-based frequency sensitivity 
enhancing control approach for structural damage detection”, Smart Materials and 
Structures, V. 18, 12 p. 

 

Jonker, P. P., Duin, R. P. W., de Ridder, D., Ligteringen R. and Tax, D. M. J. (1999) 
Proc. the First Sino-European Symposium on Quality Control of High-Grade Steel,
China, pp. 38-40. 

 

Karbhari, V.M., Guan, H. and Sikorsky, C. (2003a). “Webbased structural health 
monitoring of a FRP composite bridge”, Proceedings of the 1st International Conference 
on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan,  
pp. 217–26. 

Karbhari, V.M., Guan, H. and Zhao, L. (2003b). “Composite structural systems—from 
characterization to field implementation”, Proceedings of the 6th International 
Symposium on Fiber-Reinforced Polymer Reinforcements for Concrete Structures,
Singapore, pp. 1381–90.  

 

Kessler, S.S. (2002). “Piezoelectric-Based In-Situ Damage Detection of Composite 
Materials for Structural Health Monitoring Systems”, PhD Dissertation, Department of 
Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, 
USA. 

 

Klir, G.J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic, Theory and Application,
Prentice Hall, Upper Saddle River, NJ, USA. 

 

Kim, K. and Paik, S.-H. (1997). “Optical Fiber Monitoring System of Bridges in Korea”, 
Structural Health Monitoring, Current Status and Perspectives, Stanford University, Palo 
Alto, California, pp. 555–563. 

 

Kim, C.J., Russell, B.D. (1991). “A learning method for use in intelligent computer 
relays for high impedance faults”, IEEE Trans. Power Delivery, V. 6(1), pp. 109–115. 

 

Kim, J-T., Ryu, Y-S., Choi, H-M. and Stubbs, N. (2003). “Damage Identification in 
Beam-type Structures: Frequency-based Method vs. Mode-shape-based Method”, 
Engineering Structures, V. 25, pp. 57–67. 

 



192

Kim, S.D., In, C.W., Cronin, K., Sohn, H. and Harries, K. (2007). “Reference-Free NDT 
Technique for Debonding Detection in CFRP-Strengthened RC Structures”, J. of 
Structural Engineering @ ASCE, V. 130(8), pp. 1080–1091. 

 

Kostopoulos, V., Vavouliotis, A., Karapappas, P.,  Tsotra P. and Paipetis, A. (2009). 
“Damage Monitoring of Carbon Fiber Reinforced Laminates Using Resistance 
Measurements. Improving Sensitivity Using Carbon Nanotube Doped Epoxy Matrix 
System”, Journal of Intelligent Material Systems and Structures, V. 20, pp. 1025–1034.  

 

Kumara, S., Suh, J. and Mysore, S.P. (1999). “Machinery fault diagnosis and prognosis: 
applications of advanced signal processing techniques”, CIRP Annals, Manufacturing 
Technology, V. 48(1), pp. 317 –320. 

 

Kwon, S.-J., Soobong, S., Lee, H.S. and Park Y.-H. (2003) “Design of Accelerometer 
Layout for Structural Monitoring and Damage Detection”, KSCE J. of Civil Engineering,
V. 7(6), pp. 717–724. 

 

Lee, J-R. and Tsuda, H. (2005). “A novel fiber Bragg grating acoustic emission sensor 
head for mechanical tests”, Scripta Materialia, V. 53(10), pp. 1181–1186. 

 

Lemaitre, J. and Desmorat, R. (2002). Engineering Damage Mechanics: Ductile, Creep, 
Fatigue and Brittle Failures, Springer, New York. 

 

Li, H., Ou, J., Zhao, X., Zhou, W., Li, H., Zhou, Z. and Yang, Y. (2006). “Structural 
Health Monitoring System for the Shandong Binzhou Yellow River Highway Bridge”, 
Computer-Aided Civil and Infrastructure Engineering, V. 21, pp. 306–317. 

 

Liang, Y., Sun, C. and Ansari, F. (2004). “Acoustic Emission Characterization of 
Damage in Hybrid Fiber Reinforced Polymer Rods”, Journal for Composites for 
Construction, V. 8(1), pp. 70–78. 

 

Liu, M., Frangopol, D.M. and Kim, S. (2009). “Bridge System Performance Assessment 
from Structural Health Monitoring: A Case Study”, ASCE J. of Structural Engineering, 
V. 135(6), pp. 733–742. 

 

Liew, K.M. and Wang, Q. (1998). “Application of Wavelet Theory for Crack 
Identification in Structures”, Journal of Engineering Mechanics, V. 124(2), pp.  152–157. 

 



193

Maeck, J. and De Roeck, G. (1999). “Damage Detection on a Prestressed Concrete 
Bridge and RC beams Using Dynamic System Identification”, Damage Assessment of 
Structures, Proc. Of the International Conference on Damage Assessment of Structures 
(DAMAS 99), Dublin, Ireland, pp. 320–327. 

 

Masuda, A., Nakaoka, A., Sone, A. and Yamamoto, S. (1995). “Health Monitoring 
Systems of Structures Based on Orthonormal Wavelet Transform. Seismic Engineering”, 
Transaction of ASME, V. 312, pp. 161–167. 

 

McCuskey, M. C. Reda Taha, M. M. Horton S. R. and Baca, T. J. (2006) “Identifying 
damage in the ASCE benchmark structure using a neural-wavelet module”, Proc. of 6th 
International Workshop on Structural Health Monitoring, Granada, Spain, pp. 421-428. 

 

Mehrani, E., Ayoub, A. and Ayoub, A. (2009) “Evaluation of fiber optic sensors for 
remote health monitoring of bridge structures”, Smart Structures and Systems, V. 5(4), 
pp. 381–395.  

 

Metallidis P., Verros, G., Natsiavas, S. and Papadimitriou, C. (2003). “Identification, 
Fault Detection and Optimal Sensor Location in Vehicle Suspensions”, Journal of 
Vibration and Control, V. 9(3-4), pp. 337–359. 

 

Miettinen, K., (1999). Nonlinear Multi-objective Optimization, Kluwer, suston. 

 

Moerman, W., Taerwe, L., De Waele, W., Degrieck, J. and Bates, R. (1999). “Remote 
Monitoring of Concrete Elements by means of Bragg Gratings”, Structural Health 
Monitoring, Stanford University, Palo Alto, California, pp. 369–378.  

 

Moria, K., Kasashimaa, N., Yoshiokaa T. and Uenob, Y. (1996). “Prediction of Spalling 
on a Ball Bearing by Applying the Discrete Wavelet Transform to Vibration Signals”, 
Wear, V. 195(1-2), pp. 162–168. 

 

Mosallam, A., Miraj, R. and Abdi, F. (2009) “Diagnostic/prognostic health monitoring 
system and evaluation of a composite bridge”, Smart Structures and Systems, V. 5(4),  
pp. 397–413. 

 

Mufti, A., (2004). Sensing Issues in Civil Structural Health Monitoring, Edited by Farhad 
Ansari, Dordrecht, The Netherlands, Springer. 

 



194

Natke, H.G. and Cempel, C. (1997). “Model-Aided Diagnosis Based on Symptoms”, 
Structural Damage Assessment Using Advanced Signal Processing Procedures,
Proceedings of DAMAS 97, University of Sheffield, UK, pp. 363–375.  

 

Neild, S.A., McFadden, P.D. and Williams, M.S. (2003). “A review of time-frequency 
methods for structural vibration analysis”, Engineering Structures, V. 25, pp. 713–728. 

 

Ntotsios, E., Christodoulou, K. and Papadimitriou, C. (2006). “Optimal Sensor Location 
Methodology for Structural Identification and Damage Detection.”, Proceedings of the 
Third European Workshop: Structural Health Monitoring, DEStech Publications, 
pp.1160–1167. 

 

Ohtsu, M. (1996). “The history and development of acoustic emission in concrete 
engineering”, Magazine of Concrete Research, V. 48, pp. 321–330. 

 

Osyczka, A., (1984). Multi Criterion Optimization in Engineering, Ellis Howard Series. 

 

Pandy, A.K., Biswas, M. and Samman, M.M. (1991). “Damage Detection From Changes 
in Curvature Mode Shapes”, Journal of Sound and Vibration, V. 145(2), pp. 321-332. 

 

Papadimitriou, C., Beck, J.L., Au, S.-K. (2000). “Entropy-Based Optimal Sensor 
Location for Structural Model Updating”, Journal of Vibration and Control, V. 6, pp. 
781–800. 

 

Papadimitriou, C. (2004). “Optimal Sensor Placement Methodology for Parametric 
Identification of Structural Systems”, Journal of Sound and Vibration, V. 278(4),  
pp. 923–947. 

 

Pareto, V. (1971). Manual of Political Economy, NY. 

 

Parker, D.L., Frazier, W.G., Rinehart, H.S. and Cuevas, P.S. (2006). “Experimental 
Validation of Optimal Sensor Placement algorithms for Structural Health Monitoring.”, 
Proceedings of the Third European Workshop: Structural Health Monitoring 2006,
DEStech Publications, pp. 1144–1150. 

 

Prosser, W.H. (1996). “Advanced AE Techniques in Composite Materials Research”, 
Journal of Acoustic Emission, V. 14(3-4), S1–S11.  



195

Qi, G., Barhorst, A. Hashemi, J. and Kamala, G. (1997). “Discrete wavelet 
decomposition of acoustic emission signals from carbon-fiber-reinforced composites”, 
Composites Science and Technology, V. 57(4), pp. 389-403. 

 

Raich A.M. and Liszkai T.R. (2003). “Multi-Objective Genetic Algorithm Methodology 
for Optimization Sensor Layouts to Enhance Structural Damage Identification”, 
Proceedings of the 3rd Structural Health Monitoring, Ed. Fu-Kuo Chang, DEStech 
Publications, pp. 650–657. 

 

Read, I., Foote, P. and Murray, S. (2002). “Optical fiber acoustic emission sensor for 
damage detection in carbon fiber composite structures”, Measurement Science and 
Technology, V. 13, N5–N9. 

 

Reda Taha, M.M., Choi, K.K. and Azarbayejani, M. (2007). “Structural analysis and 
evaluation of Bridges (7930, 7931, 7937, and 7938) in Tucumcari, New Mexico”, 
Technical Report # C04961 submitted to NMDOT. 

 

Reda Taha, M.M. and Lucero, J. (2005). “Damage identification for structural health 
monitoring using fuzzy pattern recognition”, Engineering Structures, V. 27(12),  
pp. 1774–1783. 

 

Reda Taha, M.M., Noureldin, A., Lucero, J.L. and Baca, T.J. (2006). “Wavelet 
Transform for Structural Health Monitoring: A Compendium of Uses and Features”, 
Journal of Structural Health Monitoring, V. 5(3), pp. 267–295.  

 

Reda Taha, M., Noureldin, A., Osman, A. and El-Sheimy, N. (2004). “Introduction to the 
Use of Wavelet Multi-Resolution Analysis for Intelligent Structural Health Monitoring”, 
Canadian Journal of Civil Engineering, V. 31(5), pp. 719-731. 

 

Ren, W.X. and De Roeck, G. (2002). “Structural damage identification using modal data. 
I: Simulation verification”, ASCE J Structural Engineering, V. 128(1), pp. 87–95. 

 

Rizkalla, S., Benmokrane, B., and Tadros, G. (2000). “Structural Health Monitoring 
Bridges with Fiber Optic Sensors”, European COST F3 Conference on System 
Identification and Structural Health Monitoring, Madrid, Spain, pp. 501–510. 

 
Robertson, D.C., Camps, O.I., Mayer, J.S. and Gish, W.B. (1996). “Wavelets and 
Electromagnetic Power System Transients”, IEEE Transaction on Power Delivery,
V. 11(2), pp. 1050–1056. 



196

Ross, T.J. (2004). Fuzzy Logic with Engineering Applications, John Wiley and Sons. 

 

Rus, G., Lee, S.-Y., Gallego, R. and Park, T.-H. (2006). “Inverse Problem Filtering for 
Noise Reduction in QNDE”, Proceedings of the Third European Workshop: Structural 
Health Monitoring, DEStech Publications, pp.563–570. 

 

Saltelli, A., Chan, K. and Scott, E. M. (2000). Sensitivity Analysis, West Sussex: Wiley. 

Schoess, J.N. and Zook, J.D. (1998). “Test results of Resonant Integrated Microbeam 
Sensor (RIMS) for acoustic emission monitoring”, Proceedings of the SPIE Conference 
on Smart Electronics and MEMS, 3328, pp. 326–332. 

 

Schulte, R.T., Bohle, K., Fritzen C.-P. and Schuhmacher, G. (2006). “Optimal Sensor 
Placement for Damage Identification – An Efficient forward-Backward Selection 
Algorithm”, Proceedings of the Third European Workshop: Structural Health 
Monitoring, DEStech Publications, pp.1151–1159. 

 

Seible, F., Karbhari, V.M. and Burgueno, R. (1999), “Kings Stormwater Channel and I-
5/Gilman Bridges, USA”, Structural Engineering International, V. 9(4): 250–253. 

 

Shannon, C.E. (1948). “A Mathematical Theory of Communication”, Bell System 
Technical Journal, V. 27, pp. 379–423. 

 

Sheyka, M. (2008). “Analytical and Experimental Investigations of Photonic Crystals for 
Sub-Micron Damage Detection”, M.Sc. Thesis, Department of Civil Engineering, 
University of New Mexico, NM, USA. 

 

Shiao, M. (2005). “Risk forecasting and updating for damage accumulation processes 
with inspections and maintenance’, Proc. of the Structural Health Monitoring Workshop 
on Structural Health Monitoring, Stanford, USA, Chang, FK, Ed., pp. 1190-1197. 

 

Shrive, P.L., Brown, T.G. and Shrive, N.G. (2009). “Practicalities of Structural Health 
Monitoring Systems”, Smart Structures and Systems, V. 5(4), pp. 357–367. 

 

Shrive, P.L., Newhook, J.P., Brown, T.G., Shrive, N.G., Tadros, G. and Kroman, J. 
(2003). “Thermal Strains in Steel and Glass Fibre Reinforced Polymer Reinforcement in 
a Bridge Deck”, Proceedings of the International Conference on Performance of 
Constriction Materials (ICPCM), Cairo, Egypt. El-Dieb et al. Eds., Vol. 1, pp. 429–437. 



197

Stanbridge, A.B., Khan, A.Z. and Ewins, D.J. (1997). “Fault Identification in Vibrating 
Structures Using a Scanning Laser Doppler Vibrometer”, Structural Health Monitoring, 
Current Status and Perspectives, Stanford University, Palo Alto, CA, pp.56–65.  

 

Staszewski, W.J. (1998). “Structural and Mechanical Damage Detection Using 
Wavelets”, The Shock and Vibration Digest, V. 30(6), pp. 457–472. 

 

Staszewski, W., Boller C. and Tomlinson, G. (2003). Health Monitoring of Aerospace 
Structures, Smart Sensor Technologies and Signal Processing., John Wiley and Sons Ltd, 
West Sussex, England. 

 

Strang, G. and Nguyen, T. (1997). Wavelet and Filter Banks, Wellesley-Cambridge 
Press, NY, USA. 

 

Su, Z., Ye, L. and Bua, X. (2002). “A Damage Identification Technique for CF/EP 
Composite Laminates Using Distributed Piezoelectric Transducers”, Composite 
Structures, V. 57(1-4), pp. 465–471. 

 

Su, Z. and Ye, L. (2004). “Lamb wave-based quantitative identification of delamination 
in CFEP composite structures using artificial neural algorithm”, Composite Structures, V. 
66, pp. 627–637. 

 

Sun, Z., and Chang, C.-C. (2002). “Structural damage assessment based on wavelet 
packet transform”, ASCE J. Structural  Engineering, 128 :1354–1361. 

 

Swann, C. and Chattopadhyay, A. (2005). “A Stochastic Approach to Optimum Sensor 
Placement for Damage Detection”, Proceedings of the 5th International Workshop on 
Structural Health Monitoring, Ed. Fu-Kuo Chang, DEStech Publications, pp. 871–878. 

 

Täljsten, B. (2002). “CFRP Strengthening and Monitoring of a Box Girder Bridge”, 
Sensing Issues in Civil Structural Health Monitoring, Edited by Farhad Ansari, 
Dordrecht, The Netherlands, Springer. 

 

Talebinejad, I., Fischer, C. and Ansari, F. (2009). “Serially multiplexed FBG 
accelerometer for structural health monitoring of bridges”, Smart Structures and Systems,
V. 5(4), pp. 345–355. 

 



198

Tenenbaum, J. B., Griffiths T. L., Kemp, C. (2006). “Theory-based Bayesian models of 
inductive learning and reasoning”, Trends in Cognitive Science, Vol. 10, No. 7, pp. 309-
318.  

 

Thein, A. (2006). “Pipeline structural health monitoring using macro-fiber composite 
active sensors”, Master Thesis, Department of Mechanical, Industrial, and Nuclear 
Engineering, University of Cincinnati. 

 

Todd., M.D., Johnson, G. and Vohra, S. (2000). “Civil Infrastructure Monitoring with 
Fiber Optic Bragg Grating Sensor Arrays”, Structural Health Monitoring, Stanford 
University, Palo Alto, CA, pp. 359–368. 

 

Tozser, O. and Elliott, J. (2000). “Continuous Acoustic Monitoring of Prestressed 
Structures”, 3rd Structural Specialty Conference of the Canadian Society of Civil 
Engineering, Regina, Saskatchewan, 6 p. 

 

Underwood, K.D. and Hemmert, K.S. (2004). “Closing the gap: CPU and FPGA trends in 
sustainable floating-point BLAS performance”, In Proceedings of the IEEE Symposium 
on Field-Programmable Custom Computing Machines, Napa Valley, CA, April 2004. 

 

USA TODAY (Friday July 25, 2008). “Billions needed to shore up bridges”, pp.1 and 
10A. 

 

Wang, L. and Yuan, F.G. (2005). “Damage Identification in a Composite Plate using 
Prestack Reverse-time Migration Technique”, Structural Health Monitoring, V. 4(3),  
pp. 195–211.  

 

Wang, M. L., Satpathi, D., and Heo, G. (1997). “Damage Detection of a Model Bridge 
Using Modal Testing”, Structural Health Monitoring, Current Status and Perspectives, 
Stanford University, Palo Alto, California, pp. 589–600. 

 

Williams, E.J. and Messina, A. (1999). “Applications of the Multiple Damage Location 
Assurance Criterion”, Proceedings of the International Conference on Damage 
Assessment of Structures (DAMAS ’99), University College, Dublin, Ireland, pp. 256–
264. 

 

Worden, K. and Dulieu-Barton, J.M. (2004). “An Overview of Intelligent Fault Detection 
in Systems and Structures”, Structural Health Monitoring, V. 3(1), pp. 85–98. 



199

Yan, B, Goto, S. and Miyamoto, A. (2004). “Time-frequency analysis based on Methods 
for Modal parameter Identification of Bridge Structure Considering Uncertainty”, In 
Proceedings of the 2nd International Workshop on Structural Health Monitoring of 
Innovative Civil Structures, Mufti, A., and Ansari, F. Eds., Winnipeg, Canada,  
pp. 453–464. 

 

Yan, Y.J. and Yam, L.H. (2004).  “Detection of delamination in composite plates using 
energy spectrum of structural dynamic responses decomposed by wavelet analysis”, 
Computers and Structures, V. 82, pp. 347–358. 

 

Yang D.-M., Stronach A.F. and MacConnell P. (2003). “The Application of Advanced 
Signal Processing Techniques to Induction Motor Bearing Condition Diagnosis. 
Meccanica”, V. 38(2), pp. 297–308. 

 

Yong, X. (2002). Condition Assessment of Structures Using Dynamic Data, Ph.D. 
Dissertation, School of Civil and Environmental Engineering, Nanyang Technological 
University, Singapore. 

 

Yu, L., Cheng, L., Yam, L.H., Yan, Y. J. and Jiang, J.S., (2007). “Online damage 
detection for laminated composite shells partially filled with fluid”, Composite 
Structures, V. 80(3), pp. 334–342. 

 

Yu, W. (2005). “State-Space Recurrent Fuzzy Neural Networks for Nonlinear System 
Identification”, Neural Processing Letters, 22(3), 391-404.  

 

Zak, A., Krawczuk, M. and Ostachowicz, W. (1999). “Vibration of a Laminated 
Composite Plate with Closing Delamination”, Structural Damage Assessment Using 
Advanced Signal processing Procedures, Proceedings of DAMAS ’99, University 
College, Dublin, Ireland, pp. 17–26. 

 

Zhang, L., Quiong, W. and Link, M. (1998). “A Structural Damage Identification 
Approach Based on Element Modal Strain Energy”, Proceedings of ISMA23, Noise and 
Vibration Engineering, Leuven, Belgium. 

 

Zhang, J., Sato, T., Iai, S. and Hutchinson, T. (2008). “A pattern recognition technique 
for structural identification using observed vibration signals: Nonlinear case studies”, 
Engineering Structures, V. 30(5), pp. 1417–1423. 

 



200

Zhao, Y. and Ansari, F. (2002). “Embedded fiber optic sensor for characterization of 
interface strains in FRP composite”, Sensors and Actuators A: Physical, V. 100, Issues 2-
3, pp. 247–251. 

 

Zhou, G. and Sim, L.M. (2002). “Damage detection and assessment in fiber-reinforced 
composite structures with embedded fiber optic sensors – review”, Smart Materials and 
Structures, V. 11, pp. 925–939.  

 

Zhu, X.Q. and Law, S.S. (2007). “Damage Detection in Simply Supported Concrete 
Bridge Structure Under Moving Vehicular Loads”, Journal of Vibration and Acoustics,
V. 129(1), pp. 58–65. 

 



201

APPENDICES 

A. Factored shear and moment capacity of bridge 7937 from FE model 

Positive factored moment and flexural capacity of exterior frame of bridge 7937 
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2271.6 

2542.1 

8712.0 

7618.5 

6361.8 

4583.2 

2689.8 

2496.1 

2342.1 

4254.8 

4042.7 

3864.1 

3713.9 

3588.8 

4965.3 

4842.3 

-967.8 

-485.3 

-228.2 

-170.4 

-279.1 

-530.1 

-912.5 

-1418.5 

-2052.4 

-2836.9 

-3634.7 

-10347.2 

-9802.5 

-11360.3 

-8555.5 

-5930.9 

-4944.2 

-4029.4 

-5227.9 

-4306.2 

-3475.5 

-2730.5 

-2006.7 

-2807.4 

-2162.1 
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25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

1.244 

1.230 

1.222 

1.220 

1.222 

1.230 

1.244 

1.263 

1.287 

1.319 

1.356 

1.402 

1.456 

1.520 

1.597 

1.690 

1.807 

2.952 

4.027 

4.787 

5.449 

1.717 

1.554 

1.354 

1.201 

1.080 

0.984 

0.908 

0.850 

0.807 

0.779 

0.765 

2833.5 

3107.4 

3289.7 

3377.2 

3375.3 

3283.9 

3098.0 

2820.7 

2464.4 

2032.8 

1527.8 

961.2 

365.8 

-285.7 

-995.2 

-1754.6 

-2562.5 

-3404.5 

-4158.1 

-2951.4 

-2323.5 

-1698.2 

-1097.2 

-557.6 

-97.8 

286.4 

593.5 

816.0 

939.4 

948.6 

816.8 

509.7 

3156.5 

3520.2 

3762.0 

3880.1 

3878.1 

3756.2 

3510.8 

3143.6 

2664.2 

2139.2 

1561.3 

946.0 

332.6 

-332.8 

-993.7 

-1704.9 

-2460.9 

-3247.0 

-3968.3 

-2813.9 

-2212.8 

-1649.6 

-1094.2 

-602.8 

-184.1 

201.8 

548.8 

778.1 

905.0 

903.7 

777.9 

492.7 

4748.4 

4682.3 

4642.9 

4629.9 

4642.9 

4682.3 

4748.4 

4842.3 

4965.3 

3588.8 

3713.9 

3864.1 

4042.7 

4254.8 

2342.1 

2496.1 

2689.8 

4583.2 

6361.8 

7618.5 

8712.0 

2542.1 

2271.6 

1941.1 

1688.2 

1488.2 

1329.0 

1203.3 

1106.8 

1036.5 

990.5 

967.8 

-1591.9 

-1162.0 

-880.9 

-749.8 

-764.8 

-926.1 

-1237.6 

-1698.7 

-2301.1 

-1449.6 

-2152.6 

-2902.8 

-3676.8 

-4540.5 

-3335.8 

-4200.9 

-5150.7 

-7830.2 

-10330.2 

-10432.4 

-10924.8 

-4191.6 

-3365.8 

-2498.7 

-1785.9 

-1201.8 

-735.5 

-387.3 

-167.4 

-87.9 

-173.7 

-458.2 
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Negative factored moment and flexural capacity of exterior frame of bridge 7937  

Location 
(m) 

Element Beam 

thickness (m) 

Factored moment- 

Strength I (kNm) 

Factored moment-  

Strength II (kNm) 

Flexural 
capacity 
(kNm) 

Shortage 
of capacity 

(kNm) 

0

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

0.765 

0.779 

0.807 

0.850 

0.908 

0.984 

1.080 

1.201 

1.354 

1.554 

1.717 

5.449 

4.787 

4.027 

2.952 

1.807 

1.690 

1.597 

1.520 

1.456 

1.402 

1.356 

1.319 

1.287 

1.263 

1.244 

1.230 

1.222 

1.220 

1.222 

1.230 

1.244 

1.263 

0.0 

59.4 

63.9 

13.2 

-93.5 

-257.7 

-479.9 

-762.7 

-1108.0 

-1520.7 

-2017.8 

-2864.1 

-3822.7 

-8753.2 

-7141.3 

-5948.5 

-4793.0 

-3707.3 

-2706.6 

-1795.5 

-986.7 

-279.2 

314.2 

704.1 

1013.0 

1262.9 

1454.4 

1587.7 

1661.5 

1659.5 

1581.9 

1444.9 

1250.0 

0.0 

4.8 

-42.6 

-142.5 

-295.4 

-502.6 

-764.9 

-1084.5 

-1534.7 

-2170.7 

-2918.1 

-3925.8 

-5058.2 

-11253.6 

-9070.7 

-7458.5 

-5993.8 

-4621.7 

-3353.8 

-2245.7 

-1314.2 

-499.1 

128.0 

620.7 

952.4 

1198.0 

1382.7 

1511.8 

1584.0 

1582.0 

1506.0 

1373.3 

1185.1 

-1493.0 

-1530.2 

-1605.4 

-1720.6 

-1878.7 

-2084.4 

-2345.2 

-2672.6 

-3086.7 

-3627.9 

-4070.8 

-14174.0 

-12383.6 

-20839.4 

-14814.2 

-8400.3 

-7744.1 

-980.4 

-928.5 

-885.0 

-848.4 

-817.7 

-792.1 

-771.1 

-754.3 

-741.5 

-732.4 

-727.1 

-725.3 

-727.1 

-732.4 

-741.5 

-754.3 

-1493.0 

-1535.0 

-1562.8 

-1578.1 

-1583.2 

-1581.9 

-1580.3 

-1588.1 

-1552.0 

-1457.2 

-1152.7 

-10248.2 

-7325.3 

-9585.8 

-5743.5 

-941.7 

-1750.2 

3641.4 

2425.3 

1360.7 

465.8 

-318.6 

-920.1 

-1391.8 

-1706.7 

-1939.4 

-2115.1 

-2238.9 

-2309.2 

-2309.1 

-2238.4 

-2114.7 

-1939.4 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

1.287 

1.319 

1.356 

1.402 

1.456 

1.520 

1.597 

1.690 

1.807 

2.952 

4.027 

4.787 

5.449 

1.717 

1.554 

1.354 

1.201 

1.080 

0.984 

0.908 

0.850 

0.807 

0.779 

0.765 

997.0 

685.5 

293.4 

-301.3 

-1009.4 

-1817.7 

-2727.2 

-3724.8 

-4805.7 

-5954.3 

-7137.3 

-4974.6 

-3851.6 

-2878.5 

-2019.5 

-1513.1 

-1094.5 

-746.0 

-462.2 

-240.6 

-78.4 

25.4 

72.5 

63.8 

936.5 

602.1 

107.3 

-521.3 

-1336.9 

-2267.9 

-3374.4 

-4639.3 

-6006.6 

-7464.4 

-9066.7 

-6330.3 

-5087.1 

-3940.2 

-2919.7 

-2163.0 

-1521.2 

-1067.7 

-747.1 

-485.5 

-280.3 

-130.3 

-34.1 

9.2 

-771.1 

-792.1 

-817.7 

-848.4 

-885.0 

-928.5 

-980.4 

-7744.1 

-8400.3 

-14814.2 

-20839.4 

-12383.6 

-14174.0 

-4070.8 

-3627.9 

-3086.7 

-2672.6 

-2345.2 

-2084.4 

-1878.7 

-1720.6 

-1605.4 

-1530.2 

-1493.0 

-1707.5 

-1394.2 

-925.0 

-327.2 

451.8 

1339.5 

2394.0 

-3104.7 

-2393.7 

-7349.8 

-11772.7 

-6053.2 

-9086.9 

-130.6 

-708.1 

-923.7 

-1151.4 

-1277.5 

-1337.3 

-1393.2 

-1440.3 

-1475.2 

-1496.1 

-1502.2 
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Positive factored shear and shear capacity of exterior frame of bridge 7937 

Location 
(m) 

Element Beam 

thickness (m) 

Factored shear- 

Strength I (kN) 

Factored shear-  

Strength II (kN) 

Shear 
capacity 

(kN) 

Shortage 
of capacity 

(kN) 

0

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

0.765 

0.779 

0.807 

0.850 

0.908 

0.984 

1.080 

1.201 

1.354 

1.554 

1.717 

5.449 

4.787 

4.027 

2.952 

1.807 

1.690 

1.597 

1.520 

1.456 

1.402 

1.356 

1.319 

1.287 

1.263 

1.244 

1.230 

1.222 

1.220 

1.222 

1.230 

1.244 

1.263 

-86.4 

-31.5 

64.6 

186.8 

302.8 

412.0 

514.1 

621.4 

737.7 

852.5 

979.4 

1094.5 

1204.3 

-1106.6 

-798.9 

-769.9 

-718.9 

-652.6 

-585.4 

-511.5 

-441.0 

-364.6 

-287.9 

-207.1 

-124.9 

-41.3 

43.9 

132.6 

220.4 

309.2 

401.1 

491.5 

582.2 

-30.4 

46.0 

137.2 

245.5 

350.8 

450.1 

549.5 

676.9 

818.3 

956.1 

1072.5 

1193.2 

1329.6 

-1061.5 

-762.8 

-736.1 

-687.1 

-624.0 

-559.2 

-487.7 

-420.3 

-346.9 

-271.1 

-191.5 

-109.8 

-26.1 

58.6 

149.9 

242.6 

338.6 

439.9 

540.6 

642.7 

1058.1 

1065.7 

1081.2 

1104.9 

1137.5 

1179.9 

1233.6 

1301.0 

1386.2 

1497.7 

1588.9 

3669.4 

3300.7 

2876.9 

2277.2 

1638.7 

1573.4 

1521.5 

1478.7 

1443.0 

1412.9 

1387.5 

1366.4 

1349.1 

1335.3 

1324.8 

1317.3 

1312.9 

1311.4 

1312.9 

1317.3 

1324.8 

1335.3 

-971.6 

-1019.7 

-944.1 

-859.4 

-786.7 

-729.8 

-684.0 

-624.0 

-567.9 

-541.6 

-516.4 

-2476.2 

-1971.1 

-1770.3 

-1478.3 

-868.8 

-854.5 

-868.9 

-893.4 

-931.5 

-971.9 

-1023.0 

-1078.6 

-1142.0 

-1210.4 

-1283.5 

-1258.7 

-1163.0 

-1068.8 

-974.3 

-877.4 

-784.1 

-692.6 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

1.287 

1.319 

1.356 

1.402 

1.456 

1.520 

1.597 

1.690 

1.807 

2.952 

4.027 

4.787 

5.449 

1.717 

1.554 

1.354 

1.201 

1.080 

0.984 

0.908 

0.850 

0.807 

0.779 

0.765 

673.0 

763.7 

851.8 

941.6 

1024.3 

1110.8 

1188.3 

1263.5 

1326.9 

1361.5 

1723.7 

-665.1 

-589.0 

-508.8 

-428.2 

-338.0 

-249.8 

-161.4 

-70.8 

24.3 

125.1 

234.3 

354.3 

482.6 

750.7 

861.0 

971.2 

1086.8 

1194.6 

1310.4 

1418.5 

1525.6 

1616.8 

1664.8 

2239.1 

-636.9 

-563.5 

-489.7 

-407.6 

-328.9 

-249.4 

-169.2 

-82.2 

12.2 

112.3 

219.4 

337.0 

467.0 

1349.1 

1366.4 

1387.5 

1412.9 

1443.0 

1478.7 

1521.5 

1573.4 

1638.7 

2277.2 

2876.9 

3300.7 

3669.4 

1588.9 

1497.7 

1386.2 

1301.0 

1233.6 

1179.9 

1137.5 

1104.9 

1081.2 

1065.7 

1058.1 

-598.4 

-505.4 

-416.3 

-326.1 

-248.4 

-168.3 

-103.0 

-47.8 

-21.9 

-612.4 

-637.8 

-2635.6 

-3080.5 

-1080.1 

-1069.5 

-1048.2 

-1051.2 

-1064.4 

-1097.7 

-1113.2 

-979.9 

-846.9 

-711.5 

-575.5 
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Negative factored shear and shear capacity of exterior frame of bridge 7937 

Location 
(m) 

Element Beam 

thickness (m) 

Factored shear- 

Strength I (kN) 

Factored shear-  

Strength II (kN) 

Shear 
capacity 

(kN) 

Shortage 
of capacity 

(kN) 

0

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

0.765 

0.779 

0.807 

0.850 

0.908 

0.984 

1.080 

1.201 

1.354 

1.554 

1.717 

5.449 

4.787 

4.027 

2.952 

1.807 

1.690 

1.597 

1.520 

1.456 

1.402 

1.356 

1.319 

1.287 

1.263 

1.244 

1.230 

1.222 

1.220 

1.222 

1.230 

1.244 

1.263 

-553.5 

-431.0 

-315.8 

-208.4 

-111.1 

-21.3 

63.0 

143.2 

221.0 

298.6 

370.7 

445.8 

516.3 

-1640.0 

-1321.2 

-1285.5 

-1226.1 

-1157.0 

-1086.3 

-1008.2 

-933.4 

-852.4 

-773.0 

-691.2 

-609.2 

-527.2 

-445.3 

-361.7 

-280.8 

-200.8 

-119.9 

-42.1 

34.5 

-542.5 

-416.0 

-299.8 

-194.9 

-98.9 

-9.5 

74.6 

150.7 

219.8 

288.1 

358.2 

428.5 

493.3 

-2156.0 

-1635.7 

-1587.8 

-1501.1 

-1400.7 

-1299.9 

-1190.8 

-1090.4 

-984.8 

-882.5 

-780.2 

-680.3 

-582.5 

-490.2 

-397.0 

-307.7 

-221.1 

-135.5 

-55.3 

20.8 

-1058.1 

-1065.7 

-1081.2 

-1104.9 

-1137.5 

-1179.9 

-1233.6 

-1301.0 

-1386.2 

-1497.7 

-1588.9 

-3669.4 

-3300.7 

-2876.9 

-2277.2 

-1638.7 

-1573.4 

-1521.5 

-1478.7 

-1443.0 

-1412.9 

-1387.5 

-1366.4 

-1349.1 

-1335.3 

-1324.8 

-1317.3 

-1312.9 

-1311.4 

-1312.9 

-1317.3 

-1324.8 

-1335.3 

-504.6 

-634.7 

-765.5 

-896.6 

-1026.4 

-1158.6 

-1159.0 

-1150.2 

-1165.3 

-1199.1 

-1218.2 

-3223.6 

-2784.5 

-720.9 

-641.5 

-51.0 

-72.3 

-120.8 

-178.8 

-252.2 

-322.4 

-402.7 

-483.9 

-568.9 

-655.0 

-742.2 

-827.1 

-915.9 

-1003.7 

-1091.8 

-1181.8 

-1269.5 

-1300.9 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

1.287 

1.319 

1.356 

1.402 

1.456 

1.520 

1.597 

1.690 

1.807 

2.952 

4.027 

4.787 

5.449 

1.717 

1.554 

1.354 

1.201 

1.080 

0.984 

0.908 

0.850 

0.807 

0.779 

0.765 

109.6 

183.2 

253.7 

324.1 

387.1 

453.1 

512.3 

570.0 

619.1 

641.7 

917.1 

-1193.9 

-1097.8 

-997.3 

-886.2 

-777.3 

-669.9 

-562.7 

-464.0 

-370.5 

-271.2 

-165.8 

-54.9 

33.1 

96.0 

169.2 

238.8 

308.2 

368.9 

431.9 

489.1 

544.8 

591.6 

611.6 

878.9 

-1357.5 

-1210.8 

-1086.0 

-984.1 

-863.4 

-737.4 

-609.2 

-492.4 

-402.8 

-311.8 

-216.6 

-118.8 

-36.0 

-1349.1 

-1366.4 

-1387.5 

-1412.9 

-1443.0 

-1478.7 

-1521.5 

-1573.4 

-1638.7 

-2277.2 

-2876.9 

-3300.7 

-3669.4 

-1588.9 

-1497.7 

-1386.2 

-1301.0 

-1233.6 

-1179.9 

-1137.5 

-1104.9 

-1081.2 

-1065.7 

-1058.1 

-1239.6 

-1183.2 

-1133.8 

-1088.8 

-1055.8 

-1025.6 

-1009.2 

-1003.4 

-1019.6 

-1635.5 

-1959.8 

-1943.2 

-2458.6 

-502.9 

-513.6 

-522.8 

-563.5 

-624.4 

-687.5 

-734.7 

-793.2 

-864.7 

-946.9 

-1022.1 
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B. Detailed design of photovoltaic system for Tucumcari Bridge  

Electrical Load Estimate 

In order to design a proper PV system for solar energy, the required energy load for the 

SDA system on Bridge 7937 was estimated. The PV system needed to support the 

wireless communication modem, the SDA system, current inverter device and a time 

controller. Based on the operation requirements of 8 hours of continues energy supply, 

the following daily energy consumption (Ec) was estimated and shown in Table B.1. 

 

Table B.1 Energy consumption estimation for powering the SHM system at Bridge 

7937 in Tucumcari, New Mexico. 

Device Power (W) 
Daily Operation 

time (hr) 

Daily Consumption 

(Whr) 

Wireless Modem 4.2 8 33.6 

DAQ module 48 8 384 

Inverter 7.8 8 62.4 

Time controller 1.4 24 33.6 

 Ec (Whr/day) 513.6 

Energy Autonomy  

 The energy source (in this case solar energy) was not available continuously; 

therefore, an energy autonomy or energy backup method had to be designed. The most 
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common method is an electrical battery system, which will be installed at this project. 

The battery system had to be able to satisfy all the energy demands in the data acquisition 

system for some autonomy time required by the specifications of the design. For this 

particular case, three days of autonomy time were assumed. The battery capacity for 

holding energy is rated in amp-hours and the energy capacity for the battery system (Eb)

can be calculated according to the energy demand as  

 ( )wb

Ac
b rb

DEE
αε

ε
−

=
1

1 (B.1)  

Where εI is the inverters efficiency, b is the battery system voltage, r is the discharge 

cycle rate, εb is the battery’s efficiency, αw is the wiring losses and DA is the autonomy 

time in days. Using the energy consumption data calculated in the electrical load 

estimation and the battery system parameter specified in Table B.2. 

Table B.2 Battery system parameters. 

b 12 V 

r 60% 

εb 90% 

εi 95% 

αw 2% 

The energy capacity for different battery systems for different autonomy days can be 

calculated as  
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( ) AhrEb 8.76
2.01*90*6.0*12

1*95.0*6.513 =
−

= (B.2) 

PV Array Design 

 Once the estimation of the energy demand for the system was determined, the 

photovoltaic arrays characteristics, dimensions and arrangement could be computed to 

satisfy the energy consumption and backup system. Since PV systems depend on solar 

energy, the sun hours observed during the day was an essential parameter to calculate the 

PV array. For this specific system, the location of the system is below the Tucumcari 

bridge at Latitude: 35° 10' 18" N - Longitude:  103° 43' 27" W in a fixed array 

configuration experiencing morning shadowing as shown in Figure B.1.  

Solar Panel

Morning shadow

Figure B.1 PV system location (Tucumcari latitude: 35° 10' 18" N - longitude:  103° 

43' 27" W) and the proposed location of solar panels to enable SHM power. 

 

Based on an average sun tracking system as shown in Figure B.1, the PV system 

configuration suggested in Figure B.2 should be able to provide an estimated average 

peak sun hours (hs) of 5 hours during the entire year. 
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Figure B.2 PV system sun tracking schematic. 

 

The angle α in Figure B.2 represents the altitude of the sun at a specific season of the year 

expressed in degrees, ψ is the azimuth angle and ω is the time angle expressed in degrees 

with respect to a specific time/hour of the day. Once the average peak sun hours are 

estimated for the SHM system, the PV array power required can be computed as  

 
1εβαTs

b
array h

bEP = (B.3) 

Where αT is the temperature loss factor, β is the Derate factor and εI is the inverted 

efficiency factor. The PV array power required to satisfy the different autonomy days can 

be calculated as  

 WParray 6.262
95.0*84.0*88.0*5

12*8.76 == (B.4) 

Charge Controller 

 In order to have good management of energy resources in the PV system, a charge 

controller was incorporated in the system. A charge controller is able to make the system 
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operate at the optimum solar panels energy absorption by performing the maximum 

power point tracker (MPPT). This controller will also limit the rate at which electrical 

current is either added to or drawn from the electric batteries. It prevents overcharging 

and may prevent against over voltage, which can reduce battery performance and/or 

lifetime.  

 The adequate charge controller had to be designed according to the PV panel array 

power and the autonomy battery system previously calculated. These parameters 

determine the charge controller capacity and parameters that satisfy the system. Based on 

the PV array power, the solar panel specifications for Kyocera KC130TM 130 Watts 

Solar Panel and the energy capacity and battery sizing calculated in previous sections, the 

charge controller should satisfy the energy requirements. The design indicated a 20 

controller array Amp and 5.1 controller load Amp.  

 Time Controller 

 In PV systems, energy consumption and management is an important issue due to the 

luck of full accessibility to sun energy radiation. Therefore, energy consumption has to be 

controlled to avoid energy waste by powering equipment when it is not needed. 

Programmable time controls are among the most effective energy management devices 

available. Battery re-chargers and other types of equipment can be effectively managed 

with time controls.  

 The SDA system is the main source of the load to be supported by the PV system. 

Therefore, optimized energy management should be carried out to power the system only 

when data acquisition is required and avoided when powering equipment is not needed. 

Programmable time controllers are utilized in the project as a means of energy 
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management device. The time controller used here has the ability to set multiple on/off 

operations, and includes the ability to have different schedules for each day of the week. 

Due to the different uploading and downloading of traffic at different times to the 

wireless communication device, a feasible operation time for the data acquisition system 

has been determined as shown in Table B.3. 

 

Table B.3 Time controller schedule for the PV system for bridge 7937. 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

2:00 am Off Off Off Off Off Off Off 

4:00 am Off Off Off Off Off Off Off 

6:00 am On On On On On On On 

8:00 am On On On On On On On 

10:00 am On On On On On On On 

12:00 pm Off Off Off Off Off Off Off 

2:00 am Off Off Off Off Off Off Off 

4:00 pm Off Off Off Off Off Off Off 

6:00 pm On On On On On On On 

8:00 pm On On On On On On On 

10:00 pm On On On On On On On 

12:00 am Off Off Off Off Off Off Off 
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System Layout 

Based on the respective designs of the various components of the PV system calculated in 

previous sections, a layout schematic of the proposed PV system could be created. Figure 

B.3 shows such schematic of the proposed PV system.  

 

Figure B.3 Schematic of layout of the proposed PV system for 1 day of autonomy. 

 

The different energy demands and PV capacities for the system shown in this schematic 

can be satisfied with different components. Brands, capacities and qualities vary between 

different manufacturers and different PV system configurations with distinct components 

can be found to satisfy the same system capacities in discourse. For this particular case, 
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the system was designed over the inverter type 375 Watt TRIPP-LITE, the battery system 

utilized battery type 8A27-DEKA AGM, and the PV array utilized the solar panel 

Kyocera KC130TM. The structural system to support the solar panels and attaching them 

to the bridge structure is shown in Figure B.4.  

 

Figure B.4 Structural systems to support solar panels and attach them to the bridge. 

 



217

C. Computer code to find the primary and secondary threshold values 

for establishing fuzzy sets 

% This code has been written by Mohammad Azarbayejani to calculate the 
threshold values for establishing fuzzy sets for bridge 7937 at 
Tucumcari. 
clear all;
close all;
data_nonmdified_1 = [0.026606104 0.602787715 0.041645875 0.07475578 
0.059328081 0.024500977 0.031538565 0.043086544 0.048459916 
0.207801316]; % Damage feature values  
data_nonmdified_2 = [0.216292715 0.194609367 0.19551805 0.198079852 
0.199827758 0.221344943 0.276584027]; % Damage feature values 
data_1 = sort(data_nonmdified_1); 
data_2 = sort(data_nonmdified_2); 
Data_1 = sort(data_nonmdified_1, 'descend'); 
Data_2 = sort(data_nonmdified_2, 'descend'); 
n1 = size(data_1, 2); 
n2 = size(data_2, 2); 
x11 = min(data_1); 
x12 = min(data_2); 
x21 = max(data_1); 
x22 = max(data_2); 
x1 = min(x11, x12); 
x2 = max(x21, x22); 
x = x1; 
n_1_x = 0; 
n_2_x = 0; 
N_1_x = 0; 
N_2_x = 0; 
j = 0; 
for x = x1 : 0.01 : x2 

for i = 1 : (n1+n2) 
if(i<=n1) 

if(data_1(1, i)<= x) 
n_1_x = n_1_x + 1; 

else 
N_1_x = N_1_x + 1; 

end 
end 
if(i<=n2) 

if(data_2(1, i)<= x) 
n_2_x = n_2_x + 1; 

else 
N_2_x = N_2_x + 1; 

end 
end 
n_x = n_1_x + n_2_x; 
N_x = N_1_x + N_2_x; 

end 
p_1_x = (n_1_x + 1)/(n_x + 1); 
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q_1_x = (N_1_x + 1)/(N_x + 1); 
p_2_x = (n_2_x + 1)/(n_x + 1); 
q_2_x = (N_2_x + 1)/(N_x + 1); 
p_x = n_x / (n1+n2); 
q_x = 1 - p_x; 
S_p_x = -(p_1_x * log(p_1_x) + p_2_x * log(p_2_x)); 
S_q_x = -(q_1_x * log(q_1_x) + q_2_x * log(q_2_x));  
j = j+1; 
S(j) = p_x * S_p_x + q_x * S_q_x; 
n_1_x = 0; 
n_2_x = 0; 
N_1_x = 0; 
N_2_x = 0; 

end 

[s, I] = min(S); 
x_PRI_n = x1 + I * 0.01;  

data = [data_nonmdified_1, data_nonmdified_2]; 
data_m = sort(data, 'descend'); 
n= n1+n2; 
for i=1:n; 

if data_m(i)< x_PRI_n 
data_max(i) = data_m(i); 

else 
data_min(i) = data_m(i); 

end 
end 
data_max_m = sort(data_max,'descend'); 
data_min_m = sort(data_min); 
x_PRI = (data_max_m(1,1)+ data_min_m(1,1))/2 

n11 = 0; 
n22 = 0; 
k = 0; 
for i = 1 : n1 

if(data_1(i) <= x_PRI) 
n11 = n11 + 1; 

end 
end 
for i = 1 : n2 

if(data_2(i) <= x_PRI) 
n22 = n22 + 1; 

end 
end 
for x = x1 : 0.01 : x_PRI 

for i = 1 : n11 
if(i<=n1) 

if(data_1(1, i)<= x) 
n_1_x = n_1_x + 1; 

else 
N_1_x = N_1_x + 1; 

end 
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end 
end 
for i = 1 : n22 

if(i<=n2) 
if(data_2(1, i)<= x) 

n_2_x = n_2_x + 1; 
else 

N_2_x = N_2_x + 1; 
end 

end 
end 

n_x = n_1_x + n_2_x; 
N_x = N_1_x + N_2_x; 
p_1_x = (n_1_x + 1)/(n_x + 1); 
q_1_x = (N_1_x + 1)/(N_x + 1); 
p_2_x = (n_2_x + 1)/(n_x + 1); 
q_2_x = (N_2_x + 1)/(N_x + 1); 
p_x = n_x / (n11+n22); 
q_x = 1 - p_x; 
S_p_x = -(p_1_x * log(p_1_x) + p_2_x * log(p_2_x)); 
S_q_x = -(q_1_x * log(q_1_x) + q_2_x * log(q_2_x));  
k = k + 1; 
S_NG(k) = p_x * S_p_x + q_x * S_q_x; 
n_1_x = 0; 
n_2_x = 0; 
N_1_x = 0; 
N_2_x = 0; 

end 
%S_NG 
[s_NG, I_NG] = min(S_NG); 
x_NG_n = x1 + I_NG * 0.01; 
for i=1:n; 

if data_m(i)< x_NG_n 
data_max_NG(i) = data_m(i); 

else 
data_min_NG(i) = data_m(i); 

end 
end 
data_max_NG_m = sort(data_max_NG,'descend'); 
data_min_NG_m = sort(data_min_NG); 
x_NG = (data_max_NG_m(1,1)+ data_min_NG_m(1,1))/2 

n111 = 0; 
n222 = 0; 
l = 0; 
for i = 1 : n1 

if(Data_1(i) >= x_PRI) 
n111 = n111 + 1; 

end 
end 

for i = 1 : n2 
if(Data_2(i) >= x_PRI) 

n222 = n222 + 1; 
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end 
end 
for x = x_PRI : 0.01 : x2 

for i = 1 : n111 
if(i<=n1) 

if(Data_1(1, i)>= x) 
n_1_x = n_1_x + 1; 

else 
N_1_x = N_1_x + 1; 

end 
end 

end 
for i = 1 : n222 

if(i<=n2) 
if(Data_2(1, i)>= x) 

n_2_x = n_2_x + 1; 
else 

N_2_x = N_2_x + 1; 
end 

end 
end 

n_x = n_1_x + n_2_x; 
N_x = N_1_x + N_2_x; 
p_1_x = (n_1_x + 1)/(n_x + 1); 
q_1_x = (N_1_x + 1)/(N_x + 1); 
p_2_x = (n_2_x + 1)/(n_x + 1); 
q_2_x = (N_2_x + 1)/(N_x + 1); 
p_x = n_x / (n111+n222); 
q_x = 1 - p_x; 
S_p_x = -(p_1_x * log(p_1_x) + p_2_x * log(p_2_x)); 
S_q_x = -(q_1_x * log(q_1_x) + q_2_x * log(q_2_x));  
l = l + 1; 
S_PO(l) = p_x * S_p_x + q_x * S_q_x; 
n_1_x = 0; 
n_2_x = 0; 
N_1_x = 0; 
N_2_x = 0; 

end 
%S_PO 
[s_PO, I_PO] = min(S_PO); 
x_po_n = x_PRI + (I_PO-1) * 0.01; 
for i=1:n; 

if data_m(i)< x_po_n 
data_max_po(i) = data_m(i); 

else 
data_min_po(i) = data_m(i); 

end 
end 
data_max_po_m = sort(data_max_po,'descend'); 
data_min_po_m = sort(data_min_po); 
x_po = (data_max_po_m(1,1)+ data_min_po_m(1,1))/2 
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