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ABSTRACT 

 

 Pairing the information received from multiple telescopes to explore the 

universe is typically based on the interference phenomenon between amplitudes of 

light, rather their intensities. Brighter sources and larger telescopes allow for greater 

amounts of light to be collected, but do not specifically involve the intensity 

interference of electromagnetic fields. There is an alternate form of creating images of 

distant objects called Intensity Interferometry (II), which is less sensitive to 

atmospheric distortions and aberrations of telescope surfaces.  The deficiencies of II 

are overcome as photo detectors become more sensitive and computers more powerful. 

In recognition of this possibility this dissertation investigates how the deformation of a 

large optical surface would influence the accuracy of II.  This research first involved 

obtaining an understanding of the theoretical foundation of II and statistics (based on 

quantum mechanics) of photon correlations.  Optical Ray-tracing and Finite Element 

Analyses were thereafter integrated to answer this question: how would the correlation 

of the intensity field change as a large light weight reflective structure deforms?  

Analytical models based on the theory of the deformation of shells were developed to 

validate the Finite Element Analyses.   In this study a single focal parabolic reflector of 

an Intensity Interferometer (II) system is simulated. The extent that dynamic focal 

properties amongst a parabolic reflector change the statistics of the light at a detector is 

analyzed.  A ray tracing algorithm is used to examine how the statistical variations of 

simulated monochromatic stellar light changes from the source to the detector.  Varying 

the positions of the detector from the focal plane and the surface profile of the mirror 

develops a metric to understand how the various scenarios affect the statistics of the 
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detected light and the correlation measurement between the source and detector.  

Photon streams are evaluated for light distribution, time of flight, and statistical changes 

at a detector.  This research and analysis are used as a means to develop a tool to 

quantify how structural perturbations of focal mirrors affect the statistics of photon 

stream detection’s inherent in II instrumentation and science. 
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Chapter 1 

1) Introduction and Motivation 

 

 The primary focus of this research is based on principles of electromagnetic 

wave mechanics incorporating geometric optics that correlate the light 

emitted/reflected from an object to that which is observable at an optical sensor.  An 

integral aspect of this research involves the advancement of knowledge in relating the 

coupling equations of structural mechanics, Intensity Interferometry (II) optics, and 

photon statistics.  The advantage of utilizing II relies on the fact that this technique 

measures the finite changes in the intensity of a light wave, not the addition of 

amplitudes as in Amplitude Interferometry (AI).  A basic two element setup using II 

technology measures the square of the modulus of the coherence producing phase terms 

that average to zero and no image is formed.  Measuring the intensities of light waves 

has significant advantages because it requires less precision involved with the light 

collecting mechanics and timing correlation techniques.  This dissertation work 

develops a complete analysis system that can be scaled to other models which evaluates 

the effects of mirror shape perturbations on II technologies.  As advancing technology 

increases detector response time and efficiencies it will become apparent that future 

generations in optics and telescope design will need to address how distortions in light 

collectors affect the statistics of photons (narrow bandwidths and short timescales) for 

II science.  A novel algorithm has been developed which combines many distinct 

software tools and the physics of II into one platform described in-depth throughout 

this dissertation.     

 Humanity has been observing the universe since the dawn of time.  The original  
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method incorporated empirical senses such as the eye but has since evolved to view 

vastly distant objects using state of the art imaging equipment and computational power 

to visualize and understand our universe.  The majority of stellar objects are considered 

point sources and much information falls beyond what can be obtained by just analyzing 

spectrums and images.  A great wealth of knowledge of the universe is still hidden and 

is continually being discovered incorporating greater angular resolution imaging 

techniques.   The invention of observational interferometry has played a pivotal role in 

our ability to observe the universe in significant detail by combining the light gathering 

power of multiple telescopes integrated into one image.  Amplitude Interferometry (AI) 

began in the radio portion of the electromagnetic spectrum (example: the Very Large 

Array, near Socorro, NM) where it became apparent that matching phases of the 

gathered light having spatially separated receivers provides an enhanced resolution of 

observed objects.  In recent years, great efforts have been made to establish AI 

techniques in the optical portion of the spectrum. 

 Although AI is the primary multiple receiver instrument coupling techniques 

astronomers currently use to gather data from the heavens, it is plagued by some 

fundamental hardships.  Optical long baseline amplitude interferometry must overcome 

complex data measurements, precision in understanding the measurements, limited 

sampling of data, and low sensitivity as compared to a single detector experiment [1].  

The turbulent nature of the earth's atmosphere directly affects the imaging capabilities 

of terrestrial based telescopes and limits the observations due to very fast and varying 

phase information [1].  One main driver to alleviate the seeing problem resides in 

adaptive optics, which compensates for the dynamic nature of the atmosphere. 

Overcoming the distortions of the atmosphere requires a constant feedback loop 

incorporating many telescopic instrument subsystems.  Each subsystem (light 
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collectors, delay lines, image sensors, fringe sensors, adaptive optics, focal instruments) 

of the an optical AI add their own noise to the system and increase the chance for a 

failure to occur due to the multiplicative effects of errors [1].  Adaptive optics make it 

possible to adjust the shape of incoming image by adjusting the shape of the reflecting 

mirrors, thus, making it possible to combine the images of multiple telescopes to obtain 

a greater resolution and enhanced imaging of observed objects.  A second solution to 

the atmospheric distortion is to place telescopes above the atmosphere, which is 

expensive and technically challenging due to the development of equipment able to 

survive rocket launch forces and the extreme conditions of interplanetary space.    

 A promising technique was discovered that could measure the size of distant 

objects and overcome the problems of the earth’s atmospheric distortions [2] called 

Intensity Interferometry (II). Intensity Interferometry is a relatively unexplored imaging 

technique due to its lack of sensitivity compared to historically established amplitude 

interferometry.  The reason AI was employed almost exclusively was due to its 

established theoretical and documented development [3].  The sensitivity of II 

technology can be increased by redundant baselines operating in multiple narrow 

bandwidth channels and by increasing the electrical bandwidth [4].  II has its inherent 

limitations, as well as some very significant advantages and science avenues that have 

yet to be explored in depth. II combines statistical photonic information or the 

intensities of electromagnetic waves between two or more detectors.  II has been used 

in many areas besides astronomy including the world of subatomic particle physics [5].  

The discovery of the II optical phenomenon was largely due to the efforts of Robert 

Hanbury Brown and began quantum optics [2]. The true confirmation of this imaging 

technique was established in the radio portion of the spectrum conducted with solar 

light in 1950 by Hanbury Brown, and Twiss [2].  Eventually, Hanbury Brown and Twiss 
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built an II instrument that operated in the optical portion of the electromagnetic 

spectrum. They used various mathematical algorithms with their observational 

measurements to extrapolate the angular diameter of many bright stars. II based 

instruments are relatively new to the scientific community and have much room for 

development.  II techniques are constantly being developed and inevitably becoming 

an asset for the observational and surveillance communities.  

 AI has been used as an imaging device especially for distant astrophysical 

objects.  The original images incorporated photosensitive materials such as film and 

glass plates, but has since evolved to use charge coupling devices (CCD's) which 

convert photons into electrons and ultimately stored as digital bits.  Computers can now 

store images of astrophysics in many parts of the electromagnetic spectrum for further 

processing.  The "images" first obtained by an II instrument were not classic images 

but more of a correlation profile that was later interpreted as an angular extent of the 

object.  The first II instruments used only two receivers measuring in real time with one 

baseline, thereby losing the phase information necessary to reconstruct a 2-dimensional 

image.  The imaging capabilities of an II must employ more than two receivers to 

recover the phase of the incoming light.  Multi-detector II systems incorporating three 

or more receivers can extrapolate 2-dimensional coordinate information from a source.  

This style interferometry can be developed even further to a four detector system that 

can determine three dimensional coordinates of several sources [6]. Sensitivity and 

signal to noise ratio's (S/N) are fundamental to most scientific measurements.  AI has 

the advantage of using broadband detectors that use a larger portion of the 

electromagnetic spectrum at the cost of needing to combine the interferometric 

information instantaneously. II instruments have the capability to digitally store 

photonic information and redundant post-processing with a greater precision than AI.  
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Algorithms have been envisioned to use the stored II data streams coming from uniform 

linear detector arrays that have a high degree of redundancy which can increase the 

sensitivity 100-fold [7]. Many multi-telescope arrays already exist for use in high 

energy astrophysics, detecting Cherenkov radiation (energetic particles entering the 

atmosphere), and can be changed to operate as II instruments. Changing the mode at 

which these instruments operate has been the subject of many recent proposals and 

Ph.D. dissertation topics [8].    

 Many additional aspects of II technology have also been researched in great 

detail such as the geometrical arrangement of II receivers [9], space-based intensity 

interferometry [10], II to detect satellites [11], and comparison of older II technologies 

to current II trends [12]. Recent advances in data acquisition, processing, and photonics, 

along with position sensing and control of structures with exceedingly large baselines 

(greater resolution) have opened the door for utilizing the unique characteristics of II 

for plasma physics [13] and medical imaging [14].  Current publications imply even 

more applications for II including detecting Exo-planets [15], imaging hot stars at very 

high resolutions [8], general micro-arcsec imaging from the ground [16], and 

astrophysics in the ultra-short timescales [17].  The actual measurement is based on 

rapid photon-counting detectors with fast digital signal processors and computations of 

different statistical functions of the photon arrival times. 

 In addition to the errors that arise from light being distorted on its way to 

instruments on earth, both AI and II observing instruments use light collectors and 

photo-electronics that introduce errors themselves.  Materials and hardware that are 

designed to convert photons into storable digital bits introduce thermal noise and 

electron charge transfer deficiencies. With regards to distortions on reflective mirror 

surfaces, errors are introduced due to imperfections in the reflecting surface on the 
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microscopic scale, as well as, larger scale deformations which form non-perfect images 

at the focal plane.  These aberrations are well understood for AI, but have not been fully 

analyzed for II systems and instrumentation.  Understanding the statistical nature of 

the photons received at a detector due to perturbations from a perfect parabolic afocal 

(single surface reflection) reflecting mirrored surface is the prime objective of this 

dissertation research. 

   

  



  

7 

 

Chapter 2 

2) Intensity Interferometry 

 

An intensity interferometer combines light signals from two or more telescopes 

that are simultaneously measuring the random and very rapid [quantum] fluctuations in 

the intensity of light from some particular star [18] or other thermal object of interest.  

In essence natural thermal light sources are never monochromatic in nature, but instead 

are observed to have a bandwidth even with the most accurate filters.  This finite 

bandwidth of light allows multiple frequency components to interfere with each other 

giving rise to beat frequencies in the light intensities.  These beat frequencies can be 

orders of magnitude lower than the frequency of the light itself.  The correlation 

between the intensity of light at the two telescopes decreases gradually as the two 

telescopes are moved further apart and the rate at which the correlation drops is used to 

measure the angular size of a given source. The correlation itself is a function of photon 

statistics (coherence, bandwidth, intensity, etc.) to be discussed later. While the 

coherence (related to correlation of the intensities) is highest while the telescopes are 

close together, determining its value requires long duration of data collection to 

minimize the effect of various noise sources.   

The origins of Intensity Interferometry (II) started with the measurement of the 

diameter of the sun by Hanbury  Brown and Twiss in 1950 using two radio telescopes 

[2].  Being a radio astronomer Hanbury Brown (1949) had a realization that “if the 

radiation received at two places is mutually coherent, then the fluctuation in the 

intensity of the signals received at those two places is mutually coherent” [19]. 

Essentially, the low frequency intensity oscillations are correlated.  Hanbury Brown 

eventually brought on Richard Twiss, who had the mathematical training to apply the 
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mathematical theory to the analysis of intensity correlations.  They demonstrated that 

it is possible to go beyond the conventions in Amplitude Interferometry (AI) by 

analyzing the intensity, spectral characteristics, and polarization of light sources of the 

first order correlation and access the information contained in a higher order regimes.   

 II is in essence the Hanbury Brown and Twiss effect (HBT) and differs from 

AI, or the interference of electromagnetic fields, in that II measures the second order 

correlation of light intensities known as photon counting, or the recording of the time 

histories of photodetector signals.  II and its enhanced resolution capabilities are also 

used in the detection of subatomic particles in high energy experiments which require 

precision with extremely small diameters [5, 13].  The initial HBT experiment used two 

crude optical telescopes that incorporated the newly developed II technique.  It became 

evident to use more than two receivers so that phase information can be obtained to 

form an image.  The original two telescope instrument was used to measure the rapid 

and random fluctuations in the intensity of light from a blackbody such as a star, to 

obtain an angular extent or size of the observed object.  The measurement is made when 

the two telescopes are placed close together, both measuring the same signal, then they 

are moved apart and the observed fluctuations gradually vary and become de-

correlated:  How rapidly this happens gives a measure of the spatial coherence of the 

stars light and the angular extent of the star [20].   Measurements taken from the original 

HBT experiment plotted correlation values between the two photomultiplier detectors 

and various detector separations as in Figure 2.1.  The point where the correlation value 

equals zero defines that angular extend of the source and will be discussed in depth in 

Chapter 5. 
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Figure 2.1 - Correlation Values Versus Detector Separation 
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2.1 History of II 

 

The first radio intensity interferometer was the result of Hanbury Brown's deep 

contemplation that occurred late one evening in 1949.  He wanted to discover a better way 

of gaining greater precision on the angular extent of stars.  He wondered how far apart the 

receivers should be located to get the best resolution while working in the radio part of the 

spectrum.  At the time, the farthest physical distances to separate two detectors and observe 

in real time would be on opposite sides of the planet.  He imagined the difficulties there 

would be in how to produce a coherent oscillator for those two points.  Then he had an 

epiphany that the coherent oscillator might not be necessary in the first place.  Hanbury 

Brown convinced himself with the following thought experiment [2]:  

 "As an example, I imagined a simple detector which demodulated waves from the 

source and displayed them and the usual noise which one sees on a cathode-ray 

oscilloscope.  If one could take simultaneous photographs of the noise at two stations, 

would the two pictures look the same?  This question led directly to the idea of the 

correlation of intensity fluctuations and to the principle of intensity interferometry." 

 

 Then with the mathematical expertise of Richard Twiss, a plan was formulated to 

support the hypothesis with a formal derivation of the phenomenon and an actual 

experiment.  With the help of R. C. Jennisona, an intensity interferometer utilizing two 

radio antenna was constructed.  This first experiment was directed at the sun observing at 

a frequency of 125 MHz and from a correlation measurement the theory was finally 

confirmed.  Later, measurements of the two brightest known radio sources, Cygnus A and 

Cassiopeia A, were also confirmed for their respective diameters with the help of M.K. Das 
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Gupta.  Later the stellar diameter measurements were confirmed with amplitude 

interferometers in Cambridge and Sydney [2]. 

 Additional research was conducted to devise the first optical intensity 

interferometer.  Traditionally, radio engineers thought radio light to consist of many 

photons with very little energy and, therefore, the wave nature of their detection was a 

fundamental design parameter (aerial antennae).  When Hanbury  Brown and Twiss began 

to brainstorm on how to build an intensity interferometer in the optical portion of the 

spectrum it was apparent to them that they needed to incorporate a new photon detection 

system.  By exploiting the fact that optical photons possess greater energy and are less 

numerous than radio photons coming from the sky, the original optical interferometer was 

built with a parabolic concentrator focusing on a single detector (photomultiplier tube), 

much like a radio dish concentrates to an aerial array.  This design led to the discovery that 

it was not necessary to have much precision in the optical reflectors surface error because 

imaging was no longer important in this style of telescope. 

 The first optical interferometer was set up in a dark room, at Jodrell Bank, Australia.  

An artificial star was formed with a mercury arc light emission focused on a pin hole.  The 

light coming from the pin hole was divided into two beams in order to illuminate two 

photomultipliers which would be spatially separated to introduce the variations necessary 

in an interferometer setup.  Intensity correlations were measured at various detector 

separations confirming the II theory and eventually published in January of 1956 [2]. 

 The initial large scale intensity interferometer was built from 1962-1964 in 

Narrabri, Australia.  The instrument had an interesting and unconventional design with two 
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large reflectors on two trucks situated on railroad tracks arranged in a circle 188 meters in 

diameter.   Cables connected the trucks to the main tower where the electrical information 

would be assessed (Figure 2.2) [2].  The parabolic reflectors were 6.5 meters in diameter 

with the phototube receivers at the end of 11 meter steel tubing and were mounted with the 

ability to move in three different orientations.   Each reflector consisted of 252 hexagonal 

mirrors with focal lengths of 11 meters and a field of view in the sky of about 8’x8’ 

(arcseconds).  The cathodes of the photomultiplier tubes had a quantum efficiency of 20% 

at a wavelength of 4400 Angstroms with an anode current of 100 μA.  The fluctuations of 

the D.C. signals in the two different channels were combined in a unidirectional output.    

 

Figure 2.2 - Large Optical II Telescope System [2] 

 

This circular arrangement of the detectors allows for a consistent baseline perpendicular to 

the observed stellar source.  They used this instrument to measure the angular diameter of 

32 of the nearest and brightest stars [2]. 
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2.2 Theory of Coherent Light 

 

 To begin the discussion of interference, it’s necessary to start with the definition of 

coherence.  A primary example is observing the deviations of a distant point source of light 

and from that source extrapolate information that is not point-like.  Interference 

phenomenon incorporated in a plane wave representation (ignoring polarization) of light 

can be described as two forms of coherence.  Spatial coherence is light whose frequency 

and phase are the same in all space.  Temporal coherence is a description in which the 

lights frequency and phase are known for the complete observational time.  Spatial and 

temporal coherence are the ideal case for observing interference. 

 The classical wave nature description of coherence, begins with the superposition 

of many monochromatic plane waves that produce an amplitude of on electric field, E(t), 

of light at a fixed position [21]:   

E(t) = ∫ E(ω)eiwtdω           [Eq. 2.1] 

 

An electric field with nominal frequency, ω, will have some value during a time interval 

∆t giving a E(ω) changing in time over a given bandwidth ∆ω.  Beat frequencies of the 

monochromatic light are the values that vary as 2π/∆w and individual frequencies within 

the intensity of an electric field are values of 2π/Wo where Wo,  is the central frequency 

(Figure 2.3). 
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Figure 2.3 - Vibrations for Quasi-Monochromatic Light 

 

2.3 Coherence Time and Length 

 

 An electric field E(t) has some non-zero amplitude varying value in the time 

interval observed ∆t.  The ∆w is the bandwidth which is described as eiw∆t of Equation 

2.1, which happen when ∆w is approximately equal to the reciprocal of ∆t: 

∆t ≤
2π

∆ω
                        [Eq. 2.2] 

 

 Defining a coherence time, ∆t, is the where light is considered to have a known 

phase and be considered monochromatic in nature.  The length of this time related to the 

speed of light is known as the coherence length of light: 
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∆l =
2πc

∆ω
= [

λ

∆λ
] λ         [Eq. 2.3] 

 

Where λ  is the mean wavelength of light and ∆λ  effective wavelength range. Spatial 

coherence and the coherence area can be illustrated and described further with the Young's 

interference experiment in Figure 2.4.  Again, with a monochromatic thermal light source 

passing through two slits in a screen, Q1 and Q2, where the subtended angle between the 

slits is 2 x ∆θ.  The light interferes on the plane b, where the composition of the 

interference pattern is the result of the superposition of light intensities from the differing 

sources.  The interference fringe will have a specific value at the axial point, Po from the 

sources as long as the following is satisfied [22]:                 

∆𝑥∆θ < λ                [Eq. 2.4]     

 

Figure 2.4 - Double Slit Experiment 
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The coherence time and length are important parameters for the source description.  

For an II correlation measurement to be accurate the arrival time for a given set of photon 

streams coming from the same source must be evaluated to on the order of the coherence 

time.  If this condition is not satisfied, than the correlation value is minimized and would 

be like comparing two random photon streams with the same mean. 

 

2.4 Statistics of Naturally Emitted Photons 

 

 The primary information being evaluated is the rate at which thermal light (particle 

nature of photons) is being received at a detector plane.  Many natural phenomenon such 

as the amount of eggs laid by a group of chickens on any given day [23] or in particular to 

this research the thermal photon emission process [2] can be described by the Poission 

distribution.  Referencing monochromatic thermal light with a very narrow bandwidth is 

typically modeled as a Poisson distribution of the number of photons emitted by a source 

per unit time [2].  The statistics of the Poissonian distribution can be defined as a 

probability distribution [23]: 

𝑃(𝑛) =
𝜆𝑛𝑒−𝜆

𝑛!
                     [Eq. 2.5] 

 

Where P(n) is the probability of finding a given amount of photons with a certain sample 

time.  The value of n is the mean value of photons in time and λ = Np, where N is the 

number of trials multiplied and p is the probability of n occurrences. 
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  There is a large amount of research involving the statistics of photons including 

accuracy of detection.  It was thought all photons had an unpredictable nature with respect 

to the statistics of detection until the laser was invented.  With the onset of quantum 

mechanics, it was realized that the statistics of photon emission and detection from various 

sources had a probability distribution associated with them.  The probability distribution 

of intensity fluctuations from thermal sources such as stars are primarily due to the 

collisions of atoms in the emitting plasma.  A large ensemble of emitting atoms from a 

source also contributes to the statistical nature of emitted light.  This chaotic emission of 

photons creates a “bunching” of photons, meaning they are received in groups at a detector.  

A correlation (or similarity metric) measurement of the bunching of light from two 

detectors is the primary metric of II. 

 

2.5 Photon Statistics 

 

 Photon flux is a primary driver for making observations and performing scientific 

analysis of light.   The physics involved with photon emission is a necessary starting point 

in understanding the statistics of photon detection.  The light we observe from a thermal 

source is a statistical process in a macroscopic system.  Photon streams are the collection 

of a group of photons in time.  For a specific source the most accurate way to quantify the 

brightness of the light is by the mean number of photons detected in a given interval of 

time.  However, if another measurement is made within the same time interval from the 

same source, the mean of photon counts will typically be of a different value.  Photons that 

are emitted from a natural thermal source possess a mathematical distribution between 
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arrival times.  When observing from a macro perspective the arrival times of photons are 

bunched in a time varying nature as in Figure 2.5 [24]: 

 

Figure 2.5 - Photon Arrival Time Characteristics 

 

 The level of irradiance of a given source must be evaluated and instrumentation 

components need to be carefully calibrated for accurate observation (Table 2.1) [24].  

Photodetectors that are illuminated with an overabundance of light will be overwhelmed 

with noise and the signal will be minimized.  Alternatively, observing a source without 

capturing enough light requires large integration times and introduces the potential that no 

useful information can be extrapolated. 
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Source 

Mean Photon – Flux Density 

(photons/s-cm^2) 

Starlight 106 

Moonlight 108 

Twilight 1010 

Indoor light 1012 

Sunlight 1014 

Laser Light  

(10-mW He-Ne) 1022 

Table 2.1 - Mean Photon Flux per Source 

 

A blackbody degeneracy parameter describes the mean of photon arrival times and 

is used as the basis for the simulation runs.  The mean of photons is defined by the 

following formula [25]: 

�̅� = 
1

𝑒
(

ℎ𝜐
𝐾𝑏𝑇

)−1
                   [Eq. 2.6] 

Where ℎ is Planks constant, 𝜐 frequency of light, Kb is Boltzmann's constant, and T is 

temperature of the source.  Values used for the simulation centered around a wavelength 

(λ) of 500nm, which equates to a value of 6 x 1014 Hz (u) for the frequency.  The 

temperature of the simulated stellar source was a star with a surface temperature of 2.6 x 

104 K.  These values give a mean, otherwise known as the degeneracy parameter, solving 

Equation 2.6 with the values from above gives �̅� =0.5.    
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2.6 Photon Stream Correlations 

 

 A simplification of the II phenomenon can be developed when using a basic 

physical explanation.  If the light is treated as a particle it can be described as a stream of 

photons detected in a finite time interval.  Assuming that all photons are converted directly 

to digital bids encoded with an arrival time eliminates the need to add the complexity of 

intensity fluctuations, detector efficiency, electronic noise, and light loses due to 

reflections.  This theoretical assumption simplifies the noise and signal losses so that 

integration time can be shortened to time frames manageable by current simulation 

algorithms and limited computational power.    

 Due to the chaotic nature of thermal photon emissions, photons tend to arrive in 

bunches.   Measuring a stream of blackbody photons in a very narrow bandwidth gives rise 

to their arrival times being far apart from each other.  This phenomenon is described in 

more detail in section 2.10.  The detector time response is far greater than the time between 

photons, thus, a quantum interpretation of the light can be used (discrete wave packets of 

energy).  When observing weak power emissions the light in question is assumed to be 

quasi-monochromatic implying that the effective bandwidth, Dw, is much smaller than its 

mean frequency, w̄ [22].  

Dw/ w̄ << 1                                     [Eq. 2.7] 

So the second-order correlation function can be written1 as [26]: 

𝑔(2)    =  
<𝑛1(𝑡)𝑛2(𝑡)>

<𝑛1(𝑡)><𝑛2(𝑡)>
                  [Eq. 2.8] 
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Where n1 and n2 are the numbers of photons counted in a certain time interval for each 

detector.   The second order correlation measurement is used as the primary metric for this 

dissertations analysis.  The brackets indicate an average, where the numerator is the 

average of the product and the denominator is the product of the average.  Photon counting 

detectors of two beams of light and employing the second order correlation function gives 

the intensity correlation.  For quantum optics, using the second order correlation function 

can be used to identify the state of the photon streams (Figure 2.5).  Anti-bunched photons 

are used for communications, while bunched photons are the primary information source 

for II.  If the photon streams from multiple II instruments are measured with enough 

accuracy, the delay between the photon streams can be assessed as well as phase 

information [27].    

 

2.7 Detectors and Correlators  

 

 Recent and developing technologies are opening new avenues of research related 

to observing natural radiative phenomenon on the shortest of timescales.  The detection of 

light is a process that is bound by physics (uncertainty principle), materials, photoelectric 

design, and computational speeds.  Photon detection is statistical in nature and all the 

instrumental components play a specific role in the precision and accuracy of a given 

measurement.  Technologies of the 1960's for photon counting and time correlated 

counting techniques used photomultiplier tubes (vacuum tube detectors with high internal 

gain).  Current single photon avalanche diodes (SPAD) can produce photon timing 

resolution of 10 picoseconds (10-12 sec).  Silicon based SPAD devices are constantly being 
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improved.  They incorporate breakthrough technologies, have high quantum efficiencies, 

and are manufactured at a low cost [28].   

  Additionally, a major push is being conducted in the astrophysics community to 

move to higher spatial and temporal resolutions.  Traditional means of obtaining digital 

information form astrophysical sources incorporates charge couple device (CCD’s) 

detectors with current readout rates ranges between 1-10 milliseconds.  CCD photon 

detection technology designs are limited in speeds and charge transfer efficiencies, 

rendering them inadequate for II and quantum optics.  The Overwhelmingly Large 

Telescope of the European Southern Observatory is proposing an instrument called 

QuantEYE that is designed for sub-nanosecond time resolutions, as well as, Ghz photon 

count rates.  This in an effort to study timescales sufficiently short to unveil the quantum 

optical nature and statistics of photon arrival times from astrophysical sources.  Some of 

the important information sought after is if a given photon stream may carry information 

about how it was created and modified by its propagation to a detector [29].  

 

2.8 Simulating Intensity Interferometry  

 

 Many II simulations and experiments have been performed with varying results.  

Amongst these, was a computational simulation mixed with a physical experiment that 

used laser light and artificially simulated chaotic light. By reflecting the laser light in a 

fluid with independent radiators researchers were able to derive the photon time arrival 

statistics needed to produce an II effect [30].  Also, simulations representing photons as 

particles that do not include quantum mechanics, wave theory, or probability theory have 
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been able to reproduce II or the Hanbury Brown-Twiss effect [31].  Photon level Monte-

Carlo simulations of II have also been performed to optimize optimal observing 

configurations and conditions [32].   

Studies to determine the most efficient arrangement of multi-telescope II ensembles 

have also been conducted.  It had been determined through some mathematical simulating 

that a V-shaped pattern provided the best arrangement for maximizing efficiency and 

relative ease of access for dish maintenance and movement [9]. Further experiments have 

been conducted with three-telescope configurations where correlation measurements were 

recorded.  These experiments were conducted in order to study the potential for large 

separation, high resolution, and multi-telescope operation.  This research eventually 

converged to the second order correlation measurement by increasing the observational 

time from 10 microseconds to 10 seconds [33]. 

II physics has also been incorporated into some forward modeling techniques that 

have reconstructed images using Fourier analysis measurements.  Forward modeling uses 

mathematical relations that compare perfect conditions of the observed object, sensors, and 

environmental conditions to that of the actual measurement [34].  Other simulation 

algorithms simply use theoretical constructs and some basic assumptions to compare both 

the classical and quantum photon statistics correlations.  M. Facao, A. Lopes, A. L. Silva, 

and P. Silva produced a mathematical simulation to obtain second order correlation profiles 

based on equations developed by Hanbury Brown and Twiss [26].  Their paper was 

elegantly simple and has been adapted to serve as much of the frame work for this 

dissertation research. 
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With advancement in the speed of detectors and computation the importance of 

changes in a reflector shape will become of pivotal importance for advancing the future of 

II.  It has already become evident to many researchers that the increasing efficiency and 

detector speed will increase the requirement for surface isochronicity of the mirrors [18].  

As in AI, path length differences in two different photon counting II instruments can have 

significant restraints on the mechanical system, especially at longer baselines and space-

based II systems [35].  Research has also been performed on various boundary conditions 

and gravitational loading on parabolic reflectors with results that elude to how forces can 

cause substantial distortions to a reflector surface [36]. 

In conclusion, much of the past and current research of II focuses on experimental 

techniques and increasing signal to noise ratios.  Addressing errors introduced from the 

mechanics and structural aspects of the light collectors involved in II measurements has 

not been significantly acknowledged.  This dissertation research will evolve the key aspects 

and algorithms used to quantify the significance of how structural deformation can affect 

II science and be used as a platform for future research and simulations. 
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Chapter 3 

3) Modeling Optics and Reflecting Structures 

 

 This research simulates how the shape of an II reflector affects the statistics of light 

being measured.  All mirrors and lenses have some degree of imperfections and surface 

error.  The significance of these flaws has been extensively and historically studied for AI 

but not for II systems [37].  Of particular importance regarding research on the shape of 

the light collectors was the original II at Narrabri, Australia depicted in Figure 2.2.  The 

original instrument consisted of 256 mirrors on each reflector, all of which had to be 

aligned by putting a lamp at the focal point and examining the image at a far way point.  

Once the mirrors were aligned, Hanbury Brown and Twiss placed a camera at the focal 

point and followed Jupiter as it rose in the sky.  To their disappointment the image varied 

greatly with elevation.  Ultimately, the problem was linked to the bending of the tubing 

that makes up the larger steel structure dish shape and mirror mounts [2].  However, the 

changing shape of an II reflector has yet to be examined for its effect on the II measurement. 

   

3.1 Experimental Setup of an II System  

 

 The research conducted for this dissertation integrates the laws of geometric optics, 

mirror mechanics, and the combination of multiple engineering software platforms.  A 

parabolic reflector model was incorporated as it had been used in previous II experiments 

[2].  The parabolic reflector used in the simulation was based off the reflective dishes used 
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by Hanbury Brown and Twiss for the original optical II telescope system.  A flow diagram 

of the simulation variables and algorithm are described in Figure 3.1. 

Figure 3.1 – II Simulation Flow Diagram 

 A functioning parabolic reflector II instrument would encompass many physical 

variables such as the observed light source, reflector surface material, detector type, etc., 

which are beyond the scope of this dissertation.  The model that is addressed in this research 

does not include diffraction effects, reflection losses, detector efficiency loses, or photon 

flux loses due to the detector blocking some of the light entering the system from its distant 

source as in a focal system.  All photons that enter the aperture of the system are recorded 

at the focal plane.  The objective is to quantify how parabolic mirror distortions affect the 
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correlation measurements of an II instrument and how the timing of photon statistics 

change with the introduction of mirror distortions.   

 Beginning with a simulation algorithm written in Matlab, a preliminary geometric 

ray tracing code was verified based on mathematical definitions.  The original results made 

physical sense as for the perfect parabolic surface having all photons travelling the same 

path length (section 5.7), thus confirming mathematically the framework for developing a 

more sophisticated analysis.  A coupling was established between the path length change 

for a given photon due to a reflection off the perturbed parabolic surface.   Distorted 

surfaces were produced by varying the shape of the reflector mathematically.  Further 

incorporation of more realistic scenarios can be carried out to perform additional research 

that can be applied to future scientific pursuits and analysis. 

 A simulation test matrix was developed to formalize the comparative study.  An 

earth based parabolic reflector was subjected to gravitational loading.  The parabola dish 

was simulated to have varying thickness in order to exemplify its effect on the structure 

that was modeled as a membrane with minimal bending stiffness.  Incoming photon 

statistics and their associated time stamps were compared to that which were impinging on 

the focal plane after reflecting through the telescope system.  This provides a direct 

comparison to evaluate the effect of parabolic shape perturbations to an II instrument 

measurement. 
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3.2 Conceptual Modeling of the Physical System  

 

 The model was designed to mimic a single dish of a II multi-telescope system 

observing a distant thermal source. Most point sources in astronomy are considered to have 

all radiation coming in parallel to the focal axis of a telescope. Hence the angle between 

the focal axis and the incoming photon rays are extremely small (sin θ ≅ θ).  The test 

matrix consisted of a set photons streams reflected off of both unperturbed and distorted 

parabolic surfaces for comparison. The parabolic surface is modeled to have a surface that 

reflects all light, like a mirror without any scattering due to microscopic irregularities.  As 

will be discussed in depth in Chapter 5, the parabolic surface is actually made of an 

ensemble of triangular flat surfaces. A convergence study was performed to describe the 

limit at which the refinement level of surface elements became acceptable. The photons in 

the simulation reflect off a specific surface element, eventually impinging on focal plane 

in which they are recorded.      

            

3.3 Mathematical Modeling of the Conceptual Model  

 

 The source of photons can be thought of as a stream of energetic particles travelling 

at the speed of light.  The transition of treating light classically (light wave) to that of 

describing light as a "quanta" or specific unit of energy (photon) needed to be defined to 

address light as a particle.  This idea of finite energy packets began modern physics and 

quantum mechanics.  A given thermal blackbody source emits polychromatic photons with 

a large bandwidth of frequencies.  With the assumption that an extremely narrow filter can 

produce monochromatic light it is possible to count the individual photons and produce a 
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time signature for each.  The timing signature of photon arrival times has a Poissonian 

distribution which is based on the Bose-Einstein photon emission processes in thermal 

gases as described in section 2.5.  A mathematical description on the nature of photon 

statistics will be elaborated on further in section 5.6. 

  The geometry of the parabolic reflector is built up from a 2-dimensional to a 3-

dimension mathematical model for the simulation algorithm.  A perfect parabolic mirror 

has a unique property of focusing all rays from distant sources to a single focal point which 

is not very practical for observation of extended sources because an image is not formed.  

Even though an image is not formed, redundant II arrays and high speed photon detectors 

can extract phase information to reconstruct images digitally.  For scientific purposes, the 

impinging photons need to be converted to electrons which are stored for future analysis 

as digital bits.  The single focal point allows for unique photoelectronic detectors such as 

photo multiplier tubes and avalanche diodes to be incorporated.  Recent advances in this 

style of devices are being developed that have extremely high quantum efficiencies and 

fast read out rates [29].  Higher order measurements with intensity interferometry are 

increasing the precision of quantum optics and unlocking the knowledge contained in 

smallest and grandest of scales of our universe [35]. 

 Current methods of modeling physical structures involves computational 

algorithms encompassing the realm of finite element analysis (FEA).  FEA applied to this 

dissertation focuses on applying a mesh of elements to the complex geometry of the 

parabolic reflector with a given thickness representing the underlying physics of the 

simulation setup.  The mesh was refined with a high enough density to not only converge 

on the analytical solution, but also to accurately represent the geometric optics of the ray 
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tracing algorithm as will be seen in Chapter 5.  A plastic material was chosen due to its low 

material cost, isotropic properties, and small modulus of elasticity compared to metals.  

The goal in choosing the material was to allow a significant displacement due to a 

gravitational loading and still be able to extrapolate some of the pertinent physics in the 

time frames associated with the photon ray travel times.  Fixed axial and rotation boundary 

conditions were applied to the outer rim of the model, forcing all incoming rays through 

the reflector model.  Meaning the modeled incoming light rays would not miss the 

reflecting parabolic surface.  A gravity body force was chosen as the loading scenario to 

represent an earth based system pointing at sources in the sky.  The power of the simulation 

algorithm proposed is that it can be scaled to any size and a variety of structural 

characteristics.  Many loading and boundary conditions could also be applied for further 

analysis, although that is beyond the scope of this dissertation.    

 

3.4 Discretization and Algorithm Selection for the Mathematical Model   

  

The discretization and mathematical algorithm selection for the simulation model 

was based on physical and assumed factors in order to address ‘how do structural 

deformations influence the photon statistics in an Intensity Interferometry telescope?’  

Thus, the simulation was optimized to fully describe and answer the for mentioned thesis 

question.  With the significant amount of past simulations and experiments involving II, 

none have fully addressed this question.  The results and conclusions of this dissertation 

work facilitates future researchers to employ the II simulation algorithm incorporating 

various physical parameters. 
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 Drafting of the physical model began with understanding the parameters of a 2-

dimensional parabola as described in section 5.3.  Solving the basic equation for the 

parabolic dish modeled in this research involved drafting an equation driven parabolic 

curve (with thickness) which was then rotated about an axis of revolution making up a 

parabolic 3-dimensional object. The subsequent parabolic reflector model was then free to 

have material properties, loads, and boundary conditions applied to it.  The density of the 

mesh was determined in a two-fold process: 

1) The necessity to accurately match the analytical solution involving deformation of 

a surface of revolution. 

2) The requirement that the ray tracing algorithm would complete in a reasonable 

amount of time (photon number versus triangulated surface number 

~computational time). 

 

 As with most mechanical systems modeled with computers, a mathematical solver 

is built into the software to find solutions for various parameters such as stress and 

displacement.  An analytical solution for a surface of revolution is derived with the same 

boundary conditions and loads as in the FEA model for comparison.  A comparison based 

on maximum displacement verified that the FEA model converged on the analytical 

solution. 

 Knowing that the FEA analysis was accurately representing a physical system it 

was necessary to bring the nodal displacement values into the ray tracing algorithm.  Over 

many iterations and solutions it became possible to extract the specific nodal positional 

values from the surface of the reflecting parabola as compared to all of the nodes defining 

the full 3-dimensional object.  After a significant amount of research, it was discovered 
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that it was possible to extract the displaced values of each node and was a major 

breakthrough for this dissertations’ progress.  These displaced values (∆x, ∆y,∆z) were 

then added to the original nodal position values to get the subsequent deformed nodal 

positions. 

 Once the deformed nodal values were obtained from the FEA analysis it was then 

necessary to rebuild the reflecting surface from the "nodal cloud" of data points.  Using a 

surface triangulation mathematical algorithm, a complete surface was established with 

interwoven triangular surfaces meeting at the vertices of the nodal coordinates from the 

FEA results.  The resurfacing algorithm also gave the normal vector out of the plane of 

each individual triangular surface necessary for the ray tracing algorithm. 

 

3.5 Computer Programming of the Model Simulation 

 

 The primary goal of the computer simulations is to model nature as accurately as 

possible.  For this dissertation that meant modeling without introducing non-linear 

phenomenon, such as thermal noise, as in a typical photodetector.  Because this thesis is 

based on an II telescope, geometric optics, and signal correlations, photon distribution 

parameters need to be established.  As mentioned previously the frequency in time that 

photons are emitted from a natural thermal source can be described through a Poisson 

distribution of arrival times [23].  This distribution is dependent primarily on the 

temperature of the source, the bandwidth of the observed light, and the read out rate of the 

detector.  Once the parameters for photon distribution model have been established it is 

necessary to simulate the photons traversing through the simulated optical system. 



  

33 

 

         

3.6 Numerical Solutions of the Computational Model 

  

Verification of the computation model is made though practical convergence studies 

and analytical solutions.  These preliminary studies and analysis were necessary to confirm 

that the simulation algorithm was tailored to represent the optics, physics, and structure 

accurately.  The parabolic reflector dish model had both an analytical and FEA solution for 

its maximum displacement at the vertex with the given loading and boundary conditions.   

The mathematics involved with describing a static solution for deflections of a 

parabolic dish involves incorporating some higher order shape descriptions.  Using simpler 

derivations of a spherical shell surface deformations gives a starting point to describe non-

spherical objects.  Adding a more refined geometric shape derivation adds the complexity 

necessary to establish an accurate solution to the reflective parabolic dish’s maximum 

vertex value.  Varying the thickness of the parabolic dish model gives another metric of 

comparison for the overall analysis. 

Defining the extent that the varying scenarios in the simulation affects the photon 

statistics requires the mathematical interpretation of the second order correlation 

measurement.  The second order correlation value is the metric used in II technology. 

Beginning with finding a baseline value for the test matrix comparison employs the 

correlation (similarity) measurement of the incoming sources photon time signatures to 

that of the detectors photon time signatures in the unperturbed dish state.  A 

correlation/similarity value = 1, would mean that both the incoming and detected photons 

time signatures are exactly the same.  The simulation algorithm approaches unity for the 
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unperturbed case but due to computational round off errors and limited mesh density a 

correlation value = 1, was not attainable as will be described in detail in Chapter 5.     

 

3.7 Representation of the Numerical Solution 

  

Quantifying how the structural perturbations of the parabolic reflecting dish affect the 

photon statistics captured at the focal plane requires graphic and tabular comparisons.  

Values of both the analytical and FEA displacement values are compared and contrasted.   

Spot diagrams of the photon distribution at the focal plane represent how efficiently light 

rays traverse both the unperturbed and distorted parabolic surface descriptions.   Additional 

images of the deformed FEA reflector surfaces provide information giving insight into how 

photon path lengths are effected for the full simulation.  Correlation values are derived 

from the combination of both, the source photons streams and that detector photon streams.  

Correlation value plots are the primary metric to evaluate the extent to which a deformed 

surface shape can affect an II correlation measurement.   
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Chapter 4  

4) Analytical Model of Shell Deformation to Validate FE Analysis 

 

 Generally, reflecting surfaces are made extremely rigid or have supporting 

component that minimize deformations leading to optical aberrations.  There are many 

aspects that must be considered in optimizing optical-mechanical design.  The basic 

requirement for efficient reflectors are based in the following categories: cost of 

fabrication, materials, strength, stability, thermal properties, temporal response, and mass. 

In the present study only the material thickness and orientation of the gravitational 

load was varied.  There were two objectives to this analytical study: 

1) To explore and understand differences between numerical (Finite Element 

Analysis) and closed-form analytical solutions, both of which involve 

assumptions and approximations. 

2) To develop closed-form solutions; this could later be used in conjunction with 

other analytical equations provided in this dissertation on photon statistics and 

intensity correlation. These analytical expressions allow parametric evaluation 

of the variables. 

 

4.1 Deformation of a General Thin Shell Due to Uniform Normal 

Pressure 

 

 This section presents the analytical expression for the deformation of a large 

spherical (or parabolic) shell with small thickness to size ratio where the bending stiffness 

is negligible and the ability to resist deformation (caused by internal pressure for example) 

is due to extension and curvature of the surface.  Lemaitre G. N. [2009], discusses various 
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aberrations in optical telescopes and how they can be attributed to the deformation 

mechanics of the optics and supporting structure. The closed-form analytical framework 

provided by Timoshenko and Woinowsky-Kreiger [1987] lets one to validate FEM 

analyses and conduct parametric analyses that allows a system level assessment to be 

conducted. Examples of technical questions that can be assessed are: 

 

1) What is the expected deviation from a parabola if a flat membrane shell is 

pressurized to create a parabolic surface used to focus an incoming beam to a 

detector array? 

2) What is the surface anomaly caused by body forces such as gravity? 

 

Figure 4.1 shows the element of a shell, at an angular position  from the axis of 

revolution. N is defined as the tangential force per unit length in the meridian plane 

(longitudinal direction). The pressure in the inward normal direction is defined as z. The 

force per unit length in a direction mutually perpendicular to N and z is N. Hence, the 

corresponding stresses in the shell are equal to N/h and N /h, where h is the shell 

thickness. The three forces N, Nand z are related by the equilibrium equation: 

 
𝑁𝜙

𝑟1
+

𝑁𝜃

𝑟2
= −𝑧  [Eq. 4.1] 

A second equilibrium equation in the direction tangential to the meridian leads to: 

𝑑

𝑑𝜙
(𝑁𝜙𝑟0) − 𝑁𝜃𝑟1𝑐𝑜𝑠𝜙 = 0  [Eq. 4.2] 
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Here r1 is the radius of curvature of the meridian and r2 is the normal distance from the 

point of interest to the axis of revolution. r0 is the radius in the horizontal (latitudinal) plane 

and can be defined as r0 = r2 sin 

 

  

 

 

 

 

 

Figure 4.1 - Schematic of forces on a shell element 

 

4.2 Specific Case of a Spherical Shell Supported at a Rim Under 

Gravity Load 

 

Figure 4.2 shows a spherical shell supported at the rim (= ); for a shallow shell 

(relatively small ) the spherical and parabolic surfaces behave similarly. 

 

 

 

 

 

 

Figure 4.2 - Inverted schematic of a spherical telescope under gravity load  

r0 

N 

N 

r1 r2 

Axis of Revolution 

 

w 

v 

Normal (w) and 

tangential (v) 

displacement 



 r=a 

R 
d 



  

38 

 

For a simple spherical shell r1 = r2 = a, and the solution due to a normal pressure q 

is given by Equation 11. This allows the variation of stresses in the membrane to be 

determined. 

𝑁𝜙 = −
𝑎𝑞

1+𝑐𝑜𝑠𝜙
  ,     𝑁𝜃 = 𝑎𝑞 (

1

1+𝑐𝑜𝑠𝜙
− 𝑐𝑜𝑠𝜙) [Eq. 4.3] 

For a parabolic shell r1  r2, and Equations 4.1 and 4.2 must be used to obtain accurate 

solutions. 

In order to determine displacement of the shell surface, the deformations v 

(tangential to the meridian) and w (normal to the surface) have to be evaluated from their 

relationships to the strains  and  along meridian and circumferential direction, 

respectively, via the elastic material properties E (modulus of elasticity) and  (Poisson’s 

ratio) [Eq. 4.4 & 4.5]: 

𝑑𝑣

𝑑𝜙
− 𝑣𝑐𝑜𝑡𝜙 =  𝑟1𝜀𝜙 − 𝑟2𝜀𝜃  [Eq. 4.4] 

𝜀𝜙 =  
1

𝐸ℎ
(𝑁𝜙 − 𝜇𝑁𝜃)  𝑎𝑛𝑑  𝜀𝜃 =  

1

𝐸ℎ
(𝑁𝜃 − 𝜇𝑁𝜙)  [Eq. 4.5] 

This leads to the relationship: 

𝑑𝑣

𝑑𝜙
− 𝑣𝑐𝑜𝑡𝜙 =  

1

𝐸ℎ
[𝑁𝜙(𝑟1 + 𝜇𝑟2) − 𝑁𝜃(𝑟2 + 𝜇𝑟1)] = 𝑓(𝜙) [Eq. 4.6] 

The general solution of this is of the form: 

𝑣 = 𝑠𝑖𝑛𝜙 [∫
𝑓(𝜙)

sin 𝜙
𝑑𝜙 + 𝐶]  

The solution of which is given as: 

𝑣 = 𝐾 [𝑠𝑖𝑛𝜙 ln(1 + 𝑐𝑜𝑠𝜙) −  
𝑠𝑖𝑛𝜑

𝑎 + 𝑐𝑜𝑠𝜑
] + 𝐶𝑠𝑖𝑛𝜙, 𝑤ℎ𝑒𝑟𝑒 𝐾 =  

𝑎2𝑞 (1 + 𝜇)

𝐸ℎ
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𝐶 = 𝐾 [
1

1+𝑐𝑜𝑠𝛼
− ln (1 + 𝑐𝑜𝑠𝛼)] (Eq. 4.7) 

The constant of the integration C was evaluated from the boundary condition v = 0 at  = 

. 

Once v is determined, w can be determined from the relation: 

𝑤 = 𝑣𝑐𝑜𝑡𝜙 −
𝑟2

𝐸ℎ
(𝑁𝜃 − 𝜇𝑁𝜙)  [Eq. 4.8] 

If one wanted to incorporate thermal expansion/contraction in the above analyses, 

it can be accomplished via Eq. 4.5, where the thermal expansion is added to the strain terms 

 and .  For example, in the specific case depicted in Figure 4.2 the exact solution to the 

deflections are as follows: 

𝑤 = 𝑣𝑐𝑜𝑡𝜙 −  
𝑎2𝑞

𝐸ℎ
(

1+𝜇

1+𝑐𝑜𝑠𝜙
− 𝑐𝑜𝑠𝜙) (Eq. 4.9) 

Where a is the radius and q is the applied out-of-plane load. 

This general solution (Eq. 4.9) cannot be used for the specific application of this 

dissertation to find the displacement at the apex ( = 0), since from Eq. 4.8, v = 0, 

while cot = . So, it was necessary to revert to the original equations to derive 

the necessary solution valid for  = 0. 

The relationship between the normal and tangential displacement is as follows: 

𝑤 =  
𝜕𝑣

𝜕𝜙
− 𝑟𝜀𝜙  [Eq. 4.10] 

Where  is the strain along the meridian. 

Since v is known from Eq. 4.8, the derivative at the apex where  = 0 (note sin = 0) is: 

𝛿𝑣

𝛿𝜙
= 𝐾𝑐𝑜𝑠𝜙 [𝑙𝑛(1 + 𝑐𝑜𝑠𝜙) −  

1

1+𝑐𝑜𝑠𝜙
] + 𝐶 𝑐𝑜𝑠𝜙 [Eq. 4.11] 
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The steps in determining the deflection at the vertex based on these derivations are: 

1) Determine C from the boundary condition (value of ) using Eq. 4.7 

2) Determine  and v using Eq. 4.3, 4.5, and 4.11 

3) Use Eq. 4.10 to determine w. 

 

 

4.3 Numerical Input 

 

The specific parameters for the modeled reflector were determined as follows: 

Selected: Radius of the rim (R) = 0.78m, depth, d (vertex to the plane of the rim) = 0.234m 

Assumed: A small segment of a parabolic curve approaches a circular solution at the vertex 

Determined: The best fit spherical surface to this reflector has a Radius (a) = 1.417m 

Therefore, the boundary is at  = 33.4°. 

Using the following values: 

Thickness (h) = 0.1mm = 10-4 m, E = 6MPa,  = 0.47, and density = 1290Kg/m3 

From Eq. 4.7 calculating 𝐶 = 𝐾 [
1

1+𝑐𝑜𝑠33.4°
− ln (1 + 𝑐𝑜𝑠33.4°)] =  −0.062𝐾 

From Eq.4.6, 
𝛿𝑣

𝛿𝜙
= 𝐾𝑐𝑜𝑠0° [𝐿𝑛(1 + 𝑐𝑜𝑠0°) −  

1

1+𝑐𝑜𝑠0°
] + 𝐶 𝑐𝑜𝑠𝜑 = 0.193K – 0.062K = 

0.131K 

From Eq.11,aq/2. From Eq.4.5  = -aq(1-)/2Eh 

Gravity load, q (= density x gravity x thickness) = 1,290 x 9.81 x 10-4 = 1.265N/m2 

From Eq.4.9,  

w = 0.131K + a2q(1-)/2Eh = 
1.4172 𝑥 1.265

6 × 106 × 10−4
 [(1.47 𝑥 0.131) + (1 − 0.47)/2] = 0.0019m 

(1.9mm).  This is the analytic solution to the maximum displacement at the vertex of the 

surface with the given boundary conditions and loads. 
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4.4 Analytical Evaluation Pertaining to a Paraboloid 

 

Figure 4.3 shows a parabolic shape with the chosen Rim radius (R) = 0.78m and 

Depth (d) = 0.234m. The parabola therefore has the equation y2 = 4ax, where a = 0.65m is 

the focal distance (distance from the vertex to the focal plane). 

 

 

 

 

Figure 4.3 Schematic of a Parabolic Reflector 

 

From analyzing the parabolic equation the following equation can be derived: 

𝜕𝑥

𝜕𝑦
=  

2𝑦

4𝑎
,   𝑠𝑜 (

𝜕𝑥

𝜕𝑦
)

2

=  
𝑦2

4𝑎2   [Eq. 4.12] 

The length of the arc from the rim to the vertex is obtained by integration: 

𝑆 =  ∫ 𝜕𝑠 = ∫ √𝜕𝑥2 + 𝜕𝑦2  = ∫ √1 + (
𝜕𝑥

𝜕𝑦
)

2

 𝜕𝑦 = ∫ √1 +
𝑦2

4𝑎2

0.78

0
 𝜕𝑦 [Eq. 4.13] 

Using the binomial expansion √1 + 𝑧 = 1 +
𝑧

2
−

𝑧2

8
+ ⋯  this integration can be 

approximated as: 

𝑆 =  ∫ [1 +
𝑦2

8𝑎2 −
𝑦4

8×16𝑎4 + ⋯ ]
0.78

0
𝜕𝑦 = [𝑦 +

𝑦3

24𝑎2 −
𝑦5

640𝑎2 + ⋯ ]
0

0.78

 [Eq. 4.14] 

It can be seen from Eq. 4.14 that when a load is applied and the vertex of the 

parabola shifts outwards, the second and third terms are what contribute to the change in 

T 

y 

x 



R 

d 
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the arc length (S). For the initial parabolic shape S = 0.8268m and 0.8243m with 2nd and 

3rd terms of Eq. 4.14.  When this parabolic shell is deformed under gravity load, the rim 

circumference (y= 0.78m) does not change, but the vertex moves causing a change in the 

focal length ‘a’.   It can be shown that for small changes in the vertex (a few mm) the 

change in the second term is negligible compared to the change in the third term, i.e. only 

the third term is sufficient in evaluating the change in the arc length (related to strain) as 

the shell deforms.  As shown in Figure 4.3, the gravity load is countered by the X-

component of the forces along the rim.  

The gravity force = Surface area x q  2Rdq = 2x0.65 x 0.234 x 1.265 = 1.21 N. 

At the rim x/y = y/2a = 0.78/(2 x 0.65) = 0.6 = tan ; so  = 31°  

Furthermore, if T is the tension force along the meridian, (Figure 4.3), from equilibrium T 

sin31° = 1.21N. 

The rim circumference is 2X 0.78 = 4.9m, and the material thickness is 10-4m,  

Therefore  = 1.21/(sin 31° x 4.9 x 10-4) = 4,795 N/m2 and   = /E= 8.0 x 10-4. 

For example, suppose the vertex moves under load such that the new depth is d’, and the 

focal length is a’.  

Using Eq.4.14, Meridian strain 𝜀𝜑 =  
𝜕𝑆

𝑆
=  

𝑦

24𝑆

3
(

1

𝑎2 −
1

𝑎′2)  = 
0.78

24×0.8268

3
(

1

0.652 −
1

𝑎′2) =

8 × 10−4  

Solving Eq, 4.14 with 'a’ = 0.6455m.  Note that as the vertex moves out and the focal point 

moves in. 

Once the new 'a’ is determined, the value of x (for y = 0.78m) can be determined from the 

equation for a parabola (y2 = 4ax); x = y2/4a = 0.782/(4x0.6455) = 0.2356m.  
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So, the vertex moved by 0.234-0.2356 = 0.0016m = 1.6mm 

 

 

4.5 Comparison of Various Analyses 

 

The analysis based on the circular membrane shell approximation resulted in the 

largest deformation (1.9mm). Membrane theory assumed that the boundary is free to move 

in the circumferential direction, which results in greater overall displacement. The circular 

shape is also an approximation of the paraboloid.  The FEM analysis had fixed boundaries 

and the ‘thin shell’ elements used were not ‘membrane’ elements; i.e. they had some 

bending stiffness. These two issues contribute to a smaller overall analytically derived 

maximum deflection (1.6mm). 

 

Figure 4.4 - Exaggerated Displacement of Horizontal Gravitational Load   

 

The parabolic shell analysis better captures the actual shape and the resulting 

maximum displacement (1.6mm) when compared to that of the FEM analysis (1.686mm - 
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Fig 4.4). However, the analytical does not capture the effect of the changing radius of 

curvature of a parabola from the vertex to the supporting rim. The extent of error this may 

introduce could be sufficient to explain the difference between the analytical derived 

solution compared to the FEM maximum displacement [37, 38]. 

 

Figure 4.5 - Exaggerated Displacement of Vertical Gravitational Load 
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Chapter 5 

5) Simulation Algorithm and Software Interfacing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) Physical System 

• Focal Reflecting Parabolic Disk an Intensity Interferometry Receiver 

• Coupling mirror distortions to detected photon statistics 

• Test Matrix 
 

2) Conceptual Modelling of the Physical System 

• Distant Photon Emitting Point Source  

• Light represented as parallel rays to the focal axis  

• Reflecting off an unperturbed/distorted parabolic surface  

• Impinging on a focal plane detector.  
 

4) Discretization and Algorithm Selection for the Mathematical Model 

• Poisson distribution of arrival times and flux based on physics 

• Geometric optics 

• Drafting the Parabolic Reflector 

• Analytic solution for surface of revolution distortions due to loading 

scenarios  

• Meshing the Reflector and performing FEA 

• Extracting Surface Nodes to import into triangulation algorithm to 

represent surface for geometric optical analysis 

 

3) Mathematical Modeling of the Conceptual Model 

• Photon represented as particles with a natural distribution  

• Parabolic reflector geometry 

• Finite element analysis for reflector loading, boundary conditions,  and 

materials  
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5.1 Assumptions for Simulating an Intensity Interferometer 

 

 Many avenues of research could have been performed to answer various scientific 

questions but this dissertation focused on answering the general thesis statement, how 

would the correlation of an intensity field change as a large light weight reflective structure 

deforms?  Many assumptions were made and their justifications will be presented based on 

the requirements of the simulation and/or the analysis.   

 The simulated optical setup will consist of a focal reflector with similar dimensions 

to the original II instruments.  The simplification of this analysis begins with assuming that 

6) Numerical Solution of the Computer Model 

• FEA comparison 

• Second order correlation measurement 
 

5) Computer Programming of the Model Simulation 

• Generate Poisson distributed photons 

• Project photons through geometric optic simulation model 

• Record photon “hits” at the focal plane 
 

7) Representation of the Numerical Solution 

• Error 

• Graphs 

• Conclusions 
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a geometric ray tracing analysis is established.  This assumption treats light as particles, 

not waves, meaning diffraction effects do not contribute to the physics of the simulation.  

Another assumption is that all the light is propagating directly parallel to that of the optical 

axis of parabolic reflecting surface. 

 Additionally, the reflector has been selected to be a thin parabolic dish.  The surface 

of the dish although discretized into triangular elements, is perfectly reflecting.  The 

detector will absorb all photons impinging on its surface and will be represented as an 

infinite XY plain located at z = .65 and the parabolic surface vertex at z = 0.   

 

5.2 Basic Dynamic Model Description 

 

 This research is based on the physics of intensity interferometry and photon 

statistics emanating from a stellar point source to a parabolic focal detector system.  

Understanding the changing photon statistics gives valuable information that can be used 

to improve the design and efficiency of intensity interferometers.  The source of incoming 

photons are emitted randomly throughout a light emitting disk with a radius equal to that 

of the parabolic reflector with a radius of 0.78m and a focal point of 0.65m, similar to the 

original optical intensity interferometer [2].  The light emission can be conceptualized as a 

column of light particles coming from a distant source (Figure 5.1).  The emission disk will 

be placed above the X-Y plane at a distance of 2m from the origin.  The photons travel to 

the reflector along the vertical Z-axis and have a random nature to their spatial extent and 

temporal characteristics.  Investigating how the detector output and the surface spatial 

perturbations effect on the time of flight of the photons is the purpose of the simulation. 
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Figure 5.1 - Ray Tracing Model 

 

 The light being collected has a natural Poissonian distribution for the frequency 

(not related to the color) that the photons are emitted from a simulated thermal source (star 

light).  The incoming photons are reflected off a parabolic dish with the unique 

characteristic of focusing all incoming parallel light to a single point.  Due to the nature of 

intensity interferometry an image is not preserved to the focal plane, allowing fewer 

constraints on the precision of the smoothness of the reflecting surface.  An analysis of 

varying the focal length of a simulated detector and surface the shape of the parabola will 

give insight into their effect on the statistics of the detected photon streams.  
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5.3 Focusing Properties of a Two Dimensional Parabola 

 

 A basic description is necessary to describe the unique focusing characteristics of 

a parabolic reflector.  A two dimensional curve is drawn starting at the origin and extending 

out along a line defined by a parabolic curve.  Beginning in the x-y plane, a curve represents 

a reflective surface.  Symmetrical reference can be noted by a y axis reflection; i.e. y(−x) 

= y(x).  An additional rotation can be made about the y-axis to form a 3-dimensional 

parabolic dish which is defined as a surface of revolution.  Projecting that surface back to 

the x-y plane gives a curve that will be used in ray propagation and the subsequent 

reflection scenario.   

Consider parallel light rays that strike a curved mirror surface (Figure 5.2).  The 

first ray is initially propagating in a direction parallel to the y-axis. It then strikes the 

mirror and forms an angle of incidence with respect to the normal, which is perpendicular 

to the tangent at point P(x,y).  A perfectly reflecting surface uses the law of reflection 

where the angle of incidence equals the angle of reflection, implying the ray reflects and 

is incident at the focal point F(0,f).  An additional ray example traverses straight down 

the y-axis reflecting at point O(0,0) and is incident at point F(0,f) [37].    
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Figure 5.2 - Focusing Properties of a Parabola 

 

 A tangent line is defined at P and forms an angle with the x axis.  Which is 

defined by: 

tan θ =
dy

dx
             [Eq. 5.1] 

The derivative of the curve y(x) at point P.   With the angle ∠FCP equal to 𝜃, the 

original light rays are parallel and it can be concluded that ∠QFP is equal to 2𝜃.  This 

means that the line FQ is given by x/tan2𝜃 and the focal length f is defined as: 

f = y +
𝑥

tan 2𝜃
                      [Eq. 5.2] 

Employing the identity: 

tan 2θ =
2 tan θ

1−tan2 θ
                [Eq. 5.3] 

Combining equations 5.2 and 5.3 yields: 

f = y +  
x(1−tan2 θ)

2 tan θ
               [Eq. 5.4] 

And for a parabola: 
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y = Ax2                  [Eq. 5.5] 

In which dy/dx = 2Ax.  Plugging these definitions into equation Eq. 5.4 gives 

f = Ax2 +  
x(1−4A2 x2)

4Ax
=  

1

4A
                      [Eq. 5.6] 

 

 

5.4 Ray Tracing Algorithm 

 

 A 3-dimensional geometric ray tracing algorithm has been developed using vector 

notation for a single focal system.  Figure 5.3 depicts a psuedo 3-dimensional surface, 

where vector terms are used to represent photon paths and the triangular element is the 

reflective surface with its associated normal unit vector. 

 

Figure 5.3 - 3-Dimensional Surface Vector Reflection 

The simulation incorporates a photon stream (column of photons) that reflects off 

a perfect parabolic reflector and is absorbed on a detector.   

𝒙 = (
𝑥
𝑦
𝑧
)                         [Eq. 5.7] 
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𝒙 is a column vector, and a vector with a ‘^’ (as in �̂�) is a unit vector.  When necessary a 

transpose will be incorporated to satisfy Matlab software syntax. Starting with a parabolic 

surface defined by the equation: 

z = f(x, y) = A r b  = 
1

2∗𝐹 
((𝑥2 + 𝑦2) 1/2 ) b               [Eq. 5.8] 

The vertex of the parabola will have coordinates (0,0,0) and F is the focal length. 

The incoming light is traveling in some direction, �̂�𝑖𝑛 = (0,0,-1)T . Because the mirror has 

a certain radius it is necessary to check the condition that the photons actually reflect off 

the parabolic dish using the following inequality: 

𝑃𝑥
2 + 𝑃𝑦

2  ≤ 𝑅𝑚
2                                  [Eq. 5.9] 

Where Px and Py are a specific point on the reflector and Rm is the overall radius of the 

detector. 

The output direction of the light, 𝑣𝑜𝑢𝑡, is given by the equation: 

�̂�𝑜𝑢𝑡 =   �̂�𝑖𝑛 − 2(�̂�𝑡 ∙ �̂�𝑖𝑛)�̂�              [Eq. 5.10] 

Where �̂� is the unit normal vector of the curve at the point p.  The formula for �̂� is given 

by first computing the direction of the unit normal at the point p:           needy  

𝒏 =  (
(𝜕𝑥 𝑓)(𝑝𝑥,𝑝𝑦 )

(𝜕𝑦 𝑓)(𝑝𝑥,𝑝𝑦 )

−1

)                          [Eq. 5.11] 

Then normalizing: 

�̂� =  
𝒏

‖𝒏‖
                                           [Eq. 5.12] 

Where the norm of a vector is given by ‖𝒏‖ =  √𝒗𝒕 ∙ 𝒗. 

This makes every point on the travel line from the parabolic reflection to that of the detector 

equal to:  



  

53 

 

𝑎 �̂�𝑜𝑢𝑡 + 𝒑                                           [Eq. 5.13] 

In which 𝑎 is real scale factor and p is the point of reflection. 

 Now it is necessary to model where the detector lies.  This is specified by a normal 

vector d, which gives the direction that the detector is pointing and a location vector r.  

Note that d does not have to be a unit vector.  The plane of the detector (Figure 5.6) is the 

set of solutions to the equation: 

�̂�𝑡 ∙ (x - r) = 0                         [Eq. 5.14] 

Solving for x while following the condition that any solution of the vector x must satisfy 

the following inequality: 

‖𝒙 − 𝒓‖ ≤ 𝑹𝒅                            [Eq. 5.15] 

Where 𝑹𝒅  is the size of the detector.   

To find where our reflection line intersects the detector, place Eq. 5.13 for a point 

on the detector (the x vector in Eq. 5.14): 

�̂�𝑡 ∙ (( 𝑎 �̂�𝑜𝑢𝑡 + 𝒑) −  𝒓) =  0         [Eq. 5.16] 

By distributing the dot product 𝒂 can be solved for.  It is important to remember if 

the detector is parallel to the reflected light, then there is no intersection.  Solving for the 

scalar 𝒂 gives:                                     

               𝒂 = 
�̂�𝑡∙(𝐫 − 𝐩)

�̂�𝑡∙ �̂�𝑜𝑢𝑡
                        [Eq. 5.17] 

Noting that |𝑎| has the interpretation of being the distance from where the light 

strikes the mirror to where it intersects the detector.  Now it is possible to get the time of 
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flight for the light from simulated emission plane to being reflected off the reflector and 

eventually hitting the focal plane at point: 

𝑠 = 
�̂�𝑡∙(𝐫 − 𝐩)

�̂�𝑡∙ �̂�𝑜𝑢𝑡
 �̂�𝑜𝑢𝑡 +  𝒑                 [Eq. 5.18] 

By substituting all the vectors into Equation 5.18, a closed form solution for the point of 

detection s at the focal plane is developed. 

 

5.5 Random Photon Emission 

 

 An algorithm was developed using Matlab mathematical modeling software to 

obtain emission points on a disk.  The random nature of emission points is how light is 

emitted on a stellar surface, traversing through space, and enters an aperture of a reflective 

mirror.  Equation 5.19-5.23 are the calculations necessary for the random point generator.  

Theta is an angle that is randomly generated between 0 and 2*pi.  In order to not have a 

concentration of points at the center (Figure 5.4) it is important to have a square root factor 

on the random radius variable (Figure 5.5).  The rand Matlab function generates a number 

between 0 and 1, n is number of points, dradius is the radius of the incoming light field 

(0.78m), x and y are the positional points on the emitting dish.  

theta = rand(1,n)*(2*pi);                 [5.19] 

r = sqrt(rand(1,n))*dradius;             [5.20] 

x = r.*cos(theta);                             [5.21] 

y = r.*sin(theta);                              [5.22] 
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Figure 5.4 - Centralized Emission Points 

 

Figure 5.5 - Random Emission Points 
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5.6 Random Number Distribution 

 

 To obtain a baseline on the temporal distribution of impinging photons on the focal 

parabolic system, a simplified version of the photon statistics was incorporated.  A random 

number distribution of N time intervals was developed.  The algorithm was established to 

use 1's as a photon emission and a 0's as a null emission with the time between a photon/null 

emissions defined as 5e-11 seconds.  Using a mean of 0.5 implies that there will be the same 

amount of photon emission as null times, roughly N/2 photons.   This distribution has the 

greatest likelihood that five photons will be detected in ten time intervals, with a lesser 

chance of ten photons being detected in the same time interval.  The following Matlab code 

can be modified and used with varying mean values to define an assumed Poisson 

distribution of 1's and 0's: 

t1 = rand(n,1).*sign(rand(n,1) - .5)         [5.22] 

for i = 1:n 

if t1(i) >=0; 

k1(i) = 1;       

else if t1(i) < 0; 

k1(i) = 0; 

 

 Combining the random distributions involves addressing the physics of the 

emission process.  The stream of photons coming from an extremely distant (sin 𝜃 =  𝜃) 

source are all coming in parallel to one another along the z-axis as that of Figures 5.1 and 

5.6.  The disk of random emission points is combined with the randomly distributed photon 

emission times.  Thus, a photon emission has an assigned time tag and a point on the 

emission disk.  An array of photon vectors (�̂�𝑖𝑛 = (0,0,-1)T) is assigned to each photon 

emission time tag to eventually reflect off of the parabolic dish and be received at the 
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detector.  A two-fold stochastic emission process is defined incorporating the random 

nature of emission positions and times. 

 

Figure 5.6 - Parabolic Surface 
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Figure 5.7 - Surface and Detector Perturbations 

 

5.7 Parabolic Focus Confirmation 

 

 To confirm that the initial mathematical algorithm was correctly implemented, the 

point spread distribution on the focal plane was evaluated at various detector focal plane 

distances.  Figure 5.8 shows the point distribution plots going clockwise from the top left 

0.63m,0.64m,0.65(Focal Point),0.651m,0.6525m, and 0.655m for the various focal 

distances.  The focal point confirms the nature of a perfect parabolic dish which reflects all 

z-axis parallel rays to one specific distance (point) as in the top right image of Figure 5.8.   
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Figure 5.8 - Varying Focal Point Spread Distributions (each axis 5cm2 ) 

 

 All light coming in parallel to the z-axis of the parabolic dish (top-right Fig 5.8) 

will fall eventually on the detector exactly at its focal length.  All photons reflected off 

the perfect parabolic surface will be concentrated at a single point on the detector.  This 

specific concentration at the focal point may be impractical for actual detectors due to 

material and electronic limits in the design of current detectors.    The total distance 

travelled for all the photons is the length travelled to the parabolic reflector from the 

emitting disk (2m) then reflecting off the surface until hitting the detector (0.65m) for a 

total of 2.65 for each photon (Figure 5.9). Although the constant 2.65m travel distance for 

all photons traversing the focal system is a null result, it provided a direct confirmation 

that the simulation algorithm was valid.      
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Figure 5.9 - Perfect Parabola/Photons Travel Distance 

 

 A perturbed surface was developed by varying the exponent in the parabolic surface 

of Equation 5.8.  This original analysis incorporates a focal plane compared to an actual 

instrument that has a fixed detector size.  The exponent of Equation 5.8 was adjusted 

incrementally to determine the parabolic surface shape at which the distance travelled by 

the photons falling on the focal plane would begin to significantly deviate from that of a 

perfect focal parabolic reflector.  Figure 5.10 graphs the distance travelled by the photons 

through the focal system and lists them from the baseline of 2.65m to 0.006m greater than 

2.65m for the b parameter exponent value of 2.1 in Eq. 5.8. 
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Figure 5.10 - Perturbed Parabola/Photons Travel Distance 

  

 Figure 5.11 shows the dispersion of photons hitting the plane of the detector located 

at .65m from the vertex of the parabolic surface.  The surface was defined using Eq. 5.8 by 

varying the b parameter from top-left moving clockwise, b = 1.9, 1.99, 1.999, 2, 2.05, and 

2.1.  It has been shown that if the surface deviated from the perfect parabolic shape on the 

outer edges of 0.003m. This would inevitably change the travel time of the incoming 

photons on the focal plane, thereby changing the statistics of the detected photons. 
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Figure 5.11 - Focal Plane for Various b parameters (axis 5cm2 ) 

 

5.8 Detected Photon Statistics  

 

 All the simulations used the same data set of emission points and time of emission.  

The statistics of the detected photons was evaluated using mean and standard deviation 

measurements with Matlab mathematical software.  All perturbed scenarios were evaluated 

including incorporating the perfect parabola/focal point model.  Eq. 5.22 was used as a 

distributed random number generator with a mean of 0.5. This was confirmed by taking 

the mean of k1, the random photon emission spacing’s as in Eq. 5.22. 

 Table 5.1 is a list of the mean and standard deviation of photon travel times (PTT).  

The focal plane fixed at 0.65m and parabolic shape exponent of 2 (Eq. 5.8) creates the 

perfect parabolic shape used as the baseline for the analysis.  The aforementioned perturbed 

scenarios describe that the statistics of the photon detection times do change with the 

various structural and detector perturbations.  The mean PTT is the time it takes a photon 
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to travel 2.65m.  Dividing by the speed of light (299,792,458 m/s) gives 8.8394e^-9 

seconds.  Also, the standard deviation for the baseline focal plane (.65m) and surface shape 

(b = 2) has a value of 0, indicating that there is no change to the PTT and confirming that 

all photons travel the same distance as in Figure 5.9. 

Table 5.1 - Mean and Standard Deviation of Photons 

 

 

Figure 5.12 - Mean Photon Travel Time versus Focal Length 

Parabola Parameters 
Mean (Photon Travel Time) 

PTT  
Standard Deviation PTT 

Focal Plane = 0.63 8.74E-09 2.12E-11 

Focal Plane = 0.64 8.79E-09 1.06E-11 

Focal Plane = 0.65 8.84E-09 0.00E+00 

Focal Plane = 0.651 8.84E-09 1.06E-12 

Focal Plane = 0.6525 8.85E-09 2.65E-12 

Focal Plane = 0.655 8.86E-09 5.31E-12 

b = 1.9 8.78E-09 5.65E-11 

b = 1.99 8.83E-09 5.62E-12 

b = 1.999 8.84E-09 5.62E-13 

b = 2 8.84E-09 0.00E+00 

b = 2.05 8.87E-09 2.80E-11 

b= 2.1 8.89E-09 5.57E-11 

FP = 0.63 & b = 2.1 8.79E-09 3.32E-11 
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Figure 5.13 - Mean Photon Travel Time versus Surface Shape 

 

 By examining Figures 5.12 and 5.13 it is evident that there exists a direct 

correlation of structural and focal perturbation to the statistical variation in the photon 

arrival times.  Varying the focal length of the model as in Figure 5.8, gave insight into the 

extent of the photon intensity distribution at the focal plane.   Upon inspection of Figure 

5.11, the b parameter surface shape changes of the parabola imply the symmetric nature 

of the detector outputs of modeling b = 1.9 and 2.1, and the highest concentration of 

photons with the b = 2 parameter for a perfect parabolic surface.   

 Table 5.11, Figure 5.12, and Figure 5.13 describe the extent that which perturbing 

a parabolic focal system can have an effect on the statistics of photons being counted at a 

given detector.  The largest deviation of the mean of the statistics maps directly to the 

greatest change in surface shape or focal plane distance.  Simulating a perfect parabolic 

focal instrument was used as a baseline for the model verification.  It has been shown that 

an analysis tool has been developed and verified for this parabolic focal system.  
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5.9 Defining a Parabolic Surface  

 

 An initial step is to mathematically model a representative parabolic surface to 

confirm the ray tracing algorithm.  With x and y axis having an orientation as in Figure 5.9 

and the z axis will be in the direction of the incoming light.  The shape of the parabola is 

defined as in Eq. 5.8 for the preliminary confirmation of the simulation code.  Advancing 

the research to a more realistic model required the integration of multiple software 

platforms and computational code.  

 Applying the FEA nodal displacement output to define a parabolic surface became 

an intricate threefold process: 

1) Build the geometry of the parabolic dish including thickness, material, boundary 

conditions, and loads. 

2) Run the FEA iterative solver in Solidworks for the total nodal displacements of a 

static analysis.  Next, the original surface node positions (x,y,z) with the displaced 

positions (Dx,Dy,Dz) are exported and combined in Exceltm . 

3) With the displaced nodal values (x',y',z') make a new meshed surface using 

pointCloud2mesh.m Matlab software that uses Delaunay triangulation methods to 

mesh a surface with the number of triangulated surface elements, vertices, and 

normal vector of each element. 

 

5.10 Convergence Study 

 

 Expanding the simulation complexity required the introduction of a 3-dimensional 

reflective surface.  Globally the FEA unperturbed parabolic dish model is meshed 

throughout its volume.  An option in the FEA modeler allowed for just the nodes at the 
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reflective surface to be exported.  The 3-dimensional nodal cloud of points that was 

exported was then converted into a triangulated mesh of surface elements with Matlab 

code.  This surface import into the ray tracing algorithm required refining the amount of 

reflective surface elements that make up the parabolic dish.  A coarse mesh of surface 

elements discretizes the reflective dish into a small amount of surface elements which 

would not attain the accuracy needed for the ray tracing analysis.  The mesh is made up of 

triangular surface elements that define the surface as in Figure 5.14. 

Figure 5.14 - Coarsely meshed FEA model 

 

A gradual refinement of the surface elements into smaller triangular elements 

making up the reflective dish began to more accurately define the parabolic surface.  A 

limit was established to the amount of surface nodes due to computational power.  Firstly, 

the increased density of FEA elements increased the amount of computational time 

required for solving the nodal displacement values of the perturbed models.  Secondly, the 

increased number of surface elements extends the computational time for the ray tracing 

algorithm to complete.  The ray tracing algorithm required that every photon ray would 

need to find which triangulated surface it would reflect off of.  The ray tracing 
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computational algorithm needed limits on the number of photons used in the simulation as 

well as the refinement of surface nodes (Figure 5.15).   

 

Figure 5.15 - Finely meshed FEA model 

 

 

 

Figure 5.16 - Converging focal point with increased surface nodes 

 

 As can be seen in Figure 5.16 that increasing the number of triangulated surface 

nodes does indeed increase the focusing ability of the parabolic dish model.  Figure 5.16, 
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illustrates how a coarse mesh produces a spot diagram that extends out from the focal plane 

center greater than ~200 cm2 (top left).  As the mesh is refined the spot diagram decreases 

to 12 cm2, which was deemed acceptable for all the incoming light based on the original 

optical II (16 cm2) [2].     

 Nodes 376 900 1400 5000 20000 

Photon # 

Mean 

Distance(m) 

 Mean 

Distance(m) 

 Mean 

Distance(m) 

 Mean 

Distance(m) 

 Mean 

Distance(m) 

1000 2.6470 2.6494 2.6495 2.6500 2.6500 

5000 2.6442 2.6480 2.6482 2.6498 2.6500 

10000 2.6446 2.6478 2.6489 2.6492 2.6500 

15000 2.6449 2.6484 2.6484 2.6498 2.6500 

20000 2.6452 2.6483 2.6493 2.6500 2.6500 

Table 5.2 - Photon Number versus Surface Node Number 

 

By evaluating Table 5.2, it was determined that ~20,000 nodes (~40,000 surface 

elements) and ~1000 photons for the simulation would exemplify the ray tracing physics 

and surface deformation shapes.  

 

5.11 Perturbed Ray Tracing and Photon Statistics 

 

 The results of changing the shape of the parabolic dish mathematically has been 

explained and verified.  Furthering the algorithm involves establishing a test matrix of 

simulation runs and the varying loading and boundary conditions for the imported FEA 

displaced models.  As can be seen in Figure 5.17, changing the shape of the parabolic 
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reflecting dish changes the angle that the ray is reflected through the ray tracing model.  

The plane displacement is the primary variable to changing a given photons path travel 

length.  Additionally, the change in angle gives another contribution to the photon travel 

length as the photon will not hit the focal point but an x-y displacement at the focal plane. 

  

 

Figure 5.17 - Light ray path change with surface perturbation 

 

 Changing the shape of the reflective surface changes the path length which in turns 

changes the time that the photon travels through the focal system.  The stochastic nature of 

how each photon enters the aperture will equate to a different path length change depending 

on where it reflects off of the distorted surface of the dish.  Figure 5.18 illustrates the photon 

changes vector path lengths that contribute to the change in the correlation (similarity) 

measurement.  For the gravity acting along the focal axis (Figures 5.20, 5.22, and 5.24), 

photons reflecting off the surface near the fixed rim will have minimal path length changes 

and the photons reflecting near the vertex will have a maximal change (focal/power 
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aberrations).  The total path length change is both due to a contribution from aperture to 

the perturbed surface, after the reflection of the (un)perturbed surface (Figure 5.17), and 

the final component of path length change to where it hits on the detector plane.  All of the 

path length components result in the path length vector change (Figure 5.18) which equated 

to when it is recorded in time at the focal plane.  The read out times t are equal to the total 

simulation time divided into a set of increments and can be related to the speed of a photo-

sensitive detector.       

 

Figure 5.18 - Photon Correlation Measurement 
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 The correlation measurement is the comparison of incoming source photon arrival 

times to that which is measured at the detector plane.  This value is based on Equation 2.8, 

and used as a metric to define the statistical variation between two sets of photon streams.  

This measurement is also based on finite time increment of the averaging or the detector 

time intervals (Figure 5.18).  The correlation value approaches a value of unity (Figure 

5.19) as the time increment for averaging becomes larger and the correlation value 

approaches a minimum as the time averaging becomes smaller.   

 

 

Figure 5.19 - Correlation Values Versus Simulation Time Deviation 
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Figure 5.20 - 0.1mm Thick Horizontal Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 1.60mm 

Figure 5.21 - 0.1mm Thick Vertical Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 3.25mm 
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Figure 5.22 - 1mm Thick Horizontal Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 1.73mm 

Figure 5.23 - 1mm Thick Vertical Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 3.58mm 
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Figure 5.24 - 10mm Thick Horizontal Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 2.25mm 

Figure 5.25 - 10mm Thick Vertical Gravity Displacements/Focal Plane Photon 

Distribution, Maximum Resultant Displacement (Red) = 3.38mm 
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Figure 5.26 - Horizontal Gravity Loading (1000 Time Deviations) 

 

 

Figure 5.27 - Horizontal Gravity Loading (500 Time Deviations) 
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Figure 5.28 - Vertical Gravity Loading (1000 Time Deviations) 

 

 

Figure 5.29 - Vertical Gravity Loading (500 Time Deviations) 
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 Ten separate photon streams (k1 of Eq. 5.22) were applied to the II simulation 

algorithm.  Each photon stream set k1(1) – k1(10) interacted with both the unperturbed and 

deformed dish scenarios of Figures 5.20-5.25 where the error bars are based on the standard 

deviation of the mean for each data series.  The unperturbed data provides a baseline for 

the horizontal gravity loading as in top (red) of Figures 5.26 and 5.27.  There are similarities 

for both the 0.1mm and 1mm thickness correlation plots, this is directly related to the 

similarity in maximum displacements of 1.60mm and 1.73mm, respectively.  An even 

greater loss in correlation values occurred for the 10mm thick parabolic dish with a 

maximum displacement of 2.25mm.  The horizontal gravity loading scenarios 

(focus/power mirror aberrations) exhibit a distinct trend in their respective correlation 

values.  Examining the bottom/left images of Figures 5.21, 5.23, and 5.25 describes the 

non-symmetric displacement surface result.  Where the top (red) maximum displacement 

falls closer to the focal plane and the bottom (red) falls away from the focal plane (Figure 

4.5).  The vertical gravity loading scenarios (coma mirror aberrations) do exhibit a general 

loss in correlation values from the baseline values but vary more significantly than the 

horizontal cases.  Due to the stochastic nature of the spatial and temporal contribution to 

the photon path length differences, the photon timing signatures change adding path length, 

as well as, take it away (red vectors would point in both directions in Figure. 5.18).  It has 

been shown that the correlation measurement with the source and detected photon stream 

are affected by parabolic dish deformation.  The second order correlation measurements 

conducted in the simulation runs do provide values that are coupled to the amount of 

deformation of the reflective dish.  Interesting patterns emerge as can be seen in the vertical 
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gravity cases where the random nature of the Poisson distributed photon streams combine 

with more complex geometries of deformation.  

5.12 Correlation Value Related to Resolution of Source 

 

 Understanding how the correlation value of an II instrument relates to its ability to 

resolve the size of the nearest stars was the primary measurement made in the original II 

experiments.  Figure 2.1 describes how correlation values decrease with detector 

separation.  The angular extent of the source directly relates to how much separation the 

II instrument detectors need to have in order to resolve the object.  Equation 5.23 [2] is 

the relationship of correlation values, 𝐶(𝑑), and the baseline separation between two 

detectors, d.  This correlation value is based on the beat frequencies derived in Appendix 

A.  The constant K will be a value equal to 1 when each detector is receiving and 

processing the same amount of radiation from a given source.  λ is the mean wavelength 

of light and 𝜃 is the angular separation of two points on the distant source.  

𝐶(𝑑) = 𝐾 cos
2𝜋𝑑θ

𝜆
                              [Eq. 5.23] 

The separation distance was assumed to have value of d = 1 for a correlation value = 0.  

The theoretical value of the correlation will be one when the detectors are at the same 

position (maximum beat frequency strength) and decrease to a value of zero (minimal 

beat frequency strength) when the detectors are separated to a point at which the two light 

emitting points are located at extremes on the source, producing a minimal correlation 

value, Figures 5.30 and 5.31.  When the correlation is zero, the separation, d, of the 
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detectors can be plugged into Eq. 5.23 to solve for the angular separation of the two 

source points. 

  

Figure 5.30 – Correlation versus Detector Separation (1000 Deviations) 
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Figure 5.31 – Correlation versus Detector Separation (500 Deviations) 

 

 Discretizing the dish into a finite number of triangular surface elements (~40,000) 

introduced an error due to not completely representing a smooth surface of the reflecting 

parabolic mirror.  Averaging the values of the correlation for the ten simulation runs, the 

red values of Figures 5.26 – 5.29, and plotting that average value scaled to the theoretical 

value of the correlation illustrates the extend that the surface discretization has on the 

correlation value.   This equated to about a correlation value = 0.989, a 1% error for the 

500 deviated values, and a correlation value = 0.965, a ~3.5% error for the 1000 deviated 

values. This unperturbed dish correlation value versus detector separation is plotted in red 

near the theoretical (blue) value on the far right of Figures 5.30 and 5.31.   
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Figures 5.30 and 5.31 show the values obtained by using Eq. 5.23 for the all of the 

perturbed surfaces of both the horizontal and vertical gravity loads with the varying dish 

thicknesses, as well as, the unperturbed and theoretical values.  The correlation versus 

detector separation was used as a comparison to exemplify the extent that a perturbed 

surface would have on a two detector II instrument.  The data of importance is located in 

the lower right of Figures 5.30 and 5.31. This area of the plot shows how perturbed 

surfaces affect the accuracy of an II measurement.  Comparing the data in Figures 5.26 - 

5.29 illustrates that the 1000 deviated plot had a much larger spread of perturbed line 

values compared to the 500 deviated perturbed line values for both of the correlation 

versus detector separation plots.  Figure 5.30 demonstrates the accuracy that an II 

instrument can resolve an object decreases by ~10% for the simulated time frames and 

dish perturbations.  This reduction in resolution was evident in Figure 5.31 as well, with 

many of the plotted lines overlapping.  All of the perturbed dish displacements lines 

approached a zero correlation point that was less than the unperturbed dish and 

theoretical values.  The simulation setup and all of the simulation runs showed that a dish 

with a maximum displacement ranging from ~1- 4 mm reduces correlation and resolution 

values by 5-10%, assuming all other variables are fixed.   
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Chapter 6 

 

Conclusions 

 

 An overview of Intensity Interferometry was provided. II is finding new 

applications in many aspects of science, especially in particle and astrophysics, due to 

advances in photo detectors and computational speeds.  With the model and simulation set 

forth it was demonstrated that minimal parabolic deformations have a significant effect on 

the accuracy that an II measurement can attain.  The effect of thickness and orientation of 

the telescope were studied and the results were evaluated. 

A multi-tiered simulation was performed to extract the significance of how 

gravitation loading can effect a parabolic shell.  It was verified that the shape of the 

perturbed reflector can have profound effects on the photon statistics that are fundamental 

to an Intensity Interferometric measurement.  The analysis involved varying the thickness 

of the parabolic shell, applying fixed rim boundary conditions, and gravitational body force 

loading on two different axial components.  It has been demonstrated that the structural 

and focusing deformations of a parabolic focal system have a quantifiable effect on the 

statistics of photon streams impinging on a focal plane.  Redundant simulation runs were 

performed to build up confidence for each perturbed reflective surface scenario.  The final 

results for the simulated II telescope confirmed a loss off second order correlation value 

for the deformed surface shapes as compared to the pristine parabolic reflector dish.  A 

comparison of correlation values versus detector separation was also performed describing 

how perturbed parabolic dishes reduce resolution limits for a two detector II instrument.  
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 The future of this work will include modeling the monochromatic light with a 

greater precision and developing original photon statistical analysis to include expounding 

on the number of surface shapes for reflecting parabola/detector systems.  Higher order 

aberrations can also be applied to the simulation tool to give greater insights as has been 

conducted with traditional telescopic imaging mirrors.  Additional research will also 

introduce detector noise, photon detector/reflection loses, and correlation of multiple focal 

systems to define structural effects on intensity interferometry. 

 As technology advances with changes to specific instrument components such as 

photon detectors other technical aspects of a complete instrument must also be addressed.   

Scientific studies that involve large optical structures to collect light are needing further 

and more refined analysis. Addressing how structural influences effect scientific 

measurement on the shortest of timescales will become paramount.  Mixing multiple 

software platforms and basic mathematics, such as the simulation algorithm of this 

dissertation, is a driving example of how many refined tools can be combined to extract 

novel engineering methods for discovering unexplored areas of physics.  This dissertation 

established an algorithm technique that is not only cost effective (no physical 

experimentation), but also has repeatable results with analytical confirmations. 
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Appendix A 

 

 Correlation techniques begin with understanding the interference output of 

detectors separated in time and space.  Figure A.1 shows the most basic intensity 

interferometer with two receivers, A and B which can be defined as two photodetectors 

that convert nearly monochromatic photonic energy to output currents i1 ,i2.  These currents 

are fluctuating in time and the currents are combined together in a combiner/correlator 

where the information is then multiplied together.  The two output currents entering the 

combiner can have similar currents at the same time and will result in a “correlation” of 

the photonic detections.  There are two types of photocurrent generated in these types of 

detectors.  One is called shot current and is associated with a finite number of particles that 

transport energy with a random nature.  The second type of current is called wave noise 

which is due to the fluctuations of the intensity of the light waves. 
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Figure A.1 [5] 

 An essential step is to subtract out the erroneous information that does not 

contribute to the actual correlation measurement.  Shot noise (random photon generation 

due to electrical and thermal noise in the detection system) can easily be suppressed 

because one of the detectors shot noise will typically not have the same values as the second 

detector. Thus their different photocurrents can eventually be subtracted out before 

entering the correlator algorithm.  However, the wave noise measured in one detector will 

have some degree of correlation to that measured in the other detector and these two similar 

currents can be combined in a linear multiplier.  By defining the fluctuations of the two 

currents as ΔiA(t) and ΔiB(t), we can calculate the degree of coherence as: 

)0(/)( nn cdc 22
)/()()( dd ViBiAtiBtiA                       [1] 

 Where
2

d  is the degree of coherence, dV  is a similar term to the fringe visibility 

in a Michelson interferometer setup, )(dcn  
component is a normalized correlation term 

with a baseline d, and )0(nc  is a correlation factor related to the characteristics of the 

instrument. 

 The first step in evaluating the correlations between pairs of point sources is to start 

with a Fourier description of the energy from each point P1 and P2 reaching a specific 

detector but also incorporating the randomness of the amplitude and phase compared to the 

other component.         

 1111 ( EC                                              [2] 

 2222 ( EC                                             [3] 

 E is the electromagnetic field amplitude,  is the frequency, and   is the phase.  

The radiation is turned into electrical currents within the photo detectors and is proportional 

to the arriving intensity [2].   The resulting current at detector A is: 

 

               
2

222111 )]sin()sin([   tEtEKi AA                        [4] 

 

 A similar Fourier component will reach detector B but with the added terms of d1 

and d2 as depicted in Fig A.1.  This results in a modified version of equation 4: 

 



  

89 

 

2
22221111 )])/(sin())/(sin([   cdtEcdtEKi BB               [5] 

 

 Expanding both of these terms [Eq 5,6] by evaluating the square leads to two terms 

which are the sum of the light intensities from both components, and a term that is the 

intensity of the sum of the different frequencies ω1 an ω2: 
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 Each term represents a different component in the final measurement.  The first 

term in each equation is the total amount of light flux reaching the detector.  The second 

and third terms are representative of the second harmonics which is typically subtracted 

out with appropriate filters.  The final term with the difference of the frequencies (ω1 - ω2)  

is the one that is essentially what Hanbury Brown & Twiss (1957) had discovered as being 

the term that corresponds to the measured beat frequency.  The fundamental point is that 

the correlation of the two intensity fields is a function of the difference in phase between 

the low frequency beats formed at the two detectors [2].   
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Appendix B 

 

II Simulation  

%Mark Harris 1/1/5/14 PhD Dissertation Research 
%code for an intensity interferometer(II) instrument  
%This simulation is designed to simulate far field photons 
%traversing a focal reflecting II instrument and be received 
%at a detector surface (units are in m) 
%Allocate rate and number of photons being emitted from a distance 

source 
%Initialize variables 
%Add travel time of photon through simulated instrument to detector 
%located at the focal point. 
%Load data(xyz nodal pts) triangles.mat and vertices.mat in workspace 

  
n = 2000;  %Number of possible emission states 
dradius = .78; %radius of airy disk and original parabola in meters 
x1 = zeros(n,1); %column of zeros for original x values 
y1 = zeros(n,1); %column of zeros for original y values 

  
%Step1 - Define a Poission distribution of 1 and 0’s Frequency 
% [1xn] matrix  1 represents an emission of a photon, 0 is null. 
% this code generated a poissionian number distribution of 1 and zero's 
% with median 0.5 to increase the mean decrease the trailing term. 

  
t1 = rand(n,1).*sign(rand(n,1) - .5);  %k1 is inserted manually 
for i = 1:n 
    if t1(i) >= 0; 
        k1(i) = 1; 
    else if t1(i) < 0; 
            k1(i) = 0; 
        end 
    end 
end 
% t2 = rand(n,1).*sign(rand(n,1) - .5);  %k1 is inserted manually 
% k1sim = k1; 
% Step2 - generate evenly distributed points on photon emission disk 
% n = number of iterations 
% dradius = radius of disk 

  
 for i = 1:n 

     
    theta = rand(1,n)*(2*pi); 
    rs = sqrt(rand(1,n))*dradius; 
    x = rs.*cos(theta); 
    y = rs.*sin(theta); 

     
end 

  
xsim = x; 
ysim = y; 
% %plot (x,y,'.') 
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%Step #3 multiply the poissonian distribution of numbers 
%to the random airy disk points to solve for emmission points 
%pattern of photon emission will be correlated with pattern of emission 
%doubly stochastic  

  
for i = 1:n        
%    (sqrt(x(i).^2 + y(i).^2)) <= dradius;      
        x1(i) = k1(i).*(x(i)); % multiplying random numbers by a 0 or 1 
        y1(i) = k1(i).*(y(i)); % multiplying random numbers by a 0 or 1      
%     (sqrt(x(i).^2 + y(i).^2)) > dradius;     
end    

  
for i = 1:n 

     
    if x1(i) == 0 && y1(i) == 0; 
        z1(i) = 0; 

     
    else  
        z1(i) = 2; %assume all emmission point are 2 units away from 

dish vertex   
    end 
end 

  
%Step #4 designate a 3xn emission points 
x2=x1; % keeping same x position as from emission 
y2=y1; % keeping same y position as from emission 
z2 = z1'; 
emissionptsxyz = horzcat(x1,y1,z2);% designate 3xn emission points 

  

  
%Step #5 Allocate emission points with a ray that intersects 
%a triangular surface mesh defined with ptcloudtomesh.m file.  
%The output files of ptcloudtomesh are in a structure with variable 
%matricies:%                        
%                       vertices: Nx3 vertex coordinates 
%                       triangles: M triangles using index numbers of 

the vertices 
%                       resolution: the mean edge length of triangles 
%                       stdeviation: the standard deviation o edge 

lengths 
%                       triangleNormals: Mx3 normal vectors of each 

triangle 
%                       vertexNormals: Nx3 normal vectors of each 

vertex 
%                       vertexNtriangles: Nx1 cell of neighboring 

triangles  
%                                           of each vertex 
%                       triangleNtriangles: Mx1 cell of nieghboring 

triangles 
%                                               of each triangle 
% 
%and using raytriangleintersect.m find the triangle that a specific ray 

intersects than 
%allocate a scalar multiplication to the ray to define the ray length 
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%from the emission point to the triangulated surface. Use the unit 

normal 
%from the triangular surface to get the reflected ray direction. 
%emissionptsxyz(all(emissionptsxyz==0,2),:)=[]; 
    scalar = ones(n,1); %using a nx1 of value one to test my scalar 

about should be 0 or value other than 1 
    d = [0 0 -1]; %Direction of ray vector 
    k = size(triangles,1);  %Size of triangles matrix 
    trinorm = zeros(n,3); % initialize trinorm vector 
    refptxyz = zeros(n,3); % initialize refptxyz vector 

     
for i = 1:n 
    if emissionptsxyz(i,3) == 0; 
        %o(i,1:3) = [0 0 0]; 
        scalar(i) = 0; 
        continue;         
    else %emissionptsxyz(i,3) == 2;  %for non zero emission points pick 

which triangle it hits 
            o = emissionptsxyz(i,1:3);%origin for raytriint ray 
            for j = 1:k 
            trivert(j,:) = triangles(j,1:3); 
            p0 = vertices(trivert(j,1),1:3); 
            p1 = vertices(trivert(j,2),1:3); 
            p2 = vertices(trivert(j,3),1:3);  
          [flag, u, v, t] = rayTriangleIntersection(o, d, p0, p1, p2); 

%call function and pass variables        
            if flag  
               scalar(i) = t;%scalar value t is listed as variable 

scalar after ran through code               
               trinorm(i,1:3) = triangleNormals(j,1:3);             
               break 
            end 
            end 
    end 
end   
%Calculate arrival times 
%reflectoray 
incvecxyz = [0,0,-1]; 
for i = 1:n 
    if scalar(i) == 0; 

        
        refrayin(i) = 0; 
        refnormray(i,:) = [0,0,0]; 
        %refnormray = horzcat(x6(i)',y6',z6'); 
    elseif scalar(i) ~= 0; 

         
        refrayin(i) = (2.*(dot(trinorm(i,:),incvecxyz))); %inner 

product 
        refrayout(i,:) = refrayin(i)*trinorm(i,:); 
        refnormray(i,:) = incvecxyz - refrayout(i,:); %total reflected 

normal unit ray 

         
    end 
end 

  
%detector 
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% define a position vector for the detector and an orientation 
% the detector is at a focal length of 1.3 units from the vertex 
% of the parabola, the detector will be a square with radius 0.02 unit 
% by 0.02 units 
detorient = [0,0,-1]; 
detorienttrans = detorient'; 
detcent(1:3) = [0, 0, 0.65]; 
%detcent = horzcat(x5,y5,pz5); %location vector of detector from 

parabola vertex 
detcenttrans = detcent'; 
%detbound = (+/- 0.02(x) +/- 0.02(y), 0(z)) 

  
% Solve for a scale factor (a) to multiply to the reflected ray to 

reach the  
% detector surface 

  
for i = 1:n 
    if scalar(i) == 0; 
    dethit(i,:) = [0,0,0]; 

        

         
    elseif scalar(i) ~= 0; 
    refptxyz(i,:) = [emissionptsxyz(i,1:2),(2 - scalar(i))]; 

         
    paradetdis(i,:) = detcent(1:3) - refptxyz(i,:);%distance between 

parab and det 
    anumerator(i) = dot(detorient,paradetdis(i,:)); % a numerator 
    adenominator(i) = dot(detorient,refnormray(i,:)); % a denominator 
    a(i) = anumerator(i)/adenominator(i); %total scalar multiplier for 

refraynorm 
    detvect(i,:) = (a(i)*refnormray(i,:)); 
    dethit(i,:) = (detvect(i,:))+ refptxyz(i,:); %surface hit location? 

     
    % if abs(dethit(:,1) | abs(dethit(:,2) > 0.02; 
    % toa(i) 

     
    end 
end 
%scatter3(refptxyz(:,1),refptxyz(:,2),refptxyz(:,3),'.'); 
plot(dethit(:,1),dethit(:,2),'.'); 
axis([-2,2,-2,2]) 
title('Detector Plane Photon Hit') 
xlabel('Meters') 
ylabel('Meters') 
hold on; 

 
%photontimes 
%generate emission times incrimented by avt for n times 
for i = 1:n 

    
    % if abs(dethit(:,1) | abs(dethit(:,2) > 0.02; 
    % toa(i) = 0; 
    % else 
    dist1(i) = sqrt(sum(abs(emissionptsxyz(i,:) - refptxyz(i,:)).^2)); 
    dist2(i) = sqrt(sum(abs(refptxyz(i,:) - dethit(i,:)).^2)); 
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    totdis(i) = dist1(i)+dist2(i); 
    toa(i) = totdis(i)./299792458; 

     
end 

  
for i = 1:n 

     
    if toa(i) > 0 
        toaphot(i) = 1; 
    else  
        toaphot(i) = 0; 
    end 

     
end 

  
avt = 5e-11; 
%avt = 6.67e-9; 
for i = 1:n 
   photemtimes(i) = avt *(i); %incremental times 
end 

  
%generate total photon arrival times.  Allocate a k2(i) to be 1 and 0's 
%for arrival photons 
for i = 1:n 

     
    if k1(i) == 1 % & toa(i) > 0 
        totalphtoa(i) = photemtimes(i) + toa(i); 
        k2(i) = 1; 

         
    else if k1(i) == 0 
            totalphtoa(i) = 0; 
            k2(i) = 0; 
        end 
    end 
end 

  
%photonarrivaltimes 
for i = 1:n 
    photonemmission(i) = ((photemtimes(i)+(8.8394485523e-9)))*k1(i); 

%added time of 2.65m /c 
end 

  
photemtimes1 = (photonemmission'); 
 totalphtoa1 = (totalphtoa');%*1e10); 
%  pois1 = horzcat(photemtimes,k4); 
%  pois2 = horzcat(totalphtoa,k2); 
 x_spikes = (photemtimes1(find(photemtimes1))'); 
 y_spikes = (totalphtoa1(find(totalphtoa1))'); 
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pointCloud2mesh.m [40] 

function mesh = pointCloud2mesh(data)%, refNormal, stdTol) 

  
% mesh = meshD(data, refNormal, stdTol) 

  
% Author : Ajmal Saeed Mian {ajmal@csse.uwa.edu.au} 
%           Computer Science. Univ of Western Australia 
% 
% This function takes data points performs triangulation on it, filters 

out 
% incorrecp polygons and outputs a mesh data structure like the newMesh 
% function. 
% 
% Arguments : data - Nx3 vertex coordinates [x y z] of the pointcloud 
%             stdTol - (optional) tolerance for edge filtering. default 

is 0.6 
%              
%             refNormal - (optional) 1x3 vector in the sensor direction 
%                         =[0 0 1] if the sensor looking towards the -

z_axis 
% 
% Return : mesh - mesh data structure 
%                       vertices: Nx3 vertex coordinates 
%                       triangles: M triangles using index numbers of 

the vertices 
%                       resolution: the mean edge length of triangles 
%                       stdeviation: the standard deviation o edge 

lengths 
%                       triangleNormals: Mx3 normal vectors of each 

triangle 
%                       vertexNormals: Nx3 normal vectors of each 

vertex 
%                       vertexNtriangles: Nx1 cell of neighboring 

triangles  
%                                           of each vertex 
%                       triangleNtriangles: Mx1 cell of nieghboring 

triangles 
%                                               of each triangle 
% 
warning off MATLAB:divideByZero; 
if nargin == 1 
    PC = princomp(data); 
    data = data*PC; 
    refNormal = [0 0 1]; 
    refNormal = refNormal * PC; 
end 

  
if nargin < 3 
    stdTol = 3; 
end 

  
tri = delaunay(data(:,1),data(:,2)); 
tri(:,4) = 0; % initialize 4th column to store maximum edge length 
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edgeLength = [sqrt(sum((data(tri(:,1),:) - data(tri(:,2),:)).^2,2)),... 
        sqrt(sum((data(tri(:,2),:) - data(tri(:,3),:)).^2,2)),... 
        sqrt(sum((data(tri(:,3),:) - data(tri(:,1),:)).^2,2))]; 

  
tri(:,4) = max(edgeLength,[],2); 

  
resolution = mean(edgeLength(:)); 
stdeviation = std(edgeLength(:)); 
filtLimit = resolution + stdTol*stdeviation; 

  
bigTriangles = find(tri(:,4) > filtLimit); %find index numbers of 

triagles with edgelength more than filtLimit 
tri(bigTriangles,:) = []; % remove all triangles with edgelength more 

than filtlimit 
tri(:,4) = []; % remove the max edgeLength column 

  
edgeLength(bigTriangles,:) = []; % remove edges belonging to triangles 

which are removed 
edgeLength = edgeLength(:);  
resolution = mean(edgeLength); % find the mean of the remaining edges 
stdeviation = std(edgeLength); 

  
mesh = []; 
if nargin < 2 
    data = data*PC';% multiply the data points by the inverse PC 
    refNormal = refNormal * PC'; 
end 
mesh.vertices = data;   
mesh.triangles = tri; 
mesh.resolution = resolution; 
mesh.stdeviation = stdeviation; 

  
noOfpolygons = size(tri,1); 
noOfpoints = size(data,1); 
mesh.triangleNormals = zeros(noOfpolygons,3); % innitialize a matrix to 

store polygon normals 
mesh.vertexNormals = zeros(noOfpoints,3); % innitialize a matrix to 

store point normals 
mesh.vertexNtriangles = cell(noOfpoints, 1); %a cell array to store 

neighbouring polygons for the current point 
mesh.triangleNtriangles = cell(noOfpolygons, 1); % to store neighbors 

of current polygon 

  
for ii = 1:noOfpolygons %find normals of all polygons 
    %indices of the points from which the polygon is made 
    pointIndex1 = mesh.triangles(ii,1); 
    pointIndex2 = mesh.triangles(ii,2); 
    pointIndex3 = mesh.triangles(ii,3); 

     
    %coordinates of the points 
    point1 = mesh.vertices(pointIndex1,:); 
    point2 = mesh.vertices(pointIndex2,:); 
    point3 = mesh.vertices(pointIndex3,:); 

     
    vector1 = point2 - point1; 
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    vector2 = point3 - point2; 

     
    normal = cross(vector1,vector2); 
    normal = normal / norm(normal); 

     
    theta = acos(dot(refNormal, normal)); 
    if theta > pi/2 
        normal = normal * (-1);%pointing down -1 pointing up 1 
        a = mesh.triangles(ii,2); 
        mesh.triangles(ii,2) = mesh.triangles(ii,1); 
        mesh.triangles(ii,1) = a; 
    end 

     
    mesh.triangleNormals(ii,:)=normal;    

             
    %make entry of this polygon as the neighbouring polygon of the 

three 
    %vertex points     
    

mesh.vertexNtriangles(pointIndex1,1)={[mesh.vertexNtriangles{pointIndex

1,1} ii]}; 
    

mesh.vertexNtriangles(pointIndex2,1)={[mesh.vertexNtriangles{pointIndex

2,1} ii]}; 
    

mesh.vertexNtriangles(pointIndex3,1)={[mesh.vertexNtriangles{pointIndex

3,1} ii]};     
end 

  
for ii = 1:noOfpoints %find normals of all points 
    polys = mesh.vertexNtriangles{ii};% get neighboring polygons to 

this point 
    normal2 = zeros(1,3); 

         
    for jj = 1 : size(polys,1) 
        normal2 = normal2 + mesh.triangleNormals(polys(jj),:); 
    end 

     
    normal2 = normal2 / norm(normal2); 
    mesh.vertexNormals(ii,:) = normal2; 
end 

  
for ii = 1 : noOfpolygons % find neighbouring polygons of all polygons 
    polNeighbor = []; 
    for jj = 1 : 3 
        polNeighbor = [polNeighbor 

mesh.vertexNtriangles{mesh.triangles(ii,jj)}]; 
    end 
    polNeighbor = unique(polNeighbor); 
    polNeighbor = setdiff(polNeighbor, [ii]); 
    mesh.triangleNtriangles(ii,1)={[polNeighbor]}; 
end 
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rayTriangleIntersection.m 

function [flag, u, v, t] = rayTriangleIntersection(o, d, p0, p1, p2) 
%Ray/triangle intersection  
%Input : 
% o : origin 
% d : direction 
% po,p1,p2: vertices of the triangle 
% trinorm: normal vector of triangle face 
% Output: 
% flag: (0) Reject, (1) Intersect 
% u,v: barycentric coordinates 
% t: distance from the ray origin  
epsilon = 0.00001; 
%Find vectors for two edges sharing p0 
e1 = p1-p0; 
e2 = p2-p0; 
q = cross(d,e2); %begin calculating determinant 
a = dot(e1,q); %determinant of the matrix M 

  
if (a>-epsilon && a<epsilon)  % the vector is parallel to the plane 

(the intersection is at infinity) 
    [flag, u,  v, t] = deal(0,0,0,0); 
    return; 

     
end; 

  
f = 1/a;  %inverse of determinant 
s = o-p0; %vector from origin to first vertice 
u = f*dot(s,q); %Barycentric parameter 

  
if (u<0.0 || u>1.0) 
    %the intersection is outside the triangle 
    [flag, u,  v, t] = deal(0,0,0,0); 
    return; 
end; 

  
r = cross(s,e1); 
v = f*dot(d,r); 

  
if (v<0.0 || u+v>1.0) 
    %the intersection is outside the triangle 
    [flag, u,  v, t] = deal(0,0,0,0); 
    return; 
end; 

  
if (v >= 0.0 && u >= 0.0 && u+v <= 1.0)% is the condition of inside 
    t = f*dot(e2,r); 
    flag = 1; 
    %tnm(j,1:3) = triangleNormals(j,1:3); 
    return; 
end 
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Correlation Calculation 

tdiv = 500; %time bins 
n1av = hist(x_spikes,tdiv); 
n2av = hist(y_spikes,tdiv); 
d = zeros(1,tdiv); 
d1 = 0; 
d2 = 0; 
for i= 1:tdiv 
d(i) = (n1av(i)*n2av(i)); 
d1 = d1 + n1av(i)^2;  
d2 = d2 + n2av(i)^2;  
end 
d3 = (sum(d)); 
d4 = sqrt(d1*d2); 
correlation = d3/d4; 
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