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Abstract

Making use of femtosecond laser sources, nonlinear microscopy provides access to

previously unstudied aspects of materials. By probing third order nonlinear op-

tical signals determined by the nonlinear susceptibility χ(3), which is present in

all materials, we gain insight not available by conventional linear or electron mi-

croscopy. Third-harmonic (TH) microscopy is applied to supplement laser-induced

damage studies of dielectric oxide thin film optical coatings. We present high contrast

(S/N> 100 : 1) TH imaging of ≈ 17 nm nanoindentations, individual 10 nm gold

nanoparticles, nascent scandia and hafnia films, and laser induced material modifica-

tion both above and below damage threshold conditions in hafnia thin-films. These

results imply that TH imaging is potentially sensitive to laser-induced strain as well

as to nanoscale defects or contamination in oxide films. Compared to other sensitive

imaging techniques such as Nomarski and dark field, TH imaging exhibits dramat-

ically increased sensitivity to typical material modifications undergone during the
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formation of optical damage as evidenced by a dynamic range ≈ 106 : 1. Four-wave

mixing (FWM) microscopy is employed to investigate delay dependent FWM sig-

nals and their implied characteristic resonant response times in multiple solvents.

Mathematical modeling of resonant coherent anti-Stokes Raman scattering (CARS),

coherent Stokes Raman scattering (CSRS) and stimulated parametric emission (SPE)

processes supplement the FWM studies and suggest a resonant CARS process that

accounts for ≈ 95% of the total visible FWM signal which probes a characteristic

material response time ≈ 100 fs. This signal enhancement likely indicates the net

effects of probing several Raman active C-H stretch bands near 2950 cm−1. This

FWM technique may be applied to characterize the dominant resonant response of

the sample under study. Furthermore this technique presents the newfound capa-

bility to provide estimates of characteristic material dephasing times in combination

with potential spatial resolution ≈ 1 µm. In addition to TH and FWM microscopy, a

genetic algorithm is developed and implemented that allows for the synthesis of arbi-

trary temporal waveforms to maximize the generation of nonlinear optical signals in

the focal plane of a microscope without any prior knowledge of the experiment. This

algorithm is demonstrated to compensate high order optical dispersion and thereby

increase TH microscopy signals ≈ 10× in a fused silica sample.
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Chapter 1

Introduction

The goal of this chapter is to provide the reader with a broad introduction to the work

presented in this thesis. This includes motivation for using nonlinear microscopy,

motivation for the specific research problems addressed by subsequent chapters, an

outline of research goals and an outline of the material presented in this thesis. When

appropriate, additional motivating details are presented at the onset of each chapter.

1.1 The rise of nonlinear microscopy

Advances in science often have been reliant on the development of new methods for

observing the universe around us. This certainly holds true in the area of microscopic

evaluation of matter. The advent of optical microscopy more than 400 years ago rev-

olutionized the study of biology and helped pave the way for modern medicine. The

arrival of electron microscopy furthered advances for all science by resolving minis-

cule features of less than 2 nanometers in size. These two techniques each display

their own unique merits because they represent two different ways of interrogating

matter on a microscopic scale. Traditional optical microscopy probes matter via its
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interaction with low intensities of light, while electron microscopy probes matter via

its interaction with other matter. Throughout this thesis, traditional optical mi-

croscopy will be referred to as so-called linear optical microscopy because the optical

signals depend linearly on the electric field of incident light, E. A linear dependence

on electric field governs commonplace observation of light and explains why humans

perceive objects with properties such as color and opacity. This nomenclature is

adopted here for clarity so that we may distinguish a third way of of interrogating

matter on a microscopic scale. The scope of discussion in this thesis centers upon

probing matter via its interaction with high intensities of light in so-called nonlinear

optical microscopy. As you may have gathered, nonlinear optical microscopy owes its

name to the many nonlinear optical processes of modern science that exhibit signals

proportional to higher powers of the electric field (∝ E2, E3 etc.).

While linear optical microscopy and electron microscopy remain proven scientific

tools and make use of a diverse range of contrast mechanisms including transmission,

reflection, scattering, optical phase change and optical interference, these techniques

possess inherent shortcomings that render them unsuitable for numerous applica-

tions. A quintessential example of these shortcomings is found in the inability of

both linear optical microscopy and electron microscopy to image interfaces between

optical index matched components of living biological samples. Linear optical mi-

croscopy fails to create contrast where optical indices are matched and where the

phase change induced by the surface is irresolvably small. Electron microscopy may

resolve these features, but in doing so requires preparation that will both perma-

nently alter the sample and kill any living components contained therein. Nonlinear

optical microscopy, however, presents a method to image interfaces between optical

index matched components of living biological samples in real time video rate [1, 2, 3]

without the need for staining or other permanent sample alteration. By probing a

higher order optical susceptibility present in the sample, nonlinear microscopic tech-

niques access a fundamentally different way of creating contrast and have established
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novel contrast mechanisms with widespread application.

Early work in nonlinear optics laid key foundations for microscopy by charac-

terizing both the multiphoton processes, such as harmonic generation [4, 5, 6], and

the material susceptibilities [7, 8] that would later find application in nonlinear mi-

croscopy. Seminal work with two-photon excited fluorescence (TPEF) microscopy

in 1990 [9] sparked a decade of rampant growth in the area of nonlinear microscopy

research. Broad acceptance of TPEF microscopy in the biological and medical sci-

ences, largely due to inherent 3-dimensional sectioning and large signal yield within

living biological samples, bolstered the development of second-harmonic (SH)[10, 11]

and third-harmonic (TH) microscopy [1, 12] and kindled a renewed interest in co-

herent anti-Stokes Raman scattering (CARS) microscopy which had been pioneered

nearly a decade earlier [13]. This era of exponential growth [14] for nonlinear mi-

croscopy research paralleled the arrival and prevalence of robust and commercially

available femtosecond lasers as well as the introduction of the first commercial non-

linear microscope in 1996 (BioRad Microscience). As is the case with all nonlinear

optics, nonlinear microscopy relies upon intense light interacting with matter [15].

The widespread availability of femtosecond laser sources has proven to be a boon to

nonlinear microscopy in that such sources provide a high peak intensity of light in

tandem with modest average power which may be kept below the damage thresh-

old of the sample being studied. The dependence of nonlinear signal generation on

the intensity of incident light is discussed further in Section 2.1. Over the last few

decades, nonlinear microscopy has emerged as a powerful tool not only for imag-

ing but also for 3-dimensional motion tracking [16], single molecule detection [17],

the study of fundamental material parameters [18, 19, 20, 21, 22] as well as less id-

iomatic research including photothermal cancer treatment [23] and the conservation

of painted artifacts [24]. The work presented in this thesis follows in the vein of

research concerned with characterizing fundamental material parameters as outlined

in the next two sections.
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1.2 Motivation and goals

The work presented here focuses mainly on applications in microscopy with the third-

order nonlinear processes third-harmonic generation (THG) and four-wave mixing

(FWM). Discussed in greater detail in Chapter 2, these processes exhibit propor-

tionality to E3 and probe the third-order nonlinear optical susceptibility χ(3). Unlike

the second order susceptibility χ(2), χ(3) is non-vanishing in all materials. For this

reason, third-order nonlinear processes are immanently applicable to characterizing

diverse materials. Though all third-order nonlinear processes rely upon the interac-

tion of four photons in a material, works in the literature distinguish third-harmonic

generation (THG) from other four-wave mixing (FWM) processes. This distinction

between THG and FWM equally follows from differences in relevant theory and in ap-

plication and emphasizes that THG and FWM probe different material parameters.

Paradigmatic applications of TH microscopy include imaging of material interfaces

[25, 26] and material anisotropy [27]. Interpreted broadly, typical applications in TH

microscopy may be considered to probe the geometry of the material under study. In

contrast, FWM microscopy borrows heavily from FWM spectroscopy, most familiarly

CARS, to recast known electronic and vibrational material resonances into contrast

enhancement for imaging. Again interpreting broadly, typical applications in FWM

microscopy deal with using tunable laser sources to probe material resonances. The

basic concepts behind the work presented in the remainder of this thesis follow along

the lines of these stereotypes of TH and FWM application. With TH microscopy

we hope to probe fundamental geometries of oxide thin films with application to

laser-induced damage studies. With FWM microscopy we hope to probe the effects

of material resonance and relate them to time domain behavior of FWM signals. In

addition, we consider the femtosecond laser sources implemented for both TH and

FWM microscopy and optimize them where possible. A final application presented

in this thesis has implications for both TH and FWM microscopy: temporal wave-
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form synthesis for optimization of nonlinear signal generation. The remainder of

this section is dedicated to a concise discussion of the motivation and goals for the

applications of TH and FWM microscopy presented in this thesis.

Motivation for TH microscopy of dielectric oxide thin films. TH microscopy

presents the potential to serve as a unique diagnostic tool for investigating dielec-

tric oxide thin films. Such films are renowned for their demonstrated ability to

comprise high damage threshold optical coatings for use in high energy laser appli-

cations. However, current high energy lasers are capable of damaging every material

known to science. While this will always be true if the beam cross section is allowed

to be small enough, simple beam expansion represents one way to simultaneously

increase overall laser energy while decreasing the laser fluence and circumventing

material breakdown. With this in mind, the improvement of oxide films supports

both further development and miniaturization of high energy laser systems. Due to

the complex interplay of physical processes involved in optical damage, the study

of laser-matter interactions in oxide films is firmly entrenched in the realm of em-

pirical science and as such makes use of diverse data, including imaging, to aid

improvement of the films. Production of high quality films has reached a level such

that physical processes within the amorphous films may be characterized through

deterministic femtosecond pulse damage studies. Indeed, fs laser-induced damage

threshold (fs LIDT) studies represent the primary method of interrogation in sup-

port of developing phenomenological models [28, 29, 30, 31, 32] to explain optical

damage in such films. Optical imaging has also played an important role in fs LIDT

studies by revealing different morphologies of damage growth [33, 34] and suggesting

the development of laser induced vacancy defects that may serve as damage initi-

ation sites under vacuum conditions [35, 36]. Though fs LIDT studies suggest the

presence of material modification prior to damage it is not yet clear whether such

modification results in a permanent source of imaging contrast. Based on previously

5



Chapter 1. Introduction

demonstrated uses of TH microscopy and the properties of the films themselves, we

suggest that TH microscopy may provide distinctive information related to several

aspects of oxide film study.

A first area of interest is the suitability of TH microscopy for producing high

contrast images following laser-induced damage of the films. Nascent oxide films and

their substrates are expected to exhibit highly isotropic material symmetry. As will

be discussed in Section 2.2.2, third-harmonic from circularly polarized illumination

(THCP) results in the suppression of signals from isotropic media. For this reason,

any laser exposures of the film which result in anisotropic material modification may

serve as a source of contrast in THCP images. Furthermore, as previously demon-

strated for anisotropy in the form of biogenic crystals [27, 18] and gold nanorods [37],

such images are expected to yield extremely high contrast due to nearly background

free detection. If true, THCP may offer significant advantages over traditional tech-

niques used to interrogate laser damage exposures. Also, THCP imaging may be

able to detect material modification that occurs in exposures below damage thresh-

old, thus answering the open question concerning formation of permanent material

modification prior to damage formation.

A second area of interest is the potential for TH imaging to characterize the

nascent films themselves. The high damage threshold of oxide films allows TH imag-

ing with relatively high incident power† in order to generate detectable signals even

from weak sources of anisotropy. Considering the properties of oxide films in view

of underlying theory for THCP, oxide films appear to present an ideal candidate for

such high-sensitivity THCP microscopy. In this way it may be possible to image

very small intrinsic anisotropy in the films themselves. Believed to be the research

†For reference, the damage threshold of biological samples (under tight-focusing con-
ditions) is typically reached between several mW and tens of mW’s of near-infrared fem-
tosecond illumination, while oxide films allow imaging with several hundred mW using the
same laser sources.
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attempt with closest proximity to this assertion, THCP has been applied previously

to characterizing broad spatial scale (several mm) anisotropy of surface layers in bulk

semiconductors (GaAs, Si) [38].

A third area of interest is the potential for TH imaging to be implemented while

a damage experiment is running. Previously, TH has shown the ability to serve as

a local online monitor for optical breakdown in polymethyl methacrylate (PMMA)

thick films (50 µm) [39]. It may also be applied to oxide thin films to monitor

the formation of material modification leading to damage while the experiment is

ongoing.

Taking all of these considerations into account, TH imaging seems to hold great

promise for interrogation of oxide films. Even though TH imaging exhibits the po-

tential to characterize oxide films before, during and after exposure to high fluence

laser radiation, no one has yet undertaken a comprehensive study of the usefulness

of TH imaging to this end. For these reasons, we desire to evaluate the sensitivity

and utility of TH microscopy to sources of contrast encountered in high quality oxide

thin films. Additional details concerning laser damage studies and oxide thin films

are presented in Section 4.1.

Motivation for FWM microscopy time dependent measurements. Making

use of femtosecond pulses, FWM microscopy has the potential to make possible the

study of femtosecond scale material dynamics including electronic and vibrational

dephasing in combination with spatial resolution ≈ 1 µm. However, current tech-

niques in FWM specialize in either high resolution time domain measurements or

high resolution spatial measurements and little work has been done to evaluate the

extension of high spatial resolution techniques to time domain measurements and

vice versa.

FWM techniques aimed at high resolution temporal measurements rely on the
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angular separation of beams in illumination and in detection therefore making it im-

possible to implement them without partially sacrificing the resolution capabilities

of high numerical aperture microscope objectives. As a figure of merit, the Box-

CARS technique [40] shown in Fig. 1.1 has made an attempt to implement spatially

separated detection in microscopy in order to simplify spectral filtering, however it

is limited to a spatial resolution of several microns. Such limited resolution is put

in context when considering that imaging of cells and intracellular components reg-

ularly requires spatial resolution ≤ 1 µm. Another non-microscopy FWM method

for high resolution time domain measurements, this one based on photon echoes[41],

makes use of angular separation of three or more femtosecond pulses with variable

time delay in order to probe solute-solution energy transfer and complicated molec-

ular dynamics[42, 43]. A similar technique has been employed for three pulse CARS

interrogation of vibrational dephasing in acetone [44] and benzene [45]. However, all

of these techniques are limited in spatial resolution because they sacrifice the benefits

of a highly corrected microscope objective by necessitating either multiple long focal

length lenses or multiple beams underfilling a microscope objective. Unfortunately,

powerful techniques for investigating the effects of dephasing with high resolution

(± 1 fs) do not adapt themselves well to microscopy.

Figure 1.1: Schematic of the BoxCARS setup with spatially separated detection of
the CARS signal.

In high spatial resolution FWM imaging it is well established, following from
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results with FWM spectroscopy [46], that FWM microscopy may yield high con-

trast images with chemical specificity based on signal enhancement via vibrational

[47, 48] and electronic resonances [49, 50, 51] even within living cells [52]. Used ex-

tensively, CARS microscopy routinely demonstrates spatial resolution on a cellular

or subcellular scale (≤ 1µm). However, what if one desires not only to exploit these

resonances to enhance imaging contrast, but also to explore the transient behavior

of these resonances in combination with microscopic spatial resolution? For coher-

ent processes such as FWM, this amounts to measuring the effects of characteristic

material dephasing times.

We suggest that instead of adapting techniques from temporal studies to high

resolution imaging, it is worth investigating the types of temporal information a

standard FWM imaging technique may provide. We consider the common case of

two source collinear excitation in a FWM microscope. In principle, simply varying

the delay between the two incident pulse trains is enough to provide information on

the presence of finite material response times on the order of the pulse durations

or longer. It’s not immediately clear what type of information is evident in such

inter-pulse delay scans, but they may provide a method of simultaneously imaging

with ≈ 1 µm spatial resolution and differentiating chemical species via characteristic

material response times.

Motivation for temporal waveform synthesis. The signal yield of any nonlin-

ear optical process exhibits strong dependence on the temporal profile of the exci-

tation pulse. Fittingly, temporal shaping of femtosecond pulses has long been used

to optimize signals from nonlinear processes. Of interest here is the optimization

of nonlinear optical signals via synthesis of arbitrary temporal waveforms. By in-

terpreting the resulting waveforms, one may gain insight into both the underlying

physics of the nonlinear process as well as the sum dispersion present in the beam

path.
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Two things have been clear since the onset of temporal pulseshaping. First, tem-

poral pulse shaping is most readily implemented by control in the spectral domain.

This reflects the fact that no electronic techniques exist that are capable of modulat-

ing the temporal behavior of femtosecond pulses directly. Such spectral control over

temporal behavior may be as simple as inserting a slab of dispersive material into

the beampath, though more useful apparatuses include prism compressors to con-

trol dispersion [53, 54, 55] and spatial light modulators (SLMs) composed of many

liquid crystals to directly control the phase of spatially separated spectral compo-

nents (Fig. 1.2). Second, even when one knows what temporal pulse shape to apply

to an experiment† it’s not always clear what spectral phase compensation needs to

be implemented to produce that shape in the region of interest. This reflects the

reality that factors such as aberrations and high order dispersion may complicate

even simple optical setups. To complicate matters further, perhaps the most in-

triguing applications of temporal pulse shaping involve systems where the optimal

pulse shape itself is unknown. Such applications include coherent control of chemical

reactions [56] and the enhancement of imaging contrast in resonant systems [57, 58].

Regardless of the complexity of the pulse shape involved, whenever the optimal

spectral phase compensation is unknown it has become typical practice in the lit-

erature to implement an SLM and a learning algorithm in order to find the proper

spectral phase compensation [59]. One well established technique to determine the

optimal phase compensation to produce a given pulse shape is called multiphoton

intrapulse interference phase scan (MIIPS) [60, 61, 62]. However, this technique

requires the desired pulse shape to be known. Since our interest in pulse shaping

is to optimize signals generated in the focal plane of a microscope via synthesis of

arbitrary temporal waveforms, we turn to a genetic algorithm to iteratively opti-

†Here we are mainly concerned with maximizing a nonlinear signal in a material of
interest. Such maximization is influenced by (1) the optical setup (dispersion, aberrations,
etc.), (2) properties of the material and (3) characteristics of the nonlinear process itself.
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Figure 1.2: Schematic of a generic SLM based pulse shaper. A grating gives spatial
separation of spectral components in the incoming beam. The spatially separated
spectral components are controlled in phase and amplitude by the SLM liquid crystal
pixel masks. The spectral components are recombined and a shaped temporal pulse
exits.

mize the generated optical signals simply via parameterization of the SLM pixels.

Although the current state of the art allows fully independent control of the phase,

amplitude and polarization of spatially separated spectral components via four liquid

crystal pixel masks [63], in this first attempt at temporal pulse shaping, we attempt

phase control alone in our desire to develop a method that will work to optimize

the temporal pulse profile automatically without any prior notion of the experiment

involved.

Thesis goals. The goals of this thesis are:

1. To characterize regions of critical alignment in titanium:sapphire oscillator

(Ti:S) and optical parametric oscillator (OPO) femtosecond laser sources, and

to optimize and update both lasers for application in nonlinear microscopy.

2. To evaluate the sensitivity and utility of TH microscopy to sources of contrast

encountered in high quality oxide thin films starting from the time of deposi-
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tion and continuing through exposure to high fluence laser radiation and the

creation of permanent material modification.

3. To investigate FWM microscopy signals as a function of the inter-pulse time

delay between two excitation sources and to evaluate the usefulness of such

signals for characterizing the dominant resonant response of the sample under

study.

4. To develop a genetic algorithm capable of optimizing nonlinear optical signals

by interfacing with a spatial light modulator for temporal waveform synthesis

of femtosecond regime optical pulses.

1.3 Thesis outline

The main topic of this thesis is the characterization of material properties via third-

harmonic (TH) and four-wave mixing (FWM) microscopy. This topic is discussed

for three applications: (1) TH evaluation of dielectric oxide thin films used in fs

laser-induced damage threshold studies. (2) A two pulse method for determining the

dominant resonant process present in FWM interactions. (3) A genetic algorithm to

optimize nonlinear signal generation via temporal waveform synthesis.

Chapter 2 conveys several details of nonlinear optics relevant to this thesis. We

begin with an introduction to nonlinear microscopy by outlining nonlinear signal gen-

eration in tandem with mathematical and photon energy-level descriptions of several

nonlinear processes highlighted throughout this manuscript. Subsequently, we recall

the merits of i) TH with circularly polarized illumination (THCP) for isolating opti-

cal signals from anisotropic media and ii) polarization control in FWM microscopy

for isolating optical signals from resonant media. THCP is used extensively for inves-

tigating inherent and induced anisotropy of the oxide thin films in Chapter 4. The
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FWM polarization control scheme is implemented to confirm the results of modeling

resonant FWM signals in Chapter 5.

Chapter 3 highlights the optimization of two preexisting femtosecond laser sources,

a titanium sapphire oscillator (Ti:S) and an optical parametric oscillator (OPO) for

application to nonlinear microscopy. The Ti:S previously exhibited double pulse out-

put where normally the repetition rate of the laser would prescribe only one pulse.

Such pulse behavior is undesirable in that it decreases the peak intensity of the laser

output and weakens subsequent nonlinear signal generation. Following the deter-

mination of a suitable replacement for the outcoupler and pump focusing lens, the

Ti:S output power, spectral bandwidth, pulse duration and pulse behavior are all

improved. Careful alignment of the crystal position and end mirror also enable in-

creased modelocking stability. These improvements prove to be critical for enabling

sensitive measurements at the detection limit of our TH microscope. The OPO

spatial mode output is improved from TEM0,n, where routinely n > 4, to TEM0,0

facilitating the removal of an intracavity knife’s edge which results in nearly doubled

output power.

The measurements in Chapter 4 center upon TH microscopy investigation of di-

electric oxide thin films. The study of such films holds great interest for researchers

involved in fs laser-induced damage threshold (fs LIDT) studies, film deposition, and

micro- and nano-patterning with fs pulses. We first characterize the TH microscope

itself by determining the spatial resolution and minimum polarization ellipticity in

the sample plane. The polarization ellipticity is of interest because of its role in

limiting the microscope’s sensitivity to anisotropy in the case of THCP imaging.

Prior to interrogation of thin films we examine THCP sensitivity to both colloidal

gold nanoparticles and nanoindentations in fused silica. Respectively, these mea-

surements serve to estimate the minimum size of detectable anisotropy and to con-

firm imaging sensitivity to induced material strain, both of which hold importance
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for fs LIDT studies. Subsequent sections consider high quality thin films exposed

to high fluence laser radiation for cases both below and above damage threshold.

From these exposures we compare TH imaging results with conventional far field

microscopy techniques commonly employed to study laser damage in thin films. For

exposures above damage threshold, THCP imaging is shown to exhibit significantly

larger dynamic range and is able to uniquely identify modification in the remaining

material. Additionally, TH with linearly polarized illumination (THLP) of the same

exposures shows a singular potential to quantify the depth of material removal. For

exposures below damage threshold, THCP alone produces high contrast images of

induced material anisotropy. This confirms the presence of a previously speculated

long lived material change prior to the formation of optical damage. A section is

dedicated to TH investigation of nascent thin films. In these films, features unique

to THCP imaging are compared with several types of data and are found to correlate

with strain in the film. An additional section presents the observation of a reversible

material change in a film of relatively high absorption at laser fluences achievable

with our TH microscope. Such an effect highlights the value of TH microscopy for on-

line monitoring of transient material effects during both fs LIDT studies and routine

operation of high energy laser systems.

In Chapter 5, both of the lasers optimized in Chapter 3 are implemented for two

color FWM microscopy. Two color illumination generates two spectrally resolved

FWM signals in the visible and IR respectively. The primary focus of this chapter is

the analysis of these two FWM microscopy signals as they depend on the inter-pulse

time delay between the two illumination sources. The effect of resonant media on the

two FWM signals is monitored for several solvents (methanol, ethanol, propanol, bu-

tanol, hexane). These inter-pulse delay scan measurements reveal a delay separation

between the visible and IR FWM signal peaks. This delay separation is shown to be

material specific. It is hypothesized that the delay separation between visible and

IR FWM signals is due to the presence of a resonant material process with charac-
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teristic time probed by the two fs sources. To confirm this hypothesis we implement

mathematical modeling of inter-pulse delay scan measurements with the inclusion of

resonant processes for: visible FWM signals produced by coherent anti-Stokes Ra-

man scattering (CARS) and visible stimulated parametric emission (SPE), and IR

FWM signals produced by coherent Stokes Raman scattering (CSRS) and IR SPE.

The results of modeling suggest that inter-pulse delay scan measurements probe a

characteristic vibrational dephasing time in the CARS process. This result is further

confirmed by repeating inter-pulse delay scan measurements while implementing a

polarization control setup for suppression of resonant CARS signals.

Chapter 6 discusses the development and application of a genetic algorithm im-

plemented in LabVIEW to interface with a spatial light modulator (SLM) and to

optimize nonlinear signal generation via temporal waveform synthesis. Two versions

of the algorithm are presented: one with fully independent control of the SLM pixels

and another where the values of the pixel mask are determined by implementing

polynomials up to order nine. Preliminary results confirm the ability to optimize SH

and TH nonlinear signals. For benchmarking, we demonstrate that our results with

SH signals compare favorably with a commercially available software for generating

bandwidth limited pulses based on the phase retrieval technique multiphoton intra-

pulse interference phase scan (MIIPS). Subsequent sections feature optimization of

TH microscope signals for samples of bulk fused silica and gold islands.

Chapter 7 summarizes the work presented in this thesis and discusses the potential

implications for future work.
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Chapter 2

Nonlinear Microscopy

The goal of this chapter is to introduce the reader to a few key features of nonlin-

ear optical signals which make them attractive for microscopy applications. These

features can be characterized as either generic ⇒ features present for all nonlin-

ear processes (i.e. 3-dimensional sectioning), or specific ⇒ features present for a

given process (i.e. third-harmonic generation (THG) at interfaces). This chapter

includes an overview of several key nonlinear processes referenced throughout this

manuscript, as well as specifics of relevant theory found useful in the subsequent

chapters’ applications.

2.1 Nonlinear vs. Linear signals

In the case of linear optics, signals derive their source from a material polarization,

P , induced by the incident electric field, E, where the constant of proportionality

between the two is given by the linear susceptibility, χ(1). This is expressed as

P (t) = χ(1)E(t) (2.1)
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where, for simplicity, we temporarily omit the vector nature of P and E as well as

the tensor nature and frequency dependence of χ(1). In a generalization of Eq. (2.1)

for the case of nonlinear optics, P can be expanded in a power series of the incident

electric field and may be written as

P = χ(1)E + χ(2)E2 + χ(3)E3 + ... = P (1) + P (2) + P (3) + ... (2.2)

where P and E implicitly depend on time. While always valid in the frequency

domain, Eq. (2.2) may be considered valid in the time domain only for the case of

instantaneous response in a material without loss or dispersion.

Nonlinear optical signals derive their source from the induced material polariza-

tion P . Considering that the optical signals we collect are time averaged due to finite

electronic instrument response times, detection of the nth-order nonlinear signal may

be written as

S(n) ∝
∫ [

P (n)
]2
dt =

∫ [
χ(n)En

]2
dt. (2.3)

A closer look at Eq. (2.3) reveals the important facts that nth-order nonlinear signals

scale proportional to In, where I is the instantaneous optical intensity, and probe a

spatially localized χ(n). A geometrical example elucidates why this is so important

for nonlinear microscopy.

Figure 2.1: Optical signals produced near the focus of a Gaussian beam.
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Consider the focused Gaussian beam shown in Fig. 2.1. The resultant linear

signals scale with optical power and are generated throughout the extent of the beam,

while nth-order nonlinear signals scale as In, and are dominantly generated in a region

around the focus of the beam. The axial extent of this region is approximately the

confocal parameter of the beam, which along with the beam waist estimates the

ellipsoidal volume of signal generation. Approximating this volume as a point, we

see that adjacent points begin to map out a distribution of χ(n) in 3-dimensional (3D)

space. This is fundamental to nonlinear imaging microscopy and may be expressed

mathematically as

S(n)(x, y, z) ∝
∫ (

χ(n)(x, y, z)En
)2
dt. (2.4)

Nonlinear signal generation is inherently applicable to 3-dimensional imaging

and relies on point by point image construction. Typically, a computer is used to

coordinate sample scanning and data collection.

2.2 Nonlinear processes for microscopy

Figure 2.2 shows the photon energy-level diagrams† of second-harmonic generation

(SHG), sum frequency generation (SFG), third-harmonic generation (THG), and

four-wave mixing (FWM), which are referenced throughout this manuscript. These

diagrams indicate a transfer of energy from incident photons to a signal photon

that occurs as a single quantum-mechanical process. For the process of THG, three

fundamental photons are annihilated and simultaneously one photon is created with

three times the energy. The solid line indicates a ground state while the dashed lines

represent virtual levels. For the experiments that follow, the center wavelengths,

†This is the naming convention used in Boyd [15].
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λc, of the observed incident lasers and the predicted signal fields are presented in

Table 2.1. Although the titanium sapphire oscillator (Ti:S) and optical parametric

oscillator (OPO) both are tunable laser sources, this table includes only the center

wavelengths most commonly implemented for each.

Figure 2.2: Photon energy-level diagrams corresponding to SHG, SFG, THG, visible
FWM and infrared FWM.

source or Ti:S OPO SHG SHG SFG Ti:S IR Visible
process Ti:S OPO THG FWM FWM
λc(nm) 787 1025 394 513 445 262 1469 639

Table 2.1: Central wavelengths of Ti:S and OPO laser sources as well as resulting
SHG, SFG, THG, IR FWM, and Visible FWM optical signals.

When considering the efficiency of nonlinear signal generation, the induced ma-

terial polarization must follow from processes where both energy and momentum are
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conserved. However, meeting these fundamental requirements alone does not neces-

sitate efficient signal generation. Often, the geometry of both the nonlinear material

and the focusing conditions plays a defining role in nonlinear signal generation. For

instance, it is well known that SH signals are generated only in noncentrosymmetric

media [15]. For that reason, SHG is often used in combination with other imaging

processes to reveal areas of noncentrosymmetric crystallinity, particularly in biolog-

ical samples [64]. Less commonly known are the parameters effecting TH signals.

However, since χ(3) is non-vanishing for all materials, TH is of great interest for

probing material characteristics.

Consider the case for efficient THG. Equations (2.5) and (2.6) express energy

conservation and momentum conservation respectively, where ω1 is the frequency of

the incident field, ωs is the frequency of the signal field and the ki indicate momentum

vectors for the four photons involved in this process.

~ωs = ~3ω1 (2.5)

∆k = ~k1 + ~k2 + ~k3 − ~k4 = 0 (2.6)

In order to achieve a maximal optical intensity and thereby the largest nonlinear

signal, we require focused laser beams. Figure 2.3 illustrates how the momentum

vectors with a positive wave mismatch can lead to efficient THG in the focus of

a Gaussian beam. For a collimated Gaussian beam, the difference between the

sum of incident momentum vectors and the signal momentum vector, the so-called

phase mismatch, is required to be positive, ∆k > 0, so that upon focusing (which

results in an angular spread of momentum vectors), ∆k = 0 and THG is allowed

by momentum conservation. Obviously a positive phase mismatch is desirable to

enable efficient TH signal generation in the focus of a Gaussian beam, yet, one

more condition must be satisfied in order to produce net TH signals. For a linearly

polarized focused Gaussian beam in an isotropic bulk media, the TH generated before

and after the beam waist destructively interfere, resulting in zero net THG [25].
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However, when axial symmetry is broken by either an interface or an anisotropic

media, TH signals are generated efficiently [65, 18]. In fact, the same effect occurs for

all higher order odd-harmonic nonlinear signals. As a classic illustration of exploiting

this behavior for imaging, TH microscopy is used to create high contrast images of

thin cell membranes without the need for staining.

Figure 2.3: Momentum vector diagrams for THG. Identical amplitude incident
(k1, k2, k3) and signal (k4) momentum vectors for two distinct cases. Above: in-
cident momentum vectors in a collimated Gaussian beam. Below: the same beam is
focused resulting in an angular spread of momentum vectors.

Using the two examples of SHG and THG in review, if one were to simultaneously

image a sample by detecting SHG and THG, the collected signals would construct a

3D image of both noncentrosymmetric crystallinity and interfaces that pass through

the focal volume of the incident beam. Stated another way, the image would partially

map a distribution of χ(2)(x, y, z) and χ(3)(x, y, z) in the sample.

2.2.1 Third-harmonic applicability to thin films

As just mentioned, TH optical signals may be generated efficiently by inserting a

material interface into the focal volume of a linearly polarized focused beam. While

noting that this effect primarily relies upon breaking the axial symmetry required

for destructive interference of TH signals, we have not specifically mentioned where

the majority of signals are generated. In general, one may calculate the generated

21



Chapter 2. Nonlinear Microscopy

TH field as a function of axial position, z, with Eq. (2.7) [27],

E3ω(z) =
3iωχ(3)E3

ω

2cn3ω

∫ z

−∞

ei∆kz′

[1 + i(z′/z0)]2
dz′ (2.7)

where c is the speed of light, z0 is the Rayleigh range of the focus, ∆k is the cumulative

phase mis-match and χ(3) and n3ω represent the third-order susceptibility at the fun-

damental frequency and the index of refraction at the TH frequency for the material

involved.

Of particular interest for application in Chapter 4, we desire to know the dominant

source of TH signals produced when a thin film on a substrate is present in the

focal volume of the TH microscope. One of our collaborators, who has developed

a sophisticated model based on Eq. (2.7) to account for spherical aberration and

clipping of the incident beam by a focusing objective, has kindly provided Fig. 2.4

for inclusion here. This phasor diagram plots the real and imaginary parts of the

generated TH field as a function of z for a typical HfO2 film (200 nm) on fused silica

substrate. Clearly, the total generated field (E3ω) is dominated by the contribution

from the film alone (E ′3ω). In general, the relative contribution from an arbitrary

thin film must be confirmed on a case by case basis. However, for the HfO2 (hafnia)

and Sc2O3 (scandia) films of thickness 100-200 nm on fused silica substrates which

are interrogated in Chapter 4, the signal from the film is expected to dominate the

total signal [66]. This allows us to interpret TH signals with the appropriate source

in mind.
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(a) (b)

Figure 2.4: (reproduced courtesy of Cristina Rodriquez[66]) Calculated phasor dia-
gram of the net TH field generated for a hafnia thin film on fused silica substrate as
a function of position in the propagation direction.

2.2.2 Implications of third-harmonic generation with circu-

larly polarized light

From Section 2.2, we know that TH microscopy is typically used to image near inter-

faces. However, by implementing circularly polarized illumination, TH microscopy

is readily extended to further isolate the source of TH signals. TH signals generated

by circularly polarized illumination are generated from anisotropic features alone,

whether near a material interface or deep within the bulk. Immediately, we see that

third-harmonic with circularly polarized illumination (THCP) is innately useful for

eliminating background optical signals in two ways: i) suppression of signals from

isotropic media, ii) suppression of signals originating from interfaces alone. Both of

these together make THCP readily applicable to nearly background free imaging of

anisotropic anomalies in otherwise highly isotropic thin-film/substrate combinations.

To understand why THCP is sensitive to anisotropic features alone, first consider

23



Chapter 2. Nonlinear Microscopy

Eq. (2.2). Recall that P is correctly written as a tensor equation to account for

electric field polarization and anisotropic susceptibilities. For third-order polarization

in the i direction (x, y, z coordinate axes) with D distinct permutations of the input

field frequencies (ωo, ωn, ωm), P (3) may be written generally as [15]

P
(3)
i (ωo + ωn + ωm) = DΣjklχ

(3)
ijkl(ωo + ωn + ωm)Ej(ωo)Ek(ωn)El(ωm) (2.8)

where the input frequencies are arbitrary and may possess either positive or negative

sign. Now considering the case of THG (ωo = ωn = ωm = ω) and an isotropic

material, Eq. (2.8) may be rewritten as

P (3)
x (3ω) ∝ χ(3)

xxxxExExEx + χ(3)
xyyxEyEyEx + χ(3)

xyxyEyExEy + χ(3)
xxyyExEyEy. (2.9)

We have assumed input fields in the x and y direction so that Ez = 0. Accounting

for just the absolute equality of terms in isotropic media (χ
(3)
xxxx = χ

(3)
yyyy, etc.), the

sum of terms in Eq. (2.8) is readily expressed by only the four terms remaining in

Eq. (2.9) [15, 67]. In addition, we now consider the effects of a circularly polarized

input field vector, E = Ex +Ey = E+ iE where Ey = iE. Noting that (iE)2 = −E2,

evaluation of Eq.(2.9) yields

P (3)
x (3ω) ∝ χ(3)

xxxxE
3 + E3

[
−χ(3)

xyyx − χ(3)
xyxy − χ(3)

xxyy

]
. (2.10)

However, the remaining four terms are not independent of one another. For isotropic

media, χ
(3)
xyyx = χ

(3)
xyxy = χ

(3)
xxyy = 1

3
χ

(3)
xxxx [67] and Eq. (2.10) becomes

P (3)
x (3ω) = 0. (2.11)

Starting with Eq. (2.8) and using the same arguments, we reach the same result

for the other P
(3)
i (3ω). Solving Eq. (2.8) generally for circularly polarized light, we

find that TH signals are not generated in isotropic media. Applied to imaging, THCP

signals indicate regions with anisotropy in χ(3) where the isotropy condition χ
(3)
xyyx =

χ
(3)
xyxy = χ

(3)
xxyy = 1

3
χ

(3)
xxxx no longer holds. THCP previously has been implemented

to image gold nanorods and birefringent biological specimens and to differentiate

sub-domains of anisotropy [27, 18, 37].
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2.2.3 Optical isolation of resonant four-wave mixing signals

via polarization scheme

(a)

(b)

Figure 2.5: Resonant and non-resonant FWM signal processes which result in identi-
cal signal frequencies (a) in the visible and (b) in the infrared. Dashed lines indicate
virtual energy levels. Solid lines represent real energy levels.

The energy level diagrams of Fig. 2.2 illustrate how sample illumination with the

two laser sources implemented in this work leads to the generation of two FWM sig-

nal frequencies, one in the visible and one in the IR. However, what is not conveyed

in these simple diagrams is that each signal may be generated by multiple processes

within a material. Figure 2.5 shows how several processes, both resonant and non-

resonant with energy levels in the sample, may contribute to the total signal at a
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given frequency. In addition to CARS and CSRS, we now include stimulated para-

metric emission (SPE) processes in our discussion of FWM. Since FWM microscopy

with chemical specificity relies upon resonant signals to enhance imaging contrast,

suppressing background signals generated from nonresonant interactions represents

a common obstacle in the field. Often, problems arise when the percentage of reso-

nant molecules is small enough that the contribution from nonresonant interactions

dominates the total signal. Several techniques have been developed to isolate reso-

nant FWM signals. For the work in Chapter 5 we make use of a polarization control

technique to isolate resonant IR SPE signals.

The development of the IR SPE polarization scheme presented here followed

from previous work with CARS. CARS is a classic example of microspectroscopy

where tunable laser sources allow molecular vibrational resonances to be probed.

Groundwork was laid when polarization CARS (P-CARS) spectroscopy was first

demonstrated in the late 1970’s as a way to isolate resonant CARS signals [46] and

enhance the detection of weak Raman active vibrational modes in benzene. Polariza-

tion CARS later was extended to microscopy and was demonstrated first as a means

of enhancing vibrational contrast of the protein amide I band within unstained ep-

ithelial cells [47]. In analogous fashion to P-CARS, an IR SPE polarization scheme

was developed for microscopy with the capability to isolate resonant IR SPE sig-

nals corresponding to electronic material resonances [51]. These previous works all

took advantage of isolating the desired FWM signal by suppressing the relatively

large nonresonant contribution at identical signal wavelength. Here we also make

the observation that isolating IR SPE signals with a polarization scheme may simul-

taneously suppress resonant visible FWM signals corresponding to CARS.

The following explanation of the IR SPE polarization scheme proceeds from the

derivations in references [46, 47, 51]. Isolation of resonant IR FWM signals is possible

by polarization control when considering that the third-order material polarization

26



Chapter 2. Nonlinear Microscopy

for IR FWM (cf. Eq. (5.8)) may be decomposed into contributions from nonresonant

and resonant processes.

~P (3) = ~PNR + ~PR (2.12)

For linearly polarized input fields E2 (OPO) and E1 (Ti:S) separated by angle φ as

shown in Fig. 2.6, the x and y components of PNR may be written as

PNR
x = 3χNR

xxxxE
2
2E
∗
1 cosφ (2.13)

PNR
y = 3χNR

yxxyE
2
2E
∗
1 sinφ (2.14)

where recalling the notation for tensor susceptibilites, χNR
yxxy is the nonresonant third-

order susceptibility produced in the y direction (cartesian coordinates) for incident

fields in the x, x and y directions. In the same way, the x and y components of PR

may be expressed as:

PR
x = 3χR

xxxxE
2
2E
∗
1 cosφ (2.15)

PR
y = 3χR

yxxyE
2
2E
∗
1 sinφ. (2.16)

The value of the third-order susceptibility for nonresonant processes, χNR, is

approximated to be real and frequency independent. Therefore the sum of x and

y components of PNR leads to a linearly polarized nonresonant signal field, ES,NR,

oriented at angle α with respect to E2. In the presence of material resonance, the

third-order susceptibility, χR, is complex and frequency dependent. In light of this,

we may consider the sum of Eqs. (2.15) and (2.16) to be analogous to the sum of two

fields oscillating with the same frequency but different amplitude. PR then possesses

elliptical polarization. The FWM signal field generated by the sum of PNR and PR,

ES,total of Fig. 2.6, then also must be elliptically polarized. Immediately, we see that

detection of optical signals perpendicular to the orientation of ES,NR results in signals

that theoretically depend on PR alone. However, in practice there always exists
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some nonzero extinction ratio for linearly polarized light due to depolarization, and

detection of some nonresonant signals in the perpendicular direction is unavoidable.

Here, the dominant sources of depolarization are expected to be uncompensated

birefringence in the optics due to broad bandwidth pulses and polarization scrambling

for tight focus conditions [47]. Considering Eqs. (2.13)-(2.16) along with the nonzero

extinction ratio r of PNR, we can deduce the conditions that optimize the contrast

ratio of signals due to PR.

Figure 2.6: FWM polarization scheme for resonant signal isolation. Linearly polar-
ized incident fields, E2 and E1, result in elliptically polarized signal, ES,total, with a
linearly polarized component exclusively due to nonresonant processes, ES,NR.

For many materials, the ratio of the two remaining nonzero elements of the sus-

ceptibility tensor follows from Kleinman symmetry [7] as

ρNR = χNR
yxxy/χ

NR
xxxx = 1/3. (2.17)

Noting that

tanα = ρNR tanφ = 1/3 tanφ, (2.18)

28



Chapter 2. Nonlinear Microscopy

the total expression for PNR with linear polarization at angle α is given by

PNR = 3χNR
xxxxE

2
2E
∗
1 cosφ/ cosα. (2.19)

The resulting (background) linearly polarized nonresonant contribution to the total

signal may be blocked by placing a polarization analyzer in the optical detection

path perpendicular to ES,NR making angle β with respect to E2. The resonant

contribution in the perpendicular direction is

P⊥ = 3E2
2E
∗
1χ

R
xxxx(cosφ sinα− ρR sinφ cosα) (2.20)

where ρR = χR
yxxy/χ

R
xxxx. Then assuming the extinction ratio is r for the nonresonant

signal, the contrast ratio for resonant signals in the perpendicular direction may be

written as

rP 2
⊥/(P

NR)2 = r(χR
xxxx/2χ

NR
xxxx)2(1− ρR/ρNR)2 sin2 2α. (2.21)

To maximize the contrast ratio, we choose α = 45◦, and through Eq. (2.18) we

determine the necessary angle between incident fields, φ ≈ 71.6◦. This technique

allows for the efficient isolation of resonant IR SPE signals.
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Femtosecond laser sources for

microscopy

The nonlinear microscopy techniques detailed in the remainder of this thesis rely

upon two preexisting femtosecond laser sources built by previous graduate students:

a titanium sapphire oscillator (Ti:S) and an optical parametric oscillator (OPO) [68].

The goal of this chapter is to characterize regions of critical alignment in these Ti:S

and OPO femtosecond laser sources, and to optimize and update both lasers for

application in nonlinear microscopy. Specifically, we seek to instruct the reader as

to how a systematic study of critical alignment regions in existing femtosecond laser

sources may help to improve the respective source’s i) output pulse behavior (single

pulse instead of double pulse), ii) average power, and iii) output mode (TEM0,0

desired). All of these improvements benefit nonlinear microscopy techniques.

The Ti:S output previously was characterized by a chaotic shift between single

pulse and double pulse behavior on a timescale of minutes to hours. Compared to

single pulse output, double pulse output has reduced peak intensity and thereby

reduces any nonlinear signals produced by the beam. Single pulse output with im-
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proved average power (peak intensity) is sought in order to increase nonlinear signal

generation when the Ti:S is applied to nonlinear microscopy.

The OPO formerly required the use of an intracavity knife edge to enact TEM0,0

transverse mode output. Using such a knife edge reduced the average output power

by approximately half. A reduction in output power (peak intensity) of the beam

leads to a reduction in any nonlinear signals produced by the beam. Therefore, a

method for enacting TEM0,0 output without a reduction in power is sought when

the OPO is applied to nonlinear microscopy.

3.1 Overview of femtosecond laser sources for mi-

croscopy

Consider the case where nonlinear signals are generated in the diffraction limited

focal volume of a nonlinear microscope. In order to yield a maximum nonlinear

signal, one would choose an illumination source that exhibits high peak intensity

and short wavelength (smaller diffraction limited spot size). However, nonlinear

microscopy is typically transmission microscopy where the signal wavelengths are

often harmonics of the excitation source. Requiring both sample transmission and

detectability of harmonic signals, nonlinear microscopy is typically limited to source

wavelengths in the visible and near-infrared (NIR). Additionally, it is clear that in

order to avoid damage to the sample, the ideal illumination source would combine

high peak intensity with modest average power in a high repetition rate ultrashort

pulse laser. A survey of the literature reveals typical parameters for femtosecond

sources often used in nonlinear microscopy, Table 3.1. The Ti:S and OPO parameters

shown in Table 3.1 are for the sources used in the following work after optimization

as detailed in the next two sections.
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pulse Spectral Pulse Mean Power Repetition
source range duration or pulse energy rate
Ti:S 770-800 nm >45 fs 1.42 W 113.3 MHz
OPO 980-1300 nm > 70 fs <75 mW 113.3 MHz

Cr:LiSAF [69] 770-950 nm > 9 fs <100 mW 100 MHz
Cr:Forsterite [21] 1170-1345 nm > 65 fs ≈ 200 mW 100 MHz

Er:Fiber 1550 nm 50 fs ≈ 120 mW 37 MHz
oscillator [70]

Table 3.1: Comparison of optimized Ti:S and OPO to typical spectral range, pulse
duration, mean power and repetition rate for several types of femtosecond sources
often used in nonlinear microscopy .

3.2 Optimization of femtosecond titanium sapphire

oscillator

Figure 3.1: Layout of the Kerr lens modelocked Ti:S oscillator.

An diagram of the cavity layout of the asymmetric cavity Kerr lens modelocked

Ti:S oscillator used throughout the work presented in this thesis is shown in Fig. 3.1.

A 532 nm frequency doubled Nd:Vanadate laser (Coherent Verdi V-8, 7.00 W) pumps
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a titanium doped sapphire crystal (10 mm length) which emits broadband fluores-

cence (700 - 1000 nm) peaked at 790 nm. The cavity is dispersion controlled via

a prism pair (SF10) used to negate positive group velocity dispersion (GVD) intro-

duced by the crystal and mirrors [71]. Pulses arise from fluctuations in the intracavity

power and are selectively prefered for gain due to Kerr lensing in the crystal [72].

Following optimization, the result is a modelocked (19 nm bandwidth) train of pulses

of 45 fs duration at 1.42 W average power and 787 nm central wavelength with a

repetition rate of 113.3 MHz.

Owing to the nonlinear nature of both Kerr lensing and thermal lensing present in

this type of oscillator, an analytical description of the cavity dynamics is abandoned

in favor of numerical modeling which places two cavity modes, continuous wave (CW)

and modelocked, in competition for gain [73, 74]. It is both observed and modeled

[73] that for a Kerr lens modelocked laser with soft aperture, the modelocking process

is most preferred near the center of CW stability regions of the laser. In an attempt

to increase modelocking stability and output power, a systematic study of a few

stability regions was undertaken.

Previously, our Ti:S oscillator displayed double pulse behavior, where the out-

put pulse train is characterized by two pulses where normally (as prescribed by the

repetition rate of the laser) there would be only one. Double pulse behavior re-

duces the peak intensity of the laser and thereby reduces subsequent nonlinear signal

generation. For this reason, we sought to make the output behavior single pulse.

Double pulse modelocked output may indicate that the intracavity peak power

of a single pulse exceeds the critical power of self focusing which can lead to pulse

splitting [75]. One solution to this problem is to introduce an additional cavity

loss by increasing the outcoupler transmission. If chosen correctly, the outcoupler

may also lead to an increase in the average output power of the oscillator. The

goal is to find an appropriate outcoupler that negates double pulse behavior while
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increasing the modelocked power output. For outcouplers in the range of 13% to

25% transmission, the average power and pulse behavior of the Ti:S oscillator were

observed for comparison and are plotted in Fig. 3.2. For a combination of single pulse

modelocked output and increased average power, the original 13% outcoupler was

permanently replaced with a 20% outcoupler. Note that after the 20% outcoupler

was chosen, the pump focusing lens was changed, from f = 10 cm to f = 8.5 cm AR

coated, in order to increase both the transmission of the pump laser through the lens

and the fluence of the pump within the crystal. This yielded an increase in average

CW and modelocked power and the output behavior remained single pulse.

Figure 3.2: CW and modelocked average power of the Ti:S oscillator for 13%, 16%,
18%, 20%, 25% transmission outcouplers. Also shown is the CW and modelocked
average power for the 20% outcoupler achieved after changing the pump focusing
lens from f = 10.0 cm to f = 8.5 cm.

Once single pulse output behavior was achieved, we sought to optimize the

modelocked output power of the oscillator by investigating two critical alignment

regions. First, the distance d between folding mirrors (cf. Fig. 3.1) was adjusted over

a few mm while monitoring the CW power. Such an alignment is accomplished by
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translating together the crystal, second folding mirror (curved mirror nearest prisms)

and pump focusing lens. This keeps the focal volume of the pump at a constant po-

sition in the crystal and maintains a constant distance between the focusing lens and

the mirror being moved. This also requires that the entire cavity be realigned for

maximum CW power for each step in d. The results with a 20% outcoupler are shown

in Fig. 3.3a. Optimum modelocking stability is achieved for d = 111.75 mm†, which

is slightly detuned from maximum CW power in this stability region. The need for

this detuning likely indicates the effect that Kerr lensing (arising from pulsed behav-

ior) imposes on the stability of the cavity[76]. For a 16% outcoupler, Fig. 3.3b, the

CW power has a maxima at the same position as that of the 20% outcoupler.

(a) (b)

Figure 3.3: CW power versus the distance, d, between folding mirrors in the Ti:S
cavity for (a) 20% outcoupler, (b) 16% outcoupler.

A second alignment region of interest depends on the horizontal alignment of

the end mirror. From Fig. 3.1 we see that the spectral components of the laser

arrive with spatial separation on the end mirror. Ascribable to that fact, we find

that fine alignment of the end mirror has an impact on both the overall power and

†Measured with a vernier caliper.
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the center wavelength of the output pulses. To map this stability region, we first

align the cavity for absolute maximum CW output power†. Next, the end mirror

horizontal alignment knob is walked incrementally in one direction (clockwise or

counterclockwise). For each incremental motion on the end mirror, the outcoupler

is aligned for maximum CW power. If modelocking is observed, the power and

spectrum are recorded. From this data, Fig. 3.4, we find that for the most stable

modelocking (> 24 hours duration), the modelocked average power (1.42 W) exceeds

the CW average power (1.41 W). Experimentally, this stability region is observed to

be by far the most useful for finding the highest power stable modelocking behavior

of the oscillator. This may be owed to the fact that alignment of the end mirror in the

horizontal direction finely tunes the cavity alignment to a specific wavelength range

in the spatially separated spectrum incident upon it. The assumption is that when

this range is centered upon the minimum GVD wavelength∗ of the cavity, the highest

modelocked power results. This same assumption motivates piezoelectric control of

the end mirror in the horizontal direction for phase stabilized laser oscillators [77, 78].

In summary, an existing Ti:S oscillator has been improved by i) eliminating dou-

ble pulse output by moving to a higher output coupler, and ii) mapping two stability

regions which aid in finding the maximum power for stable modelocking. Addition-

ally, mounts of both the second folding mirror and the focusing lens were replaced to

improve mechanical stability. The net effects of these improvements can be found in

Table 3.2. Highlights include the improved modelocking power, 1.35 - 1.42 W, and

the elimination of double pulse behavior, which both lead to higher intensity applied

to nonlinear microscopy. For reference, the output spectrum of the optimized Ti:S

laser is presented in Fig. 3.5.

†This includes aligning the distance between folding mirrors, d.
∗This amounts to fine tuning the GVD. GVD is primarily controlled by aligning the

prisms and minimizing the pulse duration of the laser output as measured by a technique
such as autocorrelation or FROG.
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Figure 3.4: CW and modelocked power as a function of horizontal end mirror posi-
tion. The laser is operated at 1.42 W ML in the stable ML region.

Figure 3.5: Typical spectrum of the Ti:S laser following optimization.
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Max Power Max Power Modelocked τp λc pulse
CW (W) ML (W) bandwidth (nm) (fs) (nm) behavior

chaotic
before 1.50 1.35 16 70 785 single-double
after 1.57 1.42 19 45 787 single

Table 3.2: Ti:S oscillator characteristics before and after optimization.
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3.3 Optimization of femtosecond optical paramet-

ric oscillator (OPO)

A layout diagram of the OPO is shown in Fig. 3.6. An extensive explanation of

its construction and operation can be found in Dr. Xuejun Liu’s dissertation [68].

The OPO is synchronously pumped (1.11 W) by the Ti:S source described in section

3.2, and yields a train of pulses with > 70 fs duration, < 75 mW average power at

1025 nm, and 113.3 MHz repetition rate. The cavity contains a prism pair (SF10)

to compensate GVD in the cavity. A piezo stage finely controls the optical length

of the cavity to match the repetition rate to that of the Ti:S. A knife is mounted

on a vertical translation stage and can be inserted partially into the intracavity

mode in order to control the output mode. A TEM0,0 output mode is desirable in

order to produce a circular spot with Gaussian transverse profile in the focus of a

lens. Applied to microscopy, an incident TEM0,0 mode then becomes important for

achieving optimal transverse resolution of the microscope.

Previously, the OPO exhibited a propensity for spatial mode operation of TEM0,n

(with n>4), when aligned for maximum power and maximum tuning range. By

inserting the knife’s edge into the intracavity mode, TEM0,0 output could be achieved

but at a cost of half the output power (i.e. 45 mW to 28 mW). A solution for

achieving TEM0,0 output without this reduction in power is desired. Knowing that

higher order spatial modes often result from operating a cavity near instability, an

assessment of cavity stability was required. The critical alignment proved to be the

axial alignment of the end mirror. The output power and mode results for alignment

of the end mirror in the axial direction (and subsequent alignment of the outcoupler

to maintain cavity length) are shown in Fig. 3.7. The end mirror stage is kept at

11.28 mm to yield TEM0,0 output. Indeed, the OPO was previously operating near

cavity instability at 11.56 mm. The result is to provide TEM0,0 output without a

39



Chapter 3. Femtosecond laser sources for microscopy

Figure 3.6: Layout of the femtosecond pulse OPO.

reduction in average power. This alignment may improve the output mode by virtue

of overlapping, within the periodically poled lithium niobate (PPLN) crystal, the

focus of the pump beam with that of the counterpropagating beam reflected by the

end mirror. This is likely because the PPLN crystal is the only cavity component

with structural variation in the vertical direction.
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Figure 3.7: Output power and mode of the OPO as a function of end mirror position.
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Chapter 4

Third-harmonic microscopy of

transparent optical thin films

The goal of this chapter is to evaluate the sensitivity and utility of TH microscopy

to sources of contrast encountered in high quality oxide thin films starting from the

time of deposition and continuing through exposure to high fluence laser radiation

and the creation of permanent material modification. As a scanning far-field method

of imaging, TH microscopy represents a relatively fast and comparatively simple

all-optical technique which provides information typically only accessible through

more complex measurement techniques. Compared with such complex techniques,

which generally provide information on a broad spatial scale, TH microscopy adds

the capability of distinguishing spatially localized material characteristics.
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4.1 Overview of thin film samples and laser dam-

age studies

The next several decades certainly will be shaped on a global scale by advances in

energy production, by the ubiquity of light-weight high-strength advanced materials

and by the landscape of international defense. However, what may be overlooked

today is the critical role played by high energy laser systems in facilitating progress

in these areas and others. Indeed, the successes and failures of current projects

such as the national ignition facility at Lawrence Livermore National Laboratory

(> 1.8 MJ), and the free-electron laser at Thomas Jefferson National Accelerator

Facility (> 14 kW ) have direct implications for the viability of nuclear fusion re-

actors, carbon nanotube production and ship based missile defense systems. At

present, these and other high energy laser systems are limited in part by the avail-

ability of optics capable of withstanding the immense laser fluences necessary to

sustain high energy output. For this reason the study and improvement of coat-

ings comprising these optics is paramount to the success of such high energy laser

projects. Promising high damage fluence optical coatings are already made from

dielectric oxide thin films, however improvement remains necessary if they are to

support further advances in high energy laser applications. The characterization of

such films via TH microscopy, with an outlook toward improvement, is the central

topic of study for the remainder of this chapter. However, before considering the

merits of TH microscopy, let us first examine a few fundamentals of laser damage

studies that provide additional motivation for the work completed here with TH.

Femtosecond pulse laser-induced damage threshold (fs LIDT) studies represent a

primary method for analyzing the optical quality of dielectric oxide thin films cur-

rently of interest for high fluence optical coatings (HfO2, Sc2O3, Ta2O5, SiO2, TiO2).

This reflects the fact that the quality of films produced by a variety of deposition

43



Chapter 4. Third-harmonic microscopy of transparent optical thin films

processes has reached a sufficiently high level that damage studies with femtosec-

ond laser pulses are highly deterministic with respect to laser fluence. These studies

thereby probe fundamental parameters of the films and provide crucial information

concerning the mechanisms of damage. When considered together with data from

optical microscopy, electron microscopy, atomic force microscopy, X-ray diffraction,

absorption measurements and other methods of characterizing thin films, fs LIDT

studies provide a wealth of information that when properly interpreted may help

lead to the production of higher quality optical thin films.

The definition of optical damage in itself has been a matter of debate since the

inception of optical damage studies with the advent of the first Q-switched lasers in

the 1960s. Most generally, the damage threshold is defined to be the incident fluence

of light for which either a) a minimum incremental amount of material (a single

atom/molecule) is ablated from the material, or b) the material suffers a permanent

change. In practice, the evaluation of either such definitions remains impractical

and the damage threshold is often evaluated by observing a minimum incremental

increase in scattering from the sample under study. It should be noted that this

scattering method of evaluating the presence of optical damage has been applied

throughout the work detailed here. In addition, since it is not clear that all types

of permanent material modification effect the damage threshold of a material, we

adopt the terminology of Mero[79], using the term “incubation” to refer to a laser-

induced material change not yet resulting in macroscopic destruction of the optic.

Though such incubation sites are of interest for the dire role they play in leading to

catastrophic damage they remain ill-studied and poorly characterized. Historically,

this is due in part to the lack of an appropriate method of interrogation. TH mi-

croscopy is presented here as one method that is well suited to interrogating such

incubation sites. High quality films and their substrates are largely amorphous and

are then assumed to display highly isotropic behavior. Therefore any laser-induced

material modifications resulting in anisotropy are expected to be readily imaged via
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TH microscopy with circularly polarized illumination as outlined in Section 2.2.2.

The formation of optical damage is thought to hinge upon the presence of a crit-

ical electron density, Nc, in the conduction band of the material under study [80].

This critical electron density corresponds to the density at which the plasma fre-

quency of the material matches the laser frequency and signals the transition within

the material from transparent to highly absorbing behavior. Compared to laser dam-

age studies with pulses a few 10s of picoseconds and longer, which are dominated by

thermal damage mechanisms (melting, vaporization, thermoelastic stress fracture),

laser damage studies with femtosecond pulses rely upon the interplay of additional

electronic damage mechanisms such as Coulomb explosion [81] and plasma forma-

tion [82]. Due to the complexity of the problem, fs LIDT studies abide mainly in the

realm of empirical science. Even so, experiments and simulations agree that band

gap, multi-photon absorption, avalanche ionization, native trap states, and laser-

induced trap states (Fig 4.1) all play a role in determining the damage threshold of

dielectric oxide films [28, 29, 30, 31, 32]. Thus, fs LIDT studies probe the popula-

tion distribution of electrons within the specific energy band structure of thin film

materials.

Interestingly, one major precipitate of fs LIDT studies is the observation of dif-

ferent damage threshold fluence values for single-pulse (F1) and multiple-pulse (FS)

exposures of the same sample as shown in Fig. 4.2. The relationship FS < F1 is

broadly interpreted to indicate a memory effect of the material. That is to say

that the reason for a decreased damage threshold fluence under multiple pulse il-

lumination relates to a material alteration caused by one pulse that persists until

the arrival of the following pulse(s). In repetition, this cumulative effect lowers the

damage threshold fluence of the sample. This effect is shown to be invariant for

pulse repetition rates between 1 Hz and 1 kHz, indicating a fairly long lived material

alteration. Indeed, it’s possible that the material modification is permanent even for
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Figure 4.1: Four processes relevant to phenomenological modeling in fs LIDT studies
that contribute to promotion of electrons to the conduction band: (a) multi-photon
absorption, (b) avalanche ionization, (c) multi-photon absorption from a deep trap,
(d) linear absorption from a shallow trap.

laser exposures prior to damage. If this is the case, traditional imaging techniques

have failed to indicate its presence.
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Figure 4.2: (Reproduced courtesy of Luke Emmert and Duy Nguyen[83]) Experimen-
tally obtained damage threshold data normalized to the single-pulse value. Measure-
ments are for HfO2 film with two different pulse durations.

4.2 Experimental setup

The setup for TH microscopy is shown in Fig. 4.3. A Ti:S laser pulse train (787 nm,

45 fs, maximum 340 mW incident on focusing objective) propagates through a pre-

existing optical scanning section which enacts square raster-scanning in the focal

plane of the focusing objective (Leitz Wetzlar, 20×, 0.4 NA). The Ti:S pulses are

prechirped with a prism compressor [54, 71] so that a minimum pulse duration is

achieved in the sample plane. As observed in Chapter 6 this minimum duration is

not necessarily bandwidth limited. TH optical signals generated within the sample

are gathered by a collection objective (OFR 20×, 0.4 NA, UV) which directs both the

TH and linear optical signals to the detection path for spectral separation via dichroic

mirror (HR 266 nm) and interference filter (Edmund Optics NT67-811 265 nm). TH

signals are detected by a photomultiplier tube (PMT: Hamamatsu H10721-01) with

variable gain. Simultaneously, reflection signals at 787 nm are detected via confocal
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alignment to a single mode fiber coupled to an amplified silicon detector (Thorlabs

PDA36A). The scanning section and data collection are coordinated via computer

[84]. Insertion of a quarter-wave plate (QWP) (Casix zero-order 800 nm quartz-

MgF2) before the scanning section allows for adjustment between linear and circular

polarization of the fundamental field in the sample plane. Careful alignment† of this

QWP yields a TH signal originating in the focal volume where anisotropy in the ma-

terial is the dominant source of contrast. Here the 0.4 NA focusing objective is used

for the convenience of having a long working distance (≈ 10 mm) and is necessary

for working with thick samples.

Figure 4.3: Diagram of the TH microscopy setup.

4.2.1 Spatial resolution of the TH microscope

The spatial resolution of this TH microscope defines the limits of accurately quan-

tifiable spatial features in the captured TH and reflection images. For a radially

symmetric beam, the resolution is defined in two spatial directions: transverse ⇒ in

the plane of the image, and axial ⇒ perpendicular to the plane of the image. The

†High contrast imaging often requires QWP alignment within ≈ 0.1◦ [27].
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transverse resolution is estimated to be approximately the diameter of the spot size,

twice the Gaussian beam waist, w0.

w0 =
3λ0

2πNA
(4.1)

The axial resolution is estimated to be approximately twice the Rayleigh range of

the beam, 2ρ0 [12].

ρ0 =
nπw2

0

λ0

(4.2)

The measured values of axial and transverse resolution will differ from their estimates

in part because of deviation from a perfect Gaussian beam profile in the focus of the

microscope. Limited by the hard aperture of the focusing objective, a non-Gaussian

diffraction pattern is present in the focal plane. Additionally, Eq. 4.1 assumes an

infinitesimally thin lens without aberrations. Clearly, that is not the case here with

a compound lens microscope objective.

Using the approximation given in Eq. (4.1) [85] for w0 as a function of numerical

aperture (NA), with NA = 0.4 and center wavelength λ0 = 787 nm, we calculate

2w0 = 1880 nm = transverse resolution. Using Eq. (4.2) [86] where the index of

refraction n = 1 for air, the center wavelength λ0 = 787 nm, and the beam waist

w0 = 939 nm, we calculate 2ρ0 = 7.0 µm = axial resolution.

Compare these calculations with measurements of the experimental resolution

shown in Figs. 4.4 (axial) and 4.5 (transverse). The axial resolution for TH is mea-

sured to be 9.0 µ m by scanning the focus axially through a 100 nm HfO2 thin film on

a fused silica substrate and recording the resulting TH signals. Of course, the focus

passes through two interfaces, air-HfO2 and HfO2-fused silica, but this is assumed

to have negligible effect on the measurement owing to the small optical separation

between these interfaces. The transverse resolution for reflected light is measured

to be 1.50 µm by scanning the focused beam in a perpendicular line across a sharp

(≈ 10 nm) gold edge and monitoring the reflected signal. These values of axial and
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Figure 4.4: Measured TH signals and gaussian fit for an axial scan of the focal volume
through an air-fused silica interface. The FWHM (9.0 µm) constitutes a measure of
the axial resolution of this microscope.

Figure 4.5: Measured reflection signals for a line scan across a sharp (≈ 10 nm)
etched gold edge. The distance (≈ 1.5 µm) between 16% and 84% of the normalized
height of the curve (FWHM of the differentiated curve) constitutes a measure of the
transverse resolution of this microscope for reflection imaging.
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Figure 4.6: THG signals for a line scan progressing left to right from a gold film,
across a sharp (≈ 10 nm) etched gold edge and onto a glass substrate. The distance
(≈ 740 nm) between 16% and 84% of the normalized height of the curve (FWHM
of the differentiated curve) constitutes a measure of the transverse resolution of this
microscope for THG imaging.

transverse resolution compare closely with the estimated values. Interestingly, TH

data, Fig. 4.6, collected simultaneously with the reflection data of Fig. 4.5 indicates a

transverse resolution of ≈ 740 nm. The reduction in resolution from reflection to TH

measurements likely is due to the reduced half width of the transverse beam profile for

I3 dependency of the TH signal. Theoretically for Gaussian beams, I3 dependence

should lead to 1/
√

3 ≈ 0.58 reduction in the FWHM of the measured transverse

resolution. For perfect Gaussian beams we would expect 1500 × 0.58 = 870 nm

transverse resolution in the TH signal.

4.2.2 Residual polarization ellipticity in the sample plane

From Section 2.2.2 we know that TH signals vanish for purely isotropic media under

circularly polarized illumination. Typically, this relationship is exploited by THCP
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imaging to create contrast from areas of localized anisotropy in otherwise highly

isotropic media. It has been shown that contrast gained via THCP can be highly

sensitive to QWP alignment. In the case of [27], misalignment of the QWP by as

little as 0.1◦ destroyed what contrast was gained by using THCP signals. In part this

is due to complications arising from the application of broad spectral width fs pulses

(typically >10 nm FWHM) with a QWP designed to work at a single wavelength.

Due to chromaticity in birefringent phase retarders, the entire spectrum of such

pulses is not equally retarded in phase. The result is that by rotating the QWP, the

sum field never reaches circular polarization but only alternates between linear polar-

ization and elliptical polarization. By using zero order waveplates instead of multiple

order waveplates this effect largely can be negated. Indeed, zero order waveplates of

double crystal construction (often quartz-MgF2) may exhibit nearly achromatic be-

havior with only minor polarization error due mainly to misalignment of the crystal

axes [87]. A recently developed model allows for the design of broadband achromatic

waveplates based upon multiple birefringent media and optimization over an entire

range of wavelengths rather than at one specific wavelength [88]. Such a waveplate

would be ideal for working with broadband fs pulses since the spectral energy dis-

tribution of such lasers is fairly uniform around a central wavelength. Currently

however, some ellipticity is unavoidable when using a commercially available double

crystal birefringent QWP. Noting that residual ellipticity in the fundamental field

which drives the TH process leads to an increase in undesired background THLP

signals from interfaces between isotropic media, we desire to characterize the extent

and effect of such ellipticity.

The residual ellipticity of the incident illumination in the sample plane may be

determined by monitoring TH signals as a function of QWP angle. This assumes

that the elliptical field may be considered as a superposition of two electric fields,

one circularly polarized and one linearly polarized, where only the linearly polarized

field generates TH signals. By rotating the QWP we transfer energy between these
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two coherent electric fields.

Figure 4.7: TH signals from 110 nm hafnia thin film on fused silica as a function
of quarter-wave plate orientation. The minimum occurs when the incident field is
nearest to circular polarization.

For the TH microscope in Fig. 4.3 we examine the sensitivity of THCP signals

to QWP alignment. Using a sample of 100 nm hafnia film on fused silica substrate,

which exhibits both the largest TH signal and the largest reduction in TH signals

of any sample employed here, TH signals are recorded as a function of QWP angle

(Fig. 4.7). The reduction in TH signals from linear polarization to supposed circular

polarization is ≈ 16, 000 : 1. Accounting for the I3 dependence of TH signals,

that indicates a decrease of approximately 25× in the power corresponding to the

linearly polarized field. The total average optical power is conserved (≈ 320 mW),

since the energy is only transferred from the linearly polarized field to the circularly

polarized field. A 25 : 1 reduction in power corresponding to the linearly polarized

field suggests that the residual power attributed to the linearly polarized field is only

320/25 ≈ 13 mW. For this QWP alignment, TH signals equal the noise floor of our

setup. In this case, TH signals exceed the noise only when the power attributed to
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the linearly polarized field is greater than 13 mW. This value is confirmed simply

by attenuating linearly polarized light focused into the sample and observing the

resultant TH signal. Recall that this sample was chosen because it results in both

the largest TH signals and the largest change in TH signals for QWP alignment.

Therefore, for all samples interrogated in our setup are not limited in THCP contrast

by residual ellipticity in the incident beam.

4.3 Spatial sensitivity: Imaging of individual col-

loidal gold nanoparticles

Metallic nanoparticles and semiconductor QD’s show great promise as labels for

multiplexed optical detection. Their output is tunable based on size (resonance)

effects. TH signals have also shown sensitivity to nanoparticles and effectively serve

as an additional signal wavelength which is size independent. Here we study these

nanoparticles (of known size) because they may be considered to mimick defects

in thin films known to lower the damage threshold fluence by initiating damage

processes [35, 36].

Although THCP has been applied to investigate diverse sources of material

anisotropy, it remains to be demonstrated an estimate of the minimum size of

anisotropy which still leads to detection of a resolution limited spot upon illumination

with the types of fs NIR lasers typically employed in multiphoton imaging. To this

end, presented here are THCP images of individual 10 nm colloidal gold nanopar-

ticles (Nanopartz Inc., A11-10 in H2O) spin-coated† onto a fused silica substrate.

Individual nanoparticles are confirmed by comparing image data to the expected

diameter dependent signal scaling. TH microscopy previously has been applied to

†Thanks to Travis Savage and Dr. Eric Carnes for their expertise and equipment which
made spincoating these samples possible.
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image metallic nanoparticles, but never before by making use of circularly polarized

illumination to suppress background signals from the surrounding isotropic media.

Previous attempts were limited either to imaging aggregate structures of nanopar-

ticles with contrast highly dependent on precise plasmon resonance conditions [19],

or to imaging of individual nanoparticles under linearly polarized illumination with

a novel setup based on detecting dipole emission to enhance contrast [89]. In the

latter case, inherent background noise limited detection of individual nanoparticles

to sizes > 40 nm. In the present case, we interrogate gold nanoparticles of 10 nm

diameter which present off-resonant plasmon behavior and limit plasmon enhance-

ment of the TH signals [90]. It is presumed that material anisotropy, specifically the

polycrystalline structure of gold, is the dominant source of TH signal.

(a) (b)

Figure 4.8: (a) THCP image and (b) dark field image of individual 10 nm colloidal
gold nanoparticles.

Figure 4.8 shows both THCP and dark field images of the spin-coated 10 nm

gold nanoparticles. Using THCP (65 mW illumination) enables ready detection

of individual 10 nm nanoparticles with signal to noise ratio (S/N) > 100 : 1. From

both images in Fig. 4.8, the same process outlined in [89] is implemented to construct

histograms of the distribution of local signal maxima in order to corroborate a particle

size distribution consistent with individual particles. A co-localization technique
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with Gaussian fit† is used to distinguish individual signal centers and to determine

the local background and thereby the normalized maximum intensity of each spot.

Local background must be accounted for because of uneven illumination in the image.

Plotting histograms of these normalized maximum intensities, see Figs. 4.9 and 4.10,

confirms a dominant monomodal Gaussian distribution consistent with scattering

from individual nanoparticles. According to the expected signal scaling with particle

diameter ∝ d2 and ∝ d0.5 for dark field and TH, respectively [91, 90], we extract ∆d/d

of 0.121 and 0.125 respectively. These values agree well with the manufacturers data

sheet quoting ∆d/d = 0.12 with ∆d being the standard deviation of the particle

diameter.

Note that Rayleigh scattering predicts a d6 scattering signal dependence for 10 nm

particles illuminated at visible wavelengths. However, we must account for surface

plasmon effects for these gold nanoparticles. The TH signal scaling ∝ d0.5 assumes

off-resonance illumination of a neutral conducting sphere and was previously calcu-

lated for 10 nm gold nanoparticles illuminated by a Ti:S laser [90]. For on-resonance

illumination of nanoparticles they calculate TH signal scaling ∝ d2.5. The d2 depen-

dence of the dark field signal is within the range previously observed for plasmon

resonance enhanced white light scattering of metallic nanoparticles [91]. The TH

image was chosen to show the presence of rare hot spots which are presumed to

indicate aggregates of particles. From these measurements, we assert that detection

of gold nanoparticles ≥ 10 nm in diameter is easily accessible with our setup. To the

author’s knowledge, these are the smallest individual metallic nanoparticles imaged

via any TH technique.

†Thanks to Peter Relich and Dr. Keith Lidke for their time and for use of their image
processing software.
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Figure 4.9: Histogram with gaussian fit of normalized maximum intensities from a
dark field image of 10 nm colloidal gold nanoparticles.

Figure 4.10: Histogram with gaussian fit of normalized maximum intensities from a
THCP image of 10 nm colloidal gold nanoparticles. Signal intensities above 40,000
are assumed to indicate aggregate structures.

4.4 Sensitivity to material strain: Imaging of nanoin-

dentations in fused silica

Laser induced stress leading to fracture is commonly observed in oxide thin film

damage for single pulse exposures slightly above damage threshold. Images of such
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fracture are discussed in Appendix A. It is also possible that laser induced stress may

lead to permanent material strain even prior to damage. Noting that strain represents

a type of anisotropy, THCP microscopy offers great potential for imaging induced

strain in highly isotropic materials like oxide thin films. In this capacity, THCP

imaging may lend insight into both the role that strain may play in incubation, as well

as the extent of residual strain following damage formation. Since the applicability

of THCP to imaging induced material strain has not been demonstrated previously,

we seek to characterize THCP sensitivity to areas of known induced stress. For

this purpose we turn to mechanical nanoindentation as a finely controlled method of

applying stress (force per area) and inducing permanent strain (deformation).

Quality fused silica is highly isotropic, and even at the detection limit of our

system does not yield THCP S/N > 1. For this reason, fused silica lends itself well

to studying anisotropy induced via mechanical nanoindentation. Here we have used

a steel Berkovich tip pyramidal nanoindenter† (142.3◦ angle, Micro Materials Ltd.

NanoTest) to apply variable loads to fused silica and to simultaneously record depth

versus load data. The average depth versus load curve for ten separate 200 mN in-

dentations, Fig. 4.11, reveals a plastic depth of 869 nm (± 5 nm) corresponding to a

load of ≈ 96 mN. The plastic depth is the maximum depth of indentation for which

no permanent deformation remains in the material after unloading. For nanoinden-

tations with 100 mN load, the residual deformation of each indentation has a depth

of ≈ 17 nm. Such 17 nm nanoindentations are easily revealed (Fig. 4.12) in THLP,

THCP and dark field images. Most notably, while THLP reproduces the shape of

the indent, as confirmed by dark field, TH with circular polarization reveals three

distinct signal centers offset from the corners of the indenter. Since THCP is ex-

pected to be sensitive to anisotropy indicative of material strain, these three spots

may indicate regions of localized strain. This effect has been observed previously in

†Thanks to Michael Sheyka for his expertise, time and help with nanoindenting. Also,
thanks to Stoney Haver for his help in coordinating the nanoindentation efforts.
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500 mN nanoindentations of quartz via Raman microspectroscopy [92] and was mea-

sured to indicate strain due to residual compressive stress. Since these spots appear

near resolution limited, we cannot determine the exact size or shape of the strain

centers. Neither TH nor dark field yielded optical signals from nanoindentations

with loads corresponding to depths less than the plastic depth.

Figure 4.11: Average depth vs. load curve for ten 200 mN indentations in fused
silica. The plastic depth of 868.7 nm ± 5.1 nm, corresponds to a load ≈ 96 mN.
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Figure 4.12: (a) THCP, (b) THLP, and (c) dark field images of the same 100 mN
nanoindentation. The overlaid triangle indicates the relative outline of the THLP
image.

4.5 High dynamic range of third-harmonic signals

in thin film laser damage

Optical microscopy is often employed in thin film laser damage studies for charac-

terizing the morphology of damage spots. Sensitive techniques such as Nomarski

and dark field microscopy lend insight into the mechanisms of damage and may even

provide estimates of quantitative data such as the depth of material removal. While

it is clear that laser damage may induce changes in the films’ behavior with respect

to transmission, reflection, scattering, and birefringence, it’s not immediately obvi-

ous how these potential sources of contrast relate to the measured optical signals

which ultimately limit the usefulness of the microscopic techniques based on these

sources of contrast. Bright field, dark field, Nomarski, TH, and polarization imaging

all provide complementary information as outlined in Appendix A and therefore all

may be considered indispensable. However, the sensitivity of each technique may

vary greatly, even for the same sample, and ultimately limits the range of applica-

bility for each technique. One measure of sensitivity is the dynamic range of the

generated signals. The dynamic range is simply the ratio of the largest measured
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signal to the smallest measured signal. In many cases the smallest measured signal

may be considered equal to the inherent signal noise, where the signal noise itself

is determined by the background signals which are characteristic for each specific

imaging technique.

(a) (b) (c)

Figure 4.13: (a)Bright field, (b)polarization and (c)Nomarski images of multi-pulse
damage in alumina capped hafnia taken with the maximum dynamic range of each
technique.

(a) (b)

Figure 4.14: Dark field images of multi-pulse damage in alumina capped hafnia with
(a)1x and (b)8x relative gain on the detector to capture signals across the total
dynamic range.

For a typical damage exposure in 100 nm hafnia film with 10 nm alumina cap

layer, we compare the dynamic range of optical signals for several techniques of-

ten used to investigate thin film laser damage. An Olympus BX60 microscope with

variable gain CCD camera (Lumenera Infinity 2) provides the bright field, polariza-

tion, Nomarski and dark field images in Figs. 4.13 and 4.14. The TH microscope
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of Fig. 4.3 provides the THCP images in Fig. 4.15. In all cases, first the detector

gain is set so that the largest detected signal within the laser exposure is kept below

the saturation level of the detector. When the minimum signal within the exposure

is simultaneously greater than zero, that single image contains the entire dynamic

range of measured signals. This is the case for bright field, polarization and Nomarski

imaging techniques. However, if the minimum signal is zero for the first image, as

is the case with dark field and THCP, the gain must be increased and subsequent

images collected until the minimum signal from within the laser exposure is nonzero.

Knowing the relative gain factor for each image, we may then calculate the total

dynamic range by multiplying the largest signal in the first image by the gain factors

and dividing by the smallest signal in the last image collected. The dynamic range

of each imaging technique is shown in Table 4.1. THCP images reveal by far the

largest dynamic range for this thin film laser damage spot. It should be noted that

both polarization and THCP images utilize birefringence as a source of contrast.

However, THCP exhibits a much larger dynamic range. This suggests that THCP

may be superior in dynamic range due to both the nearly background free signals

collected from this highly isotropic sample and an enhanced sensitivity to birefrin-

gence. Assuming this to be the case, THCP images offer a clear advantage in terms

of sensitivity to the study of damage morphology in highly isotropic thin films.

Imaging Bright Nomarski Polarization Dark THCP
Technique field Field
dynamic

range 4.6 : 1 5.8 : 1 6.7 : 1 760 : 1 106 : 1

Table 4.1: Dynamic range of signals from images of laser induced damage in alumina
capped hafnia dielectric film for several far field microscopy techniques.
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(a) (b) (c) (d)

Figure 4.15: (a)-(d) THCP images of multi-pulse damage in alumina capped hafnia
with increasing gain on the PMT detector to capture signals across the total dynamic
range. From left to right the gain increases by a total factor of ≈ 200.

4.6 Third-harmonic application to laser damage

morphology

The study of laser damage morphology is chiefly concerned with characterizing the

shape, size and structure of laser induced material changes. These properties lend

insight into the mechanisms of damage and often provide qualitative feedback to the

impact of several factors including environmental effects (such as damage in a vacuum

< 10−5 Torr [35]), the illuminating beam profile and sample annealing [93]. Several

techniques may be used in tandem to study damage morphology; optical microscopy,

electron microscopy and atomic force microscopy constitute the techniques most

commonly used.

Figure 4.16 shows a simplified progression of characteristic changes in the laser

exposed film as the fluence of incident light is increased. At laser fluences below

the material’s damage threshold, material modifications may be formed that last

anywhere from picoseconds to months to years. Such modifications are known to in-

clude color center formation, self-trapped excitons and laser induced chemical mod-

ifications. When optics must be removed from a damage experiment prior to in-
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vestigation, only long lived material modification is studied. Near the laser damage

threshold fluence catastrophic physical changes occur to the optic including fracture

and material ablation. Above the damage threshold fluence a considerable amount

of material is ablated, possibly exposing the substrate. Study of these heavily dam-

aged spots, including the quantification of material removed, also may be of specific

interest for laser micro-patterning.

THCP and THLP offer unique information when applied to laser damage mor-

phology of thin films. THLP probes χ(3) and may be used to measure the extent

of film removal. THCP images laser induced anisotropy directly in these otherwise

isotropic films. From Sections 4.3, 4.4 and 4.5 it’s clear that THCP may provide

high dynamic range sensitivity to nanoscale anisotropy and induced strain, two ef-

fects known to play a role in LIDT studies. This section focuses on applying THLP

and THCP imaging to thin film laser exposures above damage threshold. Section

4.7 deals with their application to predamage material modification.

Figure 4.16: A simplified progression of observed damage morphology.

Before continuing further, I must pause to extend my thanks to Dr. Carmen

Menoni and her group at Colorado State University for providing the thin film sam-

ples used throughout this work. Additionally, I’m indebted to Duy Nguyen who

performed all of the laser damage experiments on the samples interrogated here.

Without them the following work would have suffered greatly.
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The following data are for a hafnia thin film on fused silica substrate. The film has

an optical thickness of λ/4 at 800 nm (110 nm physical thickness, ion beam sputtering

deposition) so that the highest intensity in the standing wave is at the film-substrate

interface. For a 20 µm beam diameter incident on the film, the single pulse damage

fluence was measured to be F1 = 0.48 J/cm2 for a 50 fs pulse with center wavelength

800 nm [94]. Using the TH microscope described in section 4.2, images of the heavily

damaged spot are recorded for three different techniques: confocal reflection, THCP,

and THLP.

Let’s review what is expected of each imaging technique. The reflection images are

expected to show a distribution in reflection coefficient. This implies that areas with

increased roughness (scattering) or increased transmission may appear darker than

the average surface value. The THLP images are expected to show a distribution in

χ(3) for signals dominated by the contribution from the HfO2 film. The THCP images

are expected to show a distribution in χ(3) for signals dominated by anisotropy. Since

the film and substrate are assumed to be isotropic, this signal should be indicative

of laser induced material modification characterized by an anisotropic χ(3) tensor.

Consider the images in Fig. 4.17 taken of a heavily damaged ablation crater.

For all three imaging techniques, the cross sections taken at the line indicated in

Fig. 4.17a are shown in Fig. 4.18. Consulting these cross sections we can attempt

to decipher the information displayed in the three images. For this heavily damaged

spot, the film is expected to be completely ablated, thereby exposing the fused silica

substrate beneath. Reflection signals across the damage spot fall near the edge, but

rise again in the center. THLP signals decrease sharply moving into the spot but

rebound slightly near the middle. THCP signals rise dramatically near the edge of the

spot and reach a minimum in the middle of the spot. With no signal generated in the

unexposed areas of the film, it is clear that THCP signals indicate some laser induced

material modification around the spot that leads to anisotropy. This anisotropy is
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likely the result of either induced strain or melting and subsequent crystallization

of the material. These three signal patterns support the hypothesis that the film

was ablated down to the fused silica substrate. The rise in the reflection signal in

the center of the exposure is interpreted as reflection from exposed fused silica. The

THLP signal in the center of the exposure is interpreted as THLP from the air-fused

silica interface. This is further confirmed by flipping the sample over to record THLP

signals from the air-fused silica interface directly. The resulting ratio of signals from

the air-hafnia interface and the air-fused silica interface, ≈ 6 : 1, matches the ratio of

signals outside and inside the exposure. Combining the qualitative and quantitative

interpretation of all three signals we infer the sample topography of Fig. 4.19. The

damage exposure leads to complete film ablation in the center of the spot with

laser induced anisotropy evident in the film remaining around the edges of the spot.

Viewing several multi-pulse exposures above damage threshold, it becomes clear that

both ablation and material modification leading to anisotropy occur preferentially in

the center of the exposure as expected for a transverse Gaussian beam profile.

The preceding discussion may be considered an easiest case scenario since such a

heavily damaged spot was expected to exhibit complete ablation of the film. However,

it allows us to clearly understand the expectations from THLP and THCP images.

Let us now consider what types of information can be gleaned from an exposure

above damage threshold where it is unclear how much material has been ablated.

The following data are for a hafnia thin film with alumina cap layer on fused silica

substrate. The hafnia film has a physical thickness of 100 nm, while the alumina cap

layer is just 10 nm thick. The addition of a thin cap layer with higher bandgap than

the underlying film has been shown to increase the damage threshold of such films

considerably [94]. However it’s not clear why or how such a cap effects the ablation

process. Again, using the TH microscope described in Section 4.2, images of the

exposed spot are recorded for three different techniques: confocal reflection, THCP,
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(a) (b)

(c)

Figure 4.17: Surface plots of the measured optical signals for (a)reflection, (b)THLP
and (c)THCP images of a multi-pulse damage crater in 110 nm hafnia thin film on
fused silica substrate. The line in (a) indicates the location of the cross section taken
from each of the three images.

Figure 4.18: Cross sections of reflection, THLP and THCP signals from a multi-pulse
damage crater in 110 nm hafnia thin film on fused silica substrate.
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Figure 4.19: The inferred sample topography for a multi-pulse damage crater in
110 nm hafnia thin film on fused silica substrate.

and THLP.

Consider the images in Fig. 4.20 taken of a multi-pulse damage spot. For all

three imaging techniques, the cross sections taken at the line indicated in Fig. 4.20a

are shown in Fig. 4.21. The ratio of reflection signals outside and inside the exposed

spot is too large (≈ 8 : 1) to indicate reflection from a smooth surface of either

hafnia (< 5 : 1 expected) or fused silica (≈ 5 : 1 expected) even when accounting for

multiple thin film reflections. Reflection signals must be interpreted to indicate the

presence of a rough scattering surface in one of the films. THCP signals are similar

to the previous case and indicate laser induced anisotropy around the perimeter of

the exposure. Interestingly, it appears that no laser induced anisotropy remains in

the center of the exposure. Consulting the THLP signals may indicate why this is

so. Comparing THLP signals inside and outside of the exposure, it’s clear that the

THLP signals are largest in the center region where THCP signals vanish. Since

THLP probes χ(3) directly and noting that χ
(3)
FusedSilica < χ

(3)
alumina < χ

(3)
hafnia, the

simplest conclusion is that the alumina cap layer is entirely removed but some of

the underlying hafnia remains. If the hafnia layer were entirely removed thereby

exposing the substrate, one would expect THLP signals similar to Fig. 4.18 which

decrease inside the exposure. It’s possible that this simple conclusion may be verified

by ongoing research within our group [66] via either simulation of TH signals as a

function of film thickness or simultaneous measurement of TH signals in reflection.
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Such simulations require a fairly sophisticated model that accounts for multiple thin

film reflections, NA of the focusing objective, and clipping of the incident light at the

entrance aperture of the focusing objective, but they promise to supply quantitative

data about material removal. From just the data presented here we infer the sample

topography shown in Fig. 4.22. Apparently, the alumina cap layer is removed entirely

in the interior of the exposure. Clearly, laser induced anisotropy remains around the

edge of the exposure. It’s not possible to say if or how much of the hafnia layer has

been ablated, but certainly the substrate is not exposed.

(a) (b)

(c)

Figure 4.20: Surface plots of the measured optical signals from (a)reflection,
(b)THLP and (c)THCP images of a multi-pulse damage exposure in alumina capped
hafnia thin film on fused silica substrate. The line in (a) indicates the location of
the cross section taken from each of the three images.
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Figure 4.21: Cross sections of reflection, THLP and THCP signals from a multi-pulse
damage exposure in an alumina capped hafnia thin film on fused silica substrate.

Figure 4.22: The inferred sample topography for a multi-pulse damage exposure in
an alumina capped hafnia thin film on fused silica substrate.
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4.7 Third-harmonic application to laser-induced

material modification prior to damage

TH microscopy provides clear advantages over Nomarski and other sensitive imaging

techniques in terms of dynamic range, sensitivity to material modification and sen-

sitivity to material removal when applied to the study of laser damage morphology.

The question now becomes, does TH microscopy indicate the presence of material

modification before damage occurs?

We examine a pattern of exposures near damage threshold where the position of

pre-damage exposures is determined with reference to clearly damaged marker spots.

Figure 4.23 shows images of pre-damage laser induced material modification for an

incubated spot (50 fs, 0.39 J/cm2, 1 KHz, 3 minute exposure, 25 µm diameter focus).

Such incubation spots were found to create contrast in only THCP, Nomarski and

polarization images. Figure 4.23 shows Nomarski (a) and THCP (b) images of the

same pre-damage exposure in a 110 nm hafnia thin film on fused silica substrate.

Corresponding cross-sections are shown in (c) and (d) respectively. The THCP image

yields much higher S/N ratio, ≈ 210 : 1, than both Nomarski and polarization,

≈ 2.3 : 1 and ≈ 2.2 : 1 respectively. The THCP contrast is significant when one

considers that such a spot likely would be overlooked with the other techniques had

we not known the position of the exposure. Nomarski and polarization techniques

essentially both yield images with nominal contrast bordering on unusable.

This answers the long standing question about whether permanent material mod-

ifications exist prior to damage formation. Though we haven’t observed any laser

exposure spots where THCP is the only technique that creates contrast, thus far we

have probed only spots with long lived modifications. Perhaps smaller changes in

material anisotropy are short lived and must be sought while a damage experiment is

ongoing. This is where THCP may provide truly unique insight due to it’s potential
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(a) (b)

(c) (d)

Figure 4.23: (a)Nomarski and (b)THCP images of a predamage multi-pulse exposure
in 110 nm hafnia film on fused silica substrate. The line in (b) indicates the location
of cross sections shown in (c) and (d) of Nomarski and THCP respectively.

to probe the material while damage experiments are running.
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4.8 Third-harmonic application to inherent prop-

erties of high quality thin films

THCP in reflection was previously demonstrated as a way to examine large order

(several mm) anisotropy in opaque semiconductor films [38], but here we apply it to

localized anisotropy in transparent films via microscopy. At the detection limit of our

system, maximum laser power ≈ 320 mW at the sample and maximum gain on the

PMT ≈ 106, THCP is able to image features in the nascent films themselves. For all

the nascent films scrutinized here, THCP alone creates contrast. Other techniques

known to exhibit high sensitivity for thin film interrogation (Nomarski, polarization,

dark field, THLP) all fail to reveal any features from the films. For example, compare

the Nomarski, THCP and dark field images of a nascent 100 nm hafnia film in

Fig. 4.24.

(a) (b) (c)

Figure 4.24: (a)Nomarski, (b)THCP and (c)dark field images of 110 nm hafnia film
at the detection limit for each technique. Circled regions in (b) indicate localized
material anisotropy in the nascent film.

By both translation of the sample and comparison with images of the fused

silica-air interface (Fig. 4.25) we confirm that the structures observed for nascent
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film samples originate in the film alone. Single THCP images of two scandia films,

S1 and S2, deposited by ion beam sputtering (IBS) under different partial pressures

of oxygen [95] are shown in Fig. 4.26 (a) and (b). To quantify the clear difference

in appearance we calculate the RMS variation in THCP signal for each film after

averaging series of 10 images and subtracting the background, Fig. 4.26 (c) and (d).

Background subtraction is necessary to counter uneven illumination and should yield

a more accurate RMS variation. Table 4.2 shows the resulting THCP RMS variation

for three scandia films along with the partial pressure of oxygen during deposition,

residual stress in the film and RMS in the atomic force microscope (AFM) images.

Note that while TH RMS distinguishes between the films, AFM measurements of

RMS surface roughness do not vary significantly between the films. Comparison of

THCP (Fig. 4.26c) and AFM (Fig. 4.27) images for film S1 also suggest no spatial

correlation between the two data types. It does not appear that TH signals simply

indicate a surface roughness. However, the THCP RMS roughness does correlate with

the stress in the film as determined by macrostrain measurements. Macrostrain is a

measure of a film’s ability to deform the substrate and is determined via Michelson

interferometry. We must infer that the localized structures present in THCP images

lead to a macroscale deformation of the sample.

Following the same technique to inspect high quality (damage fluence> 0.40 J/cm2)

hafnia films reveals the presence of similar structures. For example, processing the

THCP image of Fig. 4.25a yields a THCP RMS variation of 3000 (a.u.). Compared

to other techniques used to investigate material stress and crystallinity, such as X-

ray diffraction, THCP imaging is a relatively simple all optical method that has the

advantage of localized spatial inspection. Furthermore, THCP imaging adds the po-

tential to provide monitoring of thin films during the deposition process if one desires

to monitor or mitigate the formation of such features.
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(a) (b)

Figure 4.25: THCP images of (a) the air-film interface and (b) the air fused silica
interface for the 100 nm hafnia sample shown in Fig. 4.24.

S1 S3 S2
O2 partial pressure [torr] [96] 4.0 E-5 1.7 E-5 5.0 E-6

TH RMS [a.u.] 4300 4700 2300
Stress [GPa] [96] 1.20 1.19 0.85

AFM RMS [nm] [96] 0.7 0.7 0.6
Absorption @1064 nm [ppm] [97] 37.6 27.5 10.5
Absorption @532 nm [ppm] [98] 4000 2900 980

Absorbance @296 nm [%] ± 0.5 [96] 5.7 3.6 1.0

Table 4.2: Comparison data for three scandia films grown by IBS deposition under
different partial pressures of oxygen.
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(a) (b)

(c) (d)

Figure 4.26: Single THCP images of (a) S1 and (b) S2 thin films taken at the
detection limit. The average of ten such images with the background removed for
(c) S1 and (d) S2 films.

Figure 4.27: AFM image of scandia film S1. The RMS surface roughness is 0.7 nm.
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4.9 Third-harmonic application to reversible ma-

terial modification

For lower quality films, as assessed by relative absorption levels, laser-induced mate-

rial modification is achievable using the same setup as for TH microscopy (cf. Fig. 4.3).

A 20 minute exposure (≈ 320 mW⇒≈ 4.3×108 J/cm2 total) of an 8×8 µm square in

scandia film S1 from Section 4.8, leads to ∼ 16% decrease in THLP signal generation.

Following this ’burning’ process we observe reversible material modification with the

THLP signal as shown in Fig. 4.28. The level of signal recovery is expressed as the

ratio of signals inside the exposure to those outside the exposure as averaged within

the two rectangles shown in Fig. 4.28a. This figure of merit is listed in Table 4.3

and shows almost full recovery of THLP signals after 29 hours. Interestingly, THCP

signals display no change whatsoever throughout the entire process. Apparently this

material modification effects the strength of χ(3) and not its symmetry. It’s not clear

what type of material modification is indicated by this change in value for χ(3). A

preliminary hypothesis linked to the timescale of recovery [35] is that the effect may

indicate diffusion of water from the air back into the film. The presupposition is

that during exposure to sufficient laser fluence, some water content may be removed

from the film. This is the only oxide film studied throughout the work presented

in this manuscript for which the TH microscope setup was able to cause material

modification.

This brief result is recalled here because of its implications for soliciting the need

for TH investigation of thin films during laser damage studies. Even though this

material modification still persists over a relatively long timescale, it points toward to

need to examine the characteristic timescales of laser-induced modification associated

with fs LIDT studies.
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(a) (b) (c) (d)

Figure 4.28: THCP images of a ’burned’ square in scandia taken (a) 10 seconds (b)
15 minutes (c) 115 minutes and (d) 29 hours after the end of exposure.

recovery 10 s 15 m 115 m 29 hr
time

signal ratio 0.84 0.89 0.92 0.95
inside/outside

Table 4.3: The ratio of THLP signals inside/outside the exposed square of Fig. 4.28
measured at four time intervals after the end of the exposure.

4.10 Chapter Summary

Many of the results here are currently featured in publication [99]. Compared with

other far-field imaging modalities commonly employed to study thin films, TH mi-

croscopy displays significant advantages in regard to both potential sources of con-

trast and sensitivity to shared sources of contrast, in part owing to it’s nearly back-

ground free signal with circularly polarized illumination. Presumably this helps TH

microscopy to generate contrast where other techniques fail. THCP microscopy dis-

plays sensitivity to individual 10 nm gold nanoparticles as well as to the residual

material strain following 100 mN (≈ 17 nm) nanoindentation in fused silica. Both

mimic effects known to influence the optical damage threshold of high quality thin

films. THCP microscopy also provides high dynamic range imaging of laser-induced
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material modification in hafnia thin films both pre- and post-damage, where con-

ventional microscopies either fail to create contrast or display drastically reduced

contrast. THCP microscopy also provides a method to inspect features related to

macrostrain in nascent hafnia and scandia thin films. THLP displays its own unique

benefits including sensitivity to the depth of material ablation and to reversible ma-

terial modification. Certainly, TH microscopy should be pursued further in support

of fs LIDT studies.

79



Chapter 5

Four-wave mixing microscopy with

femtosecond resolution

The goal of this chapter is to examine a typical high spatial resolution FWM micro-

scope with two source illumination to determine what information may be revealed

on the time domain behavior of samples under study. In principle, by varying the

delay between the two excitation pulses one may monitor the behavior of the two

simultaneously produced FWM signals and gain insight into both the type of domi-

nant resonant process present in the sample as well as the approximate timescale of

the dominant resonant process.

5.1 Experimental setup

The setup for two color four-wave mixing (FWM) microscopy is shown in Fig. 5.1.

35 mW each of Ti:S (787 nm, 60 fs) and OPO (1025 nm, 100 fs) co-propagate and

are focused (EC Plan-NEOFLUAR 20×, 0.5 NA objective) into a sample to generate

FWM signals in the IR (1469 nm) and visible (639 nm). The FWM and fundamental
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light is collected (EDSCORP 20×, 0.4 NA objective) and filtered through a series of

dichroic elements to isolate IR and visible signals. The IR FWM signal is detected

with an InGaAs femtoWatt photoreceiver (Newport, 2153), while the visible FWM

signal is detected with a silicon avalanche photodiode (Hamamatsu, C5460-01). For

samples of BK7, fused silica, methanol, ethanol, propanol, butanol, and hexane the

resulting optical signals are quite small and necessitate lock-in amplifier detection of

both electronic signals. For lock-in detection, the Ti:S beam is chopped at 415 Hz.

Both the OPO and Ti:S are polarization controlled via half-wave plate (HWP) and

quarter-wave plate (QWP) pair. The HWP is used to rotate the orientation of linear

polarization and the QWP is used to compensate birefringence in the optics that

would otherwise lead to polarization ellipticity. OPO and Ti:S beams are routinely

polarized with extinction ratios 225:1 and 260:1 respectively following transmission

through both objectives with no sample present. For polarization sensitive detec-

tion, a Glan-Thompson polarization analyzer (Thorlabs, extinction ratio 100,000:1)

optionally may be inserted into the detection path after the second objective. The

sample is mounted on a piezoelectric stage (Piezosystem Jena d-Drive) for imaging

purposes, however here we are most concerned with femtosecond material dynamics

probed by FWM signals as a function of the inter-pulse delay. A LabVIEW program

coordinates data collection and movement of the motorized delay stage that adjusts

the time delay between corresponding pulses of each laser source.

Inherent to nonlinear microscopy with two fs sources, the optical alignment and

optimization of nonlinear signals is significantly more complex than in the case of

nonlinear microscopy with a single source. In Fig. 5.1, note three critical aspects of

this setup. First, the Ti:S and OPO beams are made to be collinear and to arrive

perpendicular to the entrance aperture of the focusing objective. This implies that

the two beams share a transverse spatial overlap in the focus of the objective. Sec-

ond, a shared telescope is adjusted so that both beams slightly overfill the entrance

aperture of the focusing objective. Along with the previous requirements, this implies
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Figure 5.1: Diagram of the FWM microscopy setup.

a minimum transverse spot size in the focus of the objective. The OPO beam has an

independent telescope which mainly controls the divergence of the propagating beam.

The divergence of the OPO beam can be tuned to overcome chromaticity in the ob-

jective so that both beams share a common focal plane. Expressed another way, the

two beams share an axial spatial overlap of foci. Third, the Ti:S beam path includes

an optical delay line to control the relative temporal delay between corresponding

OPO and Ti:S pulses. When Ti:S and OPO beams are aligned to yield minimum

spot size with maximum transverse spatial, axial spatial, and temporal overlap, the

largest nonlinear signals are expected. Ultimately, these parameters are all fine-tuned

by maximizing the resultant nonlinear signals through optical alignment.

Given the short geometrical length of femtosecond pulses (≈ 0.3 µm/fs in vac-

uum), an experimentally demanding step in aligning the FWM microscope comes

while adjusting the Ti:S optical delay path to find the range of temporal overlap

(≈ 100 fs FWHM, 30 µm) of OPO and Ti:S pulses in the focus of the microscope.

Careful measurement and calculation of optical path length estimates the appropri-

ate zero delay position, d0, of the Ti:S delay line to within a few millimeters. Beyond
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that, d0 may be found by scanning the inter-pulse time delay with a stepper motor

(Newport CMA-25PP) and monitoring some nonlinear process which corresponds to

the temporal overlap of both pulses. Ultimately, we monitor the visible and IR FWM

signals generated by a sample in the focus of the FWM microscope. However, when

first setting up the delay line, in order to avoid complications inherent with detection

path alignment and lock-in detection, it is much more convenient and expedient to

use an alternative approach.

Figure 5.2 shows the alternative optical setup used to find the approximate zero

delay position dz. Ti:S and OPO beams (35 mW each) are aligned spatially and

then focused by a first lens (f = 10 cm) into a 0.01 mm thickness beta barium borate

(BBO) nonlinear crystal which enables broadband phase matching. The crystal

is used to generate second-order nonlinear effects of the incident fields, including

second-harmonic generation (SHG) and sum frequency generation (SFG). A second

lens (f = 5 cm) collimates the output resulting in a demagnification of the input beam

radius. The beam then passes through a BK7 prism resulting in spatial separation

of the incident wavelengths of light. A cylindrical lens (f = 10 cm) is then inserted to

focus this signal light onto a paper screen, maintaining the spatial separation between

wavelengths of light. Immediately present on the screen are spatially resolved signals

corresponding to SHG of both the Ti:S (394 nm) and OPO (513 nm). Scanning the

length of the Ti:S delay path to search for dz, a third color appears between the SHG

patterns which corresponds to SFG of the Ti:S and OPO (445 nm). This SFG signal

is only present when Ti:S and OPO pulses are temporally overlapped and is taken

to be maximum at dz. This technique allows one to scan for the position of dz at a

rate of ≈ 1 mm/s. Searching for d0 in the FWM microscope allows one to scan only

≈ 60 µm/s because of averaging in the lock-ins. Once dz is found, d0 is easily found

in the FWM microscope.

Ultimately, the inter-pulse delay time was scanned (delay convention of Fig. 5.3)
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Figure 5.2: Optical layout of the method used to find zero delay between Ti:S and
OPO pulses.

within a few hundred fs of d0 resulting in IR FWM and visible FWM signals that

correspond to moving one pulse past the other in time. Initially, these were expected

to be simple cross-correlation signals, but proved to be more complicated.

Figure 5.3: Inter-pulse delay convention. Delay is positive when the Ti:S pulse trails
the OPO pulse to sample.

To aid in collecting FWM signal data versus the inter-pulse delay time, a Lab-

VIEW program was written to coordinate motion of the delay scan motor and data

capture from the lock-in amplifiers. Sequentially, this program moves the motor,
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waits a set amount of time, and collects one data point per channel. In repetition,

this constructs a data set of FWM signal data vs. inter-pulse delay time. The motor

step size (0.3 µm minimum), number of total steps, and wait time between steps are

all user defined. This program allows for arbitrary wait time between each step of the

motor and its corresponding data acquisition. In practice, the minimum wait time

enacted between successive motor steps is 500 ms. This practical limit allows three

processes to happen. First, the motor must complete it’s motion and come to rest.

Second, any vibrations coupled into the optical system by mechanical contact with

the motor must stabilize. Third, sufficient time must pass for the lock-in amplifiers

to average the equilibrated signal before data capture can occur.

For typical lock-in time-constant values of 10-50 ms, data taken with 500 ms delay

between successive motor steps accurately mimics data taken at much longer delays,

5-10 s, and thereby demonstrates it’s efficacy, precluding any time scale effects that

exceed several seconds in duration. It should be noted that time-constant values of

50 ms yielded minimum signal to noise ratios (S/N) of 110:1. More commonly, for

both IR and visible FWM signals S/N > 250 : 1. Increasing the time-constant value

on the lock-in did not alter measurably the signal to noise ratio. It is suspected that

the major contributor to the remaining noise is due to detection of scattered light

from the chopped beam. This hypothesis is supported in part by observing that the

absolute value of the noise level scales linearly with the power of the chopped beam

even when the beam is blocked before entering the focusing objective.
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5.2 Time dependent behavior of four-wave mixing

signals

From Section 2.1, recall that in order to consider Eq. (2.2) to be valid in the time

domain we must assume a material without loss or dispersion such that χ(n)(ω) may

be considered to possess entirely real constant value independent of frequency. To

understand why these conditions make Eq. (2.2) valid in the time domain, consider

the first order term for the induced material polarization in the frequency domain:

P (1)(ω) = χ(1)(ω)E(ω). (5.1)

To determine the material response as a function of time, P (1)(t), we Fourier trans-

form the frequency domain expression of Eq. (5.1). Recalling that the Fourier trans-

form of a product equals a convolution of the Fourier transform of each factor, we

arrive at Eq. (5.2) where we have asserted the Fourier transforms of each factor:

F [χ(1)(ω)] = χ(1)(t′) and F [E(ω)] = E(t′).

P (t) =

∫ ∞
−∞

χ(1)(t′)E(t− t′)dt′ (5.2)

Now considering χ(1)(ω) for a lossless dispersionless material with frequency inde-

pendent response, χ(1)(ω) = constant and it’s Fourier transform must be a delta

function, χ(1)(t′) = χ
(1)
0 δ(t). Inserting this result into the convolution of Eq. (5.2)

leads to

P (t) = χ
(1)
0 E(t) ∝ E(t) (5.3)

where χ
(1)
0 is a constant ’weight’ factor and P (1)(t) is shown to follow the driving

electric field in a direct instantaneous manner.

Using similar arguments we may derive the time dependent material polarization

for both visible and IR FWM processes with two source illumination (cf. Fig. 2.2)
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where ω1 and ω2 correspond to the angular frequencies of the Ti:S and OPO respec-

tively. Beginning with the frequency domain expression for visible FWM [15],

P (2ω1 − ω2) = 3χ(3)(ω)E2
1(ω1)E∗2(ω2) (5.4)

and assuming χ(3)(ω) = constant, the polarization may be written in the time domain

as [15]

P (t) ∝ E2
1(t)E∗2(t). (5.5)

This polarization depends on the overlap of two phase incoherent pulses and we may

write the expression for material polarization as a function of the interpulse delay, τ :

P (τ) ∝
∫ ∞
−∞

[
E2

1(t− τ)E2(t)
]
dt (5.6)

As expected, this describes the case for FWM in the approximation of instan-

taneous material response (with pulses much longer than the material response

time) [100]. Accounting for the detection of optical intensity (cf. Eq. (2.3)), the

detected visible FWM signals scale according to Eq. (5.7). Here the detector re-

sponse is assumed constant because of the lock-in and is absorbed into the signal

proportionality.

SV FWM(τ) ∝
∫ ∞
−∞

[
E2

1(t− τ)E2(t)
]2
dt (5.7)

Following the same procedure for the case of IR FWM, where the frequency domain

expression for the material polarization is given by

P (2ω2 − ω1) = 3χ(3)(ω)E2
2(ω2)E∗1(ω1) (5.8)

we arrive at Eq. (5.9).

SIRFWM(τ) ∝
∫ ∞
−∞

[
E1(t− τ)E2

2(t)
]2
dt (5.9)
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For inter-pulse delay scan measurements, IR and visible FWM signals follow

Eqs. (5.9) and (5.7) where Ei is approximated by a Gaussian shaped pulse envelope

Ei(t) = exp

(
−2ln(2)

t2

τ 2
p

)
(5.10)

where τp is the duration (FWHM) of the resulting temporal intensity profile. For

the case of pulsed illumination, Eqs. (5.9) and (5.7) are conveniently expressed in

terms of the time delay, τ , between Ti:S and OPO pulses using the convention of

Fig. 5.3 where a positive delay indicates that the Ti:S pulse follows the OPO pulse

in the direction of propagation. Numerical evaluation of Eqs. (5.7) and (5.9) using

measured pulse durations of the Ti:S and OPO (60 fs, 100 fs), are shown in Fig. 5.4.

We see that the IR and visible FWM signals share a common center and the FWHM

of the IR FWM is slightly less than that of the visible FWM.

Figure 5.4: A numerical plot of visible and IR FWM signals predicted by Eqs. (5.7)
and (5.9) for an interpulse delay scan of Ti:S (60 fs) and OPO (100 fs) pulses.

Figure 5.4 represents the case where a material has an instantaneous response to

the incident waves E1 and E2, and the signal at a given delay, τ , is determined by

the temporal overlap of the pulses. The effect of temporal overlap on the total signal
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is shown pictorially in Fig. 5.5. The top plot shows both the individual components

of Eq. (5.7) for inter-pulse delay τ = 50 fs, E2
1(t − 50) and E2(t), as well as their

resulting product, f(t) = E2
1(t− 50)E2(t). The integrated area contained under the

product f(t), A(τ = 50 fs), gives the value of the simulated visible FWM signal for

interpulse delay τ = 50 fs as shown in the lower plot of Fig. 5.5.

Figure 5.5: (top) Plots of E2
1 and E2 and their resulting product for a fixed inter-

pulse delay, τ = 50 fs. (bottom) Plot of visible FWM signal (cf. Eq. (5.7)) for an
inter-pulse delay scan. The area A(τ = 50 fs), gives the value of the visible FWM
signal at τ = 50 fs.
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5.3 Four-wave mixing inter-pulse delay scan mea-

surements in solvents

Consider the results for an inter-pulse delay scan measurement, Fig. 5.6a, using

the setup shown in Fig. 5.1 with a liquid butanol sample of thickness ≈ 340 µm

contained between two pieces of BK7 coverglass. The delay is scanned over a range

of 600 fs surrounding the supposed zero delay, d0. The resolution of this scanning

measurement depends on the minimum step enacted by the delay scan motor (0.3 µm,

1 fs.) For a double pass through the delay line, this resolution is 2 fs. The IR FWM

and visible FWM signals have centers (peaks) that are clearly separated from one

another along the delay axis. It should be noted that here and throughout the

chapter, the delay scale shown for measurements is a relative one and does not

indicate the position of true zero delay between the excitation pulses. This is chosen

in order to stress the uncertainty in the position of zero delay for separated FWM

signal peaks. Since these results deviate from the signals expected for instantaneous

material response, Fig. 5.4, this suggests that butanol may exhibit a finite material

response time probed by this experiment. If true, the induced material polarization

can no longer be considered instantaneously dependent on the driving electric fields,

but exhibits some memory of the fields arriving at earlier times. If one naively

assumes that the true zero delay position lies between the two signal peaks, then

using the delay convention of Fig. 5.3 it would be determined that the IR FWM signal

has a maxima when the Ti:S pulse leads the OPO pulse to the sample. Conversely

the visible FWM signal has a maxima when the Ti:S pulse trails the OPO to the

sample. Such an assumption about d0 is helpful for describing the relative delay of

the Ti:S pulse, but awaiting forthcoming evidence, the absolute value of d0 is briefly

held in question.

To quantify the delay separation between optical signals, both IR and visible
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(a)

(b) (c)

Figure 5.6: (a) Delay separation (-24.8 fs) for an inter-pulse delay scan measurement
in butanol. (b)Visible and(c) IR FWM signals with Gaussian fit for the same inter-
pulse delay scan measurement.

FWM signals are shown to be well matched by a Gaussian fit, Figs. 5.6c and 5.6b

respectively. As is expected from numerical evaluation of Eqs. (5.7) and (5.9), the

measured IR FWM signal has slightly narrower FWHM (72 fs) than the visible

signal FWHM (76 fs). From these Gaussian fits the signals’ centers are obtained.

For butanol the difference between IR and visible FWM signal centers is -24.8 fs.
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The separation values of IR FWM - visible FWM signal centers for other samples are

given in Table 5.1 for inter-pulse delay scans in fused silica and BK7 glass, as well as

methanol, ethanol, propanol, butanol, and hexane liquid solvents. The solvents all

display significant (> 1 fs magnitude) IR-visible FWM delay separation where the

absolute value of the separation is observed to increase with the number of carbon

atoms in the molecule, cf. Fig. 5.7. Such dependence may be reliant on the second

hyperpolarizabilities of these molecules as shown in [68]. In short, the alcohols were

shown to display signal strength following from a bond additivity model where each

bond contributes to the second hyperpolarizability. The results with hexane were

similar but did not follow the same bond additivity model. The inference is that large

second hyperpolarizabilitites (large signals) result from longer molecules, and longer

molecules have larger inertia (longer characteristic material times) leading to a larger

delay separation observed here. It is noted that the delay separation between these

signals is observed to be constant regardless of both focal depth inside the material

and the chirp of the Ti:S and OPO laser pulses.

Sample delay (fs)
material IR-Vis FWM

Fused Silica -0.6
BK7 -0.9

Methanol -18.9
Ethanol -23.4
Propanol -24.3
Butanol -24.8
Hexane -28.3

Table 5.1: FWM inter-pulse delay scan data for visible and IR signals in BK7, fused
silica, PMMA, and sapphire. The IR-Vis delay is derived from Gaussian fits of data.
All uncertainties < ± 1.5 fs.

From viewing the data for all the liquid samples on the same delay scale we

can compare the absolute positions of both the IR FWM signals, Fig. 5.8a, and the
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Figure 5.7: IR-Vis separation dependence on the number of carbon atoms in the
solvent molecule.

visible FWM signals, Fig. 5.8b. Such comparison allows insight into both the true

zero delay position and the type of resonant FWM process which probes a finite

material response. It is observed that the IR FWM signals share a common center

position to within the tolerance of jitter imposed by the motor from run to run

(± 2 fs). Since all IR FWM signals share a common center regardless of sample, this

is designated as the true value of d0. Additionally, it suggests that IR FWM signals

do not display the effects of probing a finite material memory. For IR FWM, the

total signal appears to be dominated by a material response following instantaneously

from the driving fields. A resonant IR FWM process may occur but exhibits either

insufficient strength (proportion of the total signal), or fast response compared to

the pulse durations used here, � τp, or both. In contrast, the visible FWM signals

all shift toward positive delay and appear to be dominated by a resonant process

probing a finite material response time of similar duration to the pulses used here.

Specifically, since the materials all respond on a fs time scale, the visible FWM

signals probe a characteristic dephasing time of the solvents. Since a finite dephasing

time must be linked to an energy level within the material, the probing of such a finite
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(a) (b)

Figure 5.8: (a) IR FWM signals from methanol, ethanol, propanol, butanol and
hexane on the same scale. They share a common center to within ± 2 fs. (b)
Corresponding visible FWM signals with solvent-specific center positions.

material response implies ordering of the photon interaction with respect to the level

being probed. Four-wave mixing processes with explicit time ordering of the photon

interactions are shown in Fig. 5.9. For example, the process of visible stimulated

parametric emission (SPE) is described as follows. We assume only one energy level

with non-instantaneous response. After two photon absorption of the Ti:S at 787 nm,

the induced material polarization oscillates coherently for a duration described by

the finite material response time, T . During this period of coherent oscillation by

the ensemble of oscillating dipoles, the OPO photon interaction (1025 nm) and si-

multaneous signal photon generation can occur at any time. In order to examine

which FWM process provides the correct delay response leading to a positive shift

in visible FWM signals on the delay axis, numerical modeling is implemented again.
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Figure 5.9: Photon energy level diagrams of resonant FWM processes with ordering
of the photon interactions with respect to the level with finite response. Dotted lines
indicate the presence of a material characteristic dephasing time, T , for visible stim-
ulated parametric emission (SPE), IR SPE, coherent anti-Stokes Raman scattering
(CARS), and coherent Stokes Raman scattering (CSRS.)

5.4 Resonant perturbation of the time dependent

behavior of four-wave mixing signals

In what follows, we seek to model FWM signals corresponding to a finite material

response in order to correlate the results of Fig. 5.8 with a resonant process generating

the observed separation of IR-visible FWM signal centers. Since IR FWM signals

seem to be dominated by processes with instantaneous material response, we must

look for a visible FWM process which exhibits the proper time delay shift in signal

center. Beginning with the equations for visible and IR FWM with instantaneous

response, Eqs. (5.7) and (5.9) respectively, we discuss a perturbative approach to

determining time dependent expressions for modeling inter-pulse delay scans in media

with finite material response. These expressions are shown to be different for the

processes of visible SPE, IR SPE, CARS, and CSRS.

It should be noted that FWM signals have been described generally for the cases

where the pulse durations involved are either much shorter than or much longer

than the characteristic response time of the material being probed [100]. The results

presented here do not agree with either of those assumptions and likely represent

the case where the pulse durations involved are nearly equal to the response time of
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the material. This relationship between pulse duration and material response time

presents considerable obstacles to the derivation of analytical solutions for the FWM

signals. For this reason, we turn to an approach that starts with solutions to the

instantaneous response case and includes a simple perturbation to include a finite

material response time. To inform the perturbation we turn to what is known about

CARS, which is certainly the most thoroughly studied FWM process, and apply

those results to all the FWM processes examined here.

We know from Section 5.3, that Eqs. (5.7) and (5.9) describe visible and IR

FWM signals for inter-pulse delay scans (cf. Fig. 5.4) when the time response of

the material is instantaneous. Here we use a perturbative approach to include in

these equations the effect of a material response corresponding to resonant (non-

instantaneous) behavior of the material. Using the example of visible SPE, we show

how one may include such a resonant response.

Suppose that the visible FWM process probes a finite material response time, T ,

at the two photon absorption level of the Ti:S (E1, ω1). This would be described

by the visible SPE process shown in Fig. 5.9. To make it clear how T may be

incorporated into the expression for visible SPE, it is helpful to rewrite the expression

for instantaneous response (Eq. (5.7)) in terms of two coherent induced material

polarizations

SV FWM(τ) ∝
∫ t2

t1

[
E2

1(t− τ)E2(t)
]2
dt ∝

∫ ∞
−∞

[P1P2]2 dt (5.11)

where P1 ∝ E2
1 and P2 ∝ E2. Immediately we see that the induced material polariza-

tion P1 corresponds to two photon absorption of the Ti:S. In order to include a finite

material response time typical of visible SPE, P1 is no longer considered directly

proportional to E2
1 , but is supposed to follow from the relationship[

d

dt
+

1

T

]
P1 ∝ E2

1 (5.12)

which describes adding ’inertia’ with with characteristic time, T , at the level of two

96



Chapter 5. Four-wave mixing microscopy with femtosecond resolution

photon absorption of the Ti:S laser, E2
1 . Such an approximation is used here for it’s

similarity in describing the inclusion of a dephasing time in the CARS FWM coupled

amplitude equations [101]. Solving this linear first-order differential equation with

the method of integrating factors, we find the time dependent expression for P1,

P1 ∝
∫ t

t1

E1(x− τ)E1(x− τ)e
x−t
T dx (5.13)

where x is another time variable. We now have expressions for P1 for both instanta-

neous and finite material response:

P1(t, τ, T ) ∝

 E2
1(t− τ) for instantaneous material response∫ t

t1
E1(x− τ)E1(x− τ)e

x−t
T dx for finite material response, T

(5.14)

Substituting Eq. (5.13) into Eq. (5.11) we obtain the equation for visible SPE signals

in a material with finite material response corresponding to two photon absorption

of the Ti:S (Fig. 2.5):

SV SPE(τ, T ) ∝
∫ t2

t1

[(∫ t

t1

E1(x− τ)E1(x− τ)e
x−t
T dx

)
E2(t)

]2

dt. (5.15)

Examining Eq. (5.15), we note several important facts. First, as should be ex-

pected, when Eq. (5.15) is evaluated in the limit that T → 0, it reduces back to

Eq. (5.7) indicative of visible FWM signals from a material with instantaneous re-

sponse. Second, considering fixed values of the inter-pulse delay, τ , and finite material

response time, T, the effect of the inner integral is more readily understood. For this

case, the last term in the inner integral, when x = t, corresponds to the contribution

of E2
1 found in the instantaneous response equation. For x < t, the inner integral

includes a residual contribution of E2
1 from all earlier times as well, indicating a

so-called material memory with characteristic lifetime T .

To begin to examine the effect that this material memory impresses on visible

SPE optical signals, we plot P1, Fig. 5.10, for cases of both instantaneous and finite
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material response according to Eq. (5.14). Compared to the instantaneous response

of E2
1(t− τ) (Eq. (5.10), Ti:S pulse duration τp = 60 fs, τ = 0), P1(t, τ, T ) for finite

material response (Eq. (5.13), τ = 0, T = 60 fs) exhibits both a positive shift of

the peak position in time and a broadened asymmetric temporal profile. Consulting

Fig. 5.5, we see that such a positive shift in P1 leads directly to a negative shift in the

visible FWM signal center. This becomes obvious when considering that the Ti:S

pulse, E1, must now lead the OPO pulse, E2, to the sample in order for P1 and E2

to share a common peak at t = 0. This negative shift in visible FWM signal center

does not correspond to the observed FWM signals in Fig. 5.8. To account for the

observed results we also consider the effects of including a finite material response in

IR SPE, CARS and CSRS processes. A more comprehensive analysis of visible SPE

signals according to Eq. (5.15) continues in Section 5.4.1.

Figure 5.10: Comparison plots of P1 for instantaneous material response (E2
1(t))

and finite material response (P1(t, τ, T )) according to Eq. (5.14) in the time domain
assuming τ = 0 so that E1 is centered at t = 0.
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5.4.1 Mathematical model of finite material response in in-

frared and visible stimulated parametric emission

The preceding few paragraphs outlined how we reach the expression for visible SPE

signals in a material with a finite response present for two photon absorption of

the Ti:S: Eq. (5.15). Starting from Eq. (5.9) and applying the same arguments, we

determine the expression for IR SPE signals in a material with finite response for

two photon absorption of the OPO (Fig. 2.5):

SIRSPE(τ, T ) =

∫ t2

t1

[(∫ t

t1

E2(x)E2(x)e
x−t
T dx

)
E1(t− τ)

]2

dt. (5.16)

The form is identical to that of Eq. (5.15) except that we have solved[
d

dt
+

1

T

]
P ∝ E2

2 (5.17)

for two photon resonance of the OPO.

A numerical evaluation of Eqs. (5.15) and (5.16) is shown in Fig. 5.11 for T = 2,

30 and 60 fs with Gaussian pulses E1 and E2 (cf. Eq. (5.10)) of duration τp = 60 fs

(Ti:S) and 100 fs (OPO) respectively. This model verifies that for a finite material

response time, visible SPE displays a shift of the signal center toward negative delay,

τ < 0. A negative inter-pulse delay means that the visible SPE signal has a center

(peak) when the Ti:S pulse leads the OPO pulse to the sample. Conversely, IR SPE

displays a shift of the signal center toward positive delay, τ > 0. These signals do

not correlate to the observed IR-vis FWM signal separation of Fig. 5.8.
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(a)

(b)

Figure 5.11: Numerical plots of (a)visible SPE and (b)IR SPE from Eq. (5.15) and
Eq. (5.16) respectively for increasing values of the finite material response time:
T = 2, 30, 60 fs.

5.4.2 Mathematical model of finite material response in co-

herent anti-Stokes Raman scattering and coherent Stokes

Raman scattering

Starting from Eq. (5.7) for instantaneous response of visible FWM signals and ap-

plying the process outlined in Section 5.4, we determine the expression for CARS
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signals in a material with finite response as shown in Fig. 5.9:

SSV IS(τ, T ) =

∫ t2

t1

[(∫ t

t1

E1(x− τ)E2(x)e
x−t
T dx

)
E1(t− τ)

]2

dt. (5.18)

Again, the form is identical to that of Eq. (5.15) except that we have solved[
d

dt
+

1

T

]
P ∝ E1E2 (5.19)

indicating a finite material response for simultaneous interaction of Ti:S and OPO

photons. Starting from Eq. (5.9) for instantaneous response of IR FWM signals

and substituting the same solution for Eq. (5.19) we derive the expression for CSRS

signals in a material with finite response as shown in Fig. 5.9:

SSIR(τ, T ) =

∫ t2

t1

[(∫ t

t1

E1(x− τ)E2(x)e
x−t
T dx

)
E2(t)

]2

dt (5.20)

A numerical evaluation of Eqs. (5.18) and (5.20) is shown in Fig. 5.12 for T = 3,

30 and 100 fs with Gaussian pulses (E1, E2, cf. Eq. (5.10)) of duration τp = 60 fs and

100 fs respectively. For a finite material response time, CARS displays a shift of the

visible FWM signal center toward positive delay, τ > 0. Conversely, CSRS displays a

shift of the IR FWM signal center toward negative delay, τ < 0. This model correlates

with what we observe for inter-pulse delay scans. It appears that a finite material

response corresponding to the CARS process accounts for the measured separation

between visible FWM and IR FWM signals shown in Fig. 5.8. This model suggests

a material dephasing time on the order of 100 fs for all the solvents inspected here.
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(a)

(b)

Figure 5.12: Numerical plots of (a)CARS and (b)CSRS from Eq. (5.18) and
Eq. (5.20) respectively for increasing values of the finite material response time:
T = 3, 30, 100 fs.

5.5 Determination of the dominant resonant four-

wave mixing signal via stimulated parametric

emission polarization scheme

For inter-pulse delay scans, the observed IR-visible FWM signal separation of Fig. 5.8

is predicted by modeling the visible FWM signal with a resonant CARS process

102



Chapter 5. Four-wave mixing microscopy with femtosecond resolution

(T ≈ 90-100 fs) as shown in Fig. 5.12. We may further confirm this resonant CARS

process as the source of IR-visible FWM signal separation by recording inter-pulse

delay scans while implementing the IR SPE polarization scheme [51] discussed in

Section 2.2.3. Such a polarization scheme was developed in order to isolate resonant

IR FWM signals from nonresonant IR FWM signals at identical signal wavelength

for the benefit of enhanced imaging contrast of resonant media. However, it may also

lead to suppression of resonant visible FWM signals. Even by partial suppression of

visible FWM resonant signals we may expect to observe a decrease in the IR-visible

FWM signal separation. Simultaneously, we may confirm that the IR FWM signals

remain centered at the same delay position even when isolating signals from resonant

IR SPE. This would indicate the case where a resonant IR SPE process is present,

but with material response much shorter than the duration of the illuminating pulses,

T � τp, so that it does not result in a delay shift of IR FWM signal centers.

We repeat inter-pulse delay scans in methanol, ethanol, propanol, butanol, and

hexane liquid solvents with the IR SPE polarization scheme of Fig. 2.6 where α = 45◦,

φ = 71.6◦ and β = 135◦ so as to yield maximal contrast in resonant IR SPE sig-

nals. For all samples, the resulting IR-visible FWM signal separation is negligible,

≈ -0.4 fs ± 0.4 fs. The interpulse delay scan for hexane with IR SPE polarization

detection is shown in Fig. 5.13. For collinearly polarized excitation, inter-pulse de-

lay scans in hexane exhibited the largest IR-visible signal separation of the solvents

interrogated here, -28.3 fs (cf. Table 5.1). Using IR SPE polarization detection, the

remaining IR-visible signal separation in hexane is negligible, -0.2 fs. By repeat-

ing the delay scan of Fig. 5.13 with no polarization analyzer in the detection path,

we confirm in Fig. 5.14 that the IR FWM signals stay centered at the same delay

value while visible FWM signals shift toward positive delay when CARS signals are

not suppressed by the polarization analyzer. The plots in Fig. 5.14 are normalized

for ease of interpreting the signal delay, however is should be noted that by imple-

menting the IR SPE polarization scheme visible FWM signals decrease ≈ 19× and
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IR FWM signals decrease ≈ 3.9×. Apparently, the resonant contribution to visible

FWM signals is very large.

Figure 5.13: IR and visible FWM signals for an inter-pulse delay scan in hexane
using the IR SPE polarization scheme of Fig. 2.6. The residual IR-visible FWM
signal separation is negligible, ≈ -0.2 fs.

Figure 5.14: IR and visible FWM signals for inter-pulse delay scans in hexane using
the IR SPE polarization scheme of Fig. 2.6 with and without the polarization analyzer
in the detection path. The visible FWM signal shifts toward higher delay values when
CARS signals are not suppressed.
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5.6 Chapter Summary

A two pulse FWM microscopy setup was utilized to record IR and visible FWM

signals for inter-pulse delay scans in BK7, fused silica, methanol, ethanol, propanol,

butanol, and hexane. Delay scan measurements in the liquid solvents revealed char-

acteristic IR-visible FWM signal separation when plotted as a function of delay be-

tween pulses. Supposing such signal separation to result from the presence of a finite

material response probed by the delay scan experiment, we developed expressions for

time dependent FWM signals corresponding to several resonant processes. Through

modeling of resonant IR SPE, visible SPE, CARS and CSRS processes, we suggest

that the observed IR-visible FWM signal separation corresponds to a resonant CARS

process that probes molecular vibrational dephasing with characteristic time on the

order of ≈ 90-100 fs for all solvents. Due to insensitivity in the modeling, it is not

possible to more precisely estimate the characteristic time for each solvent. Through

implementation of an IR SPE polarization scheme, we simultaneously isolate res-

onant IR SPE signals and suppress visible CARS signals. Subsequent inter-pulse

delay scan measurements with and without the polarization analyzer confirm what

we have modeled: the characteristic IR-visible FWM signal separation is due to the

presence of a resonant CARS process in each solvent. Measurements indicate that

the resonant contribution accounts for ≈ 95% of the total visible FWM signal. The

resonant frequency probed in the CARS process is in the range 2770-3130 cm−1, as

defined by the spectral FWHM of the excitation sources, and likely indicates the net

effects of several Raman active C-H stretch bands near 2950 cm−1.
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Temporal waveform synthesis for

nonlinear microscopy

The goal of this chapter is to demonstrate the development and implementation of a

genetic algorithm capable of optimizing nonlinear optical signals by interfacing with

a spatial light modulator for temporal waveform synthesis of femtosecond regime

optical pulses.

6.1 Overview of femtosecond pulse temporal wave-

form synthesis for nonlinear microscopy

For femtosecond pulses of light, no electronic techniques exist that are fast enough to

modulate temporal behavior directly. For this reason, the field of temporal waveform

synthesis is typically concerned with controlling the temporal behavior of a pulse by

modulating both phase and amplitude in the frequency domain. This is possible

because the time domain expression and the frequency domain expression of fem-
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tosecond pulses constitute a Fourier transform pair. Modulation in either domain

directly effects the other.

The operating principle of modelocked lasers is perhaps the most familiar example

for frequency domain synthesis of temporal waveforms. Modelocked lasers support

the simultaneous oscillation of many longitudinal modes corresponding to different

frequencies of light. When the relative phase between these modes is fixed over one

round trip of the cavity, interference between the modes gives rise to a train of pulses.

When the phase difference between all the modes of the laser is identically zero at

periodically repeated points in time, a train of bandwidth limited pulses is generated.

This corresponds to a flat spectral phase, φ(ω) = constant.

The expression for spectral phase, φ(ω), proves to be most useful in describing

the role of different components of optical dispersion on the temporal profile of a

pulse. Optical dispersion arises because the phase velocity of a light wave (v = c/n)

has a frequency dependent index of refraction (n(ω)). Considering this frequency

dependent index in terms of the applied optical path length difference for the modes

of a modelocked laser, we note that the effects of dispersion directly translate to

influence on the spectral phase. Most often, the effects of dispersion on spectral

phase are described by expanding the spectral phase in a Taylor series around the

central frequency of the incident spectrum of light [102]:

φ(ω) = φ0 + φ1(ω − ω0) +
1

2
φ2(ω − ω0)2 +

1

6
φ3(ω − ω0)3 + · · · (6.1)

In this expansion, the first term is largely ignored and has negligible effect on the

temporal pulse shape. The first order phase, φ1, only effects the arrival time of

the pulse envelope. The second order term, φ2, indicates the effect of group delay

dispersion (GDD) on the pulse and is the first term that has a strong effect on the

temporal waveform. Higher order terms also effect the pulse shape.

From Eq. (6.1) many researchers have drawn the inspiration for temporal pulse
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shaping [60, 103, 102, 61]. It has become commonplace to implement spatial light

modulators (SLMs) composed of liquid crystal pixel masks to control the spectral

phase and amplitude directly [59]. While others have developed powerful methods

of characterizing the temporal behavior of pulses, we seek to implement a pulse

shaping algorithm that will automatically generate the optimal temporal waveform

to maximize nonlinear optical signal generation in the focal plane of a microscope.

6.2 A genetic algorithm approach to waveform syn-

thesis

In order to optimize nonlinear optical signals from a coherent process in the focal

plane of a microscope, we desire to develop a technique that will work to optimize

the temporal waveform automatically without any prior notion of the experiment in-

volved. To enhance our current TH microscope with such a technique requires both

incorporation of an SLM based pulse shaper (Coherent Silhouette) and development

of a software algorithm to search for a globally optimized signal. This algorithm will

seek to optimize signal generation via control of the temporal waveform as imple-

mented by the SLM.

The SLM setup is shown in Fig. 6.1. A prism separates the spectral components

of the incoming pulse and together with the curved mirror ensures that spatially

separated spectral components arrive perpendicular to the SLM. The distance be-

tween the prism and curved mirror as well as the distance between the curved mirror

and the SLM are set to be f , the focal length of the curved mirror. With no signal

applied to the SLM this 4f system results in no change to the input pulse. The SLM

contains two liquid crystal masks (128 pixels each) for control of electric field phase

and amplitude respectively. Control of both the phase and the amplitude of the elec-
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tric field provides the most flexibility in synthesizing temporal waveforms, however,

along with that flexibility come considerable complications in testing the algorithm

for shaping. In this first attempt, we implement phase control alone. Figure 6.2

shows the resulting position of spectral components on the phase pixel mask of the

SLM. At the very least, phase control allows for compensation of the sum dispersion

from all the optical components present in the beam path, compensating the effects

discussed surrounding Eq. (6.1), up to the limit of 70 radians of phase imposed by

the SLM.

Figure 6.1: Layout of the spatial light modulator (SLM) setup used for temporal
pulse shaping. The SLM contains a mirror to reflect the beam back through the
setup.

Implementing computer control of the SLM pulse shaper, we may optimize the

nonlinear optical signals generated by the shaped pulse simply via parameterization

of the SLM pixels. Such an optimization algorithm relies both on control of the

SLM pixel mask and on collection of subsequent electronic signals from experimental

measurement of nonlinear optical signals. Considering that each of the 128 pixels

is adjustable over 212 voltage steps, a linear (sequential) search algorithm over all

possible combinations is prohibitively time consuming. For this reason we turn to

a learning algorithm that iteratively progresses towards a global maximum. In par-

ticular, we invoke a genetic algorithm (GA) so-called for its inspiration following
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Figure 6.2: Overlaid Ti:S spectrum and corresponding SLM pixel.

from evolutionary biology [104] which treats optimization parameters as interrelated

members of a genetic code that serve to improve the overall fitness of a population

by progressing from generation to generation (iteration). Discussed in depth in the

following section, a GA is chosen here for its reputation as a robust method of op-

timization. Also importantly, when tailored to the specific problem at hand it may

be a very efficient learning algorithm. Furthermore, genetic algorithms comprise

a proven method that have been implemented successfully in previous work with

temporal waveform synthesis [56, 60, 61].

6.2.1 Overview of the genetic algorithm

Here we describe the function of the specific steps involved in the genetic algorithm of

Fig. 6.3 which has been implemented in a LabVIEW programming environment. This
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Figure 6.3: Schematic of the implemented genetic algorithm.

algorithm maximizes detected nonlinear optical signals by searching for an optimal

set of spectral phase values applied to a femtosecond pulse by the pixels of a liquid

crystal phase mask. This may be considered as an optimization carried out over the

parameters describing the values assigned to each pixel in the mask.

We develop two variations of the GA which respectively use methods of direct

and indirect parameterization of the phase values applied to each pixel. For the

case of direct parameterization, the value of each pixel corresponds to its own pa-

rameter. For 128 pixels in the phase mask, this version of the algorithm optimizes

over 128 separate parameters. The parameter describing the ith pixel is pi, and the

state of the entire phase mask is described by the set of parameters a(p1, p2, ...).

In this case, the phase value of the ith pixel is simply vi = pi. For the case of
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indirect parameterization, the value of each pixel is determined by a reduced set

of parameters, here the coefficients of a 9th order polynomial function, that define

the values across the entire pixel mask. For 9 coefficients describing the polyno-

mial, this version of the algorithm optimizes over only 9 separate parameters. For

example, the set of optimization parameters for a polynomial function would still

be expressed as a(p1, p2, ...) but where the phase value of the ith pixel is given by

vi = p1(i− c) + p2(i− c)2 + p3(i− c)3 + · · · where c is the pixel corresponding to the

center of the incident pulse spectrum. Indirect parameterization reduces the number

of search parameters from 128 to 9 and expedites the search, but it also sacrifices the

overall degree of freedom related to the variety of synthesized pulses. A polynomial

function makes sense for indirect parameterization of phase values in the pixel mask

because the spectral phase distortions caused by dispersive optics, Eq. (6.1), are also

expressed as a polynomial in phase. In the very least, parameterization with a poly-

nomial will allow for compensation of dispersion effects on the pulse. It should be

noted that certain spectral phase compensations, such as a sinusoid of more than one

period, are not handled well by parameterization with a polynomial. In light of these

two methods of parameterization, we discuss the specifics of the GA implemented in

the following work.

The steps involved in the genetic algorithm are as follows.

1. Initialize population. This step generates N sets of parameters, a(p1, p2, ...),

where the optimization parameters, pi, are determined at random within a user

defined range. Each set of parameters represents a specific state of the phase

mask and constitutes a trial solution in the optimization problem. The number

of sets, N , is referred to as the population size of the search where each trial

solution a is a member of the population. The initialization step produces the

first generation of trial solutions.

2. Evaluate fitness. This step i) takes each trial solution one at a time, ii) cal-
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culates the phase value for each pixel, iii) applies the values to the phase mask

and iv) acquires the signal produced in the experiment. The recorded signal is

the figure of merit for the trial solution and is referred to as the fitness of the

solution, F (a). In analogy to evolutionary mechanisms, the fitness in some way

determines the ability of one member of the population to breed and thereby

pass along its traits, the parameters pi, to the next generation.

3. Select for breeding. This step selects two trial solutions from the current gen-

eration for breeding. The method of selection is important in that it determines

what trial solutions are allowed to pass along their traits to the next genera-

tion. We implement the commonly used roulette wheel selection method [105]

where each trial solution is preferentially assigned a chance of selection based

on its fitness relative to the population as a whole. Fitter trial solutions have a

higher chance of being selected according to Eq. (6.2). This chance of selection

may be visualized as a segment of a roulette wheel. A random spin of the wheel

then determines which trial solution is selected for breeding.

selection % for ak =
F (ak)

N∑
j=1

F (aj)

(6.2)

4. Breed. This step takes the two trial solutions selected for breeding and com-

bines their traits, parameters pi, into a new trial solution to be passed on to

the next generation. The process by which this combination of parameters is

accomplished is known as breeding. The breeding process for direct parame-

terization is to directly replace parameters in the fitter solution with a fitness

weighted percentage of parameters from the less fit solution. Direct replace-

ment is required due to 2π periodicity in the parameter space. The breeding

process for indirect parameterization is a fitness weighted averaging of param-

eters. In this case a weighted average is allowed because the parameters do not

suffer from periodicity.
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5. Adjust (optional). This step has a user defined chance of occuring. This

step takes the new trial solution produced by breeding and makes a small

adjustment, addition or subtraction, to the value of each parameter. The size of

adjustment is chosen to be small enough so that if applied to a single parameter,

it has no measurable effect on the fitness of a trial solution. However, when

applied to several parameters the net effect may prove to be sufficient to cause a

change in the measured fitness of the trial solution. This adjustment allows the

overall algorithm to probe coupled parameters and thereby exhibit improved

efficiency.

6. Mutate (optional). This step has a user defined chance of occuring. This step

takes the new trial solution and replaces some of its optimization parameters

with new randomly generated parameters. This type of parameter replacement

is akin to mutation in a genetic code. In the search algorithm, mutation serves

as a way to enact change on a large scale in the search space, perhaps moving

away from a local maxima and into another region of optimization.

7. Repeat steps 3-6. Steps 3-6 are repeated to generate a new population

from the preceding population of trial solutions. The algorithm used here

implements elitism which retains the trial solution with the best overall fitness

from one generation for inclusion in the next. In this way, the fitness can never

decrease more than the limit imposed by experimental noise. Accounting for

elitism, steps 3-6 are repeated N −1 times to produce a new generation of trial

solutions with N members.

8. Repeat steps 2-7. Steps 2-7 are repeated for a set number of generations,

G, until the algorithm is stopped and subsequently returns the fittest solution

obtained through the optimization search.

Figure 6.4 shows a typical progression of fitness as the genetic algorithm pro-
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ceeds through several generations. In this case we have simulated the progression of

SHG signals assuming that the algorithm needs to search for a quadratic phase com-

pensation. The plot shows the average maximum fitness (with standard deviation)

attained over 40 simulations. Since the initial trial solutions are generated randomly,

the algorithm essentially starts from noise, yet in 20 generations the algorithm finds

a phase compensation resulting in 96% (±1%) of the maximum fitness. For further

details on simulation, refer to Appendix B.

Figure 6.4: Simulated progression of SHG signals assuming the need to compensate
a quadratic spectral phase. The plot shows average maximum fitness values (with
standard deviation, error bars) attained over 40 simulations. Population N = 400 in
the 9th order polynomial version of the GA.
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6.2.2 Optimization of second harmonic signal and compari-

son with a phase retrieval method

For benchmarking the success of our genetic algorithms, we select an experiment

where we can compare the results of our methods with those of another well estab-

lished algorithm for spectral phase compensation of femtosecond pulses. In this case,

we turn to comparison with a commercially available method based on multi-photon

intra-pulse interference phase scan (MIIPS) [60, 61, 62].

The experimental setup for waveform synthesis via SH optical signals is shown

in Fig. 6.5. A train of pulses (787 nm) from the Ti:S laser described in Chap-

ter 3 passes through a collimating telescope and into the SLM-based pulse shaper

of Fig. 6.1 (Coherent Silhouette). Pulses are attenuated with a reflective neutral

density filter (ND = 0.5) and proceed to the BBO crystal unfocused (≈ 140 mW).

SH signals exit the crystal for detection while the undesired fundamental field is

rejected by an IR filter attached to the backside of the crystal. There are two sep-

arate detection paths corresponding to the two methods we wish to compare. For

use of the MIIPS algorithm, the SH signals (∼ 395 nm) proceed to a spectrometer

(Ocean Optics USB4000) for digitization. For use of our genetic algorithm, a mirror

is inserted into the beam path to direct the SH optical signals to an amplified sil-

icon detector (Thorlabs PDA36A). Additionally, this method requires the insertion

of an optical chopper (415 Hz) to allow averaging of the collected electronic signals

in a lock-in amplifier (Stanford Research Systems model 810). For both methods of

optimization, the electronic signals, from the spectrometer and lock-in respectively,

provide feedback to the software algorithm which then controls the shaper. This

setup also allows for comparison of the total SH optical signals generated by both

algorithms. Once the MIIPS optimization is finished, the movable mirror may be

inserted to measure the resulting SH optical signals. Both optimization methods will

seek to compensate the spectral phase distortions due to all of the dispersive optics
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in the beam path (lenses, filters etc.), as well as any uncompensated phase from the

Ti:S laser cavity itself.

Figure 6.5: Setup for SH optimization via pulse shaping. Gold dotted lines indicate
electronic connections.

MIIPS seeks to force the spectral phase to be flat (zero) at the SH crystal. This

method works by using the SLM to place a known reference phase, f(ω), on top of

the unknown spectral phase of the incoming pulse, φ(ω). The total spectral phase

of the pulse is then given by ϕ(ω) = φ(ω) + f(ω). MIIPS then monitors the SH

spectrum of the pulse, which depends on ϕ(ω), to retrieve the unknown φ(ω). This

process is also accomplished with an iterative learning algorithm. Although this

technique is quite powerful for characterizing the temporal waveform at a specific

place in the beam path, namely the placement of the SH crystal, it requires the user

to know a priori what waveform to implement. By default this technique reproduces

pulses with flat spectral phase, that is, with bandwidth limited duration. In contrast,

our algorithms only rely on maximization of a nonlinear optical signal and has the

advantage of potentially producing arbitrary waveforms to do so. The results of

these three methods, commercial MIIPS and our two GAs, may be compared for an

experiment where nonlinear signal generation is expected to be maximized for pulses

of bandwidth limited duration, where all techniques should find the same result. For
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such an experiment we turn to optimization of SH signals produced by a Ti:S laser

in a thin (0.01 mm) beta barium borate (BBO) nonlinear crystal. The BBO crystal

has been used widely to produce SH from Ti:S lasers and yields maximum SH signals

for a bandwidth limited pulse duration. This experiment allows MIIPS to optimize

the spectral phase by monitoring the SH spectrum while forcing residual spectral

phase to zero and it allows our genetic algorithms to optimize the spectral phase by

maximizing detected SH signals.

The results of spectral phase compensation are shown in Fig. 6.6 for MIIPS and

both variations of our genetic algorithm. The MIIPS software was run in the ’fine’

compensation setting which takes approximately 5 minutes. Following optimization,

MIIPS measured pulses that were compensated to be 3% longer than bandwidth

limited duration resulting in ≈ 48 fs pulses. The 9th order polynomial version of

the genetic algorithm was run with N = 32 G = 20 which took approximately 7

minutes to complete. The independent pixel version of the genetic algorithm was

run with N = 4 G = 1100 and took approximately 2.6 hours to complete. The

independent pixel version takes longer to progress because of both the increased

number of parameters and the requirement of longer averaging time in the lock-in

for signals beginning from random phase values applied to each pixel in the SLM

phase mask. As expected for the independent pixel genetic algorithm, the pixels in

the middle of the mask, with higher incident intensity (cf. Fig. 6.2), appear to be

preferentially corrected. This explains why pixels at the edges of the compensated

region show such large fluctuation.

The SH signals acquired for MIIPS, 9th order polynomial GA and independent

pixel GA increase by factors of 3.0, 3.1 and 2.9 respectively compared to the signal

acquired for no compensation (a flat phase applied to the SLM). If one makes a

simplifying assumption that the uncorrected pulse had a broadened Gaussian shape,

the (conserved) pulse energy may be estimated by the product of pulse duration and
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Figure 6.6: Comparison of the phase compensation found by the MIIPS program,
the independent pixel GA and the 9th order polynomial GA for SHG.

peak power. Then assuming that the SH signals are proportional to energy via the

squared peak power of the pulse, a factor of three increase in signal indicates that

the uncompensated pulse duration was ≈ 48 fs(
√

3) ≈ 83 fs.

Though the phase solutions shown in Fig. 6.6 are clearly different, they may still

indicate the same temporal waveform. Recall from Eq. (6.1) that a linear change

in φ(ω) indicates only a change in the arrival time of the pulse, not a change in

the waveform itself. Since MIIPS forced a phase compensation resulting in a near

bandwidth limited pulse, we may compare to the MIIPS results and observe the

difference in phase acquired with the other two algorithms. Figure 6.7 shows that the

difference between MIIPS phase and the phase determined by our genetic algorithms

is nearly linear across the central part of the phase mask (center of the incident

spectrum). All three phase compensation results appear to be converging on the

same pulse of bandwidth limited duration. This confirms that our genetic algorithms

are capable of finding an optimal phase compensation using only the strength of the
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nonlinear signal as feedback to the search process. Such confirmation lends a clear

advantage to our algorithms in optimizations that require the ability to search for

arbitrary spectral phase compensation.

(a) (b)

Figure 6.7: The difference in phase between (a) MIIPS and 9th order polynomial
GA solutions, and (b) MIIPS and independent pixel GA solutions.

6.2.3 Optimization of third-harmonic microscope signal in

fused silica

We now extend the use of our genetic algorithm to optimization of nonlinear signals

produced in the focal volume of a microscope. To begin, we inspect TH signals

produced from a fused silica slide (1 mm) under linearly polarized illumination.

Since fused silica is expected to yield maximal TH signals from pulses of bandwidth

limited duration (flat spectral phase) we may use this sample to characterize the

uncompensated spectral phase of our typical setup.

The experimental setup for TH microscopy with temporal waveform synthesis is
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shown in Fig. 6.8. This setup is nearly identical to the one described in Section 4.2.

The main differences are the inclusion of a chopper (415 Hz) to enable lock-in de-

tection and the inclusion of the pulse shaper itself. Time averaged electronic signals

from the lock-in provide feedback to the software algorithm which then controls

the shaper. This setup includes a prism compressor which attempts to compensate

second order phase distortions corresponding to group delay dispersion (GDD). Its

alignment is fine tuned by maximizing TH signals produced in the microscope. The

optimization algorithm will seek to compensate the remaining spectral phase distor-

tions due to all of the dispersive optics in the beam path (objectives, lenses, filters

etc.), as well as any uncompensated phase from the Ti:S laser cavity itself. Note

that this compensation also represents a best fit over radial coordinates for radially

varying dispersion typical of thick lenses and microscope objectives. Measurements

in fused silica are carried out with an average power of 320 mW entering the focusing

objective.

Figure 6.8: Setup for TH microscopy with temporal waveform synthesis. Gold dotted
lines indicate electronic connections.

For spectral phase optimization in fused silica with the 9th order polynomial

version of the genetic algorithm, the progression of TH signals (Fitness) is shown over
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several generations of optimization in Fig. 6.9. Optimization of the spectral phase

increases the TH signal by a factor of ≈ 12. For optimization with the independent

pixel version of the genetic algorithm, TH signals increase by a factor of only ≈ 10,

however the algorithm was halted after 3.1 hours while still making slow progression.

Figure 6.9: Progression of TH signals over ten generations of optimization with
N = 128 in the 9th order polynomial GA. The dotted line represents the TH signals
for an uncorrected pulse (flat phase applied to the SLM).

Comparing the spectral phase compensation results from both versions of the

genetic algorithm in Fig. 6.10, we see that the difference is again linear. As was

discussed in the last section, this indicates that the algorithms appear to be con-

verging on the same temporal waveform since a linear difference in spectral phase

indicates only a change in the arrival time of the pulses according to Eq. (6.1).

If we assume that fully optimized spectral phase compensation leads to a 12× in-

crease in TH signal as was observed for polynomial compensation, we can estimate

the ratio of durations for compensated and uncompensated pulses. Assuming that

TH signals are proportional to the cubed peak intensity of the pulse, a 12× in-
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crease in signal indicates that the uncompensated pulse duration is estimated by

τuncomp ≈ ( 3
√

12 τcomp) ≈ 2.3 τuncomp. We may attempt to confirm this by measur-

ing the compensated and uncompensated pulse duration prior to the the focusing

objective. Using a commercial FROG (frequency-resolved optical gating) measure-

ment technique (Swamp Optics Grenouille), the uncompensated pulse has duration

∼ 140 fs and the compensated pulse has duration ∼ 56 fs prior to entering the fo-

cusing objective. The ratio of these two durations, 2.5, is close to the estimated

ratio of 2.3 and may be expected to differ because of the dispersion effects within

the focusing objective.

Figure 6.10: Comparison of phase solutions for TH signals using both GA versions.
The difference is highly linear and indicates nearly identical temporal waveforms.

The addition of spectral phase compensation to the TH microscope repeatably

leads to greater than ten fold increase in TH signal strength. While the reason for

needing such relatively drastic compensation remains unclear, it may be related to

the shear number of dispersive elements in the beam path which render the effects

of higher order dispersion considerable.
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6.2.4 Optimization of third harmonic microscope signal: ob-

servation of beam steering

Here we document the observation of beam steering encountered as a side effect of

temporal waveform synthesis during the interrogation of gold film islands with TH

microscopy. Gold triangles with variable aspect ratio A:B, Fig. 6.11a, were imaged

with THLP (Fig. 6.11b) and THCP (Fig. 6.11c) techniques and were found to have

signifcant THLP signals even when the illuminating beam was entirely within the

area of the gold triangle (Fig. 6.11d). While such islands were originally of interest

for potential size dependent suface plasmon enhancement of TH signals, no such

effect was found. Here we report the effects of temporal waveform synthesis within

triangles of aspect ratio 2:4.

Using the TH microscopy setup of Fig. 6.8, we optimize the temporal waveform

with the 9th order polynomial version of the genetic algorithm for two positions of

the focal spot, 1) centered within the area of the 2:4 ratio gold island of Fig. 6.12a

and 2) centered entirely in the substrate. The resulting spectral phase compensation

for each case is shown in Fig. 6.13. Both optimizations increase the total TH signal

≈ 9× and their spectral phase difference is linear indicating the formation of identical

temporal waveforms with different arrival times as discussed in the two previous

sections. However, we note that the two spectral phase compensations lead to slightly

shifted fields of view in the microscope. For example, we load the phase compensation

determined for a focus in the substrate and then center the field of view of the

microscope on the gold triangle as shown in Fig. 6.12a. Then simply by loading

the phase compensation determined in the triangle, the field of view is shifted in

the vertical direction ≈ 1 µm as shown in Fig. 6.12b. This shift in the field of

view is easily reproduced by alternating between the two phase masks in repetition

and is not simply due to a small movement of the sample. Considering the phase

compensation found for focusing on the gold triangle, Fig. 6.13, we see how this
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(a) (b) (c)

(d) (e)

Figure 6.11: (a) Diagram of gold film islands with variable aspect ratio A:B from
1:4 to 4:4. (b) THLP image of 4:4 ratio gold triangle. (c) THCP image of 4:4 ratio
gold triangle. Cross sections taken at the line in (b) of the THLP (d) and THCP (e)
images respectively.

is possible. The total phase compensation includes a large linear component that

covers ≈ 35 radians across the pulse spectrum from pixels 40 to 83 where the incident

intensity is appreciable (cf. Fig. 6.2). Adding a linear phase across the SLM can be

considered to have the same effect as adding a slight tilt to the back-reflecting mirror

attached to the SLM (cf. Fig. 6.1), thus leading to a very slight redirection of the

beam exiting the shaper. This redirection of the beam is in the correct direction

to appear as a vertical shift in the field of view of the microscope. Presumably,

the shaper simultaneously optimized the temporal waveform as well as the pointing
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of the beam. In this case, by steering the beam away from the center of the gold

triangle the TH signals increased as more of the incident beam became unimpeded

by the triangle.

(a) (b)

Figure 6.12: THLP images of the same gold triangle for two different spectral phase
compensations. The field of view shifts vertically due to the compensation. The red
dot indicates the center of the field of view.

Figure 6.13: Spectral phase compensation for focus on the substrate and on the
triangle of Fig. 6.12a. The difference is a large linear slope.

126



Chapter 6. Temporal waveform synthesis for nonlinear microscopy

Although the shift in focal position caused by the shaper is only ≈ 1 µm this is

not insignificant when considering many applications. For example, optical signals

produced by nanoparticles may be sensitive to alignment position within the focal

geometry of the beam diameter. Furthermore, automated control over fine spatial

alignment may be useful when aligning the spatial overlap of two beams in the focal

plane of a microscope as is often the case for FWM microscopy. Such simultaneous

control over the temporal waveform and the fine tuning of spatial alignment may find

many applications in microscopy, especially if two orthogonal liquid crystal masks

are employed to allow alignment in both vertical and horizontal directions.

It should be noted that the shift in focal position is not critical for most applica-

tions. If desired, the shift in focal position is easily overcome by loading an additional

linear phase to overcome that imposed by the shaper.

6.3 Chapter Summary

This chapter outlined the development and implementation of a genetic algorithm

that works to optimize nonlinear signals via temporal waveform synthesis. The suc-

cess of the algorithm is confirmed by comparing the resulting spectral phase compen-

sation with that of a commercial technique. For cases of SHG and TH microscopy,

the algorithm is able to increase nonlinear signals by factors of 3.1 and ≈ 12 re-

spectively. The spectral phase compensation found for a fused silica sample in the

TH microscope leads to a decrease in pulse duration by a factor of ≈ 2.3. Further-

more, for optimization in the TH microscope we observed an example of simultaneous

waveform synthesis and beam steering applied by the shaper. Such an effect may be

useful for fine alignment in the focal plane of nonlinear microscopes.

The version of the GA that makes use of indirect parameterization of the SLM

pixels via a 9th order polynomial proves to be efficient, requiring only minutes to
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search for a near optimal phase compensation, as well as practical, being well suited

for routine compensation of multi-order optical dispersion commonly encountered in

nonlinear microscopes. The version of the GA that makes use of direct parameter-

ization of the SLM pixels presents a robust method to search for arbitrary phase

compensation in problems that require the synthesis of complicated unknown tem-

poral waveforms. This method still provides tenable efficiency for most problems,

typically requiring a few hours to complete. The latter method is truly intriguing

for it’s potential to unveil hidden dynamics of systems as inferred from synthesized

waveforms.

128



Chapter 7

Summary and implications for

future work

The work presented in this thesis centers upon the characterization of material prop-

erties via third-harmonic (TH) and four-wave mixing (FWM) microscopy. The TH

microscopy studies presented here focus on characterizing dielectric oxide thin films

used in fs laser-induced damage threshold studies. The FWM microscopy stud-

ies presented here focus upon interpreting time-resolved signals that depend on the

inter-pulse time delay between two laser excitation sources. TH and FWM studies

were enhanced by improving both the stability and the output characteristics of the

femtosecond laser sources they rely upon to create nonlinear optical signals. In ad-

dition, the development of a genetic algorithm that uses nonlinear optical signals as

feedback for the synthesis of temporal waveforms opens up new applications for the

TH and FWM microscopes employed here.

Both the titanium sapphire (Ti:S) and optical parametric oscillator (OPO) fem-

tosecond laser sources were optimized for application to nonlinear microscopy. In the

Ti:S laser, a proclivity for double pulse output was eradicated by reducing the intra-
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cavity intensity through determination of a suitable (20%) outcoupler. Together with

replacement of the pump focusing lens, this led to both an increase in average output

power from 1.35 W to 1.42 W and and increase in modelocked spectral bandwidth

from 16 nm to 19 nm. Both improvements contribute to increased peak intensity

of the output thereby enhancing nonlinear signal generation. Additionally, a sys-

tematic study of two critical alignment regions in the Ti:S laser led to an increased

stability (> 24 hours duration) in the modelocked output. Improvements in the Ti:S

laser proved to be useful for facilitating both increased sensitivity at the detection

limit† in TH microscopy of oxide films, as well as extended duration experiments

with the pulse shaper which required stable modelocking over several hours. In the

OPO cavity, fine alignment of counterpropagating beams in the periodically poled

lithium niobate (PPLN) crystal enabled a TEM0,0 spatial mode output allowing for

the removal of an intra-cavity knife’s edge. Removal of the knife’s edge also effec-

tively doubled the output power of the OPO from 35 mW to 70 mW. TEM0,0 output

of the OPO is crucial for enabling ideal spatial overlap with the Ti:S beam in the

focal plane of the FWM microscope.

We confirmed the value and sensitivity of TH microscopy applied to sources of

contrast encountered in high quality oxide thin films. These studies commenced with

TH imaging of fabricated sources of contrast thought to play a role in laser-induced

damage of oxide thin films. In evaluating the sensitivity of TH from circularly polar-

ized illumination (THCP) microscopy to induced anisotropy and nanoscale features,

we presented the first ever high contrast images of both material strain induced by

nanoindentation and individual 10 nm gold nanoparticles (S/N > 100 : 1). To the

author’s knowledge these are the smallest individual nanoparticles imaged by any

variation of TH microscopy. These results imply that THCP imaging is potentially

sensitive to laser-induced strain as well as to nanoscale defects or contamination in

†Detection of small signals is limited here by maximum available laser power and max-
imum gain on the PMT.
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oxide films.

TH imaging proved to deliver unique insight and high sensitivity to the oxide

thin films in a variety of ways. Compared to other sensitive imaging techniques

such as Nomarski and dark field, THCP imaging exhibits dramatically increased

sensitivity to typical material modifications undergone during the formation of op-

tical damage as evidenced by a dynamic range ≈ 106 : 1. For further interrogation

of optical damage sites, THCP images reveal the presence of permanent material

modification not evidenced by other techniques. Simultaneously, TH from linearly

polarized illumination (THLP) images show a unique ability to quantify the depth

of material ablation. In answer to a long standing question, THCP images divulge

the presence of permanent material modification even for laser exposures not leading

to optical damage. A next logical step is to implement TH detection while a laser

damage experiment is online. This may allow one to probe for the presence of short

lived material modifications. Evidence in support of this thinking is provided by the

THLP observation of reversible material modification in a scandia film. An exposure

of ≈ 4.3×108 J/cm2 total fluence incident on an 8 × 8 µm square of scandia film

led to an ∼ 16% decrease in THLP signal generation. However, after 29 hours of

recovery THLP signals rebounded to 95% of their value before the exposure. This

reversible material modification is believed to be the first observed in oxide films.

Even prior to laser exposure, THCP images reveal features in the nascent oxide

films themselves. These features are shown to correlate to strain in the film and

the effect of their presence on damage threshold remains unclear. THCP imaging

also may be useful for online monitoring of films during deposition if one desires

to eliminate these features. TH imaging creates contrast where other techniques fail

and should certainly continue to be applied to the study of laser damage morphology.

TH imaging also displays promise for providing valuable information by interrogating

films during deposition and during exposure to high fluence laser radiation.
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The results of TH interrogation of oxide thin films may also hold relevance for

nano- and micro-patterning of materials. This practice also makes use of the highly

deterministic behavior of oxide films when exposed to femtosecond pulses, however,

in this case it is exploited to make precise material modifications to the film. An

example of such patterning in bulk material is the creation of optical damage within

glass to yield 3-dimensional data storage accessed by THG [106]. Films hold unique

interest for patterning because they constrain the depth of patterning within a range

from a few atomic monolayers to several hundred nanometers.

With regard to FWM, we sought to characterize the behavior of two FWM mi-

croscopy signals as a function of the inter-pulse time delay between two excitation

pulses. These two FWM signals, referred to as visible FWM and IR FWM respec-

tively, show dependence on the delay between the excitation pulses especially when

resonant processes contribute a significant percentage of either signal. Making use

of several solvents (methanol, ethanol, propanol, butanol, hexane) these inter-pulse

delay scans were shown to exhibit a material specific separation on the delay scale

between the two FWM signal peaks. Comparing the relative positions of all the

FWM signals indicated that the signal separation was due to a shift of the visible

FWM signals towards positive delay values. Numerical modeling of coherent anti-

Stokes Raman scattering (CARS), coherent Stokes Raman scattering (CSRS), visible

stimulated parametric emission (SPE) and IR SPE signals suggest that a resonant

CARS process which probes a characteristic material response time ≈ 90 − 100 fs∗

is responsible for such a shift in visible FWM signals. This hypothesis is confirmed

by suppressing resonant CARS signals with a polarization scheme. When resonant

CARS signals are suppressed, inter-pulse delay scans no longer generate a delay sepa-

ration between the two FWM signal peaks. Measurements indicate that the resonant

contribution accounts for ≈ 95% of the total visible FWM signal. The resonant fre-

∗When determining the characteristic response times, the precision is limited by the
sensitivity of the models used.
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quency probed in the CARS process is in the range 2770-3130 cm−1, as defined by

the spectral FWHM of the excitation sources, and likely indicates the net effects of

several Raman active C-H stretch bands near 2950 cm−1. This technique may be

applied to characterize the dominant resonant response of the sample under study.

Furthermore this technique presents the newfound capability to provide estimates

of characteristic material dephasing times in combination with spatial resolution

≈ 1 µm. Such a combination of information may be useful for applications such as

monitoring the diffusion of resonant molecules into cellular components.

We also sought to develop and implement a genetic algorithm capable of op-

timizing nonlinear optical signals by interfacing with a spatial light modulator for

temporal waveform synthesis of femtosecond regime optical pulses. The developed

algorithm works by controlling the temporal pulse behavior via modulation in the

frequency domain. Specifically, the algorithm modulates the spectral phase of the

pulse through spatially separated spectral components incident on individual liquid

crystal pixels in a phase mask. The algorithm relies on parameterization of the pix-

els in the phase mask to search for a pulse shape that results in the generation of

maximal nonlinear optical signals. Two versions of the algorithm are developed, one

with fully independent parameterization of the pixels, and one where the phase mask

is parameterized through a 9th order polynomial function. The reduced parameter

space for the 9th order polynomial version of the program leads to efficient deter-

mination of optimal pulses taking only several minutes. Indeed this version of the

program proved suitable for compensating multiple orders of optical dispersion and,

because of it’s efficiency, could be used routinely to compensate dispersion anytime

a setup is changed. Through application to second-harmonic generation (SHG) and

comparison with another shaping method, the technique developed is shown to suc-

ceed in optimizing the temporal waveform automatically without any prior notion

of the experiment involved. Applied to TH microscopy, the optimized pulses lead to

' 10× increase in TH signals from fused silica. Such an increase in signals allows
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for more sensitive detection by promoting signals above the former detection limit of

our setup. Optimization of TH signals from gold film islands revealed an interesting

case where control of the spectral phase also resulted in a slight steering of the beam

exiting the pulse shaper. This amounts to simultaneous waveform synthesis and au-

tomated spatial alignment. The algorithm developed has shown the potential to find

complex temporal waveforms that optimize resonant nonlinear processes and illumi-

nate the underlying physics. An obvious extension of this last point would be to

apply the shaping algorithm to FWM of solvents. In this way, one could simultane-

ously probe a material resonance to reveal underlying dynamics while automatically

optimizing the delay between excitation pulses.
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Interpretation of complementary

far field imaging techniques

In order to most fully characterize laser damage exposures, studies may make use of

several imaging techniques to provide complementary information. Linear far field

imaging techniques boast unmatched prevalence and ease of use while demonstrating

sensitivity to a considerable stable of contrast sources. TH microscopy establishes an

entirely new basis of information by probing the third order material susceptibility

while maintaining the benefits of a far field technique such as wide field of view, fast

acquisition and ease of use. Here we compare the sources of contrast in TH imaging

with those of several linear techniques commonly used in studying laser damage.

For comparison, we view the same laser-induced damage crater with all the imaging

techniques.

Figure A.1 shows images of a laser-induced damage crater in 110 nm hafnia film

caused by a single laser pulse at 127 % damage threshold fluence taken with THCP,

THLP, polarization, bright field, dark field and Nomarski imaging techniques. Let

us review the sources of contrast for each imaging technique and interpret how that
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effects the image of this particular damage spot. The THCP and THLP images are

taken in transmission while all others are taken in a reflection configuration.

(a) THCP (b) THLP (c) Polarization

(d) Bright field (e) Dark Field (f) Nomarski

Figure A.1: Comparison images of a single pulse damage exposure in 110 nm hafnia
thin film comprising the range of imaging techniques referenced by the author.

THCP images plot a distribution of anisotropy in χ(3). Optical signals indicate

regions where the isotropy condition (χ
(3)
xyyx = χ

(3)
xyxy = χ

(3)
xxyy = 1

3
χ

(3)
xxxx) is not met.

THCP images may show contrast indicating birefringence, material strain, crystalline

structures, material discontinuity, et cetera. Strong THCP signals in Fig. A.1a most

likely indicate fracture lines in the film.
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THLP images plot a distribution of χ(3). THLP images may show contrast indi-

cating the strength of χ(3), the relative transmission and/or scattering of the funda-

mental field, et cetera. Dark lines in Fig. A.1b may indicate material removal

Polarization images plot a distribution of birefringence. Polarization images may

reveal any source of contrast that can cause a change in polarization. Figure A.1c

may reveal induced birefringence or increased scattering depolarization within the

laser exposure.

Bright field images plot a distribution of absorbance and reflection coefficient.

The color change in the middle of the exposure, Figure A.1d, may indicate the

creation of defect absorbers or a delamination of the film from the substrate or a

thinning of the film.

Dark field images plot a distribution of scatterers. The scatterers within the

exposure, Fig. A.1e, may indicate fine fractures or surface roughness. The scatters

outside the exposure indicate film contamination. Likely sources include dust and

redeposited material expelled from within damage craters on this sample.

Nomarski images plot a distribution of the linear phase difference between or-

thogonally polarized paths. The flat dark nature of the exposure, Fig. A.1f, is typical

of Nomarski images of a rough surface.

Taken together, these complementary imaging techniques assert that within the

exposed spot the film was likely fractured and only partially removed. Additionally,

it appears that material has been redistributed from within the exposure to the edge

of the exposure leaving behind a rough interior surface. These assertions could not

be made simply by consulting one image in the group.
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Simulation of nonlinear signal

optimization via temporal pulse

shaping

Genetic algorithms represent a robust method of optimization, however they are

not necessarily efficient. For this reason it is beneficial to implement user defined

controls along with the typical optimization parameters. Typical controls include

the population size, N , the number of generations, G, the initialization conditions,

mutation rate, and the wait time necessary for interfacing with hardware and allowing

for experimental equilibrium. Since optimization of these users controls would be

prohibitively time consuming to determine through actual experimentation, we turn

to simulation of the specific experiments we desire to carry out in the lab. This allows

the computer to run in seconds what may take a day in the lab. In this way, not only

do we determine reasonable parameters for the algorithm, but also we can determine

the limitations on what is practical to accomplish given experimental constraints on

time (laser stability, etcetera.) In general, all simulations are plotted as a function

of fitness versus the product N × G. N × G represents the total number of trial
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solutions implemented to hardware and serves to estimate the time required to carry

out an experiment. Here we present simulations of SHG and THG for a variety of

conditions.

Simulations of SHG and THG account for parameterization across only the 60

middle pixels of the SLM as required by the intensity distribution of the Ti:S spec-

trum on the SLM (cf. Fig. 6.2). In this way, pixels with negligible incident intensity

are removed from the optimization in an attempt to improve algorithm efficiency.

All simulations make the assumption that for such a small FWHM in wavelength

for the Ti:S (19 nm FWHM at 787 nm), the frequency of light incident at each

pixel is approximately constant. With this assumption the signal for nth harmonic

generation may be approximated by:

SnHG ∝

( 60∑
i=1

Ai cos(ri − vi)

)2
n

(B.1)

Where the index i indicates a pixel number, ri are the values of the reference

phase, vi are the values of the current trial solution phase and Ai are the amplitudes

given by a Gaussian distribution with FWHM 25 pixels. Quite simply, the reference

phase is the solution goal. Eq. B.1 represents the fitness of a trial solution as outlined

in Section 6.2.1. When the solution phase (set of vi) matches the reference phase, the

simulated signal is an absolute maximum and an ideal solution is found. However, the

algorithm typically stops after the user defined number of generations. Everything

inside the squared term indicates the simulated electric field. Everything inside the

nth power term indicates the simulated intensity. It is important to note that because

we have assumed identical frequency incident at each pixel, no integration in time is

required.

All the data referenced here represents the mean maximum fitness (and standard
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deviation) from at least 10 simulations.

Fig. B.1 shows SHG simulations in the 9th order polynomial version of the GA

for several different population sizes. Simulations suggest an optimal population size

of ≈ 25.

Figure B.1: Mean simulated SHG signal (and standard deviation) for several popu-
lation sizes in the 9th polynomial fit version of the GA.

Fig. B.2 shows THG simulations in the 9th order polynomial version of the GA

for several different population sizes. Simulations suggest an optimal population size

of ≈ 8.

Fig. B.3 shows SHG simulations in the independent pixel version of the GA for

several different population sizes. Simulations suggest an optimal population size of

≈ 4.

Fig. B.4 shows THG simulations in the independent pixel version of the GA for

several different population sizes. Simulations suggest an optimal population size of

≈ 2− 4.
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Figure B.2: Mean simulated TH signal (and standard deviation) for several popula-
tion sizes in the 9th polynomial fit version of the GA.

Figure B.3: Mean simulated SHG signal (and standard deviation) for several popu-
lation sizes in the independent pixel version of the GA.
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Figure B.4: Mean simulated TH signal (and standard deviation) for several popula-
tion sizes in the independent pixel version of the GA.

Fig. B.5 shows SHG simulations in the independent pixel version of the GA and

compares the progression of fitness for different reference phase shapes. Simulations

suggest the independent pixel version of the GA works equally well for the different

phase compensation shapes.

Fig. B.6 shows SHG simulations in the 9th order polynomial version of the GA and

compares the progression of fitness for different reference phase shapes. Simulations

suggest the 9th order polynomial version of the GA is not equally efficient at finding

different phase compensation shapes.

Fig. B.7 shows SHG simulations in the independent pixel version of the GA

and compares the progression of fitness for two cases of optimization with N = 4:

phase mask only, and both phase and transmission (amplitude) masks. Simulations

suggest the independent pixel version of the GA is much more efficient with only

phase compensation. Here, 1400 generations corresponds to ≈ 196 minutes in the

lab. Given a goal of 90% maximum fitness, it appears that simultaneous phase and
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Figure B.5: Mean simulated SHG signal (and standard deviation) for different ref-
erence phase shapes in the independent pixel version of the GA.

Figure B.6: Mean simulated SHG signal (and standard deviation) for different ref-
erence phase shapes in the 9th order polynomial version of the GA.
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amplitude control requires too much time to be experimentally useful.

Figure B.7: Mean simulated SHG signal (and standard deviation) comparing phase
compensation alone to phase plus transmission compensation in the independent
pixel version of the GA.
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