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ABSTRACT 

 
Imaging interferometric microscopy (IIM) is a synthetic aperture approach offering the 

potential of optical resolution to the linear systems limit of optics (~λ/4n). IIM allows one 

to resolve structures not accessible in a conventional illumination setup, while using a low 

NA microscope objective and thus keeping the large working distance, depth of focus and 

field of view associated with the lower NA.  

The goal of this dissertation is to reach ultimate resolution limits of non-

fluorescent microscopy by using IIM in new optical configurations realizing a solid 

immersion technique with immersion materials employed in advanced regimes unsuitable 

in other systems. The immersion advantages of IIM can be realized if the object is in close 

proximity to a solid-immersion medium. Illumination through the substrate involves 

photons propagating at angles beyond total internal reflection, collection of high 

frequencies, and decoupling this radiation by a grating on the medium surface opposite to 

the object.  The spatial resolution as a function of the medium thickness and refractive 

index as well as the field-of-view of the optical system is derived and applied to 



 

 vi

simulations.  Structural illumination technique allows aliasing high spatial frequency into 

the low frequency range and using conventional microscopes at high resolution. 

This technique may be useful for broad swath of technical applications, biological and 

medical research. 
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Chapter 1.   Introduction 

1.1 Overview 

Microscopy is among the oldest and the most scientifically important applications of 

optics with a rich heritage extending hundreds of years. The fundamental physical 

principles of microscopy were established by Abbe, Rayleigh and others around the end 

of the nineteenth century [Abbe 1873, Rayleigh 1879].The diffraction limit of approxi-

mately one wavelength was established, but as we will see below, this is not a simple 

limit and care must be exercised in its interpretation. Notwithstanding this centuries old 

heritage, there are an increasing number of exciting developments in the microscopy of 

both illuminated (e.g. sensitive to spatial variations in the complex index of refraction) 

and self-luminous (fluorescent / photoluminescent) objects. Indeed, we are on the verge 

of enormous breakthroughs in microscopy and ultimately nanoscopy that will extend 

microscopy’s reign as the most important scientific application of optics well into the 

future and will provide useful competition to other imaging modalities such as e-beam 

microscopy and the many variants of atomic force / scanning tunneling microscopy.  

So what sets the stage for this explosion in possibilities and improvements? We see at 

least five major trends in modern microscopy: 

1. Developments in lasers for illumination continue with advances in coherence, 

brightness, ultrafast pulses, etc. making easy and routine experimental arrange-

ments that were previously tour-de-force laboratory triumphs. Examples are 

sources for two- and multi-photon microscopes and laser sources optimized for 

optical coherence tomography of scattering media such as biological tissue and 
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inhomogeneous solids. 

2. Advances in the understanding and control of the quantum physics of molecular 

and solid-state materials. These are particularly critical for advanced fluorescence 

techniques, such as STED, GSD, STORM, PALM and others, which are briefly 

reviewed below, but are mainly outside of the scope of this dissertation. 

3. Transfer of ideas from both long wavelengths (RF and microwave radar and 

imaging) and from very short wavelengths (lithographic imaging that is being 

driven by the demands of Moore’s law into extreme sub-wavelength regimes.) At 

the long wavelength end of the spectrum, synthetic aperture radar imaging (SAR) 

has developed into a part of an all-important defense asset, e.g., airborne warning 

and control (AWACs) systems. The technology of SARs using relative motion be-

tween an antenna and its target region synthesizes larger phased array radar to 

provide much finer spatial resolution than is possible with conventional beam-

scanning means [Curlander and McDounough 1991]. In microscopy, similar ideas 

are the foundation of imaging interferometric microscopy (IIM), reviewed below. 

At the short wavelength end of the spectrum, the demands of the silicon integrated 

circuit industry, requiring the ability to image and manufacture ever smaller fea-

tures with ever greater densities over ever larger areas, have both borrowed from 

old ideas in microscopy (off-axis illumination, immersion, pupil plane filtering) 

and re-introduced some ideas back into microscopy (computational lithogra-

phy/microscopy, nonlinear photoresist response and synthetic aperture tech-

niques). As this is written (summer 2013) the silicon industry is manufacturing at 

the 32-nm node, with gate features of perhaps 10 nm, using a 193-nm photon 
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based lithography tool – certainly well below the wavelength. An essential aspect 

of lithography is that the photosensitive material, photoresist, has a highly nonlin-

ear intensity response and offers the possibility of higher spatial harmonics to ex-

tend resolution for the binary imaging required for IC manufacturing. This is the 

basis of double patterning which is now the leading candidate for the manufactur-

ing of the 22-, 16-, and 12-nm roadmap nodes [International Technology 

Roadmap for Semiconductors]. On the other hand, once you produce a lithograph-

ic pattern, it is not easily changed in other than a subtractive (etching) or additive 

(lift-off) process. In contrast for microscopy, digital manipulation of partial imag-

es is readily performed and forms an essential aspect of many of the new tech-

niques. 

4. Dramatic and continuing advances in the electronic capture, manipulation and 

storage of image information. CCD cameras with up to 500 megapixels (Mpx) are 

commercially available, and digital image processing has progressed enormously 

along with increasing computational capabilities. These advances are, of course, a 

consequence of the lithographic improvements that allow the definition of ~ 20 

nm-scale features in integrated circuits. 

5. Advances in nanophotonics and nanoscale fabrication of novel optical materials 

(metamaterials and plasmonics) that allow sub-wavelength manipulation of light. 

Interestingly, as is the case with so many “new” fields, plasmonics is an old field 

that is being reinvigorated by the fabrication advances, and by the antenna ideas 

of RF and microwave physics transposed to a new wavelength regime. 
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The result is an explosion of new techniques and new possibilities that offer a true 

revolution in the capabilities of optical microscopy and allow it to extend to the na-

noscale, historically the domain of electron-beam techniques. This development is of 

particular importance for cell biology studies because of the need for imaging the 

dynamics of molecules in water-based ambients. Semiconductor manufacturing is another 

important application where the enhanced resolution possible with new techniques will 

play a significant role. As the benefits of integration and miniaturization are incorporated 

in photonics developments, microscopy will again have an essential role in characteriza-

tion and inspection. The future of nanotechnology clearly involves additional integration 

and hierarchical nanoscale structures that will additionally require diagnostic and 

characterization tools capable of dealing with vast amounts of nanoscale information and 

extending beyond serial technologies to true imaging capabilities. 

 

1.2 Parameters that describe microscopy 

At its most ambitious, the goal of microscopy is to provide full three-dimensional 

structural and possibly spectroscopic (chemical) information of complex structures. This 

is a challenge of a very high order and many different techniques have been developed to 

attack its parts. These are briefly catalogued in this chapter. 

It is useful to briefly define some of the most common specifications of micro-

scope systems to provide a common language [Gu 2000, Török and Kau 2007]. A typical 

microscopy system consists of: a light source; an illumination system; a sample arrange-

ment including a 3D scanning capability; a collection system (objective lens and auxiliary 

optics); and an image recorder, most often today an electronic camera interfaced with a 
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computer or other digital storage device.  

Sources range from incoherent, continuous lamps and light emitting diodes to 

very high coherence (and therefore brightness) lasers, and to very high bandwidth, 

femtosecond (fs)-pulse lasers. This represents an enormous diversity of spectral, spatial 

and temporal characteristics and many different techniques have been developed to 

maximize the imaging information content and to take advantage of various source 

capabilities. The illumination system is characterized by a wavelength (denoted as λ) and 

numerical aperture that describes the angular distribution of the light incident on the 

sample plane. It is often desirable to manipulate the angular illumination distribution to 

enhance certain features of the image and it is important to keep in mind the distinction 

between the NAill which is: 

NAill = sin(αill)                     (1.1) 

where αill is the maximum incidence angle of light that is transmitted through the 

illumination optics onto the object, and the measurement NAill-sys which can be any subset 

of the angles within NAill. This distinction is often not made explicit in descriptions of 

microscopy techniques, which can lead to confusion. There is more detailed discussion of 

this issue in section 1.3.2. 

The collection system consists of an objective lens, again characterized by an NA 

and auxiliary optics to transport the image to the camera for recording. Additional optics, 

such as polarizers, wave plates and prisms for Nomarski optical schemes, and phase 

plates for phase-contrast microscopy, are often incorporated in the optics after the 

objective lens. The working distance is the distance between the object and the first 

surface of the objective lens. 
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There are tradeoffs between resolution, depth of field, and working distance that 

are familiar to anyone who has used a microscope. In general, the resolution (see 

discussion below) increases linearly with the NA of the objective lens and with a decrease 

in the source wavelength. The depth-of-field decreases as the square of the NA within the 

paraxial approximation (in the paraxial approximation sinθNA ~ θNA,  where θNA = 

sin-1(NA) ). These are fundamental relationships related to diffraction effects. In general, 

the working distance and the field of view decrease as the NA is increased, but this is 

specific to individual lenses and both quantities can be increased for a fixed NA with 

more complex (and more expensive) objective lenses. 

 

1.3 Resolution 

1.3.1 Image formation 

Resolution in an optical image-forming system is a measure of the limits of the system to 

transfer information about small features in the object to the image. This quantity is very 

dependent on parameters of the imaging system including, but not restricted to: the 

illumination scheme (including the temporal and spatial coherence of the source); the 

optical characteristics of the object; the collection optical system including its aberrations 

(as a function of spatial frequency and position of a feature in the object plane); and the 

system noise. In general there is no single parameter that can fully characterize the 

resolution.  

We begin by establishing a qualitative understanding of image formation. The 

rigorous theory of image formation is quite complex and is given in detail in many places 

[Born and Wolf 1999, Klein and Furtak 1986, Goodman 1985]. We present a much 
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simplified model that gives perhaps a fresh point of view on the imaging system to 

promote the understanding of some of its properties. The essence of this approach is to 

consider the optical response to a simple amplitude grating and then to recognize that it is 

possible, by Fourier analysis, to represent an arbitrary object as a superposition of 

gratings (a Fourier sum/integral). This makes available much of the apparatus of linear 

systems theory [Goodman1998]. However, it is important to remember that image 

formation is not a linear process. Light is scattered by the object, transmitted through the 

optical system and detected in the image plane by a nonlinear (square law) detector. This 

nonlinear step has profound implications on the final image and results in much of the 

complexity, but also has many advantages. It is natural to start an investigation of the 

system with just a simple grating object. Any object can be expressed in a Fourier 

integral, and this analysis is quite general as long as the nonlinear step at the detection 

plane is properly taken into account.  

First, consider a simple single-lens, unity magnification, optical system, Fig. 

1.1(a), with a thin (<< an optical wavelength) amplitude grating of period d(e.g. a chrome 

on glass structure) illuminated at normal incidence by coherent light of wavelength λ, and 

with a lens with a sufficiently large NA so that the zero-order beam, zikeE 0
0

− , the 

symmetrical first order diffracted beams, ,
22

0
1

zkkixik dd eeE −− zkkixik dd eeE
22

0
1

−−−
− , and the 

symmetrical second order diffracted beams ( ) ,
22

0 22
2

zkkixki dd eeE −− ( ) zkkixki dd eeE
22

0 22
2

−−−
− are 

collected by the optical system. Here dkd π2≡ and λπ20 ≡k are the grating and 

photon wave vectors, respectively, x is the transverse spatial coordinate and z is the 

spatial coordinate in the direction of the optical axis. In general, there are higher order 
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diffracted beams, up to the optical transmission limit, m ≤ k0/kd, with  m an integer, and 

evanescent, non-propagating diffracted orders for larger integer values of m. To begin, 

we use a scalar approximation and ignore the polarization of the incident and scattered 

beams; below we discuss some of the limits of this approach. Initially, we ignore all z-

terms by considering the image in the focal plane z = 0; note that there is a set of such 

planes including the object plane and the conjugate image plane defined by the optical 

system. For simplicity, this discussion is in terms of a transmission system ; extending to 

reflective system is straightforward. 

 

 

 

 

 

 

 

 

 

 

 

 

The image is formed by the interference of the zero-order beam with each of the 

higher order diffracted beams transmitted through the lens NA. In addition there are 

contributions from the interference of each order with itself (constant across the image) 

 

 

Fig.1.1. Image formation: a) arrangement and b) spatial frequency coverage. (For convenience of 

representation, we show the diffracted beams displaced in the vertical direction, and the corresponding 

spatial frequencies separated the horizontal direction; effectively the representation is rotated by 90° 

between parts a) and b).) 
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and from the interference of different diffracted orders (the non-imaging terms that 

contribute to a dark field image). Mathematically, the field at the image plane can be 

described as: 

( ) ( )xkExkEE
eEeEeEeEEE

dd

xkixkixikxik
total

dddd

2cos2cos2 210

2
2

2
2110

++
=++++= −

−
−

−

                           
(1.2) 

where the object is a thin amplitude grating so that Ei = E-i , for i = 1, 2. 

Then the intensity is:  

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

                                field) (dark

(image)

(baseline)

,4cos23cos42cos2cos4

2cos4cos4

22

2cos2cos2

2
221

2
121

2010

2
2

2
1

2
0

2
210

xkExkEExkExkEE

xkEExkEE

EEE

xkExkEEI

dddd

dd

ddtotal

++++

++

++

=++=

  

   (1.3) 

This result has been parsed into three categories: baseline or constant terms with no 

spatial variation, imaging terms corresponding to the interference between the zero and 

higher order terms, and dark field terms corresponding to the interference between two 

non-zero orders. Since the intensity is simply a sum of cosine functions, its 2D (x, y) 

Fourier transform is a series of δ-functions along the kx transform coordinate, e.g. the 

Fourier transform of ( ) ( ) 22cos 22 xikxik
d

dd eexk −+=  is just a pair of δ-functions at offset 

spatial frequencies of ±2kd along the kx axis. For convenience, we plot this information in 

dimensionless coordinates, normalized to k0 (=2π/λ) and denoted by fx, so that the 

acceptance cone of the objective lens is a circle of radius NA as shown in Fig. 1.1(b). The 

domain of the image terms is restricted to this NA circle, whereas the dark field terms 

extend to a radius of 2NA. Of course a δ-function is an idealized representation, as 
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limitations of the imaging system(e. g. field-of-view) will delimit the image and broaden 

the corresponding Fourier transform. The intensity of the zero-frequency component, at 

the origin of the (fx, fy) plot, from Eq. 1.3, is 2
2

2
1

2
0 22 EEE ++ . The amplitude of the δ-

functions at the fundamental grating frequency, 0kkd± , equal to ( )21104 EEEE + , has 

contributions from both imaging and dark-field terms. Similarly, the amplitude of the 

second order grating peaks at ± 2kd/k0 (= 4|E0E2| + 2|E1|2) contains both imaging and dark 

field terms. The higher (third and fourth) order spatial frequency terms arise solely from 

dark field interference terms. Note that these terms arise from interference between two 

waves scattered from the object and that the observed frequencies are, therefore, linear 

combinations of the scattered frequencies from the object. Dark field imaging is quite 

useful in many microscopy applications: additional discussion will be provided below. 

Here, the goal is to recover the scattering coefficients (amplitude and phase) of the object 

and the dark field terms will be subtracted to leave the image terms.  

It is possible to obtain the higher spatial frequency image terms using a lower (by 

up to a factor of two) NA lens along with off-axis illumination. We denote the numerical 

aperture of the low NA lens by NAlow to simplify the bookkeeping. In the case of NAlow, 

the grating period and lens NA are such that only the zero-order (grating transmission) 

and first diffracted orders are transmitted through the lens and onto the CCD camera (Fig. 

1.2(a)) for normal incidence illumination. In this case, the intensity at the image (camera) 

plane is: 

 ( ) ( ) ( )xkExkEEEExkEEI dddlow 2cos2cos42cos2 2
110

2
1

2
0

2
10 +++=+=      (1.4) 

The frequency space coverage is shown in Fig. 1.2(b). The E1 beam is inside the lens NA 

and is transmitted to the image plane, the second order scattering (E2 beam) is outside the 
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lens NA and is not captured by the optical system. The two points outside the gray circle 

represent the final term in equation 1.4; these are the result of mutual interference 

between the complementary first order fields. The distance between these two orders in 

frequency space is doubled and corresponding features appear beyond NAlow. These high 

frequency features (part of the “dark field”) are a result of the square- law detection. The 

spatial frequency domain of the dark fields always extends over a frequency space with a 

radius of 2NAlow (dotted circle in Fig. 1.2(b)). 

One of the 2E  beams can be transmitted through the objective lens optical system 

by introducing a tilt of the illumination beam at an angle αill. Now every scattered plane 

wave from the object has an additional phase term xfikxik illoill ee −− =αsin0  which means that 

the scattered beams are tilted in accordance with the grating equation, sin θout = sinαill-

mkd/k0. Implicit in this result is that some scattered orders may switch from propagating 

to evanescent (and vice versa) depending on the wavelength and the grating period.  

Here we choose αill such that the zero-order beam is near the one edge of the NAlow 

acceptance cone (Fig. 1.3(a)) and the 2E  beam is within the aperture on the opposite side 

of the acceptance cone. 

 

Fig.1.2. Image formation: a) arrangement with reduced NA and b) spatial frequency coverage. 
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Now the intensity at the image plane is: 

 [ ] ( ) ( )xkEExkEEEE

EEEI

dd

high

2cos2cos2 202110

2
2

2
1

2
0

+++

++=
.                        (1.5) 

The image part (middle term) is now the same as in Eq. 1.3 for the larger lens, 

within a factor of two. The constant terms and the dark field terms are different for the 

two optical systems (normal incidence illumination with NA lens and tilted illumination 

with NAlow lens). In this simple case, the imaging terms are identical to those obtained 

with the higher NA lens, although the dark field terms are different.  

Notice that this is a single side-band system - either (E0, E1, E2)or (E0, E-1, E-2) are 

collected. The collected sidebands are shown in the gray-filled circle in Fig. 1.3(b); the 

frequencies within the conjugate symmetrical small circle offset in the opposite direction 

are restored as a result of the square law intensity response.  

As will be discussed in more detail below, an issue with this configuration is that 

the image pattern shifts as the object is moved through focus, i.e. this optical configura-

tion is not telecentric. Often this is addressed by illuminating with two mutually 

incoherent beams from opposite directions, αill and –αill to restore telecentricity; this is 

 

       Fig. 1.3. Illumination tilt (a) – key to enhanced frequency coverage (b). 
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known as dipole illumination. The circle of transmitted frequencies (gray-filled circle in 

Fig. 1.3(b)) is shifted by sinαill = illNA , so that the maximum collected frequency 

corresponds to an effective numerical aperture: 

 illlowillloweff NANANANA +=+= αsin .                               (1.6) 

In other words, the effective aperture of the imaging system is a sum of both the 

illumination and collection apertures. Changing the angle of incidence, illα , shifts the 

spatial frequency coverage to different spatial frequency ranges. However the reader 

should not infer that effNA corresponds to the same frequency space coverage as a larger 

lens with an acceptance cone of NAeff and normal incidence illumination. NAeff refers only 

to the maximal transmitted frequency along the direction of the tilted illumination; the 

covered area in the transverse direction in spatial frequency space is still constrained by 

the smaller NA. Full frequency space information (large dotted circle in Fig. 1.3(b)) with 

radius effNA  can be acquired with additional illumination beam offsets in other azimuthal 

directions (the azimuth is the angle ϕ from the x-axis in the x, y plane). As long as there is 

no coherence between the illumination beams (which would result in complex and 

undesirable interference effects), these can be applied simultaneously. For the simple 

grating structure, the optimum direction of the tilt to capture the most information is 

obvious; for arbitrary objects without a preferred direction, annular illumination, with 

incoherent illumination incident in a ring at a constant tilt angle around the edge of the 

pupil is often used. Thus, off-axis illumination can be used to collect the diffraction 

orders that fall outside of the collection NA of the optical system, up to frequencies of 

2NA.Of course, because the offset has to be less than sin-1NA to allow collection of the 
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zero-order transmission, the offset circles corresponding to the frequency coverage will 

overlap necessarily as shown in Fig. 1.3(b); this overlap represents unequal weighting of 

the overlapped spatial frequencies relative to singly covered frequencies that can impact 

the final image. In addition to varying the azimuthal angle, it is also possible to vary the 

offset or inclination angle of the illumination beam from the optical axis to cover 

additional regions of frequency space. 

 

1.3.2 Coherent versus incoherent illumination 

The imaging system is transparent for every scattered frequency within the acceptance 

cone, or entrance pupil, of the lens. For normal incidence illumination, it follows from 

Eqs. 1.2, 1.3 and Fig. 1.1 that the scattered electric fields are transmitted through the 

optical system with unchanged amplitude (and phase in the absence of lens aberrations) 

until the highest frequency is restricted by the entrance pupil (NA) of the system. 

Therefore, it is evident that the electric field transfer function (ETF) is a rectangular 

function (rect) in cross section with a cut off at NA as shown in Fig. 1.4(a). So, the ETF 

for an idealized lens and coherent illumination is just a circular (circ) function in two 

dimensions. Any source could be considered as ‘perfectly coherent’ if its coherence area 

is larger than the field-of-view of the objective lens. 

Spatially incoherent illumination can be approximated as a superposition of mutu-

ally incoherent plane-waves with all possible k-vectors filling 2π steradians from normal 

to grazing incidence at all azimuth angles, which incorporates on-axis as well as all 

possible off-axis illumination directions at once. For each incident illumination direction, 

interference between the scattered beams forms an image with an offset spatial frequency 
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response similar to that shown in Fig. 1.3. Since the incident plane waves are mutually 

incoherent, so are the respective scattered beams and, therefore, each of these images are 

independent and the final image is a superposition of many incoherently related sub-

images (e.g. intensities are added). For incoherent illumination, the optical transfer 

function for a circular aperture is the autocorrelation of the circular amplitude pupil 

function, called the modulation transfer function (MTF), and has the following form 

[Goodman 1998]: 

 ;
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i π
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where if  corresponds to the normalized spatial frequency. The MTF falls from 1 to 0 at 

twice the coherent cut off (Fig. 1.4(b)). Thus, for incoherent illumination, the spatial 

bandwidth extends to 2NA, but with reduced fidelity at high spatial frequencies  

[Goodman 1998].  

Incoherent illumination provides a linear relationship of the spectral intensity 

from the object to the image, in contrast to the coherent case, where the system is linear 

in electric field, up to the square-law detection step. Of course, we know from the wave 

 

Fig. 1.4. Transfer functions: a) electric field transfer function (EFT) for coherent, normal incidence   

illumination; b) modulation transfer function (MTF) for conventional incoherent illumination imaging. 
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theory of optics that no source can be fully incoherent. Just as no far-field source can be 

focused to an optical spot smaller than approximately ½ the wavelength; similarly, the 

coherence area of any far-field source, restricted to propagating waves, is always larger 

than ~ λ/2. A necessary condition for Eq. 1.7 to apply is that the smallest feature of the 

object should be larger than the coherence area of the illumination. Nonetheless, Eq. 1.7 

is a good approximation for many practical cases. The applicability condition is that the 

angular extent of the incoherent illumination should be greater than the sum of sin-1(NA) 

and the angle corresponding to diffraction from the smallest features of the object. There 

has been much discussion in the optics literature of the practical limits of these ideas 

[Goodman 1985, Hopkins 1955]. 

Partial coherence refers to any illumination system between these coherent and 

incoherent limits. The discussion of partial coherence is often based on the numerical 

aperture of the combined source, NAsrc, and illumination system, NAill-sys. For an extended 

source such as a tungsten filament, NAsrc=1 is bigger than NAill-sys but only NAill-sys 

impacts the optical performance. For partial and incoherent illumination, there is a 

continuum of spatial frequencies spanning an extended range of angles incident on the 

object denoted as NAill-sys in contrast to the maximum transmitted spatial frequency NAill. 

Most often for partially coherent illumination the center of the distribution of incident 

angles is normal to the object plane and NAill-sys is equal in this case to NAill (Fig. 1.5 (a)); 

this is the context for the following discussion of the effects of partial coherence. Fig. 1.5 

(b) shows the case of tilted illumination at an angle αill = sin-1NAill.This case will reduce 

to coherent illumination as long as the spread in incident spatial frequencies NAill-sys is 

close to zero. Other geometries are possible; two that are often used are annular illumina-



17 

 

tion, where there is no illumination at normal incidence, but rather over a range of 

incident angles (inclinations from αmin to αmax ) and at all azimuths (all ϕ) ( Fig. 1.5 (c) ), 

and quadrupole illumination, suitable for rectilinear (x, y) or Manhattan geometry objects 

as are often used in integrated circuits, where again there is a range of inclinations and ϕ 

is constrained to small ranges around π/4, 3π/4, 5π/4 and 7π/4( Fig. 1.5 (d)). The 

quadrupole illumination can either be oriented at π/4 to the (x, y) axes, as shown, to 

provide a larger transfer function at intermediate frequencies, or at 0° to the (x, y) axes to 

provide higher maximum frequencies albeit at a smaller transfer function. The spread in 

incident spatial frequencies, NAill-sys, defines the degree of spatial coherence of the 

illumination system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5. Alternate illumination schemes: a) partial coherent illumination with  NAill-sys= NAill; b) 

tilted partial coherent illumination or tilted coherent illumination if NAill-sys~0; c) annular 

illumination; d) quadrupole illumination. 
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To facilitate a more quantitative discussion, the ratio R = NAobjective / NAill-sys is of-

ten used [Goodman 1985]. Thus, R = 1 corresponds to matching the angular spreads of 

the illumination and collection optics, and R = ∞ corresponds to coherent illumination. 

There is a subtle difference between NAill-sys and the NAill defined above in the context of 

coherent illumination, e.g. off-axis coherent illumination means NAill > 0, but NAill-sys = 0.  

On the other hand, of course, NAill-sys is necessarily ≤ 1, as the idealized case of incoher-

ent illumination, R → 0, includes near-field evanescent waves that are not available in a 

far-field system. The influence of the degree of partial coherence on the characteristics of 

the transfer function [Becherer and Parrent 1967] is shown in Fig. 1.6; there is little 

practical difference between the response for R ~ 1, matching the source and objective 

NAs, and fully incoherent illumination R = 0. In practical terms, an unfocused laser sourc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.1.6. Apparent transfer functions for different degrees of partial coherence.  

[Reprinted from Becherer and Parrent 1967] 
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provides coherent illumination, while an extended source such as a filament, coupled 

with an appropriate illumination system provides partially coherent or incoherent 

illumination. In lithography systems, where the limited bandwidth of the optical system 

requires a highly temporally coherence source (narrow linewidth), great pains are taken 

to eliminate spatial coherence (R > 0) to avoid speckle effects (interference between 

directly imaged light and scattered light within the optical system or flare). Note that the 

transfer functions of coherent and incoherent illuminations are not directly comparable, 

because of the difference in character between the electric field transfer function (the 

square law response is taken after applying the transfer function) and the modulation 

(intensity) transfer function. For comparison purposes, the apparent transfer function 

(ATF), which is the ratio of the output vs. input intensities of simple grating objects as a 

function of period, is used. This figure provides important insight into the behavior of 

optical imaging systems for different illumination conditions. The general trend is that 

higher values of R provide a more consistent transfer function across spatial frequencies, 

but cut-off at lower spatial frequencies. The optimal R is both subjective and dependent 

on the image pattern. An R between 0.75 and 0.5 provides a consistently higher image 

response than incoherent illumination (R = 0), while still providing some response to 

spatial frequencies beyond NA. 

It is important to make a firm distinction between the frequency content within 

the pupil plane of the objective and that in the image plane. These are related by the 

square-law intensity response of the camera. Representations of the pupil plane for 

different illuminations are shown on Fig. 1.7 along with the frequency responses for a 

simple grating pattern. This figure is drawn for a somewhat more complex optical system 
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(known as a 4f optical system), where the pupil plane is easily identified, still with unity 

magnification for simplicity of representation. Both coherent (top half of object) and 

partially coherent illumination (bottom half of object) are shown. The diffraction from 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7. Comparison of spectral content of optical system pupil plane and image Fourier plane. 
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the grating immediately gives rise to multiple orders at the object plane. For coherent 

illumination the 0, ±1, ±2, ±3, and ±4 orders are shown. The period of the grating is 

chosen so that only the 0 and ±1 orders are captured by the objective optical system and 

appear in the pupil plane. The representation shows, using a gray-scale, the amplitudes of 

the various orders that are focused to Airy disks in the pupil plane; there is a correspond-

ing phase map that is not shown in this simple diagram. At the image plane, the square 

law intensity response results in an image containing frequencies corresponding to the 0, 

±1 and ±2 spatial frequencies of the grating; the Fourier transform of this image is 

represented in the figure. The ±2 orders arise from the ‘dark field’ interference of the 

±1orders transmitted through the pupil. The extent of the spatial frequency content of the  

image extends to 2NA, while the pupil frequency content is limited to NA. For partially 

coherent illumination, each of the pupil plane regions are spread out as a result of the 

range of illumination angles. This results because in the pupil plane each plane wave 

corresponding to a specific coherent illumination angle focuses to a different, shifted 

Airy disk; the sum of all these Airy disks gives the spread out response corresponding to 

the partial coherence. In the image, each plane wave along with its corresponding 

diffracted beams image to the same grating features. The figure is drawn for R ~ 3. 

Notice that a small portion of the ±2 order diffraction information is captured by the 

optical system and this gives rise to additional higher spatial frequency terms in the 

image. Finally for incoherent illumination, the entire pupil is filled with each order, and 

the roll-off in the MTF is roughly represented by the gray scale of the image Fourier 

transform. Incoherent illumination gives very good signal to noise ratio with a reduced 

intensity transfer function at high frequencies. Coherent illumination can be plagued with 
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speckles due to interference associated with reflections from optical surfaces and to 

scattering from optical defects and dust particles. This noise can be partially reduced by 

decreasing the coherence length and subtracting the background recorded as an image of 

the illumination beam without an object [Voelz et al. 1997, Kuznetsova et al. 2007]. 

 

1.3.3 Definition of resolution specific to optical configuration 

As mentioned above, a full discussion of resolution is a complex topic that is not in 

general amenable to a simple treatment. A resolution criterion is required for estimation 

of performance of the system and/or for metrology purposes. The achievable resolution is 

a function of the optical system, including the illumination scheme, and of the details of 

the object, so a simple definition of resolution applicable across all objects is not 

possible. Nonetheless it is useful to consider several of the most established and widely 

used short-hand characterizations of resolution.  

In 1873, Ernst Abbe, then research director of the Zeiss Optical Works, under-

stood that the ability of an optical system to resolve small features is directly connected 

to the ability of the system to transfer high spatial frequency information from the object 

to the image planes. He was the first to recognize the advantages of the off-axis illumina-

tion approach outlined above. In the context introduced above the smallest grating period 

accessible with a given objective corresponds to the case of the zero-order beam incident 

at one edge of the pupil and the first diffracted order at the opposite side of the pupil 

[Abbe 1873]:  

 
NANA

d
4

~sRe;
2

λλ
= ;                                                 (1.8) 

Here the resolution is taken as the half pitch of the smallest period grating that can be 
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imaged through the optical system. This criterion (maximum transferred spatial frequen-

cy) is perfectly applicable in the case of 1-D structures and coherent illumination where 

there is a sharp cut-off in the band pass function at the edge of the pupil. However, the 

applicability of this simple criterion becomes more difficult if the transfer function is not 

constant across spatial frequencies, as in the case of incoherent illumination.  

Now we address a simpler question. First, as have many before us, we restrict the 

object to a very simple structure, a pair of small (<<λ) apertures in a screen for a 2D 

structure or a pair of small lines for a 1D structure and ask the same question as Rayleigh 

[1879]: What is the smallest distance between a pair of objects where we can identify that 

there are two separate objects? We assume a perfect optical system without any aberra-

tions and a large signal/noise ratio so no ambiguity is introduced by noise levels. 

Rayleigh suggested another metric, which states that the smallest resolvable distance 

between two point sources is the one that brings the maximum of one Airy pattern onto 

the minimum of the second [Rayleigh 1879]. The point spread function (PSF, which is 

the Fourier transform of the point source spectrum filtered by the optical transfer 

functions discussed above) of a circular pupil aperture is the Airy disk pattern, 

[J1(πNAr/λ)/(πNAr/λ)]2 where J1 is the Bessel function of first order and r is the radial 

coordinate from the center of the spot, the first zero of J1is located at πNAr/λ = 1.22, 

which determines the minimum resolvable separation of geometrical points d, given by 

the famous Rayleigh resolution criteria: 

 
NANA

CDd λλ 31.0~CD~sRe;61.02 == ,                              (1.9) 

where the CD or critical dimension, a concept borrowed from lithographic terminology, 

is the smallest resolvable linear dimension or half of the period. Comparing Eqs. 1.7 and 
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1.8, the resolution is a linear function of wavelength and inversely proportional to the 

numerical aperture in both cases.  Note that Eq. 1.9 was derived for a particular case 

(incoherent illumination), a fixed pattern (two points of equal intensity), and a certain 

pupil shape (circular). Thus it can be only used quantitatively for this particular situation,  

but can serve as a qualitative, not quantitative, reference for comparison of optical 

systems.  

Optical configurations for which the point spread functions (PSF) do not have ze-

ros or obvious minima in the neighborhood of their central maxima (e.g., Gaussian PSFs) 

require generalization of this approach. A first attempt at such a generalization was 

undertaken by Rayleigh’s contemporary, Sparrow, who reformulated the resolution as the 

distance for which the ratio of the value at the central dip in the composite intensity 

distribution to that at the maxima on either side is equal to 0.81. This corresponds to the 

dip in between the two [sin(πNAx/λ)/(πNAx/λ)]2 functions in the Rayleigh construct 

(Sparrow was working with lines in spectrographic applications. The dip is equal to 0.735 

for two points) [Sparrow 1916]. However Sparrow recognized that even though a 

generalized Rayleigh criterion is capable of comparing different systems (at least in a 

qualitative sense), it is not suitable for quantitative metrology purposes because of its 

very high sensitivity to mutual intensity in the points. Indeed, the criterion should be 

applied with care even in the case of equal point (line) intensities and cannot be simply 

extended for more general cases. For example, taking three equal intensity equidistant 

lines (points) and varying the pupil aperture results in the intensity profiles shown in 

Figure 1.8. For a sufficiently large NA, that passes the spatial frequency corresponding to 

the spacing, the three lines are resolved. For very small NAs the three lines collapse into 
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a single feature. However, at intermediate apertures, only two lines are apparent; in other 

words, while the dip satisfies the generalized Rayleigh condition, the three objects are 

represented by the optical system as two apparent objects and the resolution is clearly 

misrepresented by this criterion.  

Sparrow suggested an alternative approach [Sparrow 1916]. Two PSFs should be 

moved towards each other from infinity. At large separation there will be a dip between 

the peaks. Finally, the separation, at which the dip disappears (second derivative become 

zero), should be considered as the resolution limit. This procedure works well even with 

differences in line/point intensities. However, it is not robust to system noise and is too 

Fig.1.8. Example of a possible misinterpretation in application of the generalized Rayleigh resolution 

criterion (Three lines resolved (dotted); the same pattern after low-pass filtering (solid) shows only 

two lines with a dip that satisfies the resolution condition). 
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forgiving for cases with elevated PSF wings. All of these considerations are further 

complicated by extension to more complex arbitrary objects from simple point/line pairs. 

Similar issues plague any attempt at a generally useful definition of resolution for 

arbitrary patterns.  

As the NA increases beyond the paraxial approximation, polarization effects in-

fluence the resolution [Richards and Wolf 1959, Raub et al. 2004, Köklü et al. 2009]. 

The two-dimensional PSF becomes roughly elliptical in the x-y plane. The interference of 

two tilted TE-polarized beams (transverse electric polarization, electric field perpendicu-

lar to the plane of incidence defined by the propagation direction and the normal to the 

image plane) is not influenced by the angle of tilt since the electric field vector remains 

the same independent of tilt. In contrast, the E-vector for TM-polarization (magnetic field 

perpendicular to the plane of incidence) continuously varies in direction with tilt. Both x- 

and z-components interfere independently with the corresponding vector components of 

the second interfering coherent beam with a 180° phase shift between the interference 

components. At a 45° tilt, the intensities are equal and the resulting contrast is zero; and 

for larger tilts the contrast is reversed. The resolution is higher (smaller focused spot size) 

for the TE direction.  

 

1.3.4  Longitudinal resolution depends on illumination (focusing / defocusing)  

The illumination scheme has a strong influence on the behavior of a defocused image and 

on the ability to separate features in the z-direction. To illustrate, first consider the 

defocusing associated with a dual side-band ( telecentric ) coherent optical system (Fig. 

1.1, Eq. 1.2). Eq. 1.2 is written at focus (the image plane conjugate to the object plane) 
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where z is effectively zero and the propagation terms disappear. Complimentary 

(conjugate) orders from both sides (+1,-1; +2,-2; etc), beating with the zero order, form a 

pair of image gratings. For a thin (<<λ) amplitude (e.g. chrome on glass) object, every 

pair is mutually in phase (in focus at z = 0), i.e. the higher order image gratings are in 

phase with the lowest order grating. Defocusing causes the longitudinal phase terms (with 

variations in z) to change differently for each spatial frequency. The conjugate terms 

resulting from E0E1 and E0E-1 now have opposite phase shifts, e.g. 

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, and they partially compensate each other. Thus the resultant 

intensity for a particular frequency initially reduces, goes to zero, and then reappears at 

multiple defocus planes. The z-direction periodicity is a function of the transverse period 

of that frequency component and the full image does not reappear (the different terms do 

not come into phase again at any focal position away from z = 0 except for the limiting 

case of only a single pair of ± 1 diffracted orders). This is easy to show by including the 

z-dependent terms in Eq. 1.2: 
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Note, that the z-directed periodicities are different for the first and second order pairs. 

Hence, for a specific cut through the sample, there is only one conjugate image plane 

where all frequencies are in the correct phase relationship, i.e. there the image of this part 

of the object is in focus, at z = 0, the plane conjugate to the object plane as defined by the 

optical system. For other layers of the object, the frequencies have phase shifts with 

respect to each other that vary with the z-position away from focus and the image is 
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consequently blurred or more severely distorted.  

The situation is more severe in the case of single-side-band imaging (Fig. 1.9). 

Here, the grating image shifts continuously to one side with defocus rather than disap-

pearing and reappearing, e.g. instead of the separate cosine term, there is a continuous 

phase shift introduced into the pattern, e.g. instead of ( ) ( )[ ]zkkkxk dd
22

00coscos −− , the 

variation is ( )[ ]( )zkkkxk dd
22

00cos −−+ . In this sense a single-side-band system has a 

quasi-infinite depth of focus. Choosing the correct focus even for a thin object becomes 

challenging in absence of a-priori knowledge of the object. In general, there is no 

possibility of sectioning a thick sample without additional information, which can be 

provided by using wide spectral range sources including short pulse, short coherence 

length, tunable lasers, tomography, and other techniques. Illumination with a short 

longitudinal coherence length source allows sectioning of the sample up to the scale of 

the coherence length. Short pulses and illumination with different wavelengths give the 

same possibility. 

For incoherent illumination, which is always a telecentric double-side-band sys-

tem, the picture is more complex. Here for every spatial frequency, a continuum of the 

beating pairs is built by the multiple off-axis illuminations, each pair with its own mutual 

phase shift (due to the different off-axis angles). The summed amplitude at a given spatial 

frequency still oscillates during change of focus with continuously reduced amplitude as 

shown in Fig. 1.9, curves (2-4) [Williams and Becklund 1989, Hopkins 1955]. So, if the 

object is out of focus, the MTF ‘degenerates’ and higher frequencies increasingly 

disappear as the sample is moved further from the objective focal plane. 

Only the region around the conjugate image plane (z = 0) is ‘in focus’, and sec-
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tioning of the sample is accomplished since only one layer of thickness corresponding to 

the depth of focus is visible; other layers almost vanish and don’t perturb the focused 

region. Of course, this assumes that the object is weakly scattering and does not 

materially impact the propagation of the illumination beam. The depth of focus (Δz) is 

nearly proportional to the reciprocal of the area of the entrance pupil: 

 ( )2114 NAn
z

−−
=∆

λ

                                                 
(1.11) 

In a weak scattering limit, so that the propagation of the fundamental beam is not strongly 

affected by the sample, 3D-sectioning is possible by longitudinal scanning of a thick 

sample in Δz steps. 

 

 

 

 

Fig.1.9. MTF curves for object planes in- and out of focus. The parameter is the normalized distance 

from focus in units of the depth-of-field [Reprinted from Proc. Royal Soc. (London), Hopkins 1955].  
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1.4. Enhancement techniques 

Numerous additional techniques have been developed to enhance the images obtained 

with conventional microscopes. In particular, phase contrast and Nomarski techniques are 

often employed, particularly for low contrast biological samples. Phase-contrast 

microscopy was invented by Fritz Zernike (for which he received the 1953 Nobel Prize in 

Physics) [Zernike 1942]. For a sample with variations in thickness and/or in index of 

refraction, the E1 and E-1 diffracted orders are not equal in phase, and information about 

the object is encoded in the phase difference between these pairs. This is especially 

problematic for colorless and transparent biological materials, as there is very poor image 

contrast associated with amplitude variations. Zernike suggested changing the phase of 

just the zero order, so that the phase difference for a particular pair can be balanced to 

enhance the contrast of image contours corresponding to a specific annulus in frequency 

space.  

A related technique, phase shift interferometry (PSI), is a contemporary research 

topic. The gist is that by intentionally changing the zero-order phase in known steps it is 

possible after some digital analysis of the results to separate the amplitude and phase 

parts of the electric field in the image. The phase part contains combined information 

about both the average value of the index of refraction and the longitudinal position of 

the object in the z-direction. PSI is ideal for the investigation of reflective surfaces, where 

the longitudinal position corresponds to the surface itself. This position can be obtained 

with very high precision of about a few nanometers [Pitter et al. 2004, Dubois et al. 

2001], and is the basis of the interferometers used to control stage position in micro-

lithography steppers/scanners. Since this is an interferometric technique, the resolution is 
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not limited by the wavelength but rather by variations in the refractive index in the 

optical path during the multiple measurements (atmospheric variations) and by the 

signal/noise levels of the images. Sectioning of a thick sample is not possible by this 

technique.  

Nomarski techniques are closely related to phase contrast microscopy. The basic 

principle is similar to the phase contrast microscopy technique but the implementation is 

different. A prism is used to split a polarized illumination beam into two slightly shifted 

plane waves that pass through the transparent phase object sample and are recombined 

interferometrically in a second prism before observation. This results in a differentiation 

of the image wherein regions of rapid phase variation are enhanced. Several texts provide 

a more detailed description of phase contrast and Nomarski microscopy [Born and Wolf 

1999, Gu 2000, Murphy 2001].  

 

1.4.1 Dark field microscopy 

As noted above, dark field microscopy refers to the non-imaging terms that arise from 

interference between scattered waves other than the zero-order transmission (reflection) 

from the object. In general, there are two approaches to dark-field microscopy. In one 

approach, a block is used in the objective pupil to eliminate the zero-order light transmit-

ted (reflected) from the object. This, of course, is only possible for coherent and partially-

coherent illumination; for incoherent illumination, some of the zero-order transmission is 

necessarily transferred to the image plane. The frequency space content of the image is 

restricted to 2NA. Assuming normal incidence illumination, the collected spatial 

frequency information is the same as that with conventional microscopy; however, dark 
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field microscopy offers contrast enhancement advantages similar to phase-contrast. The 

resulting square-law detection intensity pattern at the image plane is not truly an image, 

in the sense of a one-to-one correspondence of features of the image with features of the 

sample. This approach emphasizes higher frequencies (e. g. edges) and contains 

frequencies that are not necessarily present in the object (cf. Eq. 1.3).  

An alternate approach to dark-field microscopy is to illuminate the object at an-

gles beyond the lens NA; similar to the situation depicted in Fig. 1.3, but with the tilt 

increased so that the zero-order transmission is beyond the lens NA. In this case, higher 

spatial frequency scattered information is collected from the object, but the square-law 

response results in image frequencies again restricted to 2NA; in other words, the high 

frequency content of the scattered light is down-shifted in the detection process. This 

technique provides an important starting point for the synthetic aperture approaches such 

as imaging interferometric microscopy, which is focus of this thesis. Often this illumina-

tion is in an annular pattern, similar to the annular illumination discussed above, but with 

all of the inclination angles of the illumination greater than the NA of the collection 

optical system. 

 

1.4.2 Immersion microscopy 

Immersion techniques to extend the frequency space coverage of microscopy [to NA~1.4-

1.6; i.e. ~λ/6] are well established [Murphy 2001], but remain limited in application as a 

result of practical issues such as compatibility of immersion fluids with the sample. 

Traditional approaches with immersion fluids are restricted to NAs of ~1.4 by the 

available immersion fluids and the glass lens materials, as well as the difficulty of 
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fabricating high-NA aberration-corrected optics. Recently, a transmission microscopy 

approach using opposing immersion lenses and annular illumination has been demon-

strated to have a resolution of ~λ/5 (90 nm) [Vainrub et al. 2006] and a commercial 

product is available [www.cytoviva.com]. 

 

1.4.3 Solid immersion microscopy 

This approach uses a numerical aperture increasing lens (NAIL) placed on the substrate 

of an object to both illuminate with and collect scattered spatial frequencies at angles 

beyond the NA of the remote objective to reach the full linear systems limits of microsco-

py [Wu et al. 2000]. Full immersion will extend the frequency space coverage to 2nsub/λ. 

A resolution of λ/9 (145 nm with 1.3 µm illumination) was achieved by the optical set-up 

shown in Fig. 1.10 [Ippolito et al. 2000]. Spherical aberration is eliminated by the NAIL, 

but the large NA leads to a small field of view and other, higher order aberrations. 

  

 
 

Fig. 1.10. High Resolution Subsurface Microscopy Technique 
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1.4.4 Near field microscopy 

The highest spatial frequency information in the scattery of the object is contained in the 

near fields that are localized within distances of order of the wavelength or less from the 

object and are not accessible with far-field microscopy. The most straightforward 

approach is to build a small probe that can sample these fields and scan the probe to build 

up an image of the sample. With the enormous advances in scanning tunneling and 

atomic force microscopy, this has become both a feasible and a common approach. 

Relatively recent reviews are available [Courjon 2003, Novotny and Stranick 2006]. Both 

aperture-based and apertureless approaches have been explored. In the aperture-based 

approaches, a local light source, based for example on an optical fiber that has been 

stretched to the nanoscale and coated with a metal, leaving only the tip uncoated, is used 

as the probe. The primary difficulty with this approach is the limited amount of light that 

can propagate through the cut-off waveguide to the sample. In apertureless schemes a 

solid pointed metal probe is used either to scatter the local field from the sample or to 

illuminate the sample by exciting surface plasma waves that can propagate down the 

taper to the sample. Detection is by collecting the light scattered by the tip-sample 

geometry which varies with the sample optical topography. In all of these approaches it is 

important to account for the electromagnetic interaction between the tip and the sample. 

In effect, the tip perturbs the electromagnetic environment of the sample, changing the 

scattering/transmission characteristics. Near-field probes are serial scanning techniques 

which inherently require long times to build up an image, what is perhaps their greatest 

disadvantage.  
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1.5 Advanced directions in microscopy 

Recently, many additional techniques have been introduced to enhance the resolution, 

either transverse or longitudinal, of conventional microscopy. Many of these rely on the 

inherent nonlinearity associated with two-photon processes (fluorescence) and with 

additional nonlinearities enabled by saturation and multi-photon excitation. These are 

somewhat outside of the scope of this thesis and are mentioned for completeness, along 

with references for further exploration. Codification of many of these techniques has 

recently been presented [Heintzmann and Ficz 2006, Hell 2007, Hell 2009]. 

Most of these schemes were developed for fluorescent materials, but there are 

some serious limiting issues associated with conventional fluorescence microscopy, 

particularly of biological samples. One of these is photobleaching of the fluorescent label 

(chromophore) [Gensch 2004] due to the bright illumination, which causes fluorescent 

dyes to fade within minutes of continuous irradiation. In addition to photobleaching, 

phototoxicity is also a problem [Hopt and Neher 2001]. Excited fluorescent dye 

molecules generate toxic free-radicals. Thus, biologists must limit the scanning time or 

light intensity to keep the specimen alive. 

Some of these problems were solved with multi-photon microscopy [Denk et al. 

1990]. Multi-photon absorption was predicted by Maria Göppert-Mayer in 1930 

[Göppert-Mayer reprinted 2009], and a proof-of-principle experiment was performed in 

the 1960s using continuous-wave laser sources. Multi-photon fluorescence microscopy 

allows imaging in highly absorbing media, which increases detection sensitivity, image 

contrast, and enables full-frame video-rate fluorescence lifetime imaging, to reduce 

considerably the generation of phototoxic products. The resolution in this case is more 
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limited with a given fluorophore as compared to confocal imaging [Hell et al. 1992, 

Rudolph et al. 2003]. 

 

1.5.1 Confocal Microscopy 

A technique called confocal imaging was first proposed by P. Nipkow and pioneered by 

M. Minsky who made the first scanning confocal microscope at Harvard University in 

1957 [Wilson 1990]. Confocal microscopy is typically applied to fluorescent samples and 

provides both enhanced depth resolution and improved rejection of scattered light from 

adjacent objects [Webb 1996, Pawley 2006]. In contrast to the imaging techniques 

described above, confocal microscopy uses a point source, typically from a laser, to 

illuminate a single point on the object. The fluorescence from this point is then passed 

through a conjugate aperture in the collection system; this discriminates against light 

emitted from planes of the object that are away from the focus, since they are not 

reimaged at the conjugate aperture, and dramatically improves the longitudinal resolu-

tion. The object is then scanned in all three spatial directions to build up an image. This is 

a very powerful technique that has found much acceptance, particularly in biological 

imaging. The method allows scanning a series of thin optical ‘slices’ through the 

thickness (z-direction) of the specimen. In practice, the best transverse resolution of a 

confocal microscope is about 0.2 µm, and the best axial resolution is about 0.5 µm. 

Confocal microscopy has also been used for semiconductor diagnostics, particularly for 

determining the carrier diffusion length in semiconductors, by shifting the collection 

aperture relative to the input spot and monitoring the spatial decay of the photolumines-

cence [Fong and Brueck 1992, Fong et al. 1994]. 
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1.5.2 4PI, I5M Microscopy 

In conventional microscopy, the longitudinal resolution, along the optical or z-axis is 

significantly poorer than the transverse resolution; e.g. the depth-of-field is much larger 

than the transverse resolution. This limitation is addressed by increasing the solid angle 

(NA of the illumination source). The extreme is coherent illumination with a coherent 

optical source from both top and bottom sides with high-NA (immersion) lenses, known 

as 4π microscopy [Nagorni and Hell 1998]. To reduce optical scattering effects, two-

photon fluorescence is often the observed quantity. Since a coherent laser source is used, 

this is a confocal configuration, the imaging is point by point, and the sample is scanned 

across a 3D focal volume. In 1999, interference microscopy (I5M) was demonstrated 

based on a novel interferometric technique in which the sample is observed and/or 

illuminated from both sides simultaneously using two opposing objective lenses and an 

incoherent source of illumination. Separate interference effects in the excitation light and 

the emitted light give access to higher resolution (~100 nm) axial information about the 

sample than can be achieved with conventional widefield or confocal microscopes 

[Gustafsson et al. 1999]. Since this is a wide field measurement, scanning is only in the z-

direction, but additional artifacts are often present in the image [Bewersdorf et al. 2006]. 

 

1.5.3 Structured illumination fluorescence microscopy 

Lateral resolution that exceeds the classical diffraction limit by a factor of two (λ/3.3) 

was achieved by using spatially structured illumination in a wide-field fluorescence 

microscope by Gustafsson [2000]. A sample was illuminated with a series of excitation 

light patterns, which encoded normally inaccessible high-resolution information into the 
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observed image. Additional nonlinearities associated with saturation extended the 

resolution to ~λ/10 [Gustafsson 2005]. 

 

1.5.4 Stimulated Emission Depletion (STED) and Ground State Depletion (GSD) 

Even more impressive results have been obtained by STED microscopy [Hell et al. 

1994]. The basic concept is to illuminate a fluorophore with two beams. One is a low 

intensity source that excites fluorescence. Since the spot size is limited by diffraction, so 

is the resolution, as discussed above. The second beam is a donut mode at a different 

frequency that deactivates the fluorescence through stimulated emission at a longer 

wavelength (to a higher level of the ground state manifold). Once again the definition of 

the donut hole is limited by diffraction. However, the depletion ‘saturates,’ the fluores-

cence only survives in regions where the second beam intensity is below a threshold 

value; increasing the intensity of the second beam provides a dramatically improved 

resolution, limited only by the accuracy of the “null” at the center of the donut. In an 

initial report, resolution of 33 nm (λ/23) was achieved [Marcus and Hell 2002]. This is 

accomplished by exciting the molecules with a femtosecond pulse and subsequent 

depletion of the excited state with red-shifted, picosecond-pulsed, counter-propagating, 

coherent light fields. Ground state depletion is a related technique wherein the molecular 

ground state is shifted to a long-lived “dark” state, for example a triplet, by the saturating 

donut-shaped pulse. Recently, the resolution was increased to λ/50 (15 – 20 nm) 

[Donnert et al. 2006]. In a recent review article, Hell [2007] proposed a revision to the 

Rayleigh criteria that applies to a number of nonlinear microscopies: 
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Here, Imax is the maximum intensity of the saturation beam and Is is the characteristic 

saturation intensity that quenches the fluorescence. For both STED and GSD, the 

resolution is ultimately limited by the quality of the null in the donut beam; once the 

intensity in the null exceeds the saturation intensity, all of the photoluminescence is 

quenched and no image remains. An example of applying STED to a solid state micros-

copy problem, the distribution of color centers in diamond, was presented by Rittweger et 

al. [2009]. 

 

1.5.5 Photoactivated Localization Microscopy (PALM) and Stochastic Optical  

    Reconstruction Microscopy (STORM) 

Both of these related techniques take advantage of improved localization, by fitting the 

centroid of an isolated PSF, rather than resolution or distinguishing between two 

overlapping PSFs [Betzig et al. 2006, Rust et al. 2006, Hess et al. 2006]. The basic idea 

is to use one illumination source to “turn-on” fluorophores that are separated by distances 

greater than the optical resolution. Then take a number N of images of the same 

fluorophores, and by fitting them achieve a centroid definition of NNA2~ λ , 

deactivate the fluorophores by some saturation mechanism (perhaps by blinking of 

quantum dots) and excite another set. Repeat multiple times until a full image is 

developed. This process is quite lengthy, taking many hours for typical biological entities 

and is not suitable for real-time observations. Though recent development of advanced 

algorithms for high-density localization of active molecules is a promising approach to 

solve that issue [Huang et al. 2011, Lidke 2012].  
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1.5.6 Nanophotonics – Plasmonics, Nano-Antennas and Metamaterials 

The extraordinary enhancements observed in surface-enhanced Raman scattering (SERS) 

with colloidal Ag nanoparticles, up to 1015, provide ample evidence of the strong field 

enhancements (nano-antennae) that are available with localized surface plasma wave 

resonances of complex structures [Moskovits 1985, Campion and Kambhampati 1998]. 

This has been an active research field for over 30 years, yet we still do not have reproduc-

ible SERS structures that can reliably reproduce these exciting results. The SERS 

enhancement is a nanoscale electromagnetic effect associated with localized surface 

plasma waves confined by sub-wavelength composite, metal-dielectric structures; the 

difficulties have been in fabricating samples and in maintaining their SERS properties 

under environmental assault (chemical contamination).  

Recently there has been considerable activity on nano-antennas particularly asso-

ciated with semiconductor lasers for producing intense, near-field, sub-wavelength 

resolution sources [Cubukcu et al. 2006, Rao et al. 2007]. Magnetic storage is a specific, 

large-scale application that is driving much of this activity, since the available storage 

density is directly related to the available laser spot size (the reason blu-ray disks hold 

more information than conventional, red-laser-based, DVD optical media). This work has 

grown out of the observation of enhanced transmission through an array of sub-

wavelength apertures in a metal film [Ebbesen et al. 1998] that has led to extensive 

research efforts at both understanding and applying this phenomenon [Coe et al. 2008]. 

The general picture that has emerged is that the periodic hole array allows coupling 

(phase-matching) between incident radiation and surface plasmon waves that propagate 

along the metal film (either top or bottom surface). The transmission is also impacted by 
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coupling to the localized modes of the holes. Surface plasma waves inherently have 

larger wave vectors than the incident plane waves and so can be applied to sub-

wavelength imaging. Near the cut-off temporal frequency for the surface plasmon waves, 

this compression can be large and offers the possibility of strongly enhanced resolution 

[Vedantam et al. 2009]. Semiconductor lasers with nano-antennas employ related 

phenomena to concentrate the laser output in a sub-wavelength spot. 

Metamaterials are novel, man-made, sub-wavelength nanostructures that offer op-

tical properties not available from natural materials and have generated enormous interest 

recently [Engheta and Ziolkowski 2006, Cai and Shalaev 2009]. A great deal of attention 

has been paid to the possibility, and realization, of negative permeability (negative µ) and 

of related negative-index materials (NIM) with both negative permeability and negative 

permittivity (Re µ< 0 and Re ε< 0) [Shalaev 2007] (so far to wavelengths as short as the 

near-IR, but not into the visible due to the poorer visible optical properties of metals). 

Much of this scientific excitement has been driven by the possibility of NIM-based 

“perfect lenses” made from NIM that operate without any transverse spatial-frequency 

band pass limitation [Pendry 2000]. This improved resolution is necessarily restricted to 

near-field domains for flat lenses and is limited by materials, fabrication and impedance-

matching constraints [Smith et al. 2003]. 

Related hyperlenses, which take advantage of non-planar metamaterial/plasmonic 

variations to generate magnification and thus to convert the evanescent fields at the 

object to propagating fields at the image, have demonstrated resolution to ~ λ/3 [Liu et al. 

2007, Lee et al. 2007] and to λ/7 [Smolyaninov et al. 2007]. The geometric constraints 

associated with the hyperlens severely restrict the field-of-view, to date to only a few 
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times the resolution. In the case of a 2D, planar, hyperlens structure [Smolyaninov et al. 

2007] the image is necessarily restricted to a 1D line image. To date, these are exciting 

initial scientific demonstrations, but not routine techniques for large-area microscopic 

investigations. 

 

1.5.7 Digital Holography  

Digital holography is a promising method for overcoming the conventional microscopy 

resolution limit. Digital holography allows reconstruction of both the amplitude and the 

phase of imaged objects. The scattered light from the sample is mixed in the Fourier 

plane with a reference wave. Of course, the diffracted orders have to propagate to the 

detection plane, which limits the resolution to >λ/4. The resulting hologram is recorded 

with a CCD camera; then the object wavefront is reconstructed numerically using the 

Kirchhoff–Fresnel propagation equations [Haddad et al. 1992, Schnars and Jüpter 1994, 

Grilli et al. 2001, Schnars 1994]. Phase-shifting digital holography (PSDH) uses a series 

of images with a variation of the phase of the reference beam to obtain the complex 

amplitude at the plane of the CCD [Yamaguchi and Zhang 1997, Guo and Devaney 2004, 

Decker et al. 1978]. PSDH has also been used for three-dimensional microscopy 

[Yamaguchi et al. 2001, Zhang and Yamaguchi 1998], encryption [Lai and Neifeld 

2000], and wavefront reconstruction [Lai King and Neifeld 2000]. 

 

1.6 Synthetic aperture approaches 

A significant resolution improvement is obtained using holographic synthetic aperture 

methods. This is often referred to as “superresolution,” which is a bit of a misnomer. The 
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resolution is indeed better than that provided by the generalized Rayleigh (or any other) 

criteria, but this is the result of effectively stitching together an effective pupil aperture 

that is larger than the physical NA, as will be described below; within this new larger 

aperture the standard resolution constraints apply. The synthetic aperture can be as large 

as 2 in air and 2n in an immersion medium, in the normalized units (2π/λ) defined above, 

with corresponding Abbe half-pitch limits of λ/4 and λ/4n, independent of the NA (cf. 

Eq. 1.5). 

 As an analogue to Synthetic Aperture Radar (SAR), the holographic synthetic 

aperture methods are based on the generation of a synthetic aperture by combining 

different sub-images recorded at different camera positions to construct a larger digital 

hologram [LeClerc et al. 2001, Massig 2002]. The resolution improvement increases with 

the number of recorded sub-images, as long as each sub-image covers additional (and 

exclusive) portions of the available spatial frequency space [Zalevsky and Mendlovic 

2002, Zalevsky et al. 1999, Toraldo di Francia 1955, Toraldo di Francia 1969, Cox and 

Sheppard 1986, Lukosz 1967, Shemer et al. 1999, Sun and Leith 1992, Françon 1952, 

Lohmann and Parish 1964, Zlotnik et al. 2005, Kartashev 1960]. The basis of super-

resolution is to produce a synthetic enlargement in the system aperture without changing 

the physical dimensions of the lens or the illumination wavelength [Toraldo di Francia 

1955, Shemer et al. 1999, Sun and Leith 1992]. Many approaches are based on a certain 

a-priori knowledge about the object, such as its time independence [Shemer et al. 1999, 

Sun and Leith 1992, Françon 1952], polarization independence [Lohmann and Parish 

1964, Zlotnik et al. 2005], or/and wavelength independence [Kartashev 1960] allowing 

additional information to be accessed. All of these parameters are involved in information 
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capacity theory [Toraldo di Francia 1955, Toraldo di Francia 1969, Cox and Sheppard 

1986], which gives an invariance theorem for the number of degrees of freedom of an 

optical system. This theorem states that it is not the spatial bandwidth but the information 

capacity of an imaging system that remains constant. Thus, it is possible to extend the 

spatial bandwidth by encoding or decoding the additional information onto unused 

parameters of the imaging system. As examples, time independence of the object allows 

for sequential recording of sub-images with different optical configurations and 

polarization independence allows for simultaneous recording of sub-images with 

orthogonal polarizations and complementary frequency space coverage. 

 

1.7 Development and advantages of imaging interferometric microscopy 

Imaging interferometric microscopy (IIM) allows resolution to the linear systems limit of 

a half-pitch of λ/4 in air. A related concept had been introduced earlier for lithographic 

image formation (imaging interferometric lithography or IIL) [Chen and Brueck 1999, 

Chen and Brueck 1998, Brueck and Chen 1999, Smolev et al. 2006]. A natural approach 

was to apply some of the techniques invented for higher resolution lithography to high-

resolution measurement tools [Schwarz et al. 2003].  

Subsequent to the initial publication of the IIM concept [Schwarz et al. 2003)], 

Alexandrov et al. [2005, 2006] introduced an alternate, but related, concept wherein the 

images were recorded directly in the Fourier plane. This procedure can increase the 

system information capacity for a given camera, but also leads to ambiguity of phase 

determination and possible information loss for highly periodic images due to the 

restricted dynamic range of the CCD camera. In order to determine the correct phase for 
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image reconstruction it is necessary to have a reference object, which is impossible in this 

case. In more recent reports [Alexandrov et al. 2007, Hillman et al. 2009] the recording 

camera is shifted away from the Fourier plane (defocused) to increase the available 

dynamic range of the recorded intensities. Multiple images (90) were recorded with 

image rotation in order to extract phase information from overlapped images and the NA 

was increased from 0.13 to 0.61. An alternate system based on illumination with multiple 

wavelength sources to cover different regions of frequency space was introduced 

[Alexandrov and Sampson 2008]. 

The experiment described in ref. [Schwarz et al. 2003] was reproduced at a wave-

length of 532 nm by Price et al. [2007] with a 100x objective (NA=0.59) to show an 

improvement in the effective numerical aperture from 0.59 to 0.78 and by Mico et al. 

[2007] with NAlow = 0.14 extended to NAeff = 0.45. With a setup similar to that of 

Schwarz [2003], a vertical cavity surface-emitting laser (VCSEL) array was used as a 

source of light for the off-axis illumination, providing a simple optical system that is 

switched by either turning on individual VCSELs or by relying on their mutual incoher-

ence to record all of the offset images in a single step [Micó et al. 2004, Micó et al. 

2006a, Micó et al. 2006b]. In the initial paper [Micó et al. 2004], the authors used five 

sources simultaneously to increase the system spatial frequency bandwidth. Later, Mico 

et al. [ 2006a] extended the optical system of initial work [Micó et al. 2004] for two-

dimensional (2D) objects. The recording process is by interference of each frequency 

band with a complementary set of reference plane waves in parallel. The benefit of this 

system is improved modulation speed, which leads to more rapid image synthesis. 

Moreover, any desired synthetic coherent transfer function can be realized at fast rates by 
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changing the electrical drive of the VCSEL array. However, the holograms for the 

different band passes are incorrectly overlapped, and so the combined image is distorted; 

this could be resolved by designing the laser array to match specifically to the optical 

system. Other authors have implemented spatially incoherent illumination sources for a 

continuum of independent off-axis illuminations, along with a pinhole in the pupil plane 

for blocking the dark field, to increase the resolution by incoherent-to-coherent conver-

sion (MTF to ETF) with maximum achievable effective aperture of unity [Leith et al. 

1987, Leith 1990]. 

Another method uses a collection of mutually incoherent point sources at different 

lateral positions to provide tilted, spherical-wave illuminations for the object, since every 

point source gives a spherical wave with a different origin [Micó et al. 2006c]. In this 

case, the input object was illuminated at off-axis illumination angles higher than the NA 

of the microscope objective [Micó et al. 2006c, Sheppard and Hegedus 1998]. In this way 

a resolution improvement by a factor of 3 was shown to be achievable using off-axis 

illumination with a maximum illumination angle equal to the NA of the imaging lens. The 

angle of illumination is limited by NA1+ NA2, where NA1 is the numerical aperture of the 

optical elements between the VCSEL and a sample, and NA2 is the numerical aperture of 

the imaging system. In later experiments [Micó et al. 2008, Granero et al. 2009], a 

grating near the Fourier plane was moved during image acquisition for phase recovery. In 

following papers, they discussed the possibility of axial resolution, showing an example 

of 3D images of swine sperm [Micó et al. 2008a, Micó et al. 2008b]. 

Interferometric Synthetic Aperture Microscopy (ISAM) [Tyler et al. 2007, Tyler 

et al. 2008, Davis et al. 2008] is aimed at increasing the 3D volume of the image beyond 
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the traditional depth-of-field, rather than increasing the transverse resolution. In ISAM, a 

sample is illuminated by a series of femtosecond laser pulses that make a point-by-point 

scan of a transverse plane. The scattered field interferes with an original pulse and is 

dispersed by a grating. The resultant spectral content is used to compute the contribution 

from various depths. This way, longitudinal information from the 3D image is extracted 

without mechanical refocusing. The axial resolution comes from the low coherence 

length of the short pulse, which only allows interference when the path lengths of the 

sample and reference beams are matched in length. 

 

1.8 Overview of our achievements and directions of future development for IIM. 

Our group has well established history of working on the problem of higher resolution 

using IIM technique. The initial demonstration of advantages of off-axis illumination was 

done by Schwarz et al. [2003]. Later Kuznetsova, Neumann and Brueck [2007] signifi-

cantly increased the scale of the synthetic aperture by using multiple off-axis illumination 

which required development of filtering algorithms and procedures for multiple sub-

image phase correction.  Then we achieved resolution limit of aerial linear optical 

systems in far-field (NA ~ 1) by tilting an objective plane and restoration of images using 

developed algorithms [Kuznetsova et al. 2008]. Further enhancement in resolution was 

achieved by solid immersion techniques [Neumann et al. 2008b]. Radical modification of 

the scheme of reference beam reinjection demonstrated advantages of structural 

illumination eliminating the need for an extended interferometer encompassing the 

objective lens [Neumann et al. 2008a]. We developed phase correction algorithms which 

are required for the full-immersion extension [Kuznetsova et al. 2012].  All these 
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techniques along with experimental demonstrations are described in Chapter 2. 

Chapter 3 contains conclusions and ideas for future work, such as using materials 

with high refractive indices, enhancements in hardware and in algorithms and technique 

for 3D imaging.  
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Chapter 2. Imaging Interferometric Microscopy 

 

IIM allows one to resolve structures not accessible in a conventional illumination setup, 

while using a low NA microscope objective and thus keeping the large working distance, 

depth of focus and field of view associated with the lower NA. The goal of this disserta-

tion was to extend optical resolution limits by application of synthetic aperture and solid 

immersion technique to imaging interferometric microscopy as well as to provide robust 

algorithm for image reconstruction. An off-axis, interferometric arrangement allowed us 

to take on-axis and off-axis illumination sub-images. A single mode fiber was used to 

deliver the reference beam around the lens to the Fourier plane to interfere with the 

diffracted image orders. As we show below, this concept can extend the IIM resolution to 

the linear systems limits of optics, to spatial frequencies of 2k0 in air and 2nk0 in a 

medium of refractive index n. In the same sense as the Abbe limit, these limits corre-

spond to the highest spatial frequency terms that can propagate through the respective 

media. Any higher resolution information corresponds to near fields and demands close 

proximity (<<λ) to the object. 

 

2.1 Initial configuration and optical arrangement for IIM 

As was shown above (Fig. 1.3), it is possible to increase the effective NA using off-axis 

illumination to capture the second order scattering information, E2; it was important in 

that example to pass the E0 component through the lens as well. This sets an upper limit 

on the off-axis illumination angle. With larger tilt angles of the illumination beam 

(extreme off-axis illumination, where the extreme refers to the fact that the zero-order 
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beam is outside the lens NA), higher order information can be passed through the lens. As 

discussed above, this is one approach to dark-field illumination. In the IIM configuration, 

a zero-order beam is reintroduced at the image plane using additional optics to provide 

the appropriate divergence, amplitude, phase and angle of incidence for image formation 

(Fig. 2.1(a)). Frequency space coverage for this case is shown in Fig. 2.1(b). Effectively 

this involves constructing a Mach-Zehnder interferometer with the objective inserted in 

one arm of the interferometer. The optics are arranged to provide the same characteristics 

of the zero-order (reference) beam that would have been available if the lens NA were 

sufficiently large to collect it directly. If the illumination angle is such that the higher 

terms 2E and 3E  are collected, and a reference beam is added with additional optics, the 

intensity in the image plane is: 
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Fig. 2.1. a) High-frequency imaging setup. The extreme off-axis illumination allows the high orders to be 

transmitted through the lens and interfere with the zero order that is passed around the lens, b) Frequency 

space coverage: gray circles=high frequency images, dashed circle=dark field. 
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where illillf αsin≡  is the normalized frequency shift due to the inclined illumination 

(high frequencies are shifted by the inclined illumination and are captured by the lens), 

and reff  is the normalized frequency shift due to reference beam inclination (which shifts 

the frequencies back to their original values). The ϕ’s are the respective phases of the 

diffracted beams. The incident angle of the reference beam is adjusted so that reff  = illf , 

so that these offsets cancel in the sub-image: 
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The corresponding frequencies are shown by the black dots in Fig. 2.1(b); high frequency 

space coverage for this case is represented by the gray circle, while the dashed circle 

corresponds to the dark field region and the black dots correspond to grating frequencies. 

Notice that as a result of the extreme off-axis illumination, the frequency content now 

extends beyond the 2NA limit set by the optical system. Thus the synthetic aperture can 

be extended beyond the limits set by the optics in the Rayleigh/Abbe sense. However, the 

low frequencies, and in particular the E1 term, are missing. This is a high frequency sub-

image; combining it appropriately with a normal-incidence-illumination (low-frequency) 

image provides a more complete representation of the object. 

IIM is based on the incoherent (intensity) addition of several coherent sub-images. 
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Combining the two sub-images from normal incidence and off-axis illumination (Figs. 

1.2 and 2.1, respectively) results in the following response, which consists of a spatially 

constant base line, an image part and a dark field (Eq. 2.2). The intensity of the high 

frequency image has been multiplied by two to compensate for the collection of only a 

single sideband. The off-axis dark field is easily measured by blocking the reference 

beam and is subtracted from the off-axis sub-image before combining with the low 

frequency sub-image: 
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Again, this is a single sideband system; the sideband not collected by the optical system 

is restored as a result of the square law intensity response. Clearly, in this simple case it is 

possible by measuring the spatial frequencies, intensities and phases, to reconstruct the 

image (e. g. to determine d, E0, E1, E2 and E3). However, the reference beam in our 

experimental setup is transmitted around the lens, so it has an arbitrary amplitude and 

phase. So more precisely, the intensity distribution of the high frequency image is (setting

reff  = illf ): 

 
( ) ( )

( ) ( )330220
2

3

2
2

2
0

23
3

2
20

3cos22cos2

03020

ϕϕϕϕ

ϕϕϕ

+−++−++

+=++= −+−+−−

refdrefd

xfikxkixfikxkixfiki
high

xkEAExkEAEE

EAEeeEeeEeeAEI illdilldrefref

,   (2.4) 

where A  is a reference attenuation factor, refϕ  is the arbitrary phase shift of the reference 

beam, and iϕ  is the phase of the corresponding high frequency beam. Using a reference 

object and adjusting the phase of the reference beam by adjusting the length of the 
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reference optical path, the system can be adjusted in such a way that refϕ  = 0 in order to 

match the phases (e. g. x-positions) of the low and high frequency sub-images. Neutral 

density filters are used to adjust A  so that 0E  ~ 2E in order to have the maximum 

image contrast (optimum signal-noise ratio). Then the intensities of the sub-images are 

adjusted electronically by comparing with the reference object. The net result is a 

resolution corresponding to a larger NA lens. For example, an optical system with He-Ne 

laser illumination (633 nm) and with an NAlow = 0.4 objective acts as a low pass filter that 

limits the frequency space to a maximum frequency corresponding to a half-pitch of ~790 

nm (λ/2NAlow). The resolution can be improved by using extreme off-axis illumination, 

providing an effective NA ( effNA = 3NAlow) as discussed above. If the illumination offset 

is chosen at 2NA to provide continuous coverage along the x-axis, the effective effNA = 

3NAlow, and the half-pitch resolution is enhanced to 263 nm. The zero-order transmission 

is shifted outside of the imaging pupil plane, with the additional interferometric reintro-

duction of the zero-order beam to the Fourier plane on the low-NA side of the lens in 

order to restore the original frequencies. A schematic of the experiment is shown in Fig. 

2.2(a). The incident angle of the zero-order αref is adjusted such that the spectral content 

is shifted back to the original high frequencies. Changing illα  together with αref leads to 

different frequency coverage. A rotation stage can be used to extend the azimuthal 

coverage across the fx, fy plane.  

The possible frequency space coverage is shown in Fig. 2.2(b), where the circle in 

the middle represents the low frequency image and the circles on the sides represent high 

frequency images. The circles along coordinate axes contain information about features 
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a)  

  b)                                      
 

 Fig. 2.2. a) Optical arrangement for imaging interferometric microscopy: β  = sin-1(NA), αill is the 

illumination beam angle, and αref is the angle of the reference beam  relative to the image plane, 

b) Frequency space coverage for an experiment with 5 sub-images. 
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oriented along the major axes. We need additional coverage in between axes for arbitrary 

structures (yellow circles are shown as an example in Fig. 2.2(b)). The Fourier transform 

is symmetric, to the extent that the object is phase-invariant (a thin object <<λ). As noted 

above, the imaging is single side-band; the square law (intensity) response of the image 

formation process restores the conjugate frequency space components, resulting in the 

two symmetric circles in Fig. 2.2(b) for each sub-image. As before, it is possible to 

restore telecentricity by combining sub-images from opposing tilt angles in pairs. 
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Beam 1 in Fig. 2.2(a) (2 and 3 are blocked) is used for on-axis illumination. 

Beams 2 (extreme off-axis illumination) and 3 (reference) when 1 is blocked are used for  

high-frequency sub-images. It is convenient to use a single-mode fiber for beam 3 to 

simplify the optical arrangement and provide a clean reference beam. The exit aperture of 

the fiber is placed in the pupil of the imaging optics; the position of the fiber sets fref and 

the path length sets ϕref. There is a requirement that the optical length of path 3 be the 

same as that of path 2 combined with the collection optical path length to within the 

source longitudinal coherence length. For the long-coherence-length HeNe laser used in 

the demonstration experiments, this requirement is easy to realize. For a shorter 

coherence length source, care is necessary to ensure that this condition is met. The dark 

fields and the background/reference images should be subtracted from the stored high-

frequency image in order to get the high-frequency image with only the imaging 

contribution (interference between zero-order and diffraction beams). Thus, the effective 

numerical aperture is extended to 3NA. 

We use a Manhattan structure (x, y) object (Fig. 2.3 (a)) as an example to show 

the possibility of tiling frequency space and reconstructing the object. The resulting 

frequency coverage for this structure with lines of width 500 nm is shown in Fig. 2.3(b). 

If we use a NA = 0.4 objective and a He-Ne laser (λ =633 nm) the circles in the center 

correspond to the spatial frequencies 0.4 and 0.8 normalized to k0, for coherent and 

incoherent illumination, respectively (Section 1.3.2), which define the range of possible 

captured frequencies by conventional illumination. The spatial frequency 0.8 also 

corresponds to the dark field. The set of shifted circles of radius NAlow = 0.4 for the case 

when illα =53° extends the radius to 3NA = 1.2 in the x- and y-directions or a minimum 
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resolution half pitch of ~260 nm [Schwarz et al. 2003].  

Additional frequency space coverage is available with a second pair of off-axis 

sub-images, represented by the outer set of shifted circles (Fig. 2.3(c)), with a larger tilt 

of the illumination plane wave, approaching grazing incidence. The maximum frequency 

coverage (as follows from Eq. 1.5) extends to 1+NA = 1.4. However, in corresponding 

experiments the inclination angle was limited to 80° [sin(80°) = 0.98] to the object plane 

due to high reflectivity from substrate at steeper angles and increasing wave front 

distortion associated with substrate thickness variations, so the experimental extension 

was to 0.98+NA = 1.38 which allowed resolution of a Manhattan structure with lines of 

240-nm width using the same NA = 0.4 objective (Fig. 2.3(c)). Clearly, the frequency-

space coverage of the outer circles captures the fundamental frequency components of the 

image [Schwarz et al. 2003]. The problem of frequency coverage overlap can be solved 

by filtering images either optically with apertures in the Fourier plane or electronically by 

taking Fourier transforms of the sub-images, appropriately filtering, and retransforming.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.3. a) Manhattan geometry pattern used for image resolution exploration consisting of five 

nested “ells” and a large box. b) Intensity Fourier space components of the pattern, mapped onto the 

frequency space coverage of the imaging system. Lines and spaces of the “ells” are 500 nm. c) Lines 

and spaces of the “ells” are 240 nm. 
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For some sample structures with a frequency peak at the edge of the collection 

limit some higher frequency sidebands of the image are not collected, which causes 

distortions, such as extra features arising from a hard cut-off in frequency space due to 

the Gibbs effect [Smith 2007]. This effect can be reduced by apodized filters [Tridhavee 

et al. 2005] applied in the physical Fourier plane or electronically. 

The reference beam in the experimental set-up is transmitted around the lens, so it 

has an arbitrary amplitude and phase, which has to be adjusted according to the formula 

(2.4). A reference object is required to assist in setting the angle, amplitude and phase of 

the reference beam. This object should be as close as possible to the object being imaged. 

In our initial demonstrations, where we knew a priori the object, we used the known 

object as a self-reference. For higher contrast it is important to choose the object position 

in such a way that the polarization is parallel to the main image features in each image 

(TE polarization) [Nesterov and Niziev 2005]. 

The experimental results with a Manhattan geometry structure (line width 500 

nm) and a He-Ne laser used for illumination are shown in Fig. 2.4. The low frequency 

image after dark field and background subtraction, and after filtering is shown in Fig. 

2.4(a). The individual nested-ell lines are not resolved. The off-axis illumination sub-

image of the horizontal features after the same subtraction procedure is shown in Fig. 

2.4(b); the vertical features are similar. The reconstructed image obtained by adding the 

three images is shown in Fig. 2.4(c). The image taken using a conventional microscope 

with incoherent white light and NA=0.9 is shown in Fig. 2.4(d). Note that the extra 

features appearing at the bottom of horizontal lines are due to corrosion and lifting of the 

chrome features. This demonstrates that IIM is indeed imaging arbitrary structures and is 
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not limited to simple geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A major advantage of imaging interferometric microscopy (IIM) compared with 

imaging interferometric lithography (IIL) is that the partial images can be electronically 

manipulated, whereas in the lithography case the images are chemically stored in the 

photoresist and are not individually accessible. This relates back to the major trends 

identified in the introduction, particularly the availability of high pixel count digital 

imaging sensors and the high speed computation necessary for manipulating the image 

information. 

 

a)           b)  
 
 

c)         d)  
 

 
Fig.2.4. a) On-axis image after dark-field and background subtraction, b) high-frequency 

image of horizontal structures after dark-field and reference image subtraction, c) filtered 

reconstructed image, d) image taken by a conventional incoherent-illumination microscope 

with NA = 0.9.  Reprinted from Schwartz et al. 2003. 
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2.2 Concepts associated with a tilted object plane 

Off-axis illumination allows an increase in NAeff to (1+NA) with the optical axis 

normal to the object plane (position a in Fig. 2.5), but there is additional higher frequency 

(larger angle) scattering to the side of the objective towards the incident, off-axis beam. 

This information can be captured by tilting the object plane or equivalently, tilting the 

objective (shown as the offset objective at position b in Fig. 2.5) [Kuznetsova et al. 2007, 

2008]. Notice that for offset in frequency space by more than 3NA there is a separation 

between the imaging terms and the dark field terms, which are limited to spatial 

frequencies less than 2NA. So, the dark-field terms are easily removed electronically by 

taking the Fourier transform of the sub-image, filtering appropriately in spatial frequency 

space and transforming back to real space. 

  

 

     In order to obtain an effective aperture for this case we have to add the object plane tilt 

 
 
 

Fig. 2.5. Optical arrangement using a) off-axis illumination, b) off-axis illumination and tilted 

object to enhance the frequency space information. 
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angle tiltθ  to the angle corresponding to the objective NA in equation (1.6). The modified 

formula is: 

 NAeff = sin sin−1(NA) + θtilt( )+ sin α ill( ).                                        (2.5) 

The highest possible spatial frequencies (~ 2/λ) are captured with a grazing incidence 

illumination and with an object plane tilt of π/2 – sin-1NA (~ 66.42° for NA=0.4), but the 

constraints of the optical system, both physical and optical (aberrations), restrict the tilt 

and thus limit the frequency-space coverage to slightly less than 2/λ. As a result of the 

non-paraxial optical system, the extent (minimum to maximum spatial frequency) of the 

captured frequency range in the direction along the tilt decreases as the tilt increases. In 

the orthogonal direction the range is invariant to the tilt, so the covered frequency region 

becomes elliptical rather than circular. 

An example of frequency space coverage using a NA = 0.4 objective, tilt ~ 39° 

and an incident beam angle tilt of 80° with respect to the normal to the object plane is 

shown in Fig. 2.6 superimposed on the frequency space intensity plot for an object with 

180-nm lines with the same structure as shown in Fig. 2.3(a). In this case, the second pair 

 

        Fig. 2.6. Frequency space coverage with a tilted objective. 
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of off-axis exposures with the object tilted extends the frequency space coverage out to 

~1.87. An image restoration procedure is required to adjust the measured spatial 

frequencies from the laboratory frame (tilted main optical axis) to the normal image 

frame for full-image reconstruction. There is a small gap of ~3% of frequency space 

between the inner circles and outer ellipses. So, the optimum NA to cover the frequency 

space with two offset images and 39° tilt would be ~0.415, but it is worthwhile 

investigating other combinations of NA and tilting angles for optimum results. 

Tilting decreases the field of view from the perspective of geometric optics be-

cause only a small portion of the image is in focus. However, this is a consequence of the 

optical system, and can be addressed by the spatial frequency correction as discussed 

below.  

 

2.3 Impact of conical diffraction on IIM 

Intuitive understanding of grating diffraction starts from consideration of a plane that 

contains the grating wave vector and the surface normal. For example, for normal 

incidence illumination, the diffraction orders are observed in this plane to the sides of the 

transmitted (reflected) beam in accordance with the grating equation (e.g. 

2
,

2
0,,  and;0;2

jxjzyjx kkkkj
d

k −===
π ). For an off-axis illumination in that plane, the 

variations in kz,j are not apparent in the image and the diffraction order spots (e.g. beams 

corresponding to the diffraction orders)  are separated by sin(kx,j/k0)L. Here d is the period 

of the grating, j is the diffraction order, and L is the distance from the object to the image 

plane. For off-axis illumination in the ky direction, the diffraction spot positions again are 

not affected, and determination of its positions   is straightforward with calculating of the 
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vectors kx,j and ky0 ( 2
0

2
,

2
0,0,  and;;2

yjxjzyyjx kkkkkkj
d

k −−===
π ).  

However, if the observation plane normal is tilted away from the object normal in 

the x,z plane (Fig. 2.7), the spot position becomes dependent on kz,j. This is known as 

conical diffraction since the multiple diffraction spots describe a conic section in the x’, 

z’ plane. Analysis of this case shows that imaging with a tilted object plane (in the x-z 

plane) can be extended to the general conical diffraction case, since the tilt couples the z-

component of propagation vector into the observed frequency position in the pupil plane. 

Thus, in biaxial imaging system, the image frequencies are shifted from their original 

positions and they need to be reseted for proper representation of image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7. Optical arraignment with tilted object and 0-order reintroducing 

Camera plane

Object plane

Optical
  axes

X ’

Z

Z ’



63 

 

    Using Eq. 2.5 we can reset the displaced frequencies: 

 illtiltrefxobsytiltrefxobsx fffffffff +−−−+−−= 222 )(11)( ,                (2.6) 

where xf  - frequency in the x-direction; xobsf - observed frequency; yf - frequency in y-

direction; fill = sin (αill)- angle of illumination; and ftilt = sin( tiltθ ) - angle of the plane tilt. 

The reference beam is adjusted to a known selected frequency self  of a reference object, 

and other frequencies should be recalculated from Eq. 2.6. Here fref can be obtained from 

Eq. 2.6 for the case when fxobs= fx = fsel. 

 [ ] selillseltiltref ffff +−−= − )(sinsin 1θ .                                                   (2.7) 

The need for this frequency correction is a direct consequence of the non-paraxial 

effects that map the observed spatial frequencies of the diffracted fields from the object to 

the image spatial frequencies in a nonlinear fashion. Correcting this distortion also 

provides restoration of the field of view. This is illustrated in Fig. 2.8, which shows the x-

offset high frequency partial images of two adjacent test structures (the one on the left is 

the object with 180-nm line width, while the one on the right is the 170-nm line width test 

structure; overall each structure is about 20 half pitch wide (3.6 µm) and the separation is 

12 µm). Note that these are the high spatial frequencies in the x-direction, similar to the 

high-y frequencies of Fig. 2.4(b) but in different direction. The full image of this 

Manhattan structure is available only upon combining all of the sub-images. The optical 

system was adjusted so that for the experimental image the smaller (right-hand) structure 

was approximately in focus while the larger (left-hand) structure was behind the focal 

plane due to the tilt and substantially blurred. The distorted image (Fig. 2.8(a)) was 

restored using Eq. 2.3 and shown in Fig. 2.8(b), which is in a good agreement with a 
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corresponding model (Fig. 2.8(c,d)). The dotted lines and arrows show the significant 

shifting of the positions of the intense features accompanying the transformation from the 

laboratory frame to the image frame and restoring the overall field of view. The final 

reconstructed images are shown in Fig. 2.9. As expected, the reconstruction procedure 

restores both images and clearly improves the field of view that was limited by the tilt of 

the object plane relative to the focal plane. There are also extra features due to the noise 

in the system, which is magnified during the restoration procedure. This method requires 

 
 
 

 

 

 
 

Fig. 2.8: Experimental (a, c) and simulation (b, d) results showing the impact of the frequency restoration 

on the high frequency partial image. The dotted lines are guides for the eye, showing the significant shift 

of the out-of-focus object (left) in the laboratory frame. 
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very precise knowledge of the object tilt and incident illumination offset in order to 

obtain high-quality, extended-field images. 

 

2.4 Structured illumination for backward compatibility with existing microscopes  

2.4.1 Premises and theoretical adjustments for structured illumination  

The implementation of IIM presented above requires an interferometer around the 

objective lens and access to the back pupil plane (Fig. 2.2(a)). While this is straightfor-

ward in an optics laboratory, it is difficult to retrofit to an existing microscope. A 

structured illumination approach, in which the object is illuminated by two coherent 

beams, moves the interferometer to the front of the sample [Neumann et al. 2008a]. 

Another method to obtain the same result is to use a zero-order beam reinjected before 

the objective using a beamsplitter or other optical element (grating).  

Both methods provide a frequency offset for all image information transmitted 

through the low-NA objective lens. The result is analogous to the intermediate frequency 

used in radio frequency communications, the recorded image information is at the low 

 

      

       Fig. 2.9. Reconstructed image: 180 nm and 170 nm structures.  

  180 nm    170 nm 
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frequencies allowed by the objective lens. Procedures for extracting the image infor-

mation and shifting it back to the true image high frequencies are described and proved 

below.  

Two major advantages of this approach are:  

a) because reduced or no access is required to the image pupil plane this approach is 

much more amenable to implementation on existing microscopes, which typically do not 

allow image pupil plane access without major changing in the optical system, and 

 b) the recorded images are at low spatial frequencies which reduces resolution re-

quirement for the imaging camera (e. g. a smaller camera pixel count is sufficient as 

compared with the previous demonstrations).  

Another advantage of this method in comparison with conventional IIM is greater 

phase stability due to the possibility of a much more compact interferometer that no 

longer has to include the objective lens and other optics, thus eliminating associated 

source of flare and speckles.  

We already discussed conventional IIM with an extreme off-axis illumination beam 

(extreme is defined as illumination at an angle beyond the NA of the objective lens) and a 

coherent reference beam, equivalent to the zero-order transmission, reinjected into the 

objective lens Fourier plane using an optical fiber (Fig. 2.10(a)). As it is easily seen, this 

is equivalent to constructing a Mach-Zehnder interferometer with one arm including the 

objective lens and requiring access to the image pupil plane. This can be difficult in an 

existing microscope system where the pupil plane is not generally available and auxiliary 

optics are required. A second, coherent local-oscillator illumination beam at an offset 

angle just within the objective NA is introduced in addition to the extreme off-axis 
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illumination to obtain the high frequency partial image (Fig. 2.10(b)) [Neumann et al. 

2008a].  As seen in the figure, this results in building the interferometer in front of the 

object where there is more convenient access and shorter path lengths are  

 

 

 

 

 

 

 

 

 

 

 

 

 

possible. The interference between this local-oscillator beam and beams diffracted from 

the off-axis illumination beam and passing through the objective provides the high 

frequency information for the image. However, since the zero-order and the diffracted 

beams all pass through the low-NA objective, the image information is at low frequen-

cies, less then 2NA/λ, e.g. it is in a shifted laboratory frame, and signal processing is 

necessary to restore the correct image frequencies. In addition, there are dark field terms 

arising from the interference between the diffracted orders from both illumination beams 

 

 

 Fig. 2.10. Optical arrangements for (a) conventional IIM with an interferometer that includes        

the objective lens, and (b) structured illumination with the interferometer in front of the object. 
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that must be eliminated. The optical and signal processing procedures necessary to 

achieve the final image are discussed below.  

Now we begin with a mathematical description, first of the extreme off-axis coherent 

illumination microscopy image of the previous IIM experiment (Fig. 2.10(a)) [Kuz-

netsova et al. 2007] and then extend this mathematical treatment to the structured 

illumination experiment. Please note that the previous mathematical description started 

with Eqs. 1.2-1.5 and continued with Eqs. 1.10 and 2.1-2.4 is a subset of the following 

mathematical description. The subset, where a certain object with evident Fourier plane 

features (grating) was chosen, helped to explain working principals of IIM in the most 

simple and efficient way. In contrast, the following description applies to an arbitrary 

object. The notations are changed to avoid confusion. 

 The total transmission through an arbitrary object (assumed to be periodic on large 

scale to allow Fourier sums rather than Fourier integrals) illuminated by a tilted (off-axis) 

plane wave  is given by: 
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where x, y and z are orthogonal spatial coordinates, ( ) λθπω offoff sin2=  is the spatial 

frequency offset arising from the off-axis illumination at angle offθ  (assumed in the x-

direction), the prime on the 0,0
'A  refers to the re-injected 0-order, xω , yω  are the discrete 

spatial frequency increments of the Fourier summation, 
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range of integers for which the diffracted beams ( xω , yω ) are within the band pass of the 

medium and are propagating in the z-direction away from the object. A scalar electro-

magnetic model is adequate since the NA of particular sub-image is relatively modest. For 

high synthetic aperture and transverse-electric-field-polarized (TE) light the model is still 

valid. Transverse magnetic field polarization will cause reducing of image contrast and 

resolution. The transmission function of the optical system );( YX lkT ωω  is a simple band 

pass function: 
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Taking the square of expression (2.8) provides the intensity on the imaging camera: 
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where the three terms on separate lines correspond to a constant term (top line), to the 

imaging terms (second line)  and  to the dark field cross-correlation image (bottom lines). 

Subtracting the dark field terms (by taking an image with the reference zero-order 

blocked so that only the third term survives) provides a sub-image that accurately 

captures the spatial frequency components transmitted through the optical system. Note 

that the imaging terms (middle line) are at the correct frequencies and that the offset 

illumination angle has cancelled out of the expression except for the filter transmission 

functions. Changing the illumination angle (and the angle of reintroduction) changes the 
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offset allowing recording of a different region of frequency space.  

Now consider structural illumination where there are two coherent illumination 

beams, one at the same offset as in the previous example (extreme off-axis, correspond-

ing frequency shift denoted as offω and corresponding longitudinal wavenumber denoted 

as 
off

γ ). The other beam comes at the maximum offset allowed by the lens offω   <~ 

NA/λ denoted as NAω  in the equation (and the corresponding 
NA

γ ).  

Then the fields are:  
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and squaring while taking advantage of the fact that the A0,0 beam is not transmitted to the 

objective image plane while the B0,0 beam is transmitted through the lens gives: 
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The first and the second (in the upper bracket) terms {2.12(a), 2.12(b)} are just the result 
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of the off-axis illumination at the edge of the pupil. This sub-image can be measured 

independently by blocking the extreme off axis beam, and subtracted from the composite 

sub-image. The third term 2.12(c) is the one we want, the image terms from the extreme 

off-axis illumination beating against a zero-order beam from the second illumination 

beam; because the zero-order beam is not at the correct angle to reset the frequencies to 

match the object frequencies (adjusted for magnification) there is a shift between the 

observed and the actual image plane frequencies that requires signal processing to reset 

(e.g. we are evaluating the Fourier components at an intermediate frequency). The fourth 

term 2.12(d) is the dark field from the extreme off-axis illumination. Finally the last term 

2.12(e) is the combined dark field from the two illumination beams. 

Two approaches to eliminating the unwanted dark-field terms are presented. The first one 

requires blocking just the second illumination zero-order beam without obstructions to 

the other diffracted information. This can be done by adding a moveable block at the 

edge of the objective pupil as shown in Fig. 2.10(b). A flow chart schematic of the 

procedure is shown in Fig. 2.11. The object is illuminated by two beams: one at an 

extreme off-axis angle (beyond the objective sin-1(NA)) and one (local oscillator) with an 

angle close to sin-1(NA), such that its 0-order transmission is captured by the objective 

lens (Fig. 2.11(a)). By blocking only the 0-order we obtain the dark field image which 

can be subtracted from the image formed by interference of all orders from both beams 

{2.12(b), 2.12 (d), and 2.12 (e)}. Then we record the low frequency image obtained by 

the local oscillator object illumination with and without the 0-order blocked (Fig. 

2.11(b)). We subtract the low frequency image without dark field from mixed image and 

restore high frequency image by shifting frequencies in Fourier space (Fig. 2.11(c)). The  
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reconstructed image can be obtained by combining high frequency images with the low 

frequency images recorded in necessary directions and with on-axis image as it was done 

in all previous IIM configurations. This procedure also includes the orthogonal  

 

 

Fig. 2.11 Schematic of structural illumination and restoration algorithms: a) the object is illuminated 

simultaneously by two coherent beams: one at an extreme off-axis angle (green) and the other (local 

oscillator, orange) at an angle of ~sin-1(NA) to the normal. High frequencies diffracted from the 

extreme off-axis illumination are mixed with low frequencies from the local oscillator and with dark 

field, the dark field of the image is sequentially obtained by blocking the 0–order beam in the image 

pupil plane and subtracted from image, b) the object is illuminated by local oscillator only; the low 

frequency image without dark field of local oscillator  is obtained, c) the low frequency image is 

subtracted from high/low frequency mixture. Then frequencies are shifted in Fourier space to original 

positions and the total image can be reconstructed by standard IIM procedures: combining high and 

low frequency images. 
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spatial direction for the Manhattan geometry test object; additional sub-images are 

necessary for objects with arbitrary structure. Appropriate filtering to deal with overlaps 

in frequency space coverage should be applied as has been discussed previously. 

A second method to obtain the same result is to use a zero-order beam reinjected 

before the objective using a beam splitter (Fig. 2.12). The beam splitter is located 

between the object and the objective lens, eliminating all of the diffracted beams 

associated with the local oscillator, 0,,0, ≠∀= rpB rp , and simplifying Eq. 2.12. We 

subtract the dark field image (recorded with blocked reference beam) and reference beam 

image (recorded with blocked illumination beam) using the same procedure described in 

Ref [Kuznetsova et al. 2007] and then restore high frequency image by shifting 

frequencies in Fourier space (Fig. 2.11) [Neumann et al. 2008a]. 

Both methods have advantages and issues. The first arrangement requires access to the 

pupil plane of the system, which can be nontrivial. The second method does not contain 

 

 

Fig. 2.12. Structured illumination with extreme off-axis illumination beam (green) 

and reference beam (orange) injected between object and objective lens. 
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the first, second and fifth terms {2.12(a), 2.12(b), 2.12(e)}, so no access to the pupil 

plane is required, but it does require a beam splitter between the object and the optical 

system which reduces the system working distance. Also, there is a possibility of 

introducing aberrations, especially if the beam splitter is at an angle to the optic axis; 

aberrations can be minimized by using a thin pellicle beam splitter. Other approaches to 

address the issues are discussed in Chapter 3. 

 Interferometric methods require setting the phase relationship between the interfer-

ometer beams. This phase can be set in real time by observing the image of a reference 

object while adjusting the phase of one of the illumination beams. An alternative is to 

record images with an arbitrary phase shift and to evaluate the correct phase using signal 

processing approaches, again with the use of a reference object. Mean square error 

(MSE) methods can be applied for higher precision in setting this phase. Even without 

the use of a reference object, the recorded image has higher contrast at the correct phase 

point, very analogous to the higher contrast observed in an image at focus, but this is a 

somewhat subjective evaluation and is certainly pattern dependent. The use of a reference 

object is a more reliable indicator of the correct phase. In this configuration, it is 

particularly straightforward to use phase-shifting dark-field retrieval [Tamaguchi et al. 

2001, Kreis et al. 2005] as an alternative to blocking the reference zero-order for 

eliminating the dark-field terms. 

 

2.4.2 Experimental results with sstructural illumination 

For our experiments we used an NA = 0.4 objective with a He-Ne laser illumination 

source (λ = 633 nm) so that the Rayleigh resolution was limited to ~ 950 nm. The results 
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of a structural illumination experiment with 240 nm critical dimension (CD, equivalent to 

half pitch (HP), e.g. linewidth for the equal line:space structures) along with the 

corresponding simulations are shown in Fig. 2.13. The mixed image obtained as the result 

of the two-beam illumination and corresponding to the all terms of Eq. 2.12 is shown in 

Fig. 2.13(a,b); Fig. 2.13(c,d) is the image after subtraction of the dark field and low 

frequency image, and Fig. 2.13(e,f) is the restored high frequency image. 

 

 

 

 

 

 

 

 

 

 

 

The reconstructed image of 260- and 240-nm CD structures, within the same image 

field, obtained by this method is shown in Fig. 2.14(a). Figure 2.14(b) is a crosscut of the 

image through 260 nm 240 nm structures compared with a crosscut of the corresponding 

simulation. A total of four offset images, two each in the x- and y-directions, with θill = 

53° and 80° were used along with a 0.4 NA objective. As discussed previously [Kuz-

netsova et al. 2007, 2008], this configuration provides resolution about 240 nm CD. 

 

Fig. 2.13 (a,b) the mixed image corresponding to the interference of the low and 

high frequency images, (c,d) the image after subtraction the dark field and low 

frequency image, and (e,f) the restored high frequency image. 
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present Manhattan geometry structure has spectral content concentrated along the x- and 

y-directions, so the offset illuminations were restricted to those directions. It would be a 

simple matter to add additional frequency-space coverage for arbitrarily shaped structures 

by taking additional sub-images with rotation of the object around the (x, y) axes. The 

spatial frequency content of the image covers a wide range as a result of the large box (at 

10x of the used CD) included in Manhattan structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reconstructed image of the same structures obtained by the method with the beam 

splitter is shown in Fig. 2.15(a) and a crosscut of the image with corresponding 

simulation is shown in Fig. 2.15(b). 

(a)               

               (b)  

Fig. 2.14 a) Reconstructed image of 260- and 240-nm CD structures obtained using 

the optical configuration of Fig. 2.10(b); b) crosscut of the image (green) compared 

with a crosscut of corresponding simulation (blue). 
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The quality of the experimental results for both methods is quite comparable. The 

first method retains a long working distance, but requires access to the imaging system 

pupil for blocking 0-order. The second does not require any modification to the tradition-

al microscopy components, but has reduced working distance due to the beam splitter in 

front of the objective.  

There are some extra features in experimental results as compared to the modal due to 

the lack of precision in mutual phase determination between the sub-images and speckle 

effects from the coherent illumination. These features can be reduced by using improved 

arrangements and lower coherence sources. There are other possible alternatives; the 

             (a)        

              (b)
  

Fig. 2.15 a) reconstructed image of 260- and 240-nm CD structures (reinjection of zero-

order between object and objective lens (Fig. 2.12), b) crosscut of the image (green) com-

pared with a crosscut of corresponding simulation (blue). 
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optimum choice will depend on the specifics of the object and the constraints of specific 

optical systems.  Extension of the structural illumination IIM to the tilted object case is 

straightforward, so that the resolution extends to ~ λ/4 and to ~ λ/4n with immersion. 

Specific application areas of interest include semiconductor manufacturing metrology 

and biosensors.  

 

 
2.5 Half Solid Immersion IIM 

The next contribution to resolution extension was obtained by evanescent illumination 

from a high-index substrate (total internal reflection illumination). The advantage of 

restricting the excitation volume within an evanescent field decay length has been 

explored intensively in surface studies providing ~ 10-fold enhancement of the axial 

resolution [Axelrod 2001]. A lateral resolution enhancement for fluorescence microscopy 

has been achieved with standing evanescent waves [Cragg and So 2000]. 

 

2.5.1 Optical configuration for half-solid immersion 

The IIM optical arrangement [Neumann et al. 2008a] with an extreme off-axis (dark-

field) illumination beam and a coherent reference beam, reinjected into the objective lens 

Fourier plane using an optical fiber, is illustrated in Fig. 2.16(a). Here, instead of off-axis 

illumination in air (Fig. 2.16(b)), we use illumination propagating beyond the total-

internal reflection (TIR) angle in the transparent substrate in the same set up (Fig. 

2.16(c)). The evanescent wave associated with the TIR extends beyond the substrate into 

the sample region where it is scattered by the subwavelength sample structure into 

propagating waves that provide information on the details of the object at spatial 
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frequencies up to (nsub+NA)/λ (Fig. 2.16(c)) and up to (nsub+1)/λ with a tilted optical axis 

(Fig. 2.16(d)). The object spatial information is contained in the amplitude and phase of 

the scattered fields at wavevectors corresponding to the difference between the illumina-

tion and collection wavevectors. An interferometric introduction of the zero-order 

diffracted beam (reflection or transmission as appropriate) in the back Fourier plane of 

the objective completes the optical scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fourier intensity transform of the test pattern (Fig. 2.17(a)) for a linewidth (criti-

cal dimension or CD) of 180 nm is shown in Fig. 2.17(b) and for a CD of 150 nm in Fig. 

 

 

                        
 
 

Fig. 2.16 Optical arrangements for IIM. a) IIM with a zero-order reference beam interferometrically 

reinjected in the back-pupil plane. b) Expanded view of illumination and detection configuration; c) Il-

lumination through substrate to enhance the spatial frequency coverage; d) Rotated optical axis to col-
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2.17(c). The circles in Figs. 2.17(b,c) correspond to the bandpass limits of various 

microscopy configurations. The circle in the center of Fig. 2.17(b), with a radius of NA/λ 

= 0.4/λ, corresponds to the Abbé-limit spatial frequency range captured with on-axis 

coherent illumination (NAill = 0). The inner set of shifted circles in Fig. 2.17(b) (only 

single sidebands are shown for clarity; the complex conjugate regions are covered as 

well) corresponds to IIM with off-axis illumination beams at αill = 53° in the x-, y-

directions that extend the frequency coverage to a radius 3NA/λ ~ 1.2/λ. Additional 

frequency space coverage (second pair of circles) is available using evanescent wave 

illumination extending the frequency space coverage to a radius of (nsubsin(αill)+NA)/λ ~  

1.87/λ (with αill = 76°) without tilt of the microscope optical axis.  

 

 

 

 

 

 

 

 

 

 

 

 

The third pair of off-axis sub-images in Fig. 2.17(c) corresponds to the tilted optical 

(a)   (b)  (c)  

 

Fig. 2.17. Frequency-space visualization of IIM. a) Manhattan structure test pattern; scaled to different 

sizes as indicated; b) frequency space coverage for the structure with CD = 180 nm which is resolved 

for the configuration of Fig. 2.16(b); c) frequency space coverage for the structure with CD = 150 nm 

which requires the optical axis tilted configuration of Figure 2.16(d). 
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axis. This frequency region is elliptical rather than circular, due to non-paraxial and 

conical diffraction effects associated with the off-axis optical system [Kuznetsova et al. 

2007, 2008]. 

 The tilted optical system, Fig. 2.16(d), is manifestly non-paraxial and the spatial 

frequencies measured in the laboratory frame have to be corrected before assembling a 

final composite image as it was described in details previously. The resolution limit now 

depends only on the refractive index of the substrate. For a glass substrate with nsub = 

1.51 and an NA = 0.4 objective, the NAeff  ≤ 1.91 (geometry of Fig. 2.16(c)), allowing 

resolution of 166-nm half-pitch grating structures with λ = 633 nm. NAeff is extended to ≤ 

2.51 for the tilted optical-axis geometry of Fig. 2.16(d) with a corresponding minimum 

half-pitch extended to 126 nm. These resolution limits apply to simple grating structures 

(which have narrow Fourier spectra). For more complex structures such as the test pattern 

experimentally demonstrated, the pattern-dependent resolution is somewhat lower as a 

result of the need to capture additional information in the sidebands around the main 

diffraction peaks.  

Extension to higher-index materials is straightforward and will provide extensive 

further resolution enhancement. For example, GaP has an index of 3.3 at 633 nm, and the 

spatial bandwidth therefore extends to NAeff  4.3 (half-pitch resolution to λ/8.6). In 

contrast to probe-based NSOM approaches, the IIM arrangement does not require close 

approach of a probe tip to the sample as the object scatters the evanescent illumination, 

coupled through the substrate, into propagating diffracted waves that are collected in a 

standard, full-field microscope configuration. 

 

≤
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2.5.2 Experimental demonstration for half-solid immersion 

The experimental result for an object containing both 180- and 170- nm CD structures in 

a single large-field image is shown in Fig. 2.18(a). The 180-nm CD object is within the 

bandwidth capabilities of this optical system while the 170-nm CD object has significant 

spatial frequencies that extend beyond the optical system bandwidth and so is not fully 

resolved. The five nested “ell” shapes are distinguishable for the 180-nm CD, but not for 

the 170- nm CD. The positions of the two objects are correctly restored by the image 

restoration procedure as is evident from the good positional overlap between the 

experimental and theoretical cross-cuts in Fig. 2.18 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.18. IIM with evanescent illumination and normal (untilted) collection. a) Re-

constructed image of 180- and 170-nm CD structures b) a crosscut (green) com-

pared with a crosscut of corresponding simulation (blue).  
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By including tilt of the optical axis, additional spatial frequencies are accessible and 

the resolution becomes independent of NA. Ideally, we should be able to resolve 126-nm 

grating structures using a nsub =1.51 glass substrate and a tilt angle of θ = 

)(sin90 1 NA−−°  = 66°. Experimentally, we used an illumination angle (in the glass), αill, 

of 76° and a tilt angle of 35° and achieved ( )NAanN illsubeff
1sinsin)sin( −++= θ  ~ 2.32 

(which allows 137 nm half-pitch grating resolution) and resolution of patterns with 150-

nm CD features which is beyond the half-pitch linear systems limit in air of λ/4 ~ 158 

nm, clearly demonstrating the evanescent coupling. 

In order to decrease the influence of the camera pixel discretization on this high 

frequency image, the reference beam was adjusted to provide lower intermediate 

frequencies on the imaging camera which were reconstructed computationally [Neumann 

et al. 2008a]. The high frequency reconstructed image is shown in Fig. 2.19(a), model in 

Fig. 2.19(b) and crosscut comparison is in Fig. 2.19(c). The final result is shown in Fig. 

2.19(d) along with the corresponding model, Fig. 2.19(e), and the crosscut comparison in 

Fig. 2.19(f). Very good agreement is achieved. 

The overall quality of the image (even in the model) is not as well-defined as for the 

180-nm image. Inspection of Fig. 2.17(b, c) shows the reason. Scaling of the frequency 

space coverage to get an equivalent image resolution requires both increasing the high 

frequency coverage along the principal axes, which we have accomplished, and addition-

al coverage away from the principal axes, which we have yet to add. For the smaller 

pattern, the frequency content spreads away from the major axes and less of the important 

frequency information is captured in the present configuration. Additionally, Gibb’s 

effects resulting from the hard cutoff in frequency response in a region with strong 
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spectral content, and the required precision in setting and measuring the tilt and illumina-

tion angles make it more difficult to obtain high-quality extended-field images as the 

frequency coverage is increased. The noise of the system causes problems for combina-

tion of the image from seven (or more) sub-images. We will address these problems in 

future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evanescent illumination can be combined with structural illumination [Neumann et 

al. 2008a] eliminating the need for access to the back focal plane. This moves the 

interferometer to the front of the objective lens and makes IIM readily adaptable to 

existing microscopes. Structural illumination is roughly equivalent to recording the 

 
 

Fig. 2.19. IIM of a 150 nm structure using evanescent illumination and a tilted optical system. 

 a)High-frequency image obtained by evanescent wave illumination and tilted optical system; b) high-

frequency image simulation and experiment; c) experimental and simulation cross-cuts of the high-

frequency sub-images; d) experimental composite (full) image; e) simulation full image; f) experimental 

and simulation cross-cuts of the full images. 
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spectral information at an intermediate frequency; additional computation is required to 

reset the frequencies. As noted, we have already taken advantage of this frequency 

shifting to reduce the camera pixel size and count requirements. 

 

2.6 Full solid immersion 

2.6.1 Optical configuration for full solid immersion 

The full immersion extension is conceptually straightforward which is capable for further 

increase of the NAeff up to 2n (up to 10 for Si and Si/Ge alloys) and the corresponding 

half-pitch resolution to 25nm (λ/20). We envision using a simple set of prisms or gratings 

to extract and conventional, air-based lenses to capture the information. As is always the 

case, there is a trade-off between the number of sub-images and the physical NA of the 

objective lens. This is the same spatial frequency space that is accessed by the solid 

immersion techniques discussed above. Each technique has comparative advantages that 

need to be further explored.  

Using only a modest NA = 0.4 lens at λ = 633 nm and an object supported on a 

substrate with refractive index n, we have demonstrated a half-immersion imaging 

resolution with evanescent wave illumination to a maximum spatial frequency of 

(n+NA)/λ with the objective normal to the substrate  and up to (n+1)/λ with a tilted 

objective [Neumann et al. 2008b]. We note in passing that tilting the objective lens, and 

correcting for the non-paraxial distortions introduced by that, is a cumbersome operation. 

We look for ways to make it easier to collect the spatial frequency information between 

(n+NA)/λ and (n+1)/λ as well as to extend the spatial frequency coverage towards 2n/λ 

by adding a grating coupler on the side of the substrate opposite the object. Phase and 
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intensity matching of the sub-images is achieved electronically using a reference object 

containing spatial frequencies within each recorded sub-image. 

The illumination and collection configurations for half-immersion and full-

immersion are shown in Fig. 2.20(a). The illumination laser beam is coupled into the 

substrate (using a prism, a grating or end fire coupling) and the object is illuminated by 

an evanescent wave. Image frequencies up to (n+NA)/λ can be captured with an objective 

normal to the substrate surface (Fig. 2.20(a), objective A), and frequencies up to 

(n+1)/λ with tilt of the objective off of the optic axis (Fig. 2.20(a), objective B). The 

evanescent waves from higher frequency content of the object are coupled back into the 

substrate by the boundary conditions at the substrate interface, and for spatial frequencies 

between (n+1)/λ and 2n/λ propagate in the substrate at angles beyond the angle for total  

internal reflection. For a flat interface, the information at these spatial frequencies is not 

accessible, but the scattered light  can be decoupled by a grating on the side of the 

substrate opposite to the object and redirected to an objective on the grating side, 

opposite the sample (Fig. 2.20(a), objective C). This optical system (the required coherent 

reference beam is not shown) leads to frequency aliasing as a result of the grating 

diffraction. While this can be corrected with the reference beam, it is usually preferable to 

offset the sub-image spatial frequencies to lower intermediate frequencies to reduce the 

pixel size and density requirement on the collection system focal plane and restore the 

actual frequencies computationally before combining sub-images. In addition, there are 

phase errors (aberrations) associated with the collection system which includes partial 

propagation both in the high-index substrate and in air. The treatment of these spatial 

frequency and phase corrections is discussed below. 
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The corresponding frequency space coverage is shown in Fig. 2.20(b). Normal in-

cidence illumination and collection from the sample side is the traditional coherent 

illumination configuration represented by the small red circle with frequency space 

coverage to NA/λ. Illumination at an angle of 2NA/λ provides the offset orange circles 

with frequency space coverage to 3NA/λ. For a Manhattan geometry object, two sub-

images providing coverage in the x,y directions are typically used, additional sub-images, 

indicated by the lighter orange circles (at 45° to the principal x,y axes) can be added for 

additional off-grid frequency space coverage. The illumination and sample-side collec-

tion scheme of Fig. 2.20(a) allows increasing the spatial frequency coverage to (n+NA)/λ  

 

 

 

 

 

 

 

 

 

 

 

 

(green circles). Collection with a tilted objective allows frequency space coverage up to 

(n+1)/λ. Finally, the substrate side collection discussed in this subchapter extends the 

a)   b)  

Fig. 2.20. a) Illumination and collection configurations: A - objective normal to the substrate surface, 

image frequencies up to (n+NA)/λ can be captured; B - objective with tilt off from the optic axis, 

frequencies up to (n+1)/λ ; C – objective on the side of the substrate with grating, frequencies between 

(n+1)/λ and 2n/λ;  b) spatial frequency space coverage with regions collected with various geometries 

indicated. 
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frequency space coverage to the linear systems limit of 2n/λ with a corresponding Abbe 

half-pitch of λ/4n.  

As has been discussed in previously, the intensity, angle and phase of the refer-

ence beam have to be chosen to match all sub-images to the on-axis image [Neumann et 

al. 2008b]. For this purpose we used a reference object covering a small part of the field 

of view (FOV) in order to determine the correct intensity ratio, frequency shift and phase. 

These offset frequencies were then corrected in the image processing before the sub-

images were combined.  

One more preamble is necessary before tackling the image reconstruction. The 

description that follows has elements of ray tracing (looking at the propagation of 

scattered rays corresponding to specific spatial frequencies) and of Fourier optics (based 

on “infinite” plane wave propagation). The solution to this duality is to consider “wave 

packets” with center spatial frequencies that correspond to the direction of propagation 

and with a spatial extent that corresponds to the field-of-view, which is assumed to be 

much larger than the individual scattering objects within the field, but much smaller than 

the diameter of the lens. This of course corresponds to a broadening in the pupil plane 

and Fourier planes from the delta functions associated with plane waves to diffraction 

patterns corresponding to the finite field of view.  

 

2.6.2 Full immersion frequency space coverage 

The goal of this investigation is to explore the collection of additional scattered infor-

mation at spatial frequencies beyond (n+NA)/λ  by collection from the back side of the 

substrate using one or more gratings to redirect this information into an objective lens. It 
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is clear from the geometry of Fig. 2.21 that the spatial frequency coverage of each sub-

image depends on the thickness and refractive index of the substrate as well as on the 

field-of-view (FOV) and NA of the objective lens. For thicker substrates, the relevant 

information is spread across a wider area requiring a larger FOV. This may require 

multiple spatially displaced sub-images to extract all of the information (a synthetic 

FOV). If the available information extends beyond the 2NA/λ bandwidth of the collection 

optics, multiple gratings are required (a synthetic aperture). The minimum collected 

spatial frequency  (angle α1 in Fig. 2.21) sets the period d of the extraction grating: 

 NAn
d

+
=

1 sin α
λ

                                                       (2.13)
 

If this frequency equals the maximum available from half immersion without a tilted 

objective, (n+NA)/λ, then: 

NA
d

2
λ

= .                                                                        (2.14)
 

This takes a scattered wave in the substrate corresponding to  

 

Fig. 2.21. Geometry shows access to collection high frequencies propagating in the substrate that 

correspond to small features. 
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        ( )[ ]nNAnknkNAkk /sinsinsin 1
01001

−=== αα                                     (2.15) 

into a wave propagating in air at an angle –sin-1(NA). Here, λπ20 ≡k . Note that 

provided NA > 0.33, higher diffraction orders from the grating are outside the NA of the 

collection optics and do not interfere with the image; we consider an NA = 0.4 in the 

modeling. Over the range of spatial frequencies collected in each sub-image the 

diffraction efficiencies are roughly constant, thus allowing intensity compensation by 

sub-image matching procedures [Kuznetsova et al. 2007, Neumann  et al. 2008a].  Our 

setup is free of the complications connected with multiple diffraction orders from 

gratings in comparison to the methods proposed by Lukosz [1967] and Sentenac et al. 

[2006]. In our case the gratings provide extraction of information out of the immersion 

media but not diffraction of near-field high-spatial frequency components directly from 

the object. There can be variations in diffraction efficiency as the various higher order 

beams, in both the substrate and in air, switch from evanescent to propagating waves. 

These are easily dealt with empirically by adjusting the amplitudes of the relevant 

portions of each sub-image independently, either by physically restricting the collection 

NA appropriately, or by separately addressing the regions of the sub-image electronically.  

          Progressively higher spatial frequency components impinge on the grating at larger 

 horizontal displacements from the object and are diffracted at increasing angles, until the 

scattered beam at a displacement of b + F from the object centerline is diffracted at an 

angle of +θ in air. The distance F corresponds to the FOV of the objective lens, which we 

take as focused on the grating surface, or to the width of the grating if it is smaller than 

the FOV. Provided ( )NA1sin−≤θ , the entire spread of scattered light incident on the 

grating is collected by the objective lens. From the geometry of Fig. 2.21, several 



91 

 

important relationships are readily derived: 
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and the corresponding minimum half pitch is: 

 

( )





















































































−






+++

+

= −−−
212212

min

1112

;
32

NA
n

t
Fn

NAn

MAXHP
λ

λ

                  (2.18) 

The upper expression of Eq.2.18 is valid when the full NA of the objective lens is filled 

by the diffracted beams from the grating, e.g. the grating width F, and the optical FOV 

and NA are such that ( )NA1sin−≥θ . If the angular spread is restricted by the field of 

view, or equivalently by the width of the grating, the lower expression pertains. An 

additional constraint is that 3NA < n, since only spatial frequencies that can propagate in 

the substrate can be collected. The limiting behavior of HPmin is readily evaluated from 

this expression. For small NA where the full angular width of the lens is filled, the upper 

expression applies. For all interesting cases, NA/n <<1; that is the lens NA is much less 

than the refractive index of the immersion medium. For large fields of view or thin 
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substrates, F/t >> NA/n, 
( )[ ]2min 4 Ftn

HP
−

→
λ . Thus, HPmin is always larger than the 

optics linear systems limit. The upper limit in Eq. 2.18 takes over before this result; thus 

the NA of the lens is filled in just a single sub-image. Additional gratings at smaller 

pitches of λ/2(i+1)NA [i = 1,2,3,…] allow access to higher spatial frequency components 

of the image up to the linear systems limit of λ/4n. In the opposite limit, NA/n <<1 and 

F/t << NA/n, 






 ++

→

t
nFNAn

HP
2

min
λ . The resolution is always somewhat improved 

over the starting point of half-immersion with the collection system optical axis normal to 

the object plane. In this case the linear systems limit of λ/4n can be approached with a 

synthetic FOV, e.g. multiple sub-images with the collection optical system displaced to 

collect the higher spatial frequencies that are lost by the limited FOV with the same 

grating, and again, with multiple gratings (synthetic aperture), it is possible to extend the 

resolution close to the λ/4n limit, as long as signal/noise ratio is sufficient to enable sub-

image reconstruction into a full image. 

Resolution (HP) restrictions as a function of substrate refractive index for NA = 

0.4, 0.8, 1.2, fixed field of view (F = 32 µm) and substrate thickness (t = 50 µm) obtained 

from Eq. 2.18 are shown in Fig. 2.22. There is a point of transition for each curve (solid 

to dotted). The solid lines correspond to the upper expression of Eq. 2.18; the dotted lines 

to the lower part. In the dotted region additional sub-images are required to synthesize a 

larger FOV. Once the lens NA is filled, an additional grating is required to extract higher 

spatial frequency information and alias it into the lens NA, e.g. to synthesize a larger NA. 

The combination of restrictions induced by substrate properties and synthetic ap 
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erture (multiple of NA = 0.4) for a fixed field of view (F = 32 µm) with varying substrate 

thickness are shown in Fig. 2.23. The curves correspond to substrate thicknesses of 10, 

30, 100 and 300 µm with break points denoted by the transitions from dashed to dotted 

lines by curves of synthetic NA restrictions. Here, λ/[2(n+3NA)] corresponds to upper 

part of Eq. 2.18. The restrictions λ/[2(n+5NA)] and λ/[2(n+7NA)] appear by synthetic 

aperture extension with 1 and 2 additional aperture intervals along each spatial direction 

using adapted gratings for each interval as described above.   

 

Fig. 2.22.  Resolution restriction: normalized HP versus index of refraction for different NA (0.4, 

0.8, 1.2), fixed substrate thickness t =50 µm and field of view 32 µm. Solid lines – dependence 

described by the lower part of Eq. 2.18,  dashed lines- – dependence described by the upper part of 

Eq. 2.18. 

1 2 3 4 5
     0

   

  
  = 0.8NA  

 

      
  

 full immersion limit
           /4n  

    

      
  

half immersion limit  
          
         

/ n + NA( )  2

   0.08

 0.16

0.24

     0
1.5 2.5 3.5 4.5

  

      
NA = 1.2    

  NA = 0.4      
  



94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can infer from Figs. 2.22 and 2.23 that, for a single sub-image, a small NA op-

tical system can give useful resolution extensions only for materials with low index of 

refraction. In order to reach high resolution using materials with high n we need either 

additional sub-images using multiple gratings or an objective with higher NA. A larger 

FOV objective enhances the resolution but typically is associated with lower NA, which  

again requires additional sub-images. A compromise between FOV and NA has to be 

found for the chosen substrate thickness and index of refraction to minimize the total 

 

 

Fig. 2.23. Resolution restriction: normalized HP versus index of refraction for different substrate 

thickness (10, 30, 100, 300 µm) calculated with NA = 0.4, F = 32 µm in different synthetic aperture 

steps: long dashed lines are curves inside of synthetic aperture up to λ/[2(n+3NA)], dashed lines are 

curves described by the upper part of Eq. 2.18.  
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number of sub-images. These models do not include the impact of a finite signal-to-noise 

ratio (S/N). As the signal becomes more dispersed with thicker substrates, the S/N 

decreases and stochastic contributions to the image become more significant limiting the 

ability to accurately combine the sub-images and construct a composite image. 

 

2.6.3 Full immersion image reconstruction 

An initial experiment was conducted using a 1-mm thick glass substrate optically coupled 

to a second 1-mm thick microscope slide with a metal decoupling grating of period 560 

nm. Thus the total thickness (object to grating) was 2 mm. The results showed the 

possibility of resolution of a periodic structure. The image consists of a repeated pattern 

of several parallel lines with a spacing of 240 nm within a trapezoidal envelope. The 

pattern is repeated at a spacing of 3.6 µm in both directions. A SEM image is shown in 

Fig. 2.24(a). The x-direction high frequency image was recorded and is shown in Fig. 

2.24(b). The high frequency image contains much of the information about the original 

pattern: the repeated pattern is evident as is the clustering of lines in each repeat unit. 

                 

Fig. 2.24. a) SEM image of periodic structure, HP= 120 nm; b) IIM sub-image for t = 2 mm and 

decoupling grating half-pitch of 280 nm. 
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However, the image is distorted due to the geometry of propagation in the substrate [Fig. 

2.21] and requires a restoration procedure before the proper image can be recovered. 

Clearly there are fewer clusters at the same transverse scale (3 vs. 4) in the distorted 

image, the relative spacing between the line clusters is changed and there are additional 

lines in the clusters, though the line pitch remains the same . 

The distortion of the image is a result of the propagation in the substrate and de-

pends on the optical path in the substrate, e.g. on the substrate refractive index and 

thickness. The optical configuration was shown in Fig. 2.20(a)(objective C), with the 

collection lens focused onto the grating surface. Since an aberration-free optical system 

has no phase error between conjugate planes, e.g. the grating surface and the camera 

focal plane, the only phase variations we need to consider are for propagation in the 

substrate (Fig. 2.21). For analytical simplicity, we consider a one dimensional case; the 

calculations are readily extended to two dimensional objects. Let L and L0 be optical 

paths of an arbitrary and of the central ray in the substrate, α and α0 are the angles of the 

corresponding rays to the substrate normal. θ is the angle of the arbitrary ray to the 

optical axis after diffraction from the grating and exiting the substrate (the ray must be 

captured by the objective in air and for convenience is shown as a marginal ray).   

The angle α0 of the ray in the substrate which is redirected along the optical axis in air is:  

 
n
NA

nd
2sin 0 ==

λα ;                                                 (2.19) 

The marginal ray inclined at the angle α2 to the normal in the substrate and an angle θ in 

air after scattering by the grating is described by:  

 





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                                                      (2.20) 
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Then the path lengths in the substrate are:  
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and the phase difference between the arbitrary ray and the central ray is 
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The rays in Fig. 2.21 are k-vectors of the plane waves propagating at angles θ corre-

sponding to the image spatial frequencies fx. So, the phases at each spatial frequency can 

be corrected in Fourier space using the distortion phase function provided by the 2D 

generalization of Eq. 2.23. Clearly that distortion phase function (Eq. 2.23) provides only 

a relative phase correction. The constant term (the phase shift introduced by the central 

ray optical path) will be automatically corrected later by the sub-image phase-matching 

procedure required in IIM, since this constant term is indistinguishable from arbitrary 

constant term introduced by the phase of the reference arm of the Mach-Zehnder 

interferometer inherent in IIM. 

Simulation of the impact of this phase distortion on the image with nested-L struc-

ture and a delimited grating with CD =120 nm (Fig. 2.25) is shown in Fig. 2.26. The high 

spatial frequency (between NA/λ and 3NA/λ) filtered image of the model is shown in Fig. 
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2.25(b). The image is expanded, e.g. additional features appear on both sides of object 

due to lack of compensation in these regions as a result of the optical bandwidth limit. 

This is just the familiar Gibbs effect associated with an abrupt cut-off in frequency space.  

 

 

 

 

 

 

 

The high frequency image after the application of the phase aberrations for a substrate 

thickness of 1 µm [5 µm] is shown in Fig. 2.26(a) [Fig. 2.26(b)] (crosscut Fig. 2.26(c) 

[Fig. 2.26(d)]). There is additional walk-off of the intensity vs. position as a result of the 

spreading of the image intensity. The reason for this spread is the progressive walk-off of 

higher spatial frequency components (phase distortions) as they propagate across the 

substrate. Here, the additional features appear non-symmetrically to the illumination side. 

Also, unlike the Gibbs effect, no information is lost in general. The step from Fig. 2.25(b) 

to Fig. 2.26(a,b) is completely deterministic and is easily inverted by taking the Fourier 

transform of the laboratory frame image, applying the inverse of Eq. 2.23 and retrans-

forming back to the image frame, providing all information is captured and there are no 

S/N limitations. The spatial extent of the image spectrum expands with increasing 

substrate thickness (compare Fig. 2.26(a) and 2.25(b)). The intensity spread extension 

beyond the objective field of view leads to the loss of information which results in 

       

            Fig. 2.25. a) model CD = 120 nm structures, b) x-direction high frequency image. 

a)  b)  
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reduction of the image quality after restoration. This information can be accessed with a 

synthetic FOV, e.g. shifting the objective lens to acquire additional sub-images with an 

extended grating at the same pitch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Without shifting the objective lens, the loss of information is equivalent to the re-

duction of captured range of frequencies (NAsub < NA) for a single sub-image, which is a 

function of the FOV. To evaluate this degradation of the image bandwidth in a single 

image, consider again Fig. 2.21, but now in a configuration where the grating is chosen 

so that a particular HPc is along the optical axis, e.g. fix the optical axis (center) 

frequency rather than the low-frequency marginal ray. The dependence of the angular 

bandwidth, 2NAsub, versus the FOV is easy to obtain from Fig. 2.21. The FOV (F) 

 

Fig. 2.26. Difference in expansion of spectral package (120 nm features) for different substrate 

thicknesses (n =1.5, F= 64 µm): a) t = 1 μm, image expansion ~ 3 times; b) t = 5 μm, image expansion 

~ 10 times; comparison of filtered image crosscuts (blue) with crosscuts of images (red) distorted by 

substrate propagation with: c) t = 1 μm; d) t = 5 μm.  
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normalized to the slab thickness is: 

                                       

12 tantan αα −=
t
F                                                         (2.24) 

On the other hand, the marginal angles for a particular NAsub can be written as function of 

an angle cαsin  of the center frequency, corresponding to the chosen HPc. 

 subc NA+= αα sinsin 2                                                   (2.25) 

and 

 subc NA−= αα sinsin 1 ,                                                  (2.26) 

where, for an illumination angle βsin : 

 
c

c nHP2
sinsin λβα =+                                                 (2.27) 

Combining Eqs. 2.24-2.26 gives an implicit relation for the optical system parameters 
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This dependence shown in Fig. 2.27 for several HPc normalized by n and λ 





 =

λ
cnHPg

allows us to define NAsub of each sub-image and to estimate the number of sub-images 

which are necessary to cover most of the available spatial frequency space (along a 

specific direction).  

 We can see from Fig. 2.27 that, in order to prevent the loss of information, we 

need an objective with a bigger FOV or additional spatially shifted sub-images to build a 

synthetic FOV. These conclusions are qualitatively the same as those drawn from Figs. 

2.22 and 2.23.  
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Examples of images shown in Fig. 2.26 restored using a FOV of 16 μm are shown 

with corresponding crosscuts (red) in comparison with the undistorted image (green) and 

differences between the restored and filtered crosscuts in Fig. 2.28. Fig. 2.28(a) is 

obtained from Fig. 2.26(a), and Fig. 2.28(b) from Fig. 2.26(b). It is clear that the sub- 

image in Fig. 2.26(a) for a 1 µm thick substrate is extended less than the sub-image in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.26(b) for a 5 µm thick substrate and the quality of restored image in Fig. 2.28(a) is 

 

Fig. 2.27. Synthetic aperture guideline: normalized sub-image bandwith 2NAsub versus 

normalized FOV  for different extracting gratings represented  by center frequency HPc 
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higher than in Fig. 2.28(b). Quality of images was estimated by MSE method comparing 

original high resolution image with restored images [Frieden 1983].  Extension of 

recorded field of view to 32 μm for the image in Fig. 2.26(b) improves the quality of 

restored image (Fig. 2.28(c)), showing the complex interrelationships between the 

resolution, FOV, NA, substrate thickness and the refractive index.  

 
 

      Fig. 2.28. Restored images (CD=120 nm, n = 1.5), crosscuts and crosscut differences: a) t = 1µm, F= 16 

µm – quality of the resorted image is good, b) t = 5 µm, F= 16 µm, quality of the resorted image is poor 

due to increased substrate thickness; c) t = 5 µm, F=32 µm, quality of the resorted image is improved as 

the result of increasing field of view. 
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For an additional perspective on the ability to restore these images, the restored 

images with different HP were compared with the filtered high frequency images using a 

mean square error (MSE) metric. A simple ten-line grating pattern was chosen for MSE 

analyses (inside of the red square) and normalized to a gray field (Fig. 2.29). The curves 

of MSE versus HP for a λ = 633 nm, n = 1.5 substrate thicknesses of 0.5, 1, 3, 5, 10 µm 

and a restoration FOV of 32 µm are shown. For a comparable MSE procedure, it is 

important to have the spectral content of the image filtered similarly. Thus, we ensure 

that the center frequency at the HP always passes through the center of the collection 

objective, as in the derivation of Eq. 2.28.  

 

      Fig. 2.29. MSE versus HP of a 10-line pattern for different substrate thicknesses, n = 1.5, F = 

32 µm, λ = 633 nm. 3% MSE considered as images with acceptable quality. 0.5 µm substrate 

allows restoration of images with 112 nm features, 1 µm ~ 113.5 nm, 3 µm ~ 118 nm, 5 µm ~ 

120 nm, 10 µm ~ 124 nm. 
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These calculations were carried out from the theoretical limit λ/4n = 0.106 µm to 

the half immersion limit λ/(n+1) = 0.126 µm (λ = 633 nm, n = 1.5). The MSE drops as 

image becomes resolvable. As expected, the distortion (expansion of the frequency 

content across the detection plane) of image features is lower in thinner films, which 

allow higher resolution with a smaller FOV. 

The same models were used for substrates with different refractive indices in or-

der to evaluate possible resolvable HP with MSE = 3% for substrate thicknesses of 1-, 5-, 

and 10-µm. The results are summarized in Fig. 2.30, where the resolvable HP versus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Fig. 2.30. HP versus n for different substrate thicknesses: 1, 5, 10 µm (F = 32 µm), λ = 633 nm. 

Substrates with higher n allow restoration and resolution of images with smaller features. 
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refractive index is shown. The lower black dashed curve λ/4n is theoretical limit of full 

immersion resolution, the black upper dashed line λ/2(n + NA) is the half-immersion 

limit with an un-tilted objective. 

The modeling of image reconstruction represented in Fig. 2.30 qualitatively con-

firms the results obtained by investigation of theoretical resolution limit (Fig. 2.23). The 

image resolution depends on the optical system and substrate properties (NA, FOV, t and 

n). The achievable resolution scales inversely with the substrate index of refraction. 

Substrate thicknesses greater than several times the FOV result in experimental difficul-

ties, both in registration and in lowered signal intensity leading to S/N issues.  
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Chapter 3. Conclusions and future work 

3.1 Achievable resolutions in advanced configurations 

3.1.1 Materials and frequency tiling for solid immersion  

The goal of IIM is to reach ultimate resolution limits of non-fluorescent microscopy by 

using IIM in new optical configurations realizing a solid immersion technique with 

immersion materials employed in advanced regimes unsuitable in other systems.  

Multiple partial images obtained with off-axis illumination and interferometric optics can 

be combined to assemble a composite image corresponding to larger frequency space 

coverage than is available with conventional imaging approaches. Relatively low NA 

microscope objective in this synthetic aperture approach allows retaining large field-of 

view and working distance. 

Using Manhattan geometry structures with different CD as objects and He-Ne la-

ser with 632.8 nm wavelength as a coherent illumination source, we have shown the 

possibility of effective NA extension almost up to 1+NA (to 1.38 for NA=0.4 in our 

experiment).  Tilting the object plane has further extended the resolution to λ/4 (or to 

λ/3.76 in our experiment). Evanescent wave illumination has been demonstrated to 

extend the resolution of IIM to λ/2(n+1). Images of 150-nm structures (arbitrary 

Manhattan geometry pattern) using a 633 nm wavelength (λ/4.2) have shown optical 

resolution below λ/4, the linear systems limit of available resolution in air. Further 

resolution improvement with this half-immersion geometry is available for a substrate 

with a higher refractive index (e.g. GaP with n = 3.3 allows NAeff of 4.3 and a correspond-

ing periodic pattern half-pitch resolution of 74 nm = λ/8.6 at 633 nm).  

Table 3.1 provides resolutions calculated for several microscopy techniques and 
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compares their practical resolution achievements for different λ with a silicon immersion 

substrate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Annular illumination using the ~2× resolution advantage of incoherent off-axis il-

lumination can be combined with immersion techniques (current results are obtained with 

liquid immersion and an NA=1.3 [Vainrub et al. 2006]). However, this requires alignment 

between two specialized high NA, small FOV objectives, which is a challenging task. 

Table 3.1. Wavelength dependent resolution with Si solid immersion layer for 
different techniques. 

   
Wavelength (nm) 1064 704 633 488 405 

 amorphous Si properties 

[SOPRA 2013] 

Si refractive index 4.1 4.31 4.5 5.01 4.97 

Si 1/e length (µm) -- 1.6 0.2 40nm 13nm 

Alternative approaches 

Annular illumination (NA=1.3) λ/4 NA 

[Vainrub et al. 2006] 

205 135 122 94 79 

SIL  λ/4n [Köklü et al. 2009] (thick lens 

does not allow  materials with loss) 

65 -- -- -- -- 

IIM 

 λ/4 (no immersion) 266 176 158 122 102 

 λ/[2(n+1)] (half immersion) 115 67 58 41 34 

 λ/4n (full immersion) 65 41 35 25 21 
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Even ignoring the fact that usually there is a tradeoff between the FOV and the NA, such 

objectives cannot use materials with significant losses due to the required macroscopic 

optical thicknesses.  

Solid immersion lenses (SIL) [Köklü et al. 2009] provide a relatively cost-

effective solution for increasing NA by a combination of a standard objective with a 

section of a high index refraction sphere as solid immersion media. This method has 

shown good resolution (to 145 nm using a Si SIL at 1.2 µm of FOV) but again can only 

be used with relatively long wavelengths since the sphere section (which in practice is 

close to a hemisphere) requires essentially lossless materials. As opposed to SIL, IIM can 

provide up to few tens of nanometers resolution with immersion media such as silicon at 

visible (red to green) wavelengths while retaining the full field of view, large working 

distance, depth of field, and low-cost of low NA objectives.              .                      

The possible increase of NAeff is illustrated by Fig. 3.1, drawn for a 0.4 NA system 

and silicon as immersion medium. The red inner circle corresponds to the NA/λ frequen-

cy space coverage associated with coherent, normal-incidence illumination. The 

successively larger diameter concentric circles correspond to the frequency space 

coverage of the IIM optical configurations discussed in this theses: 3NA/λ (orange) is the 

coverage for a single offset exposure (Figs. 2.2 - 2.4); (1+NA)/λ (yellow) is the coverage 

including multiple off-axis illumination angles (Fig. 2.5); tilting of the objective (Figs. 

2.6 - 2.9) extends the frequency space coverage to 2/λ (lime green), independent of the 

NA of the objective; the dotted green circle at (1+n)/λ show the coverage with half-

immersion for an index of 1.5 (glass); light blue circle shows the full immersion 

frequency space coverage for the glass; the next blue circle at (1+n)/λ shows the coverage 
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with half-immersion for an index of  4.5 (Si) at 633 nm (Figs. 2.16 - 2. 19); and finally 

the purple circle shows the full immersion frequency space coverage for the same index 

(Fig. 2.20). 

As is always the case, there is a trade-off between the number of sub-images and 

the NA of the objective lens. As the frequency coverage is extended, the use of higher NA  

lenses will reduce the number of sub-images required for an equivalent coverage of 

 
 
Fig. 3.1. Available frequency space coverage for various optical systems.  
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frequency space. Fig. 3.2 provides an example of two similar 1D tiling schemes for a Si 

substrate (nsub = 4.1 at 1064 nm), one (vertical) for a 0.65 NA and the other (horizontal) 

for a 1.4 NA conventional immersion objective. NAill corresponds to particular illumina-

tion angle θ. Frequency G is normalized frequency of the decoupling grating. As many as 

seven sub-images are necessary to provide complete 1D coverage along just one axis for 

the 0.65 NA, whereas only three are sufficient for the larger NA. The whole frequency 

space can be covered by 21 sub-images for NA = 1.4, while as many as 75 images are 

required in case of NA =0.65. The required number of sub-images for nearly complete 

coverage increases approximately as NA2. This suggests that there will be great advantage  

 

 

 

 

 

 

 

 

 

 

in knowing something about the image and its spectral content allowing image formation 

with less than complete coverage of the spatial frequency space. One situation where this 

 

Fig. 3.2 Tiling strategy for high index substrate [example shown is n = 3.6 (Si at 1.06 µm)]. 

Collection  NA’s are 1.4 and 0.65.  
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is clearly possible is in the inspection of silicon integrated circuits. The demands of 

manufacturable lithography at the nanoscale are putting great pressure on the range of 

patterns allowed in modern ICs, this is often referred to as lithography “friendly” design, 

which in general is forcing the patterns closer to periodic grating patterns. In turn, a 

lithography “friendly” circuit is a microscopy “friendly” circuit with a limited range of 

spatial frequencies, hence not requiring a complete coverage of spatial frequency space to 

reconstruct an image. In particular, the present examples used a binary geometric 

structure with the major spectral components along orthogonal axis. For more general 

objects, additional partial images covering all of frequency space inside the circle should 

be added.  

Immersion lenses are not available at an NA corresponding to the refractive index 

of silicon (3.6-6.6). However an available immersion lens designed for more modest 

NA’s of ~1.4 can be used with the addition of gratings to couple the higher spatial 

frequency light out of the substrate. An issue with the very high NA immersion lens is 

that these lenses typically have a very short working distance, which in turn will require a 

very thin substrate, or a specially designed objective. 

 

3.1.2 Use of a thin overlayer for solid immersion immersion 

The purpose of this discussion is to show the advantages and limitations of IIM in a new 

configuration, where a slab of high refractive index material is used as an effective solid-

immersion medium (Fig. 3.3) to enhance the resolution up to the linear systems resolu-

tion limit of λ/4n. In what follows, we reveal a new regime for both half- and full-

immersion IIM. Using very thin substrates (or overlayers) and thereby restricting the 
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propagation distance, higher absorption can be tolerated, allowing the use of shorter 

wavelengths. Then the resolution is improved by two factors: the shorter wavelength and 

the higher index of refraction within an absorption band. This approach provides 

resolutions that are not available to solid immersion microscopy approaches because of 

the need for a thick high-index solid immersion lens. 

 

 

 

 

 

 

 

 

 

 

 

Phase distortions of high frequency sub-images are inherent in the geometry of 

beam propagation in the immersion slab, requiring a phase restoration procedure. The 

resolution in this configuration depends not only on objective NA and FOV, but also on 

the captured part of the spectral information which is also a function of immersion slab 

refractive index and thickness. The criteria for evaluation of the ultimate HP limits for 

different immersion slab parameters and system field of view have been provided. The 

estimation shows that the minimum thickness of the immersion slab and the maximum 

 

Fig 3.3. Advanced illumination/collection scheme allowing high-index-refractive material        

with high losses as solid immersion media. 
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field-of-view of the optical system should be chosen to achieve the highest resolution 

with the smallest number of sub-images. 

Other materials together with corresponding wavelengths in proximity to a material 

band-gap in combination with our method can also provide excellent results. Some 

possible wavelength/material combinations to explore are shown in Table 3.2. The 

columns labeled by nmax reflect the largest index transparent material of which we are  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aware at each wavelength. Thus the best resolution can be obtained with wave-

Table 3.2.  Examples of possible combinations of materials and wavelength    

for enhanced resolution 

λ (nm) λ/4 (nm) 
½–immersion 

(λ/2(nmax +1); 

Full-immersion  

λ/4nmax 

690 173 72 47  (n = 3.7 AlSb) 

633 158 

74 

65 

50 

48 (n = 3.30, GaP)  

41  (n = 3.87 AlSb) 

30  (n = 5.2 GaSb) 

488 122 

58 

43 

44 

40  (n = 3.1, TiO2) 

26 (n = 4.69, AlSb) 

27 (n = 4.5, Si ) 

193 48 

34 

31 

25 

19 

27  (n = 1.8, Photoresist) 

23  (n = 2.1, Garnet) 

19  (n = 2.6, Si3N4) 

12 (n = 4.04, SiC) 
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length/material combination of 193 nm and SiC, but a more economical combination 

with somewhat lower resolution could be 488 nm and Si; longer wavelength for biology 

requires selecting a material out of III-V group of materials, for example 633 nm with 

GaSb or 690 nm with AlSb. Additional materials may further expand the available 

resolution.  

 

3.2 Enhancements in hardware  

Experimental setup improvements such as adding electrically controlled opto-mechanical 

elements such as shutters for the automatic beam blocks and rotation stages for mask 

rotation and changing tilt angle will allow a significant increase in the speed of taking 

images. Electronically controlled rotation stages will also allow adjustment of angles 

more precisely, which will lead to image reconstruction with higher quality. This is 

especially important for correct reconstruction of tilted images. 

 

3.2.1 Elimination of dark fields and injection of reference beam 

Evanescent illumination can be combined with structural illumination eliminating the 

need for access to the back focal plane. This moves the interferometer to the front of the 

objective lens and makes IIM readily adaptable to existing microscopes. We have already 

discussed two approaches to structured illumination: 

a) Two plane waves incident on the sample - one at an extreme off-axis angle and 

one at an off-axis angle that is transmitted near the edge of the objective pupil (reference 

beam). 

b) The off-axis plane wave incident on the sample and the reference beam inject-



115 

 

ed between the object and the objective. 

Each of these has some concerns: for case a) each of these waves produces diffracted 

information; sorting out the resultant overlapping images requires some access to the 

back pupil plane (to block the zero order of the illumination beam that is transmitted 

through the objective lens); for case b) the injection requires a beam-splitter which 

sacrifices working distance. To address these issues we are in the process of elaborating 

several techniques described below.  

For example, guided-mode filters [Magnuson et al. 1992] (k-vector filters) pro-

vide an alternative approach for blocking zero order in structural illumination scheme. 

The basic idea is to fabricate a grating coupled waveguide to provide a high-resolution 

angular filter (Fig. 3.4) that can be designed to block the zero-order transmission just 

before the objective and transmit the diffracted information at all other angles (Fig. 3.5). 

Then by dithering the angular position or rotation it is possible to switch the zero-order 

on and off. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4. K-vector filter schematic and characteristic of a SiN-on-glass guided mode 

resonance filter. 
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Another possibility is to use a simple grating or grating on a waveguide instead of 

the beam-splitter to inject the reference beam before the objective as shown in Fig. 3.6. 

The grating should have a high enough spatial frequency pitch to avoid overlapping of 

images caused by high order difraction. 

  

 

 

 

 

 

 

 

 

The advantage of this method is that it does not require switchable gratings or 

mechanical adjustment of the filter. Both structures will have only minimal impact on the 

a)       b)  

Fig. 3.6. Injection of reference beam with grating. 

a)     b)  

      Fig. 3.5. Blocking of reference beam by k-vector filter.  
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working distance and will not cause any significant aberrations because they could be 

manufactured as pellicles and mounted directly in front of and perpendicular to the 

objective lens. 

  

3.2.2 Coupling into Immersion Slab  

There are several techniques available to provide for the illumination through the 

substrate which should be investigated in future work. A sampling of these is shown in 

Fig. 3.7. A coupling through the side of the substrate is shown in Fig. 3.7(a). The side can 

be polished at an angle different from normal to the object surface (that is the substrate 

can be a prism). Fig. 3.7(b) shows a grating for coupling. In the figure the grating is on 

the top surface of the substrate (the same side as the object), alternatively it can be placed 

on the bottom side of the substrate. Fig. 3.7(c) shows a prism configuration. Since the 

propagation angle in the substrate is beyond the critical angle, the beam bounces from 

side to side as it progresses down the sample. For the bulk substrate, the position of the 

coupling element has to be adjusted so that the beam is incident on the top surface at the 

object position corresponding to the field of view of the collection objective. Also shown  

 

 

 

 

 

 

 

 

a)                                               b)                                            c) 
 
 
Fig. 3.7. Alternatives for coupling light for substrate illumination: end face, grating, prism. 

  Object Grating Prism

Prism
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in each of the figures is an additional coupling element that is used to extract the 

illumination beam from the substrate to minimize stray reflections, which can be 

particularly difficult to deal with in a coherent system (see below for a discussion of 

source coherence).  

Another approach is to use a high index waveguide rather than a bulk substrate. 

Again, there are several techniques, well known to the integrated photonics research 

community, for injection of the illumination beam into the waveguide including prisms, 

gratings, and adiabatic tapers from larger waveguides or from fibers. A possible 

advantage of the use of a high-index waveguide is that it may be more compatible with 

the very short working distance of some high-NA objective lenses; the disadvantage is 

the filtering effect of the waveguide modal structure on the scattered light (some 

directions of scattering will be accepted by the waveguide and not transferred through). 

This suggests that a single-mode waveguide should be used when extraction of the 

scattered light through the waveguide is required.  

 

3.2.3 Decoupling of high spatial frequency information out of an immersion slab  

Fig. 3.8 represents an advanced schematic of capturing the light scattered from an object 

at steep angles into the substrate, beyond the total internal reflection angle. This light 

carries information on the higher spatial frequency structure within the object encoded in 

their amplitude and phase. Unless provision is made, this light is trapped by total internal 

reflection and is not collected. For convenience of representation, three separate 

diffracted bundles are shown, in reality there is a continuum of diffracted light with 

varying intensities and phases. Gratings are added at the top of the substrate to allow the 
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scattered light, impinging from the illuminated sample to exit the substrate and be 

collected. The use of decoupling gratings along with imaging interferometric microscopy 

is a major aspect of full-solid-immersion technique.  

 

 

 

 

 

 

 

 

 

 

 

Clearly from the figure, significant phase (and amplitude) corrections are neces-

sary. Appropriate phase correction for a single Fourier component in the plane of 

incidence can be done in accordance with Eq. 2.23. 

 In addition, there is a translation of the image associated with the high angle 

diffraction and the need to translate the lens to capture the relevant information. In this 

geometry, collection of light scattered close to 90° is not possible, but this information 

can be accessed if desired using a chamfered edge to the substrate with appropriate 

corrections. 

 Grating profiles have an impact on the extraction efficiency (how much of the 

 

Fig. 3.8 Using gratings with different pitch for extraction of rays beyond total 

internal reflection for full-immersion configuration. 
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light incident from the substrate is transmitted across the interface and collected by the 

objective). In general, we are interested in using the minus-first-order component of the 

grating Fourier transform (corresponding to 2π/d). A sinusoidal grating has components 

in its Fourier transform only at ±2π /d. A rectangular profile, which is commonly 

fabricated, has many more components that can lead to coupling of additional scattered 

image plane waves across the interface. For equal line:space gratings the second order (as 

well as other even orders) Fourier coefficient (at ±4π/d) vanishes, although for sufficient-

ly deep gratings, comparable to the wavelength, additional coupling terms arise. The third 

order terms (at ± 6π/d) are always present for rectangular grating profiles. This can give 

rise to multiple coupling orders which will lead to artifacts in the sub-images. For many 

arrangements, this is not an issue because of the spatial separation of the scattered spatial 

frequency information at the bottom of the substrate. This is, the bottom substrate plane is 

separated from the object plane and the different spatial frequency components, propagat-

ing at different angles, have separated to some extent by the time they reach this plane. If 

the thickness of the substrate is significantly larger than the field of view (illuminated 

aperture at the image plane), this separation will be large enough to avoid issues 

associated with higher-order coupling at the bottom surface extraction grating.  

 

3.2.4 Coherence length of sources 

So far the discussion has been for fully coherent sources with coherence lengths much 

greater then sample dimensions. The He-Ne laser we have used for the initial demonstra-

tions has a coherence length of many cm, much larger than the sample, substrate, and 

substrate to objective lens distances. This long coherence length makes the experimental 
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arrangement simpler, since it is not necessary to critically match the interferometer 

lengths between the objective arm and the zero-order reinjection arm. However, it does 

increase the spurious speckle effects associated with stray light (flare) and with light that 

reflects between the various optical components. These effects can be mitigated by 

choosing a source with sufficient coherence for the IIM measurements but insufficient 

coherence for a millimeter scaled Fabry-Perot effects, for example between the front and 

back sides of the substrate, or between the substrate and the objective entrance surface. 

Since these dimensions are very different, ~ micrometer scale for the sample to several 

mm for the substrate thickness and the substrate-objective distance, it should be possible 

to minimize unrelated Fabry-Perot effects while retaining all of the resolution of IIM.  

 

3.3 Enhancements in algorithms  

The full apparatus of digital image processing is quite rich and many additional tech-

niques will find application in IIM. An advantage of IIM is the availability of partial 

images allowing signal-processing enhancements. One example is the subtraction of 

dark-field images; another is the use of Fourier-transform filtering techniques to 

eliminate double coverage of the same spectral components in two images. More 

investigations should be carried out for the dependence of image quality improvement on 

applying different types of filters. Using different apodizing filters [Kuznetsova et al. 

2007, Chang et al. 2012] electronically may improve the quality especially in the case 

where overlapping sub-images are combined and filtering range was not estimated 

accurately enough.  

In chapter 2, it was shown that tilting the mask leads to image distortion due to 
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the non-uniaxial optical system, and thus restoration is necessary before image recon-

struction. An algorithm for image restoration was developed and applied to experimental 

results. We recalculated frequencies in Fourier space. The resulting frequencies are no 

longer on a regular grid and therefore not suitable for an inverse FFT. So, a Fourier sum 

with off-grid frequencies was used for inverse Fourier transform, which gives us better 

results for the whole field restoration in comparison with recalculated frequencies using 

approximation to nearest grid points. However, the nearest-point method combined with 

artificial increasing number of pixels around the image (4x in off-axis direction) gave 

numerically better results by certain circumstances. The possibility of solving the 

defocusing problem using this approach has been demonstrated. The field of view 

increases with object plane tilt angle. Thus, it will be important to estimate the possible 

size of the restored field of view.  The quality of the images was not very high due to the 

lack of precision in the mask and the illumination beam angle adjustments. Development 

of algorithms for determination of inclination angle with high precision would allow 

defocused tilted pictures to be restored with higher quality. Exploration of different 

algorithms, such as using different interpolation functions and approximations, also may 

improve restored image quality. 

In order to choose the best algorithm we need to compare reconstructed images. 

The images were compared with corresponding models, and quality of images was 

estimated by a simple MSE method. Using different weights iw  for different pixels 

[Tridhavee et al. 2005] we can estimate the quality of images, with some emphasize on 

selected features, by an extended MSE method: 
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∑ −=
i

iii IIw
N

MSE 2)'(1
                                            (3.1) 

Also, using different weights of different exposures in the process of reconstruc-

tion will allow different features to be seen with different contrast, which can be useful 

for object investigation.  

Other methods of image quality estimation can be combined together with MSE 

criteria.  The important information from the images of microchips can be recognition of 

whether the lines are continuous or they are broken somewhere. It may also be important 

to see whether there is an unwanted (or desired) "bridge" between the lines, or whether 

the lines are well separated. The mean-square deviation of the line length estimated by 

different techniques can also give a quantitative criterion for the image quality. In 

particular, the method will be useful for analysis of fabricated micro-objects where the 

desired result is known a-priory, for example, microchips. 

 

3.4 Fields of Application  

3.4.1 Binary objects in far field 

IIM is very useful for inspection of gratings and masks with CD between 35 nm (using 

liquid immersion with n=1.7 and objective NA=1.4, λ=212nm) and 200 nm, which are not 

possible to see using conventional microscopes. Fast object investigation is very 

important for lithography process control. 

Proposed technique is easily combined with phase shift interferometry [Shaked 

2009]. Then, surface mapping with lateral resolution about 35 nm and longitudinal 

resolution of a few nanometers can be done within seconds. Phase measurements are 
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readily available since the zero-order beam is independently accessible and can be 

advanced/retarded independently of the diffracted beams. For example, this will allow 

detailed microscopy of phase-shift lithography masks, which is difficult with traditional 

microscopy. 

 

3.4.2 Shallow surface investigations (e.g. cell membranes)  

Much research in biology is focused on membrane investigations, which can be success-

fully done using solid immersion IIM. Evanescent waves allow lateral resolution about 

30 nm and longitudinal resolution about 1 nm. The overall noise will be reduced because 

observation layer is very thin (on the order of 100 nm).  

 

3.4.3 Multiple wavelength illumination as an exciting direction for 3-D imaging 

To date, our investigations have been restricted to 2D objects (e.g. Cr on glass masks). At 

a single frequency scattering from multiple objects in multiple z-planes (displaced along 

the optical axis of the objective) is indistinguishable and makes imaging of 3D objects 

problematic. 3D imaging is necessary to observe a majority of biological objects. As we 

discussed above (section 1.3.4) IIM, as single-side-band system with relatively long 

coherence length, has a quasi-unlimited depth of focus. Thus, it is impossible to record 

separate information from a thin in-focus layer without severe contamination by 

information from other (defocused) layers. This problem can be solved by tomography 

which is image observation at different angles or by using a set of different wavelength. 

Tomography is well established, but for initial understanding of our multi-wavelength 

concept we provide below a simple model for sectioning of just two longitudinally 

separated images using illuminations with two different wavelengths (Fig. 3.9). Both 
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objects are nested “ell’s”, but object B has slightly different pitches and is rotated relative 

to object A for the ease of identification. Focusing on the object A and using wavelength 

λ1 we also record defocused image B. 

 

 

 

 

 

 

 

 

 

Here, for simplicity, we assume a weakly-scattering sample, which means that scattering 

from both objects does not significantly perturb the incident light and multiple scattering 

involving both object planes is negligible. This is not too strong a restriction since many 

(if not most) biological samples are weak-scatterers.  Under these conditions, each spatial 

Fourier component �qg of the total image C can be described as: 

��� = ��� + ℬ����φ�,��  ,                                           (3.2) 

where φ1,qg = 2πnΔzs1,qg/λ1  – is a defocusing term, e.g. the difference in phase occurring 

as a result of the separation Δz. Here s1,qg =�1 − ��,�
� − ��,�

� and fq, ,fg are normalized 

shifted spatial frequencies (e.g. f1,q = λ1/dx – fill ). Aqg and Bqg are spatial Fourier 

coefficients of the original objects in sense of Eq. (2.8); n is the refractive index of the 

 

Fig. 3.9. Configuration for sectioning a 3D imaging. Object A is in 

focus; object B is out of focus. Object B has slightly different pitches 

and is rotated relative to object A for ease of identification. 
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medium between the two objects.  

Using a different wavelength λ2, we can describe the spatial Fourier coefficients of 

the recorded image D as: 

��� = ��� + ℬ����φ�,��                                                     (3.3) 

Solving the system of equations (3.2) and (3.3) we can reconstruct the Fourier coeffi-

cients of image B: 

                        ℬ�� =  �������

����,��� ����,��                                                            (3.4 ) 

and similarly for image A. 

 In a model calculation we applied Eqs. (3.2) – (3.4) to a high frequency IIM 

image as shown in Fig. 3.10. Focused image A is in Fig 3.10(a); defocused image B is 

shown in Fig. 3.10(b)); the simulated ‘recorded’ combination of images is in Fig. 3.10(c). 

High frequency sub-images of the objects A and B after reconstruction are shown in     

Fig 3.10(d) and Fig. 3.10(e), correspondingly.  

So far so good in a noiseless ideal world, however in a realistic experiment we are 

confronted with the subtraction of two almost identical, but noisy, images. It is clear from 

Eq. (3.4) that the quality of the separated images will be strongly dependent on the 

signal-to-noise ratio. 

To demonstrate our ability to account for a defocusing term, we recorded in our 

setup a defocused image which was restored electronically. Pictures of recorded 

defocused high frequency image and electronically refocused one with corresponding 

models and crosscuts are shown in Fig. 3.11.   

Rewriting Eqs. 3.2–3.4 for general case where N sectioning layers are required re-

sults in the need to record N sub-images with N different wavelengths. Eqs. 3.2-3.3 take 
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the form of a system of linear equations: 

�Ψ��� ∗ ��� = ���  ,                                                               (3.5) 

where Aqg is a vector of N coefficients at a particular frequency fqg from the N layers in 

the object, each longitudinally separated by Δzp; ; Dqg is a vector of N coefficients at a 

particular frequency fqg from the N sub-images, each recorded with a unique wavelength; 

transfer matrix Ψqg is a N-by-N matrix of defocusing elements corresponding to the 

longitudinal position of a particular layer and the wavelength of a particular sub-image 

defined as:  

a)   b)   c)  

d)   e)  

Fig. 3.10 High frequency images a) A in focus, b) Defocused B,  c) Sum of two images: A + Bexp(iφ(λ1)) 

= C,  d) Restored A, e) Restored B 
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    a) d)  

b) e)  

c)  f)  

Fig.  3.11. a) Defocused model, b) defocused experimental resulted, c) crosscuts of defocused mod-

el(blue) and experimental result, d) reconstructed model(green), e) reconstructed experimental result, f) 

crosscuts of reconstructed model and experimental result 
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ψ��,����
���

��
��,�����  .                                                                   (3.6) 

Here ΔZ� =  ∑ Δz�
�
� ; assuming equal spacing ΔZ� =  �Δz� .  
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The formal solution of Eq. (3.5) is straightforward: 

��� = �Ψ���
��

∗ ��� ,                                                                (3.7) 

and it is easy to calculate as long as matrix Ψqg is well-conditioned. Evidently the degree 

of degeneracy of the matrix Ψqg is closely related to the magnitude of the difference of 

the defocusing terms of two adjacent separation layers ( see the denominator of Eq. 3.4):  

����,�� −  ����,�� =  �����������(��
∆���

� −  ���
∆���

� ) = 2��������������� ∆���

�
.              (3. 8) 

The larger the absolute value of the denominator the more robust the solution to the 

impact of noise on the separation of the images. The maximum is achieved when Δφqg/2 

= π/2. Approximating terms s1,qg and s2,qg as 1-f1,q-f1,g as a consequence of the small 

objective NA, we get : 

Δφ��~2��Δ� � �
��

− �
��

� =  2��Δ� ��
����

~ 2��Δ� ��
�� = �                 (3.9) 

Thus, we have a kind of ‘uncertainty’ relation for estimating the optimal range of 

wavelengths for a given axial resolution: 

Δ�Δ������ = �� �

��
                                                           (3.10) 

Please note that Δλrange is the difference of maximal and minimal wavelengths used in the 

system (range of used wavelengths), but not an incremental step from a sub-image to the 

next one which is related to the Δλrange and number of desired sectioned layers N as 

follows: 

Δ���� = �������

�
   ;                                                        (3.11) 

or  

Δ����~ �� �

���∆�
                                                               (3.  12) 

So, if required resolution is say 120 nm, then wavelength range for the best results is 
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estimated as 

Δ������~ ����

�∗���
= 1041 nm . 

The range is of the same order as the wavelength range for given resolution in OCT 

microscopy [Schmitt 1999], where longitudinal resolution and wavelength range are 

connected as  Δ�Δ������ = 2��2 �� �

��
 . 

The information content in the transfer matrix (3.6) can be increased by including 

angular propagation information which allows us to add tomographic reconstruction to 

significantly reduce the necessary wavelength range and to increase the robustness of 

inversion process. The transfer matrix becomes much more complex since we are dealing 

with a higher-dimensional case, because every spatial frequency is now propagating 

under several different spatial angles for different illumination conditions. 

In next step the weakly-scattering restriction can be removed for matrices that in-

clude this angular propagation information, since a contribution of multiple scattering, 

phase change and attenuation by spatial points along the propagation direction can be 

added for every frequency. Thus, we can deal with objects which are transparent enough 

to be recorded within good signal-to-noise ratio, but which cannot be considered as 

weakly-scattering; e.g. where multiple scattering has to be considered.    

The realization of this 3D imaging technique requires establishing a low noise op-

tical system including (but probably not limited to) determining the best reference object 

specifically suitable for 3D imaging in order to precisely adjust focus, reference beam 

angle and phase; measure phase transfer function of the entire optical system including 

chromatic aberrations; reduce as much as possible coherence length of sources.  Another 

task is to choose an optimal algorithm for inversion the phase matrix. 
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3.4.4 Microscopy with Chemical Analyses (CARS) 

The above discussion is pertinent to structural (reflection/transmission) microscopy that 

is sensitive to refractive index variations of the sample. Chemical information can be 

accessed using coherent anti-Stokes Raman scattering (CARS) spectroscopy. In CARS 

microscopy, two coherent sources at frequencies ω1 and ω2 are incident on the sample, 

the frequency difference, ω1-ω2, is tuned through sample material resonances and the 

anti-Stokes signal at 2ω1-ω2 is detected. This anti-Stokes signal is at higher frequency 

than either of the incident beams, which aids in discrimination against any fluorescent 

signals from the sample, which are at lower energy than the excitation. Since this is a 

coherent process, the concepts of IIM are directly applicable. In practice, we will need to 

generate a reference CARS beam to act as our reference beam in a suitable, non-resonant 

fashion, a traditional four-wave mixing arrangement is suitable for this generation. The 

beauty of the approach is that particular molecules (protein, DNA, etc.) or specific 

chemical bonds can be targeted without need to induce a specific marker into the sample.  

That gives a huge advantage for in-vivo investigations.  

More investigations should be performed to find out what signal level can be ob-

tained for realistic samples. If desired signal-to-noise ratio can be achieved than IIM can 

be very powerful tool for biological investigations. 

 

3.4.5 Application in non-optical systems. 

The extension of the effective numerical aperture demonstrated in the IIM also should be 

applicable to other waves such as electrons and atoms [Berkhout et al. 1989, Doak et al. 

1999, Balykin et al. 2005]. It will be important to investigate application of IIM 



132 

 

principles to electron microscopy and x-ray diffraction as they can be used in any 

problem that involves capture of a wide range of spatial spectral components exceeding 

the band pass of a limiting aperture. Conventional focusing elements (lenses and mirrors) 

with large aperture are available in relatively narrow range of wavelengths, between 200 

nm and 4000 nm; for shorter wavelengths, only low NA elements are available. Also, the 

focusing element for an atomic imaging system [Kouznetsov et al. 2006] is expected to 

work with NA of the order of several miliradian. If an appropriate coherent source was 

found, the IIM method could greatly extend the limit of resolution of such imaging 

systems.  

 

3.5 Summary. 

An important aspect of IIM is that frequency space is parsed into small, manageable 

pieces so that it is not necessary to provide the full NA in a single image. Existing 

immersion microscopy lens are limited to NA ~ 1.4, not only by the available indices of 

refraction, but by the difficulty of making a single diffraction limited objective at higher 

NA with acceptable aberrations. With IIM, we can in principle reach an NA as large as 5 

(see Table 3.2). It is worthwhile to note that IIM provides an important advantage over 

conventional immersion microscopy techniques. Since only a relatively small region of 

frequency space (~ NA/λ) is recorded in each sub-image, the aberration correction 

requirements for the objective lens are dramatically reduced.  

The resolvable dimensions for typical source wavelengths approach typical SEM 

resolutions – down to tens of nanometers - without requiring vacuum and indeed being 

fully compatible with water immersion. These resolutions are well beyond the current 
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established perceptions of microscopy capabilities and suggest that advances in optical 

microscopy can yet yield improvements that will have important impacts across a broad 

swath of science and technology. 

The place of IIM among other kinds of microscopy is shown in Fig 3.12 where 

they are located according to their resolution and field of view. It is clear that IIM allows 

high resolution and large field of view at the same time using modest equipment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.12    Place of IIM in microscopy world. 
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